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Abstract—This paper describes a data-driven method to model
the radiation patterns (over a large angular region) and scatter-
ing parameters of antennas as a function of the geometry of
the antenna. The radiation pattern model consists of a linear
combination of characteristic basis function patterns (CBFPs),
where the expansion coefficients of the CBFPs are functions of
geometrical features of the antenna. Scattering parameters are
modeled by means of parameterized state-space matrices. The
obtained models are quick to evaluate and are thus suitable for
design activities where multiple simulations are required. The
proposed method is validated through illustrative examples.

Index Terms—Antenna radiation patterns, interpolation, mo-
deling, state-space methods.

I. INTRODUCTION

MODERN antenna design procedures often involve ac-
tivities such as design space exploration, optimization

and sensitivity analysis. These normally require multiple full-
wave and/or asymptotic electromagnetic (EM) analyses of
the antenna for different geometric parameter values, and are
expensive due to the typically large computational cost per
simulation.

Model based parameter estimation (MBPE) is a modeling
technique described by Miller in [1]–[4], and can be summa-
rized as follows: a few points are used to interpolate a given
response in time/frequency or in terms of angular dependence,
using an underlying function that is based on the physics of
the problem at hand (e.g., the sinc function for the radiation
pattern of a reflector antenna in [3]).

Following the MBPE approach, techniques to model ra-
diation patterns of simple feeds such as dipoles have been
described in [5], [6]. These models interpolate the pattern
in both frequency and a wide angular region Ω = (θ, φ) in
the spherical coordinate system. The frequency dependence
is expressed as a Padé rational function, while the angular
variation of the pattern is expressed as polynomials in [5] or
in terms of spherical harmonics [6]. Another pattern modeling
method was proposed in [7] where the angular variation is
also expressed as spherical harmonics while the frequency
dependence is described using Slepian mode expansion. These
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techniques may not be suitable to model the radiation pattern
of electrically large antennas with rapidly varying radiation
patterns as a function of Ω due to the poor interpolatory
behavior (oscillations between exact-fit values) of high order
polynomial representations of the pattern or due to the possibly
large number of expansion coefficients that may be required in
the case of the method in [6], [7]. Furthermore, the methods
in [1]–[7] are not immediately suitable for design activities as
the pattern models are not parameterized with respect to the
antenna’s physical dimensions (i.e., the design parameters).
This limitation is addressed in this paper, where a model of the
full radiation pattern as a function of varying antenna geometry
is proposed.

A method to interpolate radiation patterns was recently
proposed in [8], where the variation of the physical problem
was captured by imposing a function such as a complex
exponential or orthogonal polynomials. The method in [8] is
based on a linear least-squares regression technique and is
strongly dependent upon the choice of the fitting function.
Furthermore, it is limited to a single varying parameter.

The design of antennas, used for applications such as
feeds in reflector systems, requires the knowledge of the
radiation pattern over a wide angular region in order to derive
performance metrics such as aperture efficiency and cross-
polarization. The efficiency (in terms of computational cost)
with which such antennas are designed could be improved
by means of parametric models of full radiation patterns.
Furthermore, the design of an antenna usually involves a
characterisation of radiation performance as well as reflection
coefficients. The design cycle of a general antenna can be
substantially improved if parametric models of the full pattern
are combined with parametric macromodel representations
of scattering (S−parameters) or admittance responses [9]–
[13], such that the antenna characteristics can be completely
designed from fast analytical models.

