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ABSTRACT 

Post-traumatic stress disorder (PTSD) is a debilitating neuropsychiatric disorder underpinned by 

complex, multi-factorial interactions including genetic and environmental factors. To date, most 

genetic studies have focused on specific candidate genes involved in PTSD and therefore lack a 

holistic view of the disorder. In this study, we aimed to utilise RNA-Seq to investigate molecular 

mechanisms and possible blood bio-signatures in South African PTSD patients. 

Whole blood gene expression levels of South African mixed ancestry ethnicity (Coloured) individuals 

were compared between PTSD diagnosed (N = 19) and trauma-exposed control (N = 29) individuals. 

RNA from whole blood from each participant was subjected to RNA-Seq using the Illumina HiSeq 

4000 platform at a sequencing depth of 50 million paired-end reads. Differentially expressed genes 

(p-value < 0.05) were further prioritized based on their involvement in disease phenotype, function, 

pathways and known gene/protein interactions using the semantic model of disease in BioOntological 

Relationship Graph (BORG) database. Furthermore, co-expression analysis of the prioritized 

candidate genes were carried out to investigate co-regulated differentially expressed gene sets 

between each groups.  

A total of 556 differentially expressed genes were identified, of which 196 (21 up- and 175 

downregulated) genes were identified as being possibly biologically relevant. Co-expression analysis 

revealed a network of four highly co-expressed, upregulated genes and a large co-expression network 

consisting of 36 downregulated genes. The four co-expressed upregulated genes (RPL6, RPS6, 

RPS3A and EEF1B2) and six highly connected co-expressed downregulated genes (DHX9, BCLAF1, 

THRAP3, EIF4G1, HSPA4 and MCL1) were identified as potentially relevant gene candidates 

contributing to the pathology of PTSD.  

In conclusion, we were able to identify putative blood transcriptomic response in PTSD patients’ vs 

trauma-exposed controls. Additionally, a set of differentially expressed genes, possibly associated 

with molecular functions/mechanisms of PTSD were determined.  These preliminary findings provide 

novel insight in underlying genetic expression of PTSD in South African population. Future 

transcriptomic studies using larger sample size will be instrumental in validating our findings, and 

should include miRNA profiling to identify a more robust signature of potential blood based 

biomarkers. 
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OPSOMMING 

 

Post-traumatiese stresversteuring (PTSV) is 'n neuropsigiatriese siekte wat bestaan uit komplekse, 

multi-faktoriaal interaksies. To top hede het meeste genetiese studies slegs gefokus op spesifieke 

kandidaat gene betrokke by PTSV. Hierdie kandidaat studies het dus nie 'n holistiese siening wat kan 

verkry word deur 'n hele-transkriptoom RNS-Sequencing (RNS-Seq) benadering nie. In hierdie 

voorlopige studie beoog ons om RNS-Seq aan te wend om molekulêre meganismes en moontlike 

bloed biomerkers in Suid-Afrikaanse PTSV patiente te ondersoek. 

In hierdie kontrole studie vergelyk vroulike, kleurling (gemengde afkoms) individue wat 

gediagnoseer is met PTSV (N = 19) met ‘n trauma blootgestelde kontrole (N = 29) groep. RNS was 

geisoleer vanaf vol bloed en gestuur vir RNS-Seq met behulp van die Illumina HiSeq 4000 platform 

op 'n opeenvolging diepte van 50 miljoen lees pare. Bioinformatika ontledings was toe uitgevoer, 

gevolg deur stroomaf mede-uitdrukking analise om mede-gereguleerde differensieel uitgedruk gene 

stelle tussen groepe te ondersoek. 

'n Totaal van 556 differensieel uitgedruk gene was geïdentifiseer waarvan 196 (21 opreguleer en 175 

onderreguleer) gene biologies relevant was gebaseer is op 'n ontologie gedryfde prioriteits 

benadering. Mede-uitdrukking analise het daarna 'n netwerk van vier hoogs mede-uitgedrukkings 

gene (opreguleer) en 'n groot mede-uitdrukking netwerk van 36 gene (onderreguleer) geïdentifiseer. 

Die vier mede-uitgespreek gene (RPL6, RPS6, RPS3A en EEF1B2) (opreguleer) en ses hoogs verbind 

mede-uitgespreek gene (DHX9, BCLAF1, THRAP3, EIF4G1, HSPA4 en MCL1) (onderreguleer) was 

geïdentifiseer as potensieel, relevante skakels wat bydra tot die patologie van PTSV. 

Hierdie hipotese-genererende studie dien as ondersteunende bewys dat 'n bloed transkriptomise 

reaksie betrokke by PTSV. Hierbenewens het die studie gene geidentifiseer wat moontlik betrokke is 

by die molekulêre onderbou van hierdie siekte. Toekomstige studies word egter aanbeveel om hierdie 

bevindinge te ondersteun en om miRNA profilering te gebruik vir die identifisering van meer 

robuuste, bloed gebaseer biomerkers vir PTSV. 
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CHAPTER 1 : INTRODUCTION 

1.1 Background of PTSD 

Post-traumatic stress disorder (PTSD) is a debilitating neuropsychiatric disorder, triggered by life-

threatening, traumatic or stressful events (American Psychiatric Association, 2013), significantly 

impairing an individual’s functioning and overall quality of life (Mendlowicz & Stein, 2000). 

Moreover, this stress-related disorder poses an immense economic and health burden on society 

(Atwoli et al., 2013). Classified as a trauma- and stressor-related disorder in the Diagnostic and 

Statistical Manual of Mental Disorders, Fifth Edition (DSM-V), PTSD is characterised by four major 

behavioural symptom clusters, including (i) re-experiencing, (ii) avoidance, (iii) hyperarousal and 

(iv) overall negative alterations in cognition and mood (American Psychiatric Association, 2013). 

Both clinical and demographic factors play a role in the increased risk for PTSD, with females at an 

overall two-fold higher risk than males of developing PTSD following trauma exposure (Breslau, 

2009). The reason for these differences remains unclear, warranting further research focusing on 

PTSD, and in women in particular. Other risk factors for PTSD include a lack of social support 

structure, childhood abuse or neglect and the severity and duration of the trauma. Accounting for 

these factors may allow for early diagnosis of PTSD and possible preventive strategies to reduce the 

symptoms associated with this debilitating disorder (Broekman, Olff & Boer, 2007).  

South Africa has one of the highest prevalence rates for trauma exposure, estimated at 73.8% 

according to the South African Stress and Health Study (Atwoli et al., 2013). This may be due to the 

historical, cultural and political factors faced in South Africa’s past as well as the high levels of 

criminal violence still present today. Countries such as the USA, Brazil, Peru and Australia reported 

similar prevalence rates of trauma exposure to that of South Africa (above 70%) whilst countries such 

as China, Spain, Romania and Bulgaria reported much lower prevalence rates (less than 55%) for 

exposure to any traumatic event (Benjet et al., 2016). 

Interestingly, approximately 2.3% of South African individuals who are exposed to a traumatic event 

will develop PTSD (Herman et al., 2009). This estimate is significantly lower than the lifetime 

prevalence rates in Europe (7.4%) (de Vries & Olff, 2009) and in North America (6.8%) (Kessler et 

al., 2005). This cross-national variation could in part be explained by the higher instances of traumatic 

event exposure within South Africa (Herman et al., 2009). These exposures could make it difficult to 

fulfil the avoidance criteria of the DSM-V, possibly leading to an underrepresentation of PTSD 

diagnosis in the country (Atwoli et al., 2013). 
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Not all individuals who have undergone a traumatic event will develop PTSD (Monroe, Simons & 

Thase, 1991; Costello et al., 2002), suggesting that trauma exposure alone does not explain the 

complete aetiology of the disorder. Other risk factors, such as genetics, have been found to increase 

vulnerability to developing this stress-related disorder. Interest in the genetic underpinnings of PTSD 

has grown, leading to research exploring the molecular risk and developmental factors involved in 

this debilitating disorder (Glatt et al. 2013; Breen et al. 2015; Tylee et al. 2015). However, due to the 

genetic complexity of PTSD, identifying specific genes that significantly contribute to disease 

development has been a challenge.  

To investigate the genetic mechanisms involved in PTSD it is essential to review the physiological 

stress responses involved in disease pathophysiology. This will facilitate the identification of the 

molecular underpinnings of PTSD. 

1.2 Physiological systems involved in PTSD 

Acute stress leads to the activation of the “fight-or-flight” response which in turn activates the 

neurocircuitry of the fear system, the hypothalamic-pituitary-adrenal (HPA) axis, the locus coeruleus 

and the noradrenergic systems (Charney et al., 1995). From an evolutionary standpoint, the “fight-

or-flight” response assists our identification of danger and allows us to avoid similar threats in future. 

However, this adaptive response has similarly been implicated in fear conditioning, which plays an 

integral role in PTSD pathophysiology (Amstadter, Nugent & Koenen, 2009). 

Fear conditioning is a form of classical conditioning where associative learning plays a pivotal role 

in the maintenance of fear (Keane, Zimering & Caddell, 1985). Classical conditioning is a process 

whereby a non-threatening stimulus, termed the conditioned stimulus (CS) is temporarily paired with 

a fear stimulus termed the unconditioned stimulus (US). After this temporary pairing the CS will 

ultimately provoke a fear response similar to that of the US termed the conditioned response (CR) 

(Foa, Steketee & Rothbaum, 1989; Grillon et al., 1998). In the case of PTSD, the trauma exposure 

serves as the US whilst smell, sight, sounds and other environmental stimuli experienced during the 

traumatic event serves as the CS eliciting a CR to seemingly non-threatening stimuli (Skelton et al., 

2012). 

In the following section, neurobiological pathways implicating the fear-conditioning model and its 

association with PTSD will be reviewed in greater detail.  
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1.2.1 The Hypothalamic-Pituitary-Adrenal Axis in PTSD 

The hypothalamic-pituitary-adrenal (HPA) axis, which is an important regulator of stress response, 

interacts with the immune system to maintain biological homeostasis in humans and mammals (Mehta 

& Binder, 2012). During a typical stress response, the HPA axis reacts to acute stress by activating a 

cascade of signalling, mobilised by the sympathetic nervous system for an acute “fight-or-flight” 

response (Figure 1.1) (Griffiths & Hunter, 2014). The first process in the signalling cascade is stress-

induced activation of the parvocellular neurons in the paraventricular nucleus (PVN) of the 

hypothalamus, stimulating the release of the neuropeptides, corticotrophin-releasing hormone (CRH) 

and arginine-vasopressin (AVP), into the pituitary portal. This release of CRH and AVP in response 

to stress promotes the production of proopiomelanocortin (POMC) in the anterior pituitary, which 

synthesises and releases adrenocorticotrophic hormone (ACTH) into systemic circulation (Aguilera, 

2012). The ACTH in turn acts on the adrenal cortex to produce and release cortisol, a glucocorticoid 

(GC) hormone which is primarily responsible for the stress response and exerts its action on the 

immune response, metabolism and brain function (Zoladz & Diamond, 2013). Cortisol further 

functions as a regulator of the HPA axis by utilizing a negative feedback mechanism to adapt and 

recover from stress by restore biological homeostasis (Figure 1.1)(Yehuda et al., 2006). In this 

negative feedback mechanism an excess of cortisol binds to glucocorticoid receptors (GRs) within 

the hypothalamus and pituitary, suppressing the release of CRH and ACTH, thereby returning the 

HPA axis to baseline activity and allowing for the restoration of biological homeostasis and the 

adaption and recovery from a stress response (Griffiths & Hunter, 2014). 
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Figure 1.1: Schematic representation of the effect of stress on the hypothalamic-pituitary-adrenal (HPA) 

axis.  Stress activates a cascade of signalling, resulting in an acute “fight-or-flight” response. This induces the 

activation of neurons located in the paraventricular nucleus (PVN) of the hypothalamus, which stimulates the 

release of corticotrophin-releasing hormone (CRH) and arginine-vasopressin (AVP) into the anterior pituitary. 

This promotes the production of proopiomelanocortin (POMC) synthesises and releases adrenocorticotrophic 

hormone (ACTH) into systemic circulation. ACTH then acts on the adrenal cortex to produce and release 

cortisol. Cortisol furthermore regulates the HPA axis by supressing the release of CRH and ACTH restoring 

biological homeostasis after a stress response (Adapted from Griffiths & Hunter, 2014). 

 

Studies investigating components of the HPA axis in PTSD have led to conflicting results. Some 

studies have indicated a decrease in urinary cortisol levels (collected over a period of 24 hours) within 

PTSD patients (Mason et al., 1986; Yehuda et al., 1990) whilst others (Mason et al., 2002) detected 

no differences. Similarly, a study investigating blood plasma cortisol levels (over a period of 24 

hours) reported decreased cortisol levels in combat veterans with PTSD compared to control 

individuals (Yehuda et al., 1994, 1996). In contrast a study by Goenjian et al., (2003) reported no 

differences in plasma cortisol levels in an adolescent group with PTSD symptoms compared to 

controls (Goenjian et al., 2003). Several other studies have also reported decreased cortisol levels 

(Yehuda et al., 1990, 1996, 2006; Thaller et al., 1999; Bremner, Elzinga & Schmahl, 2007) and 

increased levels of CRH in PTSD patients (Bremner et al., 1997; Baker et al., 1999; Bremner, Elzinga 

& Schmahl, 2007), suggesting that an enhanced negative feedback of the HPA axis could be involved 

in PTSD (Griffin, Resick & Yehuda, 2005; Yehuda et al., 2006). Inconsistencies in cortisol levels 
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(Mason et al., 1986; Yehuda et al., 1990, 1996, 2006;  Thaller et al., 1999; Mason et al., 2002; 

Goenjian et al., 2003; Bremner, Elzinga & Schmahl, 2007) may in part be due to, the differences in 

index trauma experienced, age or even due to a genetic vulnerability (Pervanidou & Chrousos, 2010). 

1.2.2 The Neurobiological Pathways of PTSD 

Post-traumatic stress  disorder has been associated with certain neurobiological abnormalities 

leading to the inability of the brain to adequately extinguish fear (Bremner et al., 1996). However, 

some debate remains as to whether these abnormalities are a cause or a determining factor of the 

disorder. Brain regions commonly investigated in PTSD include the hippocampus, amygdala, insular 

cortex and regions of the medial prefrontal cortex (mPFC), including the (vmPFC) and the dorsal 

anterior cingulate cortex (dACC) (Quirk & Mueller, 2008) (Figure 1.2). 

 

  

Figure 1.2: Brain regions frequently investigated in PTSD. A schematic representation of the midsagittal 

plane of the brain and regions implicated in PTSD (Adapted from Liberzon & Sripada, 2007). 

 

1.2.2.1 Hippocampus 

Post-traumatic stress disorder is associated with memory deficits, especially in declarative memory 

(memories that can be consciously be recalled) which forms part of the long-term memory in humans 

(Francati, Vermetten & Bremner, 2007). The brain structure known as the hippocampus is essential 

for merging information from short-term memory to long-term memory in a process known as 

memory consolidation. The hippocampus thus plays a critical role in the pathogenesis of PTSD and 
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the symptoms of often re-experiencing a traumatic event (Bremner et al., 2003; Pervanidou & 

Chrousos, 2010). 

To date, imaging studies in PTSD have focused mostly on the volumetric changes of the hippocampus 

by use of magnetic resonance imaging (MRI) (structural imaging). In a study by Bremner, Elzinga & 

Schmahl, (2007), a decrease in hippocampal volume was reported in a group of Vietnam veterans 

with PTSD and in patients suffering from chronic PTSD (Bremner, Elzinga & Schmahl, 2007). 

Several other brain imaging studies reported similar findings of reduced hippocampal volume and 

function in PTSD patients compared to trauma-exposed controls (Liberzon & Martis, 2006; Wang et 

al., 2010) (Table 1.1). However, whether these hippocampal volume changes are due to extreme 

trauma or a risk factor of PTSD remains unclear. Furthermore, decreased levels of N-acetyl aspirate 

in the hippocampus has also been observed in MRI studies (Rauch, Shin & Phelps, 2006) whilst 

functional magnetic resonance imaging (fMRI) studies revealed deficits in verbal declarative memory 

task in PTSD patients, a process mediated by the hippocampus (Francati, Vermetten & Bremner, 

2007).  

1.2.2.2 Amygdala 

The amygdala forms part of the limbic system located within the temporal lobe of the brain (Davis, 

1992) (Figure 1.2). This brain region functions as a centre for decision-making, memory 

processing/learning, emotional reactions and in HPA axis activation. In terms of PTSD the amygdala 

plays a central role in behavioural responses such as fear response, threat detection and especially in 

fear conditioning (Davis, 1992) (Table 1.1). 

The amygdala consists of several nuclei, with the central nucleus of the amygdala (CeA) and the 

basolateral nucleus (BLA) playing a central role in fear conditioning (Jovanovic & Ressler, 2010). 

The BLA is responsible for the acquisition of fear by associating a CS to that of an US and in turn 

projects this information to the CeA which is responsible for regulating particular aspects of the fear 

response (LeDoux, 1992). These findings have been observed in animal studies where lesions in the 

CeA reduced the fear condition responses of rodents by eliminating the freeze response (LeDoux, 

1992) and the fear-potentiated startle response (Davis, Gendelman & Tischler, 1982).  
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Table 1.1: Functional and structural neuroimaging studies of brain regions implicated in PTSD 

relative to trauma-exposed controls. (Adapted from Thakur et al., 2015) 

 Functional imaging Structural imaging 

Brain regions 
General 

function 

Activity in PTSD 

subjects  

Correlation with 

PTSD severity 
Overall volume 

Hippocampus Short- and 

long-term 

memory 

Varied 

 

(Bremner et al., 

2003; Shin & 

Handwerger, 2009; 

Sripada et al., 

2013; Steiger et al., 

2015) 

Negative 

 

(Gilbertson et al., 

2002) 

Decreased 

 

(Liberzon & Martis, 

2006; Wang et al., 

2010) 

Amygdala Threat 

detection, 

processing 

of fear 

Increased 

 

(Liberzon et al., 

1999; Etkin & 

Wager, 2007; 

Linnman et al., 

2011) 

Positive 

 

(Shin et al., 2004, 

2005) 

Varied 

 

(Etkin & Wager, 2007)  

vmPFC Goal-

directed 

decisions 

Decreased 

 

(Shin et al., 2004; 

Felmingham, 

Williams & Kemp, 

2009; Gold et al., 

2011) 

Negative 

 

(Shin et al., 2004; 

Milad et al., 2009) 

Decreased 

 

(Kasai, Yamasue, 

Gilbertson & Shenton, 

2008; Karl & Werner, 

2010; Sekiguchi et al., 

2013) 

 

dACC Regulating 

cognitive 

control, fear 

appraisal 

and 

expression 

Increased 

 

(Milad et al., 2009; 

Hayes et al., 2011; 

Shvil et al., 2014) 

Positive 

 

(Milad et al., 2009; 

Fonzo et al., 2010) 

Decreased 

 

(Kitayama, Quinn & 

Bremner, 2006; Kasai, 

Yamasue, Gilbertson 

& Shenton, 2008; Karl 

& Werner, 2010; 

Sekiguchi et al., 2013) 

Insular cortex Monitors 

interpersonal 

experiences 

Increased 

(Simmons et al., 

2008; Strigo et al., 

2010)  

Positive 

 

(Simmons et al., 

2008) 

Decreased 

 

(Simmons et al., 2008) 

vmPFC - ventromedial prefrontal cortex ; dACC - dorsal anterior cingulate cortex 
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1.2.2.3 Prefrontal cortex and anterior cingulate cortex 

Another brain region critical in the regulation of the fear conditioning response is the medial 

prefrontal cortex (mPFC). Here reciprocal connections between the amygdala and the mPFC, a brain 

region playing a major role in fear extinction, are critical in the inhibition of the stress response and 

fear reactions (Milad & Quirk, 2002; Vidal-Gonzalez et al., 2006; Peters, Kalivas & Quirk, 2009). 

The prefrontal cortex can be subdivided into regions including the orbitofrontal, medial prefrontal 

cortex and the anterior cingulate cortex (ACC). The ACC consists of ventromedial and dorsolateral 

components which are responsible for regulating the expression and inhibition of fear in different 

ways. Brain imaging studies showed a decrease in activity (Shin et al., 2004; Felmingham, Williams 

& Kemp, 2009; Gold et al., 2011) and volume (Kasai, Yamasue, Gilbertson, Shenton, et al., 2008) of 

the vmPFC in PTSD patients including decreased volumes of the anterior cingulate cortex (Rauch et 

al., 2003; Kitayama, Quinn & Bremner, 2006; Kasai, Yamasue, Gilbertson, Shenton, et al., 2008) 

and medial frontal gyrus (Carrion et al., 2001; Fennema-Notestine et al., 2002; Rauch et al., 2003; 

Yamasue et al., 2003; Woodward et al., 2006). Additionally, studies by Bremner et al., (1999) and 

Britton et al., (2005) made use of functional imaging studies identifying decreased activation of the 

mPFC in PTSD individuals in response to stimuli such as combat pictures and sounds (Bremner et 

al., 1999; Britton et al., 2005) (Table1.1). 

1.2.2.4 Insular cortex 

The insular cortex, which forms part of the cerebral cortex, is involved in consciousness (monitoring 

internal body states). This includes our perception, motor control, self-awareness, cognitive 

functioning and interpersonal experience. In terms of PTSD an overall increased activity has been 

previously observed in the insular cortex (Simmons et al., 2008; Strigo et al., 2010) with structural 

imaging studies identifying an overall decrease in volume (Simmons et al., 2008) (Table 1.1). 
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1.3 The genetic aetiology of PTSD 

Various family and twin studies indicate that PTSD is a heritable disorder (Skre et al., 1993; True et 

al., 1993; Xian et al., 2000; Stein et al., 2002; Kasai, Yamasue, Gilbertson, Shenton, et al., 2008; 

Amstadter et al., 2012), suggesting that a genetic predisposition exists in the development of this 

debilitating disorder after the occurrence of a traumatic event.  

 

1.3.1 Heritability of PTSD: Family and Twin Studies 

Family studies by Sack, Clarke & Seeley, (1995) and Yehuda, Halligan & Grossman, (2001) indicated 

that the prevalence of PTSD is higher in relatives of PTSD patients compared to relatives of trauma-

exposed controls, suggesting that the vulnerability to develop PTSD runs within families (Sack, 

Clarke & Seeley, 1995; Yehuda, Halligan & Grossman, 2001). However, it could be argued that 

biological relatives share more environmental exposures and are therefore more vulnerable to 

developing PTSD. Twin studies allow for the separation of environmental and genetic factors 

involved in disease development. In PTSD, these studies have estimated that 30% to 40% of this 

heritability is due to genetic factors. However, twin studies do not indicate which genes lead to an 

increased risk for PTSD (Koenen, 2007; Kasai, Yamasue, Gilbertson, Shenton, et al., 2008; Afifi et 

al., 2010). Therefore, molecular studies are crucial in the identification of genes involved in the 

genetic aetiology. 

