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Abstract

Grain regression analysis forms an essential part of solid rocket motor simula-
tion. In this thesis a numerical grain regression analysis module is developed
as an alternative to cumbersome and time consuming analytical methods. The
surface regression is performed by the level-set method, a numerical interface
advancement scheme. A novel approach to the integration of the surface area
and volume of a numerical interface, as defined implicitly in a level-set frame-
work, by means of Monte-Carlo integration is proposed. The grain regression
module is directly coupled to a quasi -1D internal ballistics solver in an on-line
fashion, in order to take into account the effects of spatially varying burn rate
distributions. A multi-timescale approach is proposed for the direct coupling
of the two solvers.
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Uitreksel

Gryn regressie analise vorm ’n integrale deel van soliede vuurpylmotor simu-
lasie. In hierdie tesis word ’n numeriese gryn regressie analise model, as ’n al-
ternatief tot dikwels omslagtige en tydrowende analitiese metodes, ontwikkel.
Die oppervlak regressie word deur die vlak-set metode, ’n numeriese koppel-
vlak beweging skema uitgevoer. ’n Nuwe benadering tot die integrasie van die
buite-oppervlakte en volume van ’n implisiete numeriese koppelvlak in ’n vlak-
set raamwerk, deur middel van Monte Carlo-integrasie word voorgestel. Die
gryn regressie model word direk en aanlyn aan ’n kwasi-1D interne ballistiek
model gekoppel, ten einde die uitwerking van ruimtelik-wisselende brand-koers
in ag te neem. ’n Multi-tydskaal benadering word voorgestel vir die direkte
koppeling van die twee modelle.
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Chapter 1

Introduction

Solid Rocket Motors (SRM) are propulsion systems that deliver a thrust cap-
able of propelling a payload over a distance at high speed. According to
Gruntman [1], the earliest forms of SRMs date back to the 13th century and
were powered by black powder or gunpowder. Since then, rockets have evolved
substantially and an extensive theory of SRMs has come about. For a good
description of the general theory of SRMs the reader is referred to Sutton [2]
and Nakka [3]. Nakka gives a more informal description of the theory, but
makes for a good introduction to the field of rocketry.

In recent years, numerical simulation of SRMs has become an area of interest
for the developers of new SRM propulsion systems such as space agencies and
weapons manufacturers. The ability to simulate the operational phase of a
novel SRM design, without any need for manufacturing of parts or the use of
a test bed, provides manufactures the opportunity to test more variations of
motor designs and ultimately optimize the motors to a greater extent.

The numerical simulation of an SRM can be sub-categorized into internal
ballistics, burn rate predictions, and grain regression analyses. In this thesis
the problem of grain regression analysis in SRMs is investigated.

1
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1.1 Solid rocket motors

1.1.1 Motor layout

In order to describe the operation of a rocket motor mathematically, a basic
understanding of the layout of a motor, as illustrated in Figure 1.1, is necessary.

Figure 1.1 – A generic layout of rocket motors

An SRM is, in principle, a simple device. A combustion chamber is loaded
with a solid propellant, or grain, which in modern rockets typically comes in
the form of an ammonium chloride mixture with an aluminum fuel. The grain
is ignited and an exothermic reaction is initiated, during which the propellant
burns and generates combustion products or gasses. The generated gases cause
a pressure build-up inside the combustion chamber and are expelled from a
nozzle, causing a net force to act on the motor.

Graphic illustrations are used to more clearly define what is meant by the
grain, motor casing, and burning surface of an SRM. As stated above, the
grain of an SRM refers to the solid propellant that is loaded inside the motor.
An example of a grain is illustrated in Figure 1.2.

The motor casing, in this case, refers to the casing around the motor combus-
tion chamber. An example of a motor casing is illustrated in Figure 1.3.
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Figure 1.2 – An example of an SRM grain.

Figure 1.3 – An example of an SRM casing.

The burning surface refers to the surface of the grain exposed to the combustion
chamber. The burning surface of the grain example, given in Figure 1.2, is
illustrated in Figure 1.4.

Figure 1.4 – An example of an SRM burning surface.
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In order to show the burning surface in relation to the motor casing, Figure
1.5 illustrates the burning surface inside the semi-transparent motor casing.

Figure 1.5 – An example of an SRM burning surface and casing.

1.1.2 Motor model

The basic expression for describing the thrust F generated by a solid fuel
propulsion system is:

F = ṁUnz + (Pnz − Pa)Anz, (1.1.1)

where ṁ is the mass flow rate of combustion products out of the nozzle, Unz
the exit velocity of the exhaust gasses relative to the motor, Pnz the static
exit pressure of the nozzle, Pa the atmospheric pressure and Anz the nozzle
exit plane area. The simplicity of the equation is deceiving as the thrust is the
result of the integral of pressure forces acting on the entire motor, as illustrated
in Figure 1.6.

A nozzle design is said to have an optimal expansion ratio if the nozzle exit
pressure is equal to the ambient pressures:

Pnz = Pa.

This implies that the second term on the right hand side of equation (1.1.1)
will become zero for optimized nozzles and the mass flow rate becomes the
only source of thrust.
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Figure 1.6 – Pressure forces on a SRM during its operational phase.

The mass flow is described by,

ṁ = ρAsṙ −
dP

dt
. (1.1.2)

From equation (1.1.2) it is seen that the mass flow ṁ is a function of the
burning surface area As and the burn rate ṙ. The solid propellant surface
is assumed to regress in a direction normal to the burning surface at a speed
called the burn rate. The burn rate of a solid propellant is commonly modelled
as a function of the local static pressure P0 at the burning surface, by:

ṙ = c(P0)e. (1.1.3)

This is known as the Saint Robert’s or Vielle’s law and models the burn rate as
a function of pressure. The constants c and e in equation (1.1.3) are obtained
empirically for each propellant by performing a number of experimental pro-
pellant burns under various pressures and fitting a regression curve through
the resulting data. More complicated burn rate models exist, which take phe-
nomena such as erosive burning into account. A more detailed discussion on
burn rate models will follow in Section 3.1.2, (the interested reader is referred
to Waesche [4], and Geatrix [5] for further reading). A 2-D illustration of the
physical process described by equations (1.1.2) and (1.1.3) is shown in Figure
1.7.
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(a) (b) (c) (d)

U U U U

m = ρAsṙ∆t

As ṙ∆t

Figure 1.7 – (a) Burn surface and flow field at time t. (b) Regression of burn
surface in the normal direction. (c) Mass flow addition to the flow field. (d)
Burn surface and flow field at time t+ ∆t.

In Figure 1.7 it is shown that during a time step ∆t, the burn surface regresses
a distance ṙ∆t and a mass of m = ρAsṙ∆t is injected into the flow field. This
can be seen as the basic process that drives the operation of an SRM and is
subject to the following parameters:

Nozzle throat area: The throat area of the nozzle restricts the total mass
that can be exhausted from the motor and so affects the pressure inside the
combustion chamber, which in turn affects the burn rate of the propellant.

Grain characteristics: The composition of the propellant determines the
burn rate constants c and e, of equation (1.1.3), as well as the propellant
density ρ of equation (1.1.2).

Burn area profile: The total area of the burning surface and the port
areas of the combustion chamber, that evolves as the grain walls regress, are
commonly modelled as a function of burnt distance.

These parameters are the main area of focus during the design iterations of a
motor. They are manipulated in order to achieve a desired thrust curve which
depends on a set of mission requirements.
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1.1.3 Thrust curves

A motor’s performance can be measured by a thrust-time curve, or simply a
thrust curve, which gives the total thrust delivered by a motor as a function
of time, as illustrated in Figure 1.8. A thrust curve of an SRM can be divided
into three separate phases, namely the ignition transient (IT), quasi-steady
state, and burn-out phases, respectively.

Figure 1.8 – Thrust curve of a SRM.

Ignition transient phase: The IT phase is defined as the time between
the ignition signal and the instance at which the SRM reaches a quasi-steady
operational state. The IT phase comprises of three sub-stages, referred to
as the induction stage, the flame spreading stage, and the chamber filling
stage. During the induction phase the local ignition of the grain nearest to
the igniter occurs. During the flame spreading phase, a flame front travels
along the surface of the grain until the entire exposed surface area of the
grain is ignited. The propellant starts to undergo a change of state from
solid propellant to hot combustion gasses and the combustion chamber is filled
to a point where the pressure inside the motor reaches a quasi-steady level,
constituting the chamber filling phase.
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Quasi-steady state: Once the quasi-steady operational pressure is reached,
the pressure inside the combustion chamber stabilizes and the rate at which
combustion products are generated by the burning grain and the mass flow
rate exiting the nozzle, are comparably similar. This means that the rate
of change of mass inside the combustion chamber becomes negligibly small.
For the quasi-steady state, the second term on the right hand side of equation
(1.1.2), is assumed to be zero since its contribution is assumed to be negligible,
i.e.:

ṁ = ρAsṙ. (1.1.4)

Burn-out phase: The burn-out phase of the grain is the time from the first
instance at which an area of the motor casing is exposed to the combustion
chamber, to the time at which the grain is completely burnt out and there is no
propellant in its original solid form remaining inside the combustion chamber.
Depending on the geometry of the grain, the burn-out phase might comprise
of a significant fraction of the total motor operation and can be seen as a
continued quasi-steady state operation. Equation (1.1.4) remains applicable
to the motor simulation during this phase.

Thrust curves give information about the characteristics of a motor which can
be defined according to the gradient of the thrust curve. The three most basic
examples of characteristic thrust curves are progressive, regressive, and neutral
burning thrust curves, as illustrated in Figure 1.9. For example a progressive
thrust curve has a positive gradient and implies the thrust delivered by the
motor increases during the operation of the motor.

These characteristic motor types may be combined to achieve desired effects.
For instance, consider a payload that needs to be propelled at a relatively high
speed through a low drag environment for an extended period, for example
in an air-to-air missile application. A progressive curve followed by a neutral
curve, as illustrated in Figure 1.10, would be beneficial since the payload could
be accelerated rapidly up to the desired speed, after which the speed could be
sustained for a duration with a smaller amount of thrust. This is referred to
as a boost-sustain curve.
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Figure 1.9 – (a) A neutral burning thrust curve. (b) A progressive thrust
curve. (c) A regressive thrust curve.

Figure 1.10 – A boost sustain thrust curve.

1.1.4 SRM grain design

The performance of a motor depends on a number of design features, notebly
the external shape of the motor casing, the location and size of the igniter, the
shape of the nozzle, and the type and shape of the loaded grain. Typically,
parameters such as payload mass, flight time and distance to target will be
specified in a set of mission requirements. The motor’s external shape and
aspect ratio can be decided upon. The aerodynamic drag coefficients can be
determined either by wind tunnel, or Computational Fluid Dynamics (CFD)
simulations.

A required thrust curve can be determined by external ballistic calculations,
which the designer can then use as a reference during the rest of the design pro-
cess. From equations (1.1.1), (1.1.2), and (1.1.3), it can be seen that ṁ, ṙ, P ,
and As, are all co-dependent and form a positive feedback loop, since an in-
crease in the burn area will cause an increase in the mass-flow rate which will
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increase the internal pressure inside the motor. This in turn increases the burn
rate and in the case of a progressive area profile, will cause a greater rate of
increase in the burn area. This makes the motor thrust curve sensitive to the
burn area profile and gives merit to the statement that typically, most of a
designer’s time is spent on refining the burn area profile of a motor design in
order to achieve a desired thrust curve.

Apart from the manipulation of the grain design to achieve a desired area
profile, the structural integrity of grain should also be taken into account. The
forces exerted on the grain during operation can be severe and a structural
fracture could cause a motor to fail. Additionally, SRM applications often
require the motors to be exposed to varying conditions. For example, a motor
used to propel an air-to-air missile will be fixed to the wing of a plane. During
its lifespan it might encounter temperatures varying from −50◦C to 40◦C. The
grain structure should be able to withstand the contraction and expansion of
both the motor casing and the grain itself as a result of the high temperature
variations.

1.2 Grain regression analysis

Grain regression analysis refers to that part of SRM simulation that calculates
the evolving burning-surface area and combustion chamber volume and so de-
scribing the burn area profiles. For clarity, the definition of a burn area profile
is the total burning surface as a function of the distance that the propellant
walls have burnt or regressed. Figure 1.11 gives an example of a burn area
profile along with illustrations of the grain burning surface at different times
during the grain regression.

1.2.1 Previous work

Traditionally, burn areas have been modeled as analytic functions of distance
burnt. A good example is the work of Umbel [6]. This can in some instances
also be achieved with the help of Computer Aided Design (CAD) software
packages, by parametrizing surface models. The Solid Propulsion Program
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Figure 1.11 – An evolving burning surface and a corresponding area profile of
an SRM grain design.

(SPP) [7] uses primitives such as planes, spheres, and the hyperbolic and
parabolic tori, to build an analytical model of the surface and so creates a
function for calculating the burn area. The analytical or geometric modeling
of grain regression provides accurate area descriptions, however, the complexity
of some grain designs make analytical modeling extremely difficult and time
consuming.

Numerical interface tracking methods have become a viable alternative and
some examples of their implementation for the purposes of grain regression
analysis have been successful. The Center for Simulation of Advanced Rockets
(CSAR) at the university of Illinois has developed a code called ROCGRAIN,
a sub-module of their SRM simulation code ROCSTAR, which utilizes a min-
imum distance function to calculate the burn surface area [8]. The SNPE
propulsion software called PIBAL utilizes a constant velocity surface advance-
ment algorithm that treats the burn surface as an advancing interface and
calculates the explicit surface area at each time step [9].
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A recurring theme in the above-mentioned approaches is the use of constant
burn rates to perform the regression of the burning surface. This is an un-
coupled approach to the grain regression analysis, since the area profiles are
first calculated before the internal combustion simulation is done. An assump-
tion about the spatial distribution of burn rates is implicitly introduced, and
no information about the spatial variations of burn rates can be incorporated
into the grain regression model. This assumption can potentially introduce
significant errors into the simulation since varying burn rates could cause the
topological characteristics of the grain surface to vary from the predicted val-
ues. In order to circumvent the introduction of significant errors, the common
practice is to divide the grain into smaller segments and model each one’s area
profile separately, choosing the location of the divisions such that the possib-
ility of having a topographical feature spread from one segment to another is
minimal.

There has been a number of attempts to utilize interface advancement schemes
with spatially and temporally varying burn rates, in order to couple the grain
regression analysis and the internal ballistics solvers and accurately describe
the surface evolution. Recently CSAR has added the module ROCPROP for
the 3-D grain regression that employs a method called the Face Offsetting
Method (FOM), developed by Joia [10]. Level set methods introduced by
Sethian and Osher [11] has also been employed, most notably by Cavalini [12],
however, the LSM was only coupled to a 0-D internal ballistic solver. To
our knowledge, the only example of a 3-D grain regression module, coupled
to quasi-1-Dimensional (Q1-D) internal ballistics (IB) with spatially varying
burn rates is the ROCSTAR code of CSAR.

1.3 Motivation of research

The production and testing of experimental SRMs are expensive and time
consuming endeavors. The use of numerical simulation tools in order to reduce
the cost and design time during the development of a novel motor has become
necessary for SRM manufacturers competing in the market place.
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Due to the fact that analytical modelling of complex grain designs is a time
consuming task, and difficult to incorporate into internal ballistics simulations,
the need for an automated grain regression module became apparent. The
effects of the assumption of spatially constant burn rates also warranted further
investigation.

The aim of the work presented in this thesis was to establish a working grain
regression module capable of handling arbitrary grain designs and couple to a
Q1-D internal ballistics (IB) solver with spatially varying burn rates.

1.4 Thesis layout

Chapter 2: Numerical interface advancement

First a general description of the interface tracking problem is presented, after
which some popular numerical techniques for solving the equations of motion
of a general interface are discussed. The requirements of an interface tracking
technique employed for grain regression analysis are discussed and a detailed
description of the chosen technique, namely the Level Set Method (LSM), is
given.

Some remarks on the properties of implicit surface representation is followed
by a discussion on the numerical techniques used to solve the level set equa-
tion. A detailed description of the chosen method for signed distance function
generation is also presented.

Finally the evaluation of interface properties such as the total surface area
(burn area) is discussed and the use of Monte-Carlo integration for this purpose
is motivated and explained.

Chapter 3: Internal ballistics coupling

A short description of the internal ballistics solver that will be used to couple
the grain regression analysis module is presented. The domain discretization
for both the LSM and IB solvers is discussed and the method of coupling the
two grids is explained. The use of multiple time-scales for the two solvers is dis-
cussed. Finally the layout of the fully coupled algorithm for motor simulation
is given.
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Chapter 4: Results and validation

The grid dependency of the implicit surface representation by means of signed
distances as evaluated. The MC integration methods, including a thin envelope
approximation to a surface, are validated through a number of 2-D and 3-D
analytical cases and the geometric evaluation of existing SRM desings. The
LSM interface advnacement scheme is verified by three analytical cases that
pose typical known problem areas for numerical interface advancemt namely
corners, cusps, and a changing topololy. Finally a fully coupled simulation of
a novel motor design was run and the results compared to the actual static
test experimental data.

Chapter 5: Conclusions and recommendations

Some discussions and conclusions ons on the validity of the preposed grain
regression module. The signed distance genertion, MC-integration, and level
set numerical advancement is each discussed seperately. A number of areas for
future reseach are identified, including some initial ideas and strategies.

1.5 Published work

Part of the work presented has been published in the AIAA proceedings of the
2013 Joint Propulsion Conference. Sullwald et al [64] describe the preposed
grain regression module, including the MC-integration techniques. Rousseau
et al [65] describe a rapid SRM design tool that is to be extended by the grain
regression module of Sullwald et al [64]. The papers are included in Appendix
C.
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Chapter 2

Numerical interface
advancement

This chapter is devoted to the numerical model developed for grain regression
analysis of SRMs. The model is based on level set methods and Monte-Carlo
integration. First the requirements of a technique to be applied to grain regres-
sion analyses are set. The general problem of interface tracking is formulated
and a number of popular interface tracking techniques are discussed, after
which the choice of LSM is motivated. The techniques for setting the initial
conditions, a signed distance function, and integration of the surface area and
volume of a 3D implicit interface, are developed. Finally the error sources
introduced by the interface tracking and parameter integration techniques are
discussed in their entirety.

2.1 Requirements of a numerical interface
advancement method for grain regression
analysis

The objective is to create a grain regression module capable of treating arbit-
rarily complex grain surfaces and motor casing geometries that can be coupled

15
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to a Q-1D internal ballistics solver. The requirements for the interface tracking
procedure include:

• The interface advancement techniques in their entirety should be applic-
able to 3D interfaces.

• The initial conditions of the interface tracking procedure are to be gen-
erated from a CAD output file.

• Arbitrarily complex geometries, including sharp discontinuities in surface
gradient and changes in topology, must be dealt with effectively.

• The interface must be evolved or advanced in its normal direction at
non-uniform, spatially and temporally varying speeds. This also implies
that a method for determining the local normal direction of the interface
should exist within the framework of the interface tracking procedure.

• Accurate calculation of geometric properties of the interface, such as sur-
face area, that are relevant to the internal ballistics simulations, should
be possible.

• The geometries of motor casings should be incorporated into the calcu-
lations of geometric properties to effectively describe the burn out phase
of a motor.

• A direct coupling to Q1-D internal ballistics should be possible.

It should be noted that for the purpose of the current work the coupling to 3-
D internal ballistics solvers will not be attempted, due to the relatively naive
knowledge that currently exists regarding the 3-D flow characteristics of an
SRM. It is however a goal of the author to facilitate the possibilities of coup-
ling a grain regression module to a fully 3-D internal ballistics modules in the
future, as discussed further in Chapter 5. In order to achieve this, the regres-
sion module is subject to number of added requirements, the most substantial
of which is the need to facilitate the generation of a 3-D computational grid
for each time step of the fully 3-D motor simulation.
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2.2 The problem of advancing interfaces

The problem of tracking an interface that moves with a speed V in the normal
direction ~n is common in many physics and engineering applications and a
substantial amount of research exists that is focused on interface tracking. A
good overview of techniques can be found in the book by Sethian [13].

A closed interface γ on a domain Ω, can be seen as a boundary between two
regions of the domain, say Ωinside and Ωoutside as illustrated in Figure 2.1

γ

Ωoutside

Ωinside

Figure 2.1 – A 2-D interface γ, separating Ωinside from Ωoutside.

One of the main challenges is the formulation of the speed function V , which
may depend on local properties such as curvature, global properties such as
the size or area of the interface, or properties independent of the size or shape
of the interface. The focus of this chapter will be on tracking an interface with
a known speed function and calculating global parameters such as interface
length in 2-D or surface area in 3-D. For the purpose of the current work,
we will only consider propagation in the normal direction and no external
advection velocity is considered, since the physics of SRM grain regression
analysis adheres to this restriction.

In Figure 2.2, the parametric representation of γ , a simple closed curve in
R2, as well as its normal direction (or the direction in which it is advanced) is
illustrated. Let γ(t) be a family of curves generated by moving in its normal
direction with a speed V (t). The curve is parametrized so that the position of
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γ at time t is given by, ~x(s, t) for 0 > s > smax, where s is the spatial parameter
used to move along the length of the interface and smax is the length of the
interface.

~n

~n

~n

~x(s = 0, t)

(∂x
∂t
, ∂y
∂t

) = V · ~n

s

s

s

x

y

Figure 2.2 – parametric view of an interface propagating in its normal direction.

