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ABSTRACT 

 

The large volumes of effluent water generated by distillery industries is an issue of 

great concern as it contains pollutants that must be treated according to environmental 

legislation. It has been reported that grain distillery wastewater (GDWW) is high in fats, oils 

and greases (FOG) that can be reduced by treating with suitable microorganisms. The 

objective of this study was to investigate the biodegradability of FOG in GDWW. This was 

done by isolating lipolytic bacteria from soil, which was situated close to the GDWW 

treatment plant at a distillery in Wellington, South Africa. These isolates were screened for 

lipolytic activity on various fat substrates. Secondly, the most desirable isolates were 

subjected to batch biodegradation trials using GDWW as substrate and tested for their 

ability to biodegrade FOG. Each of the four isolates, Pseudomonas fluorescens (1), 

Pseudomonas luteola (2), Stenotrophomonas maltophilia (3) and Bacillus licheniformis (4) 

were screened on three types of media: DifcoTM Spirit Blue Agar with Tributyrin (SBA-Tri); 

Victoria Blue B Agar with Cotton Seed Oil (VBB-CSO); and Victoria Blue B Agar with 

GDWW (VBB-GDWW) at different temperatures (25°C, 30°C, 37°C and 50°C) to 

determine optimal enzyme activity for lipolysis. Lipolysis was taken as positive when 

growth of dark blue colonies was formed or by the formation of a clear zone around the 

colony. Lipolysis was observed at all the aforementioned temperatures for P. fluorescens, 

P. luteola and S. maltophilia. Bacillus licheniformis failed to show any lipolytic activity at 

50°C on the SBA-Tri. A decrease in lipolytic (clear) zone was observed at an increase in 

temperature from 25°C to 37°C for P. fluorescens. When VBB-GDWW was used as lipid 

substrate, isolates failed to indicate any clear zone of lipolysis, however, growth was 

present for all isolates in the form of a dark blue zone around colonies, which were also 

positive for lipolytic activity. 

 Three lipolytic bacteria (P. luteola, S. maltophilia, and B. licheniformis) 

isolated from the above study were subjected to GDWW of various FOG concentrations 

(70 – 211 mg.L-1). These isolates were allowed to acclimatise to GDWW during a batch 

biodegradation period (18 – 21 d) at 37°C. Bacillus licheniformis showed the highest FOG 

reduction of 83% after 18 d exposure. All the strains showed that an initial acclimatisation 

phase improved the biodegradation of the FOG. A fatty acid profile was obtained for each 

batch biodegradation trial after the acclimatisation phase. It was found that these strains 

either biodegraded the fatty acids (FAs) or, as in the case of P. luteola, formed myristic 

and pentadecyclic acids from free FAs. The formation of FAs may have occurred through a 
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process of inter-esterification. It was also found that certain precursors such as palmitoleic 

acid might be formed under aerobic or anaerobic conditions. 

In this study it was shown that biodegradation of FOG can be improved by an initial 

acclimatisation period. Single cultures with the desirable properties can be used to lower 

the FOG in GDWW and need not be used in mixed cultures that could produce inhibitory 

components that would otherwise upset the biodegradation activity of isolates present.  

Bacillus licheniformis could be used as a FOG-degrading isolate during the treatment of 

wastewaters high in FOG. However, future studies should focus on bioaugmenting the 

FOG degrading bacteria from this study with other strains to monitor its activity and ensure 

survival and activity in larger scale studies. 
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UITTREKSEL 

 

Die groot volumes afloopwater wat opgelewer word deur die distilleer-industrie is ‘n 

kwessie wat groot kommer wek aangesien dit groot hoeveelhede besoedelende stowwe 

bevat. Daarom moet dit, volgens omgewingsverwante wetgewing, behandel word.  Daar is 

voorheen gerapporteer dat graandistillerings-afloopwater (GDAW) hoog is in vette, olies 

en ghries (VOG) en dat hierdie VOG verminder kan word deur die GDAW te behandel met 

toepaslike mikroörganismes.  Die oorhoofse doelstelling van hierdie studie was om die bio-

afbreekbaarheid van die VOG in GDAW te ondersoek.  Dit is eerstens gedoen deur 

lipolitiese bakterieë uit grond wat naby ‘n graandistillerings-aanleg (Wellington, Suid-

Afrika) geleë is, te isoleer.  Verskeie vetsubstrate is gebruik om hierdie isolate vir lipolitiese 

aktiwiteit te toets.  Tweedens is die verkose isolate getoets vir lipolitiese aktiwiteit deur 

gebruik te maak van lot-bio-afbreekbaarheidsmetode.  Tydens hierdie metode is GDAW as 

substraat gebruik en die verskillende bakterieë se vermoë om VOG af te breek is getoets.  

Om die optimale ensiemaktiwiteit vir lipolise van elk van die vier isolate nl. Pseudomonas 

fluorescens (1), Pseudomonas luteola (2), Stenotrophomonas maltophilia (3) en Bacillus 

licheniformis (4), vas te stel, is elk getoets op drie verkillende media: “DifcoTM Spirit Blue 

Agar” met Tributirien (SBA-Tri); “Victoria Blue B Agar” met Katoensaadolie (VBB-KSO); en 

“Victoria Blue B Agar” met GDAW (VBB-GDAW) teen verskillende temperature (25°C, 

30°C, 37°C en 50°C).  Indien donker-blou kolonies gevorm is of ‘n deursigbare sone 

rondom ‘n kolonie waargeneem is, is lipolise as “positief” beskou.  Lipolise is waargeneem 

teen alle voorafgenoemde temperature vir P. fluorescens, P. luteola en S. maltophilia. 

Bacillus licheniformis het nie lipolitiese aktiwiteit getoon teen 50°C op SBA-Tri.  ‘n Afname 

in die deursigbare sone is waargeneem teenoor ‘n toename in temperatuur vanaf 25°C tot 

37°C vir P. fluorescens.  In die geval van VBB-GDAW as lipiedsubstraat, het isolate geen 

deursigbare sone vir lipolise getoon nie.  Daar was egter ‘n donker-blou sone rondom 

kolonies teenwoordig, wat ook positief is vir lipolitiese aktiwiteit.   

 Drie lipolitiese bakterieë (P. luteola, S. maltophilia, and B. licheniformis) is geïsoleer 

uit bogenoemde studie en is aan inkubasie in GDAW teen verksillende VOG-

konsentrasies (70 – 211 mg.L-1) blootgestel.  Hierdie isolate is toegelaat om te 

akklimatiseer tot die GDAW tydens ‘n lot-bio-afbreekbaarheidstydperk (18 – 21 d) teen 

37°C.  Bacillus licheniformis het die hoogste VOG-afname van 83% na 18 d blootstelling 

getoon.  Alle bakterieë het getoon dat ‘n aanvanklike akklimatiserings-tydperk die bio-

afbreekbaarheid van die VOG verbeter.  ‘n Vetsuur-profiel is verkry vir elk van die lot-bio-
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afbreekbaarheidstoetse na die akklimatiserings-fase.  Daar is bevind dat hierdie bakterieë 

óf die vetsure afgebreek het óf, soos in die geval van P. luteola, miristiese en 

pentadesikliese sure, vanaf vry-vetsure, gevorm het.  Die vorming van vetsure is moontlik 

as gevolg van die proses van inter-esterifikasie.  Dit is verder bevind dat sekere 

voorlopers, soos palmitoë-oleïensuur, gevorm kan word onder aërobies of anaërobiese 

toestande. 

 In hierdie studie is getoon dan die bio-afbreekbaarheid van VOG verbeter kan word 

deur ‘n aanvanklike akklimatiserings-tydperk toe te pas.  Enkel-kulture met die verkose 

eienskappe kan gebruik word om die VOG in GDAW te verminder.  Gemengde kulture, 

wat inhiberende komponente produseer wat moontlik die bio-afbreekbaarheids proses 

negatief kan beïnvloed, hoef dus nie gebruik te word nie.  Bacillus licheniformis kan 

gebruik word as ‘n VOG-afbrekende isolaat tydens die behandeling van afloopwater wat 

hoog in VOG is.  Verdere studies moet egter fokus op die samevoeging van VOG-

afbrekende bakterieë vanuit hierdie studie asook ander bakterieë om die aktiwiteit daarvan 

te monitor en sodoende oorlewing en aktiwteit op ‘n groter skaal te verseker. 
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CHAPTER 1 

 

INTRODUCTION 

 

In South Africa there are many factors which influence the availability for water. These 

factors, amongst others include climate, economic growth as well as living standards 

(Adewumi et al., 2010). The scarcity of water in South Africa brings about a challenge in 

providing the general population with a basic amount of water and sanitation. South Africa 

has an annual rainfall of approximately 500 mm, which is below the world average of 860 

mm (Friedrich et al., 2009). The west coast experiences the most aridity with many of the 

regions showing total annual rainfalls of 70 mm or less (Olivier & Rautenbach, 2002). The 

country has an unreliable rainfall pattern (Kahinda et al., 2007) and for this reason it may 

be necessary to investigate the potential for developing treatment methods that will ensure 

water supplies that are more reliable in terms of availability and potability.  

  The South African distillery industry contributes an important role in the South 

African economy. Statistics indicate that production of the total wine industry averages 

between 900 and 1 000 million litres of wine produced between 2009 and 2010 (SAWIS, 

2010). Wine production is also known to increase as the demand for wine and spirits-

related beverages increases (Musee et al., 2007). South African distilleries are highly 

polluting in terms of effluent water produced. Owing to the upsurge in demand for wine and 

spirits-related beverages, it is inevitable that wastewater generated via the alcohol 

distilleries will lead to large volumes of high strength distillery wastewater being produced 

(Musee et al., 2007). In South Africa, distillery wastewater sampled from various distilleries 

in the Western Cape, have been found to have chemical oxygen demands (COD) of 

between 30 000 and 70 000 mg.L-1 and very low pH values of between 3 and 4 

(Wolmarans & Villiers, 2002; Musee et al., 2007). 

  Wine distillery wastewater (WDWW) as well as grain distillery wastewater (GDWW) 

is produced by a distillery in Wellington, Western Cape (Laubscher et al., 2001). The 

WDWW generated are characterised as having high CODs (10 000 – 60 000 mg.L-1), and 

a very acidic pH (3.0 - 4.0). The total suspended solids (TSS) content is also very high (± 

4 900 mg.L-1) (Laubscher et al., 2001). Similarly, GDWW has been characterised with high 

COD (20 000 – 30 000 mg.L-1) acidic pH, (3.4 – 3.5) and lower TSS (900 – 1 600 mg.L-1) 

(Gie, 2007). From the above figures indicated, distilling industries will be detrimental to the 

environment if the wastewater is discarded into existing water reservoirs or water 
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catchment systems. It is therefore imperative that wastewater of this kind be treated to 

ensure safety of the environment and the potable water supplies available (Mohana et al., 

2009; Sheridan et al., 2011). 

  Agriculturally based industries have made extensive use of upflow anaerobic sludge 

blanket (UASB) systems (Britz et al., 1999). The UASB system has also been considered 

as a feasible treatment option for seasonal fruit-processing (Sigge et al., 2006) and 

distillery wastewater (DWW) treatments owing to its high operational efficiency, cost 

effectiveness and low equipment maintenance (Laubscher et al., 2001; Uzal et al., 2003; 

Gao et al., 2007; Pant & Adholeya, 2007). A key factor contributing to the efficiency of the 

UASB system is the microbial diversity present (Yuan et al., 2008). Literature reports that 

many operational problems have been associated with the treatment of GDWW. 

Treatment problems amongst others include scum layer formation and encapsulation of 

biomass by long chain fatty acids (LCFA) (Laubscher et al., 2001; Gie, 2007). These 

operational problems lead to sludge flotation and consequent granule washout, ineffective 

mass transfer of nutrient assimilation, which results in an overall decrease in the anaerobic 

digestion process. 

  Microbial bioaugmentation is also a technique used by selecting microbes that will 

aid in the biodegradation efficiency of particular compounds present in wastewaters with a 

specific composition. One study evaluated the effectiveness of fats, oils and greases 

(FOG) biodegradability using a lipase producing Pseudomonas sp. strain D2D3. This 

strain resulted in FOG removal efficiencies of 94.5 and 94.4% for olive oil and animal fat, 

respectively, while safflower oil was the lowest at 62% (Shon et al., 2002). Another study 

used bacterial mixed cultures for the treatment of bakery wastewater with a high content of 

FOG. During a 7 day treatment period with a single strain culture, there was 73 - 88% 

removal efficiency (Bhumibhamon et al., 2002). It was also reported that better 

degradation efficiencies were achieved with single strain cultures and in this case, the 

strains were identified as members of the genera Acinetobacter, Bacillus and 

Pseudomonas (Bhumibhamon et al., 2002). Literature also states that certain Bacillus 

strains can produce lipolytic enzymes that are beneficial to the treatment of wastewaters 

high in fat and protein content (Sangeetha et al., 2010). In another study cultures specific 

for degradation of wastewater high in FOG were investigated for the efficiency in grease 

removal (Wakelin & Forster, 1997). This study showed that a mixed-culture of selected 

microbes that had been acclimatised to the wastewater conditions had a FOG removal 

efficiency of > 90%.  
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The objective of this study was to investigate the biodegradability of fats, oils and 

greases (FOG) in grain distillery wastewater (GDWW). This will be initiated by firstly 

isolating lipolytic bacteria from a grain distillery environment and screening the isolates for 

lipolytic or esterase activity on various fat substrates. Secondly, to subject grain distillery 

wastewater (GDWW), at specific FOG concentrations, to the bacterial strains previously 

isolated (Chapter 3 of this thesis). These included Stenotrophomonas maltophilia (1), 

Pseudomonas luteola (2), and Bacillus licheniformis (3) strains. An acclimatization phase 

will also be initiated in order to determine which strains are capable of biodegrading the 

FOG in the shortest possible time. A fatty acid profile will then be determined for the 

individual strains to elucidate which fatty acids are utilised. Strains that show promising 

FOG biodegradation results can therefore be used as a pre-treatment option prior to 

anaerobic digestion to try and facilitate reactor operational efficiency treating GDWW. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Background on Water Crisis 

 

An issue of great concern is the scarcity of freshwater with more than one billion people in 

developing nations lacking access to safe drinking water (Ridoutt et al., 2009). For the last 

century, there has been continual pressure on freshwater resources and the problem is 

intensifying rapidly (Verstraete et al., 2009) owing to population growth, continuing 

economic development, climate change, the degradation of various ecosystems that are 

considered critical for human life and the anticipated requirements of new bio-fuel crops. In 

addition, the scarcity of freshwater is of compelling concern to the agricultural food sector, 

which is the dominant user of global freshwater resources with a consumption figure of 

approximately 85% (Ridoutt et al., 2009).  

Approximately 85% of the African continent is comprised of large river basins 

shared amongst several countries (Ashton, 2002). When compared to the rest of the 

world, water resource distribution in Africa is exceedingly variable and water supplies are 

unequally distributed in both geographical extent and time. The severity of droughts and 

floods has increased over the past 30 years due to climate change. Large areas of the 

African continent have been subjected to and continue to experience a series of prolonged 

and extreme droughts; frequently these droughts have been “broken” or “relieved” by 

equally extreme flooding events (Ashton, 2002). The International Panel on Climate 

Change stated that within the next 20 to 30 years, 25 African countries might experience 

water scarcity or water stress (Anon, 1999). 

 

Water Availability and Use in South Africa 

 

South Africa measures approximately 1 600 km from north to south, as well as from east 

to west and covers an area of 1.22 million km2. The average annual rainfall is 495 mm. 

This volume ranges from less than 100 mm per year in the western deserts to roughly 1 

200 mm per year in the eastern part of the country. Only 35% of the country has a 

precipitation of 500 mm or more, while 44% has a precipitation of 200 - 500 mm and 21% 
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has a precipitation of less than 200 mm. Owing to these figures, 65% of the country does 

not receive adequate rainfall to ensure successful rain-fed crop production and is instead 

used as grazing land. Crops thus grown in this area are grown under irrigation (Anon., 

2005).  

The South African water resources are currently allocated to 19 Water Management 

Areas, while most of the country’s water requirements arise from surface water. 

Approximately 320 major dams provide surface water to the country and account for a total 

capacity of more than 3.2 X 106 m3, which is roughly 66% of the total mean annual runoff 

of about 4.9 X 103 m3 per annum.  This includes about 4.8 X 108 m3 per annum draining 

from Lesotho into South Africa and an additional 5 X 108 m3 per annum draining from 

Swaziland to South Africa (Anon., 2007). In 2000, the total water consumed was 

approximated at 12.87 x 109 m3 and was divided amongst six sectors. The water 

consumption percentage was dominated by the agricultural sector at 62%, followed by 

urban, mining and industry, rural, afforestation, and power generation sectors consuming 

23, 6, 4, 3 and 2%, respectively (Anon., 2005). Water is thus a limiting factor owing to 

issues regarding the apportioning of water resources among different sectors. It is 

expected that South African water resources will decline markedly in the years to follow. 

The reason for decline being that the ratio of runoff to rainfall is amongst the lowest of any 

populated region of the world (Oberholster et al., 2008). South Africa alone has an 

estimated 1.3 million hectares of irrigated land to cover both commercial and subsistence 

agriculture. In effect, 60% of the groundwater, surface water and recycled water is 

consumed via irrigated agriculture and contributes to almost 30% of total agricultural 

production (Yokwe, 2009). 

A few of the regional issues on water use and pollution are that certain areas, 

particularly the northern and eastern inland and coastal regions of South Africa are 

dominated by irrigation. However, pollution of these water sources are as a result of 

mining industries and thus place pressure on the availability of high quality water (Anon., 

2001). It is thus imperative that the management of South Africa’s water quality and 

availability is essential, as predictions are that the demand for water will outstrip its supply 

by 2025 (Oberholster et al., 2008). 

 

Pollution of Water Resources and Possible Solutions to Water Crisis 

 

In order to face the problem one has to consider the cause of the problem. As the income 

levels of the population increase so do the negative environmental externalities (Blignaut & 
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De Wit, 2004). The former can simply be explained by the fact that more income chases 

more goods implying that more materials are transformed. These materials eventually find 

their way back to nature, but not necessarily in the desired composition, but merely in the 

form of an input to a landfill, which is considered waste. The waste often ends up in our 

water reservoirs and therefore makes the water unsafe for usage.  

Waste reduction is an effective practice on a global and local scale, in order to 

prevent mass pollution in the air and water resources. In recent years, Japan has had a 

demand for the reduction and effective utilisation of food waste (Komemoto et al., 2009). 

Their current means of municipal waste treatment, including food waste, is done via 

incineration. The remaining ash is dumped in landfills. In Denmark, there has been a 

higher demand for meat than in the past. This has led to an increase in the quantity of 

organic by-products from slaughterhouses (Hejnfelt & Angelidaki, 2009). Producing 

ethanol from agricultural by-products that can be utilised as an alternative fuel, has 

attracted much interest on a global scale, owing to the limitation on non-renewable energy 

resources (Pant & Adholeya, 2007). During sugar production, the most common raw 

material for fermentation industries such as bakers’ yeast and ethanol production is 

molasses. Molasses, being a by-product, has the advantage of serving as a suitable 

fermentable product because of its low cost and high sugar content (Liang et al., 2009; 

Biswas et al., 2009). Water catchment can be seen as a feasible strategy for water 

harvesting, whereby run-off water can be collected from roofs or ground surfaces 

(Agromisa, 1997).  