 

1.3.2 Candidate Gene Studies in PTSD 

By identifying potential genes involved in PTSD, it is possible to improve our understanding of 

factors involved in the development, maintenance and treatment of PTSD (Amstadter, Nugent & 

Koenen, 2009). To date, most molecular genetic research in PTSD focused on candidate gene studies. 

Candidate gene studies identify risk variants associated with disease. These genetic risk variants are 

referred to as polymorphisms, which include single nucleotide polymorphisms (SNPs) and variable 

number tandem repeats (VNTRs). Candidate gene studies rely on prior knowledge of the biological 

pathways involved in the particular disease informing the selection of potential candidate gene that 

may be involved in PTSD (Amstadter, Nugent & Koenen, 2009). Table 1.2 outlines several published 

candidate genes investigated in PTSD. 
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Table 1.2: Summary of published candidate genes studies investigated in PTSD. (Adapted from Cornelis et al., 2010 and Voisey et al., 2013) 

        PTSD Cases Controls 
Co-morbidities 
accounted for 

 

Reference Gene Polymorphism Finding Number 
Sex (% 
male) 

Age, 
mean 
(SD) 

Number 
Sex (% 
male) 

Age, 
mean 
(SD) 

Cases Controls Population 

(Comings et 
al., 1991) 

ANKK1 rs1800497 T associated 35 
All 
male 

N/S 314 All male N/S Yes Yes USA, Eur 

(Comings, 
Muhleman & 
Gysin, 1996) 

ANKK1 rs1800497 T associated 37 
All 
male 

~44 19 All male ~44 Yes Yes USA, Eur 

(Gelernter, 
Kranzler & 
Satel, 1999) 

ANKK1 rs1800497 No association 

52 
All 
male 

45 (4) 87 All male N/S Yes Yes USA, Eur 
DRD2 

rs1079597 No association 

rs1800498 No association 

(Young et al., 
2002) 

ANKK1 rs1800497 T associated 91 
All 
male 

52 (1) 51 35% 39 (2) Yes N/S Aus, Eur 

(Voisey et al., 
2008) 

ANKK1 rs1800497 No association 

127 
All 
male 

N/S 228 N/S N/S No N/S Aus, Eur 
DRD2 

rs6277 C associated 

rs1799732 No association 

(Nelson et al., 
2014) 

DRD2 rs12364283 G associated 651 47% 
~36 
(~9) 

1098 65% 
~36 
(~9) 

Yes Yes Aus, Mixed 

(Hemmings et 
al., 2013) 

ANKK1/ 
BDNF 

rs1800497/ 
rs6265 

T/Val 
associated 150 31% 23-42 N/A N/A N/A Yes N/A 

South 
African, 
non-Eur SLC6A4 5'-VNTR No association 

(Dragan & 
Oniszczenko, 
2009) 

DRD4 VNTR exon3 
L-allele 
associated 

24 ~47% ~36 83 ~47% ~36 N/S N/S Polish 
  

SLC6A3 rs28363170 No association 70 N/S N/S 130 N/S N/S Yes Yes 

(Valente, 
Vallada, 
Cordeiro, 
Miguita, et 
al., 2011) 

SLC6A3 rs28363170 
9 Repeat 
associated 

65 33% 
38 
(`8.7) 

34 17.60% 
44 
(~13.8) 

Yes Yes 
Brazilian, 
Mixed 

BDNF rs6265 No association 

SLC6A4 5'-VNTR No association 

(Segman et 
al., 2002) 

SLC6A3 rs28363170 
9 Repeat 
associated 

102 56% 40 (12) 104 47% 34 (10) No No Israel 

(Drury et al., 
2009) 

SLC6A3 rs28363171 
9 Repeat 
associated 

88 59% 
Range 
(3-6) 

88 59% 
3-6 
(range) 

No No 
USA, AA & 
other 

(Chang et al., 
2012) 

SLC6A3 rs28363172 
9 Repeat 
associated 

62 35% 61 258 43% 52 Yes Yes 
USA, AA & 
other 

(Drury et al., 
2013) 

SLC6A3 
rs28363170/rs27
072 

Haplotype 
associated 

66 N/S 
Range 
(3-6) 

77 N/S 
3-6 
(range) 

No No 
USA, AA & 
other 
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(Lee et al., 
2005) 

SLC6A4 5'-VNTR 
S-allele 
associated 

100 43% 35 (10) 197 39% 35 (11) No No Korean 

(Kilpatrick et 
al., 2007) 

SLC6A4 
5'-
VNTR/rs25531 

S+-haplotype 
associated 

19 32% Adults 570 37% Adults Yes Yes USA, Mixed 

(Grabe et al., 
2009) 

SLC6A4 
5'-
VNTR/rs25531 

L/A haplotype 
associated 

67 36% 58 (17) 

1596 
(TE) 
1382 
(NTE) 

51%, 
46% 

58 (16), 
50 (13) 

Yes Yes German, Eur 

(Koenen et 
al., 2009) 

SLC6A4 5'-VNTR 
S-allele 
associated 

19 32% Adults 571 36% Adults Yes Yes USA, Mixed 

(Kolassa, Ertl, 
et al., 2010) 

SLC6A4 5'-VNTR 
S-allele 
associated 

331 ~53% ~35 77 ~53% ~35 No No Rwandan 

(Sayin et al., 
2010) 

SLC6A4 
5'-VNTR 
Intron2 VNTR 

S-allele 
associated 12 
rept associated 

29 38% N/S 48 75% N/S Yes Yes Turkey, Eur 

(Thakur, 
Joober & 
Brunet, 2009) 

SLC6A4 5'-VNTR L/L associated 24 ~46% ~30 17 ~46% ~30 N/S N/S USA, Eur 

(Xie et al., 
2009) 

SLC6A4 
5'-
VNTR/rs25531 

S+-haplotype 
associated 

229 42% 39 (10) 1023 54% 39 (11) Yes Yes 
USA, Eur & 
AA 

(Walsh et al., 
2014) 

SLC6A4 
5'-
VNTR/rs25531 

S+-haplotype 
associated 

205 N/S N/S 477 N/S N/S No No USA, AA 

(Goenjian et 
al., 2012) 

SLC6A4 5'-VNTR 
S-allele 
associated 

70 N/S N/S 130 N/S N/S Yes Yes 
Armenian, 
Eur TPH1 rs2108977 T associated 

TPH2 rs11178997 T associated 

(Mellman et 
al., 2009) 

SLC6A4 
5'-
VNTR/rs25531 

No association 
55 24% 40 (16) 63 45% 40 (17) Yes Yes 

USA, Eur & 
AA  

HTR2A rs6311 G associated 

(Lee et al., 
2007) 

HTR2A rs6311 
GG associated 
in females 

107 42% 34 (10) 161 32% 32 (10) No No Korean 

(Uddin et al., 
2013) 

ADCYAP1R1 rs2267735 
C associated, 
females 

23 
All 
female 

Adults 378 
All 
female 

Adults Yes Yes 
USA, AA & 
other 

(Wang et al., 
2013) 

ADCYAP1R1 rs2267735 
C associated, 
females 

146 44% 
45 
(11.6) 

174 N/S 
45 
(11.6) 

Yes Yes 
Chinese, 
Mixed 

(Lee et al., 
2006) 

BDNF rs6265 No association 107 42% 34 (10) 161 32% 32 (10) Yes Yes Korean 

(Zhang et al., 
2006) 

BDNF 
rs6265 G712A 
C270T 

No association 96 76% 44 (7) 250 41% 38 (20) N/S No USA, Eur 

(Pivac et al., 
2012) 

BDNF rs6265 A associated 206 
All 
male 

42 
(~7.1) 

370 All male 
42 
(~7.1) 

 N/S N/S  Croatian 
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(Felmingham 
et al., 2013) 

BDNF rs6265 A associated 55 N/S N/S N/S N/S N/S Yes Yes Aus, Eur 

(Freeman et 
al., 2005) 

APOE rs7412 rs429358 
T/T haplotype 
associated 

54 
All 
male 

53 (6) N/A N/A N/A Yes N/s USA, Eur 

(Kim et al., 
2013) 

APOE rs7412 rs429358 
T/T haplotype 
associated 

128 
All 
male 

Adults 128 All male Adults Yes Yes Korean 

(Lyons et al., 
2013) 

APOE rs7412 rs429358 
C/C haplotype 
associated 

39 
All 
male 

Adults 131 All male Adults Yes Yes 
USA, Eur & 
other 

(Lu et al., 
2008) 

CNR1 

rs806369 
Haplotypes 
associated 

25 24% N/S 291 52% N/S Yes Yes USA, Eur rs1049353 A associated 

rs806377 No association 

rs6454674 No association 

(Lu et al., 
2008) 

CNR1 

rs806369 No association 

17 29% N/S 292 67% N/S Yes Yes Finland, Eur 

rs1049353 No association 

rs806377 No association 

rs6454674 No association 

rs1049353 No association 

(Binder et al., 
2008) 

FKBP5 

rs9296158 A associated 

762 ~43% 
~41 
(14) 

N/S N/S N/S Yes N/S 
USA, AA & 
other 

rs3800373 C associated 

rs1360780 T associated 

rs9470080 T associated 

rs992105 No association 

rs737054 No association 

rs1334894 No association 

rs4713916 No association 

(Xie et al., 
2010) 

FKBP5 

rs9296158 No association 

343 ~54% 
~39 
(11) 

2084 ~54% 
~39 
(11) 

Yes Yes 
USA, Eur & 
AA 

rs3800373 No association 

rs1360780 No association 

rs9470080 T associated 

COMT rs4680 A associated 

CHRNA5 rs16969968 A associated 

(Valente, 
Vallada, 
Cordeiro, 
Bressan, et 
al., 2011) 

COMT rs4680 A associated 65 33% 
38 
(~8.7) 

34 17.60% 
44 
(~13.8) 

Yes Yes 
Brazil 
mixed 

(Kolassa, 
Kolassa, et 
al., 2010) 

COMT rs4680 No association 340 ~53% ~35 84 ~53%  ~35 No No Rwandan 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



26 

 

(Schulz-Heik 
et al., 2011) 

COMT rs4680 A associated 51 94% 49 48 92% 47 Yes Yes 
USA, Eur & 
other 

(de Quervain 
et al., 2012) 

PRKCA rs4790904 A associated 134 N/S 
34 
(media
n) 

213 N/S 
34 
(media
n) 

Yes Yes Rwandan 

(Liu et al., 
2013) 

PRKCA rs4790904 G associated 391 ~77% 
38 
(media
n) 

570 ~77% 
38 
(media
n) 

Yes Yes 
USA, Eur & 
AA 

(Logue, 
Solovieff, et 
al., 2013) 

ANK3 

rs9804190 C associated 

295 N/S 52 196 N/S 52 Yes Yes USA, Eur 

rs1049862 T associated 

rs28932171 T associated 

rs11599164 G associated 

rs17208576 G associated 

(Duan et al., 
2014) 

CAT 

rs208679 No association 

173 60% 36 (6.9) 287 61% 
35 
(media
n) 

Yes No Han Chinese 

rs10836233 No association 

rs2300182 No association 

rs769217 No association 

rs7104301 No association 

rs7949972 No association 

(White et al., 
2013) 

CRHR1 

rs12938031 A associated 

564 36% Adults NA NA NA No NA USA, Eur 

rs479288 C associated 

rs173365 No association 

rs17689966 No association 

rs242924 No association 

rs2664008 No association 

rs171441 No association 

rs16940686 No association 

rs242939 No association 

rs242936 No association 

rs7209436 No association 

rs11040 No association 

(Mustapi et 
al., 2007) 

DBH rs1611115 No association 133 
All 
male 

40 (7) 34 All male 38 (4) No No Croatian 

(Nelson et al., 
2009) 

GABRA2 

rs279836 T associated 

46 N/S N/S 213 N/S N/S Yes Yes N/S 
rs279826 A associated 

rs279871 A associated 

rs279858 No association 

(Morris et al., 
2012) 

KPNA3 rs2273816 No association 121 
All 
male 

52 (6.2) 237 59% 
36.8 
(12.8) 

Yes No Aus, Eur 

(Lawford et 
al., 2013) 

NOS1AP rs386231 A associated 122 
All 
male 

52 (6.2) 237 59% 
36.8 
(12.8) 

Yes No Aus, Eur 
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(Lappalainen 
et al., 2002) 

NPY rs16139 No association 77 
All 
male 

N/S 202 All male N/S Yes Yes USA, Eur 

(Bachmann et 
al., 2005) 

NR3C1 

rs6189 No association 

118 
All 
male 

56 (4) 42 All male 61 (7) No No Aus, Eur rs6190 No association 

rs56149945 No association 

(Amstadter et 
al., 2009) 

RGS2 rs4606 C associated 273 35% Adults 334 35% Adults Yes N/S 
USA, Eur & 
other 

(Cao et al., 
2013) 

STMN1 rs182455 
C associated, 
females 

146 28% Adults 174 30% Adults No No 
Chinese, 
Mixed 

(Wilker et al., 
2013) 

WWC1 
rs10038727  G associated 

212  N/S Adults 579  N/S Adults No No 
Rwandan 
and 
Ugandan 

rs4576167 G associated 

 

N/S – Not Stated; N/A – Not Applicable; Aus – Australian; Eur – European; USA – American; ADCYAP1R1 - ADCYAP Receptor Type I ; ANK3 - Ankyrin 3; ANKK1 

- Ankyrin repeat and kinase domain containing I; APOE - Apolipoprotein E; BDNF - Brain Derived Neurotrophic Factor; CAT - Catalase; CHRNA5 - Cholinergic 

Receptor Nicotinic Alpha 5 Subunit; CNR1 - Cannabinoid Receptor 1; COMT - Catechol-O-Methyltransferase; CRHR1 - Corticotropin Releasing Hormone Receptor 

1; DBH - Dopamine Beta-Hydroxylase; DRD2 - Dopamine Receptor D2; DRD4 - Dopamine Receptor D4; FKBP5 - FK506 Binding Protein 5; GABRA2 - Gamma-

Aminobutyric Acid Type A Receptor Alpha2 Subunit; HTR2A - 5-Hydroxytryptamine Receptor 2A; KPNA3 - Karyopherin Subunit Alpha 3; NOS1AP - Nitric Oxide 

Synthase 1 Adaptor Protein; NPY - Neuropeptide Y; NR3C1 -  Nuclear Receptor Subfamily 3 Group C Member 1; PRKCA - Protein Kinase C Alpha; RGS2 - Regulator 

Of G-Protein Signaling 2; SLC6A3 - Solute Carrier Family 6 Member 3 (Dopamine transporters); SLC6A4 - Solute Carrier Family 6 Member 4 (serotonin transporter); 

STMN1 - Stathmin 1; TPH1 - Tryptophan Hydroxylase 1; TPH2 - Tryptophan Hydroxylase 2; WWC1 - WW and C2 Domain Containing 1 
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Other candidate genes investigated included APOE, BDNF, NPY as well as genes involved in the 

HPA axis (CNR1, NR3C1, CRHR1, ADCYAP1R1 and FKBP5) and the GABAergic system 

(GABRA2). Several of these candidate gene studies have however yielded inconsistent results. This 

could in part be due to differences in sample population characteristics, methodology used or even be 

due to small sample sizes (Broekman, Olff & Boer, 2007). Additionally, psychiatric disorders, such 

as PTSD, are complex, with multiple genes and various biological pathways involved therefore 

suggesting a complex interaction of several genes involved in this disorder. 

 

1.3.3 Genome-Wide Association Studies in PTSD 

Unlike candidate gene studies, genome-wide association studies (GWAS) allow for the investigation 

of the entire genome in order to detect disease-causing variants. These studies apply a hypothesis-

neutral approach by investigating the entire genome for common SNP variation through a case-

control study design (Norrholm & Ressler, 2009). However, only a few GWAS (relative to other 

GWAS in psychiatric disorders) have been performed in PTSD listed in Table 1.3.  
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Table 1.3: Genome-wide significant SNPs associated with PTSD as reported by GWAS.  

   PTSD cases Controls Replication sample 

Reference Gene Significant 

Variant 

Number Sex Age 

Mean 

(SD) 

PTSD 

diagnosis 

Number Sex Age 

Mean 

(SD) 

Number 

of cases 

Number of 

controls 

(Logue, 

Baldwin, et 

al., 2013) 

RORA rs8042149 295 (EA) ~60% 

male 

N/S CAPS 

(DSM-IV) 

196 (EA) ~60% 

male 

N/S 43 (AA) 

 

100 (AA) 

41 (AA) 

 

421 (AA) 

(Xie et al., 

2013) 

COBL rs406001 300 (EA) 60.3% 

female 

37.7 

(9.8) 

CAPS 

(DSM-

IV) 

1278 (EA) 35.4% 

female 

38.4 

(11.3) 

207 (EA) 1692 (EA) 

TLL1 rs6812849 444 (AA) 54.3% 

female 

41.5 

(8.7) 

2322 (AA) 43.1% 

female 

41.2 

(9.3) 

89 (AA) 655 (AA) 

(Guffanti et 

al., 2013) 

LINC01090 rs10170218 94 (MA) All 

female 

52.2 

(13.5) 

Structured 

PTSD 

interview 

via 

telephone 

319 (MA) All 

female 

54.3 

(15.9) 

578 (EA) 1963 (EA) 

(Nievergelt et 

al., 2015) 

PRTFDC1 rs6482463 940 (MA) All male 23.0 

(3.0) 

CAPS 

DSM-IV 

2554 (MA) All 

male 

23.2 

(3.5) 

313 (EA) 178 (EA) 

(Stein et al., 

2016) 

ANKRD55 rs159572 497 (AA) 78.8% 

male 

20.4 

(3.0) 

PCL-C 815 (AA) 82.3% 

male 

21.1 

(3.5) 

N/A N/A 

ZNF626 rs11085374 2140 (EA) 2909 (EA) N/A N/A 

 

RORA – Retinoid-Related Orphan Receptor A; COBL – Cordon-Bleu WH2 Repeat Protein; TLL1 – Tolloid Like 1; LINC01090 – Long Intergenic Non-

Protein coding RNA 1090; PRTFDC1 – Phosphoribosyl Transferase Domain Containing 1; ANKRD55 – Ankyrin Repeat Domain 55; ZNF626 – Zinc 

Finger Protein 626 ; EA- European American (excluding Hispanic);  ; AA- African American; MA- Mixed American; CAPS-  Clinician Administered 

PTSD Scale (Diagnostic and Statistical Manual of Mental Disorders IV); PCL-C - PTSD Checklist civilian version; N/S – Not Stated; N/A Not Applicable
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The first GWAS in PTSD was performed by Logue et al., (2013). The study was somewhat limited 

in sample size, as GWAS typically requires thousands of samples to achieve genome-wide statistical 

significance. Nevertheless, they found a specific SNP (rs8042149) located on the retinoid-related 

orphan receptor alpha (RORA) gene to be significantly associated with a lifetime diagnosis of PTSD 

(Logue, Baldwin, et al., 2013). The SNP was however found not significant in two replication studies 

(listed in Table 1.3) from the same publication using different population groups. Furthermore, an 

association between the RORA (rs17303244) and a fear component of distress (i.e., internalizing 

factors) was observed using confirmatory factor analysis on a subset of replication samples (N=540) 

used in the study by Logue et al., (2013) (Miller et al., 2013). These results could possibly indicate 

that the RORA gene is a risk factor for PTSD. However, due to the conflicting results additional 

analysis is required.  

Another GWAS, by Xie et al., (2013), identified a SNP (rs6812849) mapping to the first intron of 

Tolloid-Like 1 (TTL1) gene (Xie et al., 2013) to be associated with PTSD in an African American 

sample group (N=2766) but this did not reach genome-wide significance. Upon additional analysis, 

two SNPs (rs6812849 and rs7691872) in the first intron of TLL1 were replicated in an independent 

sample of European Americans. Furthermore, the Cordon-Bleu WH2 Repeat Protein (COBL) gene 

reached genome-wide significance in a sample of European Americans (Xie et al., 2013). Other 

GWAS investigated risk factors for PTSD identified the lincRNA LINC01090 (AC068718.1) as a 

PTSD risk factor (Guffanti et al., 2013) in a primarily African American group of woman. This SNP 

association was only found to be marginally significant in a female European population (578 PTSD 

cases and 1963 controls). 

The two most recent studies to date are also the largest GWAS in PTSD. The first, by Nievergelt et 

al., (2015) identified the phosphoribosyl transferase domain containing 1 (PRTFDC1) gene as 

significant in a mixed sample of Americans (Nievergelt et al., 2015). These findings were replicated 

in an independent sample of trauma-exposed veterans and their intimate partners (313 cases and 178 

controls). The second study found rs159572 in the Ankyrin Repeat Domain 55 (ANKRD55) gene 

(which is known to be implicated in inflammatory and autoimmune disorders) to have a genome-

wide significance in a sample of African Americans. Additionally, genome-wide significance was 

found in a sample of 2140 European Americans for a SNP (rs1108537) located in the Zinc Finger 

Protein 626 (ZNF626) gene, believed to be involved in the regulation of RNA transcription. These 

findings were, however, not replicated in the same publication across the different ethnic groups. In 

addition to the GWAS mentioned in table 1.3, two GWAS by Wolf et al., (2014) and Ashley-Koch 

et al., (2015) failed to detect any SNPs that met genome-wide significance. 
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These GWAS are important for identifying neurobiological targets for research in the understanding 

of disease mechanism and identification of potential drug targets for treatment of PTSD (Almli et al., 

2014). However, it is critical that the cases and controls are well-matched for PTSD risk factors in 

GWAS analyses (Skelton et al., 2012). Unfortunately, GWAS are limited by size of the sample 

population, relatively small effect sizes, and lack of matching risk factors in case and control study 

populations.  

As GWAS is limited to the identification of common variants, finding rare and more causative 

variants with greater effects often goes undetected. However, GWAS could provide useful 

information for NGS-based studies, such as whole genome transcriptomics by identifying genomic 

regions of interest for further investigation. Most GWAS-identified disease associated variants are 

localized in non-coding genome regions and likely manifest their influence through the modulation 

of gene expression. NGS-based methods allow for a more precise quantification of these disease 

associated variants thereby aiding the detection of their regulatory impact on gene expression 

(Bahcall, 2015). Therefore, these regulatory variants can be identified by combining global 

expression profiles from cells or tissues under different conditions with genome-wide genetic 

variations. 

PTSD is a complex disorder and it is therefore likely that numerous variants in several genes, act 

together to influence the development of this NPD. Therefore, examining the genetic networks 

involved in PTSD enables for a more practical approach by including several genes and transcription 

factors involved in gene regulation (Hayden, 2010). Moreover, GWAS enable the detection of 

heritable gene expression changes but not non-heritable expression changes which include gene 

expression changes due to epigenetic and/or environmental effects.  

1.3.4 Gene Expression Studies in PTSD 

Gene expression studies offer an alternative approach to understanding the complex genetic 

underpinnings of disorders such as PTSD. Unlike GWAS, these studies provide a quantitative method 

to measure the downstream effects of genetic variations, thereby aiding the identification of possible 

pathways (and not just rare variants) implicated in PTSD development. Additionally, factors which 

alter these gene expression patterns could provide insight into the biological underpinnings of PTSD. 

