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Abstract

The In�uence of Dust Soiling on the Performance of Photovoltaic

Modules in the Semi-Arid Areas of South Africa

A. A. du Plessis

Department of Electrical and Electronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (E&E)

December 2016

With various commercial photovoltaic (PV) power plants in South Africa located in the semi-
arid areas of the Northern Cape, this thesis provides �eld generated data for PV modules
subjected to this environment. The e�ects of dust soiling, concerning the performance of
PV modules, are analysed and the results obtained serve as a quantitative and mechanistic
understanding for PV system engineers and investors.

In attempt to determine whether cleaning PV modules is a relevant option, experimental dust
mitigation methods are investigated. These methods include the application of a hydropho-
bic anti-soiling coating, as well as the execution of biweekly and long term (six months)
cleaning routines, consisting of water based (wet) and dry cleaning methods. Results of
these mitigation methods are compared to that of modules exposed inde�nitely.

The research objectives are successfully investigated by means of the design and commission-
ing of a PV research facility. The facility consists of 16 stationary mounted polycrystalline
(pc-Si ) modules, analysed for the six month period of May to October 2016. A single axis
tracker (SAT) system, is also designed and implemented. This provides the required exper-
imental platform for the investigation of dust soiling on four tracking pc-Si modules, during
a three month period of mid-August to November 2016. Raw data validation is established
with comprehensive weather monitoring (ambient temperature, wind speed, wind direction,
rainfall, pressure, and humidity), plane of array irradiance (GPOA) and PV module back sheet
temperatures recorded, in accordance with the IEC 61724 standard. A MasterController, an
intelligent data logging and communications device, is also designed and implemented, which
is responsible for the gathering of the meteorological on-site data, measured at one minute
log intervals. Also, as speci�ed by the IEC 61724 standard, an intelligent device capable of
extracting I-V curves, from individual PV modules at a 10 minute interval is utilised.

PV module power output is derived from the measured I-V curves, validated with a single-
diode curve �tting routine. A comparative study between various modules is analysed with
a performance ratio (PR), de�ned as the temperature and irradiance corrected performance
factor of a PV module. A clearness ratio (CR) is also used to further quantify dust soiling
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for the stationary modules, which compares the PR of modules to that of two reference
modules, cleaned biweekly.

For the six month stationary module analysis, results conclude a maximum recorded reduc-
tion in CR of 2.7 %. A maximum ideal PR di�erence of ∼ 1.9 % is recorded for both the
coated and uncoated sets of long term exposed modules, compared to the short term cleaned
modules. This maximum deviation in performance is recorded after a 75 day absence of
rainfall. The analysis does suggest that a rainfall of about 6 mm, every four to six weeks,
is substantial to maintain the CR of unclean stationary modules, within 1 % of the cleaned
reference modules. Results further indicate little to no deviation in performance between
dry cleaned stationary modules and a set of water (distilled) cleaned modules. Regarding
the SAT modules, a maximum ideal PR di�erence of 5.5 % is recorded for a coated, as com-
pared to an uncoated module. The applied self-cleaning capability of the SAT system did
not yield any conclusive remarks regarding this dust mitigation method. It is concluded that
the hydrophobic coating for both topologies, stationary and tracking, promoted dust soil-
ing. Finally, the research also suggests that SAT modules, which adopt a horisontal resting
position during night time, are more vulnerable to dust soiling than stationary modules.
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(�The In�uence of Dust Soiling on the Performance of Photovoltaic Modules in the Semi-Arid

Areas of South Africa�)

A. A. du Plessis

Departement Eletriese en Elektroniese Ingenieurswese,
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Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (E&E)

Desember 2016

Met verskeie kommersiële fotovoltaïese (FV) kragstasies in Suid Afrika, geleë in die semi-
droë areas van die Noord-Kaap, voorsien hierdie tesis veld gegenereerde data vir FV panele,
blootgestel aan hierdie omgewing. Die e�ek van stofbesoedeling aangaande die prestasie van
FV panele word geanaliseer en die resultate verkry dien as 'n kwantitatiewe en meganistiese
aanduiding vir FV stelselingenieurs en beleggers.

In 'n poging om te bepaal of die skoonmaak van FV panele werklik van waarde is, word
eksperimentele stofneerslagverminderingsmetodes ondersoek. Onder andere word die toe-
passing van 'n hidrofobiese-teenmiddel vir stofbesoedeling ondersoek, asook die uitvoer van
tweeweeklikse en langtermyn (ses maande) skoonmaak roetines, wat water gebasseerde (nat)
en droogskoonmaak metodes behels. Die resultate van hierdie stofneerslagverminderings-
metodes word vergelyk met FV panele wat onbepaald (lang termyn) blootgestel is aan die
omgewing.

Die navorsingsdoelwitte word suksesvol ondersoek deur middel van die ontwerp en ingebruik-
neming van 'n fotovoltaïesenavorsingsfasiliteit. Hierdie fasiliteit bestaan uit 16 stasionêre
polikristallyne (pk-Si) panele, geanaliseer oor 'n ses maande tydperk vanaf Mei tot Okto-
ber 2016. 'n Enkelasvolgerstelsel (EAV-stelsel) is ook ontwerp en geïmplementeer. Hierdie
stelsel voorsien die nodige eksperimentele paltform om te bepaal wat die e�ek van stofbe-
soedeling op vier EAV, pk-Si panele is oor 'n drie maande tydperk vanaf middel Augustus
tot en met November 2016. Die validasie van die proses van rou dataopname word bevestig
met die meet van omvattende weermonitering (omgewingstemperatuur, windspoed, windrig-
ting, reënval, lugdruk en humiditeit), fotovoltaïese-paneelvlak-uitstralings-intensiteit en die
meet van FV paneel temperatuur, soos vereis deur die IEC 61724 standaard. 'n Intelligente
data-insamelings-en-kommunikasietoestel, naamlik 'n MeesterBeheerder, is ook ontwerp en
geïmplementeer, wat verantwoordelik is vir die opname van die meteorologiese data, gemeet
in intervalle van een minuut. Verder, soos vereis deur die IEC 61724 standaard, is 'n intelli-
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gente toestel gebruik om die stroom en spanning (I-V) kurwes te onttrek vanaf individuele
panele, teen 'n 10 minute interval.

Die drywing gelewer deur die FV panele word afgelei vanaf die gemete I-V kurwes, deur mid-
del van 'n toegepaste krommepassing, gebasseer op die enkeldiodemodel. 'n Vergelykende
studie tussen verskeie panele is bewerkstellig deur middel van 'n prestasieverhouding (PV),
wat gede�nieër word as die reggestelde prestasiefaktor van 'n paneel met betrekking tot die
temperatuur en uitstralingsintensiteit waaraan 'n paneel blootgestel is. 'n Skoonheidsver-
houding (SV) word ook toegepas om verder stofbesoedeling te kwanti�seer vir stasionêre
panele, waar die PV van modules gemeet word, met betrekking tot die PV van twee verwy-
singsmodules, elk tweeweekliks skoongemaak.

Vir die ses maande analise van die stasionêre panele, dui die resultate 'n maksimum afname
vir die SV aan as 2.7 %. 'n Maksimum ideale PV verskil van 1.9 % is opgeteken vir beide van
die behandelde en onbehandelde langtermyn blootgestelde panele, soos gemeet teenoor die
ekwivalente korttermyn panele. Die maksimum prestasie afname van die panele is gemeet
tydens die periode wat gekenmerk word deur 'n 75 dae tekort aan reënval. Die resultate dui
egter daarop aan dat 'n reënval lesing van meer as 6 mm, elke vier tot ses weke, genoegsaam
is om die SV van nie skoongemaakte panele, binne 1 % te onderhou met betrekking tot
die skoongemaakte verwysingspanele. Die navorsing het verder aangedui dat daar geen
noemenswaardige verskil in prestasie is tussen tweeweeklikse droogskoongemaakte panele en
water skoongemaakte panele nie. Aangaande die EAV analise, is 'n maksimum verskil in die
ideale PV van 5.5 % gemeet vir 'n behandelde paneel teenoor 'n onbehandelde paneel. Die
toegepaste selfskoonmaak roetine van die EAV stelsel het egter geen beduidende resultate
gelewer nie. Daarom, kan daar nie 'n gevolgtrekking gemaak word oor die toepaslikheid
van so 'n stofneerslagverminderingsmetode nie. Die gevolgtrekking word gemaak dat 'n
hidrofobiesebedekking inteendeel 'n verhoogde stoftoename tot gevolg gehad het. Uiteindelik
dui die navorsing daarop dat die panele van 'n EAV stelsel, wat 'n horisontale rusposisie
aanneem gedurende die aand, meer vatbaar is vir stofbesoedeling as stasionêre panele.
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Chapter 1

Introduction

1.1 Background

Unlike fossil fuels, solar power is an energy revolution driven by technology [1]. There is a
term known as solar's learning rate, which refers to the fact that PV module costs are falling
26 % every year as the technology becomes cheaper [1]. This cost reduction has allowed more
entrepreneurs to gain access to the renewable energy (RE) market, which has set the stage
for �erce competition amongst bidders. Evidence of this highly ambitious environment is
also evident in the renewable energy sector of South Africa.

Motivated to alleviate the energy constraints of the public electricity provider, ESKOM, the
South African Department of Energy (DoE) established the well known public-private part-
nership model, known as the Renewable Energy Independent Power Producer Procurement
Programme (REIPPPP) [2]. With �ve successful rounds of bidding, the cost competitive-
ness of RE suppliers has increased substantially. Averaged bid prices for wind power dropped
from R1.15/kWh(round one bids, 2011) to as low as R0.62/kWh (round �ve bids, 2014). On
the other hand, averaged tari�s for solar PV also reduced from R2.76/kWh to R0.79/kWh
[2, 3]. Financially speaking, with these competitive prices, any externalities that in�uence
the operational e�ciency of PV modules, will in�uence the over all investment. This is why
the RE sector is now, more than ever, striving for higher levels of PV module and operational
e�ciency.

It is well known that locations ideal in terms of the high levels of available irradiance, are also
prone to high soiling rates, due to the airborne dust, wind and also high levels of humidity,
associated with some of these regions [4�8]. Soiling, in essence, refers to the accumulation of
dust and dirt on solar panels, which reduces the exposure of solar cells to sunlight [5]. After
irradiance and module temperature, dust soiling is regarded by some researchers as the most
in�uential environmental factor, in terms of a�ecting PV output power[9].

This thesis aims to investigate the external factors that could lead to a signi�cant decrease
in PV module energy yield. In particular, the e�ects of dust deposition on PV module
surfaces are to be investigated. Although there is nothing PV system operators can do with
regards to the received irradiance and ambient temperature, dust deposition is however a
tangible component, which does permit human intervention. In other words, the ability to
potentially control the e�ect that dust soiling has on module performance, serves as the
source of interest for this research. Thus, the question to ask is whether or not an attempt
to reduce the accumulation of dust on PV module surfaces, will prove to be bene�cial in
terms of PV module performance?

1
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1.2 Research motivation and problem statement

Utility scale PV system designers and operators, are constantly seeking to quantify PV
soiling losses, so that PV module cleaning can be motivated and performance modelling can
be optimised. This is all in an attempt to avoid deviation from the projected energy output.
After various conversations with di�erent PV system operators in South Africa, it is evident
that dust mitigation (removal) is a highly speculative subject, with no real data available
to quantify the e�ects of dust or provide guidelines regarding when PV modules should be
cleaned. An example of dust soiling on an actual �eld exposed PV module is illustrated in
Figure 1.1.

In terms of PV module cleaning, there are also questions regarding the implementation of
di�erent dust mitigation methods. Examples are water based cleaning, dry cleaning or the
application of an anti-soiling surface coating, or a combination of these.

Figure 1.1: Dust soiling on a �eld exposed PV module.

When considering the number of international studies conducted, as summarised by S. Costa
et al. [10], there is evidently world wide interest regarding dust soiling. Thus, data avail-
ability for various locations on the e�ects of PV module dust soiling is becoming a global
e�ort. Concerning research studies performed in South Africa, with actual �eld generated
data, there is however a limit. In fact, to the best knowledge of the author, no formal
research with regards to the in�uence of dust on PV module output power, has been con-
ducted for South Africa. This research therefore makes an important contribution to assist
in establishing an encyclopaedia of global PV soiling trends.

Also, because of this lack of available PV soiling data for South Africa, up until now it has
only been assumed that PV module soiling leads to signi�cant e�ciency losses, should the
dust not be removed. This is particularly true for the dry and arid Northern Cape region of
South Africa, which is where this research study is conducted. With more than 30 of the 45
PV power plants in South Africa either operating or scheduled for operation in the Northern
Cape, it is evident that this region is well situated for PV power plants [11]. As concluded
by most researchers, if not all, the availability of site speci�c data is essential for quantifying
the e�ects of dust soiling and formulating a dust mitigation strategy (DMS), if required.
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Therefore, this thesis, for the �rst time, presents data on the e�ect of dust on PV mod-
ule performance in the semi-arid regions of the Northern Cape, South Africa. The results
obtained, aim to quantify and determine the e�ects of dust soiling on PV module output.
Ultimately, this research aims to assist PV system engineers and operators to formulate more
accurate performance prediction models, as well as dust mitigation strategies.

1.2.1 Research questions

The project motivation serves as an incubator for the following questions:

� What is the e�ect of dust soiling on the energy yield of a PV module?

� How does a PV module left over time, compare to a regularly cleaned PV module?

� How does dust soiling of single axis tracker mounted modules, compare to sta-
tionary modules?

� Will a dust mitigation strategy result in higher PV module output?

� How does a water-based cleaning routine compare to a dry-cleaning routine?

� How e�ective are anti-soiling coatings?

� To what extent does rainfall recover the performance of a dirty (due to dust)
module?

� How do di�erent cleaning intervals (weekly, monthly, yearly) compare to one
another?

1.2.2 Research objectives

The following objectives are set to successfully execute this research:

� Acquire data from actual �eld exposed PV modules, which are subjected to the North-
ern Cape environment.

� Extract I-V curve and back-plate temperature data from individual PV modules.

� Collect weather and irradiance data.

� Analyse the e�ect of dust soiling on stationary polycrystalline (pc-Si) modules.

� Analyse the e�ect of dust soiling on single-axis-tracking modules.

� Compare di�erent dust mitigation methods.

1.2.3 Research tasks

To accomplished the set objectives, the following tasks have to be executed:

� Design and construct the necessary infrastructure to allow stationary and single-axis-
tracking PV modules to be exposed to actual �eld conditions.

� Make use of an intelligent device capable of extracting IV-curve and back-plate tem-
perature data from PV modules.
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� Install an on-site weather station and Pyranometer, which provides weather and irra-
diance [W/m2] data, representative of that to which the PV modules are exposed to
(IEC61724 standard).

� Design and build a data logger which extracts the weather and irradiance data from
the on-site weather station and pyranometer.

� Install the required communications infrastructure, which allows the transfer of all
data acquired from on-site devices, onto an online database.

� Design and build a PV powered battery bank which provides power to all of the active
electronic measurement devices.

� Develop a dust-mitigation-strategy (DMS) which allows di�erent mitigation methods
to be applied to selected PV modules.

� Develop the required software set-up to conduct a full data analysis, which compares
the performance of the PV modules to one another.

A fully operational Photo-Voltaic Research Facility (PVRF) has to be constructed, which
will provide the means to execute the listed tasks. In turn, such a research facility will allow
all of the research objectives to be completed. The PVRF must preferably be located in the
Northern Cape, since this is evidently where the majority of South African commercial PV
power plants are constructed and will therefore be the most bene�cial to the South African
PV energy sector.

1.2.4 Research hypothesis

The following hypotheses are made with regards to the in�uence of dust soiling:

� PV modules with an applied anti-soiling coating, perform better than non-coated mod-
ules.

� Single-axis-tracking modules are less prone to an accumulated dust deposit on the
module surfaces, than stationary modules. Reason being because of the increased tilt
angle position, which is larger than that of the stationary modules (30◦), gravity and
wind are employed to the advantage of the module's dust removal.

� When subjected to enough rainfall (> 5mm), PV modules output power is restored.

� PV modules cleaned regularly (once every week or two weeks), perform better than
modules that are cleaned over longer time intervals (once every few months).

1.3 Scope And Limitations

It is not within the scope of this thesis to provide a complex �nancial model, which provides
guidelines on projected PV module output, due to the e�ect of dust soiling.

Only a selected number of PV modules are installed, which is enough to e�ectively execute
the thesis objectives. The installed research facility consists of:

� 16x Stationary pc-Si PV modules
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� 4x Tracking pc-Si PV modules

� 8x Cd-Te Thin Film modules

However, this research does not include the analysis of the Thin-Film modules.

It is not the aim of this thesis to provide an in depth study with regards to the in�uences of
weather, but rather to produce a holistic perspective on the in�uence of weather factors, if
identi�ed. Thus, it is primarily the interest of this thesis to solely look at the in�uence dust
deposition. Where necessary, weather in�uences will be referred to.

In terms of the applied dust mitigation methods, there is a limit with regards to the number
of periodic routines that are executed. Only two periodic sets of mitigation routines are
applied, which are short term (two weeks) and long term(six months). This is done, since it
is in the opinion of the author, that a di�erence in PV module output due to dust deposition
will be more evident for this scenario as opposed to a short-to-medium (monthly) term
comparison. A set of PV modules are however allocated to an inde�nite exposure period,
which involves no cleaning routines.

It is beyond the scope of the research to compare di�erent anti-soiling coatings to one another.
Only one anti-soiling coating is applied to speci�c PV modules.

A pyranometer is used to measure the received global plane of array irradiance (GPOA) of the
stationary modules. However, for the single-axis-tracker modules, there is not a dedicated
pyranometer. A mathematical conversion is used to translate the received plane of array
irradiance to that of the irradiance received by the tracking modules (GPOA−SAT ).

Only two single axis trackers are installed, each with two pc-Si modules. The SAT system
only compares long term, coated and non-coated modules to one another. Double axis
tracking is not considered, due to time constraints of this project.

All module performance comparisons are done based on a de�ned performance ratio (PR).
It is not within the interest of this thesis to compare the energy yield of di�erent PV module
topologies. It is however within the objective of the thesis to compare module behaviour
with regards to dust soiling on di�erent topologies.

1.4 Thesis Overview

The thesis is structured as follows:

� Chapter 2: Firstly, a literature review is presented, which introduces research con-
ducted by authors who have also studied the e�ects regarding dust soiling. This is
followed by an investigation into the operation of various dust mitigation methods,
with a focus on anti-soiling coatings. The conclusions made by other researchers re-
garding the application of anti-soiling coatings are also presented. The �nal section of
this chapter is dedicated to the relevant theory regarding Earth and Sun movement.
It is necessary for the reader to have a thorough understanding of this basic theory, to
follow the design of the single axis tracking system, as well as other relevant sections
in this thesis, which require this basic knowledge.

� Chapter 3: To accomplish the objectives set in Chapter 1, it is necessary to design
and implement a research facility. This chapter presents the design and construction
of this facility. All of the measurement instrumentation installed are discussed, which
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also includes the ActiveLoad devices, responsible for extracting operational PV module
data.

� Chapter 4: This chapter is dedicated to the design of the intelligent device known as
the MasterController. Amongst other things, this device is responsible for capturing all
meteorological data. A complete hardware and software design is provided regarding
this device.

� Chapter 5: The design section of this thesis is continued by this chapter, with the
complete hardware design and software development of the tracking system presented.
The relevant theory and application of the tracking algorithms are thoroughly presented
as well. Since this is a fully functional system on its own, the installation and complete
user functionality is presented.

� Chapter 6: With all of the necessary infrastructure installed, the experimental analysis
can �nally commence. This chapter presents the experimental set up and methodology
applied to ensure that all research objectives are achieved as desired.

� Chapter 7: In this chapter, all of the acquired data is presented. However, before
the results are discussed, a complete step-by-step process of raw data validation and
�ltering is provided. After this section the reader should have full con�dence in the
process of data extraction. Results are presented for both the stationary and single
axis tracking modules, regarding the e�ect of dust soiling on module performance.

� Chapter 8: With the results presented in Chapter 7, conclusions are drawn regarding
the e�ect of dust soiling and how the di�erent dust mitigation methods reacted. Based
on the results, guidelines are also provided to PV system operators for the e�ective
monitoring of PV system behaviour.
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Chapter 2

Literature review and background study

2.1 Chapter overview

This chapter reviews studies that have been conducted by other researchers, who have con-
tributed noteworthy information to this particular �eld of study. Di�erent anti-soiling tech-
nologies are also presented and the results of researchers who applied such anti-soiling meth-
ods. The chapter then progresses towards the fundamentals of Earth-Sun movement. All
other relevant theory, which may aid the reader's understanding is provided accordingly.

2.2 Previous research

2.2.1 The origins of dust deposition

Numerous authors have devoted their research to the adverse e�ects of atmospheric variables
on PV plant performance. In general, as noted by A. Dowsari et al. [4] and M. Maghami et
al. [12], factors that can a�ect PV performance include organic and inorganic contaminants.
These include: dust, snow, irradiance, module temperature, salt, bird droppings, humidity,
aerosols and the angle of tilt, to name a few. As mentioned, soiling in the form of dust
deposition, is however identi�ed by this dissertation as the primary objective of interest.

Factors, which speci�cally in�uence dust particle deposition, are characterised by several
authors [13�15] as illustrated in Figure 2.1. As seen from this illustrative summary, dust is
a complex phenomenon, in�uenced by various factors which instigate the settlement of dust.
Ultimately, it suggests that dust soiling is primarily a site speci�c issue, which most authors,
if not all, are in agreement with.

2.2.2 E�ects of soiling on di�erent PV systems around the world

Soiling ultimately leads to some degree of shading, which can be classi�ed as either hard-
shading or soft-shading, as described by M. Maghami et al. [5]. Soft shading refers to
both the presence of airborne atmospheric particles and a thin uniform layer of dust, on the
surface of a PV module. The overall intensity of the irradiance received by the PV module
is reduced by soft shading, without resulting in any distinguishable di�erence of shaded and
unshaded regions. Hard shading refers to a solid compound that stops sunlight from passing
through, casting a de�nite shadow on the surface underneath. As further observed by M.
Maghami et al., soft-shading results in a decrease in current, but has no noteworthy e�ect on
voltage. Hard shading however, reduces both current and voltage, resulting in less available
power as shown in Figure 2.2. From this research, it is concluded that, when investigating
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CHAPTER 2. LITERATURE REVIEW AND BACKGROUND STUDY 8

Figure 2.1: Factors that in�uence dust accumulation on PV modules [14, 15]

the in�uence of dust, it is important not to distinguish between hard and soft shading, but
to embrace all factors concerning dust soiling, since this is what PV modules will be exposed
to in the �eld.

(a) E�ect of hard shading. (b) E�ect of soft shading.

Figure 2.2: E�ects of Hard and Soft shading on PV module I-V curves as described by M.
Maghami et al. [5]

Studies with a focus on PV soiling have been performed in various regions around the world,
most notably in Europe (Spain), North America and the Middle-East [10]. J. Mallineni et al.
[16] conducted research on the e�ects of PV soiling in the hot-dry climate of Arizona, USA,
in various regions. Soiling losses of four PV systems were quanti�ed, with three di�erent
installations that included single-axis-tracking, �xed rooftop and �xed �oor/ground level
topologies. These systems were also situated in both urban and rural areas. A summary of
the results published by Mallineni et al. are provided in Table 2.1:
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CHAPTER 2. LITERATURE REVIEW AND BACKGROUND STUDY 9

Table 2.1: Results for soiling losses as determined by Mallineni et al. for various PV system
types, based in di�erent locations in Arizona.

Topology Exposure (years) Location (type) Soiling losses (%)
SAT 12 Glendale (rural) 6.9%
SAT 4 Mesa (urban) 5.5%

Ground mount 16 Mesa (urban) 11.1%
Rooftop 8 Tempe (urban) 3.8%

It is concluded that the �xed PV modules had a higher soiling rate, compared to the single-
axis-trackers. Interestingly, the research indicated that the rooftop mounted modules, even
with an almost horisontal tilt angle, still displayed a lower soiling loss than the ground
mounted modules.

The conclusion made by M. Mallineni, with regards to the almost horisontal rooftop PV
modules, can most probably be ascribed to an advantage in height. Reason being that this
is in contrast to a study presented by J. Cano [17], who indicated just the opposite with
reference to the e�ects of PV module tilt angles. Cano's study is performed during Jan. to
Mar. 2011, in Mesa Arizona, where the relationship between tilt angle and power loss, due
to soiling, is quanti�ed. Cano performed a dust analysis on nine di�erent frameless pc-Si
modules, each at a di�erent tilt angle (0◦, 5◦, 10◦, 15◦, 20◦, 23◦, 30◦, 33◦ and 40◦). It is
concluded that, dust accumulation decreases as tilt angle increases, with average insolation
losses equating to 2.02 %, 1.05 % and 0.96 % for the 0◦, 23◦ and 33° tilt angles, respectively.
A maximum degradation was reported after six weeks just before the rain as 3.87 %, 2.09
% and 1.85 % for the 0°, 23° and 33° tilt angles. Only these three angles are referred to,
since 23° is the average roof tilt angle in Arizona, 30°is the latitude angle and 0◦ refers to
a horisontal module. It was further concluded that both rain level and wind speed play
signi�cant roles on the cleaning rate depending on the tilt angle. Rainfall of less than 2 mm
without wind, was found to enhance the e�ect of soiling, due to the formation of combined
dust particles that form mud-patches.

The quanti�ed results provided by Cano [17] are however based on frame-less modules and
do not necessarily represent the potential e�ect that tilt angle might have on possibly even
higher levels of PV soiling, representative of framed modules. As noted by a study performed
in Kuwait, by H. Qasem et al. [8], it was observed that framed PV modules experience higher
levels of non-uniform shading, for speci�c tilt angles. This is found to be due to an excess
of dust accumulation, prominently found at the bottom of the framed edge. E. Lorenzo
et al. [18], who performed tests in Cartagena, Spain, noted that dust can also accumulate
at the sides of framed PV modules and at the top of a module, at the frame, which only
further contributes to the non-uniformity of dust settlement. Due to these non-uniform dust
patterns, hot-spots can further arise and rapidly reduce the lifetime of a PV module [18].

Another study by M. Maghami et al. [19] investigated the impact of dust on two �xed arrays
in tropical Serdang, Malaysia, located at the University of Putra. In this work, the arrays
were �xed at a tilt angle of 15°, consisting of twelve 95 W mono-crystalline silicon modules.
Energy yield was determined for the months of 1 April 2013 to 5 December 2013, where
one array was cleaned weekly and the other was left undisturbed for the research period.
The research considered power output [W] and energy generation [Wh] and found that the
dirty modules produced 842.8 kWh at an averaged daily rate of 3.9 kWh. The clean array
however produced 854.1 kWh at an average daily rate of 3.95 kWh per day. This indicated
an approximate average loss of 1.32 % for the entire period, due to dust soiling.
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CHAPTER 2. LITERATURE REVIEW AND BACKGROUND STUDY 10

It is general knowledge that di�erent climate conditions are more appropriate for certain PV
module technologies than others [20, 21]. As further noted by C. Cañete et al. [21], the reason
for this being that, di�erent PV module technologies have di�erent temperature coe�cients,
e�ciencies and spectral response ranges. This thought inspired A. Dowsari, et al. [4] to
demonstrate the e�ects of soiling on thin-�lm modules, with low temperature coe�cients.
The experimental set-up was established along the Arabian Gulf in Saudi Arabia. Cadmium
Telluride (CdTe) Thin-Film modules, manufactured by First Solar, were used due to the
low temperature coe�cient (-0.25 to -0.29 %/°C) of these modules. A monitoring station
was used to compare two matched modules with one another, where one was cleaned and
the other left inde�nitely. After exposing modules in the �eld for ten days, the researchers
observed that PV module losses increased as the soiling level increased, with losses equating
up to 3.5 % on day ten as seen in Table 2.2.

Table 2.2: Arabian Gulf results after ten days of exposure as determined by A. Dowsari et
al.

Day 5 6 7 8 9 10

Loss 2.0% 2.3% 2.7% 3.0% 3.3% 3.5%

Another dust analysis was also conducted by AlDowsari [4] on a PV system situated at
the King Abdullah University of Science & Technology (KAUST), Arabia. The researchers
de�ned a Power Performance Index (PPI) , which is the output power of the plant, normalised
to Standard Testing Conditions (STC). The PPI decreased linearly over time by almost 20 %
for this region. Another interesting observation made by A. Dowsari et al. was with regards
to the e�ect of construction tra�c on dust accumulation, where measurements indicated an
output power loss of up to 35 %, after a two-month exposure to construction tra�c.

The e�ects of construction activity were also observed by C. Chill et al. [22]. A PV test
site located in the Atlantic ocean, West of Morocco, on the Gran Canary island, was exam-
ined. Accidentally located next to a construction site, the researchers had an opportunity
to analyse the e�ects of construction and frequent vehicular movement, on the performance
of PV modules. With IV-measurements taken at 10 minute intervals, it was determined
that relative PV module e�ciency dropped to 20 % (an 80 % decrease) after �ve months of
exposure to a nearby construction site. An instance of low rainfall initiated partial shading
on the modules, due to the accumulation of module surface dirt. This is in agreement with
the observations made by J. Cano [17], who also concluded that low amounts of rainfall are
not always su�cient to clean module surface, but can in fact aggravate the e�ect of dust.
However, C. Chill et al. did observe that PV module e�ciency completely recovered after
enough rainfall was received.

2.2.3 Dust mitigation methods

Strategies to reduce dust settlement can be categorised as either an active or passive pro-
cesses. Active processes refer to e�orts where there is an active/moving participation in
the process of cleaning modules. On the other hand, passive cleaning strategies attempt to
minimise human interaction and, in general, refer to anti-soiling surface treatments, which
modify a PV module's cover glass to be less adhesive [6]. It is important to note that anti-
soiling coatings alone are not necessarily capable of avoiding dust accumulation, but rather
aim to facilitate (enhance) the process of dust removal when rain occurs [23].
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As mentioned in Chapter 1, regions with the highest irradiance levels are usually also very
dry and remote locations, synonymous with water scarcity [24]. Using water from the sur-
rounding regions is also not always practical, since speci�c minerals in water can result in
spotted stains on the PV module surface after cleaning [25, 26]. For these reasons, dry-
cleaning methods are more favoured for such dry and remote locations[4, 18]. Apart from
water scarcity, the cost of labour and the overall PV system size must also be considered.
These are primarily the driving factors to be considered when deciding on a dust mitigation
approach [4].

Anti-soiling technologies

There are various technologies available to consider when formulating a Dust Mitigation
Strategy (DMS). Anti-soiling coatings are one of these options, which aims to remove dust
passively. As mentioned by K. Midtdal and B. Jelle [27], these coatings are primarily cate-
gorised as either hydrophobic or hydrophilic. In Figure 2.3, the e�ect of these coatings on
the shape of the water droplets, is demonstrated.

� Hydrophobic:

A hydrophobic surface coating is water repellent and has a low surface energy, which
results in a high water contact angle [28]. It is due to this high water contact angle,
typically greater than 70◦ or more [29], that water droplets are formed as illustrated in
Figure 2.3. These water droplets attract and capture contaminants within the droplet
itself, allowing surface contaminants to roll o� with the droplet [27]. In Figure 2.4 this
process is demonstrated.

� Hydrophilic:

Hydrophilic refers to a surface coating that attracts water and has a high surface
energy, resulting in a low water contact angle (typically 25°- 40°) [28�30]. This is also
demonstrated in Figure 2.3. Thus, when water is applied to a hydrophilic surface, thin
sheets of water move across the glass surface, which displaces dust and other organic
matter [27].

Figure 2.3: Illustration of the formation of water droplets on untreated, hydrophobic, hy-
drophilic and cleaned glass. On the right, the water contact angle is visualised. Source:
Redrawn illustration as presented by K. Midtdal and B. Jelle [27].
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Figure 2.4: Schematic illustrations of the self-cleaning processes on a hydrophilic surface and
a hydrophobic surface, as described by K. Midtdal and B. Jelle [27] and also S. Nishimoto
and B. Bhushan [30].

There are also other dry-cleaning methods such as Electrostatic Discharge Screens (EDS),
which consist of parallel rows of transparent electrodes, embedded within a transparent di-
electric �lm [6]. When a phased voltage is applied, the electrodes are activated and dust
particles located on the �lm, are then electrostatically charged and removed by a wave,
formed by an applied electric �eld [6]. This method of using EDS was tested by A. Sayyah
et al. [31] in a laboratorial set-up on a dirty module, where they con�rmed a 90% restora-
tion of the short-circuit current. However, EDS is still in development and has not been
commercialised at this point in time [31].

Instead of relying on chemical coatings to enhance the self-cleaning ability of PV module
surfaces, technological advances have been made in an attempt to create a self-cleaning
glass that does not require any chemical coating. Researchers and engineers attempting to
create nano-structured glass packaging for PV modules, attempt to imitate the same super-
hydrophobic e�ects of a lotus plant, as illustrated in Figure 2.5, which e�ectively allows the
formation of water beads and reduce the ability of dust to settle [32]. Such a nano-structuring
process is thoroughly described by L.K. Verma et al. [32].

Research completed by J. Son et al. [33], involved the development and testing of a nano-
patterned, super-hydrophilic glass-surface. After 12 weeks of outdoor exposure, this non-
coated super-hydrophilic glass with anti-re�ective properties, proved a solar cell e�ciency
drop of only 1.39 %, whereas a bare glass surface and a super-hydrophobic coated glass had
a solar cell e�ciency drop of 7.79 % and 2.62 %, respectively. Such nano-patterned technolo-
gies, which provide PV module glass with the ability of self-cleaning, instead of having to
physically apply a chemical treatment, are de�nitely a viable option for future commercial
implementation.

Autonomous robots are also being deployed at various large PV facilities. The focus of
these robotic systems is primarily a dry-cleaning approach, such as the solutions provided
by Ecoppia's E4-robot [35] and the SolarBrush [36], which e�ectively makes use of brushes
to eliminate dust deposits. Although such robotic systems might be proven viable, it is still
a highly site-speci�c solution, as mentioned by A. Dowsari [4], which is dependant on various
operating and maintenance factors.
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Figure 2.5: Illustration of the super-hydrophobic (water repellent ) properties of a lotus leaf,
which cause water droplets to remain in a spherical form. Source: As provided by [34].

2.2.4 Field generated data of anti-soiling coatings on di�erent PV

system topologies

Interested in the e�ect of a self cleaning coating, C. Cañete et al. [37] exposed and evaluated
six pc-Si modules, for one year, to the outdoor conditions of Málaga, Spain. Situated next to
the Mediterranean sea, this area has a high humidity factor. All six modules were tilted at
21° and three of the modules were covered with an anti-soiling coating. To evaluate the e�ect
of the coating, irradiance, weather conditions and PV-module backplate temperatures, were
all acquired at a speci�c log-interval, together with the IV-curve measurements. With the
highest losses observed during the dry, hot season, it was concluded that the coated modules
produced an averaged energy loss, due to soiling, of 2.7 % and the uncoated modules indicated
an energy loss of 3.6 %.

Another comparative study was conducted by Cañete et al. [38], also in Málaga Spain, where
the in�uence of soiling losses were compared at di�erent tilt angles for three coated and three
non-coated pc-Si modules. Reference modules of each type (coated and non-coated) are also
employed. The analysis was conducted over two periods of time, where the modules were
tilted at 21° during Nov. 2010 - October 2011. For the second period, consisting of Feb.
2012 to Jan. 2013, the tilt angle was adjusted to 40°. Results indicated that the coated
modules outperformed the uncoated modules for both periods. The �rst period proved a
di�erence of 0.4 % average daily yield for the 21° tilt angle, in favour of the coated modules.
For the second period, with the tilt angle at 40°, a more signi�cant 2 % daily average gain
was achieved. The research proved that the higher inclination angle reduced the rate of dust
accumulation, which was further improved by the use of a coating. This also con�rms the
conclusions about the e�ects of tilt angle, that were made by J. Cano [17], mentioned in
Section 2.2.2.

A hybrid self-cleaning coating for PV modules was evaluated by J. Hirose et al. [39]. PV
module surface losses, due to dust accumulation, were analysed during Dec 2008 to Aug
2009, for modules exposed to the environments of Málaga in Spain (eight months), as well
as the islands of Kawasaki (one year) and Miyako (�ve months), both in Japan. IV curves
were extracted every 10 minutes and corrected to standard conditions and data was used
only for clear sky days where irradiance was greater than 800 W/m2 and the wind speed was
less than 2 m/s. A performance ratio (PR) was de�ned as:

PR =
Ereal

Eideal

=
daily energy produced

theoretical expected daily energy
(2.1)
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The exposure test for Spain, revealed higher transmittance losses during the rainless summer
months for the uncoated modules than for the coated modules. The uncoated modules
revealed an approximate 15 % irradiance loss due to soiling, whereas the two coated modules
showed irradiance losses close to 13 %. The coated modules also produced roughly 3 % more
energy than the uncoated modules. In Kawasaki, a 7 % di�erence, in favour of the coated
modules, was noticed for the maximum power delivered by the uncoated and coated modules.
Finally, no de�nitive conclusion could be drawn for the island of Miyako, due to continuous
rain and wind.

In the dry subtropical desert climate of Qatar, Diego Martinez-Plaza et al. [23] studied the
impact of anti-soiling coatings, di�erent cleaning frequencies and the e�ect of single-and-
double-axis-tracking topologies, on the performance of multi-crystalline (mc-Si) PV modules.
After implementing weekly, bimonthly and biannual cleaning routines, it was concluded that
the daily fall in their own de�ned PR ranged between 0.26 % to 0.69 %. With PV modules
cleaned once a week, the PR was relatively well maintained over the entire period of testing.
Modules that were left inde�nitely, indicated a daily performance decrease of 1 %/day.
Overall, in terms of the hydrophobic resin and anti-static anti-soiling coatings , no signi�cant
PR improvements were observed beyond that of the normal uncoated modules. The system
topologies that were studied, indicated that the single-axis-tracking (SAT) system produced
10.4 % more energy than the the 22° �xed PV modules. However, the researchers found that
the SAT system (orientated to follow the Azimuth angle) produced less energy during the
winter months when the elevation angle of the sun was lower. The authors attribute this
occurrence of less power production, due to the cosine error factor that is worse for horisontal
modules than for the tilted modules. The double-axis-tracking system outperformed the SAT
system and �xed topologies, with results quanti�ed after one year of power production as
51.4 % more than the �xed modules and 37.2 % more than the SAT system.

