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Abstract 

Background: Cold chain management (CCM) is an important aspect of biobanking 

operation. However challenges such as constant power failure, limited access to dry ice 

and liquid nitrogen, transport logistics and courier delays especially in Africa becomes a 

major challenge. Ensuring samples are maintained at the proper temperature throughout 

all processes is imperative to maximal long term viability and usability. Thus we consider 

room temperature storage (RTS) technologies as an innovative, cost effective and green 

alternative to cold chain logistics. 

 

Methods: Various room temperature storage technologies were evaluated for the 

stabilization and storage of whole blood DNA and RNA, buffy coat, genomic DNA and 

urine DNA. The stabilizers include the Biomatrica liquid gard technology and dry matrix 

technology as well as DNAgenotek Hemagene buffy-coat stabilizers, Paxgene RNA and 

Norgen urine tubes. Samples were stored with and without a stabilizer under different 

temperature conditions namely room temperature, 45
o
C,-80

o
C, -20

o
C and liquid nitrogen (-

196
o
C) over different time periods to determine effect on sample integrity and quality. At 

the end of each time point DNA/RNA was extracted and the integrity of the samples 

determined by assessing the concentration, purity and integrity.  Further downstream 

analysis such as polymerase chain reaction (PCR), quantitative real time PCR and DNA 

sequencing was conducted. In addition, a shipping cost analysis between satellite sites in 

African and our biobank was done to compare frozen and room temperature shipping. 

 

Results The study results show that sample integrity/quality for biospecimens stored at 

room temperature with stabilizers were comparable and more cost effective than cold 

chain storage systems. In addition some stabilizers showed better stabilizing properties 

than others. 

 

Conclusion: Room temperature storage provides an innovative and cost effective method 

of storage and shipping to cold chain management systems (CCM). Green technologies 

forms a small part of biobanking operations however its results would be beneficial as low 

energy options for biobanking are particular critical in low resource settings which have 

infrastructural challenges. In turn, it would also be a more cost-effective option for the 
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transport and storage of human samples collected at various sites all over the world or at 

difficult out of reach places. 

 

Opsomming 

Agtergrond: Koue ketting bestuur (KKB) is 'n belangrike aspek van Biobank 

bedrywighede, maar uitdagings soos konstante kragonderbrekings, beperkte toegang tot 

droë ys en vloeibare stikstof, vervoer logistiek en koerier vertragings veral in Afrika is 'n 

groot uitdaging. Om te verseker dat monsters in stand gehou word by die regte 

temperatuur, in die hele proses, is dit noodsaaklik om lang lewensvatbaarheid en 

bruikbaarheid van monsters te maksimiseer. Dus kyk ons na kamertemperatuur stoor 

tegnologie as 'n innoverende, koste-effektiewe en groen alternatief vir koue ketting 

logistiek. 

 

Metodes: Verskeie kamertemperatuur stoor tegnologie is geëvalueer vir die stabilisering 

en stoor van heelbloed DNA en RNA, “buffy coat”, genomiese DNA en uriene DNA. Die 

stabiliseerders sluit in die Biomatrica vloeibare beskerm-tegnologie en droë matriks 

tegnologie asook DNAgenotek, Hemagene “buffy coat” stabiliseerders, Paxgene RNA en 

Norgen urienbuise. Monsters is gestoor met en sonder 'n stabiliseerder by verskillende 

temperature naamlik kamertemperatuur, 45
o
C, -80

o
C, -20

o
C en in vloeibare stikstof (-

196
o
C) oor verskillende tydperke om die uitwerking op monster integriteit en kwaliteit te 

bepaal. Aan die einde van elke tydperk is DNA / RNA geisoleer en die integriteit, kwaliteit 

en konsentrasie van elke monsters is bepaal en geëvalueer. Verdere stroomaf ontleding 

soos Polimerase Kettingreaksie (PKR), kwantitatiewe “real-time” PKR en DNA 

volgordebepaling is gedoen. Hierby is 'n koste-ontleding tussen satelliet gebiede in Afrika 

en ons Biobank gedoen om bevrore en kamertemperatuur monsters wat aangestuur is na 

die lande te vergelyk. 

 

Resultate: Die studie wys dat die integriteit/kwaliteit van monsters wat by kamer 

temperatuur gestoor was in stabiliseerders, vergelykbaar en meer koste-doeltreffend as 

koueketting stoor stelsels was. Daarbenewens het 'n paar stabiliseerders beter 

stabiliserende eienskappe as ander getoon. 
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Gevolgtrekking: Kamertemperatuur berging bied 'n innoverende en meer koste-

effektiewe metode vir die stoor en stuur van monsters as koue ketting bestuurstelsels. 

Groen tegnologie vorm 'n kleindeel van Biobank bedrywighede, maar die resultate sal 

egter voordelig wees as lae energie-opsies vir Biobank bedrywighede, en is besonder 

krities in  lae hulpbron instellings wat uitdagings met infrastruktuur ervaar. Op sy beurt, sou 

dit ook 'n meer koste-effektiewe opsie wees vir die vervoer en berging van menslike 

monsters na verskillende plekke oor die wêreld of in moeilike bereikbare plekke  
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Chapter 1-Introduction and Literature review 

1.1. Introduction 

 

The rapid growth of genomics research has led to a unprecedented need for storage of 

large numbers  of fit for purpose biological specimens, including Deoxyribonucleic 

Acid(DNA) and Ribonucleic acid(RNA), proteins, cells and tissues (Wan et al. 2010) 

Current methodologies for maintaining frozen nucleic acid (NA) biospecimens require 

freezers, space and energy rendering the technology expensive without guaranteeing long 

term viability if not stored appropriately according to biospecimen type (Clermont et al. 

2014). In South Africa (SA) and many African countries transportation and storage of these 

biospecimens comes with its own challenges as increasing cost, constant power failures 

and transportation challenges all adds to pre-analytical variables that influence 

biospecimen integrity. Thus ensuring that biospecimens are maintained at the proper 

temperatures throughout all pre-analytical and analytical processes is imperative to 

maximal long-term viability and usability. 

In recent years, new technologies for the stabilization and storage of biological 

biospecimens at room temperature (RT) have been developed. While these technologies 

differ in their implementation, the overall paradigm remains the same, to provide long-term 

stabilization and storage of biological biospecimens (Howlett et al. 2014) as an alternative 

to expensive cold chain management (CCM). Thus, the current study focuses on the 

evaluation and validation of RTS technologies to provide a cost effective, cheaper and 

greener alternative to CCM. Stabilization products from Biomatrica, DNAgenotek, Norgen 

and QIAGEN were evaluated for their stabilization at RT properties. For the purpose of this 

thesis, a condensed and simplified overview will be given on the importance and need of 

biobanking infrastructure, the challenges associated with the science of biobanking and 

transportation globally and within Africa and the various room temperature storage (RTS) 

products evaluated in order to provide context for the subsequent discussion. 

 

1.2 Biobanking – a complex science 

 

A biobank can be broadly defined as ‘‘a facility for the collection, preservation, storage and 

supply of biological biospecimens and associated data, which follows standardized 

operating procedures (SOP’s) and provides bio-material for scientific and clinical use” 

(Watson 2014). Biospecimens from biobanks are used for genomic research applications, 
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translational research and personalised medicine. A biobank must therefore be consistent 

as biospecimens need to be processed and stored appropriately for use in later assays 

over years. 

 

To date, the rapidly expanding era of pharmocogenomics and proteomic research 

promises tangible solutions to help alleviate health burdens. Genomics research 

specifically has experienced great advances over the past decade as witnessed by the 

completion of the human genome in 2003. The field has been driven by the belief that 

understanding the human genome, that of pathogens, and inter-individual genetic 

variability would result in radical advances in medicine (Matimba et al. 2008). However, it 

would require large scale genomics studies of good quality, fit for purpose biospecimens in 

statistically relevant numbers with its associated clinical data to ensure sustainable 

research and diagnostics in the era of personalised medicine. 

 

Currently, genomic research studies specifically in SA and Africa is being hindered due to 

the lack of representation of our unique genetic profiles in the HapMap or 1000 Genome 

project for example. Despite being grouped into defined populations, high level of human 

genetic variation have been observed in our African populations and only hints at the 

number of diverse ethnic populations that reside within the African continent (Warnich et 

al. 2011; Lu et al. 2014).Therefore, there is a need to establish the genetic and 

pharmocogenetics profiles of our own unique ethnic populations. Knowledge regarding the 

genetic diversity, homogeneity and admixture of various population groups within Africa 

would allow us to understand our evolutionary background which in turn will help to shed 

light on disease aetiology by translating it in clinical applications which in turn would aid in 

public health benefits. 

 

This is where biobanks came into play as it forms an integral role as an essential resource. 

If properly designed, maintained and governed to ensure compliance to global and local 

standardized ethical, social, and legal policies, procedures and protocols frameworks, a 

biobank that serves as 'honest brokers' could contribute significantly to addressing 

important questions on national, continental and global health issues. Furthermore, 

biobanking has become more than just the storage of biospecimens but has evolved and 

become a complex science with operations ranging from biospecimen logistic 

management which include advice on pre-analytical variables, collection, shipping, 
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processing, and quality control (QC) and storage. A laboratory information management 

system (LIMS) and quality management system (QMS) underlies all of these operations. 

 

1.3. Global Biobanking – a network for harmonization 

 

To date, there is a global increase in the reliance on biobanks which are seen as huge 

investment to support research initiatives as access to high quality biospecimens from 

various populations is required for clinical and basic research but lacks high biospecimen 

volumes. This is especially observed in the pharma industries that have their own private 

biobanks for clinical trial purposes but also for drug development initiatives. The 

importance of such infrastructure is further highlighted by the availability of a number of 

international resources and societies which promote harmonization of biobanking 

operational procedures and best practices which is an essential element that enables 

biobanks to exchange and pool clinical data and biospecimens. Furthermore, this so-called 

interoperability is the foundation of successful global biobanking. Rather than demanding 

complete uniformity among biobanks, harmonization is a more flexible approach aimed at 

ensuring the effective interchange of valid information and biospecimens (Harris et al. 

2012). 

 

The International Society for Biological and Environmental Repositories (ISBER) is one 

global forum that addresses harmonization of scientific, technical, legal, and ethical issues 

relevant to repositories of biological and environmental specimens. ISBER 

(http://www.isber.org/) is a global organization that creates opportunities for sharing ideas 

and innovations in biobanking and harmonizes approaches to evolving challenges 

associated with biological and environmental repositories. ISBER fosters collaboration, 

creates education and training opportunities, provides an international showcase for state-

of-the art policies, processes, and research findings, and innovative technologies, 

products, and services. Together, these activities promote best practices that cut across 

the broad range of repositories that ISBER serves (Siefers 2014). Thus implementation 

and adhering to ISBER best practices should be a minimal requirement for all biobanks 

and/or collections to aid harmonization aspects (Isber.org, 2016). In addition, other 

international resources and societies which help in standardizing and harmonization of 

biobanking activities also include the European, Middle Eastern, and African Society of 

Biopreservation and Biobanking (ESBB- https://esbb.org/)a regional chapter of ISBER, 

National cancer institute (NCI - https://biospecimens.cancer.gov/practices/) and the 
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Biorepositories and Biospecimen Research Branch (BBRB). Recently, the College of 

American Pathologists (CAP) has also developed a biobanking accreditation program to 

allow for accreditation of biobanking operations.(Biopreservation And 2012; Anon 2011) 

 

1.4. Biobanking in Africa 

 

The completion of the Human Genome Project has broadened our understanding of 

genome biology, genomics and diseases. Similarly, the 1000 genome project shed more 

light on genetic variants as structural variants are implicated in numerous diseases and 

make up the majority of varying nucleotides among human genomes  (Sudmant et al. 

2015). Human history has also advanced tremendously. Technological advances coupled 

with significant cost reductions in genomic research has yielded novel insights into disease 

aetiology, diagnosis, and therapy for some of the world’s most intractable and devastating 

diseases including malaria, human immunodeficiency virus/acquired immunodeficiency 

syndrome (HIV/AIDS), tuberculosis (TB), cancer, and diabetes. SA, with a population of 60 

million inhabitants, has one of the highest burdens of infectious disease, predominantly 

driven by the syndemic of HIV and TB and a growing problem of non-communicable and 

metabolic disease syndromes. This creates a highly vulnerable and susceptible population 

that requires a focused research approach in order to find indigenous solutions through 

national, continental, and international collaborations (Abayomi et al. 2013).Yet, despite 

the burden of infectious diseases and more recently, non-communicable diseases (NCDs) 

observed in Africa, Africans themselves have only participated minimally in genomics 

research (Warnich et al. 2011). Of the thousands of genome-wide association studies 

(GWASs) that have been conducted globally, only seven (for HIV susceptibility, malaria, 

TB, and podoconiosis) have been conducted exclusively on African participants (Rotimi et 

al. 2014).This raised concerns for African genetic scientists and Rotimi et al re-

emphasised this in 2014 and stated that if the lack of genomics research involving Africans 

persists, the potential health and economic benefits emanating from genomic science may 

elude an entire continent (Rotimi et al. 2014). 

 

1.4.1. Establishment of H3Africa Initiative (H3A Biobank program) 

 

In order to position Africa as a vital resource and a recognized scientific hub to enable 

genomic research capacity, the Human Heredity and Health in Africa (H3Africa) initiative 

was founded In June 2010 (http://h3africa.org/). This was born out of a partnership among 

Stellenbosch University  https://scholar.sun.ac.za



5 
 

the U.S. National Institutes of Health (NIH), the UK-based Wellcome Trust and the African 

Society of Human Genetics (AfSHG) and was based on recommendations in a white paper 

written by two H3Africa communicable and non-communicable diseases working groups 

(WG’s) following the 2009 AfSHG meeting in Cameroon(H3 Africa Working Group 

2011).The H3Africa program provided funding for collaborative centres, research projects, 

societal implications research as well as biorepositories. Over the period of 2012-2014, 

The H3Africa biobank program has funded four African biobanks in phase 1 with two being 

in SA namely, the - National Health Laboratory Services (NHLS) Stellenbosch University 

Biobank (NSB), the Clinical Laboratory Services (CLS) in Johannesburg, the Institute of 

Human Virology Nigeria-H3A-Biorepository (I-HAB) and the Integrated Biorepository of 

H3Africa in Uganda. The H3Africa consortium seeks to harness genomics technologies to 

investigate diseases pertinent to African patients with the aim of fostering collaboration 

between scientists in Africa and elsewhere. In addition, of ethical importance is that 

H3Africa builds equitable partnership between researchers and other key stakeholders 

which helps in building strong research systems. The initiative was also a means to 

counter exploitation and promote mutual respect and trust and offer and opportunity to 

ensure that research is responsive to local health needs and that data interpretation is 

contextualised(de Vries et al. 2015).This consortium not only improves infrastructure and 

promote research within Africa, but may also lead to increased collaboration both within 

Africa and the rest of the world. As the H3Africa project intends to increase the number of 

biobanks across Africa, there is a need to ensure that there are harmonious legal and 

ethical guidelines on the storage of biological biospecimens across the African continent. 

Efforts are also made to ensure that there is uniformity of governance of biobanks 

throughout Africa which would allow for easy transfer of biological biospecimens 

throughout the continent and ultimately encourage collaboration (Staunton & Moodley 

2016; H3 Africa Working Group 2011) 

 

1.5 Fit for purpose biospecimens – The importance of biospecimen integrity 

 

As stated above fit for purpose biospecimens in statistical relevant numbers is essential for 

genomic and transcriptional research. Thus, maintaining sample integrity is very critical for 

a biobank. with horrible downstream effects if the biospecimen integrity was to be affected 

by continuous power failures and/or transportation challenges for example. Literature 

clearly shows for example that cancer researchers only obtain 39% samples of sufficient 

numbers while 47% of samples are of satisfactory quality (Massett et al. 2011). Given this 

Stellenbosch University  https://scholar.sun.ac.za



6 
 

statistics, one can conclude that any variable that can be introduced during processes 

such as biospecimens transportation, collection, processing, storage and analysis are all 

sources of bias in research that can lead to distorted results. In turn, these effects due to 

low quality samples cause researchers to question their findings. This highlights the 

importance of sample integrity and maintaining these precious biological resources 

especially from a biobank perspective. Loss of sample integrity is greatly increased by 

chemical and enzymatic activity, freeze thaw cycles, microorganism activity as well as 

harsh environmental factors such as UV light exposure, humidity and high temperatures. 

However the degree and spectrum of sample integrity loss would depend on the sample 

source and the type of environment to which it was exposed to. Thus to ensure that 

biospecimens stability is maintained, factors such as biospecimens type, time of collection, 

containers used, preservatives and other additives, transport means, length of transit time 

and storage of biological biospecimens need to be taken into account. Quality is the 

conformance to standards and biological specimens must have quality control (QC) 

checks to determine their purity for downstream analysis and storage. Thus, biospecimen 

integrity must be maintained to ensure good quality specimens for analysis. Appropriate 

size for aliquots must be determined before storage to limit the frequent freeze-thaw 

cycles. Incorrect and incomplete purification procedures can also leave residual nucleic 

tissue behind that can interfere with the accuracy of a given assay. Any form of 

degradation, corruption, or damage can reduce the number of intact DNA templates until 

the biospecimen size is too small for amplification. Like DNA, the accuracy of gene 

expression evaluation is recognised to be influenced by the quantity and quality of starting 

RNA. Purity and integrity of RNA are critical elements for the overall success of RNA-

based analyses. Starting with low quality RNA may strongly compromise the results of 

downstream applications which are often labour-intensive, time-consuming and highly 

expensive (Fleige & Pfaffl 2006). 