Several prior studies have identified gene expression level differences between the peripheral blood 

of PTSD patients and trauma-exposed control individuals thereby identifying potential blood based 

diagnostic biomarkers for PTSD (Segman et al., 2005; Zieker et al., 2007; Yehuda et al., 2009; 

Neylan et al., 2011; Glatt et al., 2013; Breen et al., 2015; Tylee et al., 2015).  
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In a study by Segman et al., (2005), oligonucleotide microarrays were used to measure gene 

expression differences in peripheral blood mononuclear cell (PBMC) of trauma survivors directly 

after a traumatic event (PBMC collected at the emergency room with a mean time between incident 

and arrival 45±130min) and four months post-trauma. This allowed for the investigation of gene 

expression differences from immediate onset of a trauma through to the possible subsequent 

development of PTSD. The results indicated that these psychologically distressed individuals had an 

overall reduction in expression of transcription activators in PBMC, suggesting that these differences 

could possibly be explained by a stress-induced reduction of gene expression. A significant increased 

enrichment (P<0.0005) of genes involved in RNA metabolism and processing, as well as nucleotide 

metabolism was also observed within individual who were subsequently diagnosed with PTSD. The 

study additionally observed distinct expression signatures for transcripts involved in immune 

activation, signal transduction and apoptosis. Segman et al., (2005) furthermore identified that the 

PTSD individuals had significantly dysregulated gene expression of genes involved in the HPA axis 

(Segman et al., 2005). This was one of the first studies providing evidence that peripheral blood gene 

expression signatures could in fact be useful in identifying a mental disorder. Thereby enabling the 

use or more accessible peripheral blood tissue in the investigation of disease process involved in 

PTSD. 

A study by Zieker et al., (2007) similarly identified the dysregulation of stress-response genes in 

whole blood of PTSD patients with the same environmental trigger (the Ramstein air show 

catastrophe, 1989) using microarray technology. The study identified downregulation in several 

immune-related and reactive oxygen species (ROS) genes (TXR1, SOD1, IL-16, IL-18 and EDG1) in 

PTSD individuals (Zieker et al., 2007). In a microarray study by Yehuda et al., (2009), using a cohort 

of World Trade Centre attack survivors, dysregulated genes involved in the HPA axis, signal 

transduction and immune cell functions were identified. With reduced expression of FKBP5, STAT5B 

and major histocompatibility complex class II (MHC-II) molecules observed in PTSD patients 

compared to trauma-exposed controls (Yehuda et al., 2009). 

Additionally, Neylan et al., (2011) found an overall downregulation of gene expression (47 

downregulated genes identified (p < 0.05)) in the CD14+ monocytes of male PTSD patients. Three 

of these genes were validated by qPCR including, PF4, HIST1H2AC (a histone protein) and SDPR (a 

calcium-independent phospholipid binding protein) (Neylan et al., 2011). These results of an overall 

decreased gene expression were consistent with that of Segman et al., (2005) with both studies finding 

an overall reduction in expression of transcription regulators. 

Glatt et al., (2013), assessed peripheral blood mononuclear cells in a subset of pre-deployed US 

marines by comparing marines that subsequently developed PTSD to those who did not develop 
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PTSD. The study observed a subset of genes involved in type-1 interferon signaling which was a 

significantly enriched pathway identified within the dataset. Six of the genes were significantly 

upregulated (IFI27, OAS1, OAS2, OAS3, XAF1 and USP18) in cases where marines subsequently 

developed PTSD (Glatt et al., 2013). A study from the same group later investigated differential gene 

expression between post-deployed US marines resulting in the identification of dysregulated genes 

involved in cellular oxidative stress (Tylee et al., 2015). 

The microarray studies in PTSD individuals propose that changes in peripheral blood gene expression 

play a potential role in HPA axis function, glucocorticoid signaling, immune and inflammatory 

signaling, and the metabolism of reactive oxygen species (ROS).  Moreover, dysregulation of genes 

involved in the management of cellular oxidative stress could represent useful biomarkers for PTSD 

(Tylee et al., 2015). 

 

Gene expression analysis through total RNA sequencing 

Whole transcriptome shotgun sequencing better known as RNA-Sequencing (RNA-Seq) is a 

powerful next-generation sequencing technology (NGS) consisting of both experimental and 

computational methods (Mortazavi et al., 2008; Nagalakshmi et al., 2008; Wang, Gerstein & Snyder, 

2009). Unlike microarrays, RNA-Seq allows for the generation of unbiased data as the technology is 

not restricted by probes relying on prior knowledge of the genome. Moreover, this NGS technologies 

enables the detection of alternative splice sites as well as novel transcripts. The data generated through 

RNA-Seq can furthermore be stored for further investigation once new genes involved in disease 

development are discovered. 

The transcriptome consists of all RNA transcripts that are transcribed in a cell or in a cell population 

(Wang, Gerstein & Snyder, 2009) and include both coding and non-coding RNAs. Information gained 

through the transcriptome differs from that of the exome, as the exome examines all the potential 

transcripts and not just transcribed RNA. An investigation of the transcriptome is essential for 

identifying functional elements of the genome that are involved in disease development such as 

PTSD.  

RNA-Seq allows for the investigation of the transcriptome in both a qualitative and quantitative 

manner. Qualitative RNA-Seq examines expressed transcripts in a given cell population, whilst 

quantitatively this technology enables the identification of differences in transcription levels between 

cases and controls. Concerning differential expression analysis, RNA-Seq provides a lower 

background signal (Wang, Gerstein & Snyder, 2009) detecting both low and high levels of gene 
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expression. This contrasts with microarrays which lacks sensitivity for gene expression at very low 

or very high levels.  

Recently, the first RNA-Seq study on PTSD individuals was published  by Breen et al., (2015) 

investigated gene expression levels in peripheral blood leukocytes of US Marines pre- and post-

deployment to conflict zones. All 188 samples were male and consisted of 47 cases (pre-deployment 

mean age = 22.15 and post-deployment mean age = 23.14) and 47 controls (pre-deployment mean 

age = 22.42 and post-deployment mean age = 23.42). Using gene-expression network analyses, the 

study aimed to integrate expression data across genes into a higher-order context in order to identify 

groups of genes within a network whose expressions were highly correlated (co-expressed genes). 

This provided researchers with a robust approach to identify molecular mechanisms in 

neuropsychiatric disorders such as PTSD.  The network analysis resulted in the identification of 

modules related to haemostasis and wound responsiveness expressed in post-deployment US Marines 

who did not develop PTSD. The study moreover observed dysregulated innate immune module 

(interferon (IFN) signalling) to be associated with the development of PTSD with the top five hub 

genes identified for post-deployment as IFI35, IFIH1, PARP14, RSAD2 and UBE2L6) and pre-

deployment as (DTX3L, IFIH1, IFIT3, PARP14 and STAT2) (Breen et al., 2015).  

Gene expression studies are integral to reveal the biological underpinnings of disease through the 

identification of thousands of genes associated to diseases. This approach could lead to the discovery 

of disease blood biomarkers, possibly improving the clinical diagnosis of psychiatric disorders such 

as PTSD. The current gene expression study is to our knowledge the first RNA-Seq study 

investigating PTSD based on civilian trauma. The study will also assist in the generation of a complete 

and unique catalogue of coding sequence variation and associated frequency information from South 

African transcriptomes. 
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The current study 

Significance of study 

The current research project was conducted as part of a larger interdisciplinary South African Medical 

Research Council (MRC) Flagship-funded project, known as SHARED ROOTS. The MRC flagship 

project intends to examine genomic, neural, cellular and environmental signatures that are common 

between neuropsychiatric diseases (NPDs) such as PTSD and cardiovascular disorders (CVD), as 

defined by metabolic syndrome (MetS). Numerous studies have shown the occurrence of MetS in 

individuals with PTSD (Wentworth et al., 2013). By combining genomic, transcriptomic, epigenetic 

and neuroimaging data, the flagship project aims to identify the mechanistic pathways involved in 

this comorbidity.  

One of the aims of the SHARED ROOTS project is the application of blood-based whole 

transcriptome in a subset of PTSD patients and trauma-exposed controls to identify a set of 

differentially expressed genes (DEG) between patients with and without MetS.  

An important step in achieving this, is a preliminary investigation in identifying a set of DEGs through 

whole genome transcriptomics between PTSD patients and trauma-exposed controls, where MetS 

phenotype is excluded.  This approach allows for a concerted view of the underlying molecular 

mechanisms involved in PTSD specifically, without phenotypic complexity associated with MetS.  

The present study will focus on the genetic mechanisms involved in PTSD using a hypothesis-

generating approach, facilitating the discovery of novel gene candidates and possible molecular 

pathways implicated in the disease. Such an unbiased approach can be gained using whole-genome 

transcriptomics approach, such as RNA-Seq, which allows for the identification of potential 

biological pathways involved in neuropsychiatric diseases by use of a quantifying gene expression 

approach.  

The research presented in this thesis therefore aims to address the above by identifying differential 

expression between PTSD patients and trauma-exposed controls using RNA-Seq to explore links 

between the identified subset of genes and their known functions, phenotypes, their involvement in 

known disease pathway and gene-gene interaction associated with clinical phenotypes (such as: 

hyperarousal, insomnia, agitation, avoidance, derealisation, dissociation, and depression) of PTSD, 

using ontology variant prioritization strategy. Potentially contributing to the identification of the 

underlying molecular mechanism of PTSD. 
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Thesis aims and objectives 

The research aimed to investigate the molecular mechanisms involved in PTSD on a whole genome 

transcriptomic level by carrying out differentially expressed gene set analysis on PTSD patients and 

trauma-exposed controls.  

Objectives: 

I. To identify a set of genes that are differentially expressed in PTSD patients compared to 

trauma-exposed controls. 

II. To investigate molecular functions, phenotypes, pathways and gene-gene interactions 

dysregulated by the differentially expressed gene set in PTSD patients using an ontology 

driven gene prioritization strategy using PTSD-specific BioOntological Relationship Graph 

Database. 
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CHAPTER 2 : METHODOLOGY 

2.1 Ethical considerations 

The present preliminary study forms part of the MRC flagship study SHARED ROOTS for which 

ethics approval was granted by the Health Research Ethics Committee of Stellenbosch University.  

Human research was conducted according to the ethical guidelines and principles of the Declaration 

of Helsinki, SA Good Clinical Practice Guidelines and the MRC Ethical Guidelines for Research 

(Ref: N13/08/115). Informed written consent was obtained from all participants. Raw data was 

captured into a secure, anonymised central RedCap database. The database could only be accessed 

by study personnel and students involved in the SHARED ROOTS study. The identities of 

participants was anonymised and not directly linked to information captured within the dataset.  

 

2.2 Subject recruitment 

The present study recruited South African mixed ancestry individuals, aged 18 years and above, from 

the Western Cape Province. Mixed ancestry individuals in South Africa refers to a multiracial ethnic 

group (Coloured individuals) with genetic contributions from various population groups including 

Europeans, South Asians, Indonesians and the sub-Saharan Bantu population (Patterson et al., 2010). 

The unique composition of this admixed population provides an opportunity to discover novel 

susceptibility alleles underlying many multifactorial diseases, facilitating the discovery of new gene 

associations with disease traits (de Wit et al., 2010).  

Purposive sampling was employed in the recruitment of all study participants. 

 

2.2.1 Clinical assessments and questionnaires 

All participants were consulted for at least two visits at the Faculty of Medicine and Health Sciences, 

Tygerberg. The Clinician Administered Posttraumatic Stress Disorder Scale for DSM-5 (CAPS-5) 

was used to determine PTSD diagnostic status (Weathers, Blake, et al., 2013a) by a clinician with 

expertise in the field of psychiatry. Moreover, the Life Events Checklist for the DSM-5 (LEC-5) 

(Weathers, Blake, et al., 2013b) was utilised to assess for a lifetime history of exposure to potentially 

traumatic events, whilst the Childhood Trauma Questionnaire (CTQ) (Bernstein & Flink, 1998) 
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screened for a history of child abuse and neglect. Self-report PTSD symptom severity was determined 

with the PTSD Checklist for DSM-5 (PCL-5) (Weathers, Litz, et al., 2013) in all trauma-exposed 

participants. Current and lifetime psychiatric disorders were accounted for by use of the MINI 

International Neuropsychiatric Interview, version 6.0 (MINI) (Sheehan et al., 2009). Demographic 

data were obtained with a demographic questionnaire, personal and family history of medical and 

psychiatric illness and previous and current medication use with a medical history questionnaire. All 

data was captured in a RedCap database (Harris et al., 2009). 

 

2.2.2 Selection criteria 

A total of 50 age-matched trauma-exposed participants, identified by the LEC-5, were included in the 

present sub-study to assess for a lifetime history of exposure to potentially traumatic events. Twenty 

of these participants were diagnosed with PTSD based on CAPS (CAPS ≥ 28), whilst the additional 

30 trauma-exposed participants were used as controls. Of the thirty trauma-exposed controls, only 20 

controls had completed the CAPS (CAPS ≤ 5) assessment. The remaining ten trauma-exposed 

controls were included as controls for another cohort in the SHARED ROOTS study (Parkinson’s 

disease), where CAPS was not administered (see Chapter 3, Section 3.1.1). This was however the 

only difference in the methodology as all procedures between the cohorts’ of trauma-exposed controls 

were the same. Data from the PCL-5 assessment was captured for all 50 of the participants.  

As part of the exclusion criteria, participants with MetS or illicit drug use in the past six months were 

omitted (substance use omitted based on a medical history questionnaire). Relatives of participants 

with serious mental disorders such as schizophrenia and bipolar disorders were excluded. Psychiatric 

comorbid disorders such as major depressive disorder (MDD) were not excluded in five participants 

due to the high comorbidity between MDD and PTSD. This made it difficult to completely exclude 

MDD from the PTSD patient. 

The present study only included mixed ancestry, female participants as women have a twofold higher 

risk for developing PTSD.  

 

2.2.3 Sample collection 

A 2.5 ml PAXgene® Blood RNA Tube (QIAGEN®, Hilden, Germany) was used for collection of 

whole blood from participants. Samples were logged with a lab identification number at the research 

laboratory in the Division of Molecular Biology and Human Genetics at the Faculty of Medicine and 
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Health Sciences, Stellenbosch University and kept at room temperature between two to 24 hours. The 

PAXgene Blood RNA tubes were then transferred to a -20 °C freezer for 24 hours and thereafter 

stored at -80 °C until RNA isolation as per manufacturer's instructions.  

 

2.3 Whole blood RNA extraction  

The PAXgene® Blood RNA kit (QIAGEN®, Hilden, Germany) was used as per manufacturer's 

instructions to isolate totalRNA (tRNA) from PAXgene® Blood RNA Tubes (QIAGEN®, Hilden, 

Germany) containing 2.5 ml of peripheral blood. All samples were extracted at an RNase-free bench 

in a research laboratory at the Division of Molecular Biology and Human Genetics, Faculty of 

Medicine and Health Sciences, Stellenbosch University. All surfaces were cleaned with 70% ethanol 

in combination with RNaseZap® (Ambion, Inc., Austin, Texas) for a clean, sterile RNA extraction 

environment. Samples were thawed for a total of 24 hours before total RNA extraction. 

Modifications were made to the final elution step of the protocol by re-pipetting the 40 µl of RNA 

elute (RNA eluted with Buffer BR5) onto the PAXgene RNA spin column membrane to increase 

RNA concentration. Therefore, leaving an end volume of 40 µl instead of 80 µl as specified by the 

protocol. A total of 4 µl of each sample was pipetted into PCR tubes for subsequent quality and 

quantity assessment on the NanoDrop™ and Agilent Bioanalyzer. The remainder of the isolated RNA 

was stored in a -80 °C freezer for RNA-Seq analyses. A maximum of four samples were isolated at a 

time as to limit cross-contamination of samples.  

 

2.4 Quality and quantity assessment of extracted RNA 

The quality and quantity of extracted RNA was analysed using two different methods. First, RNA 

yield was quantified by absorbance readings at 260 nm and 280 nm using the NanoDrop™ 2000c 

Spectrophotometer (Thermo Scientific, Delaware, USA) allowing for an estimation of the quality of 

RNA. However, free nucleotides and other organic compounds used in the extraction of RNA will 

also absorb UV light near 260 nm, resulting in an overestimation of the RNA concentration. For this 

reason, a second quantity evaluation was necessary.  

Quantity and quality assessments were performed on the 2100 Bioanalyzer platform (Agilent 

Technologies, California, USA) at the Central Analytical Facilities (CAF) of Stellenbosch University, 
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according to manufacturer’s instructions. RNA integrity numbers (RIN) were the assessed. Samples 

with RIN values higher than 7 were sent for RNA-sequencing (as per NXT-Dx (Ghent, Belgium) 

instructions). This value indicates the range of RNA degradation from 1-10, with a value of 1 

indicative of total degradation and a value of 10 representing intact RNA. A RIN value of 7 and above 

is considered as high quality, intact RNA (Schroeder et al., 2006). 

2.5 RNA-Sequencing 

The 50 RNA samples, with RIN values above seven, were sent on dry ice to the service provider 

NXT-Dx (Ghent, Belgium) for Whole RNA sequencing. All samples were diluted to contain a 

minimum of 500 ng of RNA per sample with the volume varying between 15-50 µl as per sequencing 

company’s instruction. TruSeq® stranded total RNA kit (Illumina®, California, USA) was used as 

per manufacturer's instructions. Samples were multiplexed and paired-end (PE) library clusters were 

then generated using the cBot (Illumina, California, USA) as platform. The DNA clusters, contained 

in the flow cell, were then sequenced using the Illumina HTSeq 4000 as platform at a sequencing 

depth of 50 million PE reads per sample with a read length of 50 base pairs. 

 

2.5.1 Overview of RNA-Seq workflow 

Total RNA was purified by the removal of ribosomal RNA (rRNA) using a combination of 

biotinylated, target specific oligos and Ribo-Zero™ beads. After purification, remaining RNA was 

fragmented (Figure 2.1 A) followed by random priming to allow for first strand cDNA synthesis by 

reverse transcriptase. Thereafter E. coli DNA polymerase I and RNase H was utilised for cDNA 

second strand synthesis, incorporating dUTPs within the second strand to generate double stranded 

(ds) cDNA (Figure 2.1 B). A single adenine (A) base was then added to the blunt-end ds cDNA 

fragment (Figure 2.1 C) allowing for the ligation with a thymine (T) overhang located at the 3’end of 

the adapter (Figure 2.1 D). The ds cDNA product was then denatured, purified and amplified by PCR 

using primers complementary to adapters to create the final cDNA library (Figure 2.1 E). In this PCR 

process, only DNA fragments that correctly annealed to primers and incorporated dTTPs during 

strand synthesis were amplified. The dUTP’s incorporated at second strand synthesis therefore 

allowed for the preparation of strand-specific libraries as DNA polymerase is unable to extend dUTP 

bases during the PCR reaction. These libraries thus only contain strands of the original RNA template 

allowing for the generation of enriched cDNA libraries. 
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Figure 2.1: The TruSeq® stranded total RNA library preparation workflow. A) During library 

preparation total RNA was purified, removing ribosomal RNA (rRNA). B) The remaining RNA was 

fragmented followed by random priming for first strand cDNA synthesis. Second strand synthesis then 

incorporates dUTPs generating double stranded (ds) cDNA. C) A single adenine (A) base was added to the 

blunt-end ds cDNA fragment allowing D) the ligation of a thymine (T) overhang. E) The ds cDNA product 

was then denatured, purified and amplified by PCR creating the final cDNA library used in cluster generation 

(Adapted from http://www.illumina.com). 

 

Samples were multiplexed, which allowed for the pooling of multiple samples in a single sequencing 

reaction through use of unique index labels located on primers. Thereafter, PE library clusters were  

generated using the cBot (Illumina, California, USA) as platform. The cluster generation occurs on a 

flow cell containing lanes of nanowells filled with oligos complementary to library adapters. During 

cluster generation, a novel exclusion amplification method insures that only a single DNA template 

is able to bind to form a cluster within a single nanowell. Moreover, polyclonal cluster formation is 

prevented due to the rapid amplification of libraries after binding to an oligo primer. Insuring a 

monoclonal cluster is formed within each nanowell leading to a high cluster of cells originating from 

a single template.  

The bound libraries were then extended by polymerases and the original template is washed away 

leaving only the newly synthesized strand covalently attached to the flow cell surface. This was 

followed by bridge amplification where the single stranded molecule hybridizes to an adjacent, 
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complementary primer extending to a double-stranded bridge through polymerase. The double-

stranded bridge was then denatured resulting in two copies of covalently bound single-stranded 

templates. The process was then repeated in multiple cycles until several bridges were formed. 

Reverse strands were then cleaved and washed away leaving a cluster consisting only of forward 

strands, blocking the free 3’ends to prevent unwanted DNA priming. A read 1 sequencing primer was 

then hybridized to the adapter sequence incorporated in the template strand.  

The DNA clusters, contained in the flow cell, were then sequenced using the Illumina HTSeq 4000 

as platform. This platform employs a process known as sequencing by synthesis (SBS), were single 

bases are detected as they are incorporated to the template strand (Figure 2.2)  

 

Figure 2.2: Illustration of sequencing by synthesis (SBS) used by the Illumina HTSeq platform. A 

complementary fluorescently labelled nucleotide is incorporated to a template strand, when bound a 

fluorescent dye is cleaved off and excited by a light source. This emits a signal for each of the four possible 

nucleotides determining the base call of the template strand accordingly. In specific clusters all identical 

strands are read simultaneously for a parallel process (read length determined by number of cycles). The read 

product is then washed away and an index read is incorporated identifying the template strand (Adapted from 

http://www.illumina.com). 

 

In this sequencing method, a complementary fluorescently labelled nucleotide is incorporated to the 

template strand. When a nucleotide binds to the template strand a fluorescent dye is cleaved off and 

excited by a light source. This emits a characteristic signal for each of the four possible nucleotides 

determining the base call accordingly. In a specific cluster, all the identical strands are read 

simultaneously allowing for a parallel process where the number of cycles determines the length of 
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the read. Afterwards the read product was washed away followed by the incorporation of a specific 

index read (index 1) to the first reads generated (forward template). 

In paired end sequencing the 3’ends of the template strands are unblocked, hybridizing to the second 

oligo on the flow cell. A second index read (index 2) was then incorporated and the read product 

washed away. Polymerases extended the second oligo forming a double stranded bridge. Bridges 

were then linearized and the original forward template is cleaved off and the free 3’ ends of the reverse 

template blocked to prevent unwanted DNA priming. A read 2 sequencing primer was then hybridized 

to the adapter sequence followed by SBS of the second read (reverse template). Sequences from the 

pooled sample libraries were then separated based on their unique indexes (Figure 2.3). 

 

Figure 2.3: Illustration of how paired-end (PE) reads are generated through sequencing by synthesis. 1) 

Sequencing reads are generated for a forward template using SBS. 2) a sequencing index primer is added 

incorporating the sequence into read 1. The 3’ends of the template strands are unblocked, hybridizing to the 

second oligo on the flow cell. A second index read (index 2) is incorporated and the read product washed away. 

