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ABSTRACT

This study sets out to describe the incipient motion process in cobble/boulder bed rivers

in terms of the unit applied power approach. This objective has been met through the

collection of data on stone movement from a total of thirteen flood events observed in

two undisturbed rivers in the Western Cape, namely the Molenaars and Berg Rivers.

The data were plotted on the original modified Liu diagram for incipient motion and it

was found that the threshold of movement for the smaller stones did not conform with the

portion of the Liu diagram which represents fully turbulent flow (i.e.

where ~ gDs tv: = 0.12 for Re. >13). It was concluded that the only reason that could

explain this deviation is the fact that the original modified Liu diagram had been derived

for uniform particle size beds while the data of the Molenaars and Berg Rivers represent

non-uniform particle size beds. This was proved through re-deriving the y-axis function

of the original modified Liu diagram to include a factor that makes provision for the

roughness of a non-uniform particle size bed. It was found that the average absolute

roughness of the non-uniform particle size beds in the Molenaars and Berg Rivers is

reasonably well approximated by a value of k=da.

Design curves (in terms of the original modified Liu diagram parameters) for intensity of

motion were also produced. Although it is not possible to read off accurate percentages of

movement values directly from these curves, it should be possible to deduce reasonably

accurate values in practical situations.
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OPSOMMING

Die studie poog om die begin van beweging proses in klip/rotsbed riviere te beskryf in

terme van die eenheids aangewende drywing metode. Hierdie doel is bereik deur die

insameling van klipbewegingdata in 'n totaal van dertien vloedgebeurtenisse in twee

ongerepte riviere in die Wes-Kaap, naamlik die Molenaars en Bergriviere.

Die data was geplot op die oorspronklike aangepaste Liu diagram vir begin van beweging

en dit was gevind dat die grens van beweging vir die kleiner klippe nie ooreenstem met

die gedeelte van die Liu diagram wat volle turbulente vloei verteenwoordig nie

(waar ~ gDs tv; = 0.12 vir Re. >13). Daar was tot die gevolgtrekking gekom dat die

enigste rede wat die afwyking kan beskryf is die feit dat die oorspronklike aangepaste Liu

diagram afgelei was vir uniforme partikelgrootte beddens terwyl die data van die

Molenaars and Bergriviere nie-uniforme partikelgrootte beddens verteenwoordig. Dit was

bewys deur die heratleiding van die y-as funksie van die oorspronklike aangepaste Liu

diagram om 'n faktor in te sluit wat voorsiening maak vir die ruheid van 'n nie-uniforme

partikelgrootte bed. Dit was gevind dat die gemiddelde absolute ruheid van die nie-

uniforme partikelgrootte beddens in die Molenaars en Bergriviere word redelik goed

benaderd met 'n waarde van k=ds4•

Ontwerpkurwes (in terme van die oorspronklike aangepaste Liu diagram parameters) vir

intensiteit van beweging was ook ontwikkel. Alhoewel dit nie moontlik is om baie

akkurate persentasies van beweging af te lees van die kurwes nie, is dit moontlik om

akkuraat genoeg waardes te verkry in praktiese situasies.

III
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1 INTRODUCTION

1.1 Background

In pristine cobble/boulder bed rivers the channel bed configuration is maintained by a

range of flows which are characteristic of the natural flow regime and which typically

incorporate flows of different timing, duration, magnitude and frequency. The health of

these channel beds is crucial to a multitude of aquatic organisms that are dependent on

the bed for their survival. The channel bed of cobblelboulder a bed river is often referred

to as a faunal reservoir, as it provides the source for recolonization of a stream when

aquatic populations are depleted by adverse conditions. A variety of factors control the

abundance, distribution and productivity of aquatic organisms in rivers. These include

competition for space, predation, chemical water quality, nutrient supplies, flow patterns,

as well as flow variability and together they describe the biological, chemical and

physical habitat (Gordon et al.., 1992).

Depending on the biological species and life-cycle, the channel bed provides refuge from

floods, shelter during droughts and extreme temperatures and interstitial spaces in which

to lay and incubate eggs. Sufficient flow through the interstitial spaces allows the

replenishment of nutrients and oxygen while metabolic wastes are continuously removed.

The cobbles and boulders also assist with the periodic physical breakdown of organic

detritus and provide a mechanism for entrainment of organic matter in the spaces

between larger bed elements. This disturbance or breakdown process is an essential

organizing factor in many ecosystems (Picket and White 1985).

The construction of dams, leads to alterations in the natural flow regime, flooding

magnitude, frequency and the sediment transport capacity in the river channels

downstream. This has a definite, often negative, impact on the dynamics of substrate

movement and maintenance, which in tum affects the faunal and floral aquatic

environment. Traditionally chemical water quality has been viewed as the most important

factor affecting the degradation of aquatic ecosystems (Hugues et al.., 1990). However,

Stellenbosch University http://scholar.sun.ac.za



the physical habitat and its modifications have recently been identified as key elements in

stream ecosystem functioning (Lamouroux et al.., 1995).

The process of determination of the amount of water which is required for environmental

needs, is known as "Environmental Flow Assessment" (EFA). Following the EFA, a

modified flow regime is prescribed for the river. The amount of water required in the

modified flow regime is that which is deemed to be necessary for maintaining the river in

a pre-determined condition and is known as the "Environmental Flow Requirement"

(EFR). EFR's are based on an understanding (Brown and King, 2000) of how flow

changes relate to changes in river condition, in order to describe flow that will:

• minimize or mitigate the impacts of new water-resource development

• restore systems impacted by past developments

• allow calculation of the costs of compensating people affected by such impacts.

In order to maintain a healthy and productive substrate environment m cobble and

boulder bed rivers it is necessary that the environmental flow requirement (EFR)

accommodates a substrate maintenance flow component. The specification of this

substrate maintenance flow component must provide information on the amount and

frequency of managed flows which are required to maintain a river in a pre-determined,

environmentally acceptable condition. The availability of water, especially in a water

scarce country such as South Africa, the cost of water that is released and lost for storage

and the financial implications associated with the installation of outlet structures at

reservoirs, emphasize the need to specify substrate maintenance flows as accurately as

possible.

2
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Overall condition of the aquatic system

Figure 1.1: The relationship between percentage of natural flow and river condition

(Brown and King, 2000)

Various factors complicate the determination of a substrate maintenance flow component.

There is very little scientifically based data available regarding the impacts (both positive

and negative) of different levels of substrate disturbance on the aquatic environment,

from the scale of an individual disturbance event to that of the disturbance regime.

Furthermore, it is necessary to contend with the complexity of flow and sediment

transport processes in cobble/boulder bed rivers. This includes the effects of large scale

roughness, macro scale bedforms (pool-riffle structures), the heterogeneous nature of the

substrate particles and the effects of shielding or hydraulic protection on critical

conditions for sediment movement.

With the increasing development of water infrastructure in mountain regions, knowledge

of the hydraulic characteristics of rivers in the upper catchment areas has become very

important, especially for determining environmental flow requirements. Due to their

characteristic morphological and associated hydraulic attributes, the physical habitats

within these rivers are extremely diverse, both on spatial and temporal scales. They are

characterized by high gradients, great variability in sediment size and relatively low flow

depths. The bed configuration typically contains a series of pools, steps, rapids, riffles

3
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and plane bed beds, while energy losses are high as a result of turbulence and local

hydraulic jumps (Jonker, 2003). Thus, in order to facilitate the specification of substrate

maintenance flows in cobble/boulder bed rivers, which can be incorporated into either an

environmental flow requirement or river rehabilitation programs, knowledge of the

relationship between substrate disturbance, the aquatic environment and discharge is

critical.

1.2 Objectives and Methodology

This thesis forms part of a bigger research project'!' sponsored by the Water Research

Commission, of which the main aims are:

• To define and quantify ecologically significant substrate disturbance levels in cobble

and boulder bed rivers.

• To develop theoretically-based hydraulic models that will address the relationship

between discharge and substrate disturbance in cobble and boulder bed rivers.

• To develop guidelines for the specification of substrate maintenance flow components

in cobble and boulder bed rivers.

In order to establish the relationship between substrate disturbance, the aquatic

environment and discharge, detailed knowledge is required of different levels of bed

disturbance in cobble/boulder bed rivers. Disturbances within these rivers can broadly be

categorized in terms of the following levels of disturbance:

• No bed movement, where no sediment is being transported.

• Incipient motion, where the bed elements just start to move.

• Full bed movement, where all the particles along the bed surface are being

transported.

[1] WRC Project K5/1411, Determination of Substrate Maintenance Flows in Cobble and Boulder Bed

Rivers, Ecological and Hydraulic Considerations.

4
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The incipient motion condition is also referred to as the critical condition. Not only does

incipient motion describe the movement threshold for sediment but it also serves to

define the deposition threshold whereby sediment ceases to be transported. Thus a key in

understanding the different levels of movement lies in the proper understanding of the

incipient motion condition.

The following objectives were formulated for this thesis:

• To describe incipient motion in cobble/boulder bed rivers.

• To produce graphs that will aid in the prediction of sediment movement in

cobble/boulder bed rivers.

The incipient motion process will be described by addressing the factors relating to the

onset of incipient motion in the two streams studied.

1.3 Thesis Layout

Chapter 2 provides a literature overview of past and current methods for describing

incipient motion. The data collection process is described in Chapter 3. In Chapter 4 the

hydraulic relationships associated with incipient motion are addressed. Chapter 5

explains the process of producing graphs for practical use in predicting different levels of

entrainment. Final conclusions and recommendations are contained in Chapters 6 and

references are listed in Chapter 7. Appendices follow at the end.