 

1.6. Transport logistics challenges on the African continent 

 

Environmental factors plays a big role in loss of sample integrity, one can imagine that 

transport logistics of biological biospecimens globally but more specifically on the African 

landscape would be a big challenge as the climate ranges from tropical to subarctic on its 

highest peaks. In turn, 60% of the entire land surface consists of drylands and deserts 

making Africa the hottest continent on earth. In addition, poor infrastructure such as 

problematic road transportation, lack of regular power supply, limited access to proper cold 
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storage facilities, extreme weather conditions, the lack of suitable transportation packaging 

material and refrigerants such as dry ice, the lack of experience and knowledge of correct 

methods for packaging biological material, long delays to obtain necessary permits to 

export/import biological material, unreliable and inconsistent custom’s situations, lack of 

proper cold storage facilities at some airports, high-priced transport costs, irregular flight 

schedules, as well as a lack of International Air Transport Association (IATA) trained airline 

and biobank staff are all factors that may hinder smooth and easy sample transportation 

within Africa. Thus when seeking to regulate biospecimen temperature during shipping, the 

shipping time, distance, climate, season, method of transportation, and regulations as well 

as the type of biospecimens and their intended use should be considered(Anon 

2011).Climate change is an environmental factor that cannot be controlled during shipping 

of biological specimen and according to FedEx, environmental temperature can be as high 

as 60°C depending on the time of the year (Howlett et al.2014). Thus to ensure controlled 

temperature of the package itself, proper packaging is essential to maintain biospecimen 

integrity during transportation. Validated packaging material and efficient packaging 

techniques protect biospecimens during transit, unexpected flight cancellations as well as 

custom delays (Howlett et al. 2014). These packaging materials have been validated and 

tested according to IATA regulations and are thus very expensive. 

 

1.6.1. International Air Transport Association (IATA) dangerous goods regulations 

 

IATA is the air industry’s global trade association with a mission to represent, lead and 

serve the airline industry (Iata.org, 2016). IATA has regulations on packaging and 

transport of biological specimens. Most biological biospecimens are classified in the 

Infectious substances in Category B, exempt or Category C. Human or animal material 

including but not limited to excreta, secreta, blood and its components, tissue and tissue 

fluids, and body parts, being transported for purposes of research, diagnosis, 

investigational activities, disease treatment and prevention are assigned to UN3373 and 

their proper shipping name is ‘Biological Substances, Category B’ and IATA Packing 

Instruction 650 needs to be followed for UN3373 shipments. Packaging must be of good 

quality, strong enough to withstand the shocks and loadings normally encountered during 

transport. Packaging must be constructed and closed so as to prevent any loss of contents 

that might be caused under normal conditions of transport, by vibration, or by changes in 

temperature, humidity or pressure. The packaging must consist of three components: a 

primary receptacle, a secondary packaging and a rigid outer packaging (Figure 1). Primary 
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receptacles must be packed in secondary packaging in such a way that under normal 

conditions of transport, they cannot break, be punctured or leak their contents into the 

secondary packaging. Secondary packaging must be secured in outer packaging with 

suitable cushioning material. Any leakage of the contents must not compromise the 

integrity of the cushioning material or of the outer packaging. 

 

FIGURE 1.1 IATA validated packaging of biospecimens (IATA, 2011) 

 

With regards to transport of biological specimens using the cold chain management (CCM) 

systems, IATA ensures that ice or dry ice must be placed outside the secondary packaging 

or in the outer packaging or an over pack. Interior supports must be provided to secure the 

secondary packaging in the original position after the ice or dry ice has dissipated. If ice is 

used, the outside packaging or over pack must be leak proof. If dry ice is used, the 

packaging must be designed and constructed to permit the release of carbon dioxide gas 

to prevent a build-up of pressure that could rupture the packaging. The primary receptacle 

and the secondary packaging must maintain their integrity at the temperature of the 

refrigerant used as well as the temperatures and the pressures, which could result if 

refrigeration were to be lost (IATA, 2011). These rules are compulsory and need to be 

adhered to otherwise it could result in enormous fines to researchers and institutions. Thus 

it is compulsory for all employees/researchers/laboratory staff and those involved in clinical 

trials who pack dangerous goods for air transport to be aware of the requirements of the 

IATA Dangerous Goods Regulations before packaging these substances. All staff thus 

needs to undergo accredited training before performing relevant duties (renewable every 2 
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years). Furthermore, training records must be maintained and be available on request by 

the Civil Aviation Safety Authority. 

 

In Africa, lack of packaging materials, lack of experience and knowledge on how to 

package biological materials and the cost associated with packaging materials poses a 

significant problem to the transport logistics. Although, IATA provides training on how to 

package and transport biospecimens, these type of training are still very expensive. An 

alternative way of transportation of biological biospecimens other than CCM is needed 

thus the investigations into room temperature storage stabilization. Room temperature 

storage and/or transportation alternatives will aid in improving biospecimens stability and 

protection but also helps removes the need for dangerous refrigerants such as dry ice 

thus, making packaging easier and more affordable to biobanks and/or diagnostic 

laboratories within Africa but also globally.  

 

1.7. Cold chain management (CCM) and Biobank Storage 

 

Ensuring biospecimens are maintained at the proper temperature throughout all pre-

analytical and analytical processes are imperative to maximal long-term viability and 

usability. Likewise, the movement of biospecimens between physical locations is a 

necessary part of laboratory/biobanking, whether by walking, road, air and/or sea. Thus 

the necessary steps should also be in place to maintain the required constant 

temperatures depending on the biospecimen type. Traditionally, for CCM one requires 

ultra-low freezers (-80
o
C) or liquid nitrogen (LN2,-196

o
C) dewars or freezers to maintain 

long term integrity of biospecimens. Cold inhibits destructive chemical reactions such as 

oxidation as well as degradation caused by enzyme activity. Cold also inhibits the growth 

of any contaminating bacteria and molds (Howlett et al. 2014). Thus to ensure proper 

preservation and protection of valuable biospecimens, a well-developed and reliable 

infrastructure that adheres to international guidelines and best practices as mentioned 

above is required.  

Key infrastructure needs for biobanking operations include the availability of, efficient 

transport logistics, the availability of LN2 and dry ice as well as the location of the biobank 

in terms of climate conditions and constant power. In case of short-term electricity 

shortages, backup generators and energy storage devices are important to ensure a 

stable power supply for biorepository operations. In order to minimize the risk of 
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degradation and/or loss of biological samples a risk management plan needs to be in 

place. Thus, all critical equipment, LN2 and mechanical storage must be connected to 

alarms, back-up generators and UPS, which would be under constant surveillance to allow 

for intervention in cases of power failure and other mechanical emergencies. As is the 

case of SA and many of the African countries where power supply is unstable and power 

failure has become a major problem. In SA, loadshedding has become a way of life as 

Eskom tries to cope with electricity demands; however this poses a risk for public health 

facilities as well as the biobanks, especially for the cold chain management aspect of 

operations. In general, the colder the better for long term storage. However, CCM can be 

non-practical and expensive, requiring a lot of space, manpower, large number of freezers 

and back-up generators and if biospecimens need to be transported frozen, it may be 

difficult to maintain them in that state (Howlettet al. 2014). 

If these factors are still maintained and, contingency plans and disaster recovery are not in 

place in a laboratory and/or biobank set up then in the event of disasters, there is 

significant loss of biospecimen integrity which aids to biospecimen loss with horrible 

downstream effects. One such example that highlighted the need for research institutions 

to have business continuity and disaster recovery plans in place is Hurricane Sandy, which 

devastated large parts of New York City and the surrounding area. From a laboratory and 

biobank perspective, hundreds of thousands of refrigerated and frozen biological samples 

(decades of research) were at risk of being lost or destroyed due to electrical power 

outages in these areas (Hager 2014). 

 

Due to these abovementioned challenges, an alternative, more innovative, cost-effective 

and green alternative logistic as well as storage strategy needs to be investigated as part 

of a transportation logistics and storage solution in comparison to CCM. Thus, RTS 

technologies were explored as a low energy option compared to CCM and logistics as it 

would play an essential role in low resource settings which have infrastructural challenges 

due to numerous complications with regards to power failure as well as the unavailability of 

dry ice and LN2 in certain parts of SA and Africa and the cost associated with CCM. In 

addition, CCM of biospecimens is very expensive with regards to power, availability of dry 

ice and LN2, the need for heating, ventilation, and air conditioning (HVAC) and the usage 

of CO2 tanks for backup purposes. RTS requires low space, no need for HVAC, no 

associated cost for CO2 usage and electricity’s, except for the cost of a dehumidifier to 

maintain low humidity and remove moisture from air as part of the storage solution. 
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Likewise shipping at ambient temperatures would also be ideal and more cost effective. 

While DNA is very robust and stable, and transportation within 24-48 hours is allowed, we 

have to anticipate the challenges associated with transportation within SA and Africa, 

where ambient temperatures can rise to over 40 degrees Celsius. The risk of exposure to 

such extreme conditions in addition to possible delays at customs will increase the risk of  

nucleic acid (NA) degradation if it’s not kept in a temperature controlled enclosed 

environment. These will have downstream effect on diagnostic assays and skew results 

resulting in increased pricing for the laboratory to repeat assays and prolonged turnaround 

time. In anticipation of these potential scenarios, we propose that extracted DNA/RNA or 

buffy coats from blood or whole blood as a whole as well as cells can be stored in a 

stabilizing solution at room temperature, which allows batching and subsequent 

transportation at ambient temperature as well as provide an alternative backup storage 

adding to built-in risk management plans. 

 

1.8. Room temperature storage technologies 

 

RTS technology enables safe storage of biological material at room temperature (RT) 

preventing the degradation of biological materials at RT and thus eliminating the need for 

CCM and frozen shipping thus providing a cost‐effective alternative (Howlett et al. 2014). 

Various products involved in RTS will be considered and evaluated.  

 

1.8.1. Biomatrica  

 

One such product included is the synthetic chemistry-based stabilization science called the 

BiomatricaSampleMatrix® technology. This science is based on the principles of 

extremophile biologics of long time surviving multicellular organisms in dry environments 

via a process called anhydrobiosis (meaning “life without water”), or the tolerance of these 

organisms to dessication that enables their survival in a dry state for up to 120 years. 

Anhydrobiotic organisms (such as tardigrades and brine shrimp) can protect their complex 

cellular systems in a dried arrested state, and can be revived by simple rehydration. The 

basic molecular stabilization technology has been successfully applied to the stabilization 

of DNA, RNA, bacterial clones, proteins and complex biospecimens such as blood, buffy 

coat, cells and tissue. The stabilization technology is widely used in to prevent degradation 

of bio-molecules during transport and long term storage at ambient and elevated 
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temperatures. It was shown that this storage media forms a thermostable barrier during 

the drying process and “shrink wraps” and protects against degradation (Wan et al., 2009). 

These products can be used from sample collection, through transport, access and 

storage and on various samples types that includes DNA, RNA, proteins blood, buffy coat, 

saliva or cells and tissue. It has two types of technologies, the Liquid GARD-technology, 

more appropriate for collection and transportation and the Dry Stable technology, which is 

more appropriate for the transportation, analysis and storage purposes. The process is 

simple and straightforward as the archiving aspect of this technology only requires a dry-

down step and storage in a low humidity environment which along with the stabilizer 

protect samples from hydrolysis, oxidation and microbial growth. Various Biomatrica 

products and their uses include: 

 

A. DNAGard®Blood for the collection and stabilization of DNA in whole blood for a period 

of 14months. 

B. RNAGard®Blood system technology, which is designed for the collection, preservation 

and purification of RNA from whole blood biospecimens. Preservation is effective for 14 

days at RT and 1 month at 4°C.  

C. DNAGard®Saliva is also designed for collection, preservation and shipping of saliva 

biospecimens for DNA isolation and analysis. The preservation period is 2 years at RT.  

D. DNAStable® and/or Plus is specifically for the protection of purified DNA from 

degradation for storage at RT. Storage can be either in liquid or dried down state. This 

long term storage of DNA has been demonstrated for 30years accelerated aging and 

approx. 4years real time. 

E. RNA Stable® protects purified RNA from degradation for storage at RT for 12years 

accelerated aging and 2.5years real time.  

F. DNA Stable Blood protect DNA in whole blood and buffy coat from degradation for 

storage at RT. DNA is preserved at ambient temperature for at least 12 years. 

G. DNAGard® tissues and cells also stabilize DNA in human cells and tissues at RT for 6 

months. 

 

Most of these products have been tested via accelerated aging which is based on the 

Arrhenius equation which states that ‘reaction rates double with every 10°C increase in 

temperature. For example, a biospecimen left at ambient RT (15-25°C) for 5 years would 

have the same level of degradation as a biospecimen placed at 50°C for 37.5 weeks. The 
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application of the Arrhenius equation enables different industries to accurately accelerate 

product aging and support their shelf life claims (biomatrica. Inc n.d.) 

 

1.8.2. GenVault’s GenTegra 

 

Another RT storage alternative is GenVault’s GenTegra DNA® which is an inorganic 

mineral matrix with oxidation protection and antimicrobial activity for storage of purified 

DNA at RT. GenTegra DNA® is supplied as a transparent coating at the bottom of each 

GenTegra DNA tube. Purified DNA can be added to the GenTegra tube and dried down in 

a laminar flow hood or GenVault’s FastDryer, a boxed enclosure with built-in fans. 

Recovery of DNA also occurs with the addition of water(Wan et al. 2010). GenTegra RNA 

is also available and stabilises RNA biospecimens at ambient temperatures in a dry state. 

 

A study done by Wan et al. (2010) compared the integrity and quality of DNA stored at RT 

using both the Biomatrica’s DNA Biospecimen Matrix and GenVault’s GenTegra DNA 

technologies against DNA stored in a −20°C freezer by performing downstream testing 

with short range PCR, long range PCR, DNA sequencing, and SNP microarrays. They 

also tested Biomatrica’s RNAstable product for its ability to preserve RNA at RT for use in 

a quantitative reverse transcription PCR assay. Human genomic DNA from 8 different 

whole blood biospecimens was extracted according to the manufacturer’s instructions for a 

commercial extraction kit. To assess DNA quality, biospecimens were respectively stored 

for 3 weeks at RT with Biospecimen Matrix and GenTegra and at −20°C. Subsequently the 

integrity was checked on a 2% agarose gel to compare band intensity and size. The 

results showed that RT stored DNA did not degrade and remained in good condition 

compared to the frozen controls. In addition, the DNA yield and DNA concentration was 

also measured before and after RT storage. The median percent DNA recovery of 

BiospecimenMatrix and GenTegra stored biospecimens was excellent at 103% and 116%, 

respectively. The authors observed that some biospecimens had greater than 100% 

recovery rate and ascribed this to variances in Nanodrop measurement. They also noted 

that RT storage did not alter the A260/A280 ratio, but lowered the A260/A230 ratio which 

most likely could be explained by the fact that both Biomatrica’s and GenVault’s DNA-

preserving compounds show strong absorbance at the 230 nm wavelength, but minimal 

absorbance at 260 nm and 280 nm. Therefore, the decreased A260/A230 reflects a 

spectrophotometric property of the inorganic preservative compounds rather than unknown 

contaminants. Likewise short range and long range PCR for RT storage showed 
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comparable band intensity and size with the frozen controls. In addition, DNA sequences 

obtained from short range PCR using BiospecimenMatrix and GenTegra stored DNA were 

compared to frozen control DNA and the traces of the RT stored biospecimens showed 

clear peaks with very low background noise. For the RNAstable, total RNA was extracted 

from skin tissue biospecimens using a ProScientific homogenizer and QiagenRNeasy 

extraction kit. RNA was quantified and 500 ng of RNA was aliquoted into the Biomatrica 

RNAstable tubes and the remaining RNA was stored at −80°C. After 11 days of 

Biomatrica-based RT storage, RNA quality and yield of 3 biospecimens was compared to 

−80°C frozen controls using an Agilent 2100 bioanalyzer. As compared to pre-stored RNA 

biospecimens, frozen and Biomatrica stored biospecimens had similar RNA Integrity 

Number (RIN) values, indicative of high quality RNA. This study showed that NA integrity 

can be maintained at RT for 3weeks. However, it failed to show long term stability of 

biospecimens as mentioned by manufacturers because biospecimens were only preserved 

for 3weeks. Thus, to determine long term storage potential, stability studies with long 

stabilization time should be explored.  

 

1.8.3. DNAGenotek HemaGene buffy coat DNA 

 

HemaGene buffy coat DNA (HG-BCD) by DNAGenotek is another RT stabilizer solution 

that stabilizes high molecular weight DNA in buffy coat at ambient temperature. This 

technology offers reliable, RT preservation of DNA in buffy coat biospecimens for the 

recovery of high molecular weight DNA. A 0.5 mL buffy coat biospecimen stored in HG-

BCD can withstand multiple freeze-thaw cycles with minimal DNA loss and no degradation 

compared to the substantial DNA loss incurred after multiple freeze-thaw cycles of an 

unprotected buffy coat biospecimens (Bouevitch et al. 2013). Other products by 

DNAGenotek are the Oragene DNA and RNA self-collection saliva kits. Numerous studies 

confirms that DNA extracted from Oragene saliva biospecimens result in DNA of high 

integrity suitable for performing downstream analysis such as PCR, SNP, genotyping and 

next generation sequencing (NGS). A study conducted in 2010 by Bahlo, M. et al. stated 

“…saliva collected using the Oragene kit provides good-quality genomic DNA … 

comparable to blood as a template for SNP genotyping on the Illumina platform (Bahlo et 

al. 2010)Similarly, another study by Nunes et al showed that an 8month saliva 

biospecimen stored at RT in Oragene solution does not affect DNA quantity or quality 

(Nunes et al. 2012). Saliva biospecimens for this study were collected with an Oragene™ 

DNA Self-Collection Kit from 4,110 subjects aged 14–15 years. The biospecimens were 
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processed in two aliquots with an 8-month interval between them. Quantitative and 

qualitative evaluations were carried out in 20% of the biospecimens by spectrophotometry 

and genotyping and descriptive analyses and paired t-tests were performed. The mean 

volume of saliva collected was 2.2 mL per subject, yielding on average 184.8 μg DNA per 

kit. Most biospecimen showed a Ratio of OD differences (RAT) between 1.6 and 1.8 in the 

qualitative evaluation. The evaluation of DNA quality by TaqMan®, High Resolution 

Melting (HRM), and restriction fragment length polymorphism-PCR (RFLP-PCR) showed a 

rate of success of up to 98% of the biospecimens. The biospecimen store time did not 

reduce either the quantity or quality of DNA extracted with the Oragene kit. 

