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Abstract 

There have been notable regional and temporal changes in many biological systems 

around the Prince Edward Islands (PEI) in the Southern Ocean, but little work has focused on 

epibenthic assemblages. The aim of this study was to investigate spatial and temporal changes 

in the epibenthos, as they may be important indicators of change. During the austral summer 

of 2013 and 2015, a benthic towed camera system was employed to survey benthic habitats 

around Marion and Prince Edward Islands. This photographic sampling survey was conducted 

to align with a previous epibenthic photographic survey completed between 1984 and 1989. 

As marine photographic surveys have a propensity to underrepresent the species richness 

present, investigations into the optimal sampling intensity required per substrate type were 

conducted initially in order to ensure rigorous representative sampling. Historical photographic 

data of epibenthic assemblages in the upstream and downstream regions of the islands were 

then compared to data from the new photographic surveys to assess changes in regional species 

composition over time.  

Due to the various challenges associated with using underwater photography as a 

sampling method, identifying an optimal photographic sampling intensity for the epibenthos at 

the PEIs was imperative to this study. To achieve this, species-area relationships were used in 

conjunction with substrate type to determine the number of samples needed for given 

thresholds of species representation to be reached. The asymptotic richness estimator Chao 2 

was used to compare the species richness detected in an area to a statistical estimation of the 

possible total species present. The point where species accumulation curves started to 

decelerate was identified as the point where a 20% increase in samples results in <5% increase 

in the number of new species observed. Points of deceleration were subsequently compared 

among substrate types. Substrate type was not found to be an accurate predictor of epifaunal 

species richness at the PEIs. There was no difference in the species area curves among substrate 
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types and all curves accelerated at the same rate irrespective of substrate type. An average of 

20 samples was required to reach a point at which at least 80% of the total asymptotic richness 

had been sampled. A strategy using this sampling intensity can, therefore, be applied across 

substrate types at the PEIs.  

With the required sampling intensity determined, historical and resampling surveys in 

the upstream and downstream regions of the PEIs were compared. The Shannon-Wiener index 

indicated that diversity differed over time but did not differ between regions. In contrast, 

however, there were regional differences in Pielou’s evenness index but no difference over 

time. There were significant differences in species composition between regions over time. The 

temporal differences in assemblages, however, were due to dispersion effects. The temporal 

change in benthic assemblages may mirror shifts in the prevailing primary productivity patterns 

at the islands. Climate-driven changes are thought to have caused variations in mesoscale 

oceanographic regimes and subsequent primary productivity patterns, which influence the 

benthos upon sinking. The photographic dataset compiled in this study provide the second 

permanent record of the epibenthic environment at the PEIs and will aid future monitoring 

studies in this region, especially in the face of imminent climate changes. The results of this 

study will advance the long-term understanding of the epibenthos at the PEIs. 
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Chapter 1: Introduction 

 

1.1: General background  

The importance of benthos to marine ecosystem functioning  

Benthic ecosystem diversity, assemblage composition and distributions are controlled 

by a wide range of factors at different spatial and temporal scales and have high socio-economic 

value (Arntz et al. 1994; Snelgrove 1999; Levin et al. 2001; Thrush et al. 2006a; Glover et al. 

2010). The diversity of benthic communities is crucially important in maintaining the health of 

ecosystems and in the provisioning of ecosystem services (Snelgrove 1999; Worm et al. 2012). 

The role of benthos in structuring ecosystems from the bottom up is central in maintaining 

ecosystem health as benthic assemblages form valuable trophic links to top predators such as 

fish, marine mammals and birds (Arntz et al. 1994; Moore et al. 2003; Simpkins et al. 2003; 

Smith et al. 2006). Benthic invertebrates also aid in nutrient cycling and oxygenation of 

sediments, where deposit feeding organisms, through burrowing and feeding, combine 

particulate organic carbon (POC) and oxygen within sediments (Snelgrove 1999; Rex and Etter 

2010). The presence of these bioturbators may influence the abundance of organisms reliant 

on nutrients within sediments and thereby their presence or absence is important in structuring 

predator-prey interactions at the seafloor (Martinetto et al. 2005). Benthic organisms 

themselves also play an important role in increasing diversity, as habitat-forming species like 

large sponges and octocorals provide a source of food and increase habitat complexity and 

thereby the realised niches of many species (Ross and Quattrini 2007; Buhl-Mortensen et al. 

2010, Wood et al. 2012). 
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Global processes affecting benthic species distributions 

There are several well-established ecological patterns associated with biological 

assemblage distributions in the deep sea. One of these patterns is that light availability becomes 

limited with increasing depth, thereby reducing in efficiency and ultimately limiting the 

distribution of benthic primary producers (Rex and Etter 2010). Benthic communities are 

consequently reliant on production taking place near the surface (Grebmeier and Barry 91; 

Snelgrove 99; Smith et al. 2006; Thrush et al. 2006a). Surface productivity generates 

particulate organic matter (POM), which is mostly reprocessed within the aphotic zone by 

microbes and zooplankton grazing (Rex and Etter 2010, Perissinotto 1992). POM not grazed, 

sinks through the water column to provide a source of nutrients to benthic assemblages (Clarke 

1988, Grebmeier and Barry 1991; Billett et al. 2001; Sumida et al. 2008). Due to variability in 

the amount of POM flux to deeper waters, there may be shifts in the composition of benthic 

communities across depth gradients (Barry et al. 2003). Additionally, due to limiting oxygen 

levels, limited light and restricted nutrients, very deep waters tend to be exceptionally energy 

deprived environments (Levin et al. 2001; Rex and Etter 2010). Primary production is also 

highly variable along geographic gradients, where areas of higher production are likely to be 

at higher latitudes and in coastal regions in which nutrient-rich upwelling occurs (Rex and Etter 

2010). However, in other areas such as the Polar Regions, where reduced light availability 

limits production during winter months, primary production is highly seasonal (Clarke 1988; 

Clarke and Harris 2003). Primary production within the surface layers is, therefore, controlled 

by both spatial and temporal factors (Smith et al. 2006). Distributions of species and 

assemblages may be linked to these patterns of productivity (Dayton and Oliver 1977; Billett 

et al. 2001; Smith et al. 2006; Sumida et al. 2008) and productivity patterns can thus be used 

to improve understanding of observed ecosystem changes (Smith et al. 2006).  
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Habitat type may also be important in driving species diversity gradients, where the 

type of substrate influences the suite of organisms able to live in a given area (Smith et al. 

2006; Schlacher et al. 2007; Levin et al. 2010; Compton et al. 2013). Certain sessile epifaunal 

organisms require hard substrates for attachment, while soft sediments are necessary for 

burrowing infaunal species. The species diversity of soft sediment communities is affected by 

the particle sizes of sediments, particularly for deposit feeders that are reliant on sediment type 

(Etter and Grassle 1992). Species richness may be reliant on the specific abiotic substrate 

features of an environment. Highly complex biogenic habitats tend to have high species 

diversity and as such are important in structuring species diversity gradients (Lindholm et al. 

2004; Buhl-Mortensen et al. 2010; Nolan et al. 2017). Biogenic habitats are important in that 

they provide a source of shelter, or a point of attachment; additionally organisms are known to 

parasitise biogenic habitats or use them as a food source (Buhl-Mortensen et al. 2010). Habitat 

type can, therefore, be classified using a combination of factors, where the underlying substrate 

type influences the species diversity and may aid in the formation of biogenic habitats.  

Many large-scale processes influencing diversity have been found to be affected, either 

directly or indirectly, by anthropological disturbances such as pollution or climate change. 

While this is decidedly true in many terrestrial environments, the deep sea was long thought to 

be a stable environment and not sensitive to disturbances taking place at the surface layer 

(Glover et al. 2010; Rex and Etter 2010). This is a misconception, as has been demonstrated 

by research on changes in ice cover in the Antarctic, where benthic diversity has increased 

following ice shelf collapse and the subsequent increase in availability of POM to the benthos 

(Massom and Stammerjohn 2010; Gutt et al. 2011). Changes in climate and subsequent 

changes in sea surface temperature have been found to influence primary productivity and 

subsequent nutrient flux to the deep sea, thereby influencing the diversity of benthic 

assemblages (Clarke and Harris 2003; Brown et al. 2010; Hoegh-Guldberg and Bruno 2010; 

Stellenbosch University  https://scholar.sun.ac.za



 

4 
 

Ramirez-Llodra et al. 2011; Doney et al. 2012). As climate changes occur over decadal 

timescales it is imperative that long-term studies of benthic assemblages be implemented, 

particularly in light of the importance of the benthos to ecosystem function (Josefson 1990; 

Billett et al. 2001; Ruhl and Smith 2004; Ruhl 2007; Glover et al. 2010).  

1.2: History and trends in benthic ecology research 

The need for novel sampling techniques 

The study of terrestrial ecosystems is different from that on marine benthic systems in 

that terrestrial habitat types and species assemblages are readily visible and community 

structure and influences thereon can be more directly observed and tested. The deep sea is the 

most understudied system on earth with 95% of the oceans as yet unexplored (Ramirez-Llodra 

et al. 2011). It is often difficult to determine the organisms comprising assemblages and the 

manner in which they are structured. This is due to the depths at which these communities exist 

as well as the time and cost of the specialised equipment needed to access and view these 

systems (Snelgrove 1999; Solan et al. 2003). The marine benthic environment is, therefore, 

extremely difficult to study and sampling apparatus has, until recently, been blindly dropped 

into what was presumed to be a relevant habitat (Rex and Etter 2010). Benthic sampling 

methods have traditionally relied on physical samples taken from dredges, trawls and grabs. 

These methods are, however, unable to determine the underlying assemblage structure present 

in seafloor habitats as organisms obtained are analysed without the context of their original 

habitat (Solan et al. 2003). Additionally, these methods are destructive and not ideal for large-

scale sampling because valuable biogenic structures from assemblages may be removed or 

damaged, which is particularly problematic in sensitive habitats (Sheehan et al. 2010; Beisiegel 

et al. 2017). As sampling that collects physical specimens is more efficient on soft substrates, 

apparatus better suited to sampling on hard substrates is needed to study benthic assemblages 
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(Branch et al. 1993a; Strong et al. 2006; Williams et al. 2015). Assessments of offshore benthic 

assemblages have, therefore, lagged behind those of other biological systems due to the 

extreme technical difficulties associated with surveying and sampling deep underwater 

assemblages (Hoegh-Guldberg and Bruno 2010). 

Non-destructive sampling techniques are able to detect spatial patterns and 

relationships between the characteristics of the physical habitat and the benthic assemblages. 

Underwater imagery has recently begun to offer promising possibilities for developing 

innovative insights into community structure as it is able to contextualise relationships among 

species (Adams et al. 1995; Solan et al. 2003; Williams et al. 2015). Photography as a sampling 

strategy is relatively non-destructive and hence ideal for repeat surveys in sensitive areas or 

areas that allow only limited destructive sampling methods such as Marine Protected Areas 

(MPAs) (Teixidó et al. 2002; Solan et al. 2003; Knight et al. 2014; Williams et al. 2015).  

Photography as a sampling method 

Photography has been used in assessing the impacts of trawling on ecosystems (Roberts 

et al. 2000; Lindholm et al. 2004; Althaus et al. 2009), for surveys of MPAs (Stevens and 

Connolly 2005), and is a valuable tool in estimating the richness and diversity of epibenthic 

communities (Roberts et al. 2000). Despite limited use of repeat photography to track long-

term changes in deep marine benthic environments, repeat photography has been used to 

visualise long-term changes in the size of glaciers, vegetation cover and in populations of 

distinct terrestrial species (Reimers et al. 2014). Additionally, changes in habitat structure can 

be visualised using photographic comparisons of historical and resampled states. Photographic 

comparisons of intertidal rocky shores have been valuable in visualising the impacts of alien 

species (Reimers et al. 2014). Photography has also been instrumental in determining habitat 

degradation on a large scale, with comparisons of historical and resampled aerial photographs 

Stellenbosch University  https://scholar.sun.ac.za



 

6 
 

of coral reefs being used to assess the scale of coral bleaching (Sweatman et al. 2011; De’ath 

et al. 2012; Andréfouët et al. 2013). The use of photography to track changes in habitat or 

population structure over time has, therefore, been successfully applied in both terrestrial and 

marine systems.  

Photography of marine epibenthic assemblages requires that the design of the camera 

apparatus matches the conditions of the sampling environment. Factors such as depth, 

topography, oceanographic environment and the total area of sample sites should be considered 

when applying a photographic sampling approach (Barker et al. 1999). Due to the depths at 

which offshore benthic assemblages exist, it is not possible to use diver surveys as the depths 

exceed the limits of SCUBA. By implication, camera systems cannot be handheld and must be 

remotely operated or towed behind a ship. Sampling with towed camera imaging systems is 

beneficial in that sampling can be undertaken with fewer destructive impacts (Teixidó et al. 

2002), which is especially valuable in MPAs where research is closely monitored in order to 

limit damaging research impacts. Photographic sampling has an added benefit in that 

photographs can be analysed by multiple biologists to answer a diverse array of questions, 

eliminating diver bias generated through sampling by untrained individuals, and provides a 

permanent record of community structure (Stobart et al. 2007). 

