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SUMMARY 

 

This thesis project focusses on the experimental and theoretical analysis of the 

transient behaviour of a single and two-phase flow natural circulation heat transfer 

loop using water as the working fluid. The background theory provided by a 

literature survey shows that natural thermosyphon loops offer attractive solutions 

for passive cooling and heat transfer, and safety systems; especially in the nuclear 

and process industries. In particular the thesis considers a passive reactor cavity 

cooling system (RCCS) for next generation high temperature nuclear reactors 

such as “the pebble bed modular reactor (PBMR)”.  

A time-dependent mathematical computer simulation program of a 7 m high by 8 

m wide, 32 mm inside diameter vertically orientated rectangular natural 

circulation loop was developed. The major assumption was that the flow is quasi-

static; implying that although the mass flow rate might be changing with time, that 

at any instant in time that the mass flow rate is constant at axial position along the 

loop. To theoretically simulate the loop the working fluid was discretised into a 

series of one dimensional control volumes. By applying the conservation of mass, 

momentum and energy and suitable property functions to each control volume as 

series of time dependent partial differential equations were generated and then 

solved using an explicit finite difference method. 

The one vertical side of the loop was heated by a series of electrical heating 

elements and the other vertical side cooled using a series of water-cooling jackets. 

Transparent pipe lengths were inserted in the loop to observe the two-phase flow 

patterns. The loop was supplied with an expansion tank and operated in single and 

two-phase modes with water as the working fluid at a mass flow rate determined 

using an orifice-plate flow meter. A reasonable correlation between the 

experimental and theoretical simulations was found using a separated two-phase 

flow with frictional multipliers and vapour-liquid void fraction correlations, 

similar to those originally suggested by Martinelli. 

It was concluded that the as developed theoretical model adequately captured the 

actual transient and dynamic flow and heat transfer behaviour of the loop. It is 

thus recommended that a series of such loops could be used with confidence for a 

RCCS. 
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OPSOMMING 

 

Hierdie studie het gefokus op die eksperimentele en teoretiese ontleding van die 

oorgangsgedrag van ŉ natuurlikesirkulasie-hitteoordragslus in enkel en 

tweefasevloei deur water as die werkvloeistof te gebruik. Die agtergrondse teorie 

wat deur die literatuuroorsig verskaf word, toon dat natuurlike termosifonlusse 

aanloklike oplossings vir passiewe verkoeling en hitteoordrag asook 

veiligheidstelsels bied, veral in die kern- en prosesbedrywe. Die studie het 

spesifiek ŉ passiewe reaktorholte-verkoelingstelsel (RHVS) ondersoek vir 

volgendegenerasie-hoëtemperatuur-kernreaktors soos die spoelkliplaag- modulêre 

reaktor.  

ŉ Tydafhanklike wiskundige rekenaarsimulasieprogram van ŉ vertikaal 

georiënteerde reghoekige natuurlike sirkulasielus, 7 m hoog, 8 m breed, met ŉ 

binnedeursnee van 32 mm, is ontwikkel. Die vernaamste aanname was dat die 

vloei kwasi-staties is, wat impliseer dat alhoewel die massavloeikoers wel 

moontlik met verloop van tyd verander, dit by ’n aksiale posisie in die lus in enige 

tydsoomblik konstant sal wees. Ten einde die lus teoreties te simuleer, is die 

werkvloeistof in ŉ reeks eendimensionele beheervolumes verdeel. Deur die 

behoud van massa, momentum en energie en geskikte eienskapsfunksies op elke 

beheervolume toe te pas, is ŉ reeks tyd-afhanklike gedeeltelike 

differensiaalvergelykings gegenereer en met behulp van ŉ eksplisiete 

eindigeverskil-metode opgelos. 

Die een vertikale kant van die lus is deur ŉ reeks elektriese verhittingselemente 

verhit en die ander kant met ŉ reeks waterverkoelende mantels verkoel. 

Deursigtige pypstukke is in die lus geplaas om die tweefase-vloeipatrone waar te 

neem. Die lus is met ŉ uitsittenk toegerus. Die massavloeikoers is met behulp van 

ŉ gaatjiesplaatvloeimeter bepaal. Die lus is in enkelfase- en 

tweefasebedryfsmodusse in werking gestel. ŉ Redelike korrelasie tussen die 

eksperimentele en teoretiese simulasies is gevind met behulp van ŉ geskeide 

tweefasevloei met wrywingvermenigvuldigers en dampvloeistof-

leegtebreukkorrelasies, soortgelyk aan dié wat oorspronklik deur Martinelli 

voorgestel is. 

Die gevolgtrekking was dat die ontwikkelde teoretiese model die werklike 

oorgangs- en dinamiese vloei en hitteoordrag-gedrag van die lus genoegsaam 

vasgelê het. Die aanbeveling word dus gemaak dat ŉ reeks van hierdie lusse met 

gerustheid vir ŉ RHVS gebruik kan word 
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Figure 5-1  Experimental single phase operating mode with power gradually input 

(a) heating plate temperatures, (b) working fluid temperatures, (c) 
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Figure 5-8  Hand drawing depictions of two-phase flow patterns adjacent to the 

two-phase photographic images [poor photographic images due to 

semi-transparent observation windows] ......................................... 5-14 
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NOMENCLATURE 

 

a acceleration, m/s
2
 

A area, m
2 

Ax cross sectional area, m
2
 

Az heat transfer area, m
2
 

Bo Bond number               ⁄  

c specific heat, (cp, cv) J/kgK 

Cf coefficient of friction 

d diameter, m 

D diameter, m 

f Darcy friction factor, two-phase flow friction factor 

Fr Froude number,     √  ⁄  

g acceleration due to gravity, m/s
2
, saturated gas 

G force due to gravity, N; mass flux, kg/s/m
2
, mass velocity, kg/m

2
s 

Gr Grashof number,            ⁄   ⁄     

h height, head, m 

h specific enthalpy, J/kg 

hfg latent heat of vaporisation, J/kg 

k thermal conductivity, W/mK 

K minor loss coefficient 

l length, m 

L length, m 

m mass, kg 

 ̇ mass flow rate, kg/s 

M Morton number                 
    ⁄  

N Number 

n Number 

Nu Nusselt number,       ⁄  

P pressure, Pa 

℘ perimeter, m 

Pr Prandtl number,        ⁄  
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xiv 

 

Q energy, J 

 ̇ heat flow rate, W 

 ̇    heat transfer rate per unit volume, W/m
3
 

R thermal resistance, K/W 

Ra Rayleigh number,         

Re Reynolds’ number        ⁄  

Rho density, kg/m
3
 

S slip factor; Suppression factor 

T temperature, K, °C; period, s 

t time, s 

u specific internal energy, J/kg 

U total internal energy, J; overall heat transfer coefficient, W/m
2
K 

v velocity, m/s 

V volume, m
3 

x mass fraction, mvapour/(mvapour + mliquid); thermodynamic quality;   

 displacement, m 

X Martinelli parameter 

z distance, m 

zminor minor losses 

 

Greek symbols 

α void fraction, Vvapour/(Vvapour + Vliquid) 

β thermal expansion coefficient, K
-1

 

ε emissivity 

θ inclination angle, rad 

λ thermal conductivity, W/mK 

µ dynamic viscosity, Ns/m
2
 

v kinematic viscosity, m
2
/s 

ρ density, kg/m
3
 

σ surface tension N/m, stefan-Boltzmann constant, W/m
2
K

4
 

τ shear stress, N/m
2
 

ϕ
2
 two-phase frictional multiplier 
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Superscript 

t time 

Δt time step 

 

Subscripts 

a air, ambient 

atm atmospheric 

bottom bottom of the loop 

D diameter 

e electrical; equivalent 

f saturated liquid; friction 

F wall friction 

g gas 

G gravity 

h hydraulic; wetted perimeter; homogeneous 

he heat exchanger 

hp heat pipe 

i i
th

 control volume or element  

in inlet 

ins insulation 

l liquid 

L length 

lo liquid only 

loss loss 

M momentum 

minor minor losses 

o only; outside 

out outlet 

q constant heat flux 

r reference 

sat saturated 
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T constant temperature 

tank tank 

tot total 

v vapour 

w water, wall 

x at a particular point along the surface 

z heat transfer 

 

Abbreviations 

AGR  Advanced Gas-cooled Reactor 

BL  Bottom Left 

BR  Bottom Right 

BWR  Boiling Water Reactor 

CANDU Canada Deuterium Uranium 

CV  Control Volume 

ESKOM Electricity Supply Commission 

F  Friction 

G  Gravity 

H  Heater, Heating element 

HE  Heat Exchanger 

HTGR  High Temperature Gas Reactor 

HTR  High Temperature Reactor 

IAEA  International Atomic Energy Agency 

ID  Inner Diameter 

IHTP  Inverse Heat Transfer Problems 

LHS  Left Hand Side 

LOCA  Loss-of-coolant Accident 

M  Mass 

MF  Momentum Flux 

MHTGR Modular High Temperature Gas Reactor 

NC  Natural Circulation 

OD  Outer Diameter 
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P  Pressure 

PBMR  Pebble Bed Modular Reactor 

PRT  Platinum Resistance Thermometer 

PWR  Pressure Water Reactor 

RBMK  Reaktor Bolshoy Moshchnosti Kanalnyy 

RCCS  Reactor Cavity Cooling System 

RHS  Right Hand Side 

RPV  Reactor Pressure Vessel 

SF  Slip Factor 

TL  Top Left 

TR  Top Right 
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1 INTRODUCTION 

 

In this thesis the theory needed to simulate the transient behaviour of a natural 

circulation loop using the separated two-phase model will be presented and 

validated experimentally using an existing loop that has been re-commissioned 

and more extensively instrumented. 

A natural circulation loop is a closed thermosyphon loop that transfers energy 

from a heat source to a detached heat sink over a distance without the help of any 

mechanically moving devices. This process, also called passive system does not 

require the use of active components such as pumps, or uses them in a limited way 

to circulate the fluid. The process is also self-controlling as the temperature 

difference increases, so too do the heat transfer rate and flow rate (Grief, 1988; 

Bieliński & Mikielewicz, 2011; IAEA, 2005). 

Thermosyphon loops have many applications and can be used in solar heaters, air 

conditioning and ventilation, nuclear reactors and thermal management of 

electrical and electronic devices. In the nuclear industry this thermosyphonic flow 

process is considered a passive system, hence also inherently safe, making it 

particularly suitable for use in this industry; where reliability and safety are vital. 

For instance, they may be used in high temperature reactors in the reactor cavity 

cooling system (RCCS) (Bieliński & Mikielewicz, 2011). The objective of the 

RCCS designs being the transfer of heat from the reactor cavity to an outside 

environment (“heat sink”), and thereby ensuring  thermal reliability of the fuel, 

core vessel and critical equipment within the reactor cavity concrete containment 

structures for the entire spectrum of postulated accident sequences (IAEA, 2000). 

The natural circulation, or thermosyphonic flow process, may also be explained in 

terms of simple fundamental principles considering a small package of fluid or 

control volume. An upwards force acts on it due to the hydrostatic pressure 

difference between the bottom and the top. A downwards force acts on the particle 

due to gravity. Depending on the resultant of these two forces the particle will 

either moves upwards or downwards. As a result the fluid in the simple vertically 

orientated loop, as shown in Figure 1.1, flows with a mass flow rate  ̇ in a 

clockwise direction provided the left hand section is heated and the right hand 

section is cooled.  
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The force imbalance in the loop is created by a temperature induced change in 

density for a single component fluid or by a change in the liquid to vapour 

fraction. Normally the fluid in a natural circulation loop is initially a liquid but as 

more heat is added vapour is formed in the liquid and a two-phase flow is 

initiated. Boiling will occur when the saturated pressure corresponding to the 

liquid temperature is higher than the local pressure in the liquid. If it (‘boiling”) 

has not yet occurred in the heated portion, the liquid is considered sub-cooled or 

compressed liquid. However the subcooled liquid can also start to boil as it rises 

and the local pressure decreases as soon as the saturated pressure corresponding 

with the liquid temperature is higher than the local pressure; this is often called 

flashing (Kolev, 2011; Petelin & Bostjan, 1998). 

Two boiling cases may be identified, either when the saturated pressure 

corresponding with the liquid temperature is higher than local pressure (normally 

called boiling) and in the case where the pressure corresponding to temperature of 

the liquid is greater than the local pressure that is called flashing. 

Figure 1-1 Natural circulation loop diagrammatic 

representation 
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Depending on the visually observed shape of the bubbles, the two-phase flow may 

be characterised as bubble, plug, churn, or annular flow. In horizontal and inclined 

pipes, if the flow rate is low enough, the liquid tends to flow in the bottom of the 

pipe and the less dense vapour in the top of the tube; this is termed stratified flow. 

1.1 Background 

Thirty countries worldwide operate 438 nuclear reactors for electricity generation 

as of July 2015 and 67 new nuclear plants are under construction in 15 countries. 

In 2012 nuclear provided 10.9 per cent of world’s electricity (NEI, 2015). As 

such, nuclear power must be regarded not only as a proven technology and 

commercially viable power industry, but in an age when global warming and 

pollution is becoming of universal concern, it must also be regarded as a 

potentially environmentally friendly source of energy (Buzz, 2009). However, as 

a result of the widely publicised Three Mile Island, Chernobyl and Fukushima 

accidents, nuclear energy’s public acceptance has been somewhat tarnished 

(Bromet, 2014). In an attempt to make nuclear energy a more acceptable 

alternative to fossil fuel sources for the generation of electrical power and process 

heat it thus appears justified to investigate nuclear power and heat solutions with 

the potential of a more convincing safety philosophy that also includes the use of 

passive safety systems (NEA, 2002). 

Passive safety systems, such as thermosyphon loops, are integrated into the 

nuclear reactors in order to improve reliability and safety and are also used as a 

means for heat transfer from a heated to a cooled section through thermally 

induced density gradients resulting in natural circulation (IAEA, 2009). 

Thermosyphons are often found in situations where energy efficiency and low 

cost and low maintenance are a concern. They are also used in nuclear energy as 

cooling systems for the reactor core and surrounding structures (IAEA, 2009). 

In 2000, Eskom planned to increase nuclear power production in South Africa as 

part of its integrated electricity plans, thus formed a partnership with the PBMR 

company (www.eskom.co.za). In order to facilitate future development of nuclear, 

one of the programs launched by the PBMR and South African universities was to 

investigate on a suitable passive reactor cavity cooling systems (RCCS) (Van 

Staden, 2001, www.pbmr.com).  

In 2006 Dobson  proposed a RCCS concept for the PBMR as shown in Figure 1.2. 

His concept included a number of closed natural circulation loops with the heated 

section in the hot air cavity and the cooled in the heat sink. These loops are spaced 

around the periphery of the reactor cavity at a pitch angle θ. 
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Two types of thermosiphon can be identified; the open loop thermosyphon and the 

closed loop thermosyphon (Chen, et al., 1987). In both types three operating 

modes may be identified. The single phase mode where the fluid flows in liquid 

phase from start to finish; the single to two-phase mode, in this mode the fluid 

initially single phase boils and two-phase flow occurs with liquid being forced 

into an expansion tank (Haider, et al., 2002), and the heat pipe mode where the 

experiment starts off with a loop partially filled with saturated liquid and its 

vapour (Dobson, 1993; Tuma, 2006; Yeo et al., 2014).  

For experimental purposes an old heat transfer loop built by Sittmann (2010) was 

re-commissioned. This loop had been used at that time to investigate natural 

circulation in a RCCS. 

1.2 Objectives 

Five objectives were identified for this project as follow. 

1) Present a literature survey of thermosyphon loops and the natural circulation 

simulation theory with specific reference to the nuclear industry. 

reactor core 

reactor vessel 
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cooling water heat sink 

 

concrete 

structure 

 

      
        

 

 
 

 

  

 

 

L
i
 

r 

z 

0 

L
rc
 

closed-loop 
thermosyphon 

heat pipe 

 

Air cavity 

Figure 1-2 Proposed RCCS representation, Dobson (2006) 
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2) Theoretically model and simulate the thermal-hydraulic behaviour of a natural 

circulation cooling loop suitable as a coolant heat removal loop of an 

inherently safe nuclear passive system.  

3) Develop a computer program to numerically solve the theoretically derived 

mathematical simulation model.  

4) Re-commission and instrument an existing loop and experimentally evaluate 

the transient heat transfer behaviour of the loop for different power inputs and 

cooling temperatures. 

5) Validate the theoretical simulation model experimentally for single phase and 

two-phase operating modes using a separated two-phase flow model. 

1.3 Thesis layout 

A literature survey was first conducted to identify the theories of nuclear reactors, 

passive systems, thermosyphon loops, single phase and two-phase natural 

circulation loops. This is presented in Chapter 2 of this thesis. Chapter 3 deals 

with the mathematical modelling of the loop for the theoretical simulations of the 

natural circulation loop as schematically depicted in Figure 3.1 using the 

separated two-phase flow model. Chapter 4 of this project describes the 

experimental setup of the thermosyphon loop re-commissioned and instrumented 

in order to obtain the experimental data. The results obtained from the collected 

data are presented in Chapter 5. Chapter 5 also provides theoretical results and a 

comparison between the two results is given to validate the theoretical 

simulations. Chapter 6 presents a discussion and a conclusion to the project, as 

related to the original objectives and Chapter 7 offers recommendations for future 

work. 
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2 LITERATURE STUDY 

 

Recently, South Africa has shown the need for more electricity generation 

capacity to ease both the industrial and local demand (DTI, 2014). In 2015, 

country-wide load-shedding was implemented to meet this demand which 

adversely affected the manufacturing industry and the South African economy in 

general (loadshedding.eskom.co.za). In an attempt to ameliorate this adverse 

situation, different and more sustainable means of energy generation are being 

investigated; these include nuclear, renewables and new fossil-fuelled plants 

(DOE, 2015). This literature study however focusses on the passive natural 

circulation cooling of nuclear power plants; passive systems being regarded as 

inherently safe and more reliable than active systems (IAEA, 1993). 

In particular, this literature study considers passive natural circulation safety 

systems for core decay heat removal and containment cooling systems of nuclear 

reactors. The application of these systems to the reactors of Generation III+ and 

IV and Innovative reactor designs is emphasised and investigated under the 

following subsections: nuclear reactors in general, passive safety, passive cooling 

systems and natural circulation thermosyphons (IAEA, 2009). 

2.1 Nuclear reactors 

Energy is produced from splitting the atoms of certain elements in nuclear 

reactors. This energy is used to make steam to drive a turbine which in turn drives 

an electrical producing generator. 

According to the world nuclear organisation (WNO, 2017), the first nuclear 

reactors operated manually in rich uranium deposits about two billion years ago to 

develop into today’s reactors. These reactors derived from designs originally 

developed for propelling submarines and large naval ships generate about 85% of 

the world's nuclear electricity. Globally, two water reactors are common in 

nuclear plants; the pressurised water reactor (PWR) representing 65% of the 

reactors operating now and the boiling water reactors (BWR) representing 15% 

(CAN, 2017). 

From many different proposed reactor systems six (i.e. Magnox, AGR, PWR, 

BWR, CANDU and RBMK) have emerged for commercial electricity production 

in the world (IEE, 2005). Further the IAEA categorized nuclear reactors in 

generation I, II, III, III+ and IV (IAEA, 2009). Gen I, II and III derived from 

designs originally developed for naval use beginning in the late 1940s and is 

referred to the launching of civil nuclear power, while Gen II refers to a class of 

commercial, economical and reliable reactors and Gen III are essentially an 

improved Gen II (IAEA, 2009). These reactors are still operating worldwide today 
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(Goldberg et al., 2011). Figure 2.1 shows an overview of the United States of 

America’s history of reactor generations and a program of generation IV, a key 

factor of nuclear development (US-DOE, 2011). 

 

Gen III+ and VI reactors are important in the nuclear industry and a viable long 

term option with the first being an evolutionary of Gen III and the later (Gen IV) 

still two to four decades away, although some designs could be available within a 

decade (Goldberg et al., 2011). 

A fast growth in installed nuclear power capacity (up to 300 GW) was observed in 

the early 1980s, however its development was hit by anti-nuclear sentiment 

because of the 1986 Chernobyl’s accident causing a different perception with fear 

of possible nuclear radiation and also because of the risk of nuclear material being 

used for terrorist activities (NEA, 2002). The transport and storage of nuclear 

waste are also a contentious issue and the rising costs when compared to fossil 

fuels causing a setback in investment for new nuclear power stations 

(Ruppersberg, 2008). 