3) Polymerases extended the second oligo forming a double stranded bridge. 4) Bridges linearize, the original 

forward template is cleaved off and the free 3’ ends of reverse templates are blocked (prevent unwanted DNA 

priming). The read 2 sequencing primer is hybridized to the adapter sequence followed by SBS of the second 

read (reverse template). Sample libraries are pooled and separated based on their unique indexes (Adapted 

from http://www.illumina.com). 
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2.6 Data processing 

RNA-Seq studies generate large amount of data, requiring extensive computational capacity for 

storage, processing and downstream analysis. To leverage the analytical and computational needs, 

the South African National Bioinformatics Institute (SANBI), as the national bioinformatics core in 

the country and collaborator on the SHARED ROOTS project, provided computational infrastructure 

and expertise, where data processing and downstream analysis were carried out using state of the art 

tools and technology recommended by international experts in the field. 

 

  

Figure 2.4: Schematic representation of bioinformatics analyses workflow used to identify differentially 

expressed genes between PTSD patients and trauma-exposed controls. Pipeline used to identify 

differentially expressed genes from raw data generated by RNA-Seq.  

 

2.6.1 Quality control and trimming using FastQC and Trim-Galore 

The FastQC tool, v 0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used for 

quality assessment of the generated reads from the RNA-Seq data. The FastQC tool provides output 

information such as on the average read length, GC content as well as the presence and abundance of 

contaminating sequences. All raw sequence reads were of high quality with read length of 50 

nucleotides. 
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As majority of the reads passed the quality control using FastQC, only index trimming was carried 

out. Trim-Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), a wrapper tool 

for Cutadapt (https://cutadapt.readthedocs.io/) and FastQC, was used to trim the 8bp indexes at the 

3’end of both the forward (R1) and reverse (R2) paired end reads of FastQ files before being mapped 

to the reference genome. These unique index labels allowed for the tagging of several reads, pooling 

multiple samples in a single sequencing reaction (Appendix 1 Table I.1).  

 

2.6.2 Alignment to reference genome 

Hierarchical indexing for spliced alignment of transcripts (HISAT2) 

(https://ccb.jhu.edu/software/hisat2/) tool was used for alignment of RNA-Seq reads to the human 

reference genome (GRCh38). The goal of the alignment process is to locate the origin of each 

sequenced read within the reference genome. Additionally, SAMtools (www.htslib.org/) were used 

to convert the mapped reads from SAM format to BAM format as well as sorting of the mapped reads 

based on gene names (as a prerequisite for read-count by HTSeq).  

 

2.6.3 Calculating expression levels of reads using HTSeq 

The HTSeq-count tool (http://www-huber.embl.de/HTSeq) was utilized to count the number of reads 

mapped to each gene coordinates. Input files required for the tool included the aligned reads, ordered 

according to gene names in BAM format, and a gene transfer format (GTF) tab-delimited file 

containing the coordinates of exon boundaries. The output text file, containing the gene name counts, 

was then used as input for differential gene expression analysis. 

 

2.7 Differential expression analysis using DESEQ2 

Differential expression analysis entails the identification of differentially expressed transcripts of 

genes, which differ significantly between cases and controls. This allows for the identification of 

upregulated and downregulated genes using statistical testing. To calculate the levels of differentially 

expressed transcripts in our study cohort, DESEQ2 tool (https://bioconductor.org/packages/DESeq2) 

was used in R environment. DESEQ2 employs count data for a more quantitative analysis of 

differential expressed transcripts. DESEQ2 uses Benjamin Hochberg adjusted p-value (FDR), which 

is the smallest significance level at which a particular comparison will be declared statistically 
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significant as part of the multiple comparison testing. An adjusted p-value cutoff of less than 0.05 

was used to identify significantly differentially expressed genes (DEGs), whilst a log fold change of 

≥ 0.25 and ≤ -0.25 was used for the identification of up- or down- regulated genes, respectively.  

 

2.8 Using BioOntological Relationship Graph Database to identify gene-disease links 

While it is now fairly routine to identify genes bearing deleterious mutations or which are 

differentially expressed, it is not always obvious to identify the strongest set of candidates for 

involvement in a disease or phenotype of interest. Accordingly, assessing candidate genes in context 

of existing biomedical knowledge and their known biomolecular functions is an important step in 

producing a manageable set of genes for further validation and exploration.  

To determine biologically relevant genes from the list of significantly DEGs in our study, an 

ontology-driven variant prioritisation approach, using an anxiety disorder-specific BioOntological 

Relationship Graph (BORG) database was utilized. The semantic database allows for the biological 

contextualisation of a set of prioritized genes by use of a large on-disk virtual mind map, which 

integrates millions of biological and biomedical facts about human, mouse and rat genes into a single 

semantic network.  Several bio-ontologies and ontology term annotated genes are used to model 

existing biomedical knowledge in the database: 

I. Gene Ontology (GO) terms based on annotations published by the GO consortium (Berardini 

et al, 2010). 

II. Disease Ontology (DO), which indicates known involvement of genes in the disease of 

interest (http://www.geneontology.org/).   

III. Human Phenotype Ontology (HPO) (www.human-phenotype-ontology.org), terms based on 

the phenotypes that are documented to be associated with human genes in the OMIM database 

(https://www.omim.org/).   

IV. Mammalian Phenotype Ontology (MPO), uses information gathered from the Jackson lab 

(http://www.informatics.jax.org/) based on gene knockout models using mouse and rat. This 

ontology uses standardised terms for phenotype observed in these mice and rat models when 

a gene is knocked out allowing for a transitive association with human genes 

(http://www.informatics.jax.org/glossary/mammalian_phenotype_ontology).  

V. Pathway Ontology (PW), which consists of biological and disease pathways involved in a 

particular gene (http://bioportal.bioontology.org/ontologies/PW). 
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To build a semantic model, anxiety disorder was specified as the disease ontology term and a set of 

terms, which characterises the phenotype of interest was created based on a list of specific 

hierarchical, ontology terms, which link concepts (nodes) and their relationships (edges) to the 

disease. Anxiety disorder disease ontology (DO) term was selected on a hierarchical basis, with more 

specialised terms, such as “PTSD”, being captured as part of the broader anxiety disorder terms.  This 

facilitated the discovery of biologically plausible genes which might have been otherwise missed 

when using more specialised term such as “PTSD”). This cross-ontological mapping allows for the 

identification of genes based on gene functions, phenotypes and pathways that are involved, or 

predicted to be involved, in anxiety disorders and by extension in PTSD. This approach may uncover 

non-obvious, yet biologically plausible and literature-supported genes associated to disease. The final 

list of GO, HPO and MPO terms used to build the anxiety disorder model in BORG (referred to as 

“anxiety BORG” throughout the present study) is shown in Table 2.1. 

Effectively, the system evaluates the following questions specific to our study: 

1) Is the differentially expressed gene known or predicted to be involved in the disease of 

interest? 

2) Does the gene have a function that coincides with the pathology? 

3) Is the gene in a pathway associated with the disease? 

4) Does the human gene or an animal knockout of the gene cause the disease or a hallmark 

phenotype of the disease? 

5) Is the gene expressed in the tissue or organ of interest? 

6) Does the gene product physically interact with a protein that is encoded by a known disease 

gene? 

Using “guilt-by-indirect-association” the database finds links between known disease gene previously 

identified by other experimental studies and large GWAS data and anxiety disorder, which allows for 

identification of a potential subset of novel genes linked to disease based on indirect associations, 

which might have been otherwise missed (Figure 2.5).  
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Table 2.1: Ontology terms selected to transitively link genes to anxiety disorder and by 

extension to PTSD in the BORG semantic database.  

Ontologies BORG Disease Terms 

Gene Ontology 

GO:0001662 behavioral fear response 
GO:0002122 fear-induced aggressive behavior 

GO:0004972 NMDA glutamate receptor activity 

GO:0014056 regulation of acetylcholine secretion, neurotransmission 

GO:0014062 regulation of serotonin secretion 

GO:0017146 NMDA selective glutamate receptor complex 

GO:0019722 calcium-mediated signaling 

GO:0031961 cortisol receptor binding 

GO:0032899 regulation of neurotrophin production 

GO:0032902 nerve growth factor production 

GO:0035259 glucocorticoid receptor binding 

GO:0035640 exploration behavior 

GO:0046928 regulation of neurotransmitter secretion 

GO:0050780 dopamine receptor binding 

GO:0051378 serotonin binding 

GO:0051610 serotonin uptake 

GO:0051611 regulation of serotonin uptake 

GO:0051614 inhibition of serotonin uptake 

GO:0051866 general adaptation syndrome 

GO:0097114 NMDA glutamate receptor clustering 

GO:2000822 regulation of behavioral fear response 

Human 

Phenotype 

HP:0000722 Obsessive-compulsive behavior 

HP:0000723 Restrictive behavior 

HP:0000733 Stereotypic behavior 

HP:0000739 Anxiety 

HP:0008770 Obsessive-compulsive trait 

HP:0100851 Abnormal emotion/affect behavior 

HP:0100852 Abnormal fear/anxiety-related behavior 

Mammalian 

Phenotype 

MP:0001362 abnormal anxiety-related response 

MP:0001363 increased anxiety-related response 

MP:0001364 decreased anxiety-related response 

MP:0001454 abnormal cued conditioning behavior 

MP:0001469 abnormal contextual conditioning behavior 

MP:0002063 abnormal learning/memory/conditioning 

MP:0002065 abnormal fear/anxiety-related behavior 

MP:0002797 increased thigmotaxis 

MP:0002803 abnormal operant conditioning behavior 

MP:0002806 abnormal conditioned emotional response 

MP:0003106 abnormal fear-related response 

MP:0003360 abnormal depression-related behavior 

MP:0006299 abnormal latent inhibition of conditioning behavior 

Pathway 

PW:0000240 neuropsychiatric disease pathway 

PW:0000272 neuron-to-neuron signaling pathways 

PW:0000274 neuron-to-neuron signaling pathway via the chemical 

synapse 
PW:0000389 altered signaling pathway pertinent to the brain and nervous 

system 
PW:0000442 norepinephrine metabolic pathway 
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PW:0000448 neuropeptide Y metabolic pathway 

PW:0000450 neurotensin metabolic pathway 

PW:0000493 corticotropin-releasing hormone signaling pathway 

PW:0000569 cortisol signaling pathway 

PW:0000571 neurotrophic factor signaling pathway 

PW:0000572 brain-derived neurotrophic factor signaling pathway 

PW:0000755 benzodiazepine drug pathway 

PW:0000782 glucocorticoid signaling pathway 

PW:0001140 calcium/calcium-mediated signaling pathway 

PW:0001141 calcium signaling pathway via the calcium-sensing receptor 

NMDA - N-methyl-D-aspartate 

 

 

Figure 2.5: BioOntological Relationship Graph (BORG) database schema. The diagram represents 

semantic relationships of known gene and disease from biomedical databases and published curated 

relationships (linked by black arrows). Red dotted arrows indicate cross-ontological mapping of ‘novel’ genes 

to disease via pathways (PO), phenotypes (HPO and MPO) and functions (GO) that are associated to anxiety 

disorder.   
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2.9 Gene set enrichment analysis through Enrichr 

Gene set enrichment analysis was performed on all differentially expressed up and downregulated 

genes identified by DESEQ2 using the Enrichr tool (http://amp.pharm.mssm.edu/Enrichr). Enrichr 

functions as an integrative web-based tool that provides summaries of an input gene lists collective 

functions, against prior knowledge gene-set libraries. This type of analysis allows for the grouping of 

DEGs based on their functional similarities allowing for the biological interpretation of the 556 DEGs 

identified by DESEQ2. The tool consists of gene-set library from a variety of tools including, but not 

limited to, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

(http://www.genome.jp/kegg/), WikiPathways (http://www.wikipathways.org), Online Mendelian 

Inheritance in Man (OMIM) (https://www.omim.org/) disease and ontology library gene-sets such as 

biological process, molecular function  and cellular component as part of GO.  

2.10 Identifying gene set co-expression using COXPRESdb 

COXPRESdb (http://coxpresdb.jp) was used to explore potential co-expression between the 

prioritized set of DEGs obtained from our BORG analysis. This database for animal species employs 

both DNA-microarray and RNA-Seq based expression data with multiple quality assessment systems 

in place to identify co-expressed genes. Through this type of approach, we prioritised genes based on 

their known functions associated with the PTSD. By use of the EdgeAnnotation tool all possible co-

expression pairs for the biologically relevant query genes were determined, reporting both on mutual 

rank (MR) and correlation values between the genes. The MR values which represents a geometric 

averaged correlation rank calculated between the two directional ranks were used (i.e. the rank of 

gene B from gene A versus the rank of gene A from gene B calculated by MR(AB) = √ (Rank(A→B) x 

Rank(B→A))). Thereafter, co-expression gene networks were drawn with the NetworkDrawer tool to 

identify highly correlated gene pairs based on MR values.  

2.11 Tissue expression identification using the GTEx portal 

Tissue expression of co-expressed genes of interest were examined through the Genotype-Tissue 

Expression (GTEx) (http://gtexportal.org) portal, providing insight on healthy human gene expression 

patterns in multiple tissues. The database was used to determine the level of gene expression present 

within tissues of interest associated to PTSD such as brain in comparison to whole blood. Brain tissues 

reported included, the amygdala, anterior cingulate cortex, caudate, cerebellar hemispheres, 
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cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen, spinal 

cord and substantia nigra. 

2.12 Summary of methodology workflow 

A diagram providing a summary of the methodology workflow used in the current study is indicated 

in Figure 2.6. 

 

Figure 2.6: Flow diagram providing a summary of the methodology used in an RNA-Seq study 

investigating differential expression between PTSD patients and trauma-exposed controls. Total RNA 

(tRNA) from 50 female, mixed ancestry participants (n = 20 cases and n = 30 controls) was isolated from 

whole blood and subsequently quality controlled through two methods (Using the NanoDrop and Agilent 

Bioanalyzer). High quality (RNA integrity number ≥ 7) tRNA samples were sent for RNA-Seq. Two samples 

yielded insufficient sequencing libraries leading to the bioinformatics processing and differential expression 

analysis of 48 samples (19 cases and 29 controls). Expression analysis identified 556 which were analysed 

through Enrichr identifying the general functions and pathways enriched for the gene set. Additionally, the 

556 DEGs were analysed through BORG, identifying 196 gene biologically relevant based on ontology terms 

linked to anxiety and by extension to PTSD. This was followed by co-expression analysis identifying genes 

with similar expression patterns and tissue expression identification. 
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CHAPTER 3 : RESULTS 

3.1 Subject Recruitment 

3.1.1 Clinical and demographic data 

Fifty participants (20 cases and 30 controls) were recruited for the present study of which only 48 

samples (19 cases and 29 controls) were sequenced. This was due to the low RNA concentration of 

two samples (low concentrations possibly occurred when dilution were made) which led to low and 

insufficient cDNA library yield for RNA-Seq. Additionally, ten of the 29 trauma-exposed controls 

selected were initially included as controls for another cohort in the SHARED ROOTS study 

(Parkinson’s disease). These additional ten trauma-exposed controls were included in the current 

study in order to observe a stronger differential expression pattern between the trauma-exposed 

controls compared to the PTSD group. All participants underwent the same procedures with the 

exception of the CAPS which was not administered to the ten initial trauma-exposed controls from 

the Parkinson’s disease cohort. Table 3.1 summarizes the clinical and demographic data captured for 

the 48 sequenced samples. 

Table 3.1: Clinical and demographic data of 48 samples (PTSD cases vs trauma-exposed 

controls) sequenced through RNA-Seq. 

 PTSD (n=19) Control TE (n=29) p-value 

Age in years, mean (SD) 40.00 (12.01) 42.00 (14.68) 0.674 

CAPS-5 total score, median (IQR) 32.00 (31.00-44.00) 0.00 (0.00-1.00)  

(n = 19) 
- 

Time since index trauma (months), 

median (IQR) 

96.00 (12.00-240.00) 36.00 (12.00-114.00) 0.399 

Number of different types of 

traumatic experiences on LEC-5, 

mean (SD) 

5.95 (2.64) 2.93 (1.85) 0.000154* 

CTQ total score, median (IQR) 43.00 (35.00 - 74.00) 33.00 (30.50- 46.50) 0.025* 

PCL-5 total score, median (IQR) 50.00 (44.00-58.00) 5.00 (0.00-12.00) 1.02E-13* 

CAPS-5 - Clinician Administered Posttraumatic Stress Disorder Scale for DSM-5; CTQ - Childhood Trauma 

Questionnaire; IQR- inter quartile range; LEC-5 - Life Events Checklist for DSM-5; PCL-5 - PTSD Checklist 

for DSM-5; SD – standard deviation; TE – trauma-exposed   

*significant (p < 0.05) 

(p-value based on independent t-test (p < 0.05) where equal variances were not assumed using SPSS) 
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All 48 samples were mixed ancestry females with no significant difference between the age of PTSD 

patients and trauma-exposed controls (p = 0.674). Moreover, there was no significant group 

difference in the time since the index trauma (p = 0.399). The CAPS total severity score data 

demonstrated a median score of 32.00 (IQR: 31.00-44.00) and 0.00 (IQR: 0.00-1.00) for PTSD 

patients and controls respectively, (CAPS scores were only available for 65.50% of the trauma-

exposed controls). However, the PCL total scores were available for all 48 participants indicating that 

PTSD patients had a median score of 50.00 (IQR: 44.00-58.00) compared to 5.00 (IQR: 0.00-12.00) 

for the controls. The number of traumatic experiences, based on the LEC-5 scores, showed a 

significant difference between groups (p = 0.000154), with cases experiencing almost double the 

number of traumatic events experienced by controls. The median CTQ total score was significantly 

(p = 0.025) higher in patients (43.00 [IQR: 35.00-74.00]) than in controls (33.00 [IQR: 30.50-46.50]). 

3.2 Quality and quantity assessment of extracted RNA 

The NanoDrop™ spectrophotometer was used in identifying RNA yield after extraction. Thereafter, 

samples were analysed using the Agilent Bioanalyzer, which offers a higher reliability in quantitative 

measurements than that of the spectrophotometer. Qualitatively, the Bioanalyzer reported that all 50 

extracted samples had RIN values higher than seven. These samples were subsequently sent for RNA-

Seq. Table 3.2 provides a summary of the RNA quantity and quality of the 50 samples sent for RNA-

Seq. Figure 3.1 illustrates a representative Bioanalyzer report of a sample with both a high RIN value 

and an adequate RNA concentration for next-generation RNA-Seq. 

 

Table 3.2: Summary of Bioanalyzer results for sample sent for RNA-Seq. A minimum of 500 ng 

of RNA in 15-50 µl was sent for sequencing. Additionally, a RIN ≥ 7 on the Agilent Bioanalyzer was 

required in order for samples to be sequenced.  

  RNA Extraction Bioanalyzer Results 

Lab ID Group End volume (µl) RIN RNA concentration 

(ng/µl) 

SR081* Control (TE) 80 8.7 20 

SR038 Control (TE) 80 8.8 36 

SR075 Control (TE) 80 7.1 13 

SR146 Control (TE) 80 8.9 57 

SR164 Control (TE) 80 9 64 

SR072 Control (TE) 80 9 32 

SR170 Control (TE) 80 9 28 

SR048 Control (TE) 80 9.2 99 

SR065 Control (TE) 80 9.1 98 
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SR066 Control (TE) 80 9 90 

SR015 Control (TE) 80 9.3 20 

SR016 Control (TE) 80 9.3 8 

SR052 Control (TE) 80 9.3 145 

SR001 Control (TE) 80 9.3 71 

SR105 Control (TE) 80 9.3 124 

SR096 Control (TE) 80 8.8 54 

SR166 Control (TE) 40 8.9 197 

SR214 Control (TE) 40 9.2 195 

SR230 Control (TE) 40 8.9 138 

SR279 Control (TE) 40 9.4 15 

SR082 Control (TE) 40 9.6 47 

SR109 Control (TE) 40 9.6 96 

SR080 Control (TE) 40 9.3 73 

SR013 Control (TE) 80 9.6 53 

SR098 Control (TE) 80 7.8 30 

SR055 Control (TE) 80 9.6 119 

SR006 Control (TE) 80 9.3 37 

SR119 Control (TE) 40 9.9 115 

SR092 Control (TE) 40 8 243 

SR089 Control (TE) 20 9.3 65 

SR176 PTSD patient 80 8.8 77 

SR148 PTSD patient 40 8.4 23 

SR156 PTSD patient  40 8.8 60 

SR158 PTSD patient 40 9.1 249 

SR177 PTSD patient 40 9 125 

SR150 PTSD patient 40 9 130 

SR187 PTSD patient 40 8.9 136 

SR140 PTSD patient 40 9 137 

SR139 PTSD patient 40 9.2 151 

SR190 PTSD patient 40 8.8 72 

SR193 PTSD patient 40 8.4 155 

SR186 PTSD patient 40 8.6 92 

SR113 PTSD patient 40 9.1 72 

SR058 PTSD patient 40 9.1 100 

SR123* PTSD patient 40 9.2 266 

SR132 PTSD patient 40 9.2 179 

SR135 PTSD patient 40 9.2 182 

SR077 PTSD patient 40 9 117 

SR019 PTSD patient 40 9.1 112 

SR209 PTSD patient 40 9.2 184 

PTSD – Post-traumatic stress disorder; TE - trauma-exposed; RIN - RNA integrity number 

*Samples not sequenced due to inadequate library yield. 
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Figure 3.1: Representative Agilent Bioanalyzer result readout of an extracted RNA sample. Indicates the 

quality and concentration (ng/µl) of extracted tRNA with a RIN value ≥ 7 representing intact RNA of high 

quality adequate for RNA-sequencing analysis. 

3.3 RNA sequencing 

Of the 50 samples selected for sequencing, two samples (Patient SR123 and Control (TE) SR081) 

yielded inadequate sequencing libraries and were excluded. These samples had lower RNA 

concentrations (SR123 = 101.3 ng and SR081=169.6 ng) according to the Bioanalyzer results of the 

sequencing company, NXT-Dx (Ghent, Belgium). The remaining 48 samples were sequenced at a 

depth of 50 millions, paired end reads per sample with a read length of 50 base pairs using the Illumina 

HiSeq 4000 as sequencing platform. Whole transcriptome sequencing generated roughly 80GB of 

pooled raw RNA-Seq reads, in compressed FASTQ file format.  