5
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2 LITERATURE REVIEW

2.1 Incipient motion theories

(i) Critical shear stress

Critical shear stress is defined as the maximum shear stress exerted on the bed that will

not cause erosion of the sediment forming the bed. The retarding effect that limits the

movement of one fluid element relative to another is traditionally represented by so

called shear stress. This shear stress (r) is shown by the following,

't = pg(D - y)s (2.1)

where D is the distance from the water level, y the distance from the bed, p the density

of water and s the channel gradient.. Thus the maximum shear stress will prevail at the

bed which is denoted by To'

In field studies the critical shear stress has been estimated from the largest grain observed

in motion (Andrews, 1983; Carling, 1983; Hammond et al., 1984). Mixed-size sediment

transport rates, from which incipient motion may be estimated, have been measured in

several laboratory studies (Day, 1984; Dhamotharan et al., 1980; Misri et al., 1984) and

in the field (Milhouse, 1973; Parker et al.). Experiments focusing on part of the problem,

the pivoting angle of individual size fractions, have been undertaken by Li and Komar

(1986).

The simplest shear stress model, the empirical power law, relating To (shear stress at the

bed) and d (diameter of stone) as

(2.2)

where b is the regression line slope and a is the y-intercept for a log-plot of 'to (shear

stress at the bed) versus dso' Knowing the shear stress at the bed ('to) allows one to solve

6
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for the diameter of stones that will move (with the aid of equation 2.2 and the constants

known) and from knowing the diameter (d) of a stone that moved the critical bed shear

stress can be determined. However, the relationship is restrictive, applying only to a

limited range of grain sizes and flow conditions where grain density and other

entrainment parameters are known or are assumed to be constant (Carling, 1983).

Shields (1936) showed that the particle entrainment was related to a form of Reynolds'

Number, based on the shear velocity u. (=~'to/p) i.e. Re. = pu.Dv ,..1.. Shields plotted

the results of his experiments in the form of an entrainment function (which is depicted

by the y-axis and equals 'to/{Ps - P)gD) against Re•.

t::l
0()

Q::
I 0.1
If>
e,--...,,_,:-

O.f)I~ -'-- -:L- -'-:: _J

0.1 III!OO IO()(1

Re. (= pu.DIIJ-)

Figure 2.1: Shields' diagram

Power analysis by Rooseboom (1992) (Chapter 2.1.7) proves that the x-axis represents

Laminar power/Turbulent power. The Shields equation was originally tested in a flume

using spheres of uniform size and found to approach a constant value (y-axis) of 0.06 for

course grained sediment with d > 6mm (Shields, 1936, Bagnoid, 1966, and Allen, 1970).

In natural streams, however, there is a high variance in the estimated values of 'toas a

result of the non-uniformity of the bed particles.

7
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An investigation of critical hydraulic conditions in gravel-bed rivers with naturally sorted

bed material described by Andrews (1983) showed that the critical shear stress to could

be given by an equation of the type shown in equation 2.3. As with the power law

relationship this equation also allows calculation of a critical diameter once the shear

stress is known or vice versa.

d b
to =a(-' )

dso
(2.3)

In this type of equation, the coefficient a represents Shields' entrainment function in

homogeneous sediment conditions when (djdso)=1. The (djdso) term attempts to

provide a measure of the hydraulic protection that a stone of a certain diameter

experiences due to its relative size in the bed. Several studies confirm the validity of this

approach even though the values of the coefficients differ vastly. Table 2.1 shows these

respective studies and their coefficients.

d/dso
a b dso Study

range

Parker et al.

0.088 -0.98 0.045-4.2 (1982)

0.13-2.5

0.083 -0.87 5.4-7.4 0.3-4.2 Andrews (1983)

0.045 -0.68 2 0.4-5.9 Milhous (1973) in Komar (1987)

0.045 -0.68 2 0.5-10 Carling (1983)

0.045 -0.71 0.75 0.67-5.33 Hammond et al. (1984)

0.089 -0.74 2.3-9.8 0.1-2 Ashworth and Ferguson (1989)

0.047 -0.88 7.3 0.04-1.2 Ferguson et al. (1989)

0.049 -0.69 1.8-3.2 0.15-3.12 Ashworth et al. (1992)

Table 2.1: Different empirical equation coefficients

8
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The difference in coefficients might be attributed to the fact that size distributions along

individual reaches respond uniquely to a given distribution of particles, packing and

turbulence characteristic of flow (Komar & Carling, 1991).

Several empirical flow equations are plotted in Figure 2.2. Differences in the slopes and

intercepts of regression lines are obvious.

100,000

10,000
-N
Eu..._
In
a>c: 1000>.
~
~

1:-><.1

100

'crit = Bcri! (Ps - p) gO
Shields (1936) .•.•..

........ rcrit = 26.6 0 1.21

Costa (1983)
Komar (1989) ....•••.•...

rcrit = 110 0 0.36

Carting
(1983)

-, 'crit = 55 00.42

Hammond et al.
(1984)

10
o 10

D· cm
100 1000

Figure 2.2: Empirical equations (Lorang and Hauer, 2003)

According to Wiberg and Smith (1987) a particle in a poorly sorted bed can have critical

shear stresses that differ significantly from the critical shear stress associated with that

particle when placed on a well sorted bed of the same size. In Chapter 4 this is shown to

be true for applied stream power as well. Wiberg and Smith (1987) indicate that this

difference is primarily due to the relative protrusion of a particle into the flow along with

differences in the particle angle of repose, or bed pocket geometry that results from

having a mixture of grain sizes on the bed. This led them to Figure 2.3 to determine

critical shear stress for a specific particle. The graph contains incipient motion curves for

9
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different ratios of grain diameter to bed roughness length, Dvk,, where bed roughness

length refers to the diameter of the eddy sizes that can fit in between the bed particles.

Critical shear stress is indicated with 'to and the Reynolds' Number with Re•.

D/ks

0.2

0.3
""r- -i"'""-- " Vr- -- f"~ --~ r-, ". ....-ro.... .....

....... ........ r-.. - .-- r- .... r-,-........... .... "..... ...... ... -..._ -..... .... <,
~ ~

i-""'i--'-
........ <, I"- -YI-

<,r-, ~

,.....,- -

8
s:
e,.5 10-1

~
....:.
ti ...
~
.....

0.5
0.75
1.0
1.5
2.0
3.0
5.0

ro' 102

(R.)cr=(u.)cr kalll

Figure 2.3: Shear stress for motion of sediments

Wilcock & Southard (1988) found that the sorting of the mixture had little effect on the

critical shear stress of individual fractions, once the median size (d5o) of the mixture and

a fraction's relative size (dJd5o) are accounted for. Their data showed a consistent

relationship between the critical shear stress of individual fractions and each fraction's

relative grain size, despite a broad variation in the available data of mixture sorting, grain

size distribution shape, mean grain size, and grain shape.

(ii) Critical velocity

Critical velocity is defined as the maximum velocity of the stream that will not cause

erosion of the sediment forming the bed. Extensive empirical data exists relating

maximum velocities to various soil and vegetation conditions. Hjulstrom (1939)

developed the graph in Figure 2.4, which relates average critical velocity to particle size.

10
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10

(I)
<,

E
:::::n..-
u
0
(ii 0.1>
c:::
<Cl
Ol
l:

0.01
Depost ton

,,,,,
o .001 '-- ...............w....~ .......................................................__ ........................~ .................

0.001 0.01 0.1 1.0 10 100
Size of particles (mm)

Figure 2.4: Hjulstrom curves for critical hydraulic conditions in uniform particle

size sand beds

However, this simple method (critical velocity) for design does not consider the channel

shape or flow depth. At the same mean velocity, channels of different shapes or depths

may have quite different forces acting on the boundaries.

(iii) Critical flow discharge

Bathurst (1987) argues that on steep slopes the critical conditions for movement are best

predicted by an approach based on water discharge rather than the Shields shear stress.

He therefore adopted the Schoklitch (1962) approach to prediction of critical flow

conditions, based on water discharge rather than shear stress. Using flume data for bed

materials with relatively uniform size distributions he developed the empirical

relationship:

(2.4)

where qcr = critical water discharge per unit width; and s = bed slope. The equation was

derived for the range of slopes 0.0025<s<0.2 and particle sizes 3<d<44 mm and for ratios

Il
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of depth to particle size as low as 1. The above equation was used in conjunction with the

following equation to determine the critical flow condition for each particle size:

(2.5)

where b = 1.5(d84/d16t, d, is set equal to d50, qci = the critical unit discharge for

movement of particle dj, qcr = the critical unit discharge for the reference particle size

d, which is unaffected by the hiding/exposure effect and b = an exponent. Calibration of

the above equation was carried out empirically using field data.

(iv) Critical Froude numbers

Aguirre-Pe et al. (2003) states that for ratios of flow depth to bed particle diameter less

than ten (flow on very rough boundaries) neither the Reynolds number of the solid loose

particles at a stream bed nor the Shields parameter are adequate variables to predict

critical flow conditions for the initiation of motion. A particle densimetric Froude number

F' = u/[(r -l)gd r is proposed as an alternative criterion to predict hydraulic conditions

for the initiation of motion. Where u = mean velocity, r = ratio of sediment and fluid

densities, g = acceleration due to gravity, and d = characteristic diameter of bed particle.

(v) Transport distances

D' Agostino et al. (1999 (a),(b)) used the ratio of transport distances and stone diameter to

establish a criterion to define the incipient motion condition. The incipient motion

condition of a grain size class is assumed to be given by an average distance of

movement less than the diameter dj representative of the diameter class itself. The

average lengths of movement for different size stones were recorded. Where this average

length was found to be less than the diameter of the stone itself, the stone diameter and

the flood size were grouped together. Using the flood size and stone diameter, the

boundary shear stress was obtained indirectly from flood size values by employing

momentum conservation on a fluid control volume in uniform flow.