Solar-tracking was also a point of interest for M. Garcia et al. [40], who studied the e�ects of
soiling on both horisontally �xed and single-axis-tracking systems based in Navarra, Spain.
Irradiance was measured with two horisontal pyranometers and reference modules. The �eld
measurements of energy losses, were compiled for a period of 15 months. The research re-
sulted in quantifying optical energy losses as a combination of soiling/dirt and losses due
to angle of incidence (AOI). Annual optical energy losses were determined as 3.8 % for the
tracking surfaces, of which 1 % was attributed to AOI losses and the remaining 2.8 % to
soiling. For the �xed horisontal modules, optical losses accounted for a 11.9 % loss, with 6.9
% due to soiling and 5 % as a result of AOI. Rainfall of 4-5 mm was noted to e�ectively clean
the modules, but rainfall was found to be less e�ective on the horisontally �xed PV modules.

Bing Guo et al. [41] also set out to quantitatively relate PV module performance degradation
to dust concentration. However, they went one step further and also correlated dust deposi-
tion with meteorological e�ects (wind speed and direction, relative humidity, temperature,
etc.), continuously recorded at one minute intervals. The analysis was performed on three
arrays, consisting of eight 220 W pc-Si modules, �xed at a 22° tilt angle. Three di�erent
cleaning routines, consisting of a weekly, bimonthly and half-year (six months) period, were
performed on the three di�erent arrays. A Cleanness Index (CI) was used to quantify soiling
levels and was de�ned as, the ratio between the PR of a module and as compared to a set
of clean reference modules. The PR is de�ned by equation (2.2) as:
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PR =

∑n
i=1

PDC_i

(1 + δ(Tcell_i − TSTC))∑n
i=1 PSTC

GPOA_i

GSTC

(2.2)

Where, in (2.2), the maximum power point [W] of the array in the ith minute of the day
is represented by PDC_i. PSTC and GSTC is the rated maximum power point of the array
and the irradiance as de�ned at STC (Standard Testing Conditions), respectively. The
measured plane of array (POA) irradiance [kW/m2] is represented by GPOA_i. Rated cell
temperature [C◦] and actual cell temperatures of the array are represented by TSTC and
Tcell_i, respectively. Finally, δ is the power temperature coe�cient [%/C

◦] of the array.

Thus, all PV module outputs are temperature and irradiance corrected. The average CI of
PV modules cleaned every second month, was found to decrease, due to soiling alone, by
10 % - 20 % per month. Further analysis also proved that lower wind speeds, related to
higher daily PV modules losses, as a result of soiling. High wind speeds on the other hand
indicated the partial recovery of PV module performance. Relative humidity also proved to
impact dust accumulation, with a higher relative humidity associated with a higher level of
dust deposition, which results in a reduction in the CI. In terms of rainfall it is also seen
that the CI of the dirty modules recovers completely. Finally, the team found that deposited
dust acted like a thermal barrier, with module temperatures of heavily soiled modules less
than that of clean modules.

Contrary to the temperature observations made by B. Guo et al., A. Rao et al. [42] found
that dust deposition on panels increased the cell operating temperatures by 1 % - 2 %. The
research team analysed the I-V characteristics of two polycrystalline PV modules, located
in Bangalore, India (Latitude 12.97 °, Longitude 77.56°), which were mounted at 13° on a
roof at the Indian Institute of Science. Two identical modules were compared, with one
PV module cleaned and the other one left to accumulate dust. The researchers found that
dust deposition lead to a 5 % - 6 % drop in power output. Open circuit voltage (VOC) was
found not to be altered too much by dust accumulation, whereas the e�ect of dust was more
prominent when a short circuit current ISC drop of approximately 5 % - 6 % was observed.

2.3 Movement of the Sun

2.3.1 Position of the Sun relative to the Earth

Conceptualising the movement of the sun is the fundamental building block when considering
the design of any PV system. The characteristics of the earth's orbit should be well under-
stood, if the reader is to follow discussions with regards to the design of the Photovoltaic
Research Facility (PVRF) and the Single Axis Tracking (SAT) system. Note that, for all
foregoing expressions, the angles provided are measured in degrees, unless stated otherwise.

Accurately specifying the position of the sun, requires three coordinates. These are the solar
altitude (β) and azimuth (ΦS) angles, as well as the distance between the earth and the
sun [43, p.29]. As seen in Figure 2.6, the earth's orbit is elliptical. It should be mentioned
that, due to what is known as Milankovitch Oscillations, this is not always the case, as the
earth's orbital shape oscillates between circular and elliptical about every 100,000 years [44,
pp.192-193]. However, solar applications mostly rely on the azimuth and altitude angles and
the characteristics of earth's orbit and the distance from the sun are assumed to be constant.
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Figure 2.6: Tilt angle of the Earth and ecliptic movement around the Sun. Source: Redrawn
illustration as presented by G. Masters [44, p.192]

Another angle of importance is the declination angle δ [deg], which is the angle formed
between the centre of the sun and the centre of the earth, as seen in Figure 2.7 [44, p.193].
E�ectively, δ represents the deviation of the sun from directly above the equator [43, p.27].
The earth's equator is tilted 23.45° relative to the plane of the orbit and equation (2.3)
represents δ at any given day (n) of the year [44, p.194].

δ = 23.45

[
360

365
(n− 81)

]
(2.3)

Figure 2.7: Declination angle as a result of the Earth and Sun movement. Source: Redrawn
illustration as presented by G. Masters [44, p.193].

As displayed in Figure 2.8, β is the angular measure from the earth's local horizon towards
the geometric center of the sun [45]. In the southern hemisphere, the ΦS angle represents
the sun's relative position east or west of north. Following convention, the azimuth angle is
positive in the morning, when ΦS is east of north, negative in the afternoon, when the sun
is west of north and 0° at solar noon [44, p.196-197]. Solar noon refers to the time of day
at which the sun's rays align perpendicular to a given line of longitude [45]. The longitude
angle refers to the angular distance to the west or east of the Prime Meridian (situated at
0°). The Latitude angle refers to the angular distance north or south of the Equator. Thus,
for all locations along any mutual line of longitude, solar noon occurs at the same time.
Regions positioned at latitudes above the Tropic of Cancer, experience solar noon due south

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW AND BACKGROUND STUDY 17

Figure 2.8: Illustration of the position of the Sun, determined by altitude angle β and
azimuth angle ΦS. Source: Redrawn illustration as presented by G. Masters [44, p.197]

.

of the observer and north of the observer, for regions below the Tropic of Capricorn. Tropical
regions will observe solar noon as either due North, South or directly overhead [44, p.195].

The β and Φs angles are determined by equations 2.4 and 2.5 respectively [44, p.197]:

β = sin−1(cosL cos δ cosH + sinL sinδ) (2.4)

ΦS = sin−1
(

cos δ sinH

cos β

)
(2.5)

It should be noted that ΦS can have a magnitude greater than 90°, should the sun's azimuth
be more than 90° away from North [44, p198]. Therefore, equation (2.6) [44, p.198] is used
to con�rm the magnitude of ΦS:

if cosH ≥ tan δ

tanL
then |ΦS| ≤ 90◦ else |ΦS| > 90◦ (2.6)

Where the variables in 2.4 - 2.6 are de�ned as:

Where the variables in (5.1) - (5.9) are de�ned as:

L = Latitude [deg]
H = Hour angle [deg]
δ = Declination angle [deg]

The hour angle represented by H [deg], which de�ned by equation (2.7), is an angular
representation of time, with a positive and negative value for hours before and after solar
noon, respectively [44, p. 199]. With equation (2.8), the Hours Before Solar Noon [hours]
are determined.
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H =

(
15◦

Hour

)
× (Hours Before Solar Noon) (2.7)

Hours Before Solar Noon = 12 : 00− ST (2.8)

For the conversion between Solar Time (ST) [min] and Clock/Civil Time (CT) [min] the
following formulas are essential, as provided by [44, p.207] :

ST = CT +
4[min]

1◦
(Local T ime Meridian− Local Longitude)◦ + EOT (2.9)

EOT = 9.87 sin 2B − 7.53 cosB − 1.5 sinB (2.10)

B =
360

364
(n− 81) (2.11)

Where the variable EOT refers to the Equation of Time [min] and n refers to the day
number. Equation (2.10) is the longitude correction between civilian clock time and solar
time. Variable B [deg], as represented by equation (2.11), is the second correction that ac-
counts for the varying length of solar days, due to the earth's elliptical orbit [44, pp.206,207].

It should be noted that, more sophisticated solar position algorithms are available with
higher levels of accuracy, which make use of Judian calendar days and etc. such as presented
by I. Reda and A. Andreas [46]. Although sun tracking accuracy should always be a priority
in any PV system, the errors introduced by the above mentioned formulas, are negligible
for �at plated modules. It is not within the scope of this document to compare tracking
algorithms, but only to investigate the in�uence of dust accumulation on PV modules. This
concludes that the position of the sun can be determined at any time of the day, by making
use of equations 2.3 - 2.11 and that any introduced uncertainty/inaccuracy is negligible.
The accuracy of these equations is veri�ed in Chapter 5.2. Further, all other relevant the-
ory concerning earth and sun movement, module placement, shading analysis and tracking
algorithms will be provided in the appropriate sections.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3

Photovoltaic research facility

3.1 Overview

This chapter describes the location, design, construction and basic operation of the research
facility, which provides the necessary infrastructure for the e�ective monitoring of in �eld
PV modules.

3.2 Research facility objective

As previously mentioned in Chapter 1, the research presented by this thesis, is executed by
means of a standalone experimental photovoltaic research facility . Although, the option
does exist for monitoring �eld exposed PV modules on large commercial PV systems, which
this research is intended for, there are several reasons for rather performing the analysis on
a standalone PV system.

The �rst and foremost advantage is the ability to exercise absolute control over the PV
modules. The PVRF allows modules to be monitored individually, without the risk of inter-
ference on and from a large commercial PV system set-up. In large PV systems the modules
are connected in arrays and strings, which could lead to potential mismatch losses, since the
current or voltage mismatch (drop) of one module a�ects all the other PV modules in the
array [18]. Large PV systems also handicap experimental maneuverability. For example,
instead of having to execute an experiment on an entire string or array, as would be the case
for a large PV system, the PVRF allows individual experiments to be executed on individual
PV modules. Monitoring the e�ect of externalities on PV modules connected in a string,
also increases uncertainty and allows less accurate quanti�cation of the results. A study con-
ducted by A. Brooks [47] et al. con�rmed that IV measurements from individual modules,
resulted in a lower measurement uncertainty of 0.4 %, as opposed to a 3 % uncertainty for
a comparison of string connected PV modules.

The standalone topology also allows PV modules to be connected to the same load, with
the same power requirements, which once again reduces further uncertainty. Practically
speaking, extracting individual PV module I-V curve measurements and back-plate temper-
atures, as required by the IEC60891 standard [48], is more easily executed for a set-up where
modules are isolated from one another.

19
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3.3 Location of the research station.

The PVRF is situated within the fences of Scatec Solar's 75 MW commercial PV power
plant, in the Northern Cape, on the farm known as Kalkbult. This Kalkbult site is located
at 30.161◦ (latitude) South and 24.132◦ (longitude) east. The exact site location is displayed
in Figure 3.1.

Figure 3.1: Kalkbult location as indicated on DNI map of South Africa [49].

Kalkbult is 60 km north of the town of De Aar, in the upper Karoo biome. As the recorded
weather archives indicate [50], this location, has a climate of extremes, with daily summer
(December to February) temperatures averaging 32 � and maximum temperatures of 38 �
and higher occasionally experienced. Daily winter (June to August) averages of 16 � can
be expected, with average night time temperatures recorded at 2 �, with the occasional
sub-zero temperature. The average annual precipitation is 300 mm , with most rainfall
occurring mainly during the summer months and autumn (March to April). Due to the
�at topology and vast open spaces, wind has an almost constant presence during the day
time. Average wind speeds are approximately 4 m/s during the winter months and average
wind speeds of 4.5 m/s to 5.5 m/s are to be expected during the summer months (Dec. to
Feb.). Humidity levels are also fairly low, ranging from 36 % to 55 %, with the highest
levels of humidity during Autumn and Winter and the lowest levels during September to
December. The region receives a fair amount of sunshine, with a recorded annual Direct
Normal Irradiance (DNI) of approximately 2600 kWh/m2 [49] . As described by the ecologist
Simon Bundy, the surrounding area is generally a �at region with low hills, which consists of
an underlying geology of sandstones and mud-stone, with higher elevated hills being doleritic
in composition. In this Northern Cape region, calcium carbonate (also known as kalk) beds
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are common, especially around the Kalkbult area. The soils are also primarily duplex,
with a rocky sub surface horizon and a sandy upper horizon. For this region of the Karoo,
vegetation also varies form a graminoid (grassland) habitat to a forb or shrub based habitat.
The nature and structure of the habitat on site, is determined by factors such as soil depth,
rainfall, grazing and even �re.

As shown in Figure 3.2 the PVRF is located within the Kalkbult 75 MW solar park. Next
to this park, approximately 250 m to the west, is a gravel road as well as an active railway
track. To the east and to the north, the PVRF is surrounded by the rest of the 75 MW
solar park. The commercial PV modules to the east, are approximately 30 m away and the
panels north, are about 100 m away. A substation is also located 40 m west of the site.
The surrounding horison is not completely �at, with small hills visible in the distance, which
momentarily delay irradiance from reaching the PV modules during sunrise.

Figure 3.2: Aerial view of the surrounding environment of the research facility at Kalkbult.
Source : Courtesy of Kurt Krog.

3.4 Design and construction of the research facility

3.4.1 General layout

The layout of the experimental site is displayed in Figure 3.3. The PVRF consists of the
following primary features:

� 1 x Row of stationary Cadmium Telluride (Cd-Te) Thin-Film PV modules

� 2 x Rows of stationary Polycrystalline Silicon (pc-Si) PV modules

� 2 x Single-axis-trackers

� 1 x Pyranometer for irradiance measurements

� 1 x Weather station

� 1 x PV powered battery bank

� 1 x WiFi communication tower

� 24 x PV measurement stations
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3.4.2 Photovoltaic modules

The research facility consists of both thin-�lm and pc-Si modules. Eight First-Solar man-
ufactured Cd-Te Thin-Film modules are used, of which four are FS4100 models and the
other four are FS4100A models [51]. The FS4100A has an anti-re�ective coating, whereas
the FS4100 does not. Although the thin-�lm modules are part of the PVRF, the analysis
of these modules is not within the scope of this thesis. A total of 20 pc-Si modules are
used of which each is a Renesola VirtusII JC255M-24/Bb module [52]. From observation,
polycrystalline modules have thus far been the primary choice for the commercial PV sector
of South Africa. Finally, four 300 W Renesola VirtusII JC300M-24/Abh pc-Si modules [53]
are used to power the battery bank of the facility. These 300 W modules are however purely
for charging the batteries. Tables 3.1 and 3.2 provide further details about the PV module
characteristics.

Table 3.1: Electrical characteristics of the pc-Si JC255M modules as rated at STC conditions
(AM 1.5, Irradiance 1000W/m2, Cell temp. 25�).

PV module PMPP [W] VOC [V] ISC [A] VMPP [V] IMPP [A]

JC255M-24/Bb 255 (±5 W) 37.5 8.86 30.4 8.39

Table 3.2: Temperature coe�cients of the pc-Si JC255M modules.

PV module PMPP [%/C°] VOC [%/C°] ISC [%/C°]

pc-Si JC255M-24/Bb -0.4 -0.3 0.04

3.4.3 Design and implementation of stationary PV module rows

The PVRF consists of three north facing rows, for dust analysis of modules at �xed tilt
angles. The stationary row furthest to the north, labelled as 'Thin Film Modules row 3' in
Figure 3.3, is dedicated to the Cd-Te modules. However, as mentioned, the analysis of these
PV modules do not fall within the scope of this thesis. The two remaining stationary rows,
are dedicated for the pc-Si modules. The reason for selecting 16 of the pc-Si modules for the
stationary topology, is due to the set research objectives of this thesis to be achieved.

The PV modules mounted on these structures are positioned at a tilt angle optimal for
maximum energy yield. This tilt angle is determined with the theory presented by Figure
3.4. From this illustration, it is evident that the tilt angle determines the collective exposure
of the module to irradiance, since the radiation component collected is dependant on the
cosine of the angle (λ◦) between the normal beam and the incident beam [43, p.35]. The
exposed area of a module is determined by equation 3.1, with variable x as the PV module
length, λ◦ as the angle between the normal and incident irradiance components and λ◦ as
the module's tilt angle [43]:

PV Module Exposed Area = x cos ε [m2] (3.1)
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Figure 3.3: Layout of the PVRF (not to scale).
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Figure 3.4: Illustration of how PV module placement determines the exposed module surface
area. Source : Image redrawn as illustrated by R. Messenger and J. Ventre [43].

For optimal performance on any given day, a PV module should be mounted according to
the relationship of equation 3.2 [44, p.196], which determines the module's tilt angle ε as
indicated in Figure 3.4:

ε = 90◦ − βN (3.2)

Where, in (3.2) βN is determined by equation (3.3) [44, p.195]:

βN = 90◦ − L+ δ (3.3)

βN represents the sun's altitude angle at solar noon, which is also the ideal tilt angle of a
PV module, on that particular day of the year. However, for large (few hundred or more
modules) PV systems it is impractical to adjust panels daily. Thus, for seasonal or yearly
PV module tilt angle optimisation, a δ average is chosen. A balance is found between the
ideal module tilt angle for the summer and winter months in Kalkbult, by utilising the ideal
tilt angle as on the 21st of March (day = 81) and September (day = 264). On these two
days, the value of the solar declination angle δ is calculated as:

δ = 23.45◦ sin

[
360

365
(n− 81)

]
δ = 23.45◦ sin

[
360

365
(81− 81)

]
= 0◦

δ = 23.45◦ sin

[
360

365
(264− 81)

]
' 0◦

Therefore, from equation (3.3), the altitude angle of the sun at solar noon is equal to:

βN = 90◦ − L+ δ = 90◦ − 30.161◦ + 0◦ = 59.839◦

The optimal tilt angle for the PVRF is determined with 3.2 as:
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Tilt = ε◦ = 90◦ − βN = 30.161◦

The three stationary rows and the PV modules of the battery bank are all tilted at an incline
of ' 30◦ as shown in Figure 3.5. This angle is also in agreement with the tilt angle of the
75 MW commercial PV power plant.

Figure 3.5: Image of PVRF and the three stationary north facing PV module rows, with
thin-�lm modules in front and the polycrystalline modules behind.

It is within the aim of this research to simulate a real-world scenario, which is representative
of what could be expected in a commercial PV system. Therefore, a decision is made
to position the stationary module rows at a distance of 4 m from one another. This is
approximately the same distance as that of the 75 MW PV power plant. At this distance,
on the 21st of June, when the sunrise occurs at the latest possible morning hour, there
will no longer be a risk of inter-row shading from approximately 08:00 AM. When sunset
takes place, the modules will cast an inter-row shadow onto one another from about 16:45
PM. These clock times are calculated by making use of equation (3.4) to (3.12) in the same
sequential order in which presented.

δ = 23.45◦
[

360

365
(n− 81)

]
(3.4)

B =
360

364
(n− 81) (3.5)

E = 9.87sin2B − 7.53cosB − 1.5sinB (3.6)

ST [min] = CT [min] +
4[min]

1◦
(Local T ime Meridian− Local longitude)◦ + E[min] (3.7)

H =

(
15◦

1[hour]

)
(Hours before solar noon) (3.8)

β = sin−1(cosL cos δ cosH + sinL sin δ) (3.9)
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ΦS = sin−1
(

cos δ sinH

cos β

)
(3.10)

Ls =
y

tan(β)
(3.11)

d = LS cos ΦS (3.12)

From the equations listed above, the following values are known:

n = 173 (21 June)
Local T ime Meridian = −30◦

Local longitude = −24.132◦

y = (1.64+0.1) sin(30.0◦) = 0.87 [m], with y as the array height, calculated with the module
length as 1.64 m and bird spike length of 0.1 m

The convention for the equations presented in this thesis, are that latitude angles in the
Southern hemisphere are negative, and Longitude angles East of the Prime Meridian are
negative. 1

Triangular frames are designed and constructed from galvanised steel, so that the PVmodules
can be �rmly mounted. These frames have a 30◦ tilt angle as illustrated in Figure 3.6 and
are vertically adjustable to eliminate any horizontal o�set, due to an uneven ground surface.
Placed 2 m apart from one another, these frames are supported by a square concrete block at
each foot of the frame, to provide a steady foundation. To ensure further stability, especially
during harsh wind conditions, all of the frames are anchored to the ground with 3 mm
steel cable (vineyard cable), fastened to a 1 m anchor pole, anchored in the ground. Two
horizontal aluminium frames provide the necessary framework on which the PV modules are
fastened to with clamps.

Figure 3.6: PV module layout and structure details of a stationary row.

1The internationally accepted norm is that latitudes north of the Equator and longitudes east of the
Prime Meridian are regarded as positive. However, for this thesis, longitudes east of the prime meridian are
regarded as negative.
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3.4.3.1 Single Axis Tracker structural layout

The PVRF also consists of two single axis trackers, which provide an experimental platform
for analysing the e�ects of dust deposition on tracking modules. Tracking the sun from east
to west, the same 255 W Renesola PV modules [52] are used, as for the stationary rows.
The trackers are also placed at a distance of 4 m south of the battery bank's stationary
modules, as illustrated by Figure 3.7. The distance between the tracker axes from east to
west is 6 m. This distance is selected to allow for more future experimental possibilities,
such as low sun altitude experiments and etc. The SAT software design allows a user de�ned
set-up to be made, which amongst other options, de�nes the theoretical distance between
the PV modules. Thus, with the software set-up, the SAT system can be manipulated into
thinking the inter-axis distance is only 4 m apart. However, for this research, the distance
is maintained at 6 m. The primary goal, as mentioned, is to investigate the e�ects of
dust soiling on tracker modules. By keeping the distance at 6 m, the hypothesis that SAT
modules have a reduced level of dust deposition, compared to stationary modules can be
tested for an exaggerated case, since the tracking modules are able to adopt a larger tilt
angle, because of the 6 m inter-axis distance. If the results are in favour of the tracking
system, then a proceeding experiment can determine the dust deposition at a shorter inter-
module distance. However, should the trackers prove to be more prone to dust-accumulation,
even for this exaggerated case where modules are allowed a higher degree of tilt, then a
de�nitive conclusion can be made regarding such a result. Thus, no further testing would
be required regarding this hypothesis/theory. All mechanical, electronic and software design
and functionality is further discussed in detail in chapter 5.

Figure 3.7: Illustrative description of the SAT layout.

3.4.4 Battery storage

A battery bank is installed to allow the PVRF to operate at full capacity, 24 hours a day.
The battery bank primarily consists of:

� 4 x VirtusII Polycrystalline 300W modules [53]

� 4 x 12V, 120AH AGM+Gel deep cycle valve-regulated lead-acid (VRLA) batteries [54]
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� 1 x Victron Smart Solar Maximum Power Point (MPPT) Charge Controller [55]

Although con�gured to operate at 24 V, the battery array can also be set up to operate at 12
V, since all the devices are designed to be compatible with either a 12V or 24 V power supply.
The battery bank is capable of supplying the PVRF with power for approximately 48 hours,
without any received irradiance (0 W/m2). The four 300 W pc-Si modules are connected
in a parallel combination of two pairs of series connected modules. These modules are then
connected to the MPPT charge controller. The charge controller is set-up to charge the 24
V battery topology at a �oat(resting) value of 27.6 V and an absorption (�nal 20% charge)
setting of 28.8 V [55]. This voltage is of course translated to the battery connected devices
as well, but all on-site devices are capable of receiving a 30 V or higher input. Therefore,
this is not a problem.

Figure 3.8: Standalone battery bank and wi�-communications box.

3.4.5 Communication

E�ectively, the role of communication within the research facility is to allow remote system
monitoring, upload data to an online database, as well provide a means for local inter-device
communication.

Inter-device communication

A Raspberry-Pi (RPi) model B+ serves as the master device of the PVRF, responsible for
handling both external and internal communications. All of the slave devices communicate
through an RS-485 interface using the MODBUS protocol. The research facility's baud-rate
is established at 9600 bits per second (b.p.s.). Slave device communication is performed
by the master-device in either unicast (single slave communication) mode, or in broadcast
mode, where data is sent to multiple slave devices simultaneously. For a more in depth
description of the MODBUS protocol, please refer to any of the various online MODBUS
user guides [56]. The RS-485 interface is chosen due to an e�ective communication distance
of 1.2 km [57]. A Mylar screened cable is used to establish the physical connection between
devices and is connected in a daisy chain con�guration, since an open-ended star-network,
with multiple end points, is not recommended as re�ections within the cable may result in
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data corruption [57]. Details concerning the online database data storage and acquisition
are discussed in Chapter 7.4.

On-line database and remote system monitoring

The hardware set-up that enables the e�ective cloud storage of the data collected on site,
consists of a WiFi connection, established by a power-over-ethernet antenna, a WiFi router
and an internet connection, provided by a local internet-service-provider. All of the data
measured on-site is acquired by the master device and is then uploaded to an online database,
where data is readily available for user interpretation. A remote system monitoring interface
was developed and commands can be sent to the ActiveLoads, MasterController (MC) or
the SATs by means of this interface. More details are provided in Chapter 7.4.

3.4.6 Meteorology instrumentation

The set-up of the instrumentation responsible for weather and irradiance measurements, has
been done in accordance with the IEC61724 standard, which provides general guidelines
for the procedures of electrical performance monitoring and analysis of PV systems. The
calibration dates of the weather station and pyranometer are valid for the entire span of the
research period presented by this thesis.

Weather station and rain gauge

Meteorological data is acquired with a Met-Station-One-485 (MSO-485) Weather Sensor
(WS), manufactured by Met One Instruments Inc. [58], which is in accordance with the
IEC61724 standards [59]. Rain fall is measured with a 372-series precipitation gauge (rain
gauge) [60], also from Met One Instruments, which is essentially a tipping bucket, that tips
for every 0.5 mm rainfall received. This WS provides the following data output via an RS-485
(Checksum data validation) serial communication:

Table 3.3: MSO weather sensor outputs

Measurement Units Measurement Units

Wind speed m/s Ambient temperature C°
Wind direction 0◦ − 360◦ Humidity 0%-100%
Barometric pressure 500− 1100 mbar Rainfall mm

The WS is orientated towards true North and is mounted at a height of 3 m. At this
distance and height, in�uence on wind measurements from the PVRF's structures, is kept at
a minimum. This location also complies with the IEC61724 standard, which requests that
the WS is placed at a height and location representative of the array conditions. Wind speed
is measured with a three cup anemometer and direction is determined with a lightweight
vane tail.

Irradiance

Plane of array irradiance (GPOA) [W/m2] is measured with a Kipp&Zonen SMP10 pyra-
nometer [61]. The pyranometer is placed at the same 30◦ tilt angle as the �xed PV modules,
as prescribed by the IEC61724 standard [59]. Data is provided by means of an RS-485 MOD-
BUS serial output interface. Further technical detail with reference to the communication
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and data collection process of the pyranometer, is provided in Chapter 4.6.4. Figure 3.9
shows how the instrument is mounted on the back of the frame of the battery bank, at a 30◦

tilt angle.

Figure 3.9: Pyranometer mounted at a 30◦ tilt angle.

3.5 PV measurement stations

3.5.1 Description

The research facility consists of individual stations, referred to as Photovoltaic Measurement
Stations (PVMS). Each station operates individually and consists of a PV module, an Ac-
tiveLoad, a back-plate temperature sensor and a dumping resistor. The RPi, which serves
as the master device of the entire PVRF, communicates with and collects data from each
PVMS.

ActiveLoad

An intelligent device is employed to allow the extraction of Current-and-Voltage (I-V) mea-
surements from a PV module. The device is known as an ActiveLoad (AL) and is developed
by a previous Stellenbosch University, Master's degree student, Andreas T. Ndapuka [62] 2.
The AL also has addition an on-board SD-card storage functionality, to ensure the safe cap-
ture of collected data. The AL has two available modes of operation. Firstly, a Maximum
Power Point (MPP) mode, which continuously extracts the available power from a PV mod-
ule, whereas the I-V mode simply obtains the module's I-V curve measurements, recorded
at speci�c time intervals. The AL does however allow for a combination of the two modes,
so that the module delivers power and the I-V curve can be spontaneously recorded by the
AL itself. Each AL is carefully calibrated to allow for accurate voltage and current measure-
ments by the Analogue-to-Digital-Converters (ADC). In terms of operation, the AL's design
is based on the principle of a DC-DC switch mode converter for power control [62, p.71].
The power delivered to the �xed dumping resistor RLOAD, can thus be varied by controlling
the duty cycle. This further allows the AL to extract an I-V curve, within two seconds,

2For more speci�cs regarding the design of the AL, refer to [62]. A second AL version was produced by
Dr J. M. Strauss.
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which ensures that irradiance and temperature measurements recorded can be regarded as
instantaneous. This eliminates any uncertainty with regards to temperature and irradiance
changes during the process of I-V curve extraction. The AL design parameters are displayed
in Table 3.4. With a carefully conducted calibration process, it is determined with certainty
that the AL device has a maximum measurement uncertainty of 0.5 %.

Table 3.4: ActiveLoad design parameters

Parameter Value
Maximum input voltage: 100 V or 50 V
Maximum input current: 50 A/100 V or 10 A/50 V
Switching frequency: 40 kHz

Figure 3.10: Active Load with main PCB board features.

The AL has the capability to operate in three di�erent con�gurations:

� Con�guration 1: Single PV module connection. Voltage and current measurements
are derived for only one connected PV module.

� Con�guration 2: Series connection of two PV modules. Measurement of two separate
voltages and a common current.

� Con�guration 3: Parallel connection of two PV modules. Measurement of two separate
currents and a common voltage.

Con�guration one is utilised for this thesis. The I-V curve is derived by the AL, by starting
with an open-circuit (duty cycle D = 0 %) condition and incrementing the duty cycle until
a short-circuit condition (D = 100 %) is reached. At each incremental duty cycle change,
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the accompanying voltage and current is measured. A total of 20 discrete data samples
are recorded for each I-V curve measurement, which is then saved onto the local SD-card.
This data is also retrieved by the master device (RPi) which uploads the data to the online
database. The sampling interval of the I-V-measurements can be varied from 1 min to
60 min. However, all of the ALs are con�gured to perform an I-V measurement every 10
minutes, as speci�ed by the IEC61724 [59] standard. It is important to note that all I-V
curve measurements are performed at the same instant by means of an on-board real-time-
clock (RTC) on every AL, which keeps all of the PVMS synchronised. These clocks are also
externally synchronised on a regular (every month) basis, by executing a software command
on the RPi. Further, each I-V curve logged by the SD-card is provided a time stamp,
to ensure that data comparisons are made for the same time instance. The AL also has
a dedicated RS-485 (MODBUS) port for communication with the master-device as shown
in Figure 3.10 and can communicate over a wide range of baud-rates, ranging from 2400 to
115200 b.p.s. The ALs are assigned and con�gured as presented by Table 3.5. As mentioned,
the thin-�lm modules are not analysed by this thesis.

Table 3.5: ActiveLoad assignments.

ActiveLoads PV modules section Con�guration
#1− 8 pc-Si Stationary row 1 Con�g. mode 1
#9− 16 pc-Si Stationary row 2 Con�g. mode 1
#17− 20 Cd-Te Stationary row 3 Con�g. mode 3
#21− 24 pc-Si Tracker 1&2 Con�g. mode 1

Dumping resistor

When the AL is set to operate in the MPP mode, or to extracts an I-V curve from a
module, the power is discharged into a dumping resistor. A TE750B01J high power wire
wound resistor is connected to each AL, which is a 1 Ω, 750 W resistor manufactured by TE
connectivity [63]. Since each AL has a dedicated �xed resistor, all PV modules are exposed
to the same load and a degree of uniformity is maintained amongst all of the PVMS, which
eliminates any unwanted uncertainty regarding I-V curve measurements.

PV module back-plate temperature sensor

As required by the IEC61724 standard, each PV module is �tted with a dedicated back-plate
temperature sensor. A small temperature sensor circuit, designed by a previous student,
Douw du Plessis, is used, which houses a high accuracy ADT7310 digital temp. sensor [64].
The temp. sensor operates as a 13-bit device, and digitizes the temperature to a 0.0625◦ reso-
lution. Temperature readings are extracted by the AL via an SPI(Serial Peripheral Interface)
connection and all temperatures are read simultaneously with the I-V curve measurement.

3.6 Construction of the PV research facility

The construction of the research facility and the installation of the electronics, is performed
over the course of several installation phases. In total, several weeks are devoted to the plan-
ning of on-site activities and the procurement of equipment, building supplies and electronic
components. This section provides a brief summary of the planning and the installations
that are performed, to successfully implement the PVRF.
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In terms of transportation, the distance from Stellenbosch to the Kalkbult site is approx-
imately 785 km. All on-site activities are performed with the proper safety clothes and
procedures, which include a hard hat, steel point shoes, re�ective vest and pre-work safety
inspections.

Phase one of construction is commenced during the week of 18-23 May, 2015. During this
phase, the goal is to establish the basic framework for the PV module and electronic in-
stallations that will follow after this phase. This includes the installation of all PV module
structures, foundations, metal enclosures, as well as underground PVC piping for the power
and communication cables. Communication is also established with the WiFi network and
the full battery bank installation is completed. Figure 3.11 illustrates some of these com-
pleted tasks.

(a) PV structure framework. (b) Stationary pc-Si modules.

(c) Battery bank and pyranometer. (d) Trackers, weather sensor and wi� tower.

Figure 3.11: Installation of the research facility .

The objective of phase two (15-17 June 2015) is the anchoring of all structures. This is
accomplished with one-meter anchor poles, steel vineyard cable and crosby clamps. In total
54 anchor poles are secured into the ground and fastened to the structure frames, as can be
seen at the bottom of Figure 3.11b.

After the frames are securely anchored, phase three is executed during 28 July-1 August
2015. All stationary modules are installed, together with the 24x wire wound dumping
resistors. Figure 3.11b illustrates the module installation.

With the necessary infrastructure installed, phase four (24-28 August 2015) is initiated.
The main focus of this phase is the installation of all electronics, which includes the 24
AL stations, the Master-Controller (MC), pyranometer and the RPi. The orange enclosure
boxes are connected with one another by means of PVC sheath, through which the power and
communication cables are connected to the devices. The back-plate temp sensors, displayed
by Fig. 3.12b are also installed and all wiring is completed in terms of communication and
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(a) AL inside an enclosure box. (b) Back-plate temperature sensor.

(c) Dump resistors. (d) Two PV Measurement Stations (PVMS).

Figure 3.12: Installation of the measurement stations.

power. The dumping resistors are displayed by Fig. 3.12c and Figures 3.12d and 3.12a give
show the set-up of the measurement stations.

Finally, the research facility is fully operational with the completion of phase 13 (30 May
- 3 June 2016). This phase includes the �nal mechanical and electronic installation of the
single-axis-tracking systems. There are of course several phases completed between phase
four and thirteen, however these phases do not focus on the construction of the research
facility, but are rather focused on operations and maintenance (O&M), PV module cleaning
routines and further system integration.

A summary of the installation items is provided in Table A.2 to illustrate all of the main
items required to complete the installation of the PVRF. For a full summary of phases one
to �fteen, please refer to Appendix A, which also includes more photographs of the PVRF,
to provide the reader with further visual insight.

3.7 Installation problems and solutions

As with any project, several unforeseen problems are encountered. After the installation of
the electronics, the RS485 lines have several communication errors. This problem is related
to grounding issues, which is solved by physically grounding the shield wire of the RS485
communication line, to the structures, which in turn are grounded via the anchor poles.
Another challenge encountered is with the ALs connected to the SAT modules. As soon as
power is received from the batteries, the ALs are subjected to what appears to be a voltage
spike, which damages the AL power supply circuitry. To eliminate the e�ect of this voltage
spike, a combination of two resistors and a TVS-diode is installed at each AL's terminal.
This solution e�ectively suppresses the voltage spike and is installed at all of the AL devices
for extra safety.

Another issue is with regards to the temperature sensors. Problems range from inconsistent
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temp sensor readings to, measurements of consistently 0 C°. The solution is to solder on
series resistors (47 ohm) onto the SPI Data-In and Data-Out lines of the temp-sensor chip.
After implementation of this solution, all temperature readings are consistent.

In terms of the I-V curve measurements, it is realised that the AL current measurements
clipped at 10 A. This is due to a faulty gain resistor on one of the ADC circuits. After
replacement of the gain resistor to enable higher current measurements, the ALs are all
recalibrated to ensure the accuracy of the I-V measurements.

The installation of the two trackers are also very challenging. The biggest challenge is to
successfully mount the square PV module frames, onto the round aluminium axis. With the
original clamps, the PV modules are not secure enough and new clamps are designed and
installed. There is also a lot of mechanical play on the SATs due to a faulty coupling design.
A new coupling is successfully implemented, so that the only play on the axis is due to the
spacing between the gears. The initial step down worm-gear con�guration ratio of 100:1 is
also found to be inadequate, since, even with �rmware adjustments to manipulate DC motor
speed, it is found that the SAT speed of rotation is still too fast at 40 r.p.m. A second
worm-gear is added, equating to a new step-down gear ratio of 5000:1, which proves very
successful with a resulting tracking speed of 0.8 r.p.m. More about the mechanical design of
the SAT is available in Chapter 5.4.5.
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Chapter 4

MasterController and weather station

data acquisition

4.1 Overview

This chapter starts with the conceptual hardware design of the MasterController (MC).
This is followed by the actual implementation of the MC and how the corresponding slave
devices are connected. Finally, the software design is presented and the details regarding
the interchangeable role of the MC to either operate as a master or slave device.

4.2 Function of the MasterController

For the research requirements that are set for this thesis, an intelligent device is required,
which collects meteorological data from on-site instruments and grants full user access to
the collected data. In essence the MC serves the role of a data logger and a control board.
In terms of the data logging functionality an accompanying data logger could have been
bought for the weather station. However, this alternative restricts the option for customised
features and does not provide maneuverability, which allows a more regulated and direct
control over the active measurement devices. This is why the MC is primarily designed.
The MC's on-board SD-card storage capability is also essential, since this allows data to be
collected, even if an internet connection is momentarily unavailable.

The MC ultimately has the function to serve interchangeably as both a slave and a master
device. As a slave device, the MC provides the RPi (master device) with acquired data
from the WS, irradiance instruments and the trackers. This data is acquired when the MC
operates as a master device. It is also the function of the MC to act as an intermediate device
and permit a user to have communication with the single axis trackers. Also, regarding the
trackers, should certain weather conditions arise such as rainfall or high wind speeds, then
the MC must inform or take control of the SAT system, so that the trackers can react
appropriately to these conditions.