The normal vector for the chosen parametrization is given by,

~n = ∂y/∂s

((∂x/∂s)2 + (∂y/∂s)2)1/2 ,
−∂x/∂s

((∂x/∂s)2 + (∂y/∂s)2)1/2 . (2.2.1)

The equations of motion for the interface can now be written in terms of
individual components ∂~x = (∂x/∂t, ∂y/∂t) where,

∂x/∂t =
(
V

∂y/∂s

((∂x/∂s)2 + (∂y/∂s)2)1/2

)
; (2.2.2)

∂y/∂t =
(
−V ∂x/∂s

((∂x/∂s)2 + (∂y/∂s)2)1/2

)
. (2.2.3)
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2.3 Lagrangian approach

A standard approach to modeling moving interfaces comes from discretizing
equations (2.2.2) and (2.2.3). Essentially, the parametrization is discretized
into a set of marker particles whose position at any time t are computed and
used to reconstruct the front. This is often referred to as the marker and
string technique, so called since the linear movement of each of the marker
particles in the normal direction with distance V × ∆t can be seen as the
string connecting the particle positions at time t with their positions at time
t+ ∆t, as illustrated in Figure 2.3.

Figure 2.3 – The marker-string method.

These techniques present problems under shock formation and dissipation of
the marker particles in cases of high negative or positive curvature. A second
challenge is that in some cases, a decision on whether a marker remains phys-
ically relevant is required. This is done by what is known as an entropy
condition.

2.3.1 Shocks and dissipation

At areas of negative curvature the propagation will cause the markers to bunch
together and the arc length between them will decrease, which essentially
forms a shock in the solution. Consequently, in order to maintain numerical
stability, the time step will need to be decreased and can become small to
the point of being impractical. At areas of positive curvature the markers will
dissipate, making accurate reconstruction of the front difficult as information is
essentially lost in the dissipation of the markers. Both of the above mentioned
occurrences are illustrated in Figure 2.4. Note how the markers group together
at a concave section of the interface, and dissipate at a convex section.
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Figure 2.4 – A curve in 2-D advancing with speed in the outward normal
direction. Note the shock forming at the local minimum and the dissipation of
markers at the local maximum.

A possible route around the problem is to reinitialize the markers when arc
lengths between neighboring markers decrease to below a given minimum dis-
tance. This would negate the numerical instability but sacrifices some accuracy
since new errors are introduced by re-initializing the markers onto an approx-
imation of the interface.

2.3.2 Changes in topology

In the case of a cusp or when a change in topology occurs, the markers can
move through a part of the interface and become irrelevant to the physical
problem, as illustrated in Figure 2.5. Two circles are advancing outward and
the markers that move through the interface are highlighted. An entropy
condition is necessary to find the physically relevant solution and discard the
non-physical sections of the interface.

The notion of entropy and its connection to physically relevant solutions of
propagating interfaces is formally derived and discussed in depth by Sethian
[13].
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Figure 2.5 – Two circles advancing outward and merging after some time. An
entropy condition is needed to establish which markers are kept alive and which
are deleted.

2.4 Eulerian approach

An Eulerian approach to the front tracking problem is representing the front
on a fixed grid and locating the front at each time step, as it moves through the
grid domain. These are often referred to as ‘front capturing’ techniques, and
have been preferred to the Lagrangian ‘front tracking’ approach in a majority
of the literature. The fixed grid approach allows for the problems of shock
formation, dissipation, and the difficulty of handling topological changes to
be treated more effectively, since they are implicitly resolved and no marker
particles need to be deleted. The most popular approaches are the Volume Of
Fluid (VOF) and the Level Set Method, or LSM.
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2.4.1 Volume of fluid (VOF) method

Introduced by Noh and Woodward [14] in the form of simple line interface
calculations, VOF was originally designed for transport under an advection
velocity, which depended solely on the position of the front and not on the
local shape or orientation. This was later extended by Chorin [15] such that
interfaces advancing or propagating in the normal direction could be described.
The VOF method is based on a fixed grid setup where the cell value is equal
to the fraction of the cell ‘inside’ the interface. If the cell is on the outside, it
is awarded a value of 0, and if the cell is inside, it is awarded a value 1. The
cells that are cut by the interface are given a fraction between 0 and 1, so as to
represent the portion of the cell that lies within the interface. An example of
an interface as well as its representation in the VOF framework is illustrated
in Figure 2.6.
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Figure 2.6 – The VOF representation of an interface

The cell fractions are updated and the front propagates by performing sys-
tematic sweeps along each coordinate direction. In Figure 2.7 an example of
a single dimensional sweep is illustrated.

The original method of front reconstruction was by means of straight lines.
Since then many elaborate reconstruction techniques, including slanted lines
and curves have been introduced, see Lafauri [16] and Hirt [17].

These methods handle changes in topology much better than the Lagrangian
methods because of their Eulerian nature, however there are still a number
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initial fractions front reconstruction and propagation updated fractions

Figure 2.7 – VOF advancement scheme - y direction sweep.

of drawbacks. In order to accurately capture detail of the front, the grid
resolution needs to be refined substantially as a result of the simple, crude
method of representing the front. There is also a dependency on the grid
orientation and for intricate geometries with complex speed functions, this can
become problematic. An alternative technique was proposed during the late
1980s that refined the Eulerian framework for interface tracking. The essential
idea was to not only classify a cell as inside or outside an interface, but by its
distance from the interface. This made for a more detailed representation of
the front.

2.4.2 Level set methods

The LSM, introduced by Osher and Sethian [11], is used to advance an interface
γ in its normal direction at a speed V , where γ is an interface in 2-D, 3-D or
higher dimensions. Both spatially and temporally varying speed functions can
be employed and treated by the LSM.

The first step in the development of these techniques started with the analysis
of corners and singularities in propagating interfaces. The role of curvature
as a regularizing or smoothing term was investigated and the connection to
the notion of entropy conditions and shocks in hyperbolic conservation laws in
gas dynamics were shown. This led to the realization that schemes from com-
putational fluid mechanics, specifically designed for approximating solutions
to hyperbolic conservation laws, can be used to solve the equations of front
propagation. For a good description and overview of these techniques refer to
Sethian [13].
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The method relies on representing γ as the zero level set of a higher dimensional
function, say φ, defined on a domain Ω that spans γ, so that γ essentially
divides Ω into two sub-domains, Ωinside and Ωoutside.

The level set Λisovalue, for a given isovalue ∈ R, of a function f is defined as,

Λisovalue = {(~x1, ..., ~xn)|f(~x1, ..., ~xn) = isovalue},

and thus, the following holds true if γ is implicitly represented as the zero level
set of φγ:

γ = {~x | φγ(~x) = 0}, (2.4.1)

φγ(~x) > 0 ∀ ~x ∈ Ωoutside, (2.4.2)

φγ(~x) < 0 ∀ ~x ∈ Ωinside, (2.4.3)

where ~x here refers to an arbitrary point of the domain Ω on which φγ is
defined. A visual illustration of the implicit representation of a 2-D circular
interface is given in Figure 2.8.

Figure 2.8 – Visual representation of an implicit circular interface.
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Once an implicit front representation is initialized, the LSM advances an inter-
face implicitly by solving the level set equation on the implicit function, and
so moving forward in time. This equation can be derived by considering the
zero level set as the evolving interface γ.

The requirement is that the zero level-set of φγ remains concurrent with γt,
the evolving interface, at any given time t. Let ~x t be an arbitrary point on
the interface. Now the requirement can be written as

φ(~x t, t) = 0. (2.4.4)

Finding the material derivative derivative of equation (2.4.4) with respect to
t yields,

∂φ

∂t
+∇(φ(~x t, t)) · ∂~x t

∂t
= 0. (2.4.5)

Now let V be the speed at which γ propagates in its normal direction ~n,
then V = ∂~x t

∂t
· ~n. Note also that the unit normal of in terms of the implicit

representation φ can be found by ~n = ∇φ
|∇φ | . By substitution equation (2.4.5)

reduces to
∂φ

∂t
+ V |∇φ| = 0, (2.4.6)

the level set equation, as first proposed by Osher and Sethian, [11].

After the implicit function evolution, the interface at the new time step needs
to be extracted from the evolved implicit function. A conceptual illustration
of a 2-D example of the procedure is given in Figure 2.9.

2.4.3 Extending the speed function for the LSM

A point perhaps not immediately clear from the above description of the LSM,
is the need for extension velocities in order to solve equation (2.4.6) on the
entire domain Ω on which φ is defined. Depending on the application, the
speed with which the interface propagates might be a function of local, or
global properties of the interface, such as curvature or enclosed volume, or
independent factors such as external physics of the particular problem being
simulated.
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Figure 2.9 – A 2-D illustration of the LSM procedure.

For most applications, such as the problem of grain regression in SRM simu-
lation, the speed function is only defined on the interface itself and the speed
with which the interface advances at locations away from the interface, is ill
defined and needs to be inferred from the speed function as defined on the
interface itself.

Let the speed with which the interface propagates be given by V and the
speed function across the higher dimensional domain Ω by Vext. The only
restriction on Vext is that it needs to concur with the speed function V at
location approaching the interface itself, i.e.

lim
~x→~x∗

V (~x) = V (~x∗), (2.4.7)

for any point ~x∗ on the interface itself. The choice of Vext can be made such that
a particular requirement of the application is fulfilled. For example Adelstein
and Sethian [18] described a method for extending a speed function such that
the level sets of the implicit function remain equidistant and do not bunch up or
spread out. Another way of interpreting this is that the gradient of the implicit
φ function does not become steep or shallow. This method, relying on the fast
marching method, Sethian [19], has become one of the most popular techniques
for building extensions to speed functions in LSM application. Some examples
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of other techniques are for instance found in Malladi [20], where the speed at
a point not on the interface was set equal to the speed at the closest point
located on the interface and in Sussman [21], where an integral expression for
the speed on the interface was evaluated both on and off the interface in order
to build Vext.

For the current application the speed function will only vary in a single di-
mension along a 3-D interface, since Q1-D internal ballistics simulation will
be utilized. The speed at any position of a plane perpendicular to the motor
axis, at a given distance along the motor axis, will be set equal to the speed
defined for the interface at the given distance.
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2.5 Numerical integration of the level-set
equation

The level set equation (2.4.6) for advancing an interface may be written in
conservative Hamilton-Jacobi form as,

φt +H(φ) = 0, (2.5.1)

with H(φ) given by
H(φ) = V |∇φ| = 0. (2.5.2)

The equation can be solved utilizing techniques borrowed directly out of the
large number of schemes developed for CFD. Osher and Sethian [11] develop
both first and higher order spatial schemes and showed that these schemes
converge to the physically relevant entropy satisfying solution of the level set
equation. This was achieved by formulating the level set equation in conserva-
tive hyperbolic form as ut+[G(u)]x = 0, and finding the limit of the associated
viscous form ut + [G(u)]x = εuxx with ε → 0 [11]. As noted by Sethian [13],
the first and second order upwind schemes are sufficient for most applications.
More detail about the derivation of the ‘entropy satisfying’ schemes is given
in Appendix B.

The schemes mentioned above make provision for a direction changing speed
function, i.e. the speed with which the interface propagates can change sign,
meaning that the interface can move in both positive and negative directions.
For the application considered in this thesis, the velocity function will remain
positive, and therefore simplified versions of the general schemes are presented.

In order to build a numerical scheme, rewrite equation (2.5.1) as

φt = −H(φ). (2.5.3)

Assume for the moment a speed function V = 1 so that H(φ) = |∇φ|. Fur-
thermore let the function φ be defined on a discrete 1-D grid with a uniform
grid spacing of ∆x. Equation (2.5.3) can then be approximated by

φn+1
i − φni

∆t = −g(∇(φ)ni+1/2,∇(φ)ni−1/2), (2.5.4)
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where φni refers to the value of φ at time t = n at the grid point x = i. The
gradients ∇(φ)ni+1/2 and ∇(φ)ni−1/2 can be approximated by central difference
operators φn

i+1−φ
n
i

∆x and φn
i −φ

n
i−1

∆x , respectively.

The HamiltonianH(φ) = |∇φ| is approximated by the numerical flux g(∇(φ)ni−1/2,∇(φ)ni+1/2),
where g(u1, u2), for two scalars u1 and u2, is defined as

g(u1, u2) = [max(u1, 0)2 + min(u2, 0)2]1/2. (2.5.5)

A basic scheme for 1-D can now be written as

φn+1
i = φni + ∆t(max(φ

n
i − φni−1

∆x , 0)2 + min(φ
n
i+1 − φni

∆x , 0)2)1/2. (2.5.6)

The scheme is illustrated in Figure 2.10.

Figure 2.10 – The basic 1-D entropy satisfying scheme for solving the level set
equation.

2.5.1 First order scheme

Extending the 1-D scheme and assuming the speed function V to remain pos-
itive, a first order 3-D scheme is developed as follows:

φn+1 = φn − (∆t)V∇+, (2.5.7)
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where ∇+ approximates |∇φ| and is given by

∇+ = [max(D−xi,j,k, 0)2 + min(D+x
i,j,k, 0)2 +

max(D−yi,j,k, 0)2 + min(D+y
i,j,k, 0)2 +

max(D−zi,j,k, 0)2 + min(D+z
i,j,k, 0)2]1/2. (2.5.8)

The following notation conventions are applied

D− = φi − φi−1

dx
, (2.5.9)

D+ = φi+1 − φi
dx

. (2.5.10)

2.5.2 Second order scheme

For the second order scheme, we define

D−−i = 2ui − 3ui−1 + ui−2

dx
, (2.5.11)

D+−
i = ui+1 − 2ui + ui−1

dx
, (2.5.12)

D++
i = 2ui+2 − 3ui+1 + ui

dx
. (2.5.13)

and modify the spatial difference operators of equation (2.5.8) to:

D−i = ui − ui−1

dx
+ 0.5 ∗ S(D−−, D+−), (2.5.14)

D+
i = ui+1 − ui

dx
+ 0.5 ∗ S(D++, D+−), (2.5.15)

where the switch function S(x, y) is defined as

S(x, y) =


x if |x| ≤ |y|, xy > 0,

y if |y| < |x|, xy > 0,

0 if xy ≤ 0.

(2.5.16)

By making the above substitution in the first order scheme developed previ-
ously, equation (2.5.7), now describes a second order accurate scheme which
remains first order accurate for regions located around shocks or high curvature
of the interface.
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2.5.3 Time step and time integration

Both the first and second order schemes above are based on explicit Euler time
integration. The spatial gradient approximation can be used to build higher
order Runge-Kutta type implicit time integration. For the current work on
SRMs only an explicit time integration will be employed since the benefit
of implicit time integration is somewhat negated by the fact that the speed
function is dependent on an iterative coupling with an internal ballistics solver.
This means that the implicit time integration at different intervals would not
be accurate since no prior knowledge of the speed function or burn rate exists.

Another consideration is the fact that the computational cost of the overall al-
gorithm is more notably affected by the computational cost of evaluating the
geometric properties of the interface and so improvements on the computa-
tional efficiency of the actual solving of the LSM equation is not the primary
concern. As far as stability is concerned, the necessary Courant-Frederich-
Levy (CFL) condition on the explicit solver requires a time step ∆t to adhere
to:

∆t < V ∗ dmin, (2.5.17)

where dmin is the minimum grid spacing in the domain Ω.
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2.6 Properties of implicit interfaces

The implicit interface framework of the LSM has some useful properties that
allow the intersection, union and averaging of interfaces by simple operations.

2.6.1 Union and intersection of implicit interfaces

Finding the union or intersection of two interfaces by means of geometric
arguments might be challenging to employ. With the implicit framework, i.e.
representation by means of SDFs or similar functions, intersecting and finding
the union of two interfaces reduces to finding the maximum and minimum
local values of the superimposed implicit functions.

Let γ1 and γ2 be represented by φ1 and φ2, both defined on a common domain
Ω. The relations given in Table 2.1 hold true.

Table 2.1 – The implicit analogue for the intersection and union of interfaces.

γ1 ∪ γ2 ↔ min(φ1, φ2)
γ1 ∩ γ2 ↔ max(φ1, φ2)

An illustration of what is meant by the union and intersection of two surfaces
is given in Figure 2.11.

Figure 2.11 – The intersection and union of two interfaces.
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2.6.2 Averaging interfaces

Implicit interfaces also allow the averaging or weighted averaging of two inter-
faces by averaging the implicit surface representations. As before, let γ1 and
γ2 be represented by φ1 and φ2, both defined on a common domain Ω. By
adding φ1 and φ2 and extracting the resulting interface, an average of γ1 and
γ2 is found. The results for a simple 2-D circle and square are illustrated in
Figure 2.12.

Figure 2.12 – The average of two interfaces found by adding their implicit
representations.

It is also possible to perform waited averaging, and thereby finding a smooth
merge between two geometries. Define φ1λ2 as,

φ1λ2 = λφ1 + (1− λ)φ2 (2.6.1)

Figure 2.13 illustrates a smooth transition between a circle and a square by
varying λ and employing equation (2.6.1).

Figure 2.13 – A number of steps in a smooth transition between circle and a
sphere
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2.7 Signed distance functions of interfaces

2.7.1 Introduction

As discussed before, in order to advance an interface using the LSM, an implicit
representation of the interface is required where the interface is embedded as
the zero level set of a higher dimensional function. The LSM relies on solving
a PDE on the said function and it would therefore be beneficial, numerically,
to choose it such as to be relatively smooth. A signed distance function (SDF)
possesses both these attributes and is the most commonly used initialization
for the LSM. A 2-D example is given in Figure 2.14, where the distance from
the interface to the center of each cell is shown.

Figure 2.14 – A 2-D example of a discrete SDF of an interface on a rectangular
grid.

Let γ be a closed interface, defined on a domain Ω, where, as before, closed
implies that there is no continuous path in Ω from any point inside the interface
to any point outside the interface that does not intersect the interface. Given
a coordinate position in Ω, an SDF of γ returns the shortest possible distance
to S and signs the distance negative or positive depending on whether the
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coordinates are located inside or outside the surface, respectively. If γ were
not closed on Ω, there would be a path from a point inside γ to a point outside
γ that does not intersect γ, and determining the position along this path at
which the region inside γ and the region outside γ meet is therefore arbitrary
and the SDF becomes ill-defined.

For a discrete SDF, as is the case in Figure 2.14, the function is defined on a
grid Ωg that is super-imposed over the interface and each grid point is given
the value returned by the SDF for the grid point coordinates.

For the purpose of the application considered, it is asumed the interface is
available in the stereo lithography (STL) format.

2.7.2 STL representation of surfaces

Since most CAD packages provide the option of exporting surfaces in the form
of triangular planer surface patches by means of the STL format, an automated
signed distance generator, which utilizes the triangulated format in order to
generate 3-D discrete SDFs, was developed. A triangular patch in STL format
also contains information about the surface outward normal. The right hand
rule convention, as described in appendix A, is applied to the patches. Thus,
for a patch given by the vertices ~x1, ~x2 and ~x3, the positive surface normal is
found by ~n = (~x2 − ~x1) × (~x3 − ~x2). An extract from an STL file is given in
Table 2.2 and its resulting surface patch is shown in Figure 2.15.

Table 2.2 – A single patch in STL format.

solid ascii
facet normal 1.119645e-001 0.000000e+000 9.937122e-001

outer loop
vertex 3.586e+000 2.145e+000 1.462e+000
vertex 1.814e+000 1.632e+000 1.823e+000
vertex 2.466e+000 2.741e+000 -1.300e+000

endloop
endfacet
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Figure 2.15 – Visual representation of the STL patch given in Table 2.2.

2.7.3 Previous work

Since Sethian and Osher [11, 13] introduced the fast marching method (FMM),
there have been a number of variations and improved implementations of the
FMM for solving the SDF of surfaces. These methods are based on a boundary
value formulation of a simplified Eikonal equation, sometimes referred to as
the signed distance equation,

|∇d| = 1, (2.7.1)

where d is the distance from the surface. Equation (2.7.1) is then solved on
the grid to determine the distance d. The FMM solves equation (2.7.1) by
solving the grid points sequentially. The order is such that the grid points are
solved from the lowest distance value to the highest. The reason being that
the information only propagates outward to higher values of the SDF and any
specific grid point can only be influenced by values lower than itself. This
allows the FMM to solve the SDF in O(n log n) time. By employing untidy
priority queues, Yatziv et al. [22] managed an O(n) implementation of the
FMM. Swartz and Colella [23] employ a global marching method, first intro-
duced by Kim [24], along with a second order spatially accurate discretization
of equation (2.7.1). The global marching procedure makes this method a good
candidate for parallel processing. Fast sweeping methods introduced by Zhao
[25], is another variation of the FMM for the Eikonol equation that has grown
in popularity. Oberhuber [26] performed a fairly recent survey on some nu-
merical methods for generating and recovering the SDF of a given interface
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and provides a good source of references for more of the variations of these
approaches.

All of these methods, however, require an initialization through some form of
analytical computation before computing a complete SDF to a given interface,
which makes their advantages secondary to a robust analytical approach.

The naive analytical approach is to perform a brute force calculation visiting
each grid point and finding the distance to each triangle surface patch, saving
the minimum distance. Finding the distance to a triangle patch is in itself not
a simple task. Eberly [27] describes an algorithm for computing the distance
from a point to a triangle in 3-D. Finding the scalar dot product of the distance
vector and the positive normal (see Section 2.7.2) of the triangle, determines
whether the point lies on the inside or the outside of the patch.

Payne and Toga [28], proposed a number of optimizations such as computing
only squared distances at first, and taking the square root and calculating the
sign only after the minimum squared distance is found. They also proposed
storing the triangles in a tree of bounding boxes so that once a distance in,
say, box A is found to be significantly less than a distance in box B, all the
triangles from box B can be discarded. This procedure is followed hierarchally
up the tree and the dimensions of the boxes are decreased incrementally as the
grid is refined. An improvement on the method of calculating the sign of each
grid point was made by Baerentzen and Aanaes [29], where they define angle
weighted pseudo normals to determine the inside or outside location of each
grid point. The Meshsweeper algorithm introduced, by Gueziec [30], employs
a hierarchical bounding box method, but differs from the work done by Payne
and Toga [28] in that the bounding boxes are used to classify the grid points
rather than the triangles that make up the surface.