12
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(vi) Probability models

Einstein (1942), in light of the fact that the incidence of an eddy capable of transporting a

particular grain is some statistical function of time, proposed a probabilistic model of

bedload for the case of even beds of grains. The basic ideas underlying Einstein's

equation are the following:

For an individual grain, migration will take place in a series of jumps (Figure 2.5) of

length L = KLO. During a time T a series of n such jumps will occur, so that the particle

will travel a total distance nL.

The probability, p, that a grain will be eroded during the typical period, T, must be some

function of the immersed self-weight of the particle and the fluid force acting on the

particle. The immersed self-weight is (Ps - P)g{Kvd3), and the lift force is

CLP{KAd2 ~ 2 /2, where the grain area As = KAd 2 and the grain volume Vs = Kyd 3.

Therefore,

(2.6)

u is a 'typical' velocity at the sub-layer proposed by,

u>::! 11.6u. >::! 11.6~gR's (2.6a)

where R' is that proportion of the hydraulic radius appropriate to sediment transport.

Equation 2.6 is usually expressed as

p = f{B •. \}I} (2.6b)

13
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where

(2.6c)

\}'=(Ps-p~
pR's

(2.6d)

The number of grains of a given size in area A (KLD xl) is KLD / KA D
2

, therefore the

number of grains dislodged during time T will be pKLD/KAD
2
• The volume of grains

crossing a given boundary must therefore be

(2.7)

particle

-.y ~
'--------~/-/------- unit width

Kr.D Kr.D------------~-------------I
Figure 2.5: Einstein bedload model

The volume must also be given by q.T. If the time T is some function of particle size and

fall velocity, say T = KTd/ Vss' then

K dqT=q _T_
s s V

ss
(2.8)
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Equating 2.7 and 2.8

qsKTd _ pKLKvd2

v. KA
(2.9)

therefore

(2.10)

Equating 2.6 and 2.10, leads, with some rearrangement, to

eI>=qs ~ =f(B.,\f)V~ (2.11)

where eI>is a dimensionless bedload function and B. and \f have been defined above.

Following Einstein, a number of researchers investigated the relationship between eI>and

\f . A typical result is due to Brown (in Rouse, 1950),

eI>= 40(1 / \f)3

which is valid for eI>> 0.04. As eI> (and therefore q.) -7 0.11 \f -7 0.056, which

corresponds to the Shields threshold condition where Shield's entrainment function

reveals a value of 0.056 (see Figure 2.1).

(vii) Stream power

The movement of bed particles (or water) requires expenditure of energy, which is

provided in streams by the release of potential energy as water travels down a slope. The
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rate of energy dissipation is a measure of the stream power of a reach and specifically

describes the amount (per unit volume) of power made available by the decrease in

potential energy of flowing water (Jonker 2002) to maintain motion. This motion can be

purely that of the fluid, or it can be of a fluid / solid mixture (Armitage & McGahey

2003). A number of researchers have preferred to use unit stream power as an indicator

of sediment motion, although this application is not generally described in standard

hydraulic introductory texts (e.g. Gordon et al. 2004).

Armitage & McGahey (2003) argue that the quantity represented by unit stream power is

more directly related to the entrainment threshold, because it can be computed at any

point in the water column, and because turbulence is directly related to dissipation of

energy. Rooseboom (1998) argues that the application of the law of conservation of

stream power (over that for example of momentum which is the basis for equations of

critical shear stress) has advantages in that it involves scalar quantities (unlike the

momentum-impulse law), its terms are directly time-dependent and account for the

roughness (k) of the bed directly. Further, Rooseboom (1998) showed that the stream

power equations uniquely give theoretical and numerical support to the empirically

derived functions of the Liu Diagram for incipient motion (Liu, 1957), and provides a

complete mathematical description of the Liu diagram ..

Rooseboom (1974) defined the law of conservation of power under conditions of steady,

uniform flow as

D D d
jpgsvdy = ft dVdy
Yo Yo Y

(2.12)

with p : fluid density (kg/nr')

g : gravitational acceleration (rn/s')

s : energy gradient= channel gradient
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v velocity at distance y above the bed (mis) (~.!_~gDs In.Y_)
K Yo

o : flow depth (m)

: ~ k/30 ; ordinate where velocity is mathematically equal to zero (m)

shear stress at distance y above the bed (N/m2
)

von Karman coefficient (~ tb-)
" 21t

Yo

K

The parameter pgsv in equation 2.12 represents the amount of unit power made available

by the flowing stream, whereas the parameter t dv represents the power applied per unit
dy

volume to maintain motion.

Where alternative modes of flow exist, that mode of flow which requires the least amount

of unit power will be followed and it therefore follows that fluid flowing over moveable

material would only transport the material, if it will result in a decrease in the amount of

unit power being applied (Rooseboom 1974; 1998). As the power applied along the bed

of a river varies depending on whether laminar or turbulent flow conditions prevail at the

bed, the critical condition for sediment movement also depends on whether flow

condition at the bed is laminar or turbulent.

Under conditions of laminar or smooth turbulent flow, Rooseboom (1974) showed that

the unit stream power applied along the bed equals

(pgsDY
pv

(2.13)

with v kinematic viscosity (m/s'')

The applied power required per unit volume to entrain a particle with density Ps and

settling velocity Vss in a fluid with density p, equals

17
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(2.14)

Stokes's law (Graf 1971), defines the settling velocity of a particle with diameter dunder

viscous conditions as

(v ) d2 P-Psss LAM a. g--
pv

(2.15)

The critical condition for the movement of sediment particles is reached when the power

applied along the bed exceeds the power required to move the sediment particles out of

their original positions. In laminar or smooth turbulent flow therefore, a relationship

defining the threshold for sediment transport under viscous conditions can be defined

from equation 2.13, 2.14 and 2.15. This relationship, calibrated with data by Grass (1970)

and Yang (1973), was found to be:

~gDs 1.6

----v:: = ~ gDs .d
v

(2.16)

for values of ~. d < 13, i.e. with smooth turbulent or completely laminar flow over a
v

smooth bed (Rooseboom 1974, 1998).

Under conditions of rough, turbulent flow, Rooseboom (1974; 1998) showed that the unit

applied power near the bed at (Yo),where D-yo ~ D, is

dv 30pgsD~21tgsD
't - ::::::-----'--=----'--=---
dy d

(2.17)
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Under turbulent conditions energy dissipation occurs through the formation of turbulent

eddies and not at the molecular level as is the case under laminar or smooth turbulent

flow conditions. Viscosity is therefore not significant, but rather the size of the turbulent

eddies that form. The size of these eddies represent the absolute roughness (k) of the bed.

In the case of a bed with a uniform size distribution the size of the turbulent eddies that fit

between the particles can be considered to be equal to the diameter of the bed particles.

Furthermore, under conditions of turbulent flow, the settling velocity as expressed by

Graf (1971) equals

4(ps -p)gd
3Cd

(2.18)

with Cd : drag coefficient (assumed constant for larger diameters).

From equations 2.14, 2.17 and 2.18 the critical condition for the movement of sediment

along an even bed in rough turbulent flow can thus be defined by

~ gOs = Constantv. (2.19)

This relationship was calibrated with measured data from Yang (1973) and the value of

~gOs -d
the constant was found to be 0.12 for values of > 13 (Rooseboom 1974; 1998)

v

Rooseboom (1992) used the above parameters in a modified Liu diagram to describe the

hydraulic relationships for sediment at incipient motion conditions as depicted in Figure

2.6.
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Figure 2.6: Modified Liu diagram (Rooseboom, 1992)

In the above figures the term ~gOs

v: can be interpreted as the ratio

[
Unit applied power along bed ]. ., which reflects the ratio of the stream's
Unit power required to suspend particles

capacity to entrain bed particles relative to the minimum power required to keep the

particles in suspension (Rooseboom and Le Grange, 2000). On the other axis the term

~ gOs· d. . [Laminar power ] .. .
....!....::. __ can be mterpreted as the ratio because It mdlcates whether

v Turbulent power

the position of a data point on the modified Liu diagram is in a laminar flowing zone or a
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turbulent flowing zone. The law of conservation of stream power states that the mode of

flow which requires the least amount of unit power will be followed. Thus according to

h . [Laminar power l·f b 1 flow i ·1· h b d d . ·11t e ration I tur u ent ow IS preval mg at tee a ata point WI
Turbulent power

plot to the right on the x-axis and if laminar flow is prevailing then it will plot to the left.

A plot above the threshold line in Figure 2.3 therefore implies that the unit power applied

along the bed is greater than the unit power required to suspend particles, while the

function on the x-axis may be regarded as a type of Reynolds number, which indicates

whether laminar or turbulent conditions prevail at the bed.

2.2 Conclusions

The information in this chapter support the assertion that applied power approach has

significant advantages over other sediment transport theories. The results from other

methods are inconsistent due to their empirical nature. Thus the data collection will be

done with the aim of using the applied stream power approach in predicting the

movement of sediment in cobble/boulder bed rivers.
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3 DATA COLLECTION

3.1 Site selection

Two study sites were selected for this project. Both of these sites are situated in the

Western Cape about 25 km from each other. This area of the country (indicated in Figure

3.1) is characterized by high winter rainfall (mean annual precipitation of over 1000mm)

in the mountain catchments.

Figure 3.1: Location of study sites

Both sites are located in the headwaters of the Cape Fold mountains and are thus

characterized by relatively steep gradients with bed particles predominantly derived from

the Table Mountain group sandstones in the cobble to boulder bed range as defined by

the Wentworth scale given in Table 3.1.
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Class (Wentworth) Diameter (mm)

Boulder >256

Cobble 64 to 256

Gravel 2 to 64

Sand 0.0625 to 2

Silt 0.0039 to 0.0625

Clay < 0.0039

Table 3.1: Classification of bed particle sizes

The first of these two study sites is located on the Molenaars River, about 2km east of the

Huguenot Tunnel. This river has its origin in the Klein-Drakenstein Mountains and is one

ofthe main tributaries of the Breede River, which is the largest river in the Western Cape

and flows in an easterly direction into the Indian Ocean. The study reach was about 60m

long with relatively well defined banks on both sides and consisted primarily of a riffle

and rapid section ending in a large pool. The layout of the Molenaars River study site as

well as the Thalweg profile and selection of cross sections, and the size distribution are

shown in Appendix AI.

