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SUMMARY 

In this study, I compared the notoriously invasive wattle species Acacia mearnsii, to two 

native woody species in terms of patterns leaf litterfall and nutrient resorption in riparian 

environments, and the decomposition of the leaf litter in aquatic environments and in stream 

macroinvertebrate communities in mountain streams in the Fynbos biome of the CFR. More 

explicitly, the study assessed: (1) leaf litter fall between A. mearnsii and co-occuring native 

species on an monthly basis (2) the nutrient (N and C) concentrations dropped in leaf litter 

inputs monthly (3) the amount of nutrients (N and P) resorbed between species before 

senescence (4) the decomposition rates between A. mearnsii and fynbos species in away 

and home environments to test the Home Field Advantage (HFA) hypothesis and, finally (5) 

the macroinvertebrate assemblages in different leaf bags in home and away environments to 

test macroinvertebrate litter affinity effects instream.  

The results in the study indicate that A. mearnsii had seven to times times higher leaf 

litterfall rates in the Wit and Du Toit‟s River compared to co-occuring native species in 

invaded and near pristine riparian zones. Acacia mearnsii had two peaks in litterfall, one at 

the end of the dry season in mid-autumn, and the other in mid-summer. A. mearnsii also 

kept a higher foliar N concentration than co-occuring native species, which gives the wattle 

species a competitive advantage. Native species exhibited low nitrogen concentrations 

which are reflected annually. In addition, the results indicated that co-occuring natives 

efficiently recycles nutrients before leaf abscission, for instance through high P resorption 

efficiencies. Acacia mearnsii was not as efficient in recycling nutrients, most notably N, but 

was more efficient in recycling P, suggesting it may require more P than can be readily 

supplied from the soil. The results indicate that the studied species had high resorption 

parameters (proficiency, A. mearnsii and efficiency in native species), which indicated a P 

limited landscape. This can be an important reason in the success of Acacia spp. in South 

African landscapes and particularly in riparian zones.  

The results also indicated that A. mearnsii and fynbos species differed locally at all 

sites in instream decomposition rates, with A. mearnsii decaying at a much faster rate. The 

difference in decay rates was attributed to differences in litter quality characteristics between 

native and invasive species (N concentration and C:N ratio). The faster decay rates in A. 

mearnsii due to leaf litter with high N and P can have a detrimental effect on in stream 

functionality therefore affect the species diversity of aquatic biota. The macroinvertebrate 

litter affinity effects were tested and showed no preference to home turf litter or introduced 

littertype regardless of the local environment at each invasion status. Functional feeding 

groups increased at both Wit River site, as macroinvertebrates were season-dependent on 
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leaf litter and additionally resources A. mearnsii site may hold. Conversely, at the Du Toit‟s 

River low invertebrate diversity and abundances and was regulated by stream 

characteristics and site geomorphology at both reaches. Furthermore, seasonal hydrological 

regime could have accounted for macroinvertebrate species abundance and diversity at 

each river as there was a selective pressure on communities to utilize resources. 

The research contributes to a more comprehensive understanding of nutrient cycling, 

acquisition and conservation strategies of native compared to invasive species in the Fynbos 

biome in South Africa. Additionally it also gives insight into how invading species could 

potentially modify aquatic ecosystems and change macroinvertebrate communities in 

disturbed environments. Invaders can strongly affect multiple services in an ecosystem 

therefore it is imperative that these mulitiple roles should be asssed and managed as 

environmental change (i.e, drought) could cause a long lasting effect on ecosystems 

holistically (riparian areas, in stream biogeochemistry and aquatic assemblages).  
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OPSOMMING 

In hierdie studie het ek die berugte indringende wattle spesie Acacia mearnsii teenoor twee 

inheemse boom spesies in term van patrone van blare val en voedingstowwe resorpsie in 

rivieroewers omgewings en ontbinding proses van blare in akwatiese en makro-

ongewerweldes gemeenskappe binne bergagtige strome in die Fynbos bioom van die KFO. 

Meer uitdruklik, die studie beoordeel: (1) blaar val patrone tussen die A. mearnsii en mede-

voorkomende inheemse spesies op n maandelikse bases (2) die voedingstowwe (N en C) 

konsentrasies in blaar val maandeliks (3) die hoeveelheid voedingstowwe (N en P) wat 

geabosrbeer word tussen blaar spesies voor veroudering (4) en die ontbinding tariewe of 

proses tussen A. mearnsii en fynbos spesies in naby tuis omgewings en weg van n tuis 

omgewing om die Home Field Advantage (HFA) hipotese te toets en uiteindelik die 

makroongewerweldes versameling in verskillende blaar sakkies in tuis en weg van die tuis 

omgewings om die makro-ongewerweldes blare affiniteit binne stroom te toets.  

Die resultate in die studie dui aan dat A. mearnsii sewe tot tien keer hoër blaar val 

hoeveelheid in beide die Wit en Du Toit‟s Rivier in vergelyking met die mede-voorkomende 

inheemse boom spesies binne indringende en byna ongerepte rivieroewers 

omgewingssone. Acacia mearnsii het twee pieke in blaar val, waar een voorkom aan die 

einde van die droe seisoen in middel herfs en die ander een middel somer in Desember. 

Acacia mearnsii het hou ook n relatiewe hoër blaar N konsentrasie as die mede-

voorkomende inheemse spesies wat die wattle spesies n mededingende voordeel gee. Die 

inheemse spesies stal uit n laer stikstof konsentrasie wat aan gedui word maandeliks. 

Daarbenewens, die resultate dui aan dat die mede-voorkomende inheemse spesies 

doeltreffend voedingstowwe herwin voor blaar afsnyding, byvoorbeeld deur hoe P resorpsie 

doeltreffend te gebruik. A. mearnsii was nie so doeltreffend in die herwinning van 

voedingstowwe veral N, maar was meer doeltreffend in die herwinning van P wat aandui dat 

die spesie meer P vereis as wat dit beskikbaar is van die rivieroewers omgewing. Die 

resultate dui ook aan dat die bestudeerde spesie „n hoër resorpsie grens het veral in 

vaardigheid in die A. mearnsii and doeltreffendheid in die inheemse boom spesies, wat 

aandui „n P limitasie in die rivieroewers omgewing. Dit kan uiters die belangrikste rede wees 

vir die sukses van die Acacia spp. in Suid Afrika rivieroewers omgewings. 

Die resultate dui ook aan dat A. mearnsii en fynbos species verskillend plaaslik by al 

die studie plekke in die ontbinding proses binne in die stroom gebiede met die A. mearnsii 

specie wat die vinnigste ontbind oor tyd. Die verskille in die ontbindings van die blaar 

spesies was aangedui deur die verskille in blaar kwaliteit tussen die inheemse en die 

indringende spesies (N konsentrasie en C:N verhoudings). Die vinnige ontbinding proses in 
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die A. mearnsii weens die blaar val wat hoë N en P inhoud besit kan dalk n nadelige impak 

het op binne stroom funksie en as gevolg van dit mag die spesie se diversiteit en akwatiese 

biota affekteer of beinvloed. Die makroongewerweldes blare affiniteit was ook getoets en die 

resultate wys geen voorkeur vir blaar tipe van sy tuis omgewing of van die blaar tiepe wat 

voorgestel was in die omgewing nie. Die funksionele voedings groepe het vermeerder by 

beide, Wit Rivier studie plekke omdat die makroongewerweldes was seisoenaal afhanklik 

van die blaar val asook die hulpbronne wat A. mearnsii indringende plekke hou. By die Du 

Toit‟s Rivier was lae nommers van ongewerweldes diversiteit en verspreidings gereguleer 

deur stroom eienskappe en die verskillende plekke se geomorfologie. Die seisoenale 

hidrologiese patron kan dalk verantwoordelik wees vir die makro-ongewerweldes spesies se 

verspreiding en diversiteit by beide riviere as gevolg van n selektiewe drukking deur 

gemeenskappe om hulpbronne te gebruik.  

Die navorsing dra by tot „n meer omvattende begrip van die voedingstowwe siklus, 

verkryging en bewaring strategië van die mede-voorkomende inheemse boom spesies in 

vergelyking teen die indringende wattle spesie A. mearnsii in die Fynbos bioom in Suid -

Afrika. Daarbenewens gee dit ook „n insig op hoe indringende spesies die potensiaal het om 

akwatiese ekosisteme dalk te verander en ook die makro-ongewerweldes gemeenskappe 

binne stroom. Indringende spesies kan verskeie impakte het binne „n ekosisteem daarom is 

dit uiters belangrik dat die verskeie impakte moet beoordeel word en ook bestuur word. 

Veranderinge in omgewegings (bv., droogte) kan dalk „n blywende negatiewe effek het op 

ekosisteme in „n meer holistiese manier (rivieroewers omgewings, binne stroom 

biogeochemie en akwatiese versamelings). 
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  Chapter 1

Introduction and literature review 

_________________________________________________________________ 

1.1. General introduction 

The maintenance of biodiversity is a major challenge for ecosystem management. After 

habitat loss, the second biggest threat to global biodiversity is invasive alien plant species 

(IAP‟s) (D‟Antonio and Meyerson, 2002; Richardson and van Wilgen, 2004). The biodiversity 

riparian zones and rivers in South Africa are among those ecosystems most impacted by 

alien species across the world (Moyo and Fatunbi, 2010). In South Africa, alien invasive 

woody plants are particularly pernicious as they affect water resources negatively 

(Ghahramanzadeh, 2013). Water has been recognized as a limited natural resource which, 

when reaching various stages of limitation, may have the effect of crippling the South African 

economy (Le Maitre et al., 2002; Ashton, 2007). In the province of the Western Cape, 

invasive alien plants species (Acacia mearnsii, Acacia saligna, Hakea spp. and Eucalyptus 

spp.) in general have higher total evapotranspiration (ET) in comparison to the native 

vegetation, leading to declines in surface water (Meijninger and Jarmain, 2014). Acacia 

mearnsii out of all the IAP uses up to 7 mm of rainfall per day with an accumulated loss of 

185 mm of rainfall used per annum (Dye and Jarmain, 2004). Therefore, the species has 

been earmarked as the most pervasive species of invader tree in the riparian zones of the 

fynbos biome in the CFR (Versfeld et al., 1998; Le Maitre et al., 2002). 

1.1.1. Fynbos and invasive alien plants (IAP’s) in riparian zones in the Fynbos 

biome of the CFR  

One of the six and the smallest floral kingdoms worldwide is the Cape Floristic Region (CFR) 

in South Africa, which is renowned for its high botanical diversity of terrestrial vegetation 

(Goldblatt and Manning, 2000). The CFR is an example of Mediterranean-type ecosystems 

(MTE‟s) which is characterised by specific water availability constrains (summer drought) 

and nutrient availability constrains (nutrient-poor soils), which is disturbed regularly by fire 

events (Potgieter, 2012). The CFR vaunts a high rich diversity of plant species, which is 

three times greater than any other Mediterranean-type ecosystem (Cowling et al., 1992; 

Mucina and Rutherford, 2006). The Fynbos biome Within the CFR covers the greatest area 

of the three vegetation types (fynbos, renosterveld and western strandveld, Cowling et al., 

1996). The fynbos vegetation within comprises approximately 9030 plant species of which 

70% are common to the region (Goldbatt and Manning, 2000). Fynbos vegetation comprises 
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mostly of plants that are fire adapted shrub species with shallow roots (ericoid) and reed-like 

(restioid plants) and the soils of the biome is considered nutrient-poor (Prins et al., 2004). 

Fynbos plants are sclerophyllous evergreen, usually with leaves that are small, narrow and 

tough and generaly has very high foliar C:N ratios (Cowling et al., 1996). Plants in the fynbos 

region have specialized nutrient uptake and internal cycling stratagems (Powel, 2010). In the 

CFR nutrient cycling patterns are widespread because of the different soil types with each 

carrying a unique different vegetation type (Cowling et al., 1992). Availability of nitrogen and 

phosphorus in the soils of the ecosystem are well studied as they display different nutrient 

patterns and is understood to be the two elements that are likely to limit primary production 

of legumes, which is rare to the fynbos (Cowling et al., 1992; Potgieter, 2012). The 

availability of nutrients in the fynbos plays a pivotal role in the ecology of plants species in 

the region, their distribution and community composition (Goldbatt and Manning, 2000; 

Reinecke et al., 2007). Some sclerophyllous plants of the fynbos occur on stream banks and 

has a litterfall period that are more prolonged, which extends from summer to autumn 

(Maamri et al., 1994). These plants have been displaced in many riverine areas of the CFR 

by alien invasive plants, notably A. mearnsii and Eucalyptus camaldulensis. 

The general colours of Fynbos Rivers are brown with low pH as a consequence of 

high polyphenolic substances seeping from dead fynbos vegetation (de Moor and Day, 

2013). The dark acidic water is confined to the streams of the fynbos vegetation with pH 

levels as low as 3.2 recorded (Byren and Davies, 1989). Rivers in the CFR arise in the 

mountains and display the common profile of boulder – bed mountain streams with dense 

canopies. Further downstream from the dominating headwater reaches it changes to wider 

middle reaches with diverse cobble bed substrates and at the lower sections slow flowing 

reaches are found with soft bedded sand substratum characteristics (Brown and Dallas, 

1995). Many rivers in the fynbos vegetation are characterised by masses of Palmiet 

(Prionium serratum) which are endemic to the region. These rivers are characterized by a 

seasonal variability in discharge with periods of winter flood with extreme low temperatures 

and summer droughts which makes the hydrological regime fairly regular (Rebelo et al., 

2006). However, in recent years there are fewer wet years and more dry ones relative to 30 

years ago (de Moor and Day, 2013). The stress this creates is a selective pressure for 

riverine freshwater species which can influence different life history traits that are 

synchronized with seasons that reflect summer drought and winter floods, significantly 

affecting invertebrate species (Bonada et al., 2007). The Fynbos Rivers in the CFR are 

known for the high species beta diversity of aquatic biota, particularly macroinvertebrate 

communities in which many remain undescribed and in most cases undetected (Wishart and 

Davies, 2003). As a result, the region has been earmarked as one of 200 Freshwater 
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Ecoregions across the world (Thieme et al., 2005). Macroinvertebrate communities are 

adapted to the water chemistry of the fynbos riverine systems. Waters in these mountainous 

regions are very pure oligotrophic, NaCl-dominated, and macroinvertebrate communities 

seem to disappear when the chemistry of the water is changed by the loss of organics (de 

Moor and Day, 2013). However, knowledge of the aquatic invertebrate communities in the 

river systems of the fynbos vegetation is patchy and is not as well documented as riparian 

vegetation studies (de Moor and Day, 2013).  

The riparian vegetation is relatively unique in character from the adjacent fynbos 

vegetation even if it is sited under the same climatic conditions (Naude, 2012; Reinecke et 

al., 2007). Riparian zones are seen as the link between terrestrial and aquatic ecosystems, 

which encompasses of exceptional faunal, floral, soils, and extends from the edge of water 

bodies and ending upland on the edge of streams (Gregory et al., 1991; Naiman et al., 

2005). Riparian zones can be distinguished from terrestrial ecosystems as they differ in 

hydrology, geomorphology and vegetation assembly (Maoela, 2015). The flora in the CFR is 

66% geographically spread through the riparian areas with only 33% comprised of woody 

plants (Galatowitsch and Richardson, 2005; Naude, 2012). In these zone flora offers vital 

functions as stream bank stabilization, nutrient regulating and ecological amenities as flood 

mitigation (Hood and Naiman, 2000; Tererai, 2012). Fynbos vegetation comprises of tall 

shrubs as Brabejum stellatifolium, Metrosideros angustifolia, Searsia angustifolia, 

underbrush trees (herbaceous plants) and some perennial (reccurent) species below the 

canopy cover (Reinecke et al., 2008). Sedges and grasses are noticeable on wet bank 

zones and native legumes only exist in small sections under native plant cover (Power, 

2010). Riparian areas support both aquatic and terrestrial communities due to the various 

food sources they hold which make them particularly fragile to disturbance and consequently 

lead to the degradation of the ecosystem (Naiman and Décamps, 1997). 

The CFR has been acknowledged as a global diversity hotspot, in part due to its 

susceptibility to numerous processes that threatens the exceptional biodiversity of the region 

(Mittermeier et al., 1998). Riparian zones in the CFR are extremely vulnerable to natural 

disturbances such as flood rushes and fire which is known to influence riparian systems 

hugely (Naude, 2012; Maola, 2015). The change in ecosystem temperature, light, soil 

chemistry and microorganisms alters ecosystem structure and function (Reinecke et al., 

2007; Richardson et al., 2007). However, the biggest threat to the biodiversity of the CFR is 

the persistent occurrence of invasive alien species. Invasion by introduced plants currently 

affect 8% of the surface area of South Africa and 29% of the Western Cape, which consist of 

the majority of the CFR and is the most heavily invaded of all provinces (Versveld et al., 

1998). The wetter catchments in the Western Cape appear to be the area that is densest 
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invaded (Cowling et al., 1992). Particularly in the region of the Berg and Breede River 

catchments with the Breede catchment containing 84,398 hectares of invasive trees 

(Versfeld, 1998). However, in mountain stream sections in higher catchment areas natural 

riparian vegetation can still be found, but these conditions are slowly becoming non-existent 

(Sieben and Reinecke, 2008), with the main invaders being A. mearnsii, A. saligna, A. 

longifolia and Eucalyptus spp. in some areas (Richardson and van Wilgen, 2004). The 

Australian Acacia spp. are fast growing trees which form dense stands that dominate the 

canopy high line which overtops native vegetation (Witkowski, 1991a; Blanchard and 

Holmes, 2008). Furthermore, this enables them to out-compete shorter native species for 

light, which allows them to grow much taller (1 – 20 m) in a short space of time (Milton, 1981; 

Ehrenfeld, 2003).  

Invasive Acacia spp. are able to persevere in invaded ecosystems through their 

capabilities of higher growth rates, ability to obtain nutrient and water resources (Marchante 

et al., 2008; Morris et al., 2011) and the capacity to accumulate larger quantities of biomass 

(Milton, 1981; Yelenik et al., 2007). The large quantity of biomass produces nutrient rich leaf 

litter and roots that penetrate deep into soil, which improve their capabilities to access a 

greater pool of resources (Lambers et al., 2008b; Cramer, 2010; Powel, 2010). The invasive 

Acacia spp. are adapted to sandy soils of the Western Cape as they themselves originated 

from the most impoverished soils in Australia (Marchante et al., 2010; Morris et al., 2011). 

On their root structure, like most legumes, Acacia spp. has N2-fixing bacteria that allow some 

adaptation to the low nutrient levels in the CFR, Western Cape (Sieben, 2003, Potgieter, 

2012). Therefore having the ability to outgrow and compete native species for nutrients, it is 

not unexpected that Australian Acacia spp. is renowned IAP‟s in South Africa (Richardson 

and van Wilgen, 2004; Chamier et al., 2012; Tye and Drake, 2012). This is particularly the 

case with Acacia mearnsii (DeWild) which is described by many authors as the notorious 

invader species along riparian zones in the Fynbos biome (e.g. Le Maitre et al., 2002; 

Galatowitsch and Richardson, 2005). 

1.2. Nitrogen inputs from A. mearnsii and N-fixing IAP’s into riparian zones 

Acacia mearnsii, commonly known as “Black wattle”, has replaced and outcompete native 

riparian vegetation along countless rivers (watercourses), and as consequence is ranked as 

the most harmful invasive species in the the Fynbos biome of the CFR (Le Maitre et al., 

2002). Acacia mearnsii as invader specie and the impact on riparian ecosystems are well 

documented and researched along the rivers of the Western Cape (Crous, 2010; Le Maitre 

et al., 2011; Naude, 2012). Water resources are crucial to the species and as such, the A. 

mearnsii are more water dependent than other phyllodinous Acacia spp. in the CFR (Morris 
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et al., 2011). The invasion of A. mearnsii causes the alteration of soil chemical properties, 

decay rates and to an extent altering microclimates in regions they invade (Witkowski, 

1991a; Yelenik et al., 2004, 2007). The species alters the nitrogen and carbon and 

phosphorous cycles of ecosystems (Yelenik et al.,, 2007; Naude, 2012), reduces stream 

flows (Le Maitre, 2002; 2011), and modifies the fire regime required for natural fynbos 

vegetation to reintroduce themselves (Ehrenfeld, 2003; Naude, 2012). Furthermore, the 

species has specialized mechanisms as extensive root systems, symbiotic N2-fixation and 

nutrient conservation strategies to obtain the required resources in any environment they 

invade, which makes A. mearnsii a successful IAP‟s in the CFR (Yelenik et al., 2004, 2007; 

Morris et al., 2011).  

In the Fynbos biome region, nitrogen cycling in natural environments is mainly a slow 

intricate process (Stock and Allsopp 1993; Yelenik et al., 2004). The slow growing 

sclerophyllous nature of fynbos shrubs means that nutrients recycled internally before leaf 

abscission (Norbly et al., 2000). Studies have found that natural fynbos vegetation have 

lower rates of leaf litterfall, with low levels of N concentrations, high C:N ratio‟s, slower rates 

of decomposition than the N2-fixing plants (Witkowski, 1991a; Allsopp and Stock, 1993). 

Ultimately, the smaller quantities of N in fynbos plant species do not deposit a rich amount of 

nitrogen to contribute to an overall impact on soil status of a region, thus making them a 

lesser roleplayer in ecosystem processing (Yelenik et al., 2004). Invasive alien N2-fixing 

Acacia spp., on the other hand, can form dense evergreen monocultures that regenerate 

after every fire regime (Milton, 1981; Yelenik et al., 2004). The IAP‟s trees are much taller 

than the native counterparts and produce considerably more biomass than native species 

but specifically the Acacia spp. (Milton, 1981; Witkowski, 1991a; Yelenik et al., 2007). In a 

study done by Milton (1981) in the Southern Western Cape it was found that the biomass of 

Acacia spp. (A. saligna, A. cyclops, A. longifolia and A. melanoxylon) stands are about ten 

times greater than those of fynbos vegetation. Hence, nitrogen concentrations of the leaves 

in these Australian Acacia spp. found in the Milton (1981) study were 2 - 4 times greater than 

the fynbos plants. In a later study in terrestrial regions (Melkbosstrand and Malmesbury) in 

the Western Cape, Witkowski (1991a) reported that A. saligna and A. cyclops had higher 

litterfall production than the two comparable fynbos plants (Leucospermum parile and 

Pterocelastrus tricuspidatus). In the same study, higher N concentrations were found in the 

leaf litter of the invader species, which resulted in higher levels of total N (Witkowski, 1991a). 

In both the Milton, (1981) and Witkowski, (1991a) studies the highest N concentrations were 

found in the leaf litterfall of the invasive species and not in other plant components. In a 

similar area in the Riverlands Nature Reserve, Western Cape, Yelenik et al., (2004) found 

that the litterfall of A. saligna was three times higher than fynbos vegetation and similarly had 
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a nitrogen concentration that was almost 3 times higher than the fynbos species. Likewise, in 

a recent study by Naude, (2012) in different river systems within the south-western Cape 

region invaded sites (of A. mearnsii and A. longifolia) showed a litterfall rate that was twice 

as much as the fynbos vegetation in the study. Nevertheless these estimates of litterfall were 

only calculated annually (Milton, 1981; Yelenik et al., 2004; Naude, 2012) or bimonthly 

(Witkowski, 1991a) and remains relatively unknown in riparian areas in the Fynbos biome.  

High foliar N concentrations have been reported in other studies on Acacia spp., 

particularly A. mearnsii. In a study within the south-western Cape Province in various 

riparian systems by Maoela (2015) and Tye and Drake (2012) in the Komati River, 

Mpumalanga found elevated N concentrations in A. mearnsii compared to native species. 

Juba (2012) in an unpublished research study reported high N concentrations in A. mearnsii 

and low N concentrations of the native species in the riparian zones in the Western Cape. 

The study compared leaf nutrient stocks between A. mearnsii and two co-occurring native 

species (B. stellatifolium and M. angustifolia). Most recently Van der Colff et al., (2017), in a 

study in the Western and Eastern Cape province (Garden Route National Park) found that A. 

mearnsii had high levels of N concentrations in its leaves which can increase the amount of 

N entering the environment (Yelenik et al., 2004, 2007; Morris et al., 2011). These key traits 

of communities of Acacia spp., of larger size and much higher inputs of N-enriched litter with 

rapid turnover rates may play an important role in enhancing N cycling and concentrations in 

terrestrial areas and riparian corridors. Consequently this can lead to more N in leaf litter 

returned to the soil fo the riparian zones and eventually transferred to aquatic environments. 

The 15N natural abundance technique can shed some light on cycling of N, especially 

regarding the openness of the N cycle (Robinson, 2001; Fry, 2006). As an integrator of the N 

cycle, the 15N natural abundance can also be an indicator, and viewed in conjunction with 

other indicators such as N stocks and decomposition, used to infer the magnitude of fluxes 

of N.  

1.2.2. Resorption efficiencies by N2-fixing and non-fixing IAP’s  

A central component in plant communities is the uptake, processing and conservation of 

nutrient resources (Craine et al., 2009). Nutrients in plants accumulate as part of the cycling 

of resources between plants, soil and the atmosphere and are the most essential process in 

nutrient dynamics (He et al., 2011). In ecosystem nutrient cycling, nutrient allocation and 

conservation strategies play a major role in native plant communities. Habitats that are 

nutrient poor typically have species with nutrient conserving strategies, which is a crucial 

dynamic in nutrient deficient environments (Aerts, 1995; He et al., 2011). There are several 

plant mechanisms that entail strategies to conserve nutrients such as plant material with 
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long lifespans and low tissue nutrient concentrations (Wright and Westoby, 2003; Zhang et 

al., 2014). Plants can also conserve nutrients in an active physiological strategy called 

nutrient resorption whereby they remobilize limiting nutrients prior to leaf abscission (Wright 

et al., 2004). The resorbed nutrients during senescence are immediately available for the 

plant for growth tenacities and reduce the plants reliance on instant nutrient uptake (He et 

al., 2011). The degree of nutrient resorption can play a significant role on soil nutrient 

availability, as the nutrients that are resorbed generally end up in leaf litter fall, which 

decomposes and becomes available for the plant to take up again (Aerts, 1995; Aerts and 

Chapin, 2000). Perennial plants are partially dependant on internal nutrient cycling and the 

capacity to absorb nutrients are important features in the fitness of the plant species 

especially in nutrient poor ecosystems (Aerts et al., 2007; He et al., 2011; Tye, 2013). 

Two important nutrients for plant growth are Nitrogen (N) and phosphorus (P) which 

is generally restrictive for plant growth in natural surroundings (Jacobs et al., 2006; He et al., 

2011). For places like southern Australia and South Africa this is particularly true, which is 

either N or P, limited as these regions have highly weathered soils (Lambers et al., 2008b). 

To overcome N and P limitations plants in these regions overtime developed mechanisms to 

overcome these limitations and one of these mechanisms is nutrient retranslocation 

(resorption of N and P) by which scarce nutrients may be recouped (Lambers et al., 2008b; 

Potgieter, 2012). The general hypothesis is that N is mainly supplied by the ecosystem 

through N2-fixing symbioses (Chapin et al., 2002) and P is nutrients derived from rocks, due 

to mineral weathering as soils in these landscapes such as the Fynbos biome are generally 

characterized as acidic (Rebelo et al., 2006; Powel, 2010; Potgieter, 2012). Nutrient stocks 

especially P, contribute little to ecoystems in the Fynbos biome as P content in soils range 

between 0.0003 and 0.2 mg P g-1 (Potgieter, 2010). Plants are seen as generally being more 

efficient at P resorportion than N resorption with the global averages according to Aerts 

(1996) being 52% for P and 50% for N, and this likely to be the case in the Fynbos biome.  

Little literature can be found about Acacia spp. in nutrient impoverished 

Mediterranean environments as the CFR. Nutrient allocation patterns in Acacia spp. have 

been found to differ between seasons in a broad spectrum (Tolsma et al., 1987). Yet, 

information on nutrient allocation of the species is scarce in literature. Leaves receive the 

most attention as it is easy to sample and known for its importance in plant productivity and 

high turnover rates (Tolsma et al., 1987). In the aboveground component of Acacia spp., 

leaves tend to have elevated concentrations of N and P (Witkowski, 1991a; Caldiera et al., 

2002). Chlorophyll, ATP and other metabolic compounds are essential for plant productivity 

and enriched with N and P, which leads to high leaf N and P concentrations (Sterner and 

Elser, 2002). Many Australian Acacia spp. have high N concentrations (Witkowski, 1991a; 
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Yelenik et al., 2004, 2007; Tye and Drake, 2012) in comparison to non-N fixing species (or 

even African Acacia species), due to the N2-fixation strategies of the invasive Acacia 

species. In many African acacias, the commonly perceived trend in dry months is the 

translocation N and P out of senesced leaves (Tolsma et al., 1987). In some studies on 

Acacia spp. (Witkowski, 1991a; He et al., 2011; Van der Colff et al., 2017) higher P vs N 

resorption efficiency are found, which has been put forward to be a consequence of P 

limitations in native environments. Plants in the native families Proteaceae and others are 

well represented on P-impoverished soils and are often seen as keystone species (Crous, 

2010), which contains cluster roots. These plant species do exist in the Fynbos biome and 

are better adjusted to access soluble P in these ancient highly weathered soils (e.g. through 

proteoid roots, cluster roots) than plants such as the Acacia spp., which form mycorrhizal 

symbioses (Lambers et al., 2008b; Lambers et al., 2010). Therefore, native species 

effectively mine P that is unavailable for plant through their cluster roots, which makes them 

good conservation strategist for the oligotrophic soils of fynbos environments.  

However, the most puzzling question in the Fynbos biome is how does the Acacia spp. 

satisfy their demands for P particularly in a region such as the Fynbos biome?  

Australian Acacia spp., possess extensive root systems and mycorrhizal symbiosis, 

which allows them to enlarge the soil volume and increase the number of places for 

mycorrhizal establishment to enhance acquisition of P and other nutrients (Hoffman and 

Mitchell, 1986; Power, 2010). P-acquisition through synergetic nitrogen fixation has a high 

demand for P as up to 20% of plant P is distributed to nodules (Stock and Allsopp, 1992; 

Schulze et al., 1999, Potgieter, 2012). In the south-western Cape Witkowski (1994) found 

that A. saligna root penetration was faster than A. cyclops over a month period, which 

potentially could have assisted them in tapping into the water table, and also might have 

assisted with nutrient aquisition. Cramer et al., (2009) stated that greater water availability 

could contribute to P–acquisition via mass flow. Additionally, these adaptations to satisfy 

their water and P demands, such as the use of deep, extensive root system and symbiotic 

association with mycorrhizal fungi most likely contribute to their success in the Fynbos 

biome. However there is a considerable gap in knowledge surrounding the resorption 

efficiency N and P in IAP‟s in nutrient impoverished ecosystems such as the Fynbos biome 

of the CFR (Diaz, et al., 2012; Potgieter, 2012) as the majority research are done on 

temperate forests and wetland ecosystems (Morris et al., 2011). 
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1.3. Decomposition, home field advantage effects and the role of freshwater 

invertebrates on decomposition in natural and invaded streams 

Leaves decompose at different rates in aquatic environments (Petersen and Cummins, 

1974) which is dependant on both internal and external factors (Webster and Benfield, 

1986). The internal factors are mainly the difference in leaf litter inputs (C, N and P) and 

structural properties as leaf shape as well as the composition and abundance of the 

macroinvertebrate communities (Webster and Benfield, 1986; Reinhart and VandeVoort, 

2006). The external factors are stream characteristics (temperature, flow regime, physical 

abrasion, and substrate) which is different in upstream and downstream reaches and 

different microhabitats (pools, runs and riffles) within a stream ecosystem and therefore 

different decay rates are found (Sponseller and Benfield, 2001; LeRoy et al., 2006). There 

are a few studies (King et al., 1986; 1987) in the Fynbos biome assessing the effect of 

environmental conditions on litter breakdown; however, to unravel the effects are not easy 

as there are variation in site characteristics, litter quality differences between species and 

macroinvertebrate communities in stream (Bengtsson et al., 2011). Therefore, the processes 

and factors influencing decomposition in freshwater environments in the Fynbos biome 

mountain streams remain sparse. 

Inputs from leaf litter from different plant species are different in structure and 

chemical properties such as leaf shape, N concentrations, carbon: nitrogen ratio (C:N) and 

lignin concentrations (Aerts, 1997; Gholz et al., 2000; Ayres et al., 2009). These inputs are 

seen as a major vector moving energy and nutrients for freshwater biota within aquatic 

ecosystems (fungi, bacteria, and macroinvertebrates) (Negrete-Yankelevich et al., 2008; 

Ayres et al., 2009; Kuglerova et al., 2017). The physiological factors mentioned explain up to 

70 % of the disparity in leaf litter decomposition and the additional 30 % by in stream 

characteristics and HFA effects (Gholz et al., 2000; Parton et al., 2007). In riparian zones the 

invasion of alien invasive plant species (IAP‟s) is normally connected with modification of 

aquatic environments (Braatne et al., 2007) due to the quality and the quantity of leaf litter 

inputs (Boyero et al., 2012). These modifications often convey substantial changes in 

ecosystem function and macroinvertebrate communities (Levine et al., 2003; Boyero et al., 

2012). In the last ten years studies (Ehrenfeld, 2003, Allison and Vitousek, 2004) found that 

invasive alien plant species which has high leaf litter composition (especially N and P) tend 

to decompose much faster than native species. 