In South Africa, Eskom planned to reach 82 GW by 2015, of which 20 GW would 

come from nuclear power plants (Eskom, 2004); therefore investments were 

directed in research for high temperature gas reactor technologies such as the 

pebble bed modular reactor (PBMR) and projects were fully supported by the 

government. Due to potential failure of demonstrations and the costs involved the 

funding on the PMBR projects was stopped (Senda, 2012). This development 

Figure 2-1 Nuclear energy generation systems: program overview” 

(US-DOE, 2011)) 
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does not impact this research, as the work done for this study is applicable to other 

high temperature reactor technology. 

The PBMR is a reincarnation of the ‘high temperature gas reactor’ or HTGR in a 

modular version, known as the MHTGR (Makhijani, 2001). The PBMR is a 

variant of the HTGR; helium cooled graphite moderated High Temperature 

Reactor (HTR). Figure 2.2 illustrate a concept of a HTR (WNA, 2017). It is a very 

high efficiency nuclear reactor and attractive economics are possible without 

compromising the high levels of passive safety expected of advanced nuclear 

designs (PBMR, 2017).  

 

Passive safety systems are integrated in Gen IV nuclear reactor concepts, with 

high temperature and high pressure, whether as a primary coolant, decay heat 

removal, containment cooling and loss-of-coolant-accident (LOCA) or an 

emergency core cooling system (Vijayan, et al., 2013). A wide range of literature 

on nuclear reactors’ generation (Sherry, et al., 2010; Pioro, et al., 2016); thus they 

will not be discussed in this work. 

2.2 Passive safety systems 

This section looks at some aspects of the safety mechanisms implemented in 

HTRs such as the RCCS for the core decay heat removal and reactor containment 

cooling. The International Atomic Energy Agency (IAEA) (IAEA, 1991) gives 

definitions for safety related terms as applied to advanced reactors of generation 

III+ and IV, where the concept of passive safety system is defined and compared 

Figure 2-2 Simple concept drawing of a High temperature reactor 

(HTR) illustrating a NC loop (WNA, 2017) 
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to the active safety systems (Senru, 1988). A passive safety system includes only 

passive components and structures or uses active components in a very limited 

way to activate the (“ passive”) operation (IAEA, 2009) and possible failure 

because of the lack of human action or a power failure would not happen in these 

systems(IAEA, 1991). 

2.2.1 Categorisation of passive systems 

Based on the four characteristics given below that the system does not make use 

of, the IAEA classifies the degree of passive safety of components four categories 

from A to D (IAEA, 1991). 

1. no signal inputs of intelligence; 

2. no moving mechanical parts; 

3. no moving working fluid; and 

4. no external power input or force. 

 

 Category A 

Category A is characterised by the combination of all four (1+2+3+4) 

considerations. This group represents barriers against the release of fission 

products; therefore they must always be closed if they are not at the reprocessing 

plant. 

 Category B 

Category B (1+2+4) represents the surge line that controls the pressure in the 

primary loop of a PWR using moving working fluid when the safety function is 

activated (IAEA, 1991; Burgazzi, 2012). 

 Category C 

In category C (1+4) the fluid moves as in category B (IAEA, 1991). For a PWR, 

category C can be represented by accumulator (Ravnik, 1991). 

 Category D 

Category D (4) represents the transition between active and passive where an 

external signal is necessary to activate the passive process and is referred as 

"passive execution/active initiation" (IAEA, 1991). 

It is important to know that passivity is not synonymous with reliability, 

availability or adequacy of the safety features (IAEA, 1991). 
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2.2.2 Passive system implementation in advanced reactor designs 

The extensive use of passive systems and their reliability in new and advanced 

nuclear power plants is now subjects to intense discussions (NEA, 2002). Passive 

systems are therefore widely considered in innovative or advanced nuclear 

designs and are adopted for coping with critical safety functions for removing the 

decay heat from the core after a reactor scram. For generation III+ and VI reactor 

designs, the following passive safety systems have major function for the core 

decay heat removal and reactor containment (IAEA, 2009). 

- Pre-pressurized core flooding tanks (accumulators); 

- Elevated tank natural circulation loops (core make-up tanks); 

- Gravity drain tanks; 

- Passively cooled steam generator natural circulation; 

- Passive residual heat removal heat exchangers; 

- Passively cooled core isolation condensers; and 

- Sump natural circulation. 

There are many published papers and information on these different types of 

passive safety systems (IWGATWCR, 1989; IAEA, 2009), therefore they will not 

be detailed in this literature survey. 

2.2.3 Passive cooling 

A passive cooling system uses natural processes for heating or cooling to attain 

internal equilibrium and energy flows by natural means such as radiation, 

conduction or convection without the use of mechanical or electrical device 

(Kamal, 2012). However there is a very important issue with the driving force 

depending on whether the flow is sustained by a density difference in the fluid 

(natural circulation) or by a pump (forced convection). If the system is 

represented by a loop, the interior balanced conditions permit fluid to flow freely 

in the system as natural circulation.  

2.3 Natural circulation loops 

2.3.1 Introduction 

A natural circulation loop is also called a loop thermosyphon. It is a thermo-fluid 

design that works with temperature induced density gradients to create the natural 

circulation of the working fluid in the system. The thermosyphon loop operates as 

the natural convection of the liquid when heat added to the liquid; it gives rise to a 

temperature difference from one side of the loop to the other where the warmer 

fluid is less dense and thus more buoyant than the cooler fluid on the other side of 

the loop (Ruppersburg & Dobson, 2007). With the assist of gravity, the liquid will 

move from the denser section (the condenser section) to the less dense section (the 
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evaporator section). Here the liquid will be heated and pushed again toward the 

condenser. This back and forth phenomenon will allow the fluid to circulate in the 

loop without the help of any mechanical device. 

Natural circulation loops have an extensive range of applications in chemical 

process industry (Arneth, 2001; Chexal & Bergles, 1986), large scale nuclear 

reactors and medium-scale chemical reactors (Sinha & Kakodkar, 2006; 

Sutharshan, 2011 and Haide et al., 2002), solar water heaters (Cheng, et al., 

1982), waste heat recovery (Yilmaz, 1991), closed loop pulsating heat pipes 

(Dobson & Harms, 1999; Sardeshpande & Ranade, 2013), electronics industry 

(Khodabandeh, 2002), and in the nuclear industry (Hsu, 1988; IAEA, 2000; Sha, 

2004). 

2.3.2 Thermosyphon configurations 

Thermosyphon configurations are usually classified into closed loop and open 

loop (Greif, 1988). The open loop has one or more heating or cooling legs 

drawing fluid from one thermal reservoir to a second reservoir while closed loop 

continuously circulates the fluid through a closed path with periodic heating or 

cooling sections (Gebhart, et al., 1988; Greif, 1988; Torrance, 1979). The 

majority of the literature focused on how to create thermal balance between the 

heating and cooling sections while ensuring that the net heat addition is balanced 

by the heat removal (Greif, 1988). 

Many geometric configurations of open and closed loop thermosyphon have been 

studied; however there are two most common configurations: toroidal and 

rectangular loops (Bau & Torrance, 1981; Damerell & Schoenhals, 1979; 

Creveling, et al., 1975; Nayak, et al., 1995). A toroidal loop that is symmetrically 

heated from below and cooled from above has been found to be unstable at some 

heating rates (Greif, et al., 1979), although the stability was found to improve 

when the toroid was rotated such that the heating was not symmetric (Damerell & 

Schoenhals, 1979). Natural circulation loops, in so far as they relate to reactor 

core heat removal systems, may be termed integrated, separated, or heat pipe 

(Dobson, 2006; Dobson, 2015; Bhattacharyya, 2012). A natural circulation system 

may be said to be integrated when the circulation takes place entirely within a 

single containment vessel. For example, the hot reactor core coolant flows upward 

inside riser in a riser and downward on the outside, where it cooled by the 

secondary flow through the heat exchanger positioned between the riser and the 

reactor vessel; as shown schematically by in Figure 2.3 
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A relatively large amount of published literature is available relating to a 

rectangular loop thermosyphons with the lower horizontal portion heated and the 

upper horizontal portion cooled (Basaran & Kucuka, 2003; Durig & Shadday, 

1986; Bieliński & Mikielewicz, 2011). This configuration is significant in the 

emergency cooling of many pressurised water reactors but the flow is prone to 

bifurcation. There are also stability problems as the flow in the thermosyphon 

heated in this way has an equal chance of flowing either clockwise or counter 

clockwise (Dobson, 1993; Knaai and Zvirin, 1993; Grief, 1998). This case will 

however not be considered here as this should be avoided by making sure that the 

heating and subsequent cooling portions are positioned in such a way so to ensure 

that the desired flow direction is guaranteed; by heating the lower portion of one 

vertical side and cooling the top portion of the other vertical side. 

Both single phase and two-phase natural circulation systems have been widely 

investigated and assumptions made (Dobson, 1993; Grief, 1988; Welander, 1967). 

Knaai and Zvirin (1990) show that the single phase loop theory may be extended 

to a two-phase loop by specifying suitable equations for the friction factor, two-

phase frictional multiplier, heat transfer coefficient and the void and mass 

fractions. Capturing the transient performance of a two-phase flow loop has 

shown to be more complex and requiring a large amount of differential equations 

(Dobson, 1993; Vincent & Kok, 1992). 

2.3.3 Two-phase flow simulation of a natural circulation loop 

The basic approach in theoretical simulations of the single and two-phase flow is 

to discretise the loop into a series of parallel one-dimensional axially symmetrical 

parallel control volumes, in which the two phases are treated as two separate 

fluids, and applying the equations of change (mass, momentum and energy) to 

each control volumes, thus resulting in six separate equations for each control 

Figure 2-3 Thermosyphon loops, integated (a), separated (b), closed (c), heat 

pipe type (d) respectively and a surface tension capillary structure or wicked 

heat pipe (e) (Dobson, 2015) 
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volume (Ruppersberg, 2008). These equations are then used with simplified 

assumptions to generate computational codes in different numerical computer 

programs that may sometimes be very complex; however, they can be used to 

simulate a wide range of geometrical configurations and a large variety of 

thermal-hydraulic problems (Manera, 2003). 

Simpler approaches are possible, the simplest being the homogeneous equilibrium 

model (HEM). In this model the two-phase flow is imagined as a single fluid in 

which both phases are well-mixed and cannot be distinguished from each other. 

The phases travel at the same velocity and have a density  , given in terms of the 

mass fraction x as       ⁄         ⁄     (Whalley, 1990; Guo et al., 2015). 

A homogeneous model is able to predict the occurrence of flashing. Once boiling 

commences a void fraction  , defined as the fraction of the volume of gas to the 

total volume of the control volume. It may also be defined as cross-sectional area 

of the vapour divided of the cross-sectional area of a uniformly flowing control 

volume (i.e. cross-sectional void fraction)          ⁄ . It is needed to predict 

the buoyancy term in two-phase flow (Thome, 2011). In this case the vapour and 

liquid are considered to flow as two separately flowing fluids, and is called a 

separated two-phase flow model, and assumes that both phases are in thermal 

equilibrium with each other at any cross-sectional position in the loop. In this case 

the density is given as                     and the void fraction as   

(  
  

  

   

 

  

  
)
  

 where     ⁄  is given by an experimentally determined 

correlation (Carey, 1992). 

Another one-dimensional approach is to use a drift flux model in the conservation 

of momentum equation together with a void fraction and two-phase frictional 

multiplier to simulate density wave oscillations (Guanghui et al.,2002). This 

model is relatively difficult to understand but the separated model appears to be 

more popular and, according to Manera (2003), the separated flow model is a 

good compromise taking into account complexity and its relative simplicity. 

2.3.4 Flow instabilities 

In most of the two-phase flow and heat transfer solutions equations of 

conservation of mass, momentum and energy are used. Although correct 

conservation equations can be determine, the degree of complexity for simulation 

and modelling, and the large amount of material required in simulation, restrict 

their use in practical applications (Yadigaroglu & Lahey, 1975). Thus it is 

necessary to use simplified forms of the conservation equations for problems of 

practical significance. Further, a review of the published literature will reveal that 

it is unlikely that any two author's solution procedures of any two ostensible 

similar problems are precisely the same. Rather than establish a systematic review 

and appraisal of all versions of the published mathematical formulations and 

solution procedures, and their mathematical formulations, the simulation model as 

used in this thesis is given in Chapter 3 (Mathematical modelling). It is essentially 
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a separated flow model and according to Manera (2003), includes sufficient 

complexity to fully take into account the essential physical phenomena 

encountered during both single and/or flashing conditions. Moreover because of 

the number of empirical correlations (the two-phase frictional multiplier and the 

void fraction correlations), cause-effect relationships can more readily be 

assessed. 

A comprehensive review of advancements over the last two decades in two-phase 

natural circulation loops has been undertaken by Bhattacharyya, et al. (2012). It is 

clear from this review that the single most important research activity revolves 

around what is termed "instabilities"; an important concept in so far as the 

perception of what constitutes the safe and reliable operation of nuclear reactors is 

concerned. In this regard instabilities are universally classified as either a static or 

a dynamic instability. A static instability being defined as when the operating 

conditions are changed by a small step from the original, it is not possible to 

regain a steady state close to the previous one. Vijayan and Nayak (2010) in their 

course notes on an introduction to instabilities in natural circulation systems 

further classify instabilities as depending on the: 

 Analysis method (or the governing equations of change used). Different sets of 

governing equations are used for different instabilities based on the prediction of 

instability threshold. Based on the governing equations Boure, et al. (1973) 

classified instabilities into four basic types including pure static and dynamic 

instabilities and compound static and dynamic instabilities. 

 

 Propagation method. Here two instabilities are considered, density waves 

instability, and acoustic instabilities (Vijayan & Nayak, 2010). Density wave 

instabilities occur when there is a time varying density around the loop due to the 

change in density (due to change in temperature and the consequent change in 

density due to thermal expansion of the liquid in single phase flows and/or in two-

phase flow the change in void fraction) around a loop (Yadigaroglu & Lahey, 

1975) . The frequency of these instabilities is proportional to the time it takes for a 

particle or small package of fluid to flow around the loop and wherein in its transit 

around the loop its density also changes with time and at different axial positions 

around the loop (Vijayan & Nayak, 2010). Acoustic instability, on the other hand, 

has been suggested as being a visually observable movement of a small package 

of fluid that is due to perturbations moving at the speed of sound in the fluid 

(Nayak & Vijayan, 2008). For example, consider a 10 m circumferential loop; a 

density wave travelling at 5 m/s will have a time period T = 10 m / 2 m/s = 5 s or 

0.2 Hz. On the other hand, changes in flow rate as manifested by the rate of 

change of pressure difference across a flow meter are said to be acoustic 

instabilities if their time period is in the order of 10 m/ 1000 m/s = 0.0ls or 100 

Hz. This is assuming that the average speed of sound in the fluid as being 

somewhere that of water and air of about 1500 m/s and 350 m/s, respectively or 

(1500+ 350)/2   1000 m/s (Mills & Ganesan, 2009). 
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 Nature and or number of unstable zones. Depending on operating 

conditions and natural frequency of the fluid supporting pipes and 

structures the oscillations may be periodic or chaotic. In the density wave 

in two-phase flow natural circulation, there are low and high power 

unstable zones (see Figure 2.4(a)) (Vijayan & Nayak, 2010).  Fukuda and 

Kobori (1979) found that gravitational pressure drop is a key factor for 

type I instability in the unheated section and frictional drop in type II. 

Generally if the stability map encloses a stable zone, then it has two 

unstable zones (Vijayan & Nayak, 2010). This stability map can be seen in 

Figure 2.4(b). 

 

 Loop geometry. For example, symmetrically heated and cooled loops tend to 

be unstable 

 Disturbances. Such as boiling inception, flashing, flow pattern transitions, 

laminar to turbulent transitions, slip-stick that is the friction factor tends to infinity 

as the velocity tends to zero; in accordance with the concept of static and dynamic 

friction between solids. 

Vijayan and Nayak (2010) found that it is convenient to consider the single-phase, 

boiling inception and two-phase natural circulation instabilities separately. The 

transition to two-phase flow passes through boiling inception, therefore the two-

phase natural circulation instabilities are observed right from boiling inception. 

Detectable fluctuation in particle speed in a natural circulation loop is said to be 

an acoustic instability and is thought to be caused by the resonance of pressure 

waves. Vijayan and Nayak (2010) observed acoustic oscillations during blowdown 

(pressure relieving) experiments with pressurized hot-water systems in subcooled 

Figure 2-4  (a) Typical low power and high power unstable zones for two-

phase natural circulation flow; (b) typical stability map for two-phase density 

wave instability (Vijayan & Nayak, 2010) 

(a) (b) 
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boiling, bulk boiling and film boiling. They characterised them by high 

frequencies of the order of 10–100 Hz related to the pressure wave propagation 

time. 

Vijayan and Nayak (2010) give an experimentally determined, stability map, as 

shown in Figure 2.4(a), for a ϕ9.1 diameter pipe as adapted from Vijayan and 

Nayak (2010) in Figure 2.5. Note that the pressure difference is across a flow 

meter and hence indicative of the volumetric flow rate in the loop. Note also that 

the heating method is by means of an electrical resistance heating element which 

at a given power is essentially a constant heat flux heating load. 

 

To develop a better appreciation of density or buoyancy driven flow, consider a 

simple small-diameter airlift water pump operating at different submergence h/L 

ratios, as shown in Figure 2.6. As the air flow rate increases so too does the water 

flow rate, and, in this case, at an air flow rate of about 5 m
3
/ hour the water flow 

reaches a maximum at the different submergence ratios. At this air flow rate, the 

flow pattern is essentially plug flow as depicted in Figure 2.6(a) and consists of 

relatively large bullet-shaped bubbles flowing at a relatively low frequency. As 

the bubbles rise, water is displaced upwards intermittently in pulses corresponding 

more-or-less to the flow rate of the bubbles. Up until this point, the flow is said to 

be buoyancy driven or gravity dominated. If the flow rate is measured using an 

electronic flow metering device and plotted graphically as a function of time, it is 

seen to flow in an oscillatory wave-like manner at a frequency of about 1 Hz; this 

region is thus also called the density wave (or type-I instability) region. As the air 

flow rate increases yet further the water flow rate decreases; in this operating 

region of the air-lift pump the flow is said to be friction dominated. 
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Figure 2-5 Qualitative representation of the pressure difference  P 

across the flow meter and the power supplied to the heating section as a 

function of time (adapted from Vijayan & Nayak, 2010) 

Time, t (s) 0.0  
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Referring back to Figure 2.4(a) and Figure 2.5, for example a wall heat flux 

driven flow as the heat flux is relatively slowly increased and the flow rate 

exhibits a single phase start-up transient. In this example the flow rate increases 

slowly up to a maximum before falling down and after a number of smaller 

oscillations settles down and increases proportional to the slowly increasing heat 

flux. As the temperature slowly increases in the heating section vapour bubbles 

start to form and the flow rate enters a single to two-phase transition (shown in 

Figure 2.4(a) and Figure 2.5 as the density wave region) but on further increase in 

power the amplitude of the oscillations tend to reduce and up to a certain power 

the flow is relatively stable with only small oscillations. However, at a certain 

higher power level the flow is again oscillatory, the flow tends to decrease but the 

amplitude of the oscillations increase dramatically; the frequency of the 

oscillations in this region are in the order of about 100 Hz which also corresponds 

with the natural frequency of sound waves of the fluid flow, hence they may be 

termed acoustic waves. On increasing the heat flux further the amplitude of the 

oscillations tend to decrease but the flow rate now increases again; this region is 

termed the stable two-phase flow region. The flow at these high heat fluxes tends 

to become separated with a thin liquid film around the inside periphery of the pipe 

and a relatively high speed vapour flowing in the core of the pipe. 

 

 

The pipe diameters of the loops that Vijayan and Nayak (2010) tested varied from 

6 to 40 mm. It has however been suggested that for larger diameter pipes, say 

from ϕ200 mm upwards, the two-phase flow and instability behaviour cannot be 

extrapolated. Very little published literature is available for larger diameter (> 70 

mm) tubes, especially with water and steam.  

