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Summary

A number of relevant brewing industry issues associated with malt quality were examined.

These included beer foam quality, premature flocculation of yeast during fermentation and

antimicrobial factors in malt.

The cause of poor foam at a brewery relative to other similar breweries was identified as being

related to the boiling temperature during wort preparation and the associated conformational

changes of the abundant foam protein lipid transfer protein 1 (LTPl). The temperature range

of 96 to 102°C was revealed to be critical. At the higher temperature the denaturation of LTP 1

was more extensive and its effectiveness as a foam protein was reduced. In addition, it was

shown that the prominent role of LTPI with respect to foam was as a lipid binding protein,

forming a lipid sink and protecting foam from lipid damage.

The occurrence of malt associated premature yeast flocculation (PYF) during fermentation

was induced in malt by the addition of extra-cellular fungal enzymes to the malt husk or by

micro-malting barley in the presence of fungi. In addition, treating malt husk with commercial

xylanase or adding commercial arabinoxylan to the fermentation also impacted on yeast

flocculation. It was proposed that a range of molecular weight arabinoxylans formed by the

enzymatic breakdown of the major barley husk component (arabinoxylan) resulted in PYF.

Antimicrobial activity against brewing yeast (Saccharomyces cerevisiae), other fungi and

bacteria was found in barley, malt and malt derived wort trub. Wort trub is the non-specific

precipitate of protein, polyphenols and lipids formed during wort boiling and which is, to

some extend, carried over in the wort to the fermentation. Antimicrobial activity appeared to

increase during malting. The growth of brewery collected yeast was inhibited in the presence

of brewery production wort when compared to the same wort filtered to remove the trub.

Brewery yeast was found to be more sensitive to inhibition than laboratory propagated yeast

of the same strain. Different strains of S. cerevisiae were also found to differ in their

sensitivity to inhibition. Investigation revealed that the activity originated from the inside of

the barley grain and impacted on yeast sugar uptake. However, there was no direct correlation

detected between levels of antimicrobial activity in malt and fermentation performance. At
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high concentrations the factors were microcidal causing cell lysis. Partial characterisation of

an antimicrobial extract from malt revealed the presence of a factor between 5 and 14 kDa,

containing a cationic peptide component. The optimum pH stability was ±5 when it was also

most cationic. The factor easily and irreversibly lost activity at extreme pH and when exposed

to certain reagents but was heat resistant in accordance with its survival in wort trub.

Preliminary results showed the presence of LTP1 associated with other peptides in the active

cationic fraction from the one malt tested.

The occurrence of malt related PYF and malt antimicrobial factors are associated with

microbial contamination of the grain. The fungi generating the PYF factors from the barley

husk while the barley's defence mechanism generates antimicrobial factors to cope with the

pathogenic effect of the fungi. In addition there is a potential link between the foam protein

LTP 1 and malt antimicrobial activity as LTP 1 or LTP 1 in association with another

component(s) is potentially antimicrobial.
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Opsomming

'n Aantal problematiese areas in die broubedryf, wat met mout geassosieer word, is

ondersoek, naamlik bierskuimkwaliteit, voortydige flokkulering van gis tydens fermentasie

en die invloed van antimikrobiese faktore in mout.

Die oorsaak van swak bierskuim by 'n spesifieke brouery relatief tot ander soortgelyke

brouerye was geidentifiseer as die moutekstrakkookpunt tydens moutekstrakbereiding. Tydens

hierdie proses ondergaan dieskuimprotein, lipiedoordrag proteien 1 (lipid transfer protein 1,

LTPI), 'n konformasieverandering. Die temperature tussen 96 to 102°C was kritiek t.o.v.

ideale konformasieverandering vir skuimaktiwiteit. Denaturering van LTPI het by hoer

temperature plaasgevind wat die skuimproteien se aktiwitiet verminder het. Daar is ook

bewys dat LTPI 'n verdere rol in bierskuim speel aangesien dit 'n lipiedbindingsproteien is

wat die skuimnegatiewe lipiede verwyder.

Die voorkoms van moutgeassosieerde voortydige flokkulering van gis (PYF) tydens

fermentasie is op twee maniere in mout gemduseer, naamlik:

• deur die toevoeging van ekstrasellulere swamensieme tot die moutdop

• deur mikrovermouting van gars in die teenwoordigheid van swamme.

Die behandeling van die moutdop met kommersiele xilanase of die toevoeging van

kommersiele arabinoxilaan by fermentasies het ook die flokkulering van gis bemvloed. Die

hipotese was dat PYF veroorsaak is deur 'n reeks arabinoxilane met verskillende molekulere

massas wat gevorm het tydens die ensimatiese afbraakproses van die primere

moutdopkomponent (arabinoxilaan).

Antimikrobiese aktiwiteit teenoor brouersgis (Saccharomyces cerevisiae), ander swamme en

bakterie was teenwoordig in gars, mout en moutekstrakpresipitaat. Die presipitaat bestaan uit

nie-spesifieke presipitate van proteien, polifenole en lipiede wat gedeeltelik in die gekookte

moutekstrak agterbly. Daar is gevind dat antimikrobiese aktiwiteit tydens vermouting

toe gene em het. Die groeiproses van brouersgis, gekollekteer by 'n brouery, was gemhibeer

deur die teenwoordigheid van brouery-geproduseerde moutekstrak in vergelyking met

dieselfde moutekstrak wat gefiltreer was om die presipitaat te verwyder. Die brouersgis was
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meer sensitief heens inhibisie in vergeleke met dieselfde gisstam wat opgegroei is in die

laboratorium. Verskillende S. cerevisiae stamme het ook verskille in sensitiwiteit getoon

t.o.v. the antimikrobiese komponente in die moutekstrakte. 'n Verdere ondersoek het getoon

dat die oorprong van die inhiberende aktiwiteit die interne dele van die gars is, asook dat dit

die gissuikeropname beinvloed. Daar was egter geen direkte verband tussen antimikrobiese

aktiwiteit in mout en fermentasie effektiwiteit, soos gemeet onder laboratorium toestande, nie.

Hoe konsentrasies van die faktore het egter gelei tot seldood weens sellise. 'n Kationiese

peptiedbevattende fraksie tussen 5 en 14 kDa en 'n optimale pH stabliliteit van 5 is gevind

deur gedeeltelike karakterisering van 'n antimikrobiese moutekstrak. Die aktiewe fraksie se

aktiwiteit is onomkeerbaar vernietig by ekstreme pH en blootstelling aan sekere reagense.

Die aktiewe verbinding(s) is egter hittebestand en resultate het getoon dat hierdie aktiwiteit

die brouproses oorleef as deel van die moutektrakpresipitaat. Voorlopige resultate van die een

mout wat getoets is het die teenwoordigheid van LTP 1 getoon, asook die moontlike

assosiasie met ander peptiede of kleiner komponente in die aktiewe kationiese fraksie.
I.t

Die voorkoms van moutgeassosieerde PYF en antimikrobiese faktore in mout word met die

mikrobiologiese kontaminasie van gars verbind. Swamme produseer die PYF faktore vanuit

die moutdopkomponente, terwyl die plant weer antimikrobiese faktore produseer as deel van

'n beskermingsmeganisme teen die patogene effek van die swamme. Daar is ook 'n

potensieele verwantskap tussen bierskuimproteien LTP 1 en antimikrobiese faktore in mout,

aangesien LTPI ofLTPl tesame met 'n ander verbinding(s) moontlik antimikrobies is.
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Preface

The oldest proven record of the brewing of beer dates back 6000 years by the Sumarians. It

was most likely discovered when bread accidentally became wet and began to ferment

resulting in an inebriating pulp. The method of preparing beer by crumbling bread into water

was adopted and the "divine drink" that resulted was recorded to make people feel

"exhilarated, wonderful and blissful"(according to historic texts quoted by Corran, 1975).

This early beer was cloudy and unfiltered and preparation was hit and miss as the fermentation

relied on the yeast from the environment. A range of cereals were used to prepare beer, but

once the brewing of beer came to the northern regions of Europe (around 800 B.C.), the cooler

climate suited the cultivation of barley, the main cereal used today. It is not clear when the

malting of grain was started, but it was certainly in use in Europe by the ninth century. It was

also during this time that the flavouring of beer with a mixture of herbs was replaced with

hops. The use of hops contributed to the clear character of beer and by this stage the beer

made resembles what we know as beer today (Monckton, 1966).

It was only in 1876 when Louis Pasteur revealed the existence of micro-organisms associated

with the production of beer and later Christian Hansen who successfully isolated a single yeast

cell and induced it to reproduce on media that the process of fermentation was understood. As

a result yeast propagation was used for fermentation and the taste of beer became more

repeatable (Corran, 1975 and Monckton, 1966).

Although the principles of brewing are understood, both yeast and barley are complex

biological entities impacted on by numerous factors not yet fully elucidated. Yeast and barley

are never exactly the same and some of these variations impact negatively on the brewing

process. Variations in barley quality and some of the negative impacts on both the brewing

process and the quality of the final product are the focus of this work.
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In short, the aims of this Ph.D. project were to

• Investigate the possible impact of malt, in association with its processing in the

brewery, on observed differences in beer foam quality at different breweries. Foam is

a physical attribute of beer quality and poor foam in the final product leads to indirect

financial losses related to customer dissatisfaction. Perplexing differences in beer foam

quality from different breweries within South African Breweries Ltd. led to an

initiative to determine the cause of the observed trends starting from the raw materials

including malt. Malt quality has been associated with beer foam as has the occurrence

of microbial contamination of grain which can lead to uncontrolled foaming or

gushing (Results in Chapter 3).

• Elucidate the mechanism by which malt related premature flocculation

(sedimentation) of yeast during the fermentation stage of beer production arises in

malt. Premature yeast flocculation (PYF) is a recurring seasonal issue observed not

only in SABMiller but across the brewing industry. The effects are incomplete

fermentations and inefficient utilisation of extract with associated financial losses and

compromised final beer flavour and quality. This well studied issue has been

associated with microbial infections of the barley in the field and their possible

continued growth during malting. The mechanism as to how it arises in malt has not as

yet been elucidated (Results in Chapters 4 and 5)

• Establish the presence and potential effect of malt associated antimicrobial factors on

the production of beer. Malt has been associated with slow/incomplete fermentations

observed at breweries within South African Breweries Ltd. The yeast was believed to

be inhibited in its ability to take up sugars retarding yeast growth and fermentation.

This was sometimes, but not necessarily, linked to premature flocculation of yeast and

causes similar losses and impact on quality. The presence of antimicrobial factors in

malt, be they of plant or microbial origin, and their possible impact on beer production

and quality has not been examined within the brewing industry (Results in Chapters 6

to 9).

xxi
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To achieve this the following objectives were set:

• Monitor the abundant foam protein, lipid transfer protein 1 (LTP1), as a marker for

foam quality during brewery and laboratory trials to compare the brewing process from

raw materials to product at two different breweries where one has consistently good

foam quality and the other has unexplained poor foam quality with the aim of

determining the cause of the poor foam.

• Attempt to induce PYF artificially in malt to help elucidate the mechanism by which

malt becomes PYF positive and monitoring the occurrence of PYF by a suitably

developed PYF assay.

• Develop an assay to measure the presence of antimicrobial factors III malt and

investigate the impact of yeast status on antimicrobial activity.

• Characterise the antimicrobial factors in malt, using the optimised assay, and

understand their origin, significance and fate in the brewing process.

Many of the chapters in this dissertation were written in article format in order to facilitate

publication and this will inevitably introduce a degree of repetition but repetition was kept to a

minimum. The brewing process was summarised to facilitate understanding and introduce

brewing terminology (Chapter 1). Relevant literature for this thesis on the brewing process

from barley to beer, malt quality, plant antimicrobial factors and antimicrobial factors of

microbial origin was reviewed (Chapters 1 and 2). Work on brewery trials and elucidation of

differences in beer foam with special attention to the beer foam protein LTP1 has been

included as a publication and a conference proceeding (Chapter 3). Development of an assay

to measure PYF in malt was described (Chapter 4) and a publication on the elucidation of the

mechanism by which malt becomes PYF positive (Chapter 5) has been included. The

optimisation of an assay to measure antimicrobial activity against brewing yeast (Chapter 6),

the measurement of such activity in barley and malt and the fate of these antimicrobial factors

in the brewing/fermentation process (Chapter 7), the application of the assay as a method to

assess yeast quality (Chapter 8) and the characterisation of the antimicrobial factors isolated

from malt (Chapter 9) were all presented. In closing, a summation of the work done and

proposed future work was given (Chapter 10).
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Note: Throughout the thesis details of the breweries mentioned, barley and malt samples used

and yeast strains are not disclosed for confidentiality reasons, although a common code for

breweries, malts and different yeasts was used throughout the entire thesis, e.g. malt A in

Chapter 7 will correspond to the malt A referred to in Chapter 9.
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Chapter 1

Beer brewing: Process and product

The beer brewing process

Although the basics of the brewing process are always similar, aspects may differ for different

types of beers and different brewing traditions. This overview encompasses the brewing

process as used for the work presented based on South African Breweries (SAB Ltd.) with

more detail added where relevant.

The major raw materials for the production of beer are barley (Hordeum vulgare L.) malt,

water, sugar syrup adjunct, hops and brewing yeast (Saccharomyces cerevisiae). There are

three major processes from raw materials to beer production, namely malting, brewing and

fermentation.

Barley malt is produced during the malting process, when the barley is first germinated then

dried for storage. During germination most hydrolytic enzymes are produced in the grain

(Briggs et al., 1981a). These enzymes, together with those already present in the grain, begin

to break down structural polysaccharides found in the cell walls. This makes the grain more

friable and easy to mill but the actual breakdown of the storage polysaccharides (starch)

during germination is very limited. After germination the grain is dried by kilning. This

process halts further breakdown of the grain whilst preserving the activity of hydrolytic

enzymes required for breakdown of complex storage nutrients during the brewing process. At

this stage the grain is called barley malt, or simply malt, and can be stored (Briggs et al.,

198Ia).

During brewing the malt is milled and combined with water to prepare an extract. The

extraction process uses a sequence of temperature stands that allows various protein and

starch degrading enzymes to break down these complex nutrients to amino acids and more

simple sugars which yeast can assimilate. The breakdown of the starch not only facilitates the

extraction of carbohydrates, but also of protein, amino acids, lipids and polyphenols. This

process is referred to as mashing. Mashing is followed by lautering, a filtration stage that
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removes the solids from the liquid extract. The extract is called green or unboiled wort. The

green wort is transferred and boiled in a kettle. The functions of boiling are multiple and

include the following: stripping off volatiles, formation of a precipitate comprising many

polyphenols, proteins and lipids, called a "hot break" or "trub" , as well as denaturation of

proteins, sterilisation of the wort and reduction of volume by evaporation.

Hops, which impart the bitter flavour to beer, are added during the boil to allow for proper

mixing and extraction of hop components. Sugar syrup adjunct, such as maltose syrup from

maize, may also be added depending on the type of beer and the recipe used, this will increase

the specific gravity of the wort. The term "gravity", used in the brewing industry indicates the

concentration of solids and is expressed in degrees Plato (OP),with one degree Plato defined

as one gram sucrose per 100 gram solution.

After the boil, the hot break is removed and the wort is cooled. If required the wort is diluted

with water to achieve a gravity of 15.5 "P, Fermentation of wort with gravity higher than 11"P

is termed "high gravity brewing" and due to the additional sugars present, results in a higher

than required alcohol concentration at the end of fermentation, which is then corrected by

dilution. High gravity brewing is used because it increases the production capacity of a

brewery (Pfisterer and Stewart, 1976).

Wort is essentially the yeast growth and fermentation media. During fermentation yeast

collected from a previous fermentation is added to the wort. The addition of yeast to wort is

referred to as "pitching", and the amount of yeast added per volume of wort is called the

pitching rate. At the start of fermentation process there is a short lag phase while the yeast

adapts to its environment. Biomass is increased with exponential yeast growth, sugars

(predominantly glucose, sucrose, maltose and maltotriose (Wainwright, 1997)), free amino

nitrogen (mono-, di-, tri- and sometimes also tetra-peptides as well as ammonia ions (Walker,

1998)) and lipids are predominantly utilised, decreasing their concentrations significantly.

Oxygen is present in wort, but this is largely utilised during the yeast growth phase. True

fermentation is anaerobic, thus the energy required for growth and other yeast metabolic

functions is provided by glycolysis followed by ethanol production. Nearing the end of

fermentation, which is maintained at II°e, the yeast flocculates (aggregates and forms

flocculation complexes called "floes", which in the case of lager yeast sink to the bottom of

the vessel) as nutrients run low and alcohol increases. The yeast is removed from the bottom

of the vessel for re-pitching into the next brew. The fermented wort with a final gravity of I to
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2°P and alcohol of 7% (v/v) is chilled to ooe for the maturation process during which the

secondary fermentation takes place by the remaining yeast. This is critical for the flavour

profile of the beer and no further drop in gravity is expected. The beer is filtered, diluted with

water to obtain the correct alcohol concentration (usually around 4.5% v/v) and carbonated to

specification before packaging and pasteurisation (Briggs et al., 1981b).

Barley and malt

Structure of barley

The outer layers surrounding the endosperm are the aleurone, pericarp, testa and husk where

the husk forms the outermost layer. The endosperm cells are filled with starch granules

embedded in protein. A cell wall consisting mainly of hemicellulose consisting of p-glucan

(P-l---+4and P-l---+3 linked glucose) and pentosans (polymers of pentoses together with some

protein surround the endosperm cells). The aleurone is about three cells thick and this is

where enzymes are synthesised during germination. The pericarp and testa form a waxy,

semi-permeable double barrier that prevents the leakage of substances like sugars, enzymes

and amino acids from the grain. The husk consists of two overlapping leaf like layers,

previously part of the flower, and acts as a relatively water and insect-proof barrier (Briggs et

al., 1981a and Wainwright, 1997) (Fig. 1).

Aleurone

Endosperm

Figure 1 Diagrammatic representation of a barley kernel indicating the aspects referred

to in the text.

Husk
Pericarp and testa
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The major components of the residual cell wall that make up the husk are cellulose (linear ~-

1-4-glucans, 22.6%) and pentosans (20%) (Briggs et al., 1981a). The predominant barley

husk pentosan is arabinoxylan and the husk pentosan fraction is made up of 75% xylan, 13%

arabinose and 12% uronic acid (Salo and Kotilainen, 1970). The arabinoxylans found in the

endosperm are, however, different to those found in the husk. Both consist of a ~-(1-4)-D-

xylopyranose residues, variously substituted with a-L-arabinofuranose. The backbone of the

husk arabinoxylan also contains D-glucuronic acid moieties (Briggs et al., 1981a and

Wainwright, 1997).

Microbial infection of barley

Most of the micro-flora on barley in the field consists of bacteria, wild yeast and filamentous

fungi originating from the air and soil. Bacteria are the most predominant with the wild yeasts

and filamentous fungi making up approximately 1 and 0.1% of the total respectively (Priest

and Campell, 1987, Briggs, 1978 and Beck et al., 1991). Microbial infections of the grain are

generally restricted to the outer layers, namely on the husk and between the husk and pericarp,

but penetration into the endosperm does occur (Schwarz et. al., 2002). The type and extent of

infestation varies according to growing region, variety susceptibility and climate (Etchevers et

al., 1977) of which climate is believed to play by far the biggest role (Beck et al., 1991). The

microbial contamination of barley has repeatedly been linked to poor quality malt (Gjertsen

et. al., 1965, Haikara, 1983, Noots et. al., 1998, Prentice, and Sloey, 1960, Schwarz et. al.,

2001, Gyllang et al., 1977, Etchevers et al., 1977).

Although bacteria and yeasts are not considered to be unimportant, it is the fungi that have

been studied most, presumably as they are often associated with malt quality issues (Briggs,

1978). Grain without a fungal population is unusual and the fungal genera commonly found

on barley are Altenaria, Cladosporium, Epicoccum, Fusarium, Aspergillus and Penicillium.

Interestingly malt quality problems are often associated with elevated levels of Fusarium

species, which are prominent on European barley and some North American barley, but are

generally found at very low levels on South African barley. Higher overall rainfall or rainfall

during harvest can cause the amount of microbial infestation to increase dramatically

(especially Fusarium) and the increased microbial load corresponds to malt quality decline. In

South Africa, where the climate is generally drier, the microbial load is not always higher, as

in Europe, when there is a seasonal malt quality issue. However, the composition of the

microbial population may vary due to climactic differences/stress (Ackerman A., 1998 and
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Rabi and Lubben, 1993). Most of the fungi on the grain secrete enzymes including endo-

xylanases, ~-glucanases and proteinases (Hoy et. al., 1981, Kanauchi and Bamforth, 2002 and

Schwarz et. al., 2002). These enzymes facilitate the breakdown of the fungal substrate, in this

case the outer layers of the grain, generating nutrients that can be assimilated by the fungi.

Bacterial species most predominant on pre-harvest barley are Erwinia herbiclao and

Xanthomonas campestris (Flannigan et al., 1996). Aside from these, other prevalent bacterial

species that occur on dry stored barley include Alcaligens sp., Arthrobacter glob iform is,

Calvibacter iranicum, Lactobacillus spp. and Pseudomonas fluorescens (Petters et al., 1988).

Lactic acid bacteria are considered to be spoilage organisms in the brewing process. However,

it was found that on the dry stored barley (pre-malting) the level of lactic acid bacteria were

relatively low, with Gram-negative coliforms and pseudomonads more predominant

(O'Sullivan et al., 1999). Low levels of actinomycetes also occur on barley, mainly of the

Streptomycetes species (S griseus and S albus)(Hill and Lacey, 1983). The most frequent

yeasts are Candida calenulate and C. vini, Debaryomyces hansen ii, Hansenula polymorpha,

Kloeceera apiculata, Rhodotorula muciloginosa, Sporobolomyces roseus and Trichosporon

beigelii species (Petters et al., 1988). Aside from the antimicrobial factors produced by some

of the bacteria (see Chapter 2) many of these microorganisms also secrete enzymes, toxins,

hormones and acids that may influence the grain which they are infecting (Noots et al., 1998).

Malting of barley and malt quality

Apart from growth of microorganisms on the grain in the field and on the dry stored barley

(pre-malting), growth occurs during malting and during malt storage (Anderson et al., 1967

and Prentice and Sloey, 1960). The conditions during malting are well suited for further

microbial growth on barley with regard to temperatures, moisture and airflow. The population

of some microorganisms increase substantially during steeping and germination (Kotheimer

and Christensen, 1961), but many of these are killed off during the kilning process when the

malt is dried. The total microbial load on malt is comparable to that in barley although the

composition is not (Petters et al., 1988).

Despite that fact that many bacteria are washed off during steeping (less so than fungi), the

bacterial load can increase up to 600 times during malting. The load on malt is reported to be

anything from 20 times higher (Haikara et al., 1977) to less than half the original level in

barley (Douglas and Flannigan, 1988). Quantifying fungal population size or load is not as

simple, but a similar increase can be expected. The increase in bacterial counts is most
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dramatic during steeping (although dominated by pseudomonas, the lactic acid bacteria also

increase substantially), decreasing slightly at the end of germination and reduced by >98%

during kilning. Some bacteria certainly remain on the malt as seen by their presence in

mashing, generally lactobacilli and pediococci (which include some of the beer spoilage

organisms) dominate during the early stages of mashing decreasing steadily during the mash

program (O'Sullivan et al., 1999 and Booysen et al., 2002).

Studies have shown that certain fungi are more resistant to heat (e.g. Aspergillus,

Cladosporium and Penicillium species) and continue to grow on the malt (Gyllang et al.,

1977), others even reproduce rapidly at the early kilning temperatures (e.g. Rhizopus and

Mucor species) (Douglas and Flannigan, 1988 and Haikara et al., 1977). Once kilned the

moisture content of the stored malt is critical, up to 4-6% (w/w) moisture little change occurs

in the microbial population on malt over an 18 month period. At 14% (w/w) moisture,

however, a progressive increase in fungi such as Aspergillus species occurs. Above 20%

(w/w) moisture Penicillium species predominate. Storage temperature and carbon dioxide

levels are also critical, the optimal growth temperature for fungi is 25 to 35°C and more than

10%v/v carbon dioxide greatly reduces the fungal count (Axcell et al., 1986).

Microbe-contaminated barley usually has increased post-harvest seed dormancy, a decreased

capacity to germinate and increased malt yield loss during malting. The starch in the malt

tends to be more modified (broken down) than normal. The increased modification is

proposed to be due to the presence of additional microbial sugar hydrolases (including a-

amylase as observed by Gjertsen et al., 1965) and proteinases (Schwarz et. al., 2002, Noots et.

al., 2003 and Pekkarinen, 2003). Damage by contaminants leads to off-odour and

discolouration of the malt as well as the risk of mycotoxins (Spicher, 1989).

To further support the microbial influence in these malt quality effects the addition of

microorganisms such as Fusarium species to clean barley during malting was shown to cause

detrimental changes to the malt similar to those seen when field infected barley was malted

(Prentice and Sloey, 1960). Also, it has been observed that barley from a particular harvest

resulted in poor quality malt from only one of two malting plants where it was used. The

design of the effected malting plant was discovered to encourage more microbial growth

during malting than the other plant due to the more efficient carbon dioxide extraction system.
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If the carbon dioxide concentration was more than 10% (v/v), a detectable decrease in fungal

growth was seen. Itwas speculated that the microbial population on the grain was predisposed

to causing malt quality issues and was aggravated during malting (Axcell et al., 1986).

Wort

Malt quality directly impacts on wort, either the production thereof or the actual wort

constituents. For instance, inconsistent brewhouse performance, including inefficient removal

of cold break (precipitation formed during the cooling of wort after boiling), and subsequent

wort clarity problems are associated with variations in the organic acid profile of batches of

malt resulting from both microbial and barley metabolism during malting (Stars et al, 1993).

Slower mash filtration in the production of wort have also been attributed to infected barley

(Prentice and Sloey, 1960). High wort colours and nitrogen has been associated with the

microbially induced uncontrolled liberation of nitrogenous substances from barley during

malting (Bol et al., 1985). A decrease in p-glucan concentration as well as increased extract

(sugar concentration), total soluble nitrogen and free amino nitrogen concentrations are

observed in wort due to the increased starch modification during malting attributed to

microbial infection. The decrease in p-glucan results in lower wort viscosity which has been

negatively correlated to beer foam quality (Evans et al., 1999a). The increased extract, total

soluble nitrogen and free amino nitrogen are believed to explain the increased degree of

fermentation observed by Haikara (1983).

Yeast and Fermentation

Brewing yeast

There are about 700 known species of yeast, of which only a few are harmful to man. One

genus of particular interest and quite different to the rest is Saccharomyces, which not only

produces alcohol, but is able to ferment maltose and maltotriose as well as flocculate at the

end of fermentation. The yeast species of interest in the case of lager beers is S. cerevisiae.

Yeasts are fungi, typically 0.7 11min diameter and roughly spherical in shape. The genome

has been completely sequenced with 6000 or so genes identified (Hammond, 1999). The

required role of yeast in brewing is to produce alcohol and carbon dioxide with corresponding

decrease in sugar levels and pH as well as producing a range of flavour active compounds. It

is within this range of metabolic by-products that one beer is distinguished from another
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(Lentini et al., 2003). Yeast requirements are fermentable carbohydrates, assimilable nitrogen,

molecular oxygen, the vitamin biotin, sources of phosphorus and sulphur, calcium and

magnesium ions and trace elements such as copper and zinc ions (Walker and Birch, 1998).

These are supplied mainly as maltose, amino acids, B vitamins from malt, trace elements from

malt and mash (brewing) water. Yeast is a facultative anaerobic organism requiring oxygen

during the initial growth phase. During fermentation sugars are metabolised to provide energy

(ATP) producing alcohol, heat and carbon dioxide as by products (Lewis and Young, 1998).

Due to the "Crabtree effect", glucose sensitive yeast such as brewing yeast or S. cerevisiae is

able to ferment even in the presence of oxygen (Walker, 1998).

Areas of interest concerning yeast quality are the aging process of yeast, yeast stress factors

and yeast handling in the brewery. Yeast cells, like mammalian cells, have a limited

replicative lifespan. Yeast cells generally replicate 10-30 times (species and strain dependent)

before cell death occurs by senescence. During this aging process the cell undergoes

physiological and morphological changes accompanied by changes in gene expression

effecting sugar uptake, alcohol production, formation of flavour active components and

flocculation behaviour. Cell death can also occur by a process of necrosis as a result of

damage to intracellular components compromising cell integrety. Typically this is due to

exposure to excess stress or repeated exposure to low-level stress (Powell et al., 2000 and

2003 and Smart, 1999 and 2003). Generally aging yeast was found to be more susceptible to

the effects of these stresses (Rodgers et al., 1999). Yeast stress factors (Heggart et al., 1999)

include osmotic pressure, low pH, high ethanol concentration (White et al., 2003), high

temperatures, high carbon dioxide levels (Hammond, 1999, Wackerbauer et al., 1997 and

Kruger et al., 1992), mechanical stress or shear (Stafford, 2003), high physical pressure and

oxidative stress (Martin et al., 2003). These stressors impact the physiological status of the

yeast decreasing yeast viability (dead and alive) and vitality (health), inhibiting growth,

changing cell membrane stabilisation and functioning, decreased genetic stability (Stewart et

al., 1999 and Casey and Ingledew, 1983) and cumulating in the activation of stress related

genes (Brosnan et al., 2000) and protective mechanisms. Overall stress is detrimental to

fermentation performance, increasing fermentation times and impacting on beer quality

(Lentini et al., 2003 and Smart 2001).
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After yeast flocculation, during fermentation, the yeast is cropped (collected from the

fermentation vessel) to be re-used or re-pitched in subsequent fermentations in a process

known as serial re-pitching, Serial re-pitching and yeast handling can result in reversible and

irreversible physiological deterioration of the yeast, particularly during the cropping, storage

and treatments such as acid washing used to remove contaminant bacteria (Jenkins et al.,

2001 and 2003a and b). An increase in surface charge with re-pitching changes the

flocculation behaviour of yeast resulting in gradual increased flocculation (Jenkins et al.,

2002 and Rhymes and Smart, 1996 and 2001). Due to the additional stress of high gravity

brewing, the yeast is being used for fewer generations than in standard gravity brewing

(Cholerton, 2003). Besides the obvious role of yeast in fermentation it has been shown that

improved yeast vitality results in significantly better beer quality, specifically aspects of

flavour (Guido et al., 2004) and beer foam (Pratt-Marshall et al., 2002 and Bamforth, 2003).

Fermentation

Cooled and aerated wort is fermented by yeast in the fermentation vessel to immature or green

beer by the process of primary fermentation during which the yeast also reproduces. This is

followed by much slower secondary fermentation or maturation with far less yeast (post-

flocculation) during which appreciable flavour development takes place and the beer is

matured. The quality of the mature beer is highly dependent on the yeast strain and condition

as well as on wort composition (Lewis and Young, 1998). Fermentation with high gravity

wort leads to increased yeast stress due to increased osmotic pressure aggrevated by the

higher levels of alcohol produced and higher carbon dioxide concentrations (Heggart et al.,

1999).

In a good fermentation oxygen is taken up by the yeast (aiding flavour stability of the final

product), yeast reproduces rapidly after only a short lag phase, sugars are utilised and ethanol

is produced efficiently and the correct flavour profiles are generated. When the fermentable

sugars have been utilised the yeast flocculates out at the right time and to the correct degree

for cropping and maturation respectively. Good temperature control avoids any added stress

on the yeast
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Anomalous fermentations associated with infected malt include slower fermentation rates

(based on observations at SAB, although contrary to Haikara's (1983) observations),

premature flocculation of yeast leading to incomplete or hanging fermentations where the

yeast will not ferment and remains in suspension (observations at SAB, Kruger et al, 1982).

Premature yeast flocculation (PYF) is a recurring problem in the brewing industry and has

received a lot of attention over the years (Fujii and Horie, 1975, Fujino and Yoshida, 1976,

Hererra and Axcell, 1991a, Morimoto et al, 1975 , and Nakamura et al., 1997). Although

associated with infected barley the link between the infection and occurrence of PYF has not

yet been explained. Yeast flocculation and PYF are discussed in more detail below.