Faster leaf litter decomposition from IAP‟s incomparison to native species have been 

reported when the invasive plants were N2-fixing and the native species not (Witkowski, 

1991a). The physiological characteristics of IAP‟s of high nutrient concentrations, species 
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specific leaf area (SLA) and N2-fixing capabilities are key functions in faster decomposition 

rates when compared to native species (Allison and Vitousek, 2004; Morris et al., 2011). In 

contrast, slower decomposition rates of IAP‟s were also found in some studies (Witkowski, 

1991a; Drenovsky and Batten, 2007).  

There is a growing amount of evidence that plant species have species specific or 

affinity effect to certain macroinvertebrate communities (Veen et al., 2015). The decomposer 

communities as a result may become adapted to and form a specialized affinity to the litter 

they encounter over an extended period. As a result they become more efficient at breaking 

down their own litter matrix, e.g. from the riparian plant community above them (Ayres et al., 

2009). Consequently this “at home” benefit has been referred to as the „home-field 

advantage‟ (HFA) hypothesis where leaf litter in its home environment decomposes faster in 

its native or home site than away from it (Gholz et al., 2000; Ayerez et al., 2009). The 

specialized affinity effect macroinvertebrate communities has on certain litter types driven by 

interacting drivers such as the different leaf litter quality received as input from the riparian 

zone and the incubation conditions which can be measured over weeks or months (Jewel et 

al., 2015; Veen et al., 2015).  

In literature there is glut of evidence (Freschet et al., 2012; Veen et al., 2015) which 

tested for, but did not show the occurrence of HFA, hence the conditions under which it exist 

is uncertain. Litter diversity in a home environment is not always associated with faster 

decomposition rates and macroinvertebrate litter affinity effects (Austin et al., 2014; Veen et 

al., 2015). Evidence of HFA effects where invertebrate decomposer communities become 

adjusted to feeding on their home turf litter but are less efficient at breaking down the foreign 

litter regardless of plant diversity or C:N ratios (Veen et al., 2015). The difference in effects is 

variable, depending on both biotic and abiotic factors of the ecosystem, which influences 

litter decomposition rates (Veen et al., 2015). It remains relatively unknown if disturbance 

events such as the introduction of alien invasive plants species (IAP‟s) can affect 

macroinvertebrate litter affinity effects. For example, the invasion of N2-fixing plants could 

change aquatic environments due to chemical and physical traits differences to leaves from 

native vegetation (Morris et al., 2011). To have a better understanding how and when 

decomposition rates and macroinvertebrate communities interrelate with litter to influence 

HFA effects, it is crucial to investigate the significant drivers of the interaction between the 

plant community, litter type and environmental conditions at present (Freschet et al., 2012). 

Up till now, it remains uncertain if litter of a different type would affect macroinvertebrate 

communities in a HFA microsite as vegetation peaks (litterfall period) generally follows a 

decline in invertebrate species richness (Buddle et al., 2006) therefore these mechanistic 

links needs added investigation (Van der Wal et al., 2013). 
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The replacement of native riparian tree species with IAP‟s in the Fynbos biome is 

likely to affect and modify aquatic habitats of macroinvertebrate communities in adjacent 

streams (Richardson and van Wilgen, 2004; Reinhart and Vande Voort, 2006; Samways et 

al., 2011). Despite the well-documented information of the invasion of A. mearnsii on 

terrestrial communities, there is little or no information of the effects the species invasion leaf 

processing and macroinvertebrate communities in stream. Only previous work of Lowe 

(2008) and Samways et al., (2011) looked at the highly endemic aquatic macroinvertebrate 

communities of the CFR and the effect invasion of particularly A. mearnsii has on them and 

by King et al., (1986;1987) on native fynbos species. 

1.4. Control and management of IAP’s in riparian zones  

Many river, streams and adjacent ecosystems in South Africa are impacted by A. mearnsii 

invasion. Large-scale control efforts in areas affected by A. mearnsii and other IAP‟s are 

instigated by Working for Water (WfW) programme of South Africa. The Department of 

Water and Sanitation, formerly known as the Department of Water Affairs and Forestry 

established the Working for Water (WfW) programme in 1996. The programme in South 

Africa is the leading government funded stream restoration programme has spent close to 

an R100 million on controls and eradication of alien invasive plants nationwide (van Wilgen, 

et al., 2001). The restoration programme declared that, ± 2 million hectares containing alien 

invasive plants by 2015 would be cleared (van Wilgen et al., 1998, 2011). The program also 

promised job delivery for local people. The techniques used to remove IAP‟s like as A. 

mearnsii IAP from fynbos vegetation are mainly done by felling, removal of biomass, with 

slash and burn as another option, which is a controlled process (Stock and Lewis, 1986). 

Alien invasive plant species clearing plays an important role in the recovery or delay of 

native riparian area plant communities (Holmes et al., 2008). Nevertheless, removing IAP‟s 

can create further disruption on riparian areas and adjacent stream aquatic environments 

and surface water bodies (Samways et al., 2011) while long-lasting effects on ecosystems 

process may also still influence restoration. Many researchers have the view that changes in 

nutrient status could have a negative affect on the re–establishment of native plant species 

because of clearing, due to nutrients that consequently remain in soil of riparian systems for 

an extended duration period, the so-called legacy effect (Brown et al., 2004; Yelenik et al., 

2007; Naude, 2012). 
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1.5. Research aim, objectives, hypotheses and key questions 

1.5.1. Overall aim 

The purpose of the present study is to quantify and compare the N inputs and decomposition 

rates in near pristine and invaded sites between co-occurring native species (Brabejum 

stellatifolium and Metrosideros angustifolia) and the invasive alien species Acacia mearnsii 

in catchments areas of the Breede Water Management Area (WMA). Importance is placed 

on the riparian zones of these sites by looking at leaf litter inputs from both A. mearnsii and 

co–occurring native species and the different rates of decomposition. 

1.5.2. The objectives of this study were to: 

A. To quantify the amount of leaf litter inputs on the riparian zones by A. mearnsii and co-

occurring native species in near pristine and invaded riparian zones; 

B. To determine the N and C concentrations in aboveground components in different 

seasons (summer, autumn, winter and spring) between A. mearnsii and co-occurring 

and to determine the N return to soil in leaf litter inputs by A. mearnsii and co–occurring 

native species in near pristine and invaded riparian zones; 

C. To determine the resorption efficiencies (N and P) between A. mearnsii and co-occurring 

native species on near pristine and invaded riparian riparian zones; 

D. To determine the instream decomposition rates between A. mearnsii and co-occurring 

native species and to determine if home field advantage (HFA) plays a role in 

decomposition rates when litter is placed far from origin;  

E. Identify and determine the diversity (species richness, abundance) of 

macroinvertebrates of A. mearnsii and co–occurring native species in their native 

reaches and to determine if HFA plays a role in macroinvertebrate communities affinity 

affects when litter is placed far from origin; 

1.5.3. The hypotheses of the study are: 

A. A. mearnsii shed more leaf litter annually than co-occurring native species in riparian 

zones; 

B. A. mearnsii has higher annual N concentrations but lower C:N concentrations in 

aboveground components in different seasons compared to the co–occurring native 

species; 

C. The co–occurring native species has higher nitrogen resorption efficiencies (NRE) and 

phosphorous resorption efficiencies (PRE) than A. mearnsii in the riparian zones; 
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D. A. mearnsii decomposes at a faster rate than co-occurring native species in both near 

pristine and invaded reaches;  

E. Macroinvertebrate communities are abundant in invaded compared to near pristine 

reaches and macroinvertebrates communities and has no preference for either littertype  

1.6. Organisation of thesis 

This thesis presents findings on nitrogen inputs from invasive Acacia mearnsii in comparison 

to two native species into riparian zones and aquatic environments in the Cape Floristic 

Region, South Africa, specifically at the Wit River (Bainskloof Pass) and the Du Toit‟s River 

(Franschhoek Pass, Franschhoek). The thesis contains five chapters. Chapter 2 is a 

detailed overview of the site study areas and the methodology used in responding to the 

objectives. Chapter 3 investigates the N inputs of Acacia mearnsii and co–occurring native 

species. The chapter is based on the monitoring and measurement of leaf litterfall inputs and 

seasonal N and C concentrations, and N resorption in pristine and invaded sites in the 

Western Cape. The first 3 of the 5 objectives are addressed in this chapter. Chapter 4 

investigates the decomposition rates of Acacia mearnsii and co–occurring native species 

and macroinvertebrate communities in leaf litter bags in near pristine and invaded reaches. 

The chapter focuses on decomposition rates of A. mearnsii and the two co–occurring native 

species, which is mixed in one leaf litter bag („fynbos species‟). The last 2 of the 5 objectives 

(listed d and e) are addressed in this chapter. Chapter 5 summarizes and integrates the 

major findings from the studies presented in Chapters 3 and 4. The research and results in 

the study would further contribute to the restoration of fynbos riparian zones as well as to 

close the gap in the limited knowledge of nutrient dynamics of A. mearnsii and its 

invasiveness on riparian zones and the impact on aquatic environments in the Fynbos biome 

of the CFR. It should be noted that the the two data chapters (3 and 4) are written in the form 

of manuscripts for submission to journals, thus some duplication, especially with regards to 

materials and methods are unavoidable, especially in relation to Chapter 2. 
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  Chapter 2

 

Detailed description of study species and sites  

___________________________________________________________________ 

2.1. Studied species 

2.1.1. Acacia mearnsii 

Acacia mearnsii, also commonly referred to as Black wattle is a native plant species 

originally from Australia where it is prevalent on the south eastern side and in Tasmania. In 

South Africa the species was introduced in 1864 as a windbreak as well as for shade, fuel 

sustenance and the tannin content of its bark (Le Maitre et al., 2011). Acacia mearnsii is a 

member of the family Fabaceae and subfamily Mimosoideae (Moyo and Fatunbi, 2010). The 

species is an evergreen species which occurs in majority altered river systems in South 

Africa (Versfeld et al., 1998; Moyo and Fatunbi, 2010). Acacia mearnsii is often prevalent at 

river systems in the Fynbos biome along riparian zones (Moyo and Fatunbi, 2010; Maoela, 

2015). Particularly in the Western Cape where the species has replaced countless native 

riparian species by outcompeting them due to these trees developing dense, evergreen 

monoculture thickets (Richardson et al., 2000; Le Maitre et al., 2002). 

The species outcompetes native plants for water, nutrients through physical 

mechanisms such as a sophisticated root systems (extensive and deep), symbiotic N2-

fixation and is known to be drought tolerant (Crous, 2010). Areas invaded by A. mearnsii are 

reported to have a greater leaf litter mass than uninvaded areas which inhibits the formation 

of native seedlings (Witkowski, 1991a; Moyo and Fatunbi, 2010). The infestation of the 

species alters microclimates, litter decomposition rates, and soil physical properties. These 

potential impacts of the invaded species often occur due to difference in plant structure and 

chemical composition of leaf litter when compared to native vegetation leading to an altered 

biogeochemical and physical environment (Morris et al., 2011). When comparing A. mearnsii 

to other Acacia spp. (A. cyclops, A. saligna and A. longifolia) in the Fynbos biome, A. 

mearnsii is the tallest growing acacia species growing to heights of up to 20 m and forming 

thick stands and maintaining a high green leaf capacity yearly. 

Acacia mearnsii tree has leaves that are bipinnate, which turns a brown colour during 

dry conditions (Crous, 2010; Naude, 2012). The species is predominately found in cooler 

mountain reaches and grows in disturbed mesic habitats and flourishes on poor dry soils but 

favours moist, fertile deep soils (Witkowski, 1991a). The ability to produce enormous amount 

of seeds is partly implicated in the invasiveness of the species in a habitat. The seeds lie 
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dormant and are triggered through bush fires which allow them to germinate and ultimately 

develop a large crown that shade out other native species (Moyo and Fatunbi, 2010). Based 

on estimates pods normally contain on average seven seeds with an maximum seed 

production of between 48,600 and 70,200 seeds per kilogram from the fifth year onwards 

(Moyo and Fatunbi, 2010). The black wattle species is hermaphroditic; flowers with bees 

being the main pollinators and is said to flower from September to November (Campbell, 

2000; Nyoka, 2003; Dell‟Porto, 2006), however, some communities have shown irregular 

periods of flowering patterns in Australia (Moncur et al., 1988; Bonney, 2003). Acacia 

mearnsii has all the attributes to becoming a successful invader; in addition to the 

characteristics mentioned above, it also has a short juvenile phase, decent yearly seed crop 

and small seeds dimension which can persist in the soil for more than 60 years (Pretorius et 

al., 2008) (Figure 2.1a). 

2.1.2. Brabejum stellatifolium 

Brabejum stellatifolium (wild almond) is a member of the Proteaceae family and is the only 

member of the genus Brabejum (Smith, 1966; Rourke, 1971, Figure 2.1b). Brabejum 

stellatifolium trees are limited to the Fynbos biome in the Western Cape and are found 

growing alongside river corridors on the lower slopes of valleys from Clanwilliam to the 

Hottentots Holland Mountains (Crous, 2010). They are also abundant on the Cape Peninsula 

and the eastern side of Table Mountain. The species is an evergreen tree, which is often 

large in size (5 m tall) with a wide spreading multi-stemmed shrub (Smith, 1966). The leaves 

of the plant are dark green in colour, rubbery to touch and is shaped in a sharply lance 

shape toothed leaf with a prominent vein along the midline of the leaf (Rourke, 1971; 

Jackson, 1990). The leaves are arranged in whorls of six at intervals along the stems, 

radiating out like a star around the branch. The flowering time for B. stellatifolium is around 

mid-summer (December – January). The fruits of the plant are carried in a cluster at the tip 

of branch and look similar to almonds and are densely covered with hairs that are a velvet 

chocolate-brown colour. The wild almond species are pollinated by insects when they flower 

and fruits float and are dispersed by water. They are also short-lived and die in storage on 

the riparian area (Coates-Palgrave, 2002). The fynbos biome is fire susceptible, and the wild 

almond survives the normally quick fynbos fires by resprouting from the stem (Rourke, 

1971).  
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c b a 

2.1.3. Metrosideros angustifolia 

Metrosideros angustifolia (Cape gum) is the only indigenous member of the Myrtaceae 

family in the Fynbos biome (Goldblatt and Manning, 2000). Metrosideros angustifolia is an 

evergreen plant which can occur as a multi-stemmed, spreading, perennial shrub or small 

tree. The species can reach heights of 2 – 7 mm with a V-shaped canopy that is dense 

(Palmer and Pitman 1972; Goldblatt and Manning, 2000). The twigs and petioles are often 

shaded pink with the bark of the tree being grey-reddish brown and flaky at times (Goldblatt 

and Manning, 2000). The leaves are thin and leathery with narrow smooth margins. When 

held up in bright light tiny glands are visible as dots on the surface (Thomas and Grant, 

2008). The flowers are small and fluffy and a cream to pale yellow colour form late in spring 

(November) until late summer (February). The cup–shaped capsules are broad–ranging, 

containing up to three seeds. Once ripened these capsules split open and release their 

seeds (Coates-Palgrave, 2002). The fruit and seed of this tree attract birds and animals. The 

flowers are pollinated by various insects and are visited by bees (Milewski and FitzPatrick, 

2006). The gum species grows in mountainous areas of the Cape and is indigenous to the 

Fynbos biome (Milewski and FitzPatrick, 2006). The plant species can be found along areas 

in the western part of the south coast where there is increased moisture and it also grows 

where it is naturally wet, in the acidic, sandstone and stream gravel regions of the Western 

Cape (Coates-Palgrave, 2002; Milewski and FitzPatrick, 2006) (Figure 2.1c). 

Figure 2.1: Tree species of Acacia mearnsii (a), Brabejum stellatifolium (b) and Metrosideros 
angustifolia (c). 

 

 

Stellenbosch University  https://scholar.sun.ac.za



17 

 

2.2. Description of study sites in the Fynbos biome of the Cape Floristic 

Region 

The study was carried out in the Western Cape from January 2016 until February 2017 in 

the mountain streams and mountain transitional zones of the Mediterranean-type Fynbos 

biome (Reinecke et al., 2013) in the Breede Water Management Area (WMA) (Figure 2.2). 

The sample sites/reaches were chosen based on four criteria: Firstly, sites were based and 

chosen on the presence of the two native plant species that are naturally confined to the 

fynbos biome (Richardson et al., 1992; Thuiller et al., 2006b) and the invasive plant species. 

Secondly, study sites should have no commercially afforested or agricultural areas. Thirdly, 

sample sites were arranged so that fynbos sites were upstream followed by alien sites 

downstream of fynbos sites. Fourthly, sites were chosen based on their history of Acacia-

invasion and the condition of the fynbos vegetation (Figure 2.3 a, b). A sample reach had to 

consist of fynbos vegetation, which was the reference sites (here after, near pristine site), 

and a heavily invaded area (here after, invaded site) with an area cover of at least 50% (A. 

mearnsii, dominated site). The study area is characterized by dry summers and wet winters. 

After the first heavy rains, mountain streams and rivers in the CFR have ample surface flow 

in winter and in summer many streams are reduced to perennial pools and section of riffles 

resulting in periodic water shortages (Goldblatt and Manning, 2000; Rebelo et al., 2006). In 

these catchments the prevailing lithology is the quarzitic Table Mountain Sandstone of the 

Peninsula formation (Rebelo et al., 2006). Soils in the catchment produces shallow coarse 

surfaced soils and is mainly characterised by soils which are nutrient poor, leached and 

acidic (Lambers et al., 2010). 
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a b 

Figure 2.2: Location of the two perennial rivers in the Western Cape, Breede Water Management 
Area (WMA): Wit and Du Toit‟s River, and the two invasion status (green: near pristine; red: invaded 
site) at each river. 

 

Figure 2.3: Photographs of the different invasion treatments: (a) near pristine (NP), and (b) invaded 
site (IV). The red arrow indicates invasion by A. mearnsii. 
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2.2.1. Wit River (Bainskloof Pass) 

The Wit River is a small perennial tributary of the Breede River which is approximately 11 km 

long and arise in the Bainskloof Pass, Hawequas mountain range (Rebelo et al., 2006; 

Maubane, 2016). The Wit River is drained by Slanghoek Mountains on the western slopes and 

the Obiekwa Mountains in the south (Reinecke et al., 2007; Naude, 2012). The catchment 

geology of the Wit River comprises of the Peninsula formation which supports the Hawequas 

Sandstone Fynbos vegetation type (Rebelo et al., 2006). The area receives an annual average 

rainfall of 1200 mm, which occurs mainly between May – August (Rebelo et al., 2006).  

The near pristine site at the Wit River was located above the Tweede Tol camp site. The 

sample reach was approximately 140 m in length and 10-16 m wide through the channel. On the 

dry leftside bank looking downstream, the dominant vegetation was characterized by B. 

stellatifolium, M. angustifolia, Morella serrata and some scattered individuals of Erica caffra and 

Elegia capensis. On the right bank close to the water‟s edge Prionium serratum (Palmiet) were 

found throughout the reach and many B. stellatifolium, M. angustifolia and Brachyleana neriifolia 

individuals scattered along the channel and up the mountain foothill. The plants species 

mentioned were all described by Campbell (1985) as the Wit River riparian community (Figure 

2.4 a, b). The invaded site was 1.6 km away from the reference site downstream. The reach in 

the invaded area is approximately 210 m in length and 8-14 m wide throughout the channel. 

Upstream, the lateral zones of both the wet (left) and dry (right) banks were heavily invaded by 

stands of A. mearnsii trees. Acacia mearnsii stands were dominant throughout the riparian zone 

on the right side with the canopy distinctively noticeable from the side of the road. Only a few 

scattered individuals of B. stellatifolium and M. angustifolia were evident between A. mearnsii 

trees. On the left bank B. stellatifolium and M. angustifolia were more scattered than on the right 

bank, growing close to the water‟s edge and under closed stands of A. mearnsii trees which 

shaded the stream in certain sections.  

 

 

 

 

 

Figure 2.4: Near pristine (a) and invaded site (b) at, the Wit River. Photographs were taken in summer 
(December 2016).  

a b a b 
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2.2.2. Du Toit’s River (Franschhoek Pass) 

The perennial Du Toit‟s river forms part of the Breede system, but is in essence a tributary of the 

Riviersonderend River, which is shortened by the Theewaterskloof Reservoir (Tharme and 

Brown, 2004). The Middagkransberg and Franschhoek Mountain is the source of the river, at an 

altitude of about 1500 m (Wu, 2005). The surrounding mountains of the Du Toit‟s river are made 

up of quartzite sandstone and thin bands of shale and conglomerate (Wu, 2005). The Du Toit‟s 

River is approximately 13.4 km in length and flows throughout the steep–sided and narrow 

Franschhoek Pass under a small bridge before flowing through a large wetland (Palmiet 

dominated) and into the Theewaterskloof Reservoir. Mountain fynbos covers the best part of the 

area, with no agricultural or commercial areas. The Du Toit‟s River receives annual average 

rainfall of 1200 mm, which occurs mainly between May – August (Rebelo et al., 2006). 

The near pristine site is located in the mountain stream section of the Du Toit‟s River 2 

km downstream from the Mont Rochelle Nature Reserve. The sample reach was approximately 

110 m in length and 4–7 m in width consisting of a single-narrow channel with short cascade 

sections with shallow riffles. Looking downstream, the sample site had generally well-developed 

native riparian fynbos. On the left dry bank, looking downstream, the bank was dominated by B. 

stellatifolium and tall M. angustifolia which in some parts of the channel were hanging over into 

the stream (Figure 2.5a). Up on the mountain foothill section, B. stellatifolium species were 

scattered with small grasses in between. The aquatic zone in stream and along the channel 

margins was dominated by palmiet (P. serratum) and sedges (Isolepis digitate) on the top of 

immovable small boulders and bedrock.  

The invaded site was 3.15 km downstream from the near pristine site close to the 

palmiet-dominated wetland and far away from the Theewaterskloof Reservoir (Tharme and 

Brown, 2004). The reach was approximately 130 m in length and 10–16 m wide throughout the 

channel. The riparian area on the right bank, when looking down stream, was dominated with A. 

mearnsii stands. Stands of young A. mearnsii trees were growing on the side of the riparian area 

and older dense thickets were found further downstream on the riparian area (Figure 2.5b). On 

the right dry bank between A. mearnsii trees, scattered exotic, spreading tangled thorny bramble 

(Rubus fruticosus) were found throughout the riparian corridor. On the left bank, typical mountain 

fynbos was found, including B. stellatifolium, M. angustifolia and Searsia angustifolia. The left 

bank was dominated by bramble in the riparian area. Acacia mearnsii stands were only found 

further downstream close to the starting point of the wetland, with trees being of similar height. 

Some algae were present in the middle of the reach and on the edges of the river bank. 
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Figure 2.5: near pristine (a) and invaded site (b) at the Du Toit‟s River. Photographs were taken in the 
summer month of December 2016. 

 

2.3. Methodology 

2.3.1. Leaf litterfall traps  

Litter traps were placed under both native and alien tree canopies in the near pristine and 

invaded sites of the Wit and Du Toit‟s Rivers. At the invaded sites, ten traps were placed in a 

random order under a closed canopy of A. mearnsii trees. Here a closed canopy was to have at 

least 50% cover or more (Figure 2.6a). Five traps were place for each of the two native tree 

species, B. stellatifolium and M. angustifolia. Traps could not be placed randomly as the 

vegetation cover of the native species was not as dense as that of the invaded species (Figure 

2.6b). 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Leaf litter traps in (a) dense A. mearnsii stands in the Du Toit‟s River invaded sites and (b) a 
litter trap under a M. angustifolia tree at the Wit River, near pristine site. 

Litterfall and other inputs were collected in a fine mesh (0.5 mm) net that was suspended 

at a top height between 1.0-1.3 m with a known catching area of (1.149 m2). The traps were 

attached to three steel rebar rods and nets were 0.5 m deep to prevent litter from blowing out of 

a b 

b a 
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the traps and not fixed close to the ground to ensure ample water drainage (Figure 2.6a). The 

opening area of the traps was horizontal to the ground. The top height ensured that there was 

clearance from the ground on the up-slope side, whilst still allowing capture of leaves from the 

tree canopy. We followed the method of Staelens et al., (2003) for constructing litterfall traps. 

In the laboratory large leaves were handpicked (mostly B. stellatifolium), while smaller 

leaves, especially phyllodes of A. mearnsii was separated by sieving through a 250 μm sieve 

which allowed retention of mostly leaf litter material. Hereafter samples were oven-dried for at 

least 48 h at 60°C until a constant weight was achieved. A top loading analytical balance, 

accurate to 0.1 g, was used to weigh leaf material. Samples were collected monthly from 

January 2016 to December 2016. Mean monthly values, expressed in g m-2 were calculated for 

each trap per site. Leaf samples of each month (12 months) were weighed out to approximately 

5 g for each species, ground in a rotary mill and sieved through a 150 μm sieve to a 

homogeneous powder. The homogeneous powder of the different species was weighed 

between 0.5 - 0.8 mg in tin foil cups on an ultramicrobalance (Mettler Toledo XP6) as prescribed 

by laboratory standards from the Geology Department at the Stellenbosch University. Thereafter 

seasonal N and C concentrations (reported in milligram per gram dry mass) were determined 

and expressed as elemental composition using an Elementar Vario EL Cube, hosted within the 

ICP-MS and XRF Unit of the Central Analytical Facilities. This allowed the calculation of the C:N 

ratio. 

2.3.2. Isotope analysis (δ15N used as indicator for N cycling) 

A 15N natural abundance technique was used as an indicator of the openness of the N cycle in 

the different plant species (Shearer and Kohl, 1986; Fry, 2006). Foliar material was sampled 

from A. mearnsii trees and nearby non–fixing reference plants, which is consisted of B. 

stellatifolium and M. angustifolia growing within a 5 m radius of A. mearnsii (Jacobs et al., 2006). 

Foliar samples were collected in mid-autumn (early April 2006) for δ15N analysis to discriminate 

whether the N–fixing A. mearnsii and nearby non–fixing reference plants were utilizing soil 

nitrogen (i.e., nitrate and ammonium). Therefore, thirty trees were selected for sampling from 

each species. The selection of samples of leaves was specifically from the canopy of the tree, 

and only leaves without noticeable signs of disease were collected. Samples were labelled  and 

placed in brown bags in the field and returned to the laboratory. 

Foliar samples were dried at 70°C for 3 days, then ground in a rotary mill, and weighed to 

0.5 - 0.8 mg as prescribed by laboratory standards using an ultramicrobalance (Mettler Toledo 

XP6) and placed into tin foil cups. The tin foil samples were prepared for C and N elemental 

compositions and isotope analysis using a Flash HT Plus elemental analyser attached to a Delta 

V Advantage isotope ratio mass spectrometer by a ConFloIV interface. Carbon and nitrogen 
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isotope values were rectified against an in-house standard (Merck Gel) and a Urea Working 

Standard (IVA Analysentechnik e.K., Meerbusch, Germany). Blank and laboratory standard 

samples were run after every 12 unidentified samples. Sample analysis were carried out at NRF 

iThemba laboratories, Johannesburg. Stable isotopic data are reported in standard delta 

notation (δ15N, relative to atmospheric N2 reference standard).The standard delta notation (δ15N) 

was used as an indicator of N cycling between species. The difference between the ratios of 

atoms of 15N:14N in the plant samples (Rsample) and that in a standard such as air (Rstandard) 

is expressed in terms of δ15N in parts per 1000: Equation. 2.1. 

 

δ(  N)=
Rsample-Rstandard

Rstandard
  X 1000                  (Eq.2.1) 

 

2.3.3. Resorption efficiencies (Retranslocation of nutrients in A. mearnsii and 

native plant species) 

The resorption efficiency of nutrient‟s (especially N and P) was determined from senesced 

leaves, which gives us the ability to understand resorbtion of nutrients and can be seen as a vital 

component of an adaptive mechanism to conserve nutrients in the riparian zones in the two 

perennial rivers (Zhang et al., 2014. Samples of mature green leaves and senesced leaves were 

collected from the native species in the near pristine site and A. mearnsii in the invaded site at 

each river to estimate nutrient cycling. Five trees were selected for sampling from each species 

in December (early summer) 2016. Senesced leaves are those leaves, which are different in 

colour (often red or yellow) and can be removed from the twig by a gentle flick of the leaf (Norby 

et al., 2000; Wright and Westoby, 2003). 

Leaves (senesced) were collected directy from the plant, rather than from the leaf litter 

traps. It was done to avoid the effect of leaching and decomposition of leaf litter nutrients. Leaf 

material at the collection time was collected randomly from different points at canopy and pooled 

by species for nutrient analysis. In the laboratory they were oven-dried for 72 h at 60°C to 

determine dry mass (g). Samples was finely ground to a homogenous powder using a „Hammer 

Mill‟ with a sieve size of 250 μm and stored in plastic micro–centrifuge tubes. Finally, samples 

were transported to a commercial laboratory, Bemlab in Somerset West in the Western Cape of 

South Africa. A Leco instrument (FP-2000 model) and Combustion Method was used to analyse 

N and ICP instrument to analyse P content. The content were calculated per unit mass (reported 

in milligram per gram dry mass). Resorption efficiency and proficiency were calculated per 

individual, providing insight into both the intraspecific and interspecific variation in resorption 
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constraints. The percentage difference in N and P between green and senesced leaves were 

calculated using the equation: Equation 2.2. 

 

resorption efficiency (RE)  
[nutrient]green-[nutrient sen)

[nutrient green
  X 100                                     (Eq.2.2) 

 

Where the N or P concentration in mature green leaves is [nutrient]green and [nutrient]sen is the 

senesced leaf N or P concentrations (Aerts, 1996). Leaf senescence was sometimes difficult to 

judge, especially for the species of B. stellatifolium. Some of the senesced leaves collected at 

times have not completely undergone the process at time of collection. Therefore we chose to 

use the 0.10 quartile values for [nutrient]sen (calculated as the lower 10th percentile of senesced 

leaf N or P concentrations) under the presumption that they are leaves that had undergone the 

process of complete senescence or near–complete senescence. The resorption proficiency was 

determined using [nutrient]sen as defined in the equation. 

2.3.4. Leaf litter decomposition and macroinvertebrates sampling 

Leaves of A. mearnsii and two native species, B. stellatifolium and M. angustifolia were collected 

from single trees in December 2015 and November 2016 just before abscission or shortly after 

they had fallen (Norbly et al., 2000). All leaf material were oven dried for 24 h at 50 °C. To test 

for differences in decomposition and macroinvertebrates between leaf types, and invasion status 

(NP or IV) leaf bags were imbedded at both rivers (Wit and Du Toit‟s River at the different 

invasion sites) from 4 November 2016 to 6 February 2017 (incubation periods of 14, 28, 48, 64, 

80 and 102 days). Leaf bags were made out of nylon fine mesh (0.5 mm) for the decomposition 

rate experiment to exclude macroinvertebrates (Webster and Benfield, 1986). The 

decomposition experiment bags was design so that the decomposition of leafs were driven by in 

stream characterstics (bacterial/fungal) and leaf composition (Graça et al., 2001). 

Macroinvertebrates bags were made out of fine – nylon coarse mesh (0.5 mm with a 2 mm 

screening window) to allow access to macroinvertebrate herbivores (Figure 2.7). The surface 

area of leaf bags for both experiments was 0.04 m2. A total of 5.0 g of A. mearnsii leaves were 

placed into litter bags, and for the native species litter was weighed out to 2.5 g for each species, 

mixed and placed into litter bags, hereafter called „Fynbos species‟. A total of 384 (192 per river 

system) leaf bags were fabricated for the decomposition and macroinvertebrate experiments.  

In order to test the home field advantage (HFA) hypothesis that leaf litter tends to 

decompose faster in its home environment and macroinvertebrates in the same environment 

favours the plant material above them (Austin et al., 2014), fynbos species litter (HFA) and A. 

mearnsii (HFA) decomposition bags were placed in the native reach (i.e. near pristine = fynbos 

species (HFA); foreign litter which was the A. mearnsii litter bags) and in the invaded site. At 
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every incubation date, eight bags per invasion status (NP or IV) were retrieved which consisted 

of the HFA leaf bags and foreign leaf bags. 

 

 

 

 

 

Figure 2.7: Representation of leaf bags made out of (a) nylon fine mesh, 0.5 mm (exclude 
macroinvertebrates) and leaf bags made out of half (b) nylon fine and coarse mesh, 0.5 mm with a 2 mm 
screening window (included macroinvertebrates). 

 

The same procedure was followed for the macroinvertebrate experiment. At the initial placement 

of bags all 384 leaf bags (nylon fine mesh, 0.5 mm which exclude macroinvertebrates and fine-

coarse mesh, screening window which included macroinvertebrates were placed in the stream. 

In total 32 bags were retrieved per river system at every incubation period, labelled with unique 

codes (Table 2.1). Four leaf bags (of both experiments) were tied to a steel rod with gutter nails 

at each reach. The steel rod was used an anchor against any obstruction that might flow 

downstream due to strong flow variability (Webster and Waide, 1982).  