Figure 3.2: Molenaars River study site (looking downstream)
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The second study site is located on the Berg River, which is the second largest river in the

Western Cape and flows for the most part (including the area of the study reach) in a

northerly direction and later in a westerly direction into the Atlantic Ocean. The site is

situated near the origin of the Berg River which is found in the Franschhoek Mountains.

The study site is located on a slight bend in the river and has a steep bank on the outside

(left bank) and a lateral bar of deposited cobbles on the inside bank. A small rapid section

dominates the top half of the site leading to a deeper pool in the lower half of the reach.

The layout of the Berg River study site as well as the Thalweg profile and a selection of

cross-sections and the stone size distribution are shown in Appendix A2

24

Figure 3.3: Berg River study site (looking upstream)
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3.2 Site setup

(i) Surveys

A detailed land survey of the riverbed was conducted on both study sites. This consisted

of surveying at 1m intervals along thirty transects which were spaced at 2m intervals.

Also, an aerial photogramatic survey was conducted on the Molenaars study site in 2003

which was used to create a detailed digital terrain map of the site. The map is considered

to be accurate to !Ocm.

(ii) Stones

The thirty transects were marked by steel pegs on each bank of the river. The stones to be

studied were selected by stringing a tape between the pegs and selecting stones at two

meter intervals across the transect. A total of 345 and 435 stones were selected for the

Molenaars (2003 and 2004) and Berg River (2004) study sites respectively.

Figure 3.4: Study site set up
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In order to locate the selected stones after a flood they were marked and numbered with

paint, putty or a waterproof pen. The stones were marked on both sides to note if they

were disturbed without necessarily being moved from its original position. Initially small

magnets were attached to some of the stones as it was felt that this would have less of an

impact on the potential for organisms to reconolise a marked stone than paint or an ink

mark. This however was abandoned when it was found that too much natural magnetism

in the stones existed to make it a reliable method for relocating stones after a flood event.

Figure 3.5: Example of a marked stone

(iii) Water levels

To measure the water levels during a flood eight clear plastic pipes, 2m long, were placed

at intervals along both banks of the study reach. The pipes were attached to metal y-

sections that were secured at the base with cemented stone foundations. Water entered

the pipes through small holes drilled at the bottom and air escaped through similar holes

at the top. A handful of cork flakes or finely cut dry grass was placed in each pipe which

would rise with the water level in the pipe clinging to the sides when the water level
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dropped down again. After each flood the height the cork or grass reached in the pipe

would be measured to indicate the maximum water levels reached during the relevant

flood.

Figure 3.6: Plastic stage pipe used to measure flood levels

27

Figure 3.7: Plastic stage pipe used to measure flood levels (during flood conditions)
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3.3 Base flow conditions

During the study site setup, base flow conditions were measured in terms of both

hydraulic and ecological characteristics. Both sites were established at the start of the

winter flood season in April/May under assumed winter base-flow conditions rather than

summer low-flow conditions. The depth and average velocity were recorded above each

of the marked stones. After sampling, the stones were returned to their original positions

and the offset from the survey pegs recorded and used to determine the co-ordinates of

each stone in a local co-ordinate system. Wherever possible the stones were removed

from the bed and measured in terms of their three main axis. Invertebrate and perriphyton

samples were taken and the stones were returned to their original positions. If the stones

could not be removed then their visible dimensions were measured and they were

recorded as embedded. The bed level of each stone could then be determined according

to the detailed survey. The hydraulic base flow conditions in terms of stone size, depth,

velocity, Froude number, Reynolds number, stream power and bed shear stress are shown

in Appendix Bl for the Molenaars and Appendix B2 for the Berg River site, as well as

the base flow water level profiles.

3.4 Flood events data

The initial set of flood data was collected at the Molenaars study site during six flood

events in the winter of 2003. During the winter of 2004 more data were collected at five

floods both on the Molenaars and Berg River sites.
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Figure 3.8: The Molenaars study site in flood

In terms of environmental flow requirements the DRIFT methodology is used to classify

different flood sizes (King et al., 2003). DRIFT divides the long-term average daily flow

data into eight flood classes. The inter-annual flood events with a return period between

two and fifty years are represented by DRIFT classes V to VIII. Classes I to IV represent

the intra-annual flood events and the level is obtained by halving the two year return

period flood to obtain the Class IV flood which on its turn is halved to obtain Class III,

and so on. Howard (2004) determined the eight classes for gauge G1H004 on the Berg

River and Brown and King (2002) for gauge Hl HO18 on the Molenaars River and these

are shown in Table 3.2. The two gauges GIH004 and HIH018 are located immediately

downstream of the Berg and Molenaars study sites respectively. Gauge G1H004 data

caused concern (Howard 2004) regarding reliability of its flow record prior to 1980. Thus

flood classification was based on both the longer record and the shorter record after 1980.

For the purpose of classifying the floods studied during this project, the classification

based on the shorter record was used due to its higher level of accuracy. It does however

bring with it a greater level of uncertainty, especially with regards to the higher floods.
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Class Recurrence HIH018 GIH004 GIH004 (Berg)
Interval (Molenaars) (Berg) (Long Record)

(Short
Record)

I 5.0 3.6 4.3

II Intra annual 16.0 7.2 9.5

III floods 31.0 14.5 19.1

IV 61.0 29.0 38.2

V 1 : 2 years 93.7 58.7 76.3

VI 1 : 5 years 146.0 75.3 118.0

VII 1 : 10 years 181.0 78.8 154.6

VIII 1 : 20 years 187.0 85.6 178.0

Table 3.2: DRIFT classification of floods for HIH018 and GIH004 in terms of

average daily flows (m3/s) (Brown and King, 2002; Howard, 2004)

Flood data recorded by the two gauges during the winters of 2003 and 2004 are shown in

Figures 3.9, 3.10 and 3.11. These figures show the average daily flow and instantaneous

flow rates recorded at the two gauges. The DRIFT flood classification levels are also

shown and can be related to the average daily flow for each of the observed events to

determine its class.
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Figure 3.9: Flood events observed on the Molenaars River (HIHOI8) in 2003
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Figure 3.10: Flood events observed on the Molenaars River (HIHOI8) in 2004
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Figure 3.11: Flood events observed on the Berg River (GIH004) in 2004

In order to calculate the maximum flow rate experienced at the study reach during each

flood, the instantaneous flood peak observed at the downstream gauge was reduced by

the ratio of the catchment area upstream of the study site to the catchment area upstream

of the gauge. Tables 3.3 and 3.4 depict the estimated maximum flow rate, average daily

flow rate, flood volume (including base flow) and class of flood as determined from the

average daily flow rate at the downstream gauge for all the observed flood events. The

flood DRIFT classes (Tables 3.4 and 3.4) were determined with the values given in Table

3.2. If a flood size falls in the interval between a 1:2 year and half of a 1:2 year flood it is

deemed a DRIFT class IV flood. If a flood size falls in the interval between half of a 1:2

year flood and a quarter of a 1:2 year flood it is deemed a DRIFT class III flood and so on

for DRIFT class II and I floods.
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Year Event Date Duration Max Flow Avg. Daily Volume DRIFT
Number (hours) (ml!s) Flow (ml!s) (Mm3

) Class
1 lOthJuly 33 5.56 3.72 0.41 I

2 18thJuly 21 15.23 5.41 0.49 I

3 25thJuly 14 8.60 4.20 0.28 I
2003

4 1st August 26 28.76 7.98 0.95 I

5 8thAugust 26 36.46 14.45 1.74 II

6 18thAugust 32 140.80 30.29 4.15 III

1 6thJune 29 20.20 10.02 1.04 I

2 14thJune 33 140.97 37.21 3.82 III

2004 3 26thJune 31 8.87 5.13 0.66 I

4 3fd July 21 46.38 16.08 1.35 II

5 23fd July 18 113.93 29.17 2.67 III

Table 3.3: Flood events observed at the Molenaars study site

Year Event Date Duration Max Flow Avg. Daily Volume DRIFT
Number (hours) (m3!s) Flow (m3!s) (Mm3

) Class
1 s" June 28 7.27 2.08 0.40 I

2 14thJune 44 84.51 32.58 3.48 IV

2004 3 26thJune 27 4.82 2.62 0.29 I

4 3fd July 24 11.74 5.68 0.44 II

5 23fd July 20 60.98 17.70 1.66 IV

Table 3.4: Flood events observed at the Berg study site

As mentioned previously, the highest water level for each flood event was recorded from

the height of the mark left inside the pipe by the cork or grass. From the land survey,

which included the leveling of the base of the pipes and from the measured height inside

the pipes it was possible to calculate an average water level profile for each study reach.

This was used to determine the water surface slope during the flood as well as the depth

above each sampled stone. The water surface profiles for the observed flood events are

given in Figures 3.12, 3.13 and 3.14.
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Figure 3.12: Water level profiles for the Molenaars study site in 2003
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Figure 3.13: Water level profiles for the Molenaars study site in 2004
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Figure 3.14: Water level profiles for the Berg study site in 2004

It has to be noted that the original water levels used for Flood 6 in 2003 on the Molenaars

was considered to be inaccurate. This was based on a comparison with the profile for

Flood 2 in 2004 on the same river, which was of similar magnitude (140.8 and 140.97

m3/s respectively). The reason for this is that the cork inside the pipes was washed off

during Flood 6 of 2003 and the levels had been estimated visually. Flood 2 in 2004 did

however leave clear cork marks and these heights were used to determine the average

water slope and depths for Flood 6 in 2003. A problem also arose with the lower floods

namely Floods I, 3 and 4 on the Berg site. The minimum height that the pipes stationed

on the banks could measure was too high for these particular floods. The levels of these

floods were estimated using the following equation (3.1) (Jonker, 2002) for calculating

the water depth in cobble/boulder bed rivers.