Using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), the base quality of the 

data indicated Phred scores (Q) of above 30, representing the high quality of the sequenced reads 

(Figure 3.2.a). Moreover, the sequence quality score report indicated a high sequencing quality 

distributed over all sequences (Figure 3.2.b). 
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Example of forward read quality results as indicated by FASTQC: 

a.1)       b.1) 

       

 

Example of reverse read quality results as indicated by FASTQC: 

a.2)       b.2) 

       

Figure 3.2: Phred (Q) scores of forward and reverse reads as indicated by FASTQC tool. a.1 & a.2) 

Indicates the base sequence quality where the x-axis represents the base pair position in the 50 bp read. The y-

axis indicates the Phred quality score at each position with a Phred score of above 30 indicating a 1 in 1000 

chance of a base being called wrong. The quality of the sequenced reads b.1 & b.2) indicates the average 

sequencing quality scores distributed over all sequences (used to identify poor quality reads within the entire 

sequencing reaction). The x-axis consists of the mean sequencing quality (Phred score) with the y-axis 

indicating read amounts. 
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3.4 Differential expression analysis using DESEQ2 

From the differentially expressed gene list generated by DESEQ2 

(https://bioconductor.org/packages/DESeq2), using an adjusted p-value of less than 0.05, identified a 

total of 556 significantly DEGs were identified in 48 samples. A Bland–Altman plot (MA plot) was 

generated by DESEQ2 indicating the log2 fold change of a given variable over the mean of 

normalized counts. By transforming the normalized counts data onto M (ratio) and A (mean average) 

scale, the MA plot provides a visual representation of the genomic data and therefore allows for a 

global view of all 556 DEGs between the case-control groups (Figure 3.3). 

 

Figure 3.3: MA plot generated by DESEQ2. The MA plot indicates differential expression between 19 PTSD 

patients and 29 trauma-exposed controls. The x-axis represents the mean expression (normalised gene counts) 

with the y-axis representing the log2 fold change (normalised gene counts). Red coloured points represents 

gene sets differentially expressed at an adjusted p-value of less than 0.05. The upregulated gene sets was 

filtered at a log fold change of ≥ 0.25 and the downregulated genes set was filtered at a log fold change of ≤ -

0.25, indicating highly DEGs. 

 

Using the adjusted p-value of 0.05 and fold change of ≥ 0.25, 66 upregulated genes were identified. 

Similarly, an adjusted p-value of 0.05 with fold change of ≤ -0.25, resulted in the identification of 

276 downregulated genes. Ideally, a fold change of less than -1 or higher than 1 would be selected as 

additional filtering requirement, however a lower fold change was selected due to the lack of 

differentiation within the given samples at this value.  
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3.5 Using BioOntological Relationship Graph Database to identify gene-disease links 

To further prioritize our set of 556 DEGs (66 up and 276 downregulated), anxiety-specific BORG 

database was used. Providing official gene symbols for each gene in the differentially expressed sets, 

the BORG database allowed for the identification of direct or transitive links between a gene and its 

function, phenotype and/or pathways that are also important features associated with the disease of 

interest.  

Using Anxiety-specific BORG, potential links between the differentially expressed genes in PTSD 

compared to trauma-exposed controls, indicated that 196/556 DEGs (35% of the genes), link to 

anxiety, and by extension, to PTSD. Example of terms selected to transitively link a differentially 

expressed gene to its known functions, phenotypes and/or pathways included; “behavioral fear 

response” (GO), “fear-induced aggressive behavior” (GO), “abnormal fear/anxiety-related behavior” 

(HPO and MPO), “dopamine receptor binding” (GO), and “cortisol signaling pathway” (PW) among 

others, facilitating the discovery of biologically plausible genes, which might have been otherwise 

missed. 

Of the 66 upregulated genes, 21 genes were associated to anxiety disorder. Of the 276 downregulated 

genes, 175 genes were associated to anxiety disorder using the BORG semantic database. 

3.5.1 Upregulated genes associated with anxiety disorder using BORG semantic 

database 

Of the 66 overexpressed genes, 21 genes were transitively associated with anxiety disorder based on 

their known functions, phenotypes or their role in a pathways important in anxiety and by extension 

in PTSD, further prioritizing our candidate gene list. GO terms such as “positive regulation of 

cytokine production” (GO:0001819), “learning and memory” (GO:0007611) and “calcium-mediated 

signalling” (GO:0019722) were functions associated with several genes and thus transitively linking 

the gene to the disease. Furthermore, “behavioural abnormality” (HP:0000708) and “stereotypic 

behavior” (HP:0000733) were the HPO terms associated with several of our potential candidate 

genes, linking them to PTSD. Additionally, “increased anxiety-related response” (MP:0001363), 

“abnormal cued conditioning behavior” (MP:0001454) and “decreased anxiety-related response” 

(MP:0001364) were phenotypes observed based on knock-out models (MPO) associated with some 

of the genes of interest and “neurotrophic factor signaling pathway” (PW:0000571), “long-term 

depression” (PW:0000061), “altered Reelin signaling pathway” (PW:0000390) and “glutamate 

signaling pathway” (PW:0000844) were associated pathways based on PW, transitively linked 

several genes to anxiety disorder.  
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3.5.2 Downregulated genes associated with anxiety disorder using BORG semantic 

database 

In the 175 downregulated genes, several GO terms, phenotypes observed in in both humans and 

knock-out models and pathways, were associated with each gene transitively linking them to the 

disease. “Positive regulation of cytokine production” (GO:0001819), “learning and memory” 

(GO:0007611) and “calcium-mediated signaling” (GO:0019722) were functions associated with 

some of the genes of interest linking them to anxiety disorder. Most frequent human phenotypes 

associated with several genes include “stereotypic behavior” (HP:0000733), “behavioral 

abnormality” (HP:0000708) and “anxiety” (HP:0000739). Whilst terms such as “increased 

thigmotaxis” (MP:0002797), “abnormal contextual conditioning behavior” (MP:0001469) and 

“increased anxiety related response” (MP:0001363) were the most common MPO terms associated 

with  several genes in our set.  Pathways such as “neurotrophic factor signaling pathway” 

(PW:0000571), “long-term depression” (PW:0000061) and “cortisol signaling pathway” 

(PW:0000569) were associated with some of the downregulated genes. Using the semantic model of 

the disease we were able to further prioritize the list of downregulated genes to those having key 

features of the disease based on known functions, phenotypes and associated pathways. 

3.6 Gene set enrichment analysis through Enrichr 

A total of 556 DEGs, consisting of up and down regulated gene sets, were submitted to Enrichr 

(http://amp.pharm.mssm.edu/Enrichr) using a crisp dataset containing official Human Genome 

Organisation (HUGO) Gene Nomenclature Committee (HGNC) gene symbols for humans. Gene set 

enrichment analysis produces a set of gene functions and pathways statistically overrepresented in a 

given set of genes, while our ontology driven candidate gene prioritization approach provides known 

functions, pathways and phenotypes, which are also hallmark of the disease, associated with each 

gene.  For this reason and to reduce bias, differentially expressed set of genes identified prior to our 

BORG prioritization was used to carry out this analysis and to identify collective gene functions and 

pathways associated with a set of DEG rather than a direct or transitive link of gene-to-disease.   

The combined score approach (computed by multiplying the log p-value from the Fisher exact test to 

the z-score of expected rank deviation) was selected to investigate GO terms, pathways 

(KEGG/WikiPath) and diseases that were enriched within the gene set. We report only on the top five 

functions, pathways and diseases due to more relevant terms being ranked higher based on the highest 

combined scores (Table 3.3).  
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Biological processes enriched for the set of DEGs involved “protein localization to organelle” 

(GO:0033365), “establishment of protein localization to organelle” (GO:0072594), “gene 

expression” (GO:0010467), “single-organism cellular localization” (GO:1902580) and “viral 

transcription” (GO:0019083).  

The highest ranked biological process GO term, “protein localization to organelle” (GO:0033365), 

consisted of 70 significantly enriched gene sets of which, 38 were upregulated (Table 3.3 upregulated 

gene set HGNC symbols indicated in red) and 32 downregulated (Table 3.3 downregulated gene set 

HGNC symbols indicated in black) at a combined score of 126.88 indicating the level of significance 

of the GO term.  This was followed by the GO term “establishment of protein localization to 

organelle” (GO:0072594), leading to the enrichment of 61 of the 556 gene set of which, 37 were 

upregulated and 24 downregulated with a combined score of 122.89. The remaining GO terms “gene 

expression” (GO:0010467), “single-organism cellular localization” (GO:1902580) and “viral 

transcription” (GO:0019083) consisted of 85 (40 up and 45 downregulated), 73 (37 up and 36 

downregulated) and 36 (all upregulated) overlapping gene sets for each respective GO term.
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Table 3.3: Top five significantly enriched biological process gene ontology (GO) terms based on a gene set of 556 DEGs. Gene names in red indicate 

upregulated genes within the gene set whilst black gene names indicate downregulated gene sets between PTSD patients and trauma-exposed controls. The number of 

significantly enriched gene sets are also indicated followed by the number of up and downregulated gene sets in brackets. 

Name p-value Adjusted 

p-value 

Z-score Combined 

score 

Number of genes  

(upregulated: 

downregulated) 

Genes 

Protein localization 

to organelle 

(GO:0033365) 

2.22E-27 4.81E-24 -2.36 126.88 70 (38:32) 

RB1, RPL5, RPL30, RPL32, RPL31, LRRK2, RPL34, 

RPLP0, SRPR, ADAR, RPL9, RPL6, SYNE2, PPP3CA, 

RPS14, RPL35, RPL37, RPS11, KPNA3, RPL39, RPS13, 

RAB8B, RPS12, PDIA3, HSP90AA1, RPS7, RPL21, RPS8, 

RPS5, F2R, RPS6, RPL13A, RPS3A, PLRG1, YWHAZ, 

ACAP2, TXNIP, RPL24, RPL27, PHIP, RPL26, MAPRE1, 

KPNB1, ARF6, RPN2, RPL11, PIK3R1, FYB, RPS15A, 

TNKS2, SRP72, TPR, RPS3, RPL15, HSPA9, RANBP2, 

FIS1, NUP155, HSPA4, STAT3, RPL35A, DNAJA1, RPS29, 

RPL27A, RPS20, CALR, FAU, LAMTOR4, RPS21, RPS24 

Establishment of 

protein localization 

to organelle 

(GO:0072594) 

2.89E-27 4.81E-24 -2.29 122.89 61(37:24) 

RPL5, RPL30, RPL32, RPL31, RPL34, SRPR, RPLP0, 

ADAR, RPL9, RPL6, PPP3CA, RPS14, LAMP1, RPL35, 

RPL37, RPS11, KPNA3, RPL39, RPS13, RPS12, RAB8B, 

PDIA3, HSP90AA1, RPS7, RPL21, RPS8, RPS5, F2R, RPS6, 

RPL13A, RPS3A, YWHAZ, RPL24, TXNIP, RPL27, PHIP, 

RPL26, KPNB1, RPN2, RPL11, PIK3R1, FYB, RPS15A, 

SRP72, TPR, RPS3, RPL15, HSPA9, RANBP2, FIS1, 

NUP155, HSPA4, STAT3, RPL35A, RPS29, RPL27A, 

RAB3GAP2, RPS20, FAU, RPS21, RPS24 

Gene expression 

(GO:0010467) 
3.80E-24 1.26E-21 -2.32 111.51 85 (40:45) 

RPL5, RPL30, CCNT1, RPL32, YWHAB, RPL31, RPL34, 

RPLP0, SRPR, HNRNPU, ADAR, HNRNPR, EPRS, RPL9, 

RPL6, NARS, EFTUD2, EEF1B2, RPS14, SNRPD2, RPL35, 

PSMD1, RPL37, TNPO1, RPS11, RPL39, RPS13, RPS12, 

UPF2, SUPT16H, WARS, PARP1, RPS7, RPL21, RPS8, 

RPS5, RPS6, RPL13A, RPS3A, SMC1A, YWHAZ, CDC40, 

EEF1A1, MED23, XRN1, RPL24, RPL27, RPL26, SF3B5, 

GTF2A1, SF3B2, SET, SF3B3, RPN2, DHX9, RPL11, 

RPS15A, SRP72, POLR2B, CSTF1, RPS3, IARS2, RPL15, 
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SF3B1, SF3A3, RNGTT, USP9X, CPSF2, RPL35A, SSRP1, 

SNW1, HNRNPK, CNOT1, RPS29, CNOT2, RPL27A, 

HNRNPF, HNRNPA2B1, RPS20, FAU, RPS21, EIF3A, 

TRIM33, RPS24, EIF4G1 

Single-organism 

cellular localization 

(GO:1902580) 

3.27E-24 1.21E-21 -2.31 111.09 73 (37:36) 

RPL5, RPL30, RPL32, RPL31, RPL34, LRRK2, SRPR, 

RPLP0, ADAR, RPL9, PIK3CG, RPL6, SYNE2, PPP3CA, 

RPS14, KIF5B, RPL35, ITGB7, RPL37, RPS11, KPNA3, 

RPL39, RPS13, RAB8B, RPS12, MEF2A, ACTR3, PDIA3, 

ACTR2, MEF2C, HSP90AA1, ITGA4, RPL21, ANXA2, 

RPS7, RPS8, RPS5, RPS6, F2R, RPL13A, RPS3A, YWHAZ, 

RPL24, TXNIP, RPL27, PHIP, RPL26, KPNB1, RPN2, 

DCTN1, RPL11, PIK3R1, FYB, RPS15A, SRP72, TPR, 

RPS3, RPL15, HSPA9, RANBP2, FIS1, ICMT, NUP155, 

HSPA4, DENND4C, STAT3, RPL35A, RPS29, RPL27A, 

RPS20, FAU, RPS21, RPS24 

Viral transcription 

(GO:0019083) 
4.51E-25 4.71E-22 -2.1 103.19 36 (36:0) 

RPL5, RPL30, RPL32, RPL31, RPL34, RPLP0, RPL11, 

RPL9, RPL6, RPS14, RPS15A, RPS3, RPL35, RPL15, 

RPL37, RPS11, RPL39, RPS13, RPS12, RPS7, RPL21, 

RPS8, RPS5, RPS6, RPL35A, RPL13A, RPS3A, RPS29, 

RPL27A, RPL24, RPS20, RPL27, RPL26, FAU, RPS21, 

RPS24 

 

 

The top five molecular functions enriched for the set of 556 DEGs were based on the highest combined scores which ranks these functions according to 

significance. At a combined score of 74.87, 36 genes, all upregulated, were significantly enriched for the GO term; “structural constituent of ribosome” 

(GO:0003735). The remaining GO terms; “Transcription factor binding” (GO:0008134), “DNA-dependent ATPase activity” (GO:0008094), “ATP 

binding” - (GO:0005524) and “DNA helicase activity” (GO:0003678), showed similar combined scores ranging from 20.39-27.08, with the majority of 

genes downregulated (Table 3.4). 
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Table 3.4: Top five significantly enriched molecular function gene ontology (GO) terms using a gene set of 556 DEGs. Gene names in red indicate 

upregulated genes within the gene set whilst black gene names indicate downregulated gene sets between PTSD patients and trauma-exposed controls. 

The number of significantly enriched gene sets are also indicated followed by the number of up and downregulated gene sets in brackets. 

Name p-value Adjusted p-

value 

Z-score Combined 

score 

Number of genes 

(upregulated : 

downregulated) 

Genes 

Structural 

constituent of 

ribosome 
(GO:0003735) 

2.93E-17 1.90E-14 -2.37 74.87 36 (36:0) 

RPL5, RPL30, RPL32, RPL31, RPL34, RPL11, RPLP0, RPL9, 

RPL6, RPS14, RPS15A, RPS3, RPL35, RPL15, RPL37, 

RPS11, RPL39, RPS13, RPS12, RPS7, RPL21, RPS8, RPS5, 

RPS6, RPL35A, RPL13A, RPS3A, RPS29, RPL27A, RPL24, 

RPS20, RPL27, RPL26, FAU, RPS21, RPS24 

Transcription factor 

binding 

(GO:0008134) 

3.83E-08 0.00001239 -2.4 27.08 42 (3:39) 

RB1, GTF2A1, DDX3X, DHX9, CHD4, AHR, STK4, ETS1, 

HIF1A, ACTB, MTDH, CAND1, IFI16, GNPTAB, SIN3A, 

RPS3, NBN, MTA2, MEF2A, MEF2C, USP7, PARP1, 

NCOA3, STAT3, ARNT, COMMD6, YWHAZ, SIRT1, NFKB1, 

REST, SNW1, CNOT1, IRF4, THRAP3, CNOT2, KAT6A, 

HNRNPF, BHLHE40, CTNNB1, TCF4, TP53, TPT1 

DNA-dependent 

ATPase activity 
(GO:0008094)  

4.87E-07 0.0000827 -2.37 22.25 15 (0:15) 

TOP2B, XRCC6, DDX3X, RFC1, DHX9, XRCC5, CHD8, 

ATRX, RECQL, CHD4, SMARCA2, CHD1, RBBP4, G3BP1, 

NBN 

ATP binding  
(GO:0005524) 

5.11E-07 0.0000827 -2.36 22.2 88 (1:88) 

TOP2B, HSP90AB1, DDX3X, DDX46, LRRK2, CHD8, RTCB, 

HNRNPU, CHD4, DDX60L, SMC6, EPRS, SMC3, CHD1, 

PIK3CG, ACTB, NARS, RPS6KA3, SLK, KIF5B, NMRK1, 

JAK1, ACTR3, ACTR2, DDX18, HSP90AA1, WARS, RFC1, 

CSNK2A1, SWAP70, ATRX, RECQL, ACSL5, ATP11C, 

ACSL4, ATP11B, ACSL3, BAZ1B, SMC1A, PKM, THRAP3, 

TCP1, MCM3, GART, TP53, ATP6V1A, VCP, PRKAA1, PXK, 

DHX8, ROCK1, DHX9, UBA6, VPS4B, PIK3R4, NOLC1, 

DDX21, STK4, UBE2J1, HSP90B1, HSPD1, HSPH1, BMS1, 

G3BP1, PGK1, STK38L, IARS2, CCT5, HSPA9, CDK17, 

XRCC6, MAP3K1, HSPA5, HSPA4, XRCC5, EIF2AK3, 

ATP2B4, EIF2AK4, ATP2B1, HIPK1, SMARCA2, CCT6A, 

DNAJA1, GLUD1, TAOK3, ETNK1, DNAJA2, UBA1 

DNA helicase activity 

(GO:0003678) 
8.67E-07 0.0001121 -2.24 20.39 12 (0:12) 

XRCC6, DDX3X, XRCC5, DHX9, CHD8, ATRX, G3BP1, 

RECQL, MCM3, CHD4, NBN, CHD1 
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The “Ribosome” (hsa03010) pathway, enriched for 36 upregulated gene sets, was identified as the top Enriched Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway based on Enrichr (http://amp.pharm.mssm.edu/Enrichr). These genes correspond to biological process (Table 3.3) and 

molecular function (Table 3.4) GO terms; “viral transcription” (GO:0019083) and “structural constituent of ribosome” (GO:0003735) respectively. Other 

significantly enriched pathways included the “Spliceosome” pathway (hsa03040), enriched for 24 genes 20 of which were downregulated, “Protein 

processing in endoplasmic reticulum” (hsa04141), with 26 genes enriched, “viral carcinogenesis” (hsa05203), with 19 genes enriched and the ‘HIF-1 

signaling pathway’ (hsa04066) with 12 genes significantly enriched in the pathway. (Table 3.5) 

Table 3.5: Top five enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of based on a gene set of 556 DEGs. Gene names in 

red indicate upregulated genes within the gene set whilst black gene names indicate downregulated gene sets between PTSD patients and trauma-exposed 

controls. The number of significantly enriched gene sets are also indicated followed by the number of up and downregulated gene sets in brackets. 

Name p-value Adjusted p-
value 

Z-
score 

Combine
d score 

Number of genes 
(upregulated : 
downregulated) 

Genes 

Ribosome 
(hsa03010) 

9.61E-
17 

2.30E-14 -1.75 54.84 36 (36:0) 

RPL5, RPL30, RPL32, RPL31, RPL34, RPL11, RPLP0, RPL9, RPL6, 
RPS14, RPS15A, RPS3, RPL35, RPL15, RPL37, RPS11, RPL39, 
RPS13, RPS12, RPL21, RPS7, RPS8, RPS5, RPS6, RPL13A, RPL35A, 
RPS3A, RPS29, RPL27A, RPL24, RPL27, RPS20, FAU, RPL26, 
RPS21, RPS24 

Spliceosome 
(hsa03040) 

1.38E-
08 

0.00000165
4 

-1.77 23.59 24 (2:22) 

SF3A3, SF3B5, SF3B2, AQR, PRPF38B, RBM25, SF3B3, DHX8, 
DDX46, HNRNPU, CDC5L, PRPF40A, PLRG1, WBP11, CRNKL1, 
CDC40, U2SURP, EFTUD2, HNRNPK, RBMXL1, SNW1, SNRPD2, 
SF3B1, RBM22 

Protein processing 
in endoplasmic 
reticulum 
(hsa04141) 

5.39E-
08 

0.00000429
3 

-1.77 21.83 26 (2:24) 

VCP, HSP90AB1, RPN2, SEL1L, CUL1, HSP90B1, UBE2J1, LMAN1, 
HSPH1, SEC23B, SEC31A, PDIA3, EDEM3, HSP90AA1, HSPA5, 
EIF2AK3, EIF2AK4, RBX1, PDIA4, DNAJA1, DNAJA2, CANX, 
STT3A, CALR, SEC24D, ATF4 

Viral 
carcinogenesis 
(hsa05203) 

0.00159 0.08807 -1.91 4.63 19 (1:18) 
RB1, GTF2A1, USP7, DDX3X, YWHAB, STAT3, CHD4, PIK3R1, 
YWHAZ, NFKB1, PIK3CG, DDB1, HNRNPK, SNW1, PKM, TP53, 
YWHAG, ATF4, JAK1 

HIF-1 signaling 
pathway 
(hsa04066) 

0.00212 0.08807 -1.74 4.22 12 (2:10) 
LDHA, RPS6, STAT3, PGK1, CYBB, ARNT, PIK3R1, ENO1, HIF1A, 
NFKB1, PIK3CG, RBX1 
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Of the 556 DEG set, 37 genes, 36 up and 1 downregulated gene were enriched for the “Cytoplasmic Ribosomal Proteins” (WP477) WikiPathway. Other 

pathways with enriched gene sets included genes involved in “mRNA Processing” (WP411), “Apoptosis-related network due to altered Notch3 in ovarian 

cancer” (WP2864), “EGF/EGFR Signaling Pathway” (WP437) and “BDNF signaling pathway” (WP2380) with the majority of genes in the pathways 

downregulated (Table 3.6). 

 

Table 3.6: Top five enriched WikiPathways of the based on a gene set of 556 DEGs. Gene names in red indicate upregulated genes within the gene 

set whilst black gene names indicate downregulated gene sets between PTSD patients and trauma-exposed controls. The number of significantly enriched 

gene sets are also indicated followed by the number of up and downregulated gene sets in brackets. 