 

Table 2.1: Retrieval schedule for leaf bags of decomposition and macroinvertebrate experiments, in near 
pristine and invaded reaches at the Wit (a) and Du Toit‟s River (b) sites. HFA = the species in its home 
environment.  

Study site: Wit River (a) Du Toit’s River (b) 

Retrieval schedule Decomposition  

Near pristine reach:   

Fynbos species (HFA) 4 leaf bags 4 leaf bags 
A. mearnsii 4 leaf bags 4 leaf bags 

Invaded reach: 
  

A. mearnsii (HFA) 4 leaf bags 4 leaf bags 
Fynbos species 4 leaf bags 4 leaf bags 

 macroinvertebrate 
Near pristine reach:   

Fynbos species (HFA) 4 leaf bags 4 leaf bags 

A. mearnsii 4 leaf bags 4 leaf bags 

Invaded reach: 
  

A. mearnsii (HFA) 4 leaf bags 4 leaf bags 
Fynbos species 4 leaf bags 4 leaf bags 

b a 
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The Hierarchical Framework for Stream Habitat Classification by Frissel et al., (1986) was 

followed to place both experiments leaf bags. Microhabitat subsystems are systems defined by 

Frissel et al., (1986) as patches within pool/riffle systems which have similar environmental 

conditions (temperature, discharge, substrate characterization). Decomposition and 

macroinvertebrate leaf bags were placed in sections where microhabitat subsystems were 

detected within pool systems (Frissell et al., 1986). Mediterranean-climate streams are 

categorised by successive floods and droughts that are variable through seasons due to high 

annual and inter-annual discharge (Gasith and Resh, 1999). Pools are seen as habitats which 

hold inputs of leaf litter and other debris which accumulates and creates new microhabitats 

through different seasons (Gasith and Resh, 1999; Bonada et al., 2007). Macroinvertebrate and 

decomposition bags were placed in pool habitats as these sections of a stream are generally 

less affected by flow variability and major changes in synergistic factors (water temperature, pH 

and conductivity, Grab, 2014).  

Leaf bags for decomposition and macroinvertebrate experiments were collected in zip-

lock bags and transported to the laboratory. The bags were disassembled, where the remaining 

leaf material in each bag was carefully washed off and sieved (250 μm) to remove debris and 

invertebrates. Material at each incubation day over the study period of decomposition were 

placed in paper bags with labels oven-dried for 24 h at 50 °C to attain a constant dry mass (g). 

Sometimes mineral deposits were not washed off the leaves resulting in incorrect final dry mass. 

This was solved by converting dry mass of each leaf pack to ash-free dry mass (AFDM). The dry 

mass of each bag was placed into a muffle furnace at 550 °C as organic matter combust at 

these temperatures (Webster and Benfield, 1986). The mineral ash was then substracted from 

the dry mass initially recorded which gives the ash-free dry mass or AFDM of each leaf bag. The 

AFDM represents the percentage mass loss (%) at each inbucation day over the period. To 

determine ADFM the following equation must be used (Equation 2.3). 

  

  AFD  reamining = Final AFDM Initial AFDM X 100               (Eq.2.3) 

In order to calculate the decomposition rate over time, the expotential model of (Olson, 1963) 

was used. Where the percentage mass loss at the start of the experiment was (W0) and and 

percentage mass loss at time t was (Wt). The constant k is expressed in unit (day-1) and was 

calculated for each litter bag at each incubation day (Equation 2.4). 

 

W =W  -kt
                                (Eq.2.4) 
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The invertebrates retained in the experiment were preserved in 90% ethanol in 50 ml vials for 

later identification. Macroinvertebrates were identified to genus level with an Olympus SZ 

compound microscope (Model SZ2-ILST) and using the WRC freshwater invertebrate guides 

(Day et al., 2002b; de Moor et al., 2002b; de Moor et al., 2003b; Stals and de Moor, 2007). The 

identification of genera belonging to the functional feeding groups (FFG‟s) of scraper, deposit 

feeder and predators were computed according to their FFG‟s. (2) The genera of these FFG‟s 

were then summed within families. (3) Functional Feeding Groups (FFG‟s) were assigned using 

Schael, (2005) and the modified version by Merrit and Cummins, (1984). Finally, functional 

feeding group abundance was standardized to 1 m2 according to the available surface area of 

the mesh bag before calculating abundances of the functional feeding groups. The genera 

identified, their abundances and which functional feeding groups they fall into are reported.  

 

2.3.5. Environmental parameters 

Water temperature (°C) at each invasion status of each river was recorded every 30 minutes 

through the experiment (November 2016 – February 2017) with a HOBO U20L Water Level 

Logger (Onset Computer Corporation Inc., Pocasset, MA, USA). Instantaneous discharge 

measurements were made at every sampling event with a hand-held Marsh-McBirney Model 

2000 flow meter from Southern Waters Consultancy. Similarly, stream water pH and electrical 

conductivity (EC) were recorded in the field throughout the experiment using a Hanna 

Multiparameter Waterproof Meter (Model - HI9829) from the University of the Western Cape, 

Earth Sciences Department. 
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  Chapter 3

Nitrogen Inputs from invasive Acacia mearnsii into riparian zones in the Fynbos 

biome (CFR), South Africa 

______________________________________________________________________ 

3.1. Abstract 

Invasive Australian Acacia tree species are classified as among the most harmful of invasive 

species to the fynbos vegetation. They are also most prevalent in Cape Floristic Region (CFR), a 

global biodiversity hotspot. Black wattles (Acacia mearnsii) are leguminous nitrogen fixer and 

make significant contributions to available nitrogen in their new habitats, which are nutrient poor. 

However, how much nutrients and the timing of input into riparian zones and adjacent aquatic 

environments are not known. In this study, I assessed patterns of leaf litterfall, N cycling and 

nutrient resorption (N and P) capacities of A. mearnsii and two native co-occurring species in 

two perennial streams in the Fynbos biome of the CFR. Annual leaf litterfall of A. mearnsii in 

riparian zones was seven to ten times greater in A. mearnsii species (on average 297.49 g m-2) 

compared to native vegetation (on average 34.44 g m-2), with two peaks in litterfall, one in mid-

autumn, and the other in mid-summer at both perennial streams. In contrast, the native 

vegetation only drop leaves once a year in the early summer month of December. Acacia 

mearnsii also retained higher N concentrations with a mean value of 24.82 mg g -1 in leaf litter 

than the native species throughout the year, which ranged from 3.23 to 8.63 mg g-1 between 

seasons. The δ15N δ14N isotope ratio showed positive δ15N signatures in A. mearnsii suggesting 

that nitrogen cycling may proceed faster within stands of A. mearnsii and that the N cycle here 

may be more open. The co-occurring native species were more efficient in the resorption of 

nutrients (N and P) which was on par with global averages of 56%. In contrast, A. mearnsii was 

inefficient in the resorption of N with an average of 21.86 % resorbed, but was more efficient in 

resorbing P (± 50%). It is possible that the A. mearnsii stands rely on the return in N rich leaf 

litter under soils and through specialized root systems and mycorrhizal symbionts assisting 

reuse of nutrients. The results highlight the differences in nutritional economy between native 

riparian species and the invasive A. mearnsii and provide further insight to the success of 

leguminous woody tree species in nutrient poor Mediterranean ecosystems.  

 

KEYWORDS: Australian Acacia; fynbos vegetation; Cape Floristic Region; nutrient poor; leaf 

litterfall; N cycling; nutrient resorption; root systems; mycorrhizal symbionts; nutritional economy 
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3.2. Introduction 

The conservation of biodiversity is a major challenge for ecosystem management. After habitat 

loss the second biggest global threat of biodiversity is invasive alien plant species (IAP‟s) 

(D‟Antonio and Meyerson, 2002; Richardson and van Wilgen, 2004). Riverine systems, including 

riparian habitats are extremely vulnerable to invasion and the spread of non-native species due 

to its linear nature and disturbance regime that favours invasive plants (Hood and Naiman, 2000; 

Kuglerova et al., 2017). The successful invasion of exotic species in riparian vegetation 

communities can be harmful to riparian biodiversity and ecosystem process such as nutrient 

cycling, soil microbial community and soil nitrogen levels (Richardson et al., 2007; Kuglerova et 

al., 2017). IAP‟s have the ability to to establish themselves in non-native environments which is 

dependent on their ability to outgrow and outcompete native riparian vegetation for light, water 

and nutrients, which are essential to the species survival and growth (Vitousek et al., 1997b; 

Morris et al., 2011). Australian Acacia spp., which consist of 1012 species in the subgenus 

Phyllodineae, native to Australia (Richardson et al., 2011) are one of most pervasive alien plant 

groups in the world (Richardson and van Wilgen, 2004; Lowe et al., 2008;). These Australian 

Acacia spp. compete successfully in disturbed environments (for instance, riparian corridors and 

post-fire environments; Richardson et al., 2007) and particularly in landscapes that are limited in 

nutrient such as the Mediterranean-type ecosystems like the dunes in Portugal and in the 

Fynbos biome of the CFR, South Africa (Witkowski, 1991a; Brown et al., 2004; Marchante et al., 

2008). 

In the Fynbos biome, the most common Invasive Australian Acacia tree species. (Acacia 

mearnsii, A. longifolia, A. saligna) that invade the biome‟s fynbos plant communities are able to 

fix nitrogen from the atmosphere, forming root nodules where symbiotic nitrogen-fixing bacteria 

make nitrogen available for the plant to absorb (Drake, 2011; Morris et al., 2011). These woody 

invaders alter nitrogen, carbon, phosphorus and water cycles (Yelenik et al., 2004; Morris et al., 

2011; Naude, 2012). Previous studies (e.g. Milton, 1981; Witkowski, 1991a; Yelenik et al., 2004, 

2007; Naude, 2012) has shown how leguminous IAPs increase available nitrogen in the soil 

through increased inputs of nutrient rich leaf litter. As result, high N inputs can be anticipated in 

the long run and may help predict ecosystem disruption especially through elemental cycling by 

N2-fixing plants (Stock et al., 1995; Vitousek et al., 1997b). The cycling of nuntrients, notably 

nitrogen in natural vegetation is slow as fynbos biome plant species consist largely of 

sclerophyllous shrubs, a characteristic of plant assemblies in nutrient poor landscapes as the 

Mediterranean climate regions (Stock and Allsopp, 1992). Fynbos plants grow slowly and have 

high nutrient cycling prior to leaf abscission (Stock and Allsopp, 1992). Many studies found that 

natural vegetation have litter with low levels of N concentrations, high carbon-to-nitrogen ratio, 

slower rates of decomposition than the N2-fixing plants to which they are normally compared to 
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(Witkowski, 1991a; Liao et al., 2008). Native N2-fixing plants exist in the fynbos, however they 

are short lived and distributed erratically in the post-fire plant species community. In addition, 

these early colonizing species do not deposit enough of their N rich leaf-litter to have an impact 

on soil N dynamic status, thus making them a lesser influence on ecosystem nutrient cycling 

(Yelenik et al., 2004). Stands of trees of Acacia spp. are in most instances three times taller than 

that of the fynbos species in the surrounding area and contain a larger quantity of biomass 

(including foliar biomass) than their native counterparts (Milton 1981, Yelenik et al., 2004, 2007). 

Various research studies point out that A. mearnsii influences ecosystem functioning and 

native diversity (Caldeira et al., 2002; Moyo and Fatunbi, 2010; Tye and Drake, 2011; Van der 

Colff et al., 2017) and uses more water than native species, which reduces stream flow (Le 

Maitre et al., 2002). Acacia mearnsii is a nitrogen fixer, which has the ability to nodulate under 

water and nutrient limited conditions (Sprent, 2009; Crous, 2010; Rodriguez-Echevarria, 2011) 

due to specialized mechanisms such as extensive root systems (extensive and deep), symbiotic 

N2-fixation through the bacterium Rhizobium spp. and nutrient conservation strategies (Morris et 

al., 2011; Van der Colff et al., 2017). The ability of A. mearnsii to maintain high growth rates 

permits them to overgrow and outcompete native species (Milton, 1981; Witkowski 1991a). 

Acacia mearnsii consists mostly large, dense, thick stands of evergreen shrubs between 1 – 20 

m tall, which differs from most native species (riparian community plants), thus allowing A. 

mearnsii to occupy previously unexploited niches (Rascher et al., 2011). The dense stands and 

rapid growth rates of A. mearnsii consequently leads to higher above ground biomass than the 

native species (Moyo and Fatunbi, 2010; Rascher et al., 2011). Acacia mearnsii has unique 

features such as large growth rates which has leaf litter that is rich in nutrients and the ability to 

fix biological nitrogen and lastly the resorption of these crucial nutrients for better growth and 

survival (Morris et al., 2011; Tye, 2013; Van der Colff et al 2017). As a consequent of the unique 

trait features, the species alters native plant communities more severely than through direct 

rivalry. Therefore, invasive Acacia spp., especially A. mearnsii are considered a successful and 

persistent nitrogen fixing species in any terrestrial ecosystem (Lawrie, 1981; Vitousek et al., 

1997a; Yelenik et al., 2004; Rodrı´guez- Echeverrı´a et al., 2011). 

However, the extent to which A. mearnsii adds and recycles N within riparian and aquatic 

ecosystems (litterfall, N concentrations, and resorption of nutrients) is not well understood in the 

nutrient impoverished ecosystems of the Fynbos biome. To examine this, we quantified the 

difference in litter quantity and quality between the woody A. mearnsii compared to two native 

keystone species; Brabejum stellatifolium (Proteaceae) and Metrosideros angustifolia 

(Myrtaceae) of the Mediterranean-type riparian zones in the Fynbos biome of the CFR. The 

knowledge gained around this study will give a better insight of N contribution to riparian zones 

and adjacent aquatic environments. This will in due course improve our understanding of the 
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nutrient economy of A. mearnsii in the nutrient poor fynbos riparian zones in the Fynbos biome 

of South Africa. 

3.3. Site descriptions, Methods and Materials 

3.3.1. Study areas in the Fynbos biome of the CFR 

This study was conducted in the Western Cape in the mountain streams and mountain 

transitional zones of the Mediterranean-type Fynbos biome (Reinecke et al., 2013) in the Breede 

Water Management Area (WMA). Two perennial rivers were chosen for the study the Wit River 

in Bainskloof Pass and the Du Toit‟s River in the Franschhoek Pass which is cut short by the 

Theewaterskloof Reservoir (Tharme and Brown, 2004). Along each river, sites within two 

invasion statuses were identified: (1) near pristine site (NP), and (2) invaded site (IV). Near 

pristine sites had to be characterised by typical mountain fynbos, including individuals of B. 

stellatifolium, M. angustifolia, S. angustifolia and short indigenous trees, bushes and sedges with 

no alien invasive trees present. Invaded sites had to include dominant A. mearnsii, while some 

A. longifolia may be present, with an IAP cover of over 50% at the sites. Sites were arranged 

from up - to downstream with near pristine sites being upstream and invaded sites being 

downstream. In addition, no commercial or agricultural areas had to be in close vacinity of the 

study sites.  

The CFR is characterized by Mediterranean-type climate of summers which is dry and 

winters that are wet. After the first heavy rains, mountain streams and rivers in the CFR have 

ample surface flow in winter and in summer many streams are reduced to perennial pools and 

section of riffles resulting in periodic water shortages (Goldblatt and Manning, 2000; Tharme, 

2010). In the Fynbos biome vegetation distribution in upper catchments are typically 

characterised by sclerophyllous fynbos and sandstone soils which are very acidic and nutrient 

poor (Day and King, 1995; Samways et al., 2011). Sampling started in January 2016 and lasted 

until December 2016. 
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3.3.2. Leaf litterfall traps and seasonal C, N concentrations 

Litter traps were placed under both native and alien tree canopies in the near pristine and 

invaded sites of the Wit and Du Toit‟s Rivers. At the invaded sites, ten traps were placed in a 

random order under a closed canopy of A. mearnsii trees. Here a closed canopy was to have at 

least 50% cover or more. The method of Staelens et al., (2003) for constructing litterfall traps 

was followed. Five traps were place for each of the two native tree species, B. stellatifolium and 

M. angustifolia. Traps could not be placed randomly as the vegetation cover of the native 

species was not as dense as that of the invaded species. In some cases, especially in near 

pristine sites trap fixtures were used, these fixtures such as rope and tie straps were used to fix 

the traps sturdily on the ground as the study was conducted in the mountainous riparian plots 

(Staelens et al., 2003). Litterfall and other inputs were collected in a fine mesh (0.5 mm) net that 

was suspended at a top height between 1.0 - 1.3 m with a known catching area of (1.149 m2). 

Each trap was attached to three steel rebar rods and equally spaced out to ensure adequate 

water drainage and a depth of 0.5 m prevent litter from blowing out of the traps. 

In the laboratory large leaves were handpicked (mostly B. stellatifolium), while smaller 

leaves, especially phyllodes of A. mearnsii was separated by sieving through a 250 μm sieve 

which allowed retention of mostly leaf litter material. Hereafter samples were oven-dried for at 

least 48 h at 60°C until a constant weight was achieved. A top loading analytical balance, 

accurate to 0.1 g, was used to weigh leaf material. Samples were collected monthly from 

January 2016 to December 2016. Mean monthly values, expressed in g m-2 were calculated for 

each trap per site. Leaf samples of each month (12 months) were weighed out to approximately 

5 g for each species (invasive and native species), ground in a rotary mill and sieved through a 

150 μm sieve to a homogeneous powder. The homogeneous powder of the different species 

was weighed between 0.5 - 0.8 mg in tin foil cups on a ultramicrobalance (Mettler Toledo XP6) 

as prescribed by laboratory standards by the the Geology Department at the Stellenbosch 

University. Thereafter, seasonal N and C concentrations (reported in milligram per gram dry 

mass) were determined and expressed as elemental composition using an Elementar Vario EL 

Cube, hosted within the ICP-MS and XRF Unit of the Central Analytical Facilities. This allowed 

the calculation of the C:N ratio. 

3.3.3. Isotope analysis (δ15N used as indicator for N cycling) 

A 15N natural abundance technique was used as an indicator of the openness of the N cycle in 

the different plant species (Shearer and Kohl 1986; Fry, 2006). Foliar material was sampled from 

A. mearnsii trees and nearby non–fixing reference plants, which consisted of B. stellatifolium and 

M. angustifolia growing within a 5 m radius of A. mearnsii. Foliar samples were collected in mid-

autumn (early April 2006) for δ15N analysis to discriminate whether the N2–fixing A. mearnsii and 
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nearby non–fixing reference plants were utilizing soil nitrogen (i.e., nitrate and ammonium). 

Therefore, thirty trees were selected for sampling from each species. The selection of samples 

of leaves was specifically from the canopy of the tree, and only leaves without noticeable signs 

of disease were collected. Samples were labelled in the field, and placed in brown paper bags 

and returned to the laboratory. 

Foliar samples were dried at 70°C for 3 days, then ground in a rotary mill, and weighed to 

0.5 - 0.8 mg as prescribed by laboratory standards using an ultramicrobalance (Mettler Toledo 

XP6) and placed into tin foil cups. The tin foil samples were prepared for C and N elemental 

compositions and isotope analysis using a Flash HT Plus elemental analyser attached to a Delta 

V Advantage isotope ratio mass spectrometer by a ConFloIV interface. Carbon and nitrogen 

isotope values were corrected against an in-house standard (Merck Gel) and a Urea Working 

Standard (IVA Analysentechnik e.K., Meerbusch, Germany). Blank and laboratory standard 

samples were run after every 12 unidentified samples. Sample analysis was carried out at NRF 

iThemba laboratories, Johannesburg. Stable isotopic data are reported in standard delta 

notation (δ15N, relative to atmospheric N2 reference standard). Stable isotopic data are reported 

in standard delta notation (δ15N, relative to atmospheric N2 reference standard).The standard 

delta notation (δ15N) was used as an indicator of N cycling between species. The dissimilarity 

between the ratios of atoms of 15N:14N in the plant samples (Rsample) and that in a standard 

such as air (Rstandard) is expressed in terms of δ15N in parts per 1000: Equation. 3.1. 

 

δ(  N)=
       -         

         
  X 1000                 (Eq. 3.1) 

 

3.3.4. Resorption efficiencies (Retranslocation of nutrients in A. mearnsii and 

native plant species) 

The resorption efficiency of nutrient‟s (especially N and P) was determined from 

senesced leaves, which gives us the ability to understand resorbtion of nutrients and can be 

seen as a vital component of an adaptive mechanism to conserve nutrients in the riparian zones 

in the two perennial rivers (Zhang et al., 2014. Samples of mature green leaves and senesced 

leaves were collected from the native species in the near pristine site and A. mearnsii in the 

invaded site at each river to estimate nutrient cycling. Senesced leaves are those leaves, which 

are a different colour often red or yellow and can be removed from the twig by a tender flick of 

the leaf (Norby et al., 2000; Wright and Westoby, 2003).  
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Leaves (senesced) were collected directy from the plant, rather than from the leaf litter 

traps. It was done to avoid the effect of leaching and decomposition of leaf litter nutrients. Leaf 

material at the collection time was collected randomly from different points at canopy and pooled 

by species for nutrient analysis. In the laboratory they were oven-dried for 72 h at 60°C to 

determine dry mass (g). Samples was finely ground to a homogenous powder using a „Hammer 

Mill‟ with a sieve size of 250 μm and stored in plastic micro–centrifuge tubes. Finally, samples 

were transported to a commercial laboratory, Bemlab in Somerset West in the Western Cape of 

South Africa for N and P analysis using a Leco instrument (FP-2000 model) and combustion 

method for N and ICP instrument for N and P content were calculated per unit mass (reported in 

milligram per gram dry mass). Resorption efficiency and proficiency were calculated per 

individual, and then pooled by species for the purpose of comparison, providing insight into both 

the intraspecific and interspecific variation in resorption constraints. The percentage difference in 

N and P between green and senesced leaves were calculated using the equation: Equation. 3.2. 

 

resorption efficiency (RE)  
[nutrient]green - [nutrient sen)

[nutrient green
  X 100                         (Eq. 3.2) 

 

Where the mean N or P concentration in mature green leaves is [nutrient]green and 

[nutrient]sen is the senesced leaf N or P concentrations (Aerts, 1996). Leaf senescence was 

sometimes difficult to judge, especially for the species of B. stellatifolium. Some of the senesced 

leaves collected at times have not completely undergone the process at time of collection. 

Therefore we chose to use the 0.10 quartile values for [nutrient]sen (calculated as the lower 10th 

percentile of senesced leaf N or P concentrations) under the presumption that they are leaves 

that had undergone the process of complete senescence or near–complete senescence. The 

resorption proficiency was determined using [nutrient]sen as defined in the equation. 

3.4. Statistical analysis 

The data was analysed using the STATISTICA version 13 software package (Dell Inc., 2015). A 

repeated measures (two way) analysis of variance (ANOVA) was used to analyse leaf litterfall 

between species and months.The seasonal C and N concentrations were analyzed using a two 

way repeated measures (ANOVA). The Fisher LSD post-hoc test for means separations were 

used when significant difference were found. Foliar δ15N was analyzed between A. mearnsii, B. 

stellatifollium and M. angustufolia by using a one-way (ANOVA) test followed by Kruskal-Wallis 

analysis for multiple comparisons (3 species) and described using the median, minimum and 

maximum values. Resorption efficiencies of N and P concentration in leaves were analysed by 

calculating the mean and standard deviation [SD] of all species.  
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3.5. Results 

3.5.1. Monthly and seasonal leaf litterfall of A. mearnsii and co–occurring native 

species in CFR riparian zones 

At the Wit River, A. mearnsii produced higher mean leaf litterfall rates than two co-occurring 

native species in months (F [22,187] = 2. 97, p<0.001) and in different seasons (F [6.51] = 2. 76, 

p<0.001) (Figure 3.3). This was especially evident in autumn (April) and summer (December). 

The highest mean leaf litterfall rate for A. mearnsii at the Wit River was in April (mean = 51.23 g 

m-2) with a similar leaf litterfall rate in December with a mean of 43.47 g m-2 (Figure 3.1a). 

Conversely, the mean leaf litterfall rate for the two co-occurring native species (B. stellatifolium 

and M. angustifolia) remain relatively constant throughout the year with peaks of mean = 16.06 g 

m-2 and mean = 28.41 g m-2, in December (Figure 3.1a). Through different seasons, A. mearnsii 

had the peak leaf litterfall occurred in autumn (mean = 33.89 g m-2) compared to winter (mean = 

15.58 g m-2, p<0.001) and spring (mean = 20.99 g m-2, p<0.001), with no significant difference 

between autumn and summer (mean = 33. 85 g m-2, p = 0.99, Figure 3.1b). Mean seasonal leaf 

littefall rates for B. stellatifolium is relatively constant through the year (mean = 36.26 g m-2). 

Litterfall rate of M. angustifolia was significantly higher in summer (mean = 15.46 g m-2) 

compared to autumn (3.25 g m-2, p<0.001), winter (1.99 g m-2, p<0.001) and spring (4.57 g m-2, 

p<0.001). Overal the mean seasonal leaf litterfall rate of A. mearnsii was significantly higher than 

co-occurring native species (p<0.001, Figure 3.1b).  
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Figure 3.1: Patterns of (a) mean monthly and (b) seasonal (g m
-2

) leaf litterfall rates for A. mearnsii and 
co–occuring native species growing in near pristine and invaded areas in riparian zones at the Wit River. 
Letters denote significant differences (LSD test, p<0.05) based on two way repeated measures ANOVA‟s 
(a) (F [22,187] = 2. 97, p< 0.001; (b) F [6.51] = 2. 7615, p < 0.01) using all the data collected over each month 
and different seasons. 

 

A similar temporal trend was observed at the Du Toit‟s River under the dense of A. 

mearnsii stands with two peaks, one in April and one in December and for the native species 

only one peak in summer (December, Figure 3.2a). The highest mean monthly leaf litterfall rate 

for A. mearnsii at the Du Toit‟s River was in April (mean = 77.99 g m-2) with December also 

having a relative high mean litterfall rate (mean = 44.47 g m-2, Figure 3.2a). On the other hand, 

the mean monthly leaf litterfall rate for the two co-occurring native species (B. stellatifolium and 

M. angustifolia), remain relatively constant throughout the year, however there was significantly 

higher litterfall rates for both B. stellatifolium (mean = 18.56 g m-2) and M. angustifolia (mean = 

30.32 g m-2, p<0.05, Figure 3.2a) in December. Through different seasons there were 

significantly higher mean seasonal leaf litterfall rates for A. mearnsii in autumn (mean = 49.84 g 

m-2) relative to winter (21.88 g m-2, p<0.001), spring (19.83, p<0.001) and summer (36.97, 

p<0.001, Figure 3.2b). The higest litterfall peak in B. stellatifolium was in summer (mean = 13 

.65 g m-2), which was significantly different from autumn (mean = 36.97 g m-2, p<0.01), winter 

(1.96 g m-2, p<0.01) and spring (2.35 g m-2, p<0.01). Similar results were found M. angustifolia 

with the highest leaf litterfall peak in summer (mean = 16.92 g m-2, Figure 3.2b). 

SUMMER AUTUMN WINTER SPRING

SEASON

-20

-10

0

10

20

30

40

50

60

70

M
e
a
n

 l
e
a
f 

li
tt

e
rf

a
ll
 (

g
 m

-2
)

a

a

bc

b

cd
cd

d
d

bc

d

d
d

 A. mearnsii 

 B. stellatifolium

 M. angustifolia

(b)

Stellenbosch University  https://scholar.sun.ac.za



37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Patterns of (a) mean montly and (b) seasonal leaf litterfall rates (g m
-2

) for A. mearnsii and 
co–occurring native species growing in near pristine and invaded areas in riparian zones at the Du Toit‟s 
River. Letters denote significant differences (LSD test, p<0.05) based on a two way repeated measures 
ANOVA‟s (a) (F [22,187] = 7. 24, p< 0.001; (b) F [6.51] = 10.11, p< 0.001) using all the data collected over 
each month and different seasons. 
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On an annual basis, A. mearnsii had significantly more leaf litterfall (273.66 ± 37.76 g m-2 

y-1) than co–occurring native species (B. stellatifolium (36.26 ± 5.79 g m-2 y-1); M. angustifolia 

(33.56 ± 11.14 g m-2 y-1) at the riparian zone at Wit River near pristine and invaded riparian 

zones (Table 3.1, site a). Mean annual N return (mg N m-2y-1) was much higher over the year for 

A. mearnsii at the Wit River (Table 3.1, site a). At the Du Toit‟s River the same observations 

were made on an annual basis with A. mearnsii (321.32 ± 58.93 g m-2 y-1) which had 

considerably higher mean annual leaf litterfall than co–occurring native species (B. stellatifolium 

(29.80 ± 9.00 g m-2 y-1); M. angustifolia (38.14 ± 11.95 g m-2 y-1) at the respective riparian zones 

(Table 3.1, site b). At the Du Toit‟s River for A. mearnsii was also considerably higher (8072.98 ± 

2186.06 mg N m
-2

y
-1) than the native species (Table 3.1, site b). A. mearnsii at the Du Toit‟s River 

generally had high N returned to soil than the Wit River invaded site, except for B. stellatifolium 

at the Wit River, which had a considerable higher N return to soil.  

 

Table 3.1: Mean annual leaf litterfall rate (g m
-2

y
-1

) and (litterfall X N concentrations = N return to soil (mg 
N m

-2
y

-1
)) of B stellatifolium and M. angustifolia (N = 5) at the near pristine site and A. mearnsii (N = 10) in 

the invaded site at both Wit (a) and Du Toit‟s River (b). Values are represented in mean [± SD]. 

  
  

 
 

N 

 
annual leaf litterfall rate 

(g m
-2

y
-1

)  

annual 
N% return to soil 

(mg N m
-2

y
-1

)  

Site (a): Wit River   mean ± SD mean ± SD  

Near pristine site:    

B. stellatifolium 5 36.26 ± 5.79 163.83 ± 86.51 

M. angustifolia 5 33.56 ± 11.14 165.73 ± 93.51 

Invaded site: 

A. mearnsii 

 

10 

 

273.66 ± 37.76 

 

6896.27 ± 1554.43 

Site (b): Du Toit’s River  

Near pristine site:    

B. stellatifolium 5 29.80 ± 9.00 142.60 ± 96.33 

M. angustifolia 5 38.14 ± 11.95 182.28 ± 102.31 

Invaded site: 

A. mearnsii 

 

10 

 

321.32 ± 58.93 

 

8072.98 ± 2186.06 

 

3.5.1.1 Mean llitter C and N concentrations of A. mearnsii and co-occuring native 

species over different seasons at near pristine and invaded riparian zones 

Little variation (<5 mg g-1) was observed through the seasons in leaf litter N concentrations for A. 

mearnsii at the Wit River (Figure 3.3a). The highest mean leaf litter N concentrations found in A. 

mearnsii was in autumn (31.05 mg g-1) with no significant differences between summer (25.58 
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mg g-1) and winter (25 38 mg g-1, p=0.93, Figure 3.3a). Mean leaf litter N concentrations in B. 

stellatifolium was highest in summer (8.36 mg g-1) with no significant difference found between 

autumn (5.45 mg g-1, p=0.08) and spring (5.28 mg g-1, p=0.09). However, there was a significant 

difference found between the seasons of summer and winter (3.23 mg g-1, p<0.001) In M. 

angustifolia a similar trend in litter N concentrations was noted with the highest mean leaf litter N 

concentrations being in summer (7.55 mg g-1) with autumn having a matching mean of 7.34 mg 

g-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Mean seasonal leaf litter N concentrations (mg g
-1

) for A. mearnsii and co–occuring native 
species growing in near pristine and invaded areas in riparian zones at the (a) Wit River. Letters denote 
significant differences (LSD test, p<0.05) based on a two way repeated measures ANOVA‟s (a) (F [6.18] 
=5. 47, p< 0.001) using all the data collected over different seasons. 

 

Similar temporal variation (<5 mg g-1) through seasons was noted at the Du Toit‟s River 

for A. mearnsii (Figure 3.4b). Mean leaf litter N concentrations are the highest in autumn (27. 97 

mg g-1) with no significant difference found between summer (25.44 mg g-1) and winter (24.30 

mg g-1, p=0.27). The co-occuring native species of B. stellatifolium and M. angustifolia remain 

relatively constant throughout the year but with difference found between seasons. B. 

stellatifolium had the highest mean leaf litter N concentrations in summer (5.86 mg g-1) with no 

significant difference found between autumn (5.71 mg g-1, p=0.89) and spring (4.88 mg g-1, 

p=0.35) but significant differences found between autumn and winter (3.52 mg g-1, p<0.05, 

Figure 3.4b). Mean litter N concentration was in autumn (7.99 mg g-1) for M. angustifolia and 

significant difference found between autumn and summer (5.94 mg g-1, p<0.01). However, 
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significant differences were not found between spring and winter (4.69 mg g-1, p<0.05, Figure 

3.4b). Overall, A. mearnsii was significantly higher in mean leaf leaf litter N concentrations 

through seasons at both Wit River (p>0.001) and Du Toit‟s River (p>0.01). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Mean seasonal leaf litter N concentrations (mg g
-1

) for A. mearnsii and co–occuring native 
species growing in near pristine and invaded areas in riparian zones at the (b) Du Toit‟s River. Letters 
denote significant differences (LSD test, p<0.05) based on a two way repeated measures ANOVA‟s (b) (F 
[6.18] = 3.46, p< 0.01) using all the data collected over different seasons. 