2gdsosQ=A
0.5285(R / d so)-2166

(3.1)
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3.5 Collection of incipient motion data

After each flood event both study sites were revisited and the marked stones were located

wherever possible. The movement of a stone was recorded as being removed out of its

original position or simply turned over. In the case of a stone being removed out of its

position the distance of the displacement was measured. In the case of the bigger floods

some of the moved stones could not be relocated. It was assumed that these stones were

washed out of the reach. They were replaced by equivalent size stones. The dimensions

of the new stones were recorded and used in the analysis in subsequent floods. The field

notes for the initial site setup and from each visit to locate moved stones are included in

Appendix C and the locations of the stones that moved during each flood are given in

Appendix D. A summary of the stone movements by stone class size is given in the

Figures and Tables below.

Intensity of Movement: Molenaars 2003 ,;" a

Stone Size Classification Total G ift SC dm" Le <!BIF" SB «<'!«< EB "fill

Max size in class (mm) 64 161 256 514 1000

Total Number of Stones 344 4 91 73 111 65

Flood 1 Moved Stones 0 0 0 0 0 0

Movement% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Flood 2 Moved Stones 7 0 7 0 0 0

Movement% 2.0% 0.0% 7.7% 0.0% 0.0% 0.0%

Flood 3 Moved Stones 2 0 1 1 0 0

Movement% 0.6% 0.0% 1.1% 1.4% 0.0% 0.0%

Flood 4 Moved Stones 10 0 6 4 0 0

Movement% 2.9% 0.0% 6.6% 5.5% 0.0% 0.0%

Flood 5 Moved Stones 26 1 18 4 3 0

Movement% 7.6% 25.0% 19.8% 5.5% 2.7% 0.0%

Flood 6 Moved Stones 115 4 65 29 16 1

Movement% 33.4% 100.0% 71.4% 39.7% 14.4% 1.5%
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Percentage Movement By Stone Size Class:
Molenaars 2003- 100%c:

• Flood 1Cl)
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Stone Size Class

Figure 3.15: Level of disturbance in the Molenaars River during 2003 flood events

Integsity of Movement: Molenaars 2004 i~
. "~' ,~iF,'

Stone Size Classification Total G SC LC SB LB

Max size in class (mm) 64 161 256 514 1000

Total Number of Stones 343 5 60 73 136 69

Flood 1 Moved Stones 3 1 2 0 0 0

Movement% 0.9% 20.0% 3.3% 0.0% 0.0% 0.0%

Flood 2 Moved Stones 78 4 41 20 13 0

Movement% 22.7% 80.0% 68.3% 27.4% 9.6% 0.0%

Flood 3 Moved Stones 7 0 6 1 0 0

Movement% 2.0% 0.0% 10.0% 1.4% 0.0% 0.0%

Flood 4 Moved Stones 15 1 7 2 5 0

Movement% 4.4% 20.0% 11.7% 2.7% 3.7% 0.0%

Flood 5 Moved Stones 83 2 39 23 17 2

Movement% 24.2% 40.0% 65.0% 31.5% 12.5% 2.9%

Table 3.6: Stone movement in the Molenaars River during 2004 flood events
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Percentage Movement By Stone Size Class:
Mole naars 2004
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Figure 3.16: Levels of disturbance in the Molenaars River during 2004 flood events

Intensity of Movement: Berg 2004

Stone Size Classification Total G SC LC SB LB "

Max size in class (mm) 64 161 256 514 1000

Total Number of Stones 432 27 120 92 139 54

Flood 1 Moved Stones 1 1 0 0 0 0

Movement% 0.2% 3.7% 0.0% 0.0% 0.0% 0.0%

Flood 2 Moved Stones 187 26 92 44 24 1

Movement% 43.3% 96.3% 76.7% 47.8% 17.3% 1.9%

Flood 3 Moved Stones 10 2 3 3 2 0

Movement% 2.3% 7.4% 2.5% 3.3% 1.4% 0.0%

Flood 4 Moved Stones 7 1 4 2 0 0

Movement% 1.6% 3.7% 3.3% 2.2% 0.0% 0.0%

Flood 5 Moved Stones 111 10 58 28 14 1

Movement % 25.7% 37.0% 48.3% 30.4% 10.1% 1.9%

Table 3.7: Stone movement in the Berg River during 2004 flood event
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Percentage Movement By Stone Size Class:
Berg 2004
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Figure 3.17: Level of disturbance in the Berg River during 2004 flood events
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4 CRITICAL CONDITIONS

4.1 Original modified Liu-diagram

In order to test the applied stream power approach in describing the critical hydraulic

relationships for each stone under flood conditions, all the measured data from the

Molenaars and Berg Rivers have been plotted (Figures 4.2 - 4.4) in the original modified

Liu diagrams (Rooseboom, 1992) as described in Chapter 2. The original modified Liu

diagram shown in Chapter 2 is repeated (Figure 4.1). It should be noted that in original

modified Liu diagram terms all observations can be expected to be in the rough turbulent

zone, given the nature of the flow conditions during floods through cobble/boulder bed

streams; i.e. the incipient motion line should have a constant value.

2
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Figure 4.1: Original modified Liu diagram (Rooseboom, 1992)

1,5

f$'ss

o,s

La~

~.d
"

40

Stellenbosch University http://scholar.sun.ac.za



0.50

0.45

0.40

0.35

~glJs
0.30

0.25

Vos
0.20

0.15

0.10

0.05

e Not moved

• Moved

Figure 4.2: Molenaars 2003 data plotted in the original modified Liu diagram
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Figure 4.3: Molenaars 2004 data plotted in the original modified Liu diagram
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Figure 4.4: Berg 2004 data plotted in the original modified Liu diagram

The data points which represent stones that did move are not as reliable as those for

stones that did not move due to the fact that movement did not necessarily take place at

the peak measured discharge, as is implied. By using maximum recorded flood levels to

represent incipient motion conditions, the upper points representing non-movement are

more reliable as there is no doubt as to the maximum flow depths and applied power

values that the non-moving stones had been subjected to. In other words, a stone that was

moved might have moved early on in a flood at a lower level and discharge than those

recorded and used in the data analysis. However, the deviating trend is evident for the

stones that had moved as well as stones that had not moved.

It is noticeable from the above figures that the data for the Molenaars and Berg Rivers

deviate from the expected constant value in the original modified Liu diagram, given the

rough turbulent conditions in the Molenaars and Berg Rivers under flood conditions. It is

only at an x-axis value smaller than 13 that any sort of deviation is expected as this is

where laminar flow is prevalent (see Figures 4.1 and 4.17). Even though the data clearly

fall within the turbulent boundary zones of the Liu diagram (i.e. x-axis values » 13),
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most data of the stones that moved (dark data points in Figures 4.2 - 4.4) deviate from

the expected constant value (0,12) for ~ gOs as derived in Chapter 2 for fully turbulentv,
conditions. It is also evident that the deviation is much more pronounced for smaller

stones (i.e. the data closest to the y-axis). The data points to the right, representing the

larger stones, tend towards a constant value.

The deviation pattern noticed is strikingly similar to the pattern followed by the threshold

of movement line in the original modified Liu diagram where laminar boundary

conditions prevail (Figure 4.1). The boundary between points that represent movement

and those that do not represent movement is equivalent to the incipient motion curve. In

comparing the data with the original modified Liu curve it is necessary to consider the

significance of the new data.

Three possible explanations exist as to why the Molenaars and Berg Rivers' data on

incipient motion deviate from the expected horizontal line for the threshold of movement

in the original modified Liu diagram for rough turbulent flow:

• The stones are embedded and the derivation of a constant value for the threshold of

movement in the original modified Liu diagram does not account for such conditions.

• The original modified Liu diagram (Rooseboom, 1992) was derived for beds with

uniform particle sizes, while the data for the Molenaars and Berg rivers represent

beds which consist of non-uniform bed particles.

• The deviation noticed for the data from the Berg and Molenaars Rivers is due to

laminar conditions playing a role in the entrainment process of the stones.

Each of these will be explored in tum.
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4.2 Influence of embedded stones

No factor is included in the original theoretical derivation (Chapter 2) of the parameters

in the original modified Liu diagram to correct for the level of embeddedness. Intuitively

one expects the embedded stones to be more difficult to transport than non-embedded

stones. They will therefore be able to withstand higher applied power values exerted on

them than if they were not embedded. A stone in such a situation will typically plot above

the theoretical threshold of movement line on the original modified Liu diagram (as

. . [Unit applied power along bed ]shown In Chapter 2 the y-axis represents. . .) and
Unit power required to suspend particles

this could possibly explain the deviation from the expected constant line.

During data collection, all the observed stones were classified as embedded or non-

embedded depending on whether they could be removed from the bed by hand or not.

Embedded stones would include stones that were covered by sediment as well as stones

that were firmly lodged between other stones. The influence of embeddedness can be

determined by excluding the data for these embedded stones from the data plotted in the

original modified Liu diagram. Figures 4.5 - 4.7 depict the data from the Berg and

Molenaars Rivers in the original modified Liu diagram, without the embedded stones

data.
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Figure 4.5: Molenaars 2003 data, excluding data for embedded stones, plotted on

the original modified Liu diagram
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Figure 4.6: Molenaars 2004 data, excluding data for embedded stones, plotted on

the original modified Liu diagram
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Figure 4.7: Berg 2004 data, excluding data on embedded stones, plotted on the

original modified Liu diagram

Figures 4.5 - 4.7, show the same deviating patterns as seen in Figures 4.2 - 4.4. Even

though embedded ness of stones could possibly playa role in the incipient motion criteria

it does not account for the general deviation from the expected horizontal line when the

data are plotted in the original modified Liu diagram.