Name p-value Adjusted 

p-value 

Z-

score 

Combined 

score 

Number of 

genes 

(upregulated : 

downregulated) 

Genes 

Cytoplasmic ribosomal 

proteins (WP477) 
3.91E-20 6.02E-18 -1.98 78.6 37 (36:1) 

RPL5, RPL30, RPL32, RPL31, RPL34, RPL11, RPLP0, RPL9, 

RPL6, RPS6KA3, RPS14, RPS15A, RPS3, RPL35, RPL15, 

RPL37, RPS11, RPL39, RPS13, RPS12, RPL21, RPS7, RPS8, 

RPS5, RPS6, RPL13A, RPL35A, RPS3A, RPS29, RPL27A, 

RPL24, RPL27, RPS20, FAU, RPL26, RPS21, RPS24 

mRNA processing 

(WP411) 
6.26E-06 0.0004816 -1.89 14.42 21 (2:16) 

SF3A3, SF3B5, SF3B2, SF3B3, RNGTT, DHX8, DHX9, 

NONO, CPSF2, HNRNPU, HNRNPR, PRPF40A, SMC1A, 

CDC40, EFTUD2, HNRNPK, SNRPD2, XRN2, HNRNPA2B1, 

CSTF1, SF3B1 

Apoptosis-related network 

due to altered Notch3 in 

ovarian cancer (WP2864) 

0.002532 0.1114 -1.83 4.01 18 (2:16) 

VAV3, MAP3K1, YWHAB, STAT3, PIK3R1, PIK3CG, 

EEF1A1, RPS6KA3, PLSCR1, ITCH, SNRPD2, PRKAR1A, 

SIN3A, ABI1, RBBP7, MTA2, EPS15, JAK1 

EGF/EGFR signaling 

pathway (WP437) 
0.005436 0.186 -1.87 3.15 17 (0:17) 

VAV3, MEF2A, USP8, MEF2C, MAP3K1, ROCK1, NCOA3, 

STAT3, PIK3R1, IQGAP1, RPS6KA3, PLSCR1, ITCH, ABI1, 

EPS15, ARF6, JAK1 

BDNF signaling pathway 

(WP2380) 
0.008864 0.2306 -1.95 2.86 15 (1:14) 

VAV3, MEF2A, PRKAA1, MEF2C, MAP3K1, CSNK2A1, 

KIDINS220, RPS6, STAT3, PIK3R1, NFKB1, RPS6KA3, 

MARCKS, DPYSL2, CTNNB1 
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Of the top five OMIM diseases, only two gene sets (“Anemia” consisting of five upregulated gene set and “Mental retardation” consisting of six 

downregulated gene set), were significantly enriched for based on a p-value of less than 0.05. None of these OMIM diseases were identified as significant 

according to the adjusted p-value (Table 3.7). 

 

Table 3.7: Top five enriched Online Mendelian Inheritance in Man (OMIM) diseases based on a gene set of 556 DEGs. Gene names in red indicate 

upregulated genes within the gene set whilst black gene names indicate downregulated gene sets between PTSD patients and trauma-exposed controls. 

The number of significantly enriched gene sets are also indicated followed by the number of up and downregulated gene sets in brackets. 

Name p-value Adjusted p-value Z-score Combined 

score 

Number of 

genes(upregulated : 

downregulated) 

Genes 

Anemia 0.01007* 0.272 -1.73 2.26 5 (5: 0) RPL5, RPS7, RPL11, RPL35A, RPS24 

Mental retardation 
0.03301* 0.3824 -1.76 1.69 6 (0: 6) 

RPS6KA3, SLC9A6, ATP6AP2, ATRX, ACSL4, 

ARHGEF6 

Thyroid carcinoma 0.05668 0.3824 -0.82 0.78 2 (0: 2) PRKAR1A, TRIM33 

Parkinson disease 0.08583 0.3824 -0.61 0.59 2 (0: 2) LRRK2, GIGYF2 

Immunodeficiency 0.1254 0.3824 -0.57 0.54 2 (0: 2) PTPRC, IL2RG 
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3.7 Identifying gene set co-expression using COXPRESdb  

The 196 biologically-relevant gene sets identified by the anxiety BORG were submitted for co-

expression analysis to identify genes that are functionally related or members of the same pathway. 

This allowed for the identification of dysregulated molecular pathways possibly involved in the 

formation or maintenance of PTSD.  

The 196 official HGNC gene symbols were converted, using the ID converter system 

(http://biodb.jp/idc.cgi), to their respective Entrez Gene IDs before being submitted to the database 

COXPRESdb (http://coxpresdb.jp), as the required input format. The EdgeAnnotation function of 

COXPRESdb was selected to extract co-expression data for all 196 differentially expressed query 

genes. The “all possible pairs in the query genes” option was selected for our query gene set, in the 

EdgeAnnotation function, which returned a set of co-expressed genes. The co-expression data 

reported on conserved co-expression, correlation, as well as the mutual rank (MR) value between two 

query genes (the MR is a geometric, averaged correlation rank calculated between the two directional 

ranks (see Chapter 2 Section 2.10)). A stringent cut-off (MR < 5) was selected, leaving 45 co-

expression pairs (from a list of over 2000 gene pairs) that were highly similar in terms of co-

expression and would therefore most likely be functionally related or members of the same pathway 

(Table 3.8). Correlation of the expression pattern between two example genes (HSPH1 and 

HSP90AA1) are illustrated in Figure 3.4. The co-expression data was subsequently ordered by gene 

name in Excel, identifying a total of 64 genes (MR < 5), which were highly co-expressed with four 

upregulated and 60 downregulated genes.  
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Table 3.8: COXPRESdb, EdgeAnnotation results of the co-expression (MR < 5) between 196 

biologically relevant genes (up- and downregulated) identified through BORG analysis. 

Gene1 Entrez 

Gene ID 

Gene2 Entrez 

Gene ID 

Mutual 

Rank 

Correlation Conserved 

co-expression 

HSPH1 10808 HSP90AA1 3320 1 0.59 Yes 

HSPA5 3309 HSP90B1 7184 1 0.63 Yes 

GBP1 2633 GBP2 2634 1 0.64  

DDX3X 1654 G3BP2 9908 1 0.68  

SMC3 9126 BCLAF1 9774 1 0.65 Yes 

HNRNPK 3190 HNRNPU 3192 1.4 0.62  

ENO1 2023 PGK1 5230 1.4 0.71 Yes 

ACTR2 10097 DDX3X 1654 1.4 0.67  

COPA 1314 DHX9 1660 1.4 0.67  

STIP1 10963 HSPA4 3308 1.4 0.66 Yes 

LDHA 3939 PGK1 5230 1.7 0.63 Yes 

STIP1 10963 HSP90AB1 3326 2 0.71 Yes 

STAG2 10735 ZNF148 7707 2 0.54  

RPL6 6128 RPS6 6194 2 0.71  

NCL 4691 NOLC1 9221 2.2 0.58  

CHD4 1108 THRAP3 9967 2.5 0.6  

DCTN1 1639 TLN1 7094 2.5 0.55  

POLR2B 5431 UBA6 55236 2.5 0.53  

STAG2 10735 XIAP 331 2.5 0.5  

DDX21 9188 NOLC1 9221 2.8 0.6  

MEF2C 4208 TCF4 6925 2.8 0.37 Yes 

DHX9 1660 EPRS 2058 2.8 0.63  

PDIA3 2923 HSPA5 3309 3 0.55  

DHX9 1660 BCLAF1 9774 3.2 0.65 Yes 

EPRS 2058 VPS35 55737 3.2 0.59  

CLTC 1213 COPB2 9276 3.2 0.46 Yes 

ANXA2 302 ANXA5 308 3.7 0.42 Yes 

ZBTB33 10009 STAG2 10735 3.7 0.45  

KLRD1 3824 PRF1 5551 3.7 0.64 Yes 

TPR 7175 SMC3 9126 4 0.63  

EIF4G1 1981 VCP 7415 4 0.52  

HSPA4 3308 HSPA9 3313 4.1 0.6 Yes 

ANXA2 302 CAST 831 4.1 0.42  

EIF4G1 1981 IQGAP1 8826 4.2 0.57  

ACTR2 10097 G3BP2 9908 4.2 0.63  

ATRX 546 SMC3 9126 4.2 0.64  

EZR 7430 BCLAF1 9774 4.5 0.55  

HSPH1 10808 DNAJA1 3301 4.6 0.48 Yes 

STIP1 10963 ENO1 2023 4.6 0.66  

DHX9 1660 VPS35 55737 4.8 0.59  

ETS1 2113 MSN 4478 4.9 0.38  

COPB1 1315 CTR9 9646 4.9 0.49  

DNAJA1 3301 HSP90AA1 3320 4.9 0.49 Yes 

EEF1B2 1933 RPS3A 6189 4.9 0.72  

SF3B2 10992 SSRP1 6749 4.9 0.55  
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Figure 3.4: Example of gene co-expression correlation generated by COXPRESdb. Both x and y axes 

indicate relative gene expression values in base-2 logarithm against the averaged expression levels of each 

gene. The HSPH1 relative gene expression on the x-axis is compared to HSP90AA1 relative gene expression 

on the y-axis. Correlation of the expression pattern between these two genes indicate similar co-expression 

patterns suggesting genes are functionally related or likely members of the same pathway. 

 

The 64 co-expressed genes, identified by the EdgeAnnotation function, were submitted to the 

NetworkDrawer function of COXPRESdb in order to draw a co-expressed gene network. Using the 

Entrez Gene IDs, all 64 genes were submitted, and the Graphviz display type option was selected. 

Ten co-expression networks were identified, one up- and nine downregulated. Figure 3.5 illustrates 

these co-expression networks based on the strength of co-expression between two genes through MR 

values. The strongest co-expressions are indicated by bold edges (MR < 5), followed by normal edges 

(MR < 30), whilst the weaker connections are illustrated by thin edges (MR ≥ 30). The light-grey 

nodes in Figure 3.5 show the 64 query input genes, with the dark-grey nodes indicating additional co-

expressed genes added by the NetworkDrawer. Orange edges indicate conserved co-expression 

between species based on NCBI HomoloGene and COXPRESdb data with red dotted edges 

representing protein-protein interactions based on the Human Protein Reference Database.  
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The network indicated KEGG pathways (obtained from KEGG database) through coloured dots in 

both query and additional nodes showing that seven genes (HSP90AA1, HSP90AB1, XIAP, TPR, 

CTNNA1, ETS1 and HSP90B1) are involved in pathways identified in cancer (hsa05200) with another 

seven genes (HSP90AA1, HSP90AB1, HSPA8, HSPA4, HSPA5, PDIA3 and KLRD1) implicated in 

antigen processing and presentation pathways (hsa04612). Other KEGG pathways of the co-

expression network included ribosome (hsa03010), four genes (RPS6, RPL6, RPL5 and RPS3A), 

glycolysis / gluconeogenesis (hsa00010), four genes (ENO1, PGK1 LDHA and PGAM1) and 

spliceosome (hsa03040), four genes (SF3B2, HNRNPU, HNRNPK and HSPA8) (Table 3.9). 

 

3.7.1 Co-expressed upregulated gene sets at an MR value lower than five as identified by 

COXPRESdb 

From the co-expression networks constructed by the NetworkDrawer tool of COXPRESdb, all four 

upregulated input query genes; RPS6, RPL6, EEF1B2 and RSP3A (represented by light-grey nodes 

in Figure 3.5) co-expressed together along with one additional gene, RPL5 (represented by dark-grey 

nodes in Figure 3.5) added by the NetworkDrawer (Figure 3.5). The co-expressed list of upregulated 

genes was selected for further gene expression analysis in tissues, using GTEx database 

(http://gtexportal.org).   

 

3.7.2 Co-expressed downregulated gene sets at an MR value lower than five as identified 

by COXPRESdb 

The remaining 60 genes that co-expressed with each other were downregulated genes in our dataset. 

Two genes (TLN1 and DCTN1) did not show co-expression on the NetworkDrawer, leaving 58 genes 

from which co-expressions networks were drawn. A total of ten genes co-expressed only with one 

other gene (5 co-expression pathways), 12 genes co-expressed with only two or three other genes (3 

co-expression pathways) and 36 genes co-expressed as part of a larger network. The network of 36 

genes was selected for tissue specific gene expression analysis using GTEx (http://gtexportal.org) as 

such a network would most likely have a biological effect when dysregulated.  
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Figure 3.5: Co-expression network generated by the NetworkDrawer tool in COXPRESdb illustrates the 

co-expression of genes in terms of mutual rank (MR) values with the strength of co-expression shown as bold 

edges (MR < 5), normal (MR < 30) and weak (MR ≥ 30).  Orange edges indicate conserved co-expression 

(based on NCBI HomoloGene and COXPRESdb) with red dotted edges indicating protein-protein interactions 

(based on the Human Protein Reference Database). Light grey nodes show query genes whilst dark grey nodes 

indicate additional genes connected to the network and added by the NetworkDrawer. Coloured dots in nodes 

indicate KEGG pathways (See Table 3.9 below). 
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Table 3.9: KEGG pathways linked to NetworkDrawer co-expression map in Figure 3.5 indicates 

the top KEGG pathways linked to several genes in the co-expression network generated through 

COXPRESdb. 

KEGG ID Term Number 

of genes 

KEGG 

map link 

hsa05200 Pathways in cancer 7  
hsa04612 Antigen processing and presentation 7  
hsa03010 Ribosome 4  
hsa00010 Glycolysis / Gluconeogenesis 4  
hsa03040 Spliceosome 4  

 

A subset of the most powerful candidate genes were selected for further investigation based on 

anxiety BORG and COXPRESdb co-expression analysis.  

 

3.8 Tissue expression identification using the GTEx portal 

To identify whether the co-expressed genes were also expressed in different brain tissues, the 

Genotype-Tissue Expression (GTEx) (http://gtexportal.org) portal was used. The database provides 

insight on healthy human gene expression patterns by reporting on Reads Per Kilobase of transcript 

per Million mapped reads (RPKM) expression values for several tissues.  

The official HGNC gene symbols of the co-expression network of four upregulated and the large 

downregulated gene network of 36 genes, were individually searched for in the GTEx portal. The 

gene expression data for each gene was filtered by tissue, selecting 14 of the 53 tissues available in 

the database. Selected genes included all 13 brain tissues; amygdala, anterior cingulate cortex, 

caudate, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, 

nucleus accumbens, putamen, spinal cord and substantia nigra as well as whole blood (which was 

selected to estimate the differences between expression levels for each gene).  

The median RPKM values of the 14 tissues were reported for the four upregulated (Table 3.10) and 

36 downregulated (Table 3.11) gene sets. Tissue expression of an additional downregulated gene, 

Myeloid Cell Leukemia 1 (MCL1), (gene not part of the input genes but an additional gene added by 

the NetworkDrawer) was also reported due to the gene being highly connected, co-expressing with 

several genes in the large downregulated network identified by COXPRESdb. 

Of the upregulated gene set, all four genes were highly expressed within the brain tissues compared 

to whole blood tissue, with Eukaryotic Translation Elongation Factor 1 beta 2 (EEF1B2) showing the 
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lowest whole blood expression levels (median RPKM of 26.715) compared to the three other 

upregulated genes. Ribosomal Protein S6 (RPS6) brain expression was reported to be the highest 

within the amygdala, spinal cord and substantia nigra with a median RPKM of 232.195, 332.132 and 

264.603 respectively (Table 3.10).  

The downregulated gene set of 36 genes and the additional gene MCL1, were all expressed within 

brain tissues with two genes, IQ Motif Containing GTPase Activating Protein 1 (IQGAP1) and 

DEAD-Box Helicase 21 (DDX21), showing low brain expression median RPKM levels compared to 

whole blood tissue expression (Table 3.11).  

The tissue expression analysis by GTEx aided in the selection of ten genes which are discussed within 

Chapter 4 as these genes were identified as potentially relevant links to anxiety disorder and by 

extension to PTSD based on multiple analyses. Selected genes included the four co-expressed, 

upregulated gene set: RPS6, RPL6, RPS3A and EEF1B2, as well as six highly connected, 

downregulated, co-expressed gene set: EIF4G1, HSPA4, DHX9, BCLAF1, THRAP3 and MCL1. 
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Table 3.10: Tissue expression identification through GTEx portal consisting of RPKM median gene expression levels of healthy individuals from 

brain and whole blood tissue. Compares gene tissue expression of four upregulated genes identified by anxiety BORG and co-expressed analysis in 

order to identify DEG sets between PTSD patients and Trauma-exposed control individuals. 

 RPKM median GTEx 

 

HGNC 

gene 

symbol 

Amygdala 

(n=72) 

Anterior 

cingulate 

cortex 

(n=84) 

Caudate 

(Basal 

ganglia) 

(n=117) 

Cerebellar 

Hemisphere 

(n=105) 

Cerebellum 

(n=125) 

Cortex 

(n=114) 

Frontal 

cortex 

(n=108) 

Hippocampus 

(n=93) 

Hypothalamus 

(n=96) 

Nucleus 

accumbens 

(basal 

ganglia) 

(n=113) 

Putamen 

(Basal 

ganglia) 

(n=97) 

Spinal cord 

(cervical c-

1) (n=71) 

Substantia 

nigra 

(n=63) 

Whole 

Blood 

(n=393) 

RPL6 96.44 75.115 74.367 106.526 95.989 69.837 72.825 76.713 90.62 91.275 71.305 98.069 93.146 53.465 

EEF1B2 87.668 64.826 72.861 70.741 66.411 61.966 64.594 79.619 88.035 98.321 73.197 111.582 108.078 26.715 

RPS6 232.195 144.485 169.872 194.419 174.948 129.375 137.308 190.053 208.618 195.219 172.404 332.132 264.603 161.553 

RPS3A 53.218 40.797 38.465 67.921 60.146 39.521 42.094 43.261 49.775 55.335 35.02 61.394 58.277 21.979 

 

Table 3.11: Tissue expression identification through GTEx portal consisting of RPKM median gene expression levels of healthy individuals from 

brain and whole blood tissue. Compares gene tissue expression 37 downregulated genes identified by anxiety BORG and co-expressed analysis in order 

to identify DEG sets between PTSD patients and Trauma-exposed control individuals. 

 RPKM median GTEx 

 

HGNC 

gene 

symbol 

Amygdala 

(n=72) 

Anterior 

cingulate 

cortex 

(n=84) 

Caudate 

(Basal 

ganglia) 

(n=117) 

Cerebellar 

Hemisphere 

(n=105) 

Cerebellum 

(n=125) 

Cortex 

(n=114) 

Frontal 

cortex 

(n=108) 

Hippocampus 

(n=93) 

Hypothalamus 

(n=96) 

Nucleus 

accumbens 

(basal 

ganglia) 

(n=113) 

Putamen 

(Basal 

ganglia) 

(n=97) 

Spinal cord 

(cervical c-

1) (n=71) 

Substantia 

nigra 

(n=63) 

Whole 

Blood 

(n=393) 

SF3B2 28.996 30.233 36.974 52.21 51.629 35.293 33.663 29.681 32.354 36.589 32.877 30.288 30.874 36.511 

SSRP1 16.417 18.301 19.485 36.86 36.888 25.22 23.044 17.723 21.355 20.527 16.647 17.083 17.023 11.127 

VCP 22.492 27.123 24.764 39.261 37.118 34.039 35.842 24.386 34.074 28.049 21.76 32.027 28.297 29.578 

EIF4G1 20.082 21.355 19.861 25.765 29.37 26.358 23.169 20.462 24.619 20.197 19.482 20.96 23.418 11.464 

IQGAP1 6.411 4.021 7.169 4.562 5.003 5.26 4.506 8.444 6.035 5.122 6.068 3.013 9.685 53.302 

CHD4 15.849 13.927 20.817 30.219 28.141 16.944 15.774 15.748 17.221 18.927 18.81 19.244 19.403 14.093 

THRAP3 13.037 13.835 14.555 28.433 24.777 14.686 15.835 13.459 15.479 15.228 11.68 13.348 12.805 19.817 

ATRX 3.83 4.594 4.111 9.412 8.405 4.441 5.31 3.906 4.605 4.43 3.359 3.579 3.445 1.604 

SMC3 6.271 5.066 6.977 17.039 14.354 5.337 5.347 6.088 6.719 7.284 6.134 8.338 6.502 3.754 

BCLAF1 8.925 9.918 10.421 24.933 21.482 10.564 12.28 9.458 12.076 11.222 8.939 10.916 9.211 6.733 
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HSP90B1 66.075 67.142 85.943 62.416 49.424 55.486 83.041 68.446 95.666 91.667 74.989 114.888 92.151 43.643 

HSPA5 31.5 34.356 45.732 40.315 31.3 28.585 40.17 32.906 54.755 48.078 37.535 53.177 37.9 65.979 

PDIA3 22.688 20.169 25.122 27.117 22.301 18.593 24.56 22.767 31.65 27.957 23.147 35.919 28.955 30.508 

TPR 5.189 4.722 5.67 11.839 11.903 5.771 5.477 5.078 5.511 6.009 5.139 5.827 5.583 6.737 

EPRS 9.294 10.457 10.815 19.389 17.152 12.45 12.85 9.45 11.817 12.2 9.457 13.272 11.027 4.697 

VPS35 7.658 9.012 9.037 11.988 9.659 10.174 15.189 7.953 12.559 9.848 7.149 8.257 8.836 11.004 

EZR 37.688 37.504 48.88 2.341 3.47 32.28 29.02 23.787 23.023 36.618 35.653 16.856 21.75 26.071 

DHX9 12.883 13.701 16.209 31.739 25.669 14.38 16.048 13.032 15.367 16.299 13.108 15.398 13.16 11.584 

COPA 20.645 24.118 25.9 44.022 38.161 29.363 33.315 23.282 28.244 26.606 20.71 32.581 26.418 27.485 

DDX3X 15.667 16.77 17.892 28.217 25.781 19.413 20.018 16.166 18.599 17.469 14.312 21.114 17.664 26.222 

ACTR2 30.416 38 32.891 41.084 28.742 32.935 53.94 30.703 32.868 34.76 28.278 37.41 31.701 58.475 

G3BP2 11.611 17.041 12.299 32.166 21.043 15.694 27.216 11.825 19.686 16.948 9.82 15.527 12.8 6.335 

POLR2B 8.149 10.124 10.526 28.063 23.228 12.727 14.037 8.934 10.915 10.151 8.685 8.943 8.627 8.728 

UBA6 2.526 2.385 2.431 5.344 5.571 2.815 2.716 2.667 3.254 2.552 2.051 4.063 2.984 1.617 

HNRNPU 29.032 26.944 31.437 58.641 49.86 27.055 30.134 28.524 32.037 34.625 27.444 33.509 29.337 24.807 

HNRNPK 68.927 68.37 71.715 114.988 93.685 65.013 78.91 69.136 82.476 77.512 62.147 85.116 70.327 101.015 

NCL 46.088 41.229 47.767 78.53 62.623 41.865 48.177 47.213 50.382 49.547 46.072 64.625 51.155 19.862 

NOLC1 13.373 14.591 14.269 30.074 23.671 17.315 19.169 12.742 15.249 14.668 12.15 13.836 12.903 3.746 

DDX21 4.101 3.596 4.188 5.058 4.615 3.673 4.078 4.17 4.829 3.988 3.599 6.568 4.97 6.181 

HSPA4 12.793 14.425 13.527 18.092 15.985 17.777 20.137 13.333 18.892 14.601 11.676 14.283 14.661 6.94 

HSPA9 39.174 48.373 47.578 47.38 43.318 52.102 58.929 39.081 52.466 45.466 40.151 42.288 47.538 10.085 

STIP1 19.699 24.364 20.88 35.008 33.32 27.94 27.395 20.658 33.277 22.758 18.658 21.743 21.758 13.47 

HSP90AB1 251.347 334.997 237.183 361.248 317.441 370.466 424.425 253.033 380.755 274.064 192.744 230.737 271.362 81.307 

DNAJA1 44.743 56.126 45.368 42.001 36.407 57.429 71.892 44.8 64.983 54.326 36.831 52.551 51.506 26.796 

HSPH1 29.042 42.323 51.26 11.762 12.411 44.567 60.519 31.269 53.736 64.658 39.278 18.057 20.762 7.814 

HSP90AA1 214.781 263.531 265.575 252.02 218.885 266.62 318.246 255.736 366.024 291.035 228.153 279.263 308.185 60.379 

MCL1 24.537 20.394 23.479 23.917 24.348 20.084 19.599 20.325 28.365 21.5 20.561 34.239 32.044 203.897 
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CHAPTER 4: DISCUSSION 

 

The current hypothesis-generating study investigated the molecular mechanisms involved in PTSD 

on a whole-genome transcriptomic level by carrying out differentially expressed gene set analysis in 

a mixed ancestry South African population group. Gene expression data were generated through 

RNA-Seq, using whole blood samples isolated from participants with PTSD patients and trauma-

exposed controls.  