 

C:N ratios in A. mearnsii are relatively constant from summer until spring at the Wit River 

with spring being the highest in leaf litter C:N ratios (mean = 29.21, Figure 3.5a), however no 

significant  (p<0.05) differences were apparent in seasons. In the co-occuring native species, B. 

stellatifolium had the highest mean litter C:N ratio in winter (mean = 69.27) with a similar ratio 

found in spring (mean = 68.90) which was not significant (p = 0.97) in mean litter C:N ratios. M. 

angustifolia had the highest mean litter C:N ratio in spring (mean = 68.75) with comparable 

values found in summer (mean = 67, p= 0.90). Overall co-occuring native species were 

signifcanlty higher than A. mearnsii through seasons (p<0.001, Figure 3.5a).  

At the Du Toit‟s River a similar trend in mean litter C:N ratios remains constant through 

different season in A. mearnsii with no signifant differences found (p<0.01, Figure 3.5b). In B. 

stellatifolium the highest mean litter C:N ratio concentrations in B. stellatifolium and was evident 

in winter (mean = 62.49) with differences found between winter and autumn (p<0.01, Figure 

3.5b). Summer (mean = 59.87) and spring (mean = 62.51) are relatively similar in mean litter 
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C:N ratio‟s between the two seasons in M. angustifolia with autumn being siginifcanlty different 

from spring, summer (p<0.001) and winter (p<0.05, Figure 3.5b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Mean litter C:N ratios concentrations (%) for A. mearnsii and co–occuring native species 
growing in near pristine and invaded areas in riparian zones at the (a) Wit River and (b) Du Toit‟s River. 
Letters denote significant differences (LSD test, p<0.05) based on a two way repeated measures ANOVA‟s 
(a) (F [6.18] =1.44, p < 0.05; (b) F [6.18] = 4.25, p < 0.01) using all the data collected over different seasons. 
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At the Wit River, A mearnsii produced six times more mean annual leaf litter N concentrations 

than both B. stellatifolium and M. angustifolia (Table 3.2, site a). Additionally mean annual litter 

C:N ratios were three times more in the invasive A. mearnsii than both co–occuring native 

species. Similarly at the Du Toit‟s River, A. mearnsii produced six to seven times more mean 

annual leaf litter N concentrations in the invaded site than the co-occuring native species at the 

near pristine plots.  

 

Table 3.2: Mean annual leaf litter N concentrations (mg g
-1

y
-1

) and mean annual C:N ratio in near pristine 
site for B. stellatifolium and M. agustifolia (N = 5) and in the invaded site for A. mearnsii (N=10) at the (a) 
Wit and (b) Du Toit‟s River. Values are represented as mean [± SD].  

  
  

 
 

N 

 
Mean annual litter N 

concentrations  
(mg g

-1
y

-1
)  

 
Mean annual litter 

C:N ratios 
 

Site (a): Wit River   mean ± SD mean ± SD  

Near pristine site:    

B. stellatifolium 5 4.03 ± 1.11 63.09 ± 3.51 

M. angustifolia 5 4.84 ± 0.52 60.14 ± 5.18 

Invaded site: 

A. mearnsii 

 

10 

 

25.28 ± 2.27 

 

23.59 ± 2.17 

Site (b): Du Toit’s River  

Near pristine site:    

B. stellatifolium 5 3.10 ± 0.28 57.88 ± 2.68 

M. angustifolia 5 3.61 ± 0.42 52.47 ± 5.97 

Invaded site: 

A. mearnsii 

 

10 

 

24.35 ± 1.37 

 

23.11 ± 1.60 

 

3.5.2. Foliarδ15N signatures in green leaves of A. mearnsii and native plant species 

in the invaded riparian zones  

At the Wit River invaded site, A. mearnsii had the highest δ15N (1.69%) between B. stellatifolium 

(1.26%) and M. angustifolia (1.46%) respectively (Figure 3.6a). The lowest percentage δ15N 

were found in both natives‟ species with a minimum of 0.17% in B. stellatifolium and 0.15% in M. 

angustifolia. However, A. mearnsii lowest values was almost 5 times more than both native 

species (Figure 3.6a). In mean δ15N percentages, A. mearnsii was significantly (1.15 ± 0.33%, 

p<0.05) different from M. angustifolia (0.69 ± 0.39%) but not significantly different (p=0.05) than 

B. stellatifolium. The Du Toit‟s River, a similar trend in δ15N percentage are observed. Brabejum 

stellatifolium had the highest perentage δ15N in it‟s leafs of (0.68%) and M. angustifolia (0.65%) 

for the native species, with A. mearnsii having the highest values between species (1.20%). The 
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lowest δ15N percentage in leafs was recorded in M. angustifolia (0.10%), followed by B. 

stellatifolium (0.20%) and then A. mearnsii with a minimal value of 0.78 %. A. mearnsii had the 

highest mean δ15N percentages (1.20 ± 0.30%) and was found to be significantly different from 

B. stellatifolium (0.68 ± 0.26%, p<0.01) and M. angustifolia (0.65 ± 0.35%, p<0.001) respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Difference in foliar δ
15

N (%) between (A) = A. mearnsii, (B) = B. stellatifolium and (M) = M. 
angustifolia (N = 10) of their fully expanded mature leaves collected during April 2016 from the (a) Wit and 
(b) Du Toit‟s River within the invaded riparian zone. Values represent medians and whiskers indicate the 
minimum and maximum values.  
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3.5.3. Leaf nutrient content and resorption efficiency (N and P) in aboveground 

components of A. mearnsii and co-occuring native species 

The mean nutrient concentrations in the mature green leaves sampled during autumn (early 

April), varied significantly between species at both Wit River and Du Toit‟s River sites. Green 

leaf N concentrations varied from a mean of 27. 08 mg g-1 for A. mearnsii, and a mean of 8.02 

mg g-1 for B. stellatifolium to a mean of 8.76 mg g-1 for M. angustifolia at the Wit River (Table 3.3, 

site a). P concentrations in mature leaves of A. mearnsii was almost seven times higher than 

both native‟s species of B. stellatifolium (0.44 mg g-1) and M. angustifolia (0.46 mg g-1). A similar 

trend was observed at the Du Toit‟s River sites where mature green leaves varied significantly 

between species. Green N concentrations varied from 27.48 mg g-1 for A. mearnsii, 8.34 mg g-

1for B. stellatifolium and 8.72 mg g-1 for M. angustifolia and variation in P concentrations was 

also apparent. P concentrations varied from as high as 1.00 mg g-1 to 0.52 mg g-1 and 0.58 mg g-

1 between species (Table 3.3, site b).  

Green mature leaf N concentrations differed from senesced leaf N concentrations at both 

sites (Table 3.3). A similar pattern was observed in P concentrations, where senesced P 

concenrtations was much lower in P for both native species than the green leaf P 

concentrations. For example, in the Wit River, B. stellatifolium P in senesced leaf was three 

times (0.01 mg.g-1) lower than green leaf P (0.44 mg g-1). However, the variation between green 

and senesced leaf P in A. mearnsii was not as much. At the Wit River, the difference was around 

0.20 mg g-1. N:P ratios in mature green leaves ranged from 18.57 to 27.05 mg g-1 in mean 

values of the three species at the Wit River and from 15.11 to 28.34 mg g-1 between species at 

the Du Toit‟s River (Table 3.3, site a,b). In senesced leaves at Wit River mean values ranged 

from 28.25 to 36.80 mg g-1 between species and at Du Toit‟s River from 36.30 to 38.89 mg g-1 

between species. The results showed differences in N:P ratios between senesced leaves when 

compared to mature green leaf N:P ratios, with notably A. mearnsii in the Wit River showing little 

variation between senesced and mature green leaf N:P ratios. (Table 3.3). Senesced leaves of 

both B. stellatifolium and M. angustifolia had higher N:P ratios than A. mearnsii at both sites, 

while N:P ratios in A. mearnsii senesced and green leaves did not differ in N:P ratios.  

In both study sites, A. mearnsii and co-occuring native species were more effective 

(efficient) in recycling at P resorption than N resorption (Table 3.3a, b, resorption efficiencies). 

Calculated on a mass basis, at the Wit River nitrogen resorption efficiency (NRE) from senesced 

leaves for A. mearnsii were 25%, B. stellatifolium 56% and M. angustifolia 51%. On average, A. 

mearnsii translocated a quarter of N contained in the leaves for re-use after senescence and B. 

stellatifolium and M. angustifolia translocated half of their N in leaves after senescence at the Wit 

River (Table 3.3,site a). A similar reuse of N after senesced was observed at the Du Toit‟s River 

for A. mearnsii (37%), B. stellatifolium (56%) and (53%) of N was retranslocated in M. 
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angustifolia (Table 5.3, siteb, resorption efficiencies). P resorption was much higher than N 

resorption. P resorption values ranged (from a mean of 42.64 % in A. mearnsii, 76.67 % in B. 

stellatifolium and 69.00% for M. angustifolia at the Wit River. A similar range of values were 

observed for the Du Toit‟s River, with a mean of 53.43% for A. mearnsii, 78.11% for B. 

stellatifolium and 79.33% for M. angustifolia (Table 3.3, site b). A. mearnsii is much more 

efficient in resorbing P than N at both sites. N resorption proficiency in A. mearnsii was four to 

seven times greater than the two-occuring native species at both the Wit River and Du Toit‟s 

River (Table 3.3, resorption proficiency). However, P resorption proficiency was eight times 

higher at the Wit River and four times at the Du Toit‟s River in A. mearnsii when compared to 

native species.  

Table 3.3: N and P concentrations (mg g
-1

), N:P ratios, N and P resorption efficiencies (%)/proficiencies(mg 
g

-1
) green and senesced leaves for the (a) Wit and (b) Du Toit‟s River sites for A. mearnsii, B. stellatifolium 

and M. angustifolia (N = 5). Sample collection took place in December 2016 and values are represent as 
mean [± SD].  

    A. mearnsii B. stellatifolium M. angustifolia 

Site (a): Wit River  mean ± SD mean ± SD mean ± SD 
 
Mature green leaf concentrations (mg g

-1
) 

Nitrogen 27.08 ± 0.41 8.02 ± 0.24 8.76 ± 0.79 

Phosphorus 1.12 ± 0.19 0.44 ± 0.04 0.46 ± 0.02 

N:P ratio 27.05 ± 4.31 18.57 ± 0.97 19.02 ± 1.20 
  

Senesced leaf concentration, mg g
-1
  

(Resorption proficiency) 

  

Nitrogen (NRP) 22.04 ± 1.46 3.54 ± 0.16 5.98 ± 0.94 

Phosphorus (PRP) 0.80 ± 0.20 0.01 ± 0.00 0.14 ± 0.02 

N:P ratio 28.25 ± 1.57 35.40 ± 1.57 36.80 ± 2.03 
  

Resorption efficiencies (%) 

Nitrogen (NRE) 18.60 ± 5.27 55.79 ± 1.90 50.56 ± 3.40 
Phosphorous (PRE) 42.64 ± 2.67 76.67 ± 1.67 69.00 ± 6.00 

Site (b): Du Toit’s River     
 
Mature green leaf concentrations (mg g

-1
)    

Nitrogen 27.48 ± 1.10 8.34 ± 0.37 8.72 ± 0.34 
Phosphorus 1.00 ± 0.11 0.52 ± 0.10 0.58 ± 0.02 
N:P ratio 
 

28.34 ± 1.94 17.71 ± 2.20 15.11 ± 0.80 

Senesced leaf concentrtions, mg g
-1
  

(Resorption proficiency) 
   

Nitrogen (NRP) 17.24 ± 1.41 3.60 ± 0.18 4.06 ± 0.19 
Phosphorus (PRP) 0.46 ± 0.07 0.10 ± 0.00 0.12 ± 0.02 
N:P ratio 38.89 ± 2.56 36.00 ± 1.84 36.30 ± 4.12 
    
Resorption efficiencies (%)    

Nitrogen (NRE) 25.11 ± 4.02 56.15 ± 4.19 53.47 ± 1.19 
Phosphorous (PRE) 53.43 ± 4.94 78.11 ± 3.63 79.33 ± 3.23 
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3.6. Discussion 

3.6.1. Monthly, seasonal leaf litterfall rates of A. mearnsii and co-occuring native 

species in near pristine and invaded riparian zones 

The results agree with previous findings (Milton, 1981; Witkowski 1991a; Yelenik et al., 2004; 

2007; Inagaki and Ishizuka, 2011; Naude, 2012) that found greater litterfall in invasive Acacia 

species when compared to native vegetation. It is evident that the growth strategy of A. mearnsii 

is distinctively different from the co–occurring native species as there are two leaf litterfall peaks 

in A. mearnsii and one in both co-occuring native species. The results presented for leaf litterfall 

at the Wit River (273.66 ± 37.76 g m-2) and Du Toit‟s River (321.32 ± 58.93 g m-2), are in range 

with other Acacia species, for instance, A. cyclops (377.52), A. longifolia (335.03), A. 

melanoxylon (318.80) and A. saligna (488.83) in the study of Milton (1981) in the Southern 

Western Cape. In a later study by Witkowski, (1991a), on the SW Cape (coastal lowlands) it was 

found that bimonthly leaf litterfall of Acacia species (A. saligna and A. cyclops) was greater than 

the native vegetation. However, the Witkowski, (1991a) study is not comparable with Milton 

(1981) and the present study as it was done on a bimonthly basis, however, when converted to 

monthly figures, it approximates the finding from the current study (178.35 g m-2 for A. saligna 

and 201.72 g m-2 for A. cyclops). In later study north of Cape Town in the Western Cape Yelenik 

et al., (2007) found that A. saligna had a fourfold higher litterfall rate (404.16 ± 35.1 g m-2 y-1) 

than fynbos vegetation (102.26 ± 16.8 g m-2 y-1). The results of Yelenik et al., (2007) however 

was based on litterfall dropped and not leaf material only as in the present, thus suggesting that 

the N contribution from Acacia spp., are significant in leaf litterfall as first thought and showed 

empirically in the present study. In addition, Saharo and Watanbe, (2000) in Sumatra, Indonesia 

found that leaf litterfall for Acacia dealbata, which is a closely related species to A. mearnsii to 

be in a similar range (446 g m-2) as the present study. In a recent study by Naude, (2012) in 

riparian zones within the south-western Cape region found in invaded sites (A. mearnsii and A. 

longifolia) litter mass on the ground was twice as much as the fynbos vegetation. Furthermore, 

the co-occurring native species in near pristine sites were found to produce considerably less 

litter (Milton 1981; Witkowski, 1991a; Yelenik et al., 2007), which suggests that displacement of 

native spcies with invasive A. mearnsii will lead to significant alterations to ecosystem ecology of 

Fynbos riparian zones. 

Additionally, the results found for A. mearnsii and co-occuring natives were not based on 

all production parts (i.e., flowers, seeds, twigs). It is important to note that due to the structural 

nature of native and invasive plant communities (clusters versus dense stands), the data 

presented could be biased as native species trap was placed under single trees and A. mearnsii 

under dense stands and might be an overestimation of leaf litterfall for the respective species. 
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3.6.1.1. Leaf litterfall and nutrient (N and C) return inputs from A. mearnsii and co-

occuring native species in riparian zones 

The temporal trends in leaf litterfall rate of A. mearnsii demonstrate two peaks one in the dry 

season April (mid-autumn) and one in December (mid-summer) for both A. mearnsii and co-

occuring native species. Leaf litterfall peak in autumn (April) is postulated to be the senesced 

stage of A. mearnsii just before the winter season. Therefore, A. mearnsii effectively recycles 

nutrients in autumn, which coincide with new leaf growth as the wet season approaches (Chapin 

and Shaver, 1989; Tye, 2013). The leaf litterfall rate in December in A. mearnsii coincided with 

the flowering season of the species (see appendix A). Many authors (Moncur et al., 1988; 

Campbell, 2000; Nyoka, 2003; Dell‟Porto et al., 2006) stated that the flowering season of A. 

mearnsii are in the months of September-November, which occurs generally for 8 to 10 weeks, 

however, in the present study leaf litter coincided with flowers in late December and into 

January. Moncur et al., (1988) and Bonney, (2003) described this as an irregular period for A. 

mearnsii growing in Australia. Similarly, the co–occurring species of B. stellatifolium and M. 

angustifolia has one leaf litter stage in December, which is the stage of senescence of the 

species.  

It is sensible to presume that A. mearnsii is less reliant on seasonal retranslocation of N 

than co–occurring native species (Tye, 2013). Richardson et al., (2009a) indicated that warm 

temperatures increases N mineralization rates, which can lead to increase plant uptake and 

elevated levels of foliar N and was found in Tolsma et al., (1987) and Fife et al., (2008). The high 

mean leaf litter N concentrations of A. mearnsii are due to the ability of the species to fix N and 

this found in other studies (Tye and Drake, 2012; Van der Colff et al., 2017). To overcome 

nutrient limitation (notably N) A. mearnsii mine nutrients through strategies such as specialized 

root systems and extensive mycorrhizal networks which allows the species to keep high N levels 

in their leaves throughout the year (Lambers et al., 2006; Potgieter, 2012; Tye, 2013). The 

results found agreement with previous findings by Tye (2013) who found similar ranges of mean 

annual N concentrations (in leaves) between seasons for A. dealbata in the Mpumalanga 

Province, South Africa. Additionally, the early leaf emergence and longer maintance of green 

leaves in A. mearnsii compared to native species gives them an advantage in transporting 

nutrients to the roots for storage to ensure better winter survival and spring growth (Richardson 

et al., 2009a; Tye, 2013). Native species tend to produce leaf material with lower year round 

nutrient concentrations and longer lifespans. Results found in other studies (Yelenik, 2004; 

Yelenik et al., 2007; Juba 2012 unpublished; Tye and Drake, 2012; Maoela; 2015;) for co–

occurring native species agree with the low N concentration found in the present study. A good 

account of the nutrient conservation strategy of the co–occurring native species is the high litter 

N concentrations of both species in summer (December). This is the season where allocation of 
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nutrient‟s are at its maximum as the plant is resorbing nutrients for reuse before leave senesced 

(Aerts, 1996; Chapin and Shaver, 1989; Tye, 2013). Besides the nutrient inputs (N) which is 

expected from N2-fixing plants (Tye, 2013) there are other ways that A. mearnsii or invaders can 

alter nutrient cycling (Naude, 2012; Tye, 2013; Van der Colff et al., 2017). A good example of 

this is mineralization rates, which are reliant on C:N ratios of leaf litter. If there are difference 

between species (invasive vs native) difference nutrient cycling rates are expected which is 

reliant on C:N ratio‟s (Tye, 2013; Van der Colff et al., 2017). Leaf litter of low C:N ratios likely 

decompose faster than leaf litter of higher C:N ratios and as a results it will cause a shift in 

mineralization rates between species (Killingbeck, 1996; Tye, 2013). This is evident in mean leaf 

litter C:N ratio of the co-ocuring native species which has greater C:N ratios in their leaves 

compared to A. mearnsii. It was difficult to compare the seasonal nutrient data (C and N) to other 

studies simply because values are scarce in literature for both invasive and native aboveground 

components, He et al., (2011) in Australia, Tye, (2013) in South Africa also found it difficult to 

compare there data to other studies. 

The high foliar N concentration in leaf litterfall in the riparian zone by A. mearnsii 

enhances nutrient concentrations especially N in soils under A. mearnsii stands. The increase in 

soil N is expected as A. mearnsii was not limited by N supply as the species is a nitrogen fixer 

(Tye and Drake, 2012). Even though no soil N data is presented in this study for A. mearnsii, 

there is a considerable amount of literature to support the argument that N2-fixers notably Acacia 

spp. effects terrestrial and and riparian soil N stocks in the south-western Cape (Witkowski, 

1991a; Yelenik et al., 2004; 2007; Naude, 2012). In addition, the same findings were found by 

Marchante et al., (2008) in the dune ecosystems of Portugal and later on by Hellmann et al., 

(2011) which reported increased available inorganic N in uninvaded environments for A. 

longifolia. At ecosystem level, the effect of N2-fixing plant species on nitrogen pools has been 

documented in many parts around South Africa and the world (Stock et al., 1995; Marchante et 

al., 2010; Naude, 2012; Tye and Drake, 2012). Thus, the significant amount of N rich leaf litter 

that A. mearnsii produce can affect riparian zone soils (riparian biochemistry) and eventually add 

N to aquatic environments as allochthonous inputs and when proceeded could alter aquatic 

environments.  

3.6.2.1. A. mearnsii leaf δ15N signatures at invaded riparian zones 

All the A. mearnsii samples at the Wit and Du Toit‟s River invaded riparian zones had positive 

δ15N (‰) signature, and significantly higher than the native species, which was an indication that 

A. mearnsii access a substantial amount of soil N (Jacobs et al., 2006). The key determination of 

leaf N isotope composition is the isotope ratio of the external N source and plant mechanisms 

(Evans, 2001; Tye, 2013). One explanation for this trend is the root-architecture of the native 

and invasive species. Many invasive Acacia spp. in southern Africa are deep-rooted species, 
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which is a physiological function to overcome water and nutrient limitation in arid and semi-arid 

environments (Handley and Raven, 1992; Morris et al., 2011; Tye, 2013). The deep-rooted 

Acacia spp. can access a diverse N pools even take up the same form of N as species 

surrounding them (i.e, NH4). Shearer and Kohl, (1986) and Högberg, (1997) indicated that with 

increasing depth in the soil profile, δ15N increases. The pattern is the combined effects of 15N 

enriched of organic matter due to microbial decomposition in deep soils, the remoteness of N 

novel inputs and lastly the production of fresh litterfall that is depleted in 15N in relation to the soil 

N (Högberg, 1997; Tye, 2013). The coherent effect of these processes suggests that invasive 

Acacia spp. through their deep roots may be taking up N with a δ15N that is enriched in relation 

to a shallow rooted species. For example, in a field experiment in Hluhluwe-iMfolozi Park at 

Kruger National Parrk, Cramer et al., (2007) reported that deep-rooted Acacia spp. had more 

positive δ15N values than shallow rooted species.  

An alternative explanation may be that the cycling of N under invasive plant canopies 

may be higher than within native communities, which also suggests that the N cycle may be 

more open, i.e. more prone to fluxes out of the system. Isotopic fractionation can take place at 

different stages (uptake, transport or assimilation) of a plants N cycling and is different between 

plants using different strategies at each step (Craine et al., 2015). Sites with high N availability 

are more likely to have with plants with higher N concentrations, which is associated with 

positive plant δ15N signatures (Martinelli et al., 1999; Cramer et al., 2007). Additionally the 

resorption of nutrients particularly N from leaves can lead to δ15N positive enrichment signatures 

of leaf N due to preferred resorption of the light isotope, which happens through the metabolic 

fractionation (Tye, 2013). A third explanation may be found in the symbioses that the various 

plants engage in. A good account of this is plants associated with different types of mycorrhizal 

fungi facilitate N acquisition from the soil will have different δ15N values (see review by Boddey 

et al., 2000). Acacia mearnsii acquired inorganic N from the soil in the present study. In a study 

by Goi et al., (1993) A. auriculiformis acquired a high uptake from soil N that resulted in 

increased leaf δ15N signatures. However for the Acacia spp (A. saligna and A. cyclops) in the 

CFR region, Stock et al., (1995) found relatively low or negative values in these species, 

suggesting that the invasive plants could have used different stages in the uptake, transport or 

assimilation of N. The positive values found in Goi et al., (1993) and Martinelli et al., (1999) were 

related to greater isotopic fractionation in a more N–replete system. The addition of N rich 

litterfall in autumn and the decomposition of the litter which is N riched could have contribute to 

an N repleted system (N rich) which repleted the invaded environment and eventually taken up 

by the plant (Evans, 2001; Tye, 2013). 
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3.6.3. Resorption efficiencies in competing A. mearnsii and co–occurring native 

species 

The co–occurring native species effectively recycles N and P nutrients before leaf abscission at 

both the Wit and Du Toit‟s River, which was higher than the global average reported for (P 52%) 

and (N 50%) by Aerts, (1996). P resorption efficiencies in co-occuring native species were 

higher than 34 evergreen species (mean = 34%) reported by Tang et al., (2013) in China. 

However, Van der Colff et al., (2017) found similar resorption efficiencies of N nd P in the 

Garden Route National Park in the native species Virgilia divaricata. The two co-occuring native 

species of B. stellatifolium and M. angustifolia are considered key stone species and only kind of 

their genus (Galatowitsch and Richardson, 2005; Crous, 2010) on the old, climatically buffered, 

infertile landscapes (OCBLS) as defined by Lambers et al., (2010). Therefore plants on these 

soils (ancient inhabit oligotrophic soils, Power, 2010) develop long-term adaption strategies and 

employ root adaptions such as root clusters to assist to assist in P-acquisition, which is 

effectively a „mining‟ strategy for nutrients (Lambers et al., 2010). Clusters roots can readily 

access soluble P from the highly weathered and leached ancient soils from regions like Australia 

and the Fynbos biome in South Africa as species with mycorrhizal symbioses (N2-fixing plants) 

(Lambers et al., 2008b; Power, 2010; Potgieter, 2012). Therefore, P acquisition is a species-

specific adaption strategy to mine and remobilize nutrients effectively, which makes them good 

nutrient conservation species (Aerts, 1995; Aerts and Chapin, 2000; Wright et al., 2004). 

However, plants tend to remobilize nutrients (N and P) more efficiently when it is difficult to 

acquire from soils that are nutrient poor and this was found in other studies (Wright et al., 2004; 

Het al., 2011; Tye, 2013). The native species both posess sclerophyllous leaves, a characteristic 

of fynbos plant species (Maamri et al., 1994, 2001) which have longer life spans than non-

sclerophyllous leaves (invader species). Therefore they can extend the nutrient preservation 

time to conserve nutrients as observed in the leaf sensesced stage in summer (Wright and 

Westoby, 2003; Tye, 2013). The high P and N resorption efficiency values in the native species 

exhibit the true maximum resorption potential of the species because of the long-term adaptation 

to impoverished soils as the Fynbos biome. 

A. mearnsii cycles a significant amount of P before leaf abscission. However, it is not as 

efficient in cycling N. Symbiotic nitrogen fixation has a high demand for P as 20% of plant P is 

distributed to nodules as N2-fixation takes large quantity of energy to access a larger pool of P 

(Allsopp and Stock, 1992; Schulze et al., 1999, Potgieter, 2012). P may also be acquired by 

Australian Acacia spp., through their extensive root systems and greater mycorrhizal symbionts 

that allow them to enlarge the soil volume exploited and increase the number of places for 

mycorrhizal establishment to enhance acquisition of P and other nutrients (Hoffman and Mitchell, 

1986; Power, 2010). In addition, Naude, (2012) found that acid phosphatase activity under A. 
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mearnsii stands in the Wit River valley was significantly higher than the native areas, which 

suggests another avenue for acquiring P. In the south-western Cape in the CFR, Witkowski, 

(1994) found that A. saligna root penetration was faster than A. cyclops over a month period, 

which potentially could have assist them in tapping into the water table. Cramer et al., (2009) 

stated that greater water availability, could contribute to P–acquisition via mass flow, which may 

apply to e.g. riparian environments. However, the higher P resorption than N suggests that 

despite these multiple strategies, P may still be a limiting nutrient for N-fixing Acacia species. 

Nonetheless, these characteristics to satisfy their P demands likely contribute to their success in 

the Fynbos biome and particularly in A. mearnsii. Most recently Van der Colff et al., (2017) in a 

study located within the Garden Route National Park, South Africa also reported higher P 

resorption than N resorption in A. mearnsii. P resorption efficiencies reported in the study for A. 

mearnsii are lower than values reported in a study by He et al., (2011), who found up to 80%, for 

arid acacia species in the North Western Australia. The resorption of P reported in the study is in 

the same range as global average (56%) for woody plants, which was reported by (Aerts, 1996; 

van Heerwaarden, 2003). 

Many authors (Evans et al., 1989; Lima et al., 2006; Siddique et al., 2008) indicated that 

high N soil availability leads to low nitrogen resorption efficiencies. This is postulated to have 

occurred as A. mearnsii acquired inorganic mineral N from the soil as a significant amount N rich 

leaf litter return to soil under the dense stands of A. mearnsii at the invaded riparian zone in 

December. The species may possibly be increasing N supply from the roots (N availability) and 

therefore shift between a crossover point from symbiotic N2-fixation to N resorption efficiency 

which leads to decline in N nutrient efficiency as stated by Tye, (2013). However, the abilility to 

fix nitrogen does not mean an inability to resorb nutrients (N or P), which suggest that there is no 

direct relationship (Killingbeck 1993a; Houlton et al., 2008; Inagaki et al., 2011; Tye, 2013). Van 

der Colff et al., (2017) stated even under a changing nutrient environment, A. mearnsii retains its 

nutrient resorption efficiency. The low N resorption efficiencies for A. mearnsii in the present 

study are found in other studies for IAP‟s (Cote and Dawson, 1986, Cote et al., 1989, 

Killingbeck, 1993a; Tang et al., 2013). Plants capable of N2-fixation tend to have lower N-

resorption resorption efficiencies than non-N fixing species, with no difference in P resorption 

efficiency (Killingbeck, 1996; He et al., 2011).  

There is a debate whether Mediterranean ecosystems such as the CFR in the Fynbos 

biome is limited by N or P (Sardans et al., 2004; Diaz et al., 2012; Potgieter, 2012). To answer 

this mystery, the model of Killingbeck‟s, (1996) had to be taken under consideration as the 

model defines resorption proficiency in terms of senesced leaf as the ultimate potential of plant 

nutrient resorption. The N resorption proficiency in A. mearnsii is consistent with other fined 

leaved legumes growing in the Komati Wildlife Reserve in Mpumalanga (mean 18. 43 mg N g-1, 
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Tye, 2013) and savannas landscapes (mean of 18 mg N g-1; Ratnam et al., 2008). Additionally 

the values found for A. mearnsii are also greater than Acacia spp. growing in the Australian 

Great Sandy Desert (13 mg N g-1; He et al., 2011) and on par with global average (16.1 mg N g-

1) for N-fixing species as noted by Killingbeck, (1996). The P resorption proficiency in A. mearnsii 

are much higher than the threshold for complete resorption in evergreen species (< 0.4 mg g-1) 

and inparticular to its close relative A. dealbata (0.13 mg N g-1, Tye, 2013). It suggests that 

higher P resorption proficiencies in A. mearnsii may help them inhabit impoverished sites or 

landscapes. The difference between species in proficiencies of P are the likely cause to bring 

ecosystem-level changes due to ehance nutrient availability (N and P) in riparian and adjacent 

stream and when proceeded and can be detrimental for aquatic environments in Fynbos Rivers. 

Overall, it indicates that the species in the riparian zones at Wit and Du Toit‟s River conserve P 

more tightly than N, indicating a P limitation, which has been found in other studies (Ratnam et 

al., 2008; He et al., 2011; Tye, 2013; Van der Colff et al., 2017). This limitation is a key 

characteristic of southeastern Australia (He et al., 2011) and South African landscapes (Lambers 

et al., 2008b; Tye, 2013; Van der Colff et al., 2017) as these species both undergone species 

specific adaption strageties to the landscape to acquire nutrients. Determining the mineral 

nutrition between invasive and native species in an ecosystem, may help us understand the 

great success invasive plants particularly N2-fixing plants has over native plant species in the 

Fynbos biome of South Africa where they are most widespread (Le Maitre et al., 2002).  

It is highly important to acknowledge when comparing the present results (nutrient 

resorption efficiencies) to other studies that the current estimates for resorption efficiency are 

articulated on a mass basis and not leaf mass area (LMA) as done by other authors (Killingbeck, 

1996; He et al., 2011). The calculation of leaves on a mass basis instead of leaf area basis has 

its advantages. A good example of this is calculating the leaf on a mass basis mean a reduced 

influence of the loss of the leaf mass area during senesced stage whereas expressing it on an 

area basis can accurately represent net nutrient movement from senescing leaves. A. mearnsii 

has a relative small leaf mass area and subject to considerable error as it could be complicated 

to measure. Therefore, in the study it was chosen to limit the expression of resorption 

efficiencies to mass basis (concentrations on mass basis) and distinguish that our mass based 

estimates are likely to overestimate resorption efficiencies (He et al., 2011; Tye, 2013). 

However, due to the reduction in leaf mass during senescence is generally less than 10%, which 

makes the errors marginally small.  