4.3 Influence of non-uniformity under fully developed turbulent conditions

The Liu diagram shown in Chapter 2 was derived for beds with uniform particle sizes. In

order to establish what should happen in the case of a non-uniform particle size bed, with

varying roughness, the Liu parameters have to be derived anew to allow for the non-

uniformity in the bed.

For rough turbulent flow, the unit stream power applied in maintaining motion along a

bed consisting of particles with diameter d, as shown in Chapter 2, is proportional to
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pgsD.fgD;
k

(4.1)

with p : fluid density (kg/nr')

g : gravitational acceleration (m/s'')

s : energy gradient= channel gradient

D : depth of water above stone (m)

k : absolute bed roughness (m)

In terms of the concept of minimum applied power, the stream will begin to entrain

particles when the power required to suspend the particles effectively becomes less than

the unit power to maintain the status quo. At that stage

{p _ )gV expgsD.fgD;
s p ss k (4.2)

where (Ps - p)gVss represents the unit applied power required to lift a particle.

According to the general equation for settling velocity (Graf, 1971)

V ex~s-P dss Cp 0
(4.3)

Thus when a particle is entrained,

( _ )gV = pCo .d{ps - p)gVss expgsD.fgD;
PsP ss pC 0 .d k (4.4)

From equation 4.3 it follows that
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(4.5)

Which, when substituted into equation 4.4, leads to

pC v: pgsD~gDs
D ss = Constant. -'--"-_-'-"-_
d k

(4.6)

This simplifies further to,

C v: (~gDs y~ = Constant·
d k

(4.7)

and still further to,

C = Constant. (.JgDs} .~
D v: k

ss

(4.8)

Assuming that CD, the drag coefficient, is a constant, which is true for larger diameters,

then from the above equation the condition of incipient motion under rough turbulent

conditions for a non-uniform bed can be expressed as:

liDs (d)~--. k = Constantv, (4.9)

This newly derived equation can be used to explain why the data in the original modified

Liu diagram, for smaller stones, deviate from the expected horizontal line for the

threshold of movement. The difference between equation 2.19 which was derived for

uniform particle size beds and equation 4.9 which was derived for non-uniform particle
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size beds (derivation shown in Chapter 2) is the extra factor ( ~t. This factor indicates

that on a non-uniform particle size bed the power required, for a given value of JgDs , to

entrain a particle of size d will increase as the overall absolute hydraulic roughness (k)

increases. In order to determine the relationship between k and d, one will have to look

closely at the eddy formation process at bed level.

The development of eddies, on any bed, is a three-dimensional process. The bed

configuration (in all directions) in the vicinity of a stone in the bed will determine the

local eddy size. In the case of a bed with uniform size particles the eddy size would be of

the same order as the particle diameter. The reason for this is that on a uniform particle

size bed the bed shape will generate eddies similar in size as the particles. This is shown

in Figure 4.8.

Figure 4.8: Two-dimensional representation of the eddy formation process in a

uniform particle size bed

For this reason k can be substituted for d on a uniform bed. It is not possible to accurately

predict the exact size of the eddies that will form in a non-uniform particle size bed due

to the complexity and variability of such a bed configuration. However, in a non-uniform

particle size bed the average bed roughness will be largely determined by the larger

stones in the bed. Because flow resistance across the bed is not a localized phenomenon it

may be assumed that the applied power and hence the eddy size across a non-uniform bed

will tend towards uniformity, with the average eddy size of the same order as that of the
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larger stones that dominate in determining the average absolute roughness of the bed.

Figure 4.9 depicts a two-dimensional representation of the eddy formation process in a

non-uniform particle size bed.

Figure 4.9: Two-dimensional representation of the eddy formation process in a non-

uniform particle size bed

It is clear from Figure 4.9 that the bigger eddies will playa dominant role in the eddy

formation process in a non-uniform particle size bed. Figure 4.9 not only depicts a two-

dimensional representation of the eddy formation process in a non-uniform particle size

bed but also the relative positions of different size stones. In a non-uniform particle size

bed smaller particles will generally be found in lower positions i.e. in the sheltered

hollows between the larger stones.

As indicated in Figure 4.9 in a non-uniform particle size bed, the average roughness and

hence the average eddy size is largely determined by the larger stones in the bed. The

smaller a stone the smaller the (~ tvalue will be for that stone since the general eddy

size (k) will be of the same order of magnitude as the size of the larger stones in the bed.

As the stone size increases the value of the term (~ twill increase accordingly as the

size difference between a stone and the average eddy diminishes.
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The above observation helps to explain, mathematically, why a deviation is noticed in the

plot of the Molenaars and Berg River data in the original modified Liu diagram (Figures

4.2 - 4.4). In these diagrams a uniform bed was assumed (i.e. k was set equal to d for

every stone). It is thus apparent, when looking at Figure 4.9, that if k is set equal to d it

underestimates the size of the average eddy forming over the smaller stones. This

underestimation of eddy size increases as the stone size becomes smaller. Alternatively

the bigger the stone size the more accurate the assumption that k equals d due to the fact

that the average eddy size, which is being formed by the biggest stones, is much closer to

the size of the bigger stones. This explains why the bigger stones on the graphs (i.e.

furthest from the y-axis) plot close to the theoretical constant value (0,12) on the y-axis.

It also clarifies why there is a deviation in the data plots of the smaller stones but does not

yet explain the pattern of the deviation (i.e. an upward curve towards the y-axis).

Mathematically this upward deviation in the Liu diagram for smaller stones (i.e. those

closest to the y-axis) can be explained in terms of the function that represents

(d)~
[ ]

gOs· -
Unit applied power along bed c. .~ b d I jgDs klor non-unnorm e s, name y

Unit power required to suspend particles V
ss

For a certain size stone in a non-uniform particle size bed the applied power, represented

by the numerator in the above term, will depend on the average eddy size (k) and the

value of J gOs. A smaller k would indicate an increase in the applied power and vice

versa. Also a smaller value of JgOs would indicate a decrease in the applied power and

vice versa. As stated above, eddy sizes for the smaller stones (where the deviating trend

is noticed) were underestimated by equating k to d and thus the k values that were used

were too big. A bigger k value will thus cause the unit applied power value over the stone

to decrease. When the applied power has decreased over a stone it will only increase with

a bigger value of JgOs . A stone of a certain diameter will thus start to move at a higher

value of J gOs than would have been the case for that stone in a uniform particle size

bed due to the fact it underlies a bigger eddy. Several studies (Andrews 1983, Bathurst

1987, Egiazaroff 1965, Wiberg & Smith 1987, Wilcock 1993) found that in bed materials
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with non-uniform size distributions, particles smaller than a particle reference size are

relatively difficult to move while particles larger are relatively easy to move. The smaller

the stone in a non-uniform particle size bed, the smaller the term (:t will become and

the higher the value of ~gDs must become to move the stone. Figures 4.10 - 4.12

explain this situation graphically.

( ~=>..( )
..~ "':'''''' ...

Figure 4.10: Stone d in a uniform particle size bed with a fixed ~gDs

Figure 4.11: Stone d in a non-uniform particle size bed with a fixed ~gDs
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Figure 4.12: Stone d in a non-uniform particle size bed with an increased JgDs

Figure 4.10 depicts a stone of size d at the threshold of movement in a uniform particle

size bed. In Figure 4.11 the same stone d is shown in a non-uniform particle size bed with

the same JgDs as in Figure 4.10. This change in bed topography causes the eddy over

stone d to increase in size. As shown in the previous paragraph this causes the applied

power to decrease and hence the stone will be at rest and not be at threshold conditions

anymore. The only way for the stone to approach threshold conditions again is through an

increase in JgDs which will cause an increase in the applied power. This is shown in

Figure 4.12 where the difference is shown between the level of water needed to move

stone of diameter d in a uniform particle size bed (dashed line) and the water level

required to move stone of diameter d in a non-uniform particle size bed. This difference

in water level represents the increase of JgDs in order to reach threshold conditions

between a stone in a uniform particle size bed and in a non-uniform particle size bed.

53

Figures 4.2 - 4.4, which were derived for uniform particle beds (equation 4.9), do make

provision for this change in J gDs to be accommodated in the plotting of the data but not

a change in eddy size. This deviation thus reflects the increase in JgDs needed to

overcome the decrease in applied power over a stone due to increased eddy size.
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The Liu diagram, as adapted for non-uniform particle size beds to make provision for this

change in k, is shown in Figures 4.13 - 4.15 for the Molenaars and Berg River data

respectively. The average eddy value (k) has been set equal to ds4• This is justified by the

explanation given above that the average eddy size would be determined by the size of

the larger stones in the bed. Stones in the size range dso to dlOO should playa determinant

role in the eddy formation process. These are stones that protrude above the bed and will

typically not be as sheltered as the stones smaller than dso. Stones smaller than dso, as

mentioned before, fall in between and hide behind bigger stones and thus playa much

smaller role (if indeed any for the smallest stones) in determining the average eddy size.

Setting the average roughness equal to dS4 is also justified through the fact that it provides

the closest approximation for the data against a y-axis value of 0, 12 compared to setting k

equal to other values

400000 500000100000 200000 300000

~.d

Figure 4.13: Liu diagram, adapted for non-uniformity, k=d84 Molenaars 2003
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Figure 4.14: Liu diagram, adapted for non-uniformity, k=d84, Molenaars 2004
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Figure 4.15: Liu diagram, adapted for non-uniformity, k=d84, Berg 2004
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From the above figures it is clear that the data deviates much less from the theoretical

horizontal line than in Figures 4.2 - 4.4, although there are still small but definite

deviations noticeable. These small deviations can be attributed to the fact that even

though provision has been made in terms of the average k value of the bed being used,

transition effects in the hashed areas in Figure 4.16, were not modelled. These transition

effects are highly complex and are thus impossible to model.