Through a series of analytical steps (Chapter 2: Section 2.8, 2.9, 2.10, 2.11) our investigation pursued 

the identification of several dysregulated co-expression networks in whole blood transcriptome of 

individuals diagnosed with PTSD. These networks consisted of genes with functions and phenotypes 

associated with anxiety and stress-related disorders such as PTSD, based on a knowledge driven 

approach using BORG. Biological evidences obtained for each gene which is directly or transitively 

linked to anxiety disorder and by extension PTSD included, but were not limited to; “behavioral fear 

response” (GO:0001662), “fear-induced aggressive behavior” (GO:0002122), “behavioral 

abnormality” (HP:0000708), “anxiety” (HP:0000739), “anxiety-related response” (MP:0001363), 

“abnormal cued conditioning behavior” (MP:0001454), “neurotrophic factor signaling pathway” 

(PW:0000571), “long-term depression” (PW:0000061) and “cortisol signaling pathway” 

(PW:0000569), all of which are key features of PTSD (see Table 2.2 for full list of GO, HPO, MPO 

and PO terms).  

One such co-expression network consisted of four genes found to be significantly upregulated in 

anxiety and stress-related disorders (such as PTSD), all of which were involved in the biological 

process of “gene expression” (GO:0010467) (Table 3.3). These four upregulated genes were the 

ribosomal protein S6 gene (RPS6), the ribosomal protein L6 gene (RPL6), the ribosomal protein S3A 

gene (RPS3A) and the eukaryotic translation elongation factor 1 beta 2 gene (EEF1B2).  

Additionally, we identified a large downregulated network comprising of 36 co-expressed genes that 

may be dysregulated in anxiety and stress-related disorders, including PTSD. We proceeded to focus 

on six highly inter-connected (genes co-expressing with several genes within the large co-expression 

network (Figure 3.5)), downregulated genes as dysregulation of these genes will most likely lead to 

a cascade of dysregulation in several genes connected within the network. These six genes included 

the eukaryotic translation initiation factor 4 gamma 1 gene (EIF4G1), the heat shock protein family 

A (Hsp70) member 4 gene (HSPA4), DEAH-box helicase 9 gene (DHX9), the B-cell lymphoma-2 

associated transcription factor 1 gene (BCLAF1), thyroid hormone receptor associated protein 3 gene 
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(THRAP3) and the myeloid cell leukemia 1 gene (MCL1). In silico tissue expression analysis 

confirmed that all ten of these genes, consisting of four upregulated co-expression network genes and 

six, highly connected downregulated co-expressed genes, were all expressed within the brain.  

4.1 Upregulated gene set predicted to be involved in anxiety and stress-related disorders, 

including PTSD 

RPS6  

The ribosomal protein S6 (RPS6) gene was one of the four highly co-expressed, significantly 

upregulated genes found within our group of female PTSD patients. This ribosomal gene encodes for 

the small 40S subunit of the human 80S ribosome (Biever, Valjent & Puighermanal, 2015). Compared 

to whole blood tissue expression levels, high levels of RPS6 expression are found within the spinal 

cord and substantia nigra. The highest expression levels, based on GTEx database, were found in the 

amygdala (Table 3.10), which plays a central role in fear response, threat detection and especially in 

fear conditioning (Davis, 1992). RPS6 was also implicated in the “Hypoxia-inducible factor 1 (HIF-

1) signaling pathway (hsa04066)” (Table 3.5) and “BDNF signaling pathway” (WP2380) (Table 3.6). 

This is of interest as HIF-1 functions as a master regulator of oxygen homeostasis and is involved in 

major pathological processes such as cardiovascular disease, inflammation and cancer, which have 

been associated with the formation of reactive oxygen species (ROS) (Niecknig et al., 2012). 

Interestingly Zieker et al., (2007) identified the downregulation of both immune-related and ROS 

genes (TXR1, SOD1, IL-16, IL-18 and EDG1) in whole blood of PTSD individuals (Zieker et al., 

2007). Also of note is that the BDNF gene has been investigated as a candidate gene implicated in 

PTSD (Table 1.2). Therefore, the dysregulation in RPS6 expression interacts with multiple pathways 

previously implicated in PTSD.  

In addition, a recent longitudinal PTSD risk and resilience study, conducted to create a predictive 

biomarker, indicated that RPS6 was downregulated in peripheral blood cells amongst pre-deployed, 

male marines (who would later go on to develop PTSD) compared to trauma-exposed controls (Glatt 

et al., 2013). RPS6 was one of the 23 genes used as a gene-based diagnostic predictor of pre-deployed 

individuals who would later develop PTSD. The panel attained 85% accuracy in classifying those 

individuals in the training sample who would or would not go on to develop PTSD whilst an 

independent test cohort, of five cases and five comparison subjects, yielded a 70% accuracy. The 

current study indicates that RPS6 was significantly upregulated in females diagnosed with PTSD 

compared to trauma-exposed controls. This observation suggests an overcompensation mechanism 

where the downregulation of RPS6 may lead to an increased susceptibility for PTSD after trauma-
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exposure, and subsequent upregulation of RPS6 gene and the development of PTSD. RPS6 was not 

identified as a significantly DEG in a subsequent study comparing post-deployment male marines 

with PTSD relative to trauma-exposed controls (Tylee et al., 2015). This variability needs additional 

investigation as sample size were similar for both Tylee et al., (2015) and the present study. However, 

the present study only included females, which may account for the variability observed as it has been 

proposed that differences in rates of PTSD may be mediated, in part, by circulating estrogen levels 

(Maddox et al., 2017).  

Additionally, post-translational modification of the RPS6 gene through phosphorylation has also been 

widely investigated within the neurosciences as this gene forms part of the mammalian target of 

rapamycin complex (mTOR) signalling activation and serves as marker for neuronal activity 

(Meyuhas, 2008, 2015; Mahoney et al., 2009). The mTOR signalling pathway, consists of two 

complexes including the mammalian target of rapamycin complex 1 (mTORC1) and mammalian 

target of rapamycin complex 2 (mTORC2) (reviewed by Laplante & Sabatini, 2009). Inhibition of 

mTORC1 is known to reduce protein synthesis, affecting translation by phosphorylating p70 S6 

kinase polypeptide 1 (S6K1), which in turn, phosphorylates downstream targets such as RPS6 and 

eukaryotic translation initiation factor 4 beta (eIF4B) (Raught et al., 2004). Additionally, mTORC1-

dependent translation has been implicated in altered memory strength of auditory fear conditioning 

in mice (Huynh, Santini & Klann, 2014). The latter study demonstrated that mTORC1-dependent 

translation in the reconsolidation (memory retrieval) of fear memory required both eIF4F formation 

and S6K1 activation (Huynh, Santini & Klann, 2014).  This is of interest to the present study, as it 

has been well documented that memory processes are impaired within PTSD individuals (Elzinga & 

Bremner, 2002; Layton & Krikorian, 2002; American Psychiatric Association, 2013). Moreover, 

mTORC1 has been linked to drug-seeking behaviour and inhibitory avoidance (Jobim et al., 2012; 

Lin et al., 2014) which is of interest as high co-morbidity exists between PTSD and illicit drug use 

(McCauley et al., 2012). Therefore, it could be postulated that the inhibition of mTORC1 (which 

could in part lead to the impairment of memory processes in PTSD individuals) affects the translation 

of S6K1 which in turn lead to the upregulation of RPS6 as seen in our PTSD subjects. 

RPL6  

Interestingly, the longitudinal PTSD risk and resilience study (Glatt et al., 2013) in which RPS6 was 

found to be downregulated in peripheral blood cells indicated that ribosomal protein L6 gene (RPL6) 

was also downregulated among pre-deployed, male marines (who had later developed PTSD post-

deployment) compared to male trauma-exposed controls without PTSD (Glatt et al., 2013). RPL6 

(encoding a protein component for the large 60S ribosomal subunit) was one of the 23 genes used in 
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the gene-based diagnostic predictor panel of pre-deployed individuals who would later develop 

PTSD. The RPL6 gene, as with RPS6, was not identified in a subsequent study comparing post-

deployment male marines with PTSD relative to trauma-exposed controls (Tylee et al., 2015). This 

contrasts with our study where RPL6 was found to be significantly upregulated among females with 

PTSD compared to female trauma-exposed controls. This observation may suggest that the 

downregulation of RPL6 (as with RPS6) at baseline may lead to an increased susceptibility for PTSD 

leading to the subsequent upregulation of RPL6 after exposure to trauma and leading to the eventual 

development of PTSD. Therefore, it is evident that both RPS6 and RPL6 perform a similar function 

in gene regulation which may be dysregulated due to an overcompensation mechanism as mentioned 

above.   

A recent study investigated the influence of anxiety- and depression-like states (through use of a 

chronic social defeat stress (CSDS) model) in male mice on ribosomal gene expression in brain 

regions using RNA-Seq (Smagin et al., 2016). The study identified the upregulation of several 

differential expression ribosomal protein L genes, including the upregulation of RPL6, in the 

hypothalamus of mice following CSDS. Smagin et al., (2016) hypothesised that this upregulation of 

ribosomal genes in the hypothalamus was most likely due to a feedback mechanism in response to 

CSDS and not a result of ribosomal gene dysfunction leading to development of anxiety- and 

depression-like states in mice (Smagin et al., 2016). 

RPS3A 

The RPS3A gene encodes for the ribosomal protein S3A, a component of the 40S ribosomal subunit 

involved in gene expression (GO:0010467) (Table 3.3). This ribosomal coding protein has not yet 

been directly implicated in anxiety- and stress related disorders, however the RSP3A gene has been 

found to be significantly upregulated in the peripheral blood of heavy drinkers one hour after 

experiencing psychological stress (Beech et al., 2014). Additionally, the RPS3A gene interacts with 

the Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) gene, a member of the 

cortisol signalling pathway (Stelzl et al., 2005), a pathway which has been linked to PTSD (Chapter 

1: Section 1.2.1). Notably, the gene expression levels of HSP90AA1 were found to be significantly 

downregulated in our set of DEGs between our PTSD patients compared to trauma-exposed controls. 

Additionally, RPS3A is co-expressed with RPS6 and RPL6 (Figure 3.5), all ribosomal encoding genes 

which play an integral role in the translational mechanism. Therefore, the dysregulation of these 

ribosomal encoding genes may explain, to some extent, the differences seen in gene expression 

between PTSD patients and trauma-exposed controls. However, additional research is required to 

clarify the exact mechanism involved in the differential expression of RPS3A in PTSD individuals. 
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EEF1B2 

The eukaryotic translation elongation factor 1 beta 2 gene encodes for a translation elongation factor 

involved in the transfer of aminoacylated tRNAs to the ribosome (von der Kammer et al., 1991). 

According to the ontological results of the BORG analysis, EEF1B2 direct, biochemical interaction  

with Dopamine Receptor D3 (DRD3) gene (Cho et al., 2003), a member of the dopamine signalling 

pathway that has been mostly investigated within schizophrenia patients (Nunokawa et al., 2010). 

Mouse knockout models of DRD3 have also been associated with a decreased anxiety-related 

response phenotype as well as an increase in thigmotaxis which is the motion or orientation of an 

organism in response to a touch stimulus (Halberstadt & Geyer, 2009). This increase in thigmotaxis 

is of note as one of the core symptoms of PTSD is an exaggerated startle response (Grillon et al., 

1996). 

EEF1B2 also interacts with Unc-51 Like Autophagy Activating Kinase 2 (ULK2), which, in gene 

knockout mouse models, leads to an increase in anxiety-related response 

(http://www.informatics.jax.org /reference/J:103485). We did not find literature linking the EEF1B2 

gene directly to PTSD; however, the EEF1B2 gene is involved in the transcriptional regulation of 

several genes, including genes DRD3, associated with an anxiety-related response, and ULK2 

associated with increased in thigmotaxis. Thus, dysregulation of EEF1B2 may result in inefficient 

transcriptional regulation of these aforementioned genes, which are associated with responses (such 

as exaggerated startle response) often seen in PTSD patients.  

Summary of upregulated genes predicted to be involved in anxiety and stress-related disorders, 

including PTSD 

In whole blood, major components of ribosomes; the small ribosomal subunit that reads the RNA 

(Rps) and the large subunit that connects amino acids to form a polypeptide chain (Rpl), showed 

differential expression in our group of female PTSD patients. Finding a direct association between 

the upregulation of these ribosomal genes could facilitate our understanding of the cause and the 

consequence of the processes involved in PTSD. However, it is probable that a cascade of systemic 

changes at a whole blood level will lead to changes in the expression of genes involved in the 

development PTSD.  

Co-expression analysis showed a strong co-expression of RPS6, RPL6, RPS3A and EEF1B2 genes, 

which were highly upregulated in the present study. These genes are all involved in the translational 

process and thus involved within protein expression. We, therefore, hypothesise that these 

upregulated genes most likely represent a very specific fine tuning of the translational machinery in 

the response to trauma. This either predisposes to PTSD [refer to RPS6, RPL6 (Glatt et al., 2013), 
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EEF1B2], or is a response to PTSD [refer to RPL6 (Smagin et al., 2016)] once manifested. 

Furthermore, this may represent a predictive biosignature that can be tested in a further study [refer 

to RPS6, RPL6 (Glatt et al., 2013)].  

4.2 Downregulated genes predicted to be involved in anxiety and stress-related disorders, 

including PTSD 

EIF4G1 

The Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) gene encodes for a component 

(eIF4G) of the eIF4F protein complex, which consists of three subunits, namely eIF4G, eIF4E (bind 

with 5’cap of mRNA) and eIF4A (Pelletier et al., 2015).  The eIF4F protein complex functions as a 

rate-limiting step in the initiation phase of protein synthesis, facilitating the recruitment of mRNA to 

the ribosome (reviewed by Hinnebusch & Lorsch, 2012) and is thus a member of the “translation 

initiation pathway” (PW:0000580).  

Interestingly, EIF4G1 has also been associated with the human phenotype of “sleep disturbance” 

(HP:0002360), providing a possible link to PTSD as this phenotype is a common symptom displayed 

within PTSD patients (American Psychiatric Association, 2013). Additionally, a recent study by 

Huynh et al., (2014), investigated memory strength of auditory fear conditioning in mice which 

demonstrated that eIF4F formation, along with S6K1 activation (see Section 4.1 RPS6) were required 

for fear memory reconsolidation in mTORC1-dependent translation (Huynh, Santini & Klann, 2014).  

Other studies also demonstrated that the inhibition of mTORC1 blocks the consolidation (process of 

converting information from short-term memory into long-term memory) and reconsolidation of cued 

fear memory, but inhibition of eIF4E–eIF4G interactions blocks only consolidation (Hoeffer et al., 

2011; Mac Callum et al., 2014). In the present study, the EIF4G1 gene, which encodes a component 

of the eIF4G protein, was found to be significantly downregulated between our PTSD patients and 

trauma-exposed controls. It is, therefore, hypothesised that dysregulation of the EIF4G1 gene might 

lead to the inhibition of the eIF4E–eIF4G interactions, possibly blocking the process of memory 

consolidation in individuals with PTSD.  

HSPA4 

The heat shock protein family A (Hsp70) member 4 (HSPA4) gene encodes the heat shock 70 kDa 

protein 4, which is implicated in the “cortisol signalling pathway” (PW:0000569). HSPA4 was also 

identified by our BORG query and KEGG analysis to be a member of antigen processing and 

presentation pathway (Table 3.9). Our anxiety BORG analysis indicated interactions between HSPA4 
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and TNF receptor associated factor 6 (TRAF6), a member of the neurotrophic factor signalling 

pathway. Knockout studies of TRAF6 associated the gene in immune system regulations such as the 

positive regulation of interleukin-2 and T cell cytokine production within mouse and rat models (Sun 

et al., 2004). This is of note as T cells are postulated to have a neuroprotective function during 

conditions of injury, infection and in emotional or psychological stress (Miller, Maletic & Raison, 

2009; Schwartz & Shechter, 2010).  

The HSPA4 gene furthermore interacts with RAF1 (Raf-1 Proto-Oncogene, Serine/Threonine Kinase) 

gene, which forms part of the neurotrophic factor signalling pathway and has a function in the long-

term depression pathway (Yamamoto et al., 2012). Both these pathway ontology terms were found 

to be overrepresented within our downregulated biologically relevant gene-set. Moreover, HSPA4 

interacts with both Inhibitor of Kappa Light Polypeptide Gene Enhancer in B-Cells, Kinase Gamma 

(IKBKG) and CD40 which are involved in the positive regulation of type I interferon and interleukin-

12 production respectively (McKee & Pearce, 2004). Other interactions include the PPP1CA gene 

and ESR1 gene, which are both members of the serotonin signalling pathway via receptors engaging 

in G alphas protein family.   

Recently a study was conducted to investigate epigenetic mechanism of pregnant PTSD rats and the 

subsequent development of their offspring (Zhang et al., 2016). The study utilised a single prolonged 

stress (SPS) model to simulate PTSD in pregnant rats thereafter both the dysregulation of methylation 

and gene expression in the offspring of stress-induced rats were investigated. Interestingly, the gene 

expression analysis indicating that HSPA4 was one of the significantly downregulated genes in the 

offspring of stress-induced rats 30 days after birth (Zhang et al., 2016). Our study found similar results 

to that of Zhang et al., (2016), indicating that HSPA4 was significantly downregulated in PTSD 

patients compared to trauma-exposed controls. Therefore, we hypothesise that gene expression 

changes, such as the downregulation of HSPA4, could possibly be due to the stress-induced 

dysregulation of whole-genome methylation. The dysregulation at a genomic level subsequently 

contributed to the dysregulation of genes such as HSPA4.  

DHX9  

The DEAH-box helicase 9 (DHX9) is a transcription activator that encodes for a member of the 

DEAH-containing family of RNA helicases. The enzyme encoded by this gene is implicated in ATP-

dependant unwinding of double stranded RNA complexes and therefore functions as a transcriptional 

regulator (reviewed by Jankowsky, 2011). The DHX9 gene has a function in “ATP binding” 

(GO:0005524) (Table 3.4) and is also involved in “circadian rhythm” (GO:0007623). This is of 

interest as sleep disturbances are common among patients with PTSD (Pace-Schott et al., 2015). 
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Moreover, sleep-related symptoms of PTSD are included in the DSM-5 (American Psychiatric 

Association, 2013). Therefore, gene expression changes of DHX9 may alter circadian rhythms 

leading to sleep disturbances associated with PTSD.  

The DHX9 gene is also a member of the “aldosterone signalling pathway” (PW:0000568) (Yang & 

Fuller, 2011) which is of interest as anxiety increases aldosterone levels (Hlavacova & Jezova, 2008). 

Gene ontology of abnormal T cell differentiation as well as abnormal embryogenesis/ development 

in mice has also been reported (Zhu et al., 2012). This is significant as T cells are hypothesised to 

have a neuroprotective function during conditions such as infection, injury or psychological stress 

(Miller, Maletic & Raison, 2009; Schwartz & Shechter, 2010). Therefore, the differential expression 

of DHX9 found in individuals with PTSD, in the present study, may, in part, lead to abnormal T cell 

differentiation which dysregulates neuroprotective functioning under extreme psychological stress 

(such as that which occurs in the experience of traumatic events).  

The DHX9 gene is furthermore involved in positive regulation of type I interferon production (Li et 

al., 2011). DHX9 also interacts with RELA Proto-Oncogene, NFkB Subunit (RELA), involved in 

neurotrophic factor signalling pathway and involved in the positive regulation of type I interferon 

production (Liu et al., 2003). The gene furthermore interacts with Jun Proto-Oncogene, AP-1 

Transcription Factor Subunit (JUN) implicated in the neurotrophic factor signalling pathway which 

is also a role player in learning (Tischmeyer et al., 1994) and BRCA1 involved in the positive 

regulation of vascular endothelial growth factor production (Singh et al., 2013). The downregulation 

of this transcription activator is in line with previous gene expression studies reporting a reduction in 

expression of transcription activators in peripheral blood mononuclear cells of PTSD patients 

(Segman et al., 2005; Neylan et al., 2011).  

BCLAF1 

The B-cell lymphoma-2 associated transcription factor 1 (BCLAF1) gene encodes a transcriptional 

repressor that interacts with proteins of the B-cell lymphoma 2 (Bcl-2) family, which play a prominent 

role in apoptosis and the enhancement of cell survival in a variety of cells including 

lymphohematopoietic and neural cells (Kasof, Goyal & White, 1999). The overexpression of 

BCLAF1 induces apoptosis, which in turn can be suppressed by co-expression of BCL2 proteins 

(Kasof, Goyal & White, 1999). Recent studies have implicated BCLAF1 in processes of RNA 

metabolism (Bracken et al., 2008; Sarras, Alizadeh Azami & McPherson, 2010) and T cell activation 

(McPherson et al., 2009; Kong et al., 2011). The BCLAF1 gene is also implicated in carcinoma and 

knockout causes “decreased CD8-positive, alpha-beta T cell number” (MP:0008079) as well as 

“decreased T cell proliferation” (MP:0005095).  As mentioned previously (see Section 4.2 DHX9) T 
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cells are hypothesized to have a neuroprotective function during conditions such as infection, injury 

or psychological stress (Miller, Maletic & Raison, 2009; Schwartz & Shechter, 2010). Thus, 

differential expression of BCLAF1 found in the present study may to some extent lead to abnormal T 

cell functioning during extreme psychological stress, leading to the development of PTSD. BCLAF1 

is furthermore involved in the “regulation of DNA-templated transcription in response to stress” 

(GO:0043620) and has functions in DNA binding, poly(A) RNA binding and protein binding. 