 

1.8.4. Imagene DNAshell® and RNAshell®  

 

DNAshell® and RNAshell® by Imagene are minicapsules that preserve DNA and RNA 

from their main degradation factors (water, oxygen, and light) by maintaining an anhydrous 

and anoxic atmosphere in a hermetic manner. The minicapsules consists of a small glass 

vials fitted in stainless-steel, laser-sealed capsules. A study done which included analysis 

of the effect of accelerated aging by using a high temperature (76°C) at 50% relative 

humidity with biospecimens stored in DNAshells® showed no detectable DNA degradation 

in biospecimens stored at RT for 18 months. PCR experiments, pulsed field gel-

electrophoresis, and RFLP-PCR analyses also demonstrated that the protective properties 

of DNAshells® are not affected by storage under extreme conditions (76°C, 50% humidity) 

for 30hours, guaranteeing 100 years without DNA biospecimen degradation(Clermont et 

al. 2014). 

 

1.8.5. Urine stabilization via Norgen Biotek Corp 

 

Urine collection and processing brings its own challenges as it has a high degree of 

variability with regards to volume, protein concentration, total protein excreted, pH (ranges 

from 4 to 8), as well as variability in urine components due to age, health, diet, or other 

factors such as proteolysis and degradation of collected urine biospecimens upon 

storage(Thomas et al. 2010).With regards to urine stabilization, the Norgen Biotek Corp 

urine preservative tubes are designed for the rapid preservation of DNA, RNA, microRNA 

and proteins from fresh urine biospecimens. The urine preservative prevents the growth of 

Gram-negative and Gram-positive bacteria and fungi, and also inactivates viruses allowing 
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the resulting non-infectious biospecimens to be handled and shipped safely. Moreover, the 

buffer preserves exfoliated cells, bacterial cells, and viruses without lysing them. In 

addition, the urine preservative eliminates the need to immediately process or freeze 

biospecimens and allows the biospecimens to be shipped to centralized testing facilities at 

ambient temperatures thus reducing the challenges associated with CCM. The 

components of the urine preservative allow biospecimens to be stored for over 2 years at 

RT with no detected degradation of urine DNA, RNA or proteins (Abdalla et al. n.d.). 

Norgen Biotek also provides kits for DNA extraction from urine. In a study done to isolate 

DNA from urine using the DNA Isolation Kit from Norgen Biotek, the authors demonstrated 

that the kit was able to isolate high quality DNA that was free from contaminants using 

small volumes of urine (Abdalla et al. n.d.). The kit provides a fast and simple procedure 

for isolating both species of DNA from 2 mL of urine. The kit is based on spin column 

chromatography, using Norgen’s proprietary resin as the separation matrix. Preparation 

time for a single biospecimen is stated as less than 90 minutes, and purified biospecimens 

can be used in various downstream applications including PCR. The kit was evaluated 

based on these claims, in order to see if it provides a good alternative to the traditional 

methods of DNA isolation from urine. DNA was isolated from two different biospecimens of 

human male urine using Norgen’s Urine DNA Isolation Kit as per the provided protocol. 

The procedure was also performed in order to isolate DNA from smaller volumes of urine. 

Using a human male urine biospecimen, 25 µL, 50 µL, 100 µL, 250 µL, 500 µL, 750 µL 

and 1 mL of urine were used for the input. Forty percent of each elution was then run on a 

2% agarose gel in TAE buffer. Three different pictures of the gel were taken, 

corresponding to a running time of 5 minutes, 10 minutes and 15 minutes which showed 

that the kit is indeed isolating both the higher MW DNA (greater than 1 kb in size) and the 

lower MW DNA (150 – 250 bp). To determine DNA quality, the DNA was used as a 

template for PCR reactions. Y-chromosome-specific sequences were targeted using a 

nested-PCR procedure. The result indicates that the isolated DNA is of a high quality, and 

can be used in downstream applications involved in diagnostics, including PCR. 

Furthermore, these results indicate that sufficient amounts of DNA are isolated from 2 mL 

of urine for downstream applications. 

 

1.8.6. Qiagen PreAnalytix PaxGene products  

 

The PaxGene DNA and RNA tubes by PreAnalytix a Qiagen/BD company is one of the 

most used RT solutions for the isolation of genomic DNA and RNA from whole blood. DNA 
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in blood tubes are stabilised for 14days and 3days for RNA. Regarding RTS technologies 

for tissue specimens the range of products is limited. Interestingly, the PAXgene® Tissue 

Systems (PreAnalytix, Qiagen) provide a formalin-free alternative for the simultaneous 

preservation of histomorphology and stabilization of biomolecules and allow for the 

isolation of high-quality DNA, RNA, miRNA, proteins and phosphoproteins from the same 

sample (Ergin et al. 2010) Traditional tissue fixation via formalin has limited use for 

molecular analysis as it normally preserves histomorphology but does not stabilize 

biomolecules. Likewise RNAlater
®
 stabilizes biomolecules in tissue but does not preserve 

the histomorphology. Likewise the DNAGard® tissues and cells mentioned above (section 

1.7.1) stabilize DNA within cells and tissue but do not preserve the histomorphology. 

Therefore, the option of having the PAXgene® Tissue Systems would allow for the 

collection, fixation, and stabilization of the tissue which can then be processed and 

embedded in paraffin similarly to formalin-fixed tissue without destructive cross-linking and 

degradation normally found in formalin-fixed tissues. This method does not introduce 

molecular modifications that can inhibit sensitive downstream applications such as 

quantitative PCR or qPCR. Using this system, tissue samples are fixed at RT (15–25°C) 

within 2 hours depending on tissue type and size and can be embedded and processed in 

paraffin. The tissue also remains stable for days at RT, for weeks when refrigerated (2–

8°C), and for years when frozen at –20°C or –80°C (Loibner et al. 2016). The 

biospecimens fixed and preserved using this system has been tested and validated by the 

manufacturer to be suitable for a range of analysis, including histochemical staining, 

immunohistochemisry (IHC), in situ hybridization, gene expression analysis, genetic 

analysis, sequencing, and protein and phosphoprotein analysis. While this product has 

been used mostly in a research based capacity, literature does exist for the use and 

testing in a diagnostic setting as well (Loibner et al. 2016). Belloni et al. 2013 performed a 

morphological and molecular comparative study using this system; their data suggests 

advantages however, they still were cautious justifying the substitution of formalin fixation 

in a routine pathology laboratory (Belloni et al., 2013). 

 

1.8.7. Dried Blood Spots (DBS) 

 

Paper cards are also a popular method and gold standard of storing blood due to their 

ease of use and long term stability at RT. Examples used in the field, include the Whatman 

FTA/FTA Elute cards by GE Healthcare life sciences which provides simple solutions to 

collect, preserve, and purify biological biospecimens at RT for downstream DNA analysis. 
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FTA cards requires only a small amount of biospecimen and can be used even in the most 

remote settings as it does not require much expertise and biospecimens can be 

transported via normal postal services once dried as this are classified as an exempt 

category for shipment purposes. Genomic DNA stored on FTA Cards at RT for more than 

17.5 years has been successfully amplified by PCR(Healthcare n.d.).Furthermore, an 

assessment of DNA extracted from FTA gene cards for use in the illuminai Select 

beadchip which requires unbound, relatively intact (fragment sizes ≥ 2 kb), and high-

quality DNA was assessed in a study by McClure et al which indicated that DNA extracted 

from FTA cards produce results comparable to those obtained from DNA extracted from 

whole blood(McClure et al. 2009).  

 

Based on the brief summary on the various RTS products available it is clear that RT 

storage would offer an alternative to low temperature biospecimens preservation for blood 

and NA that can be utilized by biobanks and or diagnostic/research laboratories to reduce 

freezer storage costs while maintaining the quality of the biospecimens. 

 

1.9 The present study 

 

For the present study, the aim is to investigate sample collection and storage approaches 

that are low cost or/and evaluate ambient temperature stabilization products for nucleic 

acids (DNA and RNA), blood and tissue and urine. For the purpose of this study and due 

to time restraints only Biomatrica solutions (DNAGard, RNAGard,) along with novel 

technology, DNAGenotek Hemagene BuffyCoat solution (DNA in buffy coats) and 

Norgen's Biotek Corp’s Urine Preservative tubes would be compared and validated to 

known established and implemented ambient storage products such as the PaxGene 

range for nucleic acids in whole blood and BD blood collection tubes for collection, 

transport and storage of human samples at room temperature. 

 

Thus to achieve the aim of this study, the objectives were: 

1). Courier companies namely, Marken, DHL and world courier were evaluated to 

determine the supply chain cost analysis and ascertain the most cost effective transport 

solution between RT and cold chain logistics. 

2). To test for genomic DNA/RNA Stabilization with and without a stabilizer under different 

temperature conditions over different time periods and to confirm genomic integrity of 
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stored DNA/RNA at RT by further downstream applications by polymerase chain reaction 

(PCR), Q-PCR and sequencing analysis. 

 

 

Chapter 2 Materials and Methods 

The present study forms part of a larger study of which ethical approval has been given by 

the Health Research Ethics Committee (HREC), Faculty of Medicine and Health Sciences 

(FMHS) at Stellenbosch University Ethics Reference S16/02/017. All participants who took 

part were advised on the study and informed consent was given willingly to allow for 

sample collection, processing, storage and transportation if required.  

 

2.1 Sample stabilization and nucleic acid isolation 

2.1.1 Stabilization of DNA in whole blood (DNAgard) and Buffy coat (HEMAgene 

BUFFY COAT) 

 

For the stabilization of DNA in whole blood, 4ml of whole blood samples was drawn from 

each participant in ethylene-diamine-tetra-acetic acid (EDTA) tubes (Vacutainer, RSA). 

See Figure 2.1 for the workflow for the collection, stabilization and storage of DNA in 

whole blood using DNAgard. The 4ml of collected blood sample was transferred into a 

15ml Greiner tube containing 1ml of DNAgard stabilizer (Biomatrica, San Diego, CA) and 

mixed well by vortexing (Rotamixer deluxe Hook and Tucker 220-240v). Each tube was 

subsequently aliquoted into 500µl  in nine 1.5ml sterile and labelled tubes. Three aliquots 

were stored at room temperature (RT), 3 aliquots at 45°C and the last 3 aliquots at -80°C 

for storage at 3, 6 and 9months respectively. This was done for 10 whole blood samples.  
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FIGURE 2.1: Workflow for the collection, stabilization and storage of DNA in whole blood using DNAgard  

 

 

For the stabilization of DNA in buffy coat, whole blood EDTA samples were obtained from 

12 voluntary participants in 4ml tubes (Vacutainer, RSA). Samples were rocked gently to 

mix and centrifuged at 2500 x g for 15 minutes at room temperature (MSE MISTRAL 1000, 

MSE Scientific, Leicestershire, England). After centrifugation, 3 different fractions were 

distinguishable: the upper clear layer is plasma, the intermediate layer is buffy coat 

containing leukocytes and the bottom layer contains concentrated red cells. The top layer 

of plasma was removed with a Pasteur pipette and discarded leaving 1ml of plasma above 

the buffy coat; 500µl of the buffy coat was transferred to a 15ml Greiner tube containing 

2.5ml of HEMAgene BUFFY COAT stabilizer (DNA Genotek, Ontario, Canada).This was 

mixed gently and aliquots of 300µl was made into nine 1.5ml labelled tubes for each 

sample. Three tubes were stored at room temperature, another 3 tubes at 45°C and the 

last 3 tubes at -80° C for 3, 6 and 9months respectively. This was done for 10 samples. 

 

Two samples were set up as control for both whole blood and buffy coat without stabilizers 

at the same temperature and time frame as those with stabilizers. See figure 2.2 for the 

workflow for the collection, stabilization and storage of DNA in buffycoat using HEMAgene 

BUFFY COAT stabilizer. 
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FIGURE 2.2: Workflow for the collection, stabilization and storage of DNA in buffy coat using HG-BCD 

 

At the end of each time frame i.e. 3, 6 and 9 months DNA was extracted using 200µl of the 

stored samples for both whole blood and buffy using the Chemagic DNA Blood Kit(10k), a 

magnetic beads based extraction method according to the manufacturer’s instructions 

(Perkin Elmer, Baesweiler, Germany). Briefly, a heating block (ACCUBLOCK™ MINI, 

labnet Inc.) was heated to 55°C. A 200µl aliquot of whole blood was transferred into a 

sterile 1.5ml eppendorf centrifuge tube and lysis buffer 1 (125µl) was added to it. The 

mixture was incubated for 5 minutes at room temperature. Thereafter, 14µl of Magnetic 

beads, premixed with 360µl of binding buffer 2 was added and mixed well and incubated at 

room temperature for 5 minutes. Magnetic beads/DNA complex mixture was separated by 

placing it on a 2x12 Chemagic stand for 2 minutes. The supernatant was removed with the 

aid of a P1000 pipette and discarded. The magnetic beads pellet was then thoroughly 

resuspended by adding 600µl of wash buffer 3. The magnetic beads/DNA complex was 

separated by placing it on the magnetic stand for 1 minute and the supernatant discarded. 

A repeat washing step using wash buffer 4 was done and the tube left in the stand after 

discarding the supernatant. With the beads attracted to the magnetic stand, 1ml of wash 

buffer 5 was gently added without resuspending the pellet for 90 seconds and the 

supernatant discarded. The tube was then removed from the stand and 100µl of elution 

buffer 6 was added and the magnetic beads/DNA complex resuspended by gentle 
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pipetting. The tube was incubated at 55°C for 8 minutes with gentle agitation. The tube 

was then placed in the Chemagic stand for 2minutes until all the magnetic beads had 

separated from the eluate. The eluate was then transferred into a sterile 1.5ml tube. 

For the extraction of DNA from buffy coat, the same protocol was used as above using 

200µl of buffy coat. 

 

2.1.2 Stabilization of purified DNA (DNAstable Plus Stabilizer) 

 

Whole blood EDTA samples were drawn from 12 voluntary participants in 8ml EDTA 

tubes. See figure 2.3 for the workflow for the collection, stabilization and storage of purified 

DNA in DNAStablePLUS. 

 

Each sample was transferred into a labelled 50ml Greiner tube. Human genomic DNA was 

extracted from all the 12 samples using Chemagic DNA Blood Kit (10k) a magnetic beads 

extraction method (Perkin Elmer, Baesweiler, Germany) according to the manufacturer’s 

instructions. Briefly, 8ml of whole blood sample was vortexed (Rotamixer deluxe, Hook 

and Tucker 220-240V) and transferred into a 50ml Greiner tube. Thereafter, 50µl of 

protease and 9ml of lysis buffer were added to the tube and vortexed for 30 seconds. The 

mixture was then incubated at room temperature for 5 minutes. Following the incubation 

step, 1.2ml of well resuspended magnetic beads and 29ml of binding buffer 2 was added. 

This was mixed thoroughly by pipetting and then incubated for 5 minutes. The tube was 

subsequently placed in the left position of a chemagic stand 50k for 4 minutes to separate 

all the beads. The supernatant was discarded and the tube removed from the stand. 

Thereafter, 15ml of wash buffer 3 was added to the tube and vortexed vigorously for 1 

minute and incubated for 2 minutes, the tube was then placed in the chemagic stand to 

separate all the beads and the supernatant discarded. The wash, incubation and 

separation steps were repeated using 15ml of wash buffer 4 and 5 respectively. The tube 

was left in the stand after removing all traces of wash buffer 5. While in the stand, 40ml of 

wash buffer 6 was added gently without resuspending the pellet and incubated for 1 

minute. The supernatant was discarded and the tube removed from the stand.  With the 

tube off the magnetic stand, 1ml of elution buffer 7 was added and vortexed vigorously for 

20 seconds. The suspension was then incubated at room temperature with gentle agitation 

for 10 minutes. After the incubation period the tube was placed in the right position of the 
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chemagic stand for 3 minutes to separate the beads. The eluate containing purified DNA 

was then carefully removed. 

 

The DNA yield and purity was determined using the BioDrop µLITE (ISOGEN Life 

Sciences, Netherlands) and a 0.8% Agarose gel was ran in 1x TBE to obtain a baseline 

indication of DNA quality prior to stabilization and storage. Aliquots of 100µl of the 

extracted DNA was made into twelve 1.5ml sterile tubes with 3 tubes each stored at RT, -

20°C, -80°C and 45°C at 3, 6 and 9 months respectively. Twenty five microliters (25µl) of 

DNAstable Plus Stabilizer (Biomatrica, San Diego, CA) was added to each tube as the 

ratio of DNA to stabilizer is 1:4 except for aliquots made from sample 11 and 12 which 

were control sample stored without stabilizers. Samples were mixed thoroughly by gentle 

pipetting while avoiding forming air bubbles and stored at the respective temperatures and 

time frame. 