In summary, the MC's design must enable the following functionality:

� Serve as a data-logger and routinely and at random, collect and process data from the
connected slave devices.

� Provide on-board storage to avoid data loss during periods with no-internet connection.

� Serve as intermediate device for communication between the SATs and a user.

36

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. MASTERCONTROLLER AND WEATHER STATION DATA

ACQUISITION 37

� Send collected and processed slave data to the RPi (master device).

� Inform the SATs of speci�c weather conditions, upon which these trackers must react.

4.3 Conceptual hardware design

4.3.1 General system overview

An illustration of the MC's conceptual hardware layout is presented Figure 4.1. As men-
tioned, the MC has two primary objectives, which are communication and data storage.
Therefore, the focus of the hardware design is to fully utilise the two USART channels
available on the microcontroller and secondly, to ensure the successful on-board storage of
collected data.

Figure 4.1: Conceptual hardware layout of the MC.

4.3.2 Microcontroller

The Microcontroller Unit (MCU) enables two-way communication, to allow the MC to op-
erate as both a slave and a master device. Another goal of the MCU is to synchronise
communication and data �ow and to process and log all data received from slave devices.
An ATmega 1284P-AU microcontroller, manufactured by Atmel, is used, which is an 8-bit
AVR RISC-based microcontroller [65]. This MCU has 128 kB of ISP(In System Program-
mer) �ash memory, 4 kB EEPROM, 16 kB SRAM and 32 general purpose I/O pins [65].
Two programmable serial USART lines are also available, which is one of the primary rea-
sons for selecting this MCU. Figure 4.1 presents the interaction of the MCU with the other
components. Communication with the SD-card, the RTC and the MCU is enabled by an
SPI(Serial Peripheral Interface) communication line.

A 5V input, which is provided by the step-down power supply circuitry, supplies the MCU
with power. An external clock source of 20 MHz is established by an HC49-4H quarts crystal
[66], connected to pins XTAL1 and XTAL2 and two 22 pF capacitors, as displayed in Figure
4.2. A six pin header is connected to the MISO, MOSI, Reset, SCK, GND and 5V supply pins
of the MCU. This provides the AVRISP mk2 in-system programmer [67] with the necessary
connection on the MC's printed-circuit-board (PCB), so that code can be loaded onto the
MCU. Details regarding the electrical characteristics of the ATmega 1284P are presented in
Table 4.1.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. MASTERCONTROLLER AND WEATHER STATION DATA

ACQUISITION 38

Figure 4.2: Schematic pin allocation of microcontroller and externally connected 20 MHz
crystal. Source : MCU image as provided by [68].

Table 4.1: Short summary of the microcontroller speci�cations .

Microcontroller speci�cations
20 MHz clock speed (max) 2 x USART channels 5 V Supply VOL = 0.9 V (max)

SPI channel 8 bit data bus width 10 bit ADC VOH = 4.2 V (min)
4 kB EEPROM 128 kB Flash memory 16 kB RAM V IL = 1.5 V (max)
JTAG interface 10.1 x 10.1 x 1.05mm 32 x I/O pins V IH = 3 V (min)

4.3.3 Power supply and voltage sources

As mentioned, the battery bank supplies power to all the devices. The MC's power supply is
designed to allow a DC input battery con�guration voltage of either 12 V or 24 V. All of the
components on the MC require either a 5 V or a 3.3 V supply voltage. An MC34063A step
down switching regulator [69], converts the 12/24 V battery input to a stable 5 V, 500 mA
supply voltage. This power supply is found to be more than adequate to allow the successful
operation of the components which make up the MC. With testing, it is also found that this
switching regulator can operate successfully for input voltages ranging from approximately
7 V up to 40 V. Figure 4.3 presents the circuit layout and the desired 5 V output voltage is
determined with equation (4.1). As seen from 4.1, the values of the resistors R44 and R45
are chosen as 3.6 kΩ and 1.2 kΩ. A combination of a 220 µF [70] and 2.2 µF inductor is
added as displayed in Figure 4.3 for increased output stability, as recommended by the data
sheet. The 3.3 V supply voltage is delivered by a Texas Instruments LM1117, 800 mA linear
regulator [71].

|VOUT| = 1.25

(
1 +

R44

R45

)
= 1.25

(
1 +

3.6k

1.2k

)
= 5 V (4.1)
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Figure 4.3: Power supply circuit layout of MC, as recommended by the data sheet[69, p.7],
which delivers a 5V, 500mA output.

4.3.4 USART communication and RS485 circuit

As mentioned, because the MC operates as either a slave or master device, two commu-
nication lines are established. This is achieved with the two built in USART (Universal
Synchronous and Asynchronous serial Receiver and Transmitter) lines, each with a dedi-
cated receive(RXD0, RXD1) and transmit(TXD0, TXD1) pin. This conceptual design is
illustrated in Figure 4.4. USART0 is dedicated to the master device (RPi), which is thus
used when the MC itself operates in slave mode. However, when communication is initiated
with the slave devices, the MC is in master mode and USART1 is used. However, USART1
is further divided into two RS485 communication ports, namely Comms1 and Comms2, to
allow two lines of communication for the slave devices. This is done so that the MSO-485
weather sensor, which does not follow the MODBUS protocol, is separated from the other
RS485 MODBUS devices.

Figure 4.4: Fig: Illustration of the dedicated USART lines of the MCU.

To make the transition from the USART of the MCU to the RS485 communication standard,
the circuit presented by Figure 4.5 is designed. This circuit is originally designed and tested
by Dr J. M. Strauss. An Exar manufactured SP485E chip is used , which is a half duplex
transceiver [72]. Thus, transmission and reception occurs alternately.
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Figure 4.5: PCB schematic of the communications circuit design, which provides isolated
USART signals to the RS485 transceiver.

Starting from the right hand side of the circuit, signals leave and enter the board from the
three pin header P2, dedicated to the three RS485 lines A, B and Shield. To match the RS485
line's characteristic impedance, provision is made for a 120 Ω terminating resistor, activated
when a jumper is inserted at the two-pin header (P3). Three bi-directional SMBJ6.5CA TVS
(Transient Voltage Suppression) diodes [73] are used for protection against voltage spikes that
may be induced. With each TVS diode's 12.3 V clamping voltage, the SP485E chip, which
can withstand ±15 V on its driver and receiver input and output, is well protected. In the
event of a TVS diode activated by a voltage spike, two 15 Ω resistors are added in series
(R23, R24), with the A and B lines, to assist the TVS diodes with current �ow.

Figure 4.6: Data sheet information of the HCPL0501 optocoupler. a)Relationship between
propagation delay and the load-resistance, b) Illustration of the tPLH and tPHL time delay,
c) Circuit layout of the HCPL0501 IC, d) Optocoupler truth table logic [74, pp. 1, 14, 17].
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As a precaution to eliminate noise, the RS485 communication hardware is isolated from the
rest of the PCB. This is achieved with an isolated TMA0505S 5 V, DC-DC converter [75], a
separate PCB ground plane and HCPL0501 diode-transistor optocouplers [74], to separate
the TX, RX and TXE signals. For these optocouplers, to avoid an imbalanced propagation
delay, the tPLH and tPHL values must be more or less the same, as displayed in Figure 4.6b.
Therefore, as seen in Figure 4.6a, the goal is to choose the load resistance, so that the tPLH
and tPHL values intersect with one another and the propagation delay is the same for the
rise and fall time of the applied signal.

According to the truth table in Figure 4.6d, when a logic one is sent from the MCU to
the optocoupler, a logic low will be the output and vice versa. Thus, a BSS84 P-channel
MOSFET [76] is used to adapt the RX and TX signals to this logic. The circuit layout of
an optocoupler (all are the same), connected to the SP485EE chip is displayed in Figure
4.7. An IF current value of 10 mA is chosen for the design, determined from Figure 4.6a.
According to the optocoupler's data sheet [74] this value results in a 1.5 V (typical) voltage
drop over the diode, VF. Also, according to the BSS84 MOSFET's data sheet (FigureB.1),
the value of RDS is ∼ 6 mΩ for an ID current of ∼ 10 mA and a VGS value of -5 V. Thus,
the VDS value is determined as −0.5V from the MOSFET data sheet [76]. The value of R1,
in Figure 4.7 is determined with basic circuit analysis as:

−5V + VSD + VR1 + VF = 0 (4.2)

−5V + VSD + IFR1 + VF = 0 (4.3)

R1 =
5V − VSD − VF

IF
(4.4)

With IF selected as 10 mA, VF as 1.5 V and VSD as 0.5 V, R1 is determined with (4.4) as
300 Ω. However, R1 is selected as 220 Ω for the actual implementation, which did not cause
any issues in terms of propagation delays.

According to the HCPL0501 datasheet (Figure 4.6a) the value of the RL resistor (R2) must
be ∼ 2kΩ, for an IF value of 10 mA. The optocoupler's signal output low is a max. of
0.5V, which is within the SP485EE's 0.8 V max. limit for low input voltages. The signal
output high value is 5V, which is within the minimum 2 V input high of the SP485EE. The
SP485EE chip allows data to be transmitted, when the DE (Data Enable) input is high.
When data is received from another device, the TXE (Transmit Enable) must be low, thus
enabling the RE (Receiver Output Enable). With regards to data received from the A and
B lines, logic values are de�nes as:

VA − VB ≥ 0.2 = logic high (4.5)

VA − VB ≤ −0.2 = logic low (4.6)
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Figure 4.7: Schematic layout of the optocoupler (left) and the SP485EEN chip (right). Data
�ow is also indicated.

To separate data transmitted and received over USART1 Comms1 and Comms2, a com-
bination of two 74LVC86A Quad XOR gates [77] and a 74LCX08[78] AND logic gate are
used. The integration and operation of the XOR-logic gates, AND-logic gate and the US-
ART circuit (as presented in Figure 4.5) is displayed in Figure 4.8. Table 4.2 only indicates
the operation of UART1a (Comms1), but UART1b (Comms2) functions exactly the same,
however when UART1b is active, the opposite logic low and high levels must be assigned to
the UART1a and UART1b inputs.

Figure 4.8: Circuit design of separating the USART1 channel into two separate channels
Comms1 (UART1a) and Comms2 (UART1b).

Table 4.2: Logic truth table of the UART1 Comms1 (UART1a) channel.

UART1a UART1b RX_1a TXE_1 TX_1
RS485 RS485 RS485
TXE_1 TX_1 RX_1a

Received data over UART1a from weather sensor

0 1 Value 0 X 0 X Value
0 1 Vlaue 0 X 0 X Value

Transmit data over UART1a to weather sensor

0 1 X 1 Value 1 Value X
0 1 X 1 Value 1 Value X

4.3.5 SD card

In the event of an absent internet connection, the RPi will not be able to upload the data
acquired from the MC to the on-line database. The MC's microcontroller also does not
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have enough memory to store all the data in RAM, which introduces the risk of data being
over-written. The goal of the SD-card is therefore to store the collected data onto the device
itself, to ensure that data is recorded and captured, even with a faulty internet connection.
Therefore, an on-board SD-card is required. Read and write operations to the SD-card is
executed by means of an SPI connection.

A Molex manufactured 503182 series, shielded SD-card connector [79] is used, along with a
class 4 ScanDisk 4 GB memory card. The used circuitry for the SD card is adopted from
the AL design and is presented in Figure 4.9. The SD-card connector is supplied with a 3.3
V input from an LM1117 voltage regulator [71]. With regards to the SPI signals, the MCU
supplies 5 V SPI signals to the SD-card reader, but the SD-card reader is limited to a 3.3
V operation. Thus, to step-down the 5 V SPI line signals to 3.3 V, a 74LCX08M [78] AND
gate is used to serve as a voltage bu�er. However, to ensure that the SPI MISO line, which
is connected to other slave SPI devices, does not place a 5 V signal on the SD-card's MISO
line, a voltage suppressor circuit is employed. This circuit design clamps the voltage to 3.3
V, by using a resistor combination and a TLV431 shunt regulator [80], as indicated by the
D10 designator, in Figure 4.9. The resistor values R14 and R15 are chosen as 15 kΩ and 9.2
kΩ. This is chosen according to the provided design equation (4.7), with VREF as 1.24 V
according to the data sheet. [80]. Resistor R13 is chosen as 1.5 kΩ, to limit the current �ow
on the MISO line's other devices to ∼ 1 mA.

Vline = VREF ×
(

1 +
R14

R15

)
(4.7)

= 1.24 V×
(

1 +
15 kΩ

9.2 kΩ

)
' 3.3 V (4.8)

Figure 4.9: Circuit design of the micro SD-card adaptor. Source : SD-card adaptor as found
at [81].
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4.3.6 Real time clock

As mentioned, the I-V curves are measured and logged, at an exact moment in time, together
with the accompanying meteorological data at that particular moment in time. Thus, to
ensure the MC is synchronised with the other devices, a DS3234 real-time-clock (RTC) [82] is
used. The RTC maintains seconds, minutes, hours, days, date, month, and year information,
which accounts for leap year adjustments. A 3 V external battery (V-BAT) also ensures the
RTC stays active when power is removed. Access to the RTC is established with an SPI
connection, which allows multiple byte transfers within one Chip Select (CS) low period.
The SPI on the DS3234 interface is accessible whenever the power supply is above the V-
BAT supply of 3V, which is supplied by a Panasonic CR2032 Coin Battery [82]. The RTC
is selected to run in 24hr mode.

Figure 4.10: Circuit design of the RTC with SPI connections indicated.

4.4 Printed circuit board design

A printed PCB design is created with the Altium Designer 14.3 software package, as displayed
in Figure 4.11. From the PCB design the three communication ports can be clearly seen,
as well as the isolation of the RS485 circuitry from the rest of the PCB board. All of the
relevant PCB design schematics are provided in Appendix B.2.

Figure 4.11: PCB circuit design of the MC circuit board.
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4.5 MasterController set up and connection

Weather station connection

The physical connection of the WS, MC and rain-gauge is illustrated by Figure 4.12. As
seen, the weather station receives power from the battery bank, which is where the MC also
receives its power from. It should be noted that the WS's RS485 MODBUS connections
must be swapped so that MODBUS connection A and B connects to the MC board's RS485
Comms1, lines B and A, respectively. This is due to the SP485 [72] chip, that uses a di�erent
connection reference, which is opposite to that of the WS's RS485 line allocation.

Figure 4.12: Cable connection diagram of the MSO weather sensor, the master-controller
and the 372C rain gauge. Source : WS and rain gauge images extracted from data sheets
[58, 60]

.

Connection of irradiance instruments

The MC's design permits GHI and DNI to be collected from a Kipp&Zonnen SMP10 pyra-
nometer and a SHP1 pyrheliometer, respectively. These instruments are connected to the
MC's RS485 Comms2 port, as indicated in Figure 4.13. It should once again be noted that,
for the same reason as mentioned in section 4.5, the MODBUS A and B line connections,
must be swapped. The shield-ground connection of the pyranometer is connected with the
research-facility's common ground. Only one pyranometer is installed in the research facility
and during the research period, a pyrheliometer is not utilised.

Communication set up with the trackers

With two SATs installed, the trackers connect with the MC's RS485 Comms2 port, as
demonstrated in Figure4.14.

Connection with the RPi and WiFi-router

User access to the MC and the SATs, is provided by the RPi, which is connected to a
WiFi-router. As presented by Figure4.15, the MC's RS485 Comms0 port is dedicated to the
master-device, which communicates spontaneously with the MC.
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Figure 4.13: Cable connection diagram of the SMP10 pyranometer and the SHP1 Pyrhe-
liometer. Source : Pictures extracted from data-sheets [61, 83].

Figure 4.14: Physical connection of the MC and the single axis trackers.

Figure 4.15: Communication between the master-device, MC and user. Source : WiFi-router
as found at [84].
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4.6 Detailed Software Design

4.6.1 Programming the MCU

Atmel-studio 6.2 is the integrated development platform, used to write, build and debug
all code, which is written in the C programming language. Firmware is programmed onto
the �ash memory, EEPROM and fuses by means of the SPI interface, via an AVRISP mk2
in-system programmer [67].

4.6.2 Overview of data retrieval

The software set-up of the MC enables data to be collected from a total of nine slave devices,
which consists of oneWS, three pyranometers, one pyrheliometer, three SATs and one double-
axis-tracker (DAT). Data is requested from the MC's active slave devices, at a sample-period
of �ve seconds, which provides enough time for the maximum number of slaves to e�ectively
reply to the MC. Data acquired from the slave devices is processed and at the end of a log
interval, is stored onto the on-board SD-card. The log interval is user de�ned and simply
refers to the amount of time (0 - 60 minutes) that has to pass, before the acquired data is
logged as a CSV (comma separated values) �le, onto the SD-card. The MC's log interval is
set at one minute for this research period. The RPi then acquires the locally stored data
from the MC and uploads the data onto the on-line database.

4.6.3 USART communication

The USART is a built in functionality of the MCU that only requires a low level set up.
The initialization process consists of setting the baud rate, frame format and enabling the
receiver and transmitter. The frame format is set up as: 1 start bit, 8 data bits, no parity,
one stop bit and a default baud rate of 9600 b.p.s. Upon start up, the baud rate value is
read from the EEPROM. Data is sent and received asynchronously, with the USART set
to operate in the asynchronous-normal mode [85, p.170]. Only the USART initialisation
and implementation is shortly discussed, since the theory behind the USART's operation is
thoroughly discussed in [85].

USART0

Before the USART can be utilised, the baud rate is set in the UBRRn (USART Baud Rate
Register) which is calculated with equation 4.9 [85, p.170].

BAUD =
fOSC

16(UBRRn+ 1)
(4.9)

With fOSC as the 20 MHz external clock frequency, UBRRn is set as 129 for a 9600 b.p.s.
baud rate.

The USART communication is interrupt driven with TX and RX interrupt vectors dedicated
to each USART. The USART0 receive interrupt is triggered when the master device sends
a request to the MC, placing the MC in slave mode. The receive bu�er (RxBuf0) is loaded
with the data received from the master device, which is captured in the UDR0 register. The
interrupt is triggered for each byte received. As according to the MODBUS protocol, there
must always be 31

2
characters (28 bits) worth of dead time before and after data is sent or

received, as displayed in Figure 4.16. This ensures that the receiving device can distinguish
between two di�erent packets of data, as well as allow the devices to respond within enough
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time. A dedicated software time-out-counter keeps track of the time elapsed, between bytes
received. This process is displayed in Figure 4.17.

Figure 4.16: MODBUS information exchange structure, with delays between data packets.

Figure 4.17: USART 0 transmit and receive program �ow, with MC operating as a slave
device.

USART1

When a data request is transmitted by the MC (in master mode) to a slave device, the slave
device responds and the MC's USART1 receive interrupt vector executes. While the MC
is still receiving information, the receive-bu�er (RxBuf1) is loaded with the new incoming
data, read from the UDR1 register. A counter is used to keep track of the elapsed time
between each byte that is received. When data is sent via USART1, data is loaded into the
UDR1 register which executes the USART1 transmit interrupt vector. This process of data
transmission and reception over USART1, is displayed in Figure 4.18. The MC only listens
on the USART1 line, once it has completed the data transmission to the slaves. Should
there be no reply from a slave device, the USART1 transmit-time-out-counter will exceed
the predetermined value and the USART1 transmit-time-out-�ag will be set, which allows
the MC to abort communication with the intended device.
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Figure 4.18: USART 1 transmit and receive program �ow, with MC operating as a master
device.

4.6.4 MC slave device data acquisition and processing

Speci�c addresses are reserved for certain devices as presented by Table 4.3. When the
MC operates in broadcast mode, address zero is used to communicate with all slave devices
simultaneously. The universal address, 255, is used to initiate communication with the MC,
only when it is removed from the system and a user has direct access to the MC device alone.
This address is mainly used to con�gure the MC for the �rst time, before it is integrated
with the system. Address 10 is reserved for the Remote-Supply-Switch (RSS), which is not
a data-retrieval device, but simply a device which enables the remote hardware reset of the
WS, if a reset is required for some reason.

Table 4.3: Reserved addresses for speci�c devices and functionality.

Device WS Pyrano. Pyrhelio. SAT DAT RSS All Call Universal

Address 1 2, 3, 4 5 6, 7, 8 9 10 0 255

USART software set up and interface

With the USART setup and software infrastructure implemented for the communication, as
explained in section 4.6.3, the process of data acquisition can commence. The procedure
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for collecting data from the slave devices is illustrated by Figure 4.19. All slave data is
categorised into two sections:

� New-slave-data: This refers to the latest sample interval (every 5 seconds) data re-
trieved.

� Interval-slave-data: This refers to the processed data collected over the time span of
one log interval (every 1 minute).

As mentioned, if data collection is activated, the MC obtains the 'New-slave-data' from the
active slave devices, at a sample rate of �ve seconds. This data is then processed (determine
average, max. and min. values) and logged with a time stamp as 'Interval-slave-data', onto
the SD-card at one minute log intervals. With the log interval of one minute and a sampling-
period of �ve seconds, (60sec/5sec = 12) 12 data samples are recorded per log interval. The
user can exercise the option to request New-slave-data at random, thus providing close to a
real-time feed of the most recent on-site measurements retrieved by the MC. A user can also
access the Interval-slave-data, which is uploaded continuously to the on line database.

The MC requests data from each device in sequence. Should a device fail to respond or the
received data's CRC check fails, the MC will initiate another data request, up to a maximum
of three requests. If all three data requests made to a slave device fail, the MC moves on
to the next slave device and logs the failed attempt. No data entries are made for such a
failed attempt. However, should all of the sample-interval (5 sec) data requests fail, zeros
are logged to the SD-card and database for this speci�c device's log-interval data.

Figure 4.19: Overview of the slave data acquisition process applied by the MC.
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Weather sensor data acquisition

Communication with the MSO-485 weather sensor is executed via the RS485 protocol, but
instead of validating data with CRC bytes, a checksum operation serves as the test for
data validation. Although address one is reserved for the weather station, a serial trigger,
consisting of the characters 'wsone', is used to initiate communication. The WS responds
with a string of bytes in the format as displayed below:

SSS.S, DDD, ±TTT.T, HHH, PPPP.P, RRR.RR, XXXX, VV.V, MO, *CCCCC

Table 4.4 de�nes each section of the data string received. Also, the checksum operation for
data validation is presented by equation (4.10).

Table 4.4: Weather station data recorded after each log interval.

String format Measurement Recorded Measurements Unit
SSS.S Wind Speed Avg. Max. Min. m/s
DDD Wind Direction 0− 359 degrees
±TTT.T Ambient Temperature Avg. Max. Min. �
HHH Relative Humidity Avg. Max. Min. %
PPPP.P Barometric Pressure Avg. Max. Min. mbars
RRR.RR Rain Interval mm
XXXX Optional Field - -
VV.V Voltage Supply voltage V
M0 Con�g. & Status bytes - -
*CCCCC Message Checksum - -

∑
received bytes = received checksum CCCCC (4.10)

All weather data recorded during a 24 h day, starts and ends at 12:00 AM. The data received
from the WS is processed and saved as presented in the 'Recorded Measurements' column in
Table 4.4. In terms of the wind direction, a bin-counter is used, because simply calculating
an average wind direction angle, for the various directions [degrees], is irrelevant. If the wind
blows 9/10 times 0◦ and 1/10 times at 360◦, an average direction of 36◦ will be recorded,
which is not an accurate estimate of wind-direction. Thus, a bin counter is used, to give an
accurate depiction of the dominating wind direction. In total 16 wind directions are de�ned.
As mentioned, 12 data samples are recorded per log interval. This concept of a bin counter
is illustrated by Figure 4.20.

Rainfall is measured as a quantity, which is reset to zero after each log interval. Thus, only
the rainfall received during a log interval is recorded. If the entire day's rain fall is to be
determined, all of the log interval rain measurements are added together.

Irradiance instruments data acquisition

As mentioned, the MC is programmed to allow a total of three pyranometers and one pyrhe-
liometer to be installed, each with dedicated addresses. As mentioned, communication takes
place over the USART1 communication port for all MODBUS devices. The device ad-
dresses, as well as communications set up (baud rate, parity etc.) are pre-con�gured with
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Figure 4.20: Illustration of how wind direction is recorded by means of a bin counter, where
several sample measurements are made during a log interval.

the Kipp&Zonnen Smart Sensor Demo software package (refer to [61]). Data captured from
the pyranometer and pyrheliometer, is saved as presented in Table 4.5. As mentioned, the
irradiance is recorded at the same instant as when the I-V curves are measured by the AL
devices. The maximum and minimum irradiance is also recorded over the duration of the
log interval. The pyranometer and pyrheliometer device temperatures are recorded purely
for diagnostic purposes.

Table 4.5: List of the data collected from the pyranometer and the pyrheliometer.

Pyrano & Pyrhelio
Unit Interval Data Collected

information

Body Temp. C° Average Max. Min.
Irradiance W/m2 Instant Max. Min.

The data packet sent to the irradiance devices by the MC, is displayed in Figure 4.21.
This data packet represents hexadecimal (HEX) values and the command speci�es that the
device's input register should be read [61, p.45][83, p.37]. Of the received bytes, bytes 14 and
15 provide the actual temperature compensated irradiance [W/m2], with temperature [�]
provided by bytes 20 and 21. The decimal value of the measured irradiance and temperature
is retrieved by converting the received data into decimal values, with bytes 14 and 20 as the
Most Signi�cant Byte (MSB).

Figure 4.21: Format of the data sent to the pyrheliometer and pyranometer, which requests
the processed (not raw) irradiance data from the irradiance device.
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Single-axis-tracker data acquisition

As mentioned, the SATs provide the current angle of tilt [deg] and mode of operation. SAT
data is however only collected just before the new minute starts. A tracking interval, with a
minimum value of one minute, is de�ned for the trackers, which results in the SATs changing
position, at most, once every minute. Thus, it is redundant to prompt the trackers every
sample period (�ve sec.). Tracker data is requested and saved just before the start of a new
minute at hh:mm:55. When data is requested by the MC from any of the SATs, then the
data packet must conform to the MODBUS format presented by Figure4.22. The MC's role
of data logger and intermediate device (for user to SAT communication) is illustrated in
Figure 4.23.

Figure 4.22: MODBUS data packet format as sent from the MC to a SAT.

Figure 4.23: Communication interaction between the user and a SAT. Source : Wi�-router
as found at [84]

The available primary user commands, which enable a data transaction between the user
and the SATs, are shown in Table 4.6. The commands can be separated into two sets of
communication:

� Command based: Data is sent to the SAT, with no information expected in return,
other than the slave MODBUS reply message.

� Interactive: A speci�c set of data is requested from the SAT by the user.

Table 4.6: MC's user commands available to exchange information with the SAT.

Command Description
Order-All-SAT-Data() Order all of the available data from the SAT
Get-All-SAT-Data() Retrieve all the data received from the SAT
Pass-Data-To-SAT() Send data to the SAT

The Order-All-SAT-Data() and Get-All-SAT-Data() command are interactive commands.
When the Order-All-SAT-Data() command is sent to the MC, the MC collects the required
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data �elds from the SAT. Then, if the Get-All-SAT-Data() command is executed by the
user, the MC sends all of the SAT collected data to the user. Thus, the combination of these
two commands can be regarded as a two stage communication between the user and a SAT.
More detail with regards to the SAT commands is provided in Chapter 5, Section 5.5.7.

4.6.5 MasterController user interface commands

The RPi enables user access to the MC device itself. Various commands are readily available
for user interaction and allows users to send or retrieve device speci�c data. The user
commands are separated into three groups, namely HEX-41 (Hexadecimal), HEX-42 and
HEX-43 commands. Within these three groups, subcommands are dedicated with speci�c
functionalities. The HEX-41 and HEX-42 command list is dedicated to standard set up and
data retrieval commands, with the HEX-43 commands dedicated to special functions. The
functions are listed and described in Table 4.7. Whenever a command is sent to the MC,
it must conform to the data packet format as in Figure 4.24. The MC always returns a
MODBUS reply message to ensure data credibility, which conforms to the same format as
presented by Figure 4.25. Only the data and CRC bytes returned di�er. The software routine
executed by the MC when a user sends a command is displayed in Figure 4.26. The MC's
internal ServiceComms() function essentially performs data validation and ServiceSerial()
proceeds with the data received, executing the corresponding behaviour as received by the
data packet.

Figure 4.24: Data packet format where data is sent from the RPi to the MC.

Figure 4.25: Data packet format where the MC replies to the RPi.

A python based interface is created to interact with the MC. This code is integrated into the
research facility's on-line, graphic user interface 1. An example of the graphic interface is
displayed in Figure 4.27. The list of all the available MC commands are presented in Table
4.7.

1This user interface is accessed at www.pvsoiling.co.za and was developed by Malem Heymans and revised
and expanded by Tashriq Pandy, both Master's degree students
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Figure 4.26: Basic software process for executing master device commands received.

(a) Online graphic interface. (b) Drop down menu options.

Figure 4.27: Graphic user interface to communicate with the MC, as well as ALs.
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Table 4.7: List of the available python HEX-41 and HEX-42 MC commands.

Command 0x41 Command 0x42
Sub-

Function()
Sub-

Function()
command command
0x01 Get-Device-Info() 0x01 Get-Setup()
0x02 Send-Device-Info() 0x02 Send-Setup()
0x03 Get-RxBuf() 0x03 Get-SAT-Weather-Control-Setup()
0x04 Get-RTC() 0x04 Send-SAT-Weather-Control-Setup()
0x05 Send-RTC() 0x08 Get-Fifo-Index()
0x06 Send-Address-Baudrate() 0x09 Get-Fifo-Data()
0x07 Get-Description() 0x0B Get-Latest-WS-Data()
0x08 Send-Description() 0x0C Get-Latest-Pyrano-Data()

0x0D Get-Latest-Pyrhelio-Data()
0x0E Get-Saxis-Angle()
0x0F Get-Daxis-Angles()

HEX-41 commands

Send-Device-Info(): Sends a serial number to the MC, so that it is identi�able. The serial
number consists of YYMMXXXX with YY as the year after 2000 (16 for 2016) and MM
as the month when device set up is completed. The device number XXXX represents the
production number.

Get-Device-Info(): Retrieves the MC's �rmware version, the serial number and the device-
ID, which is 2020 for the MC and represents the type of device.

Return-RxBuf(): This is a diagnostic function which returns the data that was received
by the MC.

Send-RTC() andGet-RTC(): The real time clock (RTC) is adjusted with the Send-RTC()
function to a new date and time. The Get-RTC() function simply returns the MC's time
and date (year, month, date, hour, minute, second) that is presented by the RTC at the
speci�c moment in time when the query is made.

Set-Address-Baudrate(): The MC's address and baud rate is set with this function. If
the address of the device is unknown, then address 0 or 255 can be used to communicate
with the device and assign a new address. The di�erence between all-call addresses 0 and
255 is that, when communication is initiated with address 0, no MODBUS reply is sent to
the master-device. However, for address 255, a MODBUS reply message is sent from the
slave device.

Send-Description() and Get-Description(): The description of the MC is 'MasterCon-
troller n' with 'n' as any number designator. This allows a user to distinguish between
di�erent MC devices from one another, where more than one MC device is present in a
system.

HEX-42 commands

Send-Setup() and Get-Setup():
The MC's process of data acquisition is largely de�ned by this set up. Table 4.8 presents
the set up values that are applied to the MC. The Get-Setup() function simply returns the
value of each set up variable.
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Table 4.8: List of items that de�ne the set up of the MC.

Set-up Value Description
Log-Data 0-1 Permits data to be saved to SD card.
Log-interval 0-59 De�nes the length [minutes] of a log interval.
Number of WS 0-1 De�nes the number of active weather stations.
Number of Pyrano 0-3 De�nes the number of active Pyranometers.
Number of Pyrhelio 0-1 De�nes the number of active Pyrheliometer.
Number of SAT 0-3 De�nes the number of active Single-Axis-trackers.
Number of DAT 0-1 De�nes the number of active Double-Axis-Trackers.

Send-SAT-Weather-Control-Setup() andGet-SAT-Weather-Control-Setup(): The
MC is responsible for sending the SATs a warning when wind speeds are high. Also, when
rainfall is detected, the MC also informs the trackers. This function allows two variables to
be set, starting with 'max-wind-speed', which de�nes the maximum wind speed allowed be-
fore the trackers have to level out. Secondly, the 'weather-control-activation' which enables
the MC to issue a warning to the trackers. Details regarding this set up is retrieved from
the MC with the Get-SAT-Weather-Control-Setup() function.

Get-Fifo-Index(): The SD-card saves data according to a FIFO (First In First Out) pro-
cess. For each set of data stored, which represents a log interval, a FIFO-index number
is assigned. When this function is called by the master-device, the MC sends the latest
FIFO-index number. When the master-device updates the database, the FIFO-Index num-
ber serves as a reference point to identify whether or not the most recently logged data has
been retrieved.

Get-Fifo-Data(): When this function is called, the data logged on the SD-card, which is
associated with a certain FIFO-Index number is sent to the user. The user must provide the
FIFO index number as an input.

Get-Latest-WS-Data(): When executed, the MC sends the most recent recorded weather
data. The value of the rain-fall, presents the amount of rain fall received from 12:00 AM
on the particular day, up to the moment in time when the request is made. This data is
updated every �ve seconds (sample interval).

Get-Latest-Pyrano-Data(): This function retrieves the latest GHI, temperature and volt-
age supply values recorded by the speci�ed pyranometer, which is also updated every �ve
seconds.

Get-Latest-Pyrhelio-Data(): This function returns the latest DNI, temperature and volt-
age supplied values retrieved from the pyrheliometer, by the MC.

Get-Saxis-Angle(): The most recent recording of the SAT tilt angles and modes of oper-
ation is retrieved from the MC when this function is called.

Get-Daxis-Angles(): The altitude and azimuth angles of the double-axis-tracker are sent
by the MC, when this function is called.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. MASTERCONTROLLER AND WEATHER STATION DATA

ACQUISITION 58

Table 4.9: List of the available HEX-43 special commands list, for the MC.

Command 0x43
Subcommand Function()

0x01 Get-Activation()
0x02 Send-Activation()
0x03 Order-All-SAT-Data()
0x04 Get-All-SAT-Data()
0x05 Pass-Data-To-SAT()
0x06 Get-SAT-MODBUS-Reply()
0x07 Switch-O�-On-WS()

The special commands are reserved as Hex43 commands. These commands are presented
by Table4.9.

Send-Activation() and Get-Activation(): The Send-Activation() function permits the
slave data collection process and the Get-Activation() command simply con�rms whether or
not data collection is activated or de-activated.

Operate-Remote-Supply-Switch(): The RSS is activated by this function for a brief
moment, so that a hardware reset can be applied to the WS, if necessary.

The rest of the HEX-43 commands are directed towards the operation of the SAT. Whenever
a command is sent from the master-device, to a SAT the data packet must conform to the
format presented by Figure 4.28.

Figure 4.28: Data packet format applied when data is sent by the user, via the RPi, to a
SAT through the interface provided by the MC.

Order-All-SAT-Data(): Direct real time communication between the user (via the master-
device) and the single axis trackers is not available, since this might interrupt and delay the
process of data-collection from the other slave devices. Therefore, a two stage communication
is established between the master-device and each SAT. When data is to be requested from
a SAT, an 'order' is placed by the master-device, which informs the MC to collect data from
a speci�ed SAT. This 'order' is advanced towards the SAT and when the reply is received
from the SAT, the MC saves the data to temporary variables.

Get-All-SAT-Data(): This function is called after the Order-All-SAT-Data() function has
been initiated, so that the two stage communication process is completed. Thus, when
data has been received by the MC from the SAT, as a result of the execution of Order-All-
SAT-Data(), a user can request this data which will activate the MC's Send-All-SAT-Data()
command. The information provided by the SAT is listed in Chapter 5.5.7.

Pass-Data-To-SAT(): The Pass-Data-To-SAT() command, is not a user available com-
mand, but is an internal command executed by the MC, whenever a command intended for
a SAT is executed by a user. The list of available user commands are presented in Table
4.10. For more speci�c detail with regards to these functions, please refer to Chapter 5.5.7.
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Table 4.10: Functions that allow a user to send and request data to and from a SAT.

Command Name Description
Send-RTC-To-SAT() Update SAT clock time
Send-Address-Baudrate-To-SAT() Set SAT baud rate and address
Send-Setup-To-SAT() Send set up to SAT
Send-Tracker-lengths-To-SAT() De�ne tracker dimensions and distance
Send-Set-Tilt-Angle-To-SAT() Force stationary tilt angle
Send-Resume-Tracking-To-SAT() Allow tracker to resume normal tracking
Send-Motor-Setup-To-SAT() De�ne motor speci�cations
Send-Deactivate-Motor-To-SAT() Deactivate motor operation
SAT-Adapt-To-Weather() Force tracker into position due to weather
Send-Activation-To-SAT() Activate tracker
Get-All-SAT-Info() Retrieve latest tracker processed data
Set-Zero-Calibration-Angle() Calibrate zero reference angle
Send-Reset-SAT-Software() Force tracker to perform a software reset
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Chapter 5

Single axis tracking

5.1 Introduction and chapter overview

As mentioned in Chapter 1, it is a research goal of this thesis to investigate di�erent PV
soiling mitigation methods on tracker mounted PV modules. To accomplish this goal, two
SATs are implemented, which serve as an experimental platform to gather �eld generated
data. A question that might come to mind is why it is necessary to design and implement
the SAT infrastructure, when there are commercial trackers available for purchase on the
open market? The reason for a self designed SAT system is to enable the tracking system
to be integrated with the rest of the remote communications infrastructure. Secondly, a self
designed system also expands the experimental manoeuvrability regarding the research.