3.7. Conclusion 

It is well documented that IAP‟s (Ehrenfeld, 2003; Yelenik et al., 2004, 2007) alters nutrient 

cycling of localised ecosystems, especially if the invader species is different from the native 

species in its nutrient use strategies. To our knowledge this work demonstrate that the invasion 
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of A. mearnsii into the South African Fynbos biome is supplement and accompanied by an 

alteration in the nutrient cycling, most specifically notably nitrogen. Inclusive taken together, 

there is a surfeit of evidence that the invasion of A. mearnsii has the potential through nutrient 

inputs (litterfall) to alter the N cycling of a landscape and P cycling to a less significant but 

noticeable significant extend. The ability to constantly shed nutrient rich leaf (N and possibly P) 

are seen as another pathway for the species to cope with limitations in the landscape to which 

studies have not yet detected in the highly plant diverse area of the Fynbos biome. Additionally 

this „hunger‟ for nutrients by A. mearnsii potentially is the main reason for its success in the 

Fynbos biome. Further, allochthonous inputs of N and P litter can be transferred and further 

downstream and alter aquatic environments. These bioactive alterations could be detrimental for 

ecosystem away from the point of invasion and add to the already expensive cost to river 

restoration programmes like the WfW to remove the woody invasive aliens especially in the 

Fynbos biome where they are most prevalent.  
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  Chapter 4

Decomposition rates of A. mearnsii compared to native woody species and 

macroinvertebrate communities of native and invasive litter in the mountain 

streams of the Fynbos biome 

______________________________________________________________________ 

4.1 Abstract 

Inputs from leaf litter are essential source of nutrients for aquatic food webs, which are 

dependent on the organic matter provided by riparian vegetation. However, the invasion by alien 

trees in riparian zones could lead to alterations in the amount and timing of leaf litter inputs to 

freshwater ecosystems, as well as altered nutrient dynamics through modified decomposition 

rates. The home-field advantage hypothesis (HFA) posits that leaf litter from a plant in the place 

of origin (home) will decompose much quicker by macroinvertebrates than litter that has been 

translocated. In this study, the HFA hypothesis was tested in two perennial rivers in the Fynbos 

biome of South Africa, a global biodiversity hotspot. Leaf litterbags was placed in streams with 

similar characteristics and riparian vegetation cover, in two river reach types: near-pristine 

fynbos (natural vegetation) and reaches invaded with black wattle (Acacia mearnsii), an invasive 

N-fixing tree species from Australia. Bags were collected after 14, 28, 48, 64, 80 and 102 days of 

incubation of both fynbos and A. mearnsii species litter. The amount of remaining litter (AFDM 

%), and decomposition rates and macroinvertebrates assemblages on leaf bags between native 

species and A. mearnsii were determined in near pristine and invaded reaches, to test HFA 

effects and macroinvertebrate litter infinity effects. The results found invasive species to 

decompose at a much faster rate than fynbos species, which was explained by differences in 

litter quality (N and C:N ratio) between species, rather than the HFA hypothesis. The two rivers 

and each reach were homogeneous in stream characateristics and thereby litter decomposition 

was related to plant nutrient content. Macroinvertebrates assemblages was regulated by site 

factors and selective pressure for resources on certain seasons and not HFA macroinvertebrate 

litter affinity effects.  

 

 

KEYWORDS: litter inputs; riparian vegetation; nutrient dynamics; home-field advantage; aquatic 

ecosystems; litter quality; instream communities; function and structure 
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4.2 Introduction 

In aquatic environments, leaves decompose at different rates, which is dependant on both 

internal and external factors (Petersen and Cummins, 1974; Webster and Benfield, 1986). 

Internal factors are mainly the difference in leaf litter nutrient content (C, N and P) and structural 

properties such as leaf shape, as well as the composition and abundance of the 

macroinvertebrate communities (Webster and Benfield, 1986; Reinhart and VandeVoort, 2006). 

The external factors are stream characteristics (temperature, flow regime, physical abrasion, and 

substrate) which is suggested to be different in upstream and downstream reaches and different 

microhabitats (pools, runs and riffles) within a river ecosystem and therefore different decay 

rates are found (Maamri et al., 2001;Sponseller and Benfield, 2001; LeRoy et al., 2006;). There 

are a few studies in the Fynbos biome (King et al., 1986; 1987) that assessed the environmental 

factors that may influence litter breakdown. However, to unravel the effects are not easy as there 

is variation in effects such as site characteristics, litter quality differences between species and 

variation in decomposer communities in Fynbos biome rivers (Bengtsson et al., 2011, 2012). 

Therefore, information on the processes and factors influencing decomposition in freshwater 

environments of mountain streams in the Fynbos biome remains relatively sparse.  

Inputs of leaf litter from different plant species are different in structure and chemical 

properties such as leaf shape, different N concentrations, carbon: nitrogen ratio (C:N) and lignin 

concentrations (Ayres et al., 2009). Litter input is seen as a major vector moving energy and 

nutrients for biota in aquatic ecosystems (fungi, bacteria, and invertebrates such as fish and 

macroinvertebrates) (Negrete -Yankelevich et al., 2008; Ayres et al., 2009; Kuglerova et al., 

2017). The decomposition of leaf litter is explained by 70 %, which consist of the physical (i.e, 

leaf shape and size) and chemical composition (nutrient content) and the other 30% by in stream 

characteristics (LeRoy et al., 2006) and HFA effects (Gholz et al., 2000; Parton et al., 2007). In 

the last decade studies (Ehrenfeld, 2003; Allison and Vitousek, 2004) found that, invasive alien 

plant species (IAP‟s) which has high leaf litter composition (especially N and P) tend to 

decompose much faster than native species. The faster decay of leaf litter from IAP‟s compared 

to native species litter has been reported when the invasive plant were N2-fixing plants and the 

native species not (Witkowski, 1991a). The physiological characteristics of IAP‟s, e.g. high 

nutrient concentrations, species specific leaf area (SLA) and N2-fixing capabilities are key 

functions in faster decomposition rates when compared to native species (Allison and Vitousek, 

2004; Morris et al., 2011). In contrast, slower decomposition rates of IAP‟s were found in other 

studies (Witkowski, 1991a, different site; Drenovsky and Batten, 2007). These conflicting 

findings suggest more effort needs to go in improving our capabilities to predict the impact of 

IAP‟s on real ecosystems in field situations (Davis et al., 2011; Furey et al., 2013). In a study by 

Witkowski, (1991a) it was found that litter decomposition rates of the invasive nitrogen fixer 
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Acacia cyclops were slower than the native species (Pterocelastrus tricuspidatus) in coastal 

lowlands of Cape fynbos in the Western Cape. In the same study in a different field setting 

Witkowski, (1991a) found that litter decomposition rates of the N2-fixing A. saligna were faster 

than the co-occurring native species (Leucospermum parile). The differences in rates were 

linked to differences in litter quality characteristics between species and nutrient conservation 

strategies, e.g. through retranslocation of leaf nutrients during senescence (Ehrenfeld, 2003; 

Allison and Vitousek, 2004).  

Until recently it was thought that the breakdown and mining of plant resources were 

mostly done by generalist consumers. However, there is a growing amount of evidence that 

plant species has a species specific or affinity effect to certain macroinvertebrate communities in 

terms of decomposition (Veen et al., 2015). The decomposer communities as a result may 

become adapted to and form a specialized affinity to the litter they encounter over an extended 

period. As a result they become efficient at breaking down their own litter matrix (absorbing 

nutrients), e.g. from the riparian plant community above them (Ayres et al., 2009). Consequently 

this “at home” benefit has been referred to as the „home-field advantage‟ (HFA) hypothesis 

where litter decomposes faster in its home environment than far from its origin (Gholz et al., 

2000; Ayerez et al., 2009). The specialized affinity effect macroinvertebrate communities has to 

certain litter types is driven by interacting drivers such as the different leaf litter quality received 

as input from the riparian zone and the incubation conditions (site conditions) which can be 

measured over weeks or months (Jewel et al., 2015; Veen et al., 2015). In literature, many other 

studies (Freschet et al., 2012; Veen et al., 2015) tried to test the occurence HFA, but failed to 

unravel the effects as the conditions until present still remains uncertain. Litter diversity in a 

home environment is not always associated with faster decomposition rates and 

macroinvertebrate litter affinity effects (Austin et al., 2014; Jewel et al., 2015; Veen et al., 2015).  

There is however evidence of HFA effects where invertebrate decomposer communities 

become adjusted to feeding on their home turf litter but are less efficient at breaking down the 

foreign litter regardless of plant diversity or C:N ratios (Veen et al., 2015). The difference in 

effects is variable, depending on both biotic and abiotic factors of the ecosystem, which 

influences litter decomposition rates (Veen et al., 2015). It remains relatively unknown if the 

introduction of alien invasive plants species can affect macroinvertebrate litter affinity effects, 

and how the process of decomposition proceeds in an altered environment. To have a better 

understanding how and when decomposition rates and macroinvertebrate communities 

interrelate with litter to influence HFA effects, it is crucial to look into significant drivers of the 

interface between the plant community, litter type and environmental conditions at present 

(Freschet et al., 2012). Yet, it is unclear at the present time if litter of a different type would affect 

macroinvertebrate communities in a HFA microsite as vegetation peaks (leaf litterfall period) and 

Stellenbosch University  https://scholar.sun.ac.za



57 

 

thereby increasing invertebrate species richness as the litter is crucial source of energy for in 

stream macroinvertebrate species (Buddle et al., 2006). Therefore, these mechanistic links 

needs added examination (Van der Wal et al., 2013). Many studies testing the HFA hypothesis 

across the globe (Vivanco and Austin, 2008; Ayrez et al., 2009; Jacob et al., 2010; Austin et al., 

2014) have found inconsistent results, for example some have shown decomposition rates 

accelerated in their native and not in away or foreign environments. A study by Veen et al., 

(2015) suggested that the current understanding of the HFA phenomenon is not adequate to 

generalize across diverse systems as environmental characteristics of HFA remains unexplored. 

The Veen et al., (2015) study also revealed that dissimilarity between litter characteristics could 

be a strong predictor of HFA effects of decomposition and possibly macroinvertebrate affinity 

effects. 

Even with the facts on the impact of invasion of A. mearnsii on terrestrial communities, 

the potential effects of A. mearnsii invasion on leaf processing and macroinvertebrates 

communities in stream remain unstudied, which limits our understanding of the highly diverse 

hydrological and biological components of the Mediterranean streams in the Fynbos biome of 

the CFR. Broadly, the study investigated the impact of Acacia mearnsii invasion and their impact 

on the ecology of mountain streams in the Fynbos biome. Here we (a) compare the 

decomposition rates (here used as a broadly inclusive term of both bacterial/fungal and 

decomposition) between the invasive A. mearnsii and co–occurring native species (here after 

“fynbos species”); (b) determine if HFA plays a role between A. mearnsii and fynbos species in 

bacterial/fungal decomposition when placed far from origin and in their native reaches; and (c) 

determine if HFA affinity plays a role in freshwater macroinvertebrates of A. mearnsii and fynbos 

species in their native reaches and away from origin. 
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4.3 Site descriptions, Methods and Materials 

4.3.1. Study areas in the Fynbos biome of the CFR 

The focal area for this study was in mountain and foothill stream sections of the Mediterranean-

type Fynbos biome in the Breede Water Management Area (WMA), Western Cape. The 

vegetation in the upper catchments are typically characterised by sclerophyllous fynbos and 

sandstone soils, which are acidic and nutrient poor (Day and King, 1995; Samways et al., 2011). 

The climate is of the Mediterranean-type, which is categorized by dry summers and wet winters. 

After the first heavy rains, mountain rivers in the CFR have surface flow in winter while in 

summer smaller streams can be reduced to perennial pools and sections of riffles resulting in 

periodic water shortages (Goldblatt and Manning, 2000; Tharme, 2010).  

Two perennial rivers were chosen for the study. The small perennial river of the Breede 

River, the Wit River and the tributary of the Riviersonderend River, the Du Toit‟s River which is 

cut short by the Theewaterskloof Reservoir (Tharme and Brown, 2004). Along each river, two 

vegetation invasion statuses were identified: (1) near pristine sites (NP); (2) invaded sites (IV). 

Near pristine sites were predominant with typical natural fynbos plant species (cover of B. 

stellatifolium and M. angustifolia) and some scattered Searsia angustifolia in the Du Toit‟s River 

and Erica caffra and Elegia capensis at the Wit River with no alien invasive trees present at 

either site. Invaded sites had more than 50% cover of A. mearnsii. No significant areas of 

commercially afforested or agricultural areas were found near the chosen study sites. Site 

characteristics of each invasion status at each river (Wit and Du Toit‟s River) are summarized 

within Table 4.1 and 4.2. Sampling started on the 4th November 2016 in mid-spring and endured 

until 6 February 2017, mid-summer. 

.
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Table 4.1: A summary of site characteristics of the Wit River and associated invasion statuses (Near pristine and invaded) in the Breede Water Management Area 
(WMA). Values are represented as mean [± SD] and continuous variables were recorded periodically from the start of the field experiment until the end. 

 

Site: Wit River Near pristine (NP) Invaded (IV) 

Catchment elevation (m a.m.s.l.) 958.40 901.40 

Reach length (m) 140 210 

Wetted channel width (m) 9.46 15.30 

Range of average water temperature (˚C)  14.52 to 29.15 14.80 to 29.15 

Mean water temperature (˚C) [SD] 22.15 [1.92] 22.07 [1.93] 

Range of discharge (m
3
 s

-1
) 0.76 to 0.81 0.66 to 0.77 

Mean discharge (m
3
 s

-1
) [SD] 0.78 [0.01] 0.69 [0.02] 

Range of pH 4.42 to 4.74 4.41 to 4.80 

Mean pH [SD] 4.61 [0.05] 4.60 [0.10] 

Range of EC (μS/cm
-1

) 74.80 to 75.20 74.40 to 75.00 

Mean EC (μS/cm
-1

) [SD] 75.03 [0.06] 74.64 [0.08] 

Microhabitats Pool Pool 

 
 
Substratum characteristics 

Vertical gradient, physical features including wide single channels, 

dominated by large boulders, medium sized cobbles with few riffles 

and patches of sand in certain segments of the reach, alongside the 

wetted channel, banks comprise of medium sized cobbles and 

bedrock 

Substratum is dominated by small cobbles and gravel through the 

reach with large boulders in some section of the reach, no 

cascades, alongside the wetted  channel banks comprises of 

sand, woody shrubs and riparian vegetation 
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Table 4.2: A summary of site characteristics of the Du Toit‟s River and associated invasion statuses (Near pristine and invaded) in the Breede Water 
Management Area (WMA). Values are represented as mean [± SD] and continuous variables were recorded periodically from the start of the field experiment until 
the end. 

 

Site: Du Toit’s River Near pristine  Invaded  

Catchment elevation (m a.m.s.l.) 981.50 924.20 

Reach length (m) 110 130 

Wetted channel width (m) 3.38 8.58 

Range of average water temperature (˚C)  12.59 to 27.47 12.40 to 27.47 

Mean water temperature (˚C) [SD] 18.85 [2.42] 20.43 [1.94] 

Range of discharge (m
3
 s

-1
) 0.16 to 0.40 0.43 to 0.71 

Mean discharge (m
3
 s

-1
) [SD] 0.23 [0.03] 0.51 [0.04] 

Range of pH 4.76 to 5.12 4.50 to 5.10 

Mean pH [SD] 4.94 [0.05] 4.70 [0.08] 

Range of EC (μS/cm
-1

) 69.30 to 74.20 70.20 to 74.40 

Mean EC (μS/cm
-1

) [SD] 72.61 [1.10] 73.56 [0.56] 

Microhabitats Pool Pool 

 
 
Substratum characteristics 

Vertiginous gradient, physical features displaying features of 

Southwestern Cape rivers, including single, narrow channels 

dominated by riffles that is short and shallow and sections of 

cascades with deep  bedrock - bottomed pools 

Substratum is dominated by small rounded cobbles, gravel and 

small boulders, river banks is dominate with woody shrubs and 

sand that is relatively high in certain segments and throughout the 

reach major biotopes are pools and occasional backwater with no 

cascades 
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4.3.2. Experimental set up for leaf litter decomposition and macroinvertebrates  

Leaves of A. mearnsii and two native species, B. stellatifolium and M. angustifolia were collected 

from single trees in December 2015 and November 2016 just before abscission or shortly after 

they had fallen (Norbly et al., 2000). All leaf material was oven dried at 50 °C for 24 h. To test for 

differences in decomposition and macroinvertebrates between leaf types, and invasion status 

(NP or IV) leaf bags were imbedded at both rivers (Wit and Du Toit‟s River at the different 

invasion sites) from 4 November 2016 to 6 February 2017 (incubation periods of 14, 28, 48, 64, 

80 and 102 days). Leaf bags were made out of nylon fine mesh (0.5 mm) for the decomposition 

experiment to exclude macroinvertebrates (Webster and Benfield, 1986) and macroinvertebrate 

bags were made out of fine – nylon coarse mesh (0.5 mm with a 2 mm screening window) to 

allow access to macroinvertebrates (Figure 4.1). Decomposition experiment bags was design 

was adjusted that decomposition of leafs were driven by in stream characterstics 

(bacterial/fungal) and leaf composition (Graça et al., 2001). The surface area of leaf bags for 

both experiments was 0.04 m2. A total of 5.0 g of A. mearnsii leaves was placed into litter bags, 

and for the native species litter was weighed out to 2.5 g for each species, mixed and placed into 

litter bags, hereafter called „Fynbos species‟. A total of 384 (192 per river system) leaf bags were 

fabricated for the decomposition and macroinvertebrate experiments.  

 

 

 

 

 

 

 

 

Figure 4.1: Representation of leaf bags made out of (a) nylon fine mesh, 0.5 mm (exclude 
macroinvertebrates) and leaf bags made out of half (b) nylon fine and coarse mesh, 0. 5 mm with a 2 mm 
screening window (included macroinvertebrates). 

 

The home field advantage (HFA) hypothesis states that in a „home‟ environment the 

decomposition of the leaf litter would generally be faster than away from it and that 

macroinvertebrates favours the home turf litter „litter affinity effect‟ (Austin et al., 2014). Fynbos 

species litter (HFA) and A. mearnsii (HFA) decomposition bags were placed in their native reach 

(i.e. near pristine = fynbos species (HFA); foreign litter which was the A. mearnsii litter bags) and 

in the invaded site. The same procedure was carried out for the macroinvertebrate experiment to 

test the HFA hypothesis and whether macroinvertebrates will favour its home turf or introduced 

b a 
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litter. At every incubation date, eight bags per invasion status (NP or IV) were retrieved which 

consisted of the HFA leaf bags and foreign leaf bags. The same retrieval procedure was 

followed for the macroinvertebrate experiment. At the initial placement of bags all 384 leaf bags 

(nylon fine mesh, 0.5 mm which exclude macroinvertebrates and fine-coarse mesh, screening 

window which included macroinvertebrates) was placed at each site and different. In total 32 

bags were retrieved per river system at every incubation period with unique codes (Table 4.3). 

Four leaf bags (of both experiments) were tied to a steel rod with gutter nails at each reach. The 

steel rod was used as an anchor against any obstruction that might flow downstream due to 

strong flow variability (Webster and Waide, 1982).  

Table 4.3: Retrieval schedule for leaf bags of decomposition and macroinvertebrates experiments leaf 
bags, in near pristine and invaded reaches at the Wit River and Du Toit‟s River sites. HFA = the species in 
its home environment.  

 
Study site: Wit River (a) Du Toit’s River (b) 

Retrieval schedule Decomposition 

Near pristine reach:   

Fynbos species (HFA) 4 leaf bags 4 leave bags 
A. mearnsii 4 leaf bags 4 leave bags 

Invaded reach: 
  

A. mearnsii (HFA) 4 leaf bags 4 leave bags 
Fynbos species 4 leaf bags 4 leave bags 

 macroinvertebrate 
Near pristine reach:   

Fynbos species (HFA) 4 leaf bags 4 leaf bags 

A. mearnsii 4 leaf bags 4 leaf bags 

Invaded reach: 
  

A. mearnsii (HFA) 4 leaf bags 4 leaf bags 
Fynbos species 4 leaf bags 4 leaf bags 

 

The Hierarchical Framework for Stream Habitat Classification by Frissel et al., (1986) was 

followed to place both experiment‟s leaf bags. Microhabitat subsystems are systems defined by 

Frissel et al., (1986) as patches within pool/riffle systems which have homogeneous 

environmental conditions (temperature, discharge, substrate characterization). Decomposition 

and macroinvertebrate leaf bags were placed in sections where microhabitat subsystems were 

detected within pool systems (Frissell et al., 1986). Mediterranean-climate streams are 

categorised by successive floods and droughts that are variable through seasons due to high 

annual and inter-annual discharge (Gasith and Resh, 1999). Pools are seen as habitats which 

hold inputs of leaf litter and other debris which accumulates and creates new microhabitats 

through different seasons (Gasith and Resh, 1999; Bonada et al., 2007). The macroinverterbrate 

and decomposition bags, were placed in pool habitats as these sections of a stream are 
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generally less affected by flow variability and major changes in synergistic factors (water 

temperature, pH and conductivity, Grab, 2014).  

Zip-lock bags was used to collect decomposition and macroinvertebrate leaf bags and 

then placed into a cooler with ice and eventually transported to the university laboratory. The 

bags were disassembled, where the remaining leaf material in each bag was carefully washed 

off and sieved (250 μm) to remove debris and invertebrates. Material at each incubation day 

over the study period of decomposition were placed in paper bags with labels dried at 50 °C for 

24 h to attain a constant dry mass (g). Sometimes mineral deposits are not washed off the 

leaves resulting in incorrect final dry mass. This is solved by converting dry mass of each leaf 

pack to ash-free dry mass (AFDM). The dry mass of each bag was placed into a muffle furnace 

at 550 °C as organic matter combust at these temperatures (Webster and Benfield, 1986). The 

mineral ash was then substracted from the dry mass initially recorded which gives the ash-free 

dry mass or AFDM of each leaf bag. The AFDM represents the percentage mass loss (%) at 

each inbucation day over the period. To determine ADFM the following equation was used 

(Equation 4.1).  

 

  AFD  remaining = Final AFDM Initial AFDM X 100              (Eq. 4.1) 

 

In order to calculate the decomposition rate over time, the expotential model of (Olson, 1963) 

was used. Where the percentage mass loss at the start of the experiment was (W0) and and 

percentage mass loss at time t was (Wt). The constant k is expressed in unit (day-1) and was 

calculated for each litter bag at each incubation day (Equation 4.2). 

 

W =W  -kt
                               (Eq. 4.2) 

 

The invertebrates retained in the experiment were sieved and preserved in 90% ethanol in 50 ml 

vials for later identification. Macroinvertebrates were identified to genus level with an Olympus 

SZ compound microscope (Model SZ2-ILST) and using the WRC freshwater invertebrate guides 

(Day et al., 2002b; de Moor et al., 2002b; de Moor et al., 2003b; Stals and de Moor, 2007). The 

genera were identified belonging to the functional feeding groups (FFG‟s) of scraper, deposit 

feeder and predators and were computed according to their FFG‟s. (2) The genera of these 

FFG‟s were then summed within families. (3) Functional Feeding Groups (FFG‟s) were assigned 

using Schael, (2005) and the modified version by Merrit and Cummins (1984). Finally, functional 
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feeding group abundance was standardized to 1 m2 according to the available surface area of 

the mesh bag before calculating abundances of the functional feeding groups. The genera 

identified, their abundances and which functional feeding groups they fall into are reported 

Appendix E and F.  

4.3.2.1 Environmental parameters 

Water temperature (°C) at each treatment of each river was recorded every 30 minutes through 

the experiment (November 2016 – February 2017) with a HOBO U20L Water Level Logger 

(Onset Computer Corporation Inc., Pocasset, MA, USA, see Appendix B and C). Instantaneous 

discharge measurements were made at every sampling event with a hand-held Marsh-McBirney 

Model 2000 flow meter from Southern Waters CC, a consultancy company. Similarly, stream 

water pH and electrical conductivity were recorded in the field throughout the experiment (see 

Appendix D) using a Hanna Multiparameter Waterproof Meter (Model - HI9829) from the 

University of the Western Cape, Earth Sciences Department. 

4.3.2.2. Statistical analysis  

The data was analysed using the STATISTICA version 13 software package (Dell Inc., 2015). A 

two way repeated measures analysis of variance (ANOVA) was used to test percentage of 

remaining ash-free dry mass (AFDM%) over time followed by a Fisher LSD post-hoc test used 

for means comparison. Decomposition rates (k day-1) were analyzed using a two way repeated 

measures analysis of variance (ANOVA) followed by a Fisher LSD post-hoc test used for means 

comparison, which was represented as mean [± SD] over time in Table 4.4.  
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4.4. Results 

4.4.1. Decomposition rates and mass loss after 102 days in near pristine and alien 

invaded reaches  

Table 4.4: Decomposition rates (k day
-1

) of litter of two plants species, Fynbos species and A. mearnsii in 
near pristine and invaded reaches over days (102) at the Wit and Du Toit‟s River. Values are represented 
as k (day

-1
) mean [± SD] and HFA indicates species in its home environment. Letter (a, b) donate 

significant differences, P<0.05. 

 

Site Wit River k value (day
-1

) ± SD 

Near pristine reach  

Fynbos species (HFA) 0.0155 ± 0.0086
b
 

A. mearnsii 0.0241 ± 0.0073
a
 

Invaded reach  

A. mearnsii (HFA) 0.0216 ± 0.0107
a
 

Fynbos species  0.0167 ± 0.0064
b
 

Site Du Toit’s River  

Near pristine reach  

Fynbos species (HFA) 0.0154 ± 0.0078
b
 

A. mearnsii 0.0225 ± 0.0041
a
 

Invaded reach  

A. mearnsii (HFA) 0.0277 ± 0.0147
a
 

Fynbos species  0.0191 ± 0.0067
b
 

 

At the Wit River near pristine reach, from day 48 a significant mass was apparent between 

Fynbos species (mean = 58. 20%) and A. mearnsii (34.77%, p<0.001, Figure 4.2a). Between 

days 64 – 102, A. mearnsii losses the most mass in comparison to Fynbos species (p<0.001). In 

the Fynbos species in general, mass loss remained constant over days, suggesting no home 

field effect in the near pristine site. The mass loss over the 102 day incubation period was 

apparent in mean decomposition rate over time (k day-1) in both species, which was significantly 

different (p<0.05, Table. 4.4). 
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Figure 4.2: Percentage of remaining ash-free dry mass (AFDM) in relation to days of (a) Fynbos species 
(HFA) and A. mearnsii at the Wit River, near pristine reach. Letters represent significant differences (LSD 
test, p<0.05) based on a two way repeated measure ANOVA (F [6, 36] = 9.80, p< 0.001). HFA = indicates 
species in its home environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Percentage of remaining ash-free dry mass (AFDM) in relation to days of (b) A. mearnsii 
(HFA) and Fynbos species at the Wit River, invaded reach. Letters represent significant differences (LSD 
test, p<0.05) based on a two way repeated measure ANOVA (F [6.36] = 6.52, p< 0.001). HFA = indicates 
species in its home environment.  
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In the invaded reach at the Wit River, from day 14 A. mearnsii lost significantly more mass than 

Fynbos species (F [6.36] = 6.52, p<0.001, Figure 4.3b). The mass loss was at day 64 where A. 

mearnsii lost 20% more mass than Fynbos species (p<0.001, Figure 4.3b). A. mearnsii in its 

home environment lost mass much faster than Fynbos species. Overal, A. mearnsii 

decomposition rates (k day-1) show that over time mean values were significantly different 

between species (p<0.05, Table 4.4, invaded reach at the Wit River). 

 

At the Du Toit‟s, near pristine reach, mass loss of A. mearnsii was significantly faster 

than Fynbos species (F [6.36] = 9.80, p<0.001, Figure 4.4a). A. mearnsii lost leaf mass on average 

42.50% more than Fynbos species, which had a mean of 59.34%. The significant mass loss in 

A. mearnsii initially starts from day 48 (mean = 34.77 %) compared to a mean of 58.20% 

(p<0.001, Figure 4.4a) for the Fynbos species. Fynbos species in the near pristine site or „home 

site‟ do not loss substantial mass as A. mearnsii, therefore the Home field advantage theory is 

not apparent. Additionally the decomposition rate of A. mearnsii in the site is significantly faster 

(p<0.05) over the fynbos species with a mean of (0.0225 ± 0.0041 k day-1, Table 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Percentage of remaining ash-free dry mass (AFDM) in relation to days of (a) Fynbos species 
(HFA) and A. mearnsii at the Du Toit‟s River, near pristine reach. Letters represent significant differences 
(LSD test, p<0.05) based on a two way repeated measure ANOVA (F [6, 36] = 2.24, p< 0.01). HFA = 
indicates species in the home environment. 
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At the invaded reach, across days, significant differences (F [9.80] = 9.80, p<0.001, Figure 

4.5b) were found between A. mearnsii and fynbos species with A. mearnsii losing a considerable 

amount of mass over the incubation period. On days 64 and 80, A. mearnsii lost twice as much 

mass in percentage than the Fynbos species (Figure 4.5b). In table 4.4., decomposition rates 

between species was significantly different (p<0.05) as A. mearnsii decomposed at a much 

faster rate (0.0277 ± 0.0147 k day-1) than Fynbos species (0.0191 ± 0.0067 k day-1).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4.5: Percentage of remaining ash-free dry mass (AFDM) in relation to days of (b) A. mearnsii 
(HFA) and Fynbos species Du Toit‟s River, invaded reach. Letters represent significant differences (LSD 
test, p<0.05) based on a two way repeated measure ANOVA (b) F [6.36] = 2.31, p< 0.01). HFA = indicates 
species in its home environment. 

 

4.4.2. Macroinvertebrate community structure on leaf litterbags at near pristine 

and invaded reaches  

4.4.2.1. Macroinvertebrate abundances between near pristine and invaded reaches 

and general observations 

A total of 56 taxa, represented by 1207 macroinvertebrate individuals were sampled across 

different invasion statuses at both study areas. At the Wit River, 977 macroinvertebrates were 

sampled at both invasions statuses but only 247 macroinvertebrates at both invasion statuses at 

the Du Toit‟s River (Appendix E).  
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During the sampling events at the Du Toit‟s River leaf packs were found outside of the 

stream in some weeks, indicating some human interference, which may have displaced the leaf 

bags. Leaf bags in the invaded reach at the Du Toit‟s River also had bags floating on the water, 

suggesting some flow disturbance, thus some bags had no macroinvertebrates present in leaf 

packs and were excluded at the time of retrieval.  

4.4.3. Functional feeding groups in the litterbags of Fynbos species and A. 

mearnsii leaf litter at different invasion statuses  

4.4.3.1. Wit River macroinvertebrate functional feeding group richness  

Macroinvertebrate functional feeding groups had no preferences for either Fynbos species litter 

or A. mearnsii leaf litter in the near pristine reach (Figure 4.6). However, functional feeding 

abundance increased from week 2 until week 12 irrespective if leaf littertype was from its home 

environment or not. The highest mean in FFG was recorded in A. mearnsii leaf litterbags with a 

mean of 222.67 ± 285.25 m-2 (Figure 4.6, Table 4.5) with scrapers accounting for most of the 

FFG means. Additionally in the Fynbos species leaf litterbags the highest mean FFG was 

recorded in week 12 (175.00 ± 117.64 m-2) with the functional feeding groups of deposit feeder 

and predator accounting for the mean values. 

 

Figure 4.6: Abundance of functional feeding groups of deposit feeder, scrapers and predators (m
-2

, n = 3) 
between two leaf litter types (green =Fynbos species (HFA); red = A. mearnsii) in the near pristine site at 
the Wit River. Four leaf packs were sampled of each FFG at every incubation period. HFA = indicates the 
littertype in its home environment and values are represented as mean [± SD]. 
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Table 4.5: Abundances (mean individuals m
-2
, ± SD, n = 3) of all functional feeding groups (deposit feeder, scraper and predators) recorded at the Wit River near

pristine reach over incubation weeks and different leaf litter types (FS = Fynbos species; AM = A. mearnsii). HFA = indicates the littertype in its home 
environment, (*) indicates a sample size less than 4 and (X) no individuals encountered. 

Wit River: Near pristine 

Weeks: 2 4 6 8 10 12 

Litter type: FS(HFA) AM FS(HFA) AM FS(HFA) AM FS(HFA) AM FS(HFA) AM FS(HFA) AM 

Functional Feeding Groups (m
-2
):

Deposit Feeder [SD]: 12.00 

[6.93] 

24.00* 124.50 

[26.57] 

32.00 

[6.93]* 

    32.00 

[18.33] 

56.00 

[6.93]* 

X 18. 00

[18.00] 

48.00 

[21.91] 

101.50 

[26.35] 

196.75 

[79.81] 

155.25 

[46.02] 

Scraper [SD]: 
24.00 
[9.80] X 

59.75 
[12.6.93] 

55.67 
[18.06] 

24.00 
[12.00] 

103.67 
[6.64] 

173.00 
[22.72] 

89.80 
[50.07] 

197.00 
[60.30] 

548.50 
[135.96] 

48.00 
[9.80] 

184.75 
[64.65] 

Predator [SD]: 18 
[18.00]* 

72.00* 18 
[18.00]* 

16.00 
[13.86]* 

X 24.00 
[12.00] 

6.00 
[6.00] 

X X 72.00* 280.25 
[107.21] 

6.00* 

Total Functional feeding groups 
per litter type 54.00 72.00 125.50 103.70 56.00 183.67 179.00 119.80 245.00 668.00 525.00 346.00 

Mean functional feeding groups 
[SD] 

18.00 

[6.00] 

32.00 

[36.66] 

41.83 

[26.01] 

34.56 

[19.96] 

18.67 

[16.65] 

61.22 

[40.09] 

59.67 

[98.20] 

50.90 

[55.01] 

81.67 

[102.72] 

222.67 

[285.25] 

175.00 

[117.64] 

115.33 

[95.83] 
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In the invaded reach at the Wit River, similar to the near pristine site, there was no 

preference for either A. mearnsii in its native environment (HFA) or Fynbos species leaf litter in 

the leaf bags by macroinvertebrate functional feeding groups (Figure 4.7). Functional feeding 

groups, however increased from week 2 unti 12 with the highest mean values found in the A. 

mearnsii leaf litterbags in week 10 (202. 83 m-2) and in week 12 (184.88 m-2). Scrapers (week 

10) and deposit feeders (week 12) accounted for the high values observed (Table 4.6).  