 

 

FIGURE 2.3: Workflow for the collection, stabilization and storage of purified dna using DNAStable PLUS 

 

2.1.3 Stabilization of DNA in urine (Norgen Biotek Corp) 

 

Morning midstream urine samples were collected from 8 healthy male and female 

voluntary participants in a sterile urine cup. Thirty millilitres (30ml) of urine from each 

volunteer was transferred into a 50ml Norgen urine tube (Norgen Biotek Corp, Ontario, 
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Canada)containing an orange dried preservative. The tube was inverted several times until 

the orange pellet had completely dissolved. This was done for 6 samples the remaining 2 

samples were left without preservative to serve as control. Aliquots of 3ml were made for 

each sample into six 15ml Greiner tubes. Three were labelled for RT storage at 3, 6, and 

9months and the remaining 3 for storage at -80°C for the same time frame. At the end of 

each time frame, urine DNA was extracted using the Norgen urine DNA isolation kit 

#18100 (Norgen Biotek Corp, Ontario, Canada) according to the manufacturer’s 

instructions. Briefly, a heating block (ACCUBLOCK™ MINI, labnet Inc.) was heated to 

60°C. In a 15ml Greiner tube, 1.75ml of urine and 250µl of binding solution K was added 

and mixed well by inverting a few times. Using a P1000 pipette, 650µl of the urine sample 

was transferred onto a spin column and centrifuged for 1 minute at 6700 x g, the flow 

through was discarded and the spin column and its collection tube reassembled. This step 

was repeated until all the urine sample had passed through the column. Thereafter, 35µl of 

proteinase K and 35µl of Pronase was added to the column and centrifuged for 1 minute at 

6700 x g. The collection tube and the column were then incubated on the preheated 

heating block for 20 minutes at 60°C. After the 20 minutes incubation, 450µl of Solution 

WN was added to the lysate in the collection tube, mixed well by pipetting and the entire 

contents transferred onto the spin column. This was centrifuged for 1 minute at 6700 x g 

and the flow through discarded. To the column, 450µl of Wash Solution D was added and 

centrifuged for 1 minute at 14,000 x g the flow through was discarded and 450µl of  Wash 

Solution B was added to the column and centrifuged for 1 minute also at 14,000 x g and 

the flow through discarded. To the reassembled column, 450µl of 99% ethanol was added 

and centrifuged for 1minute at 14,000 x g the flow through was discarded and the wash 

step with ethanol repeated. The spin column was then spun empty for 2 minutes at 14,000 

x g and the collection tube discarded. The spin column was transferred to a fresh elution 

tube and 50µl of Elution buffer B added to the column. This was centrifuged for 200 x g for 

2minutes followed by 2minutes at 5,800 x g. The spin column was transferred to a second 

elution tube to which 50µl of Elution Buffer B was added and centrifuged for 2 minutes at 

5,800 x g as a final elution step. 

 

2.1.4 Stabilization of DNA in cultured cells (DNAgard Tissue) 

 

Cultured HEK293T cells were assessed for nutrient utilization and bacterial/fungal 

contamination prior to tryptinization. Media was clear showing nutrients being used up and 

Stellenbosch University  https://scholar.sun.ac.za



25 
 

cells ready for sub culturing and lack of turbidity ruled out contamination. After addition of 

trypsin cells detached easily indicating healthy cells. A cell count was performed using 

TC20™ Automated cell count (BIO RAD) to obtain a cell count of 1x10⁶cells/ml for 100µl 

of DNAgard Tissue and cells stabilizer per aliquot required. Based on the cell count 10 

aliquots were made five for room temperature storage and 5 for storage in liquid nitrogen. 

For each storage location 2 were protected with 100µl of DNAgard stabilizer, 2 with 

cryopreserving DMSO and 1 unprotected with water. All samples were stored for a period 

of 1 month. At the end of the storage period, DNA was isolated using the QIAGEN 

QIAamp blood mini kit according to the manufacturer’s instructions. Briefly, all samples 

were brought to room temperature. A heating block was set at a temperature of 56°C. 

Samples were resuspended in phosphate buffered saline (PBS) to bring the total volume 

to 200µl prior to extraction. Twenty microliters of QIAGEN protease was added into a 

1.5ml tube. To the tube, 200µl of cells in PBS and 200µl of Buffer AL were added and 

pulse vortexed for 15 seconds. The tubes were then incubated at 56°C on a heating block 

(ACCUBLOCK™ MINI, labnet Inc.) for 10minutes. Thereafter, 200µl of ethanol (96-100%) 

was added and vortexed for 15seconds. The mixture was carefully added to a QIAamp 

Mini spin column and centrifuged at 8000rpm for 1 minute. The spin column was 

transferred to a new 2ml tube and 500µl of Buffer AW1 was added and centrifuged for 1 

minute at 8000rpm a second wash with buffer AW2 using same volume but at 14,000rpm 

for 3min. A full speed spin was done using an empty 2ml tube prior to sample elution in a 

clean 1.5ml microcentrifuge tube using 200µl of Buffer AE. 

 

2.1.5 Stabilization of RNA in whole blood 

 

Whole blood samples from 5 voluntary participants were drawn in RNAgard (Biomatrica, 

San Diego, CA) and PAXgene RNA tubes (PreAnalytiX, Hombrechtikon, Switzerland) 

prefilled with stabilizers. To each RNA tube 2.5ml of blood was added. It was mixed by 

inverting the tubes 5-7 times. Aliquots of 1.5ml for each sample were made into 6 labelled 

2ml sterile tubes. Three tubes were stored at RT and 3 at -80°C for 3, 7 and 14 days. At 

the end of each time frame RNA was extracted from PAXgene and RNAgard tubes using 

the QIAGEN RNA blood mini kit according to the manufacturer’s instructions. Briefly, 5ml 

of buffer AL was added to 1ml of blood in a 15ml Greiner tube and incubated on ice for 

15minutes. Samples were vortexed twice briefly during the incubation period. It was spun 

at 400 x g (MISTRAL 1000, MSE Scientific, Leicestershire, England) and supernatant 

discarded. The cell pellet was resuspended in 10mlof buffer EL and centrifuged for 10min 
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at 400 x g. The supernatant was discarded and 600µl of buffer RLT was added and the 

lysate transferred to a QIAshredder spin column and centrifuged for 3 min at maximum 

speed (Labnet PRISM microcentrifuge). To the homogenised lysate 600µl of 70% ethanol 

was added and mixed by pipetting and added onto a QIAamp spin column and centrifuged 

for 15seconds at 8000 x g. The flow through was discarded and the spin column 

transferred into a new 2ml collection tube and 700µl of buffer RW1 added and centrifuged 

for 15seconds at 8000 x g. The spin column was transferred to a new 2ml tube and 500µl 

of buffer RPE added and centrifuged for 3min at full speed. A full spin in an empty 

collection tube was done before adding 50ul of RNase-free water for elution in a clean 

1.5ml tube. 

 

2.2 Nucleic acid quality assessment 

2.2.1 DNA quantification using BioDrop µLITE 

 

All samples were assessed at room temperature. Frozen samples were thawed before 

analysis. The concentration of the eluted genomic DNA was determined by 

spectrophotometry with the BioDrop µLITE spectrophotometer (ISOGEN Life Science, 

Netherlands). The DNA, yield (µg/ml) and purity (absorbance ratio A260/A280) was 

determined for all samples, where pure DNA had an A260/280 ratio ranging between 1.7-

1.9. A ratio of <1.7 is indicative of residual protein, phenol, or other reagent associated 

with the extraction protocol, where a ratio of >2.0 indicates RNA contamination. 

 

2.2.2 DNA and RNA quantification using the Qubit 2.0 fluorometer 

 

The Qubit 2.0 fluorometer (Invitrogen Life Technologies, Carlsbad, California) was also 

used to quantify double stranded DNA using the dsDNA BR assay (broad range) and RNA 

at room temperature for all samples.  

 

2.2.3 Agarose gel electrophoresis 

 

The integrity of all extracted DNA samples were assessed by standard TBE gel 

electrophoresis on a 0.8% agarose gel (Seakem LE Agarose) in 1x TBE. A 2kb molecular 

marker was used for DNA gel analysis. 
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2.3 Polymerase chain reaction (PCR) 

2.3.1 PCR amplification primers and parameters 

 

A standard PCR reaction was performed with different primer sets for the β-globin gene to 

assess whether the purified DNA were suitable for downstream applications. These primer 

sets were different PCR fragments of β-globin as shown in Table 2.1. The rationale for 

these experiments were to determine whether short and longer fragments of the gene 

amplified successfully to indicate that isolated DNA was still stable and not degrading.  

 

TABLE 2.1 Primer sequences and annealing temperatures used for the amplification of β-

globin gene 

Primer set 

name 

Sequence 5’-3’ Product 

size (bp) 

Tm°C 

GH20+PCO4 F- GAAGAGCCAAGGACAGGTAC 

R -CAACTTCATCCACGTTCACC 

268 55 

RS42+KM29 F- GCTCACTCAGTGTGGCAAAG 

R- GGTTGGCCAATCTACTCCCAGG 

536 58 

RS40+RS80 F- ATTTTCCCACCCTTAGGCTG 

R- TGGTAGCTGGATTGTAGCTG 

989 55 

KM29+RS80 F- GGTTGGCCAATCTACTCCCAGG 

R- TGGTAGCTGGATTGTAGCTG 

1327 57 

 

For the amplification of each DNA sample, 2.5µL of extracted DNA was used as a 

template in a 25µl reaction mix, which contains the following reagents: 1µl of each primer 

(1x KAPA Taq Ready Mix PCR Kit (12.5µl) and dH2O (8µL) to a total volume of 25µL. 

Amplification was done in a thermal cycler (Bio-Rad T100 Thermal Cycler, California, USA 

) using the following thermal cycle profile: a denaturing step of 95°C for 3 minutes followed 

by 40 cycles of 95°C for 1 minute, annealing temperature at 55°C for 2 minutes and 72°C 

for 1 minute. A final extension step was performed for 5 minutes at 72°C.  

 

2.3.2 Gel electrophoresis for amplified PCR product 

 

PCR-amplified fragments were separated on a 2% agarose gel for verification of 

successful amplification. 
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2.4 Quantitative real time Polymerase chain reaction (RT-PCR) 

2.4.1 cDNA synthesis 

 

Selected RNA samples extracted from whole blood storage at 3, 7 and 14 days were 

converted to cDNA using the ImProm- II™ Reverse Transcription System (Promega, 

Madison USA.) according to the manufacturer’s instructions. Briefly, target RNA and 

primer combination and denaturation was done by combining 2µl of target RNA (~200 ng), 

2µl of nuclease- free water and 0.5µg of Primer (oligodT) giving a total volume of 5µl. A 

negative template control of 5µl consisting of 1µl of primer and 4µl of water was also made 

up. For the reverse transcription, a 15µl mix consisting of 3.7µl of nuclease-free water, 1 x 

ImProm II,1X Reaction buffer, 6 mM of magnesium chloride, 2 mM DNTP mix, 10 U of 

ribonuclease inhibitor and 1U of ImProm II™ Reverse transcriptase. All reactions were 

performed on ice. The RNA and cDNA 5µl mix was incubated on a heating block set at 

70°C for 5minutes and then chilled on ice for another 5minutes. Thereafter, the 15µl 

reverse transcription mix was added to the RNA mix and annealed at 25°C for 5 minutes. 

Finally, first-strand synthesis reaction was done at 42°C for 60minutes. Samples were 

stored at -20°C prior to RT-PCR reaction. 

 

2.4.2 Quantitative RT-PCR (qRT-PCR) 

 

The integrity of all isolated RNA was determined by assessing the expression of the 

housekeeping gene,β -globin on a few stored RNA samples from both PAXgene and 

RNAgard blood tubes after cDNA synthesis. A standard curve was done on cDNA from 

both PAXgene and RNAgard ranging in concentrations from 200ng to 0.02 ng of input 

RNA. The PCR efficiency for each sample was determined using the QuantStudio™ 

software. For the qRT-PCR, a 20µl reaction was set up in duplicate using the KAPA SYBR 

FAST qPCR Master Mix (KAPA Biosystems) according to manufacturer’s instructions. 

Briefly, 200 nM of each primer was mixed with 2X KAPA SYBR® FAST qPCR Master Mix 

(Final concentration 1X). To this mixture, ROX High (final concentration 1X) and 2µl of the 

input DNA at different concentrations were added. This mixture was made up to 20µl with 

Nuclease-free water.  

 

Only the shorter fragment of the β-globin (primer set GH20+PCO4) was analysed, as the 

other primer combinations used produced too large a product for Q-PCR analysis (Table 

2.1) The qPCR reactions were performed on the QuantStudio™ 3 systems (Applied 
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Biosystems)and analysed with the QuantStudio™ Design and Analysis software (Applied 

Biosystems) using the following parameters: Initial denaturation at 95
o
C for 10 minutes 

followed by 40 repeat cycles of 95
o
C for 15 seconds, 60

o
C for 15 seconds, and 72

o
C for 30 

seconds. An additional melt curve was added with the following parameters: 95
o
C for 15 

seconds, 60
o
C for 1 minute followed by a slow incremental increase of 0.1

o
C until 95

o
C.  

2.5 DNA Sequencing 

2.5.1 PCR Product purification for sequencing. 

An enzymatic clean up using Exonuclease 1 and Calf Intestinal Alkaline phosphatase 

(New England Biolabs) was used. A 1µl mix of the two enzymes was added to 3µl of PCR 

product and the reaction was incubated at 37°C for 15 minutes and 80°C for another 

15minutes in a thermal cycler (Bio-Rad T100 Thermal Cycler, California,USA).The shortest 

(PCO4+GH20) and the longest fragments (KM29+RS80) for the β-globin gene was sent 

for sequencing reaction at the Centre for Analytical Facility (CAF) at Stellenbosch 

University.  

 

2.5.2 Analysis of sequencing reactions: 

 

Chromatograms of sequenced products were analysed using BioEdit (Tom Hall Ibis 

Biosciences Carlsbad,CA) to assess the quality of the sequences traces. Sequences were 

extracted in FASTA format and these were queried against the BLASTn 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?) database at the National Center for 

Biotechnology Info (NCBI)(https://www.ncbi.nlm.nih.gov/).  

 

2.6. Transportation cost analysis 

 

Briefly, we approached and evaluated various courier companies operating on the 

continent, including World Courier, Marken and DHL. Companies were evaluated based 

on their familiarity with the African landscape, their service record, reputation, GxP 

compliance and whether they provide a fully integrated clinical supply chain service. Both 

World Courier and Marken are cold chain logistical companies that specifically focus on 

controlled temperature transportation and are the major courier services used by local 

clinical trial laboratories and private biobank facilities. These courier services have agents 

that represent their companies in the majority of the African countries and their staffs are 

specifically trained in temperature controlled shipping from and to these countries with the 
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specified, temperature requirements. DHL Express also has a good footprint within Africa 

and has a Medical Express division that specifically focuses on the transport of biological 

materials on the continent. The transportation cost analysis was initially done as part of our 

lab’s H3Africa consortium initiative contribution comparing the cost for the movement of 

samples from 8 African satellite sites to NSB at normal ambient, validated ambient, 

refrigerated and at normal ambient including the additional costing of a Stabilizer. The cost 

was based on a 1kg shipment and assuming that it would fit ±500 (0.5 and/or 0.75ml) vials 

and at an exchange rate of R14 to the USA dollar. The data generated would help to 

inform us on the cost and logistics associated with the movement of biospecimens on a 

larger scale over a period of 5 years.  
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Chapter 3-Results 

3.1 Stabilization of DNA in whole blood, Buffy coat and Purified DNA 

3.1.1 DNA Concentrations of isolated samples 

 

Concentrations of DNA isolated and purified from whole blood (DNAgard) and buffy coat 

(HEMAgene BUFFY COAT) were determined by the Biodrop and Qubit 2.0 flourometer 

after 3, 6 and 9 month storage at different temperatures. Concentrations for all DNA 

samples isolated and purified are seen in Appendix 1 

In addition, samples that have been stored for 3 years in HEMAgene Buffy coat stabilizers 

at RT, -80⁰C and 45⁰C were also processed. 

 

3.1.2 Determination of DNA integrity by agarose gel electrophoresis 

 

To assess DNA integrity, all samples were run on a 0.8% Agarose gel in TBE to compare 

the band intensity and size. The gel images for whole blood, buffy coat and purified DNA is 

shown below in Figure 3.1-3.5 

 

 

FIGURE 3.1: Agarose gel (0.8%) integrity check of DNA in whole blood with (DG+) and without (DG-) 

stabilizer (DNAgard) at 3, 6, and 9 months. The red arrow indicates degradation.  
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FIGURE 3.2: Agarose gel (0.8%) integrity check of DNA in Buffy coat with (HG+) and without (HG-) stabilizer 

(HEMAgene BUFFY Coat) at 3, 6, and 9 months. 

 

FIGURE 3.3: Agarose gel (0.8%) integrity check of purified DNA samples prior to stabilization and storage of 

12 samples from lane 2-13. 

 

Stellenbosch University  https://scholar.sun.ac.za



33 
 

 

FIGURE 3.4: Agarose gel (0.8%) integrity check of purified DNA stored with (DS+) and without (DS-) 

stabilizer (DNAstable PLUS) at 3, 6 and 9 months. The red arrow indicates degradation. 

 

 

FIGURE 3.5: Agarose gel (0.8%) integrity check of DNA in Buffy coat after 3years of storage for 3 samples 

with (HEMAgene BUFFY Coat) stabilization at RT, -80⁰C and 45⁰C. 