This paper proposes an efficient parametric modeling tech-
nique to model the radiation pattern as well as reflection
coefficients of a general antenna. The radiation pattern is
modeled over a wide angular region, of up to a full sphere,
as a function of the geometry of the antenna, taking into
account more than one varying parameter. In the context of
the MBPE paradigm [1], the proposed technique falls within
the waveform-domain class, but with an added capability of
providing a parametric description of the radiation pattern as
a function of the antenna’s geometry. Note that no attempt is
made to interpolate over the angular variation of the pattern,
as this part of the problem may be handled separately using
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the methods in, for instance, [1] and [4]. The proposed method
combines characteristic basis function patterns (CBFPs) [14]–
[16] with parameterization and interpolation steps to yield a
parametric model that can be used to rapidly evaluate radi-
ation characteristics for different combinations of geometric
parameters of the antenna. The parameterization is achieved,
differently from [8], by projecting the expansion coefficients
(from estimation data) into the same subspace using a common
and well-conditioned pivot matrix. The coefficients, obtained
from this orthogonal projection, have a parameter dependence
with smooth variation, and well defined trajectories, over a
constrained multi-dimensional design space. Furthermore, in
order to provide a full characterization of the antenna, a ra-
tional function representation, in pole-residue form, is utilized
to model the antenna’s S−parameters using the vector fitting
(VF) method [17]. The poles and residues are then indirectly
parameterized by first deriving a state-space realization of
the rational function, followed by an appropriate similarity
transform such that the variation of the state-space matrices is
smooth over the design space [11]. The parametric models are
generated from a limited set of EM simulations of the antenna
under consideration. A combination of such parametric models
may then be used to efficiently carry out typical antenna
design activities requiring repeated EM simulations such as
optimization, where the surrogate model may be used in a
formal surrogate based optimization (SBO) procedure [18],
[19], and sensitivity analysis.

This paper is organized as follows: Sec. II gives a brief
description of the CBFP method, while Sec. III describes our
main contributions, namely the parametric modeling algorithm
for both radiation patterns and S−parameters of antennas. Sec.
IV provides two examples illustrating the effectiveness of the
presented models for different classes of antennas and finally,
a conclusion is given in Sec. V.

II. CHARACTERISTIC BASIS FUNCTION PATTERNS

The CBFP method is described in [14] as a method to effi-
ciently evaluate radiation patterns of antenna arrays. It is first
applied to a single beam reflector antenna in [15]. Following
the discussion in [14], [15], the CBFP method consists of
reconstructing a radiation pattern as a linear combination of a
few basis functions as

F r(Ω, s) =
N∑
n=1

αnfn(Ω, s), (1)

where F r(Ω, s) ∈ CNp×1 is the approximated pattern in
a general direction Ω and at a frequency s. The symbol
fn(Ω, s) ∈ CNp×1 denotes the physics-based CBFPs, which
may be given by an analytical pattern model, or are directly
obtained from EM simulations, or measurements, and N
denotes the number of CBFPs. We will use the results of
EM simulations as CBFPs throughout this paper. Note that
Np = NθNφ, where Nθ and Nφ are the number of far-
field points in the θ− and φ−directions respectively, with
θ denoting the polar angle and φ the azimuthal angle in a
standard spherical coordinate system.

The objective of the CBFP method is thus to solve for the
complex-valued coefficients αn in (1) in order to determine
an unknown pattern F r(Ω, s).

A. Generating CBFPs
The CBFPs are generated by EM simulations of a limited

set of a combination of geometric parameters of the antenna.
This set is herein referred to as the estimation set.

The objective here is to generate a minimum set of N
CBFPs that covers the design space of interest in the most
efficient manner. The estimation set is generated either as a
regular grid (for models with low dimension) or as a scattered
grid by means of a design space filling rule or a latin hypercube
sampling (LHS) [20] method augmented by the corner points
of the design space.

B. Solving Model Coefficients
The CBFP method was developed mainly for rapid estima-

tion of the pattern for calibration purposes [14], [15]. In that
context, the coefficients αn, in (1), are obtained by taking M
measurements of F r(Ω, s) and solving the resulting system
of linear equations either directly by using the Moore-Penrose
pseudo-inverse or by orthogonalising the basis functions, by
means of a singular value decomposition (SVD), as a pre-
processing step to enhance modeling accuracy [21].

