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ABSTRACT 

A two-dimensional Coupled Element Method (CEM) for solving electromagnetic 

scattering problems involving lossy, inhomogeneous, arbitrarily shaped cylinders, 

was investigated and implemented. The CEM uses the Finite Element Method 

(FEM) to approximate the fields in and around the scatterer and the Boundary 
Element Method (BEM) to approximate the far-field values. The basic CEM theory 

is explained using the special, static electric field problem involving the solution of 

Laplace's equation. This theory is expanded to incorporate scattering problems, 

involving the solution of the Helmholtz equation. This is done for linear as well as 
quadratic elements. Some of the important algorithms used to implement the CEM 

theory are discussed. 

Analytical solutions for a round, homogeneous- and one layer coated PC cylinder are 

discussed and obtained. The materials used in these analytical solutions can be lossy 
as well as chiral. The CEM is validated by comparing near- and far-field results to 

the analytical solution. A comparison between linear and quadratic elements is also 

made. The theory of the CEM is further expanded to incorporate scattering from 
chiral media. 
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OPSOMMING 

'n Gekoppelde Element Metode (GEM) wat elektromagnetiese weerkaatsingspro­

bleme, van verlieserige, nie-homogene, arbitrere voorwerpe kan oplos, is ondersoek 
en geimplimenteer. Die GEM gebruik die Eindige Element Metode (EEM) om die 
velde in en om die voorwerp te benader. 'n Grenselementmetode word gebruik om 
die vervelde te benader. Die basiese teorie van die GEM word verduidelik deur die 

toepassing daarvan op die spesiale geval van 'n statiese elektriese veld- probleem. 

Hierdie probleem verlang die oplossing van Laplace se vergelyking. Die teorie word 

uitgebrei om weerkaatsingsprobleme te kan hanteer. Die weerkaatsingsprobleme 

verlang die oplossing van 'n Helmholtz-vergelyking. Hierdie teorie word ontwikkel 

vir lineere sowel as kwadratiese elemente. Van die belangrike algoritmes wat 
gebruik is om die GEM-teorie te implimenteer, word bespreek. 

Analietise oplossings vir ronde, homogene en eenlaag bedekte perfek geleidende 

silinders word bespreek en verkry. Die material wat in die oplossings gebruik word, 

kan verlieserig of kiraal wees. Die GEM word bekragtig deur naby- en verveld 

resultate te vergelyk met ooreenkomstige aitalitiese oplossings. Die lineere en 

kwadratiese element- resultate word ook met mekaar vergelyk. Die GEM-teorie is 

verder uitgebrei sodat weerkaatsing vanaf kirale materiale ook hanteer kan word. 
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INTRODUCTION 1 

1 INTRODUCTION 

Electromagnetic scattering problems have always been a subject of great interest. 
Although a lot of work has already been done on it, more speed and accuracy is still 
in great demand in especially numerical analyses of these electromagnetic field 

problems. Apart from the theoretical interest in such problems, increasing interest 
in the practical usage of solutions of these scattering problems has developed. One 
of the main applications is in the field of radar detection. A consequence of solving 

a scattering problem from a certain object is that the result can be used to defme 

the radar cross section (cr) of the object. This is a measure of the visibility of an object, 

by a radar system. These practical problems are spatially three-dimensional, and 
usually quite difficult to solve. If the object under consideration is cylindrical, with 
long but finite length, the radar cross section can be written as [18] 

aq(2~
2

) ( 1.01) 

with b the length of the cylindrical object, and -r the two-dimensional radar width. 

The radar width can be obtained by solving two-dimensional scattering problems, 

which is much less complicated than three-dimensional problems. 

Various numerical as well as a few analytical methods for solving two-dimensional 
scattering problems have been developed [9],[19]. The analytical solutions exist only 

for a few specially shaped objects, such as round cylinders. When the scatterer is an 
arbitrarily shaped, inhomogeneous object, numerical approximation methods are 
the only means for solving these problems. By combining some of the existing 
numerical methods, the complexity of obtaining a solution for general scattering 
problems can be greatly reduced [2],[3],[20]. A method combining a differential 

equation method, the finite element method (FEM), with an integral equation 
method, the boundary element method (BEM) will be examined, implemented and 
verified in this thesis. The method is known as the coupled element method ( CEM) 

and utilizes the characteristics of the FEM and BEM where it is most efficient. The 

CEM seems to be the most accurate, efficient and feasible numerical method to solve 
general (arbitrarily shaped, lossy and inhomogeneous) two-dimensional scattering 
problems. Different numerical methods are briefly discussed in chapter 2. 
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INTRODUCTION 2 

Both the FEM and BEM can be applied to the elementary, static electric field problem 

[2]. This requires a solution of Laplace's equation in a specified region. Although 

this is a special and simplified electric field problem, the CEM theory, for solving 
such problems, will be discussed in detail in chapter 3. This will serve as a basis for 
the general scattering problem and its numerical solution using the CEM, addressed 

in chapter 4. 

The efficiency of a numerical method is greatly dependent on the types of algorithms 
chosen to implement them. Optimum algorithms differ from method to method and 

their feasibility and utilization of the characteristics of a method should be examined 

before implementation. Algorithms chosen and developed for implementing the 

CEM are discussed in chapter 5. These algorithms seem to be the most efficient, 
considering the characteristics of the CEM. It is possible that refmed coding would 

result in a considerable improvement of the speed and accuracy of the CEM. 

The validation of an implemented numerical method is of utmost importance. This 

enables one to get an idea of the accuracy of the method itself and the correctness 

of its implementation. Validation can be performed by comparing results generated 

with the numerical method to either measured results or results obtained for a 

canonical problem (for which an analytical solution exists). Care should be taken 

that the formulation of the method does not involve simplifications which might not 

affect the numerical solution of these special canonical problems, but do affect 

general problems. This could be validated by comparing some numerical results to 
experimental results. 

Analytical solution methods for ,scattering from right circular cylindrical two-di­
mensional objects are discussed in chapter 7. These methods were implemented and 

serve as validation for the CEM. It should be noted that no experimental validation 
was performed. 
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2 NUMERICAL METHODS 

2.1 Introduction 

In the past 30 years or so, the memory and speed capabilities of computers have 

increased rapidly, and are still increasing. This has brought into being a new field 
in science and mathematics, namely computational problem solving. Numerical 

methods, of which some were derived in the previous century, can now be 

implemented to solve problems using digital computers. The fields of experimen­

tation and analytical developments have been complemented with the third field of 

computational numerical approximations. Many large, complex problems in a variety 

of fields, which are unsolvable analytically, have already been solved using compu­

tational problem solvers. In electromagnetics a variety of numerical methods have 

been developed to solve problems, arising from Maxwell's equations. The methods 
developed to solve scattering problems can broadly be divided into integral equation 

methods (IEM) and differential equation methods (DEM). An investigation of the 

different numerical methods available for solving scattering problems was per­

formed [8],[19],[20]. They will be discussed briefly in this chapter. 

2.2 Integral Equation Methods (IEM) 

Integral equation numerical methods for solving electromagnetic scattering prob­
lems, involve writing the fields inside a surface region for a two-dimensional problem, 
in terms of integrals over the boundaries surrounding the region. These integrals 

are obtained by using Green's theorem and a Green's function appropriate to the 
specific region and problem. The boundary conditions at the various boundaries must 
be satisfied. This leads to an integral operator which acts on the unknown fields. 
The boundaries can be discretised (the first approximation) into a finite set of 

elements. The fields or their equivalences (for example surface currents) on the 
boundaries interact with one another through the integral equation. Because of the 
discretisation, this integral equation can be used to set up a set oflinear independent 
equations containing the unknown fields or equivalences on the boundaries. Written 

in matrix form, these equations can be solved to obtain an approximated field (or 

current) value on each element. The fields inside the surface region can now be 
written in terms of these approximated boundary field values. 
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NUMERICAL METHODS 4 

The IEM can be formulated in a variety of ways, depending on the specific problem 

under consideration. The well-known method of moments is an example of an IEM. 
The characteristics of the IEM, enabling one to write the fields inside a region in 
terms of the boundary fields, make it suitable for problems with a region extending 

to infinity, of which a scattering problem is an example. 

The matrix equation one needs to solve to obtain the boundary fields has the form: 

[A][u] = [B] (2 .0 1) 

with u the unknown field values at nodes (element connection points) on the 

boundary and [A], a square matrix of size n (number of nodes or unknown fields). 
Solving equation (2.01) is one of the main time consuming procedures of an IEM. 

The solving time increases with an order close to three, with respect to the number 

of unknowns. The size and characteristics of [A] are thus crucial to the efficiency of 

the numerical method. The formulation of an IEM causes [A] to be a fully populated, 
possibly asymmetric matrix. 

The boundaries surrounding the surface region(s), are one-dimensional and the 

number of nodes required on the boundary is dependent of the size of the boundary 

and the wavelength of the electromagnetic field. This one-dimensional characteristic 

leads to a much smaller size for [A] than in the case of the DEM where nodes over 

the whole two-dimensional region must be defined (sec 2.3). If an inhomogeneous 

region is encountered, the IEM loses its advantage of only nodes on a one-dimensional 

boundary. The inhomogeneous region requires that the unknown fields on two-di­
mensional node patches be incorporated into the integral equations. This usually 
leads to quite a large numb~r of nodes and thus a large, fully populated, asymmetric 
matrix [A]. This fully populated matrix, with globally interacting elements, leads to 
another possible time consuming procedure namely the filling of [A]. The interaction 
of the field on each node with all the fields on other nodes has to be calculated to 
obtain the elements of[A]. For a large number of nodes, this matrix filling procedure 
can decrease the efficiency of the IEM considerably. 

2.3 Differential Equation Methods (DEM) 

The starting point of a differential equation method is directly from Maxwell's curl 
equations. The fields, on which the differential operator in the curl equations acts, 
are approximated over the whole two-dimensional region. The differential operator 
itself is also approximated. The errors made by these approximations are weighted 
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NUMERICAL METHODS 5 

and distributed over the entire region. This region can now be divided into 

sub-elements. The differential operator has a local nature, thus acting upon the 
fields in every sub-region individually. This makes it suitable for problems with 

inhomogeneous regions. From the formulation described above, a set of linear 

equations can again be obtained and written in matrix form. The matrix equation 
has a similar form as equation (2.01). A solution of this matrix equation yields the 

fields in all the sub-regions. 

Different approximating methods can be used, yielding a number ofthese differential 

equation methods. The well-known finite element method and the fmite difference 
time domain methods are examples of DEM. The fact that the entire two-dimen­

sional region has to be divided into sub-region rules out any direct use of these 

methods where infinite regions are present. Another consequence is that quite a 

large number of sub-regions have to be defined to cover the two-dimensional region. 
This leads to a large number of unknown field values to be calculated. The [A] matrix 

encountered with aDEM is usually much larger than with an IEM. The formulation 

of differential equation methods usually ensures a symmetric matrix [A]. Due to 

only local interactions between the fields, which is a consequence of the local nature 
of the differential operator, [A] is very sparse. This is advantageous to both the 

memory requirements and computational time of the DEM. Another consequence 

of the local nature of the differential operator is that inhomogeneous regions can be 
handled without any increase in the size of the matrix [A]. It should be noted that 
the time it takes to fill the sparse matrix [A] of aDEM, is almost negligible. 

2.4 Combining aDEM with an IEM 

Two-dimensional scattering from lossy, inhomogeneous, arbitrarily shaped objects 

is a very general problem. Most of the numerical methods in use are quite efficient 
and accurate for specific kinds of problems. For general problems, however, all the 
methods seem to fail to produce acceptable results at some stage or another. The 
finite spatial requirements of the differential equation methods, rule out their use 
when far-field information is required. The complexity and inefficient computing 
time make the integral equation methods undesirable when severely inhomoge­

neous objects are present. A combination of these two kinds of numerical methods 
seems to provide the answer to the difficulties encountered when these general 

scattering problems are considered [3]. Any finite, possibly lossy, inhomogeneous 
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regions can be solved using a DEM. An infinite homogeneous, free-space region can 
be solved using an IEM. The finite element differential equation method and the 

boundary element integral equation method will be used in the different regions. 

The combination of these two methods is not very complex and enables one to apply 

each method where it is most efficient and accurate. The combination of the finite 
element method (FEM) and the boundary element method (BEM) is known as the 

combined element method (CEM), and will be investigated and implemented in this 

thesis. 

Another coupled method which could have been used is the so-called transfinite 
element method (TEM) [20]. This method also uses the FEM in any inhomogeneous 

regions, but an analytical (Hankel function expansion) solution is used in the region 

extending to infmity. The analytical solution requires a circular boundary around 

any scatterer. This requirement might increase the number of finite elements to an 

unacceptably high value, if the scatterer is ill-shaped (sec 4.8.7). 
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3 COUPLED ELEMENT METHOD 

3.1 Introduction 

The coupled element method (CEM) [2],[3] is a numerical method which combines 

the Boundary Element Method (BEM) [4],[5] with the Finite Element Method 

(FEM) [6]. The BEMis suitable for problems in a region which consists of free space 

and extends to infinity. The FEM is suitable for problems in a finite region consisting 
of inhomogeneous, lossy media. The two methods are mathematically easy to 

combine. In this chapter the basic theory ofboth the BEM and FEM will be discussed. 

Two-dimensional structures will be considered, thus the z-axis in the Cartesian 
coordinate system extends to infinity. First order elements will be used in both 

methods, applied in a charge free region where Laplace's equation holds. An 
extension of these methods will be done in later chapters. 

3.2 Finite Element Method (FEM) 

Consider a region such as indicated in fig-3.1. The equation governing in a region 

can be derived from Maxwell's equations. If the fields in such a region are static and 
the region is charge·free, Laplace's equation 

'V(E'V<l>) = 0 (3.01) 

can be derived as the governing equation. This follows from Maxwell's equations 
using a potential function representation [l,p157]. 
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COUPLED ELEMENT METHOD 8 

Figure-3.1 Two-dimensional region where Laplace's equation holds. 

B 

3.2.1 Approximating potentials 

If the interior region (.Oi,J is divided into triangular elements (fig-3.2 ), the scalar 

potential <P can be approximated in each triangle. A first order (linear) approximation 

can be used in each triangle (fig-3.3 ), with the linear approximation function given 
by 

U =a+ bx+ cy (3.02) 

where U is the approximation for ci> and a , b and c (different in every triangle) are 

local constants to be obtained. The variables x and y are the coordinates in the 
two-dimensional cartesian coordinate system. 

Figure-3.2 Partial triangulation of the inside region. 
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COUPLED ELEMENT METHOD 9 

Figure-3.3 Linear approximation function in a finite element. 

u 

X 

3.2.2 Simplex coordinates 

Instead of using the global two-dimensional coordinate system for the variables in 

the approximation function (3.02), a local coordinate system called simplex coordi­

nates can be used [6,p102]. The approximation function can be given in terms of 

coordinates, valid only in the triangular element under consideration. The advantage 

of these local simplex coordinates is that the mathematical formulation for the FEM 

can be done for one triangle and applied to all other triangles, using easy coordinate 

x3-x2]llJ x 1-x3 x 

x2-x1 y 

(3.03) 

[6,p105]. In this matrix equation, ( x 1 , y 1 ), ( x 2 , y 2 ) and ( x 3 , y 3 ) are the global 

cartesian coordinates of the corner points of the triangular element under con­
sideration. ~ 1 , ~ 2 and ~ 3 are the three simplex coordinates. The approximation 
function (3.02) in terms of these simplex coordinates is then given by 

3 

U= L ui~i 
i-1 

as shown in [6,p108]. 

(3.04) 
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3.2.3 Weak formulation 

With U approximating <P , the governing equation in .0. in becomes 

'V(E'VU) =f 0 =error 

10 

(3.0S) 

The error can be distributed over the region and minimized in an average sense by 
weighting it and setting it equal to zero [2], 

f 'V(E'VU)WdD.in = 0 (3.06) 
ntn 

Different weighting functions can be chosen to give different results [4],[5]. The 
Galerkin method, where the weighting function has the same form as the 
approximating function, will be used here [4,p7]: 

3 

W= I~i (3.07) 
i• 1 

The error will thus be distributed in accordance with the function W. W is a sub­

domain weighting function, acting independently in every triangular element. This 

characteristic provides flexibility in the weighting function over the global region, 

advantageous especially with inhomogeneous regions. One disadvantage of this first 
order weighting function is the discontinuity present at the sub-domain or triangular 

element boundaries. Although the potential itself is continuous, its first derivative 

is not. The smoothness of the approximated potentials, and thus the accuracy, is 
affected. 

By integrating once by parts [6,p335], the so-called weak formulation [3],[4,p10] is 
obtained: 

f E'VU. \JWdD.in- f w:~ dB= 0 (3.08) 
ntn B 

This is called the weak formulation because a second order differential equation 

(Laplace's equation) is approximated by functions having only one derivative. The 
integral over B is a line integral over the boundary enclosing .0. i Tl' The normal 
derivatives of the potentials at the boundary can be approximated by the linear, one 
dimensional approximation function 

dU 

dn 

2 (du) I~i-
i·I dn i 

(3.09) 
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3.2.4 Matrix formulation 

Equation (3.08) is the approximated governing equation in Din, and can be discretised 

[3] to apply in each triangular element. This gives 

IE 1 f 'VU·\JWdD.in- f. JwdudB 1 =0 
J-1 1 

1• 1 dn 
ntn. Bi 

I 

(3.10) 

where o is the number of triangular elements and p the number of boundary 

elements. From this discretisation a set of matrix equations can be obtained (ap­

pendix A 3.1): 

[S][u]-[TJ[:~J~o (3.11) 

3.2.4.1 The S-matrix 

The S-matrix is a square matrix with the size n, n being the number of nodes (in­

tersections points of triangles) in D i rr The elements of [S] can be obtained by first 

obtaining the local 3x3 [Se] matrices of every triangular element. By substituting 
(3.04) and (3.07) into (3.10), [Se] is given by 

3 3 f 
S~1 

= Ee I I 'V~i· \l~jdD.in. 
i-1 j-1 

ntn. 

(3.12) 

If one adds an element of the 3x3 [Se] matrices to [S], whenever a local node coincides 
with a global node, [S] is obtained [6,p31]. 
(3.12) can also be written as 

3 

S~1 
= Ee I Q~jcotek (3.13) 

k-1 

[6,p111]. This is where the local simplex coordinates come in handy. The 3x3 matrices 
Q 1 

, Q 2 and Q 3 have to be calculated and tabulated [6,p112] only once, because it 
stays the same irrespective of the size, shape or position of the triangular element 

under consideration. e 1 ' e 2 and e 3are the enclosed angles of the triangular element 
under consideration [6,p332]. It is evident that the local [Se] matrices differ only 
because of the different enclosed angles the triangular elements might have. 
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3.2.4.2 The T-matrix 

The T -matrix is a square matrix with the size ni, m being the number of boundary 

nodes on B. The components of [T] are again the sum of the local matrices [T e1 

whenever the a local node coincides with the global node under consideration. [T e1 

is a 2x2 matrix, one dimension less than [Se], because the boundary elements consist 

of only one side of a triangular element. [T e1 can be calculated from (3.07),(3.09) in 

(3.10) as 

(3.14) 

and the integral can be written as 

T 11 = L t:.t: .-
.. f dBe 
e S!SJ L (3.15) 

a. 

[6,p10]. Lis the length of the boundary element and the integral can be calculated 

and tabulated in 2x2 matrix form [6,p10] as was done with the Q matrices in the 

previous section. The different local matrices ([TeD will thus only differ because of 

the different lengths the elements might have. 

3.2.4.3 Unknown potentials and its derivatives 

From equation (3.11) it can be seen that the approximated potentials at each node 

as well as the approximated normal derivatives at each boundary node are unknowns. 

There is thus a need for another matrix equation to solve all the unknowns. The 

BEM, which will be discussed in sec 3.3, will provide another matrix equation with 

two unknowns, which will enable one to obtain a solution. 

3.2.5 Prescribed potentials 

To excite a region where Laplace's equation governs, some of the nodes in the region 

(not on the boundary) must have prescribed potential values. The global [S] matrix 

must be altered to accommodate these prescribed values. The part of the matrix 

equation (3.11) associated with the internal nodes have the form 

[Sin][uin] = 0 (3.16) 

or 
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[
sf! 