Wastewater generation is an inevitable phenomenon on a global scale. Municipal 

and industrial waste as well as carbon dioxide emissions are increasing and thus 

negatively impact the environment (Blignaut & de Wit, 2004). Food industries thus also 

produce large amounts of waste. Examples of such companies amongst others are beer 

industries, slaughterhouses, dairy industries and fat refineries (Cavaleiro et al., 2007; 

Cirne et al., 2007). The treatment of waste for fuel production while simultaneously 

recycling nutrients, is considered a sustainable phase (Singh & Prerna, 2009).  

The South African wine industry produces large volumes of wastewater throughout 

the year most of which originates from cellar cooling as well as floor and equipment 

washdown (Ronquest & Britz, 1999). Effluent generated from the wine industries usually 

have a high organic content and thus cannot be directly discharged into the environment. 

Various treatment options for the wastewater should be considered to allow the disposal of 

large amounts of distillery effluent in an environmentally friendly manner. 
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 Minimising waste is a central aspect to any industry, as it not only reduces the 

consumption of potable water but also decreases the volume of wastewater generated 

(Melamane et al., 2007). Treatment options may be physical, chemical and 

physicochemical methods. Although water saving techniques are employed by farmers 

and industries (Blignaut et al., 2009), the minimisation of water use is a critical factor and 

in order to address the problem, treatment of industrial effluent water should be seen as a 

possible solution. 

 

The Role of Whisky on a Global and Local Scale 

 

Typically, whisky production takes place as follows: Firstly, barley is steeped in water, 

allowed to germinate, and then dried to give malt. The malt is then milled to break open 

the husks and mixed with water in the mash tun, where enzymatic action occurs. The 

sugars are then fermented by action of yeast to give wash containing 6 – 7% ethanol by 

volume. Batch distillation then produces a distillate, which contains 20% ethanol by 

volume. Further distillation takes place after which the still is matured in wooden casks, 

prior to dilution, bottling and sale (Goodwin et al., 2001). The production of grain whisky 

takes place via column distillation, whereby the fermented mash of maize meal (± 9% ethyl 

alcohol/volume), called “wort” is used as raw material to generate the wastewater referred 

to as grain wastewater (Laubscher et al., 2001). Once the grain effluent is obtained from 

the still, it enters into a decanting process. Here the solids are separated from the water. 

The solids as well as the water are collected in separate tanks. A contractor purchases the 

solids while the grain wastewater produced is collected via a tanker.  

 An issue of concern is the high Chemical Oxygen Demand (COD) values within all 

these wastewaters produced. Typically the wastewater generated has an acidic pH of 3 - 

4, a high organic content with COD values ranging from 10 - 50 g.L-1 (depending on the 

wastewater composition), and low suspended solid and nutrient concentration (Heredia et 

al., 2005). It is therefore of cardinal importance that the most efficient treatment method be 

initiated before subsequent disposal of water into the environment. The discharge of the 

distillery wastewater into the environment causes serious problems as it contains a high 

organic load. Comparison between grain wastewater and wine wastewater indicates that 

grain wastewater has a higher COD than wine wastewater (Table 1). The Total Kjeldahl 

nitrogen (TKN), Phosphorus (P) and total soluble solids (TSS) also vary considerably 

between the wastewaters before and after treatment. 
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Table 1. Characteristics of wine wastewater and grain wastewater (Laubscher et al., 2001) 

 

The effluent generated by alcohol distilleries is referred to as distillery spent wash. Whisky 

production generates large quantities of effluent. Normally for every litre (L) of alcohol 

produced, 8 - 15 L of effluent is generated (Mohana et al., 2009) and for every litre of grain 

whisky produced, 16 – 21 L of effluent water is generated (Tokuda et al., 1998). On 

average, a distillery produces approximately 2.6 billion L of grain wastewater annually. In 

2002, there were 285 distilleries in India producing 2.7 x 109 L of alcohol, thus generating 

4 x 1010 L of wastewater per year (Ramana et al., 2002). There are an estimated 319 

distilleries producing 3.25 billion litres of alcohol and generating 40.4 billion litres of 

wastewater annually in India alone (Pant & Adholeya, 2007). According to their Ministry of 

Environment and Forests, alcohol distilleries are rated at the top of ‘Red Category 

Industries’ (Mohana et al., 2009). In the UK whisky is recognised as one of the most 

economically important food and beverage exports, with more than a hundred active 

distilleries primarily in Scotland (Goodwin et al., 2001). 

According to Surujlal et al. (2004), industries producing effluents must comply too, 

the technologically achievable levels, before disposal of wastewater into the environment. 

Influent wastewater characteristics used in laboratory scale UASB systems 

Wastewater 

type 
COD (mg.L-1) TKN (mgN.L-1) P (mgP.L-1) TSS (mg.L-1) 

Wine 
wastewater 
before treatment 

~60 000 ~650 ~200 150 - 49 760 

Wine 
wastewater after 
centrifuging 

20 000 - 30 000 300 - 350 180 - 200 100 - 500 

Grain 
wastewater after 
decanting and 
centrifuging-
unsettled 

25 000 - 30 000 170 - 180 270 - 300 >1 000 

Grain 
wastewater after 
decanting and 
centrifuging and 
settling 
 

20 000 - 25 000 170 - 180 270 - 300 <1 000 
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These technologies will not only benefit the environment, but will also be cost-effective 

(Mohana et al., 2009). 

A typical South African distillery industry can produce approximately 120 000 L of 

grain distillery wastewater (GDWW) per month which is likely to increase over the next few 

years (Bester, 2009). This increase is mainly attributed to the increase in demand for 

spirits and spirits-related beverages. There was an increase in domestic sales of natural 

wine between the periods of November 2009 to October 2010 by 1.6% to 299 million litres. 

The export of natural wines decreased by 3.3% during the same period while both bulk 

and packaged wines showed a negative growth trend (SAWIS, 2010).   

The concentration of components present in grain and wine wastewaters differs for 

various distilleries globally (Tables 1, 2, 3, 4 and 5). The representative characteristics of 

the distiller’s grains wastewater in rural wineries situated in China are presented in Table 

2. These rural wineries generate large amounts of distiller’s grain wastewater, which are 

often discarded directly into the environment without any treatment due to little or no 

treatment equipment (Gao et al., 2007). Raw distillery effluent characteristics obtained 

from a plant specialising in producing neutral spirits in the Western Cape area of South 

Africa using wine grapes as feedstock is reported in Table 3. Table 4 shows the average 

composition of the raw grain distillery wastewater for 15 samples from five batches and it 

was found that the composition of the batches varied noticeably, owing to daily and 

seasonal variations. Table 5 indicates the composition of different wine distillery 

wastewater (WDWW) streams, during the pre- and post- ozonation treatment of a 

constructed wetland system. An upflow anaerobic sludge blanket (UASB) reactor treating 

GDWW was investigated for a period of 420 days, whereby COD removal efficiencies from 

80 – 97.3% had been achieved under mesophylic conditions (Gao et al., 2007). The 

development of granules during this study showed excellent methanogenic activity by 

using sucrose and acetate as substrates. In another study, post-treatment of distillery 

wastewater using aerobic techniques further improved the COD removal from 88.7 to 

96.5%. This was achieved by using aerobically activated sludge (Musee et al., 2007). The 

latter study proves that sequential treatment of distillery wastewater using UASB followed 

by aerobically activated sludge can reduce the COD to be in accordance with 

requirements for effluent discharge as stipulated according to legislation (Musee et al., 

2007). Malt whisky distillery wastewater was sequentially (anaerobically/aerobically) 

treated with and without supplementation. Values obtained for COD and BOD were 99.5 

and 98.1% respectively (Uzal et al., 2003). 
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Table 2. Typical composition of grain distiller’s wastewater obtained from rural wineries in 

China (Gao et al., 2007) 

Component Component range (mg.L-1) 

COD 16 500 - 22 520  

Volatile fatty acids 3 000 - 3 600  

Suspended solids 250 – 770  

Volatile suspended solids 190 – 640 

Total nitrogen 120 – 150  

Total phosphorus 15 – 18 

pH 3.3 - 4.3 

 

 

Table 3. Effluent characteristics from a distillery producing grape feedstock (Musee et al., 

2007) 

Component Component range (mg.L-1)  

COD 35 667 - 42 183  

Total dissolved solids 10 184 - 16 123  

Total Kjeldahl nitrogen 560 – 834  

Ammonia 80 – 120 

Phosphorus 177 – 215 

pH 3.5 - 4 

 

Table 4. Average composition of the raw GDWW batches used in a study (Gie, 2007) 

Component Component range (mg.L-1)    

CODtotal 20 007 – 26 069  

Fats, oils and greases 1 978 – 2 324  

Total solids 13 915 – 18 395  

Total suspended solids 908 – 1 612  

Volatile suspended solids 812 – 1 560 

Phosphorus 624 – 880 

pH 3.4 – 3.5 
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Table 5. Wine distillery wastewater composition. (Green, 2007) 

Component Component range (mg.L-1)   

CODtotal 12 609 – 22 150 

Total solids 11 680  

Total suspended solids 1 430 

Total Volatile suspended solids 1 300  

Phosphates 254 

pH 4.52 – 4.68 

 

Legislation 

 

Currently the Department of Water Affairs (DWA) is responsible for the National Water Act 

(Act 36 of 1998) as well as the Water Services Act (No. 108 of 1997), thus DWA monitors 

the state of pollution from water resources in South Africa (DWA, 2004). Industries have to 

adhere to strict regulations as laid out by the legislation concerning effluent discharge 

standards (Republic of South Africa, 1998a). The ordinance of a new law referred to as 

polluter-pays-principle has been established whereby, the polluter pays for the treatment 

and disposal of the waste generated (Republic of South Africa, 1998a; Republic of South 

Africa, 1998b). 

The controlling legislation that provides protection, development and utilisation of 

the water resources in South Africa is the National Water Act, 1998 (Act 36 of 1998). The 

National Water Act states that it is of cardinal importance that effluents be purified by the 

user to specified standards and the subsequent disposal thereof should take place in a 

manner, which will allow its reuse. The minister periodically prescribes compulsory 

national standards relating to quality of water that is discharged into the environment. The 

strict limitations and tariffs prescribed are used to promote or achieve water conservation 

(Anon., 1997). The respective industry or individual, in control of their water use, must 

adhere to the measures as laid out by the legislation. These measures state that the 

business should comply with any prescribed waste standard or management practice; 

contain or prevent the movement of pollutants and effectively eliminate any source of 

pollution (Republic of South Africa, 1998b). 

 To allow irrigation of wastewater, the General Authorisation stipulates that certain 

criteria should be met (Tables 6, 7 and 8). 
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Table 6. Parameters to be met for the irrigation of 50 m3 of wastewater (Van Schoor, 2005) 

Measured parameter Value  

pH 6 – 9 

 

Electrical conductivity <200 mS.m-1 

Faecal coliforms <100 000 cfu.100 mL-1 

Sodium adsorption ratio (SAR) <5 

COD <5000 mg.L-1 

 

 

Table 7. Parameters to be met for the irrigation of 500 m3 of wastewater (Van Schoor, 

2005) 

Measured parameter Value  

pH 6 - 9 

 

Electrical conductivity <200 mS.m-1 

Faecal coliforms <100 000 cfu.100 mL-1 

Sodium adsorption ratio (SAR) <5 

COD <400 mg.L-1 

If 400 – 5 000 mg.L-1 present, 

then may not irrigate >50 m3 
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Table 8. Parameters to be met for the irrigation of 2000 m3 of wastewater (Van Schoor, 

2005) 

Measured parameter Value  

pH 5.5 - 9.5 

 

Electrical conductivity <150 mS.m-1 

Faecal coliforms                      <1 000 cfu.mL-1 

Ammonia <3 mg.L-1 

Nitrogen <15 mg.L-1 

Chlorine <0.25 mg.L-1 

Suspended solids (SS) <25 mg.L-1 

Ortho-phosphate <10 mg.L-1 

Fluoride <1 mg.L-1 

Soaps, oils and grease <2.5 mg.L-1 

COD <75 mg.L-1 

 

Treatment Technologies for the Treatment of Distillery Wastewater 

 

In order to overcome the many disadvantages associated with treating effluent, continual 

research and development has led to the improvement in treatment processes of distillery 

wastewater. Treatment methods include adsorption (Mane et al., 2006), flocculation as 

well as coagulation (Migo et al., 1997) and oxidation processes includes Fenton’s 

oxidation (Dwyer et al., 2008), ozonation (Sreethawong & Shavadej, 2008), 

electrochemical oxidation utilising electrodes and electrolytes (Prasad & Srivastava, 2009). 

Pre-treatment methods are also used to enhance the overall anaerobic digestion 

process through alteration of the chemical and physical properties (Carrère et al., 2010). 

These alterations contribute to enhancing the hydrolysis process prior to the main 

digestion process. It is a process that can be incorporated into the classical wastewater 

treatment plant at different locations (Fig. 1). According to Carrère et al. (2010), there is an 

increased need to assess and review various treatment methods in terms of cost, 

efficiency and performance. Furthermore the article explains how chemical and 

mechanical treatment methods can contribute to enhancing the overall anaerobic sludge 

biodegradability. Examples of various wastewater treatment methods are explained in 

more detail below. 
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Physicochemical 

The use of adsorption processes on activated carbon (AC) has been widely accepted 

owing to its extended surface area, increased adsorption capacity, microporous structure 

and high degree of surface responsiveness. AC assists in the removal of colour and 

specific organic pollutants in distillery effluents (Satyawali & Balakrishnan, 2008). 

Coagulation and flocculation is a process whereby the forces that keep colloids 

apart, are neutralised. This then causes the association of particles to form flocs. Larger 

flocs are then removed by sedimentation, flotation, filtration or straining (Anon., 2010). A 

research study was conducted on the treatment of WDWW using an integrated Fenton-

coagulation/flocculation process. The study investigated two steps, namely a Fenton 

process and a coagulation/flocculation step, whereby they used a theoretical expression to 

calculate the optimal molar ratio concentration. They evaluated the optimal concentration 

of [H2O2]:[FeCl2+] to be 15 mol/mol to achieve a removal efficiency of 74% COD (Heredia 

et al., 2005). Other studies were also conducted on pre-treatment by precipitation (Rusten 

et al., 1990; Rusten et al., 1993; Ødegaard, 1995). 

Physicochemical methods (Heredia et al., 2005; Moletta, 2005; Melamane et al., 

2007) have been developed and employed to treat lipid-rich wastewaters preceding the 

main treatment process, which is often of a biological nature. 

Supercritical water oxidation has been applied to municipal excess sludge as well 

as distillery wastewater of molasses (Goto et al., 1998). 
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Figure 1. Classical wastewater treatment plant illustrating the various locations where pre-

treatment may be incorporated (Carrère et al., 2010). 

 

This is an environmentally attractive technology where organic materials are 

converted to carbon dioxide, water and N2. Another study stated that distillery wastewaters 

are refractory to UV radiation, but when oxidation is applied with hydrogen peroxide, it 

leads to different COD reductions, which indicated that the process is mainly due to free 

radicals (Beltrán et al., 1997). Although distillery wastewaters of more than 3 000 mgO2.L
-1 

T1 : Directly in the aeration tank 

T2 : Sludge re-circulating tube after thickening 

T3 : Direct material pre-treatment preceding anaerobic sludge  

treatment in primary sludge 

T4 : Excess waste activated sludge 

T5 : Mix of primary and waste activated sludge 

T6 : Recirculation loop of digester 
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are refractory to advanced oxidation, reductions of COD for these wastewaters can only be 

as high as 38% when the initial COD is 850 mgO2.L
-1 and the initial concentration of 

hydrogen peroxide is 0.1 M (Beltrán et al., 1997). 

Ozone is a potent oxidant that is able to oxidise organic matter, carbon dioxide and 

water. The ozonation process also removes more than 99% of the microorganisms 

present. The cost involved in operating an ozone generator is high and precautions should 

be taken when handling toxic 03 (Stuatz, 2009). A study showed that the use of ozonation 

combined with conventional aerobic treatment methods can reduce the overall COD of 

distillery wastewater. The latter study used ozone mainly in the pre-treatment and post-

treatment stage. The integrated technique (ozone-aerobic oxidation-ozone) achieved an 

approximate 79% COD reduction as opposed to a 34.9% reduction for non-ozonated 

sample over the treatment periods studied (Sangave et al., 2007). Another study showed 

that the ozonation of a pre-treated aerobic effluent, revealed an increase in the substrate 

removal in this ozonation stage from 16 – 21.5% COD (Benitez et al., 2000). A laboratory-

scale UASB reactor combined with ozonation improved the degradation efficiency of 

diluted WDWW (Gie, 2007). When treated solely with an UASB reactor, WDWW (COD = 

4 000 mg.L-1) showed a reduction in COD of 92%. A combination of UASB and pre- or 

post-ozonation, showed a COD reduction of 94 and 96%, respectively (Gie, 2007). 

 Electrochemical oxidation is the process by which organic particles are oxidised 

with simultaneous oxygen evolution, using an appropriate electrode material (Comninellis, 

1994). This type of treatment has been applied to distillery wastewater. An experiment was 

initiated to study the effects electrochemical oxidation has on the colour and COD of 

distillery wastewater (Piya-areetham et al., 2006). The results showed that titanium anodes 

had a higher potential for the treatment of distillery wastewater. The addition of additives, 

H2O2 and NaCl, promotes the reduction of COD and colour in wastewater by 

approximately 89.62 and 92.24%, respectively (Piya-areetham et al., 2006). Treatment of 

distillery wastewater using aluminum as electrode has also been studied (Krishna et al., 

2010).  

 

Biological Treatment 

One of the most effective methods for the treatment of highly polluted industrial 

wastewater is biological treatment. Agro-industrial wastewaters including distillery plants, 

can either be treated via aerobic or anaerobic systems (Pant & Adholeya, 2007). Many 

biological wastewater reactors have been established and successfully implemented in the 

treatment of distillery wastewater and include enzymatic pre-treatment, microbial or a 
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combination thereof (Goodwin & Stuart, 1994; Tokuda et al., 1998; Akunna & Clark 2000; 

Goodwin et al., 2001; Uzal et al., 2003; Gao et al., 2007; Musee et al., 2007). 

Stabilisation ponds include lagoons or oxidation ponds, which are holding basins 

where waste stabilisation and pathogen die-off occurs via natural processes (Droste, 

1997). Important overviews of the vital interactions that occur during waste stabilisation in 

ponds are discussed by Stottmeister et al., (2003). 

Constructed wetlands are efficient wastewater treatment technologies and are low 

cost, easily operated and maintained (Kivaisi, 2001). Plants as well as microorganisms 

play a crucial role in biodegrading the contaminants within a constructed wetland. A 

previous study investigated the performance of a sub-surface flow constructed wetland, 

treating winery wastewater. Average removal efficiencies of 98% for COD and 97% total 

suspended solids were achieved. The system also rated effective at neutralising the high-

strength acidic wastewater (Shepherd et al., 2001). The effectiveness of ozonation on a 

constructed wetland system, treating WDWW (COD = 7 000 mg.L-1) showed an overall 

COD reduction of 84% (Green, 2007). The study also concluded that ozone as a pre-

treatment system improved the overall efficiency of the wetland system.  

Various anaerobic digesters are and have been implemented in the treatment of 

distillery effluent. A study investigated the feasibility of an UASB reactor to treat malt 

distillery wastewater without any mineral source except that used for pH adjustment. They 

found that the alkalinity increased, the sludge that developed was flocculent but did not 

form compact granules and the system became upset when fed with undiluted substrate 

(Goodwin et al., 2001). An anaerobic baffled reactor system also proved to be a worthy 

treatment option for a high strength distillery wastewater, containing up to 85 000 mg.L-1 

COD. It had a hydraulic retention time (HRT) of 20 d and an organic loading rate (OLR) of 

4.28 g COD per day. The entire process showed reactor stability and achieved a removal 

efficiency of 98% (Bozadzhiev et al., 2007). COD values of up to 30 000 mg.L-1 was 

treated via a UASB reactor, and removal efficiencies, remained on average above 90% 

(Wolmarans & Villiers, 2002). 