 

Figure 4.7: Abundance of functional feeding groups of deposit feeder, scrapers and predators (m
-2

, n = 3 
between two leaf litter types (red = A. mearnsii (HFA); green =Fynbos species) in the invaded reach at the 
Wit River. Four leaf packs were sampled of each FFG at every incubation period. HFA = indicates the 
littertype in its home environment and values are represented as mean [± SD]. 
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Table 4.6: Abundances (mean individuals m
-2
, ± SD, n = 3) of all functional feeding groups (deposit feeder, scraper and predators) recorded at the Wit River 

invaded reach over incubation weeks and different leaf litter types (FS = Fynbos species; AM = A. mearnsii). HFA = indicates the littertype in its home 
environment, (*) indicates a sample size less than four and (X) no individuals encountered. 

 

 

Wit River: Invaded site       

Weeks: 2 4 6 8 10 12 

 
Litter type: 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
Functional Feeding Groups (m

-2
): 

            

 
Deposit Feeder [SD]: 

 

12.00 
[6.93] 

 

48.00 
[16.97] 

 

53.75 
[14.87] 

 

41.50 
[14.77] 

 

59.00 
[6.35] 

 

77.50 
[26.35] 

 

35.50 
[11.50] 

 

18. 00 
[18.00] 

 

119.25 
[68.12] 

 

256.25 
[22.83] 

 

361. 75 
[91.25] 

 

232.75 
 [39.54] 

Scraper [SD]: 

 

 

 
 

X 

 

 
12.00 
[8.49]* 

 

 
65.50 

[40.57] 

 

 
35.75 
[22.76] 

 

 
41.75 

[17.75] 

 

 
35.50 
[20.50] 

 

 
125.25 
[32.85] 

 

 
89.80 

[50.07] 

 

 
471.25 

[226.86] 

 

 
226.75 
[96.18] 

 

 
351.75 

[177.04] 

 

 
131.25 
 [58.74] 

 
Predator [SD]: 

 

24.00 
[16.97] 

 

12.00 
[8.49]* 

 

12.00 
[6.93]* 

 

30.00 
[18.00]* 

 

 
12.00* 

 

18.00 
[6.00] 

 

X 

 

X 

 

215.00 

 

24.00 
[16.97] 

 

18.00 
[6.93] 

 

12.00* 

 
Total Functional feeding groups 
per litter type 
 

 
 

36.00 

 
 

72.00 

 
 

202.00 

 
 

107.25 

 
 

112.75 

 
 

131.00 

 
 

160.75 

 
 

119.80 

 
 

608.50 

 
 

507.00 

 
 

731. 50 

 
 

376.00 

 
Mean functional feeding groups 
[SD]: 
 

 

12.00 
[12.00] 

 

24.00 
[20.78] 

 

 

67.33 
[56.27] 

 

 

35.75 
[5.75] 

 

 

37.58 
[23.78] 

 

 

43.67 
[30.58] 

 

 

53.58 
[64.55] 

 

 

87.67 
[112.86] 

 

 

202.83 
[237.90] 

 

 

169.00 
[126.44] 

 

 

184.88 
[236.00] 

 

 

125.33 
[110.49] 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



73 

 

0

100

200

300

400

500

600

2 4 6 8 10 12

In
d

iv
id

u
a

ls
 (

m
-2

) 

Weeks 

4.4.3.2. Du Toit’s River macroinvertebrate functional feeding group richness 

The Du Toit‟s River, in the near pristine reach showed no preference from functional feedings 

groups for either Fynbos species leaf litter, which was in its native environment (HFA) or A. 

mearnsii litter (Figure 4.8, Table 4.7). The highest mean value found across weeks was in A. 

mearnsii leaf litterbags in week 12, which had a mean value of 167.00 m-2. In week 10, A. 

mearnsii litter showed no FFG individuals encountered as all bags sampled of the respective 

littertype went missing. Hence, no data was recorded. 

Figure 4.8: Abundance of functional feeding groups of deposit feeder, scrapers and predators (m
-2

, n = 3 
between two leaf litter types (green =Fynbos species (HFA); red = A. mearnsii) in the near pristine reach 
at the Du Toit‟s River. Four leaf packs were sampled of each FFG at every incubation period. HFA = 
indicates the littertype in its home environment and values are represented as mean [± SD]. 
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Table 4.7: Abundances (mean individuals m
-2

, ± SD, n = 3) of all functional feeding groups (deposit feeder, scraper and predators) recorded at the Du Toit‟s River 
near pristine reach over incubation weeks and different leaf litter types (FS = Fynbos species; AM = A. mearnsii). HFA = indicates the littertype in its home 
environment, (*) indicates a sample size less than four and (X) no individuals encountered. 

 

 

Du Toit’s River: near pristine        

Weeks:: 2 4 6 8 10 12 

 
Litter type: 

 
FS(HFA) 

 
AM 

 
FS(HFA) 

 
AM 

 
FS(HFA) 

 
AM 

 
FS(HFA) 

 
AM 

 
FS(HFA) 

 
AM 

 
FS(HFA) 

 
AM 

 
Functional Feeding Groups 
(m

2
): 

            

 
Deposit Feeder [SD]: 

 

24.00 
[0.00] 

 

24.00* 

 

48.00* 

 

X 

 

48.00* 

 

X 

 

X 

 

X 

 

24.00* 

 

X 
 

 

215.00* 

 

381.5  
[119.50]* 

Scraper [SD]: 

 

 

 
 

X 

 

 
 

X 

 

 
24.00* 

 

 
32.00 
[6.93] 

 

 
X 

 

 
36.00 
[12.00] 

 

 
107.50 
[35.50] 

 

 
48.00* 

 

 
24.00* 

 

 
X 

 

 
48.00* 

 

 
95.50 

 [23.50]* 

 
Predator [SD]: 

 
16.00 
[9.80] 

 
24.00 

 
24.00* 

 
24.00* 

 
48.00 

[24.00] 

 
72.00* 

 
48.00* 

 

48.00* 

 

48.00* 

 
X 

 
X 

 
24.00* 

 
Total Functional feeding 
groups per litter type 

 
 

40.00 

 
 

40.00 

 
 

96.00* 

 
 

56.00 

 
 

96.00 

 
 

108.00 

 
 

155.50 

 
 

96.00 

 
 

96.00 

 
 

X 

 
 

263.00 

 
 

501.00 

 
Mean functional feeding 
groups [SD] 

 
13.33 

[12.22] 

 
16.00 

[13.86] 

 
32.00 

[13.86] 

 
18.67 

[16.65] 

 
32.00 

[27.71] 

 
36.00 

[36.00] 

 
51.83 

[53.85] 

 
32.00 

[27.71] 

 
32.00 

[13.86] 

 
 

X 

 
87.67 

[112.86] 

 
167.00 

[189.17] 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



75 

 

0

100

200

300

400

500

600

2 4 6 8 10 12

In
d

iv
id

u
a

ls
 (

m
-2

) 

Weeks 

Functional feeding groups in the invaded reach at the Du Toit‟s River showed no liking 

for either A. mearnsii litter or Fynbos species leaf litter in the reach (Figure 4.9, Table 4.8). 

Threre was also no general increase in FFG across week as this was also apparent at the near 

pristine site at the Du Toit‟s River. Functional feedings groups was only higher than 100 m-2 in 

one leaf littertype, which was the Fynbos species litter 143.31 ± 48.95 m-2 in week 12. 

Macroinvertebrate abundances were low and variable at the each respective reach at the Du 

Toit‟s River. 

 

Figure 4.9: Abundance of functional feeding groups of deposit feeder, scrapers and predators (m
-2

, n = 3 
between two leaf litter types (red = A. mearnsii (HFA); green = Fynbos species) in the invaded reach at 
the Du Toit‟s River. Four leaf packs were sampled of each FFG at every incubation period. HFA = 
indicates the littertype in its home environment and values are represented as mean [± SD]. 
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Table 4.8: Abundances (mean individuals m
-2

, ± SD, n = 3) of all functional feeding groups (deposit feeder, scraper and predators) recorded at the Du Toit‟s River 
near pristine reach over incubation weeks and different leaf litter types (FS = Fynbos species; AM = A. mearnsii). HFA = indicates the littertype in its home 
environment, (*) indicates a sample size less than four and (X) no individuals encountered. 

 

 

Du Toit’s River: Invaded site       

Weeks: 2 4 6 8 10 12 

 
Litter type: 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
AM(HFA) 

 
FS 

 
Functional Feeding Groups (m

-2
): 

            

 
Deposit Feeder [S.D]: 

 

48.00* 

 

24.00* 

 

36.00 
[12.00]* 

 

24.00* 

 

X 

 

X 

 

24.00 * 

 

32.00 
[6.93] 

 

24.00* 

 

32.00 
[8.00] 

 

48.00* 

 

310.25  
[76.05] 

Scraper [S.D]: 

 

 

 
 

X 

 

 
 
    X 

 

 
24.00* 

 

 
32.00 
[6.93] 

 

 
191.00 
[39.67] 

 

 
144.00 

 

 
48.00* 

 

 
47.75 
[16.74] 

 

 
24.00* 

 

 
47.75 
[16.74] 

 

 
36.00 

[12.00] 

 

 
95.67 

 [56.04] 

 
Predator [S.D]: 

 

24.00* 

 

24.00* 

 

24.00* 

 

24.00* 

 

72.00 
[8.00] 

 

48.00 

 

24.00* 

 

24.00* 

 

X 

 

24.00* 

 

59.50 
[35.50] 

 

24.00* 

 
Total Functional feeding groups 
per litter type 

 
 

72.00 

 
 

48.00 

 
 

84.00 

 
 

80.00 

 
 

263.00 

 
 

192.00 

 
 

96.00 

 
 

103.00 

 
 

48.00 

 
 

103.75 

 
 

143.50 

 
 

429.92 

 
Mean functional feeding groups 
[S.D] 

 
24.00 

[24.00] 

 
16.00 

[13.86] 

 
28.00 
[6.93] 

 

 
26.67 
[4.62] 

 
87.67 

[96.46] 

 
64.00 

[73.32] 

 
32.00 

[13.86] 

 
34.58 

[12.08] 

 
16.00 

[13.86] 

 

 
34.58 

[12.08] 

 
47.83 

[11.75] 

 
143.31 

[148.95] 
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4.4.3.3. Distributions of macroinvertebrate genera in the litterbags of Fynbos 

species and A. mearnsii in different invasion statuses at the Wit River 

The number of genera individuals sampled at the Wit River, in the near pristine reach were low 

and variable, with the minimum mean recorded for Castanophlebia and Paramerina 23.00 ± 0.00 

m-2 both in A. mearnsii leaf litterbags (Figure 4.10, Table 4.9). The individual‟s that was the most 

encountered at the near pristine site was Strina aequalis on both leaf littertypes, with A. mearnsii 

being the highest recorded (Table 4.9).  

 

 

 

 

 

 

 

 

 

Figure4.10: Abundances of the major genera (individual‟s m
-2

, n=7) sampled across incubation weeks 
(12) between two leaf littertypes (green = Fynbos species (HFA); red =A. mearnsii) in the near pristine 
reach at the Wit River. HFA = indicates the littertype in its home environment and values are represented 
as mean [± SD].  

 
Table 4.9: Abundances of the major genera (individuals m

-2
, n=7) and their associated functional feeding 

groups sampled across 12 incubation weeks between two leaf littertypes of Fynbos species (HFA) and A. 
mearnsii in the near pristine reach at the Wit River. Values are represented as mean [± SD] and HFA 
indicates the littertype in its home environment.  

Reach: Near pristine 

 
Genera  

 
Functional feeding groups 

(FFG) 

Fynbos species 
littertype (HFA) 

mean ± [SD] 

A.mearnsii  
littertype 

mean ± [SD] 

Strina aequalis scraper 126.78 ± 114.07 158.87 ± 145.08 

Anthripsodes deposit feeder 47.00 ± 27.71 79.00 ± 54.99 

Castanophlebia depost feeder 30.00 ± 22.61 23.00 ± 0.00 

Chloroterpes predator 47.00 ± 16.97 50.33 ± 19.34 

Dryops lutulentus srapper 23.00 ± 0.00 39.00 ± 27.71 

Orthocladiinae scraper 55.00 ± 27.71 39.00 ± 27.71  

Paramerina predator 19.86 ± 16.15 23.00 ± 0.00 
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At the Wit River, in the invaded reach, the mean number of individuals were generally 

constant for most genera individuals encountered (Figure 4.11, Table 4.10). The highest mean 

recorded was Strina aequalis in the Fynbos species leaf lttertype (140. 36 m-2) with a similar 

range in mean value (130.04 m-2) also recorded in A. mearnsii leaf litterbags in the invaded 

reach across weeks (Table 4.10).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Abundances of the major Genera (individuals m
-2

, n=6) sampled across incubation weeks 
(12) between two leaf littertypes (red = A. mearnsii (HFA); green = Fynbos species) in the invaded reach 
at the Wit River. HFA = indicates the littertype in its home environment and data is reflected in mean [± 
SD]. 

 

Table 4.10: Abundance of the major Genera (individuals m
-2
, n=6) and their associated functional feeding 

groups sampled across 12 incubation weeks between two leaf littertypes of A. mearnsii (HFA) and Fynbos 
species in the invaded reach at the Wit River. Values are represented as mean [± SD] and HFA indicates 
the littertype in its home environment.  

Reach: Invaded 

 
Genera  

 
Functional feeding groups 

(FFG) 

A.mearnsii  
littertype (HFA) 

mean ± [SD] 

Fynbos species 
 littertype 

mean ± [SD] 

Strina aequalis scraper 130.06 ± 107.86 140. 36 ± 154.86 

Anthripsodes deposit feeder 83.95 ± 87.15 94.86 ± 77.32 

Castanophlebia depost feeder 65.00 ± 55.00 59.00 ± 50.91 

Chloroterpes predator 49. 18 ± 25.07 29.00 ± 20.78 

Dryops lutulentus scraper 35.00 ± 18.14 39.00 ± 19.60 

Orthocladiinae scraper 47.00 ± 24.00 53.00 ± 36.00 
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4.4.3.4. Distributions of macroinvertebrate genera from the litterbags of Fynbos 

species and A. mearnsii littertypes in different invasion statuses at the Du Toit’s 

River 

The near pristine reach at the Du Toit‟s River, the highest genera of Caenis appeared on A. 

mearnsii leaf litter across the sampling period with a mean of 64.91 m-2 (Figure 4.12, Table 

4.11). In addition, genera was observed to be generally low in mean values for other species 

(Figure 4.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Abundances of the major Genera (individuals m
-2

, n=5) sampled across incubation weeks 
(12) between two leaf littertypes (green = Fynbos species (HFA); red = A. mearnsii) in the near pristine 
reach at the Du Toit‟s River. HFA = indicates the littertype in its home environment and Values are 
represented as mean [± SD]. 
 

Table 4.11: Abundance of the major Genera (individuals m
-2
, n=5) and their associated functional feeding 

groups sampled across 12 incubation weeks between two leaf littertypes of Fynbos species (HFA) and A. 
mearnsii in the near pristine reach at the Du Toit‟s River. Values are represented as mean [± SD] and HFA 
indicates the littertype in its home environment. 

Reach: Invaded 

 
Genera  

 
Functional feeding groups 

(FFG) 

Fynbos species 
littertype (HFA) 

mean ± [SD] 

A.mearnsii  
littertype 

mean ± [SD] 

Caenis deposit feeder 3.07 ± 8.09 64.91 ± 150.83 

Orthocladiinae scraper 1.64 ± 6.15  21.45 ± 40.26 

Aprionyx deposit feeder 10.87 ± 17.39 4.18 ± 9.30  

Paramerina predator 4.93 ± 9.79 6.36 ± 15.14 

Thienemaniella scraper 8.50 ± 31.80 6.36 ± 15.14 
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In the invaded site the genera the most frequently encountered over the weeks was 

Caenis which had a mean of 54.92 m-2 but specifically in A. mearnsii leaf litterbags (Figure 4.13, 

Table 4.12). Furthermore, the genera of Thienemaniella, Anthripsodes and Orthocladiinae had 

similar mean values across weeks on each respective leaf litterbag.   

Figure 4.13: Abundances of the major Genera (individual‟s m
-2

, n=4) sampled across incubation weeks 
(12) between two leaf littertypes (red = A. mearnsii (HFA); green = Fynbos species) in the invaded reach 
at the Du Toit‟s River. HFA = indicates the littertype in its home environment and data is reflected in mean 
[± SD]. 

 
Table 4.12: Abundance of the major Genera (individuals m

-2
, n=4) and their associated functional feeding 

groups sampled across 12 incubation weeks between two leaf littertypes of A. mearnsii (HFA) and Fynbos 
species in the invaded reach at the Du Toit‟s River. Data is reflected in mean [± SD] and HFA indicates 
the littertype in its home environment. 

Reach: Invaded 

 
Genera  

 
Functional feeding groups 

(FFG) 

A.mearnsii  
littertype (HFA) 

mean [± SD] 

Fynbos species 
littertype 

mean [± SD] 

Caenis deposit feeder 54.92 ± 136.37 27.06 ± 68.19 

Thienemaniella deposit feeder 25.38 ± 41.74 8.29 ± 18.47 

Anthripsodes depost feeder 23.46 ± 25.46 6.82 ± 13.70 

Orthocladiinae predator 10.77 ± 20.66 13.13 ± 20.99 
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4.5. Discussion  

4.5.1. Decomposition rates between Fynbos species and A. mearnsii in near 

pristine and invaded reaches 

The results supported previous findings of invasive plants decomposing at a faster rate than 

native species (Witkowski, 1991a; Allison and Vitousek, 2004; Kueffer et al., 2008; Claeson et 

al., 2014). These results indicate that A. mearnsii litter is decomposed more rapidly than native 

species litter, regardless of the local environment or the invasion status. Allison and Vitousek, 

(2004) found in the nutrient poor ecosystems of Hawaiian Islands that invasive species 

decomposed faster than the native species. In the nutrient impoverished ecosystem of the 

granitic Seychelles, Kueffer et al., (2008) found in a field experiment between six native and six 

invasive plant species that the invasives decomposed at a much faster rate. In addition, in the 

Western Cape (Fynbos biome), Witkowski, (1991a) found that the decomposition rate of A. 

saligna was faster than the native sclerophyllous shrub Leucospermum parile. 

Witkowski, (1991a); Allison and Vitousek, (2004); Bengtsson et al., (2012) and Hickman 

et al., (2013) all suggests that the variation in decomposition rates are largerly attributed to 

difference in species ecological traits, such as different plant strategies and nutrient composition. 

The outcomes from the present study supports this conclusion, as we found faster 

decomposition rates at the Wit and Du Toit‟s River in both reaches. Jo et al., (2016) found that 

decomposition rates over time were related to high N concentrations in litter. In the present 

study, the litter from the invasive N2-fixing A. mearnsii was considerably different in litter quality 

(high mean litter N concentrations and lower mean litter C:N ratios (see section 3.5.1, Table 3.2) 

than the fynbos species. The differences in litter quality between native and invasive species 

have been shown in other studies (Santiago, 2007; Gießelmann et al., 2011; Prescott et al., 

2016) as the main factor in faster decomposition rates for invasive species over time. The slow 

decomposition rates in the study was found by others in the Fynbos biome for native species 

(Mitchell et al., 1986; Witkowski, 1991a; Stock and Allsopp, 1992) which is mainly attributed to 

high C:N ratios. Recently, Bengtsson et al., (2011) further supported these finding by stating that 

C:N ratios of leaf litter is good indicator of decomposition rates in the Fynbos biome (or 

renosterveld), although large difference in litter decay rates can be found in the Fynbos biome as 

there are a hyperdiversity of plant species found in the region (Bengtsson et al., 2011; 2012). In 

the present study climate as a factor can be excluded as invasion status per river are reasonably 

close to one another, and the exclusion of climate was noted bt others in their studies 

(Meentemeyer, 1978; Gholz et al., 2000). Therefore, the major contributing factor of decay rates 

of A. mearnsii in both near pristine and invaded reaches at both rivers are likely related to 
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intrinsic variables of leaf litter biochemistry (Perez-Harguindeguy et al., 2000; Ehrenfeld, 2003; 

Liao et al., 2008). However, this may not be the only reason for faster decomposition rates.  

Generally, decomposition trials demonstrate that within a river hierarchy (upstream and 

downstream) breakdown of leaf litter is different on a site level (Ayrez, 1997; Sponseller and 

Benfield, 2001; LeRoy et al., 2006). This is mainly due to these sections having unique instream 

characteristics such as water temperature, flow regime, pH, conductivity and microhabitats 

(Frissel et al., 1986; LeRoy et al., 2006). Stream characteristics between near pristine and 

invaded reaches were similar at the Wit River. Stream environmental factors of average 

temperature, discharge, pH and EC show little variation in change through the study period at 

the Wit River reaches. At the Du Toit‟s River, a similar pattern in stream characteristics between 

pristine and invaded reaches in pH and conductivity (EC) were observed. However, the range of 

discharge rates (m3 s-1) between near pristine (0.16 to 0.40 m3 s-1) and invaded reaches (0.43 to 

0.71 m3 s-1) are different and could account for slower decay rates in the near prestine reach at 

Du Toit‟s River during the incubation period. In a study by Claeson et al., (2014) in the Chehalis 

River basin, Washington USA, it was found that decay rates were affected by physical abrasion 

of leaf litter at the intermediate stage of decay as stream flow ranged from winter low flows to 

irregular bank-full flow events. Therefore, physical abrasion due to the discharge regime 

between sites could account for the slower and faster decay rates. Mediterranean climate 

streams are characterized by high inter-annual and intra-annual variability in discharge, which 

can play a role in decay rates (Gasith and Resh, 1999). In addition, Graça et al., (2010) stated 

the discharge regime across different environmental gradients needs to be considered when 

predicting litter decay rates. Moreover, temperature seems to play a role in the retarding decay 

rates in near pristine sites. Between sites at the Du Toit‟s River, mean water temperature 

differed with 1.58˚C, with the near pristine site being colder over the incubation period. Braatne 

et al., (2007) in a study on Japanese knotweed along riparian corridors in Clearwater River 

Basin, USA found that lower temperatures decreased decomposition rates in the intermediate 

stage for all leaf types measured in their study. Another factor to take account in the experiment 

is litterbag size. In the study nylon fine mesh litter bags (0.5 mm) were used to exclude meso- 

and macro-invertebrate fauna (Webster and Benfield, 1986). Thus, the assumption drawn from 

the decomposition study is that there was minimal interaction between macroinvertebrates and 

leaf litter. Therefore, results found in the decomposition rates in the study are not influenced by 

macroinvertebrate communities, but rather bacterial/fungal communities as noted by Graça et 

al., (2001). 

Different plant species leaf litter decomposes at different rates over time, which attributed 

to difference in leaf traits within a stream and can account for up to 70% of the disparity 

explained in decay processes (Hickman et al., 2013; Kuglerova et al., 2017). The other ± 30% is 
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explained by factors such as stream characteristics (LeRoy et al., 2006) and HFA effects (Gholz 

et al., 2000). In the study at both rivers reaches (near pristine and invaded) decomposition rates 

are effected by plant quality and therefore viewed as holistic comprehensive metric for decay 

rates between A. mearnsii and fynbos species. The reaches in the study are relatively similar 

(only the near pristine site in Du Toit‟s River has a lower discharge) and invasion statuses are 

largely close to each other, which show less heterogeny in stream characteristics. Addtionally, 

there is no home field effect of litter decomposing faster in its home environment as stated by 

others (Gholz et al., 2009; Austin et al., 2014), instead it was only related to leaf nutrient 

composition between species. The present study is one of the first to compare decomposition 

rates in stream between native and invasive plants in the Fynbos biome. In addition, it adds to 

the growing knowledge of leaf litter processing in aquatic environments as it is not as well 

documented as terrestrial decomposition studies (Witkowski, 1991a; Allison and Vitousek, 

2004). A. mearnsii decompose faster in unexploited areas (e.g near pristine sites). 

Consequently, ecosystem function in “undisturbed” streams may be affected by A mearnsii as 

the invasion of the species can increase the amount of leaf material (litter with high N and P) 

entering (see chapter 3, section 3.6.1 and 3.6.3 resorption proficiencies) the stream and fast 

cycling of N and P during decomposition. The Fynbos biome is known for its species diversity of 

aquatic biota, particularly invertebrate communities (de Moor and Day, 2013). Therefore, with 

decomposition of the nutrient rich leaves of the invasive species can likely alter aquatic 

environments.  

4.5.2. Macroinvertebrate litter affinity effects in home and away environments in A. 

mearnsii and fynbos species 

There was no general preference of functional feeding groups or of genera diversity and 

abundance for either Fynbos species or A. mearnsii leaf litter regardless of the local environment 

or in the study sites at each invasion status. In early weeks at the Wit River at both reaches, 

there was no increase in functional feeding groups for both leaf littertypes. However, from week 

8 to 12 a general increase is apparent whether litter was from its home environment or 

introduced. The taxa richness and diversity of macroinvertebrates coincided with changes in the 

quantities of litter inputs and the seasonal timing of inputs. This was evident early in the summer 

month of December for both native species and A. mearnsii (see Chapter 3, section 3.6.1). It is 

therefore likely that the macroinvertebrate communities are seasonally dependent on the pulse 

of leaves entering the stream in early summer. Similar results are found in riparian zones in the 

USA by Reinhart and VandeVoort, (2006) and Claeson et al., (2014) and where sites received a 

diverse input of litter types, which resulted in an upturn in invertebrate communities. Strina 

aequalis, which belong to functional feeding group of scrapers, accounted for most of the 

abundances across weeks and showed a preference for both fynbos species and A. mearnsii 
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leaf littertype. This suggests that the leaf litter quality (invasive vs. native) regulated the 

abundance of the species across weeks. In a laboratory experiment, which resembled natural 

conditions by Januskauskaite and Straige, (2011), found that leaf litter inputs regulated the 

abundances of the organisms in their study. The finding also suggests that introduction of A. 

mearnsii litter may effectively be utilized by Strina aequalis as a potential energy source. In 

addition, the near pristine site at the Wit River is constituted of large substratum of material 

facilitating scavenging of macroinvertebrate communitites. The rough surface topography (see 

section 4.3.1) creates microhabitats, accompanied with seasonal leaf litter inputs, which 

facilitates macroinvertebrate community diversity in stream and was found in other studies 

(Holomuzki and Messier, 1993; Rempel et al., 2000). In the invaded reach however, functional 

feeding groups recorded was greater suggesting that the resources (food or habitat availability) 

A. mearnsii invasion sites may hold are crucial to these groups, as was noted by Samways et 

al., (2011). Reinhart and VandeVoort, (2006) in their study in the USA indicated that 

macroinvertebrate community‟s reaction and change was inevitable when 50% of the knotweed 

species invaded the riparian areas which may hold true for the invaded reach at the Wit River.  

At the Du Toit‟s River in both reaches, there was no general preference from functional 

feeding groups to the littertypes or interms of abundances of genera distributions. In the near 

pristine reach, the low number of functional feeding groups was associated to stream 

characteristics and human interference. The site is situated in the mountain stream section of 

the Du Toit‟s River, which has a high gradient and narrow channels, a physical feature of the 

Franschhoek Mountains (Tharme and Brown, 2004). Wall et al., (2008) and Tharme, (2010) 

sugegsted that steep river slopes and cold-water temperatures can lead to a decline in 

invertebrate diversity and abundances and this was present in the study reach (section 4.3.1, 

Table 4.2). Due to human interference, many macroinvertebrate bags (including 

macorinvertebrates) were lost during the sampling weeks. Bags were placed outside of the 

stream or displaced from the original sampling point, thus common trends could not be deduced 

at the Du Toit‟s, near pristine reach. The invaded reach was situated close to the 

Theewaterskloof Reservoir. The site was dominated by small cobbles, gravel and sand (fine and 

coarse) and this type of substratum has been noted by Hussain and Pandit, (2012) as the 

poorest habitat for macroinvertebrates. In a study by Rempel et al., (2000) in the Frazer River in 

British Columbia-USA, found that macroinvertebrates did not favour sites with sandy 

substratums. Generally sites with sandy substratums are associated with high silt fractions 

(Rempel et al., 2000). In the same study reach, Wiener, (2018) found that the reach consisted of 

approximately ± 90% silt fraction. Sandy substratums are associated with high percentage silt 

fraction and have been found to down regulate macroinvertebrates in South Africa (Dallas and 

Day 1993; Samways et al., 2011).  

Stellenbosch University  https://scholar.sun.ac.za



85 

 

Stream dwelling macroinvertebrates are regulated by many factors such as seasonal 

riparian leaf litter inputs, substratum characteristics and essential resources. The studies of 

Reinhart and VandeVoort (2006); Tharme, (2010); Samways et al., (2011) and Hussain and 

Pandit, (2012), correspond to the finding presented here, which shows that the 

macroinvertebrates in the present study is regulated by the same factors at the different invasion 

statuses but particularly the invaded reach at Du Toit‟s River. 

However, the discharge regime in Mediterranean streams of the CFR is unpredicatable 

and is season dependent (Gasith and Resh, 1999). The unpredicatable discharge causes winter 

floods and summer droughts that cause challenging conditions for aquatic ecosystems (de Moor 

and Day, 2013). This exerts a selective pressure on communities of macroinvertebrates, to 

synchronize with certain seasons as food sources become available in stream from the adjacent 

riparian area (Gasith and Resh, 1999; de Moor and Day, 2013). Many macroinvertebrate 

communities with short life cycles and small body sizes appear in early summer till early autumn 

(Maamri et al., 1994), which may be the holistic reason in high abundance of macroinvertebrate 

species particularly in the Wit River reaches. Furthermore, there was no indication in the study 

whether macroinvertebrate communities had a liking or „affinity effect‟ to their home turf or 

introduced litter, suggesting that the HFA for macroininvertebrate and decomposition rates might  

be in its primitive stages in a region like the Fynbos biome riverine systems. The ecological data 

obtained from one river and study reaches of each cannot be extrapolated to another, with each 

river and reach having to be assessed individually to seek common trends.  

4.6. Conclusion  

This study demonstrates that the invasion of A. mearnsii in undisturbed environments may have 

an effect on aquatic systems. The effect of A. mearnsii leaf litter decomposition, which is faster 

than that of native species, mainly due to key chemical traits, may extend beyond the local area 

of invasion and to other undisturbed environments (Reinhart and VandeVoort, 2006). In the 

present study the decay rates of the IAP appeared to be same in pristine and invaded 

environments, which demonstrates the potential of A. mearnsii to alter aquatic environments 

whether close to its invasive reach or further away, even in reaches not directly affected by 

invasion. This context is well described by Callaway and Ridenour, (2004), which noted that the 

chemical complexes produced by IAP affects in stream macroinvertebrates in the area they 

invade as these organisms are not well adapted to these exotic compounds. Understanding how 

litter quality influences invertebrate communities is important in restoration projects that often 

overlook the effect invasion of IAP has on communities of macroinvertebrates, especially in 

aquatic environments. Therefore, it is imperative that we understand how IAP‟s or the litter 

quality of the species affects invertebrates, particularly in the Fynbos biome where research on 
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macroinvertebrates still remain patchy. In addition this will aid to help preserve the rich diversity 

of invertebrate coummunities of rivers in the Fynbos Biome. 
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  Chapter 5

General conclusions, management implications and future research 

______________________________________________________________________ 

5.1. General conclusions and management implications 

The research in the thesis is among the first to address different aspects of plant nutrient 

dynamics in fynbos riparian zones invaded by A. mearnsii, as well as adjacent aquatic 

environments.  Leaf litterfall, litter decay rates and macroinvertbrate assemblages suggests a 

major impact of this invasive species on riparian environments as well as aquatic environments, 

though invertebrate communities seem less affected by the invasive species. The motivation for 

this study was to gain a better understanding of riparian zone function in the mountain streams 

and mountain transitional zones in the Breede Water Management Area (WMA) in the Western 

Cape. This chapter presents the major findings, based upon two fynbos mountain streams of the 

Fynbos biome.  

The overall purpose of this study was to quantify and compare the leaf litter rate and N 

inputs, decomposition rates and macroinvertebrate community assemblages in near pristine 

(reference sites) and invaded sites (predominantly of A. mearnsii) between co-occurring native 

species (Brabejum stellatifolium and Metrosideros angustifolia) and the invasive alien species, 

Acacia mearnsii. Seasonal leaf litterfall and nutrient concentration patterns were analyzed 

particularly nitrogen (N) and carbon (C); these factors provide a good insight into the dynamics 

of fynbos riparian zones and the possible alteration because of the invasion of A. mearnsii. 