5 /PJ[uf]=o (3.17) 
5 PI 5 PP UP 

where the subscript f stands for free- and p for prescribed potentials [6,p34]. 
Incorporating the prescribed potentials(¢) in equation (3.17) yields 

[s~~ ~J[~:J~[:J (3.18) 

In this matrix equation, it is clear that the approximated potentials (u) at each node 

will obtain the exact value of the prescribed potential at that node. The part of [8] 

associated with internal nodes, thus takes on the form of (3.18). 

3.3 Boundary Element Method (BEM) 

Consider a region as indicated in fig-3.4 , with .0 ex a source free, free space region 

extending to infinity. Laplace's equation is again the governing equation. The BEM 

is a variation of the well known method of moments [8]. The method is a numerical 
approximation of Huygens' principle [9,p377], expressing the potential at a given 

observation point in a region in terms of known potentials and its normal derivatives 

at an enclosed boundary. The basic theory and set-up of the BEM will now be dis­

cussed. 

Figure-3.4 Two-dimensional region where Laplace's equation governs. The 

region (.0 ex> extends to infinity. 

.O.ex 

observation point 
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3.3.1 Homogeneous coordinates 

The boundary region is divided into boundary elements as seen in fig-3.5 . The 

potentials and its normal derivatives are approximated linearly over each element. 

Figure-3.5 Division of boundary (B) into boundary elements with boundary 

nodes at the intersection of two boundary elements. 

B 

As with the FEM a local coordinate system is chosen to represent the approximations. 

The homogeneous coordinate system [ 4,p56] used here is a one dimensional system 
with coordinate ~varying from -1 to 1 along the boundary element under consider­

ation (see fig-3.6 ). This particular form of homogeneous coordinates is chosen to 

simplify the numerical integration that will be performed over the boundary element 
(sec 3.3.4.1). 

Figure-3.6 Homogeneous coordinate system on a boundary element. 

-1 
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The linear approximated potential on a given element is given in homogeneous 
coordinates as 

(3.19) 

'with 

(3.20) 

(3 .21) 

Fig-3. 7 shows a typical representation of <1> 1,<j> 2 and U over an element. 

Figure-3. 7 Typical linear potential approximation on a boundary element. The 

approximated potential (U) is the sum of the approximation functions<!> 1 and<!> 2 

U~· 
~· _/~/¢2 ~ 

...._ / ..<;. . ...... / . . rf...-.........,.. . 
. '¥f / ...... , . . / ...... . . / ...... , . 
. / ............. 

-1 1 

The necessary mathematical manipulation can be done on each element in the global 
x-y coordinate system using this local coordinate syst~m. It should be noted that a 
coordinate transformation is necessary between the global and local coordinate 
systems [ 4,p64]. The two transformation rules are 

x=<j>1x1+<!>2x2 (3.22) 

y=<j>1y1+<l>2Y2 (3.23) 

where ( x 1 , y 1 )and( x 2 , y 2 )are the x-y coordinates of the two ends of the boundary 
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element. 

3.3.2 Deriving the boundary equation 

With Laplace's equation governing in the region, an approximation of the potential 

<P is used again, namely U. This yields 

(3.24) 

The error which occurs because of the approximation is now distributed over the 
region by weighting the Laplacian [3], [ 4,p3] 

f 'V
2 UWdf2 11 x = 0 (3.25) 

n.x 

The Laplacian of the approximating function is thus set equal to zero in an average 

sense. The choice of weighting function will be discussed in sec 3.3.3. 

To obtain the boundary equations, (3.25) must be integrated twice by parts [2,p8] 
(Green's second theorem is applied). This yields 

f
\l 2 WUdQ -fudWdB+jdUWdB=O 

ex dn dn (3.26) 
nu 8 8 

3.3.3 The weighting function 

The region (.0 eJ in which the weighting function must be applied is an infinite 

region. An entire domain weighting function is thus chosen to accommodate the 
infinity of the region. The region is also homogeneous and source free, making the 
use of sub-domain weighting functions unnecessary. 

Consider the following equation 
2 - -\l W=o(r

0
-r

5
) (3.27) 

This is Laplace's equation in an infinite region with a unit applied potential at a 
givei;J. source point s. The fundamental solution [3],[ 4,p29] of (3.27) is 

W=-ln - -l ( l ) 
2n lra-rsl 

(3.28) 
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This is the source free, two-dimensional Green's function in an infinite, free space 

region. In these equations, r o is the observation point and r s is the source point. 
Choosing the weighting function as this source free Green's function and thus 

substituting equations (3.27) into (3.26) (appendix A 3.2) yields 

U =-JudWdB+jdUWdB 
o dn dn 

(3.29) 
B B 

Taking the observation point r o to the boundary B [ 4] gives 

-U =- U-dB+ -WdB l f dW f dU 
2 o dn dn 

(3.30) 
B B 

(appendix A3.3). · 

3.3.4 Matrix formulation 

Equation (3.30) can be discretised (division of boundary into elements as discussed 
before) to give 

l n f dW n f dU 
-Uo=-I U-dBi+L -WdB1 2 1• 1 dn 1• 1 dn 

B 1 B 1 

(3.31) 

This can be written in matrix form (appendix A3.4) as 

[
dub] [H][ub]- [G] dn = 0 (3.32) 

3.3.4.1 The H-matrix 

[H] is a square matrix with size n.(the total number of boundary nodes). The com­
ponents of [H] not on the diagonal, can be obtained as follows. Beginning with node 
one through ton, integration is performed over each element on the boundary, with 

the location of the node under consideration (say i) the observation point. A local 
value for the integral is defined as H ~with 

I 

H''= "'-JdC . f dW 
t "'k dn c, 

j =a, b (3.33) 
-I 
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and a and b the boundary node numbers at the ends of the element which is inte­
grated over, k= 1 whenj =a and k=2 whenj =band 

p 2 I 2 J= 4(xb-xa) +4(yb-ya) (3.34) 

A coordinate transformation from the global format in equation (3.31) to the local 
format in equation (3.33) was done (appendixA3.5). The components of the first row 

of [H] is obtained by adding H ' ~ or H ' ~ to H 1 j whenever a or b coincides with the 

column of [H] under consideration (column j). This procedure is performed for all 
nodes, thus filling all the rows of [H]. 

The elements on the diagonal is equal to~· This is because the term on the left hand 

side of equation (3.31) is incorporated into the [H] matrix. The integral part of any 

Hii term is always zero because the term:~ is zero when the observation point is 

on the element which is integrated over. This can be seen from equation (3.35) with 
fi orthogonal to f . 

The normal derivative of the Green's function as used in equation (3.33) is 

dW fl.f 

dn 2nlrl 
. (3.35) -=----

(appendix A3.6). The integration of equation (3.33) is done numerically using four 
point Gaussian integration [5,p185] summed up as 

A 1 4 

J f(~)d~"" ~f(~Jwi 
- 1 

(3.36) 

The homogeneous coordinate system for the boundary elements was chosen to 
coincide with this Gaussian integration format. 

3.3.4.2 The G-matrix 

The global G-matrix is also a square matrix with size n (number of nodes on 

boundary). The components of [G] can again be obtained by integrating over each 
element using node one through to node n as observation points. Just as described 
in sec 3.3.4.1 with [H], the local value for the integral is defined as G' i with 
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I 

G'{= j<1> 1 WJd~ j =a, b (3.37) 

-I 

Again, whenever columnj coincides with nodes a and b (the nodes at each end of the 

element under consideration) G '~or G'? is added toG;' ift a component of [G]. 

Four point Gaussian integration is used again to obtain the integral value of (3.37) 

but with an important alteration. Whenever the observation point (node i) lies on 

the element to be integrated over, a singularity occurs in the Green's function 

because the argument of the natural logarithmic function becomes zero (see equa­

tion 3.28). To avoid this singularity a logarithmic Gaussian integration [5,p187] is 

performed to obtain the integral. This integration formula is given as 

fIn(~ )f(~)d~ ~ ~~ w,f(U 
0 

(3.38) 

Equation (3.37) must thus be altered to obtain the format of the left hand side of 

(3.38) whenever the observation point lies on the element (appendix A3. 7). 

3.3.5 Potential values in the free space region 

Matrix equation (3.32) can be solved if either the potential values on the boundary 

or the normal derivatives are known. The solution then yields an approximation of 

the potentials as well as normal derivatives on each element on the boundary. This 
information, combined with equation (3.29) can be used to determine the potential 

at any point in .0 eX' If the potential at a point pis required; integration is performed 
over each element as required by equation (3.29), with p as the observation point. 
It is evident that this method is a numerical approximation of Huygens' principle 

defmed before. 

3.4 Combining FEM and BEM 

The two methods described above are different numerical methods used most 

efficiently for different applications. If, however, a problem arises which requires 
the application of both methods it can be seen that equations (3.11) and (3.32) are 
compatible. The so-called coupled element method (CEM) takes advantage of the 
characteristics of both the FEM and BEM. The CEM uses FEM characteristics to 

handle that part of a problem containing inhomogeneous materials. BEM char-
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acteristics are used to determine potentials at relative long distances from the 

prescribed potentials where too many finite elements would have been required. A 

discussion on the theory for combining these methods will now follow. 

3.4.1 Choosing a boundary 

When combining the FEM and BEM the region under consideration is divided into 

two regions (see fig-3.1). The boundary dividing these two regions is chosen in such 

a way that all inhomogeneous and non-free space materials are enclosed. This is the 

interior region (0 i ,J where the FEM will be applied. The BEM will be applied in the 

exterior region (.0 e.J. Because the boundary is chosen in free space, one ensures that 
the boundary conditions requiring continuity in the potentials and their normal 

derivatives over the boundary, are satisfied. Thus 
UFEM = UBEM 

b b (3.39) 

and 

dU~EM du:EM 
=----

dn dn' 
(3.40) 

3.4.2 Equilibrium conditions 

The continuity of potentials over the boundary is one condition for combining the 
BEM and FEM. The second condition is the equilibrium condition [2]. This requires 
that the approximation functions used for the FEM on the boundary must match 
those used for the boundary elements of the BEM. Although different local coordi­

nate systems were used for the two methods (as described in previous sections), the 
approximation functions were both linear. By choosing the boundary elements of 
the BEM as the sides of the triangles in the FEM which touches the boundary B, 
the equilibrium condition will be met. 

3.4.3 Obtaining a solution 

With the above mentioned conditions met, the two equations (3.11) and (3.32) can 

be joined to obtain a solution of the potentials on the nodes in 0 in • These values 
together with (3.04) enable one to obtain an approximated potential value in any 
triangular element. The solution of potentials in .0 ex can be obtained using equation 
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(3.29) because the potentials and their normal derivatives on each boundary element 
are known. Methods used for numerical matrix solutions will be discussed in chapter 

5. 

3.4.4 Numerical examples 

Computer code was written to apply the CEM discussed above. Two examples will 
be considered. The results will be compared with analytical solutions where possible. 

3.4.4.1 Perfectly conducting parallel plates 

Fig-3.8 shows two parallel plates with three dielectrics between the two plates. The 

top plate has a fixed potential of 1 Volt and the bottom plate a fixed potential of -1 

Volt. The region was divided into finite elements and boundary elements as shown 

in fig-3.9. 

Figure-3.8 Conducting parallel plates with dielectrics in between. The length 
of the plates is 0.4 m and the distance between them 0.2 m. Line a is 1m long. 

1V 

:1 
I 
I line a 
I 
I 
I 
I 
I 

....... 1.~~ .... 
1(2 ....... r ..... . 
(t 

-1V I 
I 
I 
I 
I 
I 

lo 
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Figure-3.9 Triangulated region around and between parallel plates used for 

E 
1

, E
2
andE

3 
= 0. The triangulated region consistsof61 total nodes, 16 boundary 

nodes and 104 finite elements. 

22 

WithE 1 , E 2 and E 3 = 0, the potential along line a is shown in graph -3.1. The potential 

between the two plates as seen in graph-3.1 can be verified analytically (appendix 

A3.8). Graph-3.2 shows the equi-potential lines in- and outside .Oin. The fringing 
potentials outside the space between the two plates are clearly visible. Graph-3.3 

shows the potentials along line a with E 1 = 6 , E 2 = 4 and E 3 = 2 . The different 

gradients of the potentials in the different dielectrics is noticeable. 
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Graph-3.1 The potential along line a (fig-3.8), calculated in the finite element 

and boundary element regions. 

u 

-1 
0 distance 

Graph-3.2 Equo-potential lines in between and around the parallel plates of 

fig-3.8. 

23 
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Graph-3.3 The potential along line a (fig-3.8), with varying dielectrics between 

the plate. 

1 BEM FEM 

u 

-1 
0 distance 

3.4.4.2 Perfectly conducting cylinders 

I BEM 
I 
I 

1 
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The region shown in fig-3.10 was divided into finite elements around the two round, 

perfectly conducting cylinders. The cylinder on the right and left were given pre­

scribed potential values of 1 Volt and -1 Volt respectively. Graph-3.4 shows the 

potential along line a in fig-3.10. 

Figure-3.10 Perfectly conducting round cylinders with a boundary around them 

separating the finite element region from the boundary element region. The 

radii of the cylinders are both 0.1 m. The length of line a is 1m. 

line a 
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Graph-3.4 The potential along line a (fig-3.9), calculated in the finite element 

and boundary element regions. 

J. 

u 

-J. 
0 distance J. 

3.4.5 Conclusion 

25 

The basic theory for the CEM was discussed in this chapter. The compatibility of 

the FEM and BEM was shown to be quite trivial. Extending this theory to accom­
modate more difficult problems than the static Laplace's governing equation will be 

done in the following chapters. The basic theory stays the same but a few extra 

details, associated with the specific governing equations, have to be considered. The 

static case, as described in this chapter, provides a good basis for developing the more 

complicated CEM associated with electromagnetic scattering problems. 
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4 HELMHOLTZ EQUATION SOLUTION 

4.1 Introduction 

The CEM theory discussed in chapter 3 can be expanded to incorporate electro­

magnetic scattering problems. The governing equation associated with scattering 

problems is the Helmholtz equation. The basic theory, however, stays the same. 
The fields inside a region, divided into finite elements, will again be approximated 
using the FEM. The fields outside this region will be approximated in terms of fields 

on the boundary of the finite element region using the BEM. The CEM's application 

to scattering problems [2],[3] will be discussed in detail in this chapter. The FEM 

method is very useful in the handling of problems where the fields inside inho­

mogeneous, lossy objects have to be obtained. The BEM is suitable for handling 

scattering problems. T4e CEM is thus a very good method to use in connection with 

problems concerning scattering from inhomogeneous, lossy objects because it again 

uses the characteristics of both the FEM and BEM where it is most efficient. The 

theory will be developed from Maxwell's equations and most of the methods dis­
cussed in chapter 3 will be used again. 

4.2 Problem set-up 

Consider a region as indicated in fig-4.1. The region consists of a two dimensional 

scatterer enclosed by a boundary (B) separating the inside region (.0 i ,J from the 
outside region (.0 e) . .0 ex extends to infmity. An incident plane wave is exciting the 
scatterer. 
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Figure-4.1 Two-dimensional finite region (.0 1n) excited by an incident plane 

wave. The inside region contains a possibly inhomogeneous, lossy scatterer and 

the exterior free-space region (.0 ex> is homogeneous and extends to infinity. 

y~-
x 

4.2.1 Polarization 

Einc 
~ 
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The field incident on a two dimensional scatterer (fig-4.1) can be divided into its 

Transverse Magnetic (TM) and Transverse Electric (TE) components. The same 

convention as in [1] will be used, with the transversity of the fields being with respect 

to the x-y plane. ATE polarized wave has an electric field component only in the z 

direction. The z direction is orthogonal to the x-y directions (fig-4.1) and extends to 

infinity. A TM polarized wave has a magnetic field component only in the z direction. 
FEM will be applied to the TM and TE-cases separately. Two different inhomoge­
neous Helmholtz equations will be used (appendix A4.1) for the two different 
polarizations. These equations can be derived from Maxwell's phasor equation 
notation (e-iwt time convention) in a source-free region [9,p60]. The governing 

equation for the TE case is 

1 2 
\1-\JEz+ErkoEz=O 

11-r 

and for the TM case it is 

1 2 
\1-\/Hz+llrkoHz=O 

Er 

( 4.01) 

( 4.02) 

In these equations E z and Hz are the electric and magnetic fields respectively, k o 

is the free-space wave number, 1-lr the relative permeability and Er the relative 
permittivity. 
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4.2.2 Incident field 

The field incident on a scatterer at any point (sayp) in the interior or exterior regions 

is [9,p490] 

( 4.03) 

The unit vector fl inc is in the direction the incident field is travelling and f in the 
direction of point p from the origin of the x-y coordinate system. The field U inc can 

be either the electric or magnetic field value depending on the polarization under 

consideration with U o the amplitude of the wave. The value r , is the distance to 

point p from the origin. The normal derivative of the field at point p on the boundary 
(B) will be required when the FEM and BEM are coupled and can be calculated as 

dUinc 'k A A U 
= - 1 n . n inc inc 

dn 

(appendix A4.2). 

4.3 Finite Element Method 

( 4.04) 

With the scatterer being a potentially inhomogeneous, lossy object, the FEM will be 

used to obtain the fields in .0 i rt' The equation governing in .0 in is the inhomogeneous 

Helmholtz equation (4.01) or (4.02) , The variable U z will be used for the fields 

wherever either the electric or magnetic field is referred to. Linear approximation 

functions will be used throughout this chapter. The detail of the FEM applied to the 
inhomogeneous Helmholtz equation will now be discussed. 

4.3.1 Approximating the fields 

The fields in .0 in can be approximated by dividing .0 in into triangular elements as 

discussed in sec 3.2.1. The governing equation is then approximately satisfied in .0 in 

and the result is a linear approximation of the total field value (incident plus scat­
tered) in each triangular element. 
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4.3.2 Weak formulation for the Helmholtz equation 

An approximated field value E ~ (TE case will be considered first) can be defined in 

.0 in resulting in an approximated governing equation 

( 4.05) 

The error can be distributed and minimized in an average sense by weighting it and 

setting the weighted error equal to zero 

f ( l ' 2 ' ) \1 1-lr\/Ez+ErkoEz Wd.Qin=O 

n in 

( 4.06) 

The Galer kin method, with the weighting function equal to the approximated field 

function will be used again (sec 3.2.3). By integrating the left most term in (4.06) by 

parts (appendix A4.3), the weak formulation is obtained 

f 1 · f 2 • f l dE~ \IW-\/Ezd.O.in- ErkoEzWd.Oin- w- dn dB=O 
n . 1-lr n . 8 1-lr 

1n 1n 

( 4.07) 

4.3.3 Discretizing the weak formulation 

Equation (4.07) can be discretised to apply in each triangular element separately 

giving 

! f \IW-
1 

\1 E~dDin -! f Er .k~E~WdDin 
. 

1 
I I } . 

1 
) I 

J• t"'rj J• n inj n inj 

f-. f l dE' · - L w---zdBJ=O 
J-1 1-lrJ dn s, 

( 4.08) 

Using simplex coordinates and the same approximation functions as in sec 3.2.2 and 

3.2.3, E ~in each triangular element is given by 
3 

E~ = L E~i~i 
i- 1 

and its normal derivative by 

dE~ f (dE~) -=L ~ 
dn i-1 dn i i 

( 4.09) 

(4.10) 
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-I-1 Jf~it~kdE~tdBi=O 
i-111-r i-1 k•1 dn 

I B i 

( 4.11) 

Equation (4.11) can be written in matrix form as 

[S][E~]- [T][d£~] = 0 
· · dn 

(4.12) 

For a TM polarized field, (4.02) can be developed in exactly the same way as (4.01) 

to yield the matrix equation 

[S][H;]- [T][ dd:~ J ~ 0 ( 4.13) 

4.3.4 Matrix elements 

The elements of the global [8] matrix can again be obtained by adding up the 3x3 

local [Sel matrices (see sec 3.2.4.1). The elements of [Sel are now given from (4.11) 

as 

( 4.14) 

tabulated values. The second term can be written as 

·· 2 f f J dD.e S''; = Er.koA L L ~i~i--
i·1i·1 A n. 

( 4.15) 

A is the area of the element under consideration. The integrals in (4.15) have to be 
calculated [6,p11] only once and can be tabulated [6,p112]. The local matrices only 

differ because of the different areas the elements might have. 

The global [T] matrix has the same form as the [T] matrix in (3.11) and its elements 

can be obtained as described in sec 3.2.4.2. 
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The equations giving the elements of the [S] and [T] matrices for the TM-case stay 

the same as for the TE-case but with E r taking the place of J.l r and vica versa. 