With the fundamental theory of Earth and Sun movement presented in Chapter 2.3, this
chapter starts by further adding to the theory, and presents the required concepts to formu-
late the tracking algorithms. Next, a discussion on backtracking and the derivation of the
backtracking algorithm. This is followed by a detailed hardware and software design, which
enables the successful operation of the two SAT systems installed at the PVRF. The software
implementation of the backtracking and normal tracking algorithms are also presented. 1

5.2 Sun tracking fundamentals of the SAT system

The equations presented for the basic earth and sun movement in Chapter 2.3, are repeated
again for the reader's convenience:

δ = 23.45

[
360

365
(n− 81)

]
(5.1)

β = sin−1(cosL cos δ cosH + sinL sinδ) (5.2)

ΦS = sin−1
(

cos δ sinH

cos β

)
(5.3)

if cosH ≥ tan δ

tanL
then |ΦS| ≤ 90◦ else |ΦS| > 90◦ (5.4)

1To the reader. This chapter consists of a rather large amount of information regarding the single axis
tracking system. Omitting too much information to an appendix, would result in a watered-down description
which might leave the reader with unanswered questions and a lack of insight, regarding system operation.
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H =

(
15◦

Hour

)
(Hours Before Solar Noon) (5.5)

Hours Before Solar Noon = 12 : 00− ST (5.6)

ST = CT +
4[min]

1◦
(Local T ime Meridian− Local Longitude)◦ + EOT (5.7)

EOT = 9.87 sin 2B − 7.53 cosB − 1.5 sinB (5.8)

B =
360

364
(n− 81) (5.9)

Where the variables in (5.1) - (5.9) are de�ned as:

L = Latitude [deg]
H = Hour angle [deg]
δ = Declination angle [deg]
EOT = Equation Of Time [min]
n = Day number [day]
ΦS = Sun azimuth [deg]
β = Sun altitude [deg]
ST = Solar Time [min]
CT = Civil/Clock Time [min]
B = ST and CT correction factor angle [deg]

Representative of the commercial SAT systems employed in South Africa, the single axis
tracking topology used by by this research is based on a horisontal, North-South layout.
Figure 5.1 illustrates a trigonometric interpretation of the relationship between the various
angles, as discussed by G. Masters [44, p. 224]. The derivation of these angles is presented
in Appendix C. By interpreting the trigonometric relationship of the angles presented by
Figure 5.1, the tilt angle of the tracker can be derived as presented by equation (5.10) [44,
p.224].

cos ε =
sin β

cos θ
(5.10)

Where ε represents the tilt angle of the SAT. The value of cos θ is derived from a normal
Pythagoras triangular relationship of:

cos θ =

√
1− (cos β cos ΦS)2 (5.11)

The goal of the SAT system is to continuously adjust the modules to the ideal tilt angle,
so that the maximum irradiance [kW/m2] is received. Thus, a Tracking Algorithm (TA) is
formulated for a horisontal, North-South SAT, which executes the following chronological
process of equation solving:

1. Determine the day number n.

2. De�ne B° from equation (5.9).
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Figure 5.1: Trigonometric relationship of the relative position of the Sun to the angle of tilt
for the SAT. Source : Redrawn image as illustrated by [44, p. 224]

3. Find the EOT value with equation (5.8).

4. Calculate ST (Solar Time) with equation (5.7).

5. Get the hour angle H from (5.5). Hours before solar noon is positive before a ST of
12:00AM.

6. Find the altitude angle of the sun β from (5.2).

7. Find the azimuth angle of the sun ΦS with equations (5.3) and (5.4).

8. Determine the value of cos θ with (5.11).

9. Determine the ideal tilt angle ε with equation (5.10).

A comparative study is undertaken to relate the accuracy of the derived TA, to that of
the highly accurate NOAA Earth System Research Laboratory solar position calculator [86].
The graphs illustrated in Figures 5.2a and 5.2b illustrate the accuracy with which the derived
TA (implemented for the SAT system) is able to predict the ΦS and β angles of the sun, as
opposed to the NOAA calculator. The largest di�erence between the NOAA calculator and
the TA is 0.3◦ and 0.24◦ for the ΦS and β angles. This demonstrates the accuracy of the
algorithm, used for the SAT, to determine the position of the sun. It should be noted that
the objective of the thesis is not to build a 100 % accurate sun tracking algorithm. The goal
is to implement an accurate enough sun tracking algorithm that requires minimal processing
power, which can direct the PV modules to the sun with a relatively high degree of accuracy.

5.2.1 Backtracking fundamentals

Backtracking has been proven to increase PV array energy yield and ensures PV module
reliability, by avoiding hot spots due to shading [87]. Backtracking is a strategy utilised by
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(a) Azimuth angle comparison. (b) Altitude angle comparison.

Figure 5.2: Results comparing the SAT implemented TA to that of the NOAA Earth System
Research Laboratory solar position calculator.

sun tracking systems to optimise energy yield. Essentially, backtracking allows an array of
PV modules to avoid inter shading during low sun altitudes, which occurs during sunrise
and sunset [7]. Shading is avoided by �attening out the SAT panels so that the shadow
projected by a panel does not fall onto another panel, as shown in Figure 5.3.

In terms of commercial application, there will always be a play-o� between the height of
the sun (at a given time) and the available inter row spacing between single axis trackers.
Ideally, the trackers would follow the sun from sunrise to sunset, which can be accomplished
only when one row of trackers are installed. However, commercial application of single axis
tracking is usually restricted by availability of space, as well as a simple matter of practicality.

The illustrations presented by Figures 5.3 and 5.4 are essential for implementing the back-
tracking algorithm. Figure 5.3 illustrates the available distance, denoted by d row, between
the panels for a speci�c tilt angle of ε◦. The x and y dimensions represent PV module length
and tilted height, respectively. The distance from the SAT axis to the furthest module point
is presented by z. This distances of drow and z changes as the tilt angle ε◦ changes. On
the other hand, Figure 5.4 demonstrates shadow length of a module and how the β and
ΦS angles determine the position of the shadow. The shadow distance of importance is the
distance de�ned by dS, and not the actual length of the shadow, displayed as LS. Reason
being that dS is the absolute distance of the inter row shadow from one panel to another.

Figure 5.3: Backtracking in progress, where modules avoid table-on-table shading with a
determined tilt angle of ε◦.
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Figure 5.4: Shading distance as a result of the position of the sun.

The following equations are derived from Figures 5.3 and 5.4. From Figure 5.3 equations
(5.12) to (5.14) are derived:

ε = arcsin
(y
x

)
(5.12)

z = cos ε
(x

2

)
(5.13)

drow = daxis − 2z (5.14)

From Figure 5.4, LS is the projected shadow length of the module, whereas dS is the normal
component of the inter row shadow projected. The angle between the eastern reference line
and the angle ΦS is described by α and the height of the PV module is de�ned by y. From
this illustration in Figure 5.4 the following equations are derived:

LS =
y

tan β
(5.15)

dS = LS cosα (5.16)

α = 90◦ − ΦS (5.17)

Essentially, the Backtracking Algorithm (BTA) applies these equations to determine whether
or not backtracking should be initiated and if so, also determines the backtracking tilt angle.
From equations (5.15) and (5.16), it is determined whether backtracking should be initiated.
Equation (5.16) provides the minimum distance (dS) required to avoid inter row shading.
The maximum available distance between the rows (d row) at a tilt angle of ε, is determined
with equation (5.14). Thus, the following logic is applied to determine if backtracking should
be initiated:

drow > dS : Tracking proceeds, with no risk of inter row shading. (5.18)

drow < dS : Backtracking is initiated. (5.19)
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Should backtracking be initiated, the BTA makes use of an iterative process, where the tilt
angle ε is incremented/decremented until the condition of (5.18) is satis�ed. The iterative
process of the BTA sequentially executes equations (5.13) to (5.16) when a new tilt angle ε
is calculated. Further details with regards to the exact implementation of the backtracking
functionality is provided in Section 5.5.2.

5.3 Hardware design

5.3.1 Conceptual hardware design

A microcontroller based sun tracking system is designed, which incorporates both open-loop
and closed-loop feedback. A clock driven open-loop control strategy is used to determine the
position of the sun, whereas axis mounted position sensors are used, to establish the closed-
loop control feedback, as displayed in Figure 5.5. In essence, the tilt angle is determined
for a particular moment in time and the trackers are adjusted until the reference angle is
reached. In Figure 5.5 variable θerr is the di�erence between the measured tilt angle, θpos
and the desired tilt angle θref.

Figure 5.5: Illustration of the applied control system used to ensure the modules are tilted
towards the desired tilt angle.

The tracking system implemented at Kalkbult, is a passive system and does not rely on
light sensors to determine the optimal tilt angle. Therefore, to allow the SAT to function as
intended and to utilise the control system presented in Figure 5.5, the SAT must have the
following functionality:

� A microcontroller capable of performing the necessary tracking algorithms.

� Position sensors which provide feedback regarding the tilt angle of the tracker tilt.

� A DC motor which receives a PWM signal to enable the modules to be rotated in
either direction.

� Proximity sensors to avoid potential over-tilt.

� An RS485 MODBUS interface, which enables communication with the SAT.

5.3.2 Microcontroller

The same Atmel manufactured ATmega 1284P-AU microcontroller [65] is used, which is also
used for the MC device as discussed in Chapter 4.3.2.
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Figure 5.6: Illustration of the ATmega 1284P-AU MCU pin connections for the SAT. Source :
ATmega1284P as found at [68].

This microcontroller is primarily responsible for the following processes:

� Establish RS485 communication and SPI device communication.

� PWM output control for H-bridge and DC motors.

� ADC measurement of received DC motor voltage and current.

� Execution of all sun tracking algorithms.

� Interpreting positional feedback from position sensors.

� Execution of control system presented in Figure 5.5.

5.3.3 Power supply

The SAT power supply circuitry is designed to accommodate a DC input voltage of either
a 12V or 24V battery con�guration. The input voltage from the battery bank also serves
as the direct supply for the 24 V DC motor. The same supply voltage circuit, which uses
an MC33063A step down switching regulator [69], as presented in Chapter 4.3.3, is used to
establish an on-board 5 V DC supply voltage. From this 5 V supply a TME0515S DC-DC
converter [88] is used to create a 15 V voltage line, required by the HIP4082 H-bridge FET
driver [89]. Once again an isolated 5 V is also established for the RS485 circuitry, with a
TMA0505S isolated DC-DC converter [75].

5.3.4 USART communication

Communication is established with the SAT by means of an RS485 line. Only the USART0
of the MCU is necessary to establish this communication line. The circuit design is the same
as for the MC, which is described in Chapter 4.3.4.
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5.3.5 Real time clock

The real time clock used is the exact same DS3234 [82] which is used on the MC as well as
the AL devices. Detail with regards to this chip is provided in Chapter 4.3.6. The RTC is a
principal component in the design of the SAT, since this serves as the source of the tracking
algorithms applied.

5.3.6 Full H-bridge driver circuit

A full H-bridge design, which allows the bidirectional rotation of the connected DC motor as
displayed in Figure 5.7a, is applied by making use of a HIP4082 H-bridge FET driver [89].
This IC drives four dedicated channels independently and is provided with a 15 V supply.
The basic operation of an H-bridge and how the logic states of the transistors determine
this operation, is displayed in Figure5.7. Figure 5.7b also displays how the rotation of a
connected motor can be stopped.

(a) Rotate connected motor. (b) Restrict motor movement. (c) Dynamic shoot through.

Figure 5.7: Illustration of the resulting H-bridge circuit behaviour for various activated
transistor combinations.

To prevent dynamic shoot through, as presented in Figure 5.7c a dead time is implemented
by connecting a delay resistor to pin5 of the HIP4082 driver. For this application, a dead
time of 0.5 µs is selected, which is 2 % of the selected 20 kHz switching frequency, which
is small enough to avoid a�ecting this switching frequency. Based on the datasheet [89]
recommendations a delay resistor value of 10 kΩ is selected.

The MOSFETs used for the H-bridge are the IRFB4115PbF, International Recti�er, N-
channel power MOSFETs [90]. These MOSFETs have a high voltage and current capability
of 150 V and 104 A respectively, with a max. gate threshold voltage VGTH of 5 V. A gate
voltage of 15 V is applied by the HIP4082 FET driver. Ringing on the output line of the
MOSFETs, due to the gate capacitance and line inductance, is reduced with a gate resistor
of 30 Ω added in series.

The schematic design of enabling the H-bridge topology is presented in Figures 5.8 and 5.9.
A single PWM signal is applied to the H-bridge driver, as seen in Figure 5.8. Thus, the
direction of the DC motor, as connected in Figure 5.9 is reliant on the duty cycle of the
PWM signal. The direction of rotation for the applied duty cycle is indicated in Table 5.1.
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Figure 5.8: Schematic design of the HIP4082 driver circuitry.

Figure 5.9: Schematic design of the MOSFET H-bridge topology.

Table 5.1: Truth table of the applied H-bridge MOSFET signals.

PWM ALI ALO AHO BLI BLO BHO
Dir.Duty PWM Out Out PWM Out Out

Cycle [%] Input Q3a,Q3b Q1a,Q1b Input Q4a,Q4b Q2a,Q2b

50 < D ≤ 100 0 0 1 1 1 0 Fwd.
0 < D ≤ 50 1 1 0 0 0 1 Rev.
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5.3.7 Heat sink design

Thermal management is applied to allow the MOSFETs, in the H-bridge set up, to operate
within the speci�ed thermal limit. The required thermal resistance [C °/W] of the heat sink
is calculated with an equivalent electrical model, as seen in Figure 5.10 [91, p. 568], which
is used to facilitate the design process.

Figure 5.10: Equivalent electrical model for the applied heat sink design, as presented in
[91].

From this electrical model, equation (5.20) is derived, which is used to de�ne the value of
the required thermal resistance of the heat sink as in θsa.

Tdev − Tamb = PD(θdc + θcs + θsa) (5.20)

θsa =
Tdev − Tamb

PD

− θdc − θcs (5.21)

In equations (5.20) and (5.21) PD is the power dissipated and Tdev, Tcase, Tsnk, Tamb are the
device, case, sink and ambient temperatures, respectively. The thermal resistances of the
device-to-case, case-to-sink and sink-to-ambient values are presented by θdc, θcs and θsa [92].

Firstly, the power dissipated (PD) by the switching MOSFETs, is determined. Both con-
duction and switching losses are considered. The conduction losses take place during steady
state operation, where power dissipation occurs due to the on resistance of the MOSFETs,
RDS(on), which is 11 mΩ [90].

Pcond = RonI
2
SW (5.22)

I2SW =
1

TS

∫ DTS

0

i2SWdt (5.23)

To allow for a degree of design safety, an extreme case where a current, iSW , of 20 A and
a duty cycle (D) of 100 % is assumed, together with an H-bridge supply voltage of 30 V.
The MOSFET switching frequency of 20 kHz, is de�ned as fs = 1/TS. However, in a full
H-bridge con�guration the high side arm and low side arm MOSFETs are active when the
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motor is activated. Therefore, the instantaneous dissipated power for these two MOSFETs
should be considered. The conduction loss for one MOSFET is calculated from equations
(5.22) and (5.23) as:

Pcond = RDS(on) × fS ×D × TS × i2SW (5.24)

= 11 [mΩ]× 20 [kHz]× 100 [%]× 50 [µs]× 202 [A] (5.25)

= 4.4 [W] (5.26)

Thus, with two MOSFETS activated the total conduction losses equate to Pcond = 8.8 W.
In terms of the switching losses, the worst case scenario occurs when a MOSFET is switched
on, with a total rise time of 73 ns. Only two MOSFETs will be switching, due to the dead
time of 0.5 µs applied by the HIP4082 FET driver. The switching losses for one MOSFET
are de�ned by equation 5.27 [92].

Psw =
1

2
× (trise + tfall)× VDD × ISW × fS (5.27)

=
1

2
× (73 ns + 39 ns)× 30 [V] × 20 [A]× 20 [kHz] (5.28)

= 0.672 [W] (5.29)

Thus, with two MOSFETs activated at a time, the total switching losses equate to Pcond =
1.34 W. The total dissipated power is calculated as:

PD = Pcond + Psw = 10.1 [W] (5.30)

Therefore, with θdc = 0.4 [C°/W] and θcs = 0.5 [C°/W] as determined from the MOSFET
datasheet [90], the required thermal resistance is calculated with equation (5.21) as:

θsa =
Tdev − Tamb

PD

− θdc − θcs (5.31)

=
80 [C°]− 45 [C°]

10.1 [W]
− 0.4 [C°/W]− 0.5[C°/W] (5.32)

= 2.57 [C°/W] (5.33)

Therefore, a heat sink with a maximum thermal resistance of 2.6 C °/W is required. However,
due to cost and size considerations, it is decided to make use of parallel MOSFET pairs. Thus,
the conduction losses Pcond are halved to 4.4 W, due to the parallel RDS(on) combination,
which is then e�ectively reduced to 5.5 mΩ. The switching losses Psw are however doubled
to 2.68 W, due to the extra switching parallel MOSFETs. Thus, when a value of PD =
4.4 + 2.68 ' 7 W is substituted into 5.31, the new required maximum heat sink thermal
resistance is de�ned as 4.1 C°/W. A heat-sink is used with a thermal resistance of 4.08 C°/W
[93].
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5.3.8 Analogue measurement circuitry and over current detection

Analogue voltage supply and current measurement

Analogue-To-Digital (ADC) measuring circuits are required to ensure that the DC motor
is operated within the rated 24 V and 13.6 A supply values. The input voltage from the
battery bank (24 V), which serves as the power source of the DC motor, varies when the
MPPT charge controller is active. This is due to the charge controller, which makes use of
an absorption voltage of 28.8 V and a �oat voltage of 27.6 V to maintain battery capacity.
Before the H-bridge is activated, a limit must be applied to the PWM signal, which prevents
the supply voltage of the DC motor from being exceeded. The input voltage is monitored
via one of the ADC pins on the MCU, which is rated at a 5 V input. Thus, to measure the
battery input voltage, with the ADC pins, the voltage reading must be stepped down to 5 V.
A voltage divider circuit is used in conjunction with an MCP601 [94] operational ampli�er
(Op-Amp), as a means of protecting the MCU. With the circuit design as applied in Figure
5.11a. The output voltage V out is determined with (5.34) as :

VOUT = VBAT
R24

R23 +R24

(5.34)

The design accepts a battery input voltage of 30 V, which is stepped down to 5 V, with a
resistors R23 and R24 chosen as 100 kΩ and 20 kΩ.

(a) Voltage measurement. (b) Current measurement.

Figure 5.11: Analogue measurement circuits to read battery supplied voltage and current
supplied to the DC motor.

Over-current safety detection circuitry

Should a motor stall, excessive current can be drawn which could destroy the MOSFETs. A
rated current value of 13.5 A is imposed on the DC motor, by this design. Should this limit
be exceeded, the MCU will disable the DC motor by activating the disable pin (DIS), on the
HIP4082 H-bridge driver. The supply current is detected by means of a 15 mΩ, 5 W, current
sensing shunt resistor [95]. This resistor is used together with the high gain AD8223 [96]
instrumentation ampli�er, presented by Figure 5.11b. Although a 13.5 A limit is imposed,
the over-current circuitry is designed for a maximum current of 15 A, which equates to a
maximum possible voltage reading of 0.225 V (15 A × 15 mΩ). Therefore, to establish a
higher resolution of up to 5 V for the ADC input pin of the MCU, a gain of at least 22
is required (5V/0.225V ' 22). As provided by the datasheet [96], the output voltage is
determined as:
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VOUT = G(VIN+ − VIN−) + VREF (5.35)

= G(VIN+) (5.36)

Thus, a gain resistor (R25 in Figure 5.11b) of 20 Ω is chosen, which from (5.36) equates to
a max. of 4.5 V. However, should a current of 13.5 A. be exceeded, or the MCU fails to
disable the DC motor, then hardware will be engaged to physically disable the DC motor.
An LM311D voltage comparator, by Texas Instruments [97] is used to implement this second
stage safeguard, as presented in Figure 5.12. An op-amp is not used for this detection, since
the reaction time of the voltage comparator is much faster.

Figure 5.12: Illustration of how the LM311D comparator circuit is connected to the MCU
and H-bridge, to enable a second stage hardware reset.

The output pin of the comparator is connected to the interrupt pin PA6 of the MCU, so
that a falling edge logic change, will initiate an interrupt routine, which disables the DC
motor. For a 15 A current, the comparator will see a max. of 0.225V over the R sense resistor.
The comparator circuit changes its output state when the voltage between its inputs crosses
through approximately zero volts as according to equation (5.37):

Vin+ − Vin− ≤ 0V (5.37)

The value of Vin+ is received from the voltage divider circuit consisting of R26 (91 kΩ) and
R27 (3.9 kΩ) which provide an input (Vin+) of 0.21 V. Thus, when the current extracted
by the DC motor exceeds 14.7 A ('15 A), a 100 mV di�erential voltage is detected by
the comparator and the circuit will be activated2. The timing diagram of the LM311D
comparator is presented in Appendix C, Figure C.3. To allow an input signal, received from
either the comparator circuit or the MCU, to Disable the H-bridge, the logic circuit in Figure
5.13 is used . A logic NAND gate is used, since the Disable pin is active low. Table 5.2
presents the logic.

2To be clear. The heat-sink design is conducted fora 20 A DC motor current. The DC motor rated
current is selected by design as 13.5 A, although it is in actual fact 13.6 A. The circuitry is designed to
function at a 15 A current. The second stage emergency hardware is e�ective when current drawn is ∼ 15
A.
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Figure 5.13: Signal input from MCU and comparator to disable H-bridge.

Table 5.2: Truth table logic for H-bridge disable pin

MCU Output Comparator Output NAND Output Disable pin

0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

5.3.9 Position sensor and isolated SPI design

The tilt angle of the SAT is measured with a non-contact AMS AS5048A, 14 bit angular
position sensor [98]. This position sensor relies on a disc magnet to e�ectively determine the
angular information, which is provided as an angle ranging from 0 to 360 °[98]. Information
is accessed from this device by means of an SPI interface and it is supplied with a 5 V input
voltage, consuming a total of 150 mW. The primary reason for selecting this sensor is due to
its robustness and accuracy, with the sensor capable of tolerating air gap (up to 2.5 mm) and
temperature (-40 C°to +150 C°) variations, as well as misalignment and external magnetic
�elds [98].

From recommendation an 8 x 2.5 mm disc, N35H grade magnet is used [99], to allow the
AS5048A sensor to determine the tilt angle of the tracker. For this particular set up, the
magnet is placed in the centre of the trackers axis, with the position sensor also centered
over the magnet, as displayed in Figure 5.14.

Figure 5.14: Illustration of the application of the AS5048A magnetic position sensor. Source:
Left section of �gure redrawn as illustrated in [98].

To avoid measurement uncertainty with regards to angular measurements, an isolated-SPI
(isoSPI) communications interface is established, with an LTC6820 device [100]. As seen in
the recommended set up in Figure 5.15, this device allows a bidirectional SPI communication
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network to be established between devices. The set up of this isolated interface requires two
LTC6820 devices, where one serves as the master and the other as a slave.

Figure 5.15: Recommended layout for a single-transformer isolation set-up. Source: Redrawn
as illustrated in [100].

This layout in Figure 5.15 requires a 1:1 Current transformer to isolate the IP and IM signals
between the two isoSPI devices. As recommended by the datasheet the Murata 78613/3C
center tapped transformer is chosen [101]. The cable used to link the two separate devices is
a six core, screened cable, of which the characteristic impedance is terminated on each side
by a 120 Ω resistor.

Figure 5.16: Circuit design of the master and slave side implementation of the LTC6820
(isoSPI) and the AMS5048A position sensor.

It is important to distinguish between the master and the slave side of this isolated commu-
nication line, as in Figure 5.16. In terms of the SPI communication, the MCU and isoSPI
are set up according to the position sensor (AS5048A), since it only has one SPI mode. This
SPI mode is de�ned for a clock that idles low and latches on the falling edge. The isoSPI
operates in this mode by assigning the polarity pin (POL) and phase pin (PHA) to 0 and 1
respectively. A 156 kHz SPI clock is de�ned, which allows the isoSPI to operate in slow mode
(SLOW pin high). In slow mode the MCU, isoSPI and position sensor are all in agreement
regarding the SPI communication interface. As recommended by the datasheet [100] the
appropriate pull up resistors are applied to the MISO and MOSI pins. The value of the RB1
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and RB2 resistors are chosen as 2.7 kΩ and 1.3 kΩ. This allows e�ective communication of
up to 50 m distances.

5.3.10 Proximity sensors

The SAT has a rotation limit of ±90◦. Two magnetic proximity switches (IP68 compliant)
[102], which are essentially reed switches, are used to detect when the SAT has surpassed
the tilting limit. Since two sensors are used, it is possible to determine the direction of the
over-tilt. Knowing on which side the SAT has over-tilted allows a user to remotely steer
the SAT back into place, by using one of the commands, as described in section 5.5.7. The
conceptual and circuit design is presented in Figure 5.17. Two dedicated MCU external
interrupt pins (EXT0, EXT1) are assigned to each of these sensors. When the SAT over
tilts, a magnet activates the proximity sensor and an interrupt is generated which deactivates
the DC motor. As the switch of the proximity sensor closes, the input signal towards the
AND gate [103] is changed to a logic low, with the RPU (10 kΩ) limiting the current �ow.
When a sensor is not activated, the RPU resistor keeps the AND gate logic input high. Thus,
the external interrupt of the MCU reacts on a falling edge only. This is essential, because
if the SAT is moved back into position, so that the logic input to the external interrupt pin
changes from low to high (normal operation), then an interrupt in not generated.

Figure 5.17: Circuit design of the proximity sensor circuit which generates an interrupt when
over tilt occurs.

5.3.11 LCL �lter and input bus capacitor design

The PWM signal provided from the H-bridge to the DC motor is smoothed out by mak-
ing use of an LCL (inductor-capacitor-inductor) �lter. By means of simulation, performed
with a basic LT-SPICE simulation package, the value of each inductor and the capacitor is
determined as 50 µH and 40 µF, respectively.

For the inductor, a FS-1RN-131-26 series toroidal core, of iron powder-26 [104] is used. The
inductor windings consist of a 2 mm (diameter) copper wire. This toroidal core is selected
due to its high magnetic �ux capability [104]. However, to ensure the appropriate toroidal
core is selected for the design, the core must not saturate for a chosen DC motor current
value of 13.5 A. If equation (5.38) is adhered to, then the toroidal core selected is appropriate
for the speci�ed design criteria [105]:

B ≥ µNi

lc
(5.38)

Where the variables in (5.38) are de�ned by equations (5.39) to (5.41):
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B = µH (5.39)

H =
Nlc
i

(5.40)

µ = µ0µr (5.41)

In equations (5.39) to (5.41) the variables represent [105]:

B = magnetic �ux density [T]
N = number of turns [turns]
i = maximum current [A]
lc = length of the core [m]
µr = relative permeability of material [H/m]
µ0 = permeability of air which is 4π × 10−7 [H/m]
H = Magnetic Field Intensity [A/m]

This toroidal core has an inductance rating Al of 116 [nH/N
2] [104]. Therefore, the number

of turns required is calculated as:

L =
µcN

2Ae

lc
= N2Al (5.42)

N =

√
L

Al

(5.43)

N =

√
50 [µH]

116 [nH/N2]
(5.44)

N = 21 [Turns] (5.45)

With the relative permeability de�ned as 75, [104, p. 27] at 20 kHz and the magnetic
�ux density de�ned as 1.2 T, it is determined that the toroidal core will not saturate with
equation (5.38):

B ≥ µNi

lc
(5.46)

B ≥ (4π × 10−7)× 75× 21× 15

0.0772
= 0.385 T (5.47)

Thus, with B equal to 0.385 T, this is well below 1.2 T and the core will not saturate.

With the inductor design �nalised, only the capacitor is still to be selected. Two 22 µF
Polyester (PET) Film Capacitor (Epcos FB32524) [106] are added in parallel. With a DC
voltage rating of 63 V, this capacitor is chosen due to the ability to be used in applications
where sharp, fast rise time spikes are present, as these capacitors are able to accommodate
high dV/dt �gures.

Upon start-up, to prevent the DC motor from withdrawing too much current at once, which
would cause the rest of the circuitry to possibly lose power, a series of bus capacitors are
installed. Four electrolytic 1 mF Aluminium capacitors [107] are added in parallel, together
with a 10 µF polyester �lm capacitor [108].
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5.4 PCB design

5.4.1 SAT PCB board

With regards to the PCB design of the SAT board, it is important to separate the high
current and voltage circuitry from the digital, analogue and communications circuitry. The
RS485 communication circuitry is completely separated from the rest of the PCB, with an
isolated ground and voltage supply. The analogue and digital circuitry, is separated by
distance and strategic component placement. Wide copper traces are used to accommodate
the �ow of current from the power supply to the DC motor. The requirements for the PCB
layout, with regards to the isoSPI device and the 1:1 transformer are also adhered to, as
recommended by the application notes of the LTC6820 datasheet [100]. The PCB design
schematics are provided in Appendix C.3.

Figure 5.18: Illustration of the completed SAT PCB design .

5.4.2 Position sensor

The position sensor PCB is designed so that the AS5048A position sensor itself is separated
from the rest of the components, by placing it on the backside of the PCB. This is illustrated
in Figure 5.19. This is done so that the PCB can be mounted onto the gearbox of the
DC motor and the magnet on the axis can be read easily. With this design the position
sensor board can be easily exchanged with another, should an issue arise. The PCB design
schematics of the position sensor board are also provided in Appendix C.3.

Figure 5.19: Illustration of the SAT position sensor PCB board.

5.4.3 SAT circuit problems encountered

Substantial ringing is measured on the output signals of the H-bridge MOSFETs, as well
as voltage spikes over the current sensing resistor. The ringing was signi�cantly reduced
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with the addition of a 30 Ω gate resistor. A snubber circuit is also added in an attempt to
eliminate further ringing, but this did not help to resolve the issue of the voltage spike seen
over Rsense. Therefore, the current detection circuitry unfortunately could not be utilised.
However, to eliminate the possibility of an undetected over current event, a 15 A fuse is
installed between the battery supply and the SAT circuit board.

5.4.4 Electronic installation of the SAT system

With the PCB design of the SAT and position sensor boards completed, these boards are
installed as displayed in Figure 5.20. The complete electronic set up of the SAT board,
the LCL �lter, input bus capacitors together with the AL boards are shown in 5.20a. The
position sensor circuit board mounted onto the SAT gearbox is displayed in Figure 5.20b.

(a) SAT circuitry and AL installation (b) Position sensor installation

Figure 5.20: Electronic installation of one of the SAT systems systems.

5.4.5 SAT Mechanical and structural assembly

DC motor and gear con�guration

An F7147H series King DC motor is used on each tracker. This is a brushed DC motor with
the rated values as presented in Table 5.3. After several tests are performed, it is determined
that the speed of rotation is to be reduced to less than one r.p.m. to allow for a smooth
rotation, without inducing any whiplash on the mounted tracker modules. Therefore, a
reduction gear ratio of at least 1:4000 is required.

Table 5.3: DC motor rated values [109]

Speed Voltage Current Input Torque

No Load 4105 r.p.m. 24.18 V 1.37 A 33.1 W 0.28 kg-cm
Full Load 3268 r.p.m. 24.09 V 13.63 A 328.3 W 7.07 kg-cm

It is decided to make use of a worm gear con�guration. Worm gears have the advantage
of large gear reduction ratios and a locking capability, which prevents the shaft connected
load to turn the gear. This ensures minimal inertial backlash. Only the worm, connected
to the shaft of the DC motor can turn the gear. This is ideal, since it is necessary for the
SAT axis to stay in place at all times, irrespective of any external force applied to it (such
as wind). As presented in Figure 5.21b, two worm gears are attached to execute a double
reduction gear ratio of 5000:1, which equates to a 0.8 r.p.m. rotation speed at most. This
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is accomplished with a 50:1 NMRV030 63B5 and a 100:1 NMRV050 63B5 worm gear [110]
connected to one another with an NMRV030 to NMRV040 coupling3.

SAT system assembly

The mechanical assembly of the SAT system is displayed in Figures 5.21b to 5.21d. As can
be seen from these images, each SAT consists of three A-frames, secured onto a concrete
block foundation. On top of each A-frame is a pillow block bearing and housing for the axis.
In Figure 5.21b the worm gear combination is illustrated. Two stainless-steel (50 mm φ.)
axis are connected by means of a universal mechanical joint, which is housed by the middle
A-frame's pillow block bearing. The rail-to-axis clamps, in Figure 5.21c, also allow a margin
of adjustment, to ensure the horisontal alignment of the PV modules.

(a) SAT front side. (b) DC motor and gear assembly

(c) Rail-to-axis clamps (d) SAT backside

Figure 5.21: Mechanical assembly and installation of the SATs.

5.5 Software design

5.5.1 SAT software design overview

This section presents a conceptual overview of the algorithms and software routines im-
plemented, which allow the SAT system to operate as intended. As with the �rmware
implementation of the MC device, Atmel-Studio 6.2 is also used as the software develop-
ment platform. Therefore, all code is written in the C programming language, with further
details as already presented in Chapter 4.6.1.

The �rmware routine of the SAT system is divided into three categories and each will be
discussed in this section:

3Due to time constraints, it was the responsibility of another student, L. Joubert to do the required
calculations regarding the details of the mechanical design.
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1. Single-axis-tracker modes: Presents all of the di�erent operation modes which provide
the tracker's dynamic behaviour.

2. Motor control: Reveals how the control system feedback routine is applied, where the
trackers are aligned to a pre-determined tilt angle.

3. User access/control and communication: Presents the active-communication interface,
which allows the MC and a user to extract or send information and commands to the
SAT.

5.5.2 Software application of the tracking algorithm

The SAT tilt angles are de�ned with respect to the 0◦ reference line, as indicated in Figure
5.22. As evident from this tilting diagram, the following relationships are established between
the collector direction of the PV module and tilt angle:

−90◦ ≤ ε◦ < 0◦ : East (5.48)

0◦ < ε◦ ≤ 90◦ : West (5.49)

ε◦ = 0◦ : Solar Noon (5.50)

Figure 5.22: Illustration of the SAT de�ned tilt angles.

The tracking algorithm consists of three segments as illustrated in Figure 5.23. The �rst
part of the tracking algorithm sequentially applies the equations 5.1 to 5.9, as presented in
Section 5.2 to �nd the ideal tilt angle ε◦. Below is the simpli�ed �ow-diagram of the TA
applied to determine the ideal tilt angle.
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Figure 5.23: Illustration of the SAT de�ned tilt angles.

Figure 5.24: Flow diagram of the tracking algorithm which determines the ideal SAT tilt
angle ε◦.

Tracking initiates the moment when sunrise starts and ends with sunset. However, due to
the complexity of inter-module shading during the early morning and late afternoon hours,
the tracking algorithm is separated into two parts, namely normal tracking and backtracking.
With backtracking applied during periods of low sun altitudes and normal tracking during
periods where table-on-table shading is not of concern.

As mentioned, the TA is executed once every minute, which is found to be adequate for
accurate tracking. It is redundant to continuously calculate the optimal tilt angle, since
the position of the sun progresses gradually over time. The TA also aims to reduce motor
activity, by allowing some degree of deviation (ω◦) from the ideal tilt angle ε◦ideal. The allowed
degree of deviation ω◦ is set at 2.5° for this system. This is found to provide a good balance
between reduced motor activity and a negligible loss to received irradiance.
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Normal tracking routine

Normal tracking simply refers to the tracker being aligned with the optimal tilt angle (ε◦ideal).
The TA compares the current position of the SAT, denoted by ε◦now, to ε

◦
ideal and when the

condition of equation (5.51) is no longer true, will the SAT be realigned.

(ε◦ideal − ω◦) < ε◦now < (ε◦ideal + ω◦) (5.51)

Where the variables in equation 5.51 represent:

ε◦ideal = Ideal tilt angle
ε◦now = Current tilt position of the tracker
ω◦ = allowed deviation from the ideal tilt angle

As mentioned, when (5.51) is no longer valid, the SAT is realigned to a tilt angle of ω◦

ahead of ε◦now. This movement is illustrated in Figure 5.25a. As the sun progresses, the ideal
tilt angle will eventually come into alignment with the tracker's current angular position, as
demonstrated in Figure 5.25b. Finally, the sun will then move past the position of the SAT
as shown in Figure 5.25c. Then, when the Sun has moved ω◦ degrees ahead of ε◦now, equation
5.51 will be violated and the SAT will once again be moved at a position of ε◦ + ω◦, which
is ω◦ degrees ahead of the ideal tilt angle, for the particular sun position.

Figure 5.25: Normal tracking illustrated. Illustration a, b and c represents tracker positions
as the sun progresses during hours associated with normal tracking.

The conceptual software routine applied to implement the normal tracking routine, is illus-
trated by Figure 5.26. From this �ow-diagram it can be seen that even during the normal
tracking mode, the TA still accounts for potential inter-module shading. If shading does
occur, the TA shifts to a backtracking routine, which is explained in the text to follow.
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Figure 5.26: Overview of the software routine used to apply the normal tracking procedure.

Backtracking routine

Backtracking is an iterative process where a tilt angle is identi�ed that will avoid panel-on-
panel shading. Backtracking is applied during periods of low sun altitudes, namely early
morning hours (sunrise) and late afternoon (sunset). The backtracking strategy for sunrise
and sunset is di�erent from one another, but the concept remains the same.

Backtracking during sunrise:
When the time of geometric sunrise appears, which is when the sun's midpoint is on the
Horizon [44, p. 209], the SAT is set at zero degrees (horisontal). Then, the algorithm
searches for a tilt angle which will not result in inter-shading, starting from zero degrees. It
must be noted that, although the sun may visually appear earlier in time on the horizon,
due to atmospheric refraction [44, p. 209], the algorithm does not react on this, but only
accounts for geometric sunrise and sunset. By not accounting for atmospheric refraction
and using the geometric sunrise and sunset as reference point, a small degree of safety is
gained, which further ensures that the panels will not cast a shadow onto one another.
When the ideal backtracking tilt angle ε◦bt is found, the SAT will not be tilted towards this
angle immediately, since this would result in a more frequent use of the motor, as previously
mentioned. Only when the di�erence between the current tilt angle ε◦now and the backtracking
angle ε◦bt is greater than the allowed degree of deviation, ω◦, will the SAT tilt towards ε◦bt.
In backtracking mode the, allowed degree of deviation is determined by the condition of
5.52 In Figure 5.27 the backtracking strategy during early morning hours is illustrated. As
depicted by Figure 5.27, three angles are essential for the backtracking algorithm, which
are: The ideal tilt angle εideal, which results in maximum irradiance exposure; the ideal
backtracking angle εbt, which avoids inter-module shading and applies maximum irradiance
exposure; current module tilt angle εnow.

|ε◦bt| − |ε◦now| ≤ ω◦ (5.52)
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Figure 5.27: Backtracking during sunrise, with the di�erence in projected shadows for the
three di�erent tilt angles. The arrows refer to direction of movement.

The movement of the tracker with regards to the three angles, is illustrated by Figure 5.27.
During backtracking, the PV module's tilt angle and the backtracking angle advances towards
a bigger absolute tilt angle (descend), to allow for maximum irradiance exposure. On the
other hand, should the tracker follow the ideal normal tracking angle ε◦bt, the PV module's
absolute tilt angle would gradually decrease (ascend towards horisontal position), but this
would result in module shading. Backtracking during sunrise is ended when the condition
of equation 5.53 is true:

|ε◦bt| ≥ |ε◦ideal| (5.53)

An overview of how the backtracking algorithm calculates and implements backtracking
during the morning, is displayed in Figure 5.29.