Let FM be an Np×N matrix whose columns are the CBFPs
in (1). In applying SVD, only the first NR (NR 6 N ) left-
singular vectors of FM are retained, constituting a (possibly)
reduced set of CBFPs, denoted by UR ∈ CNp×NR . These
vectors correspond to the singular values of FM above a certain
threshold value, ε, relative to the largest singular value [15].
The model coefficients, for each frequency s, are then given
by

αv = [UR(ΩR)]†F r(ΩR), (2)

where ΩR are the NR distinct directions in which measure-
ments of the yet to be determined pattern F r(Ω) are taken,
and the superscript † indicates the pseudo-inverse of a matrix.
The recovered full pattern is then given by

F r(Ω) = R(Ω)αv, (3a)
R(Ω) = [r1(Ω), r2(Ω), · · · , rNR

(Ω)], (3b)

where R(Ω) ∈ CNp×NR is a matrix whose columns are given
by

rk(Ω) =
1

σk
FM(Ω)V k(Ω), (4)

where σk is the kth singular value of FM(Ω) and V k(Ω) ∈
CN×1 is the corresponding kth column of the right singular
matrix V(Ω) ∈ CN×NR , resulting from the SVD of FM(Ω).

An advantage of solving for expansion coefficients using
(2), is that αv ∈ CNR×1 is unique, with non-zero entries,
for each F r. This is a critical property for the parametric
modeling algorithm described in this paper. The primary aim
of this paper is to predict values of αv as a function of the
design space variables without a priori knowledge of F r, and
this is addressed in what follows. Note that NR = N is used
throughout the rest of this paper.
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III. PARAMETRIC MODELING ALGORITHM

The proposed method aims at constructing analytical models
of the radiation patterns (over a wide angular region) as well
as S−parameters of an antenna as a function of its variables
such as geometrical dimensions or substrate features.

A. Radiation Pattern modeling

The problem at hand consists of accurately predicting radia-
tion patterns corresponding to an arbitrary set of geometric pa-
rameters x∗, within a given design space D. The CBFP method
is a model-based pattern prediction method and is efficient as
it typically has a small number of solvable parameters.

Recently, a matrix projection based method [16] was pro-
posed to obtain expansion weights at multiple frequencies
without explicitly solving (1) at each frequency of interest.
The methods in [8], [16] are limited to one dimensional
parameter variations. To be more useful in a practical antenna
design, the radiation pattern models [8] need to be extended
to account for the variation of multiple geometric parameters.
The main contribution herein is the extension to the general
N-dimensional parametric modeling case, and this is presented
in what follows.

Consider a limited estimation set of Q points

X est = {x1,x2, · · · ,xQ}, (5)

and a corresponding set of CBFPs

F est = {fe1(Ω, s),fe2(Ω, s), · · · ,feQ(Ω, s)}, (6)

where xk denotes a vector of geometric parameters of the
antenna, fek(Ω, s) is the corresponding radiation pattern and
X est ∈ D.

Starting from Q basis functions in (6), a Q × Q matrix,
W(sj), of expansion coefficients is generated for each fre-
quency sj by sampling each of the Q CBFPs at Q distinct
points, Ωs, and solving (1) using the SVD method. That is

W(sj) = [w1(sj),w2(sj), · · · ,wQ(sj)], (7)

where wk(sj) is a column vector of expansion coefficients
corresponding to the solution for the kth basis function
(k ∈ {1, 2, · · · , Q}). The vector wk(sj), in (7), is obtained by
replacing F r(Ω), in (2), by the actual basis function fek(Ω, s)
at a frequency s = sj as

wk(sj) = [UR(Ωs, sj)]
−1fek(Ωs, sj). (8)

UR is the left-singular matrix of the SVD realisation of a
column stacked matrix of CBFPs as explained in Sec. II-B.
We stress that it is important that the SVD be used to
obtain each wk(sj), as a direct use of the Moore-Penrose
pseudo-inverse would yield the trivial result that W(sj), in
(7), is an identity matrix of order Q. Utilising SVD results
in each wk(sj) being a unique vector with no zero entry,
effectively linking each unique point in the estimation set to
a unique vector of expansion coefficients, which is necessary
for parameterization.