In 2001, Mauch [31] introduced a novel approach where, instead of visiting each
point, each triangular patch is observed. Its face, each of its three edges, and
each of its three vertices are treated independently, and grid points that might
be influenced by each of these are found by defining polyhedra and performing,
what is known as, scan conversion on the grid domain. This method gives an
implicit sign calculation, since each polyhedron lies either inside or outside the
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interface. The method of SDF generation described in Section 2.7.5 is, for the
most part, based upon Mauch’s methods.

2.7.4 SDF generation

Let γ be a closed surface in STL format, defined on a domain Ω, and let φ be
the SDF of γ, defined on a grid Ωg, such that γ ⊂ Ω ⊂ Ωg.

It is important to note that the closest point on a triangular surface to an
arbitrary point ~x in <3 could lie on either the face, an edge, or a vertex of a
triangular surface. Each of the faces edges and vertices are treated independ-
ently, by defining polyhedra that contain the points that will necessarily be
closer to the face, edge, or vertex in question, than any other point on the
triangular surface, and performing scan conversions to determine which points
of the grid lie within the respective polyhedra. These points will be referred
to as “possibly closest” to the face, edge, or vertex.

Case 1, face:

Let the vertices ~x1, ~x2 and ~x3 define a triangular patch of γ with normal vector
~n = (~x2 − ~x1)× (~x3 − ~x2), as illustrated in Figure 2.16.

~x2

~x1

~x3

L1,2

L2,3

L3,1

~n

Figure 2.16 – A single triangular patch of the interface γ.

The grid points ~x ∈ Ωg, possibly closest to the triangular face are enclosed by
three planes, PL1, PL2, and PL3, perpendicular to the face plane and running
through each of the three edges L1,2, L2,3, and L3,1, as illustrated in Figure
2.17. The edge Li,j refers to the edge connecting ~xi and ~xj.

In order to sufficiently describe the plane through L1,2, one only needs its
normal vector and a point on the plane. Since the edge points are given and
known to lie on the planes, there is only the normal vector left to calculate.
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Figure 2.17 – Three planes inclosing points possibly closest to the triangular
face.

This can be achieved by finding three consecutive vertices that apply to the
right-hand rule convention.

Define ~x∗ as,

~x∗ = ~x1 + ~n,

as illustrated in Figure 2.18. The vertices ~x1, ~x∗, and, ~x2 now satisfy the right-
hand rule convention on the plane PL1, and the desired normal can be found
by

~n1 = (~x∗ − ~x1)× (~x2 − ~x∗).

~x2

~x1

~x∗

~x3

~n1

Figure 2.18 – Defining the normal of the plane PL1.

The normals ~n2 and ~n3 can be found in a similar fashion. This then leads to
the scan conversion which defines the domain Ωx1,x2,x3 , a subset of the domain
Ωg, in which the points possibly closet to the face x1x2x3 reside,
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Ωx1x2x3 = {~x ∈ Ωg | (~x−~x1) · (~n1,2) ≥ 0, (~x−~x2) · (~n2,3) ≥ 0, (~x−~x3) · (~n3,1) ≥ 0}.

For any point/vertex ~x ∈ Ωx1x2x3 the signed distance d from ~x to the face can
be found by,

d = (~x− ~x1) · (~n).

Case 2, edge:

Let ~x1, ~x2, ~x3 and ~x4 define two triangular patches of γ which share an edge
L1,2 and have normal vectors ~n1,2,3 and ~n1,4,2, as illustrated in Figure 2.19.

~x1

~x3

~x2~x4

~n1,2,3

~n1,4,2

Figure 2.19 – An edge shared by two faces of a triagulated surface.

The grid points possibly closest to the edge L1,2 are enclosed by four planes,
PL1, PL2, PL3 and PL4, as illustrated in Figure 2.20.

Figure 2.20 – The planes enclosing the points possibly closet to an edge of a
triangulated surface.
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As before, only three vertices on the desired plane that comply with the right
hand rule, are required to calculate a normal vector and sufficiently describe
each plane. Define vertices ~x1,2 and ~x1,4 as

~x1,3 = ~x1 + ~n1,2,3,

~x1,4 = ~x1 + ~n1,4,2.

The respective normals for planes PL1 and PL2 can be found by

~n1 = (~x1,3 − ~x1)× (~x1,4 − ~x1,3)

~n2 = (~x1 − ~x1,3)× (~x2 − ~x1).

See Figure 2.21 for an illustration of the calculated normals. Similarly, the
respective normals for PL3 and PL4 can be found by defining ~x2,3 and ~x2,4.

~x1

~x3

~x2~x4

~x1,3
~x1,4

~n1

~n2

Figure 2.21 – Calculation of the normal vectors of the planes for scan conver-
sion of points closest to an edge.

The scan conversion for defining the domain Ωx1,x2 , which contains the points
possibly closest to the edge L1,2, follows as,

Ωx1,x2 = {~x ∈ Ωg | (~x−~x1) · (~n1) ≥ 0, (~x−~x1) · (~n2) ≥ 0, (~x−~x2) · (~n3) ≥ 0,

(~x− ~x2) · (~n4) ≥ 0}.

The distance d from any point ~x ∈ Ωx1,x2 to the edge L1,2 can be found by,
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d = |(
~x− ~x1)× (~x2 − ~x)|
|~x2 − ~x1|

.

Note also that if the local surface at the edge is convex and the outside angle
between the two adjacent patches is greater than π, the polyhedron will only
contain points outside the surface and therefore the distance is signed positive,
or vice versa. This can quickly be determined by comparing the distance
d1 = |~x3 − ~x4| and d2 = |(~x3 + ~n1,2,3) − (~x4 + ~n1,4,2)|. If d2 > d1 then the
outside angle between the two patches is greater than π and the distances is
signed positive, otherwise they are signed negative. More detail of the sign
calculation can be found in Appendix A.

Case 3, vertex:

In the case of a vertex, ~x1, assume that the vertex is common to n ≥ 3 patches
of γ with normal vectors ~n1, ~n2, . . . , ~nn, as illustrated in Figure 2.22.

~x1

~n1
~n2

~n3

Figure 2.22 – A vertex of a triangulated surface, shared by a number of faces.

The points possibly closest to ~x1 are enclosed by the r planes, PL1,2, PL2,3, . . . , PLn,1,
as illustrated in Figure 2.23.

The vertex ~x1 lies on each of the planes. To find the normals, define the
following n points

~x1,i = ~x1 + ~ni, 1 ≥ i ≤ r

.

The normal of plane PLi,i+1 can now be found by,
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Figure 2.23 – Planes enclosing the points possibly closest to a vertex of a
trianulated surface.

~ni,i+1 = (~x1 − ~x1,i)× (~x1,i+1 − ~x1), 1 ≤ i ≤ n,

as illustrated in Figure 2.24.

~x1

~n2,3

~n1,2

~x1,1

~x1,2
~x1,3

Figure 2.24 – Calculation of the normal vectors, of the planes enclosing points
possibly closest to a vertex.

In the case of i = r, the value for i + 1 is found by mod (i + 1, r) = 1. This
leads to the scan conversion for ~x1.

Ωx1 = {~x ∈ Ωg | (~x− ~x1) · (~ni,i+1) > 0, ∀ 1 ≤ i ≤ r}.

The distance d from ~x to ~x1 is simply found as the Euclidean norm,

d = |~x− ~x1|.
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In order to determine whether the polyhedron lies inside or outside the surface,
define a normal ~nvert on the vertex as the avarage of all the face normals,
~n1, ~n2, . . . , ~nn. Following a similar procedure as before, the angle between the
each of the n faces and the avarage normal, nvert, can be checked by comparing
d1 = |~x1 − ~x2,i| and d2 = |(~x1 + ~nvert) − (~x2,n + ~xi)|, where ~x2,i is a vertex
on the i’th patch common to ~x1. If for each of the n patches, d1 < d2, the
polygon will be outside the surfaces and the distances are signed positive. If
for each of the n patches, d1 > d2 , the polygon will be inside the surfaces and
the distances are signed negative. More detail can be found in Appendix A.

An illustration of the final algorithm for computing the discrete SDF is illus-
trated in Figure 2.25.

Figure 2.25 – A procedural layout of the algorithm for computing the 3-D
SDFs of triangulated surfaces.
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2.8 Global perimeters and level set
extraction

2.8.1 Introduction

As discussed in Section 2.4.2, the LSM relies on an implicit representation
of an interface in order to perform interface propagation. In this section the
methods for the evaluation of geometric properties of the implicit interfaces
are developed and discussed.

Let γs be a propagating 3-D interface at time t. Once the LSM calculations
have been performed on the function φt into which γs has been embedded, the
result is an implicit representation φt+∆t and the propagated interface is not
yet known explicitly.

Recall the interface γt+∆t
s is given by the zero-level set of φt+∆t

s . In order to
explicitly define the propagated interface γt+∆t

s , the zero level set needs to be
extracted by means of a contour algorithm.

The explicit interface, however, is not necessarily the objective of an interface
evolution procedure, and in some instances, properties such as volume is de-
sired, irrespective of whether the interface is known explicitly or not. One of
the major advantages of the LSM is its ability to provide fast and effective
calculation of global properties such as the surface area, curvature and volume
enclosed by the interface. Since the only properties of interest during Q-1D
IB simulation is surface area and volume, these will be the only two geometric
properties considered.

Let a 3-D interface γs be represented by the zero level set of φs. The surface
area As and the internal volume Ψs of γs is found by,

As =
∫

Ω
δ(φ) (2.8.1)

Ψs =
∫

Ω
H(φ) (2.8.2)

Where the Heavy-side function H is defined as,
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H(x) =


0, if x > 0

1, if x ≤ 0
. (2.8.3)

The Dirac-delta function can be seen as the spatial differentiation of the Heavy-
side function,

δ(x) = dH(x)
dx

and becomes,

δ(x) =


0, if |x| > 0

1, if x = 0.
(2.8.4)

The discretization of the Dirac-delta and Heavy-side functions to a discrete
grid, is a well-researched subject and covered substantially in the literature. A
popular approach was introduced by Osher and Fedkiw [32] where the values of
the Dirac-delta and Heavy-side functions are based solely on the distance from
the interface, or the local value of φ. Tomnberg and Enquist [33] showed this
type of regularization causes an approximation error of order O(1). In order to
avoid this, Enquist et al. [34] proposed scaling the Dirac-delta according to the
angle of the local gradient of φ with respect to the grid orientation. Further
notable work on the Dirac-delta discretization was carried out by Smereka [35].

In his thesis Cavalinni [12] found the above mentioned techniques to be sen-
sitive to small interface perturbations with respect to the grid and that they
return irregular area calculations, making them unsuitable for coupling the
LSM with internal ballistics solvers for SRM simulation. Instead, Cavalinni
employed isosurface extraction and performed a numerical quadrature of the
extracted interface as proposed by Min and Gibou [36].

In the following sections two methods of performing the surface integration are
considered. The marching cubes method and the problem it suffers with re-
gards to ambiguity is discussed, after which the Monte Carlo (MC) integration
techniques are discussed and their use as the preferred method for calculation
of area and volume is motivated.
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2.8.2 Marching cubes method

The most popular form of level set or, in the case of 3-D data, isosurface ex-
traction is the marching cubes method that was introduced by Lorensen [37]
in 1987. There are a number of variations of the algorithm as well as some al-
ternatives that include marching tetrahedron methods by Treece [38], marching
diamonds by Anderson [39] and adaptive skeleton climbing of Poston [40]. For
a good overview and description of these marching cube methods the reader is
refered to Mielack [41]. For the current work, the built-in MATLAB© function
isosurface(), which is also based on marching cubes, will be used as a stand-
ard isosurface extraction tool. The function returns a triangulated surface γtri,
similar to the STL file format discussed in Section 2.7.2, as approximation to
the evolved interface.

In order to extract a level set or isosurface, the marching cubes algorithm
considers each 8 grid point cell, also known as a voxel, individualy and decides
in which topological state the cell is with respect to the chosen isovalue. Each
of the 8 neighbours can be categorized as above or below the chosen isovalue.
This leads to 28 = 256 possible states of each cube. This can be reduced to
14 unique cases with respect to rotation, reflection, and inversion. The form
of these topological cases are dependent on the points of intersection of the
isosurface with the edges of the cubes. Figure 2.26 illustrates the 14 possible
states of a voxel, where the highlighted vertices are inside the interface.

Given a chosen rational number isovalue and an edge, say L1,2, connecting
the grid points ~x1, and ~x2, with φ(~x1) < isovalue and φ(~x2) > isovalue, the
point, ~x, at which the isovalue-isosurface cuts the edge L1,2 can be found by
linear interpolation:

~x = ~x1 + (~x2 − ~x1) · (isovalue− φ(~x1)
φ(~x2)− φ(~x1) ) (2.8.5)

The voxel is divided into regions by triangular patches that intersect the edges
of the voxel at these interpolated points. This is done for each voxel of the grid
and the resulting triangles are added together to make up the final triangulated
isosurface. The marching cubes algorithm is, however, not assured of returning
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Figure 2.26 – 14 Unique topological states of the marching cubes method.

Figure 2.27 – 2-D ambiguity of the marching cubes method. Two cases that
result in the same SDF values on 4 vertices of a square.

physically correct surfaces since there are a number of ambiguous cases. These
ambiguities arise from the 2-D situation illustrated in Figure 2.27.
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The two marked vertices of the square are located inside the isosurface and
the two unmarked vertices are located on the outside. This could be a result
of either one of two cases, as represented by the solid and dashed lines. Each
case of Figure 2.26 that contains the ambiguity on one or more of its faces will
itself be ambiguous. It can also result in a topologically incorrect surface that
is not closed, where closed refers to the same definition of closed as the one
given in Section 2.7.1.

A method for deciding which case to follow was developed by Nielson and
Hamann [42], known as the asymptotic decider. Although this method cannot
guarantee the physically correct choice be made, it provides a method for
consistently making choices on these ambiguities and gives the marching cubes
method the ability to consistently return closed surfaces.

2.8.2.1 Calculation of geometric properties using the marching
cubes method

Once the marching cubes algorithm returns a triangulated surface γstri
as ap-

proximation to γs, the surface area of γstri
, Astri

can be calculated by summing
each individual triangle surface area Atrii ,

Astri
=

∑
trii∈γstri

Atrii . (2.8.6)

The surface area of a triangle trii given by vertices ~v1, ~v2 and ~v3 is found by

Atrii = |(~v2 − ~v1)× (~v3 − ~v2)|/2. (2.8.7)

The volume fraction inside the interface of each voxel cut by the isosurface can
also be computed for each of the 14 cases.

Let vox be a voxel of the domain, Ωg and define a modified Heavy-side function
Hvox, such that it returns the correct fraction for each voxel cut by the isosur-
face. Each voxel of Ωg that contains only negative/positive vertices will be
completely inside/outside the interface and its volume fraction will beHvox = 1
if inside, or Hvox = 0 if outside. Now the volume Ψs is found by,

Ψs =
∑

vox∈Ωg

H(vox) · Ψvox, (2.8.8)
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where Ψvox denotes the total volume of the voxel vox. Equations 2.8.6 and
2.8.8 return accurate results for most interfaces. However, in the case of two
interface sections orientated close to parallel to each other, at a distance less
than the grid spacing of the domain Ωg apart, the marching cubes method may
introduce significant errors to the surface area parameter due to non-physical
choices in ambiguous voxels. An example of two circles with radii r1 and r2,
with |r1 − r2| less than the grid spacing, is illustrated in Figure 2.28. More
evidence of the effect of these errors on the SRM simulation is given in Section
4.1.2.

(a) (b)

Figure 2.28 – The result of the marching cubes algorithm (a) compared to the
physical solution (b).

2.8.2.2 Burn-out calculation using marching cube type numerical
integration

A problem that is specific to SRM simulation is numerical integration of the
interface during the burnout phase of the motor, during which certain segments
of the grain are completely burnt away, exposing the motor casing or insulation
and so not contributing to the physical burning surface. The calculation of
the burning surface during the burn-out phase is performed in a number of
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ways in the literature. For instance, Cavalinni’s approach [12] is to only include
segments that do not contain points on the outside of the casing interface. This
makes the calculated burning surface a jagged function and requires a large
amount of grid refinement to smooth the function. The illustrations in Figure
2.29 shows how a 2-D analogue situation with the burning surface interface
propogating toward the motor casing. The linear patches that make up the
interface representation are deleted sequentially, causing the jagged effect in
the burning area profile.

Figure 2.29 – A jagged area profile due to burnout procedure of the marching
cube approuch.

The ROCGRAIN code [43] follows a similar procedure but instead of extract-
ing a 3-D surface, 2-D slices are made perpendicular to the motor axis. The
2-D contour-lenght multiplied by the distance between consecutive slices are
used in order to approximate the surface. The program calculates any inter-
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section points of the burn surface and the motor casing contours which negates
the need for a great deal of grid-refinement. In cases where the burning surface
is orientated with a normal vector close to parallel to the motor axis, A 2-D
slice approximation could, however, cause the burn surface to be substantially
under or over approximated. Figure 2.30 gives a 2-D example of approxim-
aiton errors introduced by approximating a 3-D surface by 2-D slices, the blue
line represents the actual burning surface and the red line shows the slice ap-
proximation. The surface section between points x2 and x3 is heavily under
approximated due to the acute surface angle.

Figure 2.30 – 2-D slice approximaiton errors introduced for surfaces with a
normal close to perpendicular to the motor axis.

2.8.3 Monte-Carlo integration

The class of statistical methods known as Monte Carlo (MC) methods were
introduced by Ulam and Metropolis [44]. Three main branches to which MC
methods are applied are: optimization, sample generation from non-uniform
distributions and numerical integration, the latter being applicable to the area
and volume integrations for As and Ψs calculation. For a broad overview of
the techniques, the reader is referred to the text book of Rubinstein [45]. A
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slightly less in-depth, yet insightful discussion on MC integration, in particular,
is found in the notes of Edwards [46].

Monte Carlo integration for area or volume calculations of shapes inscribed to
2-D or 3-D domains with known areas or volumes follows a basic procedure.
First the domain is cluttered with uniformly distributed random points that
will be refered to as MC-points. The number of MC-points inside the shape is
counted and the ratio of points inside the shape to total number of points is
multiplied with the domain area or volume to approximate the area or volume
of the inscribed shape. In order to perform unbiased approximations, it is
vital to draw random numbers from a uniform distribution. The methods
of generating random numbers will not be discussed in detail, however, some
notes and examples of random number generators are given in Section 2.9. The
built-in MATLAB© function rand() is utilized for random number generation
throughout the presented work.

Figure 2.31 – MC integration of a quater circle inscribed to a unit square

In Figure 2.31, the shaded segment is inscribed to a unit square and the area
Ashade can be approximated as follows:

250 uniformly distributed random points are scattered across the unit square
and 111 of them are found to lie inside the shaded section. Thus,

Ashade = 111
250 = 0.444 units2.

The shaded area is a quater circle of radius 0.75 with an exact area of 0.4418
units2. The MC area integration approximated the area to within 0.5% accur-
acy with 250 sample points.

The arc length of a shape in 2-D, or the surface area of a shape in 3-D, can
also be approximated by a thin envelope around the interface by finding the
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surface area, or volume, of the envelope and dividing by its width. In Figure
2.32, a thin envelope is placed around the perimiter of the inscribed area of
Figure 2.31.

Figure 2.32 – Thin evelope approximation of arc length.

2.8.3.1 MC integration of implicit surfaces

Effective determination of whether an MC-point is located inside or outside a
surface is vital to the MC integration procedure. In the case of LSM repre-
sentation of 3-D interfaces, a surface is implicitly defined as a zero levelset of a
SDF function and means all that is necessary to determine whether a random
point is inside or outside the surface, is checking the sign of the SDF at the
local position.

Since the MC-points are not co-located with the grid points on which the SDF
is defined, some spatial interpolation is necessary to determine the local SDF
value. The interpolation scheme used to interpolate the random points to the
SDF determines the order of accuracy with which the front is approximated
if the statistical error is disregarded. Yang et al. [47] performed a case study
of twelve different spatial interpolation schemes of varying order and the in-
terested reader is referred to the references therein for details about the various
schemes. The case problem is not directly applicable to the interpolation of
SDFs for MC integration of the represented surface, but the conclusions they
arrive at are applicable to the manner in which a choice of interpolation scheme
is made.

In their conclusions, Yang et al. [47] states that the performance of any one
specific interpolation scheme is subject to the characteristics of the data and
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the purpose for which it is applied, i.e. a relatively best interpolation scheme is
chosen based on the characteristics of the specific data and the characteristics
of the interpolation schemes available.

Tri-linear approximation gives a first order accurate representation of the sur-
face, similar in accuracy to the marching cubes surface extraction. The fact
that the initial surface in STL format is composed of linear patches added to
the fact that the surface may contain sharp corners, makes trilinear interpola-
tion a suitable scheme to employ for parameter calculation in SRM burn back
simulation. This is true since the higher order interpolation schemes might
smooth the sharp corners or discontinuities of the surface. A description of
tri-linear spatial interpolation follows.