A typical caveat of photographic sampling methods is that the true number and diversity 

of species in a community may be underrepresented as only organisms that are discernible in 

the photographs can be counted (Roberts et al. 2000; Solan et al. 2003). Species that are too 

small to be seen, infaunal species and species that are able to actively avoid the camera, are 

often overlooked (Thistle 2003). Additionally, identification of species in photographic 

sampling is often difficult if specimens for identification purposes are not collected 

simultaneously with photographs (Solan et al. 2003; Thistle 2003). Image analysis can also be 

extremely time consuming (Parravicini et al. 2009) and it is therefore necessary for sampling 
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methods to be optimised. The need to ensure accurate species representation and optimisation 

of sampling methods means that careful consideration of equipment and image-sampling 

procedures is required. The costs associated with sampling multiple environments means that 

there is increased pressure to take as few samples as possible while still ensuring the scientific 

integrity of the data. The species area relationship (SPAR), whereby the number of species 

detected increases with area until all possible species have been found, has proven to be 

beneficial in determining the quadrat size or the best total sampling area necessary to obtain an 

accurate representation of the species present (Connor and McCoy 1979; Barbour et al. 1987; 

Kipson et al. 2011). SPAR is thus an important factor to consider when determining the optimal 

number of photo-replicates needed to ensure an acceptable level of species representation 

(Kipson et al. 2011).  

In South Africa, capacity in underwater photographic methods has grown with remotely 

operated vehicles (ROV), baited remote underwater video (BRUV) and towed benthic cameras 

allowing studies to be conducted in regions that are not accessible through SCUBA surveys 

(Bernard et al. 2014). ROVs can be deployed in deep waters and can remain underwater for 

long periods of time, however ROVs require trained technicians and are costly to operate 

(Knight et al. 2014). BRUVs are most suited to determining population numbers of mobile 

predatory taxa (Bernard et al. 2014). The South African Environmental Observation Network 

(SAEON) recently acquired a deep-water towed benthic camera system for the purposes of 

underwater surveys, long-term monitoring and trawl impact studies. This towed camera system 

has high definition video and photographic capabilities and is, therefore, ideal for surveying 

and recording epibenthic taxa of deep offshore sites at a lower cost than many other types of 

apparatus.  
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1.3: The Prince Edward Island archipelago 

The Prince Edward Island (PEI) group (46˚50ˊS and 37˚50ˊE) is made up of two 

volcanic islands situated 2000 km southeast of South Africa and 950km west of the Crozet 

Islands (Fig. 1). These sub-Antarctic islands are positioned within an area of elaborate seafloor 

topography and lie in the pathway of the Antarctic Circumpolar Current (ACC). Marion Island 

has an area of approximately 270km2 and is 19km southwest of the smaller Prince Edward 

Island, which encompasses a total area of 45km2. A shallow basin, ranging in depth between 

40-200m, separates these two islands. The Prince Edward Island group was claimed as a South 

African territory in 1947 and declared a Marine Protected Area (MPA) in 2013 (Lombard et 

al. 2007). The commercial Patagonian Toothfish fishery is the most noteworthy non-research 

activity occurring within the islands’ exclusive economic zone (Pakhomov and Froneman 

1999; Lombard et al. 2007; Chown and Froneman 2008b). However, sanctioned fishing does 

not occur within 22 km of the islands in accordance with the Marine Living Resources Act of 

1998 (Chown and Froneman 2008b). Since adult fish have a bathymetric distribution below 

1000m, both sanctioned and unsanctioned fishing are unlikely to have occurred in the shallower 

island region (Collins et al. 2010). The islands are, therefore, protected from direct human 

influences and are an ideal research site for both terrestrial and marine ecologists. The South 

African research base on Marion Island is home to a team of overwintering scientists, many of 

who research the island’s large populations of top predators including penguins, seals and 

flying seabirds. The food resources of the highly productive marine environment sustain these 

large numbers of breeding predators (Ryan and Bester 2008). There is a known ‘island-mass 

effect’, where increased residence time of water masses in the shallow saddle between the 

islands, compounded by nutrient runoff from islands, facilitates large seasonal phytoplankton 

blooms in the downstream and inter-island region of islands (Boden 1988). These mesoscale 
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oceanographic conditions are reliant on the position and flow dynamics of the ACC and its 

associated frontal systems. 
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Figure 1.1 Position of sub-Antarctic Prince Edward Islands in relation to the closest 

landmasses in the Southern Indian Ocean (South Africa, Crozet Islands and Antarctica). The 

approximate positions of the two major fronts associated with the Antarctic Circumpolar 

Current (ACC) in relation to the PEIs are shown: the sub-Antarctic Front (SAF) and the 

Antarctic Polar Front (APF). The direction of the ACC is illustrated by the grey arrows while 

the Antarctic Polar Frontal Zone (APFZ) is shown by the bracket.  
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Between the 1960s and the 1990s, there has been a 1.2˚C increase in air temperature on the 

islands (Sumner et al. 2003). Due to the impending impacts of climate change at sub-Antarctic 

islands (Smith 2002), it is imperative that continuous monitoring studies be undertaken in order 

to study the effects such changes may have on benthic community structure. Additionally, there 

has been limited research on the sub-Antarctic benthos at the Prince Edward Island archipelago 

(Lombard et al. 2007) and most research to date has been conducted using destructive sampling 

methods such as dredges (Branch et al. 1993a; Kaehler et al. 2000; Allan et al. 2013). Few 

studies included non-destructive sampling methods, but Beckley and Branch (1992) studied 

the sublittoral benthos in three areas using SCUBA surveys, while deeper waters were surveyed 

photographically in the 1980s by Branch et al. (1993a). These two studies recorded highly 

diverse inter-island epibenthic assemblages.  

Higher air temperatures on southern ocean islands have been coupled with changes in 

weather conditions at the islands as well as an approximate 1.4˚C increase in sea surface 

temperatures between 1953 and 2003 (Smith 2002; Mélice et al. 2003). Sea temperature 

fluctuations due to changing climate tend to change zooplankton community structure, thereby 

changing zooplankton grazing patterns and influencing the amount of POC flux to the benthos 

(Kirby et al. 2007). Additionally, temperature is important to the growth of invertebrate larvae 

and influences larval dispersal and settlement (Harley et al. 2006; Kirby et al. 2007). Changing 

temperatures may result in species range shifts as well as changes in species interactions and 

life history traits (Harley et al. 2006; Doney et al. 2012) which are expected to affect benthos 

abundance and distributions (Harley et al. 2006, Doney et al. 2012). Information on the present 

state of benthic habitats, based on rigorous sampling methods, is therefore needed so that 

climate change effects may be reliably identified and appropriate management actions 

implemented. This understanding is crucial for the conservation of representative species, 
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habitats and ecosystem functioning within pristine areas such as the PEI MPA (Lombard et al. 

2007). 

Physical oceanographic conditions of the Prince Edward Island archipelago 

Marion and Prince Edward Islands are situated directly within the Antarctic Polar 

Frontal Zone (APFZ) which is bordered by the Sub-Antarctic Front (SAF) in the north and the 

Antarctic Polar Front (APF) to the south (Fig. 1) (Ansorge and Lutjeharms 2002). These two 

frontal systems, associated with the ACC, form a barrier between colder Antarctic surface 

water and warmer sub-Antarctic surface water with a transitional zone known as the Antarctic 

Polar Frontal Zone (APFZ) (Ansorge and Lutjeharms 2002; Ansorge et al. 2012). The fronts 

separating these two water masses are not static and their highly variable nature is crucial to 

the formation of the small and large scale oceanographic conditions around the islands 

(Ansorge and Lutjeharms 2002). The northern front, the SAF, is of particular importance within 

this system. The position of the ACC and its related frontal systems have been found to be 

gradually shifting southwards in response to climate changes (Hunt et al. 2001; Gille 2002; 

Downes et al. 2011). This has resulted in an alteration in the flow rate of the ACC within the 

APFZ (Downes et al. 2011). The three regions around the PEIs, the upstream region (west of 

Marion Island); the inter-island region (between the two islands) and the downstream region 

(east of Marion Island) are likely to experience different inflows of primary production 

dependent on the position of the SAF and the subsequent variations in oceanographic 

conditions (Boden 1988; Perissinotto and Duncombe Rae 1990; Pakhomov and Froneman 

2000; Perissinotto et al. 2000; Durgadoo et al. 2010).  

There tend to be short-term variations of the location of the main oceanographic fronts 

associated with the PEIs. In instances when the northern front, the SAF, is further north of the 

islands, the APFZ will be broader and the region is dominated by strong frictional forces as a 
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result of weak interactions between the islands and slower moving currents (Pakhomov and 

Froneman 1999; Pakhomov et al. 2000a; Ansorge and Lutjeharms 2002). The interactions 

between the islands and the ACC, as well as the interplay between the frontal systems and 

complex bottom topography, are crucial in the formation of anti-cyclonic eddies in the shallow 

basin separating Marion and Prince Edward islands as well as in the downstream region 

(Perissinotto and Duncombe Rae 1990; Froneman and Pakhomov 1998; Ansorge et al. 1999; 

Durgadoo et al. 2010). These eddies increase the residence time of water bodies within the 

inter-island region. The terrestrial environment of the Prince Edward Islands is characterised 

by strong winds, high precipitation and sub-Antarctic temperatures (Smith and Lewis Smith 

1987). The high levels of rainfall on the islands (Smith and Lewis Smith 1987) result in a large 

nutrient input into the marine environment, largely through guano enriched runoff from the 

large numbers of breeding predators on the islands and nearshore kelp detritus (Perissinotto 

and Duncombe Rae 1990; Kaehler et al. 2006; Treasure et al. 2015). This characteristic 

situation of a retained water body resulting from eddies and nutrient input has typically resulted 

in large phytoplankton blooms being generated in the shallow basin between the two islands 

(Boden 1988; Perissinotto and Duncombe Rae 1990; Hunt et al. 2001; Kaehler et al. 2006; 

Treasure et al. 2015). The plankton biomass in the inter-island region may, therefore, be up to 

three times higher than that found in the open ocean (Pakhomov and Froneman 2000; 

Pakhomov et al. 2000b). However, the zooplankton communities at the islands consume <10% 

of the phytoplankton generated during bloom conditions resulting in a large amount of 

phytoplankton being made available to the benthos via sedimentation (Perissinotto 1992). 

Under these conditions, food quality increased in the downstream and inter-island regions 

(Allan 2011), which may benefit from kelp detritus in addition to phytoplankton (Kaehler et 

al. 2006; Allan 2011). 
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When the SAF is closer to the islands, and the APFZ is narrower, there is a weaker 

interaction between the oceanographic conditions and the islands themselves. In these 

instances, flow-through conditions become dominant, and residence times of water masses are 

short lived (Pakhomov and Froneman 1999; Perissinotto et al. 2000). Eddies and subsequent 

phytoplankton blooms have been found to be less intense. In the absence of strong nutrient 

retention and decreased Chlorophyll-a concentrations, there is a transition toward 

allochthonous production where planktonic food sources are brought into the island region 

through the movement of the ACC (Perissinotto et al. 2000; Hunt et al. 2001; Allan et al. 2013). 

Benthic communities may, therefore, become more reliant on primary production originating 

in the ACC (Allan 2011). The presence of phytoplankton species originating from blooms, and 

zooplankton species common to the inter-island region, in the downstream region is strong 

evidence for the direction of movement of water masses (Pakhomov et al. 2000b). Further 

evidence of the direction of water movement is seen in the presence of zooplankton species of 

Antarctic origin within the APFZ that had been displaced due to the formation of eddies 

(Bernard et al. 2007). The changing position of the SAF is, therefore, influential in the 

formation of productivity regimes at the PEIs and can have direct ecological consequences for 

this sub-Antarctic MPA (Hunt et al. 2001; Allan et al. 2013). In other systems, direct effects of 

long-term variations in nutrient supply to the benthos has been known to alter the abundance 

of benthic organisms (Ruhl 2007). Because of this, the epibenthic assemblages in the upstream 

region of the island (West) may have developed a different composition to the benthos 

downstream (East) and in the inter-island region over time.  

The study of the benthos within the PEI region is important as benthic assemblages 

provide not only a direct indication of regional productivity, but also form an important 

component within marine food webs. For example, the benthic shrimp Nauticaris marionis is 

Stellenbosch University  https://scholar.sun.ac.za



 

15 
 

a major component of the diet of Gentoo (Pygoscelis papua), Macaroni (Eudyptes 

chrysolophus) and Rockhopper (Eudyptes chrysocome) penguins as well as Imperial 

Cormorants (Phalacrocorax atriceps) and Crozet shags (Phalacrocorax melanogenis) (Arntz 

et al. 1994; Crawford et al. 2014). Nauticaris marionis has also been found to be a major dietary 

component of sea-stars (Perissinotto and McQuaid 1990) and, along with epifaunal 

polychaetes, forms an important food resource for the nototheniid fish, Gobionotothen 

marionensis (Blankley 1982; Bushula et al. 1998; La Mesa et al. 2004). Conversely, these 

benthic shrimps have been found to feed primarily on benthic suspension feeders (Perissinotto 

and McQuaid 1990; Vumazonke et al. 2003). The fact that both the bottom dwelling shrimp 

and the nototheniid fish are important prey species for inshore feeding pelagic predators 

indicates a vital link between benthic assemblages and pelagic predators at the Prince Edward 

Islands. Changes in the structure of benthic assemblages due to decreasing primary 

productivity may, therefore, have effects on population sizes of top vertebrate predators at sub-

Antarctic islands (Weimerskirch et al. 2003; Allan et al. 2013; Crawford et al. 2014). 

Epibenthic assemblages are, hence, an important trophic link at the Prince Edward Islands and 

changes in the composition of the assemblages should be closely monitored in order to prevent 

bottom up effects to ecosystem functioning.  