Equation (8) can, in fact, be interpreted as an orthogonal
projection of the radiation patterns in (6) into a subspace,
W , that is spanned by the columns of the matrix W in

(7). The orthogonal projection is carried out using a com-
mon matrix UR for all estimation points. This results in
the CBFP expansion coefficients, in the subspace W , having
a smooth geometry-dependent variation over the constrained
design space of interest, such that the expansion coefficients
at an arbitrary point in the design space can be obtained by
multivariate interpolation of the columns of (7) using, for
example, simplicial methods. Therefore, (3a) is reformulated
as

F r(Ω, s) = R(Ω, s)αv(x
∗), (9)

where, for a one-dimensional parametric modeling problem,

αv(x
∗) =

Q∑
k=1

T xk
`k(x∗), (10)

and x∗ is a point within the design space D where the radiation
pattern is to be evaluated. The symbol T xk

represents the
known interpolation nodes given by the expansion coefficients
computed in (7) and the interpolation kernel `k(x∗) is a scalar
function with properties

`k(xi) = 1 if xi ∈ X est, (11a)
`k(xi) ≥ 0. (11b)

For instance, `k(x∗) can be chosen as a piecewise linear
function or a cubic spline whose robust implementations are
readily available in MATLAB [22].

For the N−dimensional parametric modeling case, αv(x∗)
can be expressed as

αv(x
∗) =

Q∑
k1=1

· · ·
Q∑

kN=1

T (xk1···xkN )`k1(x∗1) · · · `kN (x∗N ),

(12)
where x∗ = [x∗1, · · · , x∗N ] and the kernel functions `ki(·)
satisfy (11).

The result in (10) is similar to the technique in [8] with the
difference being that the accuracy of the calculated expansion
coefficients depends on UR being well conditioned rather than
on a judicious choice of a fitting function (see Fig. 4 in Sec.
IV-A). The multivariate representation, in (12), is our main
contribution and extends the one dimensional method in [8].

The pattern modeling can be accomplished by having two
sets of CBFPs: one consisting of the θ−component of the
radiated electric far-field F est

θ , and the other set consists of
the φ−component of the radiated far-field F est

φ . The modeling
steps (7)−(12) are then performed separately using F est

θ and
F est
φ respectively and the resulting full radiated far-field may

then be obtained.

B. S−Parameter modeling

A set of S−parameters is obtained from EM simulations
for each point in the estimation set in (5). Since the number
of points in the estimation set is typically small, statistical
modeling techniques such as Kriging, co-Kriging or neural
networks [18], [19], [23] are not suitable to accurately model
the S−parameter variations over the design space of interest.
Instead, parametric macromodeling methods are used in this
section.
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The key concepts in parametric macromodeling techniques
are repeated here for completeness, with more in depth discus-
sions available in [9]–[13] and the references therein. We will
limit the discussion of S−parameter modeling to reflection
coefficients. However, the macromodeling technique can be
readily applied to model an entire P × P scattering matrix,
with P being the number of electrical ports.

Consider a set of Q S−parameter vectors

H = {hx1
(s),hx2

(s), · · · ,hxQ
(s)}, (13)

with each hxi
(s) being a function of frequency and corre-

sponding to the antenna’s reflection coefficients for an input
vector xi ∈ X est.

The first step in the algorithm consists of fitting each hxi
(s)

with a frequency-dependent rational transfer function of the
form

Hp
xi

(s) = r0 +
K∑
n=1

rn
s− zn

, (14)

where r0 is the direct coupling constant, rn are the residues
and zn are the system’s poles, which are determined iteratively
using vector fitting [17], and K is the order of the approxi-
mation. Note that r0, rn and zn are dependent on the design
space point xi in the estimation set (5). The expression in
(14) is then converted to a Gilbert state-space realisation [24],
where the transfer function is given by

Hxi
(s) = Cxi

(sI−Axi
)
−1

Bxi
+ Dxi

, (15)

and the matrices Axi
∈ CK×K is a diagonal matrix of poles,

Cxi ∈ C1×K is a row vector of residues, and Bxi ∈ NK×1

is a unity vector while Dxi ∈ R equals the direct coupling
term r0. The expression in (15) is henceforth referred to
as a root macromodel, and all root macromodels Hxi

(s),
with xi ∈ X est, have the same order K. The parametric
macromodel may then be obtained by interpolation of the
state-space matrices as

H̃(x∗, s) =

Q∑
k=1

T xk
`k(x∗), (16)

where T xk
represents a state-space matrix (Axk

,Bxk
,Cxk

or
Dxk

) and `k(x∗) is the interpolation kernel satisfying (11).
However, the interpolation of Gilbert state-space matrices

may suffer from a non-smooth variation of the state-space
matrices in the design space D, and this may lead to inac-
curate results [11]. A more accurate parametric macromodel
is obtained by converting the pole-residue transfer function in
(14) into the barycentric form [13] as

Hb
xi

(s) =
F 0 +

∑K
n=1 F nφn(s)

f0 +
∑K
n=1 fnφn(s)

, (17)

where the frequency-dependent basis function is defined as

φn(s) =
1

s− an
(18)

and the system’s poles, an, are fixed and independent of any
design space point xi.