(b) (a) 

Figure 2-6 Experimentally determined water flow rate dependence on air 

flow rate at different submergence ratios defined as h/L (a) for a simple 

waterair-lift pump; (b) volumetric characteristics(Stenning & Martin, 1968) 
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2.3.5 Flow pattern characterisation 

Flow patterns in small diameter pipes (that is if the Bond number    
          

   ⁄   is less than 40 or about 70 mm for water) are typically 

characterised in terms of so-called bubbly, plug (or slug), churn and annular flow 

patterns (Whaley, 1987) as shown in Figure 2.7 by way of sample photographs (a) 

and stylised sketches (b). For spherical bubbles Whalley (1987) derives an 

equation (by equating the buoyancy and drag forces acting on the bubble) for the 

terminal rising velocity, for low Reynolds numbers of less than one, as 

   
  

         

    
 Larger bubbles are however not spherical, nor do they obey 

Stokes' law; Whalley (1987) gives a chart a useful formulation (from Clift et al. 

1978) for the characterisation of bubble type flow in what he calls intermediate 

sized diameter pipes in terms of the Bond (or Eotvos) Bo, Reynolds Re and 

Morton M numbers, respectively (and as given in Figure 2.8) as 

             
   ⁄        (2.1) 

            ⁄         (2.2) 

  
   

        

  
           (2.3) 

Where in this case de is the equivalent diameter in m and is the diameter the 

bubble would have if it was spherical, and the surface tension σ is in N/m. The 

rising velocity of the bubble can therefore be found by 

  i) calculating the Bond number from equation 2.1, 

 ii) calculating the Morton  number from equation 2.3, 

iii) looking up the Reynolds number from figure 2.8, and then 

iv) the rising velocity can then be found from equation 3.4. 
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Figure 2-7 Two-phase flow patterns, (a) bubbly, (b) and (c) 

bubbly, small plugs and plug , (d) churn, (e) annular, wispy-

annular (Whaley, 1987) 
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Figure 2-8 Reynolds, Bond and Morton numbers 

for single rising bubbles (Whalley, 1987) 
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2.3.6 Pressure drop 

Pressure drop can be caused by resistance to flow, changes in elevation, density, 

flow area and flow direction (Kroger, 1998). In natural circulation systems it has a 

urge impact in their steady state, transient and stability performance (Vincent & 

Kok, 1992). 

Mills and Ganesan (2009) showed that the pressure drop very difficult due to 

uncertainty and complexity of the flow behaviour in two-phase flow. Much 

research has been done on this, with only partial success (Cioncolin & Thome, 

2017; Autee & Giri, 2016; Hernandez-perez, et al., 2010; Hewitt, 1982). 

Hernandez-perez et al. (2010) found that the pressure drop in vertical two-phase 

flow is less (frictional) as a function of pipe diameter mainly for gas at velocities 

higher than 2 m/s. Autee and Giri (2016) tried to measure and predict the pressure 

drop across tubes and bends, important for the enhancement of the performance 

and safety of the heat exchanger and flow transmitting devices. Their research 

revealed that the predicted values of pressure drop using a comparative study of 

some of the available two-phase flow correlations may differ by large amounts. 

Accurate prediction is empirical and limited in range of applicability (Mills & 

Ganesan, 2009). For simplicity, the calculation of the pressure drop is based on 

the homogeneous model of two-phase flow that ignores detail of the flow patterns. 

The pressure gradient in a straight tube can be found as shown in equation 2.4 

  

  
 (

  

  
)
 

 (
  

  
)
 

 (
  

  
)
 

      (2.4) 

Where subscripts F, G and M refer to pressure gradient due to wall friction, 

gravity and momentum changes, respectively and they are calculated as shown in 

equations 2.5, 2.9 and 2.10 respectively. The homogeneous model of two-phase 

flow assumes that the velocity of each phase is the same. 

(
  

  
)
 

  
 

 

  

  
        (2.5) 

Where f is the two-phase flow frictional factor, G the mass velocities and D the 

pipe diameter. The simplest method for evaluating the two-phase flow frictional 

factor is to assume that pure liquid is flowing at the mixture mass velocity that is 

at a Reynolds number        ⁄ . This friction factor will generally be too low 

at qualities below about 70%, and too high at qualities above 70% and the limiting 

value for pure vapour x = 1 (Mills & Ganesan, 2009). To overcome this, the 

simple reference viscosity given by equation 2.6 should be used (Mills & 

Ganesan, 2009). 

 

  
 

 

  
 

   

  
         (2.6) 
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Which mass-weights the inverse of viscosity and has the limits 

              

              

The mass velocity is calculated from 

             
 ̇ 

  
      

 ̇ 

  
      (2.7) 

where Ax is the tube-cross section 

The mass flow rates in terms of mass velocities and quality are calculated by way 

of equation 2.8 (Mills & Ganesan, 2009). 

 ̇          ̇                (2.8) 

The pressure gradient due to gravity is calculated from 

(
  

  
)
 

                (2.9) 

Where θ is the angle measured from the horizontal. 

The pressure gradient due to momentum change is found from 

(
  

  
)
 

  
 

  
(
  

 
)        (2.10) 

Since G is constant along the tube 

(
  

  
)
 

     

  
(

 

 
)  (

 

 
)
   

  
      (2.11) 

Literature relating to purely experimental observations and demonstrations are 

also considered in Chapter 5. Welander (1966) considered the fluid to be driven 

by the pressure difference and a buoyancy force, and is retarded by a frictional 

force. The assumptions made included. 

 The Boussinesq approximation, 

 The tangential friction force on the fluid is proportional to the average 

 flow rate    ̇   ⁄ , and 

 Quazi-equilibrium one-dimensional flow that is the speed of sound in the 

 fluid is much greater than the particle velocity of the fluid. 
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2.3.7 Homogeneous flow model for two-phase flow 

In order to apply the homogeneous flow model, it is assumed that the two-phase 

flow is replaced by a special single-phase incompressible fluid in which both 

phases are well mixed and are travelling at the same velocities (vg = v   = v) and 

with a homogeneous density h and void fraction h (Faghri & Zhang, 2006). 

Figure 2.9 presents a 1-dimensional control volume of a fluid flowing at a steady 

state in a pipe with the conservation of mass, momentum and energy applied 

(Dobson, 2015). 

 

 

The density and void fraction for the homogeneous flow model are given by 

equation 2.12 and 2.13 respectively (Carey, 1992). 

                       (2.12) 

   
 

  
   

 

  

  

  

  

        (2.13) 

Note that by substituting for h the homogeneous density can also be given as 

   
 

 

  
 

   

  

         (2.14) 

This allows a homogeneous viscosity to be (arbitrarily) defined as in equation 2.6. 

 
 

 

 

 



   

   

  ( v)
1
 

  ( v)
2
 

P
1
 

P
2
 

 

m

 

   = Uz (T
hot 
 T

cold
) 

  ( h)
1
 

 
  = 0 

 

 

0 

1 

0

  

g 

0 

 

Figure 2-9 One-dimensional control volume for a fluid 

flowing in a pipe (Dobson, 2015) 
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All other parameters are determined as shown in Chapter 3 of this thesis. 

2.3.8 Separated flow model for two-phase flow 

In the separated flow model, gas and liquid flow are considered separately as 

shown in Figure 2.10 (Dobson, 2015). Applying the conservation of momentum to 

the gas control volume, the pressure difference can be expressed as being made up 

of an acceleration, a gravitational and a frictional pressure difference as given in 

equation 2.15 (Carey, 1992). 

    
 ̇ 

   [
  

   
 

      

       
]  [  ̅        ̅ ]        

             (     ̅ 
   

 

 

℘ 

 
)   

         (2.15) 

Where 25.0
o Re078.0C f  and knowing the mass flow rate  ̇ and the mass 

fraction x the various terms in equations 2.15 may be determined provided that 

there is a correlation for the void fraction  and the frictional pressure difference 

multiplier
2
o   (Carey, 1992). 

 

Figure 2-10 One-dimensional separated flow conservation of 

momentum control volumes for two-phase fluid flow in a pipe 

(Dobson, 2015) 

Stellenbosch University  https://scholar.sun.ac.za



 

2-19 

 

2.4 Mathematical modelling 

Mathematical modelling of the natural circulation loop is an important tool to 

predict the dynamic of the flow behaviour and heat transfer in both single phase 

and two-phase flow thermosyphon loops (Yilmaz, 1991; Guo et al., 2015). This is 

however a matter complicated by the fact that there are instabilities involved in 

the process and the dependence of heat transfer on the fluid velocity (Nayak et al., 

1995; Vijayan et al., 2013; Vijayan & Nayak, 2010). In the case of the two-phase 

flow, additional mathematical correlations such as the friction factor, the heat 

transfer coefficient, the void fraction and the two-phase multiplier are used to 

complete the mathematical model (Stephan & Abdelsalam, 1980; Dobson 2006). 

Two methods, namely lumped and sectorial, are considered for numerical 

simulation. In the lumped method the two-phase region is considered as a single 

body and a single correlation is used to analyse the forced convective boiling 

taking place, and the sectorial method divides the two-phase region into smaller 

regions characterized by definite flow patterns (Lee & Rhi, 2000). This requires 

more than one correlation related to each flow pattern and is even more 

complicated for the transition regions between the flow patterns. The lumped 

method is therefore the easier to program but cannot analyse the flow in as much 

detail as the sectorial method. 

2.4.1 Heat transfer correlations 

Prediction of the heat coefficient is still a difficult matter and to-date there exists 

no comprehensive theory allowing their application in natural convection boiling 

(Stephan & Abdelsalam, 1980). The issue of simultaneously determining the heat 

transfer coefficient on the cooling and heating liquid is ranked among inverse heat 

transfer problems (IHTP) (Beck et al., 1985). 

In order to establish correlations with wide application, different approaches were 

investigated. Stephan & Abdelsalam (1980) proposed a method of regression for 

natural convection boiling heat transfer. They found that one equation may valid 

for multiple purposes, but the accuracy would be less than if used individual 

correlations. 

Kew and Cornwell (1997) related their work to boiling small-diameter tubes as 

part of a study of compact two-phase heat exchangers. They showed that 

correlations for heat transfer coefficients predict reasonably well for large than 

small tubes. 

Chen et al. (1987) developed a correlation for annular flow condensation in 

vertical tubes based on analytical and theoretical results from the literature. This 

correlation uses the Nusselt number and takes the form of equation 2.16: 
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    [
(        

      
   

      
   

         )
  ⁄

 
     

   

     
         

      
   

]

  ⁄

     (2.16) 

where            and     represent the heat transfer area, Prandtl number and 

Reynolds’s numbers respectively and can the form of equations 2.17 to 2.20. 

   
       

       
     

     ⁄   
       

            (2.17) 

    
   

  ⁄

   
  ⁄          (2.18) 

    
       

  
         (2.19) 

    
  

  
         (2.20) 

The mathematical model generated for the circulation loop of this project uses 

different correlations for the heat transfer in both the single phase and the two-

phase flow modes. For single phase flow the Fanning friction factor is used, while 

in two-phase mode the Martenelli correlations for friction factor and void fraction 

are used (see section 3.1).  

For single phase natural circulation, free convection takes place and there is slow 

moving fluid near surfaces, but is rarely significant in turbulent flow. Thus, it is 

necessary to check and compensate for free convection only in laminar flow 

problems using the Collier correlation (Collier & Thome, 1994) to calculate the 

heat transfer coefficient, as given in equation 2.21. 

           
          (

  

   
)
    

                      (2.21) 

Where    is the Grashof number used to assess the impact of natural convection 

and    the Prandtl number calculated by equations 2.22 and 2.23 respectively 

(Mills & Ganesan, 2009). 

   
       

  
         (2.22) 

where L is the control volume length in the direction of the flow. 

   
    

  
         (2.23) 
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For single phase forced flow turbulent convection the Gnielinski correlation heat 

transfer coefficient is used as given by equation 2.24 (Mills & Ganesan, 2009). 

    
   ⁄              

         ⁄    ⁄      ⁄    
                     (2.24) 

In order to take into account the effects of natural convection present in natural 

circulation, a Rayleigh number correction factor is introduced (Yang et al., 2006). 

                       (2.25) 

Other correlations are based on hydrodynamic considerations. The heat transfer 

during the flow of a particular fluid in pipelines or tubes is determined by the 

nature of the flow, i.e. laminar, transitional or turbulent. Furthermore, the flow 

may be fully developed hydrodynamically and thermally or it may be developing 

in one form or another. Numerous analytical and numerical solutions have been 

found for the heat transfer coefficient in laminar flow, however in the region of 

transitional and turbulent flow, correlations based experimental measurements are 

employed to predict the heat transfer rates (Kroger, 1998). 

According to Kays (1955), the mean Nusselt number for hydrodynamically fully 

developed laminar flow in a round tube at a constant wall temperature is 

         
             ⁄

             ⁄             (2.26) 

Schlunder (1972) proposes the following correlation for these conditions: 

                     ⁄            (2.27) 

When the inlet velocity distribution to the tube is uniform, Kays (1955) 

recommends the following equation: 

         
            ⁄

                ⁄           (2.28) 

Under certain operating conditions the heat flux between the tube wall and the 

fluid may be constant. When this is the case and the velocity distribution is fully 

developed, the mean Nusselt number according to Shah (1975) is. 

                                          ⁄⁄   (2.29) 

                ⁄                    ⁄         (2.30) 
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3 MATHEMATICAL MODELLING 
 

This section describes the theoretical simulation of the NC loop as schematically 

represented in Figures 3.1 and 3.2; Figure 3.2 is essentially a schematic drawing 

showing the discretisation into discrete control volumes representing the 

arrangement of different parts of the natural circulation nuclear reactor cooling 

system loop that is given in Chapter 4 and shown in Figure 4.1. 
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Figure 3-1 Open loop natural circulation thermosyphon 
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3.1 Simplifying assumptions 

In this study several assumptions have to be made to simplify the mathematical 

model of the thermosyphon loop depicted in Figure 3.1 that can be discretised into 

a number of cylindrical-shaped control volumes as shown in Figure 3.2. Figure 

3.3 shows schematically the application of the conservation of mass, momentum 

and energy to the i
th

 control volume. The assumptions made are as follow. 

i) The cylindrically-shaped control volumes are one-dimensional; that is at 

any cross-section area along the axis of the flow  ̇  ∫       
 

 
    , 

where       (Shih, 2009). 

ii) The mass flow rate is independent of its position in the loop at any instant 

in time; this implies that at any instant in time that 
  ̇

  
   but 

  ̇

  
  . 

This condition is often called quasi-static or quasi-equilibrium (Mills & 

Ganesan, 2009). For this assumption to be valid the fluid particle velocity 

is much slower than the speed of sound in the fluid; this implies that at any 

instant in time the fluid, (both the liquid and vapour), is essentially 

incompressible and that as steam forms in the control volume liquid is 

displaced instantaneously out of the control volume (White, 2006). This 

displaced liquid, and its internal energy is then assumed to find itself 

instantaneous and directly into the upper horizontal pipe of the loop on top 

of liquid without affecting the energy of the control volumes between the 

control volume in which it was formed and the upper horizontal pipe 

(Cengel & Cimbala, 2014). 

iii) At any cross-section both the compressible and incompressible streams are 

in thermodynamic equilibrium with each other (Cengel & Boles, 2008). 

iv) A so-called separated two-phase flow model (Carey, 1992) may be used to 

represent the properties and behaviour of the control volumes containing 

both the liquid and steam. Such a two-phase model requires for a control 

volume that          ̇   ̇   ̇   ̇              ̇  

      , a mass fraction   
  

     
 

 ̇ 

 ̇   ̇ 
, and a density       

        where the void fraction α is defined by   
  

     
 

 ̇ 

 ̇   ̇ 
 

  

     
. The void fraction may also be expressed as   (  

  

  

   

 

  

  
)
  

. 

The ratio     ⁄  is termed slip factor and needs to be given as an 

experimentally correlated expression. One such correlation (Chisholm, 

1983) for the void fraction for a two-phase water system is given by the 

Lockart-Martinelli correlation as               where X, the so-

called Martinelli parameter, is given as     (
  

  
)
   

(
  

  
)
   

(
   

 
)
     

. 

Further, an experimentally determined correlation for a so-called frictional 

multiplier ϕ is needed (Thome, 2011). One such correlation, the Lockart-

Martinelli liquid only two-phase frictional multiplier is given as  
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  (  

  

 
 

 

  )           and in this case it implies that there is a 

liquid only velocity defined as     
 ̇   ̇ 

         
 and with a liquid only 

Reynolds number given as        (
 ̇   ̇ 

         
)     ⁄   ̇      ⁄  where 

     ℘  ⁄  , ℘ being the wetted perimeter and  ̇    ̇  ⁄  is the mass 

flux (Carey, 1992). These definitions allow the shear stress to be expressed 

in terms of a liquid-only shear stress     and a two-phase liquid-only 

frictional multiplier    
  as         

  where         
 ̇ 

    
 
 ( Chisholm, 

1967; Zhang et al., 2010) . Assuming a Blasius-type liquid-only coefficient 

of friction (for a smooth tube) as               
      for turbulent flow 

and            ⁄  for laminar flow, and to ensure non-division, by zero 

if        as, say         (Cengel & Cimbala, 2014). Note that taking 

the Reynolds number as 1181 for the transition from turbulent to laminar 

flow, and visa verse, ensures that the coefficient of friction      is a 

continuous of      , if deemed appropriate (Kerswell, 2005). Maybe one 

would want to build in some “extra complexity” into the simulation model 

by introducing some sort of hysteresis, assuming for example, that laminar 

flow becomes turbulent at Re = 2300 and that turbulent flow changes to 

laminar flow at Re = 1800 (William et al., 2005). 
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3.2 Conservation equations 

This section deals with the equation of change obtained by applying the general 

statements of the conservation of mass, momentum and energy to each control 

volume of the discretised system, in order to develop differential equations for 

theoretical algorithm computer simulation. 
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Figure 3-2 Discretisation schematic of the natural 

circulation theoretical thermosyphon loop 
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3.2.1 Conservation of mass 

In order to know how much mass is transferred to or from the expansion tank, the 

conservation of mass is applied to the control volume given in figure 3.2(a) 

  

  
  ̇    ̇                  ⁄        (3.1) 

 

Equation 3.1 can also be represented in an explicit form as 

  
       

      ̇    ̇     
       (3.2) 

 

where  

                (3.3) 

And 

 ̇                 (3.4) 

Since      ⁄             ⁄   

 

For the control volume (i) the density is determined knowing the volume of the 

control volume. 

  
       

      ⁄         (3.5) 

 

Equation 3.2 introduces the new mixture mass, therefore the new phase masses 

will be given function of the mass fraction x, and the new volume function of the 

void fraction α as follow (Whalley, 1987). 

              (3.6) 

                 (3.7) 

              (3.8) 

(b) 

Figure 3-3 Conservation of (a) mass, (b) momentum and (c) 

energy as applied to a representative control volume 

(Dobson, 2015) 
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                  (3.9) 

 

For a two-phase control volume and in terms of the mass fraction x and void 

fraction α, by 

 ̇   ̇   ̇    ̇        ̇      (3.10) 

                       (3.11) 

                       (3.12) 

 

3.2.2 Conservation of energy 
 

Applying the conservation of energy, in terms of the so-called thermal energy 

equation, as formally derived from the more commonly used total energy equation 

(Appendix B), to the control volume in Figure 3.2(c) to get equation 3.13. 
 

  
        ̇       ̇       ̇    ̇             

                                          (3.13) 

 

Equation 3.13 can be written explicitly as 

  
     [     

    ∑  ̇ 
 ]   

    ⁄       (3.14) 

where 

∑  ̇ 
  [

  ̇       ̇       ̇    ̇           

               
]
 

 

   (3.15) 

 

All thermodynamic properties will then be a represented function of internal 

energy   
     and the density   

    ;     
       

     . 

 

For the solution algorithm computer program given in Appendix C, the following 

are used in the selected procedure. 