4.3.5 Prescribed or known field values 

If a perfect conductor is present in 0 in it does not have to be divided into triangular 

elements. The boundary conditions on a perfect conductor requires that the tan­

gential electrical field has to be zero. If some of the nodes lie on a perfect conductor, 

their field values are thus known to be zero. The [S] matrix has to be altered 

accordingly as was done with the known potentials in sec 3.2.5. If the TM-case is 

considered, the transverse magnetic fields on the perfect conductor have to satisfy 

the Neumann (or natural) boundary conditions [6,p74]. Hz can thus be left as an 

unknown field value to be approximated. 

4.3.6 Lossy media · 

The FEM provides a way to handle inhomogeneous regions by dividing the region 

into homogeneous triangles. If the region is lossy (E rand 1-l r have complex values), 

the method can be applied exactly as described above. The only difference is that 

the elements of the matrices will have complex values. It should be noted that the 

imaginary parts of E rand 1-1 r must be positive because of the time convention chosen 
with the phasor notation (sec 4.2.1). 

4.3. 7 Conclusion 

The FEM described above is a numerical method approximating the fields in a 
potentially inhomogeneous, lossy region. The matrix equation ( 4.12) is a set oflinear 

independent equations with two sets of unknowns (the fields inside 0 in and on B, 
and their normal derivatives on B). The BEM will again enable one to obtain another 
set of linear equations with the same two sets of unknowns. 

4.4 Boundary Element Method 

The fields in the exterior region (OeJ offig-4.1 will be obtained using the BEM in a 

similar manner as discussed in sec 3.3, but with the Helmholtz equation as the 
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governing equation. The fields on the boundary (B) will again be approximated and 

the fields in .0. ex can then be expressed in terms of these boundary fields. The theory 

of the BEM applied to scattering problems will be discussed in this section. 

4.4.1 The boundary equation 

The boundary (B) enclosing the scatterer is chosen to ensure that any non-free space 

material lies in the finite element region. The governing equation in .0. ex is thus the 

homogeneous Helmholtz equation, given by ( 4.01) and ( 4.02) withEr = 1 and 1.1 r = 1 : 

\1 2 £ +k 2 E =0 (4.16) z 0 z 

for TE polarization and 

\l 2 H +k 2 H =0 z 0 z 

for TM polarization. 

(4.17) 

Consider the TE-case. Approximating E z byE~ and weighting and minimizing the 

approximated Helmholtz equation yields 

(\l E z + k 0 E z)Wd.Qex = 0 f 2 • 2 • ( 4.18) 

n.x 

Applying Green's second theorem (as was done in sec 3.3.2) to the first term in the 

integral of (4.18) gives 

f (\l 2 W + k 2 )E' d.Q - f dW E' dB+ f dE~WdB = 0 
0 z ex dn' z dn' 

nex B B 

(4.19) 

4.4.2 Weighting function 

The weighting function will again be chosen as the Green's function satisfying the 
governing equation with a unit applied field at a source point (sec 3.3.3). The equation 

that has to be satisfied is thus 

(4.20) 

The two-dimensional Green's function satisfying this equation is given by [9,p376] 

as 

( 4.21) 
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with H ~ 1 ) the Hankel function of the first kind order zero [10,p138]. Substituting 

(4.20) into (4.19) and following the same procedure as in appendix A3.4 yields 

. f dW . f dE~ E =- -E dB+ --WdB 
zo dn' z dn' 

( 4.22) 

8 8 

E ~ is the field at an observation point r o in D ex • Taking this observation point to 
0 

the boundary (B) [3,p119]) yields 

1 . f dW . f dE~ -E =- -E dB+ -WdB 
2 zbo dn' z dn' 

8 8 

( 4.23) 

4.4.3 Matrix formulation 

Equation ( 4.23) can be discretised in a similar manner as in sec 3.3.4 to give 

l , Ln f dW , Ln f dE~ -E =- -E dB+ --WdB. 2 zbo . dn, z j . dn, 1 
]•1 ]•1 

81 81 

which can be written in matrix form as 

[H][E~,]- [G{ ~~~' J ~ 0 
A similar equation applies for the TM polarization case giving 

[H][H~b]- [G][dH~b] = 0 
dn' 

4.4.3.1 The H-matrix 

( 4.24) 

( 4.25) 

( 4.26) 

The elements of [H] can be obtained in a similar manner as described in sec 3.3.4.1. 
Homogeneous coordinates are again used on each boundary element and four point 
Gaussian integration is used to calculate the integral over each element. The only 

difference is the function=~. The normal derivative of (4.21) can be calculated as 

(appendix A4.4) 

dW =f·fi)koHc 1 )(k lr -r I) 
dn' 4 1 o o s 

( 4.27) 

with f the unit vector in the direction of the vector r o - r s and H \
1

) the Hankel 

function of the first kind and first order. 
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The Hankel function of the first kind is given in terms of the Bessel functions of the 

first and second kind [10,p137]. Both the Bessel functions of the first and second 

kind consist of a term involving an infinite summation [10,p166]. With very small 

arguments both kinds of Bessel functions for zeroth and first order can be accurately 
calculated using the small argument approximation [12,p176]. With large arguments 
the asymptotic expansions [10,p143] can be used. With arguments where both these 

approximations fail to provide an acceptable accuracy, the infinite sum can be 

approximated by only adding the first n terms . The n'th term is the first term in 
the series with a value small enough to be neglected. This method is applicable 

because all four functions discussed above are converging functions [12,p177]. 

4.4.3.2 The G-matrix 

The elements of [G] can be obtained in a similar manner as described in sec 3.3.4.2, 

the only difference being the difference in the weighting function W. A problem 

arises if the observation point lies on the element integrated over. The argument of 

the Hankel function becomes zero and the imaginary part of the Hankel function 

becomes infmite when the argument becomes zero. This singularity can be avoided 

by an analytical integration over the element (appendix A4.5). 

4.4.4 Field values in the outside region 

The field values in .0 ex can be calculated using a discretised form of ( 4.22) 

n f dW n f dE' E' =-\ -E'dB.+\ _zWdB. 
zo L dn' z 1 L dn' 1 

1•1 1•1 
B I B I 

(4.28) 

It is clear that the exact or approximated field values on the boundary have to be 
known to obtain the field value at the observation point using (4.28). The boundary 
field values can be obtained by solving the matrix equation (4.25). Equation (4.25) 

has two sets of unknowns and can be solved if one of the sets of unknowns is given. 
An example is when the boundary (B) is on a perfect conductor and the transverse 
electric field values are known to be zero on the boundary (TE polarization). 
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4.5 Coupled Element Method 

Similar as in sec 3.4 the FEM matrix equation (4.12) can be coupled with the BEM 

matrix equation (4.25). Both equations have two sets of unknown values which can 
be related using boundary conditions. By combining the matrix equations of these 

two methods the fields in the finite, potentially inhomogeneous region (.0 i,) and the 

infinite, outside region (.0 eJ can be obtained. 

4.5.1 Conditions for compatibility 

If the equilibrium conditions for compatibility are satisfied on the boundary (B) as 

described in sec 3.4.2, the continuity of fields [l,p143] over the boundary is the only 

other condition required. The fields approximated on the boundary by the BEM are 

just the scattered fields and not the total fields as with the case of the FEM. This 

means that the FEM approximates the sum of the known incident and unknown 

scattered fields in the fmite interior region. The BEM extends to infinity and the 

radiation condition requiring that the fields at infmity be zero is met [3,p199]. The 

boundary conditions thus require that 
E'FEM = E'BEM + Einc 

z z z 

and 
dE'FEM 

z 

dn 

dE'BEM dEinc 
z z 

dn' dn' 

( 4.29) 

( 4.30) 

These conditions provide a link between the FEM and BEM described above. 

4.6 Field values 

4.6.1 Near fields 

The solution of the coupled matrix equations of the FEM and the BEM provides the 
approximated field values at all the nodes in Din and on B. Equation (4.09) can be 
used to obtain the field values in each triangular element and (4.28) can be used to 

obtain the field value at any point in .Oex. 
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4.6.2 Far-fields 

The echo width or radar width of the scatterer defined as 

u~ca ( <l>) 2 

a(<j>)=2nr . 
u~nc 

36 

( 4.31) 

can also be obtained. The scattered field (U ~ca ( <j> )) in ( 4.31) is the field at an 

observation point r 0 in .0 ex where the point r 0 is at an angle <l> relative to the direction 

of the incident wave. The point r o is also a large distance (r) from the scatterer. 

U ~ca ( <j>) can be obtained using ( 4.28) or a similar equation for the TM -case. The 

asymptotic expressions of the Hankel functions are used in the integrals. These 

asymptotic expressions can be used because the argument of the Hankel functions 
(k or) is large. The function W (equation 4.21) becomes (appendix A4.6) }a; fk 0 r'' 

W=- --e 
4 nkor 

( 4.32) 

with r ' ' the distance from the origin of the coordinate system to the point on the 

boundary under consideration in (4.28). The normal derivative ofW becomes (ap­

pendix A4.6) 

dW ( ~. ~) 'k W --= n ·r 1 
dn' o 

( 4.33) 

When determining the radar width, the .J1term present in W and;~ can be with-

drawn from (4.28). If this term is squared as required by (4.31), it is evident that the 
variable r, present in ( 4.31), is cancelled out. The radar width can thus be determined 

without defining a specific distance to the observation point. 

4.7 Chirality 

Except for the usual macroscopic quantities (permittivity and permeability) 

materials might have, another quantity called chirality [11] exists. A chiral material 
has the property that it splits a linear polarized incident wave up into left-circular 
and right-circular polarized waves. The chirality factor (3 is a measurement of the 

chirality of a material. In this section the CEM developed for inhomogeneous 

scattering problems will be extended to handle chiral materials. 
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4. 7.1 Constitutive relations 

The chirality of materials can be described mathematically by defining new con­

stitutive relations to incorporate chirality. The constitutive relations are given by 
[ll,p4] as 

D=EE+E~V'X£ 

and 

B= IJ.H+IJ.~V'XH 

( 4.34) 

( 4.3S) 

with D the electric flux density and B the magnetic flux density. It is evident that 

the electric flux density (D) is not only dependent on the electric field (E) but also 

on the curl of the electric field via the chirality factor. The same applies for the 

magnetic flux density and its dependency on the magnetic field (H). If the chirality 

factor is made zero, the material has no chirality characteristics and ( 4.34) and ( 4.35) 

becomes the usual constitutive relations given by [l,p127] as 

D= E£ 

and 

B=1-1H 

4. 7.2 A chiral Helmholtz equation 

( 4.36) 

(4.37) 

By using (4.34) and (4.35) together with Maxwell's equations, two inhomogeneous 

chiral Helmholtz equations can be derived (appendix A4. 7): 

( 4.38) 

and 

( 4.39) 

It should be noted that any one of the two governing equations has to be written in 
terms of both the electric and magnetic field values. The reason is that the chiral 
medium circulates the electromagnetic wave, and any TE or TM polarized incident 

wave changes its polarization as it travels through the medium. If, for instance, a 
TE polarized wave is incident on a chiral medium, the incident electric field will thus 
have only a component in the z direction. As the field enters the chiral medium, the 
wave is broken up into two opposite circulating waves. The electric field thus obtains 
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a component in the direction perpendicular to the z. direction. This component is 

equivalent to the magnetic field in the z direction and H :z: in (4.38) is thus repre­

sentative of this non-TE component. 

Equations (4.38) and (4.39) become the governing equations in a potentially inho­

mogeneous, chiral region. The FEM can be applied in this region. 

4. 7.3 The CEM applied to the chiral Helmholtz equation 

Equations (4.38) and (4.39) can both be weighted, minimized, integrated by parts 

and discretised in fmite elements using similar procedures as described in sec 4.3. 

This yields the following two matrix equations: 

. . [ 5£ ~ J [S][Ez]-[R][Hz]-[T] onb =0 ( 4.40) 

and 

. . [oH~ J [S'][Hz]+[R'][Ez]-[T'] ~ =0 ( 4.41) 

(appendix A4.8). 

Four sets of unknowns are present in these two equations and combining them with 
the BEM equations ( 4.25) and ( 4.26) (TE and TM polarization) is sufficient to obtain 

a solution. The same equilibrium and boundary conditions as discussed in sec 4.5 

have to be satisfied to combine the four equations above. It is evident from ( 4.40) 

and (4.41) that E ~and H ~is interdependent and this is why both the electric and 
magnetic field equations have to be solved simultaneously. 

4.8 Numerical examples 

Code was developed to implement the CEM discussed in this chapter. Implemen­
tation techniques are discussed in chapter 5. The memory restrictions of the personal 
computer used to execute the code, allow the solution of problems using only a few 

hundred unknowns. This restricts one to accurately solving problems with sizes not 
larger than the wavelength of the incident field. In this section, a validation of the 
CEM will be performed, using a few examples. The examples chosen are canonical 

Stellenbosch University http://scholar.sun.ac.za



• HELMHOLTZ EQUATION SOLUTION 39 

problems for which analytical solutions exist. This will enable one to get an idea of 

the accuracy of the CEM. The results obtained will be compared to the analytical 

solutions (chapter 7). 

4.8.1 Round, perfectly conducting (PC) cylinder 

The triangulated region around a round, PC cylinder is shown in fig-4.2. In this 

example, the frequency of the incident wave was chosen as 500 MHz resulting in a 

free-space wavelength (A. J of 0.6 m. The relative permeability and the relative 
permittivity of all the finite elements are one. The radius of the PC cylinder is 0.25 

m (0.4167A.J. 

Figure-4.2 Triangulation of the region around a round, PC cylinder. The region 

consists of 191 total nodes, 57 boundary nodes and 268 triangrilar elements. 

The CEM and analytical solution of the radar width for the PC cylinder, TE and TM 
polarization, is shown in graph-4.1 and graph-4.2 respectively. 
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Graph-4.1 Radar width of a round, PC cylinder forTE polarization. Frequency: 

500 MHz, radius: 0.25 m. 
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The difference in radar width between the CEM and analytical solution was calcu­

lated at angular intervals of 3° over the entire 180°. This difference was normalized 

with respect to the analytical solution at each specific angle and the average error 
was calculated. This error is given in graph -4.1 and 4.2. The numerical values of the 
radar width at oo and 180°, together with their corresponding dB values, are also 
given in graph-4.1 and 4.2. Back scattering is at 180C:: The average higher accuracy 
of the TE-case is due to the fact that the transverse electric field on the PC cylinder 
is known to be, and set to, zero. In the TM-case, the magnetic fields on the PC cylinder 
are, similar to all other nodes, approximated. 
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Graph-4.2 Radar width of a PC cylinder for TM polarization. Frequency: 500 

MHz, radius: 0.25 m. 
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Triangulation of the region in and around the coating on a round, PC cylinder is 

shown in fig-4.3. The frequency of the incident wave is again chosen as 500 MHz. 
The radius of the PC cylinder is 0.2 m and of the coating is 0.3 m. The radar width 
of the coated PC cylinder (TM polarization) is shown in graph-4.3. The relative 
permittivity of the coating is 3 and the relative permeability is 1. This corresponds 
to a wavelength in the coated material of 0.346A. r· The average normalized error is 
a bit higher than with the round, PC cylinder in the previous example. One reason 
for this is that the shorter wavelength in the coated material requires a higher 
number of triangles per meter to obtain the same accuracy. It should be noted that, 

at the angles where the radar width is close to zero, the normalized difference 

increases quite drastically although the difference stays quite small. This is due to 
the division with a very small number when the normalized error is calculated. 
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Figure-4.3 Triangulation in and around the coating on a PC cylinder. The region 

consists of 348 total nodes, 58 boundary nodes and 576 triangular elements. The 

line shown starts on the PC cylinder (x= 0.2 with the centre of the cylinder as 

the origin) and is 0.6 meters long. 

Graph-4.3 Radar width of round coated PC cylinder for TM polarization. Fre­

quency: 500 MHz, PC radius: 0.2 m, coating radius: 0.3 m, E r : 3, 1-1 r: 1. 
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4.8.3 Accuracy vs. number of nodes 

Table-4.1 shows the decrease in normalized error of the radar width as the number 
of unknowns increases. These values were calculated for a round, coated PC cylinder 

with the same specifications as given in graph-4.3. TE polarization was used. 
Although a decreasing tendency is evident, convergence to an exact solution as the 
number of unknowns is increased, has not been formally proven in this thesis. 

Table-4.1 Decreasing tendency of the average radar width error, as the number 
of unknowns increases. Different triangulation densities were used in and 
around the coating on a PC cylinder (specifications as in graph-4.3). A TE 
polarized incident field was used. 

Total number of Number of boundary Number of finite Average normalized 

nodes nodes elements error (%) 

57 19 76 30.9 

105 26 158 22.1 

169 35 266 10.5 

212 45 334 12.8 

348 58 576 8.45 

4.8.4 Accuracy vs. frequency 

The round, coated PC cylinder used in sec.4.8.2 and sec.4.8.3, will again be used as 
the scatterer in this section. The specifications of the triangulation are the same 
(348 total nodes) as in fig-4.3. The radar width was calculated, using the CEM and 
analytical solution, at different frequencies. Table-4.2 and table-4.3 show the back 
scattering radar width forTE and TM polarization, respectively. The same number 
of nodes was used at all frequencies. It is evident that the accuracy tends to decrease 
as the frequency increases. This is mainly because of the shorter wavelength asso­
ciated with higher frequencies. These shorter wavelengths require a higher density 

of unknowns to approximate the fields accurately. Although the results in table-4.2 
and 4.3 seem to indicate a higher accuracy for the TM-case. This is not true when 
the average normalized error is considered. 
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Table-4.2 Back scattered radar width error at different frequencies of a round, 

coated PC cylinder with specifications as given in graph-4.3. TE polarized 

incident field. 

Frequency (MHz) Coating radius (:X..,) Backscattering Backscattering Normalized dif· 

radar width (CEM) radar width (analyti- ference (%) 

cal) 

50 0.087 1.51 1.55 2.58 

100 0.173 1.01 1.03 1.94 

200 0.346 0.73 0.75 2.67 

500 0.867 0.57 0.57 0.02 

1000 1.732 0.32 0.42 23.81 

Table-4.3 Back scattered radar width error at different frequencies of a round, 

coated PC cylinder with specifications as given in graph-4.3. TM polarized 

incident field. 

Frequency (MHz) Coating radius (:X..,) Backscattering Backscattering Normalized dif-

radar width (CEM) radar width (analyti- ference (%) 

cal) 

50 0.087 0.0925 0.0916 0.98 

100 0.173 0.6115 0.6112 0.05 

200 0.346 1.0662 1.0159 4.95 

500 0.867 0.1682 0.1887 10.86 

1000 1.732 1.3349 1.5148 11.88 

44 
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4.8.5 Lossy media 

The code developed is able to handle scattering from lossy media. For realizable 
materials, the imaginary parts of the relative permittivity and permeability have to 

be positive due to the time convention chosen. With the coating on the same round 

PC cylinder used in the previous sections being lossy, the radar width at a frequency 

of200 MHz was calculated (graph-4.4). It is evident from graph-4.4 that the CEM is 
also acceptably accurate for scattering from lossy media. The results obtained when 
higher frequencies or higher relative permittivity or permeability values were use, 

were less accurate. 

Graph-4.4 Radar width of a round, coated PC cylinder. The coating material is 
lossy with E r = 3 + j 3 and ll r = 2 + j 2. A TE polarized incident field with a fre­
quency of 200 MHz was used. Other specifications are the same as given in 

graph-4.3. 
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4.8.6 Near fields 

So far, only the far-fields due to scattering from an object were considered. The CEM 
also approximates the field values inside and around a scatterer. The electric field 

values for different coating materials (from left to right along the line in fig-4.3) are 

given in graph-4.5 and graph-4.6. These field values were calculated using the CEM 

and an analytical solution method (chapter 7). 

Graph-4.5 Transverse electric field amplitude (FA) from left to right along the 
line in fig-4.3. The incident field is TE polarized with a frequency of 300 MHz. 

The material properties of the coated layer are E, = 3 and J.l, = I. 
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Graph-4.6 Transverse electric field amplitude (FA) from left to right along the 

line in fig-4.3. The incident field is TE polarized with a frequency of 100 MHz. 

The material properties of the coated layer are E, = 3 + j 3 and 1.1, = 2 + j 2. 
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The transverse electric field values from left to right along the line in fig-4.4 are 

shown in graph-4. 7. From graph -4.7 it can be seen that the near field approximations, 

in the finite element region, are not acceptably accurate. It can be expected that 

with higher order elements, the fields inside and near a scatterer, will be approxi­
mated more accurately. This, however, has not been validated. 