The parameters of the numerator and denominator of (17)
are found by imposing that Hb

xi
(s) = Hp

xi
(s), which yields

the following conditions:

K∑
n=1

fn

K∏
n′=1

n′ 6=n

(zl−an′) = −f0

K∏
n′=1

(zl−an′) for l = 1, · · · ,K,

(19)
F n = fn ·Hp

xi
(an) for n = 1, · · · ,K, (20)

F 0 = f0 · r0. (21)

The proof for (19) can be found in [13].
By fixing the value of f0 in (19), values of fn can be

found by solving the resulting system of linear equations.
Condition (20) originates from setting Hb

xi
(an) = Hp

xi
(an)

and the coefficients F n can thus be solved. The final condition
is found by imposing the equality of the pole-residue and
barycentric transfer functions as s→∞.

Having computed the coefficients of the transfer function
in (17), a state-space realization can then be obtained by first
deriving state-space matrices {Anum

xi
,Bnum

xi
,Cnum

xi
,Dnum

xi
}

and {Aden
xi

,Bden
xi

,Cden
xi

,Dden
xi
} for the numerator and deno-

minator of (17) respectively [11], [13]. The state matrices are
given by

Anum
xi

= Aden
xi

= blkdiag{anIP }, (22a)

Bnum
xi

= Bden
xi

= [IP , · · · , IP ]T , (22b)
Cnum

xi
= [F 1, · · · ,FK ], (22c)

Cden
xi

= [f1IP , · · · , fKIP ], (22d)
Dnum

xi
= F 0, (22e)

Dden
xi

= f0IP , (22f)

where n = 1, · · · ,K, IP is an identity matrix of order P
and the superscript T denotes the transpose operator. The final
state-space matrices of the barycentric transfer function (17)
are then obtained, after some algebraic manipulations, as

Ãxi
= Aden

xi
−Bden

xi

(
Dden

xi

)−1
Cden

xi
, (23a)

B̃xi
= Bden

xi

(
Dden

xi

)−1
, (23b)

C̃xi
= Cnum

xi
−Dnum

xi

(
Dden

xi

)−1
Cden

xi
, (23c)

D̃xi
= Dnum

xi

(
Dden

xi

)−1
. (23d)

An accurate parametric model, within the design space D,
may then be obtained by interpolating the state-space matrices
(23a)−(23d) by using (16).

C. Method Complexity

The number of EM simulations required in the modeling
process depends on the number of parameters involved and
on the dynamic behaviour over the design space. However,
the overall number is typically much smaller when compared
to statistical methods.

The pattern modeling algorithm (Sec. III-A) involves simple
algebraic operations such as SVD and matrix inversions (of
very small matrices), and a serial (as opposed to parallel)
implementation provides sufficiently fast model building and
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evaluation times. E.g., a model with 49 CBFPs (over a full
sphere with Nθ = 181 and Nφ = 361) is built in 11.89
seconds per frequency point, and evaluated in 0.32 seconds
(see Sec. IV for details on the computing platform). However,
the building time can be significantly reduced as the algorithm
lends itself to a certain degree of parallelism:

1) The computation of each column, wk(sj), of W(sj)
in (7) is independent from all other columns and can
therefore be done in parallel.

2) The matrix W(sj) can be computed in parallel for each
frequency sj .

The S−parameter modeling algorithm in Sec. III-B is
typically an order of magnitude faster compared to the pattern
modeling algorithm, both in terms of model construction and
evaluation. Furthermore, it also lends itself to some level of
parallelism as the construction of root macromodels is done
independently for each point in the design space.