 

  
       

    (
  

  
)
 

     ⁄

       (3.16) 

where 

  
     (

  

  
)
 

     ⁄

 
  

    
   

  
  

And 

  
       

    (
  

  
)
 

     ⁄

       (3.17) 

where   

(
  

  
)
 

     ⁄

 
  

    
   

  
  

 

Having now determined   
     using equation 3.14 with   

     as given by 

equation 3.16 then the remaining thermodynamic properties may be determined as 

function of   
     and   

    , that is   
      (  

       
    ) and   

     

 (  
       

    ), for a so-called sub-cooled or superheated single phase control 
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volume (see Figure 3.4). Using equations 3.14 and 3.16, the mass fraction for a 

two-phase liquid-vapour control volume is given as 

  
     (  

         
    ) (    

         
    )⁄      (3.18) 

 

where 

    
      (      

    )         
      (      

    ), and the volume or void fraction 

      ⁄  is given by 

  
     (    

    
    

    
    

    
    

  
    )

  

      (3.19) 

 

Where SF is the so-called slip factor, being the ratio of the vapour to liquid 

velocities     ⁄  and given by an experimentally determined correlation in terms 

of the vapour and liquid densities and dynamic viscosities and the mass fraction 

and surface tension (Premoli et al, 1970; Mills & Ganesan 2009). Another 

correlation of the void fraction is given in terms of the so-called Martinelli 

parameter   (Carey, 1992), as 

                        (3.20) 

 

where 

  (
  

  
)
   

(
  

  
)
   

(
   

 
)
     

      (3.21) 

 

Having now the mass and void fractions   and   the density and temperature 

at     , the remaining thermodynamic properties are then necessarily given by 

  
       

        
     (    

    )    
         (3.22) 

and 

  
      (      

    )        (3.23) 

 

Equation (3.13) contains even though neglected, the axial conduction in the fluid 

as an additional heat transfer rate terms and is given by (Mills et al, 2009) 

 ̇                 [
           

   
⁄ ]⁄     (3.24) 

and 

 ̇                  [
           

   
⁄ ]⁄     (3.25) 

where   is the smaller of      and    or    and     , respectively. 

 

The term                    is the reversible rate of work done on the fluid 

and is positive if the fluid in the control volume is being compressed and negative 

if the fluid in the control volume is expanding. The term          is the work 

done against friction. It is irreversible and thus necessarily always positive and 

thus always manifests itself as an increase in the temperature of the fluid. 
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For a separated flow model, the left hand term of equation 3.13 becomes 
 

  
     

 

  
            

 

  
                

 

  
(      

        )     
 

  
            (3.26) 

where               

 

The convective energy flow terms on the right hand side of equation 3.13 

becomes 

  ̇       ̇        ̇            ̇        ̇             ̇        

                                       ̇               (3.27) 

 

The reversible work term on the right hand side of equation 3.13 becomes 

                 (            )  
 (            )   

  

                                          ̇ [(     ⁄         ⁄  )
  

 (     ⁄  

                                                   ⁄  )
   

]  

                                          ̇     ⁄         ⁄          (3.28) 

where  

       ⁄         ⁄      
 

The irreversible work done on the fluid as a result of the friction term on the right 

hand side may be given as               
      where         

 

 
  (

 ̇

   
)
 

, 

for a cylindrical control volume    ℘            where        is the 

equivalent length of pipe of the same diameter and represents the minor losses or 

irreversible work done on the fluid as a result of there being inlets or contractions, 

Figure 3-4 Pressure-specific internal energy diagram 

showing a sub-cooled liquid 1, a two-phase vapour plus 

liquid 2 and a vapour 3 state point (Dobson, 2015) 
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bends, outlets or expansions, etc. Typical values for these losses, for an inlet, 

outlet and elbow may be taken as 18d, 30d and 52d, respectively (Batty & 

Folkman, 1983). The average velocity, to keep it simple, may be taken as 

  
 ̇

                 ⁄
  where              . The term    

  is 

experimentally-established and is termed the liquid only multiplier (Thome, 

2011). The friction coefficient       is, conveniently, given by      

         
       for turbulent flow and          ⁄   for laminar flow (Kerswell, 

2005). Note that if the simulation of the fluid movement is started from standstill 

the Reynolds number is infinitely large and hence so too is the friction coefficient 

and there will be no flow (Tsukahara et al., 2014). The so-called slip-stick theory 

describing this phenomenon is complex but for the sake of simplicity may be 

arbitrarily determined by assuming for instance that if      then, say,      

   (Cengel & Cimbala, 2014). Further, the transition flow (between laminar and 

turbulent) may be taken as        ; at this Reynolds number the laminar and 

turbulent coefficients of friction as given by the two equal preceding equations for 

coefficient of friction are equal to each other (William et al., 2005). Another facet 

of this transition as is that there is definite degree of hysteresis associated with 

transition (Mills & Ganesan, 2009). Texts normally quote that the transition takes 

place when the Reynolds number is between 1800 and 2300 (Cengel & Cimbala, 

2014). However, if the flow is laminar then as the velocity increases there is a 

rather sudden transition to turbulent flow at a Reynolds number closer to the 

upper limit (Cengel & Cimbala, 2014; Mills & Ganesan, 2009 ).. However, if the 

flow is turbulent and the velocity is decreased a similarly-sudden transition to 

laminar flow occurs but at a Reynolds number closer to the lower of the two limits 

(Mills & Ganesan, 2009; William et al., 2005). 

 

In the homogeneous two-phase flow, the frictional multiplier as given in equation 

3.29 is used to estimate the pressure drop.  

   
  

   

    

  

  
         (3.29) 

 

Assuming that         , the multiplier equation becomes (Whalley, 1990) 

   
  

  
  

⁄          (3.30) 

 

Considering the Martinelli-Nelson correlation for water (Brennen, 2005) 

   
             

         (3.31) 

 

Where   
  refers the Lockhart-Mertinelli correlation for two-phase multiplier for 

liquid phase friction and is given by (Carey, 1992) 

  
  (  

  

 
 

 

  )
   

       (3.32) 

 

where X is the Martinelli parameter and given by equation 3.21 
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3.2.3 Conservation of momentum 
 

Apply the conservation of momentum to the control volume depicted in Figure 

3.2(b) to get 
 

  
       ̇       ̇                                 (3.33) 

 

For a single phase flow model; or using    ̇   ⁄  and dividing throughout by 

the cross sectional area A, as 
 

  
(
  ̇

  
)  (

 ̇ 

  
)
    

   ̇                  

                                             (3.34) 

 

For a separated two-phase flow model, after dividing throughout by the cross 

sectional area A of the control volume and making use of the identities of 

equations 3.4 and 3.12, the momentum equation may be expressed in terms of the 

mass, mass flow rate, void fraction and mass fraction as 

 
 

  
[
  ̇

  
(

  

   
 

      

       
)]

 
 

 ̇ 

  
[(

  

    
 

      

        
)
  

 (
  

    
 

      

        
)
   

]  

                                                            [
      

   

 
]
 
 (3.35) 

where                    

 

In accordance with the concept of upwind differencing for the momentum flux 

term (the first term on the right hand side of equation 3.35         if   ̇    

and        if  ̇    and “out” always equals “in”, irrespective of the flow 

direction. 

 

The mass flow rate of the fluid in and around the loop, at any instance in time, is 

then given by summing all the control volumes around the loop from   to      

and noting that the pressure terms all cancel out. 
 

  
  ̇    ̇              (3.36) 

 

Equation 3.36 is also explicitly given by 

 ̇       ̇        ̇               ⁄     (3.37) 

 

where 

  
  ∑ [  

   
 ⁄ ((

  

   
)
 

 

 (
      

       
)
 

 

)]
    
        (3.38) 

 

 

  
     ∑ [  

      
 ⁄ ((

  

   
)
 

    

 (
      

       
)
 

    

)]
    
      (3.39) 
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   ∑ [
 

  
((

  

    
 

      

        
)
  

 (
  

    
 

      

        
)
   

)]
 

    
     (3.40) 

 

  ∑                        
    
        (3.41) 

 

and 

  ∑        
 ℘             ⁄   

    
        (3.42) 

 

where         is the equivalent length of pipe of the same diameter and 

represents the minor losses or the irreversible work done on the fluid, as a result 

of there being inlets or contractions, bends, outlets or expansions etc.  

 

Having now determined the mass flow rate at any instant in time     , the 

control volume pressure may now be determine at the so-to-say new-new time 

     using equation 3.33 and re-arranged as 

 

              
 ̇ 

  
[(

  

    
 

      

        
)
    

 (
  

    
 

      

        
)
     

]   

                                         [
      

 ℘            

 
]
 
  

                  
 

  
[
  ̇

  
(

  

   
 

      

       
)]

 

     ⁄

     (3.43) 

 

3.3 Numerical simulation model 
 

An explicit numerical solution method is used to solve the set of time dependent 

temperature coupled partial differential equations constituting the theoretical 

simulation model of the thermosyphon loop of the project. Figure 3.2 shows a 

discretised model into a series of control volumes of the natural circulation loop 

and Figure 3.3 gives the applicable i
th

 control volume after applying the 

conservation equations described in section 3.2 and the assumptions stipulated in 

section 3.1. The solution algorithm in step-wise is shown in the flow chart in 

Figure 3.5 is detailed in Appendix C. The explicit scheme solution is used so that 

each equation has one unknown which is the function of calculated variables at 

the previous time step. Each equation is solved consecutively rather than 

simultaneously, as in the implicit scheme. However, this method has limitations 

on some parameters, such as the control volume length and the time step size in 

order to avoid numerical instability. For instance, the control volume and time 

step are set so that a particle traveling through the circulation loop does not travel 

through more than one control volume at any given time step. 

 

The initial conditions were set to correspond to the system in thermal equilibrium 

with the surroundings. As such the initial mass flow rate was taken as 0 g/s as 

there were no temperature difference induced density gradient. The expansion 

Stellenbosch University  https://scholar.sun.ac.za



 

3-12 

 

tank was exposed to the atmospheric pressure which for Stellenbosch is 

approximately 98 kPa. 

 

3.4 Property functions 
 

The property functions as used in the computer algorithm given in Appendix C 

and in the computer algorithm flow chart in Figure 3.5 are given in Appendix A. 

These properties are classified into three regions; the subcooled liquid region, the 

two-phase region and the superheated region. The property functions with respect 

to each region are as follow. 

Subcooled liquid region, that is             where x is defined as   
    

     
 

and α is given by   
  

     
 

      ,         ,           

Two-phase region, that is                 

       ,        ,           ,        ,          

Superheated region, that is             

        ,           

Sundry property functions 

      ,         

3.5 Solution procedure 

The solution procedure is given by a computer program written using QBasic 64 

and results were imported to Microsoft Excel to draw the graphs. 

The solution procedure proceeds is as follows: 

1. Define the geometry that is the physical dimensions of the loop and the 

number and length of the control volumes. 

2. Define constant and material properties. 

3. Define the problem-specific constants and stability criteria. 

4. Apply initial conditions of all thermo-physic parameters used. These 

include temperature, volume, density, pressure, mass, mass flow rate, 

mass fraction, void fraction and heat flow to each control volume. 

5. Estimate the new mass and new pressure using equations 3.16 and 3.17. 
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By Heat exchangers 
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Figure 3-5 Computer algorithm flow 

chart 
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6. Calculate the total heat which is evaluated by combining the heat losses 

to the environment, the heat removed by heat exchanger, the change in 

internal energy through convection, the reversible and irreversible work 

and the internal energy. 

7. Estimate the new mass flow rate using equation 3.10. 

8. Compute the new temperature for each control volume using equation 

3.22. 

9. Calculate the new density, new mass fraction and new void fraction for 

the mixture using the new temperature. 

10. Estimate the new internal energy with equation 3.18. 

11. Compute the two-phase multiplier using defined correlations. 

12. Evaluate the new heat loss through each control volume of the condenser. 

13. Calculate the heat transfer rate per control volume. 

14. Calculate all the variables of the momentum equation given in equation 

3.35. These terms include the sum of momentum terms, the sum of 

momentum flux terms and the sum of friction terms. 

15. Calculate the pressure drop and use it to find the new pressures for the 

control volumes, the interface pressure and the new tank pressure. 

16. Calculate the saturation temperature given as function of new pressure. 

17. Use the mass conservation equation to compute the amount of mass 

transferred to or from the expansion tank. 

18. Calculate the sum of heat added or removed to or from the loop. 

19. Record the output data to text file. 

20. Steps 4 to 19 are repeated until final result is obtained. 
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4 EXPERIMENTAL SETUP 
 

This chapter presents the re-commissioning of the Sittmann’s (2010) experimental 

loop and the re-instrumentation of the loop. It also includes the experimental 

procedures and operating instructions. 

 

4.1 Thermosyphon loop characteristics 
 

 

Figure 4.1 shows the diagrammatic representation of the RCCS thermosyphon 

loop designed and constructed by Sittmann (2010) from 35 mm OD, 32 mm ID 

copper tubes and is 8 m wide and 7 m height. Copper is used due to its high 

thermal conductivity thereby making its thermal resistance very small compared 

with the inside and outside heat transfer coefficient and can therefore be 

Figure 4-1 Experimental thermosyphon loop 

diagrammatic representation 
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neglected. Four transparent polycarbonate sight glasses are incorporated in the 

loop positioned as shown in Figure 4.1 for viewing the working fluid (water) flow 

in the loop. To establish natural circulation one vertical leg of the loop is heated 

using four installed heating plate elements (H1, H2, H3 and H4) and the other leg 

is cooled with the cooling water passing through one or all of the seven pipe-in-

pipe heat exchangers (HE1, HE2, HE3, HE4, HE5, HE6 and HE7). The loop is 

connected to an expansion tank located 12 m height above the horizontal pipe at 

the bottom of the loop and is located on the roof of the building.  

4.2 Experimental setup 
 

The experimental setup (as shown in Figures 4.1 and 4.2) was used to measure 

temperatures of heating plates, cooling water and working fluid, and mass flow 

rate of both the working fluid and cooling water in order to validate with the 

theoretically calculated values. This section will give details about the 

experimental setup and procedures followed to obtain results. 

 

 

Figure 4-2 Experimental setup in laboratory (Sittmann, 2010) 
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4.3 Loop re-commissioning and instrumentation 
 

The loop not having been used these past eight years needed to be re-

commissioned. New instruments were installed including two different 

differential pressure transducers in order to better evaluate the mass flow rate, as 

well as one static pressure transducer. Damaged thermocouples were replaced and 

all the thermocouples were recalibrated. 

Before starting the loop was emptied and refilled five times in order to clean the 

inside and to check for leaks. Two K-type thermocouples were found on the two 

top corners (TL and TR) of the loop. Two other K-type thermocouples were then 

installed in the two bottom corners (BL and BR). These four thermocouples used 

to measure the working fluid’s temperature and eight more of the same type (K-

type) used to measure the cooling water’s temperatures were calibrated against a 

calibrated (Rapid Instrumentation cc certificate number RAP38810, 26 April 

2017) Platinum Resistance Thermometer (PRT), as shown in appendix D. Eleven 

high temperature cladded K-type thermocouples used to measure the temperature 

of the heating plate elements were also calibrated. 

The mass flow rate was measured using an orifice plate and two calibrated  

differential pressure transducers (see Appendix D); a Hottinger Baldwin 

Messtechnik type PD1 (HBM-PD1) No 12068 with a full scale differential 

pressure of 0.1 bar and an allowable nominal operating pressure of 50 bars, and a 

Deltabar M Endress & Hauser (E&H) IP66/IP67 PMD75 model pressure 

transducer No S/N A806930109D and the pressure in the loop was measured 

using a calibrated Deltabar E&H IP66/IP67 PMC7model static pressure 

transducer No S/N A808780109C. The pressure transducers were calibrated using 

a van Essen BETZ type 5000 having a measuring range of -10 to 5000 Pa (gauge 

pressure) and an accuracy of ± 0.2 Pa.  

 

The thermocouples were directly connected to a 34970A Agilent data acquisition, 

serial number MY44045582 while the pressure transducers for the mass flow rate 

and pressure measuring were connected to the same data logger, but through the 

24V/1A DC amplifiers. The data logger had two cards of 20 channels each and 

S/N 34901A and S/N 34901B. Thermocouples were arranged in the channels of 

the cards for the entire period of the experiments. The data logger was set to 

collect data every 10 ms intervals, but recorded an averaged value every 1.445 s. 

4.4 Experimental procedure 
 

The first step was to fill the loop with working fluid from the expansion tank until 

water escape via the air purge valve on top of the loop. This is very important as if 

the air is not removed it may influence the mass flow rate or collect as an 

insulating layer on the condenser walls thereby affecting the convective heat 

transfer coefficient and consequently also the heat transfer rate. Air in solution 
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was released by boiling the water, in the loop, a number of times until no more air 

escaped from the purge valve. 

 

Before each experimental test run air purging was initiated as explained in the 

previous paragraph and all connections were water tight. The water level in the 

expansion tank was checked, the room temperature and air pressure were 

measured, the cooling water turned on and its mass flow rate determined using a 

measuring cylinder and stopwatch, and the power switched on. (Detailed 

experimental procedures are given in Appendix E.) The electrical heating element 

voltage was regulated manually at the power distribution box. 

 

Measurements were taken as function of time at power input level of 30%, 50%, 

70% and 100% of the full power of 9.4 kW. A typical test run is shown by way of 

figure 5.1. Similar tests were done at three to four days intervals, allowing the 

working fluid to cool down, and attained thermal equilibrium with its 

surroundings. 
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5 RESULTS 
 

 

Results achieved for a number of test-run data sets with the experimental setup 

given in Chapter 4 are presented in this Chapter. The theoretical results generated 

by the mathematical model described in Chapter 3 are also given. The theoretical 

and experimental results are then compared. 

5.1 Experimental results 
 

Ten test-runs of at least 4 hours each were completed with averaged data recorded 

every 1.445 seconds. This delivered a vast number of information (data) to more 

accurately represent the results. This section shows the experimental results for 

both the single and two-phase flow modes of the loop. 

5.1.1 Single phase operating mode test 

 

Five test-runs named test-run 1, test-run 1a, test-run 1b, test-run 2 and test-run 2a 

were conducted for the single phase operating mode in which test-run 1a was a 

repeat of test-run 1 and test-run 2a a repeat of test-run 2. Test-run 1b results are 

shown in Appendix D. During these tests all four heating elements (H1, H2, H3 

and H4) and all seven pipe-in-pipe heat exchangers (HE1, HE2, HE3, HE4, HE5, 

HE6 and HE7) were operational. These test-runs were operated in single phase 

mode and up to 100 per cent of the available input power of 9.4 kW was used. 

Boiling did not occur as all the cooling water heat exchangers were operated. 

 

Results for the single phase operating mode are presented in this section. Figures 

5.1 and 5.2 present the results for test-run 1 and test-run 2 while Figures 5.3 and 

5.4 give comparisons between these tests and their repeated tests. In test-run 1 

electrical heating power was increased in steps of 30 to 100 per cent of full power 

as shown in table 5-1. In test-run 2 the full power was used from start-up to shut 

down and with a cooling water mass flow rate greater than in test-run 1. 

Repeatability tests are named test-run 1a and test-run 2a representing the repeated 

test for test-run 1 and test-run 2. 

 

Test-run 1 

 

The experimental results for test-run 1 with the heating plate electrical input 

powers as a function of time as shown in table 5-1 are reflected in figure 5.1. They 

show a single phase operating mode with low cooling water mass flow rate per 

heat exchanger of 0.031 g/s, 0.03 g/s, 0.031 g/s, 0.032 g/s, 0.031 g/s, 0.032 g/s and 

0.03 g/s for HE1, HE2, HE3, HE4, HE5, HE6 and HE7 respectively. 
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Table 5-1 Test-run 1 electrical power input 

Power 

(%) 

Time 

(s) 

Heating 

plate 1 

(W) 

Heating 

plate 2 

(W) 

Heating 

plate 3 

(W) 

Heating 

plate 4 

(W) 

Total 

(W) 

30 0 439.18 439.18 229.58 114.63 1222.57 

50 1210 1148.18 1064.70 1064.70 449.54 3727.12 

70 8300 2041.20 2041.20 2022.34 960.26 7065.50 

100 11520 2790.80 2704.70 2704.70 1173.06 9373.26 

0 14210 0.00 0.00 0.00 0.00 0.00 

 

Figure 5.1(a) shows the heating plate  temperatures; while Figure 5.1(b) shows the 

temperature of the working fluid measured with the thermocouples installed at the 

four corners of the loop, TTL, TTR, TBL and TBR. Figure 5.1(c) shows the pressure 

difference            from the water level in the expansion tank to a specific 

point in the loop and Figure 5.1(d) shows the electrical power input levels. 

Figures 5.1(e) and 5.1(f) show the working fluid mass flow rate as function of 

time measured using both the HBM and E&H pressure sensors. 