Stellenbosch University http://scholar.sun.ac.za



HELMHOLTZ EQUATION SOLUTION 

Figure-4.4 Triangulation in and around the coating on a PC cylinder. The region 

has the same triangulation specifications as in fig-4.3. The line shown is 1 m 

long and 0.24m above the centre of the cylinder. 

Graph-4. 7 Electric field amplitude (FA) from left to right along the line in fig-4.4. 

The incident field is TE polarized with a frequency of 100 MHz. The material 

properties of the coated layer are E r = 3 and 1J. r = l. 
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4.8. 7 CEM vs. Transfinite Element Method (TEM) 

Scattering from the dielectric half-shell shown in fig-4.5 was calculated using the 

CEM. The radar width was obtained and compared to a TEM solution. The TEM 

solution was obtained using the commercially available program RADAR [17]. In 

chapter 2, the TEM was mentioned but disregarded, due to its requirement of a 

circular boundary around the finite element region. The finite element region in 

and around the dielectric half-shell required for the TEM is shown in fig-4.6. 

Figure-4.5 Triangulated region, in and around a dielectric half-shell. The inner 

radius of the shell is 0. 7 5 m and the outer radius 0.9 m. The material properties 

of the dielectric shell are E r = 4 and 11 r = 1 • The region consists of 88 total nodes, 

37 boundary nodes and 137 finite elements. 

Figure-4.6 Triangulated region, in and around the same dielectric half-shell as 

in fig-4.5, but satisfying the circular boundary requirements for the TEM. The 
region consists of245 total nodes, 48 boundary nodes and 146 triangles (second 

order elements). 
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Both CEM and TEM solutions for TE polarization were compared to an integral 
eigenvalue (IE) solution [22,p56]. This comparison is shown in graph-4.8. Although 

more unknowns were used with the TEM, the CEM is much more accurate (in this 

case) than the TEM. Most of the finite elements of the TEM had to be used to fill 

the required circular region. 

Graph-4.8 Normalized radar width of the dielectric half-shell of fig-4.5. The 

incident field is TE polarized with a frequency of 100 MHz. The CEM, TEM and 
IE solutions are shown. The TE field is incident from the left side offig-4.5 with 

an incident angle of zero with respect to the horizontal. 
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From this example, it is evident that the CEM is a better method to use for scattering 
from ill-shaped objects. It should, however, be noted that the TEM seems to be more 
accurate than the CEM when the scatterer is not ill-shaped (table-4.4). This is 

probably because an analytical solution for the far-field scattering is used with the 
TEM. The conclusion can, however, be made that the CEM is a better method than 

the TEM for solving general scattering problems. 

Stellenbosch University http://scholar.sun.ac.za



HELMHOLTZ EQUATION SOLUTION 

Table-4.4 CEM vs. TEM back scattered radar width error at different frequencies 
of a round, coated PC cylinder with specifications as given in graph-4.3. 

Approximately the same number of unknowns were used in both methods. The 

incident field wasTE polarized. The analytical back scattering values are given 
in table-4.2. 

Frequency Nonnalized CEM Nonnalized TEM 
(MHz) error(%) error(%) 

50 2.58 0.65 

100 1.94 0.97 

200 2.67 1.60 

500 0.02 3.51 

1000 23.81 7.14 

4.8.8 Chiral media. 

51 

The CEM developed to handle chiral media requires the solution of an asymmetric 

matrix twice as large as that required for non-chiral media. This is due to the sim­

ultaneous solution of two Helmholtz equations (sec 4. 7 .3). It is expected that the 

manipulation of the matrix equations, in a similar manner as described in sec 5.3.1, 
might improve the efficiency of the solution. This has not been investigated. The 
number of unknowns that could be used with the developed code was very small 

because of the limited available memory. Results obtained for scattering from a 
homogeneous cylinder are compared to the analytical solutions in graph-4.9 (a) and 
(b). The numerical results seem to follow the expected tendency. Both the analytical 

and numerical results seem to compare reasonably well with results for the same 
scatterer found in the literature [23]. Another example of scattering from chiral 

object is shown in graph -4.1 0. Again only a few unknowns were used due to the large 
matrix equations originating. Again the results are satisfactory considering the 
limitations, but further validation of the method, using more unknowns, is definitely 
necessary. 
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Graph-4.9 (a) Radar width of a round, homogeneous (E r = l . 5 , 1-1 r = 4, [3 = 0) 

cylinder with radius 0.1 m at a frequency of 300 MHz. The incident field is TE 

polarized. The specifications for the numerical solution is: Total nodes: 78, 

boundary nodes: 22, triangular elements 138. 
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Graph-4.9 (b) Radar width of the same round, homogeneous cylinder speci­

fied abov.e, but with 13 = 0.02. 
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Graph-4.10 Radar width of a round, coated PC cylinder. The results obtained 

for chiral and non-chiral coating are shown. The specifications is as follows: 

Frequency: 300 MHz, polarization: TM, PC radius: 0.1 m, Coating radius: 0.15 m, 

e r: 1.5,1-1 r: 4, ~: 0 (non-chiral) and 0.1 (chiral), total nodes: 66, boundary nodes: 

22 and triangles: 88. 

Radar width v:s 

Analytical solution - non-chiral 

CEM solution - non-chiral 

Analytical 5olution - chiral 

CEM solution - chiral 

3.72 

RW 

.._ __ .,.. ___ ........ 

0 Angle 

Angle 

.a. .a. .a. 

" " " 

180 

53 

Stellenbosch University http://scholar.sun.ac.za



NUMERICAL IMPLEMENTATION METHODS 55 

5 NUMERICAL IMPLEMENTATION METHODS 

5.1 Introduction 

The discussion on numerical methods for solving electromagnetic scattering prob­

lems in chapter 4 was mostly theoretical. The problem was reduced to such a stage 

that only a set of matrix equations had to be solved to obtain an approximated 

solution. For a practical implementation of these methods three stages can be 

defined. The first stage is pre-processing, consisting of the set-up of the problem. 

The second stage is the processing stage when the matrices are being solved. The 
fmal, post-processing stage, consists of manipulating the matrix solutions to obtain 

required results. 

When developing code to implement these numerical methods, it is important that 

this code is as efficient as possible. Speed and memory are the most important aspects 

to be considered. The higher the accuracy one requires from these numerical 

methods the larger the matrices to be solved become. The time required to solve a 

matrix equation usually increases more than quadratically as the size of the matrix 
increases. The memory requirements also increase quadratically if no special 

methods are used for matrix storage. 

For efficient code it is thus essential that the methods used in especially the pro­

cessing stage, must be chosen and implemented correctly. In this chapter the 
methods used to implement all three stages will be discussed. It should be noted 
that more refined coding could incr~ase the efficiency of the methods quite con­

siderably, although the methods themselves are some of the most efficient methods 
in literature. All the methods described below were used to implement the CEM for 
electromagnetic scattering described theoretically in chapter 4. 

5.2 Pre-processing 

The first stage of the code written consists of the set-up of the specific problem. It 
is evident that this process should be a semi-automatic process because information 

in connection with the specific problem has to be provided by the user of the code. 
Information such as the frequency of the incident wave, shape and size of the 
scatterer and characteristics of the material the scatterer consists of, must be pro-
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vided manually by the user. The next step of pre-processing is to generate nodes 
which will also be the joining points of the triangular finite elements and line 
boundary elements to be defined. 

5.2.1 Node generation 

To be able to create triangular elements that will not be too far from equilateral 

(this necessity will be discussed in sec 5.2.2), a proportional distribution of nodes is 

required. The density of node distribution must be specified by the user. Higher 
frequencies and materials with large relative permittivities or permeabilities result 
in shorter wavelengths. In these cases there is a necessity for more elements to 
approximate the fields. The node density should thus be chosen accordingly and 

might differ in separate sub-regions of the finite element region. A high spatial node 
density would be appropriate near a scatterer. A slow transition to lower densities 
is required when nodes further away from the scatterer is generated. The fields 

further away from the scatterer can usually be expected to become smoother. 

5.2.1.1 Prescribed nodes 

The geometry of the scatterer, and possibly different materials in it, have to be 
provided by the user. A boundary enclosing the total scatterer must also be specified. 
The first automatic step of the node generating procedure [13] is to replace the 
specified boundary and scatterer's geometry by polygons. These polygons must have 
all their corner nodes on the specified regions (see fig-5.1). The spatial density of 
the nodes on the polygons must be the same as the density specified for that specific 
region. 
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Figure-5.1 Nodes created on the corners of polygons representing the specified 

regions. The boundary region (outside circle of nodes) and a elliptical region 

(inside region of nodes) were specified • 

. . . . 

. . . . . 

. . . . . 

5.2.1.2 Randomly generated nodes 
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With the specified nodes already generated, the next step is to generate propor­

tionally distributed nodes inside the finite element region. The whole region is 

divided into rectangles with sizes small enough to create the desired node density 
if each rectangle contains a node [13,683]. An attempt is now made to randomly 
generate a node in each small rectangle defined. The node is rejected if it lies closer 

than a specified distance from any other node already accepted. The speCified dis­

tance is the size of the side of the rectangle under consideration. A few attempts are 

made to obtain an acceptable node before advancing to the next rectangle. This 
procedure ensures that a proportionally distributed node generation is performed. 

5.2.2 Triangulation 

With a region consisting of distributed nodes, triangulation can be performed. The 

triangular elements will be created in such a way as to avoid ill shaped triangles. It 
should be noted that ill shaped triangular elements will decrease the accuracy of the 
results obtained. The reason for this is twofold. Firstly, the elements of matrices [S] 

and [T] in (4.12) and (4.13) are dependent on the area size of the triangles. Ill-shaped 

triangles could have area sizes that are much smaller than the areas of other 
triangles. This could result in numerical instabilities. Secondly, the fields on the 
sides of each triangle are linearly approximated (higher orders will be discussed 
later). At least one of the sides of ill shaped triangles is much longer than the sides 

of equilateral triangles. A linear approximation of the fields over such a long side 
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would decrease accuracy. A procedure for triangulation will now be discussed 
[13,p684]. The boundary elements will be taken as the outmost side of the triangular 

elements created on the edge of the finite element region defined. 

5.2.2.1 Choosing nodes that deime the triangles 

Two connected nodes (A and B) on the boundary are chosen as the side of the first 

triangle. A search is made for the closest five nodes (C1 .. C5) to the left of the two 
starting nodes. Closeness is defined as the distance between the first node and the 

node under consideration plus the second node and the node under consideration 

(I AC i I + I BC i I); Any of these five nodes are rejected as possibilities if the triangle 

ABCi overlaps any existing triangles or contains any unused nodes. When deciding 

which of the remaining nodes should be used as the third node of the triangle, two 

factors have to be considered. Firstly, which node Ci would result in the triangle 

ABCi which is the nearest to an equilateral triangle. Secondly, which triangle ABCi's 

sides, used as bases in later stages of triangulation, would result in the least ill-shaped 
triangles. Combining these two considerations, the third node of the triangle is 

obtained [13,p686]. One of the sides of the triangle just created is now used as the 

base or starting point for creating the next triangle. This procedure is continued 

until the whole fmite element region has been triangulated. It should be noted that 
the three node points defining each triangle should be stored, in a spatially 

anti-clockwise order. This convention is necessary because the tabulated values of 

the sub-matrices described in sec 3.2.4.1 were calculated using this anti-clockwise 
configuration. 

5.2.2.2 Smoothing the triangles created 

The triangles created can be smoothed to create even more closely equilateral 
triangles [13,p687]. Each non-prescribed node will be shifted slightly to improve the 
triangulation. There is no reason why these nodes cannot be shifted slightly, 

remembering that they are not located at specific positions, but were randomly 
generated. Each node under consideration is connected through the triangular 
elements to a few other nodes surrounding it. These nodes form a polygon around 
the node under consideration (fig-5.2). The node is thus shifted to lie on the centroid 
of the polygon. This results in an average improvement of the equilaterality of the 
triangles connected to this node. 
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Figure-5.2 Shifting of an unspecified node to improve equilaterality. 

The centroid of a polygon in the x-y coordinate system is given mathematically by 

f-Cxi,yi) 
(X centr ' y centr ) = L n 

i-1 

(5.01) 

[13,p687]. This smoothing procedure is repeated for all non-prescribed nodes. The 

whole process can also be repeated as many times as it is considered necessary. 

5.2.3 Re-numbering 

The [8] matrix of equation ( 4.12) is usually by far the largest matrix to be stored 

while solving scattering problems numerically. The [8] matrix is a square matrix of 
size n with n the number of unknowns or nodes in the finite element region. All 
other matrices in ( 4.12) and ( 4.35) are square matrices of size m, m being the number 
of boundary nodes. The number of boundary nodes is usually between 5 and 30 
percent of the number of total nodes. Fortunately, [8] is a symmetric, sparse matrix 
due to the nature of the finite element method. The [8] matrix only has an entry in 

element position 8ij if i and j are nodes connected through a triangular element. 
Most nodes have only connections to a few other nodes, hence the sparseness of [8]. 

For every entry in 8ij a similar entry is made in 8ji hence the symmetry of (8]. The 
total [8] matrix would require a memory space of n2 complex numbers. Because of 

the symmetry one only requires memory space for slightly more than ~n2 complex 

numbers. If the nodes are numbered correctly, the sparseness of [8] could result in 
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anarrow-bandedmatrix.Anarrow-bandedmatrixrequiresmuchlessmemoryspace 

than ~n2. A technique for re-numbering the nodes, (after triangulation has been 

performed) resulting in a narrow-banded [8] matrix will now be discussed [6,p320]. 

5.2.3.1 Intuitive re-numbering technique 

If one ensures that the nodes connected through the triangular elements to node 
number i, are all nodes with numbers as close as possible to i, a narrow-banded matrix 

would be obtained If, on the other hand, node 1 is connected to node n, element S1n 
will not have a value of zero and the matrix will have no handedness. Using this 

knowledge, one starts by choosing the node with the fewest connections to any other 

nodes as node number 1. Define a level number 1 and place node 1 in Ievell. All the 

nodes connected to node 1 are placed in level number 2. All nodes connected to any 

node in level2 are placed in level3 and so forth. Node number 2 will be the node in 
level 2 with the fewest connections to nodes in level 3, until all nodes in level2 are 

numbered. This procedure is carried out on all levels until all nodes have been 

re-numbered. This is an intuitive method, attempting to keep the numbers of the 

connected nodes as close as possible to each other, resulting in a narrow banded­
matrix. Fig-5.3 and fig-5.4 show how this re-numbering method converts an 

unhanded matrix to a banded matrix. No practical method ensuring an optimum 
banded matrix is available [6,p318]. 
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Figure-5.3 Graphic representation of the population of the [S] matrix for a 
practical problem. 

• I • 
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I I I 
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Figure-5.4 Graphic representation of the handedness of the [S] matrix, after 

re-numbering was performed, for the same problem as in fig-5.3. 

5.2.3.2 Storing of a banded matrix 
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The [S] matrix can be stored by only storing the lower, left-handed side of the 

symmetric matrix (losing no information). The half-bandwidth of the matrix can be 
calculated as 

BW' = 1 + max[i- p(i)] i = l . . n (5.02) 
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[6,p318]. In (5.02), i is the index of a row in [S] and p(i) is the column in row i where 

the first non-zero element occurs. In each row, only the elements of BW' columns 
have to be stored. All other elements are known to be zero. The global position (in 

[S]) of the first element stored in each row is exactly BW' left of the diagonal, thus 

the position of each stored, non-zero element is also retained. The required storage 
space is thus reduced to nxBW'. Table-5.1 shows the half-bandwidth and the per­
centage storage of the total matrix size required, using the half-bandwidth storage 

method. From this table it is evident that the half-bandwidth storage method is very 

efficient in saving memory space especially when a large number of unknowns is 

used. 

Table-5.1 Half-bandwidth and percentage storage necessary for a few practical 
examples. 

Unknowns ~-bandwidth ·::~· (%) 

39 13 33.3 

59 16 27.11 

88 18 20.45 

121 22 18.18 

152 27 17.76 

207 34 16.42 

293 35 11.94 

5.3 Matrix solutions 

All finite elements and boundary elements are created and defined in the pre-pro­
cessing stage. A relative permittivity and permeability is associated with each finite 
element. At a specified frequency the matrices in equations (4.12) and (4.35) can be 
filled as described in chapter 4. These two equations both consist of two sets of 

unknowns. The two matrix equations can be connected through the boundary 
conditions specified in sec 4.5.1. Methods for solving these two matrix equations 
simultaneously will be described in this section. 
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5.3.1 Coupling the FEM and BEM matrix equations 

The two matrix equations can be coupled in a number of ways. A straight forward 

coupling would result in the following matrix equation [3] (see appendix A5.1) 

= [F'] (5.03) 

The subscript r is for fields inside the region and b for fields on the boundary. The 

matrix [F'] is a forcing matrix resulting because of the excitation by the incident 

field. The matrix on the left hand side of (5.03) is a non-symmetric, square matrix 

with size n + m (n- number of total nodes, m- number of boundary nodes). The main 
drawback in this kind of problem is that the computational time the actual numerical 

matrix solution takes, increases more than quadratically (almost to the power three, 

depending on the method used) as the size of the matrix increases. The necessity 

for the most economical matrix solution exists, especially when the number of 

unknowns becomes large. Combining the two matrix equations as done in appendix 

A5.2 reduces the problem to a situation where one can obtain a solution in a very 

economical way. The solution is divided into three steps. Firstly, the inverse of 

square, sparse matrix [8] is determined. The size of [8] isn. A set of matrix multi­
plications are secondly performed using the inverse of [8] to obtain a non-symmetric, 

square matrix [A] with size m and a single column, m row matrix [B]. The fmal step 
is obtaining the solution of the following matrix equation 

[AJ[oub]=[BJ 
on' 

(5.04) 

5.3.2 Numerical solution of coupled matrix equations 

Obtaining the inverse of [8] can be handled in a special way. The symmetry of [8] 
enables one to use the symmetric LU-decomposition algorithm [6,p309]. The matrix 
[8] is also a positive defined matrix [12,p344] because of the nature of the fmite 
element method. This feature of [8] makes the use of pivoting, to avoid numerical 
instabilities occurring with large matrices, unnecessary [14,p67]. Because of the 

asymmetry of [A], the matrix equation (5.04) must be solved using normal LU-de­

composition methods. This does not require too much computational time because 
the size of [A] ism, which becomes much less than n as the number of total unknowns 
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becomes larger (see table-5.2). From table-5.2 it is evident that the amount of 

computational work required to solve the asymmetric matrix equation of (5.04) 
becomes negligible in relation to the work required to obtain the inverse of [S] when 
the size of the problem increases. 

Table-5.2 The number of boundary nodes as a percentage of the number of total 
nodes for a few practical examples. 

Total number of Number of boundary nodes ~(%) 

nodes (n) (m) 

59 16 27.1 

121 24 19.8 

207 32 15.4 

293 38 12.9 

By solving (5.04), the normal derivatives of the fields on the boundary nodes are 

obtained. The field values can be obtained using 

[ ~J ~ [ S r 1 

[ F ]- [ S r 1 

[ ~ ~ J [ ~ ~: J (5.05) 

(appendixA5.1). With the inverse of [S] already known, and [F] a nxl matrix, (5.05) 

can be solved by matrix multiplication. With [T] being a square matrix of size m, the 
computational time it takes to solve (5.05) is negligible. Table-5.3 shows the 

computational time of the matrix solution for a few practical problems performed 
on a 18 MHz 386 PC, with a numerical co-processor. 
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Table-5.3. Comparison of computational time for some practical problems. All 
the problems were solved using firstly a straig4t forward coupled method (5.03) 

and secondly, the three stage method discussed above. 

Unknowns Computational time (min:sec:fsec) 

One stage solution Three stage solution 

39 00:04:95 00:05:21 

59 00:12:53 00:10:16 

88 00:43:39 00:25:09 

121 01:15:25 00:34:27 

152 02:25:61 00:56:08 
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Table-5.3 shows clearly that the tempo of increase in computational time (as a 
function of number of unknowns) is much lower when the three stage solution 

method is used. The reason for this is that one utilizes the symmetry and sparseness 

of the large matrix [S] with this method. The time saved by this method increases 

as the number of unknowns increases. The time consuming efficiency, especially for 

large problems, will thus be considerably increased by this three stage method. 