Both algorithms in Sec. III can be executed on estimation
points in a uniform or scattered grid.

IV. NUMERICAL EXAMPLES

In this section, the method proposed in Sec. III is validated
through some examples with different antennas, illustrating
the versatility of the method. The worst case root mean square
error (εRMS

max ), between the parametric models and the validation
data samples, is chosen to assess the quality of both the pattern
and return loss models. The error metric is given by

εRMS(x) =

√√√√∑Nd

k=1

∣∣∣Gk(x)− G̃k(x)
∣∣∣2

Nd
, (24)

εRMS
max = εRMS(xm), (25)

where x is a point in the validation set and Gk(x) is the
validation data, G̃k(x) is the prediction from the model, Nd
is the number of sample points and xm is the point in the
validation set that maximises (24).

All experiments are performed using MATLAB [22], on a
64-bit Windows platform with an Intel Core i7 − 2600 CPU
at 3.4 GHz and 16 GB of RAM.

A. Dipole Antenna

The effect of varying the length of a vertical dipole antenna,
radiating in free space, is modeled in this example. This
example is similar to the modeling example considered in
[5], where we model the effects of varying the length of the
dipole on the pattern at one frequency instead of modeling the
frequency dependence of the pattern of a fixed length dipole
as was done in [5]. Our method, however, does not attempt to
interpolate the spatial distribution of the radiation pattern, as
this is normally fast to calculate once the current distribution
on the antenna is known.

The length of the antenna is given as l = xλ0, where λ0

is the wavelength at f0 = 842.86 MHz, and x ∈ [0.5, 1.5].
The estimation set consists of 15 points uniformly sampled
in the range [0.5, 1.5]. The model is validated at 20 randomly
generated points (not in the estimation set) within the modeling

range. All EM simulations are done using FEKO [25], a
commercial Method of Moments (MoM) solver.
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Fig. 1. Selected basis functions of the dipole from the F est
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plane. Only 3 CBFPs are shown for clarity and to illustrate pattern variation
for different dipole lengths.

The CBFPs in this example are Festθ and Festφ for each
point in the estimation set, as explained in Sec. III-A, and a
plot of the CBFPs is shown in Fig. 1, revealing a non-smooth
variation of the radiation pattern as a function of l and thus
making a direct interpolation prone to inaccuracies. However,
a smooth variation of the expansion coefficients, as shown in
Fig. 2, allows an accurate recovery of the full pattern using
(9).
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0 50 100 150
0

2

4

  (deg)

D
ir
e

c
ti
v
it
y
 

x
3

x
1

x
2

 

 

Data

Model

0 50 100 150
 4

 2

0

  (deg)

P
h

a
s
e

 (
ra

d
)

 

 

x
1

x
2 x

3

Data

Model

Fig. 3. Directivity variation (top panel) and phase variation (bottom panel)
of the corresponding radiated co-polarised electric field, in the φ = 90◦

plane, for different points in the validation set, with dipole lengths x1 =
0.625λ0, x2 = 1.225λ0 and x3 = 1.425λ0. The patterns are modeled at
f0 = 842.86 MHz.
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A comparison between the modeled and actual pattern is
shown in Fig. 3 for a few points in the validation set, where
the increase in directivity and side lobe levels can be clearly
seen as the length of the dipole increases. A cubic spline is
used as the interpolation kernel. The maximum magnitude and
phase modeling errors in Fig. 3 are εM = 2.6×10−3 V/m and
εΦ = 0.011 radians respectively. Note that the proposed model
has only 15 solvable parameters compared to 56 parameters
required for the example in [5], thus demonstrating the com-
pactness of the proposed pattern model. A comparison with
the technique in [8], with Legendre functions and high order
polynomials being used as the parameter-dependent fitting
functions, yields similar results to our proposed method at
low frequencies (< 900 MHz). The results obtained with the
method in [8] are less accurate at higher frequencies as shown
in Fig. 4. Indeed, Fig. 4 demonstrates the robustness of our
method, with respect to [8], when there is a large dynamic
variation in the angular-dependent basis functions (CBFPs).
Moreover, with the approach in [8] it can be observed, in Fig.
4, that more accurate results are obtained when using a high
order polynomial as a fitting function compared to the case
where Legendre fitting functions are used. This confirms the
strong dependence, of the method in [8], on the choice of the
fitting function. It is difficult to select the best fitting function
beforehand.