As mentioned previously, the BCLAF1 gene interacts with the Bcl-2 family, including the Bcl-2 gene 

which is involved in gene ontology of “behavioural fear response” within animal models (Einat, Yuan 

& Manji, 2005). The study by Einat et al., (2005) was designed to explore behavioural models of 

psychiatric disorders in male mice through the targeted mutation of the Bcl-2 gene (heterozygote 

mice). The results demonstrated an increase in anxiety-like behaviours in mice with reduced 

mitochondrial Bcl-2 levels compared to that of wild type mice. These results possibly indicate the 

critical role of Bcl-2 in the aetiology of anxiety disorders. Additionally, BCLAF1 interacts with 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG), a 

member of a neurotrophic factor signalling pathway (Jin et al., 2004) which was also a gene 

significantly downregulated within the present study and found to be biologically-relevant based on 

the anxiety BORG database.  

THRAP3  

The thyroid hormone receptor associated protein 3 (THRAP3) gene encodes the protein thyroid 

hormone receptor associated protein 3, also known as TRAP150 (Ito et al., 1999). The protein is a 

subunit of the TRAP/Mediator complex, which is implicated in transcriptional regulation (Beli et al., 

2012) and an important role player in the pre-processing of mRNA as it forms part of a component 

of the spliceosome (Enrichment analysis identified several genes implicated in the spliceosome based 

on the KEGG pathway Table 3.5). Moreover, the protein encoded for by THRAP3 shares sequencing 

similarities with that of the BCLAF1 transcriptional repressor protein encoded for by the BCLAF1 

gene. Interestingly, both THRAP3 and BCLAF1 interact with the human gene YWHAG, which is a 

member of the neurotrophic factor signalling pathway found to be significantly downregulated within 

the present study and found to be biologically-relevant based on the anxiety BORG database. The 

THRAP3 protein acts as a co-activator which promotes transcriptional activation and binding to 

circadian target genes which positively regulates circadian rhythm (Lande-Diner et al., 2013). These 

circadian clock proteins play an integral role in sleep. It is hypothesised that the dysregulation of a 

co-activator protein, such as THRAP3, may lead to an impaired functioning of circadian rhythms 
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(Lande-Diner et al., 2013). This in turn could induce sleep disturbances such as insomnia, a common 

symptom in patients with PTSD (American Psychiatric Association, 2013).  

The THRAP3 gene also has a function in thyroid hormone receptor binding (Ito et al., 1991), bringing 

into question the hypothalamic-pituitary-thyroid (HPT) axis involvement in PTSD. The HPT axis is 

involved in homeostasis by regulating thyroid hormone levels within the blood. Trauma is known to 

trigger thyroid abnormalities; however, research on the relationship between the HPT axis and PTSD 

remains limited (Sherin & Nemeroff, 2011). Additionally, stress/cortisol influences the feedback loop 

of thyroid hormones (Walter et al., 2012) however, this process involves complex endocrinology 

which requires further investigation in future PTSD studies. 

MCL1  

Although the myeloid cell leukemia 1 (MCL1) gene was not found to be significantly differentially 

expressed between PTSD patients and control groups, it is included in the discussion as it was found 

to be a highly connected gene within the large downregulated co-expressed network using 

COXPRESdb (Figure 3.5). The MCL1 gene encodes for an anti-apoptotic protein and is a member of 

Bcl-2 family (Czabotar et al., 2011). As mentioned previously (see Section 4.2 BCLAF1) the Bcl-2 

family, plays a prominent role in supressing apoptosis and the enhancement of cell survival (Kasof, 

Goyal & White, 1999) in a variety of cells including lymphohematopoietic and neural cells (Maurer 

et al., 2006).  

Recently a PTSD study, employing a single-prolonged stress (SPS) method in rats, investigated 

apoptosis-related gene expression of Bcl-2 and Bcl2-associated X (Bax) in the mPFC. The results 

indicated that SPS stimulation increased the number of apoptotic neurons, up-regulated the 

expressions of Bcl-2 and Bax, and altered the Bcl-2/Bax ratio in the mPFC of PTSD rats (Li, Han & 

Shi, 2013). However, additional investigation is needed, including the dysregulation of MCL1 in 

PTSD patients, as the role of apoptosis in the pathogenesis of PTSD is not yet certain (Li, Han & Shi, 

2013). 

Summary of downregulated genes predicted to be involved in anxiety and stress-related 

disorders, including PTSD 

The six highly connected downregulated genes form part of a large co-expressed network. This is 

interesting in itself, as downregulation of the expression of such a large network is likely to have 

biological and hence biomedical effects. Several of the highly connected genes discussed, are 

implicated in transcriptional regulation (DHX9, BCLAF1 and THRAP3), which correlates to the 

findings of previous studies (Segman et al., 2005; Neylan et al., 2011), where an overall reduction of 
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transcriptional activators (which in turn regulates gene expression) was observed in the peripheral 

blood of psychologically distressed victims (PF4, HIST1H2AC and SDPR) (Neylan et al., 2011). This 

general reduction of transcription activators in response to stress may, in part, explain the differences 

in gene expression signatures observed between our PTSD and trauma-exposed control subjects 

(Segman et al., 2005).  

Immune dysregulation has been found to result in vulnerability to PTSD via alterations in brain 

function (Lanius et al., 2010). The brain is supported by the immune system with immune functioning 

playing an essential role in learning and memory under basal conditions, and supports optimal stress-

coping responses (Molina-Holgado & Molina-Holgado, in press; Su, Zhang & Schluesener, 2010; 

Yirmiya & Goshen, 2011). Acute stress, in both humans and animals, results in enhanced cell-

mediated immunity (Dhabhar & Mcewen, 1997), increased levels of proinflammatory cytokines and 

increased blood-brain barrier permeability (Škultétyová, Tokarev & Ježová, 1998). This could result 

in increased neuroinflammation, which, in turn, has been associated with disorders such as PTSD 

(reviewed by Zass et al., 2017). Our results, are in line with previous findings of dysregulated 

expression profiles of immune-related genes in  stress-related disorders, such as PTSD (Zieker et al., 

2007; Yehuda et al., 2009; Neylan et al., 2011; Glatt et al., 2013; Breen et al., 2015). This is of note, 

as two of the highly connected downregulated genes identified in this study (DHX9 and BCLAF1) 

have an immune-related function.  

Additionally, several of the downregulated genes (EIF4G1, DHX9 and THRAP3) within the present 

study were previously found to be associated with sleep disturbances (Pace-Schott et al., 2015) and 

circadian rhythms (Lande-Diner et al., 2013). As mentioned previously, this is of interest to the 

present study, as sleep disturbances are common amongst PTSD patients (American Psychiatric 

Association, 2013). However, it is of note that both circadian rhythms and PTSD consist of complex 

gene networks and biological interactions (Landgraf, McCarthy & Welsh, 2014). Therefore, 

downregulation of EIF4G1, DHX9 and THRAP3 possibly explains only a minor part of the broad 

networks overlapping in PTSD and circadian rhythms.  

4.3 Overall summary of up- and downregulated gene sets 

In summary, differential gene expression analyses in the current study revealed the upregulation of 

genes involved in translational process of protein expression and the downregulation of genes 

involved in immune-related function, circadian rhythm and transcriptional regulation. These 

preliminary findings provide novel insight into the underlying genetic mechanism of PTSD in South 

African population. The upregulation of translational machinery identified within the whole blood of 
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PTSD patients (compared to trauma-exposed controls) occurs after exposure to trauma, and may lead 

to the eventual development of PTSD, or is the consequence of PTSD once it has already manifested.  

Additionally, the general reduction in whole blood expression of transcriptional regulators may 

explain the differences in gene expression signatures observed between our PTSD patients and 

trauma-exposed control subjects. However, this reduction could possibly be due to the stress-induced 

dysregulation of whole-genome methylation, resulting in the dysregulation of gene transcripts related 

to transcriptional activation, intracellular signalling pathways and apoptosis. The current study, 

provides evidence supporting a blood transcriptomic response worth investigating in PTSD. It does 

however remain unclear whether the changes observed in the whole blood transcriptome are merely 

informative of the development of PTSD or whether these changes are also relevant to the 

pathogenesis of PTSD.  

4.4 Limitations of study 

The present study enabled the investigation of whole blood gene expression levels between PTSD 

patients and trauma-exposed controls, through use of the powerful next-generation sequencing 

technology, RNA-Seq. Our study encountered several limitations, including a cross-sectional design 

and a limited sample size consisting of 48 study participants. The sample size was in line with several 

other microarray gene expression studies including that of Glatt et al., (2013) (N=25 eventual PTSD 

cases and N=25 trauma-exposed controls) and Tylee et al., (2015) (N=25 PTSD patients vs. N=25 

trauma-exposed controls). However, a recent RNA-Seq study used a larger sample size (N=47 PTSD 

patients vs. N=47 trauma-exposed controls) in order to investigate differential expression in patients 

with PTSD (Breen et al., 2015). Nevertheless, these abovementioned studies did not take additional 

known risk factors for PTSD, such as family history, childhood exposure to trauma and pre-existing 

mental disorders into account. Although the present study excluded serious mental disorders, such as 

schizophrenia and bipolar disorders, major depressive disorder (MDD) given its high comorbidity 

with PTSD was not excluded provided that MDD was not the primary diagnosis. Five participants 

with PTSD in this study had comorbid MDD. 

Another limitation of the study is the use of whole blood samples in a disease which is thought to be 

primarily a brain disorder. However, investigating gene expression levels within the brains of living 

human participants with PTSD is not currently possible. Post-mortem brains of PTSD patients could 

be investigated, however this will not be without its own challenges, including differential gene 

expression after death. Additionally, several studies have identified that peripheral blood gene 

expression signatures could be valuable in identifying mental disorder such as PTSD (Segman et al., 

Stellenbosch University  https://scholar.sun.ac.za



88 

 

2005; Zieker et al., 2007; Yehuda et al., 2009; Neylan et al., 2011; Glatt et al., 2013; Breen et al., 

2015; Tylee et al., 2015). For these reasons, investigating blood biomarkers for brain disorders 

remains a challenging, yet practical and less invasive, approach. 

A further limitation is that the RNA-Seq procedure generated short reads of 50bp, which was later 

shortened to 42bp after the removal of the RNA-Seq indexes. This limited the potential mapping 

accuracy of reads to the reference genome. However, it has been reported that at 50bp, only a small 

percentage (<0.01%) of reads will map to more than one location of the reference genome 

(Korpelainen et al., 2014). Therefore, a 50bp read length should have been adequate for our 

preliminary differential expression study. Additionally, the present study utilised a sequencing depth 

of approximately 50 million paired end reads, enabling a greater accuracy in the quantification of up- 

and down- regulated genes. 

It is further important to note that this preliminary study only reported on data at a transcriptomic 

level, roughly explaining potential proteins expression associated with PTSD development. However, 

our results should be followed up on a proteomic level before conclusions based on protein levels can 

be made. Additionally, epigenetic mechanisms and other non-coding RNAs could have contributed 

to differential gene expression however, this was beyond the scope of the present study. 

The validation of a subset of DEG through qPCR was not done within the present preliminary sub-

study as the sample size was relatively small. Results will be validated by use of qPCR if subsequent 

SHARED ROOTS transcriptomic sub-studies identify the same genes as in this preliminary study, as 

this would provide justification for the validation.  

4.5 Future studies 

Future work should include miRNA profiling, which may identify a more robust signature as miRNAs 

are evolutionarily conserved and involved in various intricate processes including the stress response 

(He et al., 2007). Therefore, any miRNAs causing the downregulation of mRNAs will be upregulated 

themselves and would thus present potentially measurable blood-based biomarkers for PTSD. 

Additionally, RNA-Seq can be used to investigate the shared genetic factors between PTSD and other 

psychiatric disorders enabling the development of better diagnostic and treatment methods for PTSD 

patients.  

We also recommended that future RNA-Seq studies (especially transcriptomic studies of the 

SHARED ROOTS project) utilise a longer read length (75bp-100bp), as this is essential for 

identifying possible splice variants which could provide additional insight into differential gene 
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expression (Wang et al., 2009). Additionally, the differential expression of the transcriptional and 

translational machinery, identified within the present study, are most likely due to variations on a 

genomic level. Therefore, a need exists for the incorporation of larger sample sizes and multiple 

approaches, combining genomic, transcriptomic, epigenetic and neuroimaging data as is being done 

in the SHARED ROOTS project. These approaches will enable specific variant detection as well as 

allele-specific expression detection. Future transcriptomic work of the SHARED ROOTS project will 

focus on the differential gene expression of PTSD patients and trauma-exposed controls with 

metabolic syndrome in order to test for genes linked within this co-morbidity.  

4.6 Conclusion 

The current study was conducted as part of a larger interdisciplinary South African Medical Research 

Council (MRC) flagship project SHARED ROOTS. This preliminary investigation allowed for the 

identification of a set of DEGs between PTSD patients and trauma-exposed controls using the whole 

genome transcriptomic approach, RNA-Seq.  

PTSD remains a complex, neuropsychiatric disorder underpinned by multi-factorial interactions. 

However, based on multiple sources of evidence, the present study highlights potential biological and 

biomedical roles of four co-expressed upregulated genes (RPL6, RPS6, RPS3A and EEF1B2) and six 

highly connected co-expressed downregulated genes (DHX9, BCLAF1, THRAP3, EIF4G1, HSPA4 

and MCL1), which were identified as potentially relevant gene candidates contributing to the 

pathology of PTSD. Additionally, the data provides supporting evidence of a blood transcriptomic 

response worth investigating in a future study.  

These preliminary findings provide novel insight in underlying genetic expression of PTSD in South 

African population. However, the candidate genes identified within the present study do warrant 

further research to test the hypotheses generated. 
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APPENDIX I 

Index labels used in pooled RNA sequencing data generated 

Table I.1: Pooled RNA sequencing data identifying sequences of index labels. Tables indicates 

the pool number and unique index labels (with sequences) used for each of the sample.  

Sample Name Index 1 Index 2 Pool Seq Index 1 Seq Index 2 

SR148 701 502 1 ATTACTCG ATAGAGGC 

SR066 702 502 1 TCCGGAGA ATAGAGGC 

SR150 703 502 1 CGCTCATT ATAGAGGC 

SR146 704 502 1 GAGATTCC ATAGAGGC 

SR072 705 502 1 ATTCAGAA ATAGAGGC 

SR001 706 502 1 GAATTCGT ATAGAGGC 

SR186 707 502 1 CTGAAGCT ATAGAGGC 

SR230 708 502 1 TAATGCGC ATAGAGGC 

SR176 711 502 1 TCTCGCGC ATAGAGGC 

SR052 712 502 1 AGCGATAG ATAGAGGC 

SR077 701 503 2 ATTACTCG CCTATCCT 

SR135 702 503 2 TCCGGAGA CCTATCCT 

SR164 703 503 2 CGCTCATT CCTATCCT 

SR113 704 503 2 GAGATTCC CCTATCCT 

SR156 705 503 2 ATTCAGAA CCTATCCT 

SR187 706 503 2 GAATTCGT CCTATCCT 

SR105 707 503 2 CTGAAGCT CCTATCCT 

SR158 708 503 2 TAATGCGC CCTATCCT 

SR016 709 503 2 CGGCTATG CCTATCCT 

SR058 710 503 2 TCCGCGAA CCTATCCT 

SR190 711 503 3 TCTCGCGC CCTATCCT 

SR170 712 503 3 AGCGATAG CCTATCCT 

SR166 701 504 3 ATTACTCG GGCTCTGA 

SR065 702 504 3 TCCGGAGA GGCTCTGA 

SR015 703 504 3 CGCTCATT GGCTCTGA 

SR019 704 504 3 GAGATTCC GGCTCTGA 

SR096 705 504 3 ATTCAGAA GGCTCTGA 

SR132 706 504 3 GAATTCGT GGCTCTGA 

SR038 707 504 3 CTGAAGCT GGCTCTGA 

SR048 708 504 3 TAATGCGC GGCTCTGA 

SR214 709 504 4 CGGCTATG GGCTCTGA 

SR193 710 504 4 TCCGCGAA GGCTCTGA 

SR140 711 504 4 TCTCGCGC GGCTCTGA 

SR209 712 504 4 AGCGATAG GGCTCTGA 

SR075 701 505 4 ATTACTCG AGGCGAAG 

SR139 702 505 4 TCCGGAGA AGGCGAAG 
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SR279 703 505 4 CGCTCATT AGGCGAAG 

SR177 704 505 4 GAGATTCC AGGCGAAG 

SR013 705 505 4 ATTCAGAA AGGCGAAG 

SR098 706 505 4 GAATTCGT AGGCGAAG 

SR055 709 505 5 CGGCTATG AGGCGAAG 

SR006 711 505 5 TCTCGCGC AGGCGAAG 

SR089 712 505 5 AGCGATAG AGGCGAAG 

SR082 701 506 5 ATTACTCG TAATCTTA 

SR109 702 506 5 TCCGGAGA TAATCTTA 

SR119 703 506 5 CGCTCATT TAATCTTA 

SR080 706 506 6 GAATTCGT TAATCTTA 

SR092 709 506 6 CGGCTATG TAATCTTA 
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APPENDIX II 

Biologically relevant differentially expressed gene as identified by anxiety BORG analyses 

The current study of focused on the DEGs between PTSD vs. trauma-exposed control groups. Table 

I.1 depicts the DEG identified through DESEQ2 analysis which were found to be biologically relevant 

according to our anxiety BORG analyses. The negative fold changes imply that gene expression levels 

in the PTSD group is lower than that in the control group; positive fold changes imply that gene 

expression levels in the PTSD group is higher than that in the control group.  

 

Table II.1: Biologically significant differentially expressed genes between PTSD patients and 

trauma-exposed controls (as identified by anxiety BORG analyses). The negative fold changes 

indicate that genes were downregulated whilst a positive fold change indicates upregulated genes in 

the PTSD group compared to the control group. 

Gene Name log2 Fold-

Change 

p-

adjusted 

CX3CR1 C-X3-C motif chemokine receptor 1 -0.517 0.008 

ANXA5 annexin A5 -0.477 0.007 

DPYSL2 dihydropyrimidinase like 2 -0.464 0.008 

GBP1 guanylate binding protein 1 -0.438 0.020 

ANXA3 annexin A3 -0.436 0.032 

NCL nucleolin -0.423 0.008 

PRF1 perforin 1 -0.411 0.033 

IQGAP1 IQ motif containing GTPase activating protein 1 -0.410 0.023 

HSPA9 heat shock protein family A (Hsp70) member 9 -0.409 0.007 

IFI16 interferon gamma inducible protein 16 -0.409 0.015 

ACSL4 acyl-CoA synthetase long-chain family member 4 -0.409 0.010 

PDIA3 protein disulfide isomerase family A member 3 -0.408 0.007 

OAT ornithine aminotransferase -0.407 0.022 

PARP14 poly(ADP-ribose) polymerase family member 14 -0.406 0.025 

LCP1 lymphocyte cytosolic protein 1 -0.404 0.015 

PIK3AP1 phosphoinositide-3-kinase adaptor protein 1 -0.399 0.014 

NOLC1 nucleolar and coiled-body phosphoprotein 1 -0.399 0.008 

AHR aryl hydrocarbon receptor -0.393 0.014 

PLSCR1 phospholipid scramblase 1 -0.393 0.041 

EZR ezrin -0.392 0.014 

HSP90B1 heat shock protein 90 beta family member 1 -0.390 0.008 

TXNIP thioredoxin interacting protein -0.386 0.017 

F2R coagulation factor II thrombin receptor -0.386 0.026 

MSN moesin -0.385 0.018 

ITGB1 integrin subunit beta 1 -0.374 0.019 

CR1 
complement component 3b/4b receptor 1 (Knops blood 

group) 

-0.373 0.039 

HSP90AB1 heat shock protein 90 alpha family class B member 1 -0.371 0.011 
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TLN1 talin 1 -0.369 0.045 

DDX21 DEAD-box helicase 21 -0.368 0.010 

F5 coagulation factor V -0.367 0.048 

VCL vinculin -0.367 0.031 

IL18RAP interleukin 18 receptor accessory protein -0.364 0.045 

SYT11 synaptotagmin 11 -0.361 0.023 

CTR9 
CTR9 homolog, Paf1/RNA polymerase II complex 

component 

-0.359 0.010 

HSPA4 heat shock protein family A (Hsp70) member 4 -0.357 0.008 

HSP90AA1 heat shock protein 90 alpha family class A member 1 -0.356 0.015 

MEF2C myocyte enhancer factor 2C -0.355 0.018 

MEF2A myocyte enhancer factor 2A -0.355 0.009 

SIGLEC10 sialic acid binding Ig like lectin 10 -0.354 0.038 

MARCKS myristoylated alanine rich protein kinase C substrate -0.353 0.048 

HSPA5 heat shock protein family A (Hsp70) member 5 -0.351 0.022 

TPR translocated promoter region, nuclear basket protein -0.351 0.015 

CYBB cytochrome b-245 beta chain -0.350 0.037 

HIF1A hypoxia inducible factor 1 alpha subunit -0.349 0.023 

KLRD1 killer cell lectin like receptor D1 -0.345 0.046 

CAST calpastatin -0.345 0.008 

TLR5 toll like receptor 5 -0.342 0.046 

MFAP1 microfibrillar associated protein 1 -0.341 0.010 

RANBP2 RAN binding protein 2 -0.340 0.010 

LRRK2 leucine rich repeat kinase 2 -0.339 0.045 

TROVE2 TROVE domain family member 2 -0.339 0.010 

EIF3A eukaryotic translation initiation factor 3 subunit A -0.338 0.014 

GBP2 guanylate binding protein 2 -0.337 0.022 

SLK STE20 like kinase -0.336 0.019 

WBP11 WW domain binding protein 11 -0.336 0.008 

ANXA2 annexin A2 -0.336 0.032 

POLR2B RNA polymerase II subunit B -0.335 0.008 

ANXA6 annexin A6 -0.334 0.016 

HTATSF1 HIV-1 Tat specific factor 1 -0.333 0.011 

NBN nibrin -0.332 0.023 

DDB1 damage specific DNA binding protein 1 -0.331 0.039 

XRCC6 X-ray repair cross complementing 6 -0.331 0.017 

HNRNPK heterogeneous nuclear ribonucleoprotein K -0.329 0.016 

PRKAR1A 
protein kinase cAMP-dependent type I regulatory 

subunit alpha 

-0.328 0.026 

PARP1 poly(ADP-ribose) polymerase 1 -0.327 0.020 

COPB2 coatomer protein complex subunit beta 2 -0.326 0.015 

ENO1 enolase 1 -0.322 0.023 

SETD7 SET domain containing lysine methyltransferase 7 -0.321 0.010 

CHD1 chromodomain helicase DNA binding protein 1 -0.320 0.015 

PPP1R12A protein phosphatase 1 regulatory subunit 12A -0.320 0.016 

TCF4 transcription factor 4 -0.319 0.028 

CCR2 C-C motif chemokine receptor 2 -0.317 0.046 

JAK1 Janus kinase 1 -0.316 0.016 

EIF4G1 eukaryotic translation initiation factor 4 gamma 1 -0.316 0.036 

STAG2 stromal antigen 2 -0.312 0.024 

KPNB1 karyopherin subunit beta 