 

Figures 3.1-3.5 shows the integrity of all DNA samples isolated and purified using a 

chemagic magnetic beads extraction kit. In Figure 3.1 it can be seen that all DNA samples 

stabilized in DNAgard were intact after isolation and purification. These were for samples 

stored at RT, -80⁰C and 45⁰C for 3, 6 and 9 months respectively. Samples without 

stabilizer were still intact, with slight degradation. 
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DNA isolated from Buffy coats stored in HEMAGENE Buffy Coat were all stable at RT, -

80⁰C and 45⁰C for 3, 6 and 9 months respectively (Figure 3.2). Samples that were not 

stored in HEMAGENE were also stable. For DNA samples stored in DNAstable all 

samples were stable RT, -80⁰C, and -20⁰C for 3, 6 and 9 months (Figure 3.4). At 45⁰C a 

slight degradation of DNA is observed after 9 months of storage. The samples that were 

not stored in DNAstable were also intact, except for at 45⁰C for 3, 6 and 9 months.  

 

In addition to the above experiments sample integrity was also checked after 3 year 

storage in HEMAGENE Buffy coat. All samples were intact, except for those stores at 

45
o
C (Figure 3.5). 

 

3.1.3 Comparison between Whole blood and Buffy coat samples 

 

The band intensity and size of whole blood extracted DNA (DNAgard) and buffy coat 

extracted DNA (HEMAgene) gel images were compared at 9 months storage (Figure 

3.6).Results indicate that stabilizer of buffy coat provides a better protection to DNA 

integrity compared to whole blood stabilization. As samples stored at 45⁰ C in whole blood 

showed some degradation while that stored in buffy coat were intact. 

 

FIGURE 3.6: Agarose gel comparison between whole blood and Buffy coat stabilization at 9months for both 

DNAgard (DG+) and HemaGene(HG+) stabilizers. 
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3.1.4 Polymerase chain reaction (PCR) 

 

The housekeeping gene β-globin was amplified using a standard PCR procedure as 

detailed in Section 3.3. Four different primer sets were used (Table 2.1) with amplicon 

sizes 268bp, 536bp, 989bp and 1327bp. PCR was performed for samples stored at room 

temperature, 45 and corresponding frozen samples with and without stabilizer (Figure 3.7-

3.10).  

 

 

FIGURE 3.7: Functional PCR Assay of a sample stored at RT, -80⁰C and 45⁰C with and without DNAgard 

stabilization using β-globin housekeeping gene with primer sets: GH20 + PC04 – 268bp,RS42 + KM29 – 

536bp,RS40 + RS80 – 989bp,KM29 + RS80 – 1327bpat 3 and 9 months. 

 

Figure 3.7 represent the PCR amplification of samples extracted after storage in stabilizer 

DNAgard at RT, -80⁰C and 45⁰C, it is shown that all PCR fragments for β-globin were 

successfully amplified by PCR using the respective primer sets. The only exception being 

at 45⁰C, where the larger fragments of 989 and 1327 bp were not amplified in the 9 

months samples without stabilizer. 
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FIGURE 3.8: Functional PCR Assay of a sample stored at RT, -80 and 45⁰C with and without HEMAgene 

Buffy coat stabilization using β-globin housekeeping gene with primer sets: GH20 + PC04 – 268bp,RS42 + 

KM29 – 536bp,RS40 + RS80 – 989bp,KM29 + RS80 – 1327bpat 3 and 9 months. 

 

Figure 3.8 represents the PCR amplification of samples extracted after storage in stabilizer 

HEMAgene Buffy coat stabilization at RT, -80
o
C and 45⁰C; it is shown that all PCR 

fragments for β-globin were successfully amplified by PCR using the respective primer 

sets. The only exception being at 45
o
C, where the larger fragments and 1327 bp was not 

amplified in the 9 months samples without stabilizer. Some additional PCR products are 

observed which could be due to non-specific amplication.  
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  FIGURE 3.9: 

Functional PCR Assay of a sample stored at RT,-20⁰C -80⁰C and 45⁰C with and without DNAstable PLUS 

stabilization using β-globin housekeeping gene with primer sets: GH20 + PC04 – 268bp,RS42 + KM29 – 

536bp,RS40 + RS80 – 989bp,KM29 + RS80 – 1327bpat 3 and 9 months. 

 

Figure 3.9 represent the PCR amplification of samples extracted after storage in stabilizer 

DNAstablePLUS at RT, -20
o
C -80

o
C and 45⁰C, it is shown that all PCR fragments for β-

globin were successfully amplified by PCR using the respective primer sets. The only 

exception being at 45
o
C, where the larger fragment 1327 bp was not amplified in the 3 

months samples without stabilizer. No amplification was observed in the 9 month sample 

without stabilizer at 45⁰C. 
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FIGURE 3.10: Functional PCR Assay of a sample stored for 3 years at RT, -80⁰C and 45⁰C with HEMAgene 

Buffy coat stabilization using β-globin housekeeping gene with primer sets: GH20 + PC04 – 268bp,RS42 + 

KM29 – 536bp,RS40 + RS80 – 989bp,KM29 + RS80 – 1327bp 

 

Figure 3.10 represent the PCR amplification of samples extracted after a 3 year storage in 

stabilizer HEMAgene Buffy coat stabilization at RT, -80
o
C and 45⁰C, it is shown that all 

PCR fragments for  β-globin were successfully amplified by PCR using the respective 

primer sets in samples kept at RT and -80
o
C. No amplification was observed at 45⁰C. 

 

3.2 Stabilization of DNA in cells 

 

DNA was also extracted from HEK 293 cultured cells after 1 month of storage in liquid 

nitrogen (LN) and room temperature (RT). The concentration was determined using both 

the Biodrop and Qubit fluorometer. Extracted DNA from cells was separated on a 0.8% 

agarose gel in TBE to assess DNA integrity (Figure 3.11). DNA samples stored in 

DNAgard was at RT were intact. Lanes 2 and 4 show samples that was intact, whereas 

samples in lanes 6, 8 and 10 were degraded. These samples were stored in water (Lane 

6) and DMSO (Lanes 8 and 10). Lanes 3, 5, 7, 9 and 11 represents samples stored in LN. 

Lanes 3 and 5 were protected with DNAgard, Lane 7 in water and Lane 9 and 11 in LN. All 

samples were intact.  
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FIGURE 3.11: Agarose gel electrophoresis for DNA extracted from cultured cells with and without 

stabilization (DNAgard) after 1 month of storage. Lane 1 Molecular marker, 2, 4, 6, 8 and 10 are samples 

stored at RT. Lanes 2 and 4 protected, 6 NP with water and 8 and 10 in DMSO. Lanes 3, 5, 7, 9 and 11 are 

samples stored in LN. Lanes 3 and 5 protected 7 NP in water and 9 and 11 cryopreserved in DMSO. 

 

To determine the ability of the extracted DNA from cells to undergo downstream analysis, 

a PCR using β-globin was done for a sample at all storage conditions. 

 

All PCR fragments for β-globin were successfully amplified by PCR using the respective 

primer sets. The only exception being at RT stored in water, where the larger fragments of 

989 and 1327 bp were not successfully amplified. 

 

 

Figure 3.12: Functional PCR  for DNA from cultured cells stored for 1 month at RT and liquid nitrogen (LN)  

with and without DNAgard  using β-Globin (housekeeping gene) with Primer Sets: GH20 + PC04 – 

268bp,RS42 + KM29 – 536bp,RS40 + RS80 – 989bp,KM29 + RS80 – 1327bp 
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3.3 DNA Sequencing of β-globin gene 

 

All samples that were successfully amplified by PCR were considered for sequencing. 

Samples that were selected for sequencing are shown in Appendix II. Sample selection 

criteria included: samples that were stored in different stabilizers; samples at different 

temperatures; and samples stored over different time periods. Samples were selected to 

cover all the different parameters. Figure 3.13 shows the Sequence Trace File for DNA 

samples stored in DNAgard at RT for 3 months.  

 

 

FIGURE 3.13: Representative Sequence Trace File for short fragments of β-globin from sample stored in 

DNAgard for 3 months. 

 

Figures 3.14 A and B, represent the BLAST results for DNA samples stored in DNAgard at 

RT for 3 months. Figure 4.14 A indicates a 100 % identity to the reference β-globin gene 

from Homo sapiens for the shorter PCR fragment that was amplified, whereas Figure 4.14 

B indicates a 99 % identity to the β-globin gene for the larger fragment that was amplified. 

The quality of the sequence trace and the accuracy of the BLAST results suggest that the 

integrity of the DNA samples was of a high standard after isolation. All the DNA samples 

sent for sequencing produced the same quality and accuracy, as shown in Figures, 4.13. 

4.14 A and 4.14 B. 
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FIGURE 3.14 A: Representative Blast result of short fragment of B-globin stored in DNAgard for 3 months.  

 

 

FIGURE 3.14 B: Representative Blast result of larger fragment of β-globin stored in DNAgard for 3 months. 
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3.4 Stabilization of RNA in whole blood 

 

A further aim of the present study was to test the effect of two stabilizers, PAXgene and 

RNAgard, on the quality of RNA extracted from whole blood. 

 

3.4.1 Determination of RNA concentration 

 

After 3, 7 and 14 days of storage of RNA in whole blood using PAXgene and RNAgard 

blood tubes. RNA was extracted and concentrations determined by Biodrop and Qubit 

flourometer prior to cDNA synthesis (Appendix I).  

 

3.4.2 Standard PCR on isolated RNA from whole blood cells 

 

 In Figures 3.15 and 3.16 it was observed that RT-PCR amplification of the short fragment 

of β-globin was successful on RNA samples stored in PAXgene and RNAgard.  
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FIGURE 3.15: Representative 0.8 % gel of β-globin PCR amplification with Primer Set GH20+PCO4 from 

cDNA synthesized after isolation with PAXgene. 

 

FIGURE 3.16: Representative 0.8 % gel of β-globin PCR amplification with Primer Set GH20+PCO4 from 

cDNA synthesized after isolation with RNAgard. 

 

3.4.3 Quantitative Real Time PCR to assess suitability of isolated DNA and RNA in 

downstream qRT-PCR applications 

 

QRT-PCR reactions were done on all samples as detailed in section 2.4. Primer Set 

GH20+PCO4 was used for the β-globin gene to determine the integrity and performance of 

the isolated DNA and RNA in downstream PCR applications. From Figure 3.17 and 3.18 it 

was concluded that DNA samples stored in DNAgard for 3 months were still highly intact, 

and produced excellent amplification during standard qRT-PCR. The PCR efficiency of the 

reaction was 98 % with a slope of -3.32 and r
2
 = 0.99. In addition the dissociation 

curve/melting peak analysis (Figure 3.19) showed the presence of only one PCR product 

as a temperature of 84.8
o
C. The negative control (straight line at level 0.000 on the y-axis) 

indicated no contamination with DNA or primer dimers (usually peaks between 60-70
o
C) 
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FIGURE 3.17: Amplification of DNA samples stored in DNAgard for 3 months by qRT-PCR. 

 

FIGURE 3.18: Standard curve of DNA samples stored in DNAgard for 3 months by qRT-PCR. 
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In Figure 3.20 and 3.21 the amplification curves for the short fragment of B-globin are 

shown for both RNA that was stored in RNAgard and PAXgene respectively. The curve 

showed excellent amplification in both instances, with a PCR efficiency of 96 % for 

RNAgard with R
2
=0.99, and a PCR efficiency of 97 % for PAXgene with and R

2
=0.99. 

 

     FIGURE 

3.19: Dissociation curve of DNA samples stored in DNAgard for 3 months by qRT-PCR. 

 

      FIGURE 

3.20: Amplification of RNA samples stored in RNAgard for 7 days by qRT-PCR. 
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FIGURE 3.21: Amplification of RNA samples stored in PAXgene for 7 days by qRT-PCR. 

The dissociation curve/melting peak analysis (Figures 3.22 and 3.23) showed the 

presence of only one PCR product as a temperature of 85
o
C for both the RNAgard and 

PAXgene samples. The negative control (straight line at level 0.000 on the y-axis) 

indicated no contamination with cDNA or primer dimers (usually peaks between 60-70
o
C).  

 

FIGURE 3.22: Dissociation curve of RNA samples stored in RNAgard for 7days by qRT-PCR. 
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FIGURE 3.23: Dissociation curve of RNA samples stored in PAXgene for 7 days by qRT-PCR 

 

3.5: Sample transportation cost analysis for African biobanking/laboratory 

operations: 

 

A transportation cost analysis comparing the cost for the movement samples from the 8 

African satellite sites to NSB at normal ambient, validated ambient, refrigerated and at 

normal ambient including the additional costing of a stabilizer such as DNAStable was 

done. The cost was based on a 1kg shipment and assuming that it would fit ±500 (0.5 

and/or 0.75ml) vials and at an exchange rate of R14 to the dollar. The data generated 

helped to inform us on the cost and logistics associated with the movement of 

biospecimens on a larger scale as part of a biobank or laboratory sustainability plan. From 

the 8 sites evaluated, Bamako in Mali was the most expensive. Figure 3.24 highlights the 

cost comparison between Marken (Red) and DHL (Blue) at validated and/or refrigerated 

temperatures whereas figure 3.25 shows normal ambient shipment costs for DHL only 

from the 8 satellites sites. As Marken only does shipment with specialized packaging, no 

costs for normal ambient shipment was possible. In order to determine the specific cost 

comparison between the different temperatures and the addition of a stabilizer, the pricing 

estimates at normal ambient conditions for 1kg shipment from Bamako in Mali to CT was 

used as it was the highest priced at R6262. Assuming that 1 kg shipments would fit ±500 

(0.5 and/or 0.75ml) vials, the cost per sample at normal ambient would be R12.52 per 

sample. In addition validated and/or refrigerated 1kg shipments from Bamako in Mali to 
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CT, amounts to R18172 at R36.34 per sample. Knowing the risk of sample degradation at 

ambient temperature without DNA stabilization, we calculated the cost of a DNA stabilizer 

(R13.94 per sample) in addition to the normal ambient pricing for 1kg shipment from 

Bamako in Mali to CT. This additional cost amounts to R26.46 per sample, for normal 

ambient conditions with the DNA stabilizer, which compared to validated ambient and 

refrigerated conditions is much more cost effective. We therefore propose transportation at 

ambient conditions with the addition of a stabilizer to the DNA as a more cost effective 

transportation solution for South Africa and Africa in general.  

 

 

* Marken - 1kg    * DHL – 1kg 
 
FIGURE 3.24: Transportation cost comparison between courier companies, Marken (Red) and DHL Express 

(blue), for 1kg shipments from satellite sites to NSB in Cape Town, South Africa at validated ambient 

temperatures (15-25
o
C)  and /or Refrigerated (2-8

o
C ) temperatures. The package costing for both validated 

ambient and refrigerated conditions is the same, thus the same cost.  
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FIGURE 3.25: DHL Express Transportation cost for 1kg shipments from satellite sites to NSB in Cape Town, 

South Africa at normal ambient temperatures.  Both Bamako in Mali and Contonou in Benin is the highest 

priced.  

  

*DHL – 1kg  
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FIGURE 3.26: Cost comparison for the shipment of 500 samples to NSB in Cape Town, South Africa at 

normal ambient (A), normal ambient with the addition of a DNA stabilizer (B) and validated 

ambient/refrigerated conditions (C). The highest priced sites of the 8 satellite sites were chosen to calculate 

shipping cost per sample, assuming a 1kg shipment can fit ± 500 vials. These prices are based on the DHL 

Express estimates  

  

A B C 
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Chapter 4- Discussion 

This study was performed in the National Health Laboratory – Stellenbosch University 

Biobank (NSB) to evaluate and validate room temperature storage technologies for sample 

storage not only in South Africa, but in the whole of Africa. It is a well-known fact that the 

infrastructure in most African countries is not conducive to patient sample transportation 

and storage, and this was identified as one of the challenges that faces sample 

management logistics in Africa. The lack of equipment to store samples and the high 

temperatures that are experienced in Africa necessitates the identification of appropriate 

mechanisms to ensure the effective storage of biological biospecimens. This study thus 

seeks to address some of the sample management logistical issues faced in Africa, and 

attempts to make recommendations on appropriate protocols that could be put in place to 

ensure a cost-effective means to maintain viability and integrity of valuable biospecimens 

that are crucial for biomedical research on the African continent.  

 

In our study, we evaluated various room temperature storage technologies/stabilizers 

namely, the Biomatrica Sample Matrix technology products (DNAgard, DNAStable, 

RNAgard and DNAgard Tissue), the HEMAgene BUFFY Coat by DNAGENOTEK as well 

as PAXgene RNA and Norgen Urine stabilizers. The aims of this study were essentially 

two-fold.  

 

Firstly, the effect of the different stabilizers was evaluated on DNA and RNA samples 

stored at different temperatures over time periods. For DNA, the temperatures were RT, -

80⁰C and 45⁰C, and in some instances -20⁰C (DNAstable PLUS). Stabilization of DNA 

samples in the cultured cell line, HEK293, was also compared to samples stored in LN 

while RNA stabilizers were tested at RT and -80⁰C only.  

Secondly, a sample transportation cost analysis for African biobanking/laboratory 

operations was conducted comparing room temperature transportation versus cold chain 

logistics costs to ensure a more cost-effective solution that produced high quality biological 

samples for possible downstream molecular and/or diagnostic applications.  