5.4 Post-processing 

After the two sets of matrix equations have been solved, it is possible to calculate 
the field values at any point in the interior finite element region as well as the 
exterior boundary element region (see sec.4.6). If the field at a point in the fmite 
element region is required, a search algorithm is used to determine in which 
triangular element the point is situated. The element is defined by three nodal points 
at which the field values are now known. Equation ( 4.09) can thus be used to calculate 

the field value at the desired point. The field value at any point in the exterior region 

can be calculated using ( 4.28) with this point as the observation point. The integrals 
in ( 4.28) can be solved numerically in a similar manner as was done when determining 
the matrix elements of [H] and [G] (sec 4.4.3.1 and sec 4.4.3.2). There is, however, 
no need for avoiding singularities, because the observation point lies in the exterior 
region and never on any source point. 
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6 QUADRATIC ELEMENTS 

6.1 Introduction 

The theory discussed so far on the coupled element methods concerned linear 

approximation functions in each element. Higher order approximation functions 

have several advantages, with the its main disadvantage being complexity. In this 

chapter the extension from linear to quadratic (second order) approximation func­

tions will be discussed. These second order elements contain six nodes on each 

triangle (fig-6.1) and three nodes on each boundary element. 

Figure-6.1 Nodes on a quadratic (second order) finite element. 

1 

4 6 

2 ~------------4-------------~ 
5 

Compared to linear elements the number of triangles approximating a region can 
be much less, while the same number of nodes are created. Due to the curved nature 

of quadratic functions, the electromagnetic fields inside the finite element region 
can also be approximated more accurately than with linear elements. Because of the 
higher number of nodes per element, the triangular elements usually become bigger 
if the number of nodes is limited by memory capabilities. The elements must 

however be kept small enough to fit the geometry of the scatterer. For these reasons, 
higher order elements than quadratic ones were not investigated although they may 
prove to be even more accurate when enough memory is available. The basic FEM, 
BEM and implementation theories stay the same when the second order elements 
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are used. The alterations necessary will however be discussed. It should be noted 

that once the matrix equations have been obtained the combination of the two 

methods stays exactly the same as it was with linear elements. 

6.2 Finite elements 

6.2.1 Field approximation in triangular elements 

The fields in the finite elements are again approximated using simplex coordinates. 

The three simplex coordinates are again given by (3.03), but the field approximating 

function in each triangle becomes 
6 

U= L aiui 
i- l 

(6.01) 

The six alfa functions in (6.01) are second order functions of the simplex coordinates 

(see appendixA6.1). The constant values, uiare the field values at each node on the 
triangular element. The approximating alfa functions on one side of a triangular 

element are shown in fig-6.2. The fields on this side of the . element will be 

approximated by the sum of these three functions. A typical approximation of the 

fields in an element is shown in fig-6.3. 

Figure-6.2 Approximating functions on one side of a quadratic finite element. 

1 : 0<.1 

(1) (3) (2) 
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Figure-6.3 Typical field approximation in a quadratic finite element. 

u 

6.2.2 Matrix elements of [S] and [T] 

The finite element matrix equation for second order elements can be derived in a 

similar manner as was done for first order elements (sec 4.3). The elements of [S] 

and [T] must however be calculated using second instead of first order approximation 

functions. The elements of the now 6x6 local matrices of each triangular elements 

are given by (TE-case) 

(6.02) 

These integrals can again be calculated and tabulated [6,p112]. The elements of the 

global [S] matrix are the sum of the elements of all local matrices whenever one of 
the nodes of these local matrices coincides with a node of the global matrix (sec 
3.2.4.1). The elements of[T] can also be calculated using tabulated values [6,p118]. 

6.3 Boundary elements 

6.3.1 Field approximation on line elements 

The second order approximation functions on the boundary elements (flg-6.4) are 

given by 

(6.03) 

In (6.03) the phi functions are given as [ 4,p62] 
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l 
<Pl=2~(~-l) 

l 
<Pz=2~(~+l) 

and 

<1>3 = ( l - ~2) 

Figure-6.4 Nodes on a quadratic (second order) boundary element. 

-1 0 1 

(1) (8) (2) 
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(6.04) 

(6.05) 

(6.06) 

The form of these functions is the same as the alfa functions on the sides of the 
triangular elements (fig-6.2) and the equilibrium condition for compatibility 

between the FEM and BEM is thus satisfied. 

6.3.2 Matrix elements of [H] and [G] 

The elements the matrix [H] consists of, can be calculated using 
l 

H'j = f <!> dW Jd~ 
' k dn 

j=a,b,c 
- l 

(6.07) 

with everything staying the same as with linear elements except the-second order 

phi functions. In (6.07) k = 1 with j =a, k = 2 with j = b and k = 3 with j =c. The con­
struction of the global matrix [H] using (6.07) is done in a similar manner as described 
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in sec 3.3.4.1. The matrix [ G] is constructed in a similar manner as described in sec 

3.3.4.2 using 
1 

G'{ = f <j>kW Jd~ j=a,b,c (6.08) 
- 1 

Both integrations in (6.07) and (6.08) can be calculated numerically using Gaussian 

integration. The singularity occurring in (6.08), when the observation point lies on 

the element integrated over, can again be avoided using an analytical integration 

solution (appendix A6.2). 

6.4 Pre- and post-processing 

6.4.1 Triangulation 

The finite element region is divided into triangular elements as described in sec 5.2. 
With this method, every element is defined by the spatial positions of the three 

nodes on the corners of each triangle. With second order elements, three extra nodes 

are defined on each element as shown in fig-6.1. The spatial positions of these three 
nodes are exactly halfway between each of the corner nodes of the triangle. The 

nodes on each element must again be locally numbered in an anti-clockwise order 

to keep to the convention adopted when the tabulated values were calculated. The 

re-numbering and all other pre-processing procedures are similar to the procedures 
used with linear elements. 

6.4.2 Determining field values with second order elements 

The field at any point in the fmite element region can be obtained after the matrix 
equations have been solved. Using (6.01), the field value at a point in a specific 

element can be calculated because the field values at the six nodal points are known. 

In the exterior region an equation similar to ( 4.28) can be used. The field is given 
by 

(6.09) 
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In (6.09) the fields inside the integrals are the already calculated, approximated 
boundary fields. The integrals are calculated numerically in a similar manner as the 
elements of the [H] and [G] matrices (sec 6.3.2). The far-field scattering and radar 

width can thus be calculated as described in chapter 4, slight modifications being 
made when calculating the integrals over the second order boundary elements. 

6.5 Numerical examples using quadratic elements 

Code was developed to implement the CEM using quadratic elements. The greatest 
part of the code developed for first order elements was used with only slight 
modifications. The code has not yet been completed, and only the radar width and 

near fields in the exterior regi~m can be obtained so far. The completion of the code 
should not take too long. A validation of the code will be performed in this section. 

6.5.1 Quadratic vs. linear elements 

Although the second order element theory for the CEM is slightly more complicated 

to implement, the computational advantages greatly outweigh the disadvantages of 
additional complexity. The results obtained with second order elements are almost 

always more accurate than those obtained with first order elements, as shown in 

table-6.1. 

Table-6.1 Average normalized radar width errors (linear and quadratic 

elements) of a round, homogeneous dielectric (E r = 4, 1..1. r = l) cylinder. The 

polarization of the incident field is TE and its frequency is 200 MHz. The radius 

of the cylinder is 0.25 m. 

I Linear elements I Quadratic elements 

Number of Number of Average nor· Number of Number of Average nor· 
total nodes boundary malized error total nodes boundary malized error 

nodes (%) nodes (%) 

61 17 23.64 64 18 19.23 

111 22 22.40 97 24 18.46 

178 34 14.57 167 32 15.06 

203 40 8.97 200 42 7.94 

246 45 11.39 247 44 7.71 
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It is evident from table-6.1 that the accuracy of the CEM is higher when quadratic 
elements are used. Apart from the higher accuracy obtained, the converging ten­

dency, as the number of nodes increases, seems better than for linear elements. A 

comparison of the radar width for all angles between the linear element CEM and 
'quadratic element CEM is shown in graph-6.1. The number of total unknowns used 
for the quadratic and linear element approximations is 24 7 and 246 respectively (see 

the last row in table-6.1). 

Graph-6.1 Radar width of a round homogeneous cylinder. The linear and 
quadratic CEM is compared to the analytical solution. Frequency: 200 MHz, 

polarization: TE, E r : 4, 1-l r: 1. 

Radar width v:s Angle 

Analytical solution 

CEH aolut ion - quadratic ale ... ants • • • 

CEH solution - linear ele ... ents -----

4.50 

RW 

0 

' '"' ' ' ' ' ' ~ 

' 

' 

Angle 180 

Although code implementing the near field computation for quadratic elements has 
not been developed, one can expect a much better approximation of these fields than 
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that experienced with first order elements. The curved nature of second order 

approximation functions should allow an accurate approximation of the curved fields 

near the scatterer. This, however, must still be validated. 

6.5.2 Lossy, round homogeneous cylinder 

The code developed implementing the quadratic element CEM can also handle lossy 
media. The imaginary parts of the complex relative permittivity and permeability 

must again be positive because of the time convention chosen. Fig-6.5 shows the 
triangulation of a round, homogeneous cylinder. Each triangular element now 

contains six nodes. 

Figure-6.5 Triangulation of a round homogeneous cylinder for the quadratic 
element CEM. The radius of the homogeneous cylinder is 0.2 m. A total number 
of 161 quadratic elements was created resulting in 348 total nodes and 50 

boundary nodes. 

The radar width of a lossy, homogeneous cylinder using the triangulation of fig-6.5 

is compared to the analytical solution (graph-6.2). The homogeneous cylinder in 

fig-6.5 is quite small compared to the free-space wavelength of the incident wave. 

The wavelength in the homogeneous cylinder is however much smaller than the 
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free-space wavelength due to the values chosen for the relative permittivity and 

permeability. It is evident that also the quadratic element CEM is acceptably 

accurate when scattering from lossy objects is approximated. The relatively high 
average normalized error is due to the very low back scattered radar width 

encountered at an angle of 180~ 

Graph-6.2 Radar width of a round, lossy, homogeneous cylinder calculated using 
the quadratic element CEM and an analytical solution. Frequency: 200 MHz, 

polarization: TE, E r: 4 + JS' 1..1 r: 2 + }4. 

Radar width 

1..36 

RW 

0 

Analytical solution 

CEt1 aolutlon 

Angle 

us Angle 

• • • 

l.BO 

Analytical 
RW RW 
<"> dB 

0 l. .34 l. .26 

l.BO 0. 00 -26. J.9 

CEt1 
RW RW 
(H) dB 

0 1..36 1..33 

J.BO 0.00 -29.32 

Average 
nor..,alized 

•rrar 
l.:S.03X 
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7 ANALYTICAL SOLUTIONS FOR ROUND CYLINDERS 

7.1 Introduction 

The methods described so far enable one to obtain numerical approximations of the 

electromagnetic fields scattered by a possibly lossy, inhomogeneous object. The 
validation of the methods was checked by comparing approximated fields with exact 

analytically obtained fields. Scattering from round cylinders is one of the few 

problems for which an analytical solution can be obtained. Three round cylinder 
problems (two-dimensional) will be solved analytically in this chapter. Firstly, 

scattering from a round perfectly conducting (PC) cylinder of arbitrary radius (a). 

Secondly (see fig-7.1), scattering from a round PC cylinder (radius a) covered by a 

single, possibly lossy layer (outside radius b). Finally, scattering from a round, 

homogeneous, possibly lossy cylinder. 

Figu.re-7.1 Round, coated PC cylinder. The radius of the PC cylinder is a, and 

the outer radius of the coated layer is b. 

< 

Comparing the solutions of these three kinds of problems to the approximated 

solutions using the CEM made it possible to evaluate the accuracy of the CEM. The 
Bessel function representation [9,p490], [ll,p43] will be used to represent the 

electromagnetic fields in cylindrical coordinates. 
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It should be noted that a computer program implementing an analytical solution 

giving the back scattering radar width of the three kinds of scattering problems is 

available [15], but a need to compare the scattered fields in any direction made the 

development of this theory necessary. The material of which the homogeneous 

cylinder and layer covering the PC cylinder consists can have an arbitrary complex 

permeability, permittivity or chirality. The Bessel function representation consists 

of infinite summation series which fortunately converge quite rapidly if the size of 
the cylinder does not become too large compared to the wavelength of the incident 
field. The infmite series have to be approximated by finite series, but the errors are 

usually negligible because of the relatively rapid convergence. 

7.2 Bessel function representation 

Two different polarized incident waves can again be considered separately (TE and 

TM polarization). The incident as well as scattered fields (any polarization) in a 
region, can be written in terms of a superposition of cylindrical waves, satisfying 

the governing Helmholtz equations. This can be done using the so called wave 

transformation [9,p491]. These cylindrical waves are usually given in terms of the 

Bessel or Hankel functions. Only the TE-case will be considered in this chapter. The 
TM-case can be handled by using similar methods, with the TM cylindrical field 

representatives given in [ll,p45]. It should be noted that the cylindrical waves, 

representing the fields, will be chosen to accommodate circular polarized waves that 

could arise from chiral media. The scattered fields as well as fields inside media, are 
thus represented by two components perpendicular to one another. A consequence 

l 

of this is that the same field representatives can be used for both TE- and TM 
polarization [ll,p46]. Only the incident fields will have different representatives for 
the two polarizations. 

7 .2.1 Incident field representation 

Consider a transverse electric (TE) incident field 

(7 .0 1) 

The direction of incidence is in the :X direction. The incident electric and magnetic 

fields can be expressed in terms of cylindrical Bessel functions satisfying the 
Helmholtz equation [ll,p43] 
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and 

H inc = ( . k o ) t ( J n ) M ~I ) ( k 
0 
r) 

]W~o n•-oo ko 

The vector functions N nand M n are functions of the Bessel functions: 

N~1 )(kor) = J_\7 X \7 X {zejn$ J nCkor)} 
ko 

J n is the Bessel function of order n, and <I> and r are cylindrical coordinates. 

7 .2.2 Scattered field representation 

77 

(7 .02) 

(7 .03) 

(7 .04) 

(7 .05) 

The scattered fields outside any scatterer can be written in terms of Hankel functions 

(outgoing waves) satisfying the Helmholtz wave equation [ll,p44]: 

-sea ] . -(3) -(3) oo ( ·n) 
E =-n~oo ko {JcnMn (k 0 r)+bnNn (k 0 r)} (7 .06) 

(7 .07) 

with 

l 
N~3 )(/f_ 0 r) = k \7 X \7 X {zejncp H~1 )(k 0 r)} 

0 

(7 .08) 

and 

M~3 )(k 0 r) = \7 X {zejncp H~1 )(k 0 r)} (7 .09) 

The unknown coefficients cn and bn have to be determined and H ~ 1 
) are the Hankel 

function of the first kind order n. 

7.2.3 Fields inside a medium 

The fields inside a medium making up the scatterer or covering a PC cylinder can 
be represented using Bessel functions and Bohren's decomposition [ll,p30]. The 
use of Bohren's decomposition is to represent the opposite circular polarized waves 
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present in a chiral medium. If the chirality factor [?>is zero, the usual TM or TE 
polarized waves are represented. With Bohren's decomposition, the electric field is 

given by 

- - . ~-
E inside = Q 1 - J 'J ~ Q 2 

(7.10) 

and the magnetic field by 

- fE- -
H inside = - J 'J ~ Q 1 + Q 2 

(7 .11) 

The vectors Q 1 and Q 2 can be represented by Bessel functions satisfying the 

Helmholtz equation inside the medium [ll,p44], 

~ (jn) {-(1) -(1) } 
Q1 = n?.:-co ko 9n Mn (y1r)+Nn (y1r) (7 .12) 

and 

(7 .15) 

The coefficients gn and fn have to be determined and y 1 and y 2 are the different 

wave numbers of the opposite circular polarized waves 

k 

k 
y 2 =1+k[?> 

with k 2 
= Er~rk~ • 

(7 .14) 

(7 .15) 

If a scatterer is present inside this medium (for instance a PC cylinder) there is also 

a scattering field in the medium. This scattered field can again be given using 

Bohren's decomposition together with a set of Hankel functions (outgoing waves) 

satisfying the Helmholtz equation 

-sea - . ~-
£inside = - Q 3 + J -y ~ Q 4 

and 

H:::."' ~ j J!Q3- Q. 

with 

(7 .16) 

(7.17) 
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f- ( Jn) {-(3) -(3) } 
Q3= n~"' ko on Mn (ylr)+Nn (ylr) (7 .18) 

and 

(7.19) 

7.3 Boundary conditions 

The fields defined in sec 7.2 can be combined to give the total field in any region, 

inside or around a scatterer. The unknown coefficient values, necessary to obtain 

the field values, can be determined using the tangential boundary conditions. 

7 .3.1 Boundary conditions on a PC 

The tangential boundary condition on a perfect conductor requires that the total 
tangential electric field on the conductor be zero [l,p146]. If the centre of a round 

PC cylinder is at the origin of the cylindrical coordinate system, and the PC cylinder 

has a radius a, the boundary conditions are met at r =a if 
-inc -sea 
E tan (a) + E tan (a) = 0 (7 .20) 

with E inc given by (7 .02) and E sea given by (7 .06). 

7.3.2 Boundary conditions across different media 

The boundary conditions across two mediums require that there be no discontinu­
ities in the tangential electric and magnetic fields at the boundary of the two media. 
The boundary conditions at r=a, the radius of a round homogeneous cylinder, can 

thus be written as 
- -inc -sea 
E inside (a) = E tan (a) + E tan (a) 

tan 
(7 .21) 

and 
- -inc -sea 
H inside (a) = H tan (a) + H tan (a) 

tan 
(7 .22) 
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The fields in (7.21) and (7.22) are again given by their representatives in sec 7.2. If 

a scatterer, consisting of a PC cylinder covered·by a one layer medium (fig-7.1), is 

considered, two boundary conditions have to be met. On the PC cylinder with radius 

a, the total electric field must be zero at r =a 

E · 'd (a)+ Escad (a)= 0 
mst e tan mst e tan 

(7 .23) 

On the outer boundary of the one layer medium (r=b), there should be continuity 

of the electric and magnetic fields, thus 
- -sea -inc -sea 
£inside (b) + £inside (b) = £tan (b)+ £tan (b) 

tan tan 
(7.24) 

and 
- -sea -inc -sea 
H inside ( b ) + H inside ( b ) = H tan ( b ) + H tan ( b ) 

tan tan tan 
(7 .25) 

7.4 Calculating the unknown coefficients 

7 .4.1 Homogeneous cylinder 

By using the boundary conditions outlined in sec 7 .3, the scattered fields as well as 

the fields inside a round homogeneous cylinder can be calculated. The scattered 

fields are given by (7.06) and the fields inside the cylinder by (7.10). The unknown 

coefficients cn, bn, fn and gn can be calculated using (7.21) and (7.22). In these 
equations, the radius is a given constant (a), and the only unknowns are the coeffi­
cients. The two boundary equations can be split into their z , ~ and f components. 
This is done in appendix A7.1 (also done for the TM-case). This yields n sets of four 
independent equations which can be written in matrix form to solve and obtain the 

n sets of four unknown coefficients. 

The matrix equations have to be solved for all values of n. The infinite series used 
to define the fields can however be approximated very accurately with a finite series. 
As I n I increases, the Bessel and Hankel functions of order n tend to become 
negligibly small rather rapidly. This happens only if the arguments of the functions 

are not too large. The value of n, where the contribution of the Bessel and Hankel 
functions becomes negligibly small can be obtained by comparing their values to the 
values already calculated. It is thus only necessary to solve a fmite number of matrix 
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equations to obtain a fmite number of coefficients. These sets of four coefficients 

can then be substituted into (7.06) and (7.10), and the scattered as well as inside 

fields can be calculated using the approximated finite series. 

7 .4.2 Coated PC cylinder 

Scattering from a round, PC is a special case of scattering from a round, coated PC 

cylinder with the coating being free-space. There will thus only be a discussion on 

obtaining the coefficients for a coated cylinder. The boundary conditions of sec 7.3 
can again be used to obtain the unknown coefficients of(7.06), (7.10) and (7.16). The 

three boundary conditions equations (7 .23), (7 .24) and (7 .25) are again split into their 

three components z, ~and f (appendix A7.2). This yields six linear independent 

equations which can be used in matrix form to obtain the unknown coefficients. With 

n, only a fmite number, the fields can again be calculated very accurately. The fields 

inside the coating are calculated using the known coefficient values in (7.10) and 

(7.16). These fields are thus a superposition of the inside fields and the scattered, 

inside fields. The scattered fields outside the coated layer can be calculated using 

the finite set of coefficients in (7.06). 