Flocculation

Yeast flocculation (Smit et al., 1992, Speers, et al., 1992, Stewart and Russel, 1986, Stratford,

1992, Stratford and Carter, 1993) is an integral part of the fermentation process making it

possible to collect the yeast from the bottom of the fermentation vessel at the end of primary

fermentation, the yeast is then re-used for subsequent fermentation. Yeast flocculation occurs

when the c-mannan residues of mannoproteins interact with lectin-like proteins (often

glycoproteins) on adjacent cells, forming large aggregates or floes. Although the mannan

residues are always present on the yeast cell surface (Stratford and Carter, 1993) the lectin-

like proteins, which specifically bind sugars, are synthesised by yeast during fermentation and

positioned on the outside of the yeast cell in preparation for flocculation (Stratford and Cater,

1993). When sugars are present flocculation does not occur, probably because the sugars bind

the lectin-like proteins and prevent floc formation (Verstrepen et al., 2003). Once the sugars

are utilised during fermentation and their concentration drops flocculation occurs (Smit et al.,

1992). As yeast cells age flocculation patterns become stronger. This is associated with

increased cell surface hydrophobicity shown to correlate with flocculation (Powell et al.,

2003). Increased flocculation capacity resulting from serial re-pitching may be due to one or

more of the following factors, viz., the observed increase in yeast cell surface charge

associated with flocculation (Jenkins et al., 2003b), the accumulation of calcium and

magnesium ions (known to play a role in flocculation) from repeated exposure to wort

(Jenkins et al, 2003b) and the selection of more flocculent yeast during cropping from the

heterogeneous yeast in the fermentation vessel cone (Powell et al, 2002 and 2004).
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Premature yeast flocculation (PYF)

PYF occurs when flocculent yeast (i.e. yeast with lectin-like proteins in place on the cell

surface) flocculates prematurely during yeast fermentation in the presence of high sugar

concentrations (Stratford, 1992). This results in un-attenuated wort with high residual extract

and low end-of-ferment cell counts, all of which impact on the beer quality (Inagaki et al.,

1994). The premature removal of yeast may be a purely physical event associated with one or

more factors that aggregate the yeast. Alternatively the yeast could perceive nutrient

starvation as a result of a factor or factors that interact with the yeast membrane and inhibits

sugar uptake (Grenier et al., 1993, Okada and Yoshizumi, 1970 and 1973 and Okada et al.,

1970), thus triggering the flocculation mechanism prematurely.

The PYF factor(s) was found to be from barley, more specifically barley husk (Axcell et al.,

1986 and Herrera and Axcell, 1991a), which is predominantly composed of arabinoxylan

(hemicellulose or pentosan) and cellulose (90% by weight) (Briggs et al., 1981, Hrmova et

al., 1997). The factor(s) appears to be a high molecular weight (HMW) polysaccharide(s),

rich in arabinose and xylose (Axcell et al., 1986 and Herrera and Axcell, 1991b), acidic in

nature and containing some nitrogenous material (Fuijno and Yoshida, 1976). The latter was

found to be essential for the PYF activity (Fujii and Horie, 1975 and Morimoto et al., 1975).

Axcell et al. (1986) proposed the nitrogenous component to be comprised of basic peptides

produced by barley in response to microbial infections with antimicrobial properties (see

Chapter 2 for more information on plant response to infections). More recently Koizumi et al.

(2004) presented work where they claim to have identified the PYF factor as a complex non-

protein containing polysaccharide (predominantly arabinose and xylose) with an average

molecular weight of 40 kDa. Enzymatic digestion showed that the important region was only

5 kDa. A similar, but non-active factor was found in non-PYF malt.

Beer quality

Factors in beer quality

Beer quality can be defined in terms of physical and sensory attributes. Physical aspects such

as clarity, foam, lacing and colour are very important and give the first impression of the

product. The sensory characteristics include shelf life or flavour stability, consistency of

flavour profile and aroma for the specific beer. In addition the beer must not contain anything
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harmful such as mycotoxins (from fungi on malt) which are neither visible nor impact on the

flavour. Different brands and different style beers have diverse quality requirements, for

instance an off flavour in one type of beer will be a required flavour in another and some

require a large head of foam while in others it is of little importance. Poor quality malt, often

associated with infection of barley can, however, impact on many aspects of beer quality be it

positive or negative.

Quality and microbial infections

The presence of fungi on barley is associated with the presence of mycotoxins such as

deoxynivalenol (Flannigan et al., 1985, Schwarz et al., 1997) which are secondary fungal

metabolites produced under stress conditions such as an imbalance of nutrients. These

mycotoxins are carried through to the beer and can have a health impact on the consumer. The

concentration of mycotoxins in barley or beer does not correlate to the microbial load on the

grain suggesting that the type of fungi and the environmental conditions (stress on fungi) are

more important. Mycotoxins are generally heterocyclic compounds and not of a protein or

carbohydrate nature (Scott, 1984 and Fischbach and Rodricks, 1973).

A decrease in flavour stability of beer and the presence of several off-flavours has been linked

to the use of infected malt (Etchevers et al., 1977). Infected malt can also lead to haze (fine

particulate matter in the beer) in the final beer (Etchevers et al., 1977)

Gushing of beer, associated predominantly, but not exclusively, with Fusarium species

infection of barley, is the uncontrolled release of carbon dioxide occurring when a beer is

opened and beer/foam gushes out (Casey, 1996, Gardner, 1973 and Gjertsen 1967). It is

believed to be a nucleation process requiring solid hydrophobic particles or gas residues

adsorbed onto a solid support (Gardner, 1973). Beading (the gentle release of small carbon

dioxide bubbles from the body of the beer) also requires nucleation sites and helps to maintain

beer foam (Shafer and Zare 1991 and Ryder et al., 1991). Factors in beer, which cause

beading to increase and which so far have not been determined, may be connected with

gushing factors.

Fungal polypeptides are associated with the phenomenon of gushing (Amaha et al., 1973,

Haikara, 1980, Kitabatake and Amaha, 1974 and 1977). Hippeli and Elstner (2002) suggest

that the factor isolated by Kitabatake and Amaha (1974 and 1977) is a fungal hydrophobin

(16.5kDa hydrophobic peptides with eight disulphide bonds) based on the chemical and
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molecular information. Hydrophobins are strongly surface active proteins produced and

secreted by fungi (Wessels et al., 1991, Kershaw and Talbot, 1998 and Wosten and Vocht,

2000), and are involved in the formation of infection structures, amongst other things

(Wessels, 1997). This role may explain why Gjertsen et al. (1965) observed that the

interaction of the fungi with the substrate (in this case barley) was required for gushing to

occur. Hippeli and Elstner (2002) further suggest that the gushing factor isolated by

Kitabatake (1978) and the factor isolated by Weidender (1992) are one and the same and

again based on chemical and molecular information identified as members of the non-specific

lipid binding protein (ns-LTP) multigenic family of proteins (see Chapter 2). This family of

proteins includes ns-LTP1, which is an abundant protein in the aleurone layer of barley grain

endosperm (Yamada, 1992 and Kader, 1996) is very surface-active, being amphipathic and

extremely important in the brewing industry as a foam protein.

The factors associated with gushing are hydrophobic or amphipathic and can thus form the

nucleation sites required for the release of carbon dioxide. Both gushing and beading are

nucleation processes and one of the possible gushing factors (ns-LTP1) is linked to foam as is

beading. This suggests there may be a commonality between gushing, beading and foam.

Quality and beer foam

Beer foam is complex and multifaceted. Being an important quality parameter of the final

product is has been much studied. However, the requirements from raw materials and the

brewing process needed to ensure good beer foam is still not fully understood. Clearly a

number of factors impact on beer foam and very likely the combination thereof is important.

Beer foam will be discussed according to what foam is and how it works, the positive and

negative factors impacting on foam, how foam is evaluated and the link between foam and

malt quality.

The mechanics of beer foam

When beer, supersaturated with gas (usually carbon dioxide), is poured, foam forms on top of

the beer when the air and the gas in the beer are encapsulated into bubbles. The bubble walls

or lamellae are predominantly made up of positively charged surface active malt derived

proteins/polypeptides and glycoproteins interacting with each other (Bamforth, 1995, Asano

and Hashimoto, 1980). Ionic interactions with negatively charged iso-a-acids from hops

stabilise these protein-protein interactions (Ryder et al., 1991, Simpson and Hughes, 1994,
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Asano and Hashimoto, 1976). Furthermore, the presence of ions (notably divalent cations)

(Rudin and Hudson, 1958) stabilise these ionic interactions between the hops acids and the

proteins (Rudin, 1958). Initially the foam is very wet and rapid drainage of liquid away from

the foam and into the beer will occur. The rate of drainage is dependant partly on the viscosity

of the beer, beer with higher viscosity results in slower drainage and more stable foam (Lusk

et al, 2001a). Viscosity of beer is associated with barley gums or non-starch polysaccharides

(including arabinoxylan and ~-glucans) and dextrins (residual starch, remaining after starch

breakdown, not metabolised by yeast) (Comrie, 1959) and glycoproteins (Ryder et al., 1991).

The latter actually forms part of the foam structure and as such tends to cause a localised

increase in viscosity at the foam surface, retarding foam drainage. As the foam drains and

becomes drier, spherical and fairly evenly sized bubbles become polyhedral and unequally

sized. The lamellae become thinner and more fragile and bubbles near the air interface start to

rupture (Ryder et al., 1991). Within the foam bubble coalescence occurs, where two similarly

sized adjacent bubbles become one bigger bubble as the lamellae in between become thinner

due to drainage and ruptures (Ronteltap et al., 1991 and Bamforth, 1985). The gas pressure in

smaller bubbles is greater than in the larger bubbles (Ronteltap, 1991 and Comrie, 1959), the

tendency is to reduce and equilibrate the pressure, this occurs by a process of

disproportionation where a smaller bubble disappear into larger bubbles, reducing the overall

pressure. Both coalescence and disproportionation lead to the breakdown of foam as bubbles

become larger and foam becomes coarser. The gas inside the bubbles will pass through the

lamellae. The rate at which this occurs depends on the solubility of the gas in the beer. The

more soluble the gas the faster disproportionation occurs and the less stable the foam. Carbon

dioxide for instance is more soluble than nitrogen gas and beer with nitrogen gas typically has

more creamy and stable foam (Comrie, 1959, Fisher et al, 1999 and Prins and van Marle,

1999).

As the foam drains and bubbles move through the foam layer, becoming larger and finally

disappearing, the foam is replenished from underneath by a fresh supply of small bubbles

generated by beading within the beer. Beading and bubble formation require the presence of

nucleation sites and supersaturation of the beer with gas. Increased gas and nucleation to

create beading will enhance foam (Parish, 1997).
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Foam-positive factors

Many of the foam-positive factors have been mentioned already, such as the surface-active

proteins, iso-n-acids, metal ions, gas composition and components that increase beer viscosity

(e.g. gums, dextrins, glycoproteins). In addition, melanoidins formed during kilning of malt

and derived from monosaccharide and amino acids are also foam-positive, apparently

stabilising foam through ionic interactions with proteins (Jackson and Wainwright, 1980).

Anderson (1966) reported the presence of a foam stabilising substance comprising 70%

proteins and 30% carbohydrate, presumed to be a glycoprotein. Interestingly, the

carbohydrate portion was rich in xylose and arabinose, the sugars prominent in malt husk

material.

Foam proteins are of particular interest in this work and these will be reviewed in more detail.

Foam active proteins from malt are generally surface active (Ryder et al., 1991), of high

molecular weight (Melm et al., 1995) and hydrophobic in nature (Slack and Bamforth, 1983).

Some of the most abundant foam proteins in beer are LTPI (Hejgaard, 1977, Jegou et al.,

2000 and 2001), proteins Z4 and Z7 (Hej gaard and Kaersgaard, 1993) and members of the

hordein storage protein family (Asano and Hashimoto, 1980).

LTP 1 is a basic protein with a molecular weight of 9696 Da (Bernhard and Sommerville,

1989), is made up of 91 amino acids and has a basic isoelectric point between 8 and 9 (Jones,

1995). It has been sequenced and the tertiary structure has been elucidated (Heinemann et al.,

1996). Its tertiary structure consists of four a-helixes linked by flexible loops and a

hydrophobic cavity that can accept one fatty acyl chain (Shin et al., 1995) (Fig. 2). Due to the

lack of substrate specificity with respect to the lipids they bind, they are referred to as non-

specific LTPs or ns-L'IPs (Rueckert and Schimdt, 1990 and Kader, 1990).
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Protein Z4 is a 40 kDa protein associated with foam stability (Hejgaard and Kaersgaard 1983

and Lewis and Young, 1998) with very high surface viscosity and elasticity properties (Maeda

et al., 1991, Yokio et al., 1989 and Douma et al., 1997). It accounts for 10-25% of non-

dialysable proteins in beer, approximately one third of which is glycosylated (Hejgaard and

Kaersgaard, 1983) and in which form it is considered to be even more foam-active (Curioni et

al., 1995). Protein Z7 is another isoform of protein Z but Z4 is by far the most prominent in

the majority of varieties, making up approximately 80% of all protein Z (Evans and Hejgaard,

1999).

Hordeins consist of a complex polymorphic mixture of proteins covering a wide range of

molecular weights often identified by their high levels of proline and glutamine (Sheehan et

al., 2000 and Sheehan and Skerritt, 1997). A number of different hordeins have been

identified in beer foam (Evans and Sheehan, 2002).

Foam-negative factors

Foam-negative factors include lipids, detergents (Evans and Sheehan, 2002), basic amino

acids (Furukubo et al, 1993) and ethanol. Lipids (from malt or yeast) and detergents (residual

from cleaning tanks) both disrupt the protein-protein interactions in the lamellae surrounding

the bubbles, increasing the rate of disproportionation and coalescence (Wilde et al., 2003,

Dickie et al., 2001, Roberts et al., 1978 and Coke et al., 1990). Although low concentrations

of ethanol «1 %(v/v)) enhance foam, at the levels found in beer it is detrimental to foam

stability. This is believed to be due to the impact of ethanol on surface tension and carbon

dioxide solubility (Bumbullis and Schugerl, 1979 and Pierce, 1978) although Brierley et al.

(1996) report reduced rigidity of the adsorbed protein layer and accelerated drainage as the

cause.

Impact of raw materials on foam

The main raw materials in beer include water, malt, hops and sugar adjunct. Water and malt

are a source of the metal ions considered to be foam positive. Malt and hops are a source of

the foam negative lipids. The major foam components, foam positive proteins, are from the

malt as are the gums and dextrins, which contribute to wort viscosity. The use of adjunct

dilutes the foam material from malt as well as the negatives but generally it is detrimental to

foam to use a lower percentage malt.
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The contribution of malt to foam outweighs that from the other raw materials. Malting will

impact on the protein population of the malt but the barley itself may contribute in a number

of aspects. Differences in malt quality were shown to impact on foam stability by as much as

24%. Malt protein Z4, wort p-glucans and wort viscosity all correlated positively to beer foam

stability while the index of malt modification (ratio of total soluble nitrogen in wort and total

malt nitrogen) and malt free amino nitrogen correlated negatively. Ns-LTPI did not correlate

to foam stability, which was not surprising as LTP 1 is important for foam formation, an

aspect not measured by the foam method used in this case (Evan et al., 1999c). In Australia,

barley that tended to have higher levels of ns- LTP 1 originated from the wetter growing areas

regardless of variety (personal communication Dr. E. Evans of University of Tasmania),

although varietal variations also exist (Evans et al., 1999b). This may have been due to

microbial contamination, however this has not been examined. Microbial infection of barley

has a direct impact on malt quality, as mentioned earlier starch breakdown increases, and this

impacts on foam through decreased wort viscosity. Higher extract impacts on fermentation,

which certainly impacts on the final beer quality, including foam (Haikara, 1983).

Impact of process on foam

Foam proteins increase during malting (Evans and Hejgaard, 1999 1999a and Bamforth,

2000), but over-modification (enzymatic breakdown of starch and protein during malting) of

malt will result in smaller proteins and poorer foam as will residual protease activity in the

mashing process (Whitear, 1978, Krauss, 1970 and Hudson, 1971). During wort boiling a

precipitate (cold break or trub) is formed due to the interaction between polyphenols and

proteins, which is removed. This process removes proteins including foam active proteins.

Therefore, less polyphenols would result in less proteins being removed (Pierce, 1978).

Excessive kilning reduces the level of polyphenols in the malt. Trub formation during the boil

also removes foam-damaging lipids (Slack and Bamforth, 1983 and Bamforth, 1985).

Reduced wort boiling was seen to enhance foam presumably due to less denaturation of the

nitrogenous components of foam and less protein loss due to precipitation (Comrie, 1959 and

Hudson and Birthwistle, 1966).

High gravity brewing has been shown to be detrimental to foam. Less efficient extraction of

proteins from malt in the thicker mash (Cooper et al., 1998) and a greater loss of proteins by

precipitation during the wort boil has been shown to contribute to this negative effect. In
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addition high gravity brewing places additional stress on the yeast due to increased osmotic

pressure in response to which yeast tends to release more proteinase A, breaking down

proteins associated with foam (Bryce et al., 1997, Comrie, 1959 and Bamforth, 2000). Any

foaming that occurs during the brewing process is detrimental to foam due to the loss of foam

material, this occurs especially during fermentation with the formation of carbon dioxide

(Hudson, 1971) and is exacerbated with the higher carbon dioxide levels associated with high

gravity brewing. Good yeast vitality is essential for foam quality, yeast coping better with

stress and avoiding unnecessary yeast lysis which release foam negative lipids amongst other

things (Roberts, 1977).

Excessive filtration of beer prior to packaging is foam negative presumably due to the

removal of nucleation sites for beading. Pasteurisation is foam positive. This effect has been

attributed to inactivation of any residual protease activity in the beer (Bamforth, 2000).

Foam assessment

To be able to improve and study foam, an acceptable measurement of foam quality and

stability is required. None of the current methods are universally accepted. Discrete

assessments of individual aspects of foam exist, measuring for instance foam stability,

formation or cling (adhesion to the glass) in isolation (Bamforth, 1999 and Evans and

Sheehan, 2002). Methods generate foam naturally using a pouring mechanism or artificially

using gas or shearing. The former is not reproducible and the latter does not represent the

foam consumers' see (Constant, 1992). One of the more widely used and accepted methods is

NIBEM (Klopper, 1977), foam is generated using shearing where the beer is forced through a

small aperture on route from the bottle to the glass. The collapse of the foam in the glass is

followed by a probe and the time it takes for the foam to collapse a fixed distance is noted.

Alternatively, instead of measuring physical aspects of the foam, the foam positive proteins

are quantified and related to beer foam. Bamforth (1995) fractionated beer according to

hydrophobicity and quantified the protein in the hydrophobic fraction. The measurement of

specific foam protein such as protein Z4 or ns-LTP1 with antibodies and enzyme-linked

immunosorbant assay (ELISA) is also widely used (Lusk et al., 2001b, Ishibashi et al., 1996

and 1997, Kakui et al., 1998, Evans et al, 1999c and Evans and Hejgaard, 1999). ELISAs for

LTP measurement were also used in this study as reported in Chapter 3.
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The role played by the microbial infection of barley on seemingly so many aspects of beer

production and quality warrants reviewing the possible response of plants to microbial

infestation, plant antimicrobial factors, microbial response to competition and antimicrobial

factors from microorganisms (Chapter 2).
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Chapter 2

Antimicrobial factors in beer brewing

Origin of antimicrobial factors

Cereals always have microorganisms growing on them although the microbial load and

composition will vary. The micro-flora on barley, consisting predominantly, in descending

order, of bacteria, wild yeast and filamentous fungi (Priest and Campell, 1987, Briggs, 1978

and Beck et al., 1991), has already been discussed in Chapter 1. These organisms colonise

plant tissue such as the outer layers of the barley grain as a food source. This requires

penetration and solubilisation achieved mainly by secretion of enzymes such as carbohydrases

to break down cell walls and the use of physical mechanisms such as the formation of

haustoria at the end of fungal hyphae. Not all the microorganisms found on plants are

necessarily plant pathogens and pathogenicity of microorganisms will depend on the

mechanisms available to the organism to invade the plant tissue and its ability to colonise it

successfully (Briggs, 1978). Microbial infection of plant tissue, such as barley seeds, can

elicit a number of different defence responses from the plant to protect itself from further

infestation including the production of antimicrobial factors, often peptides. The

microorganisms themselves can also produce antimicrobial factors as a mechanism to

compete with other organisms in a heterogeneous microbial population.

Plant defence and antimicrobial factors

Plants have an innate immune system, which is either constitutive or induced to cope with

sufficiently pathogenic microbial infestation. The constitutive type defence responses are in

place before the plant tissue is challenged, while the induced plant defence responses are

activated when plant tissue is challenged by pathogens (Carr and Klessig, 1989).

The success of the pathogenic challenge on plant tissue depends on the genetic relation

between plant and pathogen - if the pathogen has the mechanism to evade the particular

immune response produced by the plant, a successful infection may occur. Physical barriers

such as waxes, cutin and suberin on the outside of plant organs form part of the constitutive

defence response (Morrissey and Osbourn, 1999). Plant tissue at high risk of infection may
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constitutively contain chemicals such as alkaloids, unsaturated lactones, sulphur compounds,

saponins, phenolic compounds (Carr and Klessig, 1989), active oxygen and nitrogen species

such as hydrogen peroxide and peroxynitrite as well as antimicrobial peptides and proteins, all

of which inhibit microbial growth (Broekaert et. al., 1997 and Garcia-Olmedo et al., 2001).

In some instances the plant synthesises inhibitors of microbial degradative enzymes to prevent

the breakdown of plant tissue by these enzymes (Morrissey and Osbourn, 1999).

Gene recognition can occur between plant and pathogen, which triggers a complex signal

transduction pathway in the plant cell. Dependent on the signal perceived, an appropriate

plant defence response may be activated. Such induced plant defence responses include

oxidative burst, lignification, hypersensitive response, an increase of defence related gene

expression and an increase in antimicrobial peptide and protein synthesis. The oxidative burst

response is characterised by rapid accumulation of hydrogen peroxide in the challenged plant

tissue resulting in cross linking of structural proteins of the cell wall to make the plant tissue

less penetrable by the pathogens (Lamb and Dixon, 1997). Lignification is closely related to

the oxidative burst and is the process whereby certain compounds synthesised in the cell are

polymerised in a free-radical mediated process in the presence of hydrogen peroxide and

peroxidase to form an extremely strong and resistant structure (Pearce and Ride, 1980). The

hypersensitive response includes mechanisms such as cell death of the infected cells

inhibiting further spread of infection, production of hydrolytic enzymes, phytoalexin (low

molecular weight biocides) synthesis and lignification (D'Silva et. al., 1998).

The presence of pathogens modifies the host cells in a number of ways, for instance, changing

the ion fluxes, phosphorylation and dephosphorylation events and production of reactive

oxygen species (Fritig et. al., 1998). These changes will trigger defence responses and lead to

the production of endogenous specific defence messages such as ethylene, salicyclic acid or

lipid derived molecules e.g. jasmonate. These messages lead to the expression of genes and

production of proteins and peptides (Creelman and Mullet, 1997).

Much of the research done on plant defence uses seed tissue, including barley seeds,

suggesting that antimicrobial factors or defence mechanisms commonly occur in seeds

(Osborn et al., 1995). Many of the antimicrobial factors are active against a selection of

bacteria and/or filamentous fungi and/or some wild yeast but only in one instance is inhibitory

activity towards Saccharomyces cerevisiae, the yeast species used in brewing, reported

(Agizzio et al., 2003).
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Proteins

Pathogenesis related proteins can act on microbial plasma membranes or cell walls (Van Loon

and Van Strien, 1999). Little is known about the action on the plasma membrane although

interaction with ion channels and osmotic pressure playa role (Batalia et. al., 1996). The

pathogenesis related proteins include p-glucanases and chitinases, which degrade p-glucan

and chitin found in the cell walls of certain fungi (Boller, 1993). Leah et al. (1991)

characterised three barley seed proteins, a 26 kDa chitinase, a 30 kDa ribosome-inactivating

protein and a 32 kDa (l-3)-p-glucanase that synergistically inhibited the growth of fungi

(tested against Thrichoderma reesei and Fusarium sporotrichioides).

Peptides

Antimicrobial peptides, isolated so far from plants, all contain 4, 6 or 8 cysteine residues that

form 2, 3 or 4 disulphide bonds respectively making these compounds very stable. They all

act on the plasma membrane of microorganisms and occur intra- or extra-cellularly (Broekaert

et. al., 1997). Thionins, plant defensins, non-specific lipid transfer proteins (ns-LTPs), hevein-

type and knottin-type peptides are the most distinct peptide families with antimicrobial

properties that have been identified so far (Florack and Stiekema, 1994 and Broekaert et al.,

1997).

Thionins

Thionins are approximately 5 kDa in size consist of 45 to 47 amino acids (Florack and

Stiekema, 1994) and all have a pronounced amphipathic character (Clore et al., 1986 and

1987, Hendrickson and Teeter, 1981, Rao et al., 1995 and Stec et al., 1995). They have either

six or eight cysteine residues corresponding to three or four disulphide bonds (Castagnero et

aI., 1992) and apart from a couple of conserved aromatic residues the non-structural residues

tend to be variable with little sequence conservation. The 3D-structure of all thionins on the

contrary are very similar, characterised by an L-shape, where the long arm constitutes two

anti-parallel a-helixes and the short arm a p-sheet with two anti-parallel p-strands.

Thionins occur in a wide variety of plant species including mono- and dicotyledons. A range

of plant tissues express thionins, in barley for instance thionins have been shown to occur in

the endosperm of seeds (Ponz et al., 1983 and 1986), in leaves (Gausing, 1987 and Bohlmann

and Apel, 1987) and roots (Steimuller et al., 1986 and Castagnero et al., 1992). They

predominantly reside intra-cellularly in the vacuolar compartments of the cell and to a lesser
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extent in the cell wall (Reinmann-Philipp et al., 1989, Broekaert et al., 1997, Bohlmann et al.,

1988, Schrader-Fisher and Apel, 1993, Castagnero et. al., 1992 and 1995). Thionins are

released by the rupturing of vacuoles in the cells during the plant defence response, such as

during the hypersensitive response (Broekaert et al., 1997). These peptides have an inhibitory

effect on a wide range of fungi and several Gram-positive and Gram-negative bacteria with

concentrations ranging from 1 to 15 ug/ml resulting in 50% growth inhibition (ICso)

(Cammue et. al., 1992, Molina et. al., 1993( a) and Florack et al., 1993).

In the presence of other cysteine rich proteins or peptides, such as storage 2S albumins and

related protease inhibitors, ns-LTPs (Molina et al., 1993b, Gautier et al., 1994) and wheat

puroindolines (Blocket et al., 1993), a synergistic impact can be seen and the inhibitory

activity of the thionins is greatly enhanced (Terras et. aI., 1993a).

The interaction of thionins with phospholipids in membranes is implicated in their toxic effect

(Rao et al., 1995 and Stec et al., 1995). They have been shown to cause leakage of potassium

and phosphate ions impacting on ATP hydrolysis and causing anabolic processes to come to a

halt (Guihard et al., 1993). In the presence of thionins an increase in the influx of Ca2+ has

been seen in fungal hyphae (Thevissen et al., 1996) and the antifungal activity of thionins is

inhibited by >5 mM Ca2+ (Terras et al., 1992a and Cammue et al., 1995).

Plant defensins

Plant defensins have a net positive charge similar to thionins. These amphiphatic pep tides

have 45-54 amino acids with some sequence conservation (Broekaert et al., 1995) in eight

cysteine residues and four other residues (Fant et al., 1994). They were originally thought to

be similar to thionins (Co Iilla et al., 1990, Mendez et al., 1990), but despite being of similar

size (5 kDa) and having the same number of disulphide bridges (four), plant defensins are

structurally unrelated to thionins (Terras et al., 1992a and Buix et al., 1993). These peptides

comprise a triple stranded antiparallel ~-sheet parallel to an a-helix which are connected to

each other by a couple of disulphide bridges (Buix et al., 1993, Fant et al., 1994 and 1996 and

Kobayashi et al., 1991).

Defensins have been isolated from a wide range of plants including barley (Molina et al.,

1993 and Terras et al., 1992b, Broekaert et al., 1995) and they are distributed in many

different plant tissues, including seeds (Mendez et al., 1990, Colilla et al., 1990, Bloch and

Richardson, 1991, Terras et al., 1992a, 1993b and Osborn et al., 1995). In the tissues where

defensins occur they are located in the peripheral layers in accordance with their role in plant
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defence. Although generally antimicrobial, these plant peptides are mostly active against

fungi and play an important role in the protection of seeds and seedlings (Terras et al., 1995).

There are at least two different types of plant defensins, those referred to as morphogenic

reduce hyphal elongation and as a result increase hyphal branching and those referred to as

non-morphogenic which only slow down hyphal elongation (Terras et al., 1992b and

Broekaert et al., 1997). The actual mechanism of action IS not known although

permeabilisation of the fungal membrane does not appear to be the primary cause of

inhibition. However, an increase in the influx of Ca2+has been seen in the hyphae suggesting

an impact on the membranes (Thevissen et al., 1996 and Osborn et al., 1995). Increased ionic

strength inhibits the antifungal activity of plant defensins, particularly potent are the divalent

cations including Ca2+, Mg2+ and Ba2+ (Terras et al., 1993b). The ICso values for plant

defensins varies substantially depending on the target fungi and the ionic strength of the

media, but values of 3-6 ug/rnl. have been quoted for specific fungi under defined growth

conditions (Osborn et al., 1995).

Lipid transfer proteins (LTP)

Lipid transfer proteins were originally named for their ability to facilitate the transfer of

phospholipids between membranes in vitro (Kader et al., 1984) and it was believed that their

function was one of intracellular lipid transport (Arondel and Kader, 1991). It was later

discovered that not all LTPs share this ability (Scofield et al., 1996, Tang et al., 1996, Loh et

al., 1995, Zhou et al., 1995, Cammue et al., 1995) casting some doubt on their biological

role(s). It was, however, confirmed relatively recently that LTPs do bind lipids in vivo

(Lindorff-Larsen et al., 2001). In addition Lindorff-Larsen et al. (2001) reported that LTP

bound to C17 fatty acid demonstated putative antimicrobial activity.

LTPs are cationic polypeptides of around 9-10 kDa and are made up of 90 to 95 amino acids

(Grant et al., 1995). Several have been sequenced (Bouillon et al., 1987, Desormeaux et al.,

1992 and Mundy and Rogers, 1986, Takishima et al., 1986 and Yu et al., 1988) including

those from barley seeds (Heinemann et al., 1996). Approximately 30% of the residues are

conserved, tryptophan is lacking and there are eight conserved cysteine residues involved in

four disulphide bonds (Yu et al., 1988) and 12 conserved aromatic or hydrophobic residues.

The tertiary structures are always similar and consist of four a-helices linked by flexible loops

and a hydrophobic cavity, which can accept one fatty acyl chain (Shin et al., 1995). Due to the

lack of substrate specificity of lipids they are referred to as non-specific LTPs or ns-LTPs

(Rueckert and Schimdt, 1990 and Kader, 1990).
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Ns-LTPs or proteins homologous to ns-LTP, have been isolated in a number of different

plants, including barley and are expressed in various tissues including barley seeds (Carnmue

et al., 1995 and Molina and Garcia-Olmedo, 1993, Mundy and Rogers, 1989). Ns-LTPs were

discovered to have antimicrobial activity and are believed to playa role in the plant defence

mechanism (Terras et al., 1992b, Molina et al., 1993b and Segura et al., 1993). Supporting

evidence for this role is their extracellular location in the cell walls of the peripheral layers of

plant organs and their gene expression is usually restricted to these defined peripheral cell

layers (Sossountzov et al., 1991 and Skiver et al., 1992). In the barley seed ns-LTPs are

expressed in the aleurone layer around the starchy endosperm (Mundy and Rogers, 1986). Ns-

LTPs are secreted and have been detected on the outside of plant organs. Expression is also

increased when plants are infected with pathogenic micro-organisms (Molina and Garcia-

Olmedo, 1993) and in response to environmental conditions such as high salt, drought and

extreme temperatures, barley specifically was shown to respond to low temperatures (Kader,

1997 and Garcia-Olmedo et al., 1995). Furthermore, a large quantity of ns-LTPs is expressed

in younger plant tissue (Fleming et al., 1992) that is more susceptible to microbial attack.