Additionally, the species can alter decomposition rates instream and to an extent 

macroinvertebrate assemblages, which might cause the modification and the loss of aquatic 

processes and species diversity. The work presented here is a holistic approach to understand 

the nutrient economy of A. mearnsii and the effect the species has on macroinvertebrate 

diversity in the nutrient poor fynbos riparian zones, South Africa.  

Overall, A. mearnsii had seven to ten times more leaf litterfall in the Wit and Du Toit‟s 

River compared to co-occuring native species, with two peaks in litterfall, one at the end of the 

dry season in mid-autumn; this is a novel finding. The results add to the previous knowledge of 

terrestrial and riparian biochemistry affected by the inputs under stands of Acacia spp., (Milton, 

1981; Witkowski, 1991a; Yelenik et al., 2004, 2007; Naude, 2012). Acacia mearnsii also keeps a 

relatively high leaf litter N concentrations year round and decomposes much faster than the less 

nutrient rich fynbos species. The finding of the high decomposition rates of A. mearnsii in 

streams is another novel find, which is often assumed (Ehrenfeld, 2003; Allison and Vitousek, 

2004); however, here it was shown empirically. Additionally, in the study, it was found that 

Stellenbosch University  https://scholar.sun.ac.za



88 

 

although A. mearnsii appears to conserve especially P tighly in their senesced leaves, N is a 

major component of litterfall in invasive stands, and amount to five to six times more N that is 

added to riparian soils compared to native species. These interacting pathways from A. mearnsii 

can lead detrimental ecosystem degration in the long term. It also further supports the 

classification of A. mearnsii as a transformer species. 

Wiener, (2018) in his study postulated that the high N concentrations in sediments load 

of the Wit River were due to N rich leaf litter entering the stream from the adjacent riparian zone. 

The discharge regime in Mediterranean streams of the Fynbos biome is unpredicatable and is 

season dependent (Gasith and Resh, 1999). Streams in the ecosystems of the biome generally 

receive litter inputs from native vegetation in December, which is apparent in our study. 

However, the pulse of nutrient rich litter entering the stream in autumn could have a negative 

effect, as the system may not be adapted to a large flush of N-rich litter during the transitional 

phase into winter. It is predicted that rivers systems in parts of South Africa, particularly in the 

Western Cape, will lose significant stream flow as there are fewer wet years now than 30 years 

ago (de Moor and Day, 2013). Therefore, it can be significantly detrimental to ecosystems 

process of these rivers as the leaf litter inputs and the faster decomposing of invasive plants can 

potentially be stored in stream sediment and act a possible large stock of N. In the future riverine 

systems will have an inability to flush out excessive sediments that are nutriet enriched due to 

reduction in stream flow. Consequently, it can lead to a feedback loop in the eutrophication of 

stream in the Fynbos biome and it may affect in stream aquatic environments notably 

macroinvertebrates.  

de Moor and Day, (2013) noted that macroinvertebrate species in the Fynbos biome are 

more rich and diverse than the well-documented riparian plant communities; however, 

knowledge around these communities‟ stil remains sparse. In the present study a large number 

of individuals, over several genera were sampled, with deposit feeders, scrapers and predators 

the most well represented. As riverine systems dry up, the eutrophication from streams through 

invasive plants species (e.g. A. mearnsii) could lead to the loss of key macroinvertebrate groups, 

which regulate function in stream ecosystems. However, potential changes were not clear from 

the results found. It is important to note that riparian zones are dynamic systems, which are 

complex and connected, and a change in one component may trigger a chain reaction in another 

(in stream, Terai, 2012). It is clear that invasive A. mearnsii possess traits such as high N levels 

in litter, fast decomposition rates and generally impact the ecosystem with a much larger 

footprint compared to native species, which can disrupt the balance within the native plant 

community (Morris et al., 2011). The multiple attributes of A. mearnsii allow a self-facilitating 

effect, which can accelerate further growth and the spread of the species in natural landscapes 

and alter instream sediment dynamix and potentially eutrophy streams in a bottom-up sequence. 
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In conclusion, it is imperative that these invasive plants species are cleared along 

watercourses in South Africa, particularly in the Western Cape, where drought is a major 

environmental catastrophe. Therefore, restoration project like the Working for Water programme 

should employ qualified ecologists as the threat of invasive species effect multiple services in an 

ecosystem, especially given the dynamic nature of riparian and adjacent stream ecosystems.  

5.2 Future research 

Further research needs to look into the annual trends of phosphorous in leaf litter as high 

amounts of P (4-8 times higher than natives) was found in senesced leaf litter, despite high 

retranslocation in the invasive leaves. This suggests the invasion Acacia spp., notably A. 

mearnsii is changing fynbos riparian ecosystems through impacts on P cycling (see also Naude, 

2012). In the same study areas of the Wit River, Wiener, (2018) studied the impacts of sites 

invaded by N2-fixing species (mostly, A. mearnsii) on in stream biogeochemical processes and 

found elevated N and P concentrations in sediment. The results of Naude, (2012) suggest that 

this is not suprising as in her study high phosphatase activities was found under A. mearnsii 

stands, which can enhance and facilitate further invasion even in undisturbed environments 

where P availibilty might not be as high. Therefore, the elevated nutrients, notably P found in 

Wiener, (2018) could have been exported from the riparian area, which led to enhanced P 

concentrations in sediment particularly at the Wit River, invaded reach. The ability to conserve P 

tighly is one of the major contributing factors for their success in fynbos ecosystems, particularly 

in riparian zones. However, the results found might be an underestimation of the resorption 

potential of P in the species as resorption was only determined in autumn, therefore, resorption 

potential needs to be determined in other seasons. Van der Colff et al., (2017) suggested that 

regardless of nutrient availability in the environment A. mearnsii would still have the resorption 

potential, which may be the competitive advantage they have over native species in nutrient 

limited systems. This warrants a more comprehensive investigation on resorption potential of the 

species spatially.  

Many authors in different landscapes in South Africa (Tye and Drake, 2012; Van der Colff 

et al., 2017) found that A. mearnsii fixed a substantial amount of nitrogen from atmphosheric 

sources. Further, research needs look into the seasonal biological N2-fixation of A. mearnsii as 

we did not measure the NDFA%. In addition, future research as well need examine the critical 

value in soil N where A. mearnsii could be shifting from BNF to uptake of soil N. There is some 

evidence in Australia (Pfautsch et al., 2008) to address this theory but remains unknown in 

Acacia spp. in general.  

 

Stellenbosch University  https://scholar.sun.ac.za



90 

 

REFERENCES 

Aerts, R. (1995) The advantages of being evergreen. Trends in Ecology and Evolution, 10(10), 
402-407. 

Aerts, R. (1996) Nutrient Resorption from Senescing Leaves of Perennials: Are there General 
Patterns? Journal of Ecology, (84), 597-608. 

Aerts, R. (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial 
ecosystems: a triangular relationship. Oikos, (79), 439–449. 

Aerts R. and Chapin F.S. (2000) The mineral nutrition of wild plants revisited: a re-evaluation of 
processes and patterns. Advances in Ecological Research, (30), 1–67. 

Aerts. R., Cornelissen, J.H.C., van Logtestijin, R.S.P. and Callaghan, T.V. (2007) Climate 
change has only a minor impact on nutrient resorption parameters in a high-latitude 
peatland. Oecologia, (151), 132–139. 

Allsopp, N. and Stock, W.D. (1993) Mycorrhizal status of plants growing in the Cape Floristic 
Region, South Africa. Bothalia, (23), 91-104. 

Allison, S.D. and Vitousek, P.M. (2004) Rapid nutrient cycling in leaf litter from invasive plants in 
Hawaii. Oecologia, (141), 612–619. 

Ashton, P.J. (2007) Riverine biodiversity conservation in South Africa: current situation and 
future prospects. Aquatic Conservation. Marine and Freshwater Ecosystems (17), 441–
445. 

Austin, A. T. and Vitousek, P. (2004) Nutrient dynamics on a precipitation gradient in Hawai'i, 
biogeochemical cycles in arid and semiarid ecosystems. Oecologia, (141), 221-235. 

Austin, A.T., Vivanco, L., Gonzalez-Arzac, A. and Perez, L.I. (2014) There‟s no place like home? 
An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial 
ecosystems. New Phytologist, (204), 307–314. 

Ayres, E., Steltzen, H., Simmons, B., Simpson, R.T., Steinweg, M.J., Wallenstein, M.D., Mellor, 
N., Parton, W.J., Moore, J.C. and Wall, D.H. (2009) Home – field advantage accelerates 
leaf litter decomposition in forests. Soil Biology and Biochemistry, 1–5. 

Bengtsson, J., Janion, C., Chown, S.L., Petter Leinaas, H. (2011) Variation in decomposition 
rates in the fynbos biome. Oecologia, (165), 225-235. 

Bengtsson, J., Janion, C., Chown, S.L., Petter Leinaas, H. (2012) Litter decomposition in fynbos 
vegetation. South Africa. Soil and Biochemistry, (47), 100-105. 

Blanchard, R. and Holmes, P.M. (2008) Riparian vegetation recovery after invasive alien tree 
clearance in the Fynbos Biome. South African Journal of Botany, (74), 421-431. 

Boddey, R.M., Peoples, M.B., Palmer, B. and Dart, P.J. (2000) Use of 15N natural abundance 
technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in 
Agroecosystems, (57), 235–270. 

Bonney, N. (2003) (2nd edition), What seed is that? Neville Bonney, Tantanoola, SA. 

Braatne, J.E., Mazeika, S., Sullivan, P. and Chamberlain, E. (2007) Leaf Decomposition and 
Stream Macroinvertebrates Colonisation of Japanese knotweed, on Invasive Plant 
Species. International Review of Hydriobiology, (92), 656–665. 

Brown, C. A. and Dallas, H. F. (1995) Eerste River, Western Cape: Situation Assessment of the 
Riverine Ecosystem. CSIR, Stellenbosch. 

Brown, C.A., Boucher, C., Pienaar, E. and Pemberton, E. (2004) Project Report: Effects of alien 
invasives on the Breede River. Department of Water Affairs and Forestry: 1-69. 

Stellenbosch University  https://scholar.sun.ac.za



91 

 

Bonada, N., Dole´dec, S. and Statzner, B. (2007) Taxonomic and biological trait differences of 
stream macroinvertebrate communities between mediterranean and temperate regions: 
implications for future climatic scenarios. Global Change Biology, (13), 1658–1671. 

Boyero, L., Barmuta, L. A., Ratnarajah, L., Schmidt, K. and Pearson. R. G. (2012) Effects of 
exotic riparian vegetation on leaf breakdown by shredders: a tropical– temperate 
comparison. Freshwater Science, (31), 296–303. 

Buddle, C. M., Langor, D. W., Pohl, G. R. and Spence, J. R. (2006). Arthropod responses to 
harvesting and wildfire: Implications for emulation of natural disturbance in forest 
management. Biological Conservation, (128), 346-357. 

Byren, B. A. and Davies, B. R. (1989) The effect of stream regulation on the physic-chemical 
properties of the Palmiet River, South Africa. Regulated Rivers. Research and 
Management, (3), 107–121. 

Caldeira, M. V. W., Schumacher, M. V. and Spathelf, P. (2002) Quantification of nutrient content 
in above-ground biomass of young Acacia mearnsii De Wild., provenance Bodalla. Annals 
of Forest Science, (59), 833-838. 

Callaway, R. M. and Ridenour, W. M. (2004) Novel weapons: invasive success and the evolution 
of increased competitive ability. Frontiers in Ecology and the Environment, (2), 436–443. 

Campbell, B.M. (1985) A classification of the mountain vegetation of the fynbos biome. Memoirs 
of the Botanical Survey of South Africa, (50), 23-109. 

Campbell, P. (2000) Wattle control. Plant Protection Research Institute, handbook no. 3, 
Pretoria. 

Chapin, F.S. and Shaver, G.R. (1989) Differences in growth and nutrient use among arctic plant 
growth forms. Functional Ecology, (3), 73–80. 

Chapin, F. S., Matson, P. A. and Mooney, H. A. (2002) Principles of terrestrial ecosystem 
ecology. Springer, New York, USA. 

Claeson, S.M., LeRoy, C.J., Barry, J.R. and Kuehn, K.A (2014) Impacts of invasive riparian 
knotweed on litter decomposition, aquatic fungi, and macroinvertebrates, Biological 
Invasions, (16), 1531–1544. 

Coates-Palgrave, K. (2002) Trees of Southern Africa. Struik Publishers, Cape Town. 

Cote, B. and J. O. Dawson. (1986) Autumnal changes in total nitrogen, salt-extractable proteins, 
and amino acids in leaves and adjacent bark of black alder, eastern cottonwood, and white 
basswood. Physiologia Plantarum, (6), 102–108. 

Cote, B., Vogel., C. S. and Dawson, J. O. (1989) Autumnal changes in tissue nitrogen of autumn 
olive, black alder, and eastern cottonwood. Plant and Soil, (118), 23–32. 

Cowling, R.M., Holmes, P.M. and Rebelo, A.G. (1992) Plant diversity and endemism. In: 
"Fynbos: Nutrients, fire and diversity". (Cowling RM, Ed.) pp. 62-112. Oxford 81.University 
Press, UK. 

Cowling, R.M., Rundel, P.W., Lamont, B.B., Arroyo, M.K. and Arianoutsou, M. (1996) Plant 
diversity in Mediterranean-climate regions. Trends in Ecology and Evolution, (11), 362–66. 

Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., 
Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Pardo, L. H., 
Peñuelas, J., Reich, P. B., Schuur, E. A. G., Stock, W. D., Templer, P. H., Virginia, R. A., 
Welker, J. M. and Wright, I. J. (2009) Global patterns of foliar nitrogen isotopes and their 
relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen 
availability. New Phytologist, (183), 980-992. 

Stellenbosch University  https://scholar.sun.ac.za



92 

 

Craine, J.M., Brookshire, E.N.J., Cramer, M.D., Hasselquist, N.J., Koba, K., Marin – Spiotta, E. 
and Wang, L. (2015) Ecological interpretations of nitrogen isotopes ratios of Terestrial 
plant and soils. Journal of Plant and Soil, 396 (1-2), 1–26. 

Cramer, M.D., Chimphango, S.B.M., van Cauter, A., Waldram, M.S. and Bond, W.J. (2007) 
Grass Competition Induces N2 fixation in some species of African Acacia. Journal of 
Ecology, (95), 1123–1133. 

Crous, C.J. (2010) Vulnerability of selected native and invasive woody species to streamflow 
variability in Western Cape fynbos riparian ecotones. MSc thesis. Stellenbosch University, 
South Africa. 

Dallas, H. F. and Day, J. A (1993). The Effect of Water Quality Variables on Riverine 
Ecosystems: A Review. Water Research Commission Report TT 61/93, Pretoria. 

D‟Antonio, C. and Meyerson, L.A. (2002) Exotic Plant Species as Problems and Solutions in 
Ecological Restoration: A Synthesis. Restoration Ecology, (10), 703-713. 

Day, J.A. and King, J.M. (1995) Geographical patterns, and their origins, in the dominance of 
major ions in South African rivers. South African Journal of Science, (91), 299–306. 

Day, J.A., Harrison, A.D. and de Moor, I.J. (2002b). Guides to the Freshwater Invertebrates of 
Southern Africa.Volume 9: Diptera. ISBN 1-86845-900-4. Water Research Commission 
Report No TT 201/02. 

Dell‟Porto, D.M., Costa, S.C, Araújo, A.P., Minho. and Abdalla., A.L. (2006) Effects of 
Condensed Tannin from Acacia mearnsii on Sheep Infected Naturally with Gastrointestinal 
Helminthes, A. Veterinary Parasitology, (15), 132-137. 

Davis, M.A., Chew, M.K., Hobbs, R.J., Lugo, A.E., Ewel, J.J., Vermeij, G.J., Brown, J.H., 
Rosenzweig, M.L., Gardener, M.R., Carroll, S.P., Thompson, K., Pickett, S.T.A., 
Stromberg, J.C., Del Tredici, P., Suding, K.N., Ehrenfeld, J.G., Grime, J.P., Mascaro, J. 
and Briggs, J.C. (2011) Don‟t judge species on their origins. Nature, (474), 153-154. 

de Moor, I.J., Day, J.A. and de Moor, F.C. (2003a) Guides to the Freshwater Invertebrates of 
Southern Africa.Volume 8: Insecta 2. ISBN 1 -77005-055-8. Water Research Commission 
Report No TT 214/03. 

de Moor, I.J., Day, J.A. and de Moor, F.C. (2003b) Guides to the Freshwater Invertebrates of 
Southern Africa.Volume 7: Insecta 1. ISBN 1 -77005-017-5. Water Research Commission 
Report No TT 207/03. 

de Moor, F.C. and Day, J.A. (2013) Aquatic biodiversity in the Mediterenean region of South 
Africa. Hydrolbiologia, (719), 237-268.  

Diaz, T., Martins-Louc, M. A., Sheppard., L. and Cruz., C. (2012) The strength of the biotic 
compartment in retaining nitrogen additions prevents nitrogen losses from a Mediterranean 
maquis. Biogeosciences, (9), 193–201. 

Drake, D. C. (2011) Invasive legumes fix N2 at high rates in riparian areas of an N-saturated, 
agricultural catchment. Journal of Ecology, (99), 515-523. 

Drenovsky, R.E. and Batten, K.M. (2007) Invasion by Aegilops triuncialis (barb goatgrass) slows 
carbon and nutrient cycling in a serpentine grassland. Biological Invasions. (9), 107–116. 

Dye P. and Jarmain C. (2004) Water use by black wattle (Acacia mearnsii): implications for the 
link between removal of invading trees and catchment streamflow response. CSIR Division 
of water, Environment and Forestry Technology. 40-43. 

Ehrenfeld, J.G. (2003) Effects of exotic plant invasions on soil nutrient cycling processes. 
Ecosystems, (6), 503-523. 

Stellenbosch University  https://scholar.sun.ac.za



93 

 

Escudero, A., Del Arco, J. M., Sanz, I. C. and Ayala, J. (1992) Effects of leaf longevity and 
retranslocation efficiency on the retention time of nutrients in the leaf biomass of different 
woody species. Oecologia, (90), 80-87. 

Evans, J., Oconnor G.E., Turner, G.L., Coventry, D.R., Fettell, N., Mahoney, J., Armstrong, E.L. 
and Walsgott D.N. (1989) N2 fixation and its value to soil N increase in lupin, field pea and 
other legumes in southeastern Australia. Australian Journal of Agricultural Research, (40), 
791–805. 

Evans, R. D. (2001) Physiological mechanisms influencing plant nitrogen isotope composition. 
Trends in Plant Science, (6), 121-126. 

Fife, D. N., Nambiar, E. K. S. and Saur, E. (2008) Retranslocation of foliar nutrients in evergreen 
tree species planted in a Mediterranean environment. Tree physiology, (28), 187-196. 

Freschet, G.T., Aerts, R. and Cornelissen, J.H.C. (2012) Multiple mechanisms for trait effects on 
litter decomposition: moving beyond home-field advantage with a new hypothesis. Journal 
of Ecology, (100), 619–630. 

Frissell, C.A., Liss, W.J., Warren, C.E. and Hurley, M.D. (1986) A hierarchical framework for 
stream habitat classification: viewing streams in a watershed context. Environmental 
Management, (10), 199-214. 

Fry, B. (2006) Stable Isotope Ecology. New York, Springer Science + Business Media. 

Furey, C., Tecco, P.A., Harquindequy, N.P., Giorgis, M.A. and Grossi, M. (2013) The importance 
of native and exotic plant identity and dominance on decomposition patterns in mountain 
woodlands of central Argentina. Octa Oecologica, 1–8. 

Galatowitsch, S. and Richardson, D.M. (2005) Riparian scrub recovery after clearing of invasive 
alien trees in headwater streams of the Western Cape, South Africa. Biological 
Conservation (12), 509-521. 

Gasith, A. and Resh, V. H. (1999) Streams in Mediterranean climate region: Abiotic influences 
and biotic responses to predictable seasonal events. Annual Review of Ecology, Evolution, 
and Systematics, (30), 51-81. 

Ghahramanzadeh, R. (2013) Efficient distinction of invasive aquatic plant species from non-
invasive related species using DNA barcoding. Molecular Ecology Resources, (13), 21-31. 

Gholz, H.L., Wedin, D.A., Smitherma, S.M., Harmon, M.E. and Parton, W.J. (2000) Longterm 
dynamics of pine and hardwood litter in contrasting environments: toward a global model 
of decomposition. Global Change Biology, (6), 751–765. 

Gießelmann, U.C., Martins, K.G., Brändle, M., Schädler, M., Marques, R. and Brandl, R. (2010) 
Diversity and ecosystem functioning: litter decomposition dynamics in the Atlantic 
Rainforest. Applied Soil Ecology, (46), 283–290. 

Goi, S.R., Sprent, J.I., James, E.K. and Jacob-Neto., J. (1993) Influence of nitrogen form and 
concentration on the nitrogen fixation of Acacia auriculiformis. Symbiosis, (14), 115-112. 

Goldblatt, P. and Manning, J. (2000) Cape Plants. A conspectus of the Cape flora of South 
Africa. Strelitzia 9. National Botanical Institute, Pretoria and Missouri Botanical Garden, 
Missouri. 

Grab, S. (2014) Spatio-temporal attributes of water temperature and macroinvertebrate 
assemblages in the headwaters of the Bushmans River, southern Drakensberg. Water SA, 
(40), 19-26. 

Graça, M. A. S., Ferreira R. C. F. and Coimbra, C. N. (2001) Litter processing along a stream 
gradient: the role of invertebrates and decomposers. Journal of North American 
Benthological Society, (20), 408–419. 

Stellenbosch University  https://scholar.sun.ac.za



94 

 

Graça, M.A.S, Canhoto, C, Abelho, M, Ferreira, V. and Encalada, A. (2010) Can we predict litter 
decomposition rates and the role of shredders across systems? Paper presented at the 
NABS 58th annual meeting, Sante Fe, NM.  

Gregory, S.V., Swanson, F.J., McKee, W.A., Cummins, K.W. (1991) An ecosystem perspective 
of riparian zones. Bioscience, (41), 540-551. 

Handley, L. L. and Raven, J. A. (1992) The use of natural abundance of nitrogen isotopes in 
plant physiology and ecology. Plant, Cell and Environment, (15), 965-985. 

He, H., Bleby, T.M., Veneklaas, E.J and Lambers, H. (2011) Dinitrogen – fixing Acacia species 
from phosphorous – impoverished soils resorb leaf phosphorous efficiency. Plant, Cell and 
Environment, (34), 2060 – 2070. 

Hellmann, C., Sutter, R., Rascher, K.G., Máguas, C., Correia, O. and Werner, C. (2011) Impact 
of an exotic N2-fixing Acacia on composition and N status of a native Mediterranean 
community. Acta Oecologica, (37), 43-50. 

Hickman, J.E., Ashton, I.W., Howe, K.M. and Lerdan, M.T. (2013) The native-invasive balance: 
implication for nutrient cycling in ecosystems. Oecologia, 1-10. 

Hoffman, M.T. and Mitchell, D.T. (1986) Root morphology of legume spp. in the south western 
Cape and the relationship of vesicular-arbuscular mycorrhizas with dry mass and 
phosphorus content of Acacia saligna seedlings. South African Journal of Botany, (52), 
316-320. 

Högberg, P. (1997) 15N natural abundance in soil-plant systems. New Phytologist, (137), 179-
204. 

Holmes, P.M., Esler, K.J., Richardson, D.M. and Witkowski, E.T.F. (2008) Guidelines for 
improved management of riparian zones invaded by alien plants in South Africa. South 
African Journal of Botany, (74), 538-552. 

Holomuzki, J.R. and Messier S.H. (1993) Habitat selection by the stream mayfly 
Paraleptophlebia guttata.  Journal of the North American Benthological Society, (12), 126–
135. 

Hood, G. W. and R. J. Naiman. (2000) Vulnerability of riparian zones to invasion by exotic 
vascular plants. Plant Ecology, (148), 105–114. 

Houlton, B.Z., Wang Y.P., Vitousek P.M. and Field, C.B. (2008) A unifying framework for 
dinitrogen fixation in the terrestrial. biosphere. Nature, (454), 327–334. 

Hussain, Q.A. Pandit, A.K. (2012) Macroinvertebrates in streams: A review of some ecological 
factors. International Journal of Fisheries and Aquaculture, (4), 114-123. 

Inagaki, M. and Ishizuka, S. (2011) Ecological Impact on Nitrogen and Phosphorous Cycling of a 
wide spread Fast growing Leguminous Tropical Forest plantation Tree species, Acacia 
mangium. Diversity, (3), 712-720. 

Jackson, W.P.U. (1990) Origins and Meanings of Names of South African Plant Genera. U.C.T. 
Printing Departnment., Cape Town. 

Jacob, M. (2010) Leaf litter decomposition in temperate deciduous forest stands with a 
decreasing fraction of beech (Fagus sylvatica).Oecologia, (164), 1083‐1094. 

Jacobs, S.M., Petit, N.E. and Naiman, R.J. (2006) Nitrogen fixation by the savanna tree 
Philenoptera violacea (Klotzsch) Schrire (Apple leave) of different ages in a semi-arid 
riparian landscape. South African Journal of Botany, (73), 163–167. 

Januasauskaite, D. and Straige, L. (2011) Leaf litter decomposition Differences between Alien 
and Native Maple species. Baltic Forestry, (17), 189–196. 

Stellenbosch University  https://scholar.sun.ac.za



95 

 

Jewell, M.D., Shipley, B., Paquette, A., Messier, C. and Reich, B.P. (2015) A trait-based test of 
home-field advantage in mixed-species tree litter decomposition. Annals of Botany, (105), 
1-8. 

Jo I, Fridley, J.D. and Frank, D.A. (2016) More of the same? In situ leaf and root decomposition 
rates do not vary between 80 native and nonnative deciduous forest species. New 
Phytologist, (209), 115–122. 

Juba, R. (2012) Determining leave nutrient stocks in one invasive and two native fynbos riparian 
species. Honours thesis (Unpublished). Stellenbosch University. Water Institute C/O 
Faculty of Science. 

King, J .M., Day, J.A., Henshall-Howard M.P. and Davies B.R. (1986) Particulate organic matter 
in a mountain stream in the south-western Cape, South Africa, Hydrobiologia, (154), 165-
187. 

King, J .M., Day, J.A., Henshall-Howard M.P. and Davies B.R. (1987) Leaf-pack dynamics in a 
south-western Cape mountain stream. Freshwater Biology, (18), 325-340. 

King, J.M. and Schael, D.M. (2001) Assessing the ecological relevance of a spatially-nested 
geomorphological hierarchy for river management. WRC report no. 754/1/01. Water 
Research Commission, Pretoria. 

Killingbeck, K.T. (1993a) Inefficient nitrogen resorption in genets of the actinorhizal nitrogen-
fixing shrub Comptonia peregrina – physiological ineptitude or evolutionary tradeoff. 
Oecologia, (94), 542–549. 

Killingbeck, K. T. (1996) Nutrients in Senesced Leaves: Keys to the Search for Potential 
Resorption and Resorption Proficiency. Ecology, (77), 1716-1727. 

Kueffer, C., Klinger, G., Zirfass, K., Schumacher, E., Edwards, P.J. and Guswell, S. (2008) 
Invasive trees show only weak potential to impact nutrient dynamics in phosphorous-poor 
tropical forest in Seychelles. Functional Ecology, (22), 359-366. 

Kuglerova, L., Garcia, L., Pardo, I., Mottiar. Y. and Richardson. J. S. (2017) Does leave litter 
from invasive plants contribute the same support of a stream ecosystem function as native 
vegetation? Ecosphere, (8), 1-18. 

Lambers, H., Raven, J.A., Shaver, G.R. and Smith, S.E. (2008a) Plant nutrient-acquisition 
strategies change with soil age. Trends in Ecology and Evolution, (23), 95–103. 

Lambers, H., Pons, T.L. and Chapin, F.S. (2008b) Plant physiological ecology, 2nd edn. 
Springer-Verlag, New York. 

Lambers, H., Brundrett, M. C., Raven, J. A. and Hopper, S. D. (2010) Plant mineral nutrition in 
ancient landscapes: high plant species diversity on infertile soils is linked to functional 
diversity for nutritional strategies. Plant and Soil, (334), 11-31. 

Lawrie, A.C. (1981) Nitrogen fixation by native Australian legumes. Australian Journal of Botany 
(29), 143-57. 

Le Maitre, D.C., van Wilgen, B.W., Gelderblom, C.M., Bailey, C., Chapman, R.A. and Nel, J.A. 
(2002) Invasive alien trees and water resources in South Africa: case studies of the costs 
and benefits of management. Forest Ecology and Management, (160), 143–159. 

Le Maitre, D.C., Gaertner, M., Marchante, E., Ens, E.J., Holmes, P.M., Pauchard, A., O‟Farrell, 
P.J., Rogers, A.M., Blanchard, R., Blignaut, J. and Richardson, D.M. (2011) Impacts of 
invasive Australian Acacias: implications for management and restoration. Diversity and 
Distributions, (17), 1015-1029. 

LeRoy, C.I. and Marks, J.C (2006) Litter quality, stream characteristics and litter diversity 
influence decomposition rates and macroinvertebrates, Freshwater Biology, (51), 605–617. 

Stellenbosch University  https://scholar.sun.ac.za



96 

 

Levine, J.M., Vila, M., D‟Antonio, C.M., Sukes, J.S., Grigulis, K. and Lavorel, S. (2003) 
Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal 
Society of London B, (270), 775-781. 

Liao, C. Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J. and Li, B. (2008) Altered 
ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New 
Phytologist, (177), 706–714. 

Lima, A.L.D.S., Zanella, F., Schiavianto, M.A. and Haddad, C.R.B. (2006) N availability and 
mechanisms of N conservation in deciduous and semideciduous tropical forest legume 
trees. Acta Botanica Brasilica, (20), 625–632. 

Lowe, S.R., Woodford, D.J., Impson, N.D and Day, J.A. (2008) The impact of invasive fish and 
invasive riparian plants on the invertebrate fauna of the Rondegat River, Cape Floristic 
Region, South Africa. African Journal of Aquatic Science, (33), 51–62. 

Maamri, A., Chergui, H. and Pattee, E. (1994) Allochthonous input of coarse particulate organic 
matter to a Moroccan mountain stream. Acta Oecologia, (15), 495-508. 

Maamri, A., Ba¨rlocher, F., Pattee, E. and Chergui, H. (2001) Fungal and bacterial colonization 
of Salix pedicellata leaves decaying in permanent and intermittent streams in eastern 
Morocco. International Review of Hydrobiology, (86), 337–348. 

Maoela, M.A. (2015) Tree health in near pristine, heavily invaded and restored riparian zones: 
the role of pests and fungal pathogens. Phd. Thesis. Stellenbosch University. 

Marchante, E., Kjoller, A., Struwe, S. and Freitas, H. (2008) Short and long-term impacts of 
Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune 
ecosystem. Applied Soil Ecology, (40), 210-217. 

Marchante, H., Freitas, H. and Hoffmann, J.H. (2010) Seed ecology of an invasive alien species, 
Acacia longifolia (Faba- ceae), in Portuguese dune ecosystems. American Journal of 
Botany, (97), 1-11. 

Martinelli, L.A., Piccolo, M.C., Townsend, A.R., Vitousek, P.M., Cuevas, E., McDowell, W., 
Robertson, G.P., Santos, O.C. and Treseder, K. (1999) Nitrogen stable isotopic 
composition of leaves and soil: tropical versus temperate forests. Biogeochemistry, (46), 
45–65. 

Maubane, J.T. (2016) Effects of burning of slash piles of Acacia spp. and Eucalyptus 
camaldulensis biomass on soil physicochemical properties within Western Cape riparian 
and terrestrial areas. Msc Thesis. Stellenbosch University. 

Meentemeyer, V. (1978) Macroclimate and lignin control of litter decomposition rates. Ecology, 
(59), 465–72. 

Meijninger, W.M.L. and Jarmain, C. (2014) Satellite-based annual evaporation estimates of 
invasive alien plant species and native vegetation in South Africa. Water SA, (40), 95-107. 

Milewski, A. and FitzPatrick, P. (2006) The pacific face of Fynbos? Veld and Flora, (92), 100-
101. 

Milton, S.J. (1981) Above-ground biomass of Australian acacias in the southern Cape, South 
Africa. South African Journal of Botany, (47), 701-716. 

Mitchell, D.T., Coley, P.G.F., Webb, S. and Allsopp, N. (1986) Litter fall and decomposition 
processes in the coastal fynbos vegetation, south-western Cape, South Africa. Journal of 
Ecology, (74), 977-993. 

Moncur, M.W., Moran, G.F., Boland, D.J. and Turner, J. (1989) Floral morphology and breeding 
systems of Acacia mearnsii De Wild., paper to workshop, Use of Australian Trees in China, 
Guangzhou, 266-276. 

Stellenbosch University  https://scholar.sun.ac.za



97 

 

Morris, T. L., Esler, K. J., Barger, N. N., Jacobs, S. M. and Cramer, M. D. (2011) 
Ecophysiological traits associated with the competitive ability of invasive Australian 
acacias. Diversity and Distributions, (17), 898–910. 