Bacterial enzymes and fungi have been extensively studied for their ability to 

degrade fatty wastewaters from food industries (Wakelin & Forster, 1997) because of their 

enzyme specificity for substrate types. Enzymes are proteinaceous molecules that 

catalyse biochemical reactions. Two types of enzyme systems exist, namely endoenzymes 

and exoenzymes. Endoenzymes are produced intracellularly by the bacteria. These 

function to catalytically degrade soluble substrate within the cell. Exoenzymes on the other 

hand are also produced intracellularly, but are released to the external slime layer 
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surrounding the bacterial cell where the insoluble matter is attached. Here the insoluble 

matter is degraded to soluble substrate after which it is assimilated by the bacteria to be 

further degraded via endoenzymes (Gerardi, 2003). 

In a study conducted on the bio-treatment of high fat and oil wastewater by lipase 

producing microorganisms, it was found that the removal of fat and oil and COD were 73 – 

88% and 81 - 99% during a 7 day treatment process (Bhumibhamon et al., 2002). The 

lipase producing isolates were Acinetobacter sp. (KUL8), Bacillus sp. (KUL39) and 

Pseudomonas sp. (KLB1). The latter mentioned isolates were also said to have different 

degradation efficiencies due to the different lipases produced and their specificity for the 

substrate during catalytic reactions. It can therefore be explained that lipases belong to a 

group of enzymes referred to as enantiospecific enzymes that catalyse the hydrolysis of 

triacylglycerols to diacylglycerols, monoacylglycerols, fatty acids and glycerol at the 

interface between the aqueous and lipid phases. An essential limiting factor of lipases is a 

shortage thereof having the specific required processing characteristics to execute the 

desired actions during commercial applications (Sharma et al., 2001). 

All bacteria have the ability to produce endoenzymes, but only certain bacteria can 

produce exoenzymes. It is not possible for a bacterium to produce all the exoenzymes that 

are necessary to degrade the large variety of particulate and colloidal substrates that 

sludge and wastewater consists of. As a result, a larger bacterial consortium, with each 

member producing the proper endoenzymes and exoenzymes are required to degrade the 

vast amount of substrates present (Gerardi, 2003). It should also be taken into 

consideration that the activity of lipolysis increases in direct proportion to the surface area 

until the enzyme concentration becomes a limiting factor (Alford & Steinle, 1967).    

In a previous study, arable soil was experimentally contaminated with diesel oil at 5 

mg hydrocarbons per gram of soil dry weight over a period of 116 days. Soil lipase activity, 

hydrocarbon degradation by indigenous soil microorganisms and the number of oil-

degrading microorganisms in unfertilised and fertilised soil was used as a tool to monitor 

decontamination of the oil-contaminated soil. They found an increase in hydrocarbon 

utilisers coincided with a high biodegradation activity, stating a quick adaption process of 

indigenous microorganisms (Margesin et al., 1999). Studies include the use of commercial 

supplements concentrated with bacteria thus investigating their ability to degrade FOG 

(Brooksbank et al., 2007), the isolation of bacterial species from oil and grease 

contaminated industrial wastewater and their ability to degrade FOG (El-Bestawy et al., 

2005) as well as the genetic engineering and bioremediation technology of 

microorganisms for improved contamination biodegradation (Gentry et al., 2004). 
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Anaerobic Digestion 

 

The technology of anaerobic digestion (AD) should always be part of the list of process 

options for an industrial wastewater treatment, because it is considered energy saving and 

minimises sludge disposal costs (Brito et al., 1997). In modern day society, the wastewater 

treatment via AD, is considered to be state-of-the art technology (Ramirez et al., 2009). 

The biochemical process by which high-moisture waste biomass is converted to 

bioenergy is known as AD. Anaerobic digestion is therefore the bacterial biodegradation of 

organic wastes or green crops in the absence of oxygen with the subsequent production of 

biogas rich in methane gas (Kim et al., 2010). Anaerobic digestion can be used to convert 

high-moisture organic wastes to methane, which serves as a substitute for fossil fuels. 

During wastewater treatment, it is sometimes necessary to improve the digestion of 

slurry-like wastewaters by enzymatic pre-treatment. So is the case in a study conducted 

on the addition of enzymes to pre-treat intact yeast during AD of distillery wastewater, 

which improved biodegradation, by 87% (Mallick et al., 2010). The treatment of alcohol 

distillery effluents via upflow anaerobic sludge bed has proven to be a feasible method for 

the degradation of long chain fatty acids. Many anaerobic wastewater treatment studies 

conducted have focused their attention mainly on the anaerobic biodegradation with 

respect to dairy industries and oil refineries. According to Cammarota & Freire (2006), the 

milk industry in Brazil generated 21 x 109 L of milk alone in 2002, which resulted in 

approximately 84 x 109 L of post-production and processing effluent, from which more than 

90% did not receive any type of treatment. Not so many studies have been conducted 

concerning GDWW. 

In the past, it was seen as more economically attractive to utilise the malt distillery 

wastewater as cattle-feed as a disposal route (Goodwin & Stuart, 1994). However, the 

increase in demand for spirits related products and expansion of distillery industries on a 

global scale has led to the development of alternative methods of treatment. Larger 

anaerobic-treatment plants have been constructed to deal with increasing distillery 

wastewater volumes (Pant & Adholeya, 2007). 

Conventional methods employed by the slaughterhouse and dairy industry for 

wastewater treatment includes the reuse of either blood by slaughterhouses and in the 

case of dairy industries, cheese whey (Cammarota & Freire 2006).  
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Microbiology of the AD process 

Industrial wastewater consists of organic matter in the forms of carbohydrates, fats and 

proteins. Anaerobic digesters, biologically degrade approximately 80% of the influent 

organic waste (Gerardi, 2003). There are a series of bacterial events that account for this 

digestion process and these processes result in the breakdown of complex organic 

compounds to simplistic organic as well as inorganic compounds (Weng & Jeris 1976; 

Ramirez et al., 2009).  

The methanisation process has been resolved through engineering aspects; 

however, the microbiology involved, still remains an issue of concern (Bories & Raynal, 

1988). Methane fermentation takes place naturally in many ecosystems such as river mud, 

lake sediments, sewage, marshes and rice paddies (Schink, 1997). The layer of water acts 

like a blanket, thereby excluding oxygen and thus promotes the growth of anaerobes. The 

bacterial species involved can further be divided into three main groups, namely 1) strict 

aerobes, 2) facultative anaerobes and 3) anaerobes, inclusive the methane forming 

bacteria. These bacteria are classified as being unicellular gram-variable, strict anaerobes 

and non-endospore forming. Many methanogenic species that have been studied in pure 

cultures, are strictly anaerobic thereby growing only under conditions of oxygen-depleted 

environments and in the presence of a reducing agent. Most species require hydrogen and 

carbon dioxide for methanogenesis and growth. They grow best in a pH range of 6.4 to 

7.4. The cell wall is of such unique chemical composition making it sensitive to toxicity 

from several fatty acids (Gerardi, 2003). Methanogenic bacteria, however, cannot solely 

obtain the simple compounds required to fulfil their process. They require these 

compounds to be supplied by other anaerobes present in methane fermentation. 

 Strict aerobes can only survive in environments with oxygen present, where they 

actively degrade substrate. They perform well in the presence of free molecular oxygen 

fulfilling a significant role in the waste degradation process. Strict anaerobes specifically 

prefer oxygen depleted environments and will therefore die within an oxygenated 

anaerobic digester. Facultative anaerobes are active in both oxygenated and oxygen 

depleted environments. When oxygen is available, it will be utilised for enzymatic activity 

as well as the degradation of wastes (Gerardi, 2003). The above-mentioned microbial 

groups play a distinctive role in various stages of the anaerobic process within a reactor.  

It would be desirable to select for those species, which have the most desirable 

properties for the performance of a required function, especially since selecting for species 

with ‘better’ properties will contribute to improving the performance of a treatment system 

(Yuan et al., 2008). 
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The stages of anaerobic digestion 

The AD process is classified into two distinct stages namely, acidification and gasification 

whereby the acidification stage is further categorised into three main stages involved in 

AD. These stages are initiated in sequence followed one after the other to allow for the 

digestion process and subsequent methane production (Komemoto et al., 2009; Hwang et 

al., 2010). The acidification stages are as follows: hydrolysis, acidogenesis, acetogenesis; 

followed by the gasification stage, methanogenesis (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The four main stages of AD depicted above are initiated in a step-wise process. 

 

Stage 1: Hydrolysis 

Methanogens and acetogens are not capable of directly utilising the large complex 

polymeric compounds (Anderson et al., 2003). This first stage thus involves the 

biodegradation of complex substrates namely carbohydrates, proteins and fats to their 

respective simpler compounds namely simple sugars, amino acids and peptides as well as 

shorter chain fatty acids. The acid forming bacteria consisting of both acidogenic (organic 

acid formers) as well as acetogenic bacteria (acetate forming bacteria) are primarily 
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responsible for the formation of the monomers from complex compounds (Anderson et al., 

2003). The entire process relies on biodegradation of the complex compounds via 

hydrolytic enzymes that are extracellularly secreted by a consortium of microorganisms 

(Weng & Jeris, 1976). During this stage, it is essential to know that no organic waste 

stabilisation occurs and that the organic compounds are only converted to a form that can 

be assimilated by the bacterial population (Parkin & Owen, 1986). Stabilisation of organic 

compounds cannot occur unless the hydrolysis stage is functioning properly. For example, 

the inhibition of lipid hydrolysis may occur by product accumulation due to the particularity 

of lipases (Cirne et al., 2007). The hydrolysis stage can thus become a limiting step for the 

entire anaerobic process consequently inhibiting the stages to follow.  

 

Stage 2: Acidogenesis 

The facultative anaerobes and anaerobes are a diverse population, which during the acid-

forming stage degrade the soluble compounds produced during the hydrolysis process. 

Various components are produced such as volatile fatty acids (VFA) which include 

propionic, butyric and valeric acid and of most importance is acetate (Alvarez, 2003; 

Gerardi, 2003). During the first stage, the acetate produced cannot be utilised directly by 

methanogens as energy can only be obtained following the reduction thereof (Gerardi, 

2003). The VFA’s produced has a chain length larger than that of acetate. The latter 

therefore must be further catabolised to allow utilisation by the methanogens (Anderson et 

al., 2003).  

 

Stage 3: Acetogenesis 

The VFA’s which have been formed in the acidogenic phase, are further catabolised to 

carbon dioxide and hydrogen. In order for acetate production to occur, the hydrogen and 

carbon dioxide produced during acidogenesis are utilised as energy sources by a group of 

bacteria known as hydrogen-consuming acetogenic bacteria (Anderson et al., 2003; 

Alvarez, 2003; Gerardi, 2003). The conversion of short chain fatty acids such as propionic 

and butyric acids and alcohols into acetate, H2 and CO2 is only possible if a low H2 

pressure is maintained (Schmidt & Ahring, 1996).  
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Figure 3. The two pathways of methanogenesis. Reduction of CO2 (Hydrogenotrophic 

pathway) and oxidation of CO group to provide electrons for reduction of methyl group 

(Acetoclastic pathway). 

 

Stage 4: Methanogenesis 

The final phase of AD occurs when acetic acid is converted to methane (Fig. 3) and 

separated from the sludge mixture as methane is poorly soluble in water, inert under 

anaerobic conditions and able to escape from the anaerobic environment (Gerardi, 2003). 

This is known as the waste stabilisation phase (Parkin & Owen, 1986). Methane can be 

produced via two different pathways (Fig. 3). Hydrogen is utilised via hydrogenotrophic 

methanogenesis according to reaction 1. 

 

4H2 + CO2 →CH4 + 2H2O     ∆G°′ = -131.0 kJ.m-1 (1) (Schink, 1997) 

 

Hydrolytic as well as acetotrophic bacteria produce H2, which is thermodynamically 

unfavourable. This requires hydrogenotrophic methanogens to maintain low H2 

concentrations in order for methanogenesis to proceed efficiently (Ferry, 2010). Many H2-

utilising methanogens can also use formate as an electron donor for the reduction of CO2 

to CH4 (Demirel & Scherer, 2008). During acetoclastic methanogenesis, CH4 is formed 

from the methyl group via cleavage of acetate by methyltrophic methanogens, thus 

initiated by reaction 2.  

 

CH3COO- + H2O →HCO3
- + CH4     ∆G°′ = -31.0 kJ.m-1 (2) (Anderson et al., 2003) 
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Carbon dioxide is formed by the carboxyl group by acetotrophic methanogens. Most 

methanogens accept H2 as an energy source and therefore consumes it rapidly during the 

reduction of CO2 to methane (Parkin & Owen, 1986). Two distinct bacterial groups exist 

namely, acetoclastic methanogens and the H2-consuming methanogens. Generally, 

acetate is utilised by Methanosarcina and Methanosaeta (Sekiguchi et al., 2001). Owing to 

its faster growth rate, Methanosarcina favours higher concentrations of acetate. For 

example, in a previous study the dynamics of methanogenic population were investigated 

in AD of solid waste and biosolids (Griffin et al., 2000). Mesophylic anaerobic sewage 

sludge and cattle manure were inoculated into two laboratory-scale anaerobic continuously 

mixed reactors. It was observed that Methanosaeta species decreased as the acetate 

concentration increased. Methanosarcina species however increased in numbers with a 

corresponding acetate concentration increase and form irregular cell clumps, which 

apparently provides protection against harmful chemical agents (Demirel & Scherer, 

2008).  Methanosaeta often found in high rate (biofilm) systems can only assimilate 

acetate as its sole energy source whereas Methanosarcina often found in solids digesters 

are also capable of utilising methanol, methylamines and sometimes hydrogen and carbon 

dioxide. Owing to the nature of the system, it is recommended that a single group of 

aceticlastic methanogens be used with different kinetic and inhibitory parameters (Bastone 

et al., 2002).   

It is of fundamental importance that the digestion process proceeds efficiently. 

Inhibition of the first stage will limit the amount of substrate available for the second and 

third stages resulting in the methane production decreasing. Inhibiting the third stage will 

cause the accumulation of the acids in the second stage (Gerardi, 2003). This results 

because acetate-producing organisms release H2 during fermentation and if methanogenic 

bacteria do not consume the H2 as fast as it is produced, it will result in the accumulation 

of organic acids in the second stage. For example the anaerobic systems treating 

wastewaters rich in vegetable oil must be designed in such a way to allow for both slow 

degradation of long chain fatty acids (LCFA) and potential inhibition by LCFA (Saatci et al., 

2003). The third stage experiences inhibition mainly because of acids accumulating, which 

causes loss of alkalinity and subsequent decrease in pH due to an increase in H+ (Gerardi, 

2003).  

It is important that the microbial consortium be in an environment that is suited for 

their growth, proliferation and activity within the anaerobic reactor system. They are highly 

dependent on the substrate, product concentration including the environmental parameters 

amongst others such as pH, alkalinity and temperature (Alvarez, 2003). 
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 The hydrogen partial pressure plays a vital role in the methanogenic process. The 

degradation of organic compounds can only proceed if the H2 partial pressure is kept low, 

i.e. < 10-4 atm. A low H2 partial pressure will therefore ensure that fermentation products 

other than CO2 and CH4 do not accumulate (Gerardi, 2003).  

By making use of modern molecular techniques, which complement traditional 

cultivation-dependant, and microscopic identification techniques involving non-destructive 

in situ analysis, a better understanding of the microbial ecology  was derived (Merkel et al., 

1999). 

 

Introduction to the UASB system 

 

For the treatment of high strength wastewaters, it is beneficial to undergo a biological 

treatment such as using an UASB reactor. Lettinga and his colleagues were responsible 

for the design and application of the UASB system in the late 1970’s (Tawfik et al., 2005). 

Ever since the invention of the UASB system, it has gained extensive popularity and has 

been successfully applied in the brewery, distillery, food as well as paper and pulp industry 

(Laubscher et al., 2001; Loperena et al., 2006; El-Gohary et al., 2009; Stoica et al., 2009). 

This particular system is categorised as a high-rate anaerobic wastewater treatment 

system and is said to be one of the most preferred designs for the treatment of distillery 

wastewaters globally (Pant & Aldoleya, 2007; Mohana et al., 2009). The key feature to the 

success of the UASB is highly dependent on the microbial consortium that is established 

as a granular bed (Khademi et al., 2009). The granules are characteristically highly 

flocculated and well settled. 

 

Operational design and mechanism of action 

 

The UASB consists of two principle components, a sludge-bed and a 3-phase separator 

(Fig. 4). The sludge bed consists of bacterial granules, which are formed and remain intact 

owing to the up-flow velocity in the UASB reactor (Britz et al., 1999). The 3-phase 

separator separates the gas and liquid portion from the solids. This essentially allows the 

gas and liquid phases to leave the system separately (Colussi et al., 2009). 

 When the untreated influent wastewater enters the reactor, it flows in an upward 

motion (Wood et al., 2009) through the sludge bed thus causing gentle agitation and 

mixing of the granules, in effect allowing exposure to continual nutrient supply (Britz et al., 

1999). The sludge bed is responsible for 80 - 90% of the degradation of the influent 
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substrate. During the hydraulic turbulence, sludge particles and microbial biomass 

together with biogas production, form a suspension referred to as a “sludge blanket”. The 

solids are separated from the gas phase via the 3-phase separator. To allow collection of 

gas, a 3-phase internal settler is directed towards a gas outlet (Rajeshwari et al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic representation of a simple UASB reactor (Lettinga et al., 2001). 

 

The advantages and disadvantages in the application of an UASB reactor 

 

The UASB reactor is employed by many industries on a global scale owing to its ability to 

treat high strength wastewaters that are concentrated in organic pollutants, its high 

operational efficiency and cost-effective advantage (Chinnaraj & Rao, 2006; Carrère et al., 

2009). Anaerobic treatment has advantages over that of aerobic treatment because a 

large portion (>60%) of the organic fraction is converted to sludge during aerobic treatment 

whereas during anaerobic treatment, the organic fraction (<10%) in wastewater is mainly 
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converted to CO2 and CH4. This type of system produces the highest amount of 

biomethane, which is a valuable source of energy (Els et al., 2005; Pant & Adholeya, 

2007). The accumulation of sludge during aerobic treatment also gives rise to increased 

waste disposal costs.  Other problems associated with aerobic treatment are the 

generation of foul odours and high operating costs (Ross, 1989) owing to the oxygen rich  

aeration process. 

The high-rate anaerobic reactor has the following advantages as mentioned by 

Lyberatos & Skiadas (1999). They operate effectively at high solids retention times (SRT) 

and very low hydraulic retention times (HRT). The HRT of UASB’s and other high-rate 

anaerobic digesters are hours rather than days (Wood et al., 2009). The development of 

an anaerobic system that allows for the separation of HRT from SRT, allows slower 

growing anaerobic bacteria to remain within the reactor independently of the flow of 

wastewater (Akunna & Clark, 2000). There is no complexity in the design and they are 

characterised by efficient mass and heat transfer. The production of biogas secures good 

mixing characteristics and the UASB system is robust to disturbances. Apart from the 

above-mentioned, a UASB system offers useful energy recovery (Pant & Adholeya, 2007) 

from the biogas produced instead of energy consumption, and can practically be applied 

anywhere on various scales. Vast amounts of land are required for treatment options such 

as anaerobic lagooning and constructed wetlands as opposed to an UASB system where 

less land is required for system construction (Mai, 2006).  