Consider a voxel, vox = {~x0,0,0, ~x0,0,1, ~x0,1,0, ~x0,1,1, ~x1,0,0, ~x1,0,1, ~x1,1,0, ~x1,1,1}, where
~xi,j,k = (xi, yj, zk), and a point ~xp = (xp, yp, zp), with x0 ≤ xp ≤ x1, y0 ≤ yp ≤
y1 and z0 ≤ zp ≤ z1, as illustrated in Figure 2.33.

y

z

x

~x0,1,0 ~x1,1,0

~x0,1,1 ~x1,1,1

~x0,0,0 ~x1,0,0

~x0,0,1 ~x1,0,1

~xp

Figure 2.33 – A point inside a voxel

Let the function φ be defined at each of the 8 vertices of the voxel and denote
the local value of the implicit representation φ(~xi,j,k), by φi,j,k. The value
within the voxel at ~xp , can be interpolated as follows. Let,

dx = (xp − x0)/(x1 − x0), (2.8.9)

dy = (yp − y0)/(y1 − y0), (2.8.10)

dz = (zp − z0)/(z1 − z0). (2.8.11)

First the values are interpolated in the y−direction,
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φ0,0 = (1− dx)φ0,0,0 + dxφ1,0,0, (2.8.12)

φ0,1 = (1− dx)φ0,0,1 + dxφ1,0,1, (2.8.13)

φ1,0 = (1− dx)φ0,1,0 + dxφ1,1,0, (2.8.14)

φ1,1 = (1− dx)φ0,1,1 + dxφ1,1,1, (2.8.15)

as in Figure 2.34.

~xp,1,0

~xp,0,0

~xp,1,1

~xp,0,1

Figure 2.34 – x-dimension interpolation

The calculated values all lie on the plain {x = xp}. Next the values are
interpolated in the x-direction, as in Figure 2.35,

φp,p,0 = (1− dy)φp,0,0 + dyφp,1,0, (2.8.16)

φp,p,1 = (1− dy)φp,0,1 + dyφp,1,1. (2.8.17)
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~xp,p,0

~xp,p,1

Figure 2.35 – y-dimension interpolation

Finally the values are interpolated on the line {x = xp, y = yp}, as in Figure
2.36,

φp = φp,p,0 · (1− dz) + φp,p,1 · dz.

~xp,p,p

Figure 2.36 – z-dimension interpolation

The tri-linear interpolation scheme can now be employed to find the interpol-
ated values of the discrete φ function of an interface at random points in the
domain.

The MC integration of the volume parameter Ψs of the interface that is ad-
vanced by the LSM is done by finding the number of random points that
interpolate to a negative value with respect to the φ function and dividing by
the total number of random points used. Algorithms for the calculation of As
and Ψs can now be developed.
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2.8.3.2 Volume integration of implicit surfaces

Let φ be an implicit representation of a 3D interface γs, defined on the discrete
grid Ωg. An algorithm for computing Ψs, the volume enclosed by the interface,
can now be developed as follows.

First N random MC-points ~x1, ~x2, . . . , ~xN are generated. Trilinear interpola-
tion is used to interpolate each point ~xi to φ in order to find φ(~xi). The points
inside the interface are then summed to find the ratio Ninside/N . For the pur-
pose of calculating the number of inside points, the result of the Heavy-side
function, equation (2.8.3), applied to all the MC-points, is summed:

Ninside =
N∑
i=1

H(φ(~xi)), (2.8.18)

The volume Ψs inside γs can now be integrated as,

Ψs = Ninside

N
ΨΩg . (2.8.19)

where ΨΩg refers to the volume of the domain.

Consider the grain burning surface γstar, as illustrated from various angles in
Figure 2.37.

Figure 2.37 – An example of the grain burning surface, γstar.
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The MC-points included by the Heavy-side function to the volume calculation
for γstar is illustrated in Figure 2.38.

Figure 2.38 – The MC-points used for volume calculation of γstar.

2.8.3.3 Area integration of implicit surfaces

For the purpose of calculating the surface area of a 3-D interface, the volume
of a thin envelope is required. For the purpose of the integration of Ψs, a MC-
point ~x was determined to be inside S if φ(~x) ≤ 0, since the zero contour line
represents the interface γs. Conveniently, the characteristics of the implicit
representation of a front allows a thin envelope with a width wenv ∈ R around
γs to be found by considering the volume inside the two isosurfaces of value
wenv

2 and −wenv

2 . This leads to the algorithm for computing As, by employing
MC integration to find the volume of the thin envelope around γs.

Again N random MC-points are generated and interpolated to φs. A modified
Heavyside-function, Henv is employed to select the points inside a thin envelope
of width wenv,

Henv(y) =


1 if |y| ≤ wenv/2

0 if |y| > wenv/2
. (2.8.20)
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As was the case with the heavy-side function for volume integration, equation
(2.8.20) is used to calculate Ninside,

Ninside =
N∑
i=1

Henv(φs(~xi)). (2.8.21)

The surface area As is calculated as the volume of the thin envelope divided
by its width,

As =
(
Ninside

N

)( Ψs

wenv

)
. (2.8.22)

The MC-points included in the area calculation for γstar, as illustrated in Figure
2.37, are shown in Figure 2.39.

Figure 2.39 – The MC-points used for Area calculation of γstar.

Figure 2.40 shows the MC-points, illustrated in Figure 2.39, all lies within the
wenv/2 and −wenv/2 isosurfaces of φstar, where φstar is the implicit represent-
ation of γstar.

2.8.3.4 Burn-out calculation using MC integration

Let γc be the interface that defines the motor casing. The burn-out calculation
is handled elegantly with the MC integration method. The random MC-points
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Figure 2.40 – The MC-points and the wenv/2, and −wenv/2 isosurfaces of
φstar.

~xi used for the integration are interpolated to both φs and φc and discarded
from the calculations of Ψs and As if φc(~xi) > 0, i.e. outside the motor
casing. The highlighted MC-points in Figure 2.41 are excluded from the MC
integration.

Figure 2.41 – Burn out calculations using MC integration.

An extra check is added to the H functions used for the calculation of Ninside.
Equation (2.8.3) becomes,

H ′(y1, y2) =


1 if y1 ≤ 0 ; y2 ≤ 0

0 if y1 > 0

0 if y2 > 0

, (2.8.23)
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and similarly equation (2.8.20) becomes,

H ′env(y1, y2) =


1 if |y1| ≤ wenv/2 ; y2 ≤ 0

0 if |y1| > wenv/2

0 if y2 > 0

, (2.8.24)

Consider again, γstar of Figure 2.37. Let the surface be at a regressed state
such that the interface has moved beyond the interface that represents the
casing of the motor, as illustrated in Figure 2.42. The interface representing
the grain perforation inside the motor casing is also illustrated.

Figure 2.42 – The regressed interface and grain perforation of γstar at a re-
gressed state.

Figure 2.43 shows the MC-points that fall within a thin envelope around the
regressed surface, then highlights the points that fall outside the casing and
finally shows only the points that contribute to the partially burnt out burning
surface.

2.8.3.5 Geometric value calculation for SRM simulation

In order to evaluate the grain burning area and chamber volume, the modified
H functions of the previous section are employed. The rest of the integration
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Figure 2.43 – Above: The MC-points that fall within the thin enevelope of
the regressed interface. Center: Points that lie outside (highlighted) the casing
interface are discarded. Below: The final MC-points used for integration of the
physical burning surface approximation.

procedures remains unchanged. The entire algorithm for calculating the burn-
ing surface As and volume Ψs, is summmarized in Table 2.3 and Table 2.4,
respectively.

Table 2.3 – An algorithm for the MC integration of the burning surface As of
an SRM.

MC integration:
1.) Generate N random 3-D points ~xi for i = 1, 2, . . . , N
such that ~xi ∈ Ω ⊂ Ωg with S ⊂ Ω and ΨΩ the volume of Ω.

2.) Find φ(~xi) and φc(~xi) by tri linear interpolation.

3.) Calculate Ninside = ∑N
i=1Henv(φ(~xi, φc(~xi))

Ψenv = Ninside

N
Ψω

As = Ψenv

w
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Table 2.4 – An algorithm for the MC integration of the volume Ψs of an SRM.

MC integration:
1.) Generate N random 3-D points ~xi for i = 1, 2, . . . , N
such that ~xi ∈ Ω ⊂ Ωg with S ⊂ Ω and ΨΩ the volume of Ω.

2.) Find φ(~xi) and φc(~xi) by tri linear interpolation.

3.) Calculate Ninside = ∑N
i=1H(φ(~xi, φc(~xi))

Ψs = Ninside

N
Ψω

2.8.3.6 Optimization through stratified MC integration and
symmetry

The MC integration procedure can be optimized for efficiency by fairly simple
techniques. First, stratified sampling can be applied to the integration, i.e.
the sampling of smaller sections or strata of the domain. A discrete grid Ωg is
made up of a number of voxels that each can be integrated independently. The
advantage lies in the fact that a voxel can be determined to be completely inside
or completely outside the interface, i.e. with only negative or positive φ values
on its eight vertices, and excluded from the MC integrated voxels. Since each
point inside the voxel will automatically interpolate to a negative or positive
value, the entire voxel can be added to the inside or outside volumes. This
reduces the number of voxels that need to be integrated from the order O(n3)
to O(n), which significantly reduces the computational cost of the integration
procedure. In Figure 2.44, a 2-D example shows the effect on the number of
voxels, or in the 2-D case squares, that needs to be integrated by interpolation
of the random MC points.

The stratified MC integration algorithm is illustrated in Figure 2.45. Let each
voxel be integrated independently by Nvox MC-points if it is found that the
minimum φ value on the vertices of the voxel is lower than zero, and the
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Figure 2.44 – Reduction of the number of integrated cells in a stratafied 2D
MC intagration.

maximum value higher than zero. If the minimum value is higher than zero,
the entire voxel will lie outside the interface and none of the MC-points inside
the specific voxel will contribute to the number of points inside the interface
Ninside , and therefore no interpolation is necesary. If the maximum value is
lower than zero, then the entire voxel will lie inside the interface and therefore
the number of points inside the interface can be increased by Nvox such that,
Ninside = Ninside +Nvox, and again no interpolation is necessary.

Figure 2.45 – A conceptual illustration of a stratified MC integration al-
gorithm.

Another simple method of reducing the computational complexity of the MC
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integration procedure takes advantage of the fact that the interface (burning
surface) that is of interest in SRM simulation, only moves in one direction.
In other words, once a grid point of Ωg has been crossed, and lies inside the
interface, it will remain inside for the duration of the simulation. This implies
that once a cell or a voxel is completely inside the interface, it can be assumed
to be inside the interface for all the subsequent MC integrations performed
during the simulation, and therefore it is not necessary to check whether the
voxel lies within the interface from that point onwards.

The exploitation of symmetry in the grain design, both in the axial and non-
axial dimensions, could also, depending on the specific grain design, leads to
significant gains in computational effeciency. Note that the axial dimension
refers to the dimension parallel to the main motor axis.

Symmetry along the motor’s axial dimension: For most popular grain
designs, there exist sections of the grain that consists of a single 2-D contour
along the length of the motor axis. For example, consider a finocyl grain design
as illustrated in Figure 2.46. The front section of the grain consists of a tube
section that consists of a single circular 2-D contour and the rear-most section
of the grain consists of a star shape contour.

Figure 2.46 – A finocyl grain and the two 2-D contours that define the largest
segments of the grain design.

Dividing the grain by planer slices perpendicular to the motor axis results in a
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large number of identical segments. If the geometric integration is performed
on a single segment of a group of identical segments, integrated values can be
awarded to all of the segments contained in the group. Figure 2.47 illustrates
the manner in which the grain can be divided and highlights two slices of the
star segment that are equivalent and can be awarded equal geometric values.

Figure 2.47 – A finocyl grain devided into 2-D slices perpendicular to the motor
axis. The two highlighted slices below are equivalant and will have equivalent
geometrical properties.

Symmetry in non-axial dimensions: The LSM procedure desribed in the
current work is based upon a uniform rectangular grid framework. This does
limit the possibility of exploiting symmetry in the non-axial dimensions to
perpendicular lines of symmetry, i.e. halves and quarters of a design, and no
wedge symmetries could be exploited as is the case with a polar coordinate
framework employed by Cavalinni [12].

The finocyl grain design used as illustration in the previous section does, how-
ever, contain two perpendicular lines of symmetry, which results in a quarter-
domain being used to represent the full design, as illustrated in Figure 2.48.
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Figure 2.48 – A 2-D illustration of non-axial dimension symmetry in a finocyl
grain design.
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2.9 Error sources

In this section a discussion of the error sources introduced by the LSM and MC-
integration techniques, including the initialization of the SDF, is presented.
The errors introduced by the different segments of the grain regression analysis
procedure all compound to form the total introduced error. The error sources
are classified as one of the following types:

• Initialization and STL surface approximation.

• Discretization of the computational domain.

• LSM numerical integration schemes.

• Geometric evaluation of implicit surface representations.

Initialization and STL surface approximation The first error source is
the choice of STL representation of grain designs and motor casing designs.
As discussed in section 2.7.2, an STL file uses planer triangular patches to
represent a smooth surface. Typically CAD programs allow a user to set the
refinement of an exported STL file by controlling two parameters [48]. The first
is the maximum angle allowed between two surface patches that approximate
a smooth surface. The second is the maximum distance that a vertex of the
STL surface approximation is allowed to deviate from the true smooth surface.

The calculation of the SDF values at discrete grid points, to the STL surface is
done by analytical functions of vector geometry and is accurate up to machine
precision.

Discretization of the computational domain The LSM relies on an im-
plicit representation of a surface on a discrete grid. This could possibly in-
troduce significant errors on jagged surfaces with curvature changes within
the discrete grid spacing. Figure 2.49 shows two interfaces that will result in
identical SDFs for the chosen discrete grid. The right hand side interface is
smooth and the geometric evaluation of the SDFs will return an accurate arc
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length approximation of the interface. The arc length of the jagged interface
on the left will, however, be substantially under-estimated.

Because even extremely complex grain designs are a compilation of relatively
smooth surfaces, this negates the possibly large errors that might be introduced
due to the discrete nature of the implicit representations.

Figure 2.49 – Two distinct interfaces resulting in identical discrete SDFs for a
given grid resolution.

LSM numerical integration schemes The integration schemes used to
solve the LSM equation, as with most integration schemes, have their own
order of accuracy that affects the error introduced. For the current work a
first and second order upwind scheme is utilized and it is noted by Sethian
[13] that these schemes tend to be sufficient for almost all applications of the
LSM.

Geometric evaluation of implicit surface representations The Monte-
Carlo integration that is used for parameter calculation of the surface para-
meters are statistical methods with an expected value that approximates a
surface with the same spatial order of accuracy as the interpolation scheme
employed to interpolate the MC points to the φ function. The number of MC
points used to perform the integration affects the variance of the returned data
and an increase in number of points increases the accuracy of the integration
approximations in a logarithmic fashion. The dependency of the accuracy of
the MC-integration is investigated in Section 4.2.

A note on the distribution of the random points used for the MC-integration
is also necessary at this point. In order to perform an unbiased approximation
of geometric integrals by means of MC-integration, a uniform random number
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distribution is required. A number of random number generators exist [49
– 51]. In his article LÉcuyer [52] performs a review of a number of random
number generators. The interested reader is also referred to Niederreiter [53].

For the presented work, the built in MATLAB© function rand() is used to
generate uniform random numbers.
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Chapter 3

Internal ballistics coupling

In this chapter, a method of coupling the grain regression module and the
internal ballistics (IB) simulations is developed.

The grain regression analysis module and the IB solver simulate two coupled
physical processes. The connection between the two processes stem from the
arguments made in Chapter 1. A positive feedback loop is caused by the burn
rate’s dependence on pressure, which in turn depends on mass flow. Mass flow
is subsequently dependent on the burning surface which evolves at the burn
rate, thereby completing the ‘loop’.

The two processes occur during the same time frame, however, at vastly differ-
ent speeds. The rate of grain regression for most SRMs, relative to the motor
casing is typically in the order of O(10−2)m/s, whereas the internal flow field
travels at speeds in the order of O(103)m/s.

In order to couple two discrete numerical procedures that simulate these con-
tinuous physical mechanisms, a number of approximations need to be made.
The first approximation is inherently present in the IB solver which progresses
at discrete time steps and for the duration of the time step assumes the geo-
metry of the grain burning surface to remain fixed. The details of the IB solver
are discussed in Section 3.1.1. It can be argued that approximation is likely
to introduce negligible errors, since the physical speed of geometric change is
very low in comparison to the characteristic speeds of the internal flow field,

72
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as discussed above. The extent of any extra approximation errors introduced
depends largely on the method of coupling the two numerical solvers.

The traditional method for coupling a grain regression module to IB code is
the so called ‘off-line’ coupling method, where lookup tables of the geometrical
parameters required for IB simulations are created and stored before the IB
simulations begin, see Figure 3.1. This method is computationally efficient
since the grain regression is done once and only interpolations of the data in
the tables is required during the IB simulation.

This method assumes uniformly distributed burn rates for the entire motor
and may introduce significant geometrical errors, especially in complex grain
designs where changes in topology that are dependent on the rate of surface
regression, are a common occurrence.

The effects of phenomena such as erosive burning may increase the variations
in the spatial distribution of burning rates, making them difficult to capture
using the ‘off-line’ coupling methodology.

ṙ

As, Ap

As, Ap

Figure 3.1 – An in direct coupling of the IB and grain regression modules.

The use of numerical front tracking techniques capable of handling spatially
varying speeds have made is possible to employ an alternative method, referred
to as a direct or ‘on-line’ coupling, as illustrated in Figure 3.2. The two
solvers are employed iteratively, allowing the front to be advanced at more
physically relevant, spatially varying, burn rate distributions. Because of the
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relatively high characteristic speed of the internal flow field, the discrete time
steps of the motor simulation is likely to be small increments determined by
a stability condition for the IB solver. This method will be computationally
more expensive, since every time step requires the integration of the geometric
parameters as well as another discrete evolution of the interface itself.

ṙ

As, Ap

Figure 3.2 – Direct coupling of the IB and grain regression modules.

It was suggested by Stewart et al. [54], as well as noted by Cavalinni [12], that a
multi time scale approach similar to the methods developed for computational
aerodynamics [55], could be applied to the quasi steady state burning regimes
for SRMs, see Figure 3.3. This makes for a hybrid method of the two above
mentioned coupling methodologies. The internal flow field is solved at a fine
time scale so as to ensure stability of the CFD type calculations, whereas the
grain regression analysis is solved at a coarser time scale facilitated by the lower
characteristic speeds of the grain surface evolution. The geometric parameters
calculated at the coarse time scale is interpolated to the finer time scale of the
IB solver. A more detailed look at multi time scale coupling is given in section
3.4.

To the best of our knowledge, at the time that the current work was conducted
there was no evidence in the literature of a level set grain regression module
that has been successfully coupled to a IB solver, using either a direct or multi
time scale coupling methodology. In this study the grain regression module is
directly coupled to a IB solver with and without the use of multi time scales.
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ṙ

As, Ap

As, Ap

ṙ

Figure 3.3 – A multi time scale coupling of the IB and grain regression modules.

3.1 Internal ballistics simulation

3.1.1 1-D internal ballistics description

The IB solver chosen for coupling the grain regression module developed in
this study is based on the solver employed by the SPP (solid performance
program) and is described by Lamberty [56]. The solver relies on a ballistic
element method to analyse the internal flow fields of SRMs.

The grain is divided into elements along the motor axis and one dimensional
gas dynamic relationships are used to describe the flow conditions in each
element. Figure 3.4 illustrates the manner of discretizing the internal flow
field and the descriptors of the flow conditions in a single element.

Let ṁ be a mass flow rate, ρ the propellant density, As the burning surface
area ṙ the burning rate, M the Mach number, P the pressure and P0 the
stagnation pressure. Also let c and e be empirical constants of the Saint
Robert’s/Vielle’s burn rate model, equation (1.1.3) and Rgas, Tf and Γgas be
the specific gas constant, flame temperature and specific heat ratio as derived
from the thermodynamic relationships.
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Figure 3.4 – The method used by the internal ballistics module to describe the
internal flow field of a SRM

The standard 1-D gas dynamic relationships are written as:

ṁsi
= ρAsi

ṙi, (3.1.1)

ṙi = cP e
i + f(i), (3.1.2)

where f(i) is an erosive burning model,

ṁi = ṁi−1 + 1
2ṁsi

, (3.1.3)

∆P0 = γM2 ṁsi

ṁi

× fl(Mi)× P0i
, (3.1.4)

where fl(m) is a correction function for compressible

flow effects,

Poi
= P0i−1 −

1
2
(
∆P0i−1 + ∆P0i

)
, (3.1.5)

Pi = P0i

(
1 + γ − 1

2 M2
i

)−γ/(γ−1)
, (3.1.6)

Mi = ṁi

PiApi

√
RgasTf

Γgas

(
1 + γ − 1

2 M2
i

)−1/2
. (3.1.7)
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Equations (3.1.1) to (3.1.7) are solved by iteration on the Mach number. Once
convergence for a specific element is reached, the calculation is advanced and
the flow accumulated along the motor axis until the last element is reached.
The the nozzle stagnation pressure P0NZ

, the mass flow rate through the nozzle
ṁNZ , and the total mass flow from the grain ṁs, is calculated by:

P0nz = P0end
− ∆P0end

2 , (3.1.8)

ṁnz = P0nz × Anz
C∗

, (3.1.9)

where C∗ is the characteristic velocity and

Anz the nozzle throat area,

ṁs =
end∑
i=1

ṁsi
. (3.1.10)

A time unsteady method is employed, i.e. the equilibrium conditionWnz = WG

is not forced upon the system. Rather, the foreword end pressure, P1, at the
succeeding time step, is determined by finding the time rate of pressure change,
dP
dt
. This can be done by,

dP

dt
= RgasTf

Ψg

(WG −WNZ)− 1
2
P1

ρ

ṁs

Ψs

. (3.1.11)

where Ψs refers to the total volume of the burning chamber or grain perfor-
ation. Now a time step ∆t is calculated as a fraction of a chamber filling
constant,

∆t = 1
5( P0nzΨs

(1− end)(RgasTfṁnz)
), (3.1.12)

where the fraction 1/5 was chosen from experience as a compromise between
accuracy and computational efficiency. The head and pressure at time t+ ∆t
is finally calculated as,

P1(t+ ∆t) = P1(t) + ∆tdP
dt
. (3.1.13)

Equations (3.1.1) to (3.1.10) describes in full the modeling of a single time step
of the internal flow filed. Once equation (3.1.13) is calculated, the procedure is
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re-initiated for the next time frame, this continues until the grain is completely
burnt out. An illustration of the computational procedure of the IB module
is given in Figure 3.5.