Ns-LTPs have also been found as one of the major protein components in the outer wax layer

of plant organs (Pyee at al., 1994). As such it is believed ns-LTPs are involved with the

transport and depositing of cutin monomers and lipophillic substances (Sterk et al., 1991 and

Kader, 1997). This is supported by the finding that ns-L TP expression can be induced by

drought stress when enhanced cutin or wax deposition occurs as part of the adaptation process

(Torres-Schumann et al., 1992).

Wheat ns-LTP 1e, which is very similar to barley ns-LTP 1 found in the aleurone, is not

antimicrobial on its own, but it is antimicrobial in the presence of a-purothionins (Dubriel et

al., 1998). Ns-LTPs from different plants exert dissimilar antimicrobial activities (Terras et

al., 1992b). Some are highly active against a broad range of fungi (Cammue et al., 1995)

and/or bacteria (Gram positive and/or negative) (Molina et al., 1993b and Segura et al., 1993).

The cytotoxicity of LTPs is more restricted than thionins, but they are often also more potent

(Carnmue et al., 1995). In some cases the antimicrobial activity of ns-LTPs was affected by

the ionic strength of the media, the presence of cations reducing the antimicrobial activity

while in other cases the ionic strength of the media had little impact (Cammue et al., 1995).

Ns-LTP ICso for fungi ranges from 1 to 100 ug/ml and for one of the bacteria it was as low as

0.6 ug/ml (Carnmue et al., 1995).
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Hevein- and knottin-type antimicrobial pep tides

Hevein is a weakly antimicrobial (Van Parijs et al., 1991) chitin-binding peptide with 43

amino acid and eight cysteine residues involved in disulphide bonds (Walujono et al., 1975).

Structurally it is dominated by a triple stranded ~-sheet with a short a-helix turn connecting

two of the strands (Andersen et al., 1993). Peptides homologous to hevein have been found to

be more potently antimicrobial (Broekaert et al., 1992 and 1994) and constitute the hevein-

type antimicrobial peptides. Two other peptides, similar to a group of proteins known as

knottins, but found to be antimicrobial are referred to as the knottin-type antimicrobial

peptides. They have 36 and 37 amino acids respectively with six cysteine residues (Le-Nguye

et al., 1990 and Chagolla-Lopez et al., 1994).

Both types of antimicrobial peptides inhibit a similar range of fungi and Gram-positive

bacteria (Broekaert et al., 1992 and Cammue et al., 1992) and they are very sensitive to

divalent cations which inhibit their antimicrobial activity at >1 mM (Broekaert et al., 1992

and Carnrnue et al., 1995). As mentioned throughout, some antimicrobial peptides are

inhibited by cations and it may be questioned whether they actually exert their antimicrobial

activity in vivo in the presence of physiological concentrations of inorganic cations (Roberts

and Selitrennikoff, 1990, Broekaert et al., 1992, Carnmue et al., 1992, Terras et al., 1992a and

1993b).

There are a number of other types of antimicrobial peptides for instance those with four

cysteine residues which are involved in two disulphide bonds, but otherwise unrelated to any

of the other peptide groups (Tailor et al., 1997), peptides homologues to other antimicrobial

peptides such as plant defensins (Bloch and Richardson, 1991), ns-LTPs (Campas and

Richardson, 1984) and knottin-type peptides (Chagolla-Lopez et al., 1994), but which act by

inhibiting microbial enzymes.

Antimicrobial factors from micro-organisms

Both bacteria and fungi produce antimicrobial factors, which act on competing organisms.

Whereas plant antimicrobial factors are generally active against a broad range of organisms,

microbial antimicrobial factors mostly act on a much narrower range of organisms.
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Bacteria

Most if not all bacteria are able to produce a heterogeneous array of molecules inhibitory to

closely related bacteria. These molecules include toxins, bacteriolytic enzymes,

bacteriophages, by-products of the primary metabolic pathways (organic acids, ammonia,

hydrogen peroxide), secondary metabolites or idiolytes, antibiotic substances like gramicidin

S (synthesised by multi-enzyme complexes) and finally bacteriocins or bacteriocin-like

molecules (ribosomally synthesised as polypeptides or precursor polypeptides) (Sahl and

Bierbaum, 1998). The term bacteriocin is applied to antibacterial peptides from bacteria. Any

proteinaceous species that are analogue, but act against other microorganism (i.e. not bacteria)

are referred to as bacteriocin-like.

Bacteriocins from Gram-negative bacteria are generally large (29-90 kDa) domain-structured

protein toxins (e.g. colicins), with receptor-mediated narrow spectrum activity. Some form ion

channels in the cytoplasmic membrane, while others exhibit nuclease activity once inside a

sensitive cell (Jack et al., 1995). Bacteriocins from Gram-positive bacteria are mostly peptides

with similarities to plant antimicrobial peptides; 20-40 amino acids long, <10kDa, cationic,

amphipathic and derived from pre-peptides. Gram-positive bacteriocins have a broader

spectrum of activity with little adsorption specificity, generally active against a wide range of

Gram-positive bacteria and in some cases inhibitory of Gram-negative species (Jack et al.,

1995). Although the majority of peptide bacteriocins are linear peptides (e.g. lactococcin,

pediocins and lactacins), which mayor may not contain cysteine residues and disulphide

bonds, a significant number are subject to unique post-translational modifications resulting in

unusual structural features. Such bacteriocins include the lantibiotics (e.g. nisin, microcin and

subtilin) so named since they contain modified residues of the thioether amino acids

lanthionine and methyllanthionine (Sahl and Bierbaum, 1998). The plain low molecular

weight bacteriocins are generally membrane active as are the lantibiotics but their membrane

insertion appears to be voltage dependent (Jack et al., 1995 and Rao, 1995).

Lactic acid bacteria are widely used in the food industry since they produce a wide range of

antimicrobial factors including organic acids, hydrogen peroxide, diacetyl, carbon dioxide,

bacteriocins and antibiotics, which have a broad range of activity. Lactobacilli for instance

produce a range of antimicrobial factors some of which are active against one or more of the

following; Gram-positive bacteria (e.g. Lactobacilli casei and Bacillus subtilis and L.

delbrueckii species), Gram-negative bacteria (e.g. Pseudomonas putida and Enterobacter

cloacae species), filamentous fungi (e.g. Aspergillus parasitic us species and members of the
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genus Fusarium), and yeasts (e.g. Candida albicans and Sacchoramyces cerevisiae species).

Activity is listed from most common to least, yeast as a target organism being rare. Many of

these factors are organic acids and short chain fatty acids, but in some cases they are

proteinaceous (Atanassova et al., 2003 and Magnusson et al., 2003). Antifungal peptides, like

bacteriocins are membrane active causing cell lysis (Shai, 1995) or interference with cell wall

synthesis (Debono and Gordee, 1994).

Gramicidin S, a cyclic antibiotic peptide produced by Gram-positive Bacillus brevis, is known

to be active against numerous Gram-positive and a few Gram-negative bacteria, adsorbing to

the cell membrane and preventing the functioning of the membrane. If it adsorbs to the entire

membrane it can be bacteriocidal (prenner et al., 1997 and Yonezawa et al., 1986). It was

more recently reported to be antifungal as well, inhibiting the growth of Spaerothecafuliginea

(Schmitt et al., 1999). Several Bacillus subtilis species produce small antifungal cyclic

lipopeptides belonging to the group of molecules called iturins which affects membrane

surface tension and causes pore formation leading to leakage of vital ions (Maget-Dana and

Peypoux 1994 and Mhammedi et al., 1982). Iturins have been shown to inhibit growth of the

various fungi e.g. Aspergillus niger, A. flavus, Candida albicans, Fusarium oxysporum and F.

moniliforme (Klich et al., 1991) and'Saccharomyces cerevisiae species (Besson et al., 1984

and Latoud et ai, 1987). Some species of the Pseudomonas syringae produce small cyclic

lipodepsipeptides known as syringomycins, which increase the plasma membrane potential in

plants and yeasts (Reidle and Takemoto, 1987). They also produce another family of peptides

called pseudomycins with broad-spectrum antifungal activity (Harrison et al., 1991).

Fungi

Singh et al. (1971) reported the incidence of antibacterial compounds in fungi such as

Candida albicans, Rhizopus nigricans, Aspergillus leukensis, Penicillium funiculosum and

Trichoderma virid. Most of these compounds were found to be sterols, phenolic compounds

and tannins. Some species of Aspergillus (A. gigantues and A. clavatus), produce ribosome

inactivating proteins called gigantin and clavin- both 17 kDa, noted for their antiviral activity

and anti-proliferative effect on mammalian cells, but no mention has been made of their effect

on other fungi or bacteria. Another large peptide (51 amino acids) isolated from A. gigantues

inhibited the growth of some filamentous fungi, but had no effect on bacteria or yeast (Ng,

2004).
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Influence of antimicrobial factors on beer brewing

Antimicrobial producing microorganisms and their antimicrobial products have been shown

to occur naturally on barley and malt Vaughan et al. (2001). Members of the genus

Enterococus and a number of Lactobacillus lactis species that produce broad range

bacteriocins, also active against a number of beer spoilage organisms, were isolated on barley

grain and were able to produce bacteriocins when cultured in wort validating their possible

application to control the growth of beer spoilage organisms in the brewing process (Hartnett

et al., 2002 and O'Mahony et al., 2000).

Although antimicrobial factors and plant defence have been studied at length, any possible

relevance to the brewing industry seems largely if not entirely neglected. Antimicrobial

activity of microorganisms on the barley may influence the malting process by impacting on

the composition of the micro-flora. This has been exploited in the use of starter cultures in

malting where less pathogenic fungi (Rhizopus and Geotrichum species) or bacteria

(Lactobacillus species) are selected and added to the steep water to inhibit (due to the

presence of antimicrobials) the less desirable organisms. Controlling the microbial population

on barley in malting has lead to detectable improvements in malt quality both in terms of

processing and final beer (Dufait and Coppens, 2004). Members of the genus Fusarium

associated with mycotoxin production and gushing in beer was successfully inhibited using

Lactobacillus plantarum species (Laitila et al., 2002) or Geotrichum species (Boivin and

Malanda, 1997) as starter culture during malting. Malts prepared with a Rhizopus starter

culture in steep were better modified (hydrolysed) with higher levels of xylanase and beta-

glucanase. Proteolytic activity, wort colour and wort pH were also influenced (Noots et al.,

2001). Starter cultures of lactic acid bacteria have even been employed on barley in the field

resulting in decreased levels of Fusarium, water sensitivity of the grain and gushing tendency

while free amino nitrogen, alpha amylase activity, malt modification and wort filterability

increased (Reinikainen et al., 1999).

The brewing process uses yeast to produce alcohol amongst other products/compounds and

any antimicrobial factors surviving the production of wort, be it from the microorganisms on

the barley/malt or from the malt itself may pose a threat to the functioning of the yeast. Any

negative impact on the yeast is detrimental to beer processing and beer quality as reviewed in

Chapter 1. Interestingly early on in the research of antimicrobial peptides Okada and

Yoshizuma (1973) detected barley and wheat antimicrobial peptides that at low

concentrations (0.4 ug/ml.) were shown to adsorb on to the cell wall and membrane of yeast
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Saccharomyces cerevisiae, inhibiting respiration, fermentation and incorporation of sugars

into the cell and causing membrane permeabilisation seen by leakage of potassium and

phosphate ions as well as nucleotides and proteins out of the cells. At higher concentrations (4

I-Lg/mL)cell death was observed. Itwas determined that these peptides had a molecular weight

of 9.8 kDa, an a-helix content of 34.5% (Okada and Yoshizuma, 1970) and their toxic effect

could be removed by the presence of divalent cations such as Ca2+ at concentrations of >5

mM (Okada et al., 1970). Moreover, the peptide could be digested with a cysteine protease

like trypsin, but not chymotrypsin and carboxypeptidase. All these observations point to the

identity of these peptides as ns-LTP (Douliez et al., 2001). It should be noted that the

antimicrobial extracts from barley and wheat were not heated at any stage, hence giving no

indication of survival in a true brewing process. However, the extraction procedure was harsh

suggesting the factor is quite stable.

The aim of the first two chapters was to provide the relevant literature background for the

ensuing chapters of the research done with the underlying common theme of malt quality, the

role of peptides and the effect of microbial contamination of barley. These subsequent

chapters follow the basic sequence as the literature review; investigation of the possible

impact of malt and its processing on differences in beer foam quality at a number of

breweries, elucidation of the mechanism by which malt related premature yeast flocculation

arises in malt and establishing the presence and potential effect of malt associated

antimicrobial factors on the production of beer.
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Chapter 3

Impact of different wort boiling temperatures on the beer
foam stabilising properties of lipid transfer protein 1

Foreword

When faced with the question as to why a particular brewery within a group of breweries had

consistent poor beer foam quality without any apparent cause, an investigation was

undertaken. The aim was to establish the cause and mechanism of the poor foam quality and

how to improve the foam quality. The role of malt factors was examined and in particular the

abundant foam protein, lipid transfer protein 1 (LTP1).

The work on beer foam and LTP1 is described in this chapter and was presented as well as

published as a conference proceeding (Proc. Inst. Guild of Brewing, Asia Pacific Section,

Adelaide, 2002, pp 6). Subsequent to this, more work was done on the LTP1 and its

conformational changes during brewing, this was published as a peer reviewed article in the

Journal of Agricultural and Food Chemistry (2004,52,3120-3129)1. The research reported in

the conference proceedings was summarised for peer review in the publication leading to a

degree of unavoidable repetition.
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I Editorial errors: Table 4, the footnote refers to figure 8, this should be figure 6. Table 5, the foam capacity at

96-100oe should be high, represented by two ticks not one and at 102-106°e the foam capacity should be less,

represented by one tick, not two.
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Studies on Beer Foam Proteins in a Commercial
Brewing Process
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Abstract
A survey of inpackage beer foam attributes including foam proteins, LTP I and Z4 led to a series of microbrewery and commercial brewing trials. Monitoring
these proteins through the brewing process identified the temperature of wort boil as a critical stage effecting foam protein levels in beer. Boil temperature
differences between sea level and higher altitude breweries caused a major difference in the survival of LTP I through to the finished beer. The concentration
of the specific foam proteins, LTP I and Z4, in wort and in beer frequently relates to the beer foam stability. However, a lack in balance between foam positives
and negatives can calise this relationship not to be evident.
KEYWORDS:COtmIefCia/ scale, in-process, wort boiling. foam. foam proteins, LTPl

Introduction
A CONTINUING priority within South African Breweries (SAB) is
to improve quality consistency of national brands produced across
the seven breweries in South Africa which all differ slightly in
configuration and equipment. Ongoing monitoring showed two
breweries habitually had beers with the lowest and highest foams
in the group in spite of the fact that raw materials and processing
protocols were common.

Beer foam, both in its appearance and stability, is an important
aspect of overall beer quality and establishes the taste expectation
of the product for the consumer'. The basis of foam stability is the
interaction of a number of parameters including hop iso-u-acids
and beer proteinvpolypeptides-. More specifically, for a good
foam, foam positives such as hop acids', proteins", metal ions5

and gas composition'' need to be at a maximum while foam
negatives such as lipids 7, basic amino acids'', ethanol'', yeast
protease activity 10 and excessively modified proteins II need to be
at a minimum to create the optimum balance.

An area of much interest in foam research is the foam positive
proteinsI2,13. The key malt foam proteins are LTPI14,15,16,
proteins Z4 and Z717 and the members of the horde in storage
protein familyl8. LTPI is reportedly associated with foam
formation and foam stability, the latter only when in conjunction
with other proteins. It has been documented to be only foam
active in the heat denatured form 13,17,19.Furthermore LTPI is
believed to play an additional role as a lipid binding protein
enabling it to mop up foam negative lipid materials and so protect
beer foam from lipid related damage20,21,22. In contrast, protein
Z4 is considered to be only associated with foam stability22. Both
LTPI and Z4 are tolerant of high temperatures and resistant to
proteolysis24,25,26,27,factors which contribute to their resilience
during the brewing process. Monitoring specific foam proteins
such as LTPI and Z4 by enzyme-linked immunosorbant assay
(ELISA) on the basis of antibody recognition is well established
as a very sensitive and specific method 12,17,27.Although these
specific foam proteins have their own attributes, it follows that
they may also reflect the behaviour of other foam positive proteins

in beer, and so, by monitoring these proteins they may act as a
marker of all foam positive protein material 14.

Of the items deemed negative to foam, much attention has
been directed to certain lipids 18,29.These lipids, derived from raw
materials or yeast, are regarded as detrimental to foam as they
disrupt the continuity of the polypeptide film30. Numerous other
materials have been reported to exert a negative effect on foam
but, by their very variety, their measurement and identification can
be difficult. Some estimation of the balance of positives and
negatives can be made by beer dilution foam tests2,20. In the case
of lipids, their impact on foam may be determined by challenging
beers with free fatty acids. This test is referred to as foam
robustness+".

The beer dilution, foam robustness, LTPI and protein Z4
ELISA tests have been applied in an investigation to determine the
cause of the observed differences in foam. Both microbrewery and
commercial brewery scale trials were undertaken. However, in
contrast to earlier reported worksI2,14,27, it is the extension of the
study to commercial brew scale that makes the conclusions more
relevant and realistic.

Experimental
LTP7 and 14 ELISA
LTPI and Z4 was determined by quantitative double sandwich
ELISA according to Evans and Hejgaard!" using polyclonal LTPI
and Z4 antibodies and standards developed in their laboratory.
Wort and beer samples were diluted 2000 times for LTPI analysis
and 2814 times for Z4 analysis. The coefficient of variance of the
LTPI and Z4 analysis was less than 10%. The absorbance at
4l5nm was read on a Bio-Rad (Richmond, CA) model 450
microplate reader.

Microbrewery trials
A 40 L brewlength BAM (Bavarian Apparatus and Machinery,
Freising, Germany) microbrewery was used with 32 L fermenters
and a Krones (Neutraubling, Germany) single head filler
packaging system.
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Chapter 4

Development of a small scale premature yeast flocculation
assay to evaluate different barley malts

Abstract

A small-scale fermentation type assay for faster detection of premature yeast flocculation

(PYF) was developed and optimised as a research tool for subsequent investigative work to

improve our understanding of this phenomenon. The method was validated by comparison

with the well-established two litre EBC tube laboratory fermentation method, which provides

more information about many fermentation parameters including flocculation, but is time

consuming and labour intensive. Visual assessment of flocculated biomass, post-flocculation

wort gravity (residual extract) measurement and cell counts in suspension were used as

measures of flocculation relative to the controls. Results were evaluated by comparing the

PYF positive and PYF negative control malts with test malts. The preparation of artificially

induced PYF positive malt, as an alternative PYF positive control, is also described.

Introduction

Malt analysis has been the topic of much debate for the past few decades, because the current

analyses do not satisfactorily predict the performance of the malt in the brewery (Glen et al.,

1998, Inagaki et al., 1994, Jones et al., 1976, Palmer, 1985, Silberhumer, 1990, and

Wainwright and Buckee, 1977). The majority of these analyses directly or indirectly

evaluated the modification of the grain during the malting process. For instance many

methods quantified the extent of protein and starch breakdown while others measured the

enzyme activity by which this breakdown occurs. These factors contribute to the amount of

"extract" (sugars) that can be recovered from the grain, wherein lies the value of malt. It is

this extract that is converted to alcohol during the fermentation on which the effectiveness of

the process was evaluated (Briggs et al., 1981). However, the sole aim of brewing beer is not

to just produce alcohol, but also to produce a consistent quality alcoholic beverage. The malt,

as the major raw material, contributes to consistency and product quality along with the actual

processing. Although several processing and quality issues have been attributed to malt
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(Axcell et al., 2000, Herrera and Axcell, 1991, Morimoto et al., 1975, Okada and Yoshizumi,

1970, Okada et al., 1970, Palmer, 1985 and Sarx, 2002), these were not predicted by the

existing malt analyses. The discrepancy between specific data that is required from malt

analyses and the data current analyses provided, indicated a need for the development of

alternative/additional malt analyses that can predict critical aspects of malt performance in the

brewery.

Premature yeast flocculation (PYF) is malt related and one of the aspects not predicted by

conventional malt analyses. PYF during fermentation leads to incomplete fermentation due to

lack of yeast cells in suspension. This results in low alcohol concentrations and high levels of

residual sugar (Smit et al., 1992, Speers et al., 1992, Stratford, 1992 and Verstrepen et al.,

2003). The end-of-ferment yeast counts observed in commercial breweries can range from

2xl06 to >20xl06 cells/mL. These differences influence secondary fermentation and hence the

beer flavour profile and stability. It is a recurring problem in the brewing industry and has

significant financial implications resulting from the associated incomplete extract utilization.

Predicting this phenomenon in malt would allow evasive action at the barley/malt purchasing

stage or before/during the brewing process. Yeast flocculation itself and the process of PYF

during fermentation have been well-studied and are mostly elucidated (Smit et al., 1992,

Speers et al., 1992, Stratford 1992 and Verstrepen et al., 2003). However, a small scale malt

PYF assay with a sufficiently fast tum around time would facilitate the study of the

mechanism leading to the development of PYF malt, which as yet is not fully understood.

Various methods for the measurement of PYF in malt have been reported (Baker and Kirsop,

1972, Fujino and Yoshida, 1976, Koizumi et al., 2004, Mochaba et al., 2001, Inagaki et al.,

1994 and Ishimaru et al., 1967), of which some even allow for measurement a step earlier in

the barley (Nakamura et al., 1997). Overall there appear to be two different types of PYF

assays: one that does not require fermentation using malt extracts (Koizumi and Ogawa, 2004

and Mochaba et al., 2001) and the other based on small scale fermentations using wort (boiled

extract of raw materials as used in the brewing process) (Inagaki et al., 1994 and Ishimaru et

al. , 1967). For the latter type of assay differences tend to be around scale,

measurements/assessment, the fermentation medium used and the yeast. Many of these

differences depend on the aim of the assay and the brewing conditions they are trying to

emulate. Likewise for these purposes, it was necessary to develop an assay reflecting our

brewing process and the sensitivity of yeast to PYF under those conditions. Not all yeast

strains are sensitive to flocculation changes and a particular brewery's processing can be more
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or less susceptible to PYF. None of the published PYF assays are recommended as a routine

method in the brewing analysis manuals, indicating the complexity of measuring PYF

reliably. The development of a small scale PYF assay is reported here and was used in further

research on PYF (Chapter 5). In addition, a method to artificially induce PYF in malt was

established, because PYF positive malt, which must be used as a positive control for such a

PYF assay, is not always available, as the problem is intermittent.

Materials and methods

Small scale PYF assay development

The assay consisted of small-scale fermentations and is based on similar existing methods

(Fujino and Yoshida, 1976, Inagaki et al., 1994 and Ishimaru et al., 1967). Each assay was a

set of up to ten duplicate fermentations, run in parallel, including a positive and a negative

PYF control fermentation. The assay controls were prepared from a PYF negative malt with

normal fermentability and flocculation properties and a strongly PYF positive malt. The same

control malts were used throughout all the assays to enable comparison from run to run. The

results were assessed relative to the controls within a run using visual assessment of the

flocculation, post-fermentation cell counts remaining in suspension in the wort and post-

flocculation wort gravity measurements.

Yeast propagation

Yeast used for the assay was propagated in steam sterilised enriched MYGP broth (115 g

maltose, 3 g malt extract, 3 g yeast extract, 27.5 g glucose and 5 g peptone (Biolab

Diagnostics, Midrand, RSA) dissolved in 1 L deionised water) from cryogenically preserved

lager yeast (SAB Ltd. [Sandton, South Africa] brewing yeast) in two stages.

For the first stage, the propagation medium consisted of 12 mL enriched MYGP broth diluted

with 3 mL sterile deionised water in 100mL Erlenmeyer flasks plugged with cotton wool and

covered with foil. Cryogenically stored yeast was inoculated at approximately 1x106 cells/mL

and cultures were incubated at 25°C for 20 hours with continuous shaking at 150 rpm, by

which stage the culture was in log phase. For the second stage 8.5 mL was transferred

aseptically to 200 mL sterile enriched MYGP broth in 1 L Erlenmeyer flasks plugged with

cotton wool and covered with foil, followed by incubation at 20°C with continuous shaking at

150 rpm. Yeast was used when in stationary phase (28 hours) for the pitching (inoculation) of
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wort. Yeast cells were counted in a Hawksley-Cristallite Haemocytometer with improved

Neubauer ruling (Boeco, Hamberg, Germany).

After counting, the volume of cells required to obtain a pitching rate (cell concentration) of

20x106 cells/mL for 250 mL wort samples was calculated, aseptically dispensed into sterile

centrifuge tubes and centrifuged at 5°C for 5 minutes at 5000xg. The supernatant was

discarded and the pellet aseptically re-suspended in 250 mL of wort for fermentation.

Wort preparation

The wort used for the assay was prepared by an adaptation of the method of Kruger et al.

(1982) to give an all malt wort with a gravity of 13 degrees Plato (OP) using a R. Chaix

M.E.C.A. mash bath (Nancy, France) with 500 mL beakers and overhead paddle stirrers. lOP

is defined as 1 g solids I 100 g solution and was measured using an Anton PAAR Beer

Analyser (Anton PAAR, Graz, Austria). A ratio of350 mL mash water (deionised water with

1.2 mM CaCh.2H20 (Sigma, St. Louis, USA) and with pH adjusted to 3.0-3.1 using a dilute

solution of lactic acid (Sigma, St. Louis, USA) to give a final pH of 5.2) and 130 g malt was

used. The mash preparation temperature profile was: 60 minutes at 63°C, 20 minutes at 72°C

and 5 minutes at 76°C, with temperature increasing at a rate of l°C/min between temperature

stands, temperatures were controlled within ±1°C. After filtration, wort was steamed for 30

minutes in 250 mL aliquots in 1L Duran Schott bottles (BDH, Dorset. England) (sufficient

wort for duplicate 100 mL fermentations) and stored at 5°C for no longer than 2 weeks.

Malts and pre-fermentation analyses

For each assay, wort was prepared from PYF negative and PYF positive control malts and the

test malts. Carbohydrate profiles and wort free amino nitrogen (FAN) were determined

according to EBC methods 8.7 and 8.10 (European Brewing Convention, 1998) respectively

to ensure differences in flocculation were not due to differences in concentrations of

fermentable carbohydrates. In order for worts to be used in the same assay carbohydrate

values were required not to vary by more than 15% and the FAN concentration to be equal or

greater than 200 mg/mL.

Fermentations

For the fermentations, the appropriate amount of harvested yeast for a pitching rate of 20x 106

cells/mL was added to 250 mL sterile wort in 1L Duran Schott bottles. The bottles were
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capped and then shaken 3S times to aerate the wort as described by Phaweni et al. (1992). The

wort was allowed to stand for five minutes to drain the foam formed during shaking. After

swirling the wort to ensure even suspension, 100 mL was measured in duplicate and poured

aseptically into two pre-sterilised 100 mL separation funnels plugged with cotton wool

covered with foil.

Fermentation funnels were incubated at 12.S-13.0°C. Flocculation for PYF positive and PYF

negative samples occurred between 70 and 80 hours post-pitching. Visible assessment of the

flocculation of the test samples was made relative to the controls during this time. Digital

images of the flocculation were acquired as a record of results.

Post-flocculation analyses

Analyses were carried out 12 hours post-flocculation of the PYF negative control

fermentation. Yeast count sampling was done at a standard depth (1.S cm) below the surface

of the fermentation. Yeast cells were counted as before, alternatively relative yeast

concentration was determined by measuring the light dispersion or optical density (OD) of the

yeast suspension at 600 nm using a dual beam UV/visible spectrophotometer (Shimatzu, UV-

1600, Tokyo, Japan). The cell counts were compared to the control samples, with a positive

result having a third or less cells than the negative control. The remainder of the wort was

centrifuged at SOOOgfor S minutes, filtered through Whatman no.1 filter paper (Whatman

International Ltd., Maidstone, England) and the gravity (also referred to as residual extract or

RE) was measured and expressed in oP. The PYF positive control fermentations used in this

work routinely had gravities of up to 20% higher than the PYF negative control fermentations.

However, presence of PYF does not always result in higher gravities in the rapid test, thus this

parameter cannot be used as a definitive indicator ofPYF.

2L EBC tall tube fermentations

Brewery yeast was collected aseptically from the yeast storage vessel within 6 hours of

cropping (harvesting from the bottom of the fermentation vessel) and stored on ice at SoC for

no longer than 12 hours.

Wort with a gravity of 16°P was prepared with 40% dextrose syrup/60% malt, using 12 x 2 L

bucket mash bath with overhead paddle stirrers as described by Kruger et al. (1982). The wort

was steamed for 30 minutes in 2 L aliquots in S L round flasks with cotton wool plugs

covered in foil and stored at SoCfor no longer than two weeks.
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EBC 2L fermentations were done using a modification of Kruger et al. (1982) and Phaweni et

al. (1992). The stand time after pitching and first wort aeration was changed from 2 to 4

hours. Fermentations were also monitored daily for yeast counts and gravity as described

earlier.

Preparation of PYF positive control malt

South African grown Chariot (cv.) barley corresponding to non-PYF malt (used as a control

malt for comparison) was sourced for micro-malting. Micro-malting was performed in 2 L

plastic jars, covered with foil inside a standard laboratory incubator with an ultrasonic

humidifier (Salton, Lake Forest, Illinois) placed inside to avoid drying out of the grain. Steep

water constituted tap water boiled for one hour and cooled. During steeping enough water was

added to submerge the grain entirely. The barley was malted using the following regime: two

cycles of 17 hours wet (steep) followed by seven hours dry, then one final hour of wet and

then germination, which took between 44 and 64 hours. Malt was turned and mixed

approximately every 12 hours. Germination was terminated based on rootlet growth. The malt

was dried at 45°C for 48 hours and kilned at 80°C for a further 12 hours. The malts produced

were subjected to the SAB Ltd. (Sandton, South Africa) standard full malt analysis as done by

SAM (South African Maltsters, Caledon, South Africa) and compared to the control malt. In

addition, malts were tested for PYF activity.

Various aspects of the malting process were tested for their impact on the generation of PYF

in the resultant malt. This was done by:

1. washing; rinsing of the malt with deionised water prior to the first steep (no soaking)

and subsequent frequent changes of steep water;

2. aeration, using any standard fish tank pump and sinter stones, during steeping to aerate

the water. Steep water was also aerated prior to use.

3. re-using steep water by retaining it for the subsequent steeps and topping up with fresh

steep water as required and

4. addition of fungi isolated from South African grown barley (Fusarium) to the steep

water.
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Fusarium preparation

Microflora from the outside of barley grain grown in South Africa was cultured on potato

dextrose agar plates (Difco, Le Pont de Claix, France). Fusarium was selected by

identification of spores (A. Ackerman, personal communication) from the culture and sub-

cultured. Spores were washed from semi-pure Fusarium rich culture plates with 25% glycerol

(BDH, Poole, England) and stored at -20°C. Approximately 52 x 106 spores per kg of barley

were used in the steep water.

Results and Discussion

Previous results, using 2L EBC fermentations, indicated that PYF was more pronounced in

100% malt wort than in the adjunct type wort used in the breweries. 100% malt wort was

therefore used throughout the optimisation process using known PYF (positive control) and

non-PYF (negative control) malts. 13°P all malt wort was used, as this contains more malt,

and therefore a higher concentration ofPYF factors, than 15.5-16°P adjunct wort used in the

breweries for high gravity brewing. Aeration of pitched wort to oxygen saturation was done

by shaking wort in a sealed bottle immediately post pitching, which achieved an oxygen

charge of approximately 8 mg/L. Brewery yeast was used as per 2L EBC fermentation

protocol (Kruger et al., 1982).