 

Figure 5.1(b) shows that the four measured temperatures of working fluid stayed 

almost constant for the first 900 s with a very small average temperature increase 

of about 0.41°C. This indicates that with 30% of the full electrical power input 

into the system, there is little effect on the working fluid temperatures; instead the 

fact that little power is input in the system allows thermal equilibrium in the loop. 

From 1210 s, the input power was increased to 50 % of full power (i.e. 3.732 

kW). The working fluid temperatures then increased sharply with the temperature 

at the top of the heated (evaporator) section TTL reaching the highest point of 87.4 

°C at 5400 s. At the top section of the condenser (cooled section) the temperature 

TTR was slightly less (86.5 °C) due to heat loss through natural convection 

between the copper pipe of the loop and the air inside the laboratory. At this 

instant the temperature at the bottom loop’s corner TBL reached a peak of 72.27 

°C. Although the cooling water mass flow rate was extremely small per heat 

exchanger, the temperature difference over the length of the cooled section, given 

by              (i.e 14.23 °C), removed a significant amount of heat from 

the system ( ̇     ̇              ), i.e. 12.93 W. After 7634 s all four 

working fluid measured temperatures decreased for about 600 s and when the 

power was increased to 70%, they increased slightly with TTL reaching the highest 

peak of 90.83 °C while TTL reached the lowest peak at 76.6 °C after 10042 s. 

When the full power was used, all temperatures increased to their highest peak of 

91.72 °C, 90.67 °C, 78.02 °C and 77.2 °C respectively for TTL, TTR, TBL, and TBR. 

At 14210 s the power was switched off and the working fluid was allowed to cool 

down for 3281 seconds before stopping the test run. Boiling could not occur as the 

highest peak temperature of the working fluid measured at the top left  of the 

evaporator section (i.e. 91.72 °C) was significantly less than the saturation 
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temperature (i.e. 107 °C) corresponding to the local pressure of 102.3 kPa at 

ambient conditions. 

 

 
 

 

Figure 5.1(c) shows the static pressure difference as a function of time. At the 

atmospheric pressure of 102.3 kPa  (on the day of test-run 1) the pressure at the 

bottom of the loop (               ) was at 200.4 kPa.  

 

P
o
w

er
 i

n
p

u
t 
𝑄
𝑖𝑛

 (
k

W
) 

Time, t (s) 
(d) (c) 

(a) (b) 

(f) (e) 

M
as

s 
fl

o
w

 r
at

e,
 m

 (
g
/s

) 

Time, t (s) 

Figure 5-1 Experimental single phase operating mode with power gradually 

input (a) heating plate temperatures, (b) working fluid temperatures, (c) 

system pressure difference, (d) electrical power input (e) working fluid 

mass flow rate measured with HBM pressure sensor and (f) working fluid 

mass flow rate measured using E&H pressure sensor. 
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Figures 5.1(e) and (f) show the working fluid mass flow rate as measured by the 

pressure drop over the orifice plate with the HBM and E&H pressure sensors 

respectively. The two sensors gave similar results, thereby adding confidence in 

the validity of the mass flow rate measurement. The flow rate started from rest 

where the working fluid was stationary or at 0 (zero) g/s. As more heat was 

supplied to the system, it increased the driving force between the lighter (heated) 

and denser (cooled) fluid therefore increasing the mass flow rate after 150 s. As 

the temperature continued rising, the mass flow rate increased even further to 

reach a peak of 17.16 g/s for the HBM and 17.56 g/s for the E&H sensors at about 

5869 s. After reaching the peak, both mass flow rates showed a slight decrease 

before they showed a characteristic small amplitude oscillatory behaviour. 

 

 

Test-run 1a 

 

Table 5-2 Test-run 1a electrical power input 

Power 

(%) 

Time 

(s) 

Heating 

plate 1 

(W) 

Heating 

plate 2 

(W) 

Heating 

plate 3 

(W) 

Heating 

plate 4 

(W) 

Total 

(W) 

30 0 439.18 439.18 229.60 114.62 1222.58 

50 1210 1148.18 1064.68 1064.68 449.55 3727.09 

70 8300 2041.19 2041.19 2022.34 960.26 7065.48 

100 11520 2790.79 2704.72 2704.72 1173.05 9373.28 

0 14210 0.00 0.00 0.00 0.00 0.00 

 

 
 

Test-run 1a was run four days after test-run 1 with the same water cooling rate 

and electrical power time steps. Figure 5.2 shows a comparison of the working 

fluid mass flow rate as a function of time between test-run 1 and test-run 1a with 

both the HDM and E&H pressure sensors. They profiles are similar however a 

small deviation is observed in both readings with the HBM reaching a new peak 

Figure 5-2 Repeated test (single phase) at low cooling water  mass flow 

rate with electrical power gradually input measured with (a) HBM 

pressure sensor and  (b) E&H pressure sensor 
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of 17.13 g/s and the E&H a peak of 17.50 g/s (at about the same time as test-run 1 

or 5869 s) due to the change in power ratings as shown in table 5.2 and the error 

(random and systematic) that may have occurred during the test. A summary of 

the error assessment presented in Appendix D is given in Table 5-3. This 

summary is based on systematic error on the reading of the mass flow rate, 

pressure and temperature. 

 

Table 5-3 error assessment of the flow parameters 

Flow parameter Error (%) Actual value 

E&H differential 

pressure 

 

0.2 
                 

    

   
             

E&H static pressure 

 

 

0.2 
                 

    

   
             

Cooling water 

temperature 

 

0.35 
                 

    

   
           

Heating plate  

temperature 

 

0.18 
                 

    

   
           

Working fluid 

temperature 

 

0.45 
                 

    

   
           

 

 

Test-run 2 

 

Test-run 2, as shown in Figure 5.3, is essentially a repetition of test-run 1 (and 

test-run 1a) but with the full power from start-up to switch off at 14000 s and a 

relatively higher cooling mass flow rate. Figure 5.3(a) gives the temperatures of 

the heating plates as a function of time. Figure 5.3(b) presents the working fluid’s 

temperatures measured at the four designated points of the loop. Figure 5.3(c) 

shows the pressure difference            in the loop. 

 

The working fluid temperatures measured, as in test-run 1 are shown in Figure 

5.3(b) where all four temperatures increased slightly from start up. After t = 1226 

s, TTL and TTR showed a bigger increase than TBR and TBL as more heat was added. 

At the bottom of the loop, water (cold) coming from the tank mixed with the 

warm water inside the loop affecting TBR. This also affected TBL as water from the 

tank at higher pressure than the pressure inside the loop forced his way in, thus 

increasing difference in temperature (           ). The temperature 

difference was also greater than in test-run 1 because of a higher cooling water 

mass flow rate of 0.081 g/s, 0.08 g/s, 0.083 g/s, 0.084 g/s, 0.082 g/s 0.081 g/s and 

0.083 g/s for HE1, HE2, HE3, HE4, HE5, HE6 and HE7 respectively. With this 
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cooling rate more heat was removed from the system than in test-run 1, as it can 

be seen in the Figure 5.3(b) with the highest peak temperature of  74.61 °C 

reached for TTL  less than in test-run 1. 

 

The pressure difference profile in Figure 5.3(c) is similar to that shown for test 

run 1 in Figure 5.1(c). It however shows a dynamic or erratic pressure difference 

profile with more oscillations due to the sudden start up to full power. The driving 

force (or the difference in hydrostatic pressure between the left hand side and the 

right hand side of the loop) is more pronounced and the higher the rate of which 

the left hand side is heated; the higher the rate the higher the peak of the start-up 

transient 

 
 

Figure 5-3 Experimental single phase operating mode at full power from 

start-up to switch-off (a) plate temperatures, (b) working fluid 

temperatures, (c) system pressure difference ΔP and (d) mass flow rate 

read with HBM and (e) mass flow rate read with E&H for test-run 2 

Time, t (s) 

M
as

s 
fl

o
w

 r
at

e,
 𝑚

 (
g
/s

) 

Time, t (s) 

Δ
𝑃

 
𝜌
𝑔
 
𝑡𝑎
𝑛
𝑘

 (
k
P

a)
 

Time, t (s) 

T
em

p
er

at
u

re
 (

°C
) 

Time, t (s) 

T
em

p
er

at
u

re
 (

°C
) 

𝑚̇  

(a) (b) 

(c) 

(e) 

T
TR

 
T

H1
 

T
H2

 

T
H3

 
T

H4
 

T
TL

 

T
BL

 T
BR

 

E&H HBM 

M
as

s 
fl

o
w

 r
at

e,
 𝑚

 (
g
/s

) 

Time, t (s) 

(d) 

𝑚̇  

Stellenbosch University  https://scholar.sun.ac.za



 

5-7 

 

The heat input for Figure 5.1(d) varied from 0 to 9.4 kW over a time period of 

about 3.2 hours, whereas in Figure 5.3 the full power of 9.4 kW was immediately 

input at start-up. Both Figures converged to a more or less steady mass flow rate 

of 14 g/s after the 3.2 hours. Both figures exhibit a typical start-up transient in 

which the mass flow rate increases suddenly and then drops down and repeat the 

cycle until more or less steady state is maintained. The mass flow rate as 

presented in Figure 5.3(d) increased for 1735 s to reach a peak of 14.22 g/s and 

oscillated for about 3000 s reaching the highest peak of 15.98 s before it 

decreased to 12 g/s and increased again to continue with a steady mass flow rate 

of more or less 14 g/s while in Figure 5.3(e) the mass flow rate increased for 1255 

s to reach a peak of 15.26 g/s before it dropped to 11 g/s and increased again for 

about 900 s oscillating before stabilising at about 14 g/s.  

5.1.2 Single to two-phase experimental operating mode 

 

Single to two-phase operating mode tests were conducted and representable 

results for three tests (test-runs 3, 4 and 5) are given in Figures 5.4, 5.5 and 5.6 

respectively as well as a comparison between test-runs 3 and 3a given in Figure 

5.7 (test-run3b results are shown in Appendix D). Figures 5.4 and 5.5 show the 

temperature, pressure difference, power and mass flow rates for a low water 

cooling rate and a higher cooling rate. Figure 5.5 shows the single to two-phase 

operating mode at full power from start-up to switch off and with a relatively high 

cooling rate measured with the E&H pressure sensor. 

 

Test-run 3 

 

Results for test-run 3, as shown in Figure 5.4 shows that the heating plates’ 

electrical powers were input, as in test-run 1, in steps of 30 to 100 per cent of full 

power as given in Table 5-4. The table shows that after 18000 s, the electrical 

power was switched off. 

 

Table 5-4 Heating plate electrical power input for single to two-phase operating    

      mode for test-run 3 

Power 

(%) 

Time (s) Heating 

plate 1 

(W) 

Heating 

plate 2 

(W) 

Heating 

plate 3 

(W) 

Heating 

plate 4 

(W) 

Total 

(W) 

30 0   451.16   451.16 243.04 140.24 1285.60 

50 3180 1134.04 1080.00   1080.00 474.79 3768.83 

70 8025 2098.29 1984.89 2079.18 960.26 7122.62 

100 14904 2734.38 2734.38 2757.20 1173.06 9399.02 

0 18000       0.00       0.00       0.00       0.00      0.00 

 

Figure 5.4(a) shows four temperatures of the heating plates TH1, TH2, TH3 and TH4 

that were measured along the plates at different positions (see Figure 4.1). Figure 

5.4(b) shows temperatures (TTL, TTR, TBL and TBR) of the working fluid that was 

measured using thermocouples installed at the four corners of the loop as  

Stellenbosch University  https://scholar.sun.ac.za



 

5-8 

 

 

 

 

(e) 

Time, t (s) 

M
as

s 
fl

o
w

 r
at

e,
 𝑚

 (
g
/s

) 

(d) 

Time, t (s) 

P
o
w

er
 i

n
p
u
t 
𝑄
𝑖𝑛

 (
k

W
) 

Figure 5-4 Experimental single to two-phase operating mode with power 

gradually input (a) fin temperatures, (b) working fluid temperatures, (c) 

system pressure difference ΔP (d) electrical power input, (e) mass flow 

rate  𝒎̇ measured with E&H pressure sensor and (f) mass flow rate 𝒎̇ 

measured with HBM pressure sensor for test-run 3 
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explained in test-run 1. From Figures 5.4(a) and 5.4(b) it can be seen that the 

increase in the heating plates temperatures correspond with the increase in the 

working fluid temperatures and the increase in power levels as shown in Figure 

5.4(d). The temperatures in the top of the loop TTL and TTR are more or less the 

same at about 107 °C, whereas at the bottom of the loop both were more or less 

the same. The working fluid in top is boiling and both temperatures are about the 

same because the pressure is more or less constant. 

 

Figure 5.4(b) shows that the saturation point (107.45 °C) at the working pressure 

(131.53 kPa) in the top section of the loop was reached and thus boiling occurred 

in the top pipe of the circulation loop. This is the reason why the temperature 

profiles show an oscillatory behaviour with frequencies of amplitudes of up to 5 

°C for TTL and TTR. In the bottom section of the loop, no temperature reached the 

saturation point (120.24 °C with the working pressure at the bottom of the loop 

equal to 200.2 kPa) as heat was removed through the condenser, therefore boiling 

did not occur in that section. The thermocouple used to measure the temperature 

at the bottom the loop TBR gave a more chaotic oscillatory behaviour than the 

other thermocouples with amplitudes up to 40°C. This is due to the interaction 

(mixing) of the light warm water inside the loop and the dense (cold) water 

coming from the expansion tank as a result of the characteristic oscillatory 

behaviour of boiling-condensing in a natural circulation loop; TBL on the other 

was less erratic. 

 

Figures 5.4(e) and 5.4(f) show that boiling occurred at 70 per cent. This is 

interpreted by the oscillatory behaviour of both the working fluid temperature and 

mass flow rate profiles. After 14904 s, power was increased to 100 per cent of the 

available electrical power, however this had very little effect on the top section 

temperatures (TTL and TTR) already at maximum (saturation) in two-phase mode. 

Small increases in temperatures were observed at the bottom section (for TBL and 

TBR) that was still in the single phase. The two figures show that as more heat was 

added, the working fluid mass flow rate response exhibited the typical transient 

behaviour associated with natural circulation especially in the two-phase region 

where more oscillations were observed. The mass flow rate increased to reach a 

peak of 15.26 g/s after 1255 s from start-up, dropped to 11 g/s after about 7300 s 

before stabilised at about 14 g/s after 16740 s.  At 18000 s of the test, the power 

was switched off; the heating plates and the working fluid temperatures started 

decreasing until the test was stopped. 

 

Figure 5.4(c) shows the pressure difference             where the change in 

fluid density due to the rise in temperature of both the heating plates and the 

working fluid temperatures was causing either the drop or gain in the pressure 

inside the loop. The pressure profile of test-run 3 shows that the pressure dropped 

proportional to heat added with time to 0.54 kPa after 2142 s and stayed constant 

due to thermal equilibrium. When power was increased to 70% of full power and 

boiling occurred, the pressure difference profile affected by dynamic instabilities 

(Vijayan & Nayak, 2010), started oscillating with amplitudes of up to 4.5 kPa. 
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This behaviour continued for about 800 s after the power was switched off, the 

pressure gradient stabilised at            . 

 

Test-run 3 was conducted at a relatively low cooling water mass flow rate of 

0.032 g/s and only one heat exchanger (top heat exchanger; HE7) was used, this 

achieved the two-phase flow operating mode. 

 

Test-run 4 

 

Test-run 4 was conducted with heating plate electrical power inputs as shown in 

Table 5-5 and at a relatively higher cooling rate than for test run 3. The resulting 

temperature, pressure and mass flow rates response curves are shown in Figure 

5.5. After 22250 s the power was switched off and the test stopped after 22500 

seconds of experiment. 

 

 

Table 5-5 Heating plate electrical power input for test run 4  

Power 

(%) 

Time (s) Heating 

plate 1 

(W) 

Heating 

plate 2 

(W) 

Heating 

plate 3 

(W) 

Heating 

plate 4 

(W) 

Total (W) 

30 0    462.89     451.16   243.04   140.24 1297.33 

50 7350  1080.00   1134.04 1040.38  449.54 3703.96 

70 14596 2079.18 2003.58 2079.18  960.26 7122.20 

100 17285 2728.30 2704.70 2767.20 1173.06 9373.26 

0 22250      0.00      0.00       0.00      0.00      0.00 

 

 

Figure 5.5(a) shows the temperature profiles of the heating plates. The changes in 

the profile correspond to the change in power input as shown in Table 5.5. The 

working fluid temperatures depicted in Figure 5.5(b) shows that after 17910 s, the 

working fluid temperature reached the saturation and boiling occurred opening 

way to two-phase flow in the loop. Figure 5.5(c) shows the power input and 

Figure 5.5(d) gives the system difference in pressure gradient from the start of the 

test to the end. 

 

Figures 5.5(e) and 5.5(f) show the working fluid flow rate as measured by the 

pressure drop over the orifice plate using the HBM pressure sensor and E&H 

pressure transducer respectively. The reading of the flow meters showed that the 

test ran for a long time before boiling started (about 17500 s). This was due to the 

fact that more heat was removed from the system through the heat exchanger in 

use at a higher cooling rate. Boiling started from subcooled to nucleate boiling as 

explained in the previous section. Figures 5.4(e) and 5.4(f) illustrate that the two 

flow meter readings showed that boiling started at the same time, however in the 

single phase stage, there were slight differences with the HBM increasing first 

then decreasing continuously until boiling started, while the E&H readings 

showed that in the single phase, the mass flow rate kept increasing. 
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Figure 5-5 Experimental single to two-phase operating mode with 

increased cooling rate  (a) Heating plate temperatures, (b) working fluid 

temperatures, (c) system pressure difference ΔP (d) power input, (e) mass 

flow rate 𝒎̇  measured with HBM pressure sensor and (f) mass flow 

rate 𝒎̇ measured with E&H pressure sensor. 
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Test-run 5 

 

Test-run 5’s results are shown in Figure 5.6. This was a typical single to two-

phase circulation operating mode with full power input of 9.4 kW from start-up to 

switch off and at the same cooling rate as for test run 3. Figure 5.6(a) shows the 

temperatures of the heating plates. Figure 5.6(b) shows the temperature profiles of 

working fluid where in the top section TTL and TTR reached the saturation point, 

therefore boiling occurred and two-phase flow mode was observed. Figure 5.6 (c) 

shows the pressure difference (          ) and Figure 5.6(d) gives the 

working fluid mass flow rate response showing more chaotic oscillations from the 

single phase to the two-phase mode. The mass flow rate behaviour showed that 

for a start-up at higher power, there is more transient behaviour in the system as 

the thermal equilibrium that requires a step by step increase in power input, was 

not reached. 

 

 
 

The single to two-phase tests (test-run 3, test-run 4 and test-run 5) show that when 

boiling occurred, the two-phase patterns characteristic were observed. In test run 5 

it is seen that, ostensibly due to the higher heat rate (100 per cent of available 

electrical power input from start), there are more of both the acoustic and the void 

instabilities (Vijayan & Nayak, 2010) observed through an oscillatory behaviour 

more intense than in test-runs 3 and 4.  

 

ΔP 

Figure 5-6 Experimental single to two-phase operating mode at full power 

(9400 W) (a) average fin temperatures, (b) working fluid temperatures, (c) 

system pressure difference ΔP and (d) mass flow rate 𝒎̇ (using the E&H) 
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Test-run 3a 

 

As in test-run 1a, Figure 5.7 shows the mass flow rate comparison between test-

run 3 and test-run 3a a repeat of test-run 3 with the same time step, power inputs 

and cooling water mass flow rate. The mass flow rate profiles for both test-runs 

are typically identic however they showed small deviation due to probable errors, 

ambient conditions and power ratings as shown in table 5.6. 

 

Table 5-6 Heating plate electrical power input for test run 3a 

Power 

(%) 

Time (s) Heating 

plate 1 

(W) 

Heating 

plate 2 

(W) 

Heating 

plate 3 

(W) 

Heating 

plate 4 

(W) 

Total 

(W) 

30 0   451.12   451.12 243.04 140.20 1285.48 

50 3180 1134.04 1080.01   1079.04 474.70 3767.79 

70 8025 2098.27 1984.87 2079.15 960.26 7122.55 

100 14904 2734.38 2734.36 2757.20 1173.06 9399.00 

0 18000       0.00       0.00       0.00       0.00      0.00 

 

 
 

Figure 5-7 Two-phase working fluid mass flow rate repeatability 

comparison with power gradually input measured with  (a) HBM test-

run 3,  (b) E&H test-run 3 (c) HBM test-run 3a and (d) E&H test-run 
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Two-phase flow patterns 

 

Figure 5.8 attempts to illustrate the flow pattern behaviour of the two-phase flow. 