0 50 100 150 200
0

1

2

3

  (deg)

D
ir
e

c
ti
v
it
y

 

 

Data

This work

[8] Leg.

[8] Poly

Fig. 4. Comparison of the modeling capabilities of the proposed approach and
the method in [8], with two different choices of parameter-dependent functions
namely: Legendre (Leg.) and polynomial (Poly) functions. The patterns are
shown in the φ = 90◦ plane, at a frequency of 1.06 GHz.

The modeling of reflection coefficients is achieved with root
macromodels (see Sec. III-B) of order 5, and the interpola-
tion kernel is also a cubic spline function. Highly accurate
modeling results are shown in Fig. 5, where the effects of
increasing the length of the dipole can be clearly seen.
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Fig. 5. Reflection coefficients at selected points in the validation set: x1 =
0.575λ0, x2 = 1.075λ0 and x3 = 1.475λ0. The appearance of a second
resonant frequency within the simulated bandwidth can be seen as the length
of the dipole increases beyond a wavelength.

The modeling error (25) for the entire radiation pattern,
evaluated for frequencies in the range [50, 1100] MHz, is
0.1109 while the error for reflection coefficients is 9.4×10−3.

B. Axially Corrugated Choke Horn Antenna

An axially corrugated horn antenna with three chokes is
modeled in this example. The antenna is depicted in Fig. 6
and the design variables are listed in Table I, where ac is the
complement of the horn’s flare angle and dc is the diameter of
the input waveguide. The width and depth of the corrugations
are fixed at 0.120λ0 and 0.273λ0 respectively, where λ0 is the
wavelength at f0 = 1.5 GHz. The thickness of each ridge is
fixed at 0.024λ0.

ac

dc

Fig. 6. Simulation model of an axially corrugated choke horn.

TABLE I
DESIGN PARAMETERS OF THE CHOKE HORN ANTENNA.

Parameter Min. Max.

ac 0◦ 50◦

dc 0.9λ0 λ0
Frequency 0.867f0 1.167f0

The estimation grid consists of a 6 × 6 grid of uniformly
sampled points (ac, dc) in the range specified in Table I and
the validation samples consist of a 5×5 grid of points defined
such that each validation point lies at the centre of a rectangle
described by 4 of its nearest estimation points. The horn is
simulated with the time domain solver in CST Microwave
Studio (CST-MWS) [26] and the variation of CBFPs is shown
in Fig. 7.

0 50 100 150
0

10

20

30

  (deg)

|E
 
|

 

 

Lower
Middle
Upper

Fig. 7. Selected basis functions from the Festθ set in the φ = 90◦ plane.
Only 3 basis functions (at the lower (0◦, 0.9λ0) and upper (50◦, λ0) corners
as well as the middle (20◦, 0.96λ0) of the design space) are shown for clarity.

The parametric model is constructed as detailed in Sec.
III-A and a piecewise linear function is used as the inter-
polation kernel. The model is the evaluated at points in the
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Fig. 8. (a) Directivity variation, (b) Phase variation across the design space
for a fixed dc = 19.8 cm while ac varies from p1 to p2 as ac = 5◦ and
ac = 45◦ respectively. The patterns are evaluated at 1.3 GHz, in the φ = 90◦

plane and the increase in directivity is clear as the flare angle decreases.

validation sets and selected results are shown in Fig. 8 (with
εM = 0.1049 and εΦ = 0.0347) where the effect of increasing
the flare angle’s complement, ac, can clearly be observed.

The maximum modeling error at the validation points is
0.29 and 0.1276 for magnitude and phase respectively. The
variation of the modeling error as function of the design
variables is shown in Fig. 9. The error plots reveal more
dynamic variations of the radiation pattern with respect to the
flare angle. However, the trajectories of the CBFP expansion
coefficients are continuous across the design space such that
the resulting model is accurate over the whole design space.
This example validates the proposed pattern modeling algo-
rithm even in the case of a large non-linear variation of the
radiation patterns within the design space.