Small scale PYF assay development

Choice of fermentation vessel

Several different vessels were used in the published methods ranging from 100 mL to 1.5 L

(Baker and Kirsop, 1972, Fujino and Yoshida, 1976, Inagaki et al., 1994, Ishimaru et al.,

1967 and Nakamura et al., 1997). Vessels with a conical base with volumes ranging from 10

mL to 250 mL were used to ferment control worts in duplicate and flocculation was evaluated

visually. Fermentations (125 mL and 250 mL) were carried out in separating funnels and 100

mL fermentations in cylindro-conical tubes. For each of these fermentation volumes,

differences in flocculation between controls were observed - the PYF positive controls

flocculated 48 hours after pitching, whilst the negative controls flocculated 72 hours after

pitching. Differences in fermentations carried out in 10 and 50 mL conical tubes could not be

accurately assessed. Further experiments were conducted with 100 mL fermentations. Based

on the results and assay requirements it was found that 100 mL was small enough to enable
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Yeast pitching rate and wort gravity

All reported PYF assays ferment BOP wort (Fujinoand Yoshida 1976,Ishimuraet al., 1967and

Nakamuraet al., 1997,)or lower(Bakerand Kirsop, 1972 and Inagaki et al., 1994). High gravity

(16°P) 100% malt wort and 13 "P wort were pitched with cryo-preserved yeast propagated in

MYGP. This was done at the normal pitching rate used for 2L EBC fermentations and in the

breweries (20 x 106 celis/mL) and at a higher pitching rate (30xl06 celis/mL). These pitching

rates are 3-4 times higher than those reported in other PYF methods (Baker and Kirsop, 1972,

Fujino and Yoshida, 1976 and Inagaki et al., 1994) but comparable to that used in the

breweries. The increased gravity and pitching rate was tested to try and accelerate the

fermentation to shorten the assay duration. Differentiation was not as clear with high gravity

wort and at the normal pitching rate flocculation was significantly slower. The fastest and

greatest difference between PYF positive and negative reference fermentations was obtained

when using BOP wort and high pitching rate. However, the time window in which this could

be observed was very short and thus easy to miss. The experiment was repeated, using 13°P

wort and the normal pitching rate. Differences were consistently observed after

approximately 72 hours. This ratio of gravity/pitching rate was selected as the most

appropriate for this assay.

Oxygenation

Only the method by Baker and Kirsop (1972) mentions oxygenation of pitched wort, but this

is standard practice for 2L EBC fermentations. MYGP propagated cryo-preserved yeast was

pitched into the PYF positive and negative controls worts and shaken to oxygenate as for the

2L EBC fermentations; 35 shakes post-pitching, repeated four hours later before dispensing

into the fermentation vessels. This was repeated, omitting the second shaking, to shorten the

time it took to set up the assay. This reduces the oxygen supplied from 14 to 8 ug/ml.

(Phaweni et al., 1992) which is the normal air saturation. No effect was observed on the

flocculation and this was thus adopted as part of the assay.

Wort analyses

All pre-fermentation worts was analysed for FAN and carbohydrate profiles to ensure

differences in flocculation were not due to nutritional differences. Carbohydrate values that

vary less than 15% are not significantly different and the FAN concentration must be >200

mg/mL for worts to be used in the same assay. These values were determined from previous

2L EBC fermentation data. A typical wort carbohydrate and FAN profile is shown (Table 1).
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Table 1 13°P all malt wort carbohydrate profile and FAN concentrations for the PYF
assay control worts (average of five samples and standard deviation (SD)
expressed in brackets).

Parameters PYF negative reference PYF positive reference

Dextrins (g/ 1OOmL) 2.68 (0.19) 3.08 (OAO)

Maltotriose (gil OOmL) 1.80 (0.24) 2.0S (O.SI)

Maltose (gil 00 mL) 7.13 (0.74) 7.26 (0.S8)

Glucose (g/100 mL) 1.27 (O.4S) 1.26 (0.11)

FAN (ug/ml.) 24S.S0 (28.21) 20S.22 (28.67)

Concentration of yeast cells in suspension and wort gravity was determined 12-14 hours post-

flocculation. Other methods rely on visual assessment only (Baker and Kirsop, 1972), others

in addition take gravity measurements at the end of fermentation on day eight (Nakamura et

al., 1997) or do cell counts and gravity measurements daily for the full eight days of

fermentation (Fujino and Yoshida, 1976, Inagaki et al., 1994 and Ishimura et al., 1967). To

minimise mixing and standardise sampling for the cell counts a pipette was inserted from the

top of the vessel to a standard depth (1.S em) and 1.0 mL was withdraw for counting. The

PYF reference fermentations had higher gravities and lower yeast counts than negative

reference, supporting visual assessment and typical presentation of PYF fermentations (Table

2).

Table 2 Small scale PYF assay cell counts and wort gravity measurements 96 hours
post-pitching (all flocculated). Values represent average of duplicate PYF
assays. Variation of cell count method was IS%. Average SD for gravity
measurement method is 0.04°P.

Reference sample Yeast Counts Gravity (OP)*
(miliion/mL) *

PYF positive 0.2 2.S4

PYF negative 4.8 2.07

*Each value was the average of duplicate fermentations.
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Figure 3 2L EBC fermentation end-of-ferment parameters for worts prepared with a
range of PYF malt percentages. Values represent average of duplicate PYF
assays, variation for the cell count method was 15% and average SD of gravity
measurement method is 0.04.

Further malts were tested by both methods to determine if the PYF results corresponded. All

PYF positive malts according to the 2L EBC fermentation method tested positive relative to

the control using the small-scale PYF assay on a visual and post-flocculation cell count basis.

It appears that for the less extreme PYF malts, the small-scale PYF assay post-flocculation

gravities do not show differences. However, at the end of fermentation in the 2L EBC tubes

the gravities did confirm the visual PYF assessment (Figs. 4 and 5). This discrepancy was

explained by the time of sampling, post-flocculation is not the same as end-of-ferment.

Extension of the small-scale PYF assay to attain true end-of-ferment resulted in similar

gravities as found with the longer 2L EBC tube assay (results not shown). As a consequence,

post-flocculation gravities were measured as an indication that fermentation occurred as

sugars were utilised, but results were not used in the interpretation of PYF. For both the 100

mL PYF assay and the 2L EBC fermentations it was the trends, relative to the PYF positive

and negative controls using the same propagated yeast, rather than the absolute values that can

be compared from experiment to experiment.
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Figure 4

Figure 5
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two different experiments hence trends can be compared, but not the absolute
values. Each value represents average of PYF assay duplicates, variation of the
cell count method was 15% and average SD of gravity measurement was 0.04.
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method was 15% and average SD of gravity measurement is 0.04.
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Robustness of the small-scale PYF assay

Finally, the specification limits were set for the assay to determine how much variation was

acceptable without influencing the results. Malt milling, mash water pH, mashing

temperatures, mash filtration, fermentation temperature and yeast cell counts were examined

(Table 3). Wort analysis pre-fermentation was also monitored.

The mill setting was found not to be critical, as the percentage difference between the PYF

positive and negative reference values remained high and the wort carbohydrate and FAN

profile was unchanged. The specification was set as 1 mm ± 0.2 mm (Table 3). The mash

water pH was critical to attain the correct final pH in the mash, a too low pH caused a

decrease in FAN for one of the reference malts and this also reflected in the carbohydrate

results (results not shown). The specification was set between pH 3.0 and 3.1 to attain a final

pH of 5.2-5.3 in the mash (Table 3).

To determine the sensitivity of the PYF assay to the mashing temperature used to prepare the

wort, the stated temperature in the mashing method was increase/decreased by 2°C. The lower

temperature had no significant impact, but at the higher temperature PYF was less

pronounced (Table 3). The specification was set between the optimal temperature stated in the

method and two degrees below.

Fermentations are notoriously sensitive to temperature differences. Data from the two

experiments done to test temperature influence, revealed that although cell counts show a high

percentage difference at higher temperatures, visually both samples flocculate within a short

period of time making it difficult to observe the differences in flocculation. The overall best

result, both visually and on cell counts, was as close to 13°C as possible, targeting 12.5-13°C.

Undoubtedly temperature was critical and although outside of this range the assay will still

work it will not be as clear or as easy to observe the differences between controls. Calibrated

thermometers were used to verify incubator temperature settings and monitor temperature

fluctuation during the fermentation.
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Table 3 Small scale PYF assay results determining acceptable deviations of various
parameters. The % difference represents the difference in post-flocculation cell
counts between the controls; PYF+ versus PYF- where the PYF positive control
has lower cell counts than the negative control. Variation in the method by
which cell counts were determined was 15% and values represent average of
PYF assay duplicates. Where applicable FAN analysis of the wort pre-
fermentation was included, the variation of the FAN method is 10% and again
each value is the average of duplicate PYF assays. The values in bold italic font
indicate where an impact was observed.

% difference, FAN (J.1g/mL) FAN (J.1g/mL)
PYF+vsPYF- PYF+ PYF-

Mill setting
0.8mm 66 215 230
Imm 83 207 216
1.2mm 76 219 233

Mashwater pH
pH 2.9 - 154 231
pH3 83 207 216
pH3.1 82 214 221

Mash temperature
less 2°C 85 230 244

Specification 79 220 225
plus 2°C 36 198 203

Ferment temperature (1) Visual assessment
12°C 23 possible
u-c 50 possible
14°C 51 Too fast

Ferment temperature (2) Visual assessment
12.5°e 38 possible
n-c 71 possible
n.s-c 160 Fast

Artificial production of PYF in malt

A simple laboratory micro-malting was set up to prepare PYF positive malt from barley.

Before trying to induce PYF, micro-malting conditions were adjusted to produce malt with

similar in-specification malt analyses as production malt malted from the same barley (data

not shown). This was done to ensure that the malts produced would make a filterable and

fermentable wort with sufficient fermentable sugars and FAN for the yeast. Conditions were

then varied to attempt inducing PYF.
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The microbial population on a non-PYF barley may inhibit PYF, hence washing the barley

prior to malting was used to remove the majority of this population with the intent of

replacing it with organisms such as Fusarium, often associated with PYF. Contrary to

expectation, in two out of three cases it was demonstrated that the washing alone was

sufficient to induce PYF (results not shown). Possibly washing changes the dynamics of the

microbial population and the competition within the population, allowing specific

microorganisms to flourish, which in some cases may have been conducive to the induction of

PYF.

To encourage this type of PYF inducing microbial growth, aeration was introduced into the

steep. Washing and aeration combined again induced PYF in one out of two cases. This

supports the above suggestion as to why washing may affect PYF. If the specific inducing

microorganism population was present, the aeration will enhance PYF development.

These attempts at producing PYF malt by micro-malting were so far inconsistent. To ensure a

better success rate, the remaining microbial population on washed barley was enriched with a

likely candidate for the induction of PYF, namely Fusarium (Prentice and Sloey, 1960) and

aerated to encourage growth. This combination always induced PYF (4 out of 4). To further

ensure PYF development, the steep water containing the Fusarium was retained and re-used

for all the steep stages, further reducing post-flocculation cell counts (Fig. 6). The PYF malts

produced were extremely PYF, relative to the natural PYF positive control malt, dramatically

affecting both post-flocculation cell counts (low) and gravity (high) unlike the natural PYF

positive control malt used in this case which impacts on cell counts only (Fig. 6). Using this

extremely PYF malt, any degree of premature flocculation can be achieved by mixing the

malt with normal malt as previously demonstrated (Fig. 2), thus matching the natural PYF

positive malt if required.
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Figure 6
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PYF assay results of the control malts (PYF + and -) and micro-malted PYF
malts prepared from washed barley (+wash) which was aerated (+air) in the
steep and had Fusarium (+fus) added. * Indicates the steep water was re-used.
Each value represents average of duplicate PYF assays. Variation of the cell
count method using optimal density (OD) was 7% and average SD for gravity
measurement was 0.04.
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To confirm the findings on inducing PYF in micro-malting, no aeration, no washing and no

fungal addition was used and this malt was relatively less PYF, but not as non-PYF as the

negative control malt. Overall all the micro-malted malts were at least marginally PYF, hence

micro-malting cannot be used to prepare a PYF negative control malt, but fortunately these

are more readily available. Once these conditions were established, a large batch of PYF malt

was produced. This batch can be used as an alternative PYF positive control malt should

natural PYF positive malt not be available.

o
PYF + PYF - +air +wash +fus* +air +wash +fus

The 2L EBC tube fermentation method, which provides information about fermentation, the

yeast and the raw materials, was used as a starting point to develop a simpler, faster method to

measure PYF only under conditions resembling those of the brewery. The developed assay

was faster, taking less time to set up with the smaller volumes (l00 mL) allowing more

samples to be prepared simultaneously and the fermentation stage was shorter «80 hours)

allowing for the observation of flocculation, but not requiring the extension to end of

fermentation. However, it has limitations in terms of its sensitivity that need to be considered
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when using the assay. There will be situations where 2L EBC fermentations are called for as

this method is more sensitive and provides additional fermentation information. However, the

aim of the small scale method was to provide a faster and more practicable PYF assessment

than the 2L EBC tube method. In particular, it was able to provide a simple YES/NO answer

within 80 hours, as to the PYF status of the malt compared to eight days for a full

fermentation (2L EBC method). For this type of answer the method was not required to

quantify the degree of PYF and hence the sensitivity determined was sufficient. As such the

assay is a valuable research tool that will be used to investigate the mechanism leading to the

occurrence of PYF in malt.

Due to the seasonal and intermittent nature ofPYF, research was often halted when PYF malt

was no longer available. To overcome this, PYF malt was produced artificially to be used as

an alternative reference sample for the assay. The artificially treated malt was clearly

extremely PYF, both in terms of low post-flocculation cell counts and high gravities, enabling

continued research onPYF and allowing the standardisation of this small-scale rapid PYF

assay. It is also clear from these findings that the malting process may contribute to the

occurrence of PYF in malt.
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Chapter 5

Enzymatic generation of factors from malt responsible for
premature yeast flocculation

Foreword

The occurrence of malt associate premature yeast flocculation (PYF) is a major concern

within the brewing industry resulting in beer quality and financial losses. Although a lot of

work has been done to examine the factors associated with PYF the mechanism as to how a

malt becomes PYF positive has not examined.

The work described in the following Chapter, investigating the mechanism by which malt

becomes a premature yeast flocculating malt, was published in the Journal American Society

of Brewing Chemists (2004, 62, 108-116). The small scale premature yeast flocculation assay

detailed in Chapter 4 was used in this investigation. The development of the assay was

however not published, hence for the purpose of the publication the assay was described and

this may lead to some repetition.
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Enzymatic Generation of Factors from Malt Responsible
for Premature Yeast Flocculation

S. N. E. van Nierop,' A. Cameron-Clarke, and B. C. Axcell, SABMilier Research, Sandton, South Africa

ABSTRACT

J. Am. Soc. Brew. Chern. 62(3): 108-116, 2004

Using a rapid, small-scale fermentation assay for testing premature
yeast flocculation (PYF), it has been shown that PYF is associated with
malt husk and can be induced by fungal infection during malting. Expo-
sure of malt to extracellular fungal extracts induced PYF and exposure to
commercial fungal xylanase had an impact on PYF. Arabinoxylan, the
polysaccharide product of xylanase action on husk, also had an impact on
PYF.

Keywords: Arabinoxylan, Barley, Fungal, Husk, Xylanase

RESUMEN

Generaci6n Enzlmatlca de Factores de Malta Responsables
por la F1oculaci6n Prematura de Levadura

Usando un analisis rapido de fermentaci6n en escala reducida para pro-
bar la floculaci6n prematura de levadura (FPL), se ha demostrado que la
FPL esta asociada con la cascara de malta y puede ser inducida por infec-
ci6n de hongos durante el malteo. La exposici6n de malta a extractos de
hongos extracelulares indujo FPL y la exposici6n a xylanasa comercial de
hongos tuvo un impacto en FPL. Arabinoxylana, el producto polisacarido
de acci6n xylanasa en la cascara, tambien tuvo un impacto en FPL.

Palabras claves: Arabinoxylana, cascara, Cebada, Hongo, Xylanasa

Premature yeast flocculation (PYF) is a recurring problem in
the brewing industry and it has significant financial implications
resulting from the associated incomplete extract utilization. Al-
though much research has been undertaken on PYF (I1,12,14-
16,22,23), a definitive cause and mechanism has not been eluci-
dated.

The process of yeast flocculation has been studied and is well
understood (29-34,36). Yeast flocculation occurs when the (1-

mannan residues of mannoproteins, which are always present on
the yeast cell wall (33), interact with lectin-like proteins (often
glycoproteins) on adjacent cells, forming large aggregates or
floes, In the case of lager yeast these floes sediment at the bottom
of the fermentation vessel. The lectin-like proteins, which specifi-
cally bind sugars, are synthesized by yeast and positioned on the
outside of the yeast cell in preparation for flocculation (33). In
brewer's yeast, flocculation is reversibly inhibited by mannose, as
well as maltose, glucose, and sucrose (36), probably as a result of
the sugars binding with the lectin-like proteins. Thus, flocculation
only occurs when most of the sugars in wort have been assimi-
lated (29).

Flocculant yeast (i.e., yeast with lectin-like proteins in place on
the cell surface) can flocculate prematurely during yeast
fermentation in the presence of high sugar concentrations (32).
The onset of flocculation can be at the same time as normal
flocculation or slightly earlier, but the rate and extent of
flocculation tends to be more dramatic (unpublished results),

ICorresponding author. Phone: +27 II 8818069; Fax: +27 II 8818072;
E-mail: sandra.vannierop@z.a.sabmiller.com

Publication no. J-2004-0S12-01 R.

C 2004 American Society of Brewing Chemists. Inc.

leading to a marked reduction in the number of yeast cells in
suspension. This results in unattenuated wort with high levels of
residual extract and low end-of-ferment cell counts, all of which
impact the beer quality. The premature removal of yeast may be a
purely physical event associated with a factor (factor may refer to
a number of factors) that aggregates the yeast. Alternatively, the
yeast could perceive nutrient starvation as a result of a factor that
interacts with the yeast membrane and inhibits sugar uptake
(13,24-26), thus triggering the flocculation mechanism
prematurely. For purposes of this paper, PYF has been defined as
the visual observation that the yeast flocculates earlier as well as
the presence of high levels of residual wort extract and low yeast
cell counts at the end of fermentation.

The end-of-ferment yeast counts observed in commercial brew-
eries range from 2 to >20 X 106 cells per mL. These differences
influence secondary fermentation, and hence, beer flavor profile
and stability. When cell counts are extremely low, PYF will be
clearly defined. However, the range of counts that occur suggests
varying degrees of PYF may occur with corresponding variations
on the effects on beer quality. PYF may be an extreme example of
a condition that can be present to some degree in all wort. This is
supported by the findings of Herrera and Axcell (16) in which the
PYF factor was detected on PYF-negative and PYF-positive malts
although the concentrations differed.

According to current dogma, the occurrence of PYF is associ-
ated with seasonal differences, such as wet conditions during
harvest, to which the barley is exposed. This leads to increased
microbial load, in particular fungi, on the grain (2). In other
cases, the occurrence of PYF is not associated with wet harvest,
neither is the fungal load detectably higher, but it is still seasonal.
In this case, it is believed that some weather related stress may
enable certain microflora to survive better than others, and hence,
it is the population rather than the load that is important. How-
ever, the exact relationship of climatic conditions to PYF remains
speculative.

Although certain bacteria have also been shown to cause floc-
culation of nonflocculant yeast by bridging the lectins via the
carbohydrates on the membrane surface (37), this paper focuses
only on fungal effects on PYF. It has also been shown that the
malting process itself can influence PYF development but this
may not be seasonal (3).

The PYF factor was found derived from barley, more specifi-
cally barley husk (3,15,23), which is predominantly composed of
arabinoxylan and cellulose (90% by weight) (7,18). The factor
appears to be a high-molecular-weight (HMW) polysaccharide
rich in arabinose and xylose (3,15), acidic in nature, and contain-
ing some nitrogenous material (12), which was found to be essen-
tial for the PYF activity (11,22). Axcell et al (4) proposed the
nitrogenous component to be basic peptides produced by barley
in response to microbial infections with antimicrobial properties.

Investigations by a number of major international brewery
groups over three decades have implicated malt factors as re-
sponsible for causing premature yeast flocculation during fermen-
tation. The nature of these factors has remained elusive because
of the confusing interactions among brewing raw materials, yeast
strains, and differing brewing processes. The objective of this
work was to use a novel approach and routinely induce the pro-

108

Stellenbosch University http://scholar.sun.ac.za

mailto:sandra.vannierop@z.a.sabmiller.com


110 I van Nierop, S. N. E., Cameron-Clarke, A., and Axcell, B. C.

pitching and first wort aeration was changed from 2 to 4 hr. As
per method, fermentations were also monitored daily for yeast
counts and gravity.

Micromalting with Fungal Stress
Approximately 5 kg of South African-grown barley (cv.

Chariot) with normal fungal load according to the maltsters
standard screening was rinsed by submerging the barley with 10 L
of previously boiled (I hr) tap water and pouring it off after
gently hand mixing the grain and water for I min. The same
water treatment was applied for all the water used in the
micromalting. The barley was steeped by covering the grain in
water in open basins (35 x 60 em and 18 em deep) at 15°C in a
standard laboratory incubator for 6 hr, followed by 16-hr dry
stand after all the water had been drained off, followed by another
cycle of 7-hr steep in fresh water. Germination was under the
same condition for three days during which the germinating
barley was turned, moistened, and roots untangled twice a day.
The green malt was kilned at 40°C in a standard laboratory-
drying oven for 48 hr and finally cured at 80°C for 14 hr.

For the test, fungal flora isolated from South African malt
grown on potato dextrose agar (Biolab Diagnostics) plates was
washed into the first steep water, and the barley was not rinsed
before starting. Although the inoculum was not quantified, it was
a mixed culture and two overgrown petri dishes were used per 5
kg of malting. The steep water was retained and reused for the
second steep. Germination was slower for the fungal infected
malt, which took six days compared with three days required for
the control to have similar rootlet development.

Removing Husk
Malt was milled with a Buhler Universal Disc Mill (model

DLFU. I mm setting; (Buhler-Miag Ltd., Braunschweig,
Germany). The milled malt was sifted through a 2-mm square
mesh steel test screen (Star Screens, Nigel, South Africa). The
husk fraction on top of the screen was discarded. The retained
fraction was used to prepare wort according to the method de-
tailed for the PYF assay above. The mash was lautered through
the used filter bed of the PYF-negative control malt described for
the PYF assay.

Washing Whole Malt
Four hundred milliliters of deionized water was added to 130 g

of whole malt and stirred at 100 rpm in a 60°C water bath for I
hr. The grain was filtered through cheesecloth and rinsed with a
further 200 mL of 60°C deionized water. The filtrate was re-
tained, and the grain was spread out onto a tray and dried in a
standard laboratory-drying oven at 40°C for 24 hr.
The filtrate or wash was freeze-dried, and the solid was resus-

pended in 350 mL of mash water that was used in the preparation
of wort as described for the PYF assay.

Husk Pretreatment
Malt was milled and sifted as for husk removal. The malt mi-

nus the bulk of the husk was retained, and 200 mL of deionized
water was added to the predominantly husk fraction from the top
of the screen in a 4OO-mL glass beaker. The extracellular fungal
extracts or the xylanase enzymes (see below) were added to this,
and the beaker was shaken on an orbital shaker at 100 rpm at
room temperature for 16 hr. When mashing-in, the pretreated
husk fraction was added to 150 mL of mash water and the re-
tained milled malt minus the husk. One milliliter of 0.18M
CaCh·2H20 (Sigma) was added to the mash to compensate for
the lack of calcium relative to the normal mashes using 350 mL
of mash water (described for wort preparation of the PYF assay)
instead of 150 mL.

Extracellular Fungal Extract Preparation and Analysis
Five different Aspergillus species (A. niger, A. terreus, A.

oryzae, A. aculeatus, and A. ficuum) were inoculated separately at
I x 106 spores per mL in 150-mL minimal media (0.5% [w/v]
yeast extract [Biolab Diagnostics], 0.2% [w/v] casamino acids
[Difco Laboratories, Detroit, MIl. and 6% [w/v] sodium nitrate
[Sigma]) containing 2% [w/v] whole South African-grown barley
in 500-mL Erlynmeyer flasks with nonabsorbent cotton wool
plugs covered in aluminum foil and shaken at 300 rpm for seven
days at 30°C. The mycelia and insoluble grain material were
filtered out through cheesecloth. The release of reducing sugars
by fungal enzymes, such as xylanase, endoglucanase, mannanase,
and amylase, in the filtrate was determined by the 3,5-
dinitrosalicyclic acid method of Bailey et al (5). As described in
the method, birchwood xylan, carboxymethyl cellulose, locust
bean gum, and soluble starch were used as the respective
substrates. All the extracts exhibited >10 units (U) of xylanase
activity per liter. The A. niger and A. aculeatus also exhibited
significant levels of amylase activity. The extracts were freeze-
dried and stored at 4°C until used.

An additional amount of A. oryzae extracelluar extract was pre-
pared together with a number of controls. All the extracts were
analyzed for enzyme activity. The additional extract prepared
contained low levels of endoglucanase, mannanase, and amylase
as well as relatively high levels of xylanase activity. The controls
were as follows: 1) extract prepared with no fungus present (none
of the above enzyme activity detected); 2) extract prepared with
no barley present (some mannanase enzyme activity was de-
tected) and; 3) extracellular extract prepared with fungus and
barley and boiled prior to use (no enzyme activity detected).

Xylanase
Commercial endo-xylanase M3 from Trichoderma

longibrachiatum (Megazyme, Bray, Ireland) was used to treat
husk from 130 g of malt (used for the 350-mL PYF assay mash)
at activities ranging from 10 to 1,000 U.

Arabinoxylan Addition to Mash
Soluble and insoluble arabinoxylan from wheat starchy en-

dosperm (Megazyme) was added to the 350 mL of PYF assay
mash in a ratio of 30% soluble and 70% insoluble at concentra-
tions (soluble plus insoluble) ranging from 100 to 500 ug/rnl.,

RESULTS AND DISCUSSION

A Reliable PYF Assay
Although 2-L EBC tall tube fermentations are reliable tools for

fermentability and PYF measurements, they are time consuming
and labor intensive in addition to requiring larger amounts of
malt. Monitoring PYF was central to this work, so a rapid, small-
scale fermentation type assay was previously developed and opti-
mized (unpublished) to test malts for PYF within SAB Ltd. for
research purposes. Parallel fermentations in EBC tall tubes dem-
onstrated that the rapid test had a comparable ability to detect
PYF (results not shown).

TWo control malts were used to set the boundaries of the test, a
strong PYF-positive malt that flocculated very early and a PYF-
negative malt with normal fermentability and flocculation proper-
ties. The malts being tested were assessed relative to these con-
trols and trends rather than absolute values obtained. Test samples
were repeated to confirm any findings. The visual assessment of
PYF was used in the original method, later the addition of
postflocculation cell counts and wort gravity (residual extract)
were added. ln some cases, therefore, only visual assessment is
reported. Similar types of methods have been published (12,19),
the main differences included in the current method are the use of
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standardized yeast (grown on defined media), 13°P aU-malt wort
without hops, and the fermentation vessel design (Fig. I).

Establishing a Link Between PYF and Fungi on Barley
Six malts originating from barley reportedly having higher than

normal fungal loads, according to the testing applied by the vari-
ous maltsters, were collected and screened for PYE In all cases,
they were PYF positive according to the visual assessment (data
not shown). The gushing assay positive control malt available
from Carlsberg, Copenhagen, Denmark (intentionally infected
with Fusarium culmorum) was also PYF positive.

To further explore the relationship between PYF and fungal in-
fection, South African-grown barley (cv. Chariot) with a normal
fungal load was micromalted in the laboratory with (test) and
without (control) additional fungi obtained from South African
malt added to the steep water. Forty percent dextrose adjunct
worts at 16°P were prepared from the test and control malts and
fermented in EBC 2-L tall tube fermentations. The fungal in-
fected malt caused PYF relative to the control (Fig. 2), with lower
cell counts and higher levels of residual extract (RE) in the wort
after flocculation. Impaired sugar uptake by the yeast in the pres-
ence of wort prepared from the fungal infected malt contributed
to these results (slower maltose uptake relative to the control, data
not shown). The findings indicate there is a link between fungi on
barley and the occurrence of PYE

In addition, work in progress at SAB (Sandton, South Africa)
on malt antimicrobial factors active against yeast led to the testing
of the anti yeast activity of malt used for this work. The level of
antiyeast activity was determined with a method modified from
Broekaert et al (8) in which growth is measured by increase in
absorbance over time relative to a control (SAB Ltd. brewing
yeast was used as the test organism [to be published]). The results
indicated that all the malts tested to date were either PYF negative
with low levels of antiyeast activity, PYF positive with low levels
of anti yeast activity, or PYF positive with high levels of anti yeast
activity. Interestingly, high levels of antiyeast activity were not
observed in PYF-negative malts, inferring a relationship between
PYF and anti yeast activity in barley. The fact that antimicrobial
factors (often peptides), which playa role in plant defense are

Flocculation Factors in Malt I III

present at low levels in plant tissue at all times and stress, such as
microbial infection, can trigger the production of more antimicro-
bial factors, supports this inferred relationship (9,35).

Furthermore, the PYF-positive control malt (from high fungal
barley) not only caused PYF but also inhibition of yeast sugar
uptake (maltose) in fermentation (Fig. 3) coinciding with the
above observation and supported by previous work in which basic
antimicrobial peptides from barley have been shown to inhibit
sugar uptake by yeast (13,24-26).

Removal of Husk-Impact on PYF
On the assumption that the PYF factor was a degradation prod-

uct of husk, husk was removed from PYF-positive malt and PYF
characteristics of the resultant wort were measured with 2-L EBC
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Fig. 3. Maltose concentrations during 2-L European Brewing Convention
tall tube fermentations of wort prepared from premature yeast
flocculation (PYF)-negative control malt. PYF- positive control malt and
PYF-positive malt without husk. Bars represent min and max of duplicate
fermentations. Maltotriose profiles of the same samples followed the
same profiles (data not shown).

18 Cell counts (millionlmL) 4.4 RE (degree Plato)

16 4.3
14 4.2
12 _l 4.1
10 1 4
8 3.9

6 3.8
4 3.7
2 3.6
0 3.5

A Control malt Fungal malt B Control malt Fungal malt

Fig. 2. Two-liter European Brewing Convention (EBC) tall tube fermentation of 40% dextrose adjunct wort at 16°Plato. prepared from malt micromalted
with and without fungal addition in steep. Postflocculation wort cell counts (A) and residual extract (RE) (B) from the premature yeast flocculation
(PYF) assay results are shown. Bars represent minimum and maximum for duplicate fermentations. Repeat micromalting gave similar results using PYF
assay (data not shown).
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arabinoxylans, which supports the finding that barley infected
with Fusarium had more xylanases than the uninfected control
(28). Additionally, A. niger produces and excretes large amounts
of xylanase relative to any other enzymes (I). Filamentous fungi
in general produce far more xylanases than either yeast or
bacteria (21), supporting the suggestion that it is the fungal
infection that is more important with respect to PYF.

Extracellular Fungal Extracts. The PYF-negative malt husk
fraction was pretreated with the extracellular fungal (Aspergillus)
extracts before mashing-in and preparation of wort for PYF
analysis. In each case, PYF was induced by the pretreatment of
the husk with the extracts relative to the control (presoaked husk,
no extract added) (Fig. 4).