Figure 3.5 – Computational procedure of the IB module.

3.1.2 Burn rate models

The rate at which a solid propellant regresses during combustion, or simply the
burn rate, is another domain for which a substantial amount of research exists.
During combustion, a solid propellant undergoes an exothermic reaction that
is activated by a heat flux into the propellant. Once an activation heat, or
energy is reached, the chemical compound which consists of both fuel and
oxidizer starts to react in an exothermic manor. This causes a flame zone in
the gaseous phase close to the solid phase surface, see Figure 3.6.

Figure 3.6 – An illustration of the heat flux and flame-zone during solid pro-
pellant combustion.
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The burn rate of a solid propellant can be approximated by a number of
approaches. Most analytical approaches consider the heat flux between the
solid and gaseous phases that are contributed by the heat flux from the gaseous
flow field, the exothermic reaction occurring at the propellant surface, as well
as a heat flux due to radiation from a flame zone, caused by the exothermic
reactions taking place. Though there is value in the analytical description of
burn rates, IB solvers, for the most part, rely on empirical models based on
the Saint Robert’s/Vielle’s law:

ṙ = cP n
0 . (3.1.14)

The burn rate is described as a function of pressure and the constants c and
n are determined through experimental propellant burns at various pressures.

The sheer effects of a cross flow velocity is known as erosive burning and affects
most SRMs. These effects are not described in equation 3.1.14 and thus, most
commercial IB modules include options for erosive burning terms to be added
to the burn rate module. A short description of two popular erosive burning
models, as described by Nakka [3], follows.

Additive law The additive law for describing erosive burning is defined as
follows; let ac be an empirically defined constant and U the velocity of the flow
field at a given point along the grain surface. An erosive term acU is added to
the right hand side of the equation (1.1.3). The equation becomes:

ṙ = cP n
0 + acU. (3.1.15)

Multiplicative law The IB solver described in Section 3.1.1 does not calcu-
late the flow velocity U explicitly. The multiplicative law for erosive burning
is a function of mass flow rate ṁ rather than flow field velocity. Let mc be
an empirically defined constant and ṁ∗ be a threshold flow rate. The erosive
term [1 + max (0,mc((ṁ)− (ṁ)∗))] is multiplied with the right hand side of
equation (1.1.3) and the equation becomes:

ṙ = cP n
0 [1 + max (0,mc((ṁ)− (ṁ)∗))]. (3.1.16)

More elaborate burn rate models exist [57 - 60].
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3.2 Domain discretization

The grain regression module advances the grain burning surface in a fully 3-D
domain, discretized on a uniform rectangular grid Ωg. The IB solver relies on
a Q-1D method for solving the internal flow field and is hence solved on a 1-D
grid ΓIB along the motor axis, see Figure 3.7. The grids are co-located such
that the 1-D sections of the IB grid concur with a set number of slices of the
3-D grain regression grid (Ωg) perpendicular to the motor axis. This is done to
avoid any unnecessary interpolation during the parameter exchange between
the two coupled solvers.

(a) (b)

(c)

Figure 3.7 – (a) Rectangular grid discretization of LSM grain regression mod-
ule. (b) 1D grid along the motor axis for IB solver. (c) The co-located domain
discretization of the coupled numerical techniques for SRM simulation.

For further simplification only uniform grids will be utilized and the grids are
characterized by their grid spacing, dxg, dyg, dzg of Ωg and dzIB of ΓIB, where
it is assumed that the motor axis is parallel to the z-coordinate axis. For the
grids to be co-located, dzg and dzIB, need to adhere to either

dzIB = dzg × n

or,

dzg = dzIB × n

for some natural number n.
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3.3 Parameter exchange

The direct coupling of the grain regression and IB modules requires the transfer
of parameters between the two solvers. The burning surface area S as well as
the port area Ap is transferred from the grain regression module to the IB
solver as AIBs and AIBp , and the burn rates ṙ are transferred back to the grain
regression module as ṙLSM from the IB solver. In section 3.2, the co-located
domain discretization is explained. For the vast majority of motor simulations
it can be expected that the Ωg grid spacing will be smaller than the ΓIB grid
spacing.

For the purpose of illustrating the procedure of parameter exchange between
the grain regression and IB module, assume that the grain regression is per-
formed on the grid Ωg and the IB solver operates on the grid ΩIB. Assume
also that n a natural number and that dzIB = dzg × n. Further let the (Ωg)j
be the j’th plane of Ωg along the motor axis, and (ΩIB)i be the i’th element
of ΩIB and the grid be located so that (ΩIB)1 and {(Ωg)1, (Ωg)2, . . . , (Ωg)n}
precisely overlap, as illustrated in Figure 3.8.

Figure 3.8 – Co-located ΩIB and Ωg grids.

The AIBs parameter is calculated as the sum of As values of Ωg that lie within a
specific discrete segment of the ΩIB grid, and the AIBp parameter is calculated
as the average port area of the Ωg The parameters sent to the IB module can
be calculated by,

(AIBs )i =
j=in∑

j=(i−1)n+1
(As)j, (3.3.1)

and
(AIBp )i = 1

n

j=in∑
j=(i−1)n+1

(Ap)j. (3.3.2)

The rate at which the interface is advanced, ṙg is set equal to the burn rate
ṙ of the segment of the ΩIB grid with which the interface is co-located along
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the motor axis,
(ṙg)j = ṙceil(j/n). (3.3.3)

Equations (3.3.1) to (3.3.3) describe a procedure for exchanging the relevant
parameters between the two coupled modules of the SRM simulation, as dis-
cussed in this study. A variation on equation (3.3.3), where the burn rates
ṙ are interpolated from the coarse ΩIB grid to the finer Ωg grid of the grain
regression module is investigated, as this might improve the accuracy of the
physical description of a SRM. The rate of interface advancement ṙg is then
given by,

(ṙgr)j = ṙfloor(j/n) + (ṙceilj/n − ṙfloor(j/n))×
mod (j, n)

n
(3.3.4)

Note that ceil(j/n) and floor(j/n) denotes the fraction j/n rounded up or
down to the nearest integer.

3.4 Multi time scale coupling

In order to reduce the computational cost of coupled SRM simulation, a multi
time scale procedure may be employed. As mentioned above, the assumption
that the time scale as determined for the IB solver is excessively fine for the
purpose of grain regression and so in this section the use of a coarser time scale
is considered.

The reduction in computational cost will be equivalent to the cost of integra-
tion of the area parameters As and Ap multiplied by the average ratio of the
two time scales used. The conditions for determining the grain regression time
scale must primarily adhere to the conditions for stability of the integration
schemes used to solve equation (2.4.6). For instance the first order upwind
scheme with Euler time integration as described in Section 2.5 requires the
CFL condition, dt ≤ dx

V
, be satisfied.

If the stability conditions are the only means by which the grain regression
time scale is chosen, the coupling algorithm is developed as follows.

• The simulation is initiated and with the initial grain regression para-
meters calculated form the SDF before any interface evolution.
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• Initialize t1 and t2 to 0.

• The IB module returns initial burn rates and the grain is regressed for
a time step ∆t1, determined as a function of the limitation imposed by
the stability conditions on the maximum possible time step for interface
advancement.

• The grain parameters are saved at times t1 and t1 + ∆T1.

• The IB code is advanced along with time t2 and the area parameters are
interpolated to t1 > t2 > t1 + ∆t1.

• At the first instance that t2 ≥ t1 + ∆t1, t1 is set to t1 + ∆t1 and a new
∆t1 is calculated using the burn rates at t2 and the interface advanced
to the new time t1 + ∆t1, and the process continues until the grain is
completely burnt out.

The procedure is illustrated in Figure 3.9.

ṙ

As, Ap

As, Ap

if t2 ≥ t1 ṙ

Figure 3.9 – A multi time scale coupling of the IB and grain regression modules.
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Chapter 4

Results and validation

In this chapter a number of results are presented in order to validate the tech-
niques applied to the geometric property evaluation of implicit surfacesng with
the use of Monte-Carlo integration and the numerical interface advancement
through the LSM, as well as their application to grain regression analysis in
SRM simulation.

Validation by comparison to experimental data is useful, however it should be
understood that there are often a number of external factors that contribute
to the level of concurrency with experimental data. This is especially true
during the comparison of full motor simulations (both coupled and uncoupled
simulations), with static test-bed results. The accuracy of the IB module, the
empirical burn rate model, and most notably the effect of erosive burning and
nozzle erosion terms need to be taken into account before any conclusions are
drawn from such comparisons. As a result, a larger portion of the validating
results are relatively simple analytical examples.

In the first section a grid dependency study is conducted on the discrete SDF
generation from STL surfaces. A number of examples of actual SRM motor
geometries in the form of triangulated STL files from CAD designs are used
to conduct the investigation. Various grid resolutions are used to resolve the
same designs and the effect on the accuracy of the surface approximations are
discussed

The following section focuses on the MC integration techniques. The depen-

84
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dency of accuracy of surface approximation on the number of random integ-
ration points (MC points), the spatial computational grid resolution and the
width of the thin envelope used for surface integration in 3-D, is discussed. The
reduction in computational cost due to optimizations of the integration, such
as stratification, is also presented and discussed. Both analytical examples
and SRM grain designs are used as interfaces in the cases presented.

Next the ability of the LSM numerical interface propagation technique to
handle traditionally challenging situations is confirmed through the invest-
igation of three 2-D examples. The examples expand directly to analogue 3-D
situations and they are given in 2-D form simply for ease of illustration.

Finally an uncoupled, as well as a coupled motor simulation is performed, and
compared to actual experimental results. The effects of the addition of erosive
burning models and nozzle erosion terms to the IB module are also briefly
discussed.

4.1 SDF grid dependency

In order to conduct the investigation, the MATLAB© function isosurface()

is used to return a triangulated representation of the SDF’s zero isosurface. It
was shown in Section 2.8.2, that changes in topology and sharp discontinuities
in the surface gradient could possibly cause physically incorrect surfaces to be
returned by a marching cube type algorithm, such as isosurface().

In order to ensure accurate representations of the implicit surfaces, the result
of isosurface() was visually inspected for any discrepancies with the STL
surface due to marching-cube ambiguities, as discussed in Section 2.8.2. An ex-
ample where an incorrect surface was returned by the isosurface() function
is illustrated later in this seciton (Figure 4.5).

The grid dependency of the implicit surface representation by means of a
discrete SDFs, could thus be investigated. The surface areas of both the STL
surfaces and the triangulated implicit surface representations are calculated
by performing a numerical quadrature on the triangulated surfaces.
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4.1.1 Motor 1 - gf

Figure 4.1 is an illustration of the motor geometry, as veiwed from various
angles. The motor design contains radial slots that are tapered toward the
nozzle of the motor.

Figure 4.1 – The burning surface of Motor 1 - gf, as viewed from various angles.

The grid spacing of the discrete SDF was varied between 1 and 12 units result-
ing in grid domains of sizes 140×140×450 down to 11×11×37. The resulting
errors are recorded in Table 4.1. A plot of the errors versus the grid spacing is
given in Figure 4.2. From the figure, a large increase in the errors between the
grid spacings of 5 and 8, and again between 11 and 12 can be observed. This
is possibly due to features of the STL surface, such as the radial slots, that
are separated by less than the grid spacing. Tubular sections of the grain are
likely to be increasingly underestimated as the grid spacing is increased. This
is true since the curved surface is approximated by larger sections of linear
planes.
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Table 4.1 – The resulting errors in the numerical quadratures of the implicit
representation of motor 1 - gf, for various grid sizes.

Figure 4.2 – A plot of the errors in the implicit representation of motor 1-gf.

4.1.2 Motor 2 - A1

The next motor used for SDF grid dependency investigation is composed of
a star and a cylindrical section. The burning surface, as viewed from various
angles, is illustrated in Figure 4.3.

The investigation was conducted for grid spacings varying from 12 to 2 leading
to grid domains ranging from 90×90×655 down to 15×15×54. The absolute
errors in the implicit surface areas are recorded in Table 4.2.
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Figure 4.3 – The burning surface of Motor 2 - A1, as seen from various angles.

Table 4.2 – The resulting errors in the numerical quadratures of the implicit
representation of motor 2 - A1, for various grid sizes.

A plot of the percentage error versus the grid spacing is given in Figure 4.4.

Note in Figure 4.4 that the error for a grid spacing of 8 and 9 is very low
in comparison to that for grid spacings of 8 or 11. This is due to the fact
that the fin sections at the aft end of the motor are set to a width of 9 units,
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Figure 4.4 – A plot of the errors in the implicit representation of motor 2 - A1.

and are overestimated for a grid spacing of 9 due to incorrect results of the
isosurface() function, as illustrated in Figure 4.5. As was the case for the
previous grain design, section 4.1.1, the tubular sections are underestimated
for large grid spacings. The overestimation of the fin surface together with the
underestimation of the tubular section possibly gives the false impression of
an accurate approximation.

Figure 4.5 – An incorrect result from the isosurface() function.

4.2 Validation of Monte-Carlo integration
techniques

The dependency of the accuracy of the MC integration on number of MC
integration points, and the width of the thin envelope used for surface approx-
imation, is investigated.
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4.2.1 Single voxel volume integration

The integration of a single voxel is performed by means of MC-integration.
A voxel cut by an interface through a central plane, as illustrated in Figure
4.6, such that half of the volume of the voxel lies within the interface, was
considered.

Figure 4.6 – A voxel cut in half by an interface through a central plane.

An implicit representation, φvox, of the interface in Figure 4.6, was defined
on the voxel vertices by setting the vertices of the voxel that lie inside the
interface equal to -0.5, and the vertices on the outside equal to 0.5. Figure 4.7
gives a graphical illustration of the implicit representation.

The voxel is a cube of volume Ψvox = 1 and the volume inside the interface
is equal to Ψinside = 0.5. The number of MC-points used for the purpose of
the volume approximation was varied from 1 to 500 000 and each simulation
was repeated multiple (100) times, in order to construct statistical confidence
intervals on the results of the MC-integration technique. The results of the
MC-integration of the implicit interface φvox, of Figure 4.7, is summarized in
Table 4.3. The expected volume E(Ψinside), variance V AR(Ψinside), as well as
a 95% confidence interval is given for an extract of the experiments.
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Figure 4.7 – An implicit interface representation of the interface which cuts
the voxel in half.

Table 4.3 – An extract from the results of the MC-integration of φvox for
various numbers of MC-points.

A plot of the expected values as well as the variance of the volume versus the
number of MC-points ranging from 1 to 5000 is given in Figure 4.8.

Similar plots where the number of MC-points range from 100, in steps of 100,
to 60 000, are given in Figure 4.9.

95% confidence intervals can be constructed by E(Ψinside)±1.66V AR(Ψinside).
A plot of the resulting confidence intervals is given in Figure 4.10 for MC-points
ranging from 1 to 5000.
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Figure 4.8 – A plot of expected value E(Ψinside) (top), and variance
V AR(Ψinside) (bottom), versus the number of MC-points used for MC-
integration.

A similar plot where the number of MC-points ranges from 100, in steps of
100, to 60 000, is given in Figure 4.11.

It is now possible to give the maximum error within the 95%-confidence in-
terval. I.e. there is 95% certainty that the error in the approximated volume
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Figure 4.9 – A plot of expected value E(Ψinside) (top), and variance
V AR(Ψinside) (bottom), versus the number of MC-points used for MC-
integration.

for the corresponding number of MC-points will be smaller than the maximum
error. The Maximum error for both 1 to 5000 and 100 to 60 000 points is given
in Figure 4.12 and Figure 4.13, respectively.

From the results it can be concluded that the expected absolute error intro-
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Figure 4.10 – A plot of the 95%-confidence intervals versus the number of
MC-points used for MC-integration.

Figure 4.11 – A plot of the 95%-confidence intervals versus the number of
MC-points used for MC-integration.

duced by MC-integration approximation, decreases in a logarithmic fashion
with the increase of the number of MC-points used for the integration. For a
voxel with volume Ψvox = 1, and a volume fraction inside an interface such that
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Figure 4.12 – The maximum error within a 95%-confidence interval versus the
number of MC-points used for MC-integration.

Figure 4.13 – The maximum error within a 95%-confidence interval versus the
number of MC-points used for MC-integration.

Ψinside = 0.5, the approximation error will be below 1% with 95% certainty, if
more than 10 000 MC-points are used in the integration process.
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4.2.2 Area integration: Two merged spheres

In order to investigate accuracy of surface integration by means of thin-envelope
approximation and the effect of the width of the envelope used, an analytical
case study was set up as follows:

Two spheres of radii 3- and 4-units respectively were set up with center points
a distance 5-units apart, as illustrated in Figure 4.14. The union of the two
spheres was taken as the analytical interface to be investigated.

Figure 4.14 – The union of two merged spherical interfaces.

The interface has a true surface area of 271.4336 units2. MC-surface-integration
by means of thin-envelope approximation was performed on an implicit rep-
resentation of the analytical surface, defined on discrete grids with varying
domain sizes and for varying thin envelope widths.

A surface plot of the absolute errors in the surface approximation to the ana-
lytical solution, for surface integration of implicit function with domain sizes,
or grid resolution, ranging from 20 × 20 × 30 to 160 × 160 × 240 and thin
envelope widths ranging from 0.25 to 6.0 is illustrated in Figure 4.15. Note
that the thin envelope widths is given in terms of the grid spacing and not
necessarily the global units used to define the implicit function.

The errors tend to decrease with an increase in grid resolution and seem to be
only be influenced to a lesser extend by the thin envelope width, especially for
higher grid resolutions. The general trend is that the errors decrease with a
decrease in envelope width. For envelope widths of 0.25 and 0.5 however, the
results tend to be less stable.
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Figure 4.15 – Absolute errors of the MC-integration of the merged spheres
interface, for various envelope widths and a grid resolutions.

The average absolute error for each grid resolution, and for each envelope
width, is given in Figure 4.16 and Figure 4.17, respectively.

Figure 4.16 – Average absolute errors of the MC-integration of the merged
spheres interface, for varying grid resolutions.
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Figure 4.17 – Average absolute errors of the MC-integration of the merged
spheres interface, for varying thin envelope widths.

The approximated surface areas all lie within a 1% of the analytical surface
area, except for the results for the the thin envelope widths of 5.0 and 6.0
at the lowest grid resolution, where the thin envelope actually intersects the
domain boundary.

4.2.3 Area integration: SRM grain surface

Two separate SRMs are integrated by the MC-integration procedure, as further
validation of the technique. The two grains are integrated using varying thin
envelope widths. The first, a tubular type grain with radial slots (Figure 4.18)
and the second a finocyl design (Figure 4.19).

The grid domain used to describe the two grain designs are of the size, 85 ×
85 × 700 for the radially slotted design, and 55 × 55 × 494, for the finocyl
design.

The percentage errors of the area integration of the finocyl design are plotted
as a function of the thin envelope width in Figure 4.20
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Figure 4.18 – A radially sloted grain design.

Figure 4.19 – A finocyl grain design.

Figure 4.20 – A plot of the percentage error of the MC surface integration of
a finocyl motor design
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From the figure it can be seen that for relatively large envelope widths, the
error decreases with a decrease in the width. For the finocyl design the area is
under-approximated for thin envelope width in the region of two units. This
is most likely due to the precense of sharp corners along the fins. The absolute
error does however decrease for envelope widths in the region of 1 unit, and
the error is well within the 1% range. As the wdith is decreased further, the
area integration becomes less stable as the number of random points within
a very thin envelope decreases and the uncertainty in the area approximation
becomes larger. A more detailed illustration of the error for lower envelope
widths is given in Figure 4.21.

Figure 4.21 – A plot of the percentage error of the MC surface integration of
a finocyl motor design, for low envelope widths.

The results of the area integration of the radially slotted motor are illustrated
in Figure 4.22. Again the percentage errors are mostly positively correlated to
the envelope widths. Unlike the finocyl grain design, the radially slotted burn-
ing surface is not significantly underestimated for any given envelope width,
however the errors do seem to sugest that the integration does again become
unstable for very low envelope widths.
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Figure 4.22 – A plot of the percentage error of the MC surface integration of
a finocyl motor design

4.2.4 Improvements in efficiency due to stratification
and exploitation of symmetry

In this section, the improvements in efficiency and computational cost of MC-
integration, as a result of the optimization techniques of Section 2.8.3.6, i.e
through stratified MC integration and the exploitation of symmetry in the
grain design, is investigated.

The two SRM grain designs utilized in Section 4.2.3, will again be investigated.
Recal the domain sizes for the implicit interface representations of the two
motor designs are 85×85×700 and 55×55×494, respectively. When stratified
MC-integration is employed, the number of voxels of the domain that needs
to be integrated is reduced from 5 057 500 to 51 130, and from 1 494 350 to
73 512, for the radially slotted and finocyl grains designs, respectively. In the
event that the axial symmetry is exploited the numbers can further be reduced
to 21 987 and 6 952 voxels.