Modeling of the corresponding reflection coefficients re-
quires a local approach as the frequency behavior is different,
in terms of the presence of resonances and the general trend, in
different regions of the design space (i.e., the trajectories of the
state-space matrices are not smooth across such a large design
space). Therefore, different fitting orders are used in different
regions of the design space, with the number of poles varying
from 5 to 8, in order to yield relatively accurate results. A
more dynamic variation of reflection coefficients as a function
of the flare angle is observed in this example, and therefore
the design space is divided in regions according to flare angle
values, and each region is fitted with the appropriate number of
poles. The variation of the modeling error in the design space
is shown in Fig. 10 and a plot of the model with maximum
error is shown in Fig. 11.

Errors, though very small, between validation data and
models of reflection coefficients, in Fig. 11, could be reduced
by using adaptive sampling methods such as the tree-based
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Fig. 9. Radiation pattern modeling: (a) Magnitude modeling error, (b) phase
modeling error over the design space, at 1.75 GHz, where maximum errors
occur.
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Fig. 10. S-parameter modeling error over the design space.
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Fig. 11. Comparison between data and model at the point in the validation
set with maximum error.

sequential technique in [27].

C. Convergence Study of the CBFP Models

In this section, we present some results concerning the
accuracy of the CBFP models as a function of the number
of points in the estimation set. To this end, we consider the
example in Sec. IV-B and both regular and scattered grids are
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considered. For the scattered grid case, estimation points are
selected upfront and adaptively according to a design space
filling rule such that the design space coverage is maximised.

Models constructed with different numbers of estimation
points are evaluated on a dense 9×9 grid of validation points
and the results are presented in Table II, where a spline and
linear interpolation kernels are used for regular and scattered
grids respectively.

TABLE II
PATTERN MODELING MEAN RMS ERRORS OVER ALL VALIDATION

POINTS AS THE NUMBER OF ESTIMATION POINTS INCREASES FOR BOTH
REGULAR AND SCATTERED GRIDS.

Scattered Grid Regular Grid

Points Magnitude Phase Points Magnitude Phase

13 0.0553 0.1189 16 0.1214 0.1389
25 0.0360 0.0950 25 0.0972 0.0999
34 0.0271 0.0766 36 0.0101 0.0265
48 0.0244 0.0691 49 0.0441 0.0571

The results in Table II generally reveal lower modeling
errors for scattered grids compared to regular grids with a
similar number of points. Furthermore, a monotonic decline
in modeling errors is observed as the number of estimation
points increases, with steady-state values occurring at around
36 estimation points. The slightly higher error for the case of
49 estimation points, in a regular grid, is due to Runge effects
at the edge of the design space.

Table II generally shows a higher modeling error of phase
compared to magnitude. This is because a larger number of
estimation points are required to capture rapid phase variations
for accuracy levels similar to the magnitude errors in Table
II. This is illustrated in Fig. 2 where it may be inferred that
fewer estimation points can be used due to the almost constant
values of the magnitudes of expansion coefficients between
x ≈ 0.7 and x ≈ 1.3. However, all 15 points were required
to accurately capture the phase variations shown in Fig. 3.
Thus, for applications where only magnitudes of the radiated
far-field are of interest, accurate models can be achieved with
a smaller estimation set.

For cases where a rapid variation of the radiation pattern
occurs across the design space, such as a large difference
in directivity, a few extra estimation points may have to be
allocated in the region of rapid variation, in order to obtain
accurate results. A large difference in directivity may be
caused by, for instance, a resonance in the radiating structure
or feed of the antenna.

V. CONCLUSION

This paper presented a novel algorithm to efficiently model
the full radiation pattern as well as reflection coefficients of an
antenna as a function of its geometry. The proposed method
models radiation patterns as a linear combination of CBFPs,
where the expansion coefficients are parameterized with re-
spect to multiple design variables. Reflection coefficients are
modeled as rational functions where the poles and residues
are indirectly parameterized. Accurate models are constructed

from a limited set of EM simulations and can be used to
efficiently carry out antenna design activities where multiple
simulations are required. Numerical simulations confirm the
accuracy of the proposed method for different antennas.
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