To determine the relative importance of the fungi (Aspergillus),
the enzymes, and the barley in the extracts, three additional con-
trols were prepared and tested for PYF-inducing activity (Table
Ill). Aspergillus was essential for inducing PYF activity, since the
extract where the Aspergillus inoculum was left out did not in-
duce PYF. Boiled extract did not induce PYF presumably because

TABLE IV
Flocculation Results (pYF Assay) of All-Malt Wort"

Postnocculation Wort
Analysis

Enzymel350 mL Flocculation Yeast Counts REb

of Mash (Visual Assessment) (106 ceIls/mL) (OP)

o Units (U) (control) Normal 26 2.04
10 UC Normal 23.8 2.03
lOOU Early 13.3 1.9
1.000 Ud Delayed 42 2.2

"All-malt wort (13°Plato lOP]) prepared with malt where the husk was
pretreated with differing concentrations of commercial xylanase. Cell counts
and residual extract was measured postfiocculation. Average values for
duplicate fermentations are reported and repeat experiments indicated
similar trends (data not shown). PYF = premature yeast flocculation.

b RE = residual extract.
c 10 and 50 U of xylanase were tested and results were comparable.
d 150. 200. 500. and 1.000 U of xylanase were tested and all results were
comparable.

A

100 500
Arabinoxylan

(micro g)

PYF+o
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of the inactivation of enzymes required to generate the PYF fac-
tor. This implies that the factor must survive the brewing process
(including boiling) to cause its effect in fermentation. Although
nonenzymatic proteins present in the fungal extract would also be
denatured, these are unlikely to be associated with the occurrence
of PYF since they would not survive the brewing process. Al-
though the presence of barley in the growth media enhanced the
PYF activity of the extract, it was not essential since the extract
from fungi grown on minimal media without barley still induced
PYF but to a lesser extent (Table Ill). The latter suggests the fun-
gal enzymes required to break down husk material are constitu-
tively produced and secreted by the growing fungi. but the
presence of material that needs to be degraded before it can be
assimilated increases the amount secreted (21).

Commercial Endo-Xylanase. Having established the impor-
tance of the fungal extracellular enzymes in PYF and the
presence of xylanase in the extracellular fungal extracts, commer-
cially available endo-xylanase from T. longibrachiatum was
tested (with the same method of pretreating the husk) for its PYF-
inducing capability.

At 10 and 50 U of xylanase per 350 rnL of mash, flocculation
was not affected (Table IV). At 100 U of xylanase, PYF was in-
duced according to the visual assessment and postflocculation
yeast counts, although the residual extract remained unchanged.
This observation supports the finding that some husk component
is required for normal flocculation and also suggests that the re-
quired component is likely to be the same as the PYF factor. This
is in agreement with the findings of Herrera and Axcell (16) who
detected PYF factor at different levels in PYF-negative and -posi-
tive malts. Above 150 U, flocculation was impaired. The
proposed PYF factor produced by the breakdown of the husk
arabinoxylan by xylanase may have been degraded further
resulting in lower-molecular-weight arabinoxylans, which no
longer impacted flocculation.

The fungal endo-xylanase level of activity on the malt husk ap-
pears to create factors that influence flocculation, although no
impact was detected on attenuation. There may be several reasons
for this, e.g., the fungal extracellular extracts are likely to contain
several different enzymes and only one was tested in isolation in

2.6

2.5
'0
1iia. 2.4
CD

~ 2.3

:2. 2.2
w
a:

2.1

2

Ie

100 500
Arabinoxylan

(micro g)

PYF+o

Fig. S. Postflocculation wort cell counts (A) and residual extract (B) from the premature yeast flocculation (PYF) assay results for arabinoxylan
additions to the mash. Visually assessed as not PYF (shaded bar) and visually assessed as PYF (white bar). Assay was done in duplicate and bars
represent min and max. The experiment and assay were repeated and gave similar results.
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Fig. 6. Proposed mechanism of premature yeast flocculation factor(s)
generation from barley husk by fungi. Initial infestation by fungi (A),
fungal enzymatic degradation of the husk (B) and production of more
antimicrobial peptides (AP) by barley (C). HMWP = high-molecular-
weight polysaccharides.

this case. Alternatively, two separate factors may be required to
induce an effect on flocculation and sugar uptake, the factor from
husk degradation of xylanase influencing only floc formation.

HMW Polysaccharides to Induce PYF
Since the fungal enzymes involved in husk breakdown induce

PYF, it stands to reason that the enzyme products are involved in
PYF. Xylanase activity specifically was shown to impact floccula-
tion, and its products from the degradation of husk would be a
range of molecular weight arabinoxylans. Arabinoxylan is com-
mercially available from wheat starchy endosperm, which only

differs from barley husk arabinoxylan in that it does not contain
glucuronic acid residues. These glucuronic acid residues make the
husk arabinoxylan acidic or negatively charged (7), possibly ac-
counting for the previous finding that the PYF factor is an acidic
polysaccharide (12). The importance of the acidic character of the
PYF factor is not known hence the wheat endosperm arabinoxy-
Ian used may not be as effective as barley husk arabinoxylan.

Arabinoxylan is available in soluble and insoluble forms. The
latter does not dissolve in water but hydrates and forms a gel. In
most cereals, the ratio of soluble to insoluble arabinoxylan is
30:70% (18). This ratio was used when arabinoxylan was added
to the mash at various concentrations. Since the PYF factor can
be washed off the grain, it suggests that the factor is soluble.
Morimoto et al (22) also reported this. Results indicate that arabi-
noxylan did induce PYF at higher concentrations (Fig. 5).

Proposed Mechanisms of PYF
From the Barley Perspective (Fig. 6A, B, and C). Seasonal con-

ditions impact the barley microbial load (2). Fungi occur on the
surface or husk of the grain (6,17) (Fig. 6A). To generate nutri-
ents that the fungi can assimilate, enzymes are secreted (mainly
xylanases and glucanases) that degrade the husk (1,28) (Fig. 6B),
which is made up predominantly of arabinoxylan and cellulose
(18). The products of xylanase degradation from barley husk (7)
are acidic arabinoxylans with a range of molecular weights. PYF
is associated with acidic HMW polysaccharides (12), which we
suggest are the acidic arabinoxylan products of husk degradation
by xylanase. Cellulose is not associated with PYF and is also
resistant to enzymatic degradation (22).

These HMW polysaccharides (possibly arabinoxylans) remain
on the surface of the grain. Since PYF can be removed by wash-
ing grain, the causative agent (arabinoxylans) must be soluble,
and indeed it has been established that xylanase degradation prod-
ucts, albeit of wheat starch endosperm, consist of soluble and
insoluble components (1).

Should the fungal infection of the barley be heavy, or such that
the integrity of the grain is compromised as a result of severe
degradation, the plant may respond by synthesizing more
antimicrobial factors (likely to be basic peptides) (Fig. 6C). These
are present constitutively at low levels and the up-regulation is a
common mechanism found in plants (9,35). The observation that
high anti yeast activity is only associated with malts that are also
PYF but that not all PYF malts have high antiyeast activity sup-
ports this proposed mechanism.

From the Yeast Perspective (Fig. 7A and B). Once the yeast is
flocculent, but the sugar concentration in the wort is still high, the
acidic arabinoxylans (which we postulate to be PYF factors gen-
erated by fungal enzymatic degradation of barley husk) cross-link
the lectin-like proteins on the yeast cell surface forming yeast
floes (Fig. 7A). The polysaccharides associated with PYF have
been shown to have a greater affinity for the lectin-like proteins
than the simple sugars (32), enabling the polysaccharides to out-
compete the simple sugars. This would result in normal fermenta-
tion rates up to the onset of early flocculation when the yeast is
removed by a physical process because of floc formation leaving
behind high levels of residual extract in the wort; a scenario coin-
ciding with brewery observations.

The role of antimicrobial polypeptides remains speculative,
though they have been implicated in the ability to impair yeast
sugar uptake (13,24-26) and there is an apparent link between
PYF and antimicrobial activity against yeast.

It is possible that if the malt antimicrobial factors are present at
higher than constitutive levels, in addition to associating with the
HMW polysaccharides PYF factor, they could interact with the
yeast cell membrane and curtail the sugar uptake capabilities of
the yeast (Fig. 7B).
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Fig. 7. Proposed mechanism of premature yeast flocculation by high-molecular-weight (HMW) polysaccharides only (A) and HMW polysaccharides in
association with antimicrobial peptides (B).

Although several equally feasible variations on the smaller de-
tails of this mechanism exist, they are not included here for sim-
plicity and we believe they do not alter the main theme of the
hypothesis.

CONCLUSIONS

The following conclusions were made: I) A mechanism on how
PYF occurs from the onset in barley was proposed; 2) PYF ap-
pears to be associated with not only heavy PYF but also with
impaired sugar uptake by the yeast; and 3) PYF was shown to be
husk related and inducible by fungal infection during malting and
fungal enzymatic degradation of the husk.

Future work will examine the possible reduction of PYF at the
malting stage and the role of malt antimicrobial factors in PYF.
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Chapter 6

Optimisation of a microtitre plate yeast assay to screen
antimicrobial activity

Abstract

The optimisation of an antiyeast assay, developed from a number of existing assays, using

South African Breweries Ltd. (SAB Ltd.) production lager yeast strain (Saccharomyces

cerevisiaei as the test organism, is described. Throughout the optimisation a known

antimicrobial peptide from Bacillus brevis, gramicidin S, was used as a model antibiotic and

control for the assay. The assay was performed in a 96 well microtitre plate of which the lay

out was optimised for consistent and reproducible yeast growth. The preparation of the yeast

prior to the assay and the cell concentration used in the assay was optimised to attain good

differentiation or sensitivity and robustness. Growth in the presence or absence of gramicidin

S was measured over time by the relative increase in light dispersion (optical density). A

doubling dilution series was used to generate a dose response curve. The software package

Prism® 3.0 (Graphpad Software Inc.) was used to analyse data expressed as the concentration

required for 50% microbial growth inhibition (ICso) and to compare dose response growth

inhibition curves. Gramicidin S was found to have an ICso value of 12.3± 1.1 ug/ml., The

antiyeast assay was optimised with the view of screening barley malt derived extracts to

investigate the possible impact of yeast inhibitory factors in malt on the brewing process.

Introduction

The presence of antimicrobial factors in grain and in particular barley is well established

(Broekaert et al., 1995, Leah et al., 1991, Molina et al., 1993 and Molina and Garcia-Olmedo,

1993, Mundy and Rogers, 1986 and Ponz et al., 1983 and 1986). However, in the brewing

industry it has not been investigated if the presence of such factors in barley or the malt

prepared from barley (the major raw material for beer brewing) impacts on the brewing

process. The impact, if any, may be direct or indirect. The direct impact would be the

inhibition of yeast metabolism during fermentation by the antimicrobial factors from the malt.

The indirect impact may be much more complex, whereby the occurrence of microbial
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contamination on grain and the defence/stress response to that is indicative of a range of other

malt quality aspects that may not necessarily affect yeast (e.g. flavour stability and haze in

beer (Etchevers et al., 1977)). In order to examine this, a reliable and sufficiently sensitive

antimicrobial assay using brewing yeast as an indicator organism was required.

Various methods for the evaluation of antimicrobial activity already exist. Some focus on the

assessment of the microbial membrane permeabalisation, e.g. measuring leakage of ions such

as potassium out of the microorganism (Terras et al., 1993 and Thevissen et al., 1996) or the

uptake of a dye, such as SYTOX Green, into the organism (Thevissen et al., 1999). Others

assess membrane lysis, signifying a cidal rather than a static effect on organisms, measured by

the detection of intracellular enzymes such as a-glucosidase extracellularly (Jewell et al.,

2002). Changes in membrane function can also be detected by monitoring the uptake of

glucose by the microorganism (Wetter et al., 2001).

Other methods focus on microbial growth itself, which is by far the most commonly used and

least cumbersome. Initially the inhibition of growth was assessed using culture plates e.g.

disk-plate diffusion where disks soaked in test sample were placed on a developing lawn of

microbial growth, resulting in inhibition zones. This was only semi-quantitative since the

concentration of the test sample in the disk was difficult to assess and inhibition zones were

scored by arbitrary ratings (Hadacek and Greger, 2000). Alternative growth assays related

growth to increase in turbidity enabling quantification of growth inhibition but these required

large volumes of the test samples (Amsterdam, 1996 and Boeira et al., 1999). This type of

growth inhibition assay was adapted to microtitre plates (Broekaert et al., 1990, Hancock,

1997 and Steinberg and Lehrer, 1997) which required far less test samples and allowed for

simultaneous testing of many different samples or samples over a range of concentrations by

micro-dilution. In the same microtitre plate format Yamashoji et al., (2004) used spectroscopy

and chemiluminescence to relate viable cells to active oxygen species, although this was not

applied to testing antimicrobials.

According to Hadacek and Greger (2000), who compared different types of antimicrobial

assays, the microtitre plate micro-dilution type method offered the greatest potential of all the

bioassays. Many of the growth inhibition assays where growth was assessed

spectrophotometrically used fungi as test organism (e.g. Fusarium culmoron (Thevissen et al.,

1997), Botrytis cinerea (Broekaert et al., 1992) and Neurospora crassa (Thevissen et al.,

1996)), some used bacteria (Micrococcus luteus (Du Toit and Rautenbach, 2000)) and others
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used yeast (Saccheromyces cerevisiae strains) (Boeira et al., 1999, Kubo et al., 2003, Kubo

and Himejima, 1992, Okada et al, 1970, Thevissen et al., 2000 and Wetter et al., 2001). Most

of these organisms were used to test plant derived antimicrobial factors. Yeast, however, was

used to test factors such as mycotoxins (Boeira et al., 1999), antimicrobial factors from

bacteria (Thevissen et al., 2000), various chemicals including alcohols (Ken-ichi and Kubo,

2002 and Kubo and Himejima, 1992) and using brewing yeast specifically, barley derived

antimicrobial factors (Okada et al., 1970).

Known antimicrobial compounds were sometimes used as positive control in antimicrobial

assays. These compounds are mostly known antimicrobial peptides from bacteria such as the

antifungal Nystatin from Streptomyces noursei (Broekaert et al., 1990) and Nikkomycin Z

from Streptomyces tendae (Broekaert et al., 1992) and an antibacterial peptide from Bacillus

brevis, namely gramicidin S (Du Toit and Rautenbach, 2000). The latter is a known

antibacterial that prevents the functioning of the cell membrane by disrupting the integrity of

its phospholipid bilayer (Yonezawa et al., 1986).

The microtitre plate growth inhibition type assays, summarised here, were used as a basis to

develop a suitable antiyeast assay to determine the impact of antimicrobial factors on yeast

with the aim of applying this method to the investigation of malt antimicrobial factors and

their possible impact on the brewing process. The following aspects were optimised for the

assay: the microtitre plate set up and incubation conditions, the impact of sample solvent or

dilution solution used for the assay, the yeast preparation and the yeast cell concentration.

Materials and methods

Optimisation of antiyeast assay

Growth medium and yeast were added to all 96 wells of the microtitre plates (flat bottomed

non-binding, Bibby Sterilin, Statfordshire, England) used for the assay. The impact of

incubation temperature and airflow as well as the location of the well was examined by

monitoring yeast growth in each well. Each well contained 100 ul. MYGP broth (3 g each of

malt and yeast extract, 5 g peptone and 109 glucose (Biolab Diagnostics, Midrand, South

Africa) dissolved in 1 L water and autoclaved 15 minutes under pressure to attain 121°C) and

3.6±0.5 xl 02 cells of SAB Ltd. lager brewing yeast (Saccharomyces cerevisiae). Yeast counts

were determined by using a Hawksley-Cristallite haemocytometer with improved Neubauer

ruling (Boeco, Hamburg, Germany). Yeast growth was monitored by measuring the increase
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in light dispersion at 595 nm using a microtitre plate reader (Bio-Rad model 450 microtitre

plate reader, Richmond, CA, USA).

The sample solvent or dilution solution (25% acetonitrile (HiPerSolv™, BDH, Poole,

England)) used for the assay and its impact on the yeast growth was established by monitoring

yeast growth in the presence of increasing concentrations of acetonitrile. To each well 80 I-LL

MYGP containing 3.6±0.05 xl05 cells ofyeastlmL and 20 I-LLsample solvent was added.

The optimal yeast preparation for the assay was determined by comparing cryogenically

stored yeast to propagated log phase yeast. Saccharomyces cerevisiae (SAB Ltd. lager

brewing yeast) was propagated by inoculating 15 mL MYGP with cryogenically stored yeast

at 1x 106 cells/mL in a 100 mL Erlenmeyer flask. The yeast was allowed to grow for between

7.5 and 10 hours (25°C) while shaking (150 rpm) to attain log phase yeast. The yeast was then

diluted in MYGP to the required cell concentration for the assay. Cell counts were optimised

for the assay by testing and comparing cell counts ranging from 0.22 to 3.6x106 cells/mL.

Optimised antiyeast assay and gramicidin S dose response

Only the inner block of wells, eight across and four down, of the 96 well microtitre plates

were used and analysed for the assay itself (Fig. 2), although yeast in liquid medium was

added to the remaining wells. Dilution solution (20 I-LL25% acetonitrile) and 80 I-LLliquid

growth medium with or without yeast was added to each well of the entire plate. A positive

control (100 I-Lg/mL gramicidin S from Bacillus brevis (Sigma, St. Louis, USA) in 25%

acetonitrile), a negative control (25% acetonitrile, taken as 100% growth) and a contamination

control (25% acetonitrile and media without yeast) were included in each run (consisting of

up to 20 plates). Dilution solution (20 I-LL)was dispensed into all the wells of the entire plate

except the first well of the rows within the central block where dilution series were required.

Gramicidin S (40 I-LLof 100 ug/ml.) was dispensed into the first well of a row in the central

assay block for the start of the dilution series. The gramicidin S was diluted two-fold across

the rows (eight wells) within the central assay block by transferring 20 I-LLof the 40 I-LLto the

next well and discarding the final 20 I-LL.MYGP broth without yeast (80 I-LL)was added to the

wells designated as the contamination control and MYGP with yeast (80 I-LL)was added to the

remaining wells on the plate already containing sample or dilution solution.
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Cryogenically stored yeast was propagated as described above and was diluted in MYGP to a

final concentration of between 3.6 and 8.3xlOs cells/mL.

Each gramicidin S concentration was tested in duplicate using duplicate log phase yeast

grown from two different batches of cryogenically preserved yeast. The content of the wells

were mixed by holding the plate on a vibrating vortex mixer for several seconds, set to avoid

spillage and frothing. The light dispersion or optical densitiy (OD) at 600 nm was determined

using a microtitre plate reader at time zero (at the start of the assay, Tzero) and after between

22 and 24 hours (when the controls had a light dispersion of between 0.2-0.3, Tjinal). The

plates are wrapped in foil and left to incubate at room temperature (23± 1°C) or in an

incubator. An assay was regarded as contamination free when there was no significant

increase in absorbance for the blank wells « +0.006) over the growth period.

Data analysis

The data analysis protocol was adapted from Du Toit and Rautenbach (2000). The change in

absorbance for each well was calculated and expressed as a percent growth relative to the

negative reagent control. All the reagent control values were averaged (Average DT).

(
(Tjinal - Tinitial) J x 100 = % growth
Average i;

The percent growth was corrected such that the percent growth at the lowest concentration of

the test sample represented 100% growth and the rest of the dilution series was expressed

relative to this.

(
% growth J x 100 = corrected % growth

% growthlowest concentration
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These values were entered into Graphpad Prism version 3.0 for Windows (Graphpad

Software, San Diego, CA, USA (www.graphpad.com)) to calculate the inhibitory

concentration at which 50% growth inhibition (ICso) occured by performing nonlinear

regression on the dose response data and fitting a sigmoidal curve with variable slope to the

data as described by Du Toit and Rautenbach (2000). The correlation coefficient (R2) of the

data to the selected curve was also considered and only data sets with R2 >0.99 were selected.

Wherever relevant the standard error of the mean (SEM) was used to establish any significant

differences.

SD =SEMs:
Where SD is standard deviation and n is number of values or samples.

Results and Discussion

Microtitre plate layout

Growth in the wells across the micro titre plate was found to be inconsistent. On closer

examination it was found that growth was greater in the wells near the edges than in the centre

causing the negative control to "smile" across the plate (Fig. 1). It was proposed that this may

be attributed to the airflow inside the incubator effecting the outer wells more then the inner

wells and/or differences in temperature between the wells as a result of heat generated by the

yeast. Temperature was proposed to be the critical parameter as any attempts to seal the plates

to minimise the airflow had not impact at all. The problem was resolved by only using the

inner eight by four wells for the assay and the outer two rows of wells were inoculated with

yeast as for the negative control but not regarded in the data set. The growth in these wells

probably generate the correct temperature environment for the inner wells. This format was

used as four rows each consisting of eight wells, samples were added to the first well in each

row and diluted two fold across the row, i.e. seven two-fold dilution steps per sample, per row

(Fig. 2).
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dilution was made across each row indicated by the numbers and starting with
an arbitrary concentration of 1.000.

Figure 2
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Dilution solution for the antiyeast assay

Gramicidin S does not dissolve easily in water and to aid dissolution 25% acetonitrile was

used as solvent. This was adopted as the dilution solution for the assay to ensure the

concentration of acetonitrile was the same in all the wells. The impact of the acetonitrile on

yeast growth in the assay was determined to establish the relative inhibitory effect of the

solvent and the sample being tested, in this case gramicidin S. Assuming growth in water was

100%, growth at 25% acetonitrile was 88% on average (Fig. 3). Although acetonitrile at 25%

contributes to the inhibitory activity it was considered to be acceptable for the assay.

Figure 3
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% acetonitrile

Impact of increasing levels of acetonitrile on yeast growth in the antiyeast assay.
Error bars represent SEM of duplicate analyses of triplicate experiments (n =
16).

Propagation of log phase yeast

Yeast was propagated in MYGP media and the propagation was monitored by cell counts to

ensure cells were in log phase and to check the variation between batches of cryogenically

stored yeast. Previous growth curves over 20 hours indicated log phase occurred between 6

and 8 hours and stationary phase was reached after 12 hours (data not shown). Using the same

growth conditions, growth curves were repeated between 0 and 10 hours with three different

batches of cryogenically stored yeast. No significant differences were observed between these

(Fig. 4) and the previous data. Log phase yeast was used after 7.5 hours, but before 10 hours

based on this data.
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Figure 4
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Comparison of growth curves of four different batches of cryogenically stored S.
cerevisiea (SAB Ltd. lager brewing yeast). Storage times varied from two weeks
to six months. Analysis was done up to 12 months apart. Error bars represent the
SEM (standard error of the mean) (n = 4). The selected time range for the
propagation oflog phase yeast is indicated (>7.5 hours <10 hours).

Laboratory propagated log phase versus cryogenically stored yeast

Microorganisms in log phase are considered to be more sensitive to damage because they are

growing rapidly and cells are delicate and small (Boeira et aI., 1999 and Thevissen et al.,

1999). Yeast directly out of cryo-preservation and propagated log phase yeast were compared

to see if there actually was a difference in sensitivity. The advantage of using yeast directly

from cryo-preservation is that no propagation is required, making the assay time shorter.

Yeast from the same batch of cryogenically stored yeast was used directly in the assay and to

propagate yeast for the assay. Viability of yeast directly out of cryo-preservation was only

about 26±5% compared to propagated log phase yeast at 76±5% as determined by growth on

MYGP culture plates. Counts were adjusted to compensate for this difference ensuring results

were due to the viability of the yeast and not the initial cell count.

Fifteen sets of data were compared each using a different batch of yeast but all with

gramicidin S as the positive control. According to the results yeast used directly from cryo-

preservation without propagation was significantly more sensitive to the inhibitory effects of

gramicidin S than the propagated log phase yeast (Fig. 5). However, results from cryo-

preserved yeast (Fig. 6A) were less consistent than those of propagated log phase yeast (Fig.

6B) as can be seen by the spread of results. Therefore, propagated log phase yeast was

selected as the yeast of choice.
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Figure 5
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Figure 6

Cell counts

Antiyeast assay results for gramicidin S expressed as percent growth (% growth)
relative to the negative control of A: yeast direct from cryo-preservation and B:
propagated log phase yeast. Individual curves and average (-+-) curve are
shown to indicate the spread of results.

In the literature antimicrobial assays with yeast used log phase yeast with cell concentrations

ranging from 1 to 1.8xl06 cells/mL (Boeira et al., 1999 and Thevissen et al., 1999). Cell

counts ranging from 0.22 to 3.6xl06 cells/mL (log phase yeast) were used to compare two

different concentrations of gramicidin S (Fig. 7). At the low and high cell counts, the

difference in percentage growth between the yeast subjected to the two gramicidin S

concentrations was small compared to the differences observed at cell counts ranging from

3.6 to 8.3x105 cells/mL. The assay was therefore most sensitive to concentration differences
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of gramicidin S in this latter cell count range. In addition the change in percent growth for

each concentration of gramicidin S was relatively low across this cell count range contributing

robustness to the method. The cell count range 3.6 to 8.3xl0s cell/mL was hence selected as

the optimal range (Fig. 7) for the assay, based on its sensitivity and robustness.

100 30

(j)
?f!.E 90

e! s·
C) 20 :::T

...J C'
E

;:0:

eS-c, 80 :::J
::t N0 I optimal'<t -E'-.J::. range (C

~ 10 3"
0 70 r.... G)Cl- iilI/)
ra 3
Q)
>. !!J~ 600

0 20l!g/mL Gram S. 40Jlg/mL Gram S
50

2 4 8 16 32 64

yeast count (X105)

Antiyeast assay results for two different concentrations of gramicidin S
expressed as percent yeast growth (% growth) versus different cell
concentrations. The optimal cell count range is indicated. Error bars represent
SEM for 3 different duplicate analyses (n = 6) each analysed with different
batches of yeast.

Figure 7

Determining dose-response of yeast towards gramicidin S

Data from the anti yeast assay expressed as percent growth was used to generate a dose

response curve by fitting the data to a sigmoidal curve with variable slope. From this the

concentration required to inhibit 50% of the yeast growth (ICso) can be determined (Fig. 8)

which in this case was 12.3±1.1 ug/ml. gramicidin S. Gramicidin S ICso values varied <10%

and was used as the positive control for the anti yeast assay to validate subsequent assays

(Chapters 7-9).
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Figure 8

110
• •i

90

..r::. 70~
0....
0>..... 50(/)
C\l
Q)
>-
~ 30

10

log IGSO
-10

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
log [gramicidin S] J.!M

Gramicidin S dose response curve generated from the antiyeast assay data fitted
to sigmoidal curves used to calculate the ICso value. Error bars represent SEM
for triplicate analyses of triplicate experiments (n = 9).

Conclusions

A microtitre plate antiyeast assay was optimised, using gramicidin S as positive control, for

the use of brewing yeast (SAB Ltd. lager yeast strain (Saccharomyces cerevisiae)) as the test

organism. The set up of the microtitre plates in which the assay was performed was optimised

to ensure consistent growth in all the wells. Log phase laboratory propagated yeast was shown

to be most suitable for the assay compared to yeast directly out of cryo-preservation, although

less sensitive, the log phase yeast gave better repeatability. Cell counts impacted on both

robustness and sensitivity of the assay and the cell count range of 3.6 to 8.3x105 cells/mL was

selected as optimal in both regards. Using dose response data from the antiyeast assay it was

possible to calculate ICsovalue of gramicidin S with high repeatability (l2.3± 1.1 ug/ml.). The

antiyeast assay was optimised to provide a tool for the investigation into the presence and

possible impact of antimicrobial factors in barley or malt on the brewing process and

specifically on yeast performance in fermentation. The application of this method is reported

in Chapters 7 to 9.
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Chapter 7

Screening of barley, malt and wort extracts
for antiyeast activity

Abstract

The previously described microtitre plate antiyeast assay (Chapter 6) was used for the

detection of antimicrobial factors in barley, malt and wort extracts. The preparation of extracts

for the assay is described and the cell count parameter of the antiyeast assay was verified.

Antiyeast activity was detected in both barley and malt extracts and comparative results

indicated that activity probably increased during the malting process. All the malt extracts

screened, except those from one of the malts, had antiyeast activity. Levels of antiyeast

activity could be differentiated. For certain malts, which cause premature flocculation of yeast

leading to atypical fermentations, the presence of antiyeast factors appeared to be related to

yeast sugar uptake inhibition. However, malts that were not associated with premature yeast

flocculation, possessing strong antiyeast activity or not, fermented well and sugar uptake was

normal. Neither antiyeast nor antibacterial activity was detected in wort extracts. However,

this lack of antiyeast activity appeared to be associated with the physical removal of the active

factors during wort preparation and/or subsequent extraction under laboratory conditions. The

presence of trub, the precipitate formed during boiling and cooling of wort, led to growth

inhibition of Gram-negative and Gram-positive bacteria in laboratory prepared wort.

However, yeast (laboratory propagated or brewery collected) growth inhibition was

seemingly masked by the additional yeast nutrients in trub (metal ions and lipids). Initial

exploration revealed yeast (brewery collected) growth inhibition in brewery collected wort

compared to filtered brewery wort. We observed that addition of malt derived antiyeast

factors to wort impacted negatively on yeast sugar uptake during laboratory 100 mL

fermentation.

Introduction

Poor malt quality has been positively identified as the source of a number of brewing related

issues such as poor filtration in brewhouse (Prentice and Sloey, 1960), atypical fermentations
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(Haikara, 1983, Kruger et al., 1982 and Van Nierop et al., 2004), beer flavour instability

(Etchevers et al., 1977) and poor beer foam (Gardner, 1973). Microbial contamination of the

grain has been associated with poor malt quality and several brewing related issues (Gjertsen

et. al., 1965 and Schwarz et al., 2001) such as atypical fermentations due to the premature

flocculation of yeast resulting in incomplete fermentations (Axcell et al, 1986 and Stratford,

1992). The type and extent of infestation varied according to growing region, susceptibility of

the barley variety and climate (Etchevers et al., 1977). Apart from growth of microorganisms

on the grain in the field and on the dry stored barley pre-malting, growth occurring during

malting and malt storage may also contribute to the malt quality (Andersen et al., 1967 and

Prentice and Sloey, 1960). The conditions during malting were well suited for further

microbial growth on barley with regard to temperatures, moisture and airflow. Some

microorganisms increasd immensely during steeping and germination (Kotheimer and

Christensen, 1961), although many of these were killed off during the kilning process when

the malt was dried. However, the total microbial load on malt was comparable to that in

barley even if the composition was not (Petters et al., 1988).

Plants produce antimicrobial factors as part of their innate immune/defence system (Broekaert

et al., 1997). Most of these factors were proteins or peptides and their presence in barley

seeds has been well established (Broekaert et al., 1995, Heinemann et aI., 1996, Mundy and

Rodgers, 1989 and Ponz et aI., 1983 and 1986). These antimicrobial factors were either

constitutive or induced to cope with sufficiently pathogenic microbial infestation (Carr and

Klessig, 1989) or other forms of stress such as drought, cold or chemical exposure (Kader,

1997 and Torres-Schumann et al., 1992). The constitutive type defence responses were in

place before the plant tissue was challenged, while the induced plant defence responses were

activated when plant tissue was challenged by pathogens (Carr and Klessig, 1989). The mode

of action of plant antimicrobial factors produced as part of the plant defence system was

mostly by permeabalising the microbial plasma membranes causing leakage of ions and even

proteins, damaging the transport systems embedded in the membranes (Guihard et al., 1993)

or membrane lysis. Early work demonstrated that brewing yeast was inhibited by a barley

factor (9.8 kDa protein) originating from the grain endosperm, causing sugar uptake inhibition

at low concentrations and cell death at higher concentrations (Okada and Yoshizumi, 1973).

In addition to plant antimicrobial factors, microorganisms occurring on plants also produced

antimicrobial factors. Aside from proteins and peptides these included toxins, by-products of

the primary metabolic pathways (organic acids, ammonia, hydrogen peroxide), secondary
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metabolites or idiolytes (Sahl and Bierbaum, 1998). Competition between microorganisms for

the same source of nutrients stimulated the production of these antimicrobial factors. Such

microorganisms and the antimicrobial factors they produced have been shown to occur

naturally on barley and malt (Vaughan et al., 2001). Gram-positive bacteria produced by far

the widest range of microbial antimicrobial factors. Gram-negative bacteria, filamentous fungi

and yeast also produced antimicrobial factors although less prevalent and usually active on a

much narrower range of organisms (Jack et al., 1995). Like many of the protein plant factors,

these factors were mostly membrane active (Jack et al., 1995 and Sahl and Bierbaum, 1998).