The underlying need for this research  

Increases in Southern Ocean sea surface temperatures have been recorded (Mélice et 

al. 2003; Rhein et al. 2013) and along with sea surface height and salinity, have indicated a 

poleward shift in the ACC and the disruption of regional primary productivity patterns (Gille 

2008; Allan et al. 2013). As benthic assemblages are crucial to the health of ecosystems and 

the maintenance of food web structures, it is necessary to determine whether the benthos is 

changing, as well as the magnitude of these changes (Smith et al. 2006; Allan et al. 2013).  
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There is, therefore, a need to establish baseline conditions at the Prince Edward islands 

using non-destructive monitoring techniques against which future impacts, including those due 

to climate change, can be measured (Lee and Chown 2009). This would enable managers to 

make informed decisions regarding this highly complex system. Photography of benthic 

habitats can potentially serve as a tool for acquiring such information to support management 

actions for protected marine ecosystems (Stevens and Connolly 2005, Schlacher et al. 2010, 

Kipson et al. 2011, Beisiegel et al. 2017), as permanent photographic datasets can be 

constructed (Parravicini et al. 2009). The current situation at the PEIs is unusual in that 

historical benthic photographs captured between 1984 and 1989 (Branch et al. 1993a) can be 

compared to current and future studies. Due to the unique oceanographic setting and their status 

as an MPA, the Prince Edward Island group offers an ideal system to study long-term 

ecological changes in epibenthic assemblages.  

1.4: Overall aims 

This project has the overarching aim of assessing present day epibenthic assemblages 

around the PEIs to provide a comprehensive baseline dataset that will enable informed 

decisions to be made regarding the future conservation of this MPA and improve our 

understanding of benthic ecology and responses to long-term change. To achieve this, 

underwater photography was employed to survey epibenthic assemblages and the following 

sub-aims were addressed:  

1) To determine the optimal number of photographs required for a representative 

sample of epibenthic diversity in different substrate types at the Prince Edward Islands 

(Chapter 2). These results then informed the methods adopted in Chapter 3 and will enable 

future studies to optimally allocate scarce research resources in a way that secures 

representative data from these offshore assemblages. 
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2) To determine whether there has been a change in the species composition and 

abundance of epibenthic assemblages in two regions (upstream and downstream) in light of 

notable changes in various biological and oceanographic systems around the Prince Edward 

Islands over time. This was accomplished in Chapter 3 by comparing modern photographic 

samples with equivalent historical photographs obtained in 1984-1989. 
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Chapter 2: Species curves and determining an optimal sampling intensity 
 

Abstract  

The complexity of benthic substrates is one of several factors affecting species richness 

of epibenthic assemblages and is likely to influence the species area relationship (SPAR). 

Recently, underwater photography has been applied to non-destructively sample sensitive 

seabed areas. Photographic sampling, however, may underrepresent total species richness. This 

study tested the SPAR across substrate types to identify an optimal photographic sampling 

intensity for benthic habitats at the Prince Edward Islands (PEIs). Based on these results, 

recommendations for an optimal sampling intensity at the PEIs could be advanced. Species 

accumulation curves were constructed for 13 sites that represented four pre-defined substrates. 

The points of deceleration and total estimated asymptotic richness (Chao 2 richness estimator) 

were determined for each accumulation curve and compared among substrates. The effect of 

substrate type on the average rates of species accumulation was tested. No significant 

differences were detected between the points of deceleration, total asymptotic richness, and 

rate of species accumulation among substrates. Sampling an average of 20 (±4.7 SD) 

photographs (~15m2 transect) per site was identified as an appropriate sampling intensity in 

this region, as 80% of species were identified at this point. Sites with fewer species may require 

more samples than species-rich sites, as such sites took longer to reach the points of 

deceleration. Results suggest that substrate type alone was not considered to be a strong 

predictor of species richness, and habitat-forming biological assemblages should be 

characterised in addition to substrate type. The determination of an appropriate sampling 

intensity in this study is important for ongoing monitoring at the islands, where it may be more 

profitable to sample more sites at a lower sampling intensity than few sites at a high intensity.   
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2.1: Introduction 

Factors regulating species richness in benthic assemblages  

Benthic assemblage richness is known to be determined by a variety of abiotic factors 

(Levin et al. 2001; Rex and Etter 2010). Over large scales these factors include oceanographic 

regimes and regional productivity patterns (Dayton and Oliver 1977; Levin et al. 2010; Rex 

and Etter 2010). At a local scale, species richness can depend on habitat complexity, which 

may primarily be reflective of substrate type, as well as habitat-forming biota dependent on 

specific abiotic substrates (Smith et al. 2006; Schlacher et al. 2007; Zajac 2008; Levin et al. 

2010; Compton et al. 2013; Nolan et al. 2017). More complex abiotic substrates may have an 

increased species richness as species are able to share space due to the diversity of niches 

available (Bazzaz 1975; Douglas and Lake 1994; Levin et al. 2010). Substrate type is known 

to affect assemblage composition as certain groups of benthic epifauna; for example, 

Octocorallia require hard substrates for attachment (Mortensen and Buhl-Mortensen 2004). 

Deposit feeders are reliant on organic matter within soft sediments for nutrition and selectively 

consume particles of particular sizes (Etter and Grassle 1992). The substrate type of a specific 

site is, therefore, important in community assembly and it is imperative that underlying 

substrates are classified before surveys and analyses begin (Thrush et al. 2006b). 

Species area relationships  

A well-established pattern in ecology is that the number of new species discovered will 

increase as the area sampled increases, until the point where all possible species in the area 

have been detected (Arrhenius 1921; Schoener 1976; Connor and McCoy 1979). This 

curvilinear relationship between area and the number of species is known as the species area 

relationship (SPAR). This increase in the total number of species comes about as larger areas 
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tend to have a greater number of habitat types, thereby supporting species suited to a variety of 

niches as well as the higher probability of encountering a species not yet sampled (Scheiner 

2003). The general species area relationship can be represented in two ways, either through a 

species area curve or a species accumulation curve, both representing ways of statistically 

representing the number of species in a given habitat. Species accumulation curves differ from 

species area curves as in the former, the observed species are not necessarily plotted against 

area but rather against some measure of sampling effort, such as numbers of quadrats (Colwell 

et al. 2004), or in the case of this study, numbers of photographs. The curves also differ in that 

species accumulation curves take the identity of the recorded species into account while species 

area curves simply log the number of new species found, irrespective of organism identity 

(Ugland et al. 2003; Thrush et al. 2006b).  

The relationship between the number of species recorded in an area and the area 

sampled has been applied in various ways (Neigel 2003; Scheiner 2003; Kipson et al. 2011; 

Foster et al. 2013). Species curves are commonly used in conservation planning during the 

design of nature reserves and Marine Protected Areas (MPAs) (Neigel 2003, Desmet and 

Cowling 2004, Foster et al. 2013), especially those facing rapid size reductions (Connor and 

McCoy 2001). This is done in order to set conservation priorities, to maintain species 

representativeness, and to protect vulnerable populations (Neigel 2003; Desmet and Cowling 

2004). Additionally, these curves have been used by ecologists to determine the optimal 

quadrat or sample size when designing sampling methodology and, more recently, to determine 

the minimum number of samples in coral reef communities to capture significant change in 

assemblages (Connor and McCoy 1979, 2001; Barbour et al. 1987; Scheiner 2003; Kipson et 

al. 2011).  
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Asymptotic richness estimators 

Using species richness as a comparison tool is not always ideal in that the observed 

number of species usually falls short of the true species richness (Longino et al. 2002; Gotelli 

and Colwell 2011; Colwell et al. 2012). Asymptotic richness estimators provide one method 

of handling this problem and have typically been applied to systems where the species 

accumulation curve does not reach an asymptote (Gotelli and Colwell 2001). These estimators 

are a statistical tool to approximate the total species present and those not yet sampled in an 

area (Chao et al. 2009). Richness estimators are beneficial in that they give estimations of how 

much sampling is needed to reach an acceptable level of representation of species richness 

(Basualdo 2011). There are various non-parametric estimators of asymptotic richness that can 

be utilised to approximate the total species present in a sample. The estimator Chao 2, which 

makes use of replicated incidence-based data, is one such measure and takes into account rare 

species as well as the total species in the sample, to estimate the total richness of a sample 

(Chazdon et al. 1998; Chao et al. 2009; Basualdo 2011). This richness estimator is, therefore, 

valuable in the description of assemblages within heterogeneous habitat types (Chao 1987; 

Yurkov et al. 2011) and has been found to be an accurate predictor of species richness (Colwell 

and Coddington 1994).  

Species area relationships and photography 

Deep benthic habitats are not easily sampled and destructive sampling methods such as 

dredges, grabs, sleds and trawls are often used, but inevitably miss in situ species-species 

interactions and associations (Solan et al. 2003; Knight et al. 2014; Williams et al. 2015). Non-

destructive sampling methods are more appropriate for sampling in sensitive habitats such as 

the Prince Edward Island MPA. Underwater photographic sampling methods have recently 

begun to be used more frequently in sensitive areas despite concerns that the sampling methods 
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may under-represent the species richness of the sampled area (Teixidó et al. 2002; Solan et al. 

2003; Knight et al. 2014; Williams et al. 2015). There are often both cost and time constraints 

to photographic sampling, and there is a requirement for photographic sampling to be 

optimised. As with physical sampling techniques, SPAR can be used to determine the optimal 

number of sample photo-replicates needed to obtain an accurate representation of the diversity 

of an assemblage. A photo-replicate may be an accurate representation of the area sampled in 

that the total sampled area can be calculated from a known frame size or points within the 

frame that are a known distance apart (Strong et al. 2006). A single photo-replicate can, 

therefore, be equated to a quadrat and the total area sampled related to the total number of 

standardized photo-replicates analysed (Scheiner 2003).  

The photographic survey conducted in this study provides a baseline photographic 

dataset that can inform long-term studies on the benthic environment of this region. As photo-

sampling could potentially under-represent the taxa present in an environment, it is important 

that the photo-sampling method is tested. Testing the number of photo replicates required to 

produce a reliable SPAR in various substrate types will ensure that studies at the PEIs obtain 

sufficient samples to satisfy appropriate species representation. Species area relationships 

should be determined for different substrate types, as substrate type may be a strong predictor 

of species richness. The aim of this component of the study is to utilise photographs from 

various sites with different substrate types and calculate the species area relationship to 

optimise sampling strategies at the PEIs. In addressing the stated aim, two hypotheses were 

tested: 1) the estimated total species richness will differ among substrate types, and 2) the rate 

of species accumulation will be affected by substrate type. The results of this chapter will 

inform the sampling design for Chapter 3 of this thesis and optimise future photographic 

sampling within the Prince Edward Island archipelago. 
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2.2: Methods 

Photographic surveys of sub-Antarctic epibenthic assemblages were conducted at sites 

around the Marion (-46˚45ˊS, 37˚50ˊE) and Prince Edward Island (-46°38′S, 37°56′E) group 

aboard the SA Agulhas II during annual voyages in April - May of 2013 and 2015. Photographic 

sites were chosen based on a sub-set of locations sampled photographically between 1984 and 

1989 and described by Branch et al. (1993a). The selection of historical sites was chosen based 

on four a-priori defined substrate types namely mud, gravel, gravel-mud, and partial rock-sand 

(Fig. 2.1, Table 2.1, Appendix A Plate 1). Logistical constraints resulted in substrate types 

being represented by an uneven number of sites and not all sites could be sampled in the same 

year. Still images were captured using a towed camera system, the SAEON Ski-Monkey III. 

The camera was mounted at a 30° angle and at an approximate height of 90cm above the 

substratum. Within the custom-built waterproof housing, a Canon DSLR 550D digital camera 

captured both HD video and high-resolution still images (18 megapixel). The camera housing 

was equipped with two on-board LED lamps to illuminate the sea floor. All camera work was 

undertaken between sunrise and sunset due to vessel regulations applicable in close proximity 

to the islands. The camera was lowered off the stern of the ship by a stainless steel electro-

mechanical sea cable that incorporates two copper conducting cores. The conducting cores 

enabled the camera settings and shutter to be controlled from the surface in response to a live 

feed, viewed on a computer screen. At each site the camera was towed behind the vessel for 

twenty minutes while the ship moved at a speed of 0.5 knots along approximately the same 

depth contour, giving a transect length of about 300m. During each twenty minute transect, 

non-overlapping photographs were taken along the entire transect length opportunistically, as 

visibility permitted.   
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Figure 2.1 Location of sites sampled at the Prince Edward Islands. Pre-defined substrate types 

are represented by symbols, and colour intensity reflects different depths (m). 
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 Table 2.1 Location, depth and the defining biological features of sites grouped by substrate type
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Image analysis 

The camera was equipped with three lasers in a triangular configuration, a known 

distance apart (50cm at the base of the triangle). The three laser positions enabled image scaling 

and calculation of the total ground area in benthic photographs during photo-analysis, where 

the average size of the area of the photograph analysed was 0.83m2 (± 0.12 SD). Prior to photo-

analysis, sites were visually characterised and grouped into four substrate types out of the full 

range of all possible substrate types that may be present in the region. The four sampled 

substrates were categorised by classifying the two most common sediment types visible as the 

primary sediment type (encompassing >50% of the sample area) and, where present, the 

secondary sediment type (second most abundant sediment form). This technique was adapted 

from the method of sediment classification described by Knight et al. (2014), which was 

modified from Greene et al. (1999), in that the present study did not include the relief of 

samples. Photographic examples of each substrate type classified in this study are visually 

represented in Appendix A Plate 1.  