Backtracking during sunset:
During the afternoon, backtracking is initiated when the �rst inter shadow is projected
for the ε◦ideal tilt angle. The TA, executed during normal tracking, always factors in the
possibility of a new tilt angle casting a shadow onto another module. With ε◦bt determined
as the absolute maximum tilt angle, where shading is still avoided, the SAT is tilted 2.5 ◦

(ω◦ = 2.5◦) ahead (ε◦now), as displayed in Figure 5.28. The tracker is moved ahead of ε◦bt by
2.5◦ to avoid regular motor activity, as well as to account for the tracking interval, which is
monitored only once every minute. The SAT is then kept stationary at this tilt angle (ε◦now),
until ε◦bt has caught up with ε◦now. As soon as the condition of equation 5.54 is true, the
panels are tilted ahead to εbt−ω◦. Backtracking for the late afternoon ends, when εbt settles
at 0◦ (horisontal).

ε◦bt − ε◦now ≤ 0◦ (5.54)
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Figure 5.28: Backtracking during sunset, with the shadow position indicated for the three
di�erent tilt angles ε◦ideal, ε

◦
now and ε◦bt.

Software implementation of the backtracking algorithm:
As mentioned, calculating the backtracking angle is an iterative process, based on the rela-
tionship between the shadow projected between the trackers, as well as the physical available
distance between the trackers. Equations 5.1 to 5.19 are all utilised to implement the normal
tracking and backtracking algorithms, as explained. This is demonstrated by the software
�ow diagrams in Figure 5.29. It should be noted that, the backtracking algorithm makes
use of 0.25°increments, to test for a new potential tilt angle εbt. This 0.25°increment value
is determined from iterative testing.

Figure 5.29: Backtracking algorithm �ow diagram for sunset and sunrise.
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5.5.3 SAT operation modes

The SAT system has six modes of operation, each with a unique functionality and accom-
panying software routine to execute the desired behaviour.

� Mode 1: Normal tracking mode

� Mode 2: Backtracking mode

� Mode 3: Stationary mode

� Mode 4: Night mode

� Mode 5: Safety mode

� Mode 6: Self-cleaning mode

Mode 1: Normal tracking mode

As discussed in Section 5.5.2, during this mode the SAT aligns the modules with the ideal
tilt ε◦ideal angle that results in the highest exposure of irradiance.

Mode 2: Backtracking mode

As discussed in Section 5.5.2, during this operation mode panel-on-panel shading is avoided
during periods of low solar altitude (sunrise and sunset).

Mode 3: Stationary mode

The SAT system provides the user with the option of assigning a �xed tilt angle, which will
force the SAT to remain stationary in position. Only if one of the following conditions occur,
will the SAT abandon the stationary mode:

� Emergency safety routine is initiated.

� Tracking is resumed.

� A software or hardware reset is executed.

� When self-cleaning mode (refer to Section 5.5.3) is initiated due to rainfall or morning
dew. It should be noted that this self-cleaning mode can only commence if the SAT is
enabled for this mode, otherwise this will not a�ect the operation of Mode 3.

Mode 4: Night mode

Night mode is initiated when the altitude angle β◦ of the sun is determined as equal to or
below zero degrees. During this mode the SAT is tilted into a horizontal (ε = 0◦) position.
Night mode is ended when sunrise occurs and β > 0◦. Only if the following events occur,
will the SAT be taken out of or prohibited from executing night mode:

� A �xed tilt angle is assigned (Mode 3 active)

� If a safety mode is imposed (Mode 5 active). Should the safety mode be ended, during
the night, then the tracker will move into the default tracking routine for that moment
in time, which is night mode.

� Temporarily interrupted when self-cleaning mode (Mode 6) is initiated.
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Mode 5: Safety mode

Any irregular internal behaviour will initiate a safety routine. This mode has the highest
authority and overrides all other system functionality. To protect the tracking system, only
a hardware or software restart, or a dedicated user command (Resume-Tracking(), Set-Tilt-
Angle()) can retire the SAT out of safety mode. The scenarios presented below, will cause the
safety mode to be activated. In the �rmware routine, each scenario also receives a dedicated
variable to identify the origin of the safety mode being initiated.

Over-tilt: As mentioned in Section 5.3.10, the SAT has two proximity sensors. Each sensor
generates an external interrupt when the SAT rotates beyond ±90◦. Over-tilt may occur due
to a faulty position sensor reading, where either the position sensor itself is faulty, has been
removed or is no longer in close proximity with the rotating magnet. When the external
interrupt vector executes, the H-bridge MOSFET driver is disabled and a 50 % duty cycle
is applied (should the driver fail to be disabled). The tracker's operation mode is changed
to mode �ve and a �ag is set to indicate on which side the tracker over-tilted.

Immobility: If the SAT fails to rotate or the time elapsed to reach the intended angle
exceeds 50 sec, the SAT is placed into safety mode. This event can occur if the motor is
either stuck in position, or movement is restricted so that the tracker rotates slowly. If the
motor is physically obstructed and the over-current detection is not triggered, this ensures
that the fault is identi�ed.

High wind speeds: For wind speeds greater than 12 m/s (user-de�ned), the panels are
tilted into a �at horizontal (0◦) position as demonstrated in Figure 5.30. The master-
controller monitors the wind-speed and takes control of the SAT, should the wind speed
exceed the limit. Even if a user resumes normal tracking (by applying a restart), the MC
will force the SAT to default back into safety mode. The SAT has a waiting period of 20
minutes (user de�ned) after which no more high wind speeds (≥ 12 m/s) have been identi�ed.
If the waiting period is exceeded, normal operation is resumed by the SAT system. Figure
5.30 illustrates the position adopted during high wind speeds.

Figure 5.30: Emergency 0◦ tilt initiated during high wind speeds.

Over-current detected: Over current detection is set as 13.5 A as discussed in Section5.3.8.
If the MCU reads a high ADC voltage input over the Rsense resistor or receives an external
interrupt from the comparator circuitry, the DC motor is disabled and the safety mode is
activated.

Mode6: Self-cleaning mode

As part of the dust-mitigation strategy, this mode allows a tracker to make use of natural
occurring precipitation (rainfall and morning dew) to initiate a self-cleaning process. When
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rainfall occurs the MC informs the SAT, which then rotates the modules into the direction
of the rain, at a ±45◦. In the morning, Figure 5.31 illustrates the self-cleaning tilt positions.

Figure 5.31: SAT tilt angles adopted for self-cleaning mode.

5.5.4 Motor control and SAT positioning

The algorithm responsible for rotating the SAT consists of three segments:

A PWM signal generated by the OC1A output pin of the MCU, is applied to the H-bridge
(HIP4082) MOSFET gate-driver, which in turn controls the input to the DC motor. The
direction of tilt is determined by D as demonstrated in Table 5.4. However, the value of D
[%] is also determined by the input voltage VBAT of the battery bank. As demonstrated by
equation 5.55, the value of D is �rstly adjusted to stay within the DC motor's rated voltage
restriction VDC(rated). Equations 5.56 and 5.57 are applied afterwards, to de�ne the direction
of rotation. The frequency of the PWM signal is set at 20kHz.

Table 5.4: SAT direction of rotation for applied duty cycle (D)

Direction Of Rotation

Forward (East-West) Backward (West-East) Stationary

D < 50% D > 50% D = 50%

Drated =
VDC(rated)

VBAT

× 100% (5.55)

Dmax = 50% +
Drated

2
(Forward rotation) (5.56)

Dmax = 50%− Drated

2
(Backward rotation) (5.57)

Details regarding the software set up of the PWM signal are presented in Appendix C
(Section C.4). The assigned maximum duty cycle of the PWM signal is not immediately
applied. Instead D is slowly ramped up and stops to increase when either the Dmax value
is reached or the tilt angle has been reached. This is done to decrease the stress on the
mechanical parts, by allowing the tracker system to slowly come into motion. It is also
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found that by not allowing the PWM signal's duty-cycle to be ramped up slowly, a high
initial current (∼ 10 A) is drawn.

5.5.5 ADC set up

Pin-30 (ADC6) and pin-31 (ADC7) of the MCU are dedicated to reading the current IBAT

and voltage VBAT input to the DC motor, from the battery bank. As mentioned, the voltage
measurement is ultimately required to ensure the maximum rated voltage is not exceeded by
the PWM signal. The current value is required to ensure that over current is detected. The
ADC functionality of the SAT system is set to operate at a 10 bit resolution. More details
regarding the software set up are provided in Appendix C, section C.4.

5.5.6 Reading the position sensor

The SAT tilt angle is retrieved from the AS5048A position sensor, by means of an SPI
connection. It is important to consider that the position sensor only has one SPI mode of
operation. The SPI interface of the position sensor reads on every falling edge and writes on
the MISO line every rising edge, with the SPI clock (SCK) pin idling low [98, p.10]. Thus,
to accommodate this interface, both the isoSPI (LTC6820) and the ATmega1284 MCU is
set up accordingly. Finally, due to the reasons mentioned in Section (hardware LTC6820),
the clock frequency is set as 156 kHz.

When the angular data is requested from the position sensor the isoSPI is �rst enabled and
then selected by assigning a logic high and low to the EN (enable) and CSn (chip select low)
pins. It must be noted that after each 16 clock cycles the CSn has to be set back to a high
status, as advised in datasheet [98, p.10]. The process of retrieving the angle data from the
position sensor is displayed in Figure 5.32

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. SINGLE AXIS TRACKING 90

Figure 5.32: Overview of the software routine applied to collect angular data from the
position sensor (AS5048A) via the isoSPI (LTC6820) chip.

When the 14-bit data angle is �nally received, a parity check is performed to ensure data
validity. If successful, the value of the angle read AngleTrue, which is anything from 0◦ −
359.978◦ (14 bit resolution), is calculated as follows:

AngleTrue = AngleRAW −
1

16384.0
× 360.0◦ (5.58)

The angle convention used for the SAT system, is di�erent to the reference point of the
position sensor, as indicated in Figure 5.33. To adapt the desired SAT tilt angle, to the
angle convention of the position sensor, equations 5.59 and 5.60 are applied:

if 0◦ < εSAT ≤ 90◦ : ΦPOS = 360◦ − εSAT (5.59)

if − 90◦ ≤ εSAT < 0◦ : ΦPOS = |εSAT | (5.60)

When an angle is read from the position sensor and the angle is to be translated to represent
the physical tilt angle of the SAT, equations (5.61) and (5.62) are applied.

if 0◦ < ΦPOS ≤ 180◦ : εSAT = −(ΦPOS) (5.61)

if 180◦ ≤ ΦPOS < 360◦ : εSAT = 360◦ − ΦPOS (5.62)
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Figure 5.33: Illustration of the reference angles of the SAT system and the position sensor.

When the SAT is to be set to a speci�c tilt angle εSAT , then the desired SAT angle is converted
to the angular reference of the position sensor, as illustrated by Figure 5.34a. However, when
the angle is read from the position sensor ΦPOS, then it is translated accordingly to the angle
of the de�ned SAT position εSAT as depicted in Figure 5.34b.

Figure 5.34: Software routines of angular translation. a) Routine to translate εSAT to angular
reference of position sensor ΦPOS. b) Translation of ΦPOS to εSAT .
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5.5.7 SAT communication and software commands

Each tracker is regarded as a slave device, with the MC serving as the master device. Com-
munication with the tracker(s) is established with an RS485 connection and the USART of
the MCU. USART0 of the MCU on the SAT circuit board is used to transmit and received
data and the set up is exactly the same as for the MC device, described in Chapter 4.6.3.
The goal of the SAT communication is �rstly to provide angular data to the MC, which is
requested every minute. Secondly, the MC serves as intermediate device for communication
between a user and a SAT.

The same command structure is replicated as applied for the MC. This refers to the com-
mands separated into three groups namely HEX-41, HEX-42 and HEX-43 commands. The
HEX-41 and HEX-42 commands are standard set up and data retrieval commands, whereas
the HEX-43 commands are listed as special commands. As with the MC, a python based
interface is developed and integrated with the on line graphic user interface, for the website
that hosts access to the research facility. The available user functions and descriptions are
provided below.

HEX-41 and HEX-42 commands

Table 5.5: HEX-41 and HEX-42 commands

Command 0x41 Command 0x42

Sub-command Function() Sub-command Function()

0x01 Get-Device-Info() 0x01 Get-Setup()
0x02 Send-Device-Info() 0x02 Send-Setup()
0x03 Get-RxBuf() 0x03 Get-Tracker-Lengths()
0x04 Get-RTC() 0x04 Send-Tracker-Lengths()
0x05 Send-RTC() 0x05 Get-Angle-Position()
0x06 Set-Address-Baudrate() 0x06 Set-Tilt-Angle()
0x07 Get-Description() 0x07 Resume-Tracking()
0x08 Send-Description() 0x08 Send-Tracker-Status()

0x09 Get-Motor-Setup()
0x0A Send-Motor-Setup()
0x0B Get-Position-Sensor-Details()
0x0C Deactivate-Motor()
0x0D Adapt-To-Weather()

Get-Device-Info(): Retrieves the following SAT information:

� Device ID: This speci�es the type of device. For a SAT the device ID is 2030.

� Software version: Speci�es the running software version on the SAT.

� Serial number: The serial number format is YYMMNNNN with YY as year (16 for
the year 2016), M as Month and NNNN as the device number .

Send-device-info(): This function allows the user to specify a serial number for the SAT,
which serves as a unique number that di�erentiates one SAT from another. Example of a
serial number is: 16030002. Therefore, the serial-number informs the user that the device
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was manufactured in the year 2016, during March and it was the second (02) SAT board
manufactured during this month.

Get-RTC(): Provides the current date and time that resides on the SAT itself. The RTC is
provided in the following format: Weekday, YYYY-MM-DD, hh:mm:ss for example: Sunday
2016-05-15 21:59:20

Send-RTC(): Updates the RTC of the SAT, thus synchronising the clock of the SAT. When
the RTC is sent, the position of the sun is recalculated and the tracker will be advanced to
the appropriate tilt angle. Normal tracking will however not be resumed when the RTC is
sent to the SAT and the SAT is operating in either safety mode (Mode 5) or stationary mode
(Mode 3). Should the SAT be in self-cleaning mode (Mode 6) and a new RTC is received,
then normal tracking will be resumed as the SAT will exit self-cleaning mode.

Send-Address-Baudrate(): Updates the device address and the baud rate of the SAT.
Addresses 6, 7 and 8 are reserved for a connected SAT system. For this function only, the
MODBUS reply message will be a 7 digit (instead of 5 digit) MODBUS reply, if this set up
has been received. The format of the MODBUS reply is as follows:

Figure 5.35: MODBUS reply message of SAT after address and baud-rate are set.

Send-description() andGet-description(): Di�erent SAT devices are distinguished from
one another with a user de�ned description (name). When the description of the SAT is
retrieved with Get-description(), an example of the description would be: Single Axis Tracker
1

Send-Setup() and Get Setup(): Each SAT has a set up (de�ned by user entry) regarding
basic operation and information about the location of the SAT. The following information
is provided/retrieved when Send-Setup()/Get-Setup is executed:

� Track interval : Speci�es the interval [minutes] when the tilt angle of the SAT must
be monitored and adjusted if necessary.

� Degrees ahead (ω◦): This is the number of degrees ω◦ by which the SAT is allowed to
be ahead or behind the ideal tilt angle, as determined by the tracking algorithm.

� Degrees to iterate shading (b◦): When backtracking is in progress, the algorithm must
identify an angle at which shading will be avoided. This is however an iterative process.
The value of ω◦ de�nes the increments of this iterative process.

� Latitude (L◦): Refers to the latitude angle of where the SAT is physically placed.
L is de�ned as positive for the Northern hemisphere and negative for the Southern
hemisphere.

� Longitude: Refers to the longitude angle of where the SAT is physically placed. An-
gles in the Eastern hemisphere are regarded as negative and positive in the Western
hemisphere.

� Time Meridian: Refers to the local time meridian of the location where the SAT is
placed. Locations east of the meridian are regarded as negative, with west as positive.
Thus, for any location in South Africa this angle will always be −30◦.
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� Self cleaning mode: This setting activates or deactivates the self cleaning mode (Mode
6) of the SAT.

Get-Tracker-Lengths() and Send-Tracker-Lengths(): Get-Tracker-Lengths() retrieves
the lengths of the SAT set up. The only two dimensions of importance in terms of the
physical set up of the SAT is:

� The distance between the one axis to the other axis of each SAT [m].

� The module length (width) of the PV panels from east to west [m].

Send-Tracker-Lengths() allows the user to specify the above mentioned dimensions. These
dimensions are illustrated in Figure 5.36. These dimensions are used by the tracking algo-
rithm to ensure that inter shading is avoided.

Figure 5.36: User de�ned tracker lengths of SAT set up.

Get-Angle-Position(): Retrieves the current tilt angle and mode of the SAT. Table 5.6
clari�es the di�erent modes of operation:

Table 5.6: Di�erent SAT modes of operation

Mode Description

1 Normal Tracking
2 Backtracking mode
3 Stationary mode (tilted at speci�ed angle)
4 Night mode
5 Safety mode
6 Self-cleaning mode

Set-Tilt-Angle(): The single axis tracker provides the user with the option of assigning a
�xed tilt angle. When executed, the SAT operates in Mode 3.

Resume-Tracking(): Allows the SAT to synchronise with the normal tracking routine.
This mode would be initiated, by the user, when the SAT is either operating in Mode 3,
Mode 5 or Mode 6.

Get-Tracker-Status(): This function provides the state of operation for the SAT. The
details provided are presented below:
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� SAT operation: Warning and possible cause is provided should the SAT be in any
other mode other than tracking the Sun.

� Supply voltage [V]: Voltage input from battery bank.

� Supply current [A]: Current input from battery bank.

� Tracking mode description: Normal tracking, Backtracking, Stationary, Self-Cleaning,
Night-Mode, Safety-Mode

Send-Motor-Setup() and Get-Motor-Setup(): The DC motor connected to the SAT
has its own rated voltage and current values. Therefore, to avoid exceeding these rated
values, a motor set up must be completed by executing the Send-Motor-Setup() command.
The following set-up values are sent to the SAT:

� DC motor rated voltage [V]

� DC motor rated current [A]

Get-Motor-Setup() simply provides information regarding the rated voltage and current set
up of the DC motor. This function also returns the value of the Duty cycle currently applied
to the DC motor. If the supply voltage is more than the rated voltage of the DC motor,
then the Duty cycle will be less than 100 %, otherwise, it should be 100 %.

SAT-Adapt-To-Weather(): Speci�es whether or not the SAT must react to speci�c
weather conditions. If high wind speeds occur, this setting allows the MC to take con-
trol of the SAT and guide it to safety. If a tracker is activated for the self cleaning mode,
this once again allows the MC to inform the SAT of the event and to react accordingly. 1 =
activated and 0 = deactivated.

HEX-43 commands

The available HEX-43 user commands are displayed in Table 5.7:

Table 5.7: HEX-43 user commands list.

Command 0x43

Sub-command Function()

0x01 Get-Activation()
0x02 Send-Activation()
0x03 Get-Sun-Tracking-Parameters()
0x04 Check-Back-Tracking()
0x05 Get-All-SAT-Info()
0x06 Calibrate-SAT-Zero-Position()
0x07 Get-Zero-Cal-Constant()
0x08 Soft-Reset-SAT()

Send-Activation() and Get-Activation(): Send-Activation() de�nes if tracking is acti-
vated 1 = activated and 0 = deactivated. Get-Activation() speci�es whether or not tracking
is activated.
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Get-Sun-Tracking-Parameters(): SAT sends all of the necessary information with re-
gards to solar tracking, as listed in Table 5.8

• Get-Device-Info() • Get-RTC() • Get-Description()
• Get-Setup() • Get-Tracker-Lengths() • Get-Tracker-Status()
• Get-Motor-Setup() • Get-Sun-Tracking-Parameters() • Get-Activation()
• Get-Zero-Cal-Const()

Table 5.8: Tracking data provided by the SAT.

Variable Description
Day number n-th day of the year
EOT Equation Of Time
Delta (δ) The declination angle
Hour-Angle (H) The number of hours before or after solar noon
Azimuth (ΦS) Represents the Azimuth angle of the sun's position
Beta (β) Represents the altitude angle of the sun's position
E (εideal) The ideal tilt angle that will result in optimal irradiance
Ebt (εbt) If backtracking is in e�ect, the backtracking angle is provided
Enow (εnow) This is the current tilt angle of the SAT
d-max Max. available distance between the SATs for the speci�c tilt angle
dist Min. distance required between the panels to avoid inter-shading
Sunrise time Time of geometric sunrise (where midpoint of sun is on the horizon)
Solar noon time Time of day when the sun will be directly over the SAT
Sunset time Time of geometric sunset

Check-Back-Tracking(): This is primarily a function for diagnostic testing. The function
returns all information regarding the backtracking algorithm. This information is displayed
in Table 5.9:

Table 5.9: Active backtracking details.

Backtracking details

Variable Description

Mode SAT operation mode
Azimuth (ΦS) Azimuth angle of the sun
Altitude (β) Altitude angle of the sun
E (εideal) Ideal tilt angle
Ebt (εbt) Backtracking angle
Enow (εnow) Current tilt angle of SAT
d-max Maximum physical distance between SAT modules
dist Distance required between modules to avoid shading

Get-All-SAT-Info(): When the user requests information from a SAT, via the MC (user
executes MC functions Order-All-SAT-Info() and Get-All-SAT-Info() as described in Chapter
4, section 4.6.5) the SAT will respond by executing the Get-All-SAT-Info() user command.
This function returns all of the necessary information regarding the complete set-up and
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operation of the SAT. The information returned by the SAT, when this function is executed,
is the same information as returned by a user request for all of the following SAT functions,
simultaneously:

Calibrate-SAT-Zero-Pos(): The position sensors rely on an input from the magnet, �xed
on the axis, to indicate the tilt of the PV modules. However, for the position sensor to
read the correct value from the magnet, which represents the true tilt angle, the magnet
must be exactly aligned, so that the horisontal position of the tracker is also the zero tilt
degree position of the magnet. Instead of following an iterative and tedious process to align
the magnet physically, the zero position is simply calibrated in software. The zero position
angle cannot be calibrated if the tracker is in normal or backtracking mode, but only when
in stationary mode (Mode 3). The new zero calibration angle is saved to the EEPROM.

Send-Zero-Cal-Const(): This command is primarily for diagnostic purposes. It sends the
zero calibration angle of the magnet.

Soft-Reset-SAT(): A software restart is initiated by this command.
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Chapter 6

Experimental set up and methodology

6.1 Overview

As mentioned, the dust mitigation initiative of this research, serves to investigate di�erent
methods of reducing dust soiling on PV modules. The formulation of the Dust Mitigation
Strategy (DMS), as well as the implementation thereof, is presented by this chapter. A
complete description of each individual mitigation method is provided, as well as the del-
egation of these methods to speci�c modules. Details with regards to the coating applied
are also discussed, as well as the complete procedure followed to apply the coating. Finally,
the periodic cleaning procedures and the stepwise execution of these cleaning routines are
provided.

6.2 Dust mitigation strategy applied

6.2.1 Stationary PV modules

Two individually tailored DMSs are formulated for both the stationary PV modules and the
SATs. The process of thought applied to develop the DMS for this research study, is based
on the questions presented below. The resulting DMS is presented by Figure 6.1.

1. Does cleaning PV modules substantially increase PV module power output?

2. How do coated PV modules compare to uncoated modules?

3. How do di�erent cleaning intervals compare to one another and to modules that are
left inde�nitely?

4. How does water based (wet) cleaning compare to a dry cleaning strategy?

Firstly it is asked whether or not cleaning PV modules will substantially increase PV module
power output? From this question, it is asked whether or not coated modules perform better
than uncoated PV modules? This could be investigated by comparing coated to uncoated
modules for short (1-2 weeks), medium (1-3 months) and long term (6-12 months) cleaning
routines, as well as an inde�nite period, where modules are never actively cleaned. However,
because of a limited number of modules available, it is decided to only include the short
and long term cleaning routines in the DMS. It is assumed that this might provide a bigger
contrast, if any, between the results for the periodic cleaning routines. The short term for
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Figure 6.1: Framework of the DMS, consisting of various dust mitigation methods applied
to the allocated stationary PV modules.

this project is de�ned as a biweekly cleaning routine and the long term is de�ned as a six
month interval cleaning routine.

Another question to ask is how a water-based (wet) cleaning strategy compares to a dry
cleaning strategy. These two cleaning approaches are therefore also integrated into the
DMS. Thus, a wet and dry cleaning strategy is implemented over a short and long term
period, on both treated and non-treated PV modules. However, because there are only two
sets of long term modules (coated and uncoated) available, only a wet or dry cleaning routine
can be allocated. It is decided to only implement a wet cleaning strategy on the modules
exposed for six months. This allows a potential comparison to be made between modules
which are water washed, to modules naturally cleaned by rain, after a long term period of
exposure. Table 6.1 establishes each dust mitigation method. Figure 6.2 indicates the dust
mitigation method applied to each corresponding PV module.

Figure 6.2: Layout of the applied dust mitigation methods to allocated stationary modules.
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Table 6.1: Applied dust mitigation methods to individual stationary PV modules

Mitigation method Treatment Duration

A Hydrophobic coating applied. Left inde�nitely

B Untreated PV module Left inde�nitely

C
Hydrophobic coating applied. Long term exposure
Wet clean process. 6 months

D
Untreated PV module Long term exposure
Wet clean process 6 months

E
Hydrophobic coating applied. Short term exposure
Water clean process. 2 weeks

F
Untreated PV module Short term exposure
Water clean process 2 weeks

G
Hydrophobic coating applied. Short term exposure
Dry clean process 2 weeks

H
Untreated PV module Short term exposure
Dry clean process 2 weeks

Each method of dust mitigation is applied opposite and across from one another. For exam-
ple, method A is applied in row one, on the far right, whereas this same method is applied
in row two, on the far left. Then, once again for method B, the same approach is followed
where the two panels, to which the same mitigation strategy is applied, are located opposite
and across from one another.

Apart from the fact that all analytical comparisons, between PV modules, are normalised to
STC conditions, the reason for this 'opposite-and-across' approach is to minimise the e�ects
of external in�uences. These include factors such as the in�uence of wind and rain and more
speci�cally, the direction of the wind and rain received by the PV module surfaces. It is in
the opinion of the author that this approach allows general dust deposition to be less partial,
which therefore decreases sampling bias. For example, if it is hypothetically assumed that
more direct wind contact decreases dust deposition and that the general wind direction is
from the East (or West), PV modules located more to the Eastern (or Western) side of the
facility, might therefore be subjected to more advantageous conditions. Thus, by placing
two PV modules, with the same mitigation method next to one another, it might result in
sampling bias.

6.2.2 Dust mitigation method applied to SAT system

The development of a DMS for the SATs, is formulated as indicated in Figure 6.3. The
mitigation strategy for the trackers is focused on answering the following:

� Investigate how coated modules compare to uncoated modules, in terms of dust soiling.

� Determine the in�uence of a self-cleaning functionality on dust soiling, where trackers
utilise natural occurring precipitation to displace dust particles.

In Figure 6.3 the formulation of the DMS for the SAT modules is presented. Self-cleaning
refers to the ability of the SAT to make use of natural precipitation to provoke the removal
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Figure 6.3: Formulated DMS for the single axis tracking PV modules as indicated.

of accumulated surface dust. SAT one is activated for the self-cleaning mode, whereas SAT
two is deactivated. Details regarding the self-cleaning mode have been discussed in Chapter
5.5.3. Essentially, the self-cleaning mode instructs the SAT to react to rainfall, by tilting at
a 45◦ angle, into the direction of the rain. This allows rain droplets to collide directly with
the PV module glass surface. If the wind is in any direction East of the line de�ned by North
and South, (such as NNE, ESE) then the tracker will tilt 45◦ towards the Eastern side. The
self-cleaning mode also instructs the tracker to tilt 80◦ towards East, every morning, �ve
minutes before sunrise. This movement motivates droplets, formed by dew, to roll o� the
side of the module, eliminating dust. When self-cleaning commences in the morning, the
SAT (if activated for this mode) always tilts towards the same side for the dew cleaning, so
that the dust gathered on the module surface can be intentionally manoeuvred towards a
dedicated side. This is done in case the dew droplets are not enough to completely remove
the dust in one session. Therefore, the next morning when the self-cleaning mode commences
once again before sunrise, the remaining dust can be further displaced by the dew.

The mitigation methods are applied as shown in Table 6.2 and Figure 6.4. With the as-
signment of each mitigation method to a module, the same principle of applying the coating
"opposite-and-across" is used, as is done with the stationary modules. Also, suppose that
both modules on the self-cleaning tracker are coated with a dust removal product. This
would make it virtually impossible to distinguish whether or not the resulting e�ect on
dust accumulation, would be due to the coating applied, or the self-cleaning functional-
ity. Therefore, with the mitigation methods as assigned in Figure 6.4, this topology allows
for a non-ambiguous comparison between the modules on the self-cleaning tracker and the
modules on the normal tracker.
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Table 6.2: Applied dust mitigation methods to individual SAT PV modules

Mitigation method Treatment Tracker operation Duration

I Hydrophobic coating applied Self-cleaning

Inde�nitely
J Untreated PV module Self-cleaning

K Untreated PV module Normal

L Hydrophobic coating applied Normal

Figure 6.4: Illustration of the dust mitigation methods applied to the single axis tracking
PV modules as indicated.

6.3 Application of the module coating

6.3.1 Coating product speci�cations

Before selecting a coating product, the following objectives are set, with which the product
must preferably comply:

� Must be eco-friendly.

� Should be easy to obtain and a�ordable.

� Coating must be hydrophobic.

� Should be able to apply the product during any time of the day.

� Lifetime, of at least 12-18 months once applied.

The reasons for the above mentioned criteria are self explanatory, except maybe for specifying
a hydrophobic coating. When selecting between a hydrophobic and hydrophilic coating, the
decision is based on the environment, which is hot, dry and has a low rainfall. Hydrophobic
anti-soiling coatings are capable of repelling a broader range of organic contaminants than
hydrophilic coatings, which also prefer environments with a more frequent exposure to water
(rain) [111]. With this criteria in mind, a commercial glass surface coating is selected. This
product is hydrophobic and the coating itself is invisible. The product is also eco-friendly
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and easily obtainable from a local supplier, at a reasonable cost. The product is developed
for PV modules, as well as any glass surface that needs to stay clean for pro-longed periods
of time, such as the glass windows of buildings. The product is also non-�ammable. Finally,
a 24 hour period is required before any stress testing can be performed and the lifetime of
the applied coating is estimated at 18 months.

6.3.2 Applying the hydrophobic coating

As presented in Tables 6.1 and 6.2, the hydrophobic coating is applied to the PV modules
assigned to one of the following mitigation methods: A, C, E, G, I and J, as indicated in
Figure 6.5.

Figure 6.5: PV modules (in red block) to which the coating is applied.

The product is applied to the stationary modules, on the 16th of February 2016, whereas
the SAT modules are only coated on the 4th of June 2016. The exact procedure of applying
the coating to the PV modules is described below. Before application of the product pre-
cautionary measures are taken. Firstly, it is determined that there is no chance of rainfall
within a 24 hour period, to allow the product to completely settle onto the module. Secondly,
the product is also applied early in the morning, before the wind speed starts to increase,
which might introduce wind-borne dust and sand particles during the process of applying
the coating.

List of items

The list of items required for the application of the hydrophobic coating is listed below.

� 2 x Micro�bre cloths dedicated for spreading the surface coating.

� 1 x Micro�bre cloth dedicated for removing excess product on the PV module surface.

� 2 x Micro�bre cloths dedicated for cleaning the PV module glass surface with water.

� 2 x Sponges for isopropyl alcohol cleaner.

� Coating (approximately 35 mL - 60 mL for each PV module).

� An isopropyl alcohol cleaner such as general purpose window cleaner (approximately
50ml per PV module).
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� Distilled water (approximately 1.5 - 2 L per module).

� Time keeping device (watch)

� 1 x 20 L bucket for water

� 1 x Stepladder

� Appropriate safety clothes

Application onto the PV modules

Step 1: Wash module with distilled water.
The water found in the surrounding area of the research facility is brackish and leaves white
stains on the module surface. Therefore, all PV modules are cleaned with distilled water,
sold locally at most hardware shops in 5 L cans as distilled battery water. Approximately
1.0 L to 1.2 L of water is thrown into the 20 L bucket. The micro�bre cloths, dedicated for
cleaning the PV module surfaces, are soaked and used to clean the glass surface. With one
person on the step ladder and the other on the ground, the PV module is cleaned from the
top to the bottom, as shown in Figure 6.6a.

Step 2: Application of the isopropyl alcohol cleaner.
Remove the excess of water on the panel after the completion of step one. After removing
the excess water, apply the alcohol cleaner by spraying it across the surface, as demonstrated
in Figure 6.6b. Softly (to avoid damage to PV module surface), use a wet sponge to gently
clean away stubborn dirt particles.

Step 3: Wash module with distilled water again.
Repeat Step 1. Be sure to remove any excess water and ensure that the surface is completely
dry.

Step 4: Application of the coating.
With the PV module glass surface completely dry and clean, spray the coating onto a micro-
�bre cloth. As advised by the user guide, do not use too much (approximately 35ml-50ml),
since the coating is meant to be spread and all excess must be removed. Spread the coating
across the PV module surface so that it is evenly distributed, by making circular movements
across the surface, as shown shown in Figure 6.6c.

Step 5: Remove excess coating.
Ensure that the product is left for at least 1 minute (use timer), before using a clean micro�-
bre cloth to gently remove, any residue left on the surface. After the completion of these
steps, the PV modules are left untouched for the next 24 hours, to allow the product to cure.
Figure 6.6d shows a coated PV module.
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(a) Cleaning with water. (b) Applying isopropyl cleaner.

(c) Applying the product. (d) PV module after product applied.

Figure 6.6: Illustrations of the process for applying the hydrophobic coating.

6.3.3 Execution of the cleaning routines

The o�cial cleaning routines, as prescribed by the DMS, are implemented from the 21st
of April 2016. As according to the DMS, the PV modules with a short term scheduled
cleaning routine are cleaned once every 2 weeks. The PV modules assigned to mitigation
methods H and G are dry-cleaned and the PV modules assigned to methods E and F are
cleaned with distilled water. The following steps outline the process of both the dry and wet
cleaning process. It should be noted that during both the cleaning and drying process, one
person stands on top of the step ladder and the other on the ground. The person on the
ground, continuous the action of cleaning/drying from the section on the panel (about half
way downwards) where the person on the ladder can no longer reach.

Water-cleaning:

Step1: Pour approximately 1.5 L of distilled water, into the clean 20 L bucket and soak two
of the micro�bre cloths.

Step2: Clean the glass surface of the PV module by starting from the top �rst, cleaning the
PV module with downwards strokes. Soak the cloths as much as required, to ensure that all
visible dust is removed. It is essential to make smooth, slow movements with the wet cloths
to avoid water droplets from splashing onto the adjacent PV modules.

Step3: Dry the modules by making use of the super-absorbent cloths. Ensure that all
moisture is removed, to prevent any incentive for airborne dust to rapidly attach to the
module surface. When drying, the action is once again performed with downwards strokes,
to further remove any dust particles still present on the module.

Dry-cleaning:

Step1: Ensure that the micro�bre cloths, dedicated for the dry-cleaning, are dry.

Step2: This process is also performed with one person on top of a ladder and the other
on the ground. With a light downwards sweeping action, the modules is cleaned so that all
visible dust particles are removed. The idea is not to scrub the stubborn or infused dust
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particles o� of the module, since this might scratch/damage the surface. The aim of the dry-
cleaning is merely to remove most of the super�cial dust from the surface. After completion
of this step, the dry-cleaning is completed.

After performing the periodic cleaning routines on the appropriate modules, log the exact
time and date during which the modules are cleaned.

To ensure that these cleaning routines are completed adequately as according to the pre-
scribed methodology above, the following proactive measures are taken:

� Firstly, the scheduled cleaning routines are always executed by the same two people,
whom are part of the on-site sta� at the Kalkbult PV power plant.

� Secondly, the sta� are provided with the necessary cleaning equipment which includes:
2x micro�bre cloths for the dry cleaning, 2x micro�bre cloths for the water cleaning, 2x
special super-absorbent cloths for drying the PV modules, several 5 L cans of distilled
water, a 20 L water bucket.

� On the back of each biweekly cleaned module, the assigned mitigation method is writ-
ten, which is either a wet or dry cleaning process.

� Finally, a job completion list is also provided, which is to be �lled in after the comple-
tion of the scheduled cleaning routines.
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Chapter 7

Results and Analysis

7.1 Overview

In this chapter, the results presented focus on the real world performance of 16 stationary
and four single axis tracking, 250 W pc-Si modules. The data presented for the stationary
modules is recorded over a period of six months, which ranges from 4th of May to the 31st of
October 2016. Data for the SATs is presented for a three month period, which includes the
months and days of 14 August to 18 November 2016. This chapter starts o� with de�ning
the chosen Performance Ratio (PR), which is used to evaluate PV module performance.
This is followed by a discussion regarding the systematic process of raw data extraction and
data validation. The �nal part of the chapter presents the results of the analysis performed
regarding the in�uence of dust soiling on the stationary and tracking modules.

7.2 Performance ratio de�ned

Instead of pursuing a PV module ISC analysis, an e�ciency calculation or a or an energy
yield [kWh] approach it is the aim of this thesis to focus on power output, determined
from the extracted I-V curve measurements. Several authors [21, 23, 37, 41] have also used
output power as the criteria for analysing module performance. A Performance Ratio (PR)
is de�ned and serves as a metric to characterise the e�ect of soiling on a PV module. The
PR de�ned by equation (7.3) is adopted from authors [41] and is adjusted to determine an
averaged PR over a speci�c time span. This PR is based on the two fundamental equations
(7.1) and (7.2), which allow both temperature and irradiance correction to be applied. The
PR corrects measured PV module performance to the rated PV module characteristics as
de�ned at STC conditions. The PR is de�ned in equation (7.3). Evidently, this formula
provides a temperature and irradiance corrected power output value to be retrieved, which
allows a PV module to be compared with itself and other modules with di�erent power
ratings, over a range of varying conditions.

PDC = PSTC

(
GPOA

GSTC

)
(7.1)

PDC = PSTC × (1 + δ(Tcell − TSTC)) (7.2)
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PR =
1

N

N∑
i=1

PDC_i

(1 + δ(Tcell_i − TSTC))

PSTC

GPOA_i

GSTC

(7.3)

Where the variables in (7.3) are de�ned as:

PDC_i = recorded MPP of PV module in the ith minute of the day [W].
GPOA_i = measured POA irradiance in the ith minute of the day [W/m2].