 

 

4.1 Stabilization of DNA in whole blood, Buffy coat, purified DNA, cells and urine 
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Whole blood was stored in Biomatrica’s DNAgard stabilizer at RT, -80
o
C and 45

o
C up till 9 

months and integrity checks were conducted at time points of 3, 6 and 9 months following 

DNA isolation and purification of stored aliquots. Likewise control samples were also 

stored without the addition of a stabilizer as observed in figure 3.1. The agarose gel 

integrity checks at 3, 6 and 9 months at room temperature was comparable to frozen 

controls at -80⁰C for samples with and without DNAgard stabilization. In addition, the 

stabilizing effect of DNAGard was further confirmed with β-globin functional PCR analysis 

(Figure 3.7) and Sanger sequencing (Figure 3.13). However, samples that was stored at 

extremes of temperature (45⁰C) to mimic temperatures in certain parts of Africa showed 

slight degradation with longer duration of storage when integrity was evaluated by gel 

electrophoresis (Figure 3.1). Nonetheless, these samples amplified well with PCR even 

with larger fragments of β- globin housekeeping gene (1327bp) as shown in Figure 3.7 at 3 

months. However at the 9 months’ time point amplification of the larger products wasn’t 

possible except for the smaller fragments which further confirm degradation at 45
o
C, which 

is to be expected. Sanger sequencing experiments also indicated that the PCR fragments 

isolated and purified from these samples stored at 45⁰C were from β-globin as confirmed 

by sequence comparison using BLAST. 

 

Similarly, purified DNA stored in DNAStable and DNA isolated from  Buffy coat stored in 

HEMAgene BUFFY COAT at room temperature did not degrade and remained in good 

condition compared to the frozen control samples stored at -80
o
C after a period of 9 

months as observed in figures 3.2 and 3.4 . However, slight degradation was observed for 

those samples stored at 45
o
C without HEMAgene BUFFY COAT (Figure 3.2) at the 6 and 

9 month time points whereas more degradation was observed for purified DNA without 

DNAStable at time points 3, 6 and 9 months as to be expected (Figure 3.4). Furthermore, 

from observations of figure 3.4, despite protection of purified DNA with DNAStable, 

samples at 45
o
C still showed slight degradation (lane 6, 7, 8) at 9 months compared to no 

degradation at month 3 and 6. From this we can deduce that it is better to batched purified 

DNA in stabilizer for 3-6 months than longer at this temperature. These observations are 

contradictory to what the manufactures stated for DNAStable as mentioned in Chapter 1. 

The manufacturers indicate that long term storage of DNA in DNAStablePLUS has been 

demonstrated for 30years accelerated aging and approx. 4years real time. However one 

must consider that these results might have been observed for samples that have been 

dried down before storage rather that storage in the liquid phase, thus explaining our 

observations.  
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We also observed that DNA isolated from buffycoats stabilized with HEMAgene BUFFY 

COAT and stored at 45
o
C performed better than purified stabilized DNA after 9 months of 

storage with DNAstable PLUS. From this we can deduce that storage and batching of 

whole blood and/or buffy coats for 3-6 months for future DNA isolation and purification 

would be more ideal than storage of purified DNA. For satellite sites in far parts of SA and 

Africa, this would be ideal as not all sites have the capabilities and infrastructure in place 

to do NA isolations.  

 

As we are interested in long term storage of specifically whole blood and/or buffy coat for 

batching, we also stored buffy coats for a period of 3 years rather than doing an 

accelerated aging study. From our observations as shown in figure 3.5, DNA from buffy 

coat samples stored for 3 years at room temperature and protected/stabilized with 

HEMAgene Buffy coat stabilizer did not degrade and retained good integrity when 

compared to the frozen controls at -80⁰C, which was also protected. Unfortunately, 

samples stored at 45⁰C were dried up and the isolation and purification of DNA was not as 

successful which were to be expected as manufacturers indicate stabilizer protection of 2 

years for this product. Literature further support our observations for room temperature 

storage even though accelerated aging studies were demonstrated rather than in real time 

(Bouevitch et al.2014).For the accelerated aging studies performed by Bouevitch et 

al.2014 samples was stored with HG-BCD at 50°C for 35 weeks which would correspond 

to samples stored for at least 36 months (3 years) at room temperature calculated using 

the Arrhenius equation.(Bouevitch et al. 2014). The Arrhenius equation is based upon 

the assumption that the rate of a chemical reaction typically decreases by half for every 

10°C decrease in temperature. Therefore the rate of chemical degradation of DNA 

at +24°C is expected to be 5-fold slower than the rate of degradation at +50°C(Iwasiow et 

al. 2011). However, even though samples were stored at a higher temperature, the 

storage time was still less thus the result matches our observations seen in figure 3.2 

rather than observations in figure 3.5. From this we can conclude that despite the 

accelerated aging studies, one need to test/validate long term storage in real time as our 

observations is contradictory. On the other hand, variable such as lack of desiccation at 

45
o
C for the 3 year period could have also contributed to lack of isolated DNA from the 

45
o
C storage samples.  
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As a small pilot study, cultured HEKS93 cells were also stored with and without DNAgard 

tissue over a 1 month period at room temperature and -196
o
C (control). . The results as 

observed in figure 3.12 show that sample integrity of extracted DNA from cultured HEK293 

cells are being maintained at room temperature compared to samples stored in liquid 

nitrogen. Only samples that were not protected (water) (lane 6 in figure 3.11) showed 

degradation on agarose gel electrophoresis. 

 

We also evaluated the preservation of DNA at room temperature in urine. However due to 

a lot of experimental issues, the results for this will not be presented in this thesis. Analysis 

of urine DNA isolated using Norgen Biotek Corp system could not be completed as most 

samples degraded after 3 months of storage at RT and frozen which is contradictory to 

what manufacturer suggested. Nonetheless the few samples that didn’t degrade amplified 

with the shorter fragments of β-globin namely, the 268 and 538 bp (results not included). 

 

 

4.1.1. Concentrations of DNA isolated  

The concentrations and purity for all DNA isolated at the various temperatures and time 

points were also measured via spectrophotometry and flourometry, however these results 

wasn’t shown in the results section but are added in the addendum as the focus was more 

on the integrity of the NA. From these analyses, the A260/280 ratios on the 

spectrophotometer were mostly within limits compared to the lowered A260/230 ratio. 

According to similar studies done by Wan et al (Wan et al. 2010) DNA preserving 

compounds in stabilizers by Biomatrica show strong absorbance at the 230nm wavelength 

but minimal absorption at the 260nm and 280nm. Therefore, a lower A260/230 wavelength 

reflects a spectrophotometric property of the inorganic preservative compounds rather 

than unknown contaminants. In addition DNA was isolated and purified using a magnetic 

bead based process and per manufacturer’s observations, these magnetic beads also 

influence absorbance readings to a slight extend. However agarose gel electrophoresis 

done on these samples confirmed the integrity of the DNA that was isolated as mentioned 

above and shown in the integrity check figures 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.11, 3.15 and 

3.16. 

 

4.2 Comparison between DNA in whole blood and Buffy coat 
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As both HEMAgene BUFFY COAT and DNAGard provide stabilization for buffycoats and 

whole blood respectively, we also compared the integrity of isolated DNA for these two 

products. Results as shown in figure 3.6, at 9 months of storage shows that while 

protection with both stabilizers have been observed; samples that were protected with 

DNAgard stabilizers at 45⁰C had some degradation compared to samples protected with 

Hemagene buffy coat stabilizers. These results indicate that HEMAgene offers better 

protection with respect to the band intensity than DNAgard whole blood stabilizer. 

HEMAgene also had less interference with spectrophotometric wavelengths than DNAgard 

as shown in tables of concentrations in Appendix I. 

 

4.3 Polymerase chain reaction  

 

Polymerase chain reaction (PCR) performed on whole blood DNA, purified DNA and DNA 

in buffy coat using β-globin housekeeping gene with fragments between 268bp to 1327bp 

showed comparable band intensity and size with the frozen controls as shown in the 

figures 3.7, 3.8, 3.9, 3.10 and 3.12 for the various stabilizers. Amplification of all fragments 

of β-globin from smallest to largest as indicated by the appearance of all four bands on gel 

electrophoresis indicated DNA with good integrity. As observed, amplification of all four 

bands was achieved for preserved samples. These results indicate that the DNA samples 

that were kept in stabilizers and then isolated at a later stage could still perform well in 

downstream molecular biology application such as PCR. There were some exceptions 

where samples stored without stabilizer, such as the case with DNAgard at 45⁰C for 9 

months did not produce a band for the larger fragments of the β-globin gene after PCR 

amplification (Figure 3.7) which is indicative of sample degradation. The fact that smaller 

fragments still amplified confirms this as well. The same result was also observed in 

samples stored without HEMAgene Buffy coat after storage 45⁰C for 9 months (Figure 

3.8). This could be either due to the fact that these samples needed to be reconstituted in 

water after it evaporated after 9 months. However, the fact that smaller fragments still 

amplified confirm that samples were degraded. For samples stored for 9 months without 

DNAStable in figure 3.9, only amplification of the smallest fragment was observed. In the 

case of those samples stored in HEMAgene Buffy coat for 3 years, none of the fragments 

were able to amplify for the 45
o
C condition in comparison to those stored at room 

temperature and -80
o
C (Figure 3.10) The inability of the larger fragments to amplify could 

be due to various reasons, whereby PCR component concentrations and/or cycling 

conditions may not be sufficient for longer target sequences. In this instance, since 
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amplification occurred in other DNA samples isolated, the problem would most probably be 

due to a degree of DNA degradation that occurred in these samples.  

 

4.4 DNA sequencing 

 

Sequencing was also done on all DNA samples that were stored in stabilizers and some 

without stabilizer to determine the quality of sequences produced after short and long term 

storage. See figure 3.13 and 3.14 for representative sequence traces of the short and long 

fragment of the β-globin gene for one of the samples stored in DNAgard. These DNA 

sequences obtained from the β-globin PCR for short fragment and long fragment of the 

gene produced results that indicated high similarity to the known human β-globin gene 

after BLAST searchers were done. These results clearly suggest that even after long term 

storage in chemical stabilizers used in this study, the quality of DNA isolated still produced 

high quality of sequence data that can be used in downstream sequencing application to 

detect SNPs or mutations, if any, in individuals whose blood or DNA has been stored for 

extended periods of time.  

 

4.5 RNA Quality, Yield and Quantitative Real Time PCR 

 

RNA was extracted and concentrations determined prior to cDNA synthesis for samples 

stored at 3, 7 and 14 days at RT and -80⁰C in RNAgard and PAXgene (Appendix I). 

Approximately, 200 ng of starting RNA was converted to cDNA and used in subsequent 

qRT-PCR experiments. The purpose of this part of this study was not to determine the 

expression ratio differences between samples for the β-globin gene, but rather to assess 

the amplification efficiency and the performance of the isolated RNA in downstream qRT-

PCR applications. Data generated (figure 3.17-figure 3.23) during this study showed that 

the RNA used from all samples produced good PCR efficiencies and melting peaks. These 

results suggest that the quality of RNA isolated during this study was of a high standard, 

and could confidently be used in downstream applications for both molecular and 

diagnostic purposes.  

 

4.6 Quantitative PCR with β-globin gene on DNA samples. 

 

DNA isolated from samples stored in stabilizers was also subjected to Q-PCR analysis. 

For all experiments 200 ng of DNA was used as starting material and used to construct 
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standard curve using the β-globin gene for the short fragment of the gene (268 bp). The Q-

PCR analysis showed that PCR efficiencies ranged between 95-98 % with no 

contamination as indicated in melting peak analysis (figure 3.17-figure 3.23). These 

findings suggest that samples isolated after storage in the DNA stabilizers used in this 

study could generate a good quality of DNA that can be used for downstream quantitative 

measurements for copy numbers of DNA in both a research and diagnostic environment. 

However, this study did not evaluate the diagnostic applications of samples stored in the 

different stabilizers. Despite the fact that these samples were not used in diagnostic tests, 

the technologies mentioned could contribute to an effective means to store valuable 

biological specimens in any laboratory which does not have sufficient equipment for 

appropriate storage. This study showed that DNA and RNA stabilizers could be used to 

maintain sample integrity under various different temperature conditions, and that these 

samples could still be used for downstream molecular and diagnostic applications.  

 

 

 

4.7 Transportation cost analysis 

 

Based on the cost analysis done, pricing comparison of Marken and DHL shipments at 

room temperature refrigerated and controlled ambient shows big price differences from the 

8 sites that were evaluated. See figure 3.24 and figure 3.25 for cost comparisons between 

these couriers. Further cost comparison for the shipment of 500 samples with and without 

stabilizer was also performed for the highest priced sites. Based on cost comparison as 

shown in figure 3.26, we demonstrate that transportation at ambient conditions with the 

addition of a stabilizer to the DNA as a more cost effective transportation solution for SA 

and Africa in general. However, we must also take into consideration that the cost could 

vary for different sites. Other factors that also influence cost include:   

 

a.  Whether the final location is in a main hub and receives regular shipments. 

b. Whether either courier company operates regular large volume services to such 

hubs  

c. Whether significant additional packaging is required  

d. Temperature of sample being transported room temperature( ambient) ambient 

validated( with a thermometer) or the requirement for frozen and or refrigerated  
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e. The capabilities of the receiving hub to re-freeze and re-transport the specimen 

maintaining the integrity of the shipment and sample. 

f. Cost are greatly affected by the minimum weight limitations set by courier 

companies  

g. The lock in of rates over a 12month period in terms of contractual negotiations  

h. Meeting the minimum number of samples to be transported  

i. Dollar Rand exchange rate which has worsened significantly since the start of these 

projects 

j. Both operators set a minimum of one (1) kilogram. One kilogram equates to setting 

a much higher base rate. All courier companies operate on a base minimum rate 

per destination offering a door to door delivery service  

k. Based rate variables per transport hub and route  

l. Inward and outward destination rates vary 

m. Fuel surcharges which are dependent on currency fluctuations and currently stand 

at between 15% and 16% charged over and above the rate.  

n. Bulk group purchasing discounts such as DHL enjoy through being part the 

Universities purchasing consortium.  

 

4.8 Limitations of the study 

 

Blood and buffy coat stored at 45°C clotted after prolonged storage but was more in 

samples without stabilization than samples that had stabilizers added. This could be due to 

evaporation as a result of the constant heat. The fact  that the lids were not air tight is also 

a possibility as 1.5ml centrifuge tubes were used for storage of samples. But this was not 

assessed in the study. Purified DNA stored at 45°C also evaporated leading to smaller 

volumes or completely evaporated especially without stabilization. 

 

The Urine DNA using the Norgen Biotek Corp was not completed as most samples 

degraded after 3 months of storage at RT and frozen. Nonetheless, the few samples that 

didn’t degrade amplified with the shorter fragments of β-globin namely, the 268 and 538 bp 

(results not included) but because of the non-specificity of the results it was decided that it 

will be further explored in subsequent studies. 
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The Biomatrica dried down technology of the sample matrix was not explored as purified 

DNA was stored in liquid format which could attribute to some of the contradictory results 

observed for some of the stabilizers. 
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4.9 Future directions 

 

The study though aimed at room temperature storage of biospecimens, did not explore all 

biospecimens stored in biobanks for diagnostic and clinical research. Thus, future studies 

are aimed to evaluate various cells and tissues for storage at room temperature. 

 

Furthermore, due to time constraints, the use of dried blood spots wasn’t evaluated and 

will be explored in a separate study. As they offer a quick and easier technique of 

collection, storage and transportation of biospecimen especially from rural communities.  

 

Next generation sequencing (NGS) validation is also currently being explored however for 

the purpose of this study it was excluded because of cost and time constraints. However, 

results from qPCR and Sanger sequencing show that samples stored are suitable for NGS 

studies. Nonetheless, it needs to be evaluated and validated to determine if proprietary 

ingredients in stabilizers have an effect on NGS. 

 

And finally, the application of the use of stabilizers would be determined in a diagnostic 

setting. 