The occurrence of microbial contamination of the grain and presence of antimicrobial factors

may impact on malt quality, directly or indirectly. The direct impact would be the inhibition

of the yeast during fermentation by the antimicrobial factors on the malt. The indirect impact

may be a lot more complex, whereby the occurrence of microbial contamination and the stress

response to that is indicative of a range of other malt quality aspects that may not necessarily

affect yeast directly.

The previously optimised antiyeast assay was applied to investigate antiyeast activity in

barley, malt and wort. Barley and malt extract preparation was optimised and the assay

conditions for this application were verified. The presence of anti yeast factors in wort was

further investigated.

Materials and Methods

Malt extract preparation

Malt samples were milled to a flour consistency in a 3100 Perten hammer mill with a 0.2 mm

sieve (Huddinge, Sweden). Duplicate 5 g aliquots were weighed out in disposable 50 mL

centrifuge tubes (Sterilin, Staffs, U.K.). 30 mL 0.05 M sulphuric acid (BDH, Poole, England)

was added to each tube and incubated on ice for three hours with vigorous shaking every 15

minutes to re-suspend all the malt. The tubes were centrifuged at 4000 g for 15 min. The

supernatant was dialysed against distilled water using 1 kDa cut-off dialysis tubing

(Spectro/Por®, Rancho, Dominguez, California, U.S.A) pre-blocked by soaking tubing in 2 %

casamino acid (Sigma, St. Louis, USA) for three hours at room temperature. Post-dialysis the

content of the dialysis tubing was made up to 45 mL with distilled water and centrifuged at

6500 g for ten minutes. The supernatant was filtered though a 0.45 11macetate syringe filter

(Osmonics, Warren, Indiana, U.S.A.) and 4.5 mL aliquots were dispensed into ten mL

vacutainer tubes (Preanalytical Solutions, Plymouth, U.S.A.) before freeze drying (Labconco,
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Kansa City, Montana, U.S.A). The dried aliquots were centrifuged at 3000 g for three minutes

to collect the dry material at the bottom of the tube for easier re-suspension. Dried samples

were stored at -20°C until use and then re-suspended in 1000 !J.L 25% acetonitrile

(HiPerSolv™, BDH, Poole, England). Finally, the samples were centrifuged at 6500 g for 15

minutes before using the supernatant in the assay. Each tube or aliquot contains extract from

0.5 g malt. The same extraction procedure was applied to 0.05 M sulphuric acid without the

malt as a negative reagent control.

Barley extract preparation

Barley (80 g) was milled as per the malt extraction method and placed into the 500 mL

beakers for the R. Chaix M.E.C.A. mash bath (Nancy, France) with overhead paddle stirrers

at a temperature of at 55°C. 200 mL Mash water (deionised water with 1.2 mM CaCh,2H20

(Sigma, St. Louis, USA) and with pH adjusted to 3.0-3.1, using a dilute solution of lactic acid,

(Sigma, St. Louis, USA)) was added to the milled barley as well as 200 ul. Bioferm L (Kerry

Bio-Science, Co. Cork, Ireland) containing a-amylase and 65 !J.LBioglucanase 500 (Kerry

Bio-Science, Co. Cork, Ireland) containing p-glucanase. The mixture was stirred at 100 rpm

for one hour and the beakers were removed from the mash bath. Concentrated sulphuric acid

was added to the mixture to give a final concentration of 0.05 M and extracted as per the malt

extraction method described above, commencing with the three hour incubation on ice with

vigorous shaking every 15 minute to re-suspend all the barley. In addition barley was

extracted in the same way without enzyme and malt was likewise extracted at 55°C with and

without enzyme. As control, milled malt was also re-suspended in 200 mL mash water, left to

stand at 4°C for one hour and extracted as described earlier commencing with the addition of

concentrated sulphuric acid.

Mash extraction

The mashing process whereby malt is extracted prior to boiling and wort preparation was

performed according to Van Nierop et al., (2004) (Chapter 4 and 5). The milled malt was

mixed with mash water (described earlier) and taken through the mashing temperature profile;

60 minutes at 63±I°C, 72±1°C for 20 minutes and finally five minutes at 76±1°C

(temperatures were increased at a rate of I°C/min). Samples were taken five minutes after

mashing in, at the end of the 63°C stand, end of the 72°C stand and end of the 76°C stand. The

solids were removed by filtering through cheesecloth and the filtrate was extracted by adding

concentrated sulphuric acid to a final concentration of 0.05 M. The acidified mixture was
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shaken for three hours at 4°C and further extracted as per the malt extraction method

described above.

Wort extraction

All malt wort (16 degrees plato (OP)where lOPis defined as 1 g solids per 100 g solution) was

prepared according to Van Nierop et al., (2004) (Chapter 4 and 5). Concentrated sulphuric

acid was added to the wort to a final concentration of 0.05 M. The mixture was shaken for

three hours at 4°C and further extracted as per the malt extraction method described above. To

test the effectiveness of the extraction, known amount of malt extract (with antimicrobial

activity) was added to 30 mL wort and extracted alongside wort without malt extract added.

In addition, the same malt extract was added to 0.05 M sulphuric acid in water and extracted.

Assay Method

The antiyeast assay was performed as previously described (Chapter 6). The concentration of

the barley, malt and wort extracts used in the assay was related back to the amount of grain it

was extracted from. For example, each aliquot or tube of extract contains extract from 0.5 g

barley or malt. This was re-suspended in 1000 ul. of 25% acetonitrile, hence the

concentration was 0.5 g barley or malt extracted per mL. Only 20 ul. was used per well in the

assay (undiluted or in doubling dilutions) and the total volume per well was 100 ul.. The

concentration in the well was therefore 0.01 g barley or malt extracted per 100 ul. or 0.1

g/mL. Any deviation from these concentrations was noted where applicable.

100 mL fermentations

All-malt wort (13°P) preparation was adapted from Van Nierop et al., (2004) (Chapter 4 and

5). Malt extract (as prepared for the antiyeast assay) from 200 g malt was added pre-boil to

wort prepared from 100 g malt. Carbohydrate profiles and wort free amino nitrogen were

determined according to EBC methods 8.7 and 8.10 (European Brewing Convention, 1998).

Brewery yeast was collected as described previously (Van Nierop et al., 2004) (Chapter 4 and

5) and added to wort at 20 x 106 yeast cells/mL determined by counting cells in a Hawksley-

Cristallite Haemocytometer with improved Neubauer ruling (Boeco, Hamberg, Germany).

Duplicate fermentations were performed in 100 mL sterile glass cylinders with foil caps and

incubated at 13°C for 8 days. A 1 mL sample was removed daily from the cylinders at a

standard depth and the relative amount of yeast was determined by comparing the light

dispersion (optical density, OD) by the yeast cells in suspension at 600 nm using a dual beam
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UV/visible spectrophotometer (Shimatzu, UV-1600, Tokyo, Japan). The gravity (g of solids

per 100 mL solution) in degrees Plato (OP)was determined using an Anton Paar Beer

Analyser (Anton Paar, Graz, Austria) at the beginning and end of the fermentation.

2L EBC tall tube fermentations

Brewery yeast was collected aseptically from the yeast storage vessel within six hours of

cropping (harvesting yeast from the bottom of the fermentation vessel after it has

precipitated/flocculated) and stored at 5°C for no longer than 12 hours.

Wort with a gravity of 16°P was prepared with 40% dextrose syrup/60% malt, using 12 x 2 L

bucket mash bath with overhead paddle stirrers as described by Kruger et al. (1982). The wort

(2 L aliquots) was steamed for 30 minutes in 5 L round flasks with cotton wool plugs covered

in aluminium foil and stored at 5°C for no longer than two weeks.

EBC 2L fermentations were done using a modification of Kruger et al. (1982) and Phaweni et

al. (1992). The stand time after pitching and first wort aeration was changed from 2 to 4

hours. Fermentations were also monitored daily for yeast counts and gravity. Yeast cell

counts were determined by counted cells in a Haemocytometer as described above.

Laboratory filtered and unfiltered wort as growth medium

Wort was prepared according to the method described in Chapter 4, which was adapted from

the method of Kruger et al. (1982) to give an all-malt wort with a gravity of 13°P. At the end

of the boil, wort was filtered through folded filter paper (Schleicher & Schuell, Dassel,

Germany) to attain "filtered" wort while omission of this filtration step was used to attain

"unfiltered" wort. Wort (50 mL) was dispensed into 250 mL Erlynmeyer flasks which was

stoppered with cotton wool and covered with foil and steamed to sterilise as described

previously. Cryogenically preserved SAB Ltd. lager brewing yeast (Saccharomyces

cerevisiae) was grown up in MYGP broth (3 g each of malt and yeast extract, 5 g peptone and

109 glucose (Biolab Diagnostics, Midrand, South Africa) dissolved in 1 L water and

autoclaved with pressure to attain 121°C for 15 minutes) as per the antiyeast assay method.

Brewery isolated bacteria of the genus Acetobacter and pure culture Micrococcus lute us from

plate colonies were grown up in nutrient broth (Biolab Diagnostics, Midrand, South Africa,

made up as per manufacturers instructions) overnight at 30°C, shaking at 150 rpm. All three

cultures were diluted in their growth media to an optical density of 0.3 at 600nm. In addition

brewery collected yeast (as described for 2L EBC tube fermentations) was also diluted to the
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same specifications using MYGP broth. A 0.2 mL aliquot of each of the diluted cultures were

inoculated separately into filtered and unfiltered wort in the 250 mL flasks. The flasks with

yeast were incubated at 25°C and those with bacterial cultures at 30°C, while being shaken at

150 rpm. Samples (1 mL) were removed from all the flasks at time intervals and the optical

density at 600nm determined. The values were used to produce growth curves for each of the

organisms in both filtered and unfiltered wort.

Brewery filtered and unfiltered wort as growth medium

Brewery wort with a gravity of 16°P (40% dextrose syrup/60% malt) was collected from a

brewery ex-paraflow (cooling) en route to the fermentation vessel (i.e. wort as used in

fermentation). The wort was used as is (unfiltered), filtered through Schleicher & Schuell

(Dassel, Germany) filter paper or through a 0.45 urn acetate syringe filter. Each wort (15 mL)

was dispensed into 100 mL Erlenmeyer flasks which was stoppered with cotton wool and

covered with foil and steamed to sterilise as described previously. Brewery collected yeast, as

described for 2 L EBC fermentations, was inoculated into each wort at a cell count of 20x 106

cells/mL. The flasks were incubated at 25°C while being shaken at 150 rpm. Samples (1 mL)

were removed from all the flasks after 12 and 24 hours and the optical density at 600nm

determined.

Results and Discussion

Malt extract preparation for the antiyeast assay

Crude cold-water extracts of milled malts were tested for anti yeast activity using the antiyeast

assay, but little or no inhibition was detected. On the contrary growth was enhanced relative

to the control believed to be due to the additional nutrients in the crude extract,

overshadowing any antimicrobial factors that may have been present (Fig. 1).

Several extraction procedures were tested and an adaptation of the original method for barley

by Okada and Yoshozumi (1970) was found to be most suitable for malt. They used an acid

extraction of milled barley followed by a pH adjustment and ethanol precipitation. The

method was adapted as follows: milled malt was used, acid extraction was done at a lower

temperature, samples were dialysed (1 kDa cut-off) to remove the acid thus neutral ising the

pH, samples were concentrated by freeze drying and filtration was used to further clarify and

sterilise the samples. The extract prior to the ethanol extraction was found to be the most

active and sufficiently "purified" to eliminate growth enhancement in the assay as seen
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previously with crude malt extracts (Fig.1). While the acid step removed the contaminating

proteins (Roberts and Selitrennikoff, 1986), the dialysis not only removed the acid, which was

antimicrobial in itself, but presumably also most of the sugars and other potential nutrients.
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Comparison of antiyeast assay results, expressed as percent growth of yeast
relative to the negative control, of different malt extracts: acid extract adapted
from Okada and Yoshozumi (1970) and crude cold water extract of malt D.
Error bars represent standard error of the mean (SEM) for three different
duplicate analyses (n = 6) each analysed with different batches of yeast.

Figure 1

Acceptable number of extracts and antiyeast analyses

Initially all malts were extracted in triplicate and each extract was analysed by three different

batches of yeast (n = 9). Antiyeast assay results from 10 different malts was used to

determine, based on goodness of fit (R2) and IC50 values (concentration that causes 50%

inhibition of growth), that doing only duplicate extractions and using two different batches of

yeast (n = 4) had minimal impact on the values. R2was reduced on average by 1.4% and IC50

values varied <10%. This format of two extractions and two batches of yeast was more

practical and adopted as standard practice for the method.

Cell counts

Cell counts for the antiyeast assay was previously optimised (Chapter 6) using a pure, known

antimicrobial peptide (gramicidin S). It was shown that the cell count had a major impact on

the antiyeast assay and hence the optimisation was repeated using malt extracts, because the
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extracts were relatively impure and therefore quite different. The dose response of the yeast

towards a malt extract (E) was not significantly different between 2.3xl05 and 3.6x105

cells/mL and still showed antimicrobial activity at 9.7x105cells/mL but the sensitivity of the

assay was gradually lost with cell counts of> 3.6x105cells/mL (Fig. 2). The cell count range

previously selected for the assay using gramicidin S was 3.6 to 8.3xl05 cells/mL, but malt

extract was found to be more sensitive to differences in cell concentrations than gramicidin S.

Based on these findings the coinciding value of 3.6x105(± 10%) cells/mL was selected as the

optimal cell count for the antiyeast assay when testing a range of different malt samples.
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Impact of cell counts on antiyeast assay dose response results for malt extract E.
Error bars represent SEM for three different duplicate analyses (n = 6) each
analysed with different batches of yeast.

Figure 2

Barley extract preparation for the antiyeast assay

Several investigators have looked at antimicrobial factors extracted from barley (Bernhard

and Sommerville, 1989, Grenier et al., 1993, Molina and Garcia-Olmedo, 1993, Molina et al.,

1993, Okada and Yoshizumi, 1970 and Terras et al., 1993), but not factors from malt. The

raw material that enters the brewing process is the malted barley, hence the interest in this

case to extract these factors from malt, especially since microbial growth flourishes during

malting and may contribute to the antimicrobial factors present in the malt. To establish if the

malting process contributes to the antimicrobial activity in malt and if there is a link, two

available sets of corresponding barley and malts were extracted using the malt extraction
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procedure. No antiyeast activity was found in the barley extracts, suggesting there was no

activity present, activity was not extracted or the assay was not sensitive enough to detect

activity. Okada and Yoshizumi (1973), however, were able to show that barley extracts

inhibited the growth of S. cerevisiae in wort. Antimicrobial activity could be retrieved when

active malt extract was added to the barley extraction mixture, indicating the added factors

were not bound to the barley material (results not shown).

In order to improve the extraction process of antimicrobial factors from barley, commercially

available enzymes used in barley brewing were employed to breakdown the starch granules (a

process which normally occurs during malting). With the aid of these enzymes (a-amylase

and p-glucanase) antimicrobial activity was extracted from the two barley samples.

Comparison of the ICso values for the barley enzyme aided extract (at 55°C) and malt extract

(at 4°CI) of the two corresponding barley and malt samples/ showed an increase in antiyeast

activity across the malting process (Fig. 3, first two bars only for M and I). However, this

increase was only statistically significant (P<0.05) for the less active barley-malt pair (M in

Fig. 3). The barley I may already have been primed in the field by pathogens to have a higher

basal level of antimicrobial factors (Carr and Klessig, 1989), while growth of pathogens

during the germination stage (Carr and Klessig, 1989) of the malting process may have

caused the increase of antimicrobial activity from barley to malt in the case of the barley-malt

pair M. However, it should be noted that the small increase in antiyeast activity from barley to

malt, could also be attributed to the barley extraction process.

I The activity of malts I and M in this experiment at 4°C differ to those reported in Fig. 5 due to the differences

in extraction procedures (see Materials and methods)

2 Barley and malt samples M and I are very different w.r.t. variety, where they were grown and where they were

malted.
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5

Comparison of antiyeast activity, expressed as ICso values (in mg of malt or
barley extracted), of different barley and malt extracts prepared at 4 and 55°C
with and without starch degrading enzymes (E). Error bars represent SEM of
duplicate analyses of duplicate experiments (n = 4).

Figure 3

c::::J barley +E, 55°C t~.1 malt, 55°C

c::=J malt, 4°C ~ malt+E, 55°C

The optimal temperature of the enzymes, used to release the anti yeast factors from the barley

matrix, was 55°C (Wainwright, 1997) and therefore the extraction mixtures were incubated at

this temperature. In addition, calcium was added (as calcium chloride) to help stabilise a-

amylase (Briggs et al., 1981) and the pH was adjusted to 5.2±O.5 for optimal enzyme activity.

The impact of temperature and enzyme in the presence of calcium and pH adjustment was

also determined for the malt extraction as controls. Significantly less antiyeast activity was

extracted from malt in the presence of raised temperature (Fig. 3). This loss is probably the

consequence of enzymatic degradation of the active factors (known to be heat resistant and to

contain a protein component (Chapter 9) by malt enzymes. Malt contains higher levels of

proteases and starch degrading enzymes than barley (Briggs 1981), which may explain the

impact of malt exposure to 55°C at which temperature these enzymes would be active

(Wainwright, 1997).

.........
C>
E
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An interesting result is the further significant decrease (P<O.OI for M, P<O.05 for I) in

antiyeast activity of malts at 55°C when a-amylase and p-glucanase were added (Fig. 3). The

enzymes themselves did not impact on the antiyeast assay (results not shown). This could

either indicate that carbohydrates are associated with the antiyeast activity/factors or that they
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aid in the protection of antimicrobial factors from proteases. The latter may explain why

barley, containing fewer proteases, was not affected to such a great extent as malt by the

addition of starch degrading enzymes (Fig. 3). In particular, the retention of barley antiyeast

activity may be due to larger carbohydrate polymers associated with protein-like

antimicrobial factors, protecting them from protease action, but requiring the starch degrading

enzymes to enable their release.

Although interesting results came from this experiment, the small difference in antiyeast

activity between the barley and its malt, the difficulty in extracting activity from barley and

the increase of activity during malting makes it more feasible to screen different malts for

antiyeast activity.

Screening of malt extracts

A range of malts, including some associated with atypical fermentations and others known to

ferment well, were selected, extracted and analysed using the optimised antiyeast assay. IC50

values calculated from the sigmoidal curves fitted to the dose-response data (Fig. 4) indicate

differences in antimicrobial activity or growth inhibition between malts (Fig. 5). All the malt

extracts, except one (A), had antiyeast activity with IC50 between 2.4 and 5.7 (in mg malt

extracted per 100 ~L assay volume).
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Dose-response of S. cerevisiae towards three different malt extracts tested in the
antiyeast assay. The arrows indicate log IC50 values for the calculation of IC50
values reported below. Error bars represent SEM of triplicate experiments
analysed in duplicate (n = 6). The goodness of fit (R2) for the two active extracts
(0 and D) was >0.99.

Figure 4
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Several of these malts cause premature yeast flocculation (PYF) during fermentation (Fig. 5,

shaded bars), which has been positively linked to microbial infection of the grain (Axcell et

al., 1986, Herrera and Axcell, 1991 and Stratford, 1992). We previously speculated a

connection between the presence of PYF factors and malt antimicrobial peptides, both

produced by barley in response to microbial infestation (Axcell et al., 2000 and Van Nierop et

al., 2004). These results suggest there to be a possible link, since malts D, E and F (with high

levels of antiyeast activity) all cause PYF (Fig. 5). However, an exception to this was the

PYF-positive malt A extract, which yielded little or no antiyeast activity.

Figure 5
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Comparison of calculated ICso values (in mg of malt extracted) between
different malt extracts; error bars represent SEM of six different experiments (n
= 6). The shaded bars show the ICso values of malts that cause premature
flocculation of yeast in fermentation.

Malt A is atypical in its manifestation of PYF in that it caused the physical effect of

premature flocculation (seen by the earlier decrease in cells counts in suspension (Fig. 6A)),

but does not impact on the sugar uptake of the yeast (seen by normal gravity or residual sugar

values at the end of fermentation, whereas increased values are associated with sugar uptake

inhibition (Fig. 6B)). In contrast, most PYF malts (including D, E and F tested here) do cause

a decrease in sugar uptake as observed using 2L EBC tube fermentations with daily gravity

measurements and cell counts (Kruger et al., 1982 and Van Nierop et al., 2004) (results for

malt F are shown in Fig.6). When a specific malt exhibits PYF it seems that the presence of

antimicrobial factors results in sugar uptake inhibition. Yeast sugar uptake inhibition during

assay conditions was observed by Okada et al. (1970) using barley antimicrobial extracts.

This has also been observed intermittently during atypical (non-PYF) fermentations in the
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breweries. However, it was found that the other PYF-negative malts, be they strongly

antimicrobial or not, fermented well and sugar uptake was normal (Malt B, Fig.6). The

differences in cells counts (Fig. 6A, between A and F) and gravities (Fig. 6B, between A and

F) reported here are considered to be sufficiently different to impact on product quality

(personal communication Dr. Cameron - Clarke).

The possible association of PYF during fermentation with malt antimicrobial activity as

proposed by Axcell et al. (2000) and Van Nierop et al. (2004) was supported by the results

presented here. The association between barley antiyeast activity and sugar uptake inhibition

reported by Okada et al., (1970) was also supported by the data on the PYF positive malts and

suggests the presence of such factors during the fermentation and hence in wort.
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Figure 6 2L EBC fermentation results of wort prepared from malts A, F and B where A
and Fare PYF malts and B is not. Fig. A monitors gravity through fermentation
and Fig. B monitors cell counts. Each value was the average of duplicate
fermentations, variations for cell count method was <15% and standard
deviation for the gravity readings was 0.04.

Wort extract preparation for the antiyeast assay

An attempt to extract the antiyeast factors from laboratory prepared wort (boiled) using an

adaptation of the malt extraction method was unsuccessful as no antiyeast activity or

antibacterial activity (M luteus as target organism) was observed in these extracts (results not

shown). Malt extracts with antiyeast activity have been shown to be antibacterial and

antifungal as well (Chapter 9). To test the wort extraction method, active malt extract was

added to wort. The antiyeast activity was preserved and could be recovered from the wort,

demonstrating that the extraction process was applicable. These results may indicate that a.)
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the antiyeast factors did not survive the wort preparation process, b.) the activity was retained,

but was physically separated from the wort due to the laboratory wort preparation or the

subsequent extraction procedure or c.) low levels of activity survived, but could not be

detected by our assay. Options a, b and c were examined in more detail.

To trace the possible loss of antiyeast activity prior to the wort boil of malt B, samples were

taken during wort preparation or mashing. During mashing, milled malt in mash water (see

Materials and Methods) was exposed to various temperature stands to allow for the enzymatic

degradation and extraction of predominantly the fermentable sugars from the malt. Antiyeast

ctivity was lost between the end of the first temperature stand at 63°C and the end of the

second temperature stand at 72°C as seen by the decreased difference between the percent

yeast growth in the presence of the highest and lowest concentration of extract based on the

dose response (sigmoidal) curve (Fig. 7). Any remaining antiyeast activity thereafter may be

masked by an increased availability of nutrients seen by the increased growth at the highest

concentration of extract added (Fig. 7). The function of these temperature stands was to

degrade soluble starch and dextrins by the action of malt ~-amylase (63°C), releasing maltose

from the non-reducing end of the starch chains, and a-amylase (72°C), attacking the a-

glucosido-t l-e-l) linkages at random (Briggs et a/., 1981). In addition, proteases and

carboxypeptidases may still be active during this temperature stand since the pH of the mash

(PH 5.2) was optimal for their activity and they are only inactivated at 70°C even if their

optimum temperatures were much lower (45-50°C) (Wainwright, 1997). Although the loss of

antiyeast activity may have been partly due to the raised temperature, it is likely that

enzymatic degradation of the antimicrobial factors contributed to the loss as was discussed for

barley extraction earlier.
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represent SEM of duplicate extracts analysed with duplicate batches of yeasts (n
= 4). The experiment was repeated with similar results for malt F.

To determine if antiyeast factors are physically separated from the wort, due to the laboratory

wort preparation or the subsequent extraction procedures, filtered and unfiltered wort

prepared from malt B was compared as growth media for laboratory propagated yeast,

brewery collected yeast, brewery isolated bacteria belonging to the genus Acetobacter (known

beer spoilage Gram-negative bacterium) and pure culture of M luteus (Gram-positive

bacterium, previously used by Du Toit and Rautenbach (2000) as antimicrobial test

organism). Growth in the presence (unfiltered) or absence (filtered) of trub, the precipitate

formed during boiling and cooling of wort (hot and cold break), was monitored over 32 hours

and plotted as growth curves in Fig. 8A. Interestingly, growth of both bacteria was inhibited

in the unfiltered wort compared to the filtered wort, but this effect was not observed for yeast

(Fig. 8B). On the contrary, growth was enhanced for yeast in unfiltered wort (Fig. 8B), which

was most likely due to the added metal ions and lipids found in the trub which are known to

enhance yeast growth (Meireles de Sousa, 1989, Kreder, 1999 and Rees and Stewart, 1997).
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but values varied <10% in all cases.

Brewery collected yeast was also tested because it was found to be far more sensitive to the

inhibitory effect of malt antimicrobial factors than the laboratory propagated yeast (Chapter

8), but again growth was enhanced by the unfiltered wort (results not shown). The malt

antimicrobial factors have been shown to have a broad range of activity, inhibiting barley
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derived bacteria and fungi, as well as yeast (Chapter 9). It is therefore possible that the yeast

inhibition by factors in wort B may be overshadowed by the enhanced growth (Figs. 1 and 7).

Enhanced growth, due to added nutrients, also overshadowed any inhibition that may have

been present when more concentrated wort extracts were analysed by the antiyeast assay to

determine if the lack of detection in wort was due to very low levels of activity.

Brewery wort (40% dextrose syrup/60% malt), which differs significantly to laboratory wort

(100% malt) especially the filtration procedures during preparation, was also tested with

brewery collected yeast. In this case preliminary investigations revealed that yeast growth was

inhibited relative to filtered wort (Fig. 9) although differences were not as great as those seen

for bacteria (Fig. 8).

Figure 9
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Growth of brewery collected S. cerevisiae in the presence of brewery collected
wort; unfiltered, filtered through filter paper and filtered through a 0.45 urn
syringe filter. The latter, with the most growth, was used as 100% growth and
the rest given a percentage relative to that. Error bars represent
minimum/maximum of duplicate experiments with two batches of yeast and one
batch of wort.

Findings have indicated that antimicrobial activity is present in brewery wort which may

therefore impact on yeast fermentation. Conditions are quite different in a brewery

fermentation to those of the laboratory assays used. However, monitoring and comparing

small scale fermentations with differing levels of antimicrobial activity may provide an

indication as to the impact on yeast during fermentation despite the inherent limitations of the

method. Fermentations (100 mL) were performed using existing analyses to determine if any

differences could be detected. Wort made from relatively low antiyeast activity malt (G)

with/without malt extracts (A, G, and B) added during wort preparation prior to the boil

(Table 1) were compared. Due to the added extract, the free amino nitrogen (FAN) and
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fermentable carbohydrate profiles were compared for all the worts to ensure any fermentation

differences were not due to nutrient availability; the sugars were comparable and the FANs

were not limiting (results not shown).

Table 1 Antimicrobial activity and description of malts used in 100 mL fermentations.
SEM of at least 22 analytical values are reported.

Malt ICso ±SEM (mg) Description

A Not active Least antiyeast malt tested so far, known to cause
premature flocculation of yeast in fermentation.

G 5.5 ± 0.79 Malt that ferments well *, relatively low anti yeast
activity. This malt was used to prepare the wort.

B 2.7 ± 0.40 Malt that ferments well *, consistently high antiyeast
activity.

* Based on absence of any obvious fermentation abnormalities such as premature flocculation of yeast and
inhibited sugar uptake under laboratory fermentation conditions.

Fermentations were performed using brewery yeast, cell growth was monitored daily (Fig. 10)

and end of ferment wort gravity was measured. Malt A with least antimicrobial activity

detected so far was known to cause premature yeast flocculation, seen here by the earlier and

more dramatic drop in cell counts on day 3, the other fermentations did not flocculate

prematurely. The worts with malt extract added differed to the control with no addition. The

end of ferment cell counts correlated (linear correlation R2 = 0.94) to the remaining sugar

concentration (gravity). The malt extracts appear to have introduced or increased the

concentration of a factor (or factors) that led to incomplete fermentations, leaving high

number of cells in suspension and high concentrations of sugars. All the malt extracts tested

had a negative impact on fermentation relative to the control (differences are sufficient to

have an impact as discussed for Fig. 6). The degree of impact could not be differentiated been

the malt extracts which may be explained by the large amount of extract added (extract from 2

g of malt per 1 g of malt used to make the wort). It is also possible that all malts may have

some degree of antimicrobial activity since in this case even malt A was observed to have an

effect. The impact was also shown to be greater when double the amount of extract was added

(results not shown). It is important to recall that the impact cannot be due to small

components such as metal ions since the extract goes through a 1 kDa dialysis stage to

remove such components. Clearly should any antimicrobial activity survive the brewing

process there may well be an impact on fermentation.
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Conclusions

All the research to date was based on antimicrobial factors extracted from barley not malt or

wort. Extraction of malt was easily done using acid precipitation at 4°C, but it was necessary

to aid the extraction of anti yeast factors from barley with enzymes to digest the starch matrix.

Extracts of all the malts, except one, and both barley samples had antiyeast activity. From

these results it was concluded that screening of malts for antiyeast activity as a measure of

malt quality has potential application in the brewery industry. Not only do malts differ in their

antiyeast activity, but there was also evidence that the presence of antimicrobial factors in

malt can, in certain conditions, impact on yeast sugar uptake during fermentation.

Furthermore the brewing process uses malted barley and not raw barley, therefore it is of

greater interest to examine malt quality and malt associated anti yeast factors.

None of the laboratory prepared worts that were extracted retained any antiyeast activity.

Although anti yeast activity was seemingly lost during wort preparation (mashing),

antibacterial activity (against Gram-negative and Gram-positive bacteria) but not antiyeast

activity was retained in the wort trub (precipitate). On the contrary the presence of trub

seemed to enhance yeast growth presumably due to the additional yeast nutrients in the trub

(metal ions and lipids) possibly overshadowing any antiyeast activity that may have been
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present. Preliminary investigations did reveal growth inhibition of brewery collected yeast by

brewery wort compared to the same wort with its trub removed. These results suggest the lack

of anti yeast activity in laboratory prepared wort and wort extracts may be the consequence of

the wort preparation, differing to brewery wort preparation, and the removal of precipitates

(including trub) due to the wort extraction procedure.

Brewery wort does contain more trub than laboratory wort and malt antimicrobial factors may

playa role in brewery fermentations based on these results. In addition, collection of brewery

yeast slurry from the bottom of the fermentation vessel for re-pitching may result in the

accumulation of trub components and a concentration of antimicrobial factors impacting on

brewery fermentations and explaining the increased sensitivity of brewery collected yeast

compared to laboratory propagated yeast (Chapter 8).

It was shown that should antiyeast and antibacterial factors be present in wort and brewery

yeast slurry it would impact on yeast performance, sugar utilisation and thus the brewing

process, specifically the fermentation. Based on the results and likelihood that malt derived

antimicrobial factors play a role in yeast fermentation performance, further investigation of

the antimicrobial factors was warranted. The limited information available on anti yeast

factors in malt convinced us to characterise and attempt to identify the antiyeast factors in

malt (Chapter 9).
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Chapter 8

Screening of brewery yeast and brewing yeast strains against
malt extracts to assess yeast quality

Abstract

Yeast quality, as measured by sensitivity of brewery yeast and different lager brewing yeast

strains towards known antimicrobial barley malt extracts was assessed by an adaptation of the

microtitre plate antiyeast assay (Chapter 6). It was found that yeast obtained directly from a

brewery was much more sensitive towards the malt extracts than the same yeast strain

propagated in the laboratory. Sensitivity was also seen to change during the course of a

laboratory scale fermentation inoculated with brewery yeast. Different brewing yeast strains

of Saccharomyces cerevisiae were propagated in the laboratory and challenged with

antimicrobial extracts from a number of different malts. The susceptibility of these different

brewing yeast strains, when challenged with malt extracts varying in antimicrobial activity,

were compared and differences were found between the yeast strains in terms of their

sensitivity. Results indicate that this application of the antiyeast assay has potential as a yeast

assessment method, possibly as a measure of membrane integrity, since antimicrobial activity

is membrane associated and membrane integrity is critical for yeast vitality.