 

Treatment of food processing wastewaters 

 

Many studies have been conducted on lipid biodegradation within an UASB reactor 

(Cammarota & Freire, 2006; Cavaleiro et al., 2007; Jeganathan et al., 2007; Cavaleiro et 

al., 2008). Grain whisky production generates a high-strength wastewater concentrated in 

fats, oils and greases (FOG) and therefore contributes to a high COD. Anaerobic digestion 

via UASB has therefore been regarded as a more feasible and most preferred treatment 

option for GDWW.  

Amongst other constituents within food products, fats and oils form an integral part. 

The positioning and attachment of a fatty acid to the glycerol backbone, its degree of 

unsaturation and the length of the fatty acid chain greatly influence the sensory and 

nutritional value as well as the physical properties of the triglyceride (Sharma et al., 2001). 

The beer and distillery industries, along with slaughterhouses and dairy industries, edible 

oil and fat refineries are fundamental contributors to lipid wastewater production (Li et al., 
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2002). A considerable amount of fatty waste is produced by numerous agro-industries, 

with particular emphasis on the food industry (Battimelli et al., 2009).  

 

Meat Industry 

During a study, the biodegradation of slaughterhouse by-products, mesophylic operational 

conditions was seen as more feasible than thermophilic conditions. Results showed that 

co-digestion of 5% pork by-products blended with pig manure at 37°C showed a 40% 

higher methane production compared to digestion of solely manure (Hejnfelt & Angelidaki, 

2009). 

The slaughterhouses and meat packing industries produce a considerable amount 

of lipid-rich waste. Various processing steps give rise to the generation of abattoir 

wastewater such as the cleansing of animals, bleeding-out, skinning, cleaning of 

slaughtered animals as well as cleaning rooms. The effluent generated contains high 

amounts of biodegradable organic matter, which includes soluble and insoluble fractions. 

Colloidal and suspended matter in the form of cellulose, fat and protein forms part of the 

insoluble fraction (Gannoun et al., 2009). A significant problem is caused by the high-

suspended solid content within abattoir wastewater. This problem slows down the 

degradation rate and may also result in scum layer production (Hejnfelt & Angelidaki, 

2009). This lipid waste causes flotation foams containing 60 – 65% lipid on a dry basis (Li 

et al., 2002). The total fat content within raw abattoir wastewater ranges from between 40 

– 410 mg.L-1 (Gannoun et al., 2009). 

 

Dairy Industry 

Although the dairy industry is considered to be an important economic sector, it poses a 

high pollution potential when the recovery of proteins, lipids and lactose is not performed 

(Leal et al., 2006). The major components of milk-fat include palmitic, oleic, myristic and 

stearic acids. These LCFA are produced under anaerobic conditions when fats and oils 

are hydrolysed and cause potential inhibition of microbial activities (Lalman & Bagley, 

2000). A study conducted by Leal et al. (2006) stated that oleic acid concentrations above 

30 mg.L-1 brought about inhibition to acetate degradation; however, stearic acid up to a 

concentration of 100 mg.L-1 did not inhibit acetoclastic methanogenesis. During cheese 

manufacturing, high quantities of whey and milk permeate present a foremost disposal 

problem and consist of <2.5 g.L-1 fat (Wang et al., 2009). 
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Olive oil mill industry 

Olive oil extraction is a mechanical process that produces a dark-coloured pigment, 

referred to as olive-mill wastewater (Brozzoli et al., 2009). The disposal of wastewater 

derived from olive oil extraction is one major environmental problem (Brozolli et al., 2009; 

Koutrouli et al., 2009). A study conducted by Koutrouli et al. (2009), proved that a two-

stage AD of olive pulp is a reliable, stable and effective process for energy recovery in 

terms of methane and hydrogen production. In a study conducted on the fats and oils 

contained in palm oil wastewater, removal efficiencies of up to 80% COD and fats were 

achieved using bacteria isolated from soil rich in fats and oils (Bhumibhamon et al., 2002). 

In one study, the biodegradation of olive oil and the treatment of lipid-rich wool scouring 

wastewater under thermophilic conditions were investigated using an isolated strain, 

Bacillus thermoleovorans IHI-91. Olive oil was used as a model substrate, whereby more 

than 90% thereof was reduced in a time period of 2 hours. This strain was subjected to 

wool-scouring wastewater in a continuously operated laboratory-scale stirred-tank reactor. 

Although lipid degradation rates were high with up to 500 mg.L-1.h-1, removal, was only 20-

25% at a residence time of 10h. Severe inhibition took place when the concentration of 

olive oil was increased to 4.0 g.L-1 (Becker et al., 1999). 

 

Lipid degradation during anaerobic digestion  

The conversion of lipids to biogas has been considered to be very difficult. The lipids can 

be anaerobically hydrolysed by extracellular lipases secreted by microbial species. This 

hydrolysis step releases LCFA and glycerol into the sludge mixture. Glycerol is easily 

biodegraded to form VFA (Battimelli et al., 2009; Li et al., 2002) as opposed to LCFA, 

which is initially adsorbed to the surface of the microorganisms before being biodegraded 

via β-oxidation. The penultimate step is the production of acetate and hydrogen followed 

by their conversion to biogas, of which the main constituents are methane and carbon 

dioxide (Fig. 5). Lipid biodegradation is initiated and maintained by a symbiotic interaction 

between two metabolically different types of bacteria, which are highly dependent on each 

other for degradation of a specific substrate (Amani et al., 2010). There exists a syntrophic 

relationship between the fatty-acid oxidizing microbes, hydrogen-consuming 

methanogens, and acetate-consuming methanogens and without this complex food web, 

biodegradation of particulate or colloidal wastes cannot effectively occur (Sekiguchi et al., 

2001). 

Lipids are classified as substances of biological origin that are soluble in organic 

solvents such as chloroform and methanol, but only sparingly if at all soluble in water. 
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Triacylglycerols are fats and oils most abundant in plants and animals. The latter 

mentioned class of lipids are a highly efficient form of energy storage. This can simply be 

explained by the fact that fats are less oxidised than are carbohydrates or proteins and for 

this reason yield significantly more energy upon oxidation (Voet & Voet, 2004). Moreover, 

the oxidation metabolism of fats yields twice the energy of an equal amount of dry 

carbohydrate or protein (Table 7). According to Mendes et al. (2006), lipid hydrolysis can 

be considered as a limiting step for the biogas generation and organic removal during the 

AD process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic representation of lipid biodegradation and the rate limiting step 

namely, β-oxidation. 
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Table 7. Metabolic energy values for carbohydrates, fats and proteins expressed in 

kilojoules per gram of dry weight (Voet & Voet, 2004) 

Constituent ∆H (kJ.g-1  dry weight)  

Carbohydrate 16 

Fat 37 

Protein 17 

 

In order to exemplify an example of a syntrophic interaction between H2-producing 

acetogenic bacteria and the H2-consuming methanogens, the stoichiometry is shown in 

Table 8.  

As can be derived from Table 8, reactions A and B are thermodynamically 

unfavourable. These reactions therefore require the utilisation of H2 (SUM A + C and SUM 

B + C) by methanogenic bacteria for the reaction to proceed. 

 

Table 8. Proposed stoichiometric reactions involved in the catabolism of propionate and   

butyrate by H2-producing acetogenic bacteria in pure culture and in syntrophic 

association with H2-utilising methanogens (Bryant, 1979) 

The syntrophic interaction thus is essential for the growth of methanogenic bacteria and 

the maintenance and catabolism of substrate in order to maintain a very low H2 partial 

pressure (Bryant, 1979; Schink, 1997). The thermodynamics regarding anaerobic 

metabolism and wastewater anaerobic fundamentals are well documented in literature 

(Parkin & Owen, 1986; Schink, 1997; Jackson & McInerney, 2002; Kotsyurbenko, 2005). 

Reaction Stoichiometry ∆G°′  

(kJ.mol-1) 

A. Propionate-catabolising 

acetogenic bacterium 

CH3CH2COO- + 3H2O ↔ CH3COO- + HCO3
- 

+ H+ + 3H2 

+76 

B. Butyrate-catabolising 

acetogenic bacterium 

CH3CH2CH2COO- + 2H2O ↔ 2CH3COO- + 

H+ + 2H2 

+48 

C.H2-utilising methanogenic 

bacterium 

HC3O
- + 4H2 + H+ ↔ CH4 + 3H2O -135 

SUM A + C. Syntrophic 

association 

4CH3CH2COO- + 3H2O ↔ 4CH3COO- + 

HCO3
- + H+ + 3CH4 

-102 

SUM B + C. Syntrophic 

association 

2CH3CH2CH2COO- + HCO3
- + H2O↔ 

4CH3COO- + CH4 + H+ 

-39 

Stellenbosch University  https://scholar.sun.ac.za



34 

 

Alvarez (2003) gives a more detailed description of some key AD reactions. It has been 

hypothesised that the conversion of more complex compounds, present more difficult 

degradation problems, since more intricate biological reactions are required to allow 

substrate conversion to methane (Azbar et al., 2001).  

 

Problems and positive aspects of LCFA degradation  

Linoleic (C18:2), oleic (C18:1) and stearic acids (C18:0) are among the most abundant 

and common LCFAs in vegetable oils (Lalman & Bagley, 2000) and can therefore cause 

significant negative bioreactor operational inefficiency if not treated correctly. Long chain 

fatty acids resulting from the hydrolysis of fats in lipid-containing wastewaters pose a 

problem in that they cause inhibition and sludge flotation and washout (Salvador, 2007). 

Other problems, which result in low overall performance of the treatment system, are 

unpleasant odours, continual foaming, blockages in grease taps and partial and/or low 

degradation of oil and grease. The persistent accumulation of fats and oils essentially 

causes severe problems in piping systems, pumping stations as well as in wastewater 

treatment plants (Mahlobo, 2008). This problem is primarily linked to the accumulation of 

LCFA on the microbial consortium by mechanisms of adsorption, precipitation and 

entrapment (Cavaleiro et al., 2007).  

Literature also mentions that wastewater containing a considerable amount of fat, 

such as dairy wastewater, makes the AD process complicated leading to scum layer 

formation at the surface of the reactor. The adsorption of these fats to the microbial 

population also hinders mass transfer, which prevents the effective assimilation of 

nutrients by the microbial population thus decreasing the methanogenic activity (Cirne et 

al., 2007; Cavaleiro et al., 2008). A previous study showed that sludge encapsulated with 

oleic acid exhibited a lower methane yield after a lag phase of about 50 hours as opposed 

to an unencapsulated sludge that showed a significant methane yield. This suggests, that 

the intimate contact with LCFA accumulated biomass creates a barrier that hinders the 

transfer of substrates and products such as biogas, hence the lower methane yield of the 

oleic-encapsulated biomass (Pereira et al., 2005). Another study conducted research on 

the anaerobic treatment of olive oil mill effluent, using a two-reactor system with partial 

phase separation. The study proved that no stearic acid was detected, thus indicating that 

the saturation of LCFAs (oleic to stearic) was the rate-limiting step in the first part of beta-

oxidation (stearic to palmitic) (Beccari et al., 1998). The conclusion was also drawn that 

saturated fatty acids (SFAs) are less inhibitory than unsaturated LCFAs as the formation of 
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palmitic acid from oleic acid to a greater extent, prevented lipid inhibition on methane 

production in the second reactor. (Beccari et al., 1998). 

Figure 6 below depicts the three main ways by which LCFA accumulation can occur 

either by means of, (a) precipitation via ions during the hydrolysis step, (b) adsorption of 

LCFAs to the microbial strain or (c) entrapment of LCFAs to the sludge. To investigate the 

adsorption of LCFAs to the granular sludge in an UASB reactor, a study was conducted to 

characterise the biosorption of LCFAs to active and inactive granules (Hwu et al., 1998). 

The mixture of LCFAs showed faster adsorption to granules than just a single fatty acid 

such as oleic acid. This study also concluded that sludge flotation resulted from the LCFA 

loading rate rather than the concentration. Therefore the higher the loading rate, the more 

prominent flotation was (Hwu et al., 1998). To investigate the process of LCFA 

precipitation, previous observations showed that palmitic acid formed precipitated flocs 

between sludge. However, when oleic acid was fed to the system, there was a conversion 

with the palmitic acid and the accumulated palmitic acid adsorbed onto the sludge or 

entrapped as flocculent aggregates (Pereira et al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Schematic representation of three main mechanisms of biomass-associated 

LCFA accumulation: (a) precipitation, (b) adsorption and (c) entrapment 

(Pereira et al., 2005). 

 

Aside from the negative reactor problems caused by FOG components, there are 

also potential positive aspects regarding FOG. In order to exemplify the possibility of LCFA 

as an attractive source for methane production is as follows. Consider the following 

equation below for the complete oxidation of 1 g glucose.   

 

(a) 

(b) 

(c) 
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C6H12O6 + 6O2 → 6CO2 + 6H2O 

       180        192   

        

The COD of glucose is 192 g O2/180 g which yields 1.067 g COD. At standard 

temperature and pressure (STP) 1 g COD produces 350 mL CH4, while at 35°C = 395 mL 

CH4. Therefore 1.067 g COD at 35°C theoretically yields 422 mL CH4. The equation for the 

complete oxidation of 1 g of palmitic acid (saturated LCFA, C16:0) is shown below. 

 

CH3(CH2)14COOH + 23O2 → 16H2O + 16CO2 

         256       736 

 

The COD for palmitic acid is calculated in a similar manner as for glucose, thus 736 g 

O2/256 g palmitic acid yields 2.88 g COD. Therefore the COD at 35°C for palmitic acid 

theoretically yields 1133.65 mL CH4. 

Lipids are therefore attractive substrates for anaerobic co-digestion and digestion 

owing to the higher methane yield obtained when compared to carbohydrates (Cirne et al., 

2007). Operational problems however restrict the potential for increased methane yield 

from lipid-rich wastewater. Inhibition by LCFA may complicate the degradation process, 

but adaptation may also occur. This is possible if a well-developed process is functional to 

readily degrade feeds with a lipid-rich content. This is possible because efficient LCFA 

degradation by an acclimatised culture will be able to remove LCFA as fast as they are 

released during the hydrolysis of lipids. However, importantly, acclimatisation is necessary 

to avoid high transient concentrations of LCFA (Batstone et al., 2002). Alternative methods 

such as pre-treatment steps and physical methods before biodigestion have been 

implemented to try and overcome these operational limitations. The use of enzymes such 

as lipases facilitates the hydrolysis of triacylglycerols to LCFAs and glycerol. Previous 

studies were done to demonstrate the efficacy of enzymes on oily wastewater (Mendes et 

al., 2006; Bochmann et al., 2007; Jeganathan et al., 2007). Jeganathan et al. (2007) 

concluded that the use of immobilised lipase increased the biodegradability of high 

strength oily wastewater from 45 to 65%. Mendes et al. (2006) showed that the use of a 

low-cost commercially available lipase preparation in pre-treated assays had a higher 

reaction rate than that of the crude wastewater assays. This was confirmed by the 

increased biogas production and the higher COD and colour removal. 
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Bioaugmentation as Treatment Technology 

 

Bioaugmentation is defined as the process which attempts to improve the efficiency of 

treatment through increasing the diversity and/or activity via incorporation of either 

selected naturally occurring or genetically modified microorganisms to the wastewater 

treatment system (Vogel, 1996; Romero & Ferrer, 1999; Pepper et al., 2002; Perelo, 

2010). The microorganisms are isolated from special sites where natural selection has 

already favoured microbes suited to unfavourable conditions (Gray, 2010). A key factor 

associated with the effective operation of a wastewater treatment plant, is dependent on 

the microorganisms present. Many treatment plants cannot always respond rapidly to a 

failing wastewater treatment system in order to produce the desired effluent characteristics 

(Romero & Ferrer, 1999). 

 When a newly isolated microbial strain is introduced to a natural consortium, a 

commensal or mutualistic relationship should be established and thus bioaugmentation is 

required to achieve this relationship. This relationship can be achieved by degradation of 

substances by the newly introduced strain that would otherwise be toxic to the consortium 

(Lanthier et al., 2002). A study evaluated the effect of bioaugmenting the AD of biosolids 

with a patent-pending commercial product (Duran et al., 2006). The product contained 

selected strains of bacteria from the genera Bacillus, Pseudomonas, and Actinomycetes 

along with ancillary organic compounds. The study proved that bioaugmenting with the 

commercial product improved methanogenesis and odour control under the study 

conditions (Duran et al., 2006). In another study, the biodegradation potential of oily sludge 

by pure and mixed bacterial cultures was investigated (Cerqueira et al., 2011). It was 

found that bacterial consortium showed an oily sludge degradation capacity, reducing 

90.7% of the aliphatic fraction and 51.8% of the aromatic fraction, as well as biosurfactant 

production capacity, achieving 39.4% reduction of surface tension of the culture medium 

and an emulsifying activity of 55.1% (Cerqueira et al., 2011). Transiently overloaded 

digesters were bioaugmented with a propionate-degrading enrichment culture in an effort 

to decrease recovery time (Tale et al., 2011). Bioaugmenting with the propionate-

degrading culture was a success in that there was a decrease in the recovery time 

following an organic overload. Biogas and methane production rates returned to pre-upset 

values more quickly when bioaugmentation was enforced. One should always be aware of 

problems that could arise during bioaugmentation. These include ensuring the survival of 

the organism as well as its activity is essential. Inhibition can be as a result of redox, pH, 

toxic contaminates or absence of key substrates (Perelo, 2010). 
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Some key factors for the application of bioaugmentation are (Gray, 2010): 

 

 Improving removal efficiencies with regard to biological oxygen demand (BOD) and 

chemical oxygen demand; 

 Improving the removal of recalcitrant or other substances which may cause 

operational problems; 

 Restarting or commission of treatment plants; 

 Reducing instability during process which is often caused by fluctuations in organic 

loading; 

 Reduce the accumulation of scum and sludge from aerobic and anaerobic digesters 

to ensure stabilisation. 

 

Several reasons have been suggested why bioaugmentation cannot occur effectively in 

nature. Some of the reasons are; substrate concentration may be too low to support 

growth (Goldstein et al., 1985), too few organisms may be present to have a significant 

effect on substrate change (McClure et al., 1991) and competition amongst organisms 

causes growth inhibition (Goldstein et al., 1985).  

 

Biogas as Renewable Energy Source 

 

Biogas production is the final product of AD of wastewater. Of great importance and 

economic value is the methane produced. Methane emissions into the atmosphere has a 

direct negative impact as the methane global warming potential can be evaluated to be 

that of a 100 year time span which is 25 times greater than that of carbon dioxide. It can 

further be emphasised that 1 kg of methane is equivalent to 25 kg of carbon dioxide 

(Calabrò, 2009). The methane fermentation process has been adopted globally. It can be 

used either alone or in combination with other processes for the stabilisation and disposal 

of biomass wastes which includes domestic, municipal, agricultural and industrial wastes 

and wastewaters. The amount of organic material, the BOD as well as pathogenic 

organisms present in the wastes is reduced during digestion (Colussi et al., 2009). 

Methane recovered can thus be used as a renewable source of energy (Lyberatos & 

Skiadas, 1999; Battimelli et al., 2009; Luste et al., 2009). Production of methane during 

fermentation has been opted for as an energy-saving wastewater treatment method 

specifically owing to the energy and oil crisis.  
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Previous studies have shown that there is a significant increase in methane yield, 

from 25 to 50 m3 biogas/m3 cattle waste, upon the addition of fish oil (for a total 

concentration of 5%) to a manure digester (Cirne et al., 2007). It is therefore advantageous 

to apply methanisation as an alternative to waste incineration as it leads to the reduction of 

organic matter content as well as the production of biogas that primarily consists of 

methane. One can also say that not only is the removal of FOG from wastewater 

beneficial, but the addition thereof can have advantages. According to Battimelli et al. 