The 30 degree oblique angle of the camera relative to the substratum enabled 

photographs to have a wider field of view than photographs taken perpendicular to the 

substratum (Wakefield and Genin 1987). This, however, was problematic when scaling the 

photographs as the area photographed in oblique images changes substantially with small 

changes in the orientation of the camera relative to the substratum. To overcome this issue, a 

calibrated grid of a constant size was overlaid on each photograph using the photo-analysis 

software CPCe to standardize the area analysed in each photograph (Kohler and Gill 2006). All 

images in each transect were reviewed and poor quality images removed. Usable images were 

limited to those where laser points were clearly visible and where sediment clouds did not 

obscured biota to any great degree. The total number of usable images differed among sites but 

a standardized maximum number of 33 images were analysed per site for construction of 
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species accumulation curves. Identification of biota was conducted from photographs and, 

where possible, confirmed using specimens collected in the same area by other researchers. All 

epibenthic organisms (> 1cm) were identified to species level where possible using Branch et 

al. (1991a, 1991b); Branch and Williams (1993); Branch et al. (1993b); Branch (1994); Branch 

and Hayward (2007). Following Davies et al. (2014) unknown taxa or taxa that could not be 

identified to species level in the photographs were separated into coded morpho-species.  

 

Data treatment and statistical analysis 

Sample-based species accumulation curves of mean species richness were constructed 

with 100 random permutations using incidence data in the statistical program EstimateS V9.1 

(Collwell 2013). Species accumulation curves (Mao Tau) with non-overlapping ±95% 

confidence intervals were plotted against the sampling intensity (number of independent 

benthic images) for each substrate type. The non-overlapping ±95% confidence intervals of 

the sample based rarefaction curves were used to determine whether there were statistical 

differences at the tail end of curves (MacGregor-Fors and Payton 2013). To determine the point 

at which only a few new species were yet to be added, the points of deceleration were 

calculated. When a species accumulation curve starts to decelerate most of the species in a 

sample have been observed (Brandão et al. 2014). This point of deceleration is identified as the 

point where a 20% increase in the number of samples results in a less than 5% increase in the 

number of new species observed (Hortal and Lobo 2005; Kipson et al. 2011). Deceleration data 

were tested for normality and equal variances by using a P-P plot. The numbers of samples at 

which the points of deceleration of each curve were reached were compared across substrate 

types using a Kruskal Wallis one-way ANOVA.  
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Total estimated richness was calculated for each site following Chao et al. (2009) (see 

Appendix B for details). A Kruskal Wallis one-way ANOVA was conducted to determine 

whether the estimated Chao 2 asymptotic richness differed among sampled substrate types. 

 To test whether substrate type (categorical predictor) affected the relationship between 

observed species richness (dependent variable) and sampling intensity (continuous predictor), 

an analysis of covariance (ANCOVA) was conducted on sites grouped by substrate type. 

Sampling intensity and species richness data were log-log transformed in order to linearize the 

relationship (Rahbek 1997). The homogeneity of slopes of the log-log transformed data was 

tested, as was the homogeneity of variances, using a Cochran C Test (Quinn and Keough 2002). 

Post hoc Newman Keuls tests were used to determine significant differences in mean species 

richness among substrate types. All statistical analyses were conducted using Statistica V13 

(Statsoft 2015). 

2.3: Results  

Species accumulation curves and points of deceleration 

Several species accumulation curves within each substrate type had large degrees of 

overlap in their confidence intervals (Fig. 2.2). Likewise, there was considerable overlap in 

confidence intervals across substrate types. Confidence intervals of both partial rock-sand sites 

and the site with the highest species richness in the gravel-mud (C43) and mud substrates (C8) 

overlapped (Fig. 2.2). There were overlapping confidence intervals of the gravel substrate site 

with the highest species richness (C37) and the two partial rock-sand substrates. These curves 

did not overlap with the remaining mud, gravel-mud and gravel curves, the confidence intervals 

of which all overlapped with each other. While the within-substrate type confidence intervals 

largely overlapped, certain sites in the mud (C8) and the gravel (C37) substrates had 
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significantly different curves. Examining the confidence intervals within the gravel-mud 

substrate type revealed that the curves for the two sites did not have overlapping confidence 

intervals.  

When comparing the sampling intensity at which points of deceleration of all curves 

occurred, a Kruskal-Wallis test found that they did not differ significantly among substrate 

types (H = 2.46, n = 13, P = 0.48 (NS), Fig. 2.3). The points of deceleration on the species 

accumulation curves in the mud substrate type ranged between 16 and 27 samples. The two 

species accumulation curves of the gravel-mud substrate type were significantly different in 

terms of their confidence intervals. However, the points of deceleration for these two curves 

were not different (Fig. 2.2b). In this substratum type, the lower species richness was found at 

site M26, for which the curve began to decelerate at 20 photographs. The site with the higher 

estimated richness in the gravel-mud substrate type had a steeper slope and started to decelerate 

at a sampling intensity of 18 photographs. In total, there were five gravel sites, all sites reached 

points of deceleration between 14 and 28 photographs (Fig. 2.2c). Site C42 had the slowest rate 

of acceleration and only reached the point of deceleration at 28 photographs. Within the partial 

rock-sand grouping, there was no significant difference between the species accumulation 

curves (Fig. 2.2d). The two partial rock-sand substrates were consistent and the points of 

deceleration at C22 and C39 were 24 and 26 samples, respectively (Table 2.2). 
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Figure 2.2 Species accumulation curves constructed from 100 random permutations of four substrate types: a) mud; b) gravel-mud; c) gravel; and 

d) Partial rock-sand. ±95% confidence intervals are represented by light grey dashed lines. Vertical lines represent the point of deceleration for 

each accumulation curve. 
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Table 2.2 The total number of observed species (Sobs) and the Chao 2 estimated asymptotic 

richness (Sest) in each of the sampled sites. ‘80% of Sest’ refers to the number of photographs 

needed to reach 80% of the total estimated richness, while the number of photographs required 

to reach the point of deceleration is referred to as ‘sampling intensity required’.  

 

. 
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Figure 2.3 Plot comparing the number of photographs required to reach the point where species 

accumulation curves start to decelerate in each of the sampled substrate types. Black bars 

indicate the median points of deceleration per substrate type while dots represent site-specific 

points of deceleration. 
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Comparisons of asymptotic richness 

The Chao 2 richness estimator was used to determine the estimated asymptotic richness 

of each site. No significant differences were found in total estimated species richness among 

substrate types (H = 5.81, n = 13, P = 0.12 (NS), Fig. 2.4). Among all sites, the minimum 

number of photographs required for the observed richness (Sobs) to be greater than 80% of the 

total estimated richness (80% of Sest) was after 11 photographs had been processed – for gravel 

at Site M3 (Table 2.2). Comparisons of the Chao 2 total estimated richness in mud sites found 

that 80% of the total estimated species richness was reached between 14 and 22 photographs. 

In the gravel-mud sites, 80% of the estimated richness was reached at 17 and 21 samples. There 

was high variability in both the gravel and partial rock-sand sites where 80% of total estimated 

richness was reached between 11 and 31 photographs in gravel sites and 15 or 21 photographs 

in partial rock-sand sites (Table 2.2).  
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Figure 2.4 Plot showing the Chao 2 estimated total richness of sites compared across substrate 

types. Black bars denote median estimated species richness per substrate type while dots 

represent the site specific estimated total richness.  

Rate of species accumulation per substrate type  

In testing the homogeneity of slopes, the model found no significant interaction 

between substrate type and the covariate (sampling intensity) indicating that the rate of species 

accumulation was not affected by substrate type (F3, 421 = 0.57, P = 0.6, Fig. 2.5). The 

subsequent ANCOVA showed that substrate type had a significant effect on observed species 

richness (F 3, 421 = 16.76, P < 0.0001, Table 2.3). Post hoc Newman Keuls tests demonstrated 
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no significant differences between the average species richness of partial rock-sand and gravel-

mud substrate types (P > 0.05, Table 2.4). However, there were significant pairwise differences 

in the mean richness between all other substrate type combinations (P < 0.001, Table 2.4).  

 

Figure 2.5 Scatterplot of the linear regression lines of log-log transformed species 

accumulation curves (number of samples against accumulated species) for each sampled 

substrate type (each sampled site is indicated on the plot by symbols). The type of substrate is 

indicated in the legend.  
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Table 2.3 Results of ANCOVA on the log-log of species accumulation curves. Significant 

results are indicated in bold. 

 

 

Table 2.4 Pairwise post hoc comparisons of mean species richness among four substrate types. 

Significant differences are indicated in bold.  
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2.4: Discussion  

Species accumulation curves were constructed for each of the four sampled substrate 

types at 13 sites at the Prince Edward Islands (PEIs) to identify and test for the effect of 

substrate type on differences in optimal sampling intensity. An optimal sampling intensity of 

an average of 20 (±4.7 SD) photo-replicates was found and, along with substrate types, allowed 

recommendations to be made for sampling in the region. There was no difference among 

substrate types in the points of deceleration, the total estimated richness, or the rate of species 

accumulation in this study. In all substrate types, observed richness was close to asymptotic 

richness as all curves started to decelerate, indicating that less than 5% of species would still 

be found if a further 20 photographs had been processed. The Chao 2 richness estimator was 

used to demonstrate that at all sites, the observed species richness reached at least 80% of the 

total estimated richness between 11 and 31 photo-replicates. These species accumulation 

curves and the estimates of sampling intensity required to reach the point of deceleration are 

useful in informing a benthic sampling strategy at the PEIs. In this study, however, substrate 

type was not a strong predictor of differences in total estimated asymptotic species richness 

and, consequently, in species accumulation curves. The homogeneity of the linear substrate-

specific slopes also confirmed that the rate of species accumulation was not dependent on 

substratum type. Substrate type did affect mean species richness, where gravel-mud and partial 

rock-sand substrates had similar high mean species richness’s while mud had a low mean 

species richness.  

Substrate type as a predictor of species richness 

Abiotic substrate types are important when planning sampling strategies at unknown 

sites, as they may be simpler to characterise than biological data (Post 2008; Schlacher et al. 

2010). Despite substrate complexity being a known driver of epibenthic diversity (Morais et 
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al. 2007; Schlacher et al. 2010), I did not find a significant difference in estimated asymptotic 

richness or required sampling intensity when comparing among substrate types. This may have 

been due to the four substrate types analysed being too similar to one another in terms of their 

complexity. My results, therefore, contrast with numerous other studies showing the use of 

abiotic surrogates to be a good indirect predictor of species richness gradients, particularly in 

cases where substrate type affected the attachment of habitat-forming biota (Stevens and 

Connolly 2004; Morais et al. 2007; Buhl-Mortensen et al. 2010; Levin et al. 2010). This may 

be because a combination of habitat type, major biological features and abiotic factors, will be 

a more robust predictor of species richness than substrate type on its own (Thrush et al. 2006b; 

Schlacher et al. 2010; Foster et al. 2013). Additionally, the habitat requirements of species and 

interspecific relationships may result in sites with comparable abiotic substrates having 

different species assemblages (Medina et al. 2013). Examination of the overlapping confidence 

intervals of species accumulation curves in my study revealed that the species-rich sites 

containing large assemblages of biogenic habitat-forming organisms, such as sponges, dense 

bryozoans and octocorals, were more similar to each other than to sites that were of the same 

substrate type but lacking in habitat forming organisms (Fig. 2.2, Table 2.1). The high species 

richness at these sites may be attributed to the heterogeneous nature of the substrate as well as 

the presence of large octocoral and bryozoan stands, which are also complex in structure. This 

heterogeneity would mean a greater diversity of habitat niches relative to more homogenous 

substrates, as it allows occupation by species normally prevalent on soft substrates as well as 

those more typical of rocky substrates (Griffin et al. 2009). Muddy sites containing biogenic 

habitat-forming organisms like bryozoans and octocorals (site C8) also had a greater estimated 

richness than muddy sites that did not host habitat-forming biota (Fig. 2.2, Table 2.1). At these 

sites positive biotic interactions may have allowed for a greater number of species to coexist. 

An example of this are the interactions between various species of ophiuroids (brittle stars) 
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including Asteronyx loveni, which was commonly found attached to octocorals (Appendix A 

plate 2b) (Fujita and Ohta 1988; Buhl-Mortensen et al. 2010). Habitat-structuring organisms 

such as calcareous bryozoans may also increase diversity by stabilising sediments; and the sites 

that had dense bryozoan abundance had a greater overall richness (Hageman et al. 2000). 

Examples of this from my study include the highly abundant tube-dwelling polychaete, Lanice 

marionensis. Research conducted on this genus has shown it to be an important habitat-

structuring species as it stabilises soft sediments and changes bottom current flow dynamics, 

allowing a greater utilisation of space by other species (Rabaut et al. 2007; Van Hoey et al. 

2008). Tube-building polychaetes also engineer ecosystems by increasing habitat complexity 

on homogenous substrates (Van Hoey et al. 2008). Similarly, Octocorallia often increase 

overall species richness as they create and facilitate microhabitats by providing refuges and 

points of attachment for other benthic invertebrates (Mortensen and Buhl-Mortensen 2004). 

Habitat-forming and structuring biota are able to facilitate positive species interactions and 

increase the niche space available to species, increasing the size of the realised niche (the actual 

space the species occupies) (Bertness and Callaway 1993; Bruno et al. 2003). Such interactions 

may explain why substrate type alone was not shown to drive species accumulation in this 

study. The biological structure of environments should be considered in tandem with abiotic 

factors when determining minimal sampling strategies. 

 The site that had the slowest rate of species accumulation was the deepest site (site C42 

situated at 512m), located in the inter-island region, just south of Prince Edward Island. Due to 

the depth of this gravel site, it was not characterised by the large red algal stands common at 

the shallower gravel sites. The slope of the accumulation curve did not have a steep incline 

indicating that more rare species were yet to be found and more samples were required to reach 

point of deceleration (Baltanas 1992; Etnoyer et al. 2010). Such sites with few species may 
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require more samples than those with a greater species richness, as sites with steeper species 

accumulation slopes reach the total species richness faster (Schoenly and Barrion 2016).  