.....-... .-...._
-'.
-'....

~." ,..---, .

Figure 4.16: Transition zones

The smaller a stone, the deeper it will tend to lie in the bed (i.e. it won't protrude into the

flow as much as bigger stones), and the further away from the prevailing turbulent eddies

it will be located. Secondary effects will thus be greater for smaller stones and could

explain why the biggest remaining variations in the Liu diagram, adapted for non-

uniformity (Figures 4.13 - 4.15), are found for the smallest stones.

The deviation of the Molenaars and Berg Rivers data from the expected horizontal line

for threshold of movement in the original modified Liu diagram (Figures 4.2 - 4.4) can

thus be explained in terms of non-uniformity of bed materials.

4.4 Influence of laminar zones on incipient motion

As mentioned in Chapter 4.1 the deviations of the Molenaars and Berg Rivers data from

the expected horizontal line for threshold of movement, when plotted in the original

modified Liu diagram, show a striking resemblance to the deviation of the data on the left
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in the original modified Liu diagram where laminar flow is dominant. Could laminar

conditions thus also playa role in the incipient motion process in cobble stone river beds?

On plotting incipient motion data from sand bed rivers with large bedforms, Rooseboom

and Le Grange (1994) found a dependency of the threshold of movement of particles on

viscosity well into the turbulent boundary range. This can be seen in Figure 4.17.

1000

100 -Q----Q---,...Q.T _
QCN _.a7 _._----C!)ou _

Q .. _--._---

Figure 4.17: Critical conditions for sediment particles (Liu diagram) with river

flood data and bedforms added (Rooseboom and Le Grange, 2000)

This observation led to the following statement:

"The only conceivable way in which viscosity can playa role is through the development

of a laminar boundary layer beneath the turbulent flow zone. It is generally accepted that

laminar boundary conditions develop along even beds and there is no reason why this

should not happen in the sheltered hollows between bedforms" (Rooseboom and Le

Grange, 2000).
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It has also been shown (Rooseboom 1974, 1992) that whenever alternative modes of flow

exist, that mode which requires the least amount of applied unit power will be followed.

Flow will therefore be either laminar or turbulent depending on which mode requires the

least amount of power to generate the equilibrium stresses. It also follows that fluid

flowing over transportable material will not transport such material unless this would

result in less power being applied than without sediment transport.

Using the equations (Chapter 2) for applied unit power,

30pgsO~27tgOs
k

(2.17)

and applied laminar power,

(pgSOY
pv

(2.13)

the values for unit applied power under turbulent and laminar conditions were

determined. For both the Berg and Molenaars Rivers floods the value of unit applied

laminar power exceeded that of unit applied turbulent power by orders of approximately

a thousand times. According to the above statement that whenever alternative modes of

flow exist, that mode which requires the least amount of applied unit power will be

followed (Rooseboom 1974, 1992), turbulent power will prevail at bed level for the

Molenaars and Berg Rivers.

4.5 Conclusions

In the first part of this chapter the data from the Molenaars (2003 and 2004) and Berg

(2004) Rivers were plotted in the original modified Liu diagram (Rooseboom, 1992). The

data sharply deviated from the expected constant horizontal line (y-axis value = 0,12).

Three possible reasons were identified that could mathematically explain this deviation:
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• The stones are embedded and the derivation of a constant value for the threshold of

movement in the modified Liu diagram does not account for such conditions.

• The original modified Liu diagram (Rooseboom, 1992) was derived for beds with

uniform particle sizes, while the data for the Molenaars and Berg rivers represent

beds which consist of non-uniform bed particles.

• The deviation noticed for the data from the Berg and Molenaars Rivers is due to

laminar conditions playing a role in the entrainment process of the stones.

It was found that the only reason that could account for the deviation from the expected

horizontal line in the original modified Liu diagram was the fact the original modified

Liu diagram was derived for uniform particle size beds whereas the data of the Molenaars

and Berg Rivers represented non-uniform particle size beds. When the derivation for the

y-axis in the original modified Liu diagram, which depicts

~gDs [ Unit applied power along bed 1--or
Vss Unit power required to suspend particles '

was modified to provide for non-uniform bed particle sizes, an extra factor was obtained

and the function on the y-axis changed to:

..;gOs .(~)~
v; k

An analysis of the observed flow data showed that the absolute roughness (k) of a non-

uniform bed is reasonably well approximated by a value of d84. This is due to the fact

that the bigger stones in the bed (d50 to dl 00) play the dominant role in determining the

eddy size. When the Liu diagram was re-plotted with the newly derived y-axis function

and the k-value for each stone set equal to the average roughness of the bed (k=d84) the

data plotted close to the expected horizontal line. The much smaller remaining deviation
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from a horizontal line relationship is attributed to secondary effects which are not

accounted for in the theory.
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5 INTENSITY OF MOVEMENT GRAPHS

5.1 Introduction

In terms of the objectives set out in Chapter 1 of this thesis a graph or set of graphs were

to be produced. These graphs would aid environmentalists and other interested parties

who do not necessarily have a technical background in hydraulics to make management

decisions e.g. on how much water must be released from dams to satisfy the ecological

needs in terms of bed material transport.

5.2 Intensity of movement

(i) Original modified Liu-diagram

As shown in Chapter 4 the main reason for the deviation from the expected horizontal

line (y-axis) when data from the Molenaars and Berg Rivers are plotted in the original

modified Liu diagram is the fact that the original modified Liu diagram does not make

provision for non-uniform bed particles. Due to the difficulty (also mentioned in Chapter

4) in predicting the roughness (k) accurately the graphs (Figures 4.2 - 4.4) are used in

providing design curves for sediment movement. Rivers with similar bed roughness (even

if the exact value of the roughness of every stone cannot be determined) will show

similar deviation from the expected horizontal line when plotted in the original modified

Liu diagram. Thus, even though the deviation is explained through the inclusion of the

average roughness of the non-uniform particle size beds, the graphs (Figures 4.2 - 4.4)

can be used to produce design curves for defining intensity movement.

As explained in Chapter 4.1, the boundary between data points that represent movement

and those that represent non-movement in the original modified Liu diagram (Figures 4.2

- 4.4) is equivalent to the incipient motion curve. Also mentioned is the fact that the data

on movement are not as accurate as those that depict non-movement. It is thus not

possible to draw an exact incipient motion curve from the boundary between data points

that represent movement and those that represent non-movement based on the observed
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data from this study. However, the data plotted in the original modified Liu diagram

reveal more than the location of the incipient motion curve. It also shows the maximum

I f [
Unit applied power along bed ] ~gDs c. •va ue 0 or -- lor every stone size
Unit power required to suspend particles Vss

observed during a particular flood. Figure 5.1 depicts the Molenaars 2003 Flood No.6 as

an example of a single flood, with a curve drawn where the maximum ~gDs value forv.
every stone size class is located. Straight lines have been added to indicate stones with

equivalent diameters. In this particular figure (5.1) lines have been assigned to only a few

of the stone size classes to indicate the pattern stone sizes follow in the Liu diagram.

200000 300000 400000

"

o Not moved

+Moved

500000

Figure 5.1: Max Applied PowerlRequired Power per stone size class for Molenaars

2003 Flood 6

From Figure 5.1 it can be appreciated that an upper envelope curve for the data of a

specific flood represents the maximum ~gDs value, for that flood, for every stone size
- V

ss

class.
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Although the data on movement in the Liu diagram (Figures 4.2 - 4.4) is not completely

accurate, the number of stones that were moved during a flood is correct. When this data

on the number of stones that moved during each flood is super-imposed on the curve

(Figure 5.1) that represents the maximum ~gOs value for every stone size, it reveals av:
curve that represents the number of stones that were moved by a certain size flood.

Figures 5.2 -5.4 contain data from the Molenaars and Berg Rivers plotted in the original

modified Liu diagram. The data have been plotted for each flood. The amount of bed

movement in each flood is indicated in the legend. The amount of movement has been

defined as the percentage of stones that were moved.

0.350,----------------------------,

°lil
lil I!I

x Flood 1 (0%)

+ Flood 2 (2%)

- Flood 3 (1%)

• Flood 4 (3%)

OFlaad 5 (33%)

°Flood 6 (46%)

0.300+--i;-°-------------------------1

0.250+-_.-----------------------_____1

.fgDs 0.200

V"" 0.150

0.'00

O.OOO+---~--~--~--~--~-~--_--_-_____1
o 50000 100000 150000 200000 250000 300000 350000 400000 450000

.JiDs-d
v

Figure 5.2: Molenaars 2003 data, floods separated, plotted in the original modified

Liu diagram
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Figure 5.3: Molenaars 2004 data, floods separated, plotted in the original modified

Liu diagram
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Figure 5.4: Berg 2004 data, floods separated, plotted in the original modified Liu

diagram
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Considering Figures 5.2 - 5.4 a general trend is revealed. Comparing the upper data

points for every flood (through which the topmost envelope curve for every flood is

drawn) and the intensity of movement, it is seen that as the ~gDs value increases morev;
stones are transported. Figures 5.5 - 5.7 provide a clearer picture of these envelope

curves. All the data in Figures 5.5 - 5.7 have been provided with envelope curves for

every flood (the data points have been removed to provide clearer graphs)

ODr-------------------------------------------~
03m -------------------------------------------

fll«ll4a)

'1I«I2~
,11«1 J (1'1»

'11«1 'QS,)

'1I«I5~
,11«1$

JgDs 0211

V" O.ISI r---->;~~--......:::.......".----------------------------~

O~~--~----~--~----~--~----~------------~o SIIIII 1IIIIIIII 15I11III 3liliiii 2SIIIII JIIDII JSIIIII GICIII CSIIIII

fgDS.d
v

Figure 5.5: Envelope curves for intensity of movement, Molenaars 2003
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Figure 5.6: Envelope curves for intensity of movement, Molenaars 2004

a~r-----------------------------------------------_.