7.5 Radar width 

With the coefficients calculated, the scattered fields of a homogeneous or coated PC 
cylinder can be obtained at any point outside the scatterer using (7 .06). To obtain 

the radar width, the asymptotic expansions of the .Hankel functions can be used" 
The definition of radar width is given in (4.31). By using the asymptotic expansion 

the radar width can be written as 

4 
a(<j>)=-

ko 

co 

L e1n41 {-cn(xsin<j>-ycos<j>)+zbn} 
n•-oo 

(see appendix A 7 .3). 

2 

(7 .26) 

With the chirality factor zero, cn will be zero and the scattered fields will thus be 

purely transverse electric. 
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7.6 Practical implementation 

Computer code had to be developed to calculate the unknown coefficients, the values 

of the Bessel and Hankel functions as well as the fmal field values. Some of the 

algorithms used to implement the theory will now be discussed. 

7.6.1 Matrix equation solution for obtaining the coefficients 

The set of linear equations obtained through the boundary conditions (sec 7 .4) can 

be written in matrix form (see appendixA7.1 andA7.2) as 

A~~ A~z A~3 A~4 en En 
I 

A~~ A~z A~3 A~4 bn En 
2 (7 .27) = 

A;! A;z A;3 A;4 gn En 
3 

A~~ A~z A~3 A~4 fn En 
4 

for the homogeneous cylinder and 

A~~ A~2 A~6 en En 
I 

A~~ A~2 A~6 bn En 
2 

gn 
(7 .28) 

fn 

on 

A~~ A~2 A~6 Pn En 
6 

for the coated PC cylinder. These sets of matrix equations have to be solved for a 
finite number of n's. A LU-decomposition [6,p309] matrix solver is used and the 
coefficients obtained are stored in an array to be used later. Because the Bessel and 
Hankel functions have the characteristics that J n = - J- n and H ~I ) = - H ~ ~) ' it 
follows that A71 =- A;t and E7 =- E;n for all elements in (7.27) and (7.28). The 

reason for this is that every non-zero element is a function of either the Bessel or 
Hankel functions. This means that only the coefficients for n ~ 0 need to be calcu­

lated, because en = e _ n , b n = b _ n· This is true for all coefficients. 

7 .6.2 Calculation of Bessel and Hankel function 

Every element of (7.27) and (7.28) is calculated using either Bessel or Hankel 
functions. With the radius of a cylinder and frequency of the incident wave specified, 
the wave numbers and thus the arguments of the Bessel and Hankel functions are 
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known constants. The arguments can be complex iflossy media are considered. These 
functions are infmite series [10,137], but can be calculated accurately enough using 

finite series because of their convergence characteristics. For a specific argument 

value, a number of orders of the Bessel and Hankel functions are required. With two 

consecutive orders ofthe functions calculated (using the definition of the functions 

[10,p138]), the rest of the orders can be obtained by using the recurrence formulas 

which defme a certain order functions in terms of the two orders just below (back­
ward recurrence) or above (forward recurrence) [10,p137]. Backward recurrence 

should be performed when calculating the different orders of the imaginary parts 

of the Hankel functions to avoid numerical instabilities [16,p37]. 

7 .6.3 Accuracy of code 

Although the solutions of the scattering problems are analytical, the exact results 

are approximated due to the fact that for obvious practical reasons the infinite series 
encountered had to be approximated by finite series. With relatively small argu­

ments used in the Bessel and Hankel functions, the series converge quite rapidly. 
The size of the cylinders compared to wavelength of the fields as well as the nature 

of the materials, determine the size of the arguments. The actual limits of argument 

size that would still ensure acceptable accuracies were not investigated. The 

calculated values for back scattering radar width at varies frequencies and for a 

number of materials were compared to the values obtained with an available package 
called Cylrad42 [15]. Table-7.1 and table-7 .2 show some of the comparisons that were 
made. The results of the comparisons ensure that the code developed is very accurate 
in the scatterer size and frequency regions where the CEM code was validated. For 
improvement in convergence of the Bessel and HB:IIkel functions, necessary with 
larger arguments, the Watson transformation method [9,p491] can be used. 
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Table-7.1 Back scattered radar width of a coated PC cylinder, calculated using 
the developed code and Cylrad42 code. The ra~ius of the PC cylinder is 0.25 m 
and the coating thickness is 0.05 m. The material characteristics are E r = 2 + j 2 

and ll r = 3 + j 2. 

Frequency Radar width Nonnalized 

(MHz) TE polarization difference(%) 

Developed Cylrad42 

code 

100 0.5168 0.5161 0.136 

200 0.2136 0.2134 0.094 

500 0.0453 0.0452 0.221 

Frequency Radar width Nonnalized 

(MHz) TM polarization difference(%) 

Developed Cylrad42 

code 

100 0.5048 0.5051 0.059 

200 0.1168 0.1161 0.602 

500 0.0308 0.0307 0.325 

Table-7.2 Back scattered radar width of a homogeneous cylinder, calculated 
using the developed code and Cylrad42 code. The radius of the cylinder is 0.25 

m. The material characteristics are E, = 4 and 1-1, = I. 

Frequency Radar width Nonnalized 
(MHz) TE polarization difference(%) 

Developed Cylrad42 

code 

100 0.8375 0.8368 0.084 

200 0.3927 0.3925 0.051 

500 0.4527 0.4459 1.53 

Frequency Radar width Nonnalized 
(MHz) TM polarization difference (%) 

Developed Cylrad42 

code 

100 0.0982 0.0981 0.102 

200 0.0223 0.0225 0.888 

500 0.7542 0.7573 0.409 

84 
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8 CONCLUSION 

The CEM investigated and implemented in this thesis, enables one to obtain an 

approximated numerical solution for general (possibly lossy, inhomogeneous, arbi­

trarily shaped) two-dimensional electromagnetic scattering problems. The solutions 

were compared to analytical solutions for a few canonical problems. The far-field 
results obtained, indicate that the CEM is a reliable method for predicting scattering 
from general penetrable structures. The code developed can, however, not handle 

structures much larger than a wavelength. For larger structures, the results 

obtained are unacceptable. The main reason for this is the limited memory available 

on the personal computer used to run the code. The maximum number of unknowns 

was limited to approximately 350. Larger memory capabilities would enable one to 

create more triangular elements, resulting in acceptable accuracies when larger 

structures are considered. This would however lead to unacceptable computational 
times for solving the problems. The necessity will thus arise to use faster computers 
to avoid this problem. It should be noted that some of the pre-processing procedures 

also take on impractical computational time proportions as the number of unknowns 

increases. The use of parallel computing would enable one to overcome these diffi­
culties to an extent. Parallel algorithms for some of the algorithms used in the code, 

have already been developed. With parallel CEM code one can expect to be able to 

handle structures of a few wavelengths long. 

The near field results were less accurate than the far-field results, especially in the 
finite element regions. It seems that an even higher number of unknowns is required 
to approximate the near field values accurately. The development of a quadratic 
element code, approximating the fields in the fmite element region, has not been 
completed. These second order finite elements would probably approximate the near 
fields more accurately. Their curved nature is much more suitable for approximating 

these electromagnetic fields. This must, however, still be validated. 

The analytical solutions for scattering from round cylinders were developed mainly 
to validate the CEM. The code developed for the analytical solutions is limited to 
cylinders with radii of less than a wavelength. This limitation is due to the slower 
convergence of the Bessel and Hankel functions as their arguments increase. More 
refined coding and the use of existing methods to improve the convergence rates of 
these functions, would extend the limits on the size of the cylinders. 
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The development of the CEM for scattering from chiral materials was a natural 
extension of the CEM for non-chiral materials. The results obtained for scattering 
from chiral media, using the CEM, compared reasonably well with the analytical 

solutions obtained. Larger memory facilities need to be used to enable one to com­

ment on the correctness, accuracy and efficiency of the CEM applied to chiral media 

scattering. Numerical solutions for scattering problems involving chiral media will 

however be investigated further. 

The numerical methods discussed in this thesis concerns scattering from general 

two-dimensional structures. Real world problems are, however, three-dimensional. 
The two-dimensional solutions can, in some important special cases, be used to 
approximate three-dimensional solutions. This is not true for most problems, and 
many real world problems are still unsolved. The extension of the CEM, to handle 

three-dimensional problems, is theoretically possible. The complexity of the theory 

and its implementation can be expected to increase immensely. The memory and 

computational speed requirements would probably be very high due to huge matrix 
equations originating from a three-dimensional finite element region. The rapid 

improvement in computational hardware could result in the feasibility of the 
development of such code. 

The field of computational electromagnetics is still growing rapidly, and the tools 

available are improving day by day. It has enabled the solution of a number of 

unsolved electromagnetic problems and will probably continue to do so in future. 
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AppendixA3 

Coupled Element Method 

A3.1 FEM matrix formulation 

The discretised weak formulation 

tE1fVU·VWdD. 11 - f.E 1fwdudB 1=0 
1-1 J-1 dn 

nil 8 1 

can be written in matrix form using the approximation functions 
3 

U= I~iui i• I 
3 

W= I~i 
i• I 

and 

dU = f ~idui 
dn i- 1 dn 

Substituting these functions in (A3.1.01) yields 

IE 1J (vI ~iui) ·(vI ~k)dD1 1 
1-1 nil i•l k·l 

With [Sj] a 3x3 matrix 

and [Tj] a 2x2 matrix 

A-1 

(A3.l.Ol) 

(A3.l .02) 

(A3.l .03) 

(A3.l .04) 

(A3.l .05) 

(A3.1.06) 

(A3 .1 .07) 
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(A3.1.06) can be written as 

I)si][ui]- f[Ti][dui]=o 
i-1 i- 1 dn 

In (A3.1.09) 

and 

du1 

dn 

du2 
dn 

A-2 

(A3 .1 .08) 

(A3.1 .09) 

(A3.1.10) 

(A3.1.11) 

(A 3.1.09) consists of a number of [Sj] and [Tj] matrices each associated with one 

specific element. Connecting these elements to form the global region corresponds 
to adding these matrices whenever their nodes coincide with each other [6,p31]. 
(A3.1.09) written in global form, after connecting all elements yields 

[
dub] [S][u]-[T] dn =0 

A3.2 Integration over the delta function 

Integration over the delta function has the following property: 

jJ6odQ=Jo 
n 

With (3.27) written as 

\7 2 W = -6 
0 

and substituted into (3.26) yields 

f f 
dW fdU - 6 UdQ - U-dB+ -WdB=O 0 

ex dn dn 
nex B B 

Using (A3.2.01), (A3.2.03) becomes 

(A3.1.12) 

(A3.2 .01) 

(A3 .2.02) 

(A3 .2 .03) 
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f 
dW fdU U =- U-dB+ -WdB 

o dn dn (A3.2.04) 
B B 

A3.3 Observation point on boundary 

The boundary equation (3.29) or (A3.2.04) is written in a form where the observation 

point o lies in the region under consideration. To be able to solve the boundary 

equation, this observation point must be taken to the boundary itself. This can be 

done by following the same procedure as was done for the three-dimensional case 
described in [ 4,p30]. The problem is, however, altered because the two-dimensional 
problem is considered. 

Consider the observation point lying on a half-circle around a boundary point i 
(fig-A3.3.1). 

Figure-A3.3.1 Taking the observation point to the boundary. 

point i 

B 

The radius of the half-circle is E. Consider the first integral in (A3.2.04). The integral 

can be written as 

f
udW dB= f udW dB+ JudW dB 

dn dn dn 
B 8-B. Be 

(A3.3.0l) 

With 
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dW = ~(-1 ln(!-)) dr dr 2n r 
1 :r(ln(; )) 2n 

r :r(;) 2n 

r (- r12) =-
2n 

1 
=---2nr 

the integral over the Be 

becomes 

JudW dB = J u(--1 
)dB dn E 2nE E 

s. s. 

=- J u(-1 
)dB 2nE E 

s. 

A-4 

(A3.3 .02) 

(A3 .3 .03) 

Taking the limit of E ~ 0 and thus u ~ u i, and knowing the length of the half-circle 
(n E), (A3;3.03) can be written as 

lim(- J u 2~EdBe) =lim (-u 2~E J dEe) 
E-+0 BE E-+0 Be 

= lim (-u-1-nE) 
e-+o 2nE 

Doing exactly the same with the second integral in (3.29) yields zero. 
WithE~ 0 and Be~ 0, 

(A3.3.04) 
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f dW 
u-dB 

dn 
B 

can thus be written as 

f udW dB-!_u. 
dn 2 1 

B 

A-5 

when i lies on the boundary. Substituting this into (3.29) yields (3.30). 

It should be noted that the boundary must be smooth around the point i to ensure 
that the part of a circle constructed around i becomes a half-circle in the limit. For 

accuracy the boundary elements should thus be constructed to create a boundary 
which is as smooth as possible. 

A3.4 BEM matrix formulation 

(A3.4.0l) 

The matrix equation can be obtained by taking the observation point o to all the 
nodes on the boundary, thus 

o = l ton 

(A3.4.02) 

This equation can be written in matrix form (3.32) with the right hand side incor­
porated into the global matrix [H] whenever o is equal to j (the diagonal of [H]). 
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A3.5 Transformation to homogeneous coordinates 

Consider a specific boundary element in the global x-y coordinate system (fig-A3.5.1). 
It is evident that 

dB 1 = ~(dx 1 ) 2 +(dy 1 / 

-~(dx 1 )
2 (dy 1)

2 

- - + - d~ 
d~ d~ 

Figure-A3.5.1 Coordinate transformation. 

~ = -1 

I 
I 
I 

dy I 
I L ___ _ 

dx 

(A3.5.0l) 

~= 1 

A transformation from the global x-y system to the local homogeneous coordinate 
system using (A3.5.01) gives the first integral in (3.31) with (3.19) substituted into 
it as 

1 

2 f dW 2 f dW . L <Pi-dBj= L <Pi-Jd~ 
i-1 dn i- 1 dn 

Bi -1 

(A3.5.02) 

In this equation 

(A3 .5.03) 

Using (3.20),(3.21),(3.22) and (3.23) yields 
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= :~ ( ~ ( 1 - ~)X 1 + ~ ( 1 + ~)X 2) 

1 1 
=--x +-x 2 I 2 2 

and in a similar manner :~can be derived as 

dy 1 1 
d~ == -2yl + 2Y2 

This means 

A3.6 The normal derivative of Green's function 

With - -r=!ro-rsl 

(3.28) becomes 

W = -
1 In(!) 

2n r 

The derivative ofW with respect tor are given by (A3.3.02) as 

dW 1 
dr 2nr 

A-7 

(A3.5.04) 

(A3 .5 .05) 

(A3.5.06) 

(A3.6.01) 

(A3 .6.02) 

(A3 .6.03) 

The normal derivative, however, is the derivative in the direction of the normal on 
the boundary element under consideration. Therefore 

dW A AdW 
-=r·n-
dn dr 

A n = -r. --
2nr 

(A3 .6.04) 
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A3. 7 Avoiding the singularity while determining the [G] matrix 

When obtaining the elements of the [G] matrix·in the BEM, the observation point 

might lie on the element to be integrated over. The argument of the natural log­

arithm can become zero, and a singularity occurs. This singularity can be avoided 

by logarithmic Gaussian integration (3.38), but the integral must be written in the 

correct form. Starting with (3.37) one would like to obtain the form of the left hand 

side of (3.38). By using (3.28), (3.37) becomes 
1 

G ' ! = f <j> . -
1 

In ( _!_) J d ~ (A 3 . 7 . 0 l ) 
~ '2n r 

- 1 

With the observation point on the one side of the boundary element and the source 

point somewhere on the same element, r is given by 

r = <l>2Ret 

with Rei the length of the boundary element. This means 
1 

G'{~ J ~i2lnln(~z~JJd~ 
- 1 

Consider only the se~ond integral. Set 

Tl = <1>2 

l 
=2(1+~) 

which gives 

~=211-l 

and 

d~ = 2 
dll 

(A3 .7 .02) 

(A3 .7 .03) 

(A3.7.04) 

(A3 .7 .OS) 

(A3.7.06) 

Substituting the previous three equations into the second integral of (A3. 7 .03) gives 
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I I 

[<I> 1 (~) lnUJd~- 2 I In(~)<~> 1('1 )dT] . (A3 .7 .07) 

with 

1 . 
<l>/11) = 2{1 + (-1)'(211- 1)} (A3.7.08) 

Using (A3.7.07), (A3.7.03) can be written as 

G ' { - ;n {In ( L ) ~ <I> 1 d ~ + 2 I <I> 1 ( '1) In ( D d '1) (A3 .7 .09) 

The first integral can be calculated using normal four point Gaussian integration 

while the second integral has the form of (3.38) and this logarithmic integration 

formula can thus be used. 

A3.8 Potential between parallel plates 

Obtaining the analytical solution of the potential between two parallel plates 

requires the solution of Laplace's equation in one dimension. Consider two perfectly 
conducting parallel plates a certain distance, a, apart. The potential at the top plate 

(y =a) is set to 1 Volt. The potential at the bottom plate (y = 0) is 0 Volt. The 

one-dimensional, homogeneous Laplace equation 

d2c:f> 
-=0 
dy2 

(A3.8.01) 

governs between the plates, because there is no variation in the x or z directions. 
Integration on both sides yields 

dc:f> 
dy=CI (A3.8.02) 

Integrating again gives 

(A3 .8.03) 
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With <P = 0 at y = 0, C 2 = 0 and with <P = 1 at y =a gives C 1 = ~ . 

Thus 

1 
cp = -y 

a 
(A3.8.04) 

which is the analytical solution of the potential between the two parallel plates. It 

should be noted that fringing was neglected. 
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AppendixA4 

Helmholtz equation.solution 

A4.1 Inhomogeneous Helmholtz equation 

Maxwell's source-free equations in phasor form is [9,p60] 

\JXE=)w~J.H 

and 

A-ll 

(A4.l.l) 

\l X H =-)wEE (A4.l.2) 

(a time convention ofe- 1w
1is used). Combining the (A4.1.1) and (A4.1.2) yields 

or 

l - - . 
\l X-. -\I X E +}wEE= 0 

JWIJ. 
(A4.l.3) 

l - -
\JX-.-\JXH+)w~J.H=O (A4.l.4) 

]WE 

Consider (A4.1.3). If the vector £has only a z-component in the cartesian coordinate 
system, (A4.1.3) can be written as 

1 (~oEz ~oEz) . \IX-.- x--y- +jwEEz=O 
1w11 oy ox (A4.l.5) 

using the definition of the curl of a vector ('V x E) given by [IO,p120] with no variation 
in the z direction. Defining 

1 oE z 
U' =----

x Jw 11 oy 
and 

1 oE z 
U' =-----

Y }WIJ. OX 

(A4.1.5) becomes 

\J x (xU' x + yU' Y +)wEE z = o 
Using the curl definition again yields 

~( oU'x oU'y) ~. 
Z ---+ -- + Z]WE£ = 0 oy ox z 

Substituting (A4.1.6) and (A4.1.7) back into (A4.1.9) gives 

(A4.l.6) 

(A4.l.7) 

(A4.l.8) 

(A4.l.9) 
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~ b l b£z b l b£z . ~ 
z(-----------)+JWEZ£ =0 

by }wi-L by bx }W!-L bx .z 
(A4.l.l0) 

or 

1 . 
-\1--\J E +]WEE = 0 

}WJ..L z z 
(A4.l.ll) 

with the gradient ('V E) of a vector defined in [10,p119] and no variation in the z 

direction. By multiplying all terms with the constant term j w 1-l o, (A4.1.11) becomes 

(A4.l.l2) 

the so-called scalar Helmholtz equation for TE polarization. The constant k0 is the 

free-space wave number (k ~ = Eo 1-l ow~. The scalar Helmholtz equation for TM 
polarization can be obtained in a similar manner starting with (A4.1.4) giving 

A4.2 Normal derivative of incident field 

The incident field is given as [9,p490] 
U. = U - jk(rf·fitnc) 

InC Oe 

(A4.1.13) 

(A4.2.1) 

The normal derivative is equal to the derivative with respect to the cylindrical 

coordinate r but in the direction of the normal. Mathematically this is given by 
bUinc bUinc 

--=--t·n' 
bn' br 

"k ~' ~ u = - 1 0 n . n inc inc (A4.2.2) 

with fl. ' the unit vector in the direction of the normal on the boundary (B). 
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A4.3 Integration by parts 

Consider the integral over a domain .0 in 

J \1 p(x, y)\JU zWd.Oin (A4.3.l) 

0 in 

or 

f( 
6 6Uz 6 6Uz) -p(x,y)-+-p(x,y)- Wd.Oin 

ox ox by 6y 
0 in 

(A4.3.2) 

This integral can be integrated by parts using the following equation 
[7,p766],[6,p335] . 