Species accumulation curves and determining optimal sampling area 

In this study, the asymptotic richness estimator showed that for an area to be sampled 

adequately, 20 photo-replicates (~15m2) would be required to reach 80% of the true species 

richness. Research conducted in species-rich Mediterranean coral outcrops and shallow rocky 

bottom assemblages found that transects between 25m2 and 50m2 were sufficient to obtain 

species representation (Kipson et al. 2011). Smaller sample areas (10m2) have also been used 

in cold-water soft-sediment communities (Gray 2002). The minimum number of samples 

needed to obtain an accurate measure of species richness suggested in my study is therefore 

within the range of previous studies. A caveat when comparing observed richness with 

estimated richness is that all scarce species present in a study area are unlikely to be discovered 

and species accumulation curves simply suggest the point at which the most common species 

have been discovered. Consequently, species accumulation curves will most likely never reach 

absolute species richness as sampling larger areas will increase the probability of discovering 

a new species (Etnoyer et al. 2010).  

No significant differences were observed in either species richness or rate of species 

accumulation among the different substrate types, and the number of samples required to 

accurately sample a substrate type in the epibenthic environment at the PEIs may be ubiquitous. 

As 80% of the species richness may be captured at a maximum of 30 photographs, it may be 

more effective to sample more sites at a lower sampling intensity (i.e. 20 samples) than sample 

fewer sites at a higher sampling intensity. Sites with few species and sites that are spatially 

heterogeneous (partial rock-sand substrate) may require more photographs as the species 

accumulation curves of such sites take longer to reach the point of deceleration (Baltanas 1992; 
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Scheiner 2003). However, the standard deviation of the number of photo-replicates needed to 

reach the deceleration points was 4.7, indicating that there were not large variations around the 

mean. This small standard deviation may indicate that at least five more photo-replicates may 

be required in species poor sites than in sites where the rate of species accumulation is faster. 

The average species richness differed between all substrate types except between the two 

substrate types that were a mix of hard and soft substrates (partial rock-sand and gravel-mud), 

reinforcing the idea that some substrates will take longer to reach total species richness. 

However, it is important to note that despite the heterogeneity of the partial rock-sand sites, the 

points of deceleration of species accumulation curves did not differ from other less 

heterogeneous sites at the PEIs in this study. Using at least 20 photo-replicates may, therefore, 

be adequate to sufficiently sample the species richness at the PEIs. 

The functionality of the photographic sampling method and bias incurred. 

There may have been a margin of under-sampling in shallow near-shore sites as dense 

algal stands there may have obscured small or cryptic species such as the hyper-benthic shrimp, 

Nauticaris marionis (Knight et al. 2014; Haley et al. 2016). The same could be said of sites 

characterised by dense stands of bryozoans and those that had large rock outcrops. Jørgensen 

and Gulliksen (2001) showed a margin of under-sampling using photographic methods in 

comparison to suction sampling (which would have included infauna as well as epifauna). The 

study found that semi-mobile species such as crustaceans, as well as smaller species like 

juvenile ophiuroids and bivalves, were often underestimated using photographic methods. 

However, Williams et al. (2015) found that, despite physical sampling methods being more 

efficient for organism identification, photographic methods provided higher estimates of 

epibenthic richness. The benefits of photographic sampling may outweigh the costs of missing 
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or misidentifying species. It is, however, clear that comparisons cannot be made across 

different methods of sampling. 

Generally, differences in depth are likely to play an important role in the patterns of 

species richness found among and within sampled areas (Carney 2005). The depth range 

sampled in my study may have been too narrow to detect significant changes in species 

richness, as depth-related richness variations are usually only observed every three orders of 

magnitude in depth (McClain et al. 2010). Minor depth variations may impact the composition 

of benthic assemblages but have a limited influence on species richness (McClain et al. 2010). 

As my study was completed on a relatively narrow depth range (61 - 512m), protocols for 

sampling in deeper waters in the Prince Edward Island region cannot be inferred from my 

findings.  

Despite abiotic surrogates, especially substrate type, being used in other diversity 

mapping studies (McArthur et al. 2010), no significant difference was found in the estimated 

richness across the substrate types sampled in this study. Additionally, Richmond and Stevens 

(2014) found that substrate was a poor predictor of assemblage structure compared to other 

abiotic surrogates like temperature and fishing effort. Due to biogenic habitat-forming 

organisms contributing significantly to species richness, future studies should take a more 

comprehensive approach to defining habitat, to include biological assemblages as well as other 

abiotic surrogates (Rabaut et al. 2007; Van Hoey et al. 2008; Buhl-Mortensen et al. 2010; 

Richmond and Stevens 2014).  

2.5: Conclusions 

In this chapter the number of photographs required to obtain an accurate representation 

of the true species richness was determined. There was high variability among the species 
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accumulation curves within different substrate types but substrate type did not drive patterns 

of species richness or accumulation. My result indicate suggest that an average of 20 (±4.7 SD) 

photographs (~15m2 transect) is sufficient to capture 80% of the true species richness in a 

sample irrespective of the substrate type analysed at the PEIs. However, sites with fewer 

species may require more samples than those with greater species richness due to the increased 

probability of encountering rare species with greater sampling effort in sparsely populated sites. 

Partial rock-sand sites, which took longer to reach points of deceleration and had a higher 

estimated richness, required an average of 25 samples (±1.4 SD), while substrates that did not 

take as long to reach points of deceleration required between 18 and 20 samples. Due to 

logistical sampling constraints, this study did not include the full range of possible substrate 

types that may be present at the PEIs. Sites consisting of sand or rock only were not sampled 

during either the 2013 or the 2015 survey. It is important to note that the sampling intensity 

suggested as being appropriate for the benthic environment of Prince Edward Islands may not 

be suitable as a global approach, as it is appropriate only to the specific abiotic and biotic 

benthic environments of the shelf region of Marion and Prince Edward Islands.  

The results of this chapter are applied in the following chapter, and will be useful in 

future studies using photographic methods to sample benthic assemblages within the Prince 

Edward Island Marine Protected Area. Optimising the time spent sampling is important, as 

often there are logistical, technical, cost or environmental constraints associated with surveying 

benthic assemblages. More importantly however, this research will ensure that an acceptable 

level of species representation is obtained when sampling across different substrate types at the 

Prince Edward Islands. 
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Chapter 3: Spatial and temporal changes in epibenthic assemblages at 
the Prince Edward Islands in the Southern Ocean. 

 

Abstract  

The sub-Antarctic Prince Edward Islands are situated in the pathway of the easterly 

flowing Antarctic Circumpolar Current (ACC) which, along with its associated frontal systems, 

facilitates mesoscale oceanographic regimes in the inter-island and downstream region of the 

islands. Recent isotope studies on benthic invertebrates showed that frequent phytoplankton 

blooms in the inter-island region might have resulted in spatial and temporal differences in the 

quality of phytoplankton being made available as a food source for benthic invertebrates. It is, 

however, unknown whether these changes have translated into long-term alterations in the 

composition of epibenthic assemblages. To address this gap in knowledge, study sites in the 

upstream and downstream regions around the islands, photographed between 1984 and 1989, 

were re-sampled. Diversity and evenness indices and assemblage composition were compared 

spatially and temporally. Species diversity was found to have increased over time and the 

upstream region was found to have a higher evenness than the downstream region. There were 

significant differences in assemblage composition spatially and significant dispersion effects 

temporally. Characteristic regional primary productivity patterns may have been responsible 

for spatial differences in species composition. However, there may have been shifts in these 

productivity patterns as a result of climate change and subsequent temporal variations in 

assemblage composition. This work provides the second survey of epibenthos at the PEIs since 

1993 and the results further develop the long-term understanding of the epibenthos in this 

region.  
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3.1: Introduction 

The physical and biological environment of the Prince Edward Islands 

Within the Indian sector of the Southern Ocean, the Prince Edward Islands (PEIs) are 

situated in the path of the easterly moving Antarctic Circumpolar Current (ACC). The Sub-

Antarctic Front (SAF) and the Antarctic Polar Front (APF) borders the ACC to the north and 

south respectively. The islands form an obstacle to water flow within the ACC, delineating the 

marine environment around the islands into three regions: upstream, downstream and the inter-

island region (Froneman et al. 1999; Ansorge and Lutjeharms 2002). The PEIs are home to 

large breeding populations of top predators such as seals and seabirds (Pakhomov and Chown 

2003; Ryan and Bester 2008) and are ideal systems in which to study both biological 

interactions as well as environmental change, as these southern ocean islands are not likely to 

be directly influenced by human activities (Bergstrom and Chown 1999; Smith 2002). Despite 

the sub-Antarctic generally being an area of low productivity, the ocean environment around 

the PEIs is extremely productive and supplies the large number of breeding predators with food 

resources (Laubscher et al. 1993; Pakhomov and Froneman 1999). There is a known ‘island 

mass effect’, where the runoff of nutrients from the islands, facilitated by a stable water column, 

forms phytoplankton blooms in the shallow basin between Marion and Prince Edward Islands 

(Boden 1988; Perissinotto and Duncombe Rae 1990). These phytoplankton blooms play an 

important role in various biological processes within the PEI environment by forming the 

foundation of the marine food web (Allan et al. 2013; Treasure et al. 2015). With recent 

evidence for shifting conditions at the islands, however, this influence of primary productivity 

may be changing.  

Plankton studies focused in the immediate ocean environment around the Prince 

Edward Islands have documented regional differences in the abundance and structure of 
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plankton communities (Perissinotto et al. 1990; Froneman and Pakhomov 1998; Pakhomov 

and Froneman 1999). The upstream and downstream regions of the islands differ significantly 

in Chlorophyll-a concentrations, with the downstream environment having up to three times 

more Chl-a than the upstream region during bloom conditions (Froneman and Pakhomov 

1998). Additionally, there are distinct differences in phytoplankton size classes between the 

upstream and inter-island regions of the islands. In the inter-island region, phytoplankton 

communities are composed of nano-phytoplankton (2-20μm) and micro-phytoplankton 

(>20μm), while the open waters surrounding the islands are dominated by pico-phytoplankton 

(< 20μm) (Perissinotto et al. 1990; Froneman and Pakhomov 1998; Pakhomov and Froneman 

1999). Zooplankton communities at the islands consume less than 10% of the total Chl-a 

standing stock within the inter-island region during phytoplankton bloom conditions and less 

than 25% in the open waters surrounding the islands (McQuaid and Froneman 2008). As such, 

a large amount of phytoplankton sinks through a stable water column and is made available to 

the benthos (Perissinotto and Duncombe Rae 1990; Perissinotto 1992; Kaehler et al. 2000; 

Glover et al. 2010; Treasure et al. 2015). During conditions of increased water movement, as 

occurs due to the influence of the SAF, there is a decreased rate of nutrient sinking and nutrients 

are advected into the system from the easterly flowing ACC (Allan et al. 2013). As a result, 

regional primary productivity patterns may have important direct implications for benthic 

assemblages and may influence species richness and diversity (Levin et al. 2010; Treasure et 

al. 2015).  

The population dynamics of apex predators at the Prince Edward Islands may be 

directly influenced by regional changes in benthic assemblage composition. There have been 

notable long-term increases in the population sizes of top predators such as fur seals 

(Arctocephalus tropicalis); grey headed (Thalassarche chrysostoma) and wandering 

(Diomedea exulans) albatross; as well as King Penguins (Aptenodytes patagonicus), all of 
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which make use of offshore feeding grounds (Pakhomov and Chown 2003; Ryan and Bester 

2008). The islands have also experienced decreases in the population sizes of species which 

are primarily limited to inshore feeding, such as Rockhopper penguins (Eudyptes chrysocome) 

and Gentoo penguins (Pygoscelis papua) (Pakhomov and Chown 2003; Crawford et al. 2009). 

Given the inability of these species to feed far offshore, declines in their populations may be 

due to changes in abundance of benthic prey in the area surrounding the islands (Lescroël and 

Bost 2006; Ryan and Bester 2008; Treasure et al. 2015). 

Previous benthic research 

The large populations of top vertebrate predators have been well studied, as have the 

plankton communities in the vicinity of the islands. However, benthic marine assemblages 

within the archipelago have not been studied to the same extent. The first collections of physical 

specimens of the marine benthic fauna of the PEIs were made on five separate occasions 

between 1873 and 1976 by four different research vessels of both French and South African 

origin (Branch et al. 1993a; Chown and Froneman 2008a). The South African specimens of 

benthic invertebrates collected prior to 1971 are described in Van Zinderen Bakker et al (1971). 

More recent surveys of epibenthic assemblages were conducted between 1984 and 1989 by 

Branch et al (1993a). As part of this series of surveys, benthic photographs were taken, in 

conjunction with dredged samples, to identify and classify benthic species and habitats around 

the PEIs. Various taxonomic keys were subsequently published using historical records and 

the data obtained from dredged samples (Branch et al. 1991a; 1991b; 1993b; Branch and 

Williams 1993; Branch 1994; Branch and Hayward 2007). In 1988 a SCUBA diving survey of 

epibenthic assemblages was conducted at 3 sites within the shallow nearshore region of Marion 

Island (Beckley and Branch 1992). This SCUBA survey also enabled validation of species 

identities and habitat types. 
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More recently, studies have investigated trophic relationships using stable isotope 

analyses from samples obtained from benthic invertebrates, (Kaehler et al. 2000; Allan et al. 