·'MOI C'I9
'MO::! (13'1)

'Ml3~

'MO' (15)

'MIS CIft)

a3mr-------------------------~

~FJ>s a2111

V" a.ISI +--T-~-""'"""~:__----------------__,

aDm--~--......,...--.......-------......,...-- .......--......_-~
a SIIIIII mm ISICIII 2liliiii 25IIICII 3IICIIID 3IIJIII) 'IDXII UIIICII

JiDs.d
v

Figure 5.7: Envelope curves for intensity of movement, Berg 2004
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Analysis of Figures 5.5 - 5.7 reveals the following:

• Although, the overall trend of the curves indicates that the intensity of movement

increases as the curves plot higher it is not necessarily the case that a higher plot will

yield a bigger intensity of movement. For example in Figure 5.6 the curve that is

associated with 2% movement plots lower than the curve associated with 1%

movement.

• The intensity of movement does not increase linearly with ~gDs . The lower curvesv:
are associated with relatively small values of intensity of movement. From there a

point is reached where a relatively small increase in ~gDs is associated with a rapidv,
increase in the intensity of movement.

The above Figures 5.5 - 5.7 do not distinguish between floods of different durations and

thus the first of these remarks can possibly be explained in terms of the durations of

floods. Tables 3.3 and 3.4 contain the particulars of every flood (which include the

durations) and are repeated here as Tables 5.1 and 5.2 for the purpose of comparison.

Year Event Date Duration Max Flow Avg. Daily Volume DRIFT
Number (hours) (m3/s) Flow (m3/s) (Mm3) Class
1 10m July 33 5.56 3.72 0.41 I

2 18m July 21 15.23 5.41 0.49 I

3 25m July 14 8.60 4.20 0.28 I
2003

4 15 August 26 28.76 7.98 0.95 I

5 s" August 26 36.46 14.45 1.74 II

6 18m August 32 140.80 30.29 4.15 III

1 610 June 29 20.20 10.02 1.04 I

2 14Ul June 33 140.97 37.21 3.82 III

2004 3 26m June 31 8.87 5.13 0.66 I

4 3ra July 21 46.38 16.08 1.35 II

5 23ra July 18 113.93 29.17 2.67 III

Table 5.1: Flood events observed at the Molenaars study site
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Table 5.2: Flood events observed at the Berg study site

Year Event Date Duration Max Flow Avg. Daily Volume DRIFT
Number (hours) (m3/s) Flow (m3/s) (Mm3

) Class
1 5m June 28 7.27 2.08 0.40 I

2 14m June 44 84.51 32.58 3.48 IV

2004 3 26m June 27 4.82 2.62 0.29 I

4 3ra July 24 11.74 5.68 0.44 II

5 23ra July 20 60.98 17.70 1.66 IV

When comparing the positions of the curves relative to each other (Figures 5.5 -5.7) with

the duration of every flood (Tables 5.1 and 5.2) no explanation is evident in terms of the

durations of the floods that would describe all the discrepancies.

Although it is not possible to read off accurate values of movement values (to within 1%)

directly from these curves, it should be possible to use judgement and deduce accurate

enough volumes in practical situations since management decisions on the amount of

water to be released will typically indicate small, medium or large movements and not a

singular percentage value of movement.

68

(ii) Incipient motion in terms of DRIFT classification

When plotting the intensity of movement for every flood against the DRIFT

classifications of these floods, a clearer picture is obtained of when (in terms of DRIFT

classification) stones start to move (incipient motion) and how the intensity of movement

varies with flood size.
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Figure 5.8: DRIFT flood classification vs. Intensity of movement (excluding non-

embedded stones)

Figure 5.8 shows that very little movement is noticed with DRIFT Class I and II floods.

The intensity of movement might in some cases be even less for a class II flood than for a

class I flood. However, there is a definite increase in the intensity of motion between a

class II and a class III flood. It is also noticed that class IV floods in some cases have

smaller values of intensity of motion than class III floods. This indicates that in terms of

incipient motion movement starts somewhere before the DRIFT class II floods are

reached

When Figure 5.8 is adapted to include data on embedded stones the effect of

embeddedness on incipient motion can be detected. This is shown in Figure 5.9.
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Figure 5.9: DRIFT flood classification vs. Intensity of movement (all stones)

Figure 5.9 depicts the same trend as is noticed in Figure 5.8 namely that a rapid increase

in intensity of motion is noticed between a class II and a class III flood. Although in

Figure 5.9 (for all the stones) the shift is smaller than in Figure 5.8 (non-embedded stones

only).

5.3 Conclusions

From the information in this chapter it can be concluded that a curve through those data

points in the original modified Liu diagram that represent the maximum ~gDs value for
v:

every stone size, forms an upper envelope curve for the data of every flood. This curve

represents the intensity of motion for this flood. Unfortunately when separate curves

where drawn for the Molenaars and Berg Rivers, it was found that no singular pattern is

revealed that would allow these curves to be used as accurate design curves for practical

use. However, they did reveal a trend with the higher plotting lines representing higher

intensities of motion and vice versa. Although it is not possible to read off accurate

70

Stellenbosch University http://scholar.sun.ac.za



values of movement values (to within 1%) directly from these curves, it should be

possible to use judgement and deduce accurate enough volumes in practical situations

since management decisions on the amount of water to be released will typically indicate

small, medium or large movements and not a singular percentage value of movement.

The intensity of motion also does not increase linearly with flood size but there is a

sudden increase in the number of stones that move after a certain flood size is reached.

When plotting the DRIFT classes of the floods against their respective intensity of

movements it is seen this sudden increase in the number of stones that move is at a point

between a DRIFT class II and class III flood. It also indicated that a DRIFT class II flood

does not necessarily go with a higher value of intensity of movement than a DRIFT class

I flood. The same is noticed at the higher floods where a DRIFT class IV flood does not

necessarily mean a higher value of intensity of movement than a DRIFT class III flood.

In terms of intensity of motion it indicates that incipient motion takes place some point

before the DRIFT class II floods are reached. When the data on non-embedded stones are

included (Figure 5.9) the same trend as explained above is noticed with the one

difference being that the increase in intensity of movement between DRIFT class II and

class III flood is not as rapid when the data on embedded stones is included (Figure 5.9).
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6 COMBINED CONCLUSIONS AND RECOMMENDATIONS

6.1 Combined conclusions

The objectives which were defined at the start of this research, have been met through

describing the incipient motion process in terms of the applied power approach and

producing graphs which provide a clearer picture of incipient motion in cobble/boulder

bed rivers.

The main conclusions that have been reached are:

• Data which represent incipient motion on non-uniform particle size beds deviate from

the expected horizontal line (y-axis value = 0,12) when plotted in the original

modified Liu diagram. It was found that the only reason that can account for this

deviation is the fact that the original modified Liu diagram does not make provision

for non-uniform particle size beds.

• When the derivation of the parameters the original Liu diagram was redeveloped to

provide for non-uniform particle beds an extra factor was obtained and the function

72

.JgDs (d)Y;on the y-axis changed to: V· k . When the absolute roughness (k) was set
ss

equal to d84 for every stone the data plotted close to the expected horizontal line.

Using d84 as a value for the absolute roughness of the bed is justified through the fact

that the bigger stones in the bed (d50-d 100) play the dominant role in determining

eddy size. The much smaller remaining deviation from a horizontal line relationship

is attributed to secondary effects which are not accounted for in the theory.

• Intensity of motion curves were obtained by drawing upper envelope curves through

the data of every flood in the original modified Liu diagram and super-imposing this

curves on the number of stones that were moved during the flood. Although it is not

possible to read off accurate percentages of movement values directly from these

curves, it should be possible to use judgement and deduce accurate enough values in

practical situations.
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• In terms of DRIFT class flood classification incipient motion of sediment takes place

at a size flood smaller or equal to a DRIFT class II flood. There is a rapid increase in

the intensity of movement between DRIFT class II and class II floods.

6.2 Recommendations

• The curves shown in Figure 5.5 - 5.7, which depict intensity of movement, should be

calibrated with more data sets. This would allow more accurate design curves to be

produced for predicting stone movement. These data sets used for further calibration

should typically be of rivers with different particle size distributions in order to see

what effect size distribution has on incipient motion.

• Embeddedness should be recorded in as much detail as possible in future data

collections. This will aid in making provision for embeddedness in the Liu diagram.

• The impact of the duration of floods should be included in further development of

design curves for intensity of movement.

• The benefits of introducing extra physical variables into the theory (e.g. particle

shape, hydraulic sheltering etc.) should be investigated.

• The intensity of movement curves should be linked to some physical nver

characteristic/so This will avoid gathering of large data sets (as was done for this

study) in order to calibrate design curves.
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Figure A1a: Molenaars Study Site: Thalweg and Sample Cross-sections

Thalweg profile
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Figure A1c: Molenaars Study Site: Partical Size Distribution
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Figure A2a: Berg River Study Site: Thalweg and Sample Cross-sections

Thalweg profile
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Appendix B: Base Flow Conditions

B
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Figure B1a: Base Flow Water Surface Profiles Molenaars River Study Stie Initial Set up 2003
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Figure B2a:Average Base Flow Water Level
Berg River Study Site

Initial Set Up
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Base Flow Conditions
Berg River Study Site
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FLOOD COLUMN: bh.. • moWd; ;..,r:~ • OUT;Ot"1fIgI ..... check in field. new .'_marbd Y"', bul pet1\IIp5 oId!'lOCNl
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Appendix D: Stone Movement for
Individual Flood Events

o
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