The sections of each grain design that is not integrated due to their equivalence
to previous sections of the grain is highlighted in Figure 4.23 and Figure 4.24,
for both grain designs investigated, see also Figure 2.47.
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Figure 4.23 – Sections of the radially slotted grain design that are equivalent
to previous sections.

Figure 4.24 – Section of the finocyl grain design that are equivalent to previous
sections.

Both grain designs also poses two perpendicular planes of symmetry w.r.t the
non axial dimensions, so that a quarter section of the grain can be used to
simulate the full design. This implies a further 4-fold reduction in the number
of voxels that need to be integrated. The number of integrated voxels now
becomes 5497, and 1738, respectively. A summary of the reductions in the
number of integrated voxels is given in Table 4.4. Table 4.5 lists the results as
a percentage of the total number of voxels in the domain.
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Table 4.4 – The number of integrated voxels for various optimization techniques
employed, during the geometric evaluation of both a radially slotted and finocyl
grain design.

Table 4.5 – The percentage of the total number of voxels integrated for various
optimization techniques employed, during the geometric evaluation of both a
radially slotted, and finocyl grain design.

4.3 Grain burnout: Monte-Carlo versus
Marching cubes

In Section 2.8.2.2, the calculation of surface areas using a marching cubes
method during the burnout phase is discussed. The effects of patches of the
surface as it reaches the motor casing cause a jagged area profile, a problem
which is overcome by the MC integration techniques of Section 2.8.3. In this
section this effect is investigated, and a comparison of burn area profiles, spe-
cifically during the burnout phase, as calculated by both the marching cubes
integration and MC-integration is done. The radially slotted grain used in the
previous section, as illustrated in Figure 4.18, was used as an initial burning
surface.

Figure 4.25 illustrates the surface patches that contribute to the calculated
burning surface area in the marching cubes integration. The surface patches
are deleted in a discrete fashion, inducing the jagged area profile.
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Figure 4.25 – Unburnt patches of a triangulated grian burning surface, used
to compute the burning surface area in a marching cube surface integration.

The area profiles for both integration techniques are shown in Figure 4.26.

Figure 4.26 – Area profiles of a motor, as calculated by the marching cube in-
tegration and MC-integration techniques. The MC-integration results are shown
in red and the marching cubes integration results in blue.

Note how the area profile resulting from the marching cubes integration, shows
the jagged effect of the integration procedure. This is illustrated clearly in
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Figure 4.27, where a more detailed illustration of a section of the area profile
is given.

Figure 4.27 – A detailed view of area profiles resulting from marching cubes
and MC-integration. The MC-integration results is shown in red and the march-
ing cubes integration results in blue.

4.4 Level set methods

In this section, the validity of the numerical schemes for solving the level set
equation, including the conditions for numerical stability, and their ability to
select the ‘entropy satisfying’ solution, is investigated. Three 2-D cases were
set up and solved using the first order scheme developed in Section 2.5. Euler
time integration was utilized, as this was also the time integration scheme used
to couple with the internal ballistics module.

The cases were chosen such that they represent the typical areas of difficulty
for numerical front tracking techniques, namely corners, cusps and topological
changes.

4.4.1 Corners

The formation of a rarefaction wave is expected around a corner. Figure 4.28
illustrates the initial interface in bold, along with the evolution of the interface
for 24 time-steps by the LSM.
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Figure 4.28 – A corner propagated by the LSM. The initial interface is high-
lighted in bold and the direction of propagation is indicated.

4.4.2 Cusp

The cusp is expected to remain a sharp discontinuity in the interface gradient
for all time. Figure 4.29 illustrates the initial interface in bold, along with the
evolution of the interface for 24 time steps, by means of the LSM.

Figure 4.29 – A cusp propagated by the LSM. The initial interface is high-
lighted in bold and the direction of propagation is indicated.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. RESULTS AND VALIDATION 107

4.4.3 Topological change

Two circles are advanced outward and is expected merge and form a single
closed interface, thus changing the topological state of the total interface.
Figure 4.30 illustrates the initial interface in bold, along with the evolution of
the interface for 24 time steps, by means of the LSM.

Figure 4.30 – Two neighboring circles propagated by the LSM. The initial
interface is highlighted in bold and the direction of propagation is indicated.

The results confirm the LSM’s ability to handle the propagation of interfaces
that pose the traditional areas of difficulty encountered by numerical inter-
face propagation schemes. The three situations investigated above are all en-
countered in typical SRM grain designs and illustrates the effectiveness of the
LSM for grain regression analysis. Finally in the following section, the results
of a coupling of the grain regression procedures, LSM interface propagation
and MC-integration, with a Q1-D IB module is given.
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4.5 Grain-IB coupling

A test bed experiment was performed using the radially slotted grain illus-
trated in Figure 4.18. The pressure was was registered at the head-end of
the motor and recorded. The results in dimensionless units are illustrated in
Figure 4.31

Figure 4.31 – A plot of Pressure vs Time (dimensionless units), for an experi-
mental burn of a radially slotted grain

The grain regression module, made up of the LSM interface advancement and
MC-integration, is coupled to the IB solver described in Section 3.1.1. A full
motor simulation is performed using both the ‘off-line’ and ‘on-line’ (with and
without muti-timescales) coupling schemes of Chapter 3, and compared to the
results. As noted before, the results do not provide conclusive evidance of
the grain regression module, since the accuracy of the IB module is subject to
factors such as errosive burning terms and the addition of nozzle erosion to the
simulation. They do illustrate the abbility of an IB module, coupled to a nu-
merical grain regression module, to generate pressure-time history predictions
that are compareble to experimental results.
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4.5.1 ‘Off-line’ IB coupling

Simulations using the ‘off-line’ scheme was performed and the simulated pres-
sure is compared to the experimental results. Figure 4.32 gives a plot of the
resluts obtained.

Figure 4.32 – A plot of Pressure vs Time (dimensionless units), for an exper-
imental burn (Red) and an ‘off-line’ IB simulation (blue), of a radially slotted
grain.

The results show the simulation initially underpredicts the pressure and only
reaches the burnout phase at a later time than is the case for the experimantal
data. Some relatively sharp discontinuieties (when compared to experimental
results) is observable in the predicted pressure curve, especially during the
burnout phase of the motor operation. This is likely due to the fact that when
using the ‘off-line’ coupling scheme, spatially constant burnrates for the grain
sections cause each section to reach the burnout stage adn become fully burnt-
out over a single time step. This is not physically correct and the burnout phase
should be more accurately captured by using an ‘on-line’ coupling scheme.

The addition of the multiplicative errosive model descibed in Section 3.1.2 does
improve the concurence between simulated predictions and the experimantal
data, as shown in Section 4.5.3.
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4.5.2 ‘On-line’ IB coupling

4.5.2.1 Single time-scale simulation

The results of the single time-scale simulation is illustrated in Figure 4.33.

Figure 4.33 – A plot of Pressure vs Time (dimensionless units), for an experi-
mental burn (Red) and an a single time-scale ‘on-line’ IB simulation (blue), of
a radially slotted grain.

The predicted pressure curve does infact show some subjective improvement
w.r.t the sharp discontinuities observed during the ‘off-line’ simulation, and
seems to more accurately describe the reality. The number of geometric evalu-
ations of the burning surface during the single time-scale simulation was 1117.

4.5.2.2 Multi time-scale simulation

The results of the multi time-scale simulation is illustrated in Figure 4.34.

The results are comparebly similar to the results obtained by the single time-
scale simulation, altough it is true that some smoothing of the pressure curve
as a result of the coarser time-scale for geometric evaluations of the burning
surface should be present. The number of geometric evaluations during the
simulation were 173.
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Figure 4.34 – A plot of Pressure vs Time (dimensionless units), for an exper-
imental burn (Red) and an a multi time-scale ‘on-line’ IB simulation (blue), of
a radially slotted grain.

4.5.3 Errosive burning effects

In this section an ‘off-line’ simulation with the addition of errosive burning
terms, in the form of the multiplicative errosive burning model of Section
3.1.2, was performed. The parameters for the errosive burning model was
inferred from the experimental data and the results serve solely as a indication
of the effects of errosive burning terms. The results are illustrated in Figure
4.35.
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Figure 4.35 – A plot of Pressure vs Time (dimensionless units), for an experi-
mental burn (Red) and an IB simulation with the addition of errosive burning
terms (blue), of a radially slotted grain.
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Chapter 5

Conclusions and
recommendations

5.1 Conclusions

The need for an accurate automated grain regression module, for the purpose of
SRM simulation, was identified. The use of implicit interface representations,
by means of SDFs, together with novel MC-integration of the implicit functions
and the LSM was used in order to achieve the goals set out. The possibility
of performing both coupled and uncoupled (with respect to IB simulations)
grain regression analysis was maintained.

Some conclusive remarks on each of the above mentioned techniques, incor-
porated into the grain regression module, are given in the following sections.

5.1.1 SDF implicit interface representation

The use of implicit surface representation by means of an SDF makes it pos-
sible to perform grain regression, for complex grain designs where changes in
topology may occur, without having to perform time consuming area profile
calculations by means of analytical function. It allows for rapid area profi-
ling of a number of designs, and frees the designers to investigate numerous
possible solutions to the grain design.
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The SDF representation can be obtained by performing scan conversion on a
rectangular grid, and can be generated from STL surfaces which are commonly
exported by most CAD packages.

Since SDFs of interfaces can be intersected with ease by performing simple
Boolean procedures, the SDF representation allows for simulation of the burn
out phase with relative ease.

5.1.2 MC-integration

The ability to accurately integrate the surface area of an implicitly defined in-
terface is vital to the proposed grain regression module. Previous approaches,
such as the marching-cubes type integration methods described in Section 2.8,
are not robust against incorrect topologies and inaccurate, burn-out phase,
area integration. The proposed MC-integration methodology provides a ro-
bust alternative, whilst maintaining high levels of accuracy at a reasonable
computational cost. Methods of exploiting symmetry in a burning surface are
also applied to the integration methodology.

The surface area integration of analytical cases, as well as examples of exis-
ting SRMs, are performed in order to provide evidence of the validity of the
MC-integration technique and show the robustness of the methodology. The
comparison of results with analytical models and other numerical integration
techniques support the preceding claims. The results lead to the conclusion
that MC-integration is applicable to the surface area integration of SDF type
implicit surface representations, for the purpose of SRM grain regression ana-
lysis. Alternative applications are yet to be explored, however, with the rise
in popularity of the LSM for interface advancement, future applications might
be plentiful, given the robustness of the technique.

5.1.3 LSM interface advancement

The LSM is shown to be suitable for performing the evolution of a burning
surface interface in SRM simulation. The ability to return physically correct
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‘entropy satisfying’ interface evolutions facilitate the posibility of performing
grain regression analysis for arbitrarely complex grain designs.

The ability of the LSM to advance an interface at non-uniform spatial speed
distributions make direct coupling of the grain regression and IB modules
possible. It provides a great step towards simulation, and hopefully a better
understanding of phenomena such as erosive burning and 3-D internal flow
effects due to the changing velocity. The ability to advance an interface at
non-uniform speeds and subsequently perform area and volume integration of
the resulting grain surface and perforation might lead to further studies into
the effects on burning rates and the combustion process.

5.2 Recommendations for future work

A number of areas of further research have been identified. Work both specific-
ally applicable to SRM simulation, as well as more general work on implicit
surface evaluation, is proposed in the following sections.

5.2.1 Automated area profile optimization

For most SRM grain design iterations, the primary goal of the designer is to
match a target area profile, in order to achieve a desired thrust curve to meet a
set of mission requirements, as discussed in Chapter 1. For some specific types
of thrust curves standard generic layouts have been developed. For example a
boost sustain curve is typically achieved by a finocyl design.

The finocyl design comprises of two sections that are characterized as a tube
and a star design. Let φtube and φstar be the implicit representations of γtube,
a tube grain design, and γstar, a star grain design, respectively. By employing
the weighted averaging of implicit interfaces as desribed in Section 2.6.2 it is
possible to describe a finocyl grain by setting λ equal to the correct weights
at each segment along the motor axis.

For instance let the desired grain design have an axial length of say naxis and
let,
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φfinocyli = λiφstar + (1− λ)φtube (5.2.1)

for i ∈ {1, 2, . . . , n}, where φfinocyli denotes the i’th segment of unit length
along the motor axis, and λi the value of λ at the same position. If λ is set
equal to 0 for a section at the front of the grain and allowed to increase, linearly
or otherwise, until it reaches 1 and kept equal to 1 for the remainder of the
length of the grain, φfinocyl will be the implicit representation of a traditional
boost-sustain curve. An illustration of the interfaces γtube, γstar and γfinocyl

along with the values of λ along the various sections of γfinocyl is given in
Figure 5.1.

Figure 5.1 – An illustration of the weighted averaging of γtube and γstar in
order to define γfinocyl. The weights of the averaging along the axis is given by
λ.

Since the grain regression module described in this work is capable of per-
forming a geometric evaluation of an entire regression of φfinocyl and return
the resulting area profile, it might be possible to perform a Latin-Hypercube
type experiment on the parameter λ and optimize the grain design φfinocyl to
approximate a given area profile.
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This could possibly further reduce the number of design iterations and there-
fore the time it takes to develop a novel grain design for a given mission.

5.2.2 3-D grid generation

It was previously stated that the coupling to a 3-D IB-solver is to be facilitated
by the grain regression module. In order to perform fully 3-D IB simulations of
an SRM internal flow-field, an efficient and robust method of grid generation,
for the purpose of discretizing the evolving internal geometry of an SRM at
each point in time during the operational phase, is required. Two possible
methods, not excluding other possibilities, have been identified. The first being
a VOF approach, and the second, an automated grid generator that relies on
implicit interface representations similar to the grid generator described by
Persson [61].

5.2.2.1 VOF grid generation

The VOF grid approach is simply a weighting of cells such that the fraction of
a cell that forms part of the flow field is designated by the weight assigned to it.
In the case of SRM simulation the flow field corresponds to the area inside the
burning interface and so the VOF method for interface advancement described
in Section 2.4.1 does exactly that. Furthermore, the MC-integration described
for the evaluation of geometric in the grain regression module, approximates
the fraction of each cell in the domain that falls inside the burning surface
interface.

The rectangular grid framework on which the grain regression procedure is
based could possibly be employed directly for IB-simulation, using the VOF
technique to describe the boundaries of the internal flow-field. This would
mean that, in essence, no additional grid generation is needed to perform the
coupling of of the grain regression.
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5.2.2.2 Implicit grid generation

In his doctoral thesis Persson [61] introduces a method of grid generation based
on implicit interface representation. The basic procedure relies on initializing
a structure of points and edges, similar to a truss structure, and letting the
edges act as springs and the points as joints. By enforcing a force equilibrium
in the edges or ‘springs’, the points are transported into a equidistant state.
The implicit representation provides the exterior forces or edge lengths from
the boundary or interface. The edges to the boundary are necessarily perpen-
dicular on the interface since the implicit representation returns the minimum
distance to the interface.

In his thesis, Person uses a Delaunay triangulation [62] as an initial structure
for the points and edges, however, any initial structure could be utilized within
the same philosophy. Another advantage would be that at each time step of
the SRM simulation, the mesh structure from the superseding time step could
be used as initialization of the current mesh generating procedure. This would
eliminate the need to perform multiple initializations for the grid generation
procedure, and since the change in geometry between time steps would ne-
cessarily be small. The amount of iteration of solving the force equilibrium
equations should be relatively small.

5.2.3 Higher-order shock capturing interpolation
schemes

The MC-integration techniques described in Section 2.8.3, relies on interpola-
tion of random points to a discrete implicit interface representation or signed
distance function. Tri-linear interpolation was employed in order to determine
the position of a random point with respect to the zero-level-set or interface.
The use of higher order interpolation schemes would be beneficial for smooth
regions of the represented interface, allowing more accurate approximations to
the actual interface. There would however be a significant error introduced at
sharp discontinuities, or shocks in the interface, due to smoothing as a result
of the high order interpolation.
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A possible solution might be to perform a weighted interpolation, analogue
to the weighted stencil of the weighted essentially non-oscillatory or WENO
integration schemes, developed for integration of flow fields that may contain
shock discontinuities.

Simply put, the interpolation scheme would utilize a high order procedure in
areas where it is determined that the gradient of the SDF does not contain
discontinuities, i.e. the gradient in a specific location of the neighbourhood
of the point being interpolated does not vary greatly from any other location
within the local neighbourhood. Where the neighbourhood is of the size equi-
valent to the order of the integration scheme multiplied by the grid spacing
of the discrete SDF domain. If this is not the case the interpolation scheme
systematically reverts to a lower order interpolation until the discrepancies in
the gradient of the SDF within the appropriate neighbourhood is such that a
chosen criteria for accurate interpolation is met. Such criteria might for ex-
ample be the absolute difference in local gradients for any two locations within
the neighbourhood must be smaller than a chosen threshold.

Consider for example, the implicit interface illustrated in Figure 5.2. Point ~x2

lies in the center of a 5 × 5 neighbourhood that falls on a smooth section of
the implicit function, where as a 5 × 5 neighbourhood centered around point
~x1 contains a sharp change in the gradient.

If the neighbourhood around ~x1 is decreased to size 3 × 3, then it no longer
contains the sharp gradient change and the interpolation can proceed, as illus-
trated in Figure 5.3.
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Figure 5.2 – Two points with their neighbourhoods highlighted on an implicit
interface representation.

Figure 5.3 – Two points with their neighbourhoods highlighted on an implicit
interface representation.
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Appendix A

SDF generation

A.1 Right-hand rule convention

The right hand rule, first used in the study of electro-magnetics, is a popular
convention in both mathematics and physics for defining the direction of three
vectors perpendicular to each other. This can also be applied to finding the
positive normal direction of a plane, by using two non-parallel vectors on the
plane and finding a third vector perpendicular to both. This is done by defining
three sequential verticies, placed anti-clockwise on the plane as viewed from
the positive side of the plane. Figure A.1 illustrates the vertices ~v1, ~v2 and
~v3, which satisfy the afore mentioned.

Once the verticies are defined, the normal vector ~n is simply found by,

~n = (~v2 − ~v1)× (~v3 − ~v2). (A.1.1)

A.2 Sign calculation

In Section 2.7.4, the generation of a discrete SDF from an STL file is discussed.
Further detail of the calculation of the sign awarded to points that were scan
converted by polygons to find points possibly closest to edges or vertices, is
given in the following section.
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~v1

~v2

~v3

Figure A.1 – Three sequential vertices placed in an anti-clockwise direction on
a plane.

Edge: First an edge of an STL surface is considered. Recall that the poly-
hedron for scan conversion of the points, in the case of an edge, is a triangular
prism, as illustrated in Figure A.2.

Figure A.2 – An illustration of the polyhedron used to scan convert points
closest to an edge of an STL surface.

Depending on the local curvature of the surface at the edge the polyhedron will
either lie inside or outside the surface. If the surface is convex the polyhedron
lies outside and if the surface is concave, inside, as illustrated in Figure A.3.

Determining whether the surface is convex or concave at the edge relies on the
relation between two distances. Refer to Figure A.4, where an edge is defined
by points ~x1 and ~x2. The two faces that share the edge are completed by
vertices ~x3, and ~x4, and their normals defined by ~n123 and ~n142, respectively.
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Figure A.3 – An illustration of a polyhedron outside a convex surface and
inside a concave surface.

Figure A.4 – Two distances used to determine concavity over an edge.
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Let

d1 = |~x3 − ~x4| (A.2.1)

and

d2 = |(~n123 + ~x3)− (~n124 + ~x4)| (A.2.2)

From Figure A.5 it can be deduced that if d1 > d2, the surface curvature
around the edge will be convex and if d2 > d1 , the surface is concave.

Figure A.5 – The distances d1 and d2, for concave and convex surfaces.

Vertex: Recall points possibly closest to a vertex ~x1 of an STL surface is scan
converted by a polygonal pyramid, as illustrated in Figure A.6.

First an averaged normal ~nvert is calculated as the average of all the face
normals of the patches that are common to the vertex. It should be noted
that the normals are normalized unit normals of length 1 units. For each of
the patches a procedure similar to described in the case of an edge is followed.
Refer to Figure A.7, the distances d1 and d2 are calculated as,

d1 = |~x1 − ~x2,n|, (A.2.3)
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Figure A.6 – Polygonal pyramid used for scan-conversion of points possibly
closest to a vertex.

Figure A.7 – The distances d1 and d2, as defined for a vertex and a patch of
an STL surface.

and

d2 = |(~x1 + ~nvert)− (~x2,n + ~xn)|, (A.2.4)

where ~x2,n is a vertex on the patch not equal to the shared vertex ~x1.

From Figure A.8 we can deduce that it, if d1 > d2 for all the patches that share
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Figure A.8 – The distances d1 and d2, for convex and concave surfaces.

~x1, the polyhedron will lie inside the surface. If d1 < d2 for all the patches
that share ~x1, the polyhedron will lie outside the surface. Otherwise the vertex
will be on a saddle point, and there will not be points inside the polyhedron
described for ~x1.
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Appendix B

Entropy satisfying schemes for
interface propogation

The development of an ‘entropy satisfying’ physically relevant interface ad-
vancement scheme was conducted by Osher and Sethian [11]. The connection
between interfaces, entropy and a viscous limit solution of hyperbolic conser-
vation laws is discussed in detail by Sethian [13], the following sections are a
summation of the dicussion.

B.1 The role of entropy conditions

Consider an initial interface represented by a parameterized smooth cosine
curve,

γ(0) = (−s, [1 + cos(2πs)]2), (B.1.1)

propagating with speed V = 1. From equations (2.2.2) and (2.2.3), an exact
solution of the problem at a time t is given by,

x(s, t) = (∂y/∂s)(s, 0)
((∂x/∂s)2(s, 0) + (∂y/∂s)2(s, 0))1/2 t+ x(s, 0) (B.1.2)

y(s, t) = (∂x/∂s)(s, 0)
((∂x/∂s)2(s, 0) + (∂y/∂s)2(s, 0))1/2 t+ y(s, 0) (B.1.3)
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(a) (b)
Figure B.1 – Swallow tail and entropy satisfying solutions to an advancing
cosine curve interface.