Introduction

Plants contain antimicrobial factors as part of their innate immune/defence system (Broekaert

et al., 1997), which is either constitutive or induced to cope with sufficiently pathogenic

microbial infestation (Carr and Klessig, 1989) or other forms of stress such as drought, cold

or chemical exposure (Torres-Schumann et al., 1992). The most common factors associated

with plant defence were proteins (Batalia et al., 1996, Boller, 1993 and Van Loon and Van

Strien, 1999) and peptides (Broekaert et al., 1997 and Florack and Stiekema, 1994). The

factors extracted from barley malt (or malt) were identified to be 5-14 kDa peptides (Chapter

9).

Since plant antimicrobial factors usually act on the microbial plasma membrane, using the

antimicrobial assay to expose yeast to malt antimicrobial extracts would assess yeast
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susceptibility to these factors, presumably as a function of membrane integrity that is critical

for yeast functioning. Yeast is subject to ageing and stress factors (Heggart et al., 1999) such

as osmotic pressure, high ethanol and carbon dioxide concentrations (Hammond, 1999 and

White et al., 2003) and stress due to yeast handling in the plant that include mechanical stress

(Stafford, 2003), high physical pressure and oxidative stress (Martin et al., 2003). These

factors impact on the physiological status of the yeast, decreasing viability (dead and alive)

and vitality (health) resulting in growth inhibition, decreased genetic stability and of

particular interest in this case; changing cell membrane stabilisation and functioning (Casey

and Ingledew, 1983 and Stewart et al., 1999).

When antimicrobial factors act on the microbial plasma membrane, a number of different

effects can occur including leakage of ions and in some cases even proteins by membrane

permeabilisation, damage to the transport systems embedded in the membranes (Guihard et

al., 1993) or total membrane disruption resulting in cell lysis. The latter was observed when

yeast was exposed to the antimicrobial malt extracts as determined by monitoring the

presence of an interacellular yeast enzyme extracellularly (Chapter 9). Several existing

quality measurements were based on membrane integrity and functioning such as capacitance

where an applied radio-frequency permits the build up of charge due to the dielectric nature of

the cell's (intact) membrane and vital stains that were actively taken up by functioning

membranes only (Heggart et al., 1999).

In order to study malt antimicrobial factors, an antiyeast assay, using laboratory propagated

log phase brewing yeast as test organism for malt extracts, was optimised for execution in a

microtitre plate (Chapter 6). The assay was used, not only to screen malts for antiyeast

activity, but also to investigate the origin and relevance of these factors to the beer brewing

process and malt quality (Chapters 7 and 9). The assessment of yeast quality and prediction of

fermentation performance is notoriously difficult as variations in yeast vitality are very subtle

and there is a continued need to develop more accurate means of measuring yeast quality

(Heggart et al., 1999). The utilisation of the optimised microtitre plate antiyeast assay as a

yeast quality assay to compare the susceptibility of different brewery yeast and brewing yeast

strains to malt antimicrobial factors is reported here.
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Experimental

Antiyeast analysis

Malt extract preparation and the antiyeast assay were performed as previously described

(Chapter 6). Cryogenically stored Saccharomyces cerevisiae SAB Ltd. lager brewing yeast

strain (S) and other SABMiller lager strains (T, P and M) were propagated as described

previously (Chapter 6). All yeast propagation was performed in MYGP broth; 3g each of malt

and yeast extract, 5 g peptone and 10 g glucose dissolved in lL water, autoclaved 15minutes,

pressurised to attain 121°C. All yeast cell counts were performed in a Hawksley-Cristallite

Haemocytometer with improved Neubauer ruling (Boeco, Hamberg, Germany).

ERC 2L fermentations

Fermentations were performed as adapted by Van Nierop et al. (2004) from Kruger et at.

(1982) and Phaweni et at. (1992) using brewery yeast and wort aseptically collected from

breweries C and D. The two different yeasts were fermented in the same wort ex-brewery D.

The brewery wort used was 40% adjunct wort, where 60% of the fermentable sugars come

from malt and the rest from maize derived maltose syrup.

Results and Discussion

The antiyeast assay format as used to screen malts (Chapter 6 and 7), was applied to different

yeasts used at the same yeast counts (3.6 x 105cell/mL) as prescribed for the antiyeast assay.

Yeast viability (percent alive) was not taken into account, as these were not expected to vary

much in freshly propagated yeast.

When comparing brewery yeast to laboratory propagated log phase yeast (all strain S),

brewery yeast was found to be much more sensitive to the inhibitory impact of malt extracts.

This trend was observed for all six samples of brewery yeast tested on three different malt

extracts (A, C and D), a selection of which is shown in Fig. 1. According to the IC50values

(for all six brewery yeast tested) for malt extract D, between 3 and 7 fold less malt extract was

required to inhibit 50% of the yeast growth compared to laboratory propagated log phase

yeast.

Although brewery yeast was more sensitive, laboratory propagated log phase yeast was found

to be more discriminating when comparing sensitivity to extracts from three different malts

(Fig. 2), these findings support the use of propagated yeast for the assay. The inhibitory
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potential of the known antimicrobial peptide, gramicidin S, used as a positive control for the

antiyeast assay, was not influenced by the different yeasts, be it laboratory propagated or

brewery yeast, hence no results were included for gramicidin S.

Figure 1

Figure 2
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The brewery yeast samples tested were in stationary phase, having been collected from the

bottom of fermentation vessels at the end of fermentation after they had flocculated. To

determine what impact growth phase had on the susceptibility of yeast to malt extracts,

brewery yeast samples were re-propagated in MYGP medium as per the method use to

propagate yeast for the antiyeast assay. In all cases the susceptibility decreased upon

propagation in ideal conditions with no fermentation related stress, but the sensitivity was still

far greater than assay yeast (results not shown).

Changes in yeast susceptibility were examined further by comparing yeast from different

stages of the fermentation process. Yeast was sampled on days 1, 4 and 8 from 2L EBC

(laboratory scale) fermentations inoculated with brewery yeast (Fig. 3). All the yeasts at all

the stages were more susceptible to inhibition by all three malt extracts than the log

propagated yeast (results not shown) supporting the finding that brewery yeast was more

susceptible than laboratory propagated yeast (refer to Figs. 1 and 2). Susceptibility of these

yeasts to all the antimicrobial malt extracts changed during the fermentations. However, the

trends were different for the two yeasts as brewery C yeast appeared to become more

susceptible by the end of fermentation, while brewery D yeast improved (Fig. 3).

In order to test the influence of strain variability, four of the major strains of Saccharomyces

cerevisiae used within SABMiller, including strain S, were compared for malt antimicrobial

susceptibility. For a true comparison and reproducibility, each strain was propagated as

described for the antiyeast assay and growth curves were used to establish when each strain

was in mid-log phase (Fig. 4). Fresh batches of cryogenically stored yeast were used as some

strains may be more susceptible to long term storage than others. Strain S, used so far, was

rapid growing with a shorter lag phase compared to the slower growing strain P. During log

phase the growth rate for strains S and M were most rapid as seen by the slope of the curve.

Despite these differences at a cell count of 40x106 cells/mL each strain was at approximately

mid-log phase (halfway up the steep slope) and the time at which this was reached was used

to sample each of the strains for application to the antiyeast assay (Fig. 4).
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Figure 3 Antiyeast assay results comparing yeast taken at different times from 2L EBC
fermentations of brewery wort inoculated with brewery yeast (ex-brewery C and
D, strain S yeast). Yeast was assayed against three different malt extracts (A, C
and D). Error bars represent minimum and maximum of duplicate analyses from
duplicate fermentations (n = 2).

Three different malt extracts were used to challenge each yeast strain in the antiyeast assay.

Differences between yeast strains were detected; yeast strain T for instance was found to be

far more susceptible to the malt antimicrobial factors than yeast strain M (Fig. 5). Yeast

strains S and P display similar sensitivity to malt extracts although their growth curves were

most different. Malt extract A as observed previously (Chapter 7), was the least antimicrobial

malt and results vary as the data fit to the sigmoidal curve used to get an ICso value was very

poor, in spite of this strain T was sensitive to this extract and clear inhibition of yeast growth

was noted.
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Figure 5

Conclusions

Yeast strain

The antiyeast assay previously used to screen malts for antimicrobial activity (Chapter 7) was

successfully used to differentiate yeasts using known antimicrobial malt extracts. Brewery

yeast was found to be more sensitive to the inhibitory impact of malt derived antimicrobial

factors than laboratory propagated log phase yeast as standardised for the antiyeast assay. The

assay yeast, however, was more discriminating between malt extracts, supporting its selection

for the antiyeast assay. Different brewery yeast samples (same strain) directly from the
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brewery varied significantly in their susceptibility to malt antimicrobial factors. Further

investigation would be required to determine if these differences reflect yeast history in terms

of how it was treated in the plant, how many fermentations it has been through and the malt it

may have been exposed to via wort. Susceptibility of yeast to antimicrobial factors changed

considerably during the course of laboratory scale fermentations inoculated with brewery

yeast. These changes differed with different brewery yeasts and it may be possible to use this

to examine the process as well as the yeast itself. Different brewing yeast strains of

Saccharomyces cerevisiae reacted differently to malt antimicrobial extracts, clearly indicating

that one strain can be much more susceptible to antimicrobial peptide induced membrane

damage which may be useful in strain selection for different brewing purposes.

The significance of these results in terms of yeast performance and relevance as a measure of

yeast quality has yet to be determined. Wider range yeast screening and fermentation

monitoring would be required as well as anchoring this measurement to some established

existing yeast quality measurements as a point of reference. The advantage of this type of

method above sophisticated methods such as flow-cytometry is the cost and simplicity and the

advantage over simple methods such as staining is that little experience is required and

improved quantification is gained.
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Chapter 9

Partial characterisation of antimicrobial factors
in barley malt

Abstract

The antiyeast factors in barley malt (Chapter 7) were partially characterised and evaluated.

The antimicrobial activity was found to originate from the plant tissue and displayed a broad

range of activity although the activity was most potent against yeast for the malt extracts

tested. Antimicrobial activity was associated with the presence of a 5-14 kDa fraction

containing a cationic heat resistant peptide(s) that causes cell lysis and has a pH stability

optimum of ±5. Liquid chromatography-electro spray mass spectrometry (LC-ESMS) revealed

that the cationic fraction of one malt extract with antimicrobial activity contained LTP1

(equivalent to LTPla reported in Chapter 3), some proteins with a similar molecular weight to

LTPI (9-10 kDa) and other peptides (and other compounds) with molecular weights ranging

from 0.4-4.5 kDa. Exposure to extreme pHs and certain reagents caused irreversible damage

and this had to be taken into consideration for the selected purification procedures. The heat

stability of malt extracts varied. Those with the strongest antimicrobial activity were the most

stable, but stability was also inversely related to amount of LTP1 in extract. The active

fraction was more heat stable in wort than in water, probably due to protection by association

to residual carbohydrates.

Introduction

Poor malt quality associated with microbial contamination of barley/malt has been related to

process and beer quality issues such as inconsistent brewhouse (wort preparation)

performance (Stars et al., 1993), atypical fermentations including premature yeast flocculation

(Fujii and Horie, 1975, Morimoto et al., 1975, Herrera and Axcell, 1991), beer flavour

instability, presence of off flavours and haze in beer (Etchevers et al., 1977), decreased beer

foam quality (Evans et al., 1999) and gushing; the uncontrolled release of carbon dioxide

from beer when it is opened (Casey, 1996 and Gardner, 1973). Although coupled to atypical

microflora or comparatively high microbial load on the grain, most of these quality issues
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were not predicted by the conventional barley/malt analyses (European Brewing Convention.

Analytica 1998). Microbial contamination of plant tissue could elicit plant defence responses

resulting in the generation of antimicrobial factors. In addition, the microflora itself could

generate antimicrobial factors. Standard malt evaluation does not assess the presence of barley

or malt antimicrobial factors, which mayor may not playa role in terms malt quality, be it

process or aspects of the final beer product.

Most if not all bacteria are able to produce a heterogeneous array of inhibitory molecules

including toxins, bacteriolytic enzymes, by-products of the primary metabolic pathways

(organic acids, ammonia, hydrogen peroxide), secondary metabolites or idiolytes, antibiotics,

peptides or polypeptides (Sahl and Bierbaum, 1998). Although these compounds were mostly

active against other related bacteria, some were active against filamentous fungi and a few

against yeast including Saccharomyces cerevisiae (Atanassova et al., 2003, Besson et al.,

1984, Latoud et aI, 1987 and Magnusson et al., 2003). Singh et al. (1971) reported the

incidence of antibacterial compounds in fungi such as Candida albicans, Rhizopus nigricans,

Aspergillus leukensis, Penicillium funiculosum and Trichoderma viride, most of these

compounds were found to be sterols, phenolic compounds and tannins. Several Aspergillus

species produce antifungal peptides although these have not been shown to be active against

yeast (Ng, 2004). Microorganisms found naturally on barley and malt (Vaughan et al., 2001)

such as Lactobaccillus lactis, Enterococus (Hartnett et al., 2002) and Aspergillus (Singh et

al., 1971) are known to produce antimicrobial compounds. Many bacterial antimicrobial

peptides were membrane active causing cell lysis (Sahl and Bierbaum, 1998 and Shai, 1995)

or interfered with cell wall synthesis (Debono and Gordee, 1994 and Hsu et al., 2003). Unlike

plant antimicrobial factors, which were generally active against a broad range of organisms,

antimicrobial factors of microbial origin mostly acted on a relatively narrow range of related

organisms (Sahl and Bierbaum, 1998).

Plants contain antimicrobial factors as part of their defence system (Broekaert et al., 1997),

which was either constitutive or induced to cope with sufficiently pathogenic microbial

infestation (Carr and Klessig, 1989) or other forms of stress such as drought, cold or chemical

exposure (Torres-Schumann et al., 1992). The constitutive type defence responses were in

place before the plant tissue was challenged, while the induced plant defence responses were

activated when plant tissue was challenged by pathogens (Carr and Klessig, 1989).
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The most common factors associated with plant defence were proteins (Batalia et al., 1996,

Boller, 1993 and VanLoon and Van Strien, 1999) and peptides (Broekaert et al., 1997 and

Florack and Stiekema, 1994). Other antimicrobial factors included chemicals such as

alkaloids, unsaturated lactones, sulphur compounds, saponins, phenolic compounds (Carr and

Klessig, 1989), active oxygen and nitrogen species such as hydrogen peroxide and

peroxynitrite also occured (Broekaert et. al., 1997 and Garcia-Olmedo et al., 2001). Typical

antimicrobial peptides such as thionins, defensins and nonspecific lipid transfer proteins (ns-

LTPs) have been studied in barley seeds. These peptides were generally between 5 and 10

kDa, consisted of 45 to 95 amino acid residues, contained 3 or 4 disulphide bonds, they were

generally basic and amphipathic (Ponz et al., 1983 and 1986, Molina et at, 1993a and b,

Broekaert et al., 1995 and Heinemann et al., 1996). The wide range of antimicrobial factors

that occured in the various plants inhibited the growth of bacteria (gram positive and/or gram

negative) and/or fungi. Some were more potent that other and some inhibited a broader range

of organisms than others (Cammue et al., 1995, Osborn et al., 1995 and Terras et al., 1992).

The mode of action of these antimicrobial factors was mostly by permeabalising the microbial

cell membranes causing leakage of ions, in some cases even proteins and damaging the

transport systems embedded in the membranes (Guihard et al., 1993). Antimicrobial factors

could be microstatic, inhibiting growth and/or microcidal, killing microorganisms. Some of

the antimicrobial factors may not act individually, but synergistically with other factors. A

factor's antimicrobial activity may otherwise be increased by the synergistic effect with other

factors (Blocket et al., 1993, Dubreil et al., 1998, Molina et al., 1993b and Terras et al.,

1993). Examples of synergism between two components include iturin A (antibiotic and

antifungal) with surfactin (strong surfactant), both lipopeptides extracted from Bacillus

subtilis (Maget-Dana et al., 1992), as well as magainin 2 with PGLa, both antimicrobial

peptides isolated from Xenopus laevis (Matsuzaki et al., 1998).

Characterising the antimicrobial factors from malt, be they of microbial or plant origin, was

warranted in view of evidence that such factors may be present and play a role in yeast

fermentation in the brewing process (Chapter 7). It was established in Chapter 7 that malts

differed in the level of antiyeast activity. Okada and Yoshizumi (1970) previously identified

a 9.8 kDa barley endosperm peptide (with similarities to non-specific lipid transfer protein or

ns-LTP) that caused sugar uptake inhibition at low concentrations and cell death at higher

concentrations. Apart from these facts, limited information was available on antiyeast factors
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in malt and brewing. The aim of this paper was to partially characterise the antimicrobial

factors extracted from malt, examining their origin, specificity, nature and stability.

Materials and methods

Samples for antiyeast analysis

Whole malt extraction

Unmilled malt was extracted as per an adaptation of the malt extract method (Chapter 7), 109

whole malt was used instead of 5 g milled malt.

Washed malt extraction

Whole malt was washed and dried as described by Van Nierop et al. (2004a) (also see

Chapter 4), and then extracted as per malt extraction method (Chapter 7). The wash was

retained and extracted as per wort extraction method (Chapter 7).

Biomass extraction

Microflora from barley was propagated as for the antimicrobial assay described below and

grown for five days before removing the biomass by centrifugation (10000 g, 15minutes) and

extracting the supernatant as per wort extraction method (Chapter 7).

Boiled malt extracts

Aliquots of various malt extracts in deionised water were boiling suspended in a beaker of

water for up to 60 minutes. Acetonitrile (HiPerSolv™, BDH, Poole, England) was added

post-boil to obtain 25% as used in the antiyeast assay for antiyeast analysis. Alternatively the

malt extracts were added to wort that was boiled as before and then extracted as per wort

extraction method (Chapter 7).

Characterisation

Protein degradation

Various malt extracts were treated with Pronase (Roche Diagnostics GmbH, Mannheim,

Germany) protease cocktail, 0.014 g Pronase was added per malt extract aliquot re-suspended

in 750 J.lL deionised water where one aliquot represented extract from 0.5 g malt. After
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incubation at 40°C for one and a half hours, 250 ul. acetonitrile was added to attain the 25%

used in the antiyeast assay. Pronase in deionised water was treated the same way and tested on

the assay as a control.

Arabinoxylan degradation

Xylanase M3 from Trichoderma longibrachiatum (Megazyme, Bray, Ireland), at IOU per

aliquot dissolved in 750 ul. distilled water, was used to treat malt extracts at 50°C for one

hour. Enzyme activity was destroyed by boiling reaction mixture for 10 minutes. Acetonitirle

(250 ul.) was added after cooling the aliquot to attain the 25% for the antiyeast assay. Prior to

analysis the aliquot was centrifuged at 6500 g for 15 minutes to remove any precipitate

formed. Xylanase without malt extract was treated the same way as a control.

pH stability

Malt extracts were dissolved in buffers ranging in pH from 4 to 9 (prepared by mixing 1%

acetic acid with 1% ammonia (Sigma, St.Louis, USA) in varying ratios). After one hour the

samples were frozen and repeatedly freeze dried (Labconco, Kansa City, Montana, U.S.A) to

remove all traces of the buffer components prior to antiyeast analysis. Buffers without malt

extracts were freeze dried and tested as controls.

Reagent sensitivity

Any volatile reagents used for the purification procedures (see later) were tested by dissolving

malt extracts in the reagent being tested and after one hour the extract was frozen and

repeatedly freeze dried to remove all volatile components of the reagent prior to antiyeast

analysis. Reagents without malt extracts were freeze dried and tested as controls.

Size partitioning

Malt extracts, in deionised water, were dialysed in different cut-off dialysis tubing

(Spectro/Por® tubing (Rancho, Dominguez, California, U.S.A»; 5 and 12-14 kDa. The

dialysates were then freeze dried and analysed for antiyeast activity. Otherwise, malt extracts

in deionised water, were filtered through ultrafiltration membranes (Amicon Inc., Beverly,

MA, U.S.A.) with 3 and 10 kDa cut-off limits and fractions above and below the membranes

were freeze dried and used for antiyeast analysis.
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Lipid transfer protein 1 analysis

LTP1 concentration was determined in malt extracts by quantitative double sandwich ELISA

using polyclonal LTP1 antibodies and purified barley LTP1 as described previously (Evans

and Hejgaard, 1999 and Van Nierop et aI., 2004b (Chapter 3)) Antibodies and LTPI was

donated by Dr. E. Evans (University of Tasmania, Sandy Bay, Australia).

Antimicrobial analysis

Microflora from barley

Microflora from barley was propagated by adding 10 barley grains to 200 mL MRS broth,

plate count broth and potato dextrose broth prepared as per product instructions (Biolab

Diagnostics (PYT) Ltd., Halfwayhouse, South Africa) in 1 L Erlynmeyer flasks, incubated for

48 hours at 37°C and shaking at 150 rpm. The various broths with propagated microbes were

diluted with the same broth to achieve an optical density (OD) of 0.3 at 600 nm (measured

with a dual beam UV/visible spectrophotometer, Shimatzu, UV-1600, Tokyo, Japan). The

diluted solutions (100 ul.) were then added to 30 mL of the same broth and used in the

antiyeast assay format with various malt extracts.

Antibacterial assay

Micrococcus luteus was propagated in Luria broth (Sigma, St.Louis, USA, made up as per

manufacturers instructions) as described by Du Toit and Rautenbach (2000), cells were

diluted in potato dextrose broth (Biolab Diagnostics, Midrand, South Africa, made up as per

manufactures instructions) until the optical density was between 0.2 and 0.3 at 600nm. The

cells were used in the antiyeast assay format instead of yeast cells in MYGP. Everything else

in the assay was the same as for the antiyeast assay.

Antiyeast assay

Malt extract preparation and the antiyeast assay were performed as previously described

(Chapter 6 and 7). Yeast was propagated in MYGP broth; 3 g each of malt and yeast extract,

5 g peptone and 10 g glucose (Biolab Diagnostics, Midrand, South Africa) dissolved in 1 L

water and autoclaved 15 minutes pressurised to attain 121°C.
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Yeast lysis

Yeast cells in MYGP (6 mL), as used for the antiyeast assay, were added to an aliquot of malt

extract. This was transferred to a 25 mL Erlynmeyer flask, shaken at 25°C for two hours and

filtered through 0.45 urn acetate syringe filters (Osmonics, Warren, Indiana, U.S.A.). The

adenylate kinase leakage from yeast cells was measured as described by Cameron-Clarke et

al. (2003).

Purification procedures

Gel filtration

Sephadex G10 (Pharmacia LKB Biotechnology, Uppsala, Sweden) was swollen in deionised

water and packed into a glass Pasteur pipette. Malt extract (1 aliquot), dissolved in 200 ul.

deionised water, was loaded onto the column and eluted with deionised water. The first 550

ul. was discarded. The next 500 ul. was collected and analysed for antiyeast activity.

Thin layer chromatography

Thin layer chromatography (TLC) was performed on malt extracts according to Atherton et

al. (1989) using Kieselguhr 60-F254 TLC plates (Merck, Darmstadt, Germany) developed in

butan-l-ol: pyridine: acetic acid: water (90:80:60:72). The impact of the reagent on the

antimicrobial activity was tested by adding the developing solution directly to the malt

extract. The solution was removed by repeated freeze drying after which the extract was re-

analysed for antiyeast activity.

Cation exchange

CM52 pre-swollen carboxylmethyl cellulose (Whatman International, Ltd., Maidstone,

England) was equilibrated in deionised water or buffers ranging in pH from 4 to 9 (prepared

by mixing 1% acetic acid with 1% ammonia in varying ratios). Malt extract dissolved in

corresponding buffer was added to pre-equilibrated resin in test tubes and gently mixed.

Centrifugation (five minutes, 3000 g) was used to separate the resin from the liquid containing

the extract components not bound to the resin. The bound components were eluted with 1.0M

ammonium acetate pH 6.0 (Sigma, St.Louis, USA) and removed by centrifugation. The

unbound and bound fractions were freeze dried repeatedly to remove all traces of reagents

used. The dried fractions were dissolved in 25% acetonitrile and analysed by the antiyeast

assay. Malt extracts, treated as above but without the resin, were used as control. The pH of
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buffers and malt extracts in buffer was measure using a pH meter (744 pH meter, Metrohm,

Herisau, Switserland) and confirmed with pH indicator paper (Macherey-Nagel, Duren,

Germany).

Liquid chromatography electrospray mass spectrometry

Liquid chromatography- The cationic fraction of malt D (3 mg) was dissolved in 2 mL 50%

acetonitrile containing 0.1% formic acid (Sigma, St.Louis, USA). The sample was filtered

through a 0.22 urn nylon syringe filter (Osmonics, Warren, Indiana, U.S.A.). To achieve

separation 1 ul, was injected on to a 150 urn x 150 mm Waters Atlantis dC18 capillary

column (Waters Corporation, Milford, MA, USA), packed with 3 urn particles, using a 2%

acetonitrile solution containing 0.1% formic acid. The column was connected to a Waters

CapLC XE capillary liquid chromatography system. Gradient elution was employed at a ca.

300 nLimin flow rate. Mobile phase A contained 2% acetonitrile and 0.1% formic acid.

Mobile phase B contained 98% acetonitrile and 0.1% formic acid. The gradient was run over

40 minutes from 20% B to 90% B.

Mass spectrometry- A Waters QTOF API Ultima Quadropole- Time-Of-Flight mass

spectrometer with nano-electrospray ionization in the positive mode was used. A capillary

voltage of 3.5 kV and a cone voltage of 35V were applied. The source temperature was set to

80 DC. The TOF analyzer was used for MS analysis. Calibration of the TOF analyzer was

performed using the fragment ions of glucorino-fubrino peptide B (Human) for the 333 to

1285 mlz mass range. The pusher frequency of the TOF analyzer was set for the 100 to 2000

mlz mass range.

Results and Discussion

It was established that the antimicrobial factors, active against brewing yeast, in the malt

extracts were already present on barley (Chapter 7). The malting process appeared to

contribute to the antimicrobial activity, either via the expression of antimicrobial plant

peptides during the germination process and/or via microbial factors introduced by growing

microflora.
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Origin of antimicrobial activity

To establish if these antiyeast factors were produced by the plant tissue in response to

microbial contamination and/or by the biomass on the grain itself, a number of different

experiments were performed.

Whole malt (unmilled) was extracted to establish if the antiyeast factors were on the outside

of the grain, but no antiyeast activity was observed (Table 1). Washed grain was dried and

extracted, but no significant decrease in anti yeast activity was observed (Table 1). The

retained wash was also extracted and it tested negative for anti yeast activity (Table 1).

Biomass residing within the husk layers of the grain, however, could still contribute to the

anti yeast activity. Barley was used to inoculate different growth media that encourages the

growth of a wide range of fungi and bacteria. The biomass was removed and the media were

extracted. No detectable antiyeast activity was secreted into the media by the biomass (Table

1). These findings confirmed that the anti yeast activity found in barley and malt was of plant

ongm.

Table 1 Antiyeast activity of malt F extracted in a number of different ways. Where
applicable the standard error of the mean (SEM) was quoted for duplicate
analyse of duplicate extracts (n = 4)

Material extracted Antiyeast activity

Milled malt 4.03 ±0.29

Whole (un-milled) malt No activity

Washed malt (milled)* 4.31±0.55

Retained malt wash* No activity

Growth media No activity

(biomass ex-barley removed)

*The water used to wash malt was retained and extracted
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Characterisation of activity

Specificity

Plant derived antimicrobial factors have a broader range of antimicrobial activity compared to

antimicrobial factors of microbial origin (Rao, 1995). Microflora from barley M and I was

grown up in three different growth media and maximum growth inhibition of the microflora

by malt extract D was recorded (Table 2). It was found that the antiyeast malt extracts (and

gramicidin S) inhibited the growth of mixed cultures of bacteria and fungi extracted from

barley. Similar activity was observed for malt extracts D and F (results not shown). Although

the barley microflora was tested in the antiyeast assay format, the assay was not optimised for

these different organisms, hence the results are not quantitative but they do indicate there was

a degree of inhibition of both bacteria and fungi (Table 2).

Table 2 Relative inhibition of barley microflora grown up in different media was
reported for malt extract D. All the different microflora tested, were inhibited up
to 100% by gramicidin S, used as control for the assay.

Growth media for Microflora Microflora

barley microflora
from barley M from barley I

(Detected inhibition) (Detected inhibition)

MRS broth (bacteria) - +/-

PCB I (bacteria) + ++

PDB2 (fungi) + +
IPCB- plate count broth
2 PDB- potato dextrose broth

Application of M luteus as test organism in the antiyeast assay format was quantitative and

up to 100% inhibition was observed, as for yeast. Relative to yeast, M luteus was much less

sensitive to the inhibitory effect of malt antimicrobial factors, whereas gramicidin Shad

similar 1Cso(concentration required to inhibit microbial growth by 50%) values towards both

organisms under these assay conditions (Fig. 1). Results are shown for malt extract D III

Figure 1, but malt extracts B and F were also tested yielding similar results.
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Figure 1 Comparison of M luteus and S. cerevisiae as test organisms in the antimicrobial
assay method described for yeast (Chapter 6). The inhibitory effect of (A) the
antimicrobial peptide, gramicidin S, and (B) an extract from malt D was tested
on both organisms. Error bars represent SEM of triplicate analysis from one
assay using one batch of bacterialyeast (n = 3).

Type of activity

Antimicrobial peptides usually act on the cell membrane causing inhibition of growth by

damaging the membrane leading to cell death by lysis (Shai, 1999 and Epand and Vogel,

1999). To test the impact of the malt extract on yeast membranes, yeast was exposed to the

extract under the same conditions as used for the antiyeast assay. After removing the yeast,

the activity of adenylate kinase, an intra-cellular yeast enzyme, was measured as an indicator

of cell lysis (Cameron-Clarke et al., 2003). The antimicrobial extracts were all added at the

same concentration based on 50% growth inhibition of the most potent extract in the antiyeast

assay. Exposure to malt extracts caused a significant increase (2 to 4 times) in adenylate

kinase activity relative to the negative control, indicating lysis (Table 3). Gramicidin S, a

highly lytic peptide (Staudegger et al., 2000 and Prenner et ai, 1999), caused a 13-fold

increase in adenylate kinase activity when added at a 50% inhibitory concentration. Other

malt extracts were also tested and gave similar results, even the extract from malt A, known to

have the lowest level of antiyeast activity of all the malts screened to date (Chapter 7).
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Table 3 Detection of extracellular adenylate kinase activity, indicative of yeast lysis, in
the presence of various malt extracts, positive control for lysis (gramicidin S)
and assay reagents or negative controls (deionised water and 25% acetonitrile).

Sample Adenylate kinase Comment
activity

B + Lytic

D + Lytic

F + Lytic

Gramicidin S +++ Highly lytic

Water - No activity

25% acetonitrile - No activity

In the antiyeast assay, optical density was measured after approximately 24 hours incubation,

re-reading the plates at 48 hours revealed there was still no growth at high extract

concentrations (0.1 g malt extractedlmL) of the potent malt extracts B and F (results not

shown). This result was indicative of a cytocidal action by the active factor(s), which would

result in total cell death.