GSTC = irradiance at STC [1 kW/m2].
Tcell_i = measured back-plate PV module temperature [C◦].
TSTC = PV module cell temperature at STC conditions [25 C◦].
δ = temperature coe�cient for power of the PV module [-0.4 %/C◦].

Power, irradiance and module temperature is measured at an instance, from which the PR for
that speci�c moment in time is determined. The performance ratio's power value is derived
from the measured I-V curve. Several researchers have proposed analysing the e�ects of dust
analysis on the I-V curve's short-circuit current value alone, due to the direct relationship
between ISC and irradiance. However, as concluded by [9], it is found that the short-circuit
current of a PV module is proportional to irradiance (at a given temperature), whereas for
the maximum power of a PV module, this is found not to be the case. This �nding is
also con�rmed in a study conducted by E. Lorenzo et al. [18], where it is concluded that
investigating the e�ect of soiling losses in terms of ISC alone, is not enough. Voltage losses
are observed to be several times larger than the ISC losses, which ultimately leads to higher
losses in terms of power output as compared to ISC losses only [18].

7.3 Raw data validation

7.3.1 Overview

Various steps are taken to ensure that data uncertainty is minimised with regards to the
raw data collection process, since this serves as the foundation of the data analysis. The
performance monitoring of the PVRF is mainly formulated to adhere to the guidelines for
measurement, data exchange and analysis as prescribed by the IEC61724 standard [59].

7.3.2 PV module data

All 20 of the PV modules (255W Renesola Virtus II series) installed at the research facility
are brand new and from the same manufacturer and supplier. The exposure time of all 16
stationary PV modules is synchronised with the modules installed on the same day, which
is 1 Aug 2015. The remaining four 255 W pc-Si PV modules, dedicated to the SATs, are
installed on the 1st of June 2016. Additionally, as speci�ed by the IEC60891 standard [48],
the backplate temperature of each PV module is also recorded, at the same instance when
the I-V curve and irradiance measurements are recorded.

To abstain from sampling bias regarding the performance of one PV module to another, all
modules are normalised to one another regarding power output. Initially, the PV modules
are installed on the 1st of August 2015, which equates to an exposed period of nine months,
before data analysis is commenced. However, due to the lengthy installation and testing
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phases of the data logging devices, initial rated PV module performance is not determined.
Instead, the STC power rating of each module is determined on the 11th of May 2016, be-
tween 12:30-13:10 PM. During this period of time, the wind speed is low (average of 1.09m/s)
and dominantly from the North and NNW direction, therefore slowed down further by the
thin-�lm row furthest to the north. The irradiance is also very close to STC conditions at
an average of 975 W/m2 recorded and an ambient air temperature recorded at an average
of 17.5 C◦ for this period. The process of normalising the PV modules accounts for tem-
perature and irradiance compensation, relative to STC conditions. Most importantly, this
day is chosen, because before the 11th of May a total of 24.5 mm and 8.5 mm of rain is
received on the 9th and 10th of May, respectively. From a thorough visual inspection, it is
concluded that all modules are in the same physical condition at this moment in time. The
argument could be made that microscopic dust particles are still present on these modules,
even after the heavy rain, but the uncertainty provided by these dust particles are negli-
gible, compared to the uncertainty of assuming that all PV modules are rated at 255 W.
Also, due to the fast and non-linear degradation of the PV modules during the �rst year of
exposure, characterising the rated power values of each module during May 2016 (start of
the measurement period) has some advantage. This eliminates uncertainty in the sense that
modules that might have degraded faster than others during the �rst nine months, are now
normalised appropriately. This argument is based on the PV module datasheet, which indi-
cates a drastic 2.5 % degradation from initial performance, during the �rst 12 months [52].
Thus, the long term decrease in the PR of a module, due to dust, is now more dependent on
the e�ect of dust itself and less reliant on the rapid initial material degradation of the PV
module.

The normalisation process of the power output of each PV module is determined by four
I-V curve measurements, which consists of a period of over 40 minutes. Each measurement
is corrected to STC conditions by means of equation (7.4).

PSTC =
1

4

4∑
i=1

PDC_i ×GSTC

(1 + δ(Tcell_i − TSTC))GPOA_i

(7.4)

Each I-V curve is curve �tted, according to the single diode model presented in section 7.8,
and the maximum power output PDC is determined. The results obtained for the rated
power are presented in Table D.1, Appendix D.

To further subject the PV modules to a real world scenario, the maximum available power
is continuously extracted from the PV modules, which is deposited into a dumping resistor,
mentioned in Chapter3.

7.3.3 ActiveLoads

The AL devices, as described in Chapter 3.5.1, are responsible for extracting the I-V curves.
These devices are carefully calibrated to minimise measurement uncertainty. The calibration
process eliminates the o�set and gain errors presented by the I-V curve measurements, which
results in a maximum measurement uncertainty determined as 0.5 %.

7.3.4 Weather station and irradiance measurements

As required by the IEC 61724 standard, total irradiance in the plane of the array, ambient
air temperature (protected by a radiation shield) and wind speed is recorded. The weather
station and the pyranometer are placed at a height and location, which is representative of

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. RESULTS AND ANALYSIS 110

the actual array conditions, as mentioned in Chapter 3 , section 3.4.6. The measurement
accuracy of the instruments are also well within the minimum requirements of the IEC61724
standard, as shown in Table 7.1. Weather and irradiance data, collected from the MSO-485
weather sensor and Kipp&Zonnen SMP10-Pyranometer, is monitored at a sample rate of
�ve seconds and logged every minute. An instant irradiance measurement is recorded at the
exact moment when the I-V curves are measured. Calibration dates of the weather sensor,
pyranometer and the rain-gauge are also valid for the entire measurement period.

Further uncertainty with regards to accurate irradiance measurements is minimised with the
pyranometer cleaned every week-day, except on weekends. Any speci�cs with regards to the
acquisition of the weather and irradiance data is discussed in Chapter 4.6.4.

Table 7.1: Instrument measurement accuracy and IEC 61724 standards.

Measurement Unit Accuracy IEC61724 accuracy
Wind-Speed [m/s] ±2% for speeds of 0-50m/s 0.5m/s for speeds < 5m/s

10% for speeds > 10m/s
Wind Direction [deg] ±5◦

Ambient Temperature [C◦] ±0.4 C◦ ±1 C◦

PV module temp [C◦] ±0.5 C◦ ±1 C◦

Relative Humidity [%] ±4 %
Barometric pressure [mbar] ±2 mbar

Rain [mm] ±1 %
Irradiance [W/m2] 0.2 % 5 %
I-V curve [V],[A] 0.5 % 1 %

7.4 Data alignment, storage and monitoring

With multiple devices continuously collecting data, data alignment is guaranteed by regularly
(minimum of once a month) synchronising all the RTCs of each device to that of the master
device (Raspberry-Pi). A time stamp linked with each measurement also ensures cohesion
between all I-V curve and meteorological data measurements.

With regards to data storage, all data measurements gathered are processed and recorded
onto an on-board SD-card, as well as an online MySQL (Structured Query Language)
database1. The data captured in the online database, is continuously synchronised with
the data on the local SD-cards of each device. This avoids data loss when an internet con-
nection is unavailable. In adherence to the IEC61724 standard, as mentioned above, a time
and date stamp is provided with each recording, at the end of the period during which mea-
surements are taken. Each set of data is di�erentiated by means of a column header, so that
each measurement is recorded as a single entity.

The status of all of the devices active on the research facility is monitored via a website 2.
This website, provides a live feed of the latest online database entries. This helps to avoid
the tedious process of analysing each database table individually. A dedicated monitor is
set-up in the o�ce, which displays the status web page continuously, so that the data logging
process and system operation is con�rmed throughout the day. This is found to be a great

1The infrastructure regarding the online database was created by Malem Heymans and revised by Tashriq
Pandy. The database is registered under the domain name of www.pvsoiling.co.za.

2This website is created by Tashriq Pandy and can be viewed at www.pvsoiling.co.za/status.
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method of system monitoring since it minimises response time and allows any system failure
to be identi�ed rapidly. Figure 7.1 presents a screen shot of this web page:

Figure 7.1: Monitoring website, which displays the status and most recent measurement
entries from all devices.

7.5 Data related documentation

To account for any known irregular activity that might in�uence data, a log �le is kept
according to the IEC 61724 standard. All unusual events, problems encountered, sensor and
system operation changes and faults are explicitly documented. This log �le also contains
comments that might be considered useful for the process of data extraction and interpre-
tation.

A cleaning and maintenance log �le is also maintained, so that scheduled cleaning routines
are both monitored and recorded. The sta� at the Kalkbult site, recorded the date and time
of all scheduled cleaning routines executed. Inspection of the PV modules for bird droppings
is also performed on a daily basis and should a PV module be exposed to a bird dropping
it is recorded. The date and time when the bird dropping is removed is recorded and the
size of the dropping is also recorded, as well as the PV module ID number, on which the
dropping is found. The sizes are de�nes as presented by Table 7.2.
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Table 7.2: Bird-dropping size de�nition

De�nition Size
Small Dropping ≤ 1cm2

Medium Dropping ≤ 5cm2

Large Dropping > 5cm2

7.6 Problems encountered during the process of data

acquisition

As can be expected, some challenges were faced with the data collection process.

SD-cards

Data captured by the SD-cards would occasionally fail. At most �ve SD-cards, out of the 25
logging devices, would fail on average once a month. Data is only lost for the time during
which the SD-card is not active. This issue is solved with a simple reformat of the SD card by
the on-site sta� at Kalkbult. The reason for this seems to be a potential low-level hardware
issue. It is also found that only 4 Gigabyte Scandisk, class 4 micro-SD cards can be used.

Weather station

Another issue that occurred during the period of 11-18 January 2016, was the fact that the
weather station's temperature reading constantly recorded a 999.99�. This resulted because
of a �rmware issue on the weather sensor's side. It was however resolved by uploading
a HEX-�le with a new �rmware version that was provided by technical sta� of Met One
Instruments.

The biggest issue with regards to data logging is the fact that approximately every 4 hours
and 20 minutes, the weather station provides no feedback for approximately 5-10 minutes.
At �rst, it was thought that the issue is with the MC board itself. However, after extensive
testing, this theory was refuted when another PCB board was programmed to reply as if it
was the weather station. No data loss occurred and it was concluded, to the best knowledge
of the author, that there is de�nitely a �rmware issue with regards to the weather station.
Since weather data (ambient temp. wind speed, wind direction, humidity, etc.) does not
change as frequently, this 5-10 minute loss of data still complies with the IEC61724 standard's
sampling interval of 10 minutes for data that is not directly a�ected by irradiance.

To try and counter this irregular behaviour from the MSO weather sensor, a remote supply
switch was added, which enables the weather station to be reset either remotely by a user,
or by the MasterController itself at speci�c intervals. This however, proved not to solve the
problem of a no reply issue every odd 4 hours. However, should there be any reason to reset
the weather sensor, the capability is still available.

Pyranometer

Irradiance measurements were also lost for the period of 21 June - 12 July 2016. The
Kipp&Zonen SMP10 pyranometer was exposed to water damage, which caused the connector
attachment of the cable to corrode. The connector of the pyranometer was repaired and
silicon was used to insulate the pyranometer from any possible future water damage. The
calibration and operation of the device is con�rmed by a local engineering company who
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specialise in these irradiance instruments. The lost irradiance data for this period is provided
by Scatec's on-site weather-data collection system.

Battery-bank

As mentioned in Chapter 3.4.4, a lightning strike is also presumed to have struck the power-
station, which caused both of the MPPT charge controllers to be destroyed. This lead to a
complete discharge of the 12 V lead-acid batteries. These batteries and the MPPT charge
controllers were replaced, however no data is available from 13th March to 21st March 2016.

Bird droppings

Due to frequent bird droppings, bird-spikes are also installed. A drastic decrease in bird
droppings are seen due to this addition.

ActiveLoads

It was also noticed that PV modules' measured currents were clipped at 9.3 A by the ALs.
This is due to a gain resistor for the INA111 operational ampli�er [112], that is too small at
900 Ω. Thus, the RG resistor is substituted for a 1k5 Ω resistor to ensure that high currents
would not clip. Due to the change of this resistor, the operational ampli�er gain had to be
adjusted, which means that the ALs had to be recalibrated in terms of current o�sets.

On several occasions some of the ALs would produce ISC and VOC readings, but would
however not deliver any power from the PV module to the resistor load. This was usually
due to a faulty load connection caused by a bad solder connection. On several occasions the
ALs would simply stop producing any ISC or VOC values, which was usually due to defective
MOSFETS.

In terms of the ALs that measured the I-V curves for the Thin �lm modules, the mea-
surements had to be aborted, due to faulty measurements. The open circuit (OC) current
readings (IOC) for the thin-�lm modules do not record zero Ampere readings, but instead
record current at open-circuit conditions as 0.6 A, which is almost 50 % of the Isc value.
The reason for this behaviour is undetermined and requires further investigation. The mea-
surements also had a large noise factor, which only contributes further to the uncertainty of
the PV thin-�lm module measurements.

Temperature sensors

Another issue was with regards to the temperature sensors. Problems ranged from inconsis-
tent temperature readings to constant measurements of zero degrees. The solution was to
insert a terminating 47 Ω (line impedance) resistor in series with the MISO and MOSI lines
of the SPI cable connection.

Single Axis Trackers

The data acquisition of the single axis tracker ALs (Numbers 21-24) was stopped after logging
data successfully from the 4th June to 22 July 2016. Unfortunately, the position sensor of
a single axis tracker became faulty. It was replaced by a new position sensor, but due to a
calibration o�set of 10 degrees introduced by the new sensor, both single axis trackers were
stopped. New code was implemented to allow remote calibration to be performed, should
one of the position sensors be misaligned. The modules on the trackers were cleaned and
the overall process of data collection was restarted again on the 13th of July 2016.
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7.7 Process of data extraction and �ltering

7.7.1 Data extraction

The process of data extraction is executed by means of a script written in Python2.7. This
script integrates the functionality and processing power of the MySQLdb python library, to
allow for a more powerful execution of online data extraction. The Python script for the
data analysis and parameter optimisation is performed on an ordinary PC which consists of
a 3.6 GHz, i7 CPU, with 16 GB of RAM and a 64-bit Windows 7 Operating System. An
internet connection is required, since the accumulated raw data is to be obtained from the
online database (DB).

7.7.2 Data �ltering

The ultimate goal of the data analysis is to determine the e�ect of dust soiling, on PV mod-
ule output power. With the process of raw data acquisition, clearly de�ned in section 7.3
the next phase of the data analysis can commence. To introduce a data set that is accurate
and a true representation of PV module behaviour, any particulars that might alter data
credibility, is �ltered out. This process of �ltering is performed by asking a series of questions
to de�ne how valid data is to be discerned from invalid data.

• In terms of data measurements, what is the criteria for a measurement day to be regarded
as valid?

This question serves as the foundation for identifying the necessary criteria to de�ne a valid
day. More questions are asked to answer this question holistically.

• Which hours of a day will be used for the PV module performance analysis?

Firstly, it is decided to avoid low light conditions, which typically refers to one hour after
and before the sunrise and sunset, respectively. The shading pro�le of the research facility,
provided in Appendix D.3, also only allows a valid all year round period for measurements
between sunrise up until 16:00 PM. According to the datasheet of the 255 W, Renesola
Virtus II modules, the e�ciency of the modules varies with the level of irradiance to which
the modules are exposed as presented in Table 7.3. Thus, to avoid the e�ects of a varying
e�ciency, it is decided to apply the PR for relatively constant levels of irradiance. From
inspection of the recorded GHI data, it is determined that irradiance levels with a small
variance (< 150 W/m2) are observed from 11:00AM-14:00PM for a clear day. This is also
the time of day when the highest levels of irradiance are available and power output for the
stationary PV modules are at a maximum. Based on these two factors the hours regarded
for the performance analysis of a PV module is the hours of 11:00AM to 14:00PM.

Table 7.3: Renesola VirtusII PV module datasheet speci�cs for irradiance and e�ciency .

Irradiance [W/m2] 200 400 600 800 1000
E�ciency [%] 15.8 16.2 16.2 16.1 16.0

• From a meteorological perspective, what weather conditions will disqualify the recorded
measurements of a day?
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To avoid irregularities with regards to irradiance and maintain a uniform approach in terms
of analysing the PR of modules, only clear days are examined. A clear day is characterised
by two criteria, namely:

(a) The di�erence between consecutive GHI measurements, recorded at one minute intervals,
must not vary by more than 30 %.

(b) An irradiance measurement of at least 800 W/m2 must be recorded during the 11:00AM
- 14:00PM time period.

Thus, from condition (a), if a GHI measurement deviates more than 30 % from the previous
measurement, then it is regarded as an invalid day. Deviation from this 30 % tolerance
implies cloud cover. The reason for selecting 30 % as the tolerance is based on inspection, as
presented in Figure 7.2. This graph displays the power output of six consecutive days where
di�erent levels of irradiance are recorded. Each power curve in Figure 7.2 represents the
maximum tolerance required for a measurement day to be de�ned as valid. Condition (b)
ensures that the minimum irradiance is high enough so that a 30 % tolerance is applied to
days of high irradiance. If a speci�c day is cloud covered and irradiance levels are low, then
condition (a) might be ful�lled, but condition (b) will ensure that high levels of irradiance
are indeed experienced during this day.

Day: 
 20-25 September 2016
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300
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o
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>50% >40% >10% >70% >30% >10%
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Figure 7.2: Illustration of the power curve limitation, imposed by the condition of a maximum
GHI deviation.

• How will days or log intervals be managed, where there are either missing or no irradiance
(GPOA), module temperature (Tcell) or I-V curve measurements available for a speci�c data
recording?

As de�ned by equation (7.3), the PR is the recorded average of the temperature compen-
sated power, divided by the irradiance adjusted power, as measured over a de�ned period
(11:00 AM to 14:00 PM). Should any of the data samples retrieved fail to produce a GPOA,
Tcell or PDC value from which the power is determined, then it is not included in the PR
equation. For example, if there is no irradiance measurement available for the log interval
of 11:10 AM, on a speci�c day, then it is ignored by the PR equation, to avoid the PR value
from being skewed. Should no data be available for the entire measurement day, for either
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of these entries, then a PR of zero is logged.

• How is on-site human interference, which may corrupt recorded data, avoided?

As mentioned, a log �le is kept according to the IEC 61724 standard, where all on-site main-
tenance and irregular activity is recorded. Days on which on-site installations and general
work are done, are ignored where necessary. In terms of the scheduled cleaning, if the mod-
ules are cleaned during the period of 11:00 AM-14:00 PM, this day will be discredited and
a PR will not be presented for this day.

• How does the data analysis account for bird droppings?

As mentioned, part of the daily maintenance routine is to ensure that there is no bird
droppings. Should a bird dropping be recorded, data for the speci�c module for that day
will be disregarded.

• How is I-V curve measurement noise and accompanying measurement uncertainty �ltered
out?

This is meticulously explained in section 7.8. In summary, a single diode curve �tted model
is applied over the measured points. If the �tted curve is unable to appropriately �t the
measured data, for example in the case of momentary shading (displayed by Figure 7.7) the
recorded measurement is ignored.

• How are scheduled cleaning days and days that received rainfall accounted for in the anal-
ysis?

These days are indicated on all graphs where necessary, to give an indication of these events.
Cleaning routines are also mostly executed outside the measurement period of 11:00 AM to
14:00 PM, if possible. However, should a cleaning routine be executed during these hours,
the measurements are disregarded.

• How is the di�erence in tilt angle of the two SATs accounted for?

As seen in section 7.9.9, the calculation to translate measured irradiance (GPOA) to that of
the SAT modules, does consider the angle of tilt of each module. This eliminates further
uncertainty regarding SAT module performance.

7.8 Curve �tting

7.8.1 Introduction

With the necessary raw data validation and process of data �ltering addressed, it is still
not guaranteed that the measured data points provide an accurate depiction of PV module
behaviour. This is why the single-diode equation is used to apply a curve �tted model, on
top of the measured data points. This section is dedicated to the process of applying the
single-diode curve �tted model.

7.8.2 Single-diode curve �tting model

The raw I-V curve measurements recorded, consists of 20 sample points each. Thus, to
eliminate measurement noise, provide a higher resolution of available data points, as well as
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con�rm that raw data measurements conform to typical PV module behaviour, it is necessary
to apply a �tted trend line. There are powerful Python functions available, for exactly
this purpose such as the Spline interpolation and Savgol �ltering and smoothing functions.
However it is found that the approach of interpolation and �ltering/smoothing simply de�nes
how the function behaves between data points, but does not modify or validate data points.
In other words, these functions simply attempt to go through each and every measured point.
Although these curve �tting tools might work for most of the data samples, it unfortunately
does not represent true PV module behaviour, and does not provide a method to discern
between normal and abnormal data points. More detail is provided regarding this in the
pages to follow.

It is required that raw I-V curve data points are �tted with a model which de�nes a re-
lationship between the voltage and current measurements. A decision is made to apply a
non-linear curve �tted model to raw I-V curve measurements, based on the single-diode
equation.

There are a variety of proposed models for solar panels, one of which is the double-diode
model. The double-diode model has been proclaimed [113�115] to provide a more accurate
description of the dark I-V curve characteristics and other physical phenomena of a PV
module. However, authors such as M. Villalva, et al. [116] and C. Carrero et al.[117] have
reported that the single-diode model provides a good balance of simplicity and accuracy.
This model is also used as a standard model in photovoltaics, for example the IEC 60891
standard [48], which further attests to its reliability. The single-diode model is applied by
this thesis.

From the electrical equivalent circuit of a solar cell, as presented by Figure 7.3, the single-
diode model equation (7.8) is derived. The variable IPV is the current source. ID is the
current through the diode, RS is the series resistance and RSH represents the shunt resistance.
Finally, the terminal output current and voltage is labelled as IT and VT [118].

Figure 7.3: Equivalent circuit of a solar cell.

Using the indicated sign convention and applying Kircho�'s current law, equation (7.5) is
derived from this circuit.

IT = IPV − ID − ISH (7.5)

Equation (7.8) is derived by substituting the diode current ID with the Shockley diode
equation (7.7) [44, 266] and ISH with equation (7.6), which is derived from the circuit in
Figure 7.3.

ISH =
VT + ITRS

RSH

(7.6)
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ID = IO

e
VT + ITRS

a


− 1

 (7.7)

IT = IPV − IO

e
VT + ITRS

a


− 1

− VT + ITRS

RSH

(7.8)

In equation 7.8, IO is the saturation current of the diode and variable a represents the fol-
lowing:

a =
nNSkT

q
(7.9)

The variables in (7.9) are de�ned with n as the diode ideality factor, and Vt is the thermal
voltage of the diode, which is temperature (T ) dependent and also de�ned by the the Boltz-
mann constant, k = 1.38064852 × 10−23[m2][kg][s−2][K−1] , and the charge of the electron,
q = 1.60217662 × 10−19[C]. The number of cells in series are represented by NS, but NS is
considered to be one in subsequent calculations. The equivalent parallel and series resistance
is represented by RSH and RS, respectively. [118]

7.8.3 Parameter extraction

The formula derived as (7.8) for the single-diode equivalent circuit model, involves �ve
unknown parameters: IPV , RS, RSH , IO and a to be determined, to accurately represent an
I-V curve. Therefore, with �ve unknown variables, it is implied that at least �ve I-V curve
boundary conditions must be obtained. An analytical approach, based on either provided
PV cell manufacturer data, or experimental data can be employed to determine the I-V
curve parameters [118]. Solar cell manufacturers provide electrical performance data, which
usually includes the ISC , VOC , IMPP and VMPP values. Nevertheless, this information is not
enough to identify the �ve mentioned parameters and requires further parameter estimation
[118]. Also, PV module manufacturer data does not necessarily represent typical PV module
behaviour under real world operating conditions, which includes varying irradiance as well
as temperature changes [119].

An optimisation algorithm is therefore used to execute a curve �tting routine which extracts
the values of the unknown parameters. The process of parameter extraction presented by
this thesis, utilises measured I-V data, from each corresponding module. A conceptual
illustration for the approach of parameter extraction is displayed in Figure 7.4a and 7.4b.
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(a) Curve �tting in progress. (b) Curve �tting routine completed.

Figure 7.4: Illustration of the curve �tting routine.

As the optimisation algorithm adjusts the parameters, it attempts to �t the I-V curve over the
measured data points, with a minimum di�erence between the �tted curve and the measured
curve as result. As presented in Figure 7.4a, the di�erence between the �tted curve and the
data points is much bigger than that of the curve presented by Figure 7.4b. Also notice how
the �tted curve in Figure 7.4b provides a higher resolution, with the MPP found between
two measured points and not necessarily at a single measured point as indicated in Figure
7.4a.

Equation set for parameter extraction

The process of parameter extraction requires a set of equations, based on the electrical
equivalent PV module circuit. The particular set of equations required are derived as follows:

For the short-circuit (ISC) condition, equation (7.8) is rewritten as:

ISC = IPV − IO

e
VT + ISCRS

a


− 1

− VT + ISCRS

RSH

(7.10)

As presented by author M.G. Villalva et al. [116], equation (7.10) can be simpli�ed to:

IPV =
RSH +RS

RSH

ISC (7.11)

For the open circuit voltage (VOC) condition, (7.8) can be rewritten as:

0 = IPV − IO

e
VOC + ITRS

a


− 1

− VOC

RSH

(7.12)

As presented by author D. Sera [120] equation (7.10) can be simpli�ed to:

IO =
(RSH +RS) ISC − VOC

e

VOC

a


RSH

(7.13)
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As with most non-linear optimization algorithms, an educated guess for the initial parameter
values should be made, since an inappropriate selection of initial values will result in non-
convergence of the algorithm. Thus, for this particular curve �tting approach, only three
parameters have to be estimated, since the IO and IPV parameters are dependent on the
other three parameters a,RSH , RS as well as the measured ISC and VOC values, as presented
by equations (7.11) and (7.13).

• The initial guess for RSH is approximated by calculating the gradient of the I-V curve's
slope, found between markers I1 and I2 in Figure 7.5 with:

RSH =

∣∣∣∣V1 − V2I1 − I2

∣∣∣∣ (7.14)

• The value of RS is approximated by calculating the gradient of the slope after the MPP
point, towards the VOC point. As demonstrated in Figure 7.5 the initial guess for RS is
determined as

RS =

∣∣∣∣V3 − V4I3 − I4

∣∣∣∣ (7.15)

• The value of a, which represents nVt = nNSkT/q , with NS = 1 is approximated by
assuming a diode ideality factor of 1 ≤ n < 1.5 [116] and with the constant values of
k = 1.38064852×10−23 J/K and q = 1.60217662×10−19 ◦C, the cell temperature is estimated
as 30 ◦C, which results in T = 30 + 274.15 = 304.15 K.

Figure 7.5: Demonstration of how the shunt, RSH , and series, RS, resistances are approxi-
mated for an initial value guess, used by the optimisation algorithm.

7.8.4 Software implementation of PV module parameter

extraction

A python script, which utilises the SciPy library is used to implement the parameter extrac-
tion algorithm which employs the optimize.minimize module [121]. The single-diode model
is then solved in the form of equation (7.8). Speci�cally, after testing various optimisation
methods the COBYLA (Constrained Optimization BY Linear Approximation) optimization
method is found to be the most suitable. As previously mentioned, other standard curve
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�tting functions are used such as the Spline interpolation and Savgol �ltering and smooth-
ing techniques, but these routines simply aim to strike though each data point, but do not
represent true PV module behaviour, especially when irregularities occur. An example of
this is shown in Figures 7.6 and 7.7. As seen in Figure 7.6 all three methods �t the curve
almost exactly. However, in Figure 7.7 a shaded module I-V curve is �tted by the Spline and
Savgol methods, but the single-diode curve �tting routine has returned an error and failed
to plot due to an irregular data set. Therefore, only two lines are plotted in Figure 7.7.
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Figure 7.6: Illustration of a curve �tted routine applied by the Spline, Savgol (3rd order)
and Single-diode curve �tting routines, onto a regular set of measured data points.
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Figure 7.7: Illustration of a curve �tted routine applied by the Spline, Savgol (3rd order)
and Single-diode curve �tting routines, onto a shaded module.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. RESULTS AND ANALYSIS 122

Figure 7.8: Software �ow diagram illustrating the process of parameter extraction for the
Single-diode curve �tting algorithm.

As presented by the �ow chart of Figure 7.8, the Python script optimises the parameters
continuously, until a new set of parameters is found, which allows the di�erence between the
measured and the newly calculated current values to converge. Initially, all �ve parameters
are estimated by the python script, but it is found that adjustments are made in such a
way that some parameters are over or under estimated. Therefore, with the use of equations
(7.11) and (7.13), which de�ne IO and IPV , only parameters RS, RSH and a have to be
estimated.

The required ISC and VOC values are set as the actual measured ISC and VOC values. The
value of parameter a is estimated by assuming a diode ideality factor of one and a module
temperature of 30 C°. The initial value of RSH and RS is de�ned by acquiring the gradients
of the I-V curve by applying equations (7.14) and (7.15).

A prede�ned tolerance, which speci�es the desired accuracy for the process of convergence,
is applied and is set at 0.001. As presented by (7.8), the single-diode equation requires an
iterative process to solve the value of the terminal output current IT of the PV module. This
is achieved by adopting the Newton-Raphson method. Firstly, this method requires that the
equation to be solved is in the form f(x) = 0 , with x as the variable to be determined [122,
pp.312,313]. The Newton Raphson recursion formula is presented by equation (7.16) [122].

xn+1 = xn −
f(xn)

f ′(xn)
(7.16)
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The single diode equation (7.8) is rewritten into the speci�ed Newton Raphson format of
f(x) = 0 as shown in (7.17). However, for the recursive formula to converge, the derivative
of f(x) is required as well, as de�ned in (7.18).

f(x) = f(IT ) = IT − IPV + IO

e
VT + ITRS

a


− 1

+
VT + ITRS

RSH

= 0 (7.17)

f ′(IT ) = 1 + IO
RS

a

e
VT + ITRS

a


− 1

+
RS

RSH

(7.18)

Therefore, when equation (7.16) is recursively applied the new value of the terminal current
IT is determined as:

IT (n+1) = IT (n) −

IT (n) − IPV + IO

e
VT + IT (n)RS

a


− 1

+
VT + IT (n)RS

RSH

1 +
IORS

a

e
VT + IT (n)RS

a


− 1

+
RS

RP

(7.19)

The Newton Raphson method stops approximating the value of IT when the di�erence
between determined values starts to converge to satisfy the condition of (7.20).

∣∣IT (n+1) − IT (n)

∣∣ ≤ tolerance (7.20)

Thus, with the parameters now known, as de�ned by the curve �tting process, an I-V curve
with a higher resolution can be obtained by applying the de�ned parameters to equation
(7.8) and providing a set of input voltage values. It is found that 40 generated data points,
as opposed to the measured 20, provide a high enough resolution to determine the MPP of
the I-V curve.

7.9 Results and discussion

7.9.1 Overview

All results and discussions are presented by this section. Firstly, the analysis of the stationary
modules is performed, which is followed by the analysis of the SAT modules. Dust soiling is
quanti�ed and the applied dust mitigation methods are compared.

7.9.2 Holistic data representation for stationary modules

Before the data analysis proceeds into a more detailed investigation, it is important to
�rstly gain an overall perspective of the data captured. This is necessary so that the reader
is acquainted with the general movements of the data set and to prevent focus of diverting
from the more in depth discussions, due to unknown data behaviour. A holistic view of the
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PR of all the PV modules (except PV modules two and seven), is presented by Figure 7.9,
with Figure 7.10 representing an enlarged view of the PR data set.
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Figure 7.9: Extracted PR values of all the stationary PV modules, with rainfall and cleaning
sessions indicated.
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Figure 7.10: Ampli�ed view of the extracted PR values.

Firstly, data retrieved from PV modules two and seven is not presented due to the insu�cient
extraction of I-V curve data from these modules. With the holistic illustration of data in
Figures 7.9 and 7.10, characterising the PV modules' behaviours in terms of PR, there are
some components of the data set to be considered:

� Days on which the modules are washed or rainfall occurred.

� PR �uctuation.

� An overall gradual decline in PR.

All days where the PV modules are exposed to rainfall, or a scheduled cleaning routine
is performed, are indicated on the graphs. However, notice that the time-line of the data
presented by Figures 7.9 and 7.10 does not display a chronological sequence of time. This is
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because, only the days that are regarded as valid, based on the criteria de�ned in section 7.7,
are considered for analysis. This does however exaggerate the deviation between two data
points, since a gradual change in a PV module's PR, is now condensed over a shorter period
of time. This is one of the reasons why such a sharp increase or decrease in the PR is seen.
In terms of rainfall, not all intermittent days (invalid days) on which rain is received can be
displayed. Thus, rainfall and, in some cases cleaning days, are therefore shifted to a data
point measured before the rain or scheduled cleaning occurred, as in Figure 7.10. This does
give a more logical data representation, since days on which rain occurred, are succeeded by
an immediate increase in PR, as seen on the 14th of Sept. for example.

Therefore, to obtain a more synchronised and less exaggerated graphical representation of
data, all graphs are displayed in chronological order as in Figure 7.11. With this display
format of data, the reader should not be confused with regards to a rain or cleaning routine
indicator. For example, in Figure 7.11 the rainfall indicated at marker (a) occurred on the
27th, 28th and 31st of July 2016. However, the �rst valid day after the 24th of July is 1 Aug.
2016. Thus, between these two measured data points, rainfall occurred, which explains the
increase in PR from 24 July - 1 Aug. 2016. The same scenario takes place in terms of rainfall
on 17 and 18 Aug. and the cleaning routine of the PV modules on the 15th of August, as
indicated at marker (b). Thus, the reader should not be confused with the early increase in
PR before rain and cleaning events occur.
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Figure 7.11: Chronologically spaced representation of the measured PR.

7.9.3 Performance ratio characterisation

There are two distinctive aspects with regards to the varying PRs as in Figure 7.11. Firstly,
the sudden increase and decrease at speci�c moments, not preceded by rainfall or module
cleaning. Secondly, the gradual decline in PR, as seen from the beginning of May to Au-
gust. Upon �rst inspection the occurrence of rapid �uctuation in the PR could possibly be
prescribed to a varying level of PV module surface soiling. On the other hand, the grad-
ual decline in PR could be due to a stubborn accumulation of dust particles, or the natural
degradation of the PV modules. Before a conclusion can be made regarding these events, the
main question of concern here is whether the formulated PR normalises PV module output
as expected? Mathematically, the PR should normalise PV module behaviour with regards
to module temperature and irradiance at STC conditions. The question therefore is, why is
there such a de�nitive variation in the PR of the modules? For example, in Figure 7.11 on
the 21st to 22nd of Sept., a PR change of 2.3% is observed, for almost all modules.
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With further examination of the data, this question of a varying PR is mostly answered.
Evaluation reveals that, the received irradiance (GPOA) has the most signi�cant correlation
with the change in the PR, as indicated in Figure 7.12. The irradiance presented by this
graph is averaged for the daily hours of 11:00 AM-14:00 PM. This is the same period which
is used to determine the PR. From this comparison it is concluded that GPOA and the PR
are inversely proportional to one another. Further analysis, also indicates some correlation
between wind-speed, humidity and ambient temperature, but the in�uence of these data sets
are not nearly as obvious, as can be seen in the �gures of Appendix D.4.

There are some points of interest indicated on the graph of Figure 7.12, which need to be
addressed. Firstly, the gradual decline in PR, can largely be attributed due to the gradual
incline of the irradiance. Secondly, to substantiate the argument of the inverse relationship
between GPOA and the PR, points (c) and (d) clearly indicate a drastic increase in PR, in
the absence of a preceding cleaning routine or rainfall. However, the sharp increase does
correlate with a decrease in irradiance. At marker (e2) the PR does however not increase
with a decrease in irradiance. This is because, the irradiance measured for the period of
21 May to 12 July, is received from another pyranometer, due to the malfunction of the
research facility's own pyranometer, as previously mentioned. Points (e1) and (e2) indicate
this period, where the other pyranometer's data is merged with the research facility's data.
This should however not a�ect the PRs measured between these points ((e1) and (e2)), since
the irradiance correction of the PR is applied equally to all of the PV modules . Marker (b)
refers to the largest di�erence in measured PRs, during the entire research period. The curve
of the PR graph does correlate well with the change in irradiance, but further investigation is
required to determine the di�erence in performance amongst the modules. Finally, point (a)
is regarded as an anomaly, since the average irradiance is very low, but an expected inverse
response from the PR is not seen. This particular data point does however present a rather
low irradiance level (∼ 700 W/m2), which is speculated to contribute to this behaviour.
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Figure 7.12: Relationship between the measured plane of array irradiance (GPOA) and the
measured PR values.

It is concluded that the change in the PR, is due to the varying e�ciency of the PV modules
at di�erent irradiance intensities, as previously indicated in Table 7.3. Thus, to obtain a
better representation of PV module performance, less sensitive to a variation in irradiance
and more representative of the e�ects of PV soiling, a Clearness Ratio (CR) is de�ned. This
ratio is de�ned by equation 7.21:

CR =
PRTcell−G−corrected

PRTcell−G−corrected−clean
(7.21)
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Where PRTcell−G−corrected represents the temperature and irradiance corrected PR of a mod-
ule and PRTcell−G−corrected−clean presents the corrected PR of a cleaned reference PV module.

The CR minimises the e�ect of a changing irradiance, by comparing the PR of a module to
that of a set of cleaned modules, subjected to the same exposure of irradiance and other envi-
ronmental factors (wind, temperature, etc.). Therefore, any change in PV module behaviour
can be largely attested to the in�uence of dust soiling.

The PRTcell−G−corrected−clean value of the CR, as in 7.21 is chosen as the average of the
combination of modules P6 and P11. Reason being that these two modules are both un-
treated (no surface coating applied) and cleaned with distilled water once every two weeks,
restoring the surface conditions of the modules. The CR of each module is represented in
Figure 7.13, with P6 and P11 as reference. Therefore, a CR of one, presents the value of
PRTcell−G−corrected−clean

PRTcell−G−corrected−clean =
PR_P6 + PR_P11

2
(7.22)
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Figure 7.13: Clearness ratio represented for each module over a six month period, with PV
modules P6 and P11 as reference modules.