At first, as illustrated in Figure 5.8(a), small isolated bubbles as found in the 

bubbly flow were seen throughout the liquid. After a period of time (200 

seconds), slugs form where bubbles were dispersed toward the wall of the pipe by 

slugs of liquid, as shown in Figure 5.8(b). With Boiling continuing the slugs broke 

down and some big diameter bubbles went back-ward through the slugs of liquid, 

as it happens in a churn flow, and shown in Figure 5.8(c). In the two-phase region, 

during the single to two-phase test-runs, these three vapour-liquid flow patterns 

(bubbly, slugs and churn flow) were observed when boiling occurred through the 

sight glass pipes installed on the loop as depicted in Figure 4.1 and 4.2. 

 

 

5.2 Theoretical results 
 

Theoretical results generated by the mathematical model described in Chapter 3 

are given and discussed in this section. From literature, theoretical results are 

dependent on the type of correlations used. Results are shown for a single to two-

phase operating mode. 

The mathematical model was generated for the circulation loop as discretised in 

Figure 3.2. The model uses different correlations for the heat transfer and the 

Figure 5-8 Hand drawing depictions of two-phase flow patterns 

adjacent to the photographic images of two-phase flow [poor 

photographic images due to semi-transparent observation windows] 

Churn 

flow 

Bubbly 

flo
Slug flow 

(a) (b) (c) 
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pressure drop in both the single phase and the two-phase flow modes. For single 

phase natural circulation, free convection takes place and there is slow moving 

fluids near surfaces, but is rarely significant in turbulent flow. Thus, it is 

necessary to check and compensate for free convection only in laminar flow 

problems using the Collier correlation (Collier & Thome, 1994) to calculate the 

heat transfer coefficient as given in equation 2.21. For two-phase flow, different 

correlations are applied based on the two-phase flow model used between the 

homogeneous and the separated two-phase flow models. For this project, a 

separated two-phase flow model was assumed with frictional multipliers and 

vapour-liquid void fraction correlations similar to those originally suggested by 

Martinelli. 

Figure 5.9 shows the theoretical results for the single to two-phase natural 

circulation loop depicted in Figure 4.2 and discretised as illustrated in Figure 3.2. 

Figure 5.9(a) presents the temperature profiles of four control volumes located on 

the two top and two bottom corners. Figure 5.9(b) shows the system pressure 

difference and Figure 5.9(c) shows the mass flow rate related to the power input 

and power removed from the circulation loop. 

Figure 5.9(a) shows that the temperature is dependent on the heat input. From the 

start-up, heat was input into the system as shown in Figure 5.9(c). The heat was 

added to the system for about 100 s, causing the temperatures to increase. At the 

time that heat is removed, the temperatures stay constant for about 15 minutes 

until the power is increased. Each time that input power is adjusted (increased or 

decreased), the temperatures also followed. Four temperatures are considered and 

calculated for the working fluid where TW1 represents the temperature of the 

control volume (N1+N2), TW2 of control volume (N1+N2+N3+1), TW3 of control 

volume (2) and TW4 represents the temperature of control volume (N1+1) as it can 

be seen in Figure 3.2. 

From Figure 5.9(a) it is seen that TH1 reaches the saturation point after 12641 s 

and TH2 followed 262 s after. Boiling occurs causing two TW1 and TW2 to oscillate 

with amplitudes up to 3 °C. At the bottom of the loop TW3 and TW4 are both 

bellow saturation point as heat is being removed. They reached a maximum of 87 

°C and oscillate due to two-phase transient behaviour in the top section of the 

loop. 
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Figure 5.9(b) shows the system pressure difference (ΔP) from start-up to shut 

down. It displays that the pressure increases when the temperatures increase. 

During boiling, the pressure difference profile shows oscillations with constant 

frequencies of amplitudes of up to 2 kPa. 

Figure 5.9(c) shows the heating and cooling process of the natural circulation loop 

and the calculated mass flow rate for the single to two-phase operating mode as a 

function of time. The mass flow rate is calculated in terms of the power input and 

the fluid properties at the inlet and the outlet of the heating and cooling sections. 

At start-up, the left hand side (evaporator) temperature was set at 20 °C and the 

right hand side (condenser) temperature at 19.5 °C. This is to allow circulation of 

the fluid in the loop due to the induced density difference of the fluid from the two 

sides. The mass flow rate reached a peak of 8.4 g/s after 300 s and stayed constant 

for 1500 s until the power input was increased. As the heat input increases (e.g. at 

1800 s) the mass flow rate increases. When boiling occurs although the driving 

force is now greater the restraining friction force is more dominant. After about 

7500 s the mass flow rate decreases, followed by a short oscillation of big 

amplitudes showing that two-phase has started with many bubbles filling up the 

loop. During boiling, the mass flow rate oscillates with time to time reaching 

negative values. The maximum flow rate reached during the process was 31.6 g/s. 

ΔP T
4
 

𝑚̇  

Figure 5-9 Theoretical temperature, pressure, mass flow rate and 

power as function of time, (a) working fluid temperatures, (b) system 

pressure difference and (c) mass flow rate, power input and power 

output 
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After calculating the mass flow rate using the power in and power out as shown in 

Figure 5.9, it was decided to check what impact a low cooling water mass flow 

rate would have on the results, as presented in Figure 5.10. This figure gives the 

theoretical results for single to two-phase with a relatively low cooling water mass 

flow rate resulting in small power removed out of the system discretised as shown 

in Figure 3.2. Figure 5.10(a) shows the temperature profiles of the working fluid 

calculated from four points along the loop, Figure 5.10(b) shows the system 

pressure difference and Figure 5.10(c) shows the mass flow rate related to the 

power input and power removed from the circulation loop. 

 

Figure 5.10(a) shows that when boiling occurs (at about 10410 s from start-up), 

the  two top temperatures (TW1 and TW2) reached the saturation point of 113.25 °C 

and TW3 and TW4 were only slightly less than the top two. This indicates that there 

is a density difference between the heated and cooled vertical sides of the loop 

and that causes the flow that is now a mixture of liquid and vapour. At 18000 s the 

power input was switched off and from Figure 5.10(a) it can be seen that the 

bottom temperatures decrease faster than the top temperatures due to the heat 

removed from the condenser. 

 

Figure 5-10 Theoretical single to two-phase operating mode with 

low cooling water mass flow rate (a) working fluid temperatures, 

(b) system pressure difference and (c) mass flow rate  with a 

cooling water mass flow rate of 0.024 g/s 
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From Figure 5.10(b) it can be seen that the pressure difference profile is similar to 

the one given in Figure 5.10(b). The mass flow rate increases as the power input is 

increased. When boiling occurs the mass flow rate drops from a peak of 19.6 g/s 

to about 12.8 g/s due to the increased flow resistance characteristic of two-phase 

flow. The heat transfer rate however does not decrease but rather increases due to 

there now being more latent heat being transferred (as opposed to the sensible 

heat transferred of single phase flow). A note of interest is that the theory captures 

the transient oscillatory behaviour when sudden changes (in flow pattern) occur.  

5.3 Comparison results 
 

The experimental results for the single to two-phase operating mode shown in 

Figures 5.4(e) and 5.4(f) are combined with the theoretical results shown in Figure 

5.9 and are presented as Figures 5.11, 5.12, 5.13 and 5.14. 

From Figures 5.11 and 5.12, it can be seen that the experimentally measured mass 

flow rate as given in Figure 5.4(f) is more in line with the theoretical mass flow 

Figure 5.9(c) than the experimental measured mass flow rate in Figure 5.4(e). 

Both results show that when boiling occurs, their mass flow rate profiles present 

more oscillations, recording positive and negative values, with the experimental 

mass flow rate showing bigger amplitudes than the theoretical. This is due to the 

sensitivity of the measurement instruments. This indicates that due to boiling, 

although the average velocity is positive, both negative and positive oscillatory 

pressure pulses are detected by the pressure sensors. When still in the single phase 

mode, the mass flow rate increases proportional with the heat input and time in 

both the experimental and theoretical tests, as it is shown in Figure 5.11 and 

Figure 5.12. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

5-19 

 

 

 

Figure 5.13 shows the theoretical (Figure 5.4(c)) and experimental (Figure 5.9) 

working fluid pressure difference between the level of liquid in the expansion tank 

and the bottom of the loop. The experimental results show a drop in pressure from 

start-up as the working fluid density decreases when heat is added to the 

evaporator section. It then stabilised for some time before it increases while the 

working fluid gets close to two-phase mode and then oscillates due to boiling. 

Figure 5-11 Experimental mass flow rate 𝒎̇𝒆𝒙𝒑 as given in figure 5.4(f) 

vs theoretical mass flow rate𝒎̇𝒕𝒉  as given in figure 5.6(c) function of 

time. 
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Figure 5-12 Experimental mass flow rate 𝒎̇𝒆𝒙𝒑 measured with E&H 

pressure sensor vs theoretical mass flow rate 𝒎̇𝒕𝒉 , as a function of time 
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After power is switched off, oscillations stop and the pressure profile stopped 

oscillating and stayed constant at a relatively higher pressure than the initial 

pressure at the beginning of the test-run. The theoretical results show that the 

pressure increases from start-up then moves up and down and as the working fluid 

reaches the two-phase mode oscillatory behaviour starts and amplifies with time 

due to boiling. After switching off the power, the pressure difference profile goes 

back to moving up and down until the end of the process. It is seen that the 

experimental pressure drops first before it increases and then starts oscillating due 

to boiling while the theoretical result shows that the pressure does not decrease, 

however it increases and then oscillates also because of boiling. 

 

Figure 5.14 presents a comparison between the experimental and theoretical 

working fluid temperature, as given in Figure 5.4(a) and Figure 5.9(a), from start-

up to finish of the test. Figure 5.14(a) gives the experimental temperatures and 

Figure 5.14(b) shows the theoretical temperatures as function of time. All results 

show that at each change in heat input, the working fluid temperatures increase 

with time, however the change in heat input has no effect on the fluid 

temperatures after they have reached their saturation point where boiling starts. 

During boiling, more oscillations with bigger amplitudes are observed in the 

experimental temperature results than in the theoretical results due to the 

sensitivity of the measurement instruments. 

Figure 5-13 Experimental (test-run 3) vs theoretical pressure difference, as a 

function of time 
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Figure 5-14 Working fluid temperatures as function of time for  (a) 

experimental working fluid temperatures, (b) theoretical working 

fluid temperatures 
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6 DISCUSSION AND CONCLUSION 
 

This Chapter discusses and draws conclusions based on the objectives and 

findings of the project. 

The first objective of this project was to do a literature survey to collect enough 

theory in order to analyse the transient behaviour and study the flow pattern of a 

two-phase flow natural circulation using the later technique which is based on the 

separated flow model. There is a relatively large amount of published literature on 

natural circulation modeling and both single and two-phase flows have been 

widely investigated and assumptions made (Dobson, 1993; Grief, 1988). The 

amount of information collected from the literature review provided enough 

material to support the theory used in the elaboration and simulation of the 

theoretical model of the loop. 

In order to study the transient behaviour and analyse the flow patterns of the two-

phase flow in natural circulation, the literature survey shows that there are various 

methods of dealing with the two-phase flow. However this thesis considered only 

the homogeneous and separated flow models. In the homogeneous two-phase flow 

model, the two-phase flow is replaced by a special single-phase incompressible 

fluid with both phase considered being well mixed and travelling at the same 

velocities         and with a homogeneous density    and void fraction   . 

In the separated two-phase flow model, which is the focus of this project, gas and 

liquid flow are considered separately. 

Information collected through the literature review shows that the basic approach 

in theoretically simulating the single and two-phase flow in the separated model is 

to discretize the loop into a series of parallel one-dimensional axially symmetrical 

control volumes, in which the two-phases are treated as two separate fluids. The 

loop was thus discretised and conservation equations of mass, momentum and 

energy were applied that also show the difference in correlations used for the 

homogeneous two-phase flow and the separated two-phase flow. 

The literature survey also provides sufficient material and information on flow 

patterns. This has allowed investigating into the flow pattern characterization and 

the difference in pressure due to the change in temperature. The flow pattern 

varies as the temperature rises and bubbles appear. It is shown that the rising 

velocity of the bubble is dependent on the Morton number, the Bond number and 

the Reynolds number. The pressure drops in natural circulation systems is a key 

element in their steady state, transient and stability performance. The uncertainty 

and complexity encountered with two-phase flow patterns in tubes is revealed to 

be very difficult to predict and therefore accurate prediction is empirical and 

limited in a range of applicability (Mills & Ganesan, 2015). 
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Empirical prediction depends on the type of correlations used and the literature 

review gives available heat transfer coefficient correlations. The prediction of the 

heat coefficient still difficult as no comprehensive theory exists in determining or 

using them in natural convection. The conclusion is that heat transfer coefficient 

correlations for natural circulation are a debatable matter and are specifically 

dependent on the experimental conditions such as the type of flow whether it is 

laminar or turbulent, but most heat transfer coefficients are only valid in a specific 

mass flow rate range. 

The theory provided by the literature review appears to be acceptable as the 

calculated theoretical results using the separated two-phase flow model are in 

accordance with the experimentally determined results. 

 

The second objective of this project was to theoretically model and simulate the 

thermal-hydraulic behaviour of the natural circulation loop of the medium scale 

model of the RCCS available in the laboratory and built by Sittmann in 2010. The 

RCCS was designed with copper piping in order to eliminate material and surface 

property uncertainties, which affected the accuracy of theoretical models, 

identified during previous RCCS experimental tests. Four sight glasses were 

incorporated into the model in order to visualize and identify the two-phase flow 

patterns characteristics. However the flow patterns could not be clearly identified, 

as can be seen in Figure 5.8, due to the change in colour or copper colouring of 

Figure 6-1 Polycarbonate sight glass located on the (a) top of the 

evaporator section, (b) bottom pipe and (c) top of condenser 

(b) (a) 

(c) 
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the sight glasses (see Figure 6.1). Figure 6.1 shows the sight glasses used to view 

the two-phase patterns. Figure 6.1(a) gives the sight glasses located in the top 

corner of the heating plates side, Figure 6.1(b) shows the one installed at the 

bottom pipe and Figure 6.1(c) gives the sight glass at the top right of the loop 

(condenser section). 

The natural circulation thermosyphon loop was discretized as depicted in Figure 

3.2 and modeled as a one-dimensional system before the conservation equations 

(mass, momentum and energy) to the i
th

 control volume were applied. Several 

simplifying assumptions were made: the thermo-fluid process is quasi-static; 

compressibility effects due to heating or cooling of the liquid and vapour phases 

are negligible; and the flow is one-dimensional. At any cross-section both the 

liquid and vapour phases are in thermodynamic equilibrium with each other. The 

separated two-phase flow model was used to determine the properties and 

behaviour of the control volume containing both the liquid and gas. The void 

fraction, the frictional multiplier and the Locktart-Martinelli correlation were used 

as control parameters. The calculated results as shown in Figures 5.11 to 5.14 are 

in reasonable agreement with the experimentally determined results thus 

strengthening the case for using a separated flow model for future two-phase 

natural circulation simulations. 

The third objective of the project was to develop a computer program to 

numerically simulate the theoretical model developed in Chapter 3 by writing a 

basic computer algorithm in QBASIC 64 language. This theoretical model was 

based on the separated two-phase flow model and the computer code was 

developed and simulated. A comparison of the theory and experiment for the 

computer code accuracy verification was successfully conducted through results 

comparison. 

The fourth objective of this project was to re-commission and install new 

instruments to the loop built by Sittmann in 2010 and which had not been in use 

for the past eight years. Damaged and missing thermocouples were replaced and 

all twenty three thermocouples including twelve K-type and eleven cladded K-

type were calibrated against a calibrated (Rapid Instrumentation cc certificate 

number RAP15738, 4 February 2013) Platinum Resistance Thermometer (PRT).  

The working fluid mass flow rate was measured using two pressure transducers; 

the HBM and the E&H   in order to more confidently present the complex 

temperature and sound (acoustic) waves experimentally observed in boiling in 

natural circulation loops. The thermocouples and pressure transducers were 

calibrated in-situ to reduce possibilities of experimental errors and repeatability 

tests were used to check the accuracy of the readings. A data logger was used and 

set to collect data every 10 ms, however, averaged values were recorded every 

1.445 s. Data collected were used in excel to draw graphs in order to study the 

transient behaviour and oscillations, however these were not adequately captured 

during two-phase flow. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

6-4 

 

The fifth objective of the project was to validate the theoretical simulation with 

the experimentally determined results. Ten experimental tests regrouped in single 

phase test and single to two-phase tests were conducted and results presented in 

Chapter 5 are discussed in this section. 

Test-run 1 

Test-run 1 presents the results of the single phase operating mode with low 

cooling water where the power was input into the heating element gradually. 

Figure 5.1 presents the behaviour of the average fin temperatures, working fluid 

temperatures read from the four corners representing the inlet and outlet of the 

evaporator and condenser sections, the system pressure difference and the 

working fluid mass flow rate. The mass flow rate increases rapidly for the first 

3000 s from start-up and then decreases slightly due to static friction and increases 

again after a bout 500 s. For this test all four heaters and seven heat exchangers 

are operational. Even though the individual heat exchangers were operating at a 

relatively low water cooling mass flow rate, the heat removed from the system 

was revealed to be significant as this was affected by all heat removed by each 

heat exchanger. The highest working fluid temperature reached from the hottest 

point of the loop, located at the outlet of the evaporator and designated T1, was 

91.72°C. This is far below the saturation temperature of 107.51°C at local 

pressure where boiling occurs, allowing only the single phase operating mode. 

Instabilities were also observed for a certain time as more heat was added into in 

the system before it then stabilizes. These instabilities are explained by the up and 

down behaviour of the difference in the pressure profile. If the system were used 

primarily for reactor cooling, the behaviour of both the pressure difference profile 

and the working fluid mass flow rate suggests that the nuclear reactor should be 

sequentially started up in order to minimize the intensity of the transients that 

occur when heat is added and/or removed to/from two-phase heat transfer loops. 

A repeat of this test was also conducted four days after to check on the accuracy 

of the reading devices. This test named test-run 1a increased confidence on the 

validity of the results obtained as it can be seen from their mass flow rate profiles 

that are similar, however a small deviation from the initial values was observed 

due to the ambient conditions on the day of the test, the power ratings and 

possible errors that may have occurred as shown in Figure 5.2. 

Test-run 2 

Test-run 2 also presents results for the single operating mode as in test-run 1: the 

difference is in the way heat is added to the system. For this test, the full available 

power is input into the heating elements from start-up to shut down. In 

comparison to test-run 1, it can be seen that in this case there are more instabilities 

reflected in the system pressure difference profile behaviour and the working fluid 

mass flow rate that shows more oscillations than in test-run 1. Even by using big 

cooling water mass flow rate, this can be seen from the working fluid temperature 

where the highest reached a peak of 74.61°C is below the peak temperature in 

test-run 1, it shows more instabilities with more oscillations. This also supports 
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the fact that power should be gradually added to the system to prevent the 

possibility of more instability, therefore the nuclear reactor should start 

sequentially. A repeat of this test was also done to check on the accuracy of the 

results at full power (see Appendix D). 

Test-run 3 

Test-run 3 shows results for the single to two-phase mode at low cooling water 

mass flow rate and where the power is gradually input into the system. From the 

results shown in Figure 5.4 it can be seen that the working fluid reaches two-

phase flow mode and boiling occurs as shown by the behaviour of the working 

fluid temperature reaching the saturation point and the working fluid mass flow 

rate oscillations with big amplitudes read with both pressure transducers including 

the HBM and the E&H. They both show that when boiling occurs, the working 

fluid and pressure difference oscillate with big amplitudes. This shows that there 

is more instability in the two-phase flow than in the single phase flow operating 

mode. In order to get the two-phase mode and boiling, only one heat exchanger in 

the top of the condenser section was used, while all four heating elements were 

operational. This test was repeated five days later and results shown in table 5.7 

allow justifying the use with confidence of both pressure sensors. A repeat of test-

run 3 was also successfully conducted as shown in Figure 5.7 strengthening 

confidence in the validity of the results. 