=-f(6W6Uz+6W6Uz)d.o. + JwdUzdB 
OX OX by 6y tn dn 

nln B 

(A4.3.3) 

This, applied to (A4.3.2) yields 

f( 
6 OUz 6 OUz) -p(x,y)-+-p(x,y)- Wd.Oin 

ox ox by 6y 
nln 

f 
dUz 

+ Wp(x,y)--dB 
dn 

(A4.3.4) 
B 

or 

f \lp(x,y)\JUzd.Oin 
nln 

(A4.3.5) 
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A4.4 Normal derivative of Helmholtz Green's function 

The normal derivative of(4.21) is equal to the derivative with respect tor (variable 

of the cylindrical coordinate system) in the direction of the normal on the boundary 
(B) 

ow ow A A, 

-=-r·n on' or 

=~(lH< 1 )(k r))f·ft' or 4 ° 0 
(A4.4.1) 

The derivative of the zeroth order Hankel function can be obtained using 

0 or (J oCr))= -J 1 Cr) (A4.4.2) 

and 

0 
-CY (r)) = -Y Cr) or 0 1 

(A4.4.3) 

[10,p137] where J 0 andJ1 are Bessel functions of the first kind and zeroth andfrrst 

order, and Yo and Yl are Bessel functions of the second kind, zeroth and first order. 

With 

H~1 )(r) = J nCr)+ jY nCr) 

[10,p138] and using (A4.4.2) and (A4.4.3), 

ow - ·k - 1 OH(l)(k )A Aj ---- r r·n on' 4 ° 0 

(A4.4.4) 

CA4.4.5) 

A4.5 Analytical integration avoiding singularity in Hankel function 

Consider the following integral that has to be determined, 
2 l 

G'i= i~ f <l>iWJd~ 
- l 

(A4.5.1) 

The integral consists of J, a constant with a value as given in (3.34) and 
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= l_Hc 1>(k r) 4 0 0 
(A4.5.2) 

with r 0 the observation point and r s the source point on the boundary element. The 

functions approximating the fields are 

(A4.5.3) 

(A4.5.4) 

(A4.5.1) consists of a singularity if the observation point lies on the element to be 

integrated over. The variable r in (A4.5.2) can then be written in terms of~ as 

l 
r=Re1 2(l+~) (A4.5.5) 

with Rel the length of the element. It can be seen from (A4.5.5) that r becomes zero 
when~=- l (the side of the element where the observation point (r0 ) lies). The 

argument of the Hankel function thus becomes zero causing the singularity. The 

integral can, however, be solved analytically as follows: 
2 1 

G'i= i~ f <j>iWJd~ 
. - 1 

~ ,t j: U Vo(k0r)d~+j ~ $,Y 0 (k 0 r)d~} (A4.5.6) 

The second integral on the right hand side (RHS) of(A4.5.6) contains the singularity. 
Consider only this integral and use the defmition of the Bessel function of the second 

kind [10,p137] 
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+ j $,~I c-l)'·'{(+rk} t (I_)d~ 
_

1 
nk-o (k!)z p-1 P 

(A4.5.7) 

where y = 0.5772156 ... is Euler's constant. The first integral on the RHS of 

(A4.5. 7) contains the singularity and both other integrals can be calculated 

numerically without any problems. Consider only the integral with the singularity 

anddefme 

l 
x= 2 (l+~) 

dx l 
:.-=-
d~ 2 

~=2x-l 

and 

d~=2dx 

Thus r = R el X which yields 
1 . 

J q,,Jn( k;r )J ,(k,r)d~ 
- 1 

Again only the second integral on the RHS contains the singularity. 

(A4.5.8) 
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Consider the following integral of which the second integral on the RHS of (A4.5.8) 

is a type 
1 J xPln(x)J 0 (k 0 Re1X)dx 
0 

It can be solved analytically: 
1 J xPln(x)J 0 (k 0 R ezX)dx 
0 

( 
k R ) 2k 

1 "' (-1 )k ~ 
= J ln(x)xP L ~ x

2
kdx 

k•O (k!) 
0 

"' (- l ) k ( k oR ol) 2 k 1 
= L 2 J ln(x)x 2 k+pdx 

k•O (k!) 2 
O 

with 
1 

f ln(x)x 2 k+pdx= (- 1) 
(2k + p) 2 

0 

[10,p99]. Define a function 

"' (- 1 / ( a~g rk { (- 1) } 
f'(arg,p)= k~ (k!)2 (2k+ p)2 

Using (A4.5.9), (A4.5.10) and (A4.5.11) one kan write 
1 f xPln(x)J 0 (kaRe 1x)dx= f'(kaRel'P) 
0 

(A4.5.9) 

(A4.5.10) 

(A4.5.11) 

(A4.5.12) 

Consider i = 1 and i = 2 separately in the second integral on the RHS of (A4.5.8) 
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i = l : 

thus 
I 

l 
:.<j>I(x)=-(l-2x+ l) 

2 

=-x+l 

Jc-x+ l)ln(x)J 0 (k 0 Relx)dx 
0 

i = 2: 

l 
:.<j>I(x) = 2(2x+ l + l) 

=x+l 

thus 
I 

J (x + 1) ln (x)J 0 (k 0 R el~)dx 
0 

A-18 

(A4.5.l3) 

(A4.5.14) 

By back substituting every integral that was considered separately, the total integral 

can be written as 
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+ 2 {A if ' ( k oR el, l ) + B if ' ( k oR el, 0)}]} (A4.5.15) 

with A1 =-1, A2=l and B1 =1, B2=l. All remaining integrals can be calculated 
numerically using Gaussian integration. The function f consists of an infinite series 
which converges and can thus be approximated by a finite series. The infinite series 

in the third integral in (A4.5.15) also converges and can also be approximated by a 

finite series. 

A4.6 Far-field approximations 

Consider fig-A4.6.1. If the point pis a large distance from the origin of the coordinate 

system and the scatterer close to the origin, the function W can be approximated by 
using the asymptotic expansion functions of the Hankel functions [l,p369] which 

gives 

H( 1)(k r) = [J;ej(k.r-~) 
o o nk r 

0 

(A4.6.l) 

Applying the far-field assumptions [l,p587], (A4.6.1) can be approximated as 
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Figure-A4.6.1 Far-field approximations [l,p587]. 

(A4.6.2) 

When calculating the radar width of a scatterer one is only interested in the absolute 

value of the scattered field. The relative phase is thus sufficient and r' can be replaced 

by r". This yields 

Jicl)Ck r),.. ~ ef(kor") 
0 0 \j-;tkJ (A4.6.3) 

and W can thus be approximated (with relative phase) as 

W = lH< 1 )(k r) 4 0 0 

:::::::- --e o 
}[rJ; jk r'' 

4 nkor 
(A4.6.4) 

The normal derivative of W can be calculated by first calculating the derivative of 

the asymptotic form of H ~ 1 
) ( k or) with respect to r giving 
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0 0 (JJ; i(k r-~)) -{HC 1)(k r)} =- --e a 
4 

or 0 0 or nkor . 

(A4.6.5) 

The amplitude term :,
2
is negligible in comparison with the 1

1
, 2 term because of the 

r r 

far-field approximations. This yields 

0 a; i(k r-~) 
-{HC 1 )(k r)} = J.k --e a 

4 

or 0 0 0 nkor 

and using the same far-field assumptions as were used with W, gives 

~{H(l)(k )} = "k /2 j(kor") 
or 0 or 1 0\j ~e 

with relative phase shift. The derivative ofW with respect tor is thus 

oW =-ko /2eJCk 0 r") 

or 4 \} ~ 
and in the normal direction 

ow= n'. tow 
on or 

k a; "(k '') ~ ' ~ o J or =-n ·r- --e 
4 nkor 

A4. 7 A chiral Helmholtz equation 

(A4.6.6) 

(A4.6.7) 

(A4.6.8) 

(A4.6.9) 

A Helmholtz type equation incorporating chirality can be derived using the newly 
defined constitutive relations (4.34) and (4.35) together with Maxwell's equations 

[9,p60]. Substituting Maxwell's equations 
- -\JXE=jwB (A4.7.1) 

and 
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\JXH=-jwD 

into ( 4.34) and ( 4.35) yields 

D = E£ + jwE[3B 

and 

B = IJ.H- }w1J.f3D 

Substituting (A4. 7 .4) into (A4. 7 .3) gives 

D = E£ + jwE[3(1J.H- }W!J.[3D) 

- - - 2 2-
:.D = E£ + }WE!J.[3H + W EIJ.f3 D 

:.D- W 2 EIJ.f?> 2 D = E£ + }WEIJ.[3H 

:.( l- w 2 EIJ.f?> 2 )D = EE + }WEIJ.f?>H 

- E - }WEIJ.[3 
·D= E+ H 
• • ( l- W 2 Ej..l[3 2

) ( l- W 2 EIJ.[3 2
) 

- E- }WEIJ.f?>-
:.D=-£+ H 

'"[l '"[I 

with 

A-22 

(A4.7.2) 

(A4.7.3) 

(A4.7 .4) 

(A4.7 .5) 

(A4.7.6) 

In (A4. 7 .6) k
0 

is the free-space wave constant. By substituting (A4. 7 .3) into (A4. 7 .4) 

and manipulating in a similar manner as in (A4. 7 .5) one obtains 

B = 1-l H- }EIJ.W[3 E 
( l- E!J.W 2 [3 2

) ( l- EIJ.W 2 [3 2
) 

:.B = J::_H- }EIJ.Wf3 E 
-rl -rl 

Using (A4.7.7) and (A4.7.5) in (A4.7.1) and (A4.7.2) respectively gives 

\J X E = jw(J::_H- }EIJ.Wf3 E) 
-ri -ri 

. 2Q 
- j WIJ.- EIJ.W I"-

:.\JXE=--H+ E 
'"[I '(I 

and 

(A4.7.7) 

(A4.7.8) 
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- ( E- jEj.1Wf3-) \JXH=-jw -E+ H 
L'1 L'1 

. 2n_ 
- } WE - E j.l W IJ-

:.\JXH=---E+ H 
-c 1 1:1 

(A4.7.9) 

Two scalar chiral Helmholtz equations can be derived. Firstly the Helmholtz 

equation is developed where the Laplacian of the electric field Ez is given in terms 

of Ez and Hz. From (A4. 7 .8) it follows that 
- €J.l.W2(3-

\JXE---E 
,;I 

H=------
iwJ.L 

,;I 

\1 X E Ej.1W
2
f3-

:.H = -r - E 1 jwj.l }WI-1 
(A4.7.10) 

Substituting (A4.7.10) in the left hand side of (A4.7.9) yields 

( 
\JXE Ej.lW

2
f3-) }WEE Ej.lW

2
f3H \1 X -c - E = - -- + ___:____ _ _;__ 

1 }WI-1 }WI-1 -c 1 -r 1 

n ( \JXE) n (Ej.lW
2
f3-) }WEE Ej.lW

2

f3H :. v X -c - v X E = --- + ___:____ _ _;__ 
1 }WI-1 }WI-1 -r1 -r1 

(A4.7.ll) 

Multiplying with the constant value j w 1-1 o on both sides of (A4. 7 .11) gives 

With the assumption made that there will be no spatial variation in E r , 1-1 rand f3 in 

any triangular element of the global region, (A4. 7 .12) becomes 

( 

-) 2 2 2 \JXE Ej.lW f3 - Erko- }Erk 0 j.1Wf3-
\JX -r

1 
- \JXE---E- H=O 

1-lr 1-lr L1 L1 
(A4.7.13) 

Substituting (A4_7.8) in the second term of (A4.7.13) gives 
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( 

-) . 2 2 2 2 k2 . k2 [3 \JX£ JWEIJ. W [3- (EIJ.W [3) - Er 0 - JEr o!J.W -
:.\JX "t

1
-- - H- E---E- H=O 

IJ.r 't11J.r 't11J.r 't1 't1 

(A4.7 .14) 

with 

't
2 

= {(Er!J.rk~[3) 2 
+ Er!J.rk~} 

't11J.r 

(A4.7.15) 

and 

2}Er!J.rk~j.1W[3 
'"(3=------

'tl!J.r 

2)Erk~IJ.Wf?> 
= 

( 1- Er!J.rk~[?> 2 ) 
(A4.7.16) 

Consider only the first term in (A4.7.14). The field vector £in the chiral medium 

can have the following components 

E=zE +yAE +xE Z y X 
(A4.7.17) 

The cross-product [10,pl20] of the field vector, with no variation in the z-direction 

(2-dimensional problem), is 

- AOEz A( 6£z) A(BEy DEx) '\JXE=x-+y -- +z ---
By ox \ox By 

(A4.7.18) 

The first term in (A4.7.14) thus becomes 
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{ \/X£} 
\IX "tl llr 

= x~{~(o£ Y _ oE x)} _ Y~{~(o£ Y _ oE x)} 
oy llr ox oy ox llr ox oy 

+ z~{~(- oE z)}- z~{-c1(oE z)} 
ox llr ox oy llr oy 

(A4.7.19) 

The zcomponent of(A4.7.19) can be written as 

z ~{ ::i(- o£ z)}- Z ~{::i(O£ z )} =- \1::.:\1 E z 
ox llr ox oy llr oy llr 

(A4.7 .20) 

This follows from the definition of the Voperator [10,pll9]. Considering only the z 
components of equation (A4.7.14), thus substituting (A4.7.20) in the first term of 

(A4.7.14), the scalar Helmholtz equation can be obtained as 

v(:: '17 E 2 )+ -c2E 2+-c3H 2-0 
(A4.7.2l) 

The second scalar chiral Helmholtz equation is obtained in a similar manner but it 
gives the Laplacian of the magnetic field Hz in terms of Hz and Ez. From (A4.7.9) it 

follows that 
- Ej.LW

2 (3-
-\JXH+--H 

E = _____ -c.....:...~--
jwe 

"Cl 

\IXH EllW
2 f?>-

:.£=--c + H 1 }WE }WE 
(A4.7 .22) 

Substituting (A4. 7 .22) in the left hand side of (A4. 7 .8) yields 

\/X --c + H =--H+ E ( 
\JXH EllW 2 (?>-) }Wil- EllW

2 (?>-
1 }WE }WE L1 l:1 

\7 ( \JXH) \7 (EilW
2 (?>-) }WilH EllW

2

f?>£ :. - v X -c + v X H = -- + __;___..:..... 
1 }WE }WE l:1 L1 

(A4.7.23) 

Multiplying with the constant j wE o on both sides of (A4. 7 .23) gives 
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(A4.7 .24) 

With the same assumption made that there will be no spatial variation in E r, 1-L rand 

!3 in any triangular element of the global region, (A4. 7 .24) becomes 

- \1 X 1: 
1 

· + E j..L W I'"' \1 X H + ~ H - I"" r 
0 

I'"' £ = 0 (A 4 , 7 , 25) 
( 

\JXH) 2 f.l. II k 2 
j'll k 2

EWQ. 

Er Er 1:1 1:1 

Substituting the (A4. 7 .9) in the second term of (A4. 7 .25) gives 

( 
\JXH) Ej..LW 2 [3( jWE- Ej..LW 2[3-) 1-Lrk;_ li-Lrk;Ewf3--\JX -c

1 
+ ---£+ H +--H- E=O 

Er Er Lt Lt Lt Lt 

with 

1:' 
2 

= {(Eri-Lrk;[3)
2 

+ Eri-Lrk~} 
LtEr 

and 

2}!-Lrk~EW[3 

( l- Eri-Lrk~[3 2 ) 

(A4 .7 .26) 

(A4.7.27) 

(A4.7 .28) 
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The scalar form of (A4. 7 .26) can be obtained by following the same procedures used 

to obtain the scalar form of (A4.7.14). Only the z components of (A4.7.26) are thus 

used to obtain the following scalar chiral Helmholtz equation 

(A4.7 .29) 

A4.8 Matrix form of chiral Helmholtz equation 

The two chiral Helmholtz equations in appendix A4.7, (A4.7.21) and (A4.7.29) can 

be used as the governing equations in a region consisting of chiral media. The field 

values Ez and Hz can be approximated linearly in the region by E' z and H' z giving 

(A4.8.l) 

and 

(A4.8.2) 

These errors can be distributed and minimized in an average sense by weighting it 

over the region and setting this weighted approximation equal to zero giving 

(A4.8.3) 

and 

(A4.8.4) 

Integrating only the terms on the extreme left in the two integrals by parts following 

the same procedures as in appendix A4.3 gives 

(A4.8.5) 

and 
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(A4.8.6) 

Every one of the integrals in the above two equations can be discretised [3] and 

written in matrix formulation 

. . [6£~ J [S][Ez]-[R][Hz]-[T] -b =0 . on 
(A4.8.7) 

and 

. . [oH~ J [S'][Hz]+[R'][Ez]-[T'] onb =0 (A4.8.8) 

The elements of the matrices can be obtained in a similar manner as described in 

sec4.3.4. 
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AppendixA5 
Numerical implementation methods 

A5.1 Combining of FEM and BEM matrix equations 

The matrix equations of (4.12) and (4.25) or (4.13) and (4.26) can be combined using 

the boundary conditions ( 4.29) and ( 4.30). The field value U will be used, representing 

either the TE field Ez or the TM field Hz. The combined matrix has the same form 

irrespective of the polarization of the field. The finite element matrix equation 

[S][U]-(T][ 5

5~' ]=o (A5.l.l) 

can be written as 

:T] {fi~{i:M} = O [

S rr S rb 

S br S bb 

. 
(AS.l.2) 

with the subscript r for fields inside the finite element region and b for fields on the 

boundary. The boundary element matrix equation can be written as 

[
OUBEMJ 

[H][U~EM]- [G] 0 ~, = 0 (AS .1.3) 

or 

=0 (AS.l.4) 

Using 
UFEM = UBEM + uinc (AS .1.5) 

and 

dU~EM dUgEM 
=-

dn dn' 

dU~nc 

dn' 
(AS.l.6) 

following out of the boundary conditions (sec 4.5.1), in (A5.1.2) yields 
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UFEM 

J 
r 

. {U~EM + U~nc} 

5 bb -.T {- 6U~EM- 6U~nc} = 0 

on' on' 

(AS.l.7) 

The incident fields and their normal derivatives on the boundary are known values. 

By multiplying them with the [S] and [T] matrices and taking the product to the 

right hand side one obtains 

. 
sbr 

. J 

lj~EM 

-.T {-~;;;M} = 

on' 

Substituting (A5.1.4) into (A5.1.8) yields 

[

Srr 

iJ 
ljFEM 

[s" srb 

r 

lj~EM 

sbr sbb = 
{ fiU:EM} . H 

on' 

-s uinc 
rb b 

-S Uinc _ T-b-
{ 

ouinc} 
bb b on' 

-s uinc 
rb b 

-S uinc _ T-b-{ fiU'"'} 
bb b on' 

A5.2 Indirect combination of FEM and BEM matrix equations 

(AS .1.8) 

(AS.l.9) 

The two matrix equations (A5.1.1) and (A5.1.3) can be coupled to make a more 

economical solution possible. (A5.1.1) can be written as 

(AS.2.l) 

Substituting (A5.1.5) and (A5.1.6) into (A5.2.1) yields 

~ J[ {- oU!E~ _ ou~nc}] = O(AS .2 .2) 
on' on' 

Multiplying [S] and [T] with the incident fields and taking the products to the right 

hand side gives 
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[ 

-S uinc ] 

F = { . rb b 6 U inc } 
-S umc- T-b-

bb b on' . 