(2009), direct methanisation of pure fats is a complex process, solely because fats are 

insoluble in water and biodegradability is slow. Amongst other positive aspects regarding 

methane production mentioned earlier, the hydrolysis step reduces the coagulation of the 

lipid spheres, thereby maintaining a large lipid-water interface (Cirne et al., 2007).   

In a study conducted for the AD of lipid-rich waste, there was a methane recovery of 

93% for 31% lipid (w/w COD basis). This was achieved by increasing the concentration of 

lipid from 5% to 47% (w/w) (Cirne et al., 2007).  Strong inhibition by the addition of lipase 

was observed. It was said that although the enzyme enhanced hydrolysis, there was a 

consequent accumulation of intermediates that led to the inhibition of degradation steps. 

The major obstacle to methane production was the long chain fatty acids.  

The benefit of adding lipids to a digester to enhance the methane production is a 

promising approach which should be better explored. It is therefore imperative to continue 

to advance the knowledge in the degradation process of these wastes because food 

processing wastewater industries are generating more waste rich in fatty material owing to 

the growing needs of the population. All this fatty waste produced therefore has to be 

disposed of in an environmentally friendly manner and a feasible treatment method would 

be waste-to-energy treatment such as AD. Not only would the waste entering our landfill or 

water streams be reduced, but also the amount of methane released into the atmosphere 

from sewage streams and landfill sites.  

There exists a considerable potential in biogas systems at a regional level owing to 

its positive economic, environmental and social impacts. Regional energy systems allow 

for individuals, organisations and communities to establish secure, local energy supply 

(Murto et al., 2007). Business opportunities are generated together with the biogas 

establishment (Murto et al., 2007). 

 

Conclusions 

 

The Distillery industry uses a substantial amount of water to operate various industrial 
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processes. Distillery production is said to increase in the years to follow as the demand for 

alcohol beverages is increasing (Bester, 2009). Subsequently this growth in production 

would also increase the usage of potable water leading to a vast amount of effluent water 

that is generated. This is regarded as hazardous to the environment owing to the very high 

COD content (Heredia et al., 2005). These industries have to adhere to strict discharge 

standards and therefore must have the wastewater treated before being discharged into 

the environment (Surujlal et al., 2004). To prevent damage to the natural ecosystems and 

avoid penalties being issued to the alcohol distillery industries via legislative organisations 

(Republic of South Africa, 1998a; Republic of South Africa, 1998b), various wastewater 

treatment technologies have been designed, considered and implemented  (Mohana et al., 

2009).  

Grain whisky production generates effluent water that is high in FOG. It has been 

well documented that FOG and LCFA can cause serious problems during wastewater 

treatment processes (Mendes et al., 2006; Salvador, 2007). These problematic situations 

includes amongst others, mass transfer deficiency of microorganisms in digesters, leading 

to a decrease in biodegradation efficiency, sludge flotation and subsequent biomass 

washout (Pereira et al., 2005). UASB has also been regarded as a more feasible and most 

preferred treatment option for high strength wastewaters such as those rich in FOG.  

Anaerobic digestion shows good reliability for winery wastewater as it has shown to 

have a removal yield of 90 – 95% COD (Moletta, 2005). It is considered to be energy-

saving, minimises sludge disposal costs and known to be a state-of-the-art technology 

(Brito et al., 1997; Ramirez et al., 2009).  

The microbial population in a water treatment system has an important function. 

Therefore, by isolating and incorporating lipase producing microbial species into an UASB 

system will be advantageous for the performance of the system fed with lipid-rich 

wastewater. Lipases that are commercially available are also expensive, so culturing of 

lipid degrading microbial species on a laboratory scale would also be less costly. These 

lipolytic species can be employed either in a pre-treatment or augmented into the 

anaerobic digesters, to increase the methane yield. This could provide a valuable 

renewable energy source to offset the rising electricity prices, while also contributing to 

cleaner wastewater discharges and the possibility of water re-use. The knowledge gained 

using the techniques will help to identify a diverse microbial population required to operate 

efficiently in an anaerobic system treating a specific substrate type. 

In order to identify unique microbial populations specific for a substrate type, more 

research has to be focused on the individual bacterial strains with emphasis on lipase 
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production and specificity for substrate. Although lipid-degrading microorganisms have 

already been successfully acclimatised to wastewater types, it does not necessarily mean 

that those same microorganisms will behave similarly to wastewater of a different 

composition.  The choice of a bacterial inoculum therefore becomes increasingly important 

when treating a specific wastewater type as internal and external environmental conditions 

will have an effect on the performance of the biological treatment system. 
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CHAPTER 3 

 

ISOLATION, CHARACTERISATION AND FATS, OILS AND GREASE 

BIODEGRADABILITY BY BACTERIAL ISOLATES FROM A GRAIN DISTILLERY 

ENVIRONMENT 

Summary 

 

Four isolates had the ability to utilise the fats present on the solid media and were 

morphologically, phenotypically and biochemically characterised as being Pseudomonas 

fluorescens, Pseudomonas luteola, Stenotrophomonas maltophilia, and Bacillus 

licheniformis. These bacterial strains were tested for the ability to grow and utilise 

tributyrin, cotton seed oil (CSO) as well as fats, oil and grease (FOG) present in Grain 

Distillery Wastewater (GDWW). The isolates were also subjected to three temperature 

ranges namely, optimum growth temperature (50°C and 37°C), optimum enzyme activity 

temperature (25°C, 30°C and 37°C) and mesophylic temperature range (37°C). Lipolysis 

was prominent at all temperature ranges for each respective isolate except for B. 

licheniformis that had no lipolytic activity at 50°C, when using tributyrin as lipid source on 

Spirit Blue Agar (SBA). Pseudomonas fluorescens showed a decrease in halo diameter as 

the incubation temperature increased from 25°C to 37°C. B. licheniformis grown on 

Victoria Blue B (VBB) together with CSO as lipid substrate, formed deep blue colonies 

against a blue background at its optimum enzyme temperature of 37°C which is positive 

for lipolysis. When GDWW was utilised as lipid source, growth was present for all isolates 

at the predetermined temperature ranges; however there was no indication of lipolysis 

although colonies formed were dark blue. It could be said that using GDWW as lipid 

source does not form a turbid fat-emulsion agar and that the effectiveness of lipolytic 

visual observation will thus depend on a clear zone forming against a turbid background. 

The visual observation of lipid clearing on agar plates does not establish which fatty acids 

are biodegraded in the grain whisky wastewater for growth on VBB (GDWW) plates. For 

this study it was therefore concluded that when scanning for lipolytic activity, it is important 

to use SBA (Tributyrin) and VBB (CSO) in conjunction with VBB (GDWW) because VBB 

(GDWW) cannot distinctively give conclusive results for lipolytic activity on solid media.  
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Introduction 

 

It has been clearly stated through research that wastewaters of various food industries are 

complex in composition and thus highly polluted (Ross, 1989; Melamane et al., 2007; 

Hejnfelt & Angelidaki, 2009; Liang et al., 2009; Wang et al., 2009). Distillery wastewater is 

characterised as being acidic (pH of 3 – 4), having a high chemical oxygen demand (COD) 

of 10 000 – 50 000 mg.L-1 and low nutrient capacity (Heredia et al., 2005). Grain distillery 

wastewater (GDWW) in particular has a COD of 25 000 – 30 000 mg.L-1 which can cause 

operational problems during treatment, especially with an increased FOG content 

(Laubscher et al., 2001). One problem observed during GDWW treatment was scum layer 

accumulation. This was a direct result of GDWW and not distillery wastewaters in general 

(Laubscher et al., 2001). For this reason, treatment through various methods, of the 

effluent generated is imperative to ensure minimal water pollution (Brito et al., 1997; Chan 

et al., 2009; Fermoso et al., 2009).   

Biological wastewater treatment, whether aerobic (Loperena et al., 2006), anaerobic 

(Gao et al., 2007) or a combination (Sangave et al., 2007) thereof has been considered as 

a more feasible application when treating high or low strength industrial wastewaters, as 

opposed to chemical pre-treatments such as ozonation that often requires expensive 

equipment. The use of enzymes is advantageous, but requires economical considerations 

in order to be applied on an industrial scale (Pant & Adholeya, 2007). Anaerobic digestion 

for instance is cost effective and energy saving, as the biodegradation of wastewater can 

lead to generation of biogas which can be utilised as a renewable energy source. Aerobic 

systems can also be beneficial when combined with chemical treatments (Yoshida et al., 

2009; Iaconi et al., 2010). The integration of anaerobic-aerobic bioreactors with a stacked 

configuration in treating high strength wastewaters is considered beneficial because of low 

costs involved, minimal space requirements and high COD removal efficiencies in excess 

of 83% (Chan et al., 2009).  

Of cardinal importance is the microbial consortium.  Extensive research has been 

applied to try and optimise the microbial community in systems that treat fatty 

wastewaters. The reason for this is that there have been many problems associated with 

their biological treatment including long chain fatty acid (LCFA) adsorption to the surface of 

microbial granules which subsequently leads to mass transfer problems, sludge flotation 

and washout of biomass and precipitation of fats by divalent ions (Pereira et al., 2005; 

Cavaleiro et al., 2007; Cirne et al., 2007). Loperena et al. (2006) compared the aerobic fat 

biodegradation potential and growth characteristics of commercial (commercially mixed 
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culture of microbes designed to biodegrade FOG of plant and animal source) and native 

(activated sludge from a pond treating dairy wastewater) inoculums. Both inocula showed 

a removal efficiency of 78% for milk fat. It was concluded that the selection of an inoculum 

or microbial population specifically for bioaugmentation of wastewaters being treated in 

bioreactors, requires knowledge on their biodegradation capabilities and tolerance to 

various other compounds present (Loperena et al., 2006).  

The presence of FOG in wastewaters therefore may lead to many detrimental 

issues during the treatment of GDWW. Numerous microorganisms that have specific 

lipase activity have been isolated and used to treat wastewater containing FOG 

(Shigematsu et al., 2006; Matsuoka et al., 2009). An example of this was the performance 

of a mesophylic upflow anaerobic sludge blanket reactor (UASB) treating distillery grains 

wastewater and was evaluated as having COD removal efficiencies of up to 97.3% (Gao et 

al., 2007).  

During a study, ozonation was applied as a post and pre-aerobic step for the 

treatment of distillery wastewater. The combined pretreatment of the effluent resulted in 

the enhancement of the subsequent biological oxidation step. The combined process 

achieved about 79% COD reduction compared to that of a non-ozonated sample where 

the system achieved a 34.9% COD reduction (Sangave et al., 2007). In a separate study 

the impact of GDWW on UASB granules was monitored and it was found that the GDWW 

lipid content was between 374 to 479 mg.L-1 (Gie, 2007). The same study proved that 

granules treating wine distillery wastewater (WDWW) became encapsulated in a lipid layer 

after 24 days of exposure to diluted GDWW (COD = 4 000 mg.L-1). From the above 

mentioned studies done, it can be deduced that various treatment methods can be used 

that contribute to the efficiency of a wastewater treatment (WWT) process, specifically 

GDWW as mentioned previously.  

The objective of this study was to isolate lipid degrading bacteria from a grain 

distillery industry environment that anaerobically treats GDWW. These isolates were 

purified and then characterised biochemically in terms of their ability to degrade various fat 

substrates. Fat substrates were simple and complex in composition. For the initial isolation 

step, a triglyceride (tributyrin) was used to identify which microbes showed 

lipolytic/esterase activity on the solid media. The isolates that showed lipolytic/esterase 

activity was then also tested for their ability to utilise fats (cotton seed oil and GDWW 

FOG) that were more complex in composition in order to observe which isolates exhibit 

lipolytic activity therefore utilising primarily longer chain fatty acids (LCFA) on solid media.  
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Materials and methods 

 

Isolation of lipolytic bacteria 

Lipid degrading bacteria were isolated from soil obtained from a local distillery industry 

located in Wellington, South Africa. The soil source was a manure heap situated 

approximately 10 meters away from the GDWW anaerobic treatment facility. The reason 

for sampling this site was because the manure was collected from around the WWT facility 

where leaching of soil occurred via GDWW reactor piping. Because environmental stress 

may enhance mutation rates (Morgan, 2005), there is a possibility that microorganisms 

sampled from the manure heap may have adapted to the conditions of the GDWW. This 

may occur owing to the leaching thereof into the heap. If this adaption process did occur, 

there may be lipolytic species present that could be of aid to the WWT for GDWW rich in 

FOG owing to the constant leaching of GDWW to the soil. Furthermore, sampling from the 

manure heap would yield more diversity with respect to microbial populations because of 

decaying plant and animal excreta present. 

A serial dilution was prepared by using 2 g of soil sample in sterile saline solution 

(0.86% NaCl) and thoroughly mixed. 100 μL from each dilution was then applied for both 

spread and pour-plates using Difco TM Spirit Blue Agar. The plates were incubated at 35°C 

for 24 to 48 hours. 

 

Screening for lipolytic activity 

Three types of media namely Difco TM Spirit Blue Agar with Tributyrin (SBA-Tri), Victoria 

Blue B Agar with Cotton Seed Oil (VBB-CSO) and Victoria Blue B Agar with Grain 

Distillery Wastewater (VBB-GDWW), were prepared for the isolation and purification of 

lipid degrading bacteria.  Spirit Blue and Victoria Blue dyes served as indicators of lipolysis 

while the tributyrin, cotton seed oil (CSO) and GDWW are utilised as main source of lipids. 

The composition (per litre) for SBA is: 10 g of pancreatic digest of casein; 5 g yeast 

extract; 20 g agar; and 0.15 g Spirit Blue. Once the SBA had been autoclaved, it was 

allowed to cool to 40° - 50°C before aseptically adding 30 mL of Difco TM Tributyrin (3% 

lipase reagent).  

The composition of agar together with the respective lipid sources was prepared 

according to a modified Davis & Ewing (1964) method (Table 1). The lipid substrate for 

VBB-CSO agar plates was prepared by mixing 1 mL of Tween 80 in 400 mL warm distilled 

water, after which 100 mL of CSO was added. This mixture was agitated vigorously to 

emulsify. The VBB-GDWW agar was prepared in the same manner as VBB-CSO agar, 
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except that the lipid substrate used was GDWW. It was not necessary to mix the GDWW 

with Tween 80 in 400 mL warm water as the GDWW was readily dispersed throughout the 

agar medium.  

The reason for the choice of the different agar and lipid source combinations was to 

establish which combination would show the best visual result in terms of lipolytic activity 

on solid media. Using CSO and tributyrin as lipid sources are known to yield visual 

observation for esterase/lipolytic activity. FOG in GDWW will then be used as a fat 

substrate as well and then compared to the visual results obtained from the latter fat 

substrates to establish whether it may also be used as a visual indication of 

esterase/lipolytic activity on solid media.  

 

Table 1. Composition of the different agar media and lipid substrates 

 

Colonies that were surrounded by a clear zone on SBA-Tri or those that formed a 

dark blue precipitate on VBB-CSO were picked and purified on SBA containing Difco TM 

Lipase Reagent as lipid source. Pure cultures were then transferred to 10 mL Nutrient 

Broth (NB) and incubated at 35°C for 24 h. The composition (per litre) of the NB was: 1 g 

meat extract; 2 g yeast extract; 5 g peptone; and 8 g NaCl. Purified strains were then 

frozen at -80°C in a storage medium (500 µL of 80 % sterile glycerol and 500 µL culture 

suspension). An overview of the purification and preliminary characterisation is shown in 

Figure 1. 

 

Strain characterisation 

The isolates with possible lipolytic activity were characterised in terms of their catalase and 

oxidase reactions, Gram stain and morphology, oxidative/fermentative reaction according 

SBA-Tri (1 000 mL) VBB-CSO (750 mL) VBB-GDWW (750 mL) 

10 g pancreatic digest of 

casein 

7.5 g peptone 7.5 g peptone 

5 g yeast extract 2.25 g yeast extract 2.25 g yeast extract 

20 g agar 3.75 sodium chloride 3.75 sodium chloride 

0.15 g Spirit Blue 15 g agar 15 g agar 

30 mL Tributyrin 75 mL VBB (0.5:750) 75 mL VBB (0.5:750) 

 37.5 mL CSO 37.5 mL GDWW 
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Soil sample 

Dilution series 

Plates (Pour & Spread plates) 
SBA/VBB together with 
GDWW/Tributyrin/CSO 

 
 
 

Single colonies 

Nutrient Broth 

- 80°C Freezer 

 Storage medium: Glycerol 

and culture suspension in 1:1 

ratio to cryotubes 

Biochemical & 

morphological 

characterisation 

to Hugh and Leifson (1953) as well as API 20NE and/or 50CHB data profiles (Biomérieux® 

sa 69280 Marcy I’ Etoile-France). 

 

 

 

 

 

 

 

 

Figure 1. Overview of the isolation, purification and preliminary characterisation for lipid 

degrading bacteria. 

 

Furthermore after strain identification, the isolates were tested for their ability to 

grow and utilise the lipid substrates at pre-determined temperatures (25°, 30°, 37° and 

50°C). These temperatures were chosen on basis of literature that states varying optimum 

growth and enzyme temperatures (Williams et al., 1990; Markossian et al., 2000; Heylen et 

al., 2007; Senthilkumar & Selvakumar, 2008). The strains were each subjected to the 

following media and lipid sources namely SBA (Tributyrin), VBB (CSO) and VBB (GDWW). 

The plates containing the respective isolate for each medium, was incubated in triplicate at 

their optimum growth, mesophylic and optimum enzyme activity temperatures for 3 days. 

Temperature ranges were chosen to determine at which temperature enzymatic activity 

was the strongest. 

 

Results and discussion 

 

Screening for lipase activity 

Colonies from SBA that showed a clear zone or a dark blue precipitate were isolated and 

then re-streaked to ensure culture purity. Tributyrin is the simplest of fats and therefore 

when metabolised, lipolysis can readily be detected by the formation of a clear zone 

around the colony in a turbid fat-emulsion agar. The presence of a dark blue precipitate 

indicates partial hydrolysis of the fat present. As mentioned by Alford & Steinle (1967), 

tributyrin is generally insoluble, but when metabolised, the hydrolysis products, 

monobutyrin and dibutyrin are water solublised to form the clear zones around the colony 

as shown in Fig 2. A recommendation was also made by Starr (1941) for the use of SBA 
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as the preferred medium for the detection of lipolytic bacterial species. Several bacteria, 

mould and yeast species were cultured on SBA (Starr, 1941; Fryer et al., 1966). The 

authors recommended this medium as the preferred culture medium, owing to its non-

inhibitory effect on growth or lipolytic capability as well as not giving false positive tests by 

non-lipolytic microorganisms (Starr, 1941; Fryer et al., 1966).  

In the current study, lipolytic colonies were also grown on VBB agar using CSO as 

the lipid substrate instead of tributyrin. The reason for this was that tributyrin is not 

sufficient to indicate true lipolytic activity as hydrolysis can also be catalysed by esterases 

(Salleh et al., 2006).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The four photographs (2a-d) depicts the clear zone formed around the colony. 

The clear zone formed against a turbid medium due to the hydrolysis of 

tributyrin which is indicative of lipolytic/esterase activity. 

 

Colony morphology for the isolates is shown in Fig 3. Strains 3a, b and d have circular 

colonies, while 3c is irregular in shape. VBB shows an intense blue colour upon the 

reduction of the pH due to hydrolysis (Salleh et al., 2006). For this purpose, CSO was 

used on the basis of possessing a more complex fatty acid profile (Table 2) as opposed to 

tributyrin which is a triglyceride. 