Test-run 4 

Test-run 4 presents results for the same parameters as test-run 3, however the 

cooling water mass flow rate is in test-run 4 is higher than in test-run 3. It shows 

that boiling also occurs in this case, but after a long period of time. At the point 

where boiling starts, results show that instabilities are present, as this is shown in 

Figure 5.5. 

Test-run 5 

This test shows results of a classic single to two-phase operating mode at full 

power from start-up to shut down. The mass flow rate measured only with the 

HBM pressure sensor  shows more oscillation starting in the single phase due to 

the fact that there is more heat and frictional forces to overcome (The E&H 

pressure sensors was disconnected for this experiment due its default reading 

caused by the displacement of materials during the cleaning of the lab). The 

combination of the two factors then generates more oscillations in the working 

fluid. 

Theoretical results were generated with the mathematical model of the natural 

circulation loop as described in Chapter 3. Theoretical calculations of the single to 

two-phase operating mode were performed in order to analyse the transient 

behaviour of the flow and evaluate the natural circulation loop were based on the 

separated two-phase model. Thermo-fluid characteristics of the working fluid 

were evaluated using experimentally used cooling water mass flow rate. In the 
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single phase the friction factor was used as a control parameter to calculate the 

working fluid mass flow rate and in the two-phase the viscosity and void fraction 

were used.  

An important objective of the experimental work was to assist in determining the 

validity and accuracy of the theoretical model. Figures 5.12 and 5.13 show the 

theoretical results superimposed on the experimental results. They show that the 

theoretical results correspondent reasonably with the experimental results where 

the mass flow rate kept increasing in the single phase until it reaches the two-

phase mode. When boiling starts, both figures show oscillations occurring in both 

the theoretical and experimental mass flow rates. The pressure difference profiles 

correspond more relatively when the working fluid is boiling and prove that the 

two-phase flow is more unstable than the single-phase operating mode. Finally the 

theoretical working fluid temperature profile also corresponds to the experimental, 

however the thermocouples placed at the outlet of the condenser and closer to the 

pipe from the tank to the loop shows more oscillations, which is due to the fact 

that the valve is open and there is an exchange between the warm water from the 

loop and the cold water coming from the expansion tank. 

In conclusion, the theoretical investigations provided the calculated thermo-fluid 

parameters of the natural circulation loop more accurately with respect to the 

experimental results although there are areas that required improvements. The 

theory shows that at sufficient cooling water mass flow rate, only the single phase 

operating mode will take place meaning heat is being removed from the system 

successfully. This makes a strong argument for the use of the thermosyphon loop 

as a RCCS. 

Stellenbosch University  https://scholar.sun.ac.za



 

7-1 

 

7 RECOMMENDATIONS 
 

 

The topics investigated in this project dealing with natural circulation and two-

phase flow operating mode have many applications and still have a lot research 

avenues. For example, the experimental and theoretical investigations showed 

excellent results that support the use of natural circulation for energy 

transportation or for passive cooling as the RCCS. However, there is still much 

room for improvement that would enhance the theoretical and experimental 

results in future studies; the following are some of the recommendations. 

7.1 Loop materials 
 

Some of the materials used on the loop should either be renewed or replaced for 

better experimental investigations. 

Sight glasses 

The sight glasses used for the two-phase viewing should be replaced with clear 

ones, as they do not currently allow clear visual observation to be made. Neutron 

and proton photography could also be considered. 

 Temperature measurements 

A careful study must be undertaken to determine the number of thermocouples 

that must be used along the loop, the length of the heat exchangers and the length 

of the heaters to more accurately describe the temperature profiles. 

7.2 Mathematical model 
 

The separated two-phase flow model using the Martinelli correlations predict 

reasonably accurately the thermo-fluid behaviour of the working fluid (as shown 

in Figures 5.11 to 5.14). Therefore this model can be confidently used in future 

two-phase flow studies.  
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APPENDIX A  THERMOPHYSICALPROPERTIES OF MATERIALS 

A.1  Properties of water 

Thermophysical properties of saturated water vapor and water liquid from 

273.15K to 380K, Krӧger (1998) 

Water  

 vapor pressure: 

          ⁄         
 (A.1) 

                     ⁄                       ⁄  

             [                     ⁄     ]

            [                   ⁄    ]              

Water vapor specific heat: 

                          

                                                 (A.2) 

Water vapor dynamic viscosity: 

                                                  

                                 (A.3) 

Water vapor thermal conductivity: 

                                               

                                    (A.4) 

Water vapor density: 

                                               

                                                  

                                   (A.5) 

Water vapor temperature: 
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                                       (A.6) 

Water liquid density: 

   (                                        

                )
  

   (A.7) 

Water liquid specific heat: 

                                             

                               (A.8) 

Water liquid dynamic viscosity: 

                       ⁄        (A.9) 

Water liquid thermal conductivity: 

                                              

                                 (A.10) 

 

A.2 Properties of loop’s structure materials 

 Heating elements 

Two sizes of heating elements are used (Sittmann, 2010) 

- Three 60.025 x 1.9 m heating elements are installed of 35Ω resistance and 1.5 

kW rated power capability each 

- One 225 x 850 mm heating element is installed with 105Ω resistance and 500 

W rated power capability 

 

 Copper pipes 

At 300 K values for pure copper are (Mills, 2009): 

- Density: 8933 kg/m
3
 

- Specific heat: 0.385 KJ/kg.K 

- Thermal conductivity: 401 W/mK 
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 Insulation material 

Values for density, thermal conductivity and specific heat capacity of the B64-25 

Ceramic Fibre were provided by the manufacturer, Thermal Ceramics UK Ltd, 

through a South African distributer, Cape Refractory Industries. Emissivity values 

for insulation material are found in Mills (1999), (Sittmann, 2010) 

- Density: 64 kg/m
3
 

- Specific heat: 1.13 KJ/kg.K 

- Thermal conductivity: 0.07 W/mK 

 

 Glass 

At 300 K values for pure copper are (Mills, 2009): 

- Density: 2220 kg/m
3
 

- Specific heat: 0.745 KJ/kg.K 

- Thermal conductivity: 1.38 W/mK 

 

 Clear Polycarbonate (Cengel & Boles, 2014) 

 

- Density: 64 kg/m
3
 

- Specific heat: 1.13 KJ/kg.K 

- Thermal conductivity: 0.07 W/mK 

 

A.3 Property functions 

Table A-1 Saturated liquid specific internal energy uf as a function of pressure 

             
     

     
     

     
               ⁄             

                                                 
          

   -51.1226157751 46.844529833265000 146.8445298333 

   102.0209601818 6.532811633588440 6.5328116336 

   -27.1553689066 0.076063530916023 -0.0760635309 

   4.4293810645 0.000570032965924 0.0005700330 

   -0.3975462815 -0.000002404987948 -0.0000024050 

   0.0181153216 0.000000005227374 0.0000000052 

    -0.0003266039 0.000000000004543 -0.0000000000 
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Table A-2 Saturated vapour specific internal energy ug as a function of pressure 

             
     

     
     

     
               ⁄             

             
      

                                        

   2358.1579797960 -0.0000000000014806505 2504.272669486530000000 

   33.4363477297 2.0623656318928900000 0.1717752935832960000 

   -8.9147174687 -0.0246750292382747000 -0.0001545079243937680 

   1.4531404289 0.0001854320539063890 0.0000000834158796614 

   -0.1303615077 -0.0000007831768285205 -0.0000000000259833654 

   0.0059384234 0.0000000017032285964 0.0000000000000042435 

    -0.0001070414 -0.0000000000014806505 -0.0000000000000000003 

 

Table A-3 Saturated liquid density ρf as function of pressure 

             
     

     
     

     
               ⁄             

                                         

   1.001232757E+03 9.7462483233E+02 

   -1.4934139621E+00 -1.8563005257E-01 

   4.5101215471E-02 1.8155246915E-04 

   1.0291970864E-03 1.1891680937E-07 

   1.385131118E-05 4.2788169665E-11 

   -9.8267145797E-08 -7.7879043171E-15 

    2.8281383615E-10 5.5972407274E-19 

 

Table A-4 Saturated vapour density ρg as function of pressure 

             
     

     
     

     
     

     
     

 

     
       

       
       

       
       

  

     
                ⁄             

                      

   0.00257852  

   0.006536332  

   -1.03322E-05  

   5.27676E-08  

   -1.80680E-10  

   4.13859E-13  

    -6.55818E-16  

   7.40924E-19  

   -6.09745E-22  

   3.70293E-25  

    -1.66754E-28  

    5.54789E-32  

    -1.34454E-35  
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     2.30584E-39  

    -2.64995E-43  

    1.82982E-47  

    -5.73680E-52  

 

Table A-5 Saturated temperature Tsat as a function of pressure 

             
     

     
     

     
               ⁄             

                                                           

   -1.2133791931E+01 3.5056654728E+01 9.5805436011E+01 

   2.4219031307E+01 1.56324542296E+00 +1.5957346907E-01 

   -6.4228657264E+00 -1.8237112219E-02 -1.2408184883E-04 

   1.0458389499E+00 1.3667691171E-04 1.367691171E-04 

   -9.3775141201E-02 -5.7663295221E-07 -2.04389571188E-11 

   4.27005211636E-03 1.2533171143E-09 3.3262325892E-15 

    -7.6962116033E-05 -1.0891455981E-12 2.1950298662E-19 

 

Table A-6 Subcooled liquid density ρ as function of specific internal energy and 

pressure 

            
         

     
          

            
        

         ⁄             ⁄               

                                                  ⁄   

   0.006536332  

   -1.03322E-05  

   5.27676E-08  

   -1.800680E-10  

   4.13859E-13  

    -6.55818E-19  

   7.40924E-19  

   -6.09745E-22  

   3.70293E-25  

 

Table A-7 Subcooled temperature T as a function of specific internal energy and 

pressure 

            
         

     
          

            
        

                   ⁄               

                                                  ⁄   

   0.006536332  

   -1.03322E-08  

   5.27676E-08  

   -1.80680E-10  

   4.13859E-13  

    -6.55818E-16  

   7.40924E-19  
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   -6.09745E-22  

   3.70293E-25  

 

Table A-0-8 Superheated temperature T as a function of specific internal energy 

and pressure 

            
         

     
          

            
        

                   ⁄               

                                                  ⁄   

   0.006536332  

   -1.03322E-05  

   5.27676E-08  

   -1.80680E-10  

   4.13859E-13  

    -6.55818E-16  

   7.40924E-19  

   -6.09745E-22  

   3.70293E-25  

 

Table A-0-9 Liquid viscosity µl as function of temperature 

             
     

     
     

     
               ⁄           

   1.7699E-03  

   -5.2826E-05  

   9.0025E-07  

   -8.8006E-09  

   4.7856E-11  

   -1.3362E-13  

    1.4878E-16  

 

Table A-0-10 Vapour dynamic viscosity µv as a function of temperature 

             
               ⁄           

   9.1242E-06  

   2.9931E-08  

   1.4879E-11  

 

Table A-11 Saturated pressure Psat as a function of temperature 

               
     

     
     

     
     

     
     

 

     
       

       
       

       
       

  

     
                           

                 

   0.611212951  

   0.044418033  
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   0.001430598  

   2.64902E-05  

   3.022592E-07  

   2.08279E-09  

    6.51325E-12  

   -9.96032E-15  

   -1.17130E-16  

   -3.89616E-19  

    8.90392E-21  

    -4.83077E-23  

    1.38120E-25  

     -2.13181E-28  

    1.15491E-31  

    1.20129E-34  

    -1.53740E-37  

 

Table A-12 Saturated temperature Tsat as a function of saturated specific internal 

energy 

                 
      

      
      

      
      

      
      

 

      
        

        
        

        
        

  

      
                             ⁄  

                    

   0.019752569  

   0.23589048  

   6.66166E-05  

   -1.02046E-06  

   1.11601E-08  

   -8.40511E-11  

    4.44253E-13  

   -1.69203E-15  

   4.73321E-18  

   -9.83571E-21  

    1.52395E-23  

    -1.752395E-23  

    1.47413E-29  

     -8.80502E-33  

    3.53546E-36  

    -8.55373E-40  

    9.42042E-44  
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Table A-13 Surface tension σ as a function of temperature 

            
            ⁄                         

   7.573636E-02  

   -1.458939E-04  

   -2.234848E-11  
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APPENDIX B  CONSERVATION OF THERMAL ENERGY     

              EQUATION 

 

The conservation of energy as applied to a stationary control volume through 

which a fluid is moving may take on a number of equally applicable forms (Bird, 

Stewart and Lightfoot, 2000). In this appendix it is shown how the one-

dimensional conservation of energy equation is derived in terms of the internal 

energy from the more commonly used total energy equation. 

The total energy equation is given, using vector and tensor notation (Bird, Stewart 

and Lightfoot, 2000) as 

 

  
(       ⁄  )             ⁄     ̇  

            

                         ⁄        (B.1) 

Note that the potential energy term is included not in the left hand terms but as a 

term of its own on the right hand side. Another form of the energy equation, the 

so-called mechanical energy equation, is obtained by taking the momentum 

equation given as 

 

  
                                      ⁄     (B.3) 

and forming the scalar product of equation B.3 and the velocity vector v, that is 

 

  
                                     

                                                               ⁄      (B.4) 

After rearranging and making use of the continuity equation 

  

  
                 ⁄         (B.5) 

and the identities 

                       

                         

 

  
       

 

  
(
 

 
   ), and 

             
 

 
       

equation B4 may be written as equation B.6, the so-called mechanical energy 

equation, as 
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(
 

 
   )   (  

 

 
    )                         

                                    (       )        ⁄      (B.6) 

Now, subtracting the mechanical energy equation, equation B.6 from the total 

energy equation, equation B.l yields the so-called equation for internal energy or 

the thermal energy equation [that is that internal energy may be expressed as a 

function, more-or-less proportional, to the temperature.] as 

 

  
             ̇  

                          ⁄     (B.7)  

or, for one dimensional flow 

 

  
      

 

  
       ̇  

     
  

  
    

   

  
        ⁄     (B.8) 

The term          is the net addition of internal energy by convective transport, 

per unit volume. By addition is meant that internal energy carried into the control 

volume increases its internal energy and is taken as positive and internal energy 

carried out decreases its internal energy and hence is taken as negative. The term 

  ̇  
    is the net rate of increase in internal energy by conduction from the adjacent 

control volumes and conduction and convective heat transfer from the boundary 

into the fluid in the control volume, per unit volume. The heat transfer is 

necessarily driven from a higher to lower temperature; the heat transfer is thus 

positive when it flows, so to speak, into the control volume and negative if it 

flows out of the control volume. The term            is the so-called 

irreversible rate at which the internal energy of a Newtonian fluid is increased due 

to viscous dissipation (another word for the work done against friction) and hence 

is necessarily always positive and always increases the internal energy and thus 

always manifests itself as an increase in temperature of the fluid in control 

volume, all else being equal. 

Equation B.8 for a finite sized one-dimensional control volume of constant cross-

sectional area A, radius R and length Δz 

 

  
         ̇    ̇           ̅   ̅         (B.9) 

Where          ℘  , and the perimeter ℘      and              ̅ the 

so-called wall stress and  ̅ is the average velocity long its length Δz. 
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APPENDIX C  NUMERICAL SIMULATION ALGORITHM 

 

The numerical simulation to solve the natural circulation loop of this project is 

given step-wise as follow: 

Step 1 Referring to figure 3.2 define the geometry of the loop consisting of a 

series of cylindrical control volumes 

 

Defining dimensions 

 

                          

                   

       12 

 

Control volume numbers 

 

                         

                                                
       

Control volume lengths 

    
  

  
⁄       

  
  

⁄       
  

  
⁄       

  
  

⁄   

 

Step 2 Define the initial values and heat pipe parameters 

                                       

                              ̇         ( ̇)     

                          

                  

Step 3 Define the problem-specific constants and stability criteria 

                                                  

                   

1 Start the time-step loop 

                (C.1) 

            
                     (C.2) 

Stellenbosch University  https://scholar.sun.ac.za



 

C-2 

 

    ̇          

Estimate the new mass and pressure 

                   
       

    (
  

  
)
 

     ⁄

    
     

  
    (

  

  
)
 

     ⁄

               (C.3) 

The new mass can also be determine using    
       

      ̇    ̇     
  

Calculate the total heat 

The total heat is evaluated based by the total reactor heat input minus the total 

heat removal or losses from the environment and heat removed by the pipe in pipe 

heat exchangers. 

Heat losses to the environment 

Calculate the heat transfer coefficients for control volumes 1 to Ntot 

                 

          
     

⁄   

                                  ⁄      
  

     
⁄   

                                                 ⁄        
    

         
  

         
 

     
  

Calculate thermal resistances 

                        (C.4) 

Calculate the heat losses 

 ̇                ⁄         (C.5) 

        

Heat removal by Heat exchanger 

 ̇                ⁄    ̇        ̇        ̇       (C.6) 

Heat transfer rates for each control volume 
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          ̇    ̇        

Change in internal energy due to convection 

    ̇   
    ̇           

   

Reversible work rate terms 

    
       ⁄         ⁄   

      

      
       ⁄         ⁄     

      

(
 

  
)
     

 

 
     ⁄

 

    
   

(
 

  
)
    

 

 
     ⁄

 

      
   

        
    ̇ ((

 

  
)
     

 

 (
 

  
)
    

 

)      (C.7) 

Irreversible work rate terms      

     
          

   
   

     
  (      (

 ̇

   
)
 

 ⁄ )
 

 

  

    
   

               (C.8) 

  
                

   

  
  

 ̇ 

  
   

  

  
  (          

 ℘               )
 
   

     
    

   
   

Calculate the sum of the thermal energy terms 

∑  ̇ 
      ̇   

  ∑  ̇ 
          

       
      (C.9) 

Calculate the internal energy  

  
     [     

    ∑  ̇ 
 ]   

    ⁄        (C.10) 

Calculate the saturated liquid and vapour internal energies at the estimated new 

pressure 
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      (  

    )  

    
      (  

    )  

     
          

            
          

          
      (  

       
    )  

  
     (  

       
    )   

     
          

           
          

           

  
     (  

         
    ) (    

         
    )⁄   

  
      (      

    )        
      ((      

    ))           
      (      

    )   

                   

  
     (    

    
    

    
    

    
    

  
    )

  

  

  
       

        
     (    

    )    
      

  
       

        

(
  

  
)
 

     ⁄

 
  

       
 

  
        (C.11) 

        

     
          

       
      (  

       
    )    

     (  
       

    )     
     

        
        

Calculate the new mass flow rate  ̇      

To evaluate the new mass the momentum equation for i
th

 control volume 

expressed in terms of the mass and void fractions is considered as given by 

equation 3.35. The mass flow rate at      is obtained by summing all the control 

volumes around the loop. Using an explicit finite difference numerical solution 

method and the so-called upwind differencing, and noticing that the pressure terms 

all cancel out, required mass is given by 

 ̇       ̇ ∑  
      ̇ ∑   ∑  ∑   

  ∑  
    ⁄    (C.12) 

Where  

If the control volume is subcooled or superheated 

  
     

   ⁄   
    

  
    

  
   ⁄   

 

  
         

 

  
(

 

     
 

 

     
)
 

    (C.13) 
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And for a two-phase liquid and vapour control volume 

  
     

  
    

  
 (

  

   
 

      

       
)
 

    

   
  

  
 

  
 (

  

   
 

      

       
)
 

 

        

   
 

  
[(

  

   
 

      

       
)
 
 (

  

   
 

      

       
)
 
]

 

                 ̇  

               ̇           (C.14) 

    
                   (C.15) 

Where               ,     ⁄  for the vertical LHS of the loop, that is 

the reactor side,      ⁄  for the vertical RHS of the loop, that is the cooling 

side and     for the horizontally oriented portions of the circulation loop. 

  ℘  
               ⁄         (C.16) 

        
        

      
 

 
      (

 ̇

   
)
 

 
    

    
  ̇  , and to ensure that the 

friction always acts against the flow  ̇  is replaced by  ̇  ̇, 

   
       ℘       (

  

  
)
   

(
  

  
)
   

(
   

 
)
     

       

                          ⁄   

                                   ⁄   

                                  

Where    
| ̇ |  

  
                is a correlating coefficient that attempts 

identify the transition point between static and dynamic friction (viscosity) or the 

so-called concept of slip-stick, and      is a correlating coefficient that attempts to 

define the transition between laminar and turbulent flow conditions. They may be 

taken arbitrarily as 1 and 1181, respectively where 1181 is the Reynolds number 

corresponding to the intersection of the smooth wall Blassius type coefficient of 

friction                   and the laminar coefficient of friction given 

as          ⁄ . 