2013; Richoux et al. 2016). Various studies have found that over time (20-25 year studies), 

benthic invertebrates, including the hyper-benthic shrimp, Nauticaris marionis, were 

significantly δC13 depleted indicating a shift in the source of nutrients being made available to 

the benthos (Pakhomov et al. 2004; Allan et al. 2013). Additionally, invertebrate species in the 

inter-island and downstream regions experience planktonic food sources of a higher quality 

than in the upstream region (Allan 2011). This was confirmed by Richoux et al. (2016) who 

found significant differences in the δC13 signatures of N. marionis between the inter-island and 

upstream regions of the islands. This change in isotope signature reflects that the source of food 

for benthic assemblages in the upstream and downstream regions have changed over time. As 

benthic assemblages are reliant on primary productivity generated at the surface layer for 

nourishment, seasonal variations in type and quality of productivity or short-term pulses of 

production may impact macrofaunal communities (Grebmeier and Barry 1991; Levin et al. 

1999; Witte et al. 2003).  

Previous research has, therefore, described notable changes in benthic food regimes at 

the Prince Edward Island Archipelago. However, not much focus has been directed towards 

the potential effects of such changes on benthic assemblage composition within each of the 

island regions over time. Comparisons of historical and recent data between regions can be 

used to quantify potential changes in the epibenthos. As a photographic dataset of the benthic 

habitats around the PEIs exists from a study conducted between 1984 and 1989 by Branch et 

al. (1993a), there is a valuable opportunity to resample the upstream and downstream regions 

to determine whether there have been changes in assemblage composition over decadal 

timescales. These historical photographs form a baseline dataset for continued, non-destructive 

monitoring at the sub-Antarctic Prince Edward Islands. The primary aim of this chapter was to 
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compare epibenthic assemblages in the upstream and downstream regions of the PEIs across 

time, between images taken between 1984 and 1989 and those of areas resampled in 2013 and 

2015, to assess spatial and temporal changes. In addressing the stated aim, two hypotheses were 

tested: 1) the diversity of epibenthic assemblages would differ both temporally and spatially, 

and 2) there would be spatial and temporal changes in species composition. 

 

3.2: Methods  

Epibenthic assemblages were photographed during April/May in 8 separate surveys 

between 1984 and 1989 in the vicinity of Marion (46˚45ˊS-37˚50ˊE) and Prince Edward Islands 

(46°38′S-37°56′E) as described by Branch et al. (1993a). A photographic resampling survey 

was conducted aboard the SA Agulhas II during its annual relief voyages to the islands during 

April/May 2013 and 2015. The photographic equipment and camera orientation used to capture 

historical images differed from that used in the repeat surveys. Historical photographs were 

taken with an analogue (film) camera positioned perpendicularly to the substratum giving a 

plan view of the benthos, while photo-transects in 2013 and 2015 were taken at a 30 degree 

angle to the substrate (as described in Chapter 2). Historical photographic slides were digitized 

by high resolution scanning to allow the historical images to be processed the same way as 

resampled images. The locations of resampled study sites were chosen to best align with the 

locations used in the historical survey. The ground area photographed in each set of images 

was scaled, allowing standardisation of the area processed in each image (as outlined in Chapter 

2). As substrate type may have an effect on the benthic biomass and diversity (Grebmeier et al. 

1989), a similar range of substrate types were sampled in each study region (upstream and 

downstream). Each sampled region had an equal number of hard and soft substratum types 

(partial rock-sand, gravel, gravel-mud and mud sites). Six upstream sites and five downstream 
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sites with a depth range of between 61-420m were surveyed (Fig. 3.1). As each region 

(upstream/downstream) covered the same depth range, depth was treated as a constant variable 

and was not used to stratify samples. Camera work was conducted as per the methodology 

outlined in Chapter 2. The number of photographs processed per site was informed by the 

findings of Chapter 2 (Table 2.2). An average of 22(±12 SD) historical sites and 27(±3 SD) 

resampled photographs were sampled (Appendix C).  

 

Figure 3.1 Location of the upstream and downstream sample sites in relation to the Marion 

and Prince Edward Islands. Triangles indicate upstream sites and grey circles indicate 

downstream sites. Shading reflects depth (m). 
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Image analysis 

Two hundred and one historical and 264 resampled images were processed using Coral 

Point Count with Excel extensions (CPCe) (Kohler and Gill 2006) to determine species 

composition and estimate epibenthic abundances. In CPCe, a point-count grid of 80 points was 

overlaid onto each photograph and the epibenthic species under each point on the grid was 

identified to the lowest possible taxonomic level. From this, the abundance (percentage cover) 

of epibenthic organisms was estimated. Identifications were done using published taxonomic 

keys and photo-identification guides (Branch et al. 1991a; 1991b; 1993b; Branch and Williams 

1993; Branch and Hayward 2007). Where species identification was not possible, a morpho-

species was assigned as an operational taxonomic unit (OTU) code and identified to the lowest 

possible taxonomic level (Davies et al. 2014).  

Data treatment and statistical analyses 

Univariate statistics were completed using Statistica V13 (STATSOFT 2015). All 

multivariate statistical analyses were conducted using the PRIMER (Clarke and Gorley 2006) 

software and the complementary package PERMANOVA (Anderson et al. 2008).  

Percentage cover data were fourth-root transformed to account for the effects of rare 

species. The diversity of assemblages was calculated using the Shannon Wiener diversity 

(Shannon and Weaver 1949) and Pielou’s evenness indices (Pielou 1966). After testing for 

normality and equal variances by using a P-P plot, diversity and evenness indices were 

compared using a factorial ANOVA with fixed spatial (2-levels, upstream and downstream) 

and temporal factors (2-levels, historical and resampled).  

To test for spatial and temporal differences in epibenthic assemblage composition, 

abundance data were compared using a two-way crossed permutation analysis of variance with 
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9999 permutations on a Bray-Curtis resemblance measure (PERMANOVA, Anderson 2005) 

with a fixed spatial factor of Region (2-levels, upstream and downstream) and a fixed temporal 

factor of Year (2-levels, historical and resampled). Pairwise tests were conducted in order to 

characterise the significant interactions. The sampling intensity at two stations from the 

historical survey was unavoidably lower than the resampled survey due to fewer usable images 

being available and the ideal number of photo-replicates, as advised in chapter 2, was not 

reached. However, the use of a conservative PERMANOVA design (Type III sum of squares) 

ensured that all design terms were treated independently, thus and eliminating the necessity of 

ensuring equal sample sizes (Anderson et al. 2008). Due to the sensitive nature of 

PERMANOVA to dispersion effects, a PERMDISP analysis was used to determine whether 

sites differed due to their variability in multivariate dispersion (PERMDISP, Anderson 2004). 

Patterns of epibenthic community structure were visualised using multi-dimensional scaling 

(MDS) plots based on a Bray-Curtis dissimilarity matrix. A group average cluster diagram with 

SIMPROF analysis was used to visualise the similarity between historical and resampled sites 

in the upstream and downstream regions. Canonical analysis of principal coordinates (CAP) 

was employed to determine how well the data fitted a priori groupings (resampled upstream, 

resampled downstream, historical upstream, historical downstream). A similarity percentage 

analysis (SIMPER; Clarke and Gorley 2006) identified the species responsible for driving 

differences between regions and across years. Only species that contributed >3% to the overall 

similarity or dissimilarity of the assemblage were reported on.  
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3.3: Results 

Temporal and spatial diversity comparisons 

Out of all 465 samples, 141 different morpho-species were observed. There was a 

significant increase in Shannon Wiener diversity over time (P < 0.001, Table 3.1a, Fig. 3.2a, 

b) but no difference in diversity between the upstream and downstream regions (P = 0.6000, 

Table 3.1a). There was no difference in Pielou’s evenness over time (P = 0.2000, Table 3.1b). 

However, there was a significant difference in Pielou’s evenness between regions, with 

upstream sites having a greater evenness than downstream sites (P < 0.0500, Table 3.1b, Fig. 

3.3a, b).   
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Table 3.1 Spatial (upstream and downstream) and temporal (1984-1989 and 2013-2015) 

comparisons of a) Shannon Weiner diversity index (H’) and b) Pielou’s evenness (J’). 

Significantly different values are indicated in bold. 
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Figure 3.2 Mean Shannon Wiener diversity (+SE) showing significant temporal differences 

within the a) upstream sites and b) downstream sites.  

 

Figure 3.3 Spatial differences in mean Pielou’s evenness (+SE) between a) historical sites and 

b) resampled sites. Historical surveys are indicated with black bars and resampled surveys are 

indicated with grey bars.   
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Temporal and spatial comparisons of benthic assemblages  

PERMANOVA results of the temporal and spatial comparisons showed significant 

main effects of time and region on epibenthic assemblage composition (Table 3.2). A 

significant interaction effect was also found between these spatial and temporal factors (Table 

3.2). All pairwise tests were significant (P (Perm) ≤ 0.0001) and the spatial-temporal interaction 

could not be resolved any further. 

Table 3.2 PERMANOVA analysis of epibenthic assemblages between periods (historical and 

resampled) and regions (upstream and downstream), and their interaction.  

 

A PERMDISP analysis was conducted to determine whether the statistical differences 

in tests of spatial and temporal factors were due to dispersion effects. There was a significant 

overall deviation from the group centroid of both factors (PERMDISP, F (3, 474) = 35.45, P (Perm) 

≤ 0.0001). Significant results of pairwise tests indicated that within each region, there were 

significant dispersion effects over time (Table 3.3). There were, however, no dispersion effects 

of the spatial factor within either sampling event (Table 3.3). 
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Table 3.3 Test statistics for pairwise tests of dispersion (PERMDISP) between years (historical 

and resampled surveys) and regions (upstream and downstream sites). Significant values of P 

< 0.050 are indicated in bold and non-significant by (NS).  
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Figure 3.4 Multi-dimensional scaling (unconstrained) plot of percentage cover of epibenthic 

organisms showing the spatial (upstream and downstream) and temporal (historical and 

resampled) patterns. 

 

The MDS plot did not show a clear separation between upstream and downstream 

groups in either sampling years (Stress = 0.21, Fig. 3.4). However, there was a significant 

difference in dispersion between the historical and resampled survey within the downstream 

region. The cluster analysis with SIMPROF found six statistically distinct groups (A to F) 

within the two main clusters, while three individual stations did not group (Fig. 3.5). The six 

groups had a similarity percentage of 42% (Fig. 3.5) but there was no clear separation between 

upstream and downstream sites over time. The cluster consisting of groups A and B was 

characterised by the shallow upstream and downstream sites in which red algae occurred.  
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Figure 3.5 Group Average Cluster diagram with SIMPROF analysis of sites grouped by 

percentage similarity in epibenthic assemblage cover. 
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A canonical analysis of principle components (CAP) distinguished among the four a 

priori groups (historical downstream, historical upstream, resampled downstream and 

resampled upstream). There was a strong association between multivariate data and the groups 

underlying the hypothesis, as reflected by the high canonical correlation values (δ), particularly 

for the first two axes, δ =0.80 and δ =0.68 (Fig. 3.6). The third axis was weaker with a δ of 

0.51. Overall, the success of CAP in classifying benthic assemblages according to the grouping 

factors was high and the chance that samples were properly assigned to their own group was 

77% (percentage correctness). Resampled upstream (67%) and downstream (83%) 

assemblages both had a high chance of being correctly assigned to their specific group, as did 

the upstream (84%) and downstream (74%) historical assemblages. The CAP results improve 

confidence in the findings of PERMANOVA, as the results of the PERMANOVA more closely 

reflect the results of CAP rather than MDS. 

Stellenbosch University  https://scholar.sun.ac.za



 

61 
 

 

Figure 3.6 Canonical analysis of principal coordinates (CAP) of epibenthic assemblages from 

historical and resampled surveys in the upstream and downstream region of the PEIs. Values 

for δ are the canonical correlation coefficients. 

 

SIMPER analysis showed that within the upstream region, resampled and historical 

assemblages had an average dissimilarity of 60.2% (Fig. 3.7). The most notable species 

contributing to this dissimilarity were tube-building polychaetes (Lanice marionensis), which 

increased in abundance over time. Additionally, two morpho-species of bryozoans, red algae, 

an encrusting sponge and two cerianthid morpho-species also contributed to dissimilarity in 
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the upstream region over time (Fig. 3.7a). Within the downstream region, dissimilarity between 

the historical and resampled assemblages had an average dissimilarity of 60.74% (Fig. 3.7b). 

The most notable species contributing to this dissimilarity was a species of bryozoan (Cellaria 

malvinensis) and the hermit crab (Sympagurus dimorphus) which both increased in abundance 

over time. The most notable species which decreased in abundance over time was and L. 

marionensis, two cerianthid morpho-types, the lollipop sponge (Stylocordyla sp.), one hydroid 

morpho-type, and the hyper-benthic shrimp Nauticaris marionis. 

SIMPER analysis also showed that the average dissimilarity between upstream and 

downstream sites in the resampling survey was 64.15% (Fig. 3.8a). The most important species 

contributing to this similarity was L. marionensis, which had a higher abundance in the 

downstream region. Additionally, various bryozoan morpho-types and hermit crabs 

(Sympagurus dimorphus) also contributed >3% to dissimilarity. The dissimilarity between the 

upstream and downstream sites in the historical survey was 58.2% (Fig. 3.8b). The most 

noteworthy species contributing to this dissimilarity were L. marionensis (higher abundance in 

downstream region), various morpho-species of bryozoan, one cerianthid morpho-species, red-

algae, N. marionis, the lollipop sponge (Stylocordyla sp.) and the hermit crab (Sympagurus 

dimorphus).  
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Figure 3.7 Average abundance of species contributing >3% to average dissimilarity between a) historical and resampled surveys within the 

upstream region, and b) historical and resampled surveys within the downstream region. Data were fourth root transformed and percentages in 

brackets reflect a taxon’s contribution to dissimilarity. Black circles indicate which group (historical or resampled) had the greater abundance of a 

given species.  
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Figure 3.8 Average abundance of species contributing >3% to average dissimilarity between a) resampled downstream and upstream sites, and b) 

historical downstream and upstream sites. Data were fourth root transformed and percentages in brackets reflect a taxon’s contribution to 

dissimilarity. Black circles indicate which group (historical or resampled) had the greater abundance of a given species. 
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3.4: Discussion 

In this chapter, the assemblage structure of the epibenthos at the Prince Edward Islands 

was analysed to determine whether there have been temporal and/or spatial changes in diversity 

and assemblage composition. Epibenthic assemblages at sites in the upstream and downstream 

regions of the islands were compared between two sampling time periods separated by 26 

years. There were significant differences in assemblage composition and diversity both 

temporally (between historical and resampled surveys) and spatially (upstream and 

downstream). Additionally, there was a significant interaction between the spatial and temporal 

factors. The changes detected in epibenthic assemblages at the PEIs in this study may reflect 

temporal and regional changes observed in other biological systems around the islands, such 

as spatial and temporal variations in plankton community structure as well the isotope 

signatures of benthic invertebrates (Pakhomov et al. 2000b; Hunt et al. 2001; Allan et al. 2013).  