7.9.4 Quantifying the e�ect of dust soiling

Evident from the graph presented in Figure 7.13, the CR �lters out the data sensitivity to
irradiance. As seen, there are several PV modules that deviate from the ideal CR of one.
Particularly of interest is the section between markers (a) and (b) in Figure 7.13. It is visible
from the graph that this time period has provided circumstances which ampli�es the e�ect
of dust soiling on PV module output power. Particularly, a 75 day absence of rainfall is
what primarily separates this section from the rest of the graph. As previously mentioned,
it is not the aim of this thesis to provide an in depth study with regards to the in�uences
of weather, but rather to produce a holistic perspective on the in�uence of weather factors,
where identi�ed. The aim of the thesis is primarily to identify the e�ects of dust soiling
on PV module surface area and not so much the identi�cation of external in�uences on the
accumulation of dust. The aim is however to identify the e�ects of soiling and how various
dust mitigation strategies a�ect the behaviour of modules, subjected to the environment.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. RESULTS AND ANALYSIS 128

0.95

0.96

0.97

0.98

0.99

1.00

1.01

C
R

d e

x

P3

P4

P5

P6

P11

P12

P13

P14

CR Ref. Line

Rain

Cleaned

4-
M

ay

9-
M

ay

14
-M

ay

19
-M

ay

24
-M

ay

29
-M

ay

3-
Ju

n
8-

Ju
n

13
-Ju

n

18
-Ju

n

23
-Ju

n

28
-Ju

n
3-

Ju
l
8-

Ju
l

13
-Ju

l

18
-Ju

l

23
-Ju

l

28
-Ju

l

2-
Aug

7-
Aug

12
-A

ug

17
-A

ug

22
-A

ug

27
-A

ug

1-
Sep

6-
Sep

11
-S

ep

16
-S

ep

21
-S

ep

26
-S

ep

1-
Oct

6-
Oct

11
-O

ct

16
-O

ct

21
-O

ct

26
-O

ct

31
-O

ct

Day

0.95

0.96

0.97

0.98

0.99

1.00

1.01

C
R

a b c

P1

P8

P9

P10

P15

P16

CR Ref. Line

Rain

Figure 7.14: CR represented for two groups of regularly cleaned and non-cleaned modules.
Top: CR of PV modules cleaned regularly. Bottom: CR of non-cleaned PV modules.

In Figure 7.14 the short term cleaned modules are compared to the non-cleaned PV modules.
It is observed that the CR is exceeded on several occasions by both groups (cleaned and
non-cleaned). This indicates that the reference modules (P6 and P11) are in fact not the
cleanest, or most ideal in terms of surface clarity, all of the time. PV modules P4, P12
and P14 outperform the reference modules most of the time. However, it should be noted
that the highest CR is recorded at 1.0067, indicated by marker (x) in Figure 7.14, which
is only 0.67 % higher than that of the reference modules. Thus, for practical reasons this
is negligible. However, it should be noted that the long term modules also outperformed
the reference modules of the CR, especially during the period of August to September. The
highest CR measurement is recorded on 26 May, indicated by marker (a), with PV module
P15 exceeding the CR of the reference modules by ∼ 1 %.

It can be seen that the CR of the PV modules are either below or above the ideal CR value
of one. This is simply a result of using reference modules, which occasionally perform better
or worse than the other PV modules. It is evident from these graphs that the PV modules,
which are not cleaned bi-weekly, exhibit the largest decrease in terms of the CR. Particularly,
the largest decrease in CR is seen during the 13th to the 24th of July.

Also interesting is how after a two week cleaning session is executed, as for example on the
1st, 15th and 29th of June, one can clearly identify how the CR of the modules, which are not
cleaned, decreases. This is of course attributed to the CR's point of reference, which is reset
after the cleaning routines are executed. Therefore, the measurements recorded soon after
the completion of a cleaning routine, presents the most realistic representation of a cleaned
module as compared to a non-cleaned module. After almost two and a half months of no
rain, the rainfall of the 27th, 28th and 31st of July, indicated by marker (c), clearly allows the
non-cleaned modules' performance to be restored in terms of the CR. Only module P10 does
not seem to recover quite as well, but is still within ∼ 0.3 % of the reference modules' CR.
In Table 7.4, the maximum decrease in CRs for the non-cleaned modules are shown, which
essentially quanti�es the di�erence in module performance due to dust soiling, as compared
to a set of normal, cleaned PV modules.
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Table 7.4: Maximum decrease in clearness ratio for unclean modules, as extracted from
Figure 7.13.

PV module P1 P8 P9 P10 P15 P16
Max. decrease in CR [%] 2.72 1.24 1.36 2.13 1.65 1.37

From the top graph in Figure 7.14, the CR of the cleaned PV modules remains within a
maximum deviation of 1%. The largest deviation amongst the cleaned PV modules, occurs
at markers (d), which points to 12 Sep. and marker (e), denoting the period between 17 and
28 October. At marker (d) a maximum decrease of 1.3 % is seen for PV module P3. This
behaviour is associated with a bird dropping, since the CR of the module decreases right
after being cleaned on 12 September, therefore eliminating the possibility of dust soiling. It
is interesting to note how the rainfall on 17 September (6.5 mm) does largely restore module
P3's CR, but still not as e�ectively as the cleaning routine performed on 28 September. This
does give an indication of how rainfall is not able to e�ectively eliminate the bird dropping.
With regards to point (e), module P14 indicates a CR drop of 1.1 %. As mentioned, the
non-routine cleaning sessions indicated for 14, 15 and 17 October are only applied to PV
modules P3, P4, P5 and P6. Thus, with module P6 as reference module, the CR's reference
point is e�ectively raised, which does contribute to some of the decrease of module P14's
CR. A de�nitive conclusion regarding module P14's decrease in CR cannot be made due to
uncertainty. The biggest contributor to this uncertainty is the module's reaction after the
cleaning routines are executed on the 10th and 28th of October, which does not seem to
restore module P14's CR.

Over all, apart from the time period between markers (a) and (b) in Figure 7.14, the data
indicates that a frequent and su�cient rainfall is enough to maintain PV modules to within
1 % of rated performance. A frequent rainfall refers to approximately four to six weeks. No
conclusion can be drawn with regards to the quantity [mm] of rainfall required to restore
a PV module surface completely. This is due to all rainfall events equating to more than
6.5 mm of rain, which restored all of the modules' performances, except for the two events
discussed regarding modules P3 and P14.

To conclude, for the period of 24 May to 24 July, the modules cleaned biweekly, outperformed
the PV modules that are not cleaned during the research period. However, it is evident from
the data set presented that some modules, for the majority of time, perform better or worse
than other modules. An example of this is modules P4, P12 and P14, which outperform
most modules, in the top graph of Figure 7.14, for a number of weeks. On the other hand in
the bottom graph of Figure 7.14, modules P8, P9 and P16 seem to perform the best. The
question is now to determine, whether ot not this can be attested to the mitigation methods
applied and if so, to determine which dust mitigation methods performed better. Further
investigation, regarding the mitigation methods applied, is presented in Section 7.9.5.

7.9.5 Analysis of dust mitigation methods

Important details regarding the data analysis

With the in�uence of dust quanti�ed in section 7.9.4, it is still within the interest of this thesis
to determine which dust mitigation methods performed the best. Figure 7.15 serves as a
reminder of the DMS, with the applied stationary module mitigation methods. With regards
to any analysis of long term modules, modules P1, P8, P9 and P16 are also considered, even
though no cleaning routines are allocated to these modules. Reason being that, the analysis
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is conducted, within the �rst six months after applying the anti-soiling coating. Thus, the
long term and inde�nite modules are still synchronised with regards to exposure time, up
until the 28th of October, when modules P10 and P15 are washed, after a six month exposure
period (long term). The addition of modules P1, P8, P9 and P16 to the analysis, in e�ect
reconciles for the data absence of modules P2 and P7, which are long term assigned modules.

The PR, which is recorded at the same instance for all modules, under the same circum-
stances, is used for the comparison of the di�erent mitigation methods. The CR could also
be utilised for the analysis, but the PR allows for an easier visual interpretation of the data
set.

Figure 7.15: Illustration of the adjusted DMS for the analysis.

As explained in Chapter 6.2.1, each mitigation method is applied to a set of two modules.
The approach of calculating the performance of the di�erent mitigation methods, is based
on a comparison of averages, as will be seen throughout this analysis. A histogram plot is
then used to illustrate the mathematical distribution of the module sets compared.

With regards to the histogram distribution plots. It is necessary to portray a weighted data
set, which is representative of a fairly distributed data set. Due to the criteria mentioned
in section 7.7.2, not all days are regarded as valid data points for the analysis. This does
occasionally result in unavailable data points between two consecutive PR measurements.
Figure 7.16 provides an illustration of how days, for which a PR value is unavailable, are
added into the data set, to allow for a more representative histogram data distribution. With
points A and B as measured data points and y1, y2, y3 as unavailable data points, the values
of y1, y2 and y3 are calculated and added into the PR data set. This allows for a fair weight
distribution of the histogram data plots.

When two data sets are compared, a percentage di�erence is provided as an indication of
performance. Figure 7.17 aids the explanation of de�ning the de�nitions for an ideal and a
relative PR comparison made. When the analysis refers to an ideal PR di�erence, denoted
by PR−ideal, then this is where two data points (A and B) are compared to one another,
with reference to the ideal scenario where PR = 1.0. This is presented in equation (7.23).
The relative PR di�erence PR−relative compares the di�erence in performance of one module
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Figure 7.16: Illustration of how unavailable PR data points are added to the measured PR
data set.

set relative to another. For example the PR di�erence of point B relative to point A is
presented by equation (7.24). Therefore, PRideal is used for a direct comparison with respect
to PV module power output performance, and PR−relative is used for a direct inter-module
performance comparison.

PR−ideal =

(
A−B

1.0

)
× 100% (7.23)

PR−relative =

(
A−B
A

)
× 100% (7.24)

For example, in the graph of Figure 7.17 on the 9th of Oct. Module 1 delivers 95 % and
Module 2 delivers 80 % of the ideal module output power. Thus, the di�erence in module
performance between Module 1 and Module 2 (in terms of PR) is measured as 15 % higher
for point A than for point B, as according to (7.23). In terms of the performance of Module
1 relative to Module 2, on the 9th of October, a di�erence of 18.75 % is calculated with
equation (7.24). Thus, with reference to Module 2, Module 1 outperformed Module 2 by
18.75 %. It is important that the reader is able to clearly di�erentiate between the two PR
de�nitions.

Figure 7.17: Illustration of two measured PR data sets.
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Important dates to consider are as follows:

� 14, 15 and 17 Oct. 2016: This is when modules P3, P4, P5 and P6 are cleaned, for a
day to day comparison.

� 28 Oct. 2016: This is when the Long term modules P10 and P15 are cleaned after six
months of exposure.

The analysis of the PR graphs for all of the modules is presented for the period of 4 May to
31 Oct, unless otherwise speci�ed. Although the modules a�ected by the activity of either
14, 15, 17 or 28 October may be presented, the reader should keep these dates in mind when
viewing the PR graphs. Nevertheless, all of the histogram plots, presenting the di�erence in
performance amongst modules, will disregard any of the days which might alter results.

A �nal remark about the histogram distribution plots. The bin-width of each histogram bar
is 0.5, which is chosen based on the accuracy of the measurement instrumentation and visual
preference, in terms of presenting data that is easily interpretable. Thus the histogram bin
presenting 1 % values, actually encapsulates values between 0.75 % and 1.25 %.

7.9.6 Long term vs. short term

This section compares the performance of modules that are exposed over a long term, without
any periodic cleaning executed, to modules cleaned biweekly. This comparison of the coated
and non-coated PV modules is also presented. The analysis also investigates the performance
of the wet and dry cleaning routines.

Comparison A: Short term and long term coated PV modules

Two sets of comparisons are formulated for this particular analysis as shown in Table 7.5.
The PRs of sets A-1 and A-2 are compared in Figures 7.18 and 7.19. It is evident that the
short term modules clearly outperformed the long term modules during the months of June
and July. However, in both cases the short and long term modules perform within close
proximity for the period after the rainfall on 31 July. The results of the graphs in Figures
7.18 to 7.20 are summarised in Table 7.6.

Table 7.5: Long term allocated modules compared to short term PV modules.

Comparison Set Exposure time PV modules Coating

A

1
Long term P1,P16,P15 yes

Short term(Wet) P3,P14 yes

2
Long term P1,P16,P15 yes

Short term(Dry) P4,P13 yes
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Figure 7.18: Comparison set A-1. Coated modules. Top: PR of long term and water cleaned
short term modules. Bottom: Avg. PR of long term and short term modules.
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Figure 7.19: Comparison set A-2. Coated modules. Top: PR of long term compared to dry
cleaned short term modules. Bottom: Avg. PR of long term and short term modules.
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Figure 7.20: Histograms of coated modules. TOP: Set A-1. Long term w.r.t. short term,
water cleaned. BOTTOM: Set A-2. Long term w.r.t. short term, dry cleaned.
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Table 7.6: Summary of most signi�cant data points for data set A-1 and A-2.

PR PRideal PRrelative

Hist. Number of days:
Days PRrelative

Total ≥ 1% ≤ -1% ±0.5%

Set A-1 1.89% (16 Jul.) 1.96% (23 Jul.) 145 0 38 (26.2%) 107 (73.8%)
Set A-2 1.86% (16 Jul.) 1.89% (16 Jul.) 162 0 32 (19.8%) 130 (80.2%)

The histogram plots in Figure 7.20 presents an accumulated distribution over the course
of six months. No unfair advantage is given to either of the modules, with performance
comparisons after the 13th of Oct. omitted, due to modules P3 and P4 cleaned on 14, 15
and 17 Oct. 2016. The histogram plot for set A-1, omits the days of 10-26 Sep. due to
the bird dropping (mentioned in section 7.9.4) on module P3. In terms of sets A-1 and A-2,
the largest data distribution is within the ±0.5 % region of each histogram. However, from
the ±1 % region and beyond, the long term exposed modules in both cases tend towards a
negative PR, as compared to the short term cleaned modules. For both sets A-1 and A-2 a
max. di�erence in ideal PR (PRideal) is recorded as ∼ 1.9% on 16 July. Also, the largest
relative di�erence in PR (PRrelative) is recorded at 1.96 % for set A-1, in favour of the short
term, water cleaned modules. Thus, from these results it is concluded that the dry and wet
cleaned modules, displayed an increased relative performance of ∼ 2 % above that of the
long term modules.

Comparison B: Long term vs. short term uncoated PV modules

As presented by Table 7.7, this analysis investigates the PR of the uncoated (normal) PV
modules, which are assigned to long term and short term periodic cleaning routines.

Table 7.7: Details of the uncoated long term allocated PV modules compared to short term
PV modules.

Comparison Set Exposure Time PV modules Coating

B

1
Long term P8,P9,P10 none

Short term(Wet) P6,P11 none

2
Long term P8,P9,P10 none

Short term(Dry) P5,P12 none

The PRs for the uncoated modules of comparison group B, is displayed in Figures 7.21 and
7.22. As seen from these results, the short term modules once again outperformed the long
term modules during the months of June and July, whereas after the rain fall of 31 July, all
module performances are within close proximity of one another. Table 7.8 summarises the
results obtained for this analysis.
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Figure 7.21: Comparison set B-1. Uncoated modules. Top: PR of long and short term
(water cleaned) modules. Bottom: Avg. PR of short and long term modules displayed.
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Figure 7.22: Comparison set B-2. Uncoated modules. Top: PR of long and short term (dry
cleaned) modules. Bottom: short and long term modules displayed.
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Figure 7.23: Hist. of uncoated modules. TOP: Set B-1. Long term w.r.t. short term, water
cleaned modules. BOTTOM: SetB-2. Long term w.r.t. short term, dry cleaned modules.
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Table 7.8: Summary of results for the maximum di�erence in PR values recorded.

PR PRideal PRrelative

Hist. Number of days:
Days PRrelative

Total ≥ 1% ≤ -1% ±0.5%

B-1 1.53% (14 Jul.) 1.56% (14 Jul.) 162 1 (0.6%) 27 (16.7%) 134 (82.7%)
B-2 1.53% (23 Jul.) 1.59% (23 Jul.) 162 1 (0.6%) 30 (18.5%) 131 (80.9%)

From the histogram plots presented in Figure 7.23 it is evident that the short term modules
outperformed the long term modules. However, for more than 80 % of the time, the relative
di�erence in PR of both sets B-1 and B-2, is within the ±0.5 % region. This indicates
that the long term and short term cleaning routines are within a reasonable performance
di�erence of one another.

From the long term and short term analysis conducted for sets A-1, A-2, B-1 and B-2, it
is concluded that in the absence of rain over a period of four weeks or more, the short
term cleaned modules outperform the long term modules. However, if rainfall is received
frequently (four weeks or less) the long term modules perform within an acceptable margin
of deviation of less than 1%.

When comparing the results of groups A and B, the long term modules suggest a bigger
deviation (max. 1.89 %) for the group of coated modules than for the group of uncoated
modules (max. 1.53 %). From the histogram distributions, it is also evident that the
coated modules underperformed for a few days more than the uncoated modules. These
results are in contrast to the hypothesis made in Chapter 1.2.4, which predicts that the
applied hydrophobic coating should allow modules to perform better than uncoated modules.
Therefore, with these results in mind, it is speculated that the hydrophobic coating is in fact
promoting dust adhesion. This, implies that that long term, coated modules can be expected
to be more prone to dust soiling than uncoated modules.

To answer this, it is necessary to make more comparisons, where coated and non-coated
modules are directly compared to one another for each exposure period. This analysis is
performed in section 7.9.7.

7.9.7 Short term PV module analysis

Short term coated vs. uncoated

Group C is formulated to establish the e�ectiveness of the applied coating on modules with
short term exposure, as presented by Table 7.9. Comparison sets C-1 and C-2 are compared
in Figures 7.24 and 7.25.

Table 7.9: Description of the PV module comparison group C.

Comparison Set Exposure time PV modules Coating

C

1
Short term(Wet) P14,P3 yes
Short term(Wet) P6,P11 none

2
Short term(Dry) P4,P13 yes
Short term(Dry) P5,P12 none
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Figure 7.24: Set C-1. Top: PR of short term, water cleaned modules, with P3 and P14
coated and P6 and P11 uncoated. Bottom: Average PR of each set PV modules.
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Figure 7.25: Set C-2. Top: PR of the short term, dry cleaned modules, with P4 and P13
coated and P5 and P12 uncoated. Bottom: Average PR of each set PV modules.
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Figure 7.26: Short term module comparison. PR distribution of coated modules displayed
w.r.t. non-coated modules. TOP: Set C-1, water cleaned. BOTTOM: Set C-2, dry-cleaned.
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Table 7.10: Summary of PR and histogram distribution results for sets C-1 and C-2.

Set PRideal PRrelative

Hist. Number of days:
Days PRrelative

Total ≥ 1% ≤ -1% ±0.5%

C-1 0.5%(25 Aug.) 0.52%(25 Aug.) 145 0 0 145 (100%)
C-2 0.7%(28 Sep.) 0.74%(28 Sep.) 181 0 0 181 (100%)

From the graph presented in Fig. 7.24, it is evident that the water cleaned modules (set
C-1) operate within very close proximity of one another's PR. However, the days of 24 Aug.
to 2 Sep., 9 - 25 Sep. and 13 - 31 Oct. clearly have the largest PR di�erence, in favour of
the un-coated modules. As previously mentioned, module P3 is a�ected by a bird dropping
for the period of 9 - 25 September, which is ended by the cleaning routine of 26 September.
An average PRideal drop of 0.82 % is seen for this period, due to the bird dropping. For the
period of 13 - 31 Oct. the reason for the di�erence in performance is due to the PR decrease
of module P14. The period of 24 Aug. to 2 Sep. is however a result of dust soiling, since
both coated modules under perform at the same moment in time, with a PRideal deviation of
0.5 %. However, this statement is inconclusive, due to the measurement uncertainty which
is also within ±0.5 %.

With regards to group C-2, the biggest di�erence in ideal PR is measured as 0.7 % on the
28th of September. When considering the average PR of each set (bottom graph of Fig.
7.25) it is apparent that the uncoated modules do seem to consistently perform marginally
(0.3 %) better for the period of 10 Sep. and onwards. Results are summarised in Table 7.10

The histogram plots in Figure 7.26 present the coated modules plotted with respect to the
uncoated modules. The top histogram plot in Figure 7.26 excludes data for the period
of 9 - 25 Sep. and the 13 - 31 October, so that the in�uence of the bird dropping on
P3 and the irregular behaviour of P14 is ignored. The bottom histogram plot for the dry
cleaned modules includes all of the days until 31 Oct, since this group is equally a�ected
by the cleaning of modules P3, P4, P5 and P6 during 14, 15 and 17 October. From both
histograms it is clear that the deviation seen is within the measurement uncertainty of the
ActiveLoad. However, due to the small negative tendency of the histograms, there is some
indication that the uncoated PV modules did perform slightly better than the coated PV
modules, but no conclusive argument can be made to substantiate this observation.

Short term dry cleaned vs. water cleaned modules

To examine whether or not the dry or wet cleaning method is superior, comparison group D
is established as presented in Table 7.11. The modules are divided into two groups, which
consist of uncoated and coated modules, as presented by Figures 7.27 and 7.28, respectively.

Table 7.11: Comparison group D module comparison details.

Comparison Set Exposure time PV modules Coating

D

1
Short term(Dry) P5,P12 none
Short term(Wet) P6,P11 none

2
Short term(Dry) P4,P13 yes
Short term(Wet) P3,P14 yes
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Figure 7.27: Set D-1. Top: PR of short term, uncoated modules, with P5 and P12 dry cleaned
and P6 and P11 water cleaned. Bottom: Average PR of each PV module combination set.
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Figure 7.28: Set D-2. Top: PR of short term, coated modules, with P4 and P13 dry cleaned
and P3 and P14 water cleaned. Bottom: Average PR of each PV module combination set.
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Figure 7.29: Short term module comparison. PR distributions of dry cleaned modules w.r.t.
water cleaned modules. TOP: Set D-1, uncoated. BOTTOM: Set D-2, coated.
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Figure 7.27 exhibits the comparison of the uncoated modules, which is set D-1. Visible
from the graph, there is relatively no di�erence in performance for these modules. This is
con�rmed with the histogram distribution presented in Figure 7.29, which indicates almost
all of the measurements are within the 0 % bin. From Figure 7.28, there is evidently a small
di�erence in performance seen at the days of 2-8 July, 25 Aug. to 3 Sep. and also 8-25
September. However, as mentioned module P3 is subjected to a bird dropping during the
September month. The histogram in Figure 7.29 for set D-2, does not account for the days
where the bird dropping is present. At most the performance di�erence is still within the
±0.5 % region. Thus, although there is slightly more variance in the performance of the
coated short term modules, none of the cleaning methods present any real advantage above
the other. The most signi�cant di�erences in PR are summarised in Table 7.12. As seen
from the results summary, it appears that the uncoated modules performed somewhat better
than the coated modules once again, as is seen with comparison sets C-1 and C-2. These
results are however only speculative, since di�erence in performance are within the ±0.5 %
boundary.

Table 7.12: Summary of PR and histogram distribution results for sets D-1 and D-2

Set PRideal PRrelative

Hist. Number of days:
Days PRrelative

Total ≥ 1% ≤ -1% ±0.5%

D-1 0.27%(24 Sep.) 0.28%(24 Sep.) 162 0 0 162(100%)
D-2 0.66%(28 Sep.) 0.7%(28 Sep.) 145 0 0 145(100%)

7.9.8 Long term PV module analysis

The details of comparison set E-1 is presented in Table 7.13. Figure 7.30 presents the
PR values of the long term exposed PV modules. It is evident from Figure 7.30 that the
uncoated PV module P10, performs the worst. However, the PV module that performs the
second worst is P1, which is in fact a coated PV module. As summarised in Table 7.14 the
averaged PR of the two groups (coated and uncoated), as displayed in the bottom graph of
Figure 7.30, displays a di�erence in PR_ideal of 0.6 % on 21 Sep. in favour of the uncoated
modules. It is also noted that the uncoated modules perform marginally (∼ 0.5 % at most)
better than the coated modules for the period of 20 June to 20 July. However, after the
rainfall received at the end of July, a change is observed and the coated modules appear to
perform marginally better (∼ 0.5 % at most) than the uncoated modules. However, these
are inconclusive observations since the di�erence is within the ±0.5 % measurement range.

Table 7.13: Details of the PV module comparison group E.

Comparison Set Exposure time PV modules Coating

E 1
Long term P1,P15,P16 yes
Long term P8,P9,P10 none

This vice versa behaviour of performance seen in Figure 7.30 (bottom graph) is a�rmed by
the histogram plot in Figure 7.30 with the performance of the uncoated modules, relative
to the coated modules, almost equal in comparison. The histogram does not include data
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points beyond the 27th of Oct, since modules P15 and P10 are cleaned as scheduled after
the six month exposure period.
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Figure 7.30: Comparison set E-1. Top: PR of long term coated (P1, P15, P16) and uncoated
modules (P8, P9, P10). Bottom: Avg. PR of each set of coated and uncoated modules.
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Figure 7.31: Histogram data for the long term PV modules. The PR of coated PV modules
P1, P15 and P16 is plotted w.r.t. the uncoated PV modules P8,P9 and P10.

Table 7.14: Summary of the PR results and histogram distribution for set E-1.

Set PRideal PRrelative

Hist. Number of days:
Days PRrelative

Total ≥ 1% ≤ -1% ±0.5%

E-1 0.6%(21 Sep.) 0.62%(8 Oct.) 177 0 0 177 (100%)

From the presented data, it is evident that for periods with more frequent rainfall (∼ 4
weeks) the coated modules perform marginally better than the uncoated modules. This is
however an inconclusive observation, because the data presented by the histogram in Figure
7.30 does not provide measured PR di�erences above that of the instrumentation accuracy.
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7.9.9 De�ning the single axis tracker performance ratio

The PR equation (7.3) applied, requires a POA irradiance measurement. However, unlike the
stationary modules, there is no global plane-of-array irradiance (GPOA−SAT ) measurement
available for the tracking modules. This value can however be acquired with the following
methodology:

1. Calculate the Sun's incident irradiance (Gincident), based on the 30◦ POA measurement
(GPOA) of the pyranometer.

2. Calculate the POA irradiance as received on the surface of the single axis tracker
modules, denoted by GPOA−SAT .

Gincident is the radiation measured perpendicular to the sun [123], also known as Direct
Normal Irradiance (DNI). The formula applied to determine Gincident is presented by equation
(7.25) [123][124]. This formula translates the measured GPOA−fixed value, retrieved from the
30◦ tilted, North facing pyranometer, into the incident irradiance value. Due to a lack
of a measurement for the di�used irradiance (Gdiffuse), which is sunlight scattered in the
atmosphere [123], the assumption is made that most of the GPOA−fixed consists of the Gincident

component. With the PR of the SATs determined during mid-day hours of 11:00AM -
14:00PM, the ground re�ected irradiance (GReflected) is assumed to be negligible. Thus
equation (7.26) is used to determine the value of direct irradiance component, Gincident.

GPOA−fixed = Gincident × cos(θAOI−fixed) +Gdiffuse +GReflected (7.25)

GPOA−fixed = Gincident × cos(θAOI−fixed) (7.26)

The angle-of-incidence, denoted by θAOI−fixed, is required in equation 7.26 which is a function
of the θS and β angles, as well as the tilt angle of the PV module, ε, as presented by equation
7.27 [44, p216]:

Figure 7.32: Illustartion of the various angle positions required for the process of �nding the
angle of incidence.

cosθ = cosβcos(θS − θC) sin ε+ sinβcosε (7.27)
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Where:

θ = Angle of incidence
θS = Solar Azimuth de�ned as degrees East of North (e.g. North = 0◦, East = 90◦)
θC = Collector azimuth de�ned as degrees East of North (e.g. North = 0◦, East = 90◦)
ε = Module tilt angle
β = Solar altitude

The collector azimuth angle adheres to the following condition:

Time ≤ solar noon : θC = 90◦

Time > solar noon : θC = 270◦ (−90◦)

All of the required angles (θS, β, ε, θC) are known since the MasterController actively logs
the tilt angle ε and the time at which the irradiance measurements are made. Angles θS
and β are determined with the same sun-position algorithm used for the SAT system, as
presented in Chapter 5, Section 5.2. Finally, with the incident irradiance Gincident known,
the value of GPOA−SAT received on the plane of a SAT is determined as:

GPOA−SAT = Gincident × cos(θAOI−SAT ) (7.28)

Where in (7.28) θAOI−SAT represents the angle of incidence for the tracker module:

With Gincident known, the irradiance seen by the PV module of a tracker is determined by
calculating the AOI with equation (7.27). Then, (7.28) is applied to determine the e�ective
POA irradiance received by each of the trackers.

It should be noted that this method of acquiring GPOA−SAT is an approximated value.
In hind-sight it would have been more advantageous to have had a pyranometer mounted
onto the trackers, to acquire a true value for GPOA−SAT . Since a true GPOA−SAT value
is unavailable, the capability of directly comparing PR values for stationary and tracking
modules is limited. However, it is still possible to e�ectively determine the performance of
tracker modules relative to one another, since the performances of all modules are compared,
relative to the same value of received GPOA−SAT .

7.10 Performance ratio results of SAT modules

7.10.1 Overview

As with the stationary models, di�erent experiments are performed to investigate the fea-
sibility of applying an anti-soiling coating to the tracker modules. The module layout is
illustrated in Figure 7.33. As mentioned in Chapter 6.2.2, no physical module cleaning rou-
tines are applied to any of the modules. This is due to the interest of this thesis to investigate
a DMS for tracking modules, where minimum human interaction is required. Instead, the
focus is on the movement of the trackers and how this could possibly be utilised to implement
an e�ective dust mitigation method. Modules P21 and P24 are coated with the anti-soiling
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product and SAT-1 is activated for the self cleaning mode, indicated in Figure 7.33. As dis-
cussed in Chapter 6.2.2, the self cleaning mode tilts the modules at a 45◦ tilt angle into the
direction of the rain and utilises dew droplets to further assist with displacing dust particles.

Figure 7.33: Layout of the SAT system and the modules with applied anti-soiling coatings.

7.10.2 Comparison of all four tracker module performance ratios
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Figure 7.34: Overview of all the measured performance ratios for the four SAT modules.

The PR of each module is once again determined for the period of 11:00 AM to 14:00 PM,
for the same reasons as for the stationary modules. From the graph presented in Figure 7.34,
modules P21 and P24 have the lowest PR, which evidently decreases further from the 5th
of Sep. at marker (a), and onwards. The reason for the rapid increase in PR at marker (b),
also occurs as discussed for the data presented for the stationary modules, which is due to
a low irradiance measurement, combined with a high average wind speed. It is interesting
to note how the reaction of module P21 seems to be exaggerated starting from 14 Aug. up
to 29 Sep. at marker (c). The exact reason for this is unknown, but it is assumed to be
due to non-uniform shading, provoked by dust soiling. No conclusive remarks can be made
regarding the behaviour demonstrated by module P22 during the �rst few days of 20 Aug.
until the beginning of September. Also, from marker (c) and onwards it is evident that
modules P21 and P23 are almost synchronised in behaviour, with modules P22 and P24 also
displaying the same harmonised movement in terms of PR. The reason for this is concluded
to be due to the geographic location of each of these modules. Module P21 and P23 are
coated and uncoated, respectively, and are opposite of one another as seen in Figure 7.33.
This also accounts for modules P22 and P24, which are both at the North end of the SAT
structures. At marker (d) it is seen that the PR of module P21 drastically increases from

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. RESULTS AND ANALYSIS 145

0.91 to 0.95. This occurs due to an experimental cleaning routine executed only on module
P21, which is a coated module. More details regarding this are provided at the end of section
7.10.3. The next sections aims to quantify the relative di�erence in performance between
the modules.

7.10.3 Coated vs. uncoated tracking modules

The �rst combinations of analysis for tracker module performance is indicated in Table 7.15.

Table 7.15: Module analysis for SAT-1 and SAT-2, comparing coated and uncoated modules.

Comparison Set Tracker PV modules Coating Self cleaning

F

1 SAT1
P23 none activated
P24 yes activated

2 SAT2
P21 yes deactivated
P22 none deactivated

Comparison set F-1 and F-2 di�erentiates between coated and uncoated tracking PV mod-
ules. Figure 7.35 illustrates the PR measured for the modules of SAT-1, which are activated
for the self cleaning mode. The data recorded for SAT-2 (Set F-2) is illustrated in Figure
7.36. From these graphs it is evident that the uncoated modules outperform the coated
modules. It must be mentioned that a large bird dropping is recorded on the 14th of Oct.
on SAT module P21. However, the bird excretion is removed on the 17th of Oct. and is also
removed from the data set.
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Figure 7.35: Comparisons set F-1. TOP: PR of the coated (P24) and uncoated (P23)
modules. BOTTOM: PR distribution of module P24 relative to module P23.

A data summary is provided in Table 7.16 of the results displayed in Figures 7.35 and 7.36.
With regards to the distribution of the PR for each data set, set F-2 displays the largest
deviation in PR. For set F-2, module P22 outperforms the coated module, P21, by a PRideal

deviation of 5.54 %. The max. PRideal deviation for set F-1 is recorded at 3.15 %, with the
weight of the histogram largely distributed between -0.5 % to -2.5 %. This is considerably
more than what is recorded for any of the stationary modules. The modules on SAT-2 (Set

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. RESULTS AND ANALYSIS 146

14
-A

ug

17
-A

ug

20
-A

ug

23
-A

ug

26
-A

ug

29
-A

ug

1-
Sep

4-
Sep

7-
Sep

10
-S

ep

13
-S

ep

16
-S

ep

19
-S

ep

22
-S

ep

25
-S

ep

28
-S

ep

1-
Oct

4-
Oct

7-
Oct

10
-O

ct

13
-O

ct

16
-O

ct

19
-O

ct

22
-O

ct

25
-O

ct

28
-O

ct

31
-O

ct

3-
N
ov

6-
N
ov

9-
N
ov

12
-N

ov

15
-N

ov

18
-N

ov

Day

0.90

0.92

0.94

0.96

0.98

1.00

P
R

Rain

Cleaned

P21

P22

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

PR difference [%]

0

5

10

15

20

25

30

F
re

q
u

e
n

cy

Figure 7.36: Comparisons set F-2. TOP: PR of the coated (P21) and uncoated(P22) mod-
ules. BOTTOM: Distribution of module P21's PR relative to module P22.

Table 7.16: Summary of the results obtained for comparison sets F-1 and F-2.

Set PRideal PRrelative

Hist. Number of days:
Days PRrelative

Total ≤ -1% ≤ -2% ≤ -3%

F-1 3.15%(9 Sep.) 3.25%(9 Sep.) 98 38 (38.8%) 34 (34.7%) 3 (3.1%)
F-2 5.4%(25 Sep.) 5.54%(25 Sep.) 97 4 (4.1%) 38 (39.2%) 53 (54.7%)

F-2) display an even larger deviation in PR, with more than 54 % of the days indicating a
PRrelative di�erence, exceeding 3 %.

The histogram plot of set F-2, in Figure 7.36 has a measurement recorded at +0.5 % on 19
Nov. (not included in Table 7.16) in favour of the coated module. This is due to module
P21 cleaned with water to prove that this coated module is in fact subjected to a large
deposit of dust soiling. This veri�es the results, which indicate that the coated module P21
is much dirtier than the uncoated module P22, as seen in the drastic PR increase measured
on the 19th of Nov. A signi�cant increase of ∼ 2.1 % relative to module P22 is seen directly
after module P21 is cleaned. This veri�es that the anti-soiling coating in fact promotes dust
deposition. Further reference to this is made in section 7.11.

7.10.4 Self cleaning vs. normal tracking operation

As seen in the graphs of sets F-1 and F-2 in section 7.10.3, the results suggest that the
coated modules in fact under performed with regards to the uncoated modules. The question
remains whether or not the self cleaning manoeuvre of SAT-1 aids with the removal of dust
particles? This is investigated by comparison group G, as detailed in Table 7.17.

The two coated modules of group G-1 (P21, P24) are compared to one another in Figure
7.37. Evidently, coated module P24, on the self cleaning activated SAT1, performs better,
with more than half of the histogram distribution indicating a PR between 1 % to 2 % in
favour of the module P24. In Table 7.18 a summary of the data is presented both sets G-1
and G-2.

The two uncoated modules are compared for the normal and self cleaning trackers in Figure
7.38. As evident, from the top graph, the di�erence in performance for these two modules is
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Table 7.17: Details regarding comparison group G

Comparison Set Tracker PV modules Coating Self cleaning

G

1 SAT1, SAT2
P21 yes deactivated
P24 yes activated

2 SAT1, SAT2
P22 none deactivated
P23 none activated
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Figure 7.37: Comparisons set G-1. TOP: PR of the coated modules P21 (normal) and P24
(self cleaning). BOTTOM: PR distribution of module P24 relative to module P21.

less than the di�erence observed for the coated modules. This is con�rmed by the histogram
distribution in Figure 7.38. Module P22 over-all performs better than P23, with 43 days (97
days in total) indicating a relative PR di�erence of 1 % - 2 % in favour of module P22.

Therefore, with the analysis of comparison set G-1 and G-2, it is inconclusive whether or
not the self cleaning mode did in fact make a di�erence, since the results of the coated and
uncoated modules are not in agreement.
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Figure 7.38: Comparisons set G-2. TOP: PR of the uncoated modules P22 (normal) and
P23 (self cleaning). BOTTOM: PR distribution of module P23 w.r.t. module P22.
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Table 7.18: Summary of the results obtained for the modules compared of Set G-1 and G-2.

Set PRideal PRrelative

Hist. Number of days:
Days PRrelative

Total ≤ -1% ≥ 1% ≥ 2%

G-1 3.25%(25 Sep.) 3.56%(25 Sep.) 97 1 (1.03%) 49 (50.5%) 13 (13.4%)

Total ≤ -2% ≤ -1% ≥ 1%

G-2 2.0%(27 Aug.) 2.03%(4 Sep.) 97 5 (5.2%) 38 (39.2%) 3 (3.1%)

As summarised by Table 7.18, the biggest di�erence in PRideal is recorded for modules P21
and P24 as 3.25 %, in favour of module P24. Also, the PRrelative of module P24 outperformed
module P21 for more than 63 % of the three month period, by a di�erence of 1 % or higher.
For the uncoated modules of set G-2, module P23 surpassed module P22 with a PRrelative

greater than 1 % for about 44 % of the time, over the three month period. However, unlike
set G-1, the PRrelative of module set G-2 performed within the ±0.5 % range for about 50
% of the time. Contrary to this, the coated modules of set G-1 only performed within the
PRrelative range of ±0.5 % for 35 % of the time, indicating a larger deviation over a longer
time period.