Nature of antimicrobial factor(s)

Temperature stability

Work by Okada and Yoshizumi (1970) on the antiyeast activity of barley extracts did not

include any findings on the temperature stability of these factors. As they proposed that these

factors impacted on yeast during fermentation, the temperature stability of the factors would

be of importance since the wort preparation involves a number of temperature stands during

mashing (63-76°C) and a 60 minute boil. In Chapter 7 it was shown that temperatures as low

as 55°C during malt extraction negatively impacted on the antiyeast activity. It was proposed

that this was due to enzymatic degradation rather than temperature. It was also shown that

antimicrobial activity could be carried through to fermentation via the wort trub or precipitate

suggesting some degree of temperature stability. To determine the sensitivity of malt extracts

with antiyeast activity to temperature, extracts were dissolved in water or wort and boiled for

varying period of time (Figs. 2 and 3).
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Initial investigation revealed that temperature stability varies between malt extracts (Fig. 2)

and the Ieso values increase to varying degrees on boiling. Through further examination into

malt extract F, it was determined that antiyeast activity survived better in wort than in water

(Fig. 3), the wort environment possibly being more conducive to stabilising the factors.

Overall malt antimicrobial factors were found to be temperature resistant, but not heat stable.

Therefore, if antimicrobial activity was present prior to the boil potentially some antimicrobial

activity may be carried through to the wort.

18

16

14
Ci _UnboiledE 12
c3 c:::::::J 15 minute boil
Ii) 4xo 10->. 8-.s;: 4{is 6«

4

2

0
MallO Mall B MallF

Malt extract disolved in water

Antiyeast assay results of malt extracts D, B and F dissolved in deionised water
and either not boiled (unboiled) or boiled for 15 minutes. The numbers (2x, 4x)
indicate the activity lost on boiling. Error bars represent SEM for duplicate
analyses of duplicate experiments (n = 4).

Figure 2
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Figure 3 Antiyeast assay results of malt extract F dissolved in deionised water or wort
and boiled for various times ranging from zero to 60 minutes. As negative
control wort without extract added was boiled for 45 minutes. Error bars
represent SEM of duplicate analyses for duplicate experiments (n = 4).

Enzyme stability

According to the literature, the most prominent plant antimicrobial factors are proteins or

peptides (Broekaert et al., 1997, Creelman and Mullet, 1997, Lamb and Dixon, 1997 and Van

Loon and Van Strien, 1999). To determine if antimicrobial activity from malt was due to

protein material, a cocktail of proteases (Pronase) was used to treat a number of different malt

extracts. In each case the antimicrobial activity was significantly reduced or totally lost,

therefore the antiyeast activity was most probably due to peptide and/or protein factor(s) (Fig.

4). The Pronase on its own, used as a control for the assay, was also mildly antimicrobial, but

that activity was no longer detected when in the presence of the malt extract. This discrepancy

may be due to the inhibition of proteases by peptides, as observed for LTPI and malt

endoproteinases (Jones, 1997).
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Figure 4

c::::::J Pro nase

- Extract
I?ZZZZl Extract+pronase

120

Antiyeast assay results expressed as percent yeast growth in the presence of the
same concentration of malt extracts treated/not treated (at 40°C) with Pronase
protease cocktail and Pronase on its own. One set of extracts of each of the
malts was analysed in duplicate or triplicate and SEM for each average is
shown.

..c 100

~ 80.....
0>

1ii 60co
~'*' 40

20

o
o B

malt extract
F

The malt extract F (malt F causes premature yeast flocculation or PYF) was also treated with

xylanase, but this did not influence the antiyeast activity of the extract. Xylanase was selected

because the phenomenon of malt associated PYF has been positively linked to arabinoxylan

and was destroyed by xylanase digestion (Van Nierop et aI., 2004a; Chapter 5). In addition it

was previously postulated that the PYF factor may be associated with an antimicrobial peptide

(Axcell et al., 2000 and Van Nierop et aI., 2004a, Chapter 5). These results may not support

this postulation, but screening of PYF malts for antiyeast activity indicated a possible

connection between the presence of antimicrobial factors, PYF and observed sugar uptake

inhibition (Chapter 7).

In Chapter 7 it was reported that the addition of a cocktail of ~-glucanase and a-amylase

during malt I and M extraction at 55°C (optimum temperature for enzyme activity) also

caused reduction of antiyeast activity. This loss was attributed to the breakdown or loss of

protective factors making the antimicrobial factor more temperature sensitive or susceptible to

proteolysis by enzymes present in malt.
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pH stability

The pH stability of antimicrobial factors in malt extracts B and F was determined by exposing

the extracts to different pH solutions. The volatile buffers were used and removed by freeze

drying, thereby avoiding false antimicrobial activity in the antiyeast assay due to exposure of

yeast to different pHs. The active malt extracts B and F were tested and found to be stable

over the range pH 4-8, with a pH stability optimum of ±5 (Fig. 5, results for F shown).

Removing the buffer components and re-suspending in deionised water did not re-establish

antimicrobial activity, suggesting the damage/denaturation was irreversible. It should be noted

that acid extraction was used during malt extract preparation for the antiyeast assay,

temporarily reducing the pH to below 2. However, the malt extraction was performed on ice,

whilst the pH treatments were performed at room temperature, probably increasing the

damaging effect. Without any extreme pH treatment it is likely that in the brewing process the

antiyeast activity is in fact greater.

Figure 5

>20
12

10

8
C).s 60
It)

o
4
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pH2.3 pH3.9 water pHS.2 pHS.6 pHB.2 pH9.3

Antiyeast assay results of malt extract F exposed in different pHs. The volatile
components were removed by freeze drying prior to antiyeast analysis. The
extract, exposed to deionised water, was used as control. Error bars represent
minimum/maximum values for duplicate analyses.

Reagent sensitivity

Since a number of different reagents are used for various purification methods the stability of

antimicrobial activity in malt extracts to these volatile reagents was determined (Fig. 6). The

TLC reagent was found to irreversibly damage antiyeast activity explaining the lack of

success of the method (see later). As expected, 25% acetonitrile had no impact as previously
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determined (Chapter 6). Ammonium acetate also had no significant impact on antiyeast

activity and was a suitable reagent to use in purification procedures (see later).

8

7

6

Antiyeast assay results of malt extract F re-suspended in TLC reagent (see
Materials and methods), 1.0 M ammonium acetate, 25% acetonitrile or
deionised water. The reagents and water were removed by repeated freeze
drying (FD). Malt extract F, re-suspended in water with and without freeze
drying, were assayed as positive controls. Error bars represent
minimum/maximum of duplicate analyses.

Figure 6
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Simple size partitioning with dialysis tubing and ultrafiltration membranes was used to

establish if the factor in malt extracts B and F was a protein or a small protein/peptide (Table

4). The antimicrobial activity resided in the fraction between 5 kDa and 14 kDa due to the

dialysis results but the ultrafiltration results were inconsistent, the activity being retained or

filtered through the membrane. Both dialysis and ultrafiltration are not exact methods and the

lack of repeatability using the 10 kDa cut-off ultrafiltration membranes may be due to the

proximity of the size of the factors and the cut-off. The latter was supported by the detection

of LTP 1 (9-10 kDa) in a cationic faction of one malt extract with antimicrobial activity (see

later) and the size of the barley antiyeast factor (9.8 kDa) reported by Okada and Yoshizumi

(1970).

1M
reagent ammonium acetonitrile

acetate
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Table 4 Antiyeast activity after malt extracts D, B and F re-suspended in deionised water
were dialysed or filtered using ultrafiltration. Results indicate duplicate
experiments. Antiyeast activity defined as ICso (in mg malt extracted) <4.3.

Size (kDa) Malt extract D Malt extract B Malt extract F

>5 (dialysis) +;+ ++;++ +;+

<10 (ultrafiltration)* NA +'- +'-, ,

> 10 (ultrafiltration) * NA -;+ - ,-

>12-14 (dialysis) +.+ - - - --,- , ,

Pre filtration/dialysis ++; ++ +++;+++ ++;++
*Results with ultrafiltration usmg a 10 kDa cut-off membrane gave very mixed results, It was
repeated several more times for malt extract B but again results were inconsistent.

Partial purification

Gel filtration of the antimicrobial extracts in deionised water revealed differential loss of

antiyeast activity (Fig. 7), the extent of which was inversely related to the activity loaded onto

the gel filtration column and the LTP 1 present (discussed later (Fig. 9)). Hence, malt extract

D with high antimicrobial activity and low LTP 1 concentration, lost the most activity on the

resin. This may be due to differential binding of the antimicrobial factor to the dextran-type

resin (Sephadex G 10), and to the LTP 1 present. It was found that cationic antimicrobial

peptides, such as magainin 2 tended to be totally retained on Sephadex G 10, when water was

used as an eluant (personal communication, Dr. M. Rautenbach).
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Antiyeast assay results of different malt extracts before and after gel filtration
(Sephadex GIO) in deionised water. The numbers (6x, 1.9x, 1.2x) indicate the
antiyeast activity lost on the column. Error bars represent SEM for duplicate
experiments analysed in duplicate (n = 4).

Figure 7

maltD malt B malt F

Further purification of the active factors was attempted. In an initial investigation (not

reported here), a peptide with M, 4030 (as determined with ESMS) was extracted with CIS

resin from a crude water extract of zinc chloride stressed malt (this malt lead to slow

fermentations and was prepared by laboratory micro-malting in the presence of zinc).

Chemical stress had been used to try and induce antimicrobial peptides since chemicals, like

fungal contamination, have been associated with the activation of plant defence responses

including the production of antimicrobial peptides (Carr and Klessig, 1986). However, this

stress procedure was not reproducible and not enough material could be purified for antiyeast

assay analysis. In addition, because the zinc chloride stress was artificial and not brewery or

field related, this line of enquiry was not pursued further.

Malt extracts were separated by TLC. The dried TLC plates were overlaid with nutrient agar

containing the target organism (yeast or M luteus), but no clear zones with antimicrobial

activity could be identified, apart from that of positive control, gramicidin S. It was

subsequently found that exposure of the malt extract to the TLC solvent mixture was enough

to destroy the antimicrobial activity (described earlier). This indicated either dissociation of

an active complex or denaturation of the active factor or one of the active factors.
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Because most of the antimicrobial peptides are cationic or positively charged, cation exchange

chromatography was utilised to purify the factor(s) from malt extract D. The active antiyeast

factor bound to the resin in the pH range of 4 to 7, but the most effective binding was in

deionised water without pH adjustment (resulting in a pH of 4-5 according to pH paper).

Ammonium acetate was used to elute the bound fraction, since it was already established that

antimicrobial activity was retained in the presence of this reagent. The antiyeast activity was

determined after the reagent components were removed by freeze drying, thus not impacting

on the yeast in the assay. The active fraction, be it composed of one or more components,

bound to the resin indicating it to be cationic and little or no dissociation or denaturation of

the active factor occurred (Fig. 8). The dose response curves and hence antiyeast activity of

the malt extract exposed to reagents and freeze dried, but without the cation exchange resin

step was also tested. The antiyeast activity of this treated malt D extract and the bound

fraction, released from the resin were found to be similar (Fig. 8). The fraction that did not

bind to the anionic resin had no antiyeast activity. The optimised cation exchange procedure

was repeated on malt extracts B and F and yielded similar results.

120
100

s:
j 80
0
'-
C) 60-(/) pre-resinro •
Q) 40
>-
~ 20 x not bound
0

0 0 bound

-20
-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0

log amount malt extrated (g/mL)

Antiyeast assay results for cation ion exchange fractions of malt extract D.
Fractions represent malt extract inwater not exposed to the resin (pre-resin), not
bound to the resin and bound to the resin (released form the resin with
ammonium acetate). Error bars represent SEM for the overall curve of duplicate
analyses

Figure 8
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Identification

ELISA identification of LTP in extracts

HPLC purification of one of the malt extracts with antiyeast activity only yielded LTPI

(equivalent to LTPla reported in Chapter 3), as confirmed by ESMS (results not shown). The

purified barley LTP1, used as a standard for the ELISA, did not have any antiyeast activity

over the concentration range of 1-155 ug/ml.. It may, however, work synergistically with

other components as observed for wheat ns-LTPle, which was very similar to the barley seed

LTP1 and required the presence of another peptide for antimicrobial activity (Dubriel et al.,

1998). In addition, Lindorff-Larsen et al. (2001) reported that LTPI containing a lipid-like

post-transactional modification (LTPI b detected and reported in Chapter 3, with a covalent

linkage between Asp7 and C17 putative fatty acid) demonstrated putative antimicrobial

activity.

The identification of LTP1 in HPLC fractions of malt extract and the size limit of between 5

and 14 kDa, prompted us to investigate the role and abundance of LTP1 in the malt extracts.

In addition, the size suggests the factor may be the same as the 9.8 kDa barley antiyeast factor

identified by Okada and Yoshizumi (1973). Although not named as a ns-LTP at the time, it

had many features in common with ns-LTP and several ns-LTPs have been shown to possess

antimicrobial activity (Broekaert et al., 1995, Heinemann et al., 1996 and Molina et al,

1993b). LTPl, the most abundant of the ns-LTPs in barley seeds was measured using ELISA

with available antibodies. LTPI was found in all the extracts in varying amounts, but there

was no significant correlation between LTP1 concentration and antiyeast activity based on the

malt extracts analysed (Fig. 9) suggesting LTP1 is not the antimicrobial factor. The

temperature stability of malts D, B and F (Fig. 2), however, seem to be inversely related to

LTPI levels. Hence the most antimicrobial extract, malt D, was the most temperature stable

and contains the least LTPI. When LTPI was boiled it denatured (Chapter 3) and ifLTP was

associated with the active factor(s), this may have resulted in the formation of inactive

aggregates.

Ns-LTPs with no antimicrobial activity have been shown to enhance the activity of the

antimicrobial peptides such as thionins (Molina et al., 1993b, Gautier et al., 1994 and Terras

et. al., 1993). The antimicrobial activity in malt extracts may therefore not be due to LTPI or

ns-LTP, but enhanced by LTPI or ns-LTP.
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Figure 9
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LTP1 and antiyeast assay results of different malt extracts. Error bars for LTP1
values represent standard deviation (SD) of duplicate malt extracts analysed in
duplicate (n = 4) and error bars for antiyeast ICso values represent SEM for
triplicate malt extracts analysed in duplicate (n = 6)

Preliminary identification of factors with LC-ESMS

The bound cation exchange fraction from malt D was SUbjectedto LC-ESMS. The reverse

phase chromatography revealed a large number of compounds in the extract (Fig. 10), some

of which had typical peptide and protein mass spectra and others with spectra more indicative

of polymers, possibly polysaccharides (results not shown). Preliminary mass analysis of four

of the peaks (Appendix A, Figs. I-IV) showed that LTPla (reported in Chapter 3) and/or

peptides in the molecular weight range of LTP (M, 9000-10000 or 9-10 kDa) co-eluted with

smaller peptides/compounds in some peak fractions (Table 5, Appendix A)

Only the peaks occurring in the retention time range of 12.5 to 37.5 minutes (corresponding to

elution with 28-84% acetonitrile) on the base-peak chromatogram (Fig. 10) were examined as

this was where amphipathic peptides were expected to elute (personal communication, Dr. M.

Rautenbach). Under the chromatographic conditions used, LTPla co-eluted with other smaller

components in at least three of the fractions examined (Table 5, Appendix A, (I, II and III)).

LTP1a co-eluted in fractions II and III with a putative peptide (M, 3426.5) suggesting that

LTP1a formed different complexes which eluted at different retention times. It was therefore

likely that the protein fraction of the malt antimicrobial factor was a ns-LTP, probably

LTP1a, and it was strongly associated with a peptide or peptides. The association with a

peptide(s) could be required for inhibitory activity as supported by the size exclusion results

(Table 4), LTP1 analysis of malt extracts and antiyeast analysis of pure LTPl. In addition, a

complex ofLTPla with the major peptides detected (Table 5, Appendix A (II and III)) would
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give a M, of 12400-13100, which would correspond to the predicted size of the factor, based

on dialysis, of 5-14 kDa (Table 4). One of the compounds found in peak II (M, 9843, Table 5)

appears to have the same molecular weight as the antiyeast factor found in barley and reported

by Okada and Yoshizumi (1970). These results are preliminary, based on one run and one

malt. However, LTPla was previously detected in some of the earlier purification work

(described above).

33.03

8.01
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14.18
8.49
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29.69
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Figure 10 LC-ESMS base-peak chromatogram of the cation exchange fraction of malt
extract D. The mass spectra of the peaks designated I to IV were included in the
appendix.
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Table 5 Summary of the preliminary mass analysis of some of the peptide containing
fractions compounds identified using LC-ESMS.

Peak Calculated Mr Identification and
comments

I 454.3 Small compound?

9684.1 LTPla

II 3426.5 ? (mlz 1714.4, other signals too low) Peptide?

2713.7 (mlz 679.4; 905.6) Peptide

9685.2 LTPla

9600.8 LTP?

9843.5 ? (m/z 1231.433 other signals too low) LTP?*

10038.4 LTP?

III ? (mlz 1231.96; 1372.6, 1384.6, other signals LTP 1a and others?
to low)

3426.5 (m/z 1714.4; 1143.1) Peptide

IV ? (mlz 1026.6, 1070.7, 1711.5, other signals Peptides?
obscured by polymeric substances)

4866.9 (mlz 1217. 8, 1623.2) Peptide

* Similar to the antiyeast factor reported by Okada and Yoshizumi (1970).

Conclusions

Several different malts were tested for each aspect examined. In most cases, where possible

malts B, D and F were tested to create continuity, all three malts were selected because they

have high antimicrobial activity. Both D and F were associated with premature yeast

flocculation during fermentation as well as sugar uptake inhibition (Chapters 4, 5 and 7). Malt

D was also associated with gushing, the uncontrolled release of carbon dioxide and foam

when a bottle of beer is opened which is associated with fungal infected barley. Malt B

appears to perform well under laboratory fermentation conditions (Chapter 7).

These malt derived antimicrobial factors have a broad range of inhibitory activity (also see

Chapter 7) Interestingly, although M luteus was as sensitive to gramicidin S (known

antimicrobial peptide, positive control for assay) as S. cerevisiae, the latter was more sensitive
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to the malt extracts. This not only makes yeast the best target organism for a sensitive

antimicrobial assay, but should these factors be present during fermentation as reported in

Chapter 7 they potentially pose a real threat to yeast fermentation performance.

Plant-derived antimicrobial activity is often associated with cationic peptides, which are

mostly quite stable. The antimicrobial activity in malt was associated with a critical protein

component as it is lost by protease exposure. The active fraction was between 5 to 14 kDa,

which was in agreement with a peptide component. In addition, as first suggested in Chapter

7, a protective carbohydrate component may be present as seen by the sensitivity to starch

degrading enzymes. However, the presence of more than one component may account for the

temperature and solvent instability of the antimicrobial fraction.

The temperature stability of the malt extracts tested varied. The malt extracts with the

strongest antimicrobial activity were also the most heat stable. Stability of malt extract F was

compared in water and in wort and it was found to be far more stable in wort. The active

factor may be getting a protective effect from the wort environment due to increased ionic

strength or stabilising effect from other proteins or carbohydrates.

The pH stability was optimum at ±5 and exposure to extreme pH causes irreversible loss of

antimicrobial activity. The pH of the assay environment was incidentally also around 5. The

irreversible loss of antimicrobial activity when exposed to TLC reagent was not due to a pH

change since the pH of the reagent was ±5, but most likely due to the denaturing effect of

butanol and pyridine.

The factor(s) was found to be cationic and most effectively bound the cation exchange resin at

pH 4-5, suggesting it was most positively charged at this pH and may contain basic amino

acids such as histidine with a side chain that has a pKa of 6. Preliminary results indicate that

in the case of malt D the active component may be LTPla (first reported in Chapter 3) in

association with a smaller peptide(s). The association was strong enough to remain intact

during chromatographic conditions.

Antimicrobial activity in malt is likely to playa significant role in yeast performance during

fermentation in the brewing process (Chapter 7). Should this prove to be a potential area for

improving yeast performance as well as representing a malt quality parameter then it becomes

paramount to fully purify the factor(s) to further elucidate the antimicrobial activity and
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develop a non-biological assay such as an ELISA for its detection. The latter would offer a

more targeted and robust method.
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Figure I Mass spectra of the peak I (see Fig 10) from the chromatography of the
cationic fraction of malt D extract.
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Figures II Mass spectra of the peak II (see Fig 10) from the chromatography of the
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Chapter 10

Summation, conclusions and future studies

Introduction

The thesis presented investigated a number of relevant brewing industry issues. Despite the

fact that beer has been brewed over the ages the demand for increased volume, improved

quality and consistent product still requires continued improvement and research to gain

better understanding.

Summary of work

The first brewing issue examined was that of unexplained poor quality foam in a particular

brewery (Chapter 3) compared to others within South Africa. Initial exploration did not

identify the cause of the continued poor foam. The raw materials used by the brewery were as

similar as possible to the other breweries given the scale, distribution and logistics and was

not at first considered to be a likely cause. Nevertheless, the malt as the source of foam

material was examined in conjunction with the other variables by comparing two breweries,

their process and their raw materials; one with consistently good foam and the other with

unexplained continued poor foam. As an indicator of malt derived foam positive material the

most abundant foam protein, lipid transfer protein 1 (LTP1) was monitored by an enzyme-

linked irnrnunosorbant assay (ELISA).

Interestingly, it was found that the foam protein levels started to diverge between the two

breweries at the boiling stage of the wort preparation and a survey of a number of different

breweries revealed that the boiling temperature differed due to altitude and this difference,

while small, was critical not only in determining the final concentration of the foam proteins

but also the conformation of the proteins. The conformation of LTP1 appeared to determine

its ability to bind lipids; at lower boiling temperatures, it denatured less and bound lipids

better, acting as a lipid sink and protecting the beer foam from lipid damage. Hence, the

balance between lipids or free fatty acids in beer and LTP1 in the correct conformation was

critical. The fatty acids are derived mainly from yeast lysis, highlighting the importance of

good quality yeast and avoiding yeast stress that may result in lysis. The brewery in question
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had low levels of LTPI due to its coastal location and associated high boiling temperature. In

addition the FFA levels were continually high and the LTP 1 levels were insufficient to protect

the foam from lipid damage.

The second brewing issue was that of malt associated premature yeast flocculation (PYF)

during fermentation, which is an industry wide recurring issue (Chapters 4 and 5). The

mechanism of premature flocculation has been elucidated and it is known that the fungal

infection of barley plays a role. What caused a malt to become PYF positive was not

understood, making prevention difficult. In addition although the factor or factors associated

with PYF have been partially characterised as high molecular weight polysaccharide( s), rich

in arabinose and xylose, acidic in nature and containing some nitrogenous material (Axcell et

al., 1986, Fujino and Yoshida, 1976 and Herrera and Axcell, 1991b», they have not been

successfully isolated. As a result a reliable and quantitative measurement method such as

ELISA has not been developed and existing methods have poor reproducibility. The lack of

understanding and lack of reliable assessment meant that often the first time it was discovered

that a malt was PYF positive was when the yeast flocculated too early during a brewery

fermentation, leaving a fermentation incomplete with high residual extract or sugars and too

little alcohol.

To avoid repeating the efforts of others in trying to isolate the factor(s) and developing a

reproducible and quantitative assay, a simple small scale fermentation type method was

optimised as a reliable research tool to distinguish a PYF positive malt from a PYF negative

malt relative to known control malts. With the assay in hand I was able confirm that PYF was

associated with the malt husk and tried to induce PYF in non-PYF barley or malt. This was

done successfully by fungal infection of the barley during malting or exposure of malt husk to

extra-cellular fungal extracts (containing a range of polysaccharide hydrolysing enzymes

including xylanases and glucanases). In addition, exposure of malt husk to commercial fungal

xylanase and the addition of arabinoxylan (the polysaccharide product of xylanase action on

husk) to the mash both impacted on PYF. The results indicated that the presence of fungal

infection on the grain caused the enzymatic breakdown of the predominant husk component

arabinoxylan, into smaller arabinoxylans of differing molecular weights. The presence of

glucuronic acid residues in husk arabinoxylan would account for the acidic nature of the PYF

factor previously reported (Fujino and Yoshida, 1976). These factors associate with yeast and

result in the aggregation of yeast cells resulting in their flocculation before then end of

fermentation when sugars are still present in high concentrations.

10-2



The source of the nitrogenous material believed to be part of the PYF factor (Herrera and

Axcell, 1986) was proposed to be antimicrobial peptides (Axcell et al., 2000) produced by the

plant in response to microbial infection. The peptide may not be essential for PYF, but occurs

simply as a result of the same trigger - microbial infestation of the grain. This area of plant

defence and antimicrobial factors in barley and malt quality had not been previously

investigated in the brewing industry and was undertaken as the final area of research.

To establish the importance of malt derived antimicrobial factors required the optimisation of

an antimicrobial assay based on the methods already available. Brewing yeast was selected as

target organism to assess any direct impact of antimicrobial factors in malt on yeast

performance (fermentation). However, an indirect impact of antimicrobial factors present in

malt, as a result of microbial induced stress, may reflect other aspects of malt quality. The

assay was applied to measuring antimicrobial activity in barley and malt. As expected,

malting appears to induce more antimicrobial activity due to the germination process and

microbial growth. The antimicrobial factors were likely to be carried through to wort and

fermentation impacting on yeast sugar uptake, although the levels were low and appeared to

be associated with the trub (precipitate) that was found in wort and was partially transferred to

the fermentation vessel.

Having established the likelihood of a direct impact on yeast in fermentation, the factor or

factors associated with the inhibition of yeast were partially characterised. The antimicrobial

factor was of barley and not microbial origin, residing in the grain endosperm and

demonstrated a wide range of activity inhibiting not only yeast but also fungi and bacteria

(gram-positive and gram-negative). The factor contained a cationic peptide fraction with sizes

ranging between 5 and 14 kDa, putatively identified as LTPI (approximately 9-10 kDa)

associated with smaller 3-4 kDa peptide(s). The pH stability optimum for antiyeast activity

was found to be 5.2' and exposure to extreme pHs caused irreversible damage. Starch

degrading enzymes reduced the activity suggesting there may be a carbohydrate component

essential for activity or protection of the protein component from heat and proteases.

Trends

The theme of peptides, antimicrobial or not, was common to all the brewing issues examined.

LTP1 is a peptide that is of great importance to foam. The group of peptides LTP1belongs to,

non-specific lipid transfer proteins (ns-LTPs), includes antimicrobial peptides. The

antimicrobial activity of LTP1 has not been examined although our initial analyses revealed it

was not antimicrobial in the purified form and there was no correlation between malt LTP1
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concentration and malt antimicrobial activity. Activity may, however, be lost during

purification or other components may have been required in conjunction to LTP1 for activity.

Both possibilities were supported by findings in the research presented. Futhermore, there was

evidence of LTP1 association with another peptide in an antimicrobial fraction. This kind of

synergism between peptides was also reported in wheat where ns-LTP1e (very similar to

barley LTP1) required the presence of another peptide for activity (Dubreil et al., 1998). The

antiyeast activity from barley observed by Okada and Yoshizumi (1970) was also associated

with a peptide that had many features in common with ns-LTP.

Screening of malts for antiyeast activity revealed that all malts had some degree of activity

and although we could differentiate between malts there was no obvious relationship between

the level of antimicrobial activity and fermentation problems. Likewise for LTP1, all malts

contain LTP1 and the levels do differ, but again with no obvious link to beer foam levels. The

lack of correlation between LTP1 and antimicrobial activity may be due to the proposed role

of an associated peptide required for activity. Measuring the presence of this peptide or LTP1

associated with this peptide may result in correlation with antimicrobial activity. In addition

the assay measured LTP1 specifically, therefore other ns-LTPs would not be detected.

Although there is evidence that LTP1 specifically is antimicrobial, this may not be the case

and the other ns-LTPs present in lower concentrations may be more important for the

antimicrobial activity. As in the case for LTPI and foam, the underlying brewing process also

contributed to the lack of a direct relationship between ns-LTP levels and antimicrobial

activity.

PYF has been associated not only with the aggregation and floccualtion of yeast but also with

the inhibition of sugar uptake. Malts that resulted in both PYF and yeast sugar uptake

inhibition had high levels of antimicrobial activity. The antimicrobial factors appeared to be

involved in the sugar uptake inhibition. However, the presence of high levels of antimicrobial

activity in non-PYF malts did not necessarily result in sugar uptake inhibition. Again there

appeared to be no obvious link between the presence of antimicrobial factors and the

occurrence of yeast sugar uptake inhibition, although there was evidence to support the

association of antimicrobial factors with sugar uptake inhibition under certain conditions.

The major variables in the production of beer are the raw materials, yeast and process. The

process impact seemed to play an underlying role in several of the issues investigated. The

survival and conformation of the foam protein LTP1 was dependent on the boiling

temperature, given the right process, besides having more foam material present the foam was

protected against lipid damage. PYF could be induced during micro-malting, hence malting
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may well playa role in the occurrence of PYF under certain conditions (e.g. the presence of

the right microbial population). Antimicrobial factors were carried through the brewing

process in the trub, the amount of which was process related. The contribution of more than

one factor made all of these issues more complex. Although the understanding of all the

brewing issues tackled in this thesis has moved forward there is a broad scope for future

work.

Future work

Given the evidence that there was a link between 1.) LTPI and antimicrobial activity and 2.)

PYF and antimicrobial activity, work to elucidating this relationship may further our

understanding of all three areas of interest.

The association of LTPI with antimicrobial activity and the impact of boiling temperature on

its activity needs to be established to ensure the drive to minimise/maximise LTPI considers

not only foam but also yeast inhibition.

Now that it is apparent that the antimicrobial factors bind to the solids precipitated in the wort

and may be carried through the process, extraction of the activity from the trub (precipitate)

may be possible and would enable quantification of the antimicrobial activity at the point of

impact. This would overcome any process contribution and may highlight real differences that

do correlate directly to yeast performance.

In the brewing industry there has been an ongoing debate about "cloudy" and "clear" wort and

the positive/negative impact on yeast performance (O'Connor-Cox et al., 1996). Investigating

antimicrobial factors associated with unfiltered or cloudy worts may shed more light on this

debate.

The trub was noted to be antibacterial as well and it may be possible to exploit this elsewhere

in the brewing process. Should it prove that there is no significant impact of the malt

antimicrobial activity on yeast in fermentation, it may be possible to utilise the antibacterial

activity of trub in wort and during fermentation or during yeast handling.

The presence of antimicrobial factors in the malt grain as a result of microbial contamination

and stress may be indicative of other aspects of malt quality besides a direct inhibitory effect

on yeast in fermentation. Investigation of this would determine if measuring the malt

antimicrobial activity is worthwhile as an assessment of malt quality.
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The possible increase in antimicrobial activity during malting and the previously reported

induction of PYF in malting (Axcell et al., 1986) highlights the importance of the malting

process. Elucidating the role or contribution of the malting process to antimicrobial

activitylPYF may enable implementation of procedures to prevent or minimise their

occurrence.

Closing remarks

From a brewing industry point of view, several advances have been made in the areas

examined. The findings concerning foam and the impact of boiling temperature on LTP1 has

highlighted the need not only to try and maximise the foam positive factors such as foam

proteins in the right conformation but also to balance that by reducing the amount of foam

negatives. The key finding was the importance of balance and in this case location or rather

reviewing the kettle design. Certainly the purchase of a kettle at one of the breweries was

influenced by these findings.

The advances in the PYF research as a result of using a novel approach of avoiding the

seemingly troublesome purification of the PYF factor, yet still gaining understanding of the

events leading to PYF in malt, are already being applied. The assay is in use routinely to

avoid purchasing PYF malts as the first line of defence and work is continuing to improve the

assay or develop an alternative more robust assay for industry application. In addition, any

malts that are found to cause PYF are examined further to determine at what stage the malt

became PYF, be it in the field or in the malting process and how to minimise the impact of the

malt in the brewing process.

The malt antimicrobial research has reached a stage where there are potential industry

applications revealing several areas of interest. The importance of LTP1 in foam and the

apparent association with yeast inhibition and malt antimicrobial factors could influence the

management of LTP1 or foam by considering the impact on yeast. The finding that the factor

may reside in the trub is of most consequence. This may be applied to compare different

breweries with varying brewing equipment, evaluation of equipment design and the impact on

wort production and fermentation. The application of the antimicrobial assay as a malt and

yeast quality tool also has real potential for the brewing industry.
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