 

 

 

 

 

2d 2c 

2a 2b 
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Figure 3. Colony morphology is depicted for each respective isolate on nutrient agar (3a – 

3d). 

 

Table 2. The composition of cottonseed oil indicating the methyl ester type and the 

respective percentage composition thereof, used during this study (Anon., 

2008) 

Methyl Ester type (% Composition by mass) 

C16:0 6.0 

C18:0 3.0 

C18:1 35.0 

C18:2 50.0 

C18:3 3.0 

C20:0 3.0 

The cottonseed oil conforms to the requirements of American Oil Chemicals Society (AOCS) Method Ce 1-62 

 

Cottonseed oil also consists of the main LCFAs found in cereal grains and grain products 

namely palmitic, oleic and stearic acids (Becker, 2007). These LCFAs are known to be 

problematic during fatty acid wastewater treatment but also useful for methane production 

during anaerobic digestion (Li et al., 2002; Kim et al., 2004; Pereira et al., 2005; Palatsi et 

al., 2009). In this study there was a distinct blue zone that formed in the medium below 

colonies and/or around the outskirts of the colonies (Fig 4). These results are also in 

accordance with a previous study conducted by Alford & Steinle (1967), whereby 

triglycerides namely tributyrin, trihexanoin, trioctanoin, triolein, lard, butter oil, CSO, olive 

oil and corn oil were examined to determine their suitability as effective lipid substrates. 

The results showed a variation in the background colour in medium as well as in the 

lipolytic zones observed (Alford & Steinle, 1967). An indication of lipolysis yields a clear 

3a 3b 

3c 3d 
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zone surrounding the colony on a turbid medium while zones from fermentation producing 

acids retain the blue colour (Alford & Steinle, 1967; Jones & Richards, 1952). Therefore, 

no medium was supplemented with a carbohydrate source as this would probably yield 

false positive results (Shelley et al., 1987). 

Tributyrin is insoluble; nonetheless when it is hydrolysed to butyric acid which is 

soluble, it tends to form a diffuse blue zone rendering tributyrin as a mere presumptive test 

(Fryer et al., 1966) for use as substrate during lipolytic studies. If, however, any 

monobutyrin or dibutyrin is formed, both being soluble to slightly soluble, a clear zone of 

hydrolysis will surround the colony as seen in Figs 2 a-d and 4. As part of this study, VBB 

agar was also combined with GDWW as lipid substrate. The reason for the use of GDWW 

as fat source, was that it resembles a substrate high in FOG as opposed to tributyrin which 

is chemically synthesised and not of natural origin and thus easily hydrolysed. Although 

bacterial isolates showed good growth on this medium, no distinct lipolytic activity could be 

identified. This could be due to the fact that GDWW does not form a turbid fat-emulsion 

agar and that the effectiveness of lipolytic visual observation depends on a clear zone 

forming against a turbid background. The good growth can also be attributed to the 

utilisation of other components ‘other than the fatty acids’ within the GDWW. The pH of 

GDWW added was 3.4 – 3.6. 

 

 

 

 

 

 

Figure 4. Two isolates (4a) and (4b) grown on VBB (CSO). Distinct blue zones formed 

below the colonies and/or around the outskirts of the colonies, against a blue background. 

 

Morphological, phenotypical and biochemical characterisation 

The four isolates (1-4) that showed visual clearing on the agar plates were morphologically 

and biochemically characterised (Table 3). Isolates 1, 2 and 3 were almost similar in 

structure with only morphological differences. One main structural difference between 

isolates 1 and 2 is that isolate 1 is short rods, while isolate 2 was small, narrow rods. 

Isolate 4 was the only Gram positive isolate and had distinctly short thick rods. It was also 

easily characterised as opposed to the other isolates by possession of a very prominent 

central endospore. 

4a 4b 
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In the current study only one isolate was positive for oxidase activity but all 4 

isolates were positive for catalase. These isolates were also grown in NB with isolate 3 

forming a slimy pellicle layer at the top of the medium. This would suggest that this 

bacterium is an obligate aerobe as opposed to the other more facultative isolates which 

showed growth throughout the NB. In this case it could be that they are facultative. By 

using the method proposed by Hugh & Leifson (1953), the isolates were characterised as 

either oxidative or fermentative. Isolate 2 was observed and found to be the only 

fermentative bacterium. 

The isolates were also phenotypically characterised on nutrient agar (Table 4). 

Isolates 1, 2 and 3 were similar in morphology, colony margin and pigmentation, whereas 

isolate 1 had a slightly convex elevation. Isolate 4 was observed as irregular in form and 

had an erose margin. It was also opaque and dull in appearance and formed a dark brown 

discolouration on the NA after 5 days at room temperature. This could be as a result of its 

metabolic activity upon assimilation of nutrients present, such as the organic nitrogen 

source present in the medium (Nakamura, 1989). Biochemical characterisation was done 

using the API 20NE for isolate 1, 2 and 3 and 50CHB identification system for isolate 4 

(Tables 5 and 6). The identification was then generated using the Apiweb™ software V7.0

(Table 7). 

 

Table 3. The morphological and biochemical characteristics for the four unidentified 

bacterial isolates 

a catalase activity; 
b
 oxidase activity; 

c
 Nutrient Broth; 

d 
Oxidative/Fermentative test (Hugh & Leifson, 1953) 

 

Isolate 
Gram 
stain 

Morphology Endospore 
a
 

b
 

Growth in 
c
 

d
O/F 

(Open 
tube - 

aerobic) 

O/F (Closed 
tube - 

anaerobic) 
Reaction 

Acid/
Alk 

 
1 - 

Short rods 
Single, 
double 
chains 

No + + Murky + - Oxidative Alk 

 
2 - 

Very small 
rods 

Single, 
double 
chains 

No + - Murky + + Fermentative Acid 

 
3 
 

- 

Thin, small 
rods 

Long chains 
(3 & more 
cells per 
chain) 

No + - 
Murky 

Slimy layer 
top of 

medium 

+ - Oxidative Alk 

 
4 + 

Short, thick 
rods 

Single cells 

Endospore 
(Central) + - Slightly 

murky + - Oxidative Alk 
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Table 4. Phenotypical characteristics of the four isolates when grown on NA 

 

 

 Table 5. Biochemical characteristics of isolates using the API 20NE identification kit 

 

 

Isolate 1 2 3 4 

Form of colony Circular Circular Circular Irregular 

Elevation Convex Flat Flat Flat 

Margin Entire Entire Entire Erose 

Pigmentation No No No No 

Texture, optical 

properties & Appearance 

Smooth, 

Transparent and 

Shiny 

Smooth, 

Transparent and 

Shiny 

Smooth, 

Transparent 

and Shiny 

Smooth, 

Opaque 

and Dull 

Test   Isolate  

  1 2 3 

NO3  - + + 
Indole production  - - - 
Glucose acidification  - - - 
Arginine dihydrolase  + + - 
Urease  + + - 
Esculin hydrolysis  + + + 
Gelatine hydrolysis  - + + 
PNPG  - + + 
Fermentation of: Glucose + + + 
 Arabinose + + - 
 Mannose + + + 
 Mannitol + + - 
 N-acetyl-glucosamine + + + 
 Maltose - + + 
 Gluconate + + - 
 Caprate + - - 
 Adipate - - - 
 Malate + + + 
 Citrate + + + 
 Phenyl-acetate - - - 
Oxidase 
 

 + - - 

Stellenbosch University  https://scholar.sun.ac.za



69 

 

 Table 6. Biochemical characteristics of isolate 4 using the API 50CHB identification kit 

 

 

Table 7. Identification using the API 20NE and 50CHB data System, of the strains from 

soil sampled close to the grain distillery wastewater treatment facility 

 

Test Strip  

0 - 19 

Result Test Strip  

20 - 39 

Result Test Strip  

40 - 61 

Result 

CONTROL + Methyl-αD-mannopyranoside - D-turanose + 
Glycerol + Methyl-αD-glucopyranoside + D-lyxose - 
Erythritol - N-acetylglucosamine - D-tagatose - 
D-arabinose - Amygdalin + D-fucose - 
L-arabinose + Arbutin + L-fucose - 
D-ribose + Esculin Ferric citrate + D-arabitol - 
D-xylose + Salicin + L-Arabitol - 
L-xylose - D-cellobiose + Potassium gluconate - 
D-adonitol - D-maltose + Potassium 2-ketogluconate - 
Methyl-βB Xylopyranoside - D-lactose (bovine origin) - Potassium 5-ketogluconate - 
D-galactose + D-melibiose + ONPG + 
D-glucose + D-saccharose (sucrose) + Arginine dihydrolase - 
D-fructose + D-trehalose + Lysine decarboxylase - 
D-mannose + Inulin + Orthinine decarboxylase - 
L-sorbose + D-melezitose - Citrate utilisation - 
L-rhamnose + D-raffinose + H2S production - 
Dulcitol - Amidon (Starch) + Urease - 
Inositol + Glycogen + Trytophane desaminase - 
D-mannitol + Xylitol - Indole production - 
D-sorbitol + Gentiobiose + Acetoin production + 
    Gelatinase + 
    NIT - 

Strain Significant taxa Percentage identification 

1 Pseudomonas fluorescens 99.9 

2 Pseudomonas luteola 99.9 

3 Stenotrophomonas maltophilia 99.9 

4 Bacillus licheniformis 87.7 
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Strains 1, 2, 3 and 4 were respectively identified as Pseudomonas fluorescens, 

Pseudomonas luteola, Stenotrophomonas maltophilia and Bacillus licheniformis.   

Pseudomonas fluorescens (Table 8) showed a decrease in halo diameter as the 

incubation temperature increases. When tributyrin was used as lipid source the halo 

diameter after an incubation period of 48 h was as follows: 2 mm at 37°C, 3 mm at 30°C 

and 5 mm at 25°C. The optimum growth of the organism occurred at 25°C. VBB containing 

CSO as lipid source produced dark blue zones at 30 and 25°C which is positive for 

lipolysis. There was no indication of lipolysis where GDWW was used as lipid source. 

From Table 8 it can be deduced that the optimum enzyme activity of the organism 

occurred at 25°C as the halo diameter observed was the largest of the three temperatures. 

The possible reason for no dark blue zones forming at 37°C could be that this temperature 

is unfavourable for optimal enzyme activity. 

P. luteola (Table 9) showed growth but, no indication of lipolysis on VBB (GDWW) 

at any of the temperatures, but VBB-CSO shows blue colony formation at 30°C which is 

indicative of lipolytic activity. Growth was observed at 37°C using CSO as lipid substrate, 

but lipolysis was absent as no blue colonies were formed. Utilisation of SBA-Tri had a 

distinct clear zone around colonies at 30° and 37°C. 

 

Table 8. The growth of the P. fluorescens isolate (1) on media at mesophyllic and optimum 

growth temperatures and temperature for optimum enzyme activity 

 (+) Growth/lipolysis observed; (-) Growth/lipolysis absent 

 

 

 

 

 

 

Growth Temperature 

 

Mesophyllic (37°C) Optimum Growth (30°C) Optimum enzyme (25°C) 

Growth Lipolysis 
Halo  

(mm) 
Growth Lipolysis 

Halo 

(mm) 
Growth Lipolysis 

Halo 

(mm) 

SBA 

(Tributyrin) 
+ + 2 +  + 3 + + 5 

VBB (GDWW) + - +  -    +     - 

VBB (CSO) + - +  +    +     + 
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Table 9. The growth of the P. luteola isolate (2) on media at mesophyllic and optimum 

growth temperature and temperature for optimum enzyme activity 

    (+) Growth/lipolysis observed; (-) Growth/lipolysis absent 

 

The S. maltophilia isolate (3) (Table 10) showed no indication of lipolysis on VBB-

GDWW at 37°C and 30°C. At 30°C, using CSO as lipid substrate, the organism showed no 

sign of lipolysis. This could possibly be due to the inability of the isolate to biodegrade the 

fatty acids at the respective temperature. As lipolysis was shown at 37°C using VBB-CSO, 

the assumption could be made that this temperature provides optimum lipolytic activity for 

growth of the isolate on solid media. A previous study by Heylen et al. (2007) focused on 

the isolation of nitrate-reducing bacteria in soil, where a few strains showing lipolytic 

activity. These included S. maltophilia LMG 958 which hydrolysed Tween 80. 

B. licheniformis (Table 11) grown on VBB-CSO was positive for lipolytic activity at 

37°C. A clear zone surrounding the colony was visible using SBA-Tributyrin therefore 

indicating lipolytic activity. This organism showed good growth even at 50°C as well as at 

its optimum enzyme activity temperature of 37°C. However, no clear lipolysis was 

observed at 50°C as the agar plates at this temperature dried out and caused the blue 

colour of the media to fade, preventing clear lipolytic results being visualised. 

A recommendation can, therefore, be made that when trying to establish lipolysis at 

high temperatures such as 50°C, 1 cm thick agar plates should rather be prepared. This 

could prevent the dehydration of media. This would also prevent the blue dye from 

disappearing, making it possible to establish whether or not lipolysis had occurred. 

 

 

 

 

 

Growth Temperature 

 Mesophyllic (37°C) Optimum Growth (30°C) Optimum enzyme (30°C) 

Growth Lipolysis Growth Lipolysis Growth Lipolysis 

SBA (Tributyrin) + + + + + + 

VBB (GDWW) + - + - + - 

VBB (CSO) + - + + + + 
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Table 10. The growth of the S. maltophilia isolate (3) on media at mesophylic temperature, 

optimum growth temperature and optimum enzyme activity temperature 

 (+) Growth/lipolysis observed; (-) Growth/lipolysis absent; (a) Faded blue colonies 

 

Table 11. The growth of the B. licheniformis isolate (4) on media at mesophyllic growth     

temperature and optimum enzyme activity temperature 

      (+) Growth/lipolysis observed; (-) Growth/lipolysis absent; (b) Deep blue colonies formed on blue 

background 

 

Conclusions 

 

Many microorganisms that have lipase activity have been isolated and characterised to 

treat wastewater containing fats, oils and grease (FOG) (Shigematsu et al., 2006; 

Matsuoka et al., 2009). During this study, by initiating several biochemical, chemical and 

microbiological techniques, four bacterial species from a manure heap situated close to a 

GDWW treatment facility were successfully isolates and characterised by showing visible 

lipase/esterase activity on SBA-Tri. These isolates were then subjected to VBB with 

GDWW as lipid source. Growth was present, but did not give a distinct indication of 

lipolytic activity, although colonies formed were dark blue with discolouration of dye around 

the growth. The growth was attributed to the assimilation of other components in the 

wastewater. The isolates were also subjected to VBB with CSO as lipid substrate whereby 

lipolytic activity was indicated by formation of distinct blue zones around or below the 

S. maltophilia 

 Mesophyllic (37°C) Optimum Growth (30°C) Optimum enzyme (30°C) 

Growth Lipolysis Growth Lipolysis Growth Lipolysis 

SBA (Tributyrin) + + + + + + 

VBB (GDWW) + - + - + - 

VBB (CSO) a
+ + + - + - 

B. licheniformis 

 Mesophyllic (37°C) Optimum Growth (50°C) Optimum enzyme (37°C) 

Growth Lipolysis Growth Lipolysis Growth Lipolysis 

SBA (Tributyrin) + + + - + + 

VBB (GDWW) + - + - + - 

VBB (CSO) + b
+ + - + b

+ 
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respective colonies. No lipolysis was shown in the case of the B. licheniformis (50°C), S. 

maltophilia (37°C), P. luteola (37°C) and P. fluorescens (37°C) isolate at the respective 

temperatures indicated. By subjecting the isolates to different temperatures as well as 

media and fatty acid substrate combinations, information was obtained about  their ability 

to utilise these lipid substrates and to visually observe the degree of lipolytic activity at a 

specific temperature. The B. licheniformis isolate failed to show any lipolytic activity at 

50°C as result of the agar being dehydrated and the blue colour fading thus making it 

impossible to get a clear distinction of lipolytic activity. A recommendation can be made to 

pour the plates thicker and sealing the plates which would then facilitate reading the 

thermophilic incubation temperature. From this study it was found that the optimal 

temperature for S. maltophilia for lipolysis was visibly noted on VBB-CSO to be 30°C. The 

reason for this could be that at this temperature, enzymatic activity is more optimal. 

Although the P. fluorescens, P. luteola, S. maltophilia and B. licheniformis strains show 

lipolytic/esterase activity, the visual observation of lipid clearing on agar plates was not 

sufficient to establish which fatty acids were biodegraded in the grain distillery wastewater 

(GDWW) for growth on Victoria Blue B with GDWW as substrate (VBB-GDWW). For this 

study it was therefore concluded that when scanning for lipolytic activity, it is important to 

use SBA-Tri and VBB-CSO in conjunction with VBB-GDWW. Hydrolysis of lipids using the 

SBA-Tri combination, yields a clear zone of lipolysis and VBB-CSO yields dark blue 

colonies against a blue agar background. Although VBB-GDWW does not form a blue 

colony or yield a clear zone of lipolysis, bacterial growth using this agar media combination 

was present. This growth indicates that other components within the GDWW are possibly 

being utilised other than the FOG. This may be possible as GDWW has a complex 

composition. Furthermore, the use of GDWW as lipid source showed no signs of inhibition 

toward the growth of lipolytic strains. It is thus possible that these strains can possibly be 

used as bioaugmention in anaerobic digestors to assist the biodegradation process during 

the treatment of GDWW so as to minimise the COD load.  It is important that the isolates 

be subjected to more definitive tests in terms of varying FOG concentrations in the GDWW 

especially during batch fermentation studies. When the batch fermentation process is 

complete, a fatty acid profile must also be established to determine specifically which 

LCFAs are being biodegraded. The results can then be used to see which isolate is 

capable of hydrolysing which specific LCFA. This information can then be beneficial in 

reducing specific LCFAs that are problematic in the treatment of fatty wastewaters such as 

GDWW. 
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CHAPTER 4 

 

BATCH BIODEGRADATION OF FATS, OILS AND GREASE IN GRAIN DISTILLERY 

WASTEWATER BY BIOAUGMENTING WITH SELECTED BACTERIAL STRAINS 

 

SUMMARY 

 

Three isolates Stenotrophomonas maltophilia (1), Pseudomonas luteola (2) and Bacillus 

licheniformis (3) were subjected to grain distillery wastewater (GDWW) and monitored in 

batch fermentation for their ability to biodegrade the fats, oil and grease (FOG). The S. 

maltophilia and P. luteola strains gave a total FOG reduction of 63% and 50% over an 18 

and 21 d batch fermentation period, respectively. The B. licheniformis, however, resulted 

in a total FOG reduction of 83% after 18 d exposure to GDWW. The use of this strain was 

therefore recommended for GDWW treatment and may even be suitable for the treatment 

of other fatty wastewaters. All strains showed that biodegradation of GDWW could be 

improved by an initial acclimatization phase. Acclimatized strains were also subjected to 

GDWW and the fermentation samples quantified for long chain fatty acids (LCFA). This 

gave an indication of the strains metabolic behaviour in terms of LCFA utilised and formed 

when subjected to GDWW. This information is of value when selecting a suitable strain for 

GDWW wastewater treatment. 