Mittermeier, R.A., Gil, P.R., Hoffman, M, Pilgrim, J, Brooks, T, Mittermeier, C.G., Lamoreux, J. 
and da Fonseca. G.A.B. (2005) Hotspots revisited: earth‟s biologically richest and most 
endangered terrestrial ecoregions. Conservation International and Agrupacion Sierra 
Madre, Monterrey, Cemex. 

Moyo, H.P.M. and Fatunbi, O. (2010) Utilitarian Perspective of the Invasion of Some South 
African Biomes by Acacia mearnsii. Global Journal of Environmental Research, (4), 6–17. 

Naiman, R.J. and Décamps, H. (1997) The ecology of interfaces: riparian zones. Annual Review 
of Ecology and Systematics, (28), 621-658. 

Naiman, R.J., Décamps, H. and McClain, M.E. (2005) Riparia: Ecology, Conservation and 
Management of Streamside Communities. Elsevier/Academic Press, San Diego. 

Naudé, M. (2012) Fynbos Riparian Biogeochemistry and Invasive Australian Acacias. M.Sc. 
Thesis. Stellenbosch University. 

Negrete-Yankelevich, S., Fragoso, C., Newton, A.C., Russell, G. and Heal, O.W. (2008) 
Species-specific characteristics of trees can determine the litter macroinvertebrate 
community and decomposition process below their canopies. Plant and Soil, (307), 83–97. 

Norby, R.J., Long, T.M., Hartz-Rubin., J.S. and O'Neill, E.G. (2000) Nitrogen resorption in 
senescing tree leaves in a warmer, CO2-enriched atmosphere. Journal of Plant and Soil, 
(224), 15-29. 

Nyoka, B.I. (2003) Biosecurity in Forestry: A case study on the status of invasive forest trees 
species in Southern Africa. Forest Biosecurity Working Paper FBS/1E. Forestry 
Department. FAO, Rome. 

Olson, J.S. (1963) Energy storage and the balance of producers and decomposers in ecological 
systems. Ecology. (44), 322–331. 

Palmer, E. and Pitman, N. (1972) Trees of southern Africa (3). Balkema, Cape Town. 

Parton, W.J., Silver, W.L., Burke, I.C., Grassens, L., Harman, M.E., Currie, W.S., King, J.Y., 
Adair, E.C., Brandt, L.A., Hart, S.C. and Fasth, B. (2007) Global-scale similarities in 
nitrogen release patterns during long-term decomposition. Science, (315), 361–364. 

Perez-Harguindeguy, N., Diaz, S., Cornelissen, J.H.C., Vendramini, F., Cabido, M. and 
Castellanos, A. (2000) Chemistry and toughness predict leaf litter decomposition rates 
over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil 
(218), 21–30. 

Petersen, R. C. and K. W. Cummins. (1974) Leaf processing in a woodland stream. Freshwater 
Biology, (4), 343–368. 

Pfautsch, S., Renneberg, H. and Bell, T. L (2008) Nitrogen uptake by Eucalyptus regnans and 
Acacia spp, - preference resource overlap and energetic costs. Tree and Physiology, (29), 
389-399. 

Potgieter, G. (2012) N and P limitation of fynbos plants and the nutritional status of legume 
habitats in the Cape Floristic Region. M.Sc Thesis. University of Cape Town, Department 
of Botany. 

Powell, K.I., Chase, J.M. and Knight, T.M. (2011) A synthesis of plant invasion effects on 
biodiversity across spatial scales. American Journal of Botany, (98), 539-548. 

Power, S. (2010) Soil P availability limits legume persistence and distribution in the fynbos of the 
Cape Floristic Region. M.Sc Thesis. Department of Botany, University of Cape Town. 

Stellenbosch University  https://scholar.sun.ac.za



98 

 

Prescott, C.E., Zabe, K.L.M., Staley, C.L. and Kabzems, R. (2000) Decomposition of broadleaf 
and needle litter in forests of British Columbia: influences of litter type, forest type, and 
litter mixtures. Canadian Journal of Forest Research, (30), 1742–1750. 

Pretorius, M.R., Esler, K.J., Holmes, P.M. and Prins, N. (2008) The effectiveness of active 
restoration following alien clearance in fynbos riparian zones and resilience of treatments 
to fire. South African Journal of Botany, (74), 517-525. 

Prins, N., Holmes, P.M. and Richardson, D.M. (2004) A reference framework for the restoration 
of riparian vegetation in the Western Cape, South Africa, degraded by invasive Australian 
Acacias. South African Journal of Botany, (70), 767-776. 

Rascher, K.G., Hellman, C., Maguas, C. and Werner, C. (2012) Community scale 15N 
isoscapes: tracing the spatial impact of an exotic N2-fixing invader. Ecology Letters, (15), 
484-491.  

Ratnam, J., Sankaran, M., Hanan, N., Grant, R. and Zambatis, N. (2008) Nutrient resorption 
patterns of plant functional groups in a tropical savanna: variation and functional 
significance. Oecologia, (1), 141-151. 

Rebelo, A.G., Boucher, C., Helme, N., Mucina, L. and Rutherford, M.C. (2006). Fynbos biome. 
In: Mucina, L., Rutherford, M.C. (Eds.), The Vegetation of South Africa, Lesotho and 
Swaziland. South African National Biodiversity Institute, Pretoria, South Africa. Strelitzia 
(19), 53-219. 

Reinecke, M.K., King, J.M., Holmes, P.M., Blanchard, R. and Malan, H.L. (2007) The nature and 
invasion of riparian vegetation zones in the South Western Cape. WRC report no. 
1407/1/07. Water Research Commission, Pretoria, pp 312. 

Reinecke, M.K., Pigot, A.L. and King, J.M. (2008) Spontaneous succession of riparian fynbos: Is 
unassisted recovery a viable restoration strategy? South African Journal of Botany (74), 
412-420. 

Reinecke, M.K., Esler, K., Brown, C. and King, J. (2013) Link between lateral riparian vegetation 
zones and flow. M.Sc. Thesis. University of Stellenbosch 

Reinhart, K. O. and VandeVoort, R. (2006) Effect of native and exotic leaf litter on 
macroinvertebrate communities and decomposition in a western Montana stream. Diversity 
and Distributions (12), 776–781. 

Rempel L.L., Richardson J.S. and Healey M.C. (2000) Macroinvertebrate community structure 
along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. 
Freshwater Biology, (45), 57–73.  

Richardson, D.M., Macdonald, I.A.W., Holmes, P.M. and Cowling, R.M. (1992) Plant and animal 
invasions. In: Cowling, R.M. (Ed.), The Ecology of Fynbos: Nutrients, Fire and Diversity. 
Oxford University Press, Cape Town, 271-308. 

Richardson, D.M., Pysek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D. and West. C.J. (2000) 
Naturalization and invasion of alien plants - concepts and definitions. Diversity and 
Distributions (6), 93-107. 

Richardson, D.M. and van Wilgen, B.W. (2004) Invasive alien plants in South Africa : how well 
do we understand the ecological impacts ? South African Journal of Botany, (100), 45–53. 

Richardson, D.M., Holmes, P.M., Esler, K.J., Galatowitsch, S.M., Stromberg, J.C., Kirkman, 
S.P., Pysˇek, P. and Hobbs, R.J. (2007) Riparian vegetation: degradation, alien plant 
invasions and restoration prospects. Diversity and Distributions, (13), 126–139. 

Richardson, A.E., Barea, J.M., McNeill, A.M., Prigent-Combaret, C. (2009a) Acquisition of 
phosphorus and nitrogen in the rhizosphere and plant growth promotion by 
microorganisms. Journal of Plant and Soil, (321), 305–339. 

Stellenbosch University  https://scholar.sun.ac.za



99 

 

Robinson, D. (2001) δ15N as an integrator of the nitrogen cycle. Trends in Ecology and 
Evolution, (3), 153-162.  

Richardson, D.M., Carruthers, J., Hui, C., Impson, F.A.C., Robertson, M.P., Rouget, M., Le 
Roux, J.J. and Wilson, J.R.U. (2011) Human-mediated introductions of Australian acacias– 
a global experiment in biogeography. Diversity and Distributions, (17), 771–787. 

Rodrı´guez-Echeverrı´a, S., Le Roux, J., Criso´ stomo, J. and Ndlovu, J. (2011) Jack-of-all-
trades and master of many? How does associated rhizobial diversity influence the 
colonization success of Australian Acacia species? Diversity and Distributions, (17), 946–
957. 

Rourke, J.P. (1971) Van Riebeeck's Wild Almond - Odd Man Out of the South African 
Proteaceae. Veld and Flora. (1), 53-55. 

Saharjo, B.H. and Watanbe, H. (2009) Estimation of litterfall and seed production of Acacia 
mangium in a forest plantation in South Sumatra, Indonesia. Forest Ecology and 
Management, (130), 265-268. 

Samways, M. J., Sharratt, N. J. and Simaika, J. P. (2011) Effect of alien riparian vegetation and 
its removal on a highly endemic river macroinvertebrate community. Biological Invasions, 
(13), 1305-1324. 

Santiago, L.S. (2007) Extending the leaf economics spectrum to decomposition: evidence from a 
tropical forest. Ecology (88), 1126–1131. 

Sardans, J., Roda, F and Peñuelas, J. (2004). Phosphorus limitation and competitive capacities 
of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils. Plant Ecology, 
(174), 305–317. 

Schulze, E.D., Gebauer, G., Ziegler, H. and Lange, O.L. (1991) Estimates of nitrogen fixation by 
trees on an aridity gradient in Namibia. Oecologia, (88), 451–455. 

Schael, D.M. (2005) Distributions of physical habitats and benthic macroinvertebrates in 
Western Cape headwater streams at multiple spatial and temporal scales. PhD thesis, 
University of Cape Town, Cape Town. 239pp. 

Shearer, G. and Kohl, D.H. (1986) N2-fixation in field settings – estimations based on natural N-
15 abundance. Australian Journal of Plant Physiology, (13), 699–756. 

Sieben, E.J.J. (2003) The Riparian Vegetation of the Hottentots Holland Mountains. Unpublished 
PhD Dissertation, University of Stellenbosch. pp. 379. 

Sieben, E.J.J. and Reinecke, M.K. (2008) Description of reference conditions for restoration 
projects of riparian vegetation from the species-rich fynbos biome. South African Journal of 
Botany, (74), 401-411 

Siddique I., Engel V.L., Parrotta J.A., Lamb D., Nardoto G.B., Ometto J., Martinelli L.A. and 
Schmidt S. (2008) Dominance of legume trees alters nutrient relations in mixed species 
forest restoration plantings within seven years. Biogeochemistry 88, 89–101. 

Smith, C.A. (1966) Common Names of South African Plants. Dept. of Agricultural Technical 
Services, Botanical Survey Memoir No 35, Government Printer. 

Sponseller, R.A. and Benfield, E.F. (2001) Influences of land use on leaf breakdown in southern 
Appalachian headwater streams: a multiple-scale analysis. Journal of the Northern 
American Benthological Society, (20), 44–59. 

Sprent, J. I. (2009) Legume nodulation: a global perspective. Wiley-Blackwell, Chichester, UK. 

Stals, R. and de Moor, I.J. (2007). Guides to the Freshwater Invertebrates of Southern Africa. 
Volume 10: Coleoptera. ISBN 978-1-77005-629-9. Water Research Commission Report 
No TT 320/07. 

Stellenbosch University  https://scholar.sun.ac.za



100 

 

Staelens, J., Nachtergale, L., Luyssaert, S. and Lust, N. (2003) A model of wind-influenced leave 
litterfall in a mixed hardwood forest. Journal of Forest Research, (33), 201-209. 

Sterner, R.W. and Elser, J.J. (2002) Ecological stoichiometry: the biology of elements from 
molecules to the biosphere. Princeton University Press, Princeton, USA. 

Stock, W. D. and Lewis, O. A. M., (1986) Soil nitrogen and the role of fire as a mineralizing agent 
in a South African coastal fynbos ecosystem. Journal of Ecology, (74), 317-328. 

Stock, W.D. and Allsopp, N. (1992) Functional perspective of ecosystems. In: The ecology of 
fynbos - nutrients, fire and diversity, ed. R.M. Cowling, Oxford University Press, Cape 
Town, South Africa, 206-225. 

Stock, W. D., Wienand, K. T. and Baker, A. C. (1995) Impacts of invading N₂-fixing Acacia 
species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil 
incubation studies and 15N natural abundance values. Oecologia, (101), 375–382. 

Tang, L.Y., Han, W.X. and Chen, Y.H. (2013) Resorption proficiency and efficiency of leave 
nutrients in woody plants in eastern China. Journal of Plant Ecology (6), 408–17. 

Terai, F. (2012) The effects of invasive trees in riparian zones and implications for management 
and restoration. Phd Thesis. Stellenbosch University. 

Tharme, R.E. and C.A., Brown. (2004) Preliminary assessment of the ecological flow 
requirements of the Du Toit‟s River, Franschhoek. Final report to Cape Nature 
Conservation. Freshwater Research Unit, University of Cape Town, South Africa. 42 pp. 

Tharme, R.E. (2010) Ecologically relevant flow for reverine benthic macroinvertebrates: 
characterization and application. Phd Thesis. University of Cape Town.  

Thieme, M. L., Abell, R., Stiassny, M. L. J., Skelton, P., Lehner, B., Teugels, G. G., Dinerstein, 
E., Toham, A. K., Burgess, N. and Olson, D. (2005) Freshwater ecoregions of Africa and 
Madagascar, a conservation assessment. Island Press, Washington. 

Thomas, V., Moll, E. and Grant, R. (2008) SAPPI tree spotting Cape: from coast to Kalahari. 
Jacana Media, Johannesburg. 

Thuiller W., Midgley G. F. and Hughes G. (2006b) Endemic species and ecosystem sensitivity to 
climate change in Namibia. Global Change Biology. (12), 759–76. 

Tolsma, D. J., Ernst, W. H. O., Verweij, R. A. and Vooijs, R. (1987) Seasonal Variation of 
Nutrient Concentrations in a Semi-Arid Savanna Ecosystem in Botswana. Journal of 
Ecology, (75), 755-770. 

Tye, D.R.C. and Drake, D.C. (2012) An exotic Australian Acacia fixes more N than a coexisting 
indigenous Acacia in a South African riparian zone. Plant Ecology, (213), 251–257. 

Tye, D. (2013) Nutrient and biomass allocation strategies in an invasive Australian Acacia and a 
co – occuring native Acacia in South Africa. M.Sc Thesis. University of Witswatersrand, 
School of Animal Plant and Environmental Science. 

Van der Colff, D., Dreyer, L.L., Valetine, A. and Roets, F. (2017) Comparison of nutrient cycling 
abilities between the invasive Acacia mearnsii and the native Virgilia divaricata trees 
growing sympatrically in forest margins in South Africa. South African Journal of Botany, 
(111), 358–264. 

Van der Wal, A., Geydan, T.D., Kuyper, T.W. and De Boer, W. (2013) A thready affair: linking 
fungal diversity and community dynamics to terrestrial decomposition processes. FEMS 
Microbiology Reviews, (37), 477–494. 

van Heerwaarden, L.M., Toet, S. and Aerts, R. (2003) Nitrogen and phosphorus resorption 
efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. 
Journal of Ecology, (91), 1060–70. 

Stellenbosch University  https://scholar.sun.ac.za



101 

 

van Wilgen, B.W., Le Maitre, D.C. and Cowling, R.M. (1998) Ecosystem services, efficiency, 
sustainability and equity. South Africa's Working for Water Programme. Trends in Ecology 
and Evolution, (13), 378-378. 

van Wilgen, B.W., Dyer, C., Hoffmann, J.H., Ivey, P., Le Maitre, D.C., Richardson, D.M., Rouget, 
M., Wannenburgh, A. and Wilson, J.R.U. (2011) National-scale strategic approaches for 
managing introduced plants: insights from Australian Acacias in South Africa. Diversity and 
Distributions, (17), 1060-1075. 

Veen, G.F., Freschet, G.T., Ordonez, A. and Wardle, D.A. (2015) Litter quality and 
environmental controls of home-field advantage effects on litter decomposition. Oikos, 
(124), 187–195. 

Versfeld, D.B., Le Maitre D.C. and Chapman R.A. (1998). Alien invading plants and water 
resources in South Africa: a preliminary assessment. WRC report: TT99/98, Water 
Research Commission, Pretoria. 

Vitousek, P.M., D‟Antonio, C.M., Loope, L.L., Rejmanek, M. and Westbrooks, R. (1997b) 
Introduced species: a significant component of human-caused global change. N.Z. Journal 
of Ecology, (21), 1–16. 

Vivanco, L. and Austin, A.T. (2008) Tree species identity alters forest litter decomposition 

through long‐term plant and soil interactions in Patagonia, Argentina. Journal of Ecology, 
(96), 727-736. 

Wall, D.H., Bradford, M.A., John M.G.St., Trofymow, J.A., Behan-Pelletier, V., Bignell D.E., 
Dangerfield, M., Parton, W.J., Rusek. J., Voigt, W., Wolters, V., Gardel, H.Z., Ayuke, F., 
Bashford, R., Beljakova, O.I., Bohlen, P.J., Brauman, A., Flemming, S., Henschel, J.R., 
Johnson, D.L., Jones, T.H., Kovarova, M., Kranabetter, J.M., Kutny, L., Lin, K.-C., Maryati, 
M., Masse, D., Pokarzhevskii A., Rahman, H., Sabrá, M.G., Salamon, J.-A., Swift, M.J., 
Varela, A., Vasconcelos, H.L., White, D. and Zou. X. (2008) Global decomposition 
experiment shows soil animal impacts on decomposition are climate-dependent. Global 
Change Biology, (14), 1-17. 

Webster, J. R. and J. B. Waide. (1982) Effects of forest clearcutting on leaf breakdown in a 
southern Appalachian stream. Freshwater Biology, (12), 331–344. 

Webster, J.R. and Benfield, E.F. (1986) Vascular plant breakdown in freshwater ecosystems. 
Annual Review of Ecology and Systematics, (17), 567–594. 

Wiener, K. (2018) Quantification of the impacts of invasive N2-fixing Acacia mearnsii on relative 
sediment loads and nutrient dynamics in mountain streams of the CFR, South Africa.MSc 
thesis. Stellenbosch University. 

Wishart, M. J. and Davies, B. R. (2003) Beyond catchment considerations in the conservation of 
lotic biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, (13) 429–
437. 

Witkowski, E.T.F. (1991a) Effects of invasive alien Acacias on nutrient cycling in the coastal 
lowlands of the Cape Fynbos. Journal of Applied Ecology, (28), 1-15. 

Witkowski, E.T.F. (1994) Growth of seedlings of the invasive, Acacia saligna and Acacia Cyclops 
in relation to soil phosphorus. Austral Ecology, (19), 290-296. 

Wright. I.J. and Westoby, M. (2003) Nutrient concentration, resorption and lifespan: leaf traits of 
Australian sclerophyll species. Functional Ecology, (17), 10–9. 

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z. and Bongers, F. (2004) The 
worldwide leave economics spectrum. Nature, (428), 821–827. 

Wu, Y. (2005) Ground water Recharge Estimation in Table Mountain Group Aquifer Systems 
with a case study of Kammanassie Area. Ph.D Thesis (unpublished).University of the 
Western Cape. Cape Town. South Africa. 

Stellenbosch University  https://scholar.sun.ac.za



102 

 

Yelenik, S.G., Stock, W.D. and Richardson, D.M. (2004) Ecosystem level impacts of invasive 
Acacia saligna in the South African fynbos. Restoration Ecology, (12), 44-51. 

Yelenik, S.G., Stock, W.D. and Richardson, D.M. (2007) Functional group identity does not 
predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem 
function. Biological Invasions, (9), 117-125. 

Zhang, L., Wang, H., Zou, J.W., Rogers, W.E. and Siemann, E. (2014) Non-Native Plant Litter 
Enhances Soil Carbon Dioxide Emissions in an Invaded Annual Grassland. PLoS ONE, 
(9), 1-8. 

 

Stellenbosch University  https://scholar.sun.ac.za



103 

 

APPENDICES 

Appendix A: Representation of flowering season (early) at the (a) Du Toit‟s River,  invaded site on the 

20th October 2016 showing pale yellow flowers and late flowering season at the (b) Wit River invaded site 

on the 11th November 2016 showing orange flowers. 

 

Appendix B: Represent the daily temperature (˚C) at the Wit River, Bainskloof Pass for near pristine (a) 

and invaded sites (b). Measurements were made from the 4
th
 November 2016 until the 6

th
 February 2017. 
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Appendix C: Represent the daily temperature (˚C) at the Du Toit‟s River, Franschhoek Pass for near 

pristine (a) and invaded sites (b). Measurements were made from the 4
th
 November 2016 until the 6

th
 

February 2017. 
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Appendix D: Table comprises of measurements taken of discharge (m
3
 s

-1
), pH and EC at each 

incubation day of leaf litter bag collections from the 4
th
 November 2016 until 6

th
 February 2017 at the Wit 

River (a) and Du Toit‟s River (b) at different sites.  

 
Site: Wit River (A) 

Treatment: Near pristine (a) 

Incubation days: 0 14 28 48 64 80 102 

Discharge (m
3
 s

-1
) 0.79 0.78 0.77 0.77 0.81 0.76 0.76 

pH 4.62 4.69 4.42 4.74 4.6 4.73 4.47 

EC (conductivity) 75.10 75.20 75.10 74.90 74.80 74.90 75.20 

Treatment: Invaded site (b)        

Discharge (m
3
 s

-1
) 0.77 0.70 0.67 0.67 0.67 0.66 0.66 

pH 4.59 4.42 4.41 4.80 4.60 5.07 4.33 

EC (conductivity) 75.00 74.60 74.40 74.60 74.80 74.70 74.40 
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Site: Du Toit’s River (B) 

Treatment: Near pristine (a) 

Incubation days: 0 14 28 48 64 80 102 

Discharge (m
3
 s

-1
) 0.40 0.30 0.21 0.17 0.17 0.18 0.16 

pH 4.85 4.76 4.88 4.92 5.08 4.96 5.12 

EC (conductivity) 74.60 74.20 69.70 74.40 74.60 67.30 73.50 

Treatment: Invaded site (b) 
       

Discharge (m
3
 s

-1
) 0.71 0.59 0.51 0.47 0.44 0.44 0.43 

pH 4.56 4.50 4.69 5.10 4.82 4.68 4.54 

EC (conductivity) 74.20 74.10 73.10 74.40 73.40 70.20 74.10 

 

Stellenbosch University  https://scholar.sun.ac.za



107 

 

Appendix E:  Richness abundance (taxa and functional feeding groups) of macroinvertebrate assemblage species during the sampling events in near pristine 
and invaded reaches at the Wit River, Bainskloof Pass. The data present different litter types (FS = Fynbos species; AM = A. mearnsii) over weeks. HFA indicates 
the home field species. 
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Adenophlebia Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Anchytarsus Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Anthripsodes Deposit Feeder 0 0 0 1 0 1 0 0 0 0 1 4 1 0 1 0 0 2 6 1 1 0 1 0 2 0 1 1 0 1 0 4 2 2 1 6 0 0 0

Aprionyx Deposit Feeder 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Aspidytidytes Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

Athericidae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baetidae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Barbarochthon Grazer 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0

Caenis Deposit Feeder 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Castanophlebia Deposit Feeder 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0

Ceratopogoninae Grazer 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chlorolestes Predator 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Chloroniella peringueyi Predator 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chloroterpes Deposit Feeder 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 1 1 0 0 0 0 2 2 2 2 0 0 0 2 0 1 1 4

Cloeon Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ctenelmis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dolophilodes Filter Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dryopidae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dryops lutulentus Scraper 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Ecnomus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ellattoneura Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Elmidae larvae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enochrus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eukiefferiella Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Helodidae Grazer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydraenidae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Hydrochus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydrophilinae Predator 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Laccobius Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Larsia Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptecho helicotheca Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptelmis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Leptocerus Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 0 1 0 0 0 0

Leptophledae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lycosidae Predator 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nanocladius Scraper 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notiothemis Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notonemouridae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Orectogyrus Predator 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Orthocladiinae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Pachyelmis convexa Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Paramelitidae Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Paramerina Predator 0 0 0 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

Paraphaenocladius Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Parecnomina Predator 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Phyllomacromia Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prosthetops brincki Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rapmus Scraper 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sericostomatidae Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Setodes barnardi Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Simulidae Filter Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Strina aequalis Scraper 0 0 1 0 0 0 0 0 0 0 6 0 3 0 1 0 0 0 4 0 7 0 0 2 4 1 0 2 1 3 4 1 0 4 1 3 0 0 1

Sympetrum fonscolombii Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Synchortus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tanypodinae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thienemaniella Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 2

2 3 2 4 1 1 1 3 3 3 9 4 5 3 4 3 6 7 10 4 11 4 3 6 6 2 2 7 8 11 8 8 3 7 5 10 3 1 8

6

near pristine invaded

38 36

4

Near pristine invaded

34 51Richness per site 11 12

Wit River: (Weeks/Interval) 2

Treatment: near pristine/invaded Near pristine invaded

Richness per sampling week and litter type
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Taxa FFG

FS   

(HFA)

FS 

(HFA)

FS 

(HFA)

FS 

(HFA) AM AM AM AM

AM 

(HFA)

AM 

(HFA)

AM 

(HFA)

AM 

(HFA) FS FS FS

FS 

(HFA)

FS 

(HFA)

FS 

(HFA)

FS 

(HFA) AM AM AM AM

AM 

(HFA)

AM 

(HFA)

AM 

(HFA)

AM 

(HFA) FS FS FS FS

FS 

(HFA)

FS 

(HFA)

FS 

(HFA)

FS   

(HFA) AM AM AM AM

AM 

(HFA)

AM 

(HFA)

AM 

(HFA)

AM 

(HFA) FS FS FS FS

Adenophlebia Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Anchytarsus Scraper 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0

Anthripsodes Deposit Feeder 0 0 0 0 0 0 0 3 1 1 2 1 1 2 1 0 3 0 1 7 4 0 5 7 0 4 2 5 5 3 12 3 0 2 3 0 2 6 1 7 16 9 4 4 9 2 3

Aprionyx Deposit Feeder 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 4 2 1 1 3 0 5 1

Aspidytidytes Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Athericidae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Baetidae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Barbarochthon Grazer 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 4 3 2 2 0 0 0 0 0 0 4 1 3 3 1 2 0 3 1 1 1 0 1 0 2 0 0 0 0

Caenis Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 4 1 5 2 6 6 1 4 0 0 0 1 0 0 1 0 1 7 1 0 1 3 1 1

Castanophlebia Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 1 0 0 0 0 0

Ceratopogoninae Grazer 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Chlorolestes Predator 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chloroniella peringueyi Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chloroterpes Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 2 1 3 4 1 0 1 0 2 3 0 2 8 0 3 3 3 1 1 1 0 0 0 1

Cloeon Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ctenelmis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Dolophilodes Filter Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dryopidae Scraper 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dryops lutulentus Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ecnomus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ellattoneura Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Elmidae larvae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enochrus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eukiefferiella Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Helodidae Grazer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydraenidae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydrochus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydrophilinae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Laccobius Scraper 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Larsia Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptecho helicotheca Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0

Leptelmis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptocerus Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptophledae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lycosidae Predator 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nanocladius Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notiothemis Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notonemouridae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Orectogyrus Predator 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Orthocladiinae Scraper 0 0 0 0 0 0 0 1 2 0 0 1 1 2 0 0 0 1 0 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0 0 3 3 0 0 1 3 0 1 3 0 1 2

Pachyelmis convexa Scraper 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Paramelitidae Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Paramerina Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0

Paraphaenocladius Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Parecnomina Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Phyllomacromia Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prosthetops brincki Scraper 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rapmus Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sericostomatidae Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Setodes barnardi Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Simulidae Filter Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Strina aequalis Scraper 5 4 7 9 2 0 2 7 6 2 4 4 8 5 14 2 10 19 12 39 20 18 46 0 12 11 18 5 1 20 18 2 5 6 2 5 11 2 12 5 5 1 6 4 0 8 4

Sympetrum fonscolombii Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Synchortus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Tanypodinae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thienemaniella Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 6 7 11 2 2 3 16 10 3 7 8 11 10 15 2 14 24 19 49 30 21 51 15 17 28 27 18 16 28 42 17 10 13 14 20 18 15 20 23 35 16 16 17 ## 18 12

Wit River: (Weeks/Interval)

Treatment: near pristine/invaded

Richness per sampling week and litter type
Richness per site 14954 64 210 191 127

8 10 12

near pristine Invaded near pristine invaded near pristine invaded
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Appendix F:  Richness abundance (taxa and functional feeding groups) of macroinvertebrate assemblage species during the sampling events in near pristine 
and invaded reaches at the Du Toit‟s River, Franschhoek Pass. The data present different litter types (FS = Fynbos species; AM = A. mearnsii) over weeks. HFA 
indicates the home field species. 

 

 

Taxa FFG

 FS     

(HFA) 

FS 

(HFA) AM

AM 

(HFA)

AM 

(HFA) FS FS

FS 

(HFA)

FS 

(HFA) AM AM

A

M

A

M

AM 

(HFA)

AM 

(HFA)

FS 

(HFA)

FS 

(HFA) AM AM

AM 

(HFA)

AM 

(HFA)

AM 

(HFA) FS FS FS FS

Adenophlebia Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Anchytarsus Scraper 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Anthripsodes Deposit Feeder 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1

Aprionyx Deposit Feeder 1 1 1 0 0 0 1 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

Aspidytidytes Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Athericidae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baetidae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Barbarochthon Grazer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Caenis Deposit Feeder 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

Castanophlebia Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ceratopogoninae Grazer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Chlorolestes Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chloroniella peringueyi Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chloroterpes Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cloeon Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ctenelmis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dolophilodes Filter Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Dryopidae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dryops lutulentus Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ecnomus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 0 0 0

Ellattoneura Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Elmidae larvae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enochrus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eukiefferiella Deposit Feeder 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Helodidae Grazer 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydraenidae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydrochus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydrophilinae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

Laccobius Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Larsia Predator 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptecho helicotheca Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptelmis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptocerus Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptophlebiidae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lycosidae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nanocladius Scraper 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notiothemis Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notonemouridae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Orectogyrus Predator 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0

Orthocladiinae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pachyelmis convexa Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Paramelitidae Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Paramerina Predator 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0

Paraphaenocladius Scraper 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Parecnomina Predator 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Phyllomacromia Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prosthetops brinck i Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rapmus Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sericostomatidae Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Setodes barnardi Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Simulidae Filter Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Strina aequalis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0

Sympetrum fonscolombii Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Synchortus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tanypodinae Predator 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Thienemaniella Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 1 0 2 2 2

1 2 3 2 3 1 1 2 2 2 1 1 1 2 4 5 1 5 1 7 1 5 1 3 3 4

24

Richness per sampling week and litter type

Richness per site 13 9 6 12

Treatment: near pristine/invaded Near pristine invaded Near pristine invaded Near pristine invaded

Du Toit's River: Weeks/Intervals 2 4 6
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Taxa FFG

FS 

(HFA)

FS 

(HFA)

FS 

(HFA)

FS 

(HFA)

AM 

(HFA)

AM 

(HFA)

AM 

(HFA)

FS 

(HFA)

FS 

(HFA)

AM 

(HFA) FS FS FS FS

FS 

(HFA) AM AM

AM 

(HFA)

AM 

(HFA) FS FS FS FS

Adenophlebia Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Anchytarsus Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Anthripsodes Deposit Feeder 0 0 0 0 0 0 0 0 0 2 1 0 2 0 0 0 1 1 0 1 0 0 3

Aprionyx Deposit Feeder 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Aspidytidytes Predator 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Athericidae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Baetidae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Barbarochthon Grazer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Caenis Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 9 20 10 0 1 9 13 19

Castanophlebia Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ceratopogoninae Grazer 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

Chlorolestes Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chloroniella peringueyi Predator 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chloroterpes Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cloeon Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ctenelmis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dolophilodes Filter Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dryopidae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dryops lutulentus Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ecnomus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

Ellattoneura Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Elmidae larvae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enochrus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eukiefferiella Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Helodidae Grazer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydraenidae Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydrochus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hydrophilinae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Laccobius Scraper 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Larsia Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptecho helicotheca Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptelmis Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptocerus Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Leptophlebiidae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lycosidae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nanocladius Scraper 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notiothemis Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notonemouridae Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Orectogyrus Predator 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Orthocladiinae Scraper 0 0 0 0 0 0 0 0 0 1 1 2 1 3 1 2 5 3 1 1 0 1 1

Pachyelmis convexa Scraper 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Paramelitidae Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Paramerina Predator 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 2 0 0 0

Paraphaenocladius Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Parecnomina Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Phyllomacromia Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prosthetops brinck i Scraper 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rapmus Scraper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sericostomatidae Shredder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Setodes barnardi Deposit Feeder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Simulidae Filter Feeder 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Strina aequalis Scraper 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Sympetrum fonscolombii Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Synchortus Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tanypodinae Predator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Thienemaniella Scraper 0 5 0 0 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 9 1 1 6 2 3 1 3 3 2 2 4 6 2 11 28 14 2 8 10 16 23

Du Toit's River: Weeks/Intervals

Richness per sampling week and litter type

Treatment: near pristine/invaded

7314 11 4 17 41Richness per site

Near pristine invaded Near pristine invaded

12

Near pristine invaded

8 10

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



111 

 

Stellenbosch University  https://scholar.sun.ac.za



112 

 

 

Stellenbosch University  https://scholar.sun.ac.za