7.11 In �eld visual observations made

7.11.1 Overview

This section elaborates on the actual in �eld observations made during the time spent at
the PVRF. The behaviour of the PV modules is captured on photograph to illustrate how
coated and non-coated modules react to certain conditions.

7.11.2 Stationary PV module observations

From Figure 7.39, the reaction of the PV modules to rainfall is illustrated. As seen in
Figure 7.39a the hydrophobic coating allows the rain to accumulate and form water beads
(droplets). With the theory presented in Chapter 2.2.3, as these droplets roll o�, the dust
particles are captured and displaced. On the other hand, Figure 7.39b illustrates how the
non-coated module surface, allows for a lower water contact angle, which results in a uniform
water distribution across the module surface.

(a) Coated module surface after rainfall. (b) Uncoated module surface after rainfall.

Figure 7.39: Illustration of the PV module surfaces shortly after rainfall is received.
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The reaction of dust particles to these di�erent movements of water displacement (shown in
Figure 7.39), is illustrated in Figure 7.40. Figure 7.40a reveals how dust particles react to the
water droplets, formed due to the hydrophobic coating. After rain is received, the droplets
remove dust by means of rolling o�, however there is a problem with regards to the droplets
which remain. These droplets, provide a means for dust to be captured and concentrated
onto the surface area occupied by the droplets. Ideally, from observation, the droplets should
all roll o� of the module surface completely. However, once the water quantity on the module
decreases as rain stops, the remaining droplets stay in tact due to the 30◦ tilt angle of the
module. Should the angle of tilt increase, the e�ect of gravity is increased and less, as well
as, smaller droplets would remain on the module surface.

The reaction of dust particles on the uncoated PV modules, is seen in Figure 7.40. Evidently,
the dust particles combine to form wave shaped lines. From observations made while washing
PV modules, two aspects contribute to this phenomena. It is seen that not all of the water
disperses from the module and that a remaining layer of water is always left to evaporate.
It is this �nal layer of water which is responsible for the largest amount of dust particle
deposition. This layer provides a wet surface for air borne dust to adhere to and also
captures the last remaining surface dust, as this water layer gradually moves downwards.
Also, as the �nal layer of water moves downwards, the water layer accumulates and forms
wave shaped patterns (as one would see on a beach). However, because this water layer is
so thin, it usually evaporates, before it reaches the bottom of the PV module. Ultimately,
this behaviour is believed to result in the wave-like dust density line.

(a) Dry coated module surface. (b) Dry non-coated module surface.

Figure 7.40: Illustration of the PV modules surfaces, two weeks after rainfall is received.

After the stationary PV modules have been subjected to no rainfall during the two months
of June and July, the PV module surfaces appear as displayed in Figure 7.41.

(a) Dry coated module surface (b) Dry non-coated module surface

Figure 7.41: Illustration of the PV modules surfaces, two months after rainfall is received.
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In Figure 7.41a the e�ect of water droplets rolling o� of the module surface, can be clearly
seen, which attests to the characteristics of a hydrophobic coating. However, what is alarming
is the hard shading caused by the dust patches seen on the module. It can also be seen how
the wave shaped dust line of Figure 7.41b is also very dense and results in hard shading.
These separate occurrences of hard dust shading is due to the initial onset of dust and the
general rule that dust promotes dust [125]. From �eld observation, it must be mentioned
that the wave shaped dust formation is not always present on all modules, however the
dust dust patches formed due to the hydrophobic coating are always observed on all coated
modules.

It is also worth mentioning the e�ect of the dust particles during early morning and late
afternoon. During these times, it is noticed how the shadows projected by dust molecules,
substantially increase during low sun conditions, especially where a concentration of particles
is found. This de�nitely increases the possibility of hot spot formations on the PV module
surfaces.

7.11.3 Single axis tracker PV module behaviour

After a two month period where no rainfall is received, the reaction of the SAT modules to
dust soiling is displayed in Figure 7.42. As seen from the photographs in Figures 7.42a and
7.42b, the coated PV modules indicate a higher degree of dust soiling than the uncoated
modules in Figures 7.42c and 7.42d. This correlates with the results presented in section
7.10.3, which conclude that the coated modules under perform with regards to the uncoated
modules. Finally, it is noticed that the uncoated tracker modules indicate a slightly larger
amount of dust soiling than the stationary modules.

(a) Coated tracker module P21. (b) Normal tracker module P22.

(c) Normal tracker module P23. (d) Coated tracker module P24.

Figure 7.42: Illustration of the single axis tracker PV modules surfaces, after a two month
absence of rainfall.
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7.11.4 Cleaning routine observations

When short term cleaning routines are executed, it is realised that the dry cleaning procedure
does not e�ectively eliminate all of the dust particles. This is mostly due to the inability of
a dry cloth to separate the hardened dust particles from the glass surface, which form what
can be described as a dust soiling stain. Only by applying pressure, can these dust stains
be removed, but this in turn can damage the glass surface of a PV module. It is however
observed that cleaning the modules with distilled water, completely restores the glass surface
of a module.
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Chapter 8

Conclusions and Recommendations

8.1 Stationary modules

The results obtained in Chapter 7 produced counter intuitive behaviour with reference to
some of the hypothesis statements made in Chapter 1. Where it was expected that the
application of an anti-soiling coating would result in an increase in PV module performance,
the analysis indicated otherwise. For the evaluation of the stationary modules, di�erent
module sets were compared to determined the performance of the various mitigation methods
applied. In summary, the following results are obtained for the di�erent comparison sets over
the six month period (May-Oct 2016):

� Group A: Long term vs. short term exposed, coated modules. It is concluded that
the short term modules outperformed the long term modules. A maximum PRideal

di�erence, in favour of the short term modules, of ∼ 2 % was observed for both wet
and dry cleaned modules.

� Group B: Long term vs. short term exposed, uncoated modules. Results indicated a
max. PRideal increase of ∼ 1.5 % for both the wet and dry cleaned short term modules.

� Group C: Short term exposed coated vs. uncoated modules. Results are inconclusive
due to the measured di�erence in performance, recorded within the ±0.5 % boundary
of uncertainty.

� Group D: Comparison of short term cleaning routines. No real di�erence is seen for
either the dry or wet cleaning methods applied to the coated and uncoated module
sets.

� Group E: Long term exposed coated vs. uncoated modules. Results are once again
inconclusive due to the measured di�erence in performance, recorded within the ±0.5 %
boundary.

Conclusions on short term exposed modules

Regarding the short term cleaning routines, it is inconclusive whether or not dry cleaning
or water (distilled) cleaning is better. Should a short term cleaning strategy be considered,
results indicate that stationary PV modules can in fact be left uncoated and dry cleaned, to
maintain module performance. This should especially be considered regarding the general
water scarcity in the semi-arid areas of the Northern Cape and the cost of labour associated
with the application of an anti-soiling coating.
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Regarding the short term module performance of the anti-soiling coating, it is perceived
that the uncoated modules marginally outperformed the coated modules. This is seen in the
results of both comparison sets C and D. The di�erences are however too small (within ±0.5
%) to make a de�nitive statement regarding this topic. Nonetheless, the mere fact that the
surface coating made no real contribution to enhance module performance, provides enough
reason to conclude that a hydrophobic anti-soiling coating is not required for a short term
cleaning strategy. It is also observed, during the actual execution of cleaning routines, that
the dust patches formed by the coating resulted in dust stains, which could not be e�ectively
removed by a dry cleaning procedure.

Conclusions on long term exposed modules

The long term modules were not subjected to any cleaning routines during this research
period. These modules displayed a maximum reduction in CR of up to 2.7 %, as compared
to the short term, uncoated reference modules. The largest decrease in ideal performance
(PRideal) was recorded as ∼ 1.9 %. This was concluded to be due to a 75 day absence in
rainfall. However, with rainfall received after this period, the PRs of all long term exposed
modules were restored. Concerning the amount of rainfall required to restore module per-
formance, no conclusive statement can be made, since rainfall received always exceeded 6
mm. However, the least amount of rainfall received during the six month period was 6.5
mm, which proved to be enough to restore all module performances. Overall it is concluded
that a frequent rainfall, which occurs at least every four to six weeks, is enough to maintain
PV module performance, within a 1 % deviation from the rated performance.

Regarding the anti-soiling coating, no real advantage is seen in the performance of the
modules exposed over the six month period. Also, the visual observations of Chapter 7
(section 7.11) indicated that the hydrophobic coating stimulated further dust soiling. Small
dust patches were seen to appear due to the formation of water droplets, which failed to
evaporate within time, to avoid attracting dust. This is concluded to place the modules at
risk of possible hot spot formations, since the concentrated dust patches are dense enough
to be classi�ed as hard shading particles.

Ultimately, from the results of the data analysis regarding the stationary modules, the fol-
lowing is summarised:

� A hydrophobic anti-soiling coating is not an e�ective dust mitigation method.

� Long term exposed PV module performance can be sustained within a 1 % deviation,
should rainfall above 6 mm be received, within a four to six week time period.

� Over the six month period, the short term dry-cleaning method proved to be superior
with regards to restoring PV module performance, as well as the independence on
water.

8.1.1 Single axis tracking modules

The analysis continued to investigate the e�ect of dust soiling on single axis tracking modules,
which were exposed for three months (14 Aug. to 18 Nov. 2016). For the experimental
set up, a self cleaning manoeuvre was executed on SAT-1 and SAT-2 continued with a
normal tracking routine. With two modules coated and two uncoated on each SAT system,
the following summary is presented for the results obtained concerning the di�erent SAT
comparison sets:
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� Group F: Coated vs. uncoated SAT module performance. The largest di�erence in the
ideal performance ratio (PRideal) is recorded at 5.4 %.

� Group G: Self cleaning vs. normal tracking operation. No conclusion is drawn re-
garding the e�ect of the self cleaning functionality, since the results of the coated and
uncoated modules are not in agreement. The coated modules are in favour of the self
cleaning mode with a maximum PRideal value of 3.3 %. However, the uncoated mod-
ules are in favour of the normal tracking routine with a maximum di�erence in PRideal

of 2 %.

From the three months of exposure, it is observed that the applied hydrophobic coating
in fact promotes dust soiling on the SAT modules. This is in direct contrast with the
expectation that the tracking modules would outperform the stationary modules, regarding
surface dust accumulation. As mentioned, a maximum di�erence of 5.4 % is seen for the
ideal PR of coated module P21, as compared to uncoated module P22. To con�rm these
data observations, coated module P21 is washed and once again compared to module P22.
A relative PR increase of 2.1 % is recorded for module P21, with respect to P22. This
con�rmed the experimental data, which suggests that the anti-soiling coating promotes dust
soiling.

It is also seen that the tracking modules (coated and uncoated) are overall more prone to
dust accumulation than the stationary modules. Although this cannot be con�rmed with a
direct PR comparison, due to a lack of a true GPOA−SAT measurement, this conclusion is
formulated based on the visual observations made at the PVRF.

The following is a postulation of why the coated modules in fact displayed increased levels of
dust soiling. It is believed that the horisontal resting position of the trackers, adopted during
night time, creates a stable platform which facilitates the process of dust adhesion onto the
modules. This horisontal position, minimises the e�ect of gravity on larger dust particles,
which would normally be displaced by a low wind speed, as is the case for the tilted stationary
modules. This thought is also illustrated by the research of E. Klugmann-Radziemska [15],
who refers to the ability of gravity to displace dust particles. Further, the formation of
dew on the module surfaces, is also believed to act as a catalyst for dust soiling. This thin
layer of precipitation allows present dust particles to further merge onto the PV module
surfaces. This argument is based on the �ndings of J. Cano [17] presented in Chapter 2, who
quanti�ed the relationship between tilt angle and power loss due to soiling. Cano's study
concluded that a decreased tilt angle, resulted in an increased dust accumulation. Cano also
concluded that in the event of low rainfall (less than 2mm), particularly with reference to
horisontally tilted modules, the formation of mud patches occurred. The research conducted
by E. Klugmann-Radziemska also referred to how low amounts of precipitation provokes the
formation of adhesive mud patches on module surfaces.

Thus, it is deduced from the in �eld observations and data presented, that the low amount
of precipitation formed by dew, on the SAT module surfaces, enables the dust particles to
combine into larger dust-patches.

In summary, the results conclude:

� SAT PV modules, which adopt a horisontal resting position, are more prone to dust
soiling than stationary tilted (30◦) modules.

� A hydrophobic anti-soiling coating is not recommended.
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� It is inconclusive whether or not a self-cleaning manoeuvre, to reduce dust soiling, is
of any advantage.

8.1.2 Conclusive remarks

As presented, the largest deviation in performance (de�ned by the CR) of an uncoated,
long term exposed module as compared to a set of uncoated biweekly cleaned modules,
was recorded at 2.1 % (max. of 2.7 % recorded for a coated module). It should however
be mentioned that the PVRF is considered to have received an above normal exposure to
dust soiling. This is mainly due to the fact that both a rail road and dirt road are located
approximately 250 m West of the research site. With a predominant South-West wind
direction, dust particles are prone to be distributed towards the PVRF.

It can also be con�dently stated that during the six months of analysis, the short term
mitigation method that performed the best was the dry cleaning method, applied to uncoated
modules. This mitigation method performed equal to the other short term methods, but due
to the low labour intensity and cost required to execute this cleaning option, it is regarded
as the optimum short term method. However, it cannot be concluded with certainty that
this cleaning method is also the best long term method, due to the inability to e�ectively
remove dust stains. Thus, further research is required regarding this topic.

The author's advice to PV system engineers and operators is as follows:

1. Firstly, for modules located in the semi-arid environment of the Northern Cape, it is
not recommended that a hydrophobic coating should be applied. The labour intensity,
cost and little to no bene�t of such a coating (as proved by this research) makes the
application thereof highly impractical and expensive.

2. It is advised that PV system operators should continuously monitor PV module per-
formance. Due to uncertainty regarding measurements, it is not advised that a string
of modules within a commercial PV power plant is used as reference point for the per-
formance of other strings. The uncertainty regarding this method is simply too high
and may not depict the actual loss [%] of PV module performance. An experimental
set of normalised reference PV modules (cleaned daily), as well as modules exposed to
accumulate dust (representing unclean PV power plant modules), should be utilised.
From these modules accurate I-V curve data is to be extracted and analysed. The con-
tinuous and accurate monitoring of PV module output power is crucial if commercial
PV system operators are to accomplish projected energy yield.

3. An ad hoc cleaning strategy is recommend. With a regularly cleaned set of modules
in place, it is advised that an impromptu decision to execute a cleaning routine, must
be based on a �nancial model. This model must account for the decrease in module
performance [%], as well as weather predictions regarding rainfall. As seen in this
research, rainfall (> 6 mm) every four to six weeks is substantial to recover module
performance. Depending on water availability, if a decision is to be made regarding a
wet or dry cleaning routine, it is advised that an experimental analysis be performed
where both methods are considered. Based on the di�erence in increased performance,
a basic cost analysis can be executed for both routines to make a �nal decision regarding
the method.
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8.2 Recommendations and future research

� Due to the uncertainty encountered by this research, regarding the irradiance seen by
the SAT modules, it is advised that a pyranometer be added to the single axis tracking
system. This will allow a true GPOA−SAT irradiance value to be recorded. Such an
addition would allow for a direct data related comparison (and not just a visual com-
parison) between tracking modules and stationary modules in terms of performance.

� In hind-sight, it would have been more advantageous to have had two regularly cleaned
reference modules, one coated and one normal, so that a CR analysis could be per-
formed on the trackers. It is also advised that the study regarding the trackers be
continued, so that a larger set of data can be analysed.

� It is recommended that research is done regarding the resting position of a single axis
tracking system during the night time. This thesis indicated that a horisontal resting
position promoted dust soiling. The question remains whether or not a tilted resting
position would display a decrease in dust soiling.

� As mentioned, it was seen that the de�ned PR still displayed a sensitivity to a change
in irradiance. Although, the PR does mathematically normalise module performance
with regards to both irradiance and temperature, further research is required as to why
the PR is still sensitive to changes in irradiance.

� No conclusive remarks beyond six months can be made regarding the mitigation meth-
ods. Therefore, it is recommended that the applied dust mitigation strategy for this
research be continued. This would allow a conclusion to be drawn regarding the state
of the dry cleaned modules after one year of exposure, compared to that of water
cleaned modules. Ultimately, this would give a �nal indication of whether the dry
cleaning method truly is superior in terms of maintaining module performance. Such
research will also be bene�cial for researchers and engineers who are considering the
use of robotic systems, which mainly rely on a dry cleaning process.

� It would be interesting to see how modules perform over time which are cleaned when
rainfall is in progress. In other words, the study would investigate the e�ciency of
using rainfall as a potential and natural detergent.

� It is recommended that a study be performed regarding the e�ect of dust soiling on
PV module cell temperature. The research presented by A. Rao et al. [42] and Bing
Guo et al. [41] presented di�erent conclusions regarding this topic. Such a study would
therefore de�nitely contribute to the available data on dust soiling and its e�ect on
PV module temperature.

� Ultimately, with the recorded PR and CR deviations as seen in Chapter 7, it is con-
cluded that dust soiling is indeed a highly complex phenomena sensitive to external
in�uences(wind, humidity, rain, irradiance, etc.). It was not within the scope of this
research to intensively investigate the e�ect of weather conditions on PV module per-
formance. Nonetheless, such a study would be of great value regarding the formulation
of a highly accurate predictive model, which considers all meteorological in�uences.
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Research facility

A.1 Phase 1: Basic infrastructure

Phase one consists of installing the operational framework of the research facility. Phase
one takes place during the week of 18 to 23 May 2015. The following items are installed as
indicated by Table A.1:

Table A.1: Active-Load assignments.

Item Item
26 x orange metal enclosures 4 x 300W PV modules
20 x triangular frames 6 x A-frames (trackers)
21 x small orange metal enclosures 1 x large orange metal enclosure
62 x concrete foundation blocks 1 x WiFi-tower
1 x weather station Data logger and rain gauge frame
4 x 12 V batteries 2 x MPPT charge controllers
Underground PVC piping 1x wi-� router & Raspberry-Pi

Day one is dedicated to identifying the the facility's layout and marking o� important points
of reference before construction commences. The concrete blocks are placed and levelled and
trenches for the PVC piping are made. The weather station and WiFi-tower poles are also
erected. On day two, the remaining concrete blocks are placed and levelled. The weather
station is also installed with the necessary PVC piping. On day three and four, the galvanised
steel frames are installed. On day �ve and six the electronic housings are installed and the
weather station and WiFi antenna poles are anchored.

In Figure A.1 the completion of phase one is presented:
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(a) Stationary PV module structures. (b) Battery bank after phase 1 installation.

Figure A.1: Images of the PVRF after the completion of Phase 1 construction.

Phase 1

This phase is described in Chapter 3.

Phase 2 and 3: Anchoring and PV module installation

Phase two (15 to 17 June 2015) of installations requires that all of the structures installed
during phase one, are �rmly anchored. This is accomplished with anchor poles, steel vineyard
cable and crosby clamps. Every single frame of the �xed rows, trackers and battery bank
is anchored on both sides. The weather station and wi-� towers are also anchored on three
sides. In total 54 anchor poles are secured into the ground and fastened to the structure
frames as illustrated in �gure:

After the frames are securely anchored, the PV modules and wire wound resistor loads are
installed during phase three (28 Jul to 1 Aug 2015). The 750 W, 1 Ω wire wound resistors
are also installed. All of the orange metal enclosures are connected with the wire wound
resistors, by means of 20 mm sheath and couplings, to allow electrical wiring from each
resistor to enter into the corresponding enclosure. In total all 20 pc-Si modules and eight
thin-�lm modules are installed, together with 24 wire wound resistors.

Phase 4: Installation of electronics

The main focus of this phase (24 to 28 Aug 2015) is the installation of the ActiveLoads and
the MasterController. The orange enclosure boxes are connected with one another. Several
issues are found with regards to the temperature sensors during this phase. The ALs behind
the battery bank, for the SATs are also damaged each time the power is connected. No
solution to the problem is found during this phase.

Phase 5:

Several issues arise during installation phase four, as mentioned above. The primary goal of
this phase is to resolve these issues. The problems with regards to communication errors are
solved by physically grounding the shield of the RS485 communication line to the structures,
which are also grounded via the anchor poles.

A TVS diode is also installed at each input terminal of the ALs, to avoid voltage spikes from
damaging circuitry. The temperature sensor issues are still not resolved during this phase.
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New software is loaded onto the ActiveLoads and the Raspberry-Pi, to allow for more e�cient
data management and communication. Also, a new version of the SD-card code allows data
to be sampled and stored more accurately, eliminating occurrences of corrupt data. All
structures and orange boxes also have to be �rmly grounded, to eliminate possible unwanted
electric activity on the system, particularly with regards to communication (CRC errors)
and also power line grounding issues. The structure of the battery bank is �rmly grounded
with an earth pick. The RS485 cable's shield is also �rmly connected to the earth of the
Power Station. This is done to ensure that a single ground is established.

Phase 6:

Phase six takes place during 19 to 23 Oct. 2015. After the completion of phase �ve, it is
noticed that PV module current delivered is clamped at 9.3A. This was due to the fact that
the gain originally set with the 900 Ω gain resistor is too low for the INA111 Instrumentation
ampli�er [112]. Thus the gain resistor is changed to 1.5 kΩ to ensure that higher currents do
not clip. This mistake is made due to the fact that it is not considered that the irradiance
would be more than 1000 W/m2. Because of the fact that the INA111's gain is adjusted, the
ActiveLoads are recalibrated in terms of current o�sets and the calibration constants have to
be recoded onto the ActiveLoads. New 47 Ω resistors are also soldered onto the MISO and
MOSI lines of the temperature sensors, in an attempt to acquire more accurate temperature
readings. This proved to solve the problem, which was determined to be caused mainly due
to the length of the SPI cables.

Bird droppings are an issue and the PV modules are regularly soiled at the top of the
module. To maintain data validity, bird spikes are installed to demotivate birds from sitting
on the modules. This is found to be an e�ective solution, since the amount of bird droppings
drastically decreased.

Phase 7:

Phase seven(8 Nov. - 12 Nov. 2015) is a critical phase, since this phase marks the start of the
o�cial data collection. After completion of this stage, the PVRF is functioning completely.
Of course, the trackers are not active yet. Bird spikes are also added to the thin-�lm modules.
All of the PV modules are also washed.

Phase 8:

Is executed between 9 to 11 Dec 2015. It is found that any measurement values larger than
100 are not stored on the SD card of the MC. New code is loaded onto the MC. General site
inspection is also conducted.

Phase 9:

The aim of this phase, which takes place 18 January - 20 January 2016, is to upload new
�rmware onto the weather sensor. The weather sensor is frequently providing a temperature
measurements of 999, indicating a faulty measurement. New �rmware is uploaded and found
to resolve the issue. The MasterController is also found to have an issue. Every 4 h 21 min
the WS stops responding for 7-8 minutes, thus failing to reply 11/12 requests per minute,
with a request being sent every 5 sec. It is determined that only the very �rst request is
successful during this period of "no reply" from the WS. With various tests it has been
determined that the MSO-485 weather sensor is in fact responsible for the problem. With
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a log interval of 1 min, the MC's database entries show zero, for 5x entries in a row, every
57minutes. However, the CSV �le is updated correctly and contains the correct information.
Thus, something is determined to be wrong with the FIFO data on the SD card.

Phase 10: Cleaning strategy implemented

During this phase (15 February - 17 February 2016) the modules are coated and the strategy
for dust mitigation is �nally implemented. For a detailed description of the mitigation
strategy, please refer to Chapter6. However, due to the malfunction of the battery bank,
which is hit by lightning, the o�cial data analysis and implementation of the biweekly
cleaning routines are delayed until April.

Phase 11: Replace batteries and MPPT charge controllers

This phase is executed during 20 March to 25 March 2016. Due to a lightning strike, the
MPPT charge controllers are destroyed. Thus, new batteries and MPPT charge controllers
are installed. The new master device code, revised by T. Pandy, is integrated into the system
to allow for a more seamless upload of device data.

Phase 12: First o�cial installation attempt of the SAT system

The SAT system is installed during the week of 19 to 23 April 2016. However, the PV
module clamps that connect the modules to the axis are proven to be incapable of securing
the modules onto the platform. Several mechanical issues are also experienced regarding the
motor couplings. After this �rst in �eld testing procedure, the SAT system requires some
adjustments concerning the clamps and couplings.

Phase 13: Installation of the SAT system

During the week of 31 May to 5 June 2016, the SAT system is completely installed and
several days of in �eld testing is performed to re�ne and successfully integrate the SAT
system.

Phase 14: Installation of pyranometer

Due to water damage, the pyranometer is reinstalled after being �xed by a local engineering
company. This pahse is executed during 12 to 15 July. The sensor was alos checked for
calibration and found to be accurate. A new cable connector is installed for the sensor.
General site inspection is performed and �rmware updates are uploaded to the MC and SAT
boards.

Phase 15: Zero position calibration of SAT system

After a faulty position sensor feedback is received from a SAT, a new position sensor is to be
installed. This phase is executed from 11 to 14 August 2016.The new �rmware is uploaded
to the SAT and MC board, which allows for the remote calibration of a SAT. A new position
sensor is also installed and general site inspections are completed.
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A.2 Items installed at Kalkbult PVRF

Table A.2: List of items required for the successful installation of the PVRF.

Item Item
26 x Orange metal enclosures 4 x 300W PV modules
20 x triangular frames 6 x A-frames (trackers)
21 x small orange metal enclosures 1 x large orange metal enclosure
62 x concrete foundation blocks 1 x WiFi-tower and router
1 x weather sensor Data-logger and rain-meter frame
4 x 12V Batteries 2 x MPPT charge controllers
Underground PVC piping 1x wi-� router & Raspberry-Pi
54 x 1m Anchor poles 60 x vineyard anchoring cables
120 x crosby clamps 20 x 250W pc-Si modules
8 x Cd-Te Thin Film modules 24 x Active-loads
1 x Master Controller 1 x Rain gauge
1 x Pyranometer 24 x Wire Wound resistors
1 x Grounding earth-pick 28 x Back-plate temp. sensors
2 x 24V, 4000r.p.m DC motors 2 x 5000:1 Worm Gear combinations
4 x 10m and 1 x 6m cross-beams 4 x single axis tracker axis
80 x pc-Si Module fastening clamps 32 x Thin-Film module clamps
6 x 5 cm diameter bearings 2 x position sensors and enclosures
2 x Single-axis-control boards Bird spikes on 28 x PV modules

A.2.1 Photos of PVRF

(a) WiFi antenna. (b) Weather sensor.

(c) WiFi-router and Raspberry Pi. (d) Pyranometer mounted at 30◦ tilt.

Figure A.2: Communication and meteorological device set-up.
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(a) Stationary row with enclosures. (b) Stationary row from the front side.

(c) Underneath an enclosure box. (d) A single axis tracker.

Figure A.3: Images of the stationary rows, one of the SATs and an example of a wired orange
enclosure box.

(a) Batteries and MPPT charge
controller.

(b) AL connected in an orange en-
closure box.

Figure A.4: Images of the battery bank and an AL inside the electronic housings.
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Master Controller PCB design

B.1 Relevant datasheet information

Figure B.1: Value of drain-source on resistance for P-channel BSS84P MOSFET [76, p.5]

B.2 MC PCB design documents
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Figure B.2: Schematic design of the MCU circuitry.
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Figure B.3: Schematic design of the power supply circuitry.

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



A
P
P
E
N
D
IX

B
.
M
A
S
T
E
R
C
O
N
T
R
O
L
L
E
R
P
C
B
D
E
S
IG
N

1
6
7

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2016/12/14 Sheet    of
File: C:\Users\..\RS485_ATmega_UART0.SchDocDrawn By:

GNDComms0GNDComms0

+5VComms0

GNDComms0

GNDComms0

+5VComms0

+5VComms0

GNDComms0

+5V

+5VComms0

GND

GNDComms0

2k ohm
R19

220 ohm
R18

220 ohm
R20

2k ohm
R21

2k ohm
R17

220 ohm
R16

C15 C16 C17

GNDComms0

+5VComms0
GND

GND

C14

GND

+5V

+5VComms0

GNDComms0

GNDComms0
+5V

+5V

TXE_0

TX_0

RX_0

GND

+5V

Q1
BSS84

Q2
BSS84

Q3
BSS84

NC 1

VF+ 2

VF- 3

NC 4GND5 VO6 VB7 VCC8
U5

HCPL0XXX

NC1

VF+2

VF-3

NC4 GND 5VO 6VB 7VCC 8
U6

HCPL0XXX

NC1

VF+2

VF-3

NC4 GND 5VO 6VB 7VCC 8
U7

HCPL0XXX

RO1

RE2

DE3

DI4 GND 5A 6B 7VCC 8
U8

SP485EXN

120 ohm
R22

15 ohm
R23

15 ohm
R24

VCC1

GND2

-Vout4 +Vout6

U4

TMXXXXXS

1
2
3

P2

MKDS 3/3-X.XX

1
2

P3

Header 2

D11
SMBJXCA

D12
SMBJXCA

D13
SMBJXCA

PIC1401

PIC1402 COC14

PIC1501

PIC1502 COC15

PIC1601

PIC1602 COC16

PIC1701

PIC1702 COC17

PID1101

PID1102
COD11

PID1201

PID1202
COD12

PID1301

PID1302
COD13

PIP201

PIP202

PIP203

COP2

PIP301

PIP302

COP3

PIQ101PIQ102

PIQ103
COQ1

PIQ201 PIQ202

PIQ203

COQ2

PIQ301 PIQ302

PIQ303
COQ3

PIR1601 PIR1602

COR16

PIR1701

PIR1702

COR17

PIR1801 PIR1802

COR18

PIR1901

PIR1902
COR19

PIR2001 PIR2002

COR20

PIR2101

PIR2102

COR21

PIR2201

PIR2202
COR22

PIR2301 PIR2302

COR23

PIR2401 PIR2402

COR24

PIU401

PIU402

PIU404

PIU406

COU4

PIU501

PIU502

PIU503

PIU504PIU505

PIU506

PIU507

PIU508

COU5

PIU601

PIU602

PIU603

PIU604 PIU605

PIU606

PIU607

PIU608

COU6

PIU701

PIU702

PIU703

PIU704 PIU705

PIU706

PIU707

PIU708

COU7

PIU801

PIU802

PIU803

PIU804 PIU805

PIU806

PIU807

PIU808

COU8

PIC1401

PIQ202

PIQ302

PIR1701

PIU401

PIU508

PIC1501 PIC1601 PIC1701

PIQ102

PIR1901

PIR2101

PIU406

PIU608

PIU708

PIU808

PIC1402

PIU402

PIU505

PIU603

PIU703

PIC1502 PIC1602 PIC1702

PID1202 PID1302

PIP203

PIU404

PIU503

PIU605

PIU705

PIU805

PID1101

PID1301

PIP302 PIR2301

PIU807

PID1102

PID1201

PIR2202

PIR2401PIU806

PIP201

PIR2402

PIP202PIR2302

PIP301

PIR2201

PIQ101

PIU801

PIQ103
PIR1602

PIQ201POTXE00

PIQ203
PIR1801

PIQ301POTX00

PIQ303
PIR2001

PIR1601PIU502
PIR1702

PIU506PORX00

PIR1802 PIU602
PIR1902

PIU606

PIU802

PIU803

PIR2002 PIU702 PIR2102
PIU706

PIU804

PIU501

PIU504

PIU507

PIU601

PIU604

PIU607

PIU701

PIU704

PIU707

PORX00

POTX00

POTXE00

Figure B.4: Schematic design of the RS485 UART0 communication circuitry.
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Figure B.5: Schematic design of the RS485 UART1A communication circuitry.
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Figure B.6: Schematic design of the RS485 UART1B communication circuitry.
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Figure B.7: PCB design of the MC circuit board.
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Appendix C

Single Axis Tracker related

C.1 Angular position of SAT and the sun

Although not o�cially proved by the author G. Masters [44], the trigonometric relationship
of the sun's angles falling onto the plane of the SAT is can be derived as illustrated in Figure
C.1. The �nal adjustment of the angles as presented by G. Masters is presented by Figure
C.2.

Figure C.1: Illustration of the derivation which presents the angles present of the sun relative
to the SAT surface.
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APPENDIX C. SINGLE AXIS TRACKER RELATED 172

Figure C.2: Trigonometric relationship of the position of the sun relative to the angle of tilt
for the SAT. Source : Redrawn image as illustrated by [44, p. 225]

C.2 Hardware design related

C.2.1 LM311D comparator

In Figure C.3, the timing diagram is displayed for the case where the input voltage Vin−
exceeds the reference voltage Vin+ by more than 100 mV. The comparator changes its output
state from a high output state to a low output state when:

Vin+ − Vin− ≤ 100 mV (C.1)

Figure C.3: Timing diagram of the LM311D comparator. Source: Extracted from the data
sheet [97]
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C.3 SAT and position sensor PCB design schematics
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Figure C.4: Schematic design of the MCU circuitry for the SAT PCB board.
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Figure C.5: Schematic design of the H-bridge circuitry.
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Figure C.6: Schematic design of the SAT power supply and proximity sensor circuitry.
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Figure C.7: Schematic design of the RS485 communication circuitry.
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Figure C.8: PCB design of the SAT circuit board.
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Figure C.9: Schematic design of the SAT position sensor board.
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Figure C.10: PCB design of the SAT position sensor circuit board.
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C.4 Software design related

C.4.1 PWM software set up

The ICR1B register of the PWM signal [85, p. 121] is set up to operate in waveform
generation mode 14. Which essentially enables the PWM fast mode, as demonstrated by
the timing diagram shown below in FigureC.11. This executes a single-slope operation,
where the counter simply counts from BOTTOM to TOP and then restarts again, from
BOTTOM. However, with the value of OCR1A set, the counter will stop once the OCR1A
value is matched [85, p. 120]. The non-inverting mode is assigned in register TCCR1A. The
resolution of the PWM signal is determined as 9.96 ' 9bit resolution by equation (C.2)

RFPWM =
log(TOP + 1)

log(2)
(C.2)

Figure C.11: Fast PWM timing diagram [85, p.121].

Figure C.12: Fast PWM timing diagram [85, p.130].

The 20 kHz frequency is set by assigning the TOP value (999), determined by equations C.4
to the ICR1 register. The N variable is the pre-scaler and is set to one. Equations (C.4) and
(C.3) are used to determine the TOP variable.

fOCnxPWM =
fclkI/O

N(1 + TOP )
(C.3)

TOP =
fOCnxPWM × 1

fclkI/O
− 1 (C.4)

Where variables fOCnxPWM and fclkI/O represent:

fOCnxPWM = The frequency of the applied PWM signal.
fclkI/O = The MCU clock frequency, which is 20 MHz.
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Finally the applied duty cycle D is set in the OCR1A register by multiplying the duty cycle
with the TOP value of 999, as in equation (C.5):

OCR1A = D × TOP (C.5)

C.4.2 ADC set up

The ADC is enabled by setting the ADC Enable bit (ADEN) in the ADCSRA register. To
acquire a conversion resolution of 10 bits, the ADC approximation circuitry requires an input
clock frequency between 200 kHz and 500 kHz [85, p.238]. Therefore, a pre-scaler of 128 is
used, which results in a 156.25 kHz clock frequency for the ADC sampling rate. The ADC
generates a 10−bit result which is presented in the ADC Data Registers, ADCH (ADC higher
register) and ADCL (ADC lower register) [85, p.247]. By default, the result is presented
right adjusted. For single ended conversion, the result is represented by equation C.6[85,
p.247]. The value 0x000 represents analogue ground, and 0x3FF represents the selected
reference voltage minus one LSB, in other words 0− 1023 (max) which is 0 V − 5 V for this
design.

ADC =
VIN × 1204

VREF

(C.6)

In equation (C.6), VIN is the received voltage at the ADC pin, whereas VREF refers to the 5
V reference voltage. A single conversion is started by writing a logical one to the ADC Start
Conversion bit, ADSC. This bit is cleared when the conversion completes. [85, p.237] In
Single conversion mode, the channel must always be selected before starting the conversion.
The ADC value read is de�ned by (C.6) as:

Once the start-conversion bit has been set, the ADC interrupt vector executes and the
voltage input is read from the ADCL and ADCH registers. Once ADCL is read, ADC access
to Data Registers is blocked (that's why the ADC lower register must be read �rst). Thus
the ADCL register must always be read �rst and as long as it is not read, the next ADC
conversion will not take place. When ADCH is read, ADC access to the ADCH and ADCL
registers is re-enabled . [85, p.237].
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Appendix D

Data-Analysis

D.1 Rated PV module values of stationary modules

The rated power values determined for each PV module is presented in Table D.1:

Table D.1: Rated power of individual PV modules number 1-16, as determined by measure-
ment.

PV module 1 2 3 4
PSTC [W] 240.8497 241.185 244.1529 237.486

PV module 5 6 7 8
PSTC [W] 243.4569 241.7745 242.4051 244.0043

PV module 9 10 11 12
PSTC [W] 242.4362 245.7874 244.6556 242.9407

PV module 13 14 15 16
PSTC [W] 242.1779 242.7734 241.3911 242.4025

D.2 Rated PV module values of SAT modules

The rated power values determined for each SAT PV module is presented in Table D.2:

Table D.2: Rated power of individual PV modules number 21-24, as determined by mea-
surement.

PV module 21 22 23 24
PSTC [W] 230.6035 235.8985 237.9318 233.5762

D.3 Shading analysis of the PVRF

The only surrounding structure that poses a threat to possible module shading is the substa-
tion located West of the PVRF. This is indicated in Figure D.1. Three positions are chosen
for the shading analysis, to get a clear indication of when to expect shade to block irradiance
from the PV modules. The reason for selecting two locations West of the PVRF (Location
1 and 2) is because the western part of the PVRF will receive the �rst shadow from this
structure. The shading analysis of each location is presented in Figures D.3, D.4 and D.5.

183
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Figure D.1: Facility layout indicating positions from where the shading analysis is conducted.
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Figure D.2: Substation and lightning rods which cast a shadow.

Figure D.3: Shading diagram of location 1.
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Figure D.4: Shading diagram of location 2.

Figure D.5: Shading diagram of location 3.
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D.4 Meteorological data

The �gures below present the comparison of the various meteorological data sets, to that of
the stationary PV module performance ratios.
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Figure D.6: Average ambient temperature compared to stationary PV module performance
ratios.
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Figure D.7: Average humidity compared to stationary PV module performance ratios.
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Figure D.8: Average irradiance, compared to stationary PV module performance ratios.
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Figure D.9: Average barometric pressure compared to PR.
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Figure D.10: Average wind speed compared to PR.
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