 

INTRODUCTION 

 

The high-strength effluent wastewater produced by local distilleries in South Africa is an 

issue of concern. The chemical oxygen demand (COD) values may vary for the effluent 

depending upon the organic and/or recalcitrant products present. Wine distillery 

wastewater is high in phenols and heavy metals (Bustamante et al., 2005; Gie, 2007; 

Green, 2007; Musee et al., 2007) and has to undergo treatment, while grain distillery 

wastewaters are high in fats, oils and grease (FOG), leading to lower bioreactor 

operational efficiency during anaerobic digestion post-treatment (Gie, 2007). Owing to the 

recent upsurge in the demand for alcohol beverages and spirits-related products, their 

production has also contributed to an increase in wastewater production (Musee et al, 

2007). For every litre of alcohol produced, 8 - 15 L of wastewater is generated (Mohana et 

al, 2009) and for every litre of grain whisky produced, 16 – 21 L of effluent water is 

Stellenbosch University  https://scholar.sun.ac.za



79 

 

generated (Tokuda et al, 1998). On average the South African wine industry produces 140 

– 160 million L of distilling wine each year (Anon., 2008). Distillery industries are therefore 

forced by legislation to consider and apply wastewater treatment techniques or be faced 

with the consequence of high penalties. 

 Over the years anaerobic digestion has gained popularity and a great deal of 

research has focused on anaerobic digestion as a feasible treatment option for distillery 

wastewater as well as other food and industrial wastewaters (Saatci et al., 2003; Moletta, 

2005; Wang et al., 2009; Hwang et al., 2010). Biological treatment whether aerobic, 

anaerobic, physicochemical or a combination thereof can be seen as a possible treatment 

option for the treatment of distillery wastewater (Goodwin & Stuart, 1994; Heredia et al., 

2005; Pant & Adholeya, 2007; Mohana et al., 2009; Mallik et al., 2010). 

The microbial ecology is a complex process, consisting of several bacterial groups 

all initiating reactions in a coordinated manner to convert organic compounds to carbon 

dioxide and methane (Anderson et al., 2003). A great deal of research has focused on 

optimising the sludge population and therefore selecting for the most desirable species for 

a specific function (Yuan et al., 2008). A study also investigated a method for detecting 

dominant microbial population sizes within reactor sludge (Liu et al., 2009) which could be 

important for controlling the growth of unwanted bacterial species. 

 Bioaugmentation is a treatment method where indigenously isolated or genetically 

modified bacteria are used to inoculate bioreactors treating wastewater or to treat 

hazardous industrial wastes to enhance the removal of undesirable compounds (Goldstein 

et al., 1985; Limbergen et al., 1998; Gentry et al., 2004; Singer et al., 2005). In a study in 

2010, it was concluded that bioaugmenting anaerobic sludge treating oleate wastewater 

with Syntrophomonas zehnderi yielded a higher methane yield than found in the absence 

of this microorganism (Cavaleiro et al., 2010). Bioaugmentation has also been used to 

treat pulp and paper mill industry wastewaters (Yu & Mohn, 2002) as well as for the 

treatment of dairy wastewater which is high in fat. It was concluded that the periodic 

addition of microorganisms may be needed to achieve a high performance treatment 

(Loperena et al., 2006). Nonetheless, it may be that long chain fatty acid (LCFA) 

biodegradation relies on the addition of LCFA-degrading strains to the anaerobic sludge. 

This can contribute to a faster bioreactor start-up phase or to enhance the treatment of 

disrupted treatment systems, especially with the LCFA accumulating when adhesion 

occurs on the anaerobic biomass (Cavaleiro et al., 2010).    

Stellenbosch University  https://scholar.sun.ac.za



80 

 

 The aim of this research was to subject grain distillery wastewater (GDWW), at 

specific FOG concentrations, to the three bacterial strains previously isolated (Chapter 3 of 

this thesis). These included Stenotrophomonas maltophilia (1), Pseudomonas luteola (2) 

and Bacillus licheniformis (3) strains. An acclimatization phase was initiated in order to 

determine which strains were capable of biodegrading the FOG in the shortest possible 

time. A fatty acid profile was determined for the individual strains to elucidate which fatty 

acids are utilised. Strains that show promising FOG biodegradation results can therefore 

be used as a pre-treatment option prior to anaerobic digestion to try and facilitate reactor 

operational efficiency treating GDWW. 

 

MATERIALS AND METHODS 

 

Bacterial growth curves 

The batch biodegradation phase was done to determine which of the three strains (S. 

maltophilia, P. luteola and B. licheniformis) were able to adapt to the GDWW and 

biodegrade the FOG successfully. Growth curves of each strain were established and 

used to determine the concentration required when inoculating GDWW during batch 

biodegradation. 

Nutrient broth (NB) (Merck) was prepared and inoculated with each of the 

respective isolates. This was initiated by monitoring the growth of isolates 

spectrophotometrically (Spectronic® 20 Genesys™) at an optical density (OD) of 500 nm 

and at 30 min intervals for 6 h. Viable cell counts were monitored by preparing a dilution 

series of 10-1 to 10-12 and using the pour plate technique with Nutrient Agar (NA) (Merck) 

as growth medium. 

 

Statistical Analysis 

IFR Microfit© (V1.0) is a computer application designed to analyse microbial growth data. 

Viable cell counts monitored spectrophotometrically in triplicate during the bacterial growth 

curve establishment for each isolate, was entered into an excel spread-sheet as logarithm 

to base 10 of the actual counts. These log cfu.mL-1 values were then transferred to 

Microfit© to statistically obtain information based on the Baranyi Growth model. The 

information was graphically represented and information regarding the initial bacterial cell 

density (N0), lag time (t-lag) and doubling time (t-d) was statistically generated.  
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Inoculum preparation 

Each isolate was streaked onto NA and incubated at 37°C for 24 h to ensure that a pure 

culture was being used. Single colonies grown in NB until an initial cell concentration of 1 x 

1012 cells.mL-1 was obtained using the respective growth curve. One millilitre of each cell 

suspension was transferred to separate pre-treated GDWW sample batches for the 

biodegradation phase. 

 

GDWW (substrate) preparation 

Raw untreated GDWW obtained from Distell, Wellington, South Africa was pre-treated to 

try and lower the FOG concentration. This was achieved by flocculating 1 500 mL of raw 

GDWW with a pre-determined amount of FeCl3 and then centrifuging (Beckman Coulter 

TJ-25 centrifuge) 10 000 rpm for 10 min at 4°C. Two distinct layers were formed after 

centrifugation with a clear supernatant layer and a solid pellet at the bottom of the 

centrifuge tube. This was concentrated FOG and total soluble solids (TSS). The solid 

pellet was discarded and the supernatant collected and used as substrate in the 

subsequent batch studies after being diluted with distilled water in a 1:4.5 ratio. The pH 

was adjusted to 7.2 – 7.3 using sulphuric acid (H2SO4:H2O = 1:1). A final volume of 200 

mL (44 mL pre-treated GDWW and 156 mL dH2O) was prepared in 250 mL Schott bottles. 

The samples were sterilised before the addition of the respective isolate. Each sample 

contained only the pre-treated GDWW and the isolate of interest. No other trace minerals 

were added so as to ensure that the isolate present can, if possible, only utilise 

components in the GDWW as their primary nutrient sources. 

 

FOG extraction 

The Hexane Extractable Gravimetric method (APHA, 1998) was used for determination of 

the FOG concentration. A 50.0 g sample of pre-treated GDWW was acidified to pH = 2 

with (H2SO4:H2O = 1:1). The acidified sample and 100 mL ethanol (>99.8%), 20 mL n-

hexane fraction (Merck) and 20 mL of diethyl ether (Merck) were added to a 500 mL 

separating funnel. The contents were shaken vigorously for 2 min and allowed to stand for 

10 min to ensure separation of the water and solvent layer. Each layer was collected in a 

separate container. Two grams of anhydrous sodium sulphate was added to the container. 

The water layer was then re-treated by the addition of 20 mL n-hexane and 20 mL diethyl 

ether for further extraction of oils and this repeated three times. The cumulative FOG-

containing solvent layer was added to a clean and previously weighed 250 mL round 
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bottom flask. The sample was then attached to the distillation apparatus (Büchi Rotavapor 

R-114) and the solvent evaporated at 60°C. The flask was then allowed to cool in a glass 

desiccator, gravimetrically measured, and quantified to give mg.L-1 FOG. 

 

Growth activity 

During the batch biodegradation phase, three triplicate samples were prepared namely: P 

= P. luteola, S = S. maltophilia and B = B. licheniformis (Fig. 1,2 & 3). Each 250 mL bottle 

containing 200 mL pre-treated GDWW and the respective isolate (1 x 1012 cells.mL-1) was 

incubated at 37°C on a shaker at 125 rpm. Growth activity was monitored for all samples 

by allowing the isolates in inoculation 1 for sample P (P1), inoculation 1 for sample S (S1) 

and inoculation 1 for sample B (B1) from each sample to utilise the GDWW. This implies 

biodegradation for a period of 5 d whereby each triplicate batch of P, S and B was 

sampled daily during these 5 d and to quantitatively determine bacterial counts in the 

GDWW on NA. This will give us an indication of cell viability when exposed to GDWW.  

 

Isolate incubation protocol 

When screening for lipolytic activity (Chapter 3), it was seen that P. luteola and S. 

maltophilia (td = 34 and 42 min) were slower growing isolates as opposed to B. 

licheniformis that grew faster (td = 28 min). For this reason, when exposed to GDWW for a 

period of 5 d, a different incubation protocol for each isolate was established. 

 It was decided that P. luteola and S. maltophilia be subjected to an incubation 

period of 3 d, while B. licheniformis to a 5 day incubation period. This was initiated after 

the initial 5 day incubation period in the case of P. luteola and S. maltophilia while for B. 

licheniformis, it was done during the 5 day growth activity monitoring period due to its 

faster growth rate. 

 

Batch biodegradation phase 

Sample P inoculated with P. luteola was allowed to reach a cell concentration of 1 x 1012 

cells.mL-1, before 1 mL was inoculated into P1 (Fig. 1). Within a 9 day biodegradation 

period, 1 mL of P1 was transferred after 24 h to a fresh batch of pre-treated GDWW and 

this was repeated for 7 days. P7 was incubated for 3 d before being sampled to determine 

the FOG content. P7 was used to inoculate P8 (1 mL) on day 10. P8 was incubated for 24 

h. One millilitre of P8 was transferred to P9 and incubated for 3 days and then sampled to 

determine the FOG concentration. P10 was inoculated with 1 mL of P9 and incubated for  
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24 h. P11 to P14 was treated similarly as P10. P15 received 1 mL of P14 and was 

incubated for 3 d before determining a FOG concentration on the final day (21) (Fig. 1). 

 Sample S was inoculated with S. maltophilia and allowed to reach a cell 

concentration of 1 x 1012 cells.mL-1, before 1 mL was inoculated into S1 (Fig. 2). One 

millilitre of S1 was transferred after a 24 h incubation period to a fresh batch of pre-treated 

GDWW, namely S2, within a 7 day biodegradation period. This was repeated for S3, S4 as 

well as S5, which underwent a 3 d incubation period. Following the 3 d incubation period of 

S5, the isolate at this stage has had a 7 day exposure period to GDWW and a FOG 

concentration was determined (At this stage, a FOG concentration for S1 was also 

determined). After the incubation period, 1 mL of S5 was transferred to S6 and allowed to 

incubate for 24 h after which 1 mL of S6 was transferred to S7. S7 was incubated for 3 d 

after which a FOG concentration was determined. One millilitre of S7 was transferred to 

S8 and incubated for 3 d, and a FOG concentration determined. 1 mL of S8 was 

transferred to S9 and incubated for 24 h after which 1 mL of S9 was transferred to S10. 

S10 was incubated for 3 d and a FOG concentration determined. The entire batch 

fermentation phase lasted 18 d (Fig. 2). 

Sample B was inoculated with B. licheniformis and allowed to reach a cell 

concentration of 1 x 1012 cells.mL-1, before 1 mL thereof was inoculated into B1 (Fig. 3). 

Within a 7 day biodegradation period, a FOG concentration was obtained for B1 and 1 mL 

of B1 was transferred after a 24 h incubation period to a fresh batch of pre-treated GDWW, 

namely B2. B3 was incubated for 5 d before being sampled to determine the FOG 

concentration. B4 was obtained by transferring 1 mL of B3 to B4 and allowed to incubate 

for 5 d before determining a FOG concentration. B5 received 1 mL of B4 and then 

incubated for 24 h after which 1 mL of B5 was transferred to B6. B6 was incubated for 5 d 

before determining a FOG concentration.  Samples were also taken on days 12 and 18. 

The entire batch fermentation phase lasted 18 d (Fig. 3).  

 

Fatty Acid Analysis 

Upon completion of the batch biodegradation phase, the acclimatized isolates were stored 

at 4°C in a medium containing 200 mL fresh pre-treated GDWW until required for fatty acid 

analysis. The acclimatized samples were re-inoculated into fresh pre-treated GDWW and 

incubated for 4 days at 37°C on a shaker set to a speed of 125 rpm prior to fatty acid 

analysis. After 4 days, the samples were removed, centrifuged at 5 000 rpm for 2 min to 

remove microbial cells and the fatty acid analysis was done in triplicate on the supernatant 
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(Folch et al.,1956). Control samples were prepared for each sample batch by using 200 

mL fresh pre-treated GDWW (excluding the isolate) and treated under the same conditions 

for the duration of the acclimatization period. 

The gas chromatograph used was a Thermo Finnigan Focus GC (Thermo Electron 

S.p.A., Strada Rivoltana, 20090 Rodana, Milan, Italy). GC detection conditions were 

column: BPX70; 60m x 0.25 mm ID; 0.25 µm (SGE International Pty Ltd, 7 Argent Place, 

Ringwood, Victoria 3134, Australia), initial temperature: 140°C; 5 min, Rate 1: 4°C.min-1; 

final temperature: 240°C; detector: 260°C; injector: 220°C; split: 100:1; carrier: Hydrogen 

gas at 30 mL.min-1 and injection volume: 1 µL run time for 35 min. 

  

RESULTS AND DISCUSSION 

 

Growth curves 

Growth curves were established to determine the cell concentration required for 

inoculating the respective samples before batch fermentation. In figure 4 the growth curves 

(excluding the lag phase) are shown. By using IFR MicroFit (V1.0), statistical information 

regarding the t-lag and the t-d was obtained (Table 1). The aforementioned parameters will 

be discussed at a later stage. 

 

 

Figure 4. Growth curves for the respective isolates, namely P. luteola, S. maltophilia and 

B. licheniformis after an incubation period of 6 h at T= 36°C ±2°C. 
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Table 1. Statistical data obtained was the N0, t-lag and t-d for the respective isolates P 

.luteola, B. licheniformis and S .maltophilia using IFR Microfit (V1.0) 

Isolate N0 (Log cfu.mL-1) t-lag (minutes) t-d (minutes) 

P. luteola 0.42 13.86 34.03 

S. maltophilia 0.89 52.78 42.22 

B. licheniformis 0.77 130.31 28.18 

 

Batch biodegradation 

Sample A (P. luteola) had an ‘initially FOG concentration’ (FOGi) of 72 mg.L-1 on day 1. P1 

was followed by successive inoculations up until P7. Day 7 (P7) was allowed to incubate 

for 3 d at 37°C which resulted in the first 9 d of exposure to the GDWW and a FOG 

concentration was determined. A ‘final FOG concentration’ (FOGf) of 71 mg.L-1 was 

obtained and this indicated that even after a 9 day acclimatization period, no reduction in 

FOG had occurred. Day 10 (P8) received 1 mL of P7 and was incubated for 24 h after 

which 1 mL of P8 was transferred to day 11 (P9) and incubated for 3 d. The initial FOG 

concentration of P9 was 66 mg.L-1. Following the 3 d incubation period, P9 had a FOG 

concentration of 51 mg.L-1. The decrease from 66 to 51 mg.L-1 is minimal even after the 

isolate has now been exposed to pre-treated GDWW for 13 d. Due to this minimal 

decrease, the isolate was exposed to a longer period of acclimatization in order to have a 

more pronounced effect in terms of FOG biodegradation and thus 1 mL of P9 was 

transferred to day 14 (P10). The latter step was repeated up until P15. The initial FOG 

concentration of day 19 (P15) was 42 mg.L-1. After an incubation period of 3 d, P15 had a 

FOG concentration of 36 mg.L-1.  

Although a reduction in FOG concentration was obtained and considering it was 

possible to initiate this trial on an industrial scale, it would not be very practical to have an 

acclimatisation period of 21 d and achieve such a small reduction. The small reduction in 

FOG can also be explained by the growth of P. luteola in pre-treated GDWW observed 

during growth activity period of 5 days during batch biodegradation (Fig. 5). Growth 

peaked between the first two days of incubation from 1.9 x 109 to 2.80 x 109 cfu.mL-1. The 

sharp increase could be due to the consumption of components within the wastewater, 

other than the FOG present. The components present could be too complex in nature to 

degrade, thus inhibiting the release of lipolytic enzymes.  

Distillery wastewater is rich in components such as soluble proteins, organic acids, 

glycerol and carbohydrates, inorganic compounds and phenolic compounds (Uzal et al., 
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2003; Gie, 2007; Mallik et al., 2010). Some of these components are said to resist 

decomposition and therefore slow down the biodegradation process during wastewater 

treatment. On days 3 and 4, there was a decrease in cell concentration and this remained 

constant on day 5 at 2.1 x 109 cfu.mL-1. Growth was monitored after day 5, but not 

depicted on figure 5 as there was no further growth thereafter whereby the value remained 

at 2.1 x 109 cfu.mL-1. This decrease in cell number followed by a plateau could be as a 

result of nutrients that were depleted within the first 2 days. Cellular growth therefore 

reached a stabilized period and would have either remained in that dormant state until 

supplemented with a fresh nutrient source such as GDWW or eventually have reached a 

death phase. Similar results were obtained by a previous study whereby the microbial load 

peaked within the first 3 d after which it decreased as the food debris was utilised 

(Odeyemi et al., 2011). The above-mentioned reasons may therefore explain the slight 

decrease in FOG over the 21d batch biodegradation period. 

Sample B (S. maltophilia) had a starting FOG concentration of 104 mg.L-1 (FOGi) 

on day 1. After S1 had undergone an incubation period for 7 d, it was sampled and had a 

FOGf of 95 mg.L-1. This drop in FOG concentration can be explained by the 

biodegradation action of the isolate present. Indeed this is not a very large decrease in the 

FOG content over a period of 7 d, but signifies that activity may be present due to the 

release of enzymes. S5 initially had a FOGi concentration of 104 mg.L-1 and after 3 d of 

incubation, day 7 (S5) had a FOGf concentration of 60 mg.L-1. The concentrations 

obtained by S1 (during its 7 day incubation period) and S5 are comparable in that both 

these samples were exposed to pre-treated GDWW for a total of 7 d (Fig. 6). The key 

difference is that S5 was exposed to an acclimatisation phase, by adapting to its 

environment and thereby had a lower FOG concentration. One could speculate that the 

higher the cell concentration, the more effective biodegradation occurs. The 

aforementioned could simply be explained by the fact that if more cells are present, the 

faster biodegradation will proceed. S6 then received 1 mL of S5 after which 1 mL of S6 

was transferred to S7. S7 was incubated for 3 d. At this stage, S7 has been exposed to 

pre-treated GDWW for a period of 11 d and had a FOG concentration of 54 mg.L-1. It was 

assumed that this low concentration may be contributed to the increase in cell 

concentration which could possibly have had a positive effect on the biodegradation 

activity. S8 was incubated for 3 d and after 14 d of exposure to pre-treated GDWW, a FOG 

concentration of 66 mg.L-1 was obtained.  Furthermore, after 18 d of exposure to pre-

treated GDWW a FOG concentration of 68 mg.L-1 was obtained. No further biodegradation 
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occurred as concentrations remained in the vicinity of 60 – 68 mg.L-1. An average value for 

the aforementioned concentrations (60 – 68 mg.L-1), was taken to represent the decrease 

in FOG concentration during biodegradation. It was assumed that the drop in 

concentration from the initial 104 mg.L-1 to the average value of 65 mg.L-1 may be 

attributed to the increase in cellular concentration which could possibly have had a positive 

effect on the biodegradation activity due to the release of enzymes. 