By using (A5.2.4), (A5.2.3) can be written as 

[ ~~::] ~ [sr' [FJ- [sr '[: ~ J[ { fi~i:M}] 
The boundary element equation (A5.1.3) can be written as 

Substituting (A5.2.5) into (A5.2.6) yields 

or 

[: ~}sJ-'[FJ-[: ~}sr'[: ~J[{fi~!:M}] 

-[: ~ Jl {fi~i:M} l ~ Q 

({ ~ Js]-'[: ~ J {. ~ J)l {fi~!~M} l 
~-[: ~}s]-'[FJ 

Defining 

A-31 

(AS .2.3) 

(AS.2.4) 

(AS .2.5) 

(AS.2.6) 

(AS.2.7) 

(AS.2.8) 
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(AS.2.9) 

and 

[BJ ~ -[: ~}sri [FJ (AS.2.10) 

Equation (A5.2.8) can thus be written as 

[A] b =[B] [
OUBEMJ 

on' 
(AS.2.ll) 

The first step in determining the unknowns is to obtain [S]-1. With some matrix 

multiplication [Aland [Bl, can be obtained using [S]-1. Solving the relatively small 

matrix equation (A5.2.11), one obtains the normal field derivatives on the boundary. 

Equation (A5.2.5) can now be used to calculate all the unknown field values. 
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AppendixA6 

Second order elements 

A6.1 Second order simplex functions 

The second order approximation functions are given by 

a ifk = R i ( 2, ~I) R 1 ( 2, ~ 2) R k ( 2, ~ 3) 

A-33 

(A6.l.l) 

[[6],p107] with 0 ~ i, j, k ~ 2 and i+j+k = 2 a requirement. In (A6.1.1) the R 

functions are [[6],p105] 

R 0 (2.~p)= l (A6.l.2) 

RI(2,~P)=2~P 

and 

R 2 (2,~P)=2~!-~P 

(A6.l.3) 

(A6.l.4) 

By calculating (A6.1.1) for different values of i,j and k the following six approxi­

mating functions are obtained. 

a2oo =a I= ~I(2~I- l) 

ao2o = a2 = ~2(2~2- l) 

aoo2 = a3 = ~3(2~3- l) 

aiio=a4=4~I~2 

aoii =as= 4~2~3 

and 

aioi = a6 = 4~I~3 

(A6.1.5) 

(A6.l.6) 

(A6.l.7) 

(A6 .1.8) 

(A6.l.9) 

(A6.l.l0) 

A6.2 Analytical integration to avoid singularities for quadratic elements 

A very similar procedure is performed as was done in appendix A4.5. The whole 

integration method stays the same but the approximating functions <I> I• <I> 2 and <I> 3 

are quadratic. 
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It is necessary to write these functions in terms of a variable x defined in appendix 

A4.5 as~ = 2 x - l . Using this together with the (6.04), (6.05) and (6.06) yields 

<j>
1
(x)=2x 2 -3x+l (A6.2.l) 

<j> 2 (x) = 2x 2
- x 

and 

<j> 3 (x) = -4x 2 + 4x 

(A6 .2 .2) 

These functions used as the approximation functions and integrating in exactly the 

same way as in appendix A4.5 result in an integral solution 

3 'J fl '2 fl 
G' i = I L{ <j>iJ 0 (k 0 r)d~ + L[y <j>iJ 0 (k 0 r)d~ 

i-1 4 n 
- l - l 

+ 2 {A if ' ( k oR el, 2) + B if ' ( k oR el, l ) + C if ' ( k oR el, 0)}]} 

with 
A1 = 2, A2 = 2 and A3 = -4 

B1 = -3, B2 = -1 and B3 = 4 

C1 = 1 , C2 = 0 and C3 = 0. 

(A6.2.4) 

Equation (A6.2.4) can be used whenever the observation point is on one of the nodes 
lying on the edges of the boundary element, as was the case with linear elements. 
When the observation point, however, lies on the node in the middle of the boundary 

element, the integral must be altered a bit. Solving the integral when the observation 
point lies on the centre node stays the same as in appendix A4.5 up to equation 
(A4.5. 7). The first integral on the right hand side contains a singularity. With the 

observation point on the centre node the variable r in (A4.5. 7) is given by 

l 
r = Rell2~ I (A6 .2.5) 

The integral in (A4.5.7) containing the singularity can thus be written as 
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(A6.2.6) 

The first term on the RHS of (A6.2.6) can be calculated numerically without any 

problems, but the second term still contains a singularity. Consider this second term: 
1 J <l>i~ln(l ~ I)J 0 (k 0 r)d~ 

- 1 

(A6 .2 .7) 

Both integrals in (A6.2.7) are of the form defmed in (A4.5.12). These integrals can 
thus be solved for the three different approximation functions. Consider them 

separately 

i = l : 

l 2 l 
<1> 1 =2~-2~ 

and 

l 2 l 
<1>1(-~)=2~ +2~ 

(A6 .2.8) 

(A6.2.9) 
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i = 2: 

1 2 1 
<1> 2 =2~ +2~ 

and 

i = 3: 

<1>3=-~2+1 

and 

<1>3(-~)=-~2+1 

From these approximation functions one can write 

<l>i= Ai~2+Bi~+Ci 

with 
1 1 

A1 = 2,A2 = 2 andA3 = -1 

cl = 0 ' c2 = 0 and c3 = 1. 
It is evident that 

<l>i(-~) = Ai~2- Bi~ + Ci 

A-36 

(A6.2.10) 

(A6.2.11) 

(A6.2.12) 

(A6.2.13) 

(A6.2.14) 

(A6.2.15) 

Substituting these approximation functions in (A6.2. 7) and using (A4.5.12) to solve 

the integrals, yield 
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(A6.2.16) 

Back substituting these equations into the original starting equation gives the sol­
ution when the observation point lies on the centre node of a second order element 

as 

+ j $,f:(-l),.,((¥rk)f(.!.)d~+ln(koRel)J1 <!>iJoCkor)d~ 
-1 k•O (k!)2 p•I p . 2 -1 

+2{Bd'(~koRel' l )}n (A6.2.17) 
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AppendixA7 
Analytical solutions of round cylinders 

A 7.1 Matrix form of boundary conditions equations for analytical solution 

of homogeneous cylinder 

Equation (7 .21) can be written as 
-- --inc --sea 
E inside (a) - E tan (a) - E tan (a) = 0 

tan 

(A7.l.l) 

By substituted (7.02), (7.06) and (7.10) into (7.21) one obtains 

I -c1> -c1> oo ( ·n) n~oo ko gn{Mn (y1a)+Nn (y1a)} 

. ~ f- (jn) {-(1) -(1) } 
-1\j~n~ .. ko fnMn (yza)-Nn (yza) 

- .tUJN~''ck,a)+ .tU)Jc.M~3'(k,a)+ b.N;3

'ck,a))- o 

(A7.1.2) 

From here on, only the tangential components of the vectors must be used. Equation 

(A7.1.2) can be written for each value ofn as 

( jn) {-(1) -(1) } 
ko gn Mn (y 1a)+Nn (y 1a) 

- J ~UJ! .{M;''cv2a)- N;''Cv2a)} 

-U:)N;''(k,a)+ U)Jc.M;3l(k,a)+ b.N;3

'(k,a))- o 

Dividing every term with ~ n yields 
0 

- N~1 )(k 0 a) + {JcnM~3 )(k 0 a) + b rzN~3\k 0 a)} = 0 

Define a vector A with only a component in the z direction 

(A7.1.3) 

(A7.1.4) 
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(A7 .1.5) 

By using the defmition of the Curl of a vector (cylindrical coordinates) [[l],inner 

front page] and remembering that there is no z direction variation one can write 

\lXA=\lXzAz 

and 

lOAz _oAz 
=f---<1>-

r o<j> or 

- ( 10Az - oAz) \JX\JXA=\JX f---<j>-
r o<j> or 

_ 1 o 10Az _ 1 o oAz 
= -z--· ---z--r-

ro<j>r o<j> ror or 

(A7.1.6) 

(A7.1.7) 

The vectors M~ 1 >and N~1 > were defined in sec 7.2. By using (A7.1.6) and (A7.1.7), 

M ~ 1 >and N ~ 1 > can be written as 

M~1 )(kor) = \7 X {(zejncp J nCkor)} 

(A7.1.8) 

and 
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=-: 'V 2{zejncj) J nCkor)} 
0 

l ( l 0
2 

· cjl l 0 ( 0 jncj) )) =-z- --{e 1n J (k r)}+-- r-{e J (k r)} 
ko r 2 o<j> 2 n ° r or or n ° 

l(l 0 'cjl lo 'cjl ' ) =-z- --{J'ne 1n J (k r)} + --{re 1n k J (k r)} 
ko r2o<j> n 0 ror 0 n 0 

(A7.l.9) 

One can write 

(A?.l.lO) 

(A?.l.ll) 

and 

. l l 
J nCkor) = 2J n-1 (kor)- 2J n+ 1 (kor) (A7.l.l2) 

(see [[10],p137]). 
By substituting (A7.1.10- A7.1.12) into (A7.1.9) one obtains 

(A7.l.l3) 

The first term on the right hand side of (A7.1.13) becomes zero when it is used in 
.. 

an infinite series L . In the equations above, 
n--co 
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In a similar manner, M c 3 ) and N c 3 ) can be developed to give 
n n 

-(3) A 1 . jncp A jncp · ' 
Mn (k

0
r)=r-jne Hn(k 0 r)-<j>e k 0 Hn(k 0 r) 

r 
(A7.1.14) 

and 

N~3 )(k 0 r) = -:Zk
0
ejn.pk

0
H n(k 0 r) (A7.1.15) 

It should be noted that only the<!> component in (A7 .1.8) and (A7 .1.14) is tangential. 

Substituting the tangential componentsof(A7 .1.8), (A7 .1.13), (A7 .1.14) and (A7 .1.15) 

into (A7.1.4) gives 
A jncp ' A jncp 

gn{-<j>e YIJn(yla)-ze Y1JnCY1a)} 

- j~ f .{-cjiei"'y2J~(y2a) + zei"'y2J .cv2a)} 

- zb nejn.Py 1 H nCkoa)} = 0 (A7 .1 .16) 

This equation can be split into its two tangential components z and~ 

and the common term e jn.P can be cancelled out giving 

-{y I J ,(y I a)}g,- {j~y2J ,(y2a)} j n 

+{koH nCkoa)}bn = -koJ nCkoa) (A7.1.17) 

and 

-{y 1 J~(Y 1 a)}g n + {j ~y2J~(y 2a)} f n 

-{jk 0 H~(k 0a)}cn = 0 (A7.1.18) 

Equation (7.22) together with (7.03), (7.07) and (7.11) can be used to obtain another 
two linear independent equations with the required coefficients as unknowns. By 
following similar steps as described above, the third and forth linear equations can 

be obtained as 

{j~y .J .(Y I a) }g.+ {y2J .cv2a)} f n 

-{jC~·~Jk.H ,(k.a) }c.~ 0 
(A7.1.19) 
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and 

{j ~Y 1 J;(y 1 a) }g.- {y,J;(y,a)} f, 

-{( . ko )k 0 H~(k 0a)}b n = -( . ko )koJ~(k 0 a) 
]Wj.l 0 ]Wj.l 0 

(A7 .1 .20) 

Equations (A 7 .1.1 7) to (A 7 .1.20) can be joined in matrix equation form resulting in 

0 {k,H .(k,a)} -<v.J.<v,a)} -{ JJI;_v,J .<v,a)} c. 
-k,J ,(k,a) 

- {Jk,H~(k,a)} 0 -{y,J~(y,a)} { JJI;_v,J~(y,a)} b. 
0 

0 
- { 1C~~.)k.H .(k,a)} 0 {·i~v.J.<v,a>} <v,J .cv,an g. 

0 -{ c~·~Jk,H:(k,a)} {J~v,J:(v,a>} - {y,J~(y,a)} f. ( 
k, ) . - -. - k,J.(k,a) 

JW~, 

(A7.1.21) 

For TM polarization the fields given in [[11],p45] can be used together with the 

boundary conditions described in sec 7.3 to give, in a similar manner as above, the 

following matrix equation: 

0 {k,H .(k,a)} -{v,J.(y,a)} 0 -{J~v,J.(y,a)} a. 

- {jk,H:(k,a)} 0 - {y,J~(y,a)} { iJI;_v,J:(v,a)} d. 

- { jC~~.)k,H .<k.a>} 0 {•i~v,J.(v,a>} {y,J .(y,a)} g. ·( k, ) J -. -. k,J ,(k,a) 
JW~, 

0 -{C~~.)k.H:<k,a>} {iJ!v,J~(v,a>} - <v,J:(v,a)} f. 
0 

(A7 .1 .22) 

It is evident that only the matrix on the right hand side differs from its corresponding 
matrix in (A7.1.22). The reason is that only the incident fields differ with different 

polarizations. The formulation for representing the scattered and inside fields as 

given in sec 7.2 is applicable to both polarizations. 

A 7.2 Matrix form of boundary conditions equations for analytical solution 

of PC, coated cylinder 

Two different kinds of boundary conditions have to be satisfied with a PC coated 
cylinder. The first kind is on the boundary of the PC cylinder (r =a) and given by 

(7.23). Substituting (7.10), (7.16) into (7.23) yields 
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~ ( }n) {-(3) -(3) } 
- n~"' ko On Mn (yla)+Nn (yla) 

+ j~ J.(Up.(M~3)(y2a)- N~31 Cv2al} ~ o 

(A7.2.l) 

Only the tangential components of the vectors must be used. Written for any value 

of n and dividing every term by~ n gives 
0 

(A? .2.2) 

Substituting the tangential vector values, as given in appendix A 7.1 into (A 7 .2.2) and 

splitting the equation into its two tangential components give 

-{y 1 J .cv 1 a)}g"- {j~y2J .cv2a)} f" 

+{y 1 H .Cv 1 a)}o. + {j~Y2H .Cv2a)} P. ~ o 

(A7.2.3) 

and 
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-{y 1 J~(y 1 a)}g" + {j~y,J~(y,a)} f" 

+ {y 1 H~(y 1 a)}g"- {j~y,H~(y,a)} f" ~ 0 

(A7.2.4) 

These are the first two linear independent equations required to solve the unknown 

coefficients. 

The second kind of boundary conditions equations have to be satisfied at the outer 
radius of the coating (r=b). A very similar procedure as in appendix A7.1 will be 

followed to obtain the last four equations required to solve the unknown coefficients. 

Equation (7 .24) can be written as 
- -sea -inc -sea 
E inside ( b ) + E inside ( b ) - £tan ( b ) - £tan ( b ) = 0 

tan tan 
(A7.2.5) 

By substituting (7.02), (7.06),(7.10) and (7.16) into (A7.2.5) one obtains 

f- (jn) {-(1) -(1) } 
n~«> ko gn Mn (y1b)+Nn (y1b) 

- j ~ .t. (Uf .(M~1 '(y,b)- N;1
'(y,b )) 

f- (jn) {-(3) -(3) } 
-n~.., ko on Mn (y 1b)+Nn (y 1 b) 

+ j~ J. U:)P.(M;"cv,b)- N;3 'Cv,b)) 

- I ( 1 n)N~1 )(k 0 b)+ I ( 1 n){JcnM~3\k 0b)+ bnN~3 )(k 0 b)} = 0 
n•-«> ko n•-«> ko 

(A7.2.6) 

From here on, as in appendix A7.1, only the tangential components of the vectors 

must be used. Equation (A 7 .2.6) can be written for any value of n, and the common 
.n 

factor ~ can be cancelled out to yield 
0 
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(A7.2.7) 

By using exactly the same method described in appendixA7.1, (A7.2.7) can be split 
into its two different tangential components yielding two linear independent 
equations. Satisfying the magnetic field boundary conditions, (7 .25) using (7 .03), 

(7 .07),(7 .11) and (7 .17) can, in a similar manner as described above, be used to obtain 
the last two linear independent equations. This together with (A7 .2.3), (A7 .2.4) and 

(A7 .2. 7) yields the matrix equation 
0 0 - (y,J .cv,a)} ·{J~y,J,(y,a)} 

0 0 - (y,J~(y,a)} { J~y,J~(y,a)} 

0 (t,H,(t,a)} - (y,J ,(y,a)} - ( J~y,J ,(y,a)} 

• {Jt,H;(t,b)} 0 - (y,J;(y,b)} ( J~y,J;(y,b)} 

-(~C:~}.H.<t.•>} 0 ( ·Jfay,J,(y,b)} (y,J,(y,b)} 

0 _ ( c:~Jt.H;(t •• , l ( ,fa.,J;(y,b)} - (y,J;(y,b)} 

{y,H ,(y,a)} { J~y,H,(y,a)} 

{y,H~(y,a)} - { J~y,H~(y,a)} 

{y,H .tv,a)} { J~y,H ,(y,a)} 

(y,H;(y,b)} ·(J~y,H;(y,b)} 

( ·Jfay,H,(y,o)} - {y1H .(y2b)} 

(-Jfay,H;(y,b)} (y,H;(y,b)} 

.. 
•• 
g. 

I. 

.. 
p, 

0 

0 

- t,J.(t,b) 

0 

0 

( 
t. ) . - - t,J,(t,b) 

}wJ&. 

(A? .2.8) 

For TM polarization the same procedures can be followed as described above. As was 

the case with a homogeneous cylinder in appendix A7 .1, the only difference between 
the TM and TE polarization occurs with the incident wave. The following matrix 

equation can thus be used for TM polarization: 
- { /~v,J ,(y,a)} <v,H ,.(y 1a)} ( J~y,H ,(y,a)} a, 

{ J~y,J;(y,a)} {v,H:cv,a)} - { /~v,H;(y,a)} d, 

0 0 
0 

0 0 
0 

·{J~y,J,(y,a)} {y,H.(y 1a)} { J~y,H ,(y,a)} g. 

{ J~y,J;(v,•>} {y,H~(y 1 b)} - { J~y,H;(y,b)} I. 

0 {t,H ,(t,a)} 
-Jt,J;(t,b) 

- (lt,H;(t,b)) 0 

(y,J,(y,b)} { ·Jfay,H,(y,b)} • (y,H ,(y,b)} .. 
- (y,J~(y,b)) { -JJ"ay,H~(y,o)} {y 1 H~(y 2b)} 

p. 0 

-(~C:·.}.H.<t.•>) o {·,fa•,J.<v,•>} 

0 -(c:·.Jt.H~(t.•>l {,Ja •. J~(··~>} 
(A7.2.9) 

As expected, the only difference between (A7.2.9) and (A7.2.8) is the right hand side 

matrix representing the incident fields. 
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A7.3 Asymptotic representation of far-field scattering 

The scattered field of (7 .06) is written in terms of Hankel functions. For far-field 
scattering, the asymptotic expansions of the Hankel functions can be used [[l],p369]. 

The functions in (7.06) (M~3 ) andN~3 ) can be written as (see appendixA7.1) 

M< 3 \k r) = ein~ H' <1\k r){ or x- or y} 
n 0 n 0 oy ox 

(A7.3.1) 

and 

N~" (k
0
r)- -( :

0 

}i"' H~·(l) (k 0 r) (A7 .3.2) 

with H ~ < 1) and H ~· < 1 
) the first and second derivative of the Hankel function with 

respect tor. The asymptotic expansions of these Hankel functions are: 

(A7 .3.3) 

·< 1 ) k - 'k H< 1)( ) Hn ( or)-J o n kor (A7.3.4) 

and 

H"< 1)(k r) = -k 2 H< 1)(k r) n o o n o 
(A7 .3.5) 

Using these asymptotic expansions, (A7.3.1) and (A7.3.2) can be written as 

M
(3)(k )- jn~ 'k a; jkQr -!:J -';JI{or A or A} r -e J --e e e -x--y 
n ° 0 nk r 0 ox 0 y 

and 

With 

_Jnn (nn) ( n) e 2 = cos 2 - j sin n 2 
.-n 

=j 

y . "' - = Slll 'I' 
r 

and 

X 
-=cos<!> 
r 

(A7.3.6) 

(A7.3.7) 

(A7 .3.8) 

(A7.3.9) 

(A7.3.10) 

and using (7 .3.6) and (7 .3. 7) the scattered field in (7 .06) can be written as 
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b k 
jn~B; ik 0r -~( .-n) A} 

+ e --e e 1 z 
n 0 rr.k r 

0 

Equation (A7.3.11) can be simplified yielding 

With the incident field given by (7 .01) one can write 

£sca(<j>) B; ., . 
inc = -- I e 1 n ~ {- c n [X sin <I> - y cos <I>] + b n i} 

E rT.k 0 T n•-= 

Using (4.31) the radar width can be written as 

"' 2 
a(<j>) = (2rr.r)-­

rr.kor 
I ein~ { -cn[.Xsin <I>- y cos<j>] + b ni} 

n•-co 

2 

=-
"' I ein~{-cn[xsin<j>-ycos<j>]+bni} 

k o n•-= 

4 

2 

A-47 

(A7.3.ll) 

(A7.3.12) 

(A7.3.13) 

(A7.3.14) 