Broad-scale climatic changes have caused changes over time in the position of the 

fronts associated with the ACC in the surrounding area of the Prince Edward Islands (Hunt et 

al. 2001). The changing position of the SAF has important implications for biological 

productivity at the islands over inter- and intra-annual timescales. Over short time-scales (intra-

annual cycles) the position of oceanic fronts are highly variable (Lutjeharms and Valentine 

1984; Ansorge et al. 1999). Over longer time-scales (decadal cycles), climate change in the 

Southern Ocean has resulted in the gradual southward movement of the position of the SAF, 

which has had implications for localised primary productivity regimes (Hunt et al. 2001). This 

has been apparent in zooplankton community composition at the islands, which has changed 

over time with warmer-water (subtropical) species becoming more abundant than Antarctic 

species (Pakhomov et al. 2000b; Hunt et al. 2001). Due to changes in mesoscale oceanographic 

regimes resulting from alteration of the influence of the SAF, phytoplankton blooms may have 
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become less intense within the inter-island region (Hunt et al. 2001; Allan et al. 2013). This 

putative reduction in the frequency of phytoplankton blooms may have reduced nutrient 

availability to the benthos over time. Records show that there has been a decrease in the 

Chlorophyll-a concentrations in the island region since 1976 (Pakhomov and Chown 2003). 

Phytoplankton blooms are crucial to the ecological functioning of the island shelf ecosystems 

as the sedimentation of nutrients generated from these blooms supports benthic assemblages 

within the PEI region (Ansorge et al. 2012). The influence of declining Chl-a concentrations 

and productivity flux on the benthos has been associated with long-term changes in the δC13 

isotopic signatures of benthic organisms at the PEIs (Allan et al. 2013). The present study 

corroborated the idea that persistent changes in productivity regimes are important in 

influencing benthic assemblages, as the downstream region had a lower evenness than the 

upstream region during both surveys, and diversity differed in both the upstream and 

downstream regions over time. This spatial change in evenness indicates that the upstream 

region had similar abundances across the range of species, while the downstream region had 

an uneven distribution of abundance across the species. The differences in evenness may be 

indicating that species adapted to the variable downstream environment have higher 

abundances than those that are not. The differences in diversity over time may reflect long-

term changes in food supply to the benthos in the inter-island/downstream region (Pakhomov 

et al. 2004; Allan et al. 2013). In addition to differences in diversity, my study showed that 

species composition differed between the upstream and downstream regions within the 

historical survey and the resampling survey. Thus, my study may be indicative of persistent 

productivity patterns driving spatial differences in species composition.  
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Short-term and decadal changes 

Despite seasonality in sea surface temperatures (Mélice et al. 2003), it was unlikely that 

strictly seasonal changes in epibenthic assemblages could have been an agent of change, as 

both historical and resampled photographs were taken during austral summer. Over intra-

annual (seasonal) and short-term inter-annual (1-5 years) time scales, variations in benthic 

community structure are directed by community dynamics such as predation, disturbance, food 

availability, seasonal migration as well as larval settlement and recruitment (Glover et al. 

2010). Benthic research in the North East Pacific has found no correlation between assemblage 

composition and food supply over short time-scales (24 month study period) (Lauerman et al. 

1996; Ruhl and Smith 2004). Long-term studies, however, may be more useful in identifying 

epibenthic responses to environmental changes such as shifts in productivity regimes (Josefson 

1990; Billett et al. 2001; Ruhl and Smith 2004; Ruhl 2007; Glover et al. 2010). Several multi-

decadal (10-20 years) studies have found significant long-term changes in benthic assemblages 

as a result of changes in food supply over time (Josefson 1990; Billett et al. 2001; Ruhl and 

Smith 2004; Ruhl 2007; Glover et al. 2010). While changes in productivity regimes are known 

to be a result of the deterioration of sea ice in Polar Regions (Clarke et al. 2007), many of the 

decadal studies mentioned above showed that changes in productivity influenced the benthos, 

as a result of variations in oceanographic regimes and nutrient input (Josefson 1990; Billett et 

al. 2001; Ruhl and Smith 2004; Ruhl 2007).  

Feeding modes  

One of the epibenthic groups driving temporal differences within each region 

comprised scavenging hermit crabs. This may indicate that the downstream environment is 

more favourable to species that can benefit from multiple food sources and are not exclusively 

dependent on planktonic food sources. Overall, the tube-building polychaete, Lanice 
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marionensis, was more abundant in the downstream region than the upstream region. However, 

L. marionensis has decreased in abundance over time in the downstream region but increased 

in abundance in the upstream region. These tube-building polychaetes are able to filter both 

plankton and detritus from the water column (Fauchald and Jumars 1979). In addition to 

suspension feeding, L. marionensis is able to actively switch to deposit feeding when 

suspended food is limited (Rabaut et al. 2007; Allan 2011). The high abundance of this species 

may in part be due to their variable feeding modes enabling L. marionensis to switch 

facultatively to deposit feeding, or feed on low-quality food sources during flow-through 

conditions when there is less sedimentation of planktonic food sources (Allan et al. 2013). 

Allan et al. (2011) found that L. marionensis consumed increased amounts of dinoflagellates 

during flow-through conditions, which are common when diatom food sources become 

unavailable. Previous studies in other regions have found that higher abundances of a Lanice 

conspecific resulted in greater diversity of organisms as the tube worm facilitated niche 

expansion for other species by creating habitats and improving water quality (Eckman 1983, 

Rabaut et al. 2007, 2009; Van Hoey et al. 2008). This was not observed in the results of my 

study where the greater abundance of L. marionensis in the downstream region did not correlate 

with greater diversity of epibenthic species in the downstream region. This decreased diversity 

in the downstream region may have been as result of the lowered food quality in this region 

over time (Pakhomov et al. 2004; Allan et al. 2013). 

Sponges and hydrozoans contributed to both spatial and temporal changes observed at 

the islands, but this is unlikely to have been due to changes in food supply. Hydrozoans may 

be able to consume zooplankton in addition to phytoplankton (Allan et al. 2013) indicating that 

they are not solely reliant on stable primary productivity regimes. Changes in primary 

productivity regimes were unlikely to have caused decreases in zooplankton abundances as 

zooplankton have been found to preferentially feed on allochthonous production (Perissinotto 
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1992). Additionally, sponges are only able to consume particles within the size range 0-20µm 

and are, therefore, unlikely to directly utilise the phytoplankton blooms at the islands, which 

are comprised of species greater than 20µm (Pile et al. 1996; Allan 2011). Two species of 

sponge, an encrusting sponge commonly found on hard substrates and a species of lollipop 

sponge (Stylocordyla sp.), had a higher abundance in the downstream region than the upstream 

region, but decreased in abundance in the downstream region over time. The higher abundances 

of this sponge species in the downstream region may be attributed to it not being wholly reliant 

on the variable phytoplankton blooms.  

Trophic level implications 

The changes in benthic assemblages measured in this study may have contributed 

towards the observed declines of top predators in the PEI region. My results showed that the 

average abundance of the hyper-benthic shrimp, Nauticaris marionis, decreased significantly 

in downstream sites over time. Nauticaris marionis forms a major dietary component of several 

species of inshore feeding seabirds such as Gentoo, Macaroni and Rockhopper penguins, 

Imperial Cormorants and Crozet shags (Perissinotto and McQuaid 1990). Decreases in N. 

marionis abundance in the downstream region may be attributed to the increasingly variable 

productivity regimes and the subsequent decrease in food quality in the lee of the islands 

(Pakhomov et al. 2004; Allan et al. 2013). Models of phytoplankton bloom conditions at the 

islands suggest that increased primary production would benefit the maintenance of bentho-

pelagic coupling and that in the absence of bloom conditions, there could be a 25% reduction 

in benthic invertebrate secondary production (Gurney et al. 2014; Treasure et al. 2015). The 

decreases in the population sizes of inshore feeding pelagic predators may consequently be 

attributed to the decreases in the abundance of their benthic prey over time.  
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Potential caveats of this study 

Despite the advantages of photographic sampling, species richness and diversity may 

have been underrepresented. Coral Point Count in excel (CPCe) uses a point count grid to 

estimate percentage cover of epibenthos. Despite the point intercept method being commonly 

used in photographic studies of invertebrates (Drummond and Connell 2005), there may be 

portions of the image where organisms are not sampled and the method may underestimate the 

abundance of species. Drummond and Connell (2005) compared the various sampling 

intensities used to estimate percentage cover of sessile intertidal invertebrates and reported no 

difference in richness estimation among 25, 50 or 100 point-intercepts. Drummond and Connell 

(2005) also found that estimates of percentage cover did not differ among photographic 

sampling, in situ sampling and laboratory sampling. Additionally, the previous chapter of this 

thesis analysed the species accumulation curves of various upstream and downstream sites and 

found that 20 photographs (±4.7 SD) were sufficient to capture at least 80% of the species 

present in a given sample area, irrespective of substrate type. Despite concerns with 

photographic sampling, photographs retain the advantage that any errors incurred in this study 

by comparing spatial and temporal changes would have been consistent across the factors. 

Additional advantages of photographic sampling is that it is non-destructive and therefore ideal 

for sampling in the sensitive areas like the PEIs (Teixidó et al. 2002; Solan et al. 2003; Knight 

et al. 2014; Williams et al. 2015). 

The most important non-research activity that occurs in the vicinity of the PEIs is 

fishery for the economically important Patagonian toothfish (Dissostichus eleginoides). 

Sanctioned fishing vessels most likely did not have large impacts on the sampled benthic 

assemblages as there is a moratorium on fishing within 22km from the islands and all sampling 

was undertaken at depths shallower than those commonly fished (CCALMR; Ryan et al. 2002; 
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Lombard et al. 2007; Collins et al. 2010). This fishery mainly supports long-line fishing, which 

has a less destructive impact on the benthos than other fishing methods, and as larger fish live 

in water deeper than 1000m it is unlikely that either sanctioned or unsanctioned fishing vessels 

had an impact on sampled benthic assemblages in the vicinity of the islands (Collins et al. 

2010). Previously, fishing at the PEIs was seasonal (May to August), but to curb illegal fishing 

within the PEI EEZ, fishing was sanctioned for the entire year (Brandão and Butterworth 2002). 

This was done under the assumption that the presence of authorised vessels would deter 

unlawful fishing (Brandão and Butterworth 2002).  

3.5: Conclusions 

Despite the relative isolation of the Prince Edward Islands in the Southern Ocean, the 

threat of human-induced change remains a concern to ecologists (Halpern et al. 2008). 

Although this study may be considered a snapshot study, the results indicate that there have 

been both compositional and diversity changes of epibenthic assemblages at the Prince Edward 

Islands over 2.5 decades.  

The results revealed that epibenthic assemblages at both upstream and downstream 

regions changed over time. Additionally, significant spatial differences in species composition 

within the historical and resampled survey likely reflect changes in prevailing productivity 

patterns. The alignment of spatial and temporal patterns is likely in response to both long-term 

differences in oceanographic conditions and subsequent changes in productivity regimes. As 

benthic invertebrates are reliant on sedimentation of nutrients from phytoplankton blooms, and 

the benthos is an important food source for top predators, changes in epibenthic abundances as 

a result of changing productivity regimes may have important impacts on higher trophic levels. 

Variations in the position of the SAF as a result of climate change may have important 

influences on the functioning of the Prince Edward Island ecosystem (Pakhomov et al. 2000b; 
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Ansorge and Lutjeharms 2002; Ansorge et al. 2012). It is imperative that investigations into 

long-term trends in epibenthic assemblages at the PEIs be established, especially in light of 

documented changes in productivity regimes in the region. However, as it is difficult to isolate 

inter- and intra-annual differences, future studies may benefit from sampling at shorter 

timescales in order to distinguish climate-change effects from natural variability. This work 

may be important in understanding the population dynamics of top predators at the PEIs. 

Additionally, this work furthers the understanding of epibenthic invertebrates at the Prince 

Edward Islands and the photographs provide a permanent record of epibenthic assemblages 

that will serve as a baseline for future repeat epibenthic surveys.   
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Chapter 4: Synthesis 

 

The principle aim of this project was to assess present day epibenthic assemblages around the 

sub-Antarctic Prince Edward Islands using photographs taken with a towed benthic camera. 

Two more sub-aims were tested in this study. Firstly, the optimal photographic sampling 

intensity required to attain a representative sample of epibenthic diversity in various abiotic 

substrate types at the PEIs was determined. Secondly, as spatial and temporal changes have 

been documented in multiple biological and oceanographic systems at the PEIs, this study 

aimed to test whether changes had occurred in the species composition and abundance of 

epibenthic assemblages in the upstream and downstream regions over time.  