Calculate the new pressures   
      

The pressure at the bottom of the loop is the highest and is given by 

                       

And the pressure at each control volume will then be 
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Having the new mass flow rate and the pressure at one end of the control volume, 

the pressure at other can be calculated using equation 3.43. Equation 3.43 can also 

be simplified as below 

      
          

          
       

       
     (

  

  
)
 

     ⁄

  

Where       
             

     

If control volume is subcooled or superheated 

  
     

   ̇  ⁄   
    

  
    

  
   ̇  ⁄   

 

  
      (

  

  
)
 

     ⁄

 (  
       

 )   ⁄   

    
     

( ̇    )
 

  
(

 

     
 

 

     
)

    

                 ̇           

      ̇     

If the control volume is a two-phase (liquid and vapour) control volume 

  
  

    
  ̇ 

  
 (

  

   
 

      

       
)
 

 

       
     

    
     ̇    

  
 (

  

   
 

      

       
)
 

    

  

       
( ̇    )

 

  
∑ [(

  

    
 

      

        
)
 

 (
  

    
 

      

        
)
 

]

 

           

      ̇                 ̇     

  
       

               

Where               ,     ⁄  for the vertical LHS of the loop, that is 

the reactor side,      ⁄  for the vertical RHS of the loop, that is the cooling 

side and     for the horizontally oriented portions of the circulation loop. 

  
     ℘  

                  ⁄   

        
            

   
         

 

 
      (

 ̇

   
)
 

 
    

    
  ̇  ̇, where to ensure 

that the friction always acts against the flow  ̇  is replaced by  ̇  ̇,    
       

and ℘ = perimeter of the control volume, and 

                          ⁄   

                                   ⁄   

                        

 Where    
| ̇ |  
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The pressure of the control volume is then given as 

  
     (     

           
    )  ⁄   

Replace the old values by the new values and go to “1” 
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APPENDIX D  CALIBRATION OF EXPERIMENTAL   

   MEASURING INSTRUMENTS AND ERROR 

ANALYSIS 
 

D.1 Calibration of thermocouples 
 

The accuracy of the thermocouples used in the experiments was verified by 

comparison with the calibrated sub-standard thermometer made of platinum 

(platinum resistance thermometer; PRT). The PRT model number 935-14-72 was 

manufactured by ISOTECH South Africa with serial number 191069 calibrated on 

the 4
th

 February 2013 by Rapid Instrumentation cc with certificate number 

RAP15738 (See Figure D-6) and is used with an oil bath. Table D.1 shows the 

comparison for the 4 K-type thermocouple probes used to measure the 

temperatures of the working fluid Table D.2 shows the comparison for the nine K-

type thermocouples used to measure the temperatures of the heater plate. Table 

D.3 shows the comparison for the eleven K-type thermocouples used to measure 

the cooling fluid in the pipe-in-pipe heat exchangers. The standard deviation for 

the K-type thermocouples at each of the measured points lies between 0.041 and 

0.63 with a maximum error of 1.85 %. 

Table D-1 Working fluid K-type thermocouples calibration 

Referen

ce 

Temperature [°C] SD %error 

PRT TBL TBR TTL TT

R 

 TBL TBR TTL TTR 

20.152 20.23 20.41 20.30 20.3 0.095805 0.4118 1.290 0.7393 0.7393 

30.203 30.6 30.60 30.3 30.3 0.188720 1.3144 1.344 0.3211 0.3211 

40.126 40.2 40.2 40.1 40.2 0.050489 0.1844 0.184 0.0647 0.2093 

48.231 48.4 48.6 48.54 48.6 0.158613 0.3503 0.765 0.6406 0.7650 

53.265 53.68 53.34 53.5 53.4 0.15862 0.7791 0.150 0.4411 0.3510 

60.213 60.5 60.5 60.5 60.4 0.126411 0.4766 0.476 0.4766 0.4434 

66.501 66.1 66.3 66.23 66.4 0.163163 0.6029 0.302 0.4075 0.0766 

74.357 74.56 74.6 74.52 74.2 0.151742 0.2730 0.326 0.2192 0.1573 

80.85 81.23 81 80.9 80.7 0.179916 0.4700 0.185 0.0618 0.1113 

85.61 86 86 85.97 86 0.171551 0.4555 0.455 0.4205 0.4555 

90.234 89.94 89.95 89.9 89.7 0.190801 0.3258 0.314 0.3701 0.5917 
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Table D-2 Heating plates K-type thermocouples calibration 

Reference Temperature [°C]        

PRT T1(A) T1(B) T1(C) T2(A) T2(B) T2(C) T3(A) T3(B) T3(C) 

25.24 25.22 25.2 25.26 25.36 25.26 25.3 25.22 25.23 25.32 

30.354 30.5 30.5 30.4 30.41 30.5 30.56 30.421 30.56 30.54 

42.56 42.71 42.71 42.71 42.68 42.65 42.54 42.57 42.6 42.6 

50.12 50.3 50.3 50.31 50.32 50.3 50.3 50.1 50.23 50.2 

55.31 55.48 55.5 55.5 55.5 55.41 55.3 55.28 55.41 55.41 

60.28 60.35 60.3 60.3 60.3 60.3 60.31 60.31 60.5 60.5 

66.501 66.55 66.62 66.57 66.54 66.5 66.5 66.53 66.5 66.51 

75.015 74.85 74.9 74.9 75.1 74.86 74.86 74.86 74.9 74.9 

81.22 81.23 81.23 81.2 80.98 81.2 81.2 81.2 81.12 81.3 

85.4 85.5 85.3 85.4 85.5 85.5 85.53 85.45 85.45 85.4 

90.5 90.3 90.4 90.4 90.4 90.45 90.6 90.41 90.3 90.3 

 

Temperature [°C] 
SD 

%error 

T4(A) T4(B) T1(A) T1(B) T1(C) T2(A) 

25.32 25.301 0.0500493 0.0792393 0.1584786 0.0792393 0.4754358 

30.3 30.3 0.0947268 0.480991 0.480991 0.1515451 0.1844897 

42.7 42.7 0.0659832 0.3524436 0.3524436 0.3524436 0.2819549 

50.2 50.14 0.0812963 0.3591381 0.3591381 0.3790902 0.3990423 

55.5 55.2 0.1040979 0.3073585 0.3435184 0.3435184 0.3435184 

60.5 60.22 0.0964954 0.1161248 0.0331785 0.0331785 0.0331785 

66.48 66.48 0.0411438 0.0736831 0.1789447 0.1037578 0.0586457 

75.1 75.1 0.1025905 0.219956 0.1533027 0.1533027 0.1133107 

81.2 81.12 0.0798104 0.0123122 0.0123122 0.0246245 0.2954937 

85.38 85.52 0.0696039 0.117096 0.117096 0 0.117096 

90.45 90.4 0.087434 0.2209945 0.1104972 0.1104972 0.1104972 

 

%error 

T2(B) T2(C) T3(A) T3(B) T3(C) T4(A) T4(B) 

0.0792393 0.2377179 0.0792393 0.0396197 0.3169572 0.3169572 0.2416799 

0.480991 0.6786585 0.2207287 0.6786585 0.6127693 0.1779008 0.1779008 

0.2114662 0.0469925 0.0234962 0.093985 0.093985 0.3289474 0.3289474 

0.3591381 0.3591381 0.0399042 0.2194733 0.1596169 0.1596169 0.0399042 

0.1807991 0.0180799 0.0542397 0.1807991 0.1807991 0.3435184 0.198879 

0.0331785 0.0497678 0.0497678 0.3649635 0.3649635 0.3649635 0.0995355 

0.0015037 0.0015037 0.0436084 0.0015037 0.0135336 0.0315785 0.0315785 

0.2066253 0.2066253 0.2066253 0.1533027 0.1533027 0.1133107 0.1133107 

0.0246245 0.0246245 0.0246245 0.1231224 0.0984979 0.0246245 0.1231224 
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0.117096 0.1522248 0.058548 0.058548 0 0.0234192 0.1405152 

0.0552486 0.1104972 0.0994475 0.2209945 0.2209945 0.0552486 0.1104972 

 

Table D-3 Cooling fluid K-type thermocouples calibration 

Refe-

rence 

Temperature 

[°C] 

       

PRT THE1

(in) 

THE1

(out) 

THE2

(out) 

THE3

(in) 

THE3

(out) 

THE4

(out) 

THE1

(in) 

THE5

(out) 

THE6

(out) 

20.15 20.23 20.23 20.30 20.30 20.23 20.23 20.30 20.22 20.22 

30.20 30.5 30.5 30.23 30.6 30.23 30.23 30.3 30.5 30.5 

40.12 40.2 40.2 40.1 40.1 40.2 40.2 40.1 40.2 40.2 

48.23 48.32 48.4 48.4 48.5 48.4 48.5 48.41 48.5 48.5 

53.26 53.6 53.45 53.45 53.45 53.68 53.34 53.5 53.34 53.34 

60.21 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 

66.50 66.1 66.3 66.3 66.2 66.1 66.3 66.23 66.3 66.3 

74.35 74.56 74.6 74.52 74.52 74.56 74.6 74.52 74.6 74.6 

80.85 81.1 81 80.9 80.9 81.1 81 80.9 81 81 

85.61 85.7 85.7 85.6 85.6 85.72 85.6 85.7 85.6 85.6 

90.23 89.97 89.97 89.91 89.97 89.91 89.95 89.9 89.95 89.97 

 

Temperature [°C] 

SD 

%error 

THE7(in) THE7(out) T1(A) T1(B) T1(C) T2(A) 

20.301 20.301 0.0478586 0.4118698 0.4118698 0.7393807 0.7393807 

30.3 30.4 0.1406656 0.983346 0.983346 0.0893951 1.314439 

40.1 40.2 0.0493162 0.1844191 0.1844191 0.0647959 0.0647959 

48.43 48.52 0.086498 0.1845286 0.350397 0.350397 0.5577326 

53.5 53.345 0.1196293 0.6289308 0.34732 0.34732 0.34732 

60.5 60.5 0.0828498 0.4766413 0.4766413 0.4766413 0.4766413 

66.23 66.3 0.1062334 0.6029985 0.3022511 0.3022511 0.4526248 

74.52 74.6 0.0696713 0.2730072 0.3268018 0.2192127 0.2192127 

80.9 81 0.0810677 0.3092146 0.1855288 0.0618429 0.0618429 

85.97 85.6 0.1079001 0.1051279 0.1051279 0.0116809 0.0116809 

89.9 89.97 0.0891312 0.2925726 0.2925726 0.3590664 0.2925726 

 

%error 

T2(B) T2(C) T3(A) T3(B) T3(C) T4(A) T4(B) 

0.4118698 0.4118698 0.7393807 0.3374355 0.3374355 0.7393807 0.7393807 

0.0893951 0.0893951 0.3211601 0.983346 0.983346 0.3211601 0.6522531 

0.1844191 0.1844191 0.0647959 0.1844191 0.1844191 0.0647959 0.1844191 

0.350397 0.5577326 0.3711306 0.5577326 0.5577326 0.4125977 0.5991997 
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0.7791233 0.1501924 0.4411903 0.1501924 0.1501924 0.4411903 0.1501924 

0.4766413 0.4766413 0.4766413 0.4766413 0.4766413 0.4766413 0.4766413 

0.6029985 0.3022511 0.4075127 0.3022511 0.3022511 0.4075127 0.3022511 

0.2730072 0.3268018 0.2192127 0.3268018 0.3268018 0.2192127 0.3268018 

0.3092146 0.1855288 0.0618429 0.1855288 0.1855288 0.0618429 0.1855288 

0.1284897 0.0116809 0.1051279 0.0116809 0.0116809 0.4205116 0.0116809 

0.3590664 0.3147372 0.3701487 0.3147372 0.2925726 0.3701487 0.2925726 

 

D.2 Orifice plate calibration 
 

The orifice plate was calibrated in situ. The flow rate of the water through the pipe 

was measured by means of a measuring cylinder and stopwatch. Calibration data 

were obtained using the Endress and Hauser differential pressure transducer 

(serial number A8069B0109D) capable of measuring 0-500 mbar pressure 

differences in both the forward and reverse directions read in mili-volt Direct 

Current (mVDC) and mili-amp DC (mADC) with the data logger. 

 

Calibration curves were fitted through the data in order to approximate the mass 

flow rate from the measured voltage for the HBM pressure transducer for positive 

and reverse flow respectively given in Figures D.1 and D.2 and the measured 

current for E&H pressure transducer, positive flow given in Figure D.3. 

 
Figure D-0-1 HBM Pressure transducer calibration positive 
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Figure D.1 shows that the coefficient of determination described by the curve is 

99.96% and that the calibrated HBM positive flow is approximate by a 

polynomial equation as 

                                             (D-1) 

where 

            

   ̇    ⁄    

Figure D.2 shows the calibrated reverse flow for the HBM pressure sensor. The 

calibration has a proportion of variance R
2
 = 0.997. This calibration is 

approximated by a polynomial equation given as 

                                             (D-2) 

 
Figure D-0-2 HBM Pressure transducer calibration reverse flow 
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Figure D.3 shows the calibrated E&H positive flow. It has R
2
 = 1 and is 

approximated by equation D.3 

                                     (D-3) 

 

D.3 Calibration of Endress and Hauser pressure sensor 
 

The calibration for the pressure transducer for pressure reading was done by 

connecting both the micrometre and the CU1B2ED1A pressure transducer in 

parallel to a single tube. Air was used to compare results with Betz micrometre 

reading. Figure D.4 shows the calibrated results with R
2
 = 0.9997 and the fitted 

polynomial equation given by equation D-4 

                                   (D-4) 

where 

         , mA 

          , Pa 

Figure D-0-3 E&H Pressure transducer calibration positive flow 
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D.4 Test-runs 1c and 3b results sample 
 

Figure D-5 shows results of the two test-runs not discussed in the thesis including 

one single phase (test-run 1c) and one two-phase (test-run 3b). These results 

include the mass flow rate measured with the E&H pressure sensor for single 

phase given in Figure D-5(a) and two-phase (Figure D-5(b)). They also present 

their respective working fluid temperature profiles. 

 

 

Figure D-4 E&H pressure transducer calibration 
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D.5 Error analysis 

Errors always occur during experimental tests. Different types of errors can be 

identified including systematic errors that happened during calibration, random 

errors that may happened due to measurement conditions and lack of precision, 

and absolute or relative errors. This section presents the systematic errors due to 

calibration deviating the actual measurement consistently either too high or too 

low. 

D.5.1 Temperature errors 

On the temperature systematic errors are determined for the cooling water, heating 

plate and working fluid. This error is represented by the average percentage error 

calculated by the average error of the average error of each thermocouple used to 

measure the temperature for all the different sections. 

                         
∑                 

 
   

 
    (D-5) 

Figure D-5 Experimental single and two phase operating  (a)working 

fluid temperatures test-run 1c, (b) working fluid mass flow rate test-

run 1c, (c) working fluid temperatures test-run 2b, (b) working fluid 

mass flow rate test-run 2b 
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The actual temperature will be equal to the reading value plus minus the error. 

For the cooling water 

                                                           ⁄  

        

                       
    

   
              (D-6) 

For the heating plate 

                                                           ⁄  

        

                 
    

   
             (D-7) 

For the working fluid  

                       ⁄   

        

                       
    

   
              (D-8) 

 

D.5.2 Pressure sensor errors 

From the Endress & Hauser pressure sensor final inspection report at standard 

temperature, pressure and humidity the maximum permissible error is specified as 

± 0.2% of full scale reading. 

 

D.5.3 Calibration certificate 

The calibration certificate of the PRT is given in Figure D-6 
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Figure D-6: Certificate of calibration
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APPENDIX E  SAFETY PROCEDURES 

 

E.1 Background 
 

Prior to experiment on a natural circulation experiments it is compulsory to read 

and understand the potential health and safety risks and accompanying prevention 

procedures and corrective actions if required. 

 

E.2 Safety Instructions 
 

A closed loop thermosyphon is a method of transferring thermal energy from a 

heat source to a sink via thermally induced density gradients; it is capital that 

safety instructions are read and potential health and safety risks and 

accompanying preventions procedures understood. These procedures were 

initially prepared by Sittmann (2010): 

 

Table E-1 Safety procedure instructions for closed loop thermosyphon (Sittmann, 

2010). 

Risk Design Impact Operating Instructions 

 

High 

temperatures 
 Screen and prevent 

people from 

accidentally 

accessing the warm 

area. 

 Conduct warm gases 

to an area where it 

can mix safely with 

cold gases. 

 Provide stopping 

mechanisms such as 

thermostats to 

prevent temperatures 

exceeding the 

maximum limits. 

 Provide transparent 

plastic piping and 

make use of the glass 

pipe heat exchanger 

 Provide ventilation 

 

 Ensure screens are in position 

before use. 

 Ensure insulations and plastic 

covers are used to avoid contact 

with people or other material.  

 Ensure that the coolant is 

flowing during experiments  

 Ensure all electrical components 

and sensors are working as they 

will help to detect temperature 

and stop the heating during 

experiments. 

 Avoid getting in touch of the 

heating copper pipe or if there is 

leaking with hot water. 

 Enough ventilation in the 

workshop or around the 

workplace where the 

experiments are done is required 

as this can help to avoid 

accidents. 

Structural 

failure 
 A structure that can 

fail can cause heavy 

objects to fall 

 Consider with big 

 Always wear safety shoes  

 Respect all colour coding in the 

lab 

 Remove all loose elements and 
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importance the 

stability of all parts 

of the structure 

 

equipments from the walkway 

Electric 

shock 
 Provide emergency 

stop. 

 Use fuses and circuit 

breaker 

 Visual feedback that 

power is switched on 

(e.g. LEDs). 

 Insulate live wires. 

 Ensure that emergency stops are 

easily accessible. 

 Ensure that the screens are in 

position. 

 Ensure that there is no leak to 

avoid any contact between water 

and electrical components, 

including wiring, sensors, circuit 

breaker, DB etc. 

 Ensure that all electrical work 

are done according to standard 

by a qualified electrician 

People 

working on 

Scaffoldings 

from where 

they can fall 

 Provide safety 

ladders and 

handrails. 

 Use safety harness. 

High 

pressure gas 

or liquids 

 Provide pressure 

regulators and 

pressure relief 

valves. 

 Screen piping to 

ensure that leaks 

cannot cause 

damage/injuries. 

 Ensure that pressure relief 

valves are working properly. 

 Ensure that couplings are firmly 

connected. 

 Examine pipes for external 

damage. 

Safety and 

Hazards 
 Provide fire 

extinguishers 

 Provide safety 

procedures 

 Provide user guide 

 In case of fire in the lab, open 

the electrical box with key 

provided and discharge fire 

extinguisher into electrical box. 

 Read and understand all 

instructions and follow them 

carefully. 

Personal 

safeguarding 
 Protect the body 

 Protect Hands 

 Protect Eyes 

 Protect Feet 

 A protective jacket can be worn 

when working with hot water or 

other liquids at higher 

temperature 

 Hands are constantly at risk 

when handling hot, leather 

gloves should be worn 

 Safety glasses must be worn 

when working with hot water to 

protect eyes 

 Closed shoes should be worn to 

protect feet from any 

unfortunate accidents 
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Housekeep-

ing 
 Safe house keeping 

 

 Keep the floors; passageways 

and the space around the 

structure clear of small objects 

and accessories. 

 Work inside the marked 

boundaries of the passageways.  

 Make sure that there is a place 

for each machine tool; accessory 

or attachments that you use so 

that you can store them after 

you use them. 

 Make sure that your work piece 

is properly secured before you 

switch the system on. 

 Do not leave the lab unattended 

while it is operating. 

 

 

 

 

E.3 User guide 
 

E.3.1 Normal operating conditions  

 

In order to ensure that the experiment is executed in a safe manner, the operator is 

required to read, understand and follow the two procedures (start-up and shut 

down) available in the laboratory.  

 

E.3.2 Accident and malfunction conditions 

 

The accident and malfunction conditions can be grouped in three categories based 

on the main element involved in the malfunction condition. 

 Loss of Coolant 

 Temperature measurement 

 Element malfunction 
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