Figure B.1 shows how a shock develops. It becomes unclear how to determine
the normal direction at the shock, and therefore, how to continue the propaga-
tion. The shape of the propagated interface beyond the formation of the shock
depends on the nature of the interface. If the interface is regarded to be a geo-
metric curve, the solution might be the formation of a ‘swallowtail’ as shown
in Figure B.1 (a), where the front passes through itself. This is the solution
given by equation (2.2.2) and (2.2.3). If however, the interface is regarded as
moving boundary, separating two regions, the front at time t should only con-
sist of points a distance t from the initial interface, as in Figure B.1(b). This
is known as the Huygens principle construction and can be said to remove the
‘swallowtail’ from the solution.

The entropy solution illustrated in Figure B.1 (b) is found by invoking an
‘entropy condition’ which states: If the interface is seen as a burning flame
front, then once a particle is burnt it remains in a burnt state for all time. The
connection to the notion of entropy arises from the fact that by removing part
of the solution some information of the initial interface is lost and the problem
becomes irreversible.
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Figure B.2 – A viscous solution to the advancing cosine curve and its limit,
the entropy solution.

B.2 Curvature and the viscous limit

Define the curvature κ of a parameterized interface γ(s) as,

κ = (∂2y/∂s2)(∂x/∂s)− (∂2x/∂s2)(∂y/∂s)
((∂x/∂s)2 + (∂y/∂s)2)3/2 (B.2.1)

Consider again the cosine interface, equation (B.1.1), and let the speed with
which the interface propagates now be given by V = 1 − εκ. It has been
proved (Grayson [63]) that for ε > 0, a smooth initial curve propagated at a
speed V = 1− εκ will remain smooth for all time. The following observation,
illustrated in Figure B.2, is central to the level set approach.

For a smooth initial interface γ, let

• γε(t) be the family of the curves obtained by propagating γ with a speed
function V = 1− εκ.

• γconstant(t) be the family of curves obtained by propogating γ with a
speed function V = 1.

Then at any time t

lim
ε→0

γε(t) = γconstant(t). (B.2.2)
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This is known as the viscous limit. The reason for calling it the viscous limit
can be seen by a consideration of the hyperbolic conservation laws, and their
link to interface propagation. A hyperbolic conservation law is an equation of
the form,

∂µ/∂t+ ∂G(µ)/∂x = 0 (B.2.3)

The solution to equation (B.2.3) can develop shock discontinuities. For ex-
ample Burger’s equation, which describes the motion of a compressible fluid.
If, however, a viscosity term, ε(∂2µ/∂x2), is added to the right hand side of
equation (B.2.3) the solution remains smooth for all time.

Now let an initial interface be given by a graph of a function f(x), and suppose
the interface remains a function for all time. Let µ now be the height of the
propagating interface at time t, so that µ(x, 0) = f(x). The tangent at a point
(x, µ) is (1, (∂µ, ∂x)). The change in height µ is related to the speed V at
which the interface propagates in its normal direction by

µ

V
= (1 + (∂µ/∂x)2)1/2

1 . (B.2.4)

The equation of motion becomes

∂µ

∂t
= V (1 + (∂µ

∂x
)2)1/2. (B.2.5)

Using V = 1−εκ and the formula κ = −(∂2µ/∂x2)/(1+(∂µ/∂x)2)3/2, equation
(B.2.5) becomes

∂µ

∂t
− (1 + (∂µ/∂x)2)1/2 = ε

∂2µ/∂x2

(1 + (∂µ/∂x)2) . (B.2.6)

Differentiating both sides of the equation yields an evolution equation for the
gradient ∂µ

∂x
of the interface,

∂µ

∂x∂t
+ −∂(1 + (∂µ/∂x)2))1/2

∂x
= ∂(ε(∂2µ/∂x2)/(1 + (∂µ/∂x)2)

∂x
(B.2.7)
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Now, if ∂µ
∂x

is substituted with µ, the equation for the change in height of the
function f looks like a hyperbolic conservation law,

∂µ

∂t
+ ∂(G(µ))

∂x
= ε

∂2µ

∂x2 , (B.2.8)

with G(µ) = (1+µ2)1/2. This makes it possible to exploit the theory developed
for hyperbolic conservation laws to develop accurate schemes for advancing
interfaces. All that is required is to describe an interface by means of a graph
of a function. This can be done for any interface following the implicit front
representation philosophy of the LSM, introduced by Sethian and Osher [11].
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Published work

The following papers were presented at the 2013 AIAA Joint Propulsion Con-
ference in San Jose, USA. The contents of the work presented in this thesis is
partially included to the papers.
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We employ the level set method to perform coupled grain burn back analysis in solid 

rocket motor simulations. A method of generating a signed distance function from STL 

files for the initialization of the level set function is given. Monte-Carlo integration 

techniques are applied to calculate the burning surface and port area parameters from 

the evolved implicit representation of the burning surface. Multiple timescales are used 

for improved efficiency of the grain regression coupling with the internal ballistics code.   
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  =  general interface / grain burning surface 

  =  normal velocity of interface 
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 ⃗⃗   =  3D/2D position vector or point   

  =  natural number 

  =  surface area 

  =  volume 

    =  length increment 

 

Subscripts: 

       =  interior domain of an interface 

        =  exterior domain of an interface 

  =  time 

   =  discrete time increment 

   =  discrete rectangular grid domain 

  =  index of MC points 
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  =  motor casing 
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I. Introduction 

 

Solid Rocket Motor (SRM) grain design has evolved considerably in recent times. Defining the burning area and 

port area profiles of the grain have traditionally been time consuming tasks. This often prevents the designer 

from evaluating all possible designs due to time constraints. The traditional methods used for modeling the grain 

burn back, such as defining the area and port profile geometrically, are not easily accomplished and are difficult 

to incorporate into CFD models. Additionally any grain that 

does not fall into a pre-defined grain configuration requires a 

new geometric model. CAD models have also been 

extensively used in the industry but with ever changing 

software techniques devised to automate, such grain 

regressions rapidly become obsolete.  

 Apart from the challenges involved in the above 

mentioned methods, there is a limitation in predefining the 

regressed burning surface since the burn rate is a function of 

pressure, and simultaneously, the pressure is dependent on 

the mass flow which again is a function of the burning 

surface. This creates a feedback loop in which the pressure 

and burning surface are codependent, which in turn can 

cause complex burn rate distributions across the grain 

surface. An implication being that the grain regression at 

predefined burn rates is, at best, an intelligent guess of the 

physical model. This codependence has given rise to a need 

for an interactive grain regression module that can handle 

both spatially and temporally varying burn rates. Recently, front tracking techniques such as the Volume of 

Fluids (VOF) method, Fast Marching Method (FMM) and especially the Level Set Method (LSM) have become 

the preferred techniques. The basic layout of a motor is given in Fig. 1. The grain design refers to the shape of 

the exposed surface of grain before ignition. The grain forms a hollow core, referred to as the combustion 

chamber. The axis through the center of the combustion chamber is referred to as the longitudinal axis or motor 

axis. 

 We employ the LSM to create a grain burn back module for burn back analysis and coupled with a 1D 

Internal Ballistics (IB) code to simulate the complete operational phase of motors with arbitrarily complex grain 

designs. The problem of handling the burnout phase of a motor is also addressed. This is accomplished without 

explicitly finding the burnt out sections of the motor but instead taking advantage of the ease with which 

intersections and unions of surfaces can be handled within the LSM representation of interfaces. Multiscale time 

integration for the LSM and IB solvers are employed as suggested by Steward et al
1
. This is possible since the 

regression rate of the grain and the velocity of the flow differ with large orders of magnitude and so the 

regression analysis need not be solved for every time step of the internal flow solver.  

 The formulation of the LSM will be presented along with the methods of initialization of the SDF and 

parameter calculation for a general closed convex interface in 3D. A multiple timescale coupling of LSM with 

an IB code is done and the method of handling the burnout phase of a motor is shown. Finally some results of 

simulations are compared to static test results for some novel designs.  

 

II. Level Set Method 

A. Formulation 

The level set method introduced by Osher and Sethian
2
, is used to advance an interface   in its normal 

direction at a non-uniform velocity  . It relies on representing γ as a zero level set of a higher dimensional 

function  , defined on a domain   that spans γ. We can say that   devides   into two sub domains,         and 

        , i.e. 

 

   {    |  ( )      
 ( )                    
 ( )                    

(1) 

where   is a gridpoint in  . 

 

 

 

Figure 1: Layout of SRMs 
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The level set equation,  

 

     |  |     (2) 

 

describes the evolution of   in time and implicitly advances the interface. Fig. 2 shows the procedure for LSM 

interface evolution. The   function is initialized as an SDF on a uniform rectangular grid   , that spans  . This 

results in a smooth continuously differentiable function and allows for evolutions of complex interfaces, 

including topological changes and sharp corners to be handled effectively. Equation 2 is solved using a discrete 

first order upwind approximation to the spatial derivative    and an Euler time integration. 

Since the velocity function is only defined on the interface itself, extension velocities need to be built across 

 . The most popular method for building extension velocities is based on solving the Eikonol equation with the 

FMM
3
, this ensures that the   function remains an SDF representation of the interface and prevents the 

isosurfaces of   from grouping or separating as the interface is evolved. In our case the velocity function only 

varies in a single dimension and thus, the use of the FMM extension velocities is not required. Instead the 

velocity function is set equal to the burn rate at the given distance along the longitudinal axis of the motor. 

Equation 2 is then solved on    using explicit first order upwind schemes that converge to the physically 

relevant solution of      , which is an implicit representation of      .  

 

 
 

Figure 2: LSM procedure for a single time step evolution of the interface  . 

 

Once       is found, the interface can be extracted and the necessary 

parameters calculated from the implicit function. In the case of closed 

convex interfaces in 3D, the LSM facilitates elegant calculations of 

interface parameters such as surface area and enclosed volume, 

making this method attractive for application in burn back analysis. 

B. Signed distance function generation 

Since most CAD software packages have the option of exporting 

STL files, the STL triangulation format is chosen as the manner in 

which the arbitrary grain geometries are represented by the designer. 

The generation of the SDF as an initial condition for the LSM from an 

STL file is accomplished by the following method  based on the work 

of Mauch
4
.  

Note that an STL surface is the union of planer triangular patches, 

each defined by three vertices. The positive normal direction of each 

patch is also given. The minimum distance from an arbitrary point in 

3D to the surface could be the distance to a vertex, edge or face of a 

triangular patch, as illustrated in Fig. 3. These are handled separately 

by doing scan conversions of polyhedra that contain the points 

       

Generate SDF 
to initialize    

Solve  
eq (2)

2.24 1.87 1.63 1.75 2.31 3.08 3.83

1.61 0.91 0.64 0.81 1.65 2.41 2.85

1.12 0.15 -0.43 0.21 1.41 1.45 1.87

1.05 0.07 -0.91 0.15 0.48 0.48 1.42

1.18 0.23 -0.72 -0.18 -0.31 0.0 0.98

1.61 0.72 0.0 -0.62 -0.61 0.02 1.01

2.23 1.42 0.82 0.38 0.45 0.81 1.43

2.81 2.33 1.71 1.35 1.38 1.73 2.35

1.21 0.78 0.55 0.68 1.39 2.41 2.97

0.65 0.0 -0.45 0.02 0.97 1.89 1.99

0.5 -0.5 -0.92 -0.02 0.98 0.92 1.01

0.61 -0.39 -1.00 0.0 0.43 0.0 0.02

0.91 0.0 -0.71 -0.42 -0.41 -0.69 -0.18

1.22 0.24 -0.33 -0.91 -1.15 -0.72 0.0

1.61 0.71 0.21 0.0 -0.16 0.04 0.55

2.08 1.56 1.13 0.92 0.85 0.95 1.35

       

Extract zero 
level set

The 
minimum 
distance from 
interface 
assigned to 
grid points

Faces

Edge

Vertex

F

Figure 3: Polyhedra inclosing points 

possibly closest to a face edge or vertex of a 

triangular patch. 
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closest to each face, edge or vertex, on the discretized domain  . The grid points possibly closest to the face of a 

patch   will be enclosed by a rectangular prism that can be defined by the three edges and the normal of    The 

points possibly closest to an edge   is enclosed by a wedge defined by the respective normals of the two patches 

that share  . The points possibly closest to a vertex   are enclosed by a polygonal pyramid defined by the 

normals of the     patches that share  . Once the polyhedral is defined, a scan conversion of    returns the 

grid points that are included to the distance calculation from each specific segment of the triangular patches. A 

loop over all the patches is performed and the grid points are assigned the minimum absolute distance that has 

been assigned during the distance calculations. The sign of the minimum absolute distance is kept for each 

specific grid point. 

 

C. Parameter calculation by Monte-Carlo integration 

The burning surface and chamber volume are the only two parameters that are significant for the coupling of 

a burn back module with a 1D internal ballistics code for SRM simulation. The parameters are calculated by 

means of Monte-Carlo (MC) volume integration, and is based on 

the Monte-Carlo method of Metropolis and Ulam
5
. The burning 

area is calculated by performing a thin envelope approximation. MC 

integration relies on scattering a large number    of uniformly 

distributed points  ⃗⃗                  , across a domain   with a 

known volume   . Calculating the volume of interest,  , is done 

by finding the ratio of points inside the interface to the total number 

of points and multiplying with the domain volume, 

 

   
       

 
   .  (3) 

 

These points are referred to as the MC points. For ease of illustration, the 2D analogue where area and 

length, rather than volume and area are calculated is illustrated in Fig. 4. The area   is calculated by finding the 

volume of a thin envelope      of width    as follows:, 

 

          . 

 

(4) 

In the case of the implicit representations through SDFs, the MC points,  ⃗⃗   are simply trilinearly 

interpolated to find  ( ⃗⃗  ) and then selected by their sign, negative being inside  , i.e.  ⃗⃗           , and vice 

versa. For the contour calculation, the thin envelope area is found by selecting the points that interpolate to a 

value between the negative and positive half width values,      and      . 

III. Internal Ballistics Coupling 

A. Domain discretization 

The LSM solver operates on a 3D discretization of a domain that spans the entire physical motor, whereas 

the IB solver operates on a 1D discretization of the motor axis. These 2 discrete grids are co-located such that 

each 1D element of the IB grid can be represented by a given number of 2D slices of the LSM grid, see Fig. 5. 

The number of slices of the LSM grid that fall within the range of a single element of the IB grid does not need 

to be uniform and can be chosen to suit the simulation of a particular grain design, depending on the complexity 

of the geometry of each segment. The 2D slices are recompiled to form a smaller subdomain on which the IB 

segment is defined and this is used to perform the parameter calculation of each segment. 

 

 
 

Figure 4: Monte Carlo integration for area 

and contour length. 

LSM discretization IB discretization 

Co-located grid 

Figure 5: Domain discretization.  
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IB solver 

t1

LSM solver 

t2

Store areas at t2
and interpolate to 

t1
Burn area  -   

  , 
Port area   -     

  

Burn area  -   
  , 

Port area   -     
  

If      
Burn rates  -   

If      
Burn rates  -   

B. Multi scale time integration. 

The coupling of a grain 

regression module and an IB 

solver couples two physical 

processes that occur with 

vastly varying velocities, the 

IB solves a flow field with 

velocities in the order of 

 (   )      whereas the 

grain regression rate is 

typically in the order of 

 (    )    . The two 

processes can therefore be 

solved at different time scales. 

The grain burn back is solved 

at a coarse time scale and the 

calculated parameters are interpolated to a finer timescale of the IB solver. The time scale used for the grain 

burn back is dependent on the rate of temporal change of the localized burn rates. As soon as the burn rates at 

any specific location along the longitudinal axis vary by a given percentage from the burn rates used during the 

previous grain burn back calculation, the grain burn back should be performed again. The problem of varying 

burn rates is encountered again since the burn rate progression is not specifically known. A retroactive 

procedure is employed where the burn back is performed to a temporary time step and linearly interpolated until 

the IB time scale reaches that of the burn back analysis. The burn back then proceeds at the new burn rates for 

another temporary time step. The temporary time step for the burn back analysis is chosen to satisfy the CFL 

condition on the LSM procedure. The assumption that the parameters can be linearly interpolated is weak, 

however sufficient, since the time step restrictions bound the introduced assumption error. A layout of the 

procedure is illustrated in Fig 6. 

C. Burnout phase area and volume calculation 

During the burnout phase of SRMs the grain burning surface reaches the motor casing and the grain becomes 

burnt out. The burn out phase stretches over the time from the first instance that the burning surface reaches a 

section of the casing until the entire motor is burnt out and there is no more propellant left within the motor.  Let 

the motor casing be given by the interface   . Now the grain burns back and eventually reaches the motor 

casing, starting to expose some segment thereof to the combustion cavity. The burnt out areas of the grain are 

disregarded in the burnt area calculation by performing a secondary interpolation of the MC points that 

contribute to the area,     , of the thin envelope approximation of the burning surface contour. The points are 

interpolated to the implicit representation of the casing,    and deleted from the contributing points if found to 

be outside the casing, i.e.   ( ⃗⃗  )    as illustrated in Fig. 7. 

 

     
 

 

 

The volume calculation during the burnout phase is found by finding the volume inside the intersected 

interfaces   and   . The intersection can be handled elegantly with the implicit representations of the interfaces, 

 

              (    )  
 

 

 

  

Figure 6: Multi time scale coupling of the IB and LSM solvers. 

Figure 7: MC integration, disregarding burnt out grain segments. 
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Figure 11: An anchor grain configuration.  

IV. Results 

A. Merging spheres 

First an analytical case to verify the 

calculation accuracy of the area and 

volume parameters was performed. 

Two spheres are placed a distance apart 

and then evolved at different speeds. 

The case at different time stages is 

illustrated in Fig. 8. The results are 

given for various grid resolutions and 

number of MC points used for the 

integration. 

The case was run at a grid 

resolution of          and the 

total residuals with respect to the 

analytical area are given for an 

increasing numbers of MC points used 

to perform the integration, as shown in 

Fig 9. From the residuals it can be seen 

that an increase in the number of points 

used improves the accuracy of the 

integration. The curve however does 

appear to resemble asymptotic behavior, which is possibly due to 

the discrete representation of a continuous geometry and the fact 

that the surface is calculated by a thin envelope approximation. 

Next the case was run for increased grid resolutions with a fixed 

number of MC points, as shown in Fig. 10. 

From the results shown it is seen that the residuals decrease as 

the grid resolution is increased. The gain in accuracy quickly 

becomes small w.r.t the increased computational cost. The 

residuals for all the cases, apart from the grid resolution of 

        , included in the results are within the region of 1% 

and below, which is an acceptable error for design purposes since 

the experimental data from SRM static tests are typically not of 

higher accuracy and variation in manufactured motors often reach 

the 1% range. The same case was also setup with the interface 

evolved by means of the LSM and no significant changes in the 

parameter residuals were observed when compared to the 

analytically evolved interface. This gave a good initial confidence 

in the accuracy of the LSM for interface evolution, since the 

case contains both sharp corners and changes in topology. Both 

these properties typically prove problematic for numerical 

interface evolution techniques. 

B. The anchor grain 

In his paper, Mathew Umbel
6
 gave an exact 

analytical calculation for the burn surface of a 

generalized anchor grain configuration, illustrated in 

Fig. 11, as a function of distance burned. A CAD 

model of a specific case was created and the SDF 

generation technique described in section 2B was 

used to initialize the LSM and perform a burn back at 

constant uniform velocities. The results from the MC 

integration with burnout calculation are compared to 

Umbel’s analytical results. The effect of the width of 

the thin envelope approximation can be observed in 

the form of smoothing during the burn out phase as 

shown in Fig. 12. 

 

Figure 8: Two spheres 

growing and merging at 

non uniform speed. 
Figure 9: Residuals of the Monte-Carlo 

area integration for varying numbers of 

MC points. 

Figure 10: Total residuals resolutions of MC 

integrated area’s for varying grid. 
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Figure 12: MC integrated area for thin envelope half widths of 0.8 and 0.2 

respectively. 

Figure 13: MC integrated area for thin envelope half width 

of 0.05. 

Figure 14: Novel Grain design at various stages of 

the motor operational phase. 

 

 

 

 

The results for a thin envelope of half width          units show a significant deviation from the 

analytical results during the burnout phase of the geometry. The thin envelope approximation of half width 

         units, follows the analytical solution more 

closely. Care should however be taken, since a half 

width, which is significantly smaller than the grid 

spacing, could lead to unstable calculations of the 

burn surface area and make the area integration 

dependent on the grid orientation with respect to the 

interface location. The results have so far pointed to a 

half width of at least more than half the minimum grid 

spacing in any particular dimension. The grid spacing 

of the above given results was set to a uniform 

0.25 units in all 3 dimension. Fig. 13 shows the results 

for a half width of           units. Note the 

oscillations in the calculated area as the interface 

moves through the grid. This is due to the small width 

of the envelope.  

C. Full motor simulation 

A full motor simulation of a novel design was 

conducted, coupling the LSM to an IB code via the multi 

timescale procedure of section IIB, and the results were 

compared to actual test bed data. First a short discussion 

of the IB code is appropriate. 

The internal ballistics solver as described by 

Lamberty
7
 developed for the Solid Performance Program 

(SPP) is the chosen basis for the coupled solver IB code. 

The code converges on the Mach number of the internal 

flow rather than the internal pressure, which is perhaps 

more conventional. 