Photography has recently become more frequently used as a sampling method to 

document and visualise change in community structure (Jørgensen and Gulliksen 2001; Solan 

et al. 2003; Kipson et al. 2011; Reimers et al. 2014; Williams et al. 2015). However, due to the 

various challenges associated with using photography, it was necessary for sampling strategies 

to be optimised. Epibenthic photographs from various sites, with different substrate types, were 

used to calculate the species area relationship (SPAR). Based on SPAR testing, the point where 

the species accumulation curve started to decelerate was determined. Species accumulation 

curves did not differ when compared across the sampled substrate types and an optimal number 

of 20 (±4.7 SD) photo-replicates (~15m2) emerged as the recommended intensity for future 

long-term sampling at the PEIs (Chapter 2).  

Research into the oceanography surrounding the PEIs has found long-term spatial and 

temporal changes in mesoscale oceanographic regimes and, consequently, shifts in productivity 

regimes (Froneman and Pakhomov 1998; Pakhomov and Froneman 1999; Pakhomov and 
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Chown 2003; Pakhomov et al. 2004; McQuaid and Froneman 2008; Allan et al. 2013). As 

many studies have noted, these kinds of oceanographic changes can have implications for many 

biological systems in the islands’ region, from plankton community structure to changes in 

population dynamics of top predators (Pakhomov and Chown 2003; Crawford et al. 2009). 

However, as yet, not many studies have considered how benthic assemblages may have 

responded to these oceanographic changes and resultant changes in bottom-up effects on 

productivity patterns (Allan 2011). Historical epibenthic photographs were available from a 

previous benthic survey of the PEIs (Branch et al. 1993a). These, combined with resurvey 

photographs from 2013 and 2015, enabled spatial and temporal changes in epibenthic 

assemblages to be evaluated. The epibenthos in the upstream and downstream regions of the 

PEIs were compared over time using these historical and resampled images. Epibenthic 

assemblages differed between the upstream and downstream regions, and assemblages in both 

these regions changed over time. As the PEIs lie directly in the pathway of the easterly moving 

Antarctic Circumpolar Current, the oceanic environment surrounding the islands is separated 

into three distinct regions, which all experience varied nutrient levels and support different 

plankton size classes as a result of their characteristic productivity regimes (Perissinotto et al. 

1990; Froneman and Pakhomov 1998; Froneman et al. 1999; Pakhomov and Froneman 1999; 

Ansorge and Lutjeharms 2002).  This is partly due to the ‘island mass effect’, where nutrient 

runoff from the islands, compounded with mesoscale oceanographic regimes, facilitates large 

phytoplankton blooms in the inter-island region (Boden 1988). Moreover, eddies are created 

in the lee of the islands due to the obstruction of water flow by the islands, retaining primary 

productivity and influencing population connectivity in terms of the entrainment, recruitment 

and dispersal of larvae (Heywood et al. 1990; Wolanski et al. 1996; Blain et al. 2001). Spatial 

differences in the benthos were likely attributable to spatial differences in productivity patterns 

as a result of mesoscale oceanographic regimes affecting the biology of the islands. However, 
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temporal differences possibly reflected that there have been alterations in these patterns over 

time (Chapter 3). Previous studies have documented a gradual southward shift of the position 

of the sub-Antarctic front, and this has affected mesoscale oceanographic regimes at the islands 

over time, changing the origin of planktonic food resources (Hunt et al. 2001; Allan et al. 2013).  

The results of Chapter 2 informed the sampling intensity used in Chapter 3 and will 

inform future epibenthic photographic work at the Prince Edward Islands. This will ensure that 

scarce resources are optimally allocated in surveys of epibenthos in this sensitive area. The 

work outlined in this thesis provides an important starting point for future benthic research at 

the PEIs and is the first epibenthic photographic survey since the 1980s (Branch et al. 1993a). 

This study will enable educated decisions to be made regarding the future conservation of the 

PEI marine protected area and improve our understanding of benthic ecology and potential 

responses to long-term change. 

4.1: Photo-methodology 

Despite the many benefits of photographic sampling (Adams et al. 1995; Teixidó et al. 

2002; Solan et al. 2003; Stobart et al. 2007; Reimers et al. 2014; Williams et al. 2015), sampling 

benthic habitats is notoriously difficult, with problems ranging from inadequate sampling 

apparatus to the underrepresentation of species richness (Roberts et al. 2000; Solan et al. 2003; 

Knight et al. 2014; Williams et al. 2015). My study determined that in the region of the PEIs, 

an average of 20 (±4.7 SD) photo-replicates (~15m2) can be used to reach a point where at least 

80% of the total asymptotic richness had been sampled (Chapter 2). Testing revealed that this 

sampling intensity can be applied irrespective of substrate type at the PEIs. Other studies, using 

species area relationships in Mediterranean coral outcrops as well as soft bottom communities, 

have found that estimates of required sample size differed from those of my study by one order 

of magnitude (Gray 2002; Kipson et al. 2011). Additionally, similar number of photo-replicates 
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as was used in my study, have been used in studies of seamount benthic diversity (Williams et 

al. 2015). However, a study on various substrates in the North East Atlantic processed large 

sampling areas (80m2 - 16170m2) and species accumulation curves were yet to start 

decelerating (Foster et al. 2013). That study processed habitats similar to those covered in my 

study, in that a mixture of hard and soft substrates were classified but differed in that sites that 

included biogenic habitats were analysed separately from those that did not. The 

recommendation provided in the current study may, therefore, be a low estimate and while it 

may not be necessary to increase the sample size of benthic photographs at the PEIs, caution 

should be exercised when translating the results of this study to different locations. The 

estimated sampling intensity recommended in this study is suitable for the PEI region as the 

species accumulation curves all reached points of deceleration irrespective of substrate type, 

indicating that only a few species were yet to be found. However, certain locations at the PEIs 

may require more photo-replicates than is recommended in this study. Deeper sites, spatially 

heterogeneous sites or any area where the species richness may be low, will require more photo-

replicates as these areas contain more rare species and species will accumulate at a slower rate 

than those with higher richness (Baltanas 1992; Scheiner 2003).  Taking these considerations 

into account, the work detailed in this study (Chapter 2) provides an optimised framework for 

future photographic sampling and monitoring at the PEIs and will enable the allocation of time 

spent on photo-analysis to be improved.  

There are several important caveats of the photographic sampling outlined in this thesis. 

One of these limitations is that only visible species (species >1cm) could be characterised. 

While there are distinct benefits to visualising in situ species relationships and habitat context, 

species too small to be seen or infaunal species are overlooked. This disregards species that are 

vital to the health of ecosystems such as burrowing species. Several studies have used box 

corers or grabs in addition to photographic sampling to aid species identifications (Solan et al. 
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2003). My study was only able to classify species to morpho-species level, as physical 

specimens were not always collected. Future studies could, therefore, make use of a dredge or 

grab in conjunction with photography in order to collect specimens and conduct a genetic 

analysis of epibenthos. Despite these drawbacks, benthic imagery allows for the classification 

of extensive areas without disrupting or removing large habitat-forming organisms like corals 

or sponges (Beisiegel et al. 2017). Another limitation of the photographic sampling in my study 

is that only sedentary mega-benthos could be classified. Highly mobile species such as fish 

were excluded as they move away from the camera. As predatory fish are important top-down 

regulators of benthos invertebrate abundances, they are crucial to the understanding of 

ecosystem function. Previously, assessments of fish populations within the PEI region have 

been undertaken through destructive trawl surveys (Brandão and Butterworth 2002; Pakhomov 

et al. 2006). Baited remote underwater video (BRUV) has been used in many marine 

ecosystems to estimate the standing stock of a variety of mobile predatory species (Yau et al. 

2001; Cappo et al. 2004; Watson et al. 2010). Future studies may, therefore, be able to elucidate 

the size of the commercially important Patagonian toothfish population and other predatory 

fish at the PEIs using non-destructive videography and aid in trophic studies at the islands.  

4.2: Future directions of epibenthic studies at the Prince Edward Islands 

It was long thought that the Antarctic and sub-Antarctic were one of the few 

undisturbed ecosystems left on earth due to their isolation from human populations. Many 

studies, however, have refuted this claim and have demonstrated veritable change in polar 

ecosystems both in pelagic as well as deep sea systems (Peck 2005; Halpern et al. 2008; Hoegh-

Guldberg and Bruno 2010). Climate change is of major concern in polar systems, where 

increases in sea surface temperatures have resulted in increased glacial melting, changing 

oceanographic patterns and subsequent variations in primary productivity regimes (Clarke and 
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Harris 2003, Constable et al. 2014). Increases in global sea surface temperatures resulting from 

climatic changes may directly affect the abundance of benthic invertebrates by influencing 

settlement, dispersal and growth of larval stages (Harley et al. 2006). Additionally, 

environments may become more susceptible to invasive species and some organisms may shift 

their biogeographical range thereby changing the composition and diversity of ecosystems 

(Walther et al. 2002).  

Due to the paucity of research and information about the deep-sea, it is highly likely 

that species can become extinct without our knowledge (Snelgrove 1999). Despite the ACC 

being a good biogeographic barrier to species movement (Clarke and Harris 2003), invasive 

species are still a major concern at the PEIs, and terrestrial invasions (insects, grasses, mice, 

and cats) have plagued biological systems at the islands (Chown and Froneman 2008b). 

Recently a new research base was built on Marion Island, and more trips to the islands were 

scheduled during construction. As a result of increased ship traffic in the vicinity of the islands 

(fishing and research vessels); the ability of some alien species to survive long ship journeys; 

and a changing climate, marine environments may become more susceptible to invasive spread 

(Bergstrom and Chown 1999; Smith 2002; Aronson et al. 2007; Lee and Chown 2007; 

Occhipinti-Ambrogi 2007, Constable et al. 2014). As impacts of alien species associated with 

invasive spread is a known threat to marine biodiversity, ecosystem services and the ecological 

functioning of marine food webs are likely to be negatively affected (Molnar et al 2008; Vilà 

et al. 2009; Worm et al. 2012; Mellin et al. 2016). The benthic surveys undertaken in this study 

in conjunction with previous benthic taxonomic and photography work will facilitate the 

assembly of a permanent baseline record of epibenthic species at the PEIs. Such baseline 

records will help characterise any changes caused by climate change species introductions or 

fishing (Reimers et al. 2014; Beisiegel et al. 2017).  
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Despite the population dynamics of top predators at the PEIs being well studied, not 

much research has analysed trophic relationships between top vertebrate predators and the 

marine environment. Models have suggested that changes in the abundance of benthic 

invertebrates could have deleterious impacts on higher trophic levels, especially in light of 

climate change (Gurney et al. 2014; Jones et al. 2014; Treasure et al. 2015). The present study 

corroborated these models (Chapter 3), and changes in assemblage composition were found to 

mirror other environmental changes taking place at the islands (Froneman and Pakhomov 1998; 

Pakhomov and Froneman 1999; Pakhomov and Chown 2003; Pakhomov et al. 2004; McQuaid 

and Froneman 2008; Ryan and Bester 2008; Allan et al. 2013). The work presented here forms 

a valuable starting point in the study of both bottom-up and top-down effects on trophic 

relationships at the PEIs. Future studies could also focus on the effects that climate changes 

and consequent changes in primary productivity regimes may have on the survival and 

recruitment of pelagic larvae of benthic invertebrates due to their dependence on food 

availability (Przeslawski et al. 2008).  

As climate change has altered the availability of resources to the benthos, the manner 

in which communities are assembled may have changed. In many terrestrial plant communities, 

functional trait analysis has been suggested to be useful in determining community assembly 

in the face of disturbance (McGill et al. 2006; Cornwell and Ackerly 2009; Swenson and 

Weiser 2010). Functional trait analysis has also been found to be applicable in marine 

communities (Litchman and Klausmeier 2008; Edwards et al. 2013), and may be a more 

rigorous method to assess diversity change rather than comparing only taxonomic composition 

(Bremner et al. 2003). Applying such techniques could be an important next step in epibenthic 

studies at the PEIs.  
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Appendix A 

 

 

Plate 1) Examples of  epibenthic assemblages at four classified substrates a) large anemone 

and holothuroid (Synallactes challengeri) on mud substrate (site C52) b) dense assemblage of 

bryozoans, sponges as well as ophiuroids and crinoids on gravel-mud substrate type (site C43) 

c) gravel substrate with pink anemone (site C42) d) bryozoans and encrusting sponges on 

partial rock-sand substrate (site C22) 
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Plate 2) Examples of  historical and resampled epibenthic assemblages a) historical image (site 

C8) of Octocorals (Thouarella variabalis) and ophiuroids and crinoids b) resampled image 

(site C8) of octocorals (Thourella variabilis), ophiuriods (Asteronyx loveni). c) Historical 

image (site C54) of tube dwelling polychaete (Lanice marionensis), red algae and aeolid 

nudibranch d) resampled image (site C54) of red algae and hyper-benthic shrimp (Nauticaris 

marionis). 
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Appendix B 

 

The Chao 2 calculation uses the number of individuals that only occur once in a sample 

(uniques, Q1), the recurring individuals (duplicates, Q2) and the total number of observed 

individuals (Sobs) in order to calculate the estimated number of individuals in a sample (Sest). 

This equation adjusts for small sample sizes by incorporating the number of replicated samples 

into the equation (t).  

Sest = Sobs +
�1−1𝑡𝑡�𝑄𝑄1

2

2𝑄𝑄2
. 

Stellenbosch University  https://scholar.sun.ac.za



 

97 
 

Appendix C 
 

Table C1) Location, depth, and substrate type of a recent survey of the Prince Edward Islands 
with the number of photographs sampled in sites included in Chapter 3 analyses.  
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