 

4.10 Conclusion 

 

The present study aimed at stabilization and storage of biospecimens at room temperature 

and transport cost logistics. Results from the various stabilizers explored show that RTS 

provides products that are able to maintain the integrity of nucleic acids at room 

temperature with no loss of sample integrity. The transport cost analysis also shows that 

biospecimen shipping at room temperature provides a cheaper alternative to frozen 

shipment. This further confirms that room temperature storage provides a cheaper and 

greener alternative to cold chain management and would be a better and simpler solution 

especially for the challenges in our SA and/or African setting. 
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Appendices 

Appendix I: DNA AND RNA Concentrations of isolated samples 

DNAGard Biodrop readings for samples stored at room temperature at 3month  

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

1 12.36 1.94 0.86 

2 13.32 1.82 1.43 

3 10.20 1.96 0.91 

4 10.28 1.95 0.39 

5 7.15 2.27 2.27 

6 12.52 1.92 4.97 

7 17.47 2.06 1.67 

8 18.84 1.91 1.47 

9 36.51 1.97 2.35 

10 4.63 2.83 -1.95 

11 5.67 2.12 0.30 

12 10.26 1.95 1.41 

 

DNAGard  Biodrop readings for samples stored at -80°C at 3months 

Sample DNA Concentration 
µg/ml 

A260/A280 A260/A230 

1 15.65 1.81 1.47 

2 35.36 1.66 1.00 

3 16.16 1.98 0.94 

4 18.92 1.91 0.73 

5 24.70 1.95 1.25 

6 21.51 2.05 1.71 

7 23.97 2.00 0.96 

8 24.24 1.98 1.04 

9 8.91 1.51 0.45 

10 17.38 2.08 1.29 

11 16.32 1.96 0.77 

12 17.84 2.02 0.56 
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DNAGard Biodrop readings for samples stored at 45°C at 3months 

Sample DNA Concentration 
µg/ml 

A260/A280 A260/A230 

1 11.75 1.74 0.66 

2 14.65 1.69 0.84 

3 5.74 2.09 0.42 

4 10.29 1.95 0.63 

5 8.36 1.92 0.36 

6 11.80 1.74 0.31 

7 12.92 1.87 0.49 

8 12.69 1.65 0.22 

9 15.31 1.84 0.61 

10 10.43 1.92 0.51 

11 9.04 1.49 0.19 

12 4.00 1.99 0.40 

 

HEMAgene BUFFY COAT Biodrop readings for samples at room temperature at 3months 

Sample DNA Concentration 
µg/ml 

A260/A280 A260/A230 

1 26.73 1.81 1.69 

2 49.31 1.81 1.81 

3 20.71 1.77 2.38 

4 17.44 1.85 2.07 

5 29.37 1.91 2.05 

6 47.66 1.79 1.79 

7 16.65 1.93 2.95 

8 25.09 1.92 1.92 

9 39.32 1.84 2.15 

10 22.09 1.83 2.43 

11 23.49 1.74 0.68 

12 17.13 1.88 0.77 
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HEMAgene BUFFY COAT Biodrop readings for samples at -80°C at 3months 

Sample DNA Concentration 
µg/ml 

A260/A280 A260/A230 

1 15.43 1.83 1.35 

2 37.51 1.83 1.53 

3 18.15 1.79 1.38 

4 8.94 1.81 1.29 

5 15.55 1.81 1.35 

6 27.17 1.91 1.92 

7 11.12 1.81 1.82 

8 36.44 1.78 1.43 

9 35.55 1.82 1.58 

10 22.46 1.96 1.29 

11 9.78 2.05 1.00 

12 4.41 3.14 1.00 

 

HEMAgene BUFFY COAT Biodrop readings for samples at 45°C at 3months 

Sample DNA Concentration 
µg/ml 

A260/A280 A260/A230 

1 16.58 1.73 0.89 

2 24.50 1.69 0.78 

3 12.54 1.91 0.72 

4 10.05 1.99 1.25 

5 11.61 2.07 1.35 

6 20.33 1.79 0.91 

7 7.58 2.12 1.00 

8 13.28 1.82 0.87 

9 33.15 1.73 0.65 

10 17.83 2.02 0.95 

11 3.95 2.02 1.00 

12 13.04 1.85 1.18 
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DNAgard Qubit 2.0 flourometer readings RT at 3months. A dilution factor of 1:19 was used 

for Qubit DNA Assays 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

1 0.367 7.34 

2 0.335 6.70 

3 0.231 4.62 

4 0.271 5.42 

5 0.221 4.42 

6 0.582 11.6 

7 0.552 11.0 

8 0.518 10.4 

9 1.52 30.4 

10 0.209 4.18 

11 0.133 2.66 

12 0.425 8.50 

 

DNAgard Qubit 2.0 flourometer readings -80°C at 3months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

1 0.673 13.5 

2 0.894 17.9 

3 0.487 9.74 

4 0.564 11.3 

5 0.584 11.7 

6 0.527 10.5 

7 0.485 9.70 

8 0.605 12.1 

9 0.141 2.82 

10 0.545 10.9 

11 0.309 6.18 

12 0.152 3.04 
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DNAgard Qubit 2.0 flourometer readings 45°C at 3months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

1 0.275 5.50 

2 0.311 6.22 

3 0.0931 1.86 

4 0.196 3.92 

5 0.113 2.26 

6 0.132 2.64 

7 0.283 5.66 

8 0.0830 1.66 

9 0.262 5.24 

10 0.174 3.48 

11 0.0408 0.81 

12 0.0399 0.79 

 

 

HEMAgene Qubit 2.0 flourometer readings RT at 3months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

1 0.444 8.88 

2 1.22 24.4 

3 0.377 7.54 

4 0.425 8.50 

5 0.690 13.8 

6 1.16 23.2 

7 0.318 6.36 

8 0.498 9.96 

9 0.922 18.4 

10 0.0611 1.22 

11 0.275 5.50 

12 0.20 4.10 
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HEMAgene Qubit 2.0 flourometer readings -80°C at 3months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

1 0.365 7.30 

2 0.882 17.6 

3 0.393 7.86 

4 0.225 4.50 

5 0.295 5.90 

6 0.557 11.1 

7 0.414 8.28 

8 0.543 10.9 

9 0.764 15.3 

10 0.483 9.66 

11 0.213 4.26 

12 0.366 7.32 

 

HEMAgene Qubit 2.0 flourometer readings 45°C at 3months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

1 0.309 6.18 

2 0.656 13.1 

3 0.265 5.30 

4 0.278 5.56 

5 0.283 5.66 

6 0.455 9.10 

7 0.162 3.24 

8 0.312 6.24 

9 0.416 8.32 

10 0.331 6.62 

11 0.095 1.90 

12 0.320 6.40 
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DNAStable PLUS Day 0 Concentrations 

Sample DNA Concentration 
µg/ml 

A260/A280 A260/A230 

1 268.4 1.86 2.19 

2 171.2 1.88 2.06 

3 129.4 1.89 2.07 

4 82.93 1.93 1.89 

5 104.2 1.92 1.92 

6 146.7 1.84 1.86 

7 95.90 1.92 2.00 

8 137.9 1.89 2.09 

9 69.26 1.96 1.86 

10 94.10 1.92 2.04 

11 65.80 1.95 1.95 

12 137.3 1.89 1.89 

 

 

DNAStable PLUS samples stored at room temperature at 3month 

Sample ID DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DS2 172.3 1.789 0.087 

DS3 118.3 1.659 0.051 

DS4 81.90 1.641 0.036 

DS5 99.95 1.725 0.045 

DS6 132.7 1.686 0.056 

DS7 89.97 1.667 0.039 

DS8 128.1 1.909 0.059 

DS9 69.01 1.971 0.031 

DS10 92.89 1.940 0.042 

DSC11 88.27 1.908 1.332 

DSC12 176.5 1.887 2.227 
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DNAStable PLUS samples stored at 45°C at 3month 

Sample ID DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DS2 295.5 1.807 0.113 

DS3 186.4 1.736 0.072 

DS4 15.72 1.469 0.208 

DS5 284.8 1.840 0.109 

DS6 269.9 1.813 0.104 

DS7 150.0 1.785 0.060 

DS8 209.9 1.910 0.082 

DS9 100.7 1.968 0.043 

DS10 129.9 1.942 0.053 

DSC11 169.0 1.920 0.503 

DSC12 385.8 1.848 2.022 

 

DNAStable PLUS samples stored at -80°C at 3month 

Sample ID DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DS2 154.3 1.809 0.087 

DS3 143.4 1.829 0.110 

DS4 73.06 1.971 0.033 

DS5 91.80 1.739 0.042 

DS6 112.9 1.687 0.053 

DS7 80.01 1.778 0.037 

DS8 129.9 1.942 0.063 

DS9 63.07 2.030 0.029 

DS10 79.98 1.482 0.034 

DSC11 67.73 2.008 1.896 

DSC12 136.8 1.905 2.287 
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DNAStable PLUS samples stored at -20°C at 3month 

Sample ID  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DS2 132.0 1.737 0.065 

DS3 102.9 1.662 0.046 

DS4 57.00 1.629 0.026 

DS5 83.86 1.682 0.038 

DS6 110.5 1.662 0.049 

DS7 78.32 1.691 0.039 

DS8 129.4 1.919 0.058 

DS9 51.13 1.959 0.024 

DS10 75.89 1.951 0.035 

DSC11 62.69 2.043 0.277 

DSC12 140.2 1.896 2.608 

 

DNAStable PLUS Qubit 2.0 flourometer readings RT at 3months 

Sample ID DNA Concentration µg/ml Stock Concentration µg/ml 

DS2 7.4 148 

DS3 2.57 51.4 

DS4 1.77 35.4 

DS5 2.20 44.0 

DS6 2.90 58.0 

DS7 2.14 42.8 

DS8 3.15 63.0 

DS9 1.66 33.2 

DS10 3.01 60.2 

DSC11 1.21 24.2 

DSC12 4.19 83.8 

 

DNAStable PLUS Qubit 2.0 flourometer readings 45°C at 3months 

Sample ID DNA Concentration µg/ml Stock Concentration µg/ml 

DS2 6.5 130 

DS3 3.60 72.0 

DS4 3.32 66.4 

DS5 6.7 134 

DS6 6.2 124 

DS7 3.18 63.6 

DS8 3.06 61.2 

DS9 1.92 38.4 

DS10 3.57 71.4 

DSC11 2.66 53.2 

DSC12 9.5 190 

DNAStable PLUS Qubit 2.0 flourometer readings -80°C at 3months 

Sample ID DNA Concentration µg/ml Stock Concentration µg/ml 

DS2 3.49 69.8 

DS3 3.18 63.6 

DS4 2.05 41.0 

DS5 1.03 20.6 

DS6 3.96 79.2 

DS7 1.66 33.2 
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DS8 3.93 78.6 

DS9 1.39 27.8 

DS10 1.80 36.0 

DSC11 1.79 35.8 

DSC12 3.39 67.8 

 

DNAStable PLUS Qubit 2.0 flourometer readings -20°C at 3months 

Sample ID DNA Concentration µg/ml Stock Concentration µg/ml 

DS2 4.95 99.0 

DS3 3.19 63.8 

DS4 1.23 24.6 

DS5 1.98 39.6 

DS6 2.03 40.6 

DS7 1.49 29.8 

DS8 3.22 64.4 

DS9 1.34 26.8 

DS10 1.75 35.0 

DSC11 1.49 29.8 

DSC12 2.98 59.6 
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DNAGard Biodrop readings for samples stored at room temperature at 6 month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DG1 10.13 1.947 1.421 

DG2 8.332 2.501 1.136 

DG3 7.933 2.017 0.726 

DG4 11.70 2.053 1.520 

DG5 10.16 2.443 0.910 

DG6 13.32 2.108  1.820 

DG7 7.868 2.034 0.529 

DG8 3.922 2.041 0.197 

DG9 9.221 2.863 1.122 

DG10 8.274 1.569 0.152 

DGC11 10.11 2.461 0.771 

DGC12 9.778 2.588 1.114 

 

DNAGard Biodrop readings for samples stored at room 45°C at 6month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DG1 2.956 1.511 0.425 

DG2 3.925 2.039 0.495 

DG3 3.933 2.035 0.360 

DG4 2.442 1.000 0.213 

DG5 4.094 1.955 0.290 

DG6 5.177 1.630 0.270 

DG7 3.697 1.371 0.163 

DG8 3.315 1.432 0.293 

DG9 3.771 2.169 0.382 

DG10 4.416 1.828 0.424 

DGC11 4.880 1.258 0.148 

DGC12 8.183 1.584 0.619 
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DNAGard Biodrop readings for samples stored at -80°C at 6 month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DG1 20.25 1.957 1.800 

DG2 23.32 1.751 0.795 

DG3 21.68 1.856 1.161 

DG4 14.44 1.941 2.243 

DG5 18.46 1.952 1.952 

DG6 22.45 1.961 1.803 

DG7 15.85 2.019 2.710 

DG8 23.54 1.877 1.619 

DG9 33.17 1.932 2.051 

DG10 13.26 1.826  1.432 

DGC11 8.246 1.942 2.540 

DGC12 7.058 2.309 0.876 

 

DNAgard Qubit 2.0 flourometer readings for RT samples at 6 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

DG1 0.259 5.18 

DG2 0.364 7.28 

DG3 0.272 5.44 

DG4 0.368 7.36 

DG5 0.302 6.04 

DG6 0.506 10.1 

DG8 0.215 4.30 

DG8 0.0382 0.764 

DG9 0.400 8.00 

DG10 0.0816 1.63 

DGC11 0.298 5.96 

DGC12 0.385 7.70 
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 DNAgard Qubit 2.0 flourometer readings for 45°C samples at 6 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

DG1 0.169 3.34 

DG2 0.114 2.28 

DG3 0.0957 1.91 

DG4 0.0831 1.66 

DG5 0.0809 1.62 

DG6 0.102 2.04 

DG7 0.136 2.72 

DG8 0.0796 1.59 

DG9 0.0753 1.51 

DG10 0.0968 1.94 

DGC11 0.0706 1.41 

DGC12 0.388 7.76 

 

 

DNAgard Qubit 2.0 flourometer readings for -80°C samples at 6 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

DG1 1.22 24.4 

DG2 1.00 20.0 

DG3 1.19 23.8 

DG4 1.00 20.0 

DG5 0.700 14.0 

DG6 1.05 21.0 

DG7 0.720 14.4 

DG8 1.26 25.2 

DG9 2.21 44.2 

DG10 0.197 3.94 

DGC11 0.654 13.1 

DGC12 0.288 5.76 
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HEMAGene Biodrop readings for samples stored at room temperature (RT) at 6month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

HG1 34.16 1.881 1.614 

HG2 51.01 1.821 1.700 

HG3 26.69 1.950 1.599 

HG4 18.53 1.760 1.479 

HG5 29.00 1.706 1.115 

HG6 29.60 2.028 2.028 

HG7 16.66 2.502 1.563 

HG8 31.40 2.039 1.467 

HG9 33.82 1.898 1.261 

HG10 22.84 2.107 2.107 

HGC11 22.45 2.148 1.365 

HGC12 23.60 1.873 0.596 

 

HEMAGene Biodrop readings for samples stored at 45°C at 6month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

HG1 44.26 1.686 0.816 

HG2 61.78 1.776 1.321 

HG3 33.88 1.895 1.623 

HG4 20.49 1.783 1.243 

HG5 19.16 1.717 0.657 

HG6 37.89 1.655 0.927 

HG7 16.83 1.906 1.312 

HG8 29.30 1.915 1.601 

HG9 40.38 1.804 1.052 

HG10 18.33 1.774 1.486 

HGC11 4.113 1.947 0.804 

HGC12 3.702 2.175 0.552 
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HEMAGene Biodrop readings for samples stored at -80°C at 6month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

HG1 27.21 1.789 1.494 

HG2 45.76 1.848 1.776 

HG3 23.04 1.914 1.641 

HG4 17.44 1.848 1.525 

HG5 21.92 1.839 1.697 

HG6 39.66 1.920 2.017 

HG7 16.97 1.892 1.308 

HG8 28.60 1.959 1.723 

HG9 41.57 1.842 1.842 

HG10 26.30 1.839 1.613 

HGC11 3.342 2.491 0.626 

HGC12 6.397 2.669 0.865 

 

 

HEMAGene Qubit 2.0 flourometer readings for RT samples at 6 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

HG1 1.57 31.4 

HG2 3.25 65.0 

HG3 3.01 60.2 

HG4 1.26 25.2 

HG5 1.20 24.0 

HG6 2.24 44.8 

HG7 0.857 17.1 

HG8 3.39 67.8 

HG9 2.15 43.0 

HG10 1.52 30.4 

HGC11 1.48 29.6 

HGC12 0.488 9.76 
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HEMAGene Qubit 2.0 flourometer readings for 45°C samples at 6 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

HG1 1.51 30.2 

HG2 1.78 35.6 

HG3 1.07 21.4 

HG4 0.875 17.5 

HG5 0.580 11.6 

HG6 1.11 22.2 

HG7 0.860 17.2 

HG8 0.866 17.3 

HG9 1.04 20.8 

HG10 0.466 9.32 

DGC11 0.0638 1.28 

DGC12 0.116 2.32 

 

 

HEMAGene Qubit 2.0 flourometer readings for -80°C samples at 6 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

HG1 3.28 65.6 

HG2 2.58 51.6 

HG3 1.12 22.4 

HG4 0.809 16.2 

HG5 0.993 19.9 

HG6 2.27 45.4 

HG7 0.669 13.3 

HG8 2.44 48.8 

HG9 1.35 27.0 

HG10 1.82 36.4 

HGC11 0.0460 0.920 

HGC12 0.150 3.00 
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DNAGard Biodrop readings for samples stored at room temperature at 9 month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DG1 5.804 1.526 0.392 

DG2 4.637 1.275 0.225 

DG3 5.377 1.228 0.196 

DG4 6.780 1.794 0.629 

DG5 2.192 1.523 0.493 

DG6 7.271 1.159  0.121 

DG7 15.70 2.039 0.887 

DG8 8.570 1.875 0.682 

DG9 20.80 1.625 0.402 

DG10 3.535 2.303 0.371 

DGC11 13.80 1.770 0.775 

DGC12 25.29 1.770 0.783 

 

DNAGard Biodrop readings for samples stored at -80 at 9 month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DG1 21.80 1.847 1.160 

DG2 30.74 1.836 1.000 

DG3 24.03 1.599 0.445 

DG4 20.41 1.645 1.000 

DG5 26.81 1.696 1.288 

DG6 26.28 1.840  1.438 

DG7 37.19 1.842 1.604 

DG8 38.30 1.887 1.576 

DG9 66.28 1.827 1.244 

DG10 21.75 2.023 1.048 

DGC11 17.24 1.866 0.519 

DGC12 8.972 2.259 0.562 
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DNAGard Biodrop readings for samples stored at 45 at 9 month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DG1 3.076 1.482 0.170 

DG2 14.79 1.371 0.232 

DG3 5.206 1.238 0.215 

DG4 4.057 1.972 0.311 

DG5 15.04 1.498 0.235 

DG6 8.535 1.306 0.211 

DG7 1.525 2.906 0.203 

DG8 5.887 1.515 0.246 

DG9 5.208 1.624 0.178 

DG10 3.195 2.674 0.225 

DGC11 2.630 4.175 0.305 

DGC12 3.177 1.459 0.209 

 

DNAgard Qubit 2.0 flourometer readings for RT samples at 9 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

DG1 0.346 6.92 

DG2 0.102 2.04 

DG3 0.0445 0.890 

DG4 0.403 8.06 

DG5 0.149 2.98 

DG6 0.166 3.32 

DG7 0.787 15.7 

DG8 0.341 6.82 

DG9 0.930 18.6 

DG10 0.159 3.18 

DGC11 0.489 9.78 

DGC12 0.920 18.4 
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DNAgard Qubit 2.0 flourometer readings for -80 samples at 9 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