The motor grain design at various stages of the 

operational phase is illustrated in Fig. 14. Since the 

design is still under the design phase and the test data 

confidential, the results for the tests and simulations are 

given in dimensionless units. The results of the 

simulation are given in Fig.15. The motor simulation was 

done without any nozzle erosion models being 

implemented. This might explain the deviation from the 

experimental results, which seems to grow with time. 
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Figure 15: A comparison of static test bed 

experimental data and the full motor simulation 

utilizing the SPP and coupled LSM. 

 

 

 

 

 

 
 

 

 

 

V. Conclusions and future work 

 

The LSM burn back simulation provides an accurate numerical method of calculating the necessary 

geometrical properties to perform an SRM internal ballistics simulation. With techniques such as multi time 

scale approaches and efficient geometric calculation through the MC integration techniques, it is possible to 

perform coupled IB and grain burn back simulation of SRMs in a practical time frame. The advantage for design 

engineers is that a new design can be generated and simulated without any laborious geometric modeling as a 

function of burnt distance, which could dramatically reduce the time from design sheet to test bed. Certain 

geometrical effects caused by the non-uniform rate at which the burning surface might regress are also better 

captured by the LSM. 

The next step in the development of LSM grain burn back methods is to increase the numerical efficiency of 

the algorithms. The methods described above are well suited for parallelization to enhance computational 

efficiency. Most grain designs are also symmetric in nature and this could be exploited to further reduce the 

computational cost. A further area of possible improvement is the MC integration techniques. Stratifying the 

domain as well as optimizing the allocation of MC point density might improve the speed of the algorithm. 

Since the LSM has the ability to handle a spatially varying regression rate, the LSM might also provide some 

insight into the more subtle eccentricities of erosive burning models and how certain grain designs react, looking 

at possible areas where shockwaves might form and for instance, possibly pose a risk of motor failure. The 

future plans are to couple the LSM to a full 3D internal ballistics code in an OpenFOAM® environment. An 

area that requires some development in order to achieve this goal, is the fast and effective 3D grid generation for 

a 3D IB solver. The implicit representation of the burning surface interface could possibly be effectively 

exploited for the purpose of fast robust grid generation. 
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Rapid Solid Rocket Motor Design 

C.W. Rousseau1& S.F. Steyn2 
Rheinmetall Denel Munition, Firgrove, Western Cape, South Africa, 7130 

W. Sullwald3, E.R. De Kock4, G.J.F. Smit5 J.H. Knoetze6 
University of Stellenbosch, Private bag X1, Matieland, Stellenbosch, Western Cape, South Africa, 7602 

Internal ballistic design of solid rocket motors (SRMs) is a well-established field. Most 
grain designs have been well characterized throughout the industry. However, generating 
and evaluating different grain design options can be quite tedious and time-consuming. 
Thus, it was endeavored to create a preliminary design tool which can be used in a workshop 
with a client to promptly establish the most likely and suitable grain and performance design 
for the particular missile application, starting with a system definition. This tool was 
developed in the MATLAB® environment. 

This tool also serves as an input for the more detailed design. As part of the larger 
program it was endeavored to create an internal ballistic tool that allows for more detailed 
analyses. It was endeavored to use the rapidly expanding open source tools available to 
develop a fully coupled CFD internal ballistic tool. The grain regression and CFD modules 
have been developed to date. 

Nomenclature 
 

a = burning rate coefficient 
At = nozzle throat area [mm2] 
CD   = drag coefficient  
C* = characteristic velocity of the propellant combustion gasses [m/s] 
d = diameter [mm] 
eff = nozzle efficiency 
F = thrust [kN] 
ISP   =  specific impulse [s-1] 
lc = length of cylinder 

 =  mass flow [kg/s] 
n = burning rate pressure exponent 
S = propellant grain burning surface area [mm2] 
p =  pressure [MPa] 
Vc = propellant burning rate [mm/s] 

 =  burning surface area  
ρ  = propellant density [kg/m3] 

 =   3D surface interface 
 = implicit burning surface representation 

Subscripts 
base = base drag 
c = cylinder parameters 
friction = skin friction drag 
fin = fin parameters 

                                                           
1 Design Engineer, Product Development, Werner.Rousseau@rheinmetall-denelmunition.com,  AIAA Member  
2 Senior Project Manager RDM 
3 Master student, Department of Applied Mathematics, University of Stellenbosch 
4 Master student, Department of Applied Mathematics, University of Stellenbosch 
5 Associate Professor, Department of Applied Mathematics, University of Stellenbosch 
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on =  motor operating 
off =  motor not operating 
wave  = wave drag 
Φ = implicit burning surface representation 
1 =  propellant 1 
2 =  propellant 2 

I. Introduction 
he initial design of a new solid rocket motor (SRM) can often be time-consuming. For a given system, several 
different designs can be implemented. It is often required that a representative design be done of all the possible 

propulsion concepts that could be employed. For example, a boost-sustain motor could have a dual propellant-layer 
grain, two propellant blocks, finocyl or combinations of these designs. For each design, a geometric model is 
required. Depending on the tools that are available to the designer, this step can be both tedious and time-
consuming.  

The aim is to produce a design tool that will allow for rapid initial designs of SRM grains for comparative 
evaluation. This evaluation should be of such a nature that this can be done in a relatively small amount of time, in 
some cases within the time of one workshop with a prospective client. The designs from this analysis then serve as 
input to the next phase of detailed design. 

This tool is based on combination of the conservation laws, physics-based analyses, and, when available, 
empirical and experimental information from similar systems in a similar manner, as proposed by Fleeman1. Several 
steps must be followed to get to the final design. The first step is to define the required motor performance, based on 
the user's requirements. Once the system envelope is defined, a basic aerodynamic model is created for the system; 
the SRM envelope is then defined and the potential impulse that can be delivered is calculated. From the potential 
impulse, thrust curves are optimized to meet the primary mission requirements by performing trajectory simulations. 
The final step is to use these thrust curves to generate pressure profiles and, accordingly, the corresponding grain 
designs. 

II. System Definition 
The first step is to define the hypothetical system's airframe envelope. This is done by using the methodology 

described in Tactical Missile Design by E.U. Fleeman1. The analysis is limited to the system mass and estimate of 
the drag coefficients. Other subsystems such as the warhead, seeker, and guidance are not evaluated. The primary 
goal is to speedily define an SRM that is capable of delivering the required performance.  

The set of equations as presented by Fleeman1 produces realistic drag coefficients for the subsonic and 
supersonic region. The coefficients calculated for the transonic regions are much higher than would be expected. 
Thus instead of the blunt-nose wave drag term used1, an empirical model is used for the nose wave drag based on 
data from Waliskog and Hart2 is also a selectable option. However, it should be noted that since most of the flight 
time will be predominantly either supersonic or subsonic, the approximation presented by Fleeman is sufficient as a 
first order approximation for most systems.   

The total airframe drag is then the sum of the skin friction and base drag calculated by Fleeman’s method and the 
empirically determined wave drag. For power on (POn)

1 the total drag coefficient is: 
 

_ _
, (1) 

 
and for power off (POff)[1] the total drag coefficient is: 
 

_ _
. (2) 

 
For the empirical formulas of each of the terms in Eq. (1) and Eq. (2), the reader is referred to Tactical Missile 

Design1, pg. 23. These equations are used to calculate the drag coefficients to be used in the 3 degree of freedom 
(DOF) trajectory simulation. 

III. Internal Ballistic Equations 
From the 3DOF trajectory simulations, an idealized thrust profile is generated taking into account the volume 

available for the SRM, and the potential volumetric loading. The known required thrust profile and the following 
equations, found in any good reference on solid rocket motor design and internal ballistics such as Sutton3 and 

T 
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Davenas4, are then utilized by the rapid design code to conduct and evaluate various grain design options that would 
best meet the idealized thrust profile. The following equations can be found in any good reference on solid rocket 
motors internal ballistics and design such as Sutton3 and Davenas4. Once the required thrust profile is known, the 
motor grain design can commence. The thrust, F, can be related to mass flow rate through the nozzle, ,  in the 
following manner 
 ∙ ∙ . (3) 

The specific impulse (Isp) of the propellant composition can be found using a thermodynamics package. The 
nozzle efficiency, eff, can be inferred from experience. Therefore, the mass flow rate is the only remaining unknown 
in Eq. (3). The chamber pressure can be related to the mass flow through the nozzle and the mass flow from the 
grain when a steady operating point is reached: 
 

∗ ∙ ∙ . (4) 

The pressure within the motor chamber can be calculated as follows: 
 ∗

. (5) 

The burn rate ( cV ) is a function of pressure. If all other parameters are known or can be estimated with relative 

certainty, the burning surface area, S, required to generate the required mass flow can be calculated by rearranging 
Eq. (4), yielding 
 

∗. 
(6) 

This allows the generation of a required burning surface area profile. In the case of a finocyl design the 
cylindrical section's burning surface area as a function of distance burnt is known given that a certain cylinder length 
is chosen, and thus it is possible to calculate the required burning surface area for the fins: 
 . (7) 

 
Several fin geometries have been geometrically described within the computer code. The required fin burning 

perimeter is compared to the analytically generated burning perimeter, and the fin parameters are adjusted to obtain 
the best fit. 

In the case of a radially slotted motor design, the surface area is set once the number of slots and slot sizes are 
chosen, and the required burn rate needs to be calculated. This can be done by scaling a known propellant's burn rate 
i.e. keeping the burn rate exponent, n, value constant and adjusting the burn rate coefficient, a. The following 
equation can be solved iteratively to find the best burn rate match to the required thrust profile: 
 

*CS

AP
V t

c 
 . (8) 

It should be noted that this can be done for both two layers of propellants and two different propellants along the 
length of the motor. For two propellants the following equation must be solved numerically: 

 
 ∗

. (9) 

A. Design Decision Path 
The basic decision path is shown in Figure 1. Once the thrust curve has been determined, the required mass flow 

can be obtained from Eq. (3) and the required pressure can be calculated for a constant throat area using Eq. (5).  
If the desired thrust profile is boost and sustain, and a lower volumetrically efficient design is sufficient, the 

finocyl design can be employed. Since the cylinder section's geometry is known for a chosen cylinder length and 
port diameter, it is possible to solve for the fin area using Eq. (7).  

If a boost-sustain profile and a higher performance motor with greater volumetric loading is required, a radial 
slot grain could be considered using two propellants with different burn rates. Additionally, two configurations can 
be considered; namely concentric annular layers of propellant or two propellants in series (dual block). Since the 
geometry is essentially set with only the number of radial slots and port diameter that can be varied, the only 
unknown is the required burn rate. For the dual block design, however, the length of the propellant sections can be 
varied. Once the preferable design has been identified, a more detailed design and optimization process commences.  
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4

 
Figure 1: Basic design decision path. 

IV. Design of Dual Role Missile 

A. System Aerodynamics 
A 200 mm caliber missile will be used as an example, to illustrate the design methodology. This system will be 

required to fulfill both a ground-to-air and air-to-air capability. The system is not mass constrained but has an 
available length of 4 m. It is assumed that a canard-wing configuration will be required for aero control. Figure 2 
shows the aero output and the system mass is calculated to be 226 kg. Several templates for classes of tactical 
missile aero structures are available in to simplify and speed up user input. The code operator is then only required 
to modify a few of the parameters to match the user's requirement. The drag and the missile mass are exported to the 
3DOF trajectory code.  
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Figure 2: Aerodynamic output. 

B. Obtain Thrust Profile 
The primary flight profiles are presented in Table 1. Since the maximum Mach number has been limited to 3.5, 

the thrust profile must be of such a nature that the maximum Mach number will not be exceeded. The air-to-air 
profile is the most likely to result in the maximum Mach number being exceeded. This is due to the higher launch 
velocity and the lower drag at higher altitudes. 

Table 1: Flight profiles. 

Primary flight 
profile 

Launch altitude 
[km] 

Launch Mach 
number 

Intercept altitude 
[km] 

Horizontal range 
[km] 

Intercept 
Mach 

Maximum 
Mach 

Air-to-air 10 0.8 10 40 >1.2 3.5 
Ground-to-air 0 0 10 20 >1.2 3.5 

 
The code allows for the boost sustain profile to be specified by two methods, the first one being to specify the 

maximum Mach number as the goal after the boost phase, and then setting the sustain thrust equal to the drag. The 
code solves iteratively for the boost phase, the first guess being the impulse required to accelerate the missile to the 
required velocity; the thrust level is set by the minimum acceleration level required. The remaining impulse is 
allocated to the sustain section and the burn time calculated from the thrust level required to maintain the maximum 
Mach number. The second method is to specify a Mach goal below the maximum Mach number after the boost 
phase and then solve iteratively for a sustain thrust that will accelerate the motor to the maximum Mach value, 
assuming there is enough propellant available to do so. Once this has been done, the 3DOF trajectory code is 
allowed to complete the flight profiles to ensure that the requirement is met.  

These two thrust profiles (see Figure 3) can then be traded off against each other. If the goal is to boost the motor 
to its maximum velocity, then more of the energy is expended during this particular phase. This requires that the 
boost phase operates for a longer period of time, as well as, in the case of a finocyl, becoming less volumetrically 
efficient, since the fin section may have to be extended. A second possible constraint for this design is the propellant 
burn rate and the available web. Thus if the web of the fin section is insufficient to provide the required burn time at 
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a reasonable propellant burning rate, this design may not be executable. Additionally, the boost to sustain ratio may 
not be achievable. 

 
Figure 3: Thrust profiles. 

If the maximum velocity is only to be achieved after the sustain phase, the boost duration as well as the 
propellant mass consumed during this phase can be reduced. This allows for a shorted fin section increasing the 
overall volumetric efficiency.  

When considering radial slot grain designs, the main limitation is the initial thrust level required to safely 
separate from the launch platform. Since the initial grain surface area is relatively low, it is difficult to generate the 
required mass flow without having to resort to an excessively high burn rate or operating the motor at too high a 
pressure as the surface area increases. This can also be compensated for, to some extent, by geometric modifications, 
but it may reduce the volumetric efficiency of the grain, which is the primary advantage of this kind of grain design.  

C. Finocyl Design 
The thrust profile required to boost the system to 2.5 Mach is selected, as the thrust profile generated to boost the 

system to 3.5 Mach is not practically achievable. This thrust profile is now passed to the next module in the code 
that calculates the required operating pressure and area profile, to generate the thrust as described in Section III. The 
booster and sustained outer diameters are specified independently to allow for the different rubber layups to be 
accounted for. A typical propellant's thermodynamic and ballistic data can be imported. The required burn time is 
achieved by scaling Vielle’s burn rate constant, a, for a particular nozzle throat size. The nozzle throat size may 
have to be adjusted iteratively if the predicted pressure to generate the thrust level exceeds the desired maximum 
operating pressure. If the required burn rate does not fall within the applicable range of the propellant type, the best 
possible solution is returned. 

Figure 4 gives the required burning surface area for the motor. It is important to note that the booster surface area 
profile is for the required burn surface area augmentation to achieve a neutral profile for both boost and sustain. An 
approach to achieve this profile could be to include a tapered transition between the cylinder and the fin section. 
However, it would not be possible to achieve a truly neutral profile in practice.  
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Figure 4: Area profiles finocyl. 

Figure 5 shows the burning perimeter required from the booster. The booster section's dimensions are sent to the 
fin design module. The fin parameters can be modified to best suit the required burning perimeter. Figure 6 shows 
the fin design and the burning perimeter. For this particular example, the fin design was chosen to be initially 
progressive to compensate for anticipated erosive burning effects at ignition which elevates the initial burning 
surface area profile to be regressive, as shown in Figure 4. Once this has been done, it is possible to create a CAD 
model of the grain. To avoid having to parameterize the entire model to perform the grain burn-back surface 
analysis, the grain can be sent to a module that uses level set methods (LSM) to obtain the area profile. Several 
iterations can be performed to fully evaluate the effects of the transition between the cylinder and fin sections. This 
will be discussed in Section V.A. 
 

 
Figure 5: Booster burning perimeter. 
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Figure 6: Fin section. 

D. Slotted design 
Boost-sustain grain designs can be achieved with high volumetrically loaded, radially slotted grain designs 

utilizing two propellant formulations: a fast-burning and a slow-burning formulation. The two propellant 
formulations can also be configured in two geometric layouts. The first concept is that of two concentric layers, with 
the fast-burning propellant on the inside and the slow-burning propellant on the outside. Figure 7 shows the potential 
profile for such a design given all the other motor design and ballistic parameters. This design is not suitable, as it 
does not allow enough mass flow during the boost phase, whilst the much larger burning surface area over the full 
length of the second propellant leads to much higher thrust levels than desired for the given motor design and 
ballistic parameters, as mentioned above. 

 
Figure 7: Dual layer slotted design. 

The second configuration represents that of two propellant formulations cast in tandem along the length of the 
grain, with the fast burning propellant at the rear of the motor. This design makes the lower sustain thrust levels 
easier to obtain, since the total grain length is reduced when the boost phase is burnt out. There is a penalty in such a 
design due to the additional insulation requirement in the boost area. However, it is shown in Figure 8 that such a 
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design, even without any geometric modification in the fast burning propellant area, the requirement is nearly met. If 
there is no initial launch thrust requirement, such a design could be considered. This design however, depending on 
the client, may not be considered due to increased cost and increased manufacturing complexity.  

 

 
Figure 8: Dual block radial slot design. 

V. Advanced Modules 
Once the most suitable boost-sustain grain design has been achieved using the algorithm as presented above,  the 

next step is to do a detail design of the most suitable grain design which takes factors such as casing geometry, 
rubber layup, etc., into account. Several geometries are generated for this design, taking the relevant constraints into 
account. The geometries are then exported to the LSM module where the area profiles are generated. Once the detail 
design of desired grain geometry has been completed, full CFD simulations can commence for final design 
validation. 

A. Level Set Method 

 The level set methods of Osher and Sethian5 is employed to create a grain burn back module for the burn-back 
analysis of complex grains. It relies on implicitly representing an interface , as a Signed Distance Function (SDF)  

.The initial  function is generated from an STL file of the grain design by the method of Mauch6, The 
interface/burning surface is advanced in its natural direction at a speed  by solving the Level Set equation, 
 | | 0. (10) 

Figure 9 illustrates a single time step evolution of a general interface , using the LSM. 
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Figure 9: Single time step evolution of  using LSM. 

 

Instead of explicitly finding the interface at the next time step, the burn area parameter  is calculated using Monte- 
Carlo type integration which relies on the interpolation of a number of random points to . The detail of the LSM 
burnback module is found in Sullwald et al7. 

Figure 10 shows the two initial designs generated. The first design (D1) has a very steep transition between the fin 
and cylindrical sections. The second design has a less steep transition between the fin and the cylindrical section to 
create a more neutral burn profile. Being able to visualize the grain in this way allows for design modifications to be 
made with more certainty. 

 

 
a) D1 Initial b) D1 Mid Burn c) D1 Near end 

 
d) D2 Initial e) D2 Mid Burn f) D2 Near end 

Figure 10: Burn back using the LSM method. 

Figure 11 shows the area profiles for the grains as predicted using the LSM method. Due to the progressive 
nature of the star section it is difficult to reach the desired initial surface area. However, this grain will experience 
erosive burning and thus the initial thrust level will be lifted. D1 is the closest to the desired performance and is 
therefore optimized further. D2 with tapered section has a longer transition between boost and sustain as well a 
regressive sustain profile. The integral of the surface area is compared to the design goal to ensure that the required 
impulse will be delivered. The grain can then be lengthened to ensure surface area integrals match.  
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Figure 11: Predicted burning area LSM. 

B. Advanced CFD Simulation 
The final step in the design is to perform internal ballistic simulations for the grain8. A CFD solver is in 

development for this purpose using OpenFOAM. The first step has been to develop a flow solver that can capture 
complex phenomena associated with SRM internal flows, by utilizing a high order reconstruction method to 
approximate the average cell values. This reconstruction method presented by Jiangand and Osher 9 calculates the 
flux on the cell boundaries via a polynomial. The polynomial consists of a combination of adaptive weights, which 
are calculated by utilizing stencils obtained from the solution. Stencils containing discontinuities in the solution 
carry smaller weights to avoid spurious oscillations and a larger weight in smooth regions of the solution. The 
weights adapt to the solution to achieve a higher order of accuracy. This has been successfully done in OpenFOAM 
by de Kock et al10. Utilizing the built-in functions of OpenFOAM, the time and mesh configurations are controlled. 
The solution is approximated via the weighted essentially non-oscillatory method (WENO) which is the high order 
reconstruction method mentioned before. 

The CFD model is independent of the grain design, allowing the user freedom to do a variety of grain designs. 
SRMs receive mass flow from the propellant and therefore sufficient source terms can be added to the governing 
equations to simulate this effect. By ensuring all physical effects are accounted for and can be captured within this 
simulation, it should be possible to predict effects such as erosive burning, effects of ignition transients, and 
eventually even combustion instability related phenomena.  

The next phase of development will be to integrate the LSM method developed with the OpenFOAM solver.  
 

VI. Conclusion 
Rapid detailed surface regression and fully coupled CFD internal ballistic analyses of the most feasible grain 

design of numerous grain designs evaluated with a rapid grain design tool utilizing simple steady state internal 
ballistic equations has been made possible by utilizing the level set methods of Osher and Sethian5 to create detailed 
grain burn back surface analyses of complex grain designs along with rapidly expanding open source tools available 
to develop a fully coupled CFD internal ballistic analysis. These advanced tools has made it possible to very soon in 
the design process evaluate and tailor important design drivers such as for example erosive burning for high 
volumetrically loaded grain designs which is not possible with only a simplistic rapid grain design tool utilizing 
simple steady state internal ballistic equations.  
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