 

 

 

 

 

 

 

 

 

Figure 5. Growth of P. luteola in pre-treated GDWW sampled from P1 each day, for a 

period of 5 d. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Batch biodegradation of S1 (non-acclimatised) and S5 (acclimatised) from 

sample B, whereby S1 was exposed to a 7 d incubation period without any 

successive inoculations (SI*). S5 received SI* for the first 4 d prior to being 

incubated for a further 3 d. S5 thus had an initial acclimatisation period for the 

first 4 d.  
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The latter information can also be represented by a graph which shows the increase in 

viable cells over a period of 5 d when exposed to pre-treated GDWW as growth media 

(Fig. 7). There is a decrease in FOG concentration and the period of 

 

Figure 7. Growth of S. maltophilia in pre-treated GDWW sampled from S1 each day, for a 

period of 5 d. 

 

acclimitasation has proven there is increased activity during biodegradation of FOG if one 

compares 95 mg.L-1 obtained in S1 which had no adaption period, to that of S5 that had a 

concentration of 60 mg.L-1, which had a period of adaption (Fig. 6).   

 Sample C (B. licheniformis) had a FOGi concentration of 211 mg.L-1. After an 

incubation period of 7 d, B1 was sampled and had a FOGf concentration of 93.8 mg.L-1 

(Fig.  8). This drop in FOG concentration is the most promising obtained within a 7 day 

incubation period compared to the other 2 isolates. B3 was sampled after an incubation 

period of 5 d. In total, B3 also had a 7 day exposure to pre-treated GDWW and had a FOG 

concentration of 89.82 mg.L-1. B4 then received 1 mL of B3 and was then incubated for 5 

d. Day 12 (B4) had a FOG concentration of 32 mg.L-1 and day 18 (B6) a concentration of 

36 mg.L-1. A FOG reduction of 55% was experienced during the first 7 d of incubation 

without any acclimatisation phase. After an acclimatisation period of 12 d there was a 

noticeable decrease in FOG concentration. At this stage the isolate had been exposed to 

pre-treated GDWW for a total of 12 d. Of importance to note is that this isolate was 

subjected to 5 day periods of incubation as opposed to the previous 2 isolates which only 

received 3 d before a FOG reading was obtained. The reason for this is that during the 

growth curve establishment, B. licheniformis showed the fastest growth in terms of t-d with 
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a value of 28 minutes. The t-d values for P. luteola and S. maltophilia were 34 and 42 min, 

respectively. It was assumed that because of this shorter t-d, the isolate would be more 

effective in the wastewater treatment process before fresh feed is given. FOG 

biodegradation would be more efficient as more FOG is broken down in a shorter period of 

time give at a faster rate of cellular growth. This faster biodegradation can also be as a 

result of the increased cell number, brought about via successive inoculations during the 

acclimatisation phase. 

 It is interesting to note that P. luteola and B. licheniformis, when subjected to pre-

treated GDWW, reached a stationary phase of growth at approximately 2.0 x 109 and 2.8 x 

108 cfu.mL-1 when monitored over a 5 day period, while S. maltophilia continued to 

increase in cell concentration (1.84 x 109 cfu.mL-1). This could possibly be due to changes 

in environmental conditions such as substrate accumulation, depletion of nutrient source 

or cellular saturation within the solution. FOG concentrations at days 12 (B4) and 18 (B6) 

were 32 and 36 mg.L-1, respectively. These two values are very close in proximity 

(Standard Deviation = 2.82) and it was assumed that the isolate may have been inhibited 

by the accumulation of biodegradation products formed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Batch biodegradation of B1 (non-acclimatised) and B3 (acclimatised) from 

sample C, whereby B1 experienced a 7 d incubation period without any 

successive inoculations (SI*). B3 received SI* for the first 2 d prior to being 

incubated for a further 5 d. B3 thus had an initial acclimatisation period for the 

first 2 d. 
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The average for these two values was taken in order to calculate the FOG 

reduction. This was an 83% reduction in FOG. If, however, there was an accumulation of 

shorter chain fatty acids such as organic acids, the pH would have decreased. This, 

however, was the case as the pH dropped from 7.4 to 6.6 within the first 12 d of 

biodegradation after which it increased to 7.3 on day 18, thus indicating a buffering effect. 

This buffering effect could be the response of the microorganism to pH stress by 

dissociating the molecule(s) that may be inhibitory to the biodegradation process. In 

addition to this, an increase in CO2 may lower the pH. Furthermore, the high moisture 

content may retard the diffusion of CO2 to the atmosphere, which may explain for the initial 

drop in pH. This shows that an initial acclimatisation phase does assist in optimising the 

biodegradation phase as B1 was incubated for 7 d without any addition of fresh pre-treated 

GDWW. The increased growth rate can also be seen by the increase in cell number within 

the first two days (Fig. 9). 

 

Figure 9. Growth of B. licheniformis in pre-treated GDWW sampled from B1 each day, for 

a period of 5 d. 

 

Fatty acid profile 

 

Prior to the fatty acid analysis, acclimatised isolates were transferred to fresh pre-treated 

GDWW and allowed to initiate biodegradation for 4 d at a temperature of 37°C on a shaker 

(speed set to 125 RPM). Figures 10 a, b and c respectively shows the fatty acid profile 
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obtained during the biodegradation of GDWW by P. luteola, S. maltophilia and B. 

licheniformis and after 4 days incubation. The values represented are the fatty acids 

detected within the respective samples.  

 

 

 

 

 

 

 

 

 

 

 

 

P.L    = Inoculated sample after biodegradation phase (P. luteola present) 

Control  = Uninoculated sample before biodegradation phase (no strain present) 

 

 

 

 

 

 

 

 

 

 

 

 

S.M    = Inoculated sample after biodegradation phase (S. maltophilia present) 

Control  = Uninoculated sample before biodegradation (no strain present) 

 

 

 

a 
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B.L    = Inoculated sample after biodegradation phase (B. licheniformis present) 

Control  = Uninoculated sample before biodegradation (no strain present)
 

Figure 10. Fatty acid profile analysis representing the percentage composition of fatty 

acids after GDWW biodegradation for acclimatised bacteria P. luteola (a), S. maltophilia 

(b) and B. licheniformis (c). 

 

In the case of P. luteola, palmitic acid (C16:0) decreased from 51.56 to 38.51% while 

stearic acid (C18:0) decreased from 38.38 to 11.82%. Formation of palmitoleic (C16:1), 

oleic (C18:1n9c), elaidic (C18:1n9t) as well as linoleic acid derivatives (α- and γ-linolenic 

acid) also occurred. The free fatty acids (FFA) are very small in concentration (Fig. 10a). 

According to another study, by using an isolated strain, Pseudomonas sp. D2D3, FOG 

removal was 41% higher than the naturally occurring strain (Kim et al., 2004). 

 According to literature inter-esterification is catalysed by either non-specific or 

specific lipases (Macrae, 1983). Specific lipases will catalyse reactions by which free fatty 

acids (FFA) actually exchanges with acyl groups of existing triglycerides to produce newly 

formed triglycerides, thus if a FA specific lipase is excreted by a bacterial isolate, it may 

target a specific FA in the mixture therefore synthesising other FA that were not previously 

present in the control as noticed in this study. 

 Another study investigated the biodegradation of oil-rich wastewater by treatment 

with microbes (Odeyemi et al., 2011). It was said that the production of FA is more 

c 
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prominent during aerobic conditions. This could also explain for the formation of FA during 

thus study. 

 B. licheniformis results show a decrease in C16:0 from 51.56 to 44.19%. Formation 

of C16:1 by FFA also occurred (1.98%). This value is minimal when compared to P. luteola 

(6.44%). There was a decrease in C18:0 from 38.38 to 31.58%. Furthermore, other 

polyunsaturated fatty acids (PUFA) were formed (Fig. 10c), while S.maltophilia showed a 

decrease in C16:0 from 51.56 to 42.75%. The biosynthesis of other PUFA such as C18:0, 

C18:1n9c and C18:2n6c was minimal (Fig. 10b). Another study done on monitoring of 

lipolysis in milk by FFA production, reported that B. licheniformis species have significant 

lipolytic activity in comparison to other Bacillus strains (Janštová et al., 2006). This may 

possibly explain as to why in this study LCFAs are formed especially by P. luteola and B. 

licheniformis due to the release of enzymes. Odeyemi et al. (2011) showed an increase in 

the rate of microbial growth correlated to that of an increase in the rate of biodegradation 

of oil into FA. In this study, results were similar even though Odeyemi et al. (2011) 

monitored their biodegradation of oil wastewater using a mixed culture of bacteria, 

whereby in this study, single strains were used. It may be that by using a diverse bacterial 

population, a larger group of extracellular microbial lipases may have been excreted to aid 

in digestion of lipid materials (Macrae, 1983). 

Lipases may also be specific for the fat it may catalyse (Macrae, 1983) and 

therefore act on more FA present in the wastewater (Bhumibhamon et al., 2002; Odeyemi, 

2011). Interesterification as explained by Macrae. (1983) may also be as a result of the 

formation of other FA during the batch fermentation process in this study. By analysing the 

fatty acid profile of the GDWW, the individual strains behaviour in terms of FA formed and 

broken down could be determined. This information could be of value to a GDWW / WW  

treatment plant where the accumulation of a certain FA could cause operational problems. 

For instance, P. luteola may aid in the reduction of stearic acid whereas S. maltophilia 

would cause even more upset to the biodegradation process by increasing the stearic 

acid.     

A previous study conducted by Lalman & Bagley (2000), showed the anaerobic 

degradation and inhibitory effects of linoleic acid (C18:2n6c). Some of the LCFA by-

products that were formed during C18:2n6c biodegradation were C18:1n9c, C16:1 and 

C16:0. This study similarly showed an increase in the percentage of C18:1n9c. This may 

be due to the dehydrogenation of C18:0 to form the unsaturated C18:1n9c as in the case of 

P. luteola (Fig. 10a). Also the C16:1 that was formed under aerobic conditions is in 
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contrast to another study (Lalman & Bagley, 2000) whereby it was formed as a β-oxidation 

product of C18:1n9c. Also the increase was not necessarily brought about by the 

biodegradation of C18:2n6c only as in the case of the study done by Lalman & Bagley 

(2000), but by other FA in the GDWW as well. Although C18:0 acid was not detected by 

Lalman & Bagley (2000), however, in this study the C18:0 decreased in percentage for P. 

luteola and B. licheniformis, but increased in the case of S. maltophilia. It can also be said 

that the β-oxidation process anaerobically biodegrades LCFA such as saturated C18 to 

C16:0 and other shorter chain fatty acids (SCFA) until their final conversion to acetic acid 

(Lalman & Bagley, 2000).  

 It should be considered that these strains were only subjected to a 4 d 

incubation period during this study and that P. luteola gave the highest percentage 

reduction in this period for C18:0 as well C16:0. If, however, B. lichniformis or S. 

maltophilia were subjected to longer incubation, they could have possibly had a better 

reduction for certain FA during biodegradation thereof. It can thus be concluded from the 

aforementioned, that P. luteola had a faster adaption period in releasing the enzymes for 

the reduction achieved. C18:0 and C16:0 are known to be problematic during GDWW 

treatment and a strain such as P. luteola can assist in reducing these problematic FAs. 

 

Conclusions 

 

Wastewaters from various food industries differ in composition. During this study it was 

established how microorganisms (S. maltophilia, P. luteola and B. licheniformis) respond 

to grain distillery wastewater as their nutrient source. The LCFA content was quantified 

which were either biodegraded or caused inhibition to the biodegradation process. During 

batch biodegradation, P. luteola and S. maltophilia took 21 d and 18 d, respectively, to 

reduce the FOG concentration by 50 and 35%. The strains showed that an acclimatization 

period improved the biodegradation of GDWW. Bacillus licheniformis showed the best 

biodegradation after being exposed to GDWW for a 5d period, showing a 55% FOG 

reduction even without an acclimatization phase. The highest FOG reduction obtained by 

the acclimatized strain was between days 12 and 18 (83% FOG reduction).  

The LCFAs quantified during this study has led to a better understanding of how P. 

luteola, S. maltophilia and B. licheniformis behaves when subjected to a more complex 

and natural wastewater FOG source (GDWW) rather than the use of a synthetic source 

(Tributyrin).  
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During the study it was also found that under aerobic incubation, the strains either 

biodegraded the FA, as in the case of P. luteola which produced myristic and 

pentadecyclic acids, or formed free FA. The formation of FA may have occurred through 

inter-esterification. It was also found that certain precursors such as palmitoleic acid may 

be formed under aerobic or anaerobic conditions. If a strain is to be inoculated for FOG 

wastewater treatment then a recommendation may be made to use B. licheniformis as a 

suitable fat-degrading microbe. Although one can isolate specific bacteria to biodegrade 

FOG, this study shows that it is difficult to degrade certain LCFA such as C16:0, C18:0, 

C18:1 and C18:2. Due to the results obtained in this study, more research has to be 

focused on single strain identification and their ability to adapt to wastewaters of specific 

composition as many commercially enzymes available that are targeted at industrial 

wastewaters high in FOG, are expensive.  
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CHAPTER 5 

 

GENERAL DISCUSSION AND CONCLUSIONS 

 

GDWW in South Africa and associated problems during treatment 

 

The agricultural industry in South Africa is diverse and its arable land available, accounts 

for approximately 53% of the entire country’s surface. The South African population is 

growing as much as 2% each year and predicted to reach a population size of 82 million 

by the year 2035 (Scotcher, 2009). Owing to this increase in population size, it is inevitable 

that food production industries will be doubling their production and this will lead to an 

increase in wastewater production as well. 

 Wastewater varies in composition depending on the type of agricultural industry 

producing it, be it a papermill and pulp, abattoir and slaughterhouse or distillery industries, 

to mention but a few (Li et al., 2002; Battimelli et al., 2009). The South African grain 

distillery industry alone produces approximately 120 000 L of grain distillery wastewater 

(GDWW) monthly. This type of wastewater (WW) has an acidic pH of 3 - 4 and a high 

organic content with chemical oxygen demand (COD) values ranging from 10 – 50 g.L-1. 

GDWW is also high in fats, oils and grease (FOG), which causes operational problems 

during its treatment. Amongst other problems, FOG hinders anaerobic digestion, which 

decreases the biodegradation efficiency and thus disrupts the entire treatment process. 

According to strict discharge standards as laid down by the South African legislation, 

wastewater should be treated to acceptable COD levels before being discharged into the 

environment. 

 Many treatment options have been proposed and are implemented as treatment 

methods during GDWW treatment. Amongst other treatment options, this includes 

physicochemical processes such as adsorption and flocculation as well as coagulation. 

Biological treatment such as anaerobic digestion has been seen as a preferred method of 

treatment as it is energy saving and minimises disposal costs. 

 

Isolation and characterisation of lipid degrading bacteria  

 

In this study, lipid-degrading bacteria was successfully isolated and characterised from a 

grain distillery environment using various agar media at different temperature ranges. The 
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four bacterial species Pseudomonas luteola (1), Pseudomonas fluorescens (2), 

Stenotrophomonas maltophilia (3) and Bacillus licheniformis (4) showed lipase/esterase 

activity on Spirit Blue Agar, which contained tributyrin (SBA-Tri) as lipid source. GDWW 

was used as lipid source together with Victoria Blue B (VBB-GDWW), which showed 

microbial growth, but failed to give a distinct indication of lipolytic activity. Using cottonseed 

oil as lipid source, lipolytic activity was indicated by formation of distinct blue zones around 

or below the respective colonies.  

From this study, it was concluded that although VBB-GDWW does not yield a blue 

colony or clear zones of lipolysis, bacterial growth was prominent. This indicates that other 

components other that FOG, within the GDWW may have been utilised. The use of 

GDWW as lipid source had no inhibitory effects towards the growth of strains. The study 

also concluded the possibility of using these strains to assist the biodegradation process 

during the anaerobic treatment of GDWW and thus minimising the COD. 

 

Batch biodegradation of FOG by bioaugmenting with bacterial strains 

 

This study conducted LCFA quantification on GDWW biodegraded by specific strains. It 

has therefore investigated the behaviour of these isolates when subjected to this particular 

type of wastewater. The information obtained from the FA profile gives an idea of the FA 

biodegraded or synthesised by the individual strains when subjected to GDWW. It is 

beneficial to know which FA are metabolised by which organism(s) as this gives an idea of 

the microorganisms metabolic pathway. 

Three bacterial strains isolated from a grain distillery environment namely, P. 

luteola, S. maltophilia and B. licheniformis were bioaugmented to GDWW and thus 

monitored in batch fermentation for their ability to biodegrade FOG. All strains successfully 

showed that biodegradation of GDWW are improved by an initial acclimatisation phase. 

Stenotrophomonas maltophilia and P. luteola had a total FOG reduction of 63% and 50% 

respectively over an 18 and 21 d batch fermentation period. Bacillus licheniformis however 

had a total FOG reduction of 83% after 18 d exposure to GDWW. This strain therefore had 

the highest FOG reduction of the three strains tested. A recommendation may be made to 

use B. licheniformis as a suitable fat-degrading microbe during FOG wastewater 

treatment. 

 The GDWW was also treated with the acclimatised strains and then quantified for 

long chain fatty acids (LCFA). The quantification of LCFA in this study has led to a better 
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understanding of how P. luteola, S. maltophilia and B. licheniformis behaves when 

subjected to a FOG source such as GDWW and not using a synthetic FOG medium. It was 

found that under aerobic incubation, the strains either initiated biodegradation to produce 

shorter chain fatty acids (SCFA) from LCFA, as in the case of P. luteola, which produced 

myristic and pentadecyclic acids, or formed FA. 

A process called ‘inter-esterification’ may have also occurred whereby certain 

enzyme systems produced by the strain may result in the synthesis of another FA. It was 

also found that certain precursors such as palmitoleic acid might be formed under aerobic 

or anaerobic conditions. On a positive note, the research, obtained gives an indication of 

the strains metabolic behaviour in terms of LCFA utilised and formed when subjected to 

GDWW. This information can therefore be beneficial when choosing a suitable strain for 

wastewater treatment. 

 

Concluding remarks 

 

The isolation and characterisation of lipolytic species from a GDWW treatment 

environment was successfully done and found to utilise various lipid substrates on solid 

media through visual analysis. 

Acclimatising the lipolytic isolates to GDWW improved the biodegradation of FOG. 

Bacillus licheniformis, which is a facultative anaerobe, gave the highest decrease in FOG 

concentration, with a total reduction of 83%. It was also found that by using low 

concentrations of FOG (70 – 211 mg.L-1) in GDWW, does not inhibit biodegradation during 

batch fermentation. 

Long chain fatty analysis showed that FOG was either biodegraded to shorter 

chains fatty acids or formed through a process of inter-esterification, depending on the 

type of enzyme system released by the respective isolate. Although lengthened 

biodegradation periods (18 – 21 d) were experienced, results from this study shows the 

ability of individual bacterial species to biodegrade FOG in GDWW without any additional 

nutrient source. The information obtained from the fatty acid profiles can be used to see 

which fatty acids are either biodegraded or formed thus making it possible to choose the 

most desirable isolate for FOG wastewater treatment. 

Future research should investigate the lipolytic enzyme systems of these bacterial 

isolates. These enzymes could be useful to the industry for FOG wastewater treatment. 
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Bioaugmenting the lipolytic isolates from this study with other isolates can be done to 

monitor their survival when subjected to an industrial wastewater treatment level. 
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