DG1 0.933 18.7 

DG2 1.04 20.8 

DG3 0.664 13.3 

DG4 0.804 16.1 

DG5 1.05 21.0 

DG6 1.07 21.4 

DG7 1.27 25.4 

DG8 1.25 25.0 

DG9 2.45 49.0 

DG10 0.682 13.6 

DGC11 0.460 9.20 

DGC12 0.199 3.98 

 

 

DNAgard Qubit 2.0 flourometer readings for 45 samples at 9 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

DG1 0.0537 1.07 

DG2 0.107 2.14 

DG3 0.0723 1.45 

DG4 0.0474 0.948 

DG5 0.136 2.72 

DG6 0.0658 1.32 

DG7 0.0552 1.10 

DG8 0.0698 1.40 

DG9 0.0622 1.24 

DG10 0.0520 1.04 

DGC11 0.0488 0.976 

DGC12 0.0701 1.40 
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HEMAgene Biodrop readings for samples stored at room temperature at 9 month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

HG1 29.93 1.768 1.581 

HG2 35.71 1.812 1.445 

HG3 14.98 1.877 1.250 

HG4 15.03 1.872 1.363 

HG5 32.06 1.775 1.552 

HG6 41.90 1.830  1.558 

HG7 15.11 1.863 1.248 

HG8 37.09 1.759 1.275 

HG9 25.49 1.890 1.244 

HG10 17.58 2.049 1.128 

HGC11 23.88 1.854 0.666 

HGC12 10.69 1.879 0.543 

 

HEMAgene Biodrop readings for samples stored at -80 at 9 month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

HG1 22.42 1.805 1.287 

HG2 31.78 1.894 1.787 

HG3 18.12 1.986 1.283 

HG4 14.05 1.993 0.737 

HG5 22.34 1.811 1.155 

HG6 28.63 1.832 1.212 

HG7 11.69 2.055 0.854 

HG8 24.36 1.971 0.961 

HG9 31.29 1.810 0.817 

HG10 19.86 2.015 1.337 

HGC11 16.39 1.953 0.804 

HGC12 4.494 5.213 0.497 
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HEMAgene Biodrop readings for samples stored at 45 at 9 month 

Sample  DNA Concentration 
µg/ml 

A260/A280 A260/A230 

HG1 36.23 1.884 1.791 

HG2 43.23 1.861 1.945 

HG3 13.66 2.051 1.281 

HG4 15.54 2.062 1.475 

HG5 24.22 1.982 1.982 

HG6 23.54 2.040  2.234 

HG7 10.92 2.220 1.379 

HG8 19.20 2.087 1.882 

HG9 35.25 1.931 1.396 

HG10 17.73 2.031 1.653 

HGC11 9.616 2.659 0.546 

HGC12 18.17 1.982 1.124 

 

HEMAGene Qubit 2.0 flourometer readings for RT samples at 9 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

HG1 1.34 26.8 

HG2 1.91 38.2 

HG3 0.696 13.9 

HG4 0.745 14.9 

HG5 1.12 22.4 

HG6 1.25 25.0 

HG7 0.701 14.0 

HG8 0.181 3.62 

HG9 1.23 24.6 

HG10 0.824 16.5 

HGC11 1.34 26.8 

HGC12 0.417 8.34 
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HEMAGene Qubit 2.0 flourometer readings for -80 samples at 9 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

HG1 1.13 22.6 

HG2 0.937 18.7 

HG3 0.665 13.3 

HG4 0.541 10.8 

HG5 0.727 14.5 

HG6 1.40 28.0 

HG7 0.313 6.26 

HG8 0.773 15.5 

HG9 1.01 20.2 

HG10 0.731 14.6 

HGC11 0.448 8.96 

HGC12 0.0371 0.742 

 

HEMAGene Qubit 2.0 flourometer readings for 45 samples at 9 months 

Sample DNA Concentration µg/ml Stock Concentration µg/ml 

HG1 1.50 30.0 

HG2 1.20 24.0 

HG3 0.416 8.32 

HG4 0.524 10.5 

HG5 0.668 13.4 

HG6 0.712 14.2 

HG7 0.288 5.76 

HG8 0.574 11.5 

HG9 1.07 21.4 

HG10 0.384 7.68 

HGC11 0.0407 0.814 

HGC12 0.437 8.74 
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DNAStable PLUS  Biodrop readings for samples stored at RT at 6month 

Sample ID DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DS2 158.4 1.772 0.074 

DS3 115.0 1.692 0.050 

DS4 91.51 1.710 0.039 

DS5 111.5 1.756 0.049 

DS6 152.9 1.780 0.074 

DS7 102.1 1.644 0.043 

DS8 167.9 1.889 0.075 

DS9 76.43 1.989 0.039 

DS10 125.9 1.910 0.053 

DSC11 78.42 1.989 1.256 

DSC12 223.6 1.870 20.78 

 

DNAStable PLUS Biodrop readings for samples stored at -80°C at 6 month 

Sample ID DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DS2 142.8 1.724 0.061 

DS3 137.4 1.822 0.079 

DS4 84.87 2.027 0.103 

DS5 100.5 1.844 0.052 

DS6 121.3 1.726 0.052 

DS7 84.21 1.863 0.041 

DS8 121.5 1.976 0.053 

DS9 65.56 2.145 0.029 

DS10 96.11 1.998 0.043 

DSC11 144.4 1.890 1.498 

DSC12 179.2 1.902 2.103 
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DNAStable PLUS Biodrop readings for  samples stored at -20°C at 6 month 

Sample ID DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DS2 176.8 1.846 0.101 

DS3 117.6 1.739 0.053 

DS4 141.7 1.823 0.065 

DS5 219.7 1.851 0.098 

DS6 167.6 1.810 0.080 

DS7 65.06 1.756 0.029 

DS8 211.0 1.936 0.090 

DS9 75.73 2.062 0.035 

DS10 74.60 2.038 0.033 

DSC11 67.62 2.073 1.625 

DSC12 150.6 1.941 2.047 

 

DNAStable PLUS Biodrop readings for samples stored at 45°C at 6 month 

Sample ID DNA Concentration 
µg/ml 

A260/A280 A260/A230 

DS2 882.2 1.853 0.286 

DS3 359.2 1.840 0.133 

DS4 339.1 1.812 0.125 

DS5 293.2 1.889 0.116 

DS6 523.9 1.839 0.184 

DS7 450.7 1.820 0.159 

DS8 673.5 1.879 0.233 

DS9 196.5 1.955 0.078 

DS10 333.5 1.889 0.124 

DSC11 129.5 1.918 1.762 

DSC12 427.7 1.799 2.069 
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DNAStable PLUS Qubit 2.0 flourometer readings RT at 6 months 

Sample ID DNA Concentration µg/ml Stock Concentration µg/ml 

DS2 4.12 82.4 

DS3 2.50 50.0 

DS4 1.84 36.8 

DS5 1.76 35.2 

DS6 3.27 65.4 

DS7 1.80 36.0 

DS8 2.99 59.8 

DS9 1.10 22.0 

DS10 1.54 30.8 

DSC11 1.28 25.6 

DSC12 4.53 90.6 

 

DNAStable PLUS Qubit 2.0 flourometer readings -80°C at 6 months 

Sample ID DNA Concentration µg/ml Stock Concentration µg/ml 

DS2 5.8 116 

DS3 7.3 146 

DS4 4.85 97.0 

DS5 4.32 86.4 

DS6 6.4 128 

DS7 3.97 79.4 

DS8 7.1 142 

DS9 2.74 54.8 

DS10 5.1 102 

DSC11 3.28 65.6 

DSC12 9.9 198 

 

 

DNAStable PLUS Qubit 2.0 flourometer readings -20°C at 6 months 

Sample ID DNA Concentration µg/ml Stock Concentration µg/ml 

DS2 8.3 166 

DS3 3.76 75.2 

DS4 3.83 76.6 

DS5 2.93 58.6 

DS6 6.7 134 

DS7 3.50 70.0 

DS8 5.00 100 

DS9 2.18 43.6 

DS10 3.73 74.6 

DSC11 2.17 43.4 

DSC12 6.1 122 

DNAStable PLUS Qubit 2.0 flourometer readings 45°C at 6 months 

Sample ID DNA Concentration µg/ml Stock Concentration µg/ml 

DS2 0.950 19.0 

DS3 3.77 75.4 

DS4 1.77 35.4 

DS5 2.48 49.6 

DS6 1.16 23.2 
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DS7 3.51 70.2 

DS8 5.3 106 

DS9 1.39 27.8 

DS10 2.00 40.0 

DSC11 2.20 44.0 

DSC12 0.465 9.30 

 

RNAgard (RG) and PAXgene (PG) biodrop readings for room temperature samples (RT) 

at 3 days 

SAMPLE ID RNA CONC ug/ml A260/280 A260/230 

RG1 0.800 1.000 0.014 

RG2 1.264 2.275 0.020 

RG3 1.711 1.878 0.014 

RG4 1.294 2.620 0.023 

RG5 0.830 1.000 0.015 

EDTA 6 51.93 1.914 0.783 

    

PG1 4.550 1.542 0.198 

PG2 4.068 1.648 0.039 

PG3 11.15 1.756 0.127 

PG4 41.48 1.681 0.318 

PG5 4.662 2.061 0.089 
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RNAgard (RG) AND PAXgene (PG) biodrop readings for -80 at 3 days 

SAMPLE ID RNA CONC ug/ml A260/280 A260/230 

RG1 2.364 3.094 0.011 

RG2 1.808 1.793 0.013 

RG3 1.351 2.452 0.108 

RG4 1.384 2.374 0.008 

RG5 1.296 2.614 0.008 

EDTA 6 36.40 1.857 0.394 

    

PG1 15.42 2.078 0.155 

PG2 14.00 2.059 0.156 

PG3 8.036 1.991 0.251 

PG4 23.76 1.892 0.284 

PG5 30.31 1.814 0.527 

 

RNAgard (RG) AND PAXgene (PG) biodrop readings for room temperature samples (rt) at 

7 days 

SAMPLE ID RNA CONC ug/ml A260/280 A260/230 

RG1 2.156 3.878 0.022 

RG2 1.075 3.908 0.019 

RG3 2.488 2.802 0.023 

RG4 1.992 1.671 0.026 

RG5 1.552 2.064 0.115 

EDTA 6 46.71 1.803 0.333 

    

PG1 9.844 1.684 0.132 

PG2 27.68 1.766 0.446 

PG3 8.171 1.959 0.120 

PG4 14.69 1.772 0.223 

PG5 3.488 1.847 0.214 

 

RNAgard (RG) AND PAXgene (PG) biodrop readings for -80 at 7 days 

SAMPLE ID RNA CONC ug/ml A260/280 A260/230 

RG1 0.644 -4.114 0.023 

RG2 0.160 0.251 0.039 

RG3 0.228 0.339 0.023 

RG4 0.0 0.273 0.032 

RG5 0.564 -2.392 0.036 

EDTA 6 24.19 1.985 1.754 

    

PG1 14.12 2.041 0.069 

PG2 15.56 2.058 0.069 

PG3 10.42 2.592 0.086 

PG4 30.64 1.798 0.456 

PG5 25.25 2.028 0.191 

RNAgard (RG) AND PAXgene (PG) biodrop readings for room temperature samples (rt) at 

14 days 

SAMPLE ID RNA CONC ug/ml A260/280 A260/230 

RG1 2.833 2.298 0.172 

RG2 2.413 184.40 0.167 
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RG3 2.499 25.141 0.102 

RG4 4.269 3.992 0.025 

RG5 3.683 7.618 0.047 

EDTA 6 50.13 1.861 0.309 

    

PG1 5.839 3.175 0.201 

PG2 6.710 2.476 0.035 

PG3 9.061 2.618 0.053 

PG4 14.26 2.020 0.448 

PG5 6.586 2.547 0.057 

 

 

RNAgard (RG) AND PAXgene (PG) biodrop readings for -80 at 14 days 

SAMPLE ID RNA CONC ug/ml A260/280 A260/230 

RG1 5.754 3.281 0.020 

RG2 5.007 4.937 0.028 

RG3 3.362 3.494 0.057 

RG4 6.321 2.723 0.030 

RG5 3.989 5.057 0.030 

EDTA 6 26.85 2.026 0.045 

    

PG1 23.47 2.046 0.311 

PG2 11.10 2.361 0.164 

PG3 10.54 2.135 0.397 

PG4 13.48 2.147 0.498 

PG5 10.52 2.554 0.687 
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RNAgard (RG) AND PAXgene (PG) qubit readings for room temperature (RT) at 3 days 

SAMPLE ID RNA CONC nglml STOCK CONC ng/ml 

RG1 20 400 

RG2 ↓ ↓ 

RG3 ↓ ↓ 

RG4 28.5 570 

RG5 28.2 564 

EDTA 6 770 1.54E+04 

   

PG1 196 3.92E+03 

PG2 130 2.60E+03 

PG3 223 4.46E+03 

PG4 39.1 782 

PG5 184 3.68E+03 

 

RNAgard (RG) AND PAXgene (PG) qubit readings for -80 at 3 days 

SAMPLE ID RNA CONC nglml STOCK CONC ng/ml 

RG1 ↓ ↓ 

RG2 26.7 534 

RG3 20 400 

RG4 ↓ ↓ 

RG5 36.9 738 

EDTA 6 252 5.04E+03 

   

PG1 396 7.92E+03 

PG2 245 4.90E+03 

PG3 306 6.12E+03 

PG4 115 2.30E+03 

PG5 361 7.22E+03 
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RNAgard (RG) AND PAXgene (PG) qubit readings for room temperature (RT) at 7 days 

SAMPLE ID RNA CONC nglml STOCK CONC ng/ml 

RG1 97.6 1.95E.03 

RG2 42.0 840 

RG3 75.1 1.50E+03 

RG4 29.7 594 

RG5 82.4 1.65E+03 

EDTA 6 241 4.82E+03 

   

PG1 223 4.46E+03 

PG2 197 3.94E+03 

PG3 172 3.44E+03 

PG4 40.8 816 

PG5 184 3.68E+03 

 

RNAgard (RG) AND PAXgene (PG) qubit readings for -80 at 7 days 

SAMPLE ID RNA CONC nglml STOCK CONC ng/ml 

RG1 32.4 648 

RG2 ↓ ↓ 

RG3 ↓ ↓ 

RG4 ↓ ↓ 

RG5 ↓ ↓ 

EDTA 6 249 4.98E+03 

   

PG1 388 7.76E+03 

PG2 249 4.98E+03 

PG3 341 6.82E+03 

PG4 155 3.10E+03 

PG5 279 5.58E+03 
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RNAgard (RG) AND PAXgene (PG) qubit readings for room temperature (rt) at 14 days 

SAMPLE ID RNA CONC nglml STOCK CONC ng/ml 

RG1 173 3.46E+03 

RG2 138 2.76E+03 

RG3 151 3.02E+03 

RG4 53.5 1.07E+03 

RG5 92.9 1.86E+03 

EDTA 6 105 2.10E+03 

   

PG1 83.5 1.67E+03 

PG2 93.8 1.88E+03 

PG3 27.3 546 

PG4 21 420 

PG5 81.7 1.63E+03 

 

RNAgard (RG) AND PAXgene (PG) qubit readings for -80 at 14 days 

SAMPLE ID RNA CONC nglml STOCK CONC ng/ml 

RG1 ↓ ↓ 

RG2 ↓ ↓ 

RG3 ↓ ↓ 

RG4 ↓ ↓ 

RG5 ↓ ↓ 

EDTA 6 199 3.98E+03 

   

PG1 331 6.62E+03 

PG2 184 3.68E+03 

PG3 183 3.66E+03 

PG4 130 2.60E+03 

PG5 291 5.82E+03 

 

 

Biodrop readings for cultured cell stored at room temperature (RT) at 1 month 

SAMPLE ID DNA CONC ug/ml A260/280 A260/230 

P1 62.30 1.929 1.169 

P2 45.53 1.935 0.938 

NP(H2O) 19.89 2.012 0.511 

NP(DMSO 1) 16.52 1.735 0.560 

NP(DMSO 2) 29.53 1.907 0.936 
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Biodrop readings for cultured cell stored at liquid nitrogen (LN) at 1 month 

SAMPLE ID DNA CONC ug/ml A260/280 A260/230 

P1 68.50 1.929 1.212 

P2 64.10 1.882 1.123 

NP(H2O) 58.79 1.973 1.158 

NP(DMSO 1) 38.60 1.874 1.027 

NP(DMSO 2) 47.40 1.866 1.145 

 

Qubit readings for cultued cells stored at room temperature (RT) at 1 month 

SAMPLE ID DNA CONC ug/ml STOCK CONC ug/ml 

P1 4.03 80.6 

P2 1.79 35.8 

NP(H2O) 0.297 5.94 

NP(DMSO 1) 0.702 14.0 

NP(DMSO 2 1.17 23.4 

 

Qubit readings for cultured cells stored at liquid nitrogen (LN) at 1 month 

SAMPLE ID DNA CONC ug/ml STOCK CONC ug/ml 

P1 2.06 41.2 

P2 2.02 40.4 

NP(H2O) 0.531 10.6 

NP(DMSO 1) 0.988 19.8 

NP(DMSO 2 1.36 27.2 

 

↓- RNA concentration too low to be detected by Qubit flourometer. 
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Appendix II: Samples selected for DNA sequencing 

For DNA in buffy coat stored for 3months with or without HEMAgene buffy coat 

stabilizers,one sample at RT, -80°C and 45°C was sent for sequencing. Each sample had 

a forward and a reverse reaction for both small (268 bp and large (1327 bp) fragment of 

the Beta globin gene. 

The same selection criteria were done for samples stored in DNAgard stabilizer for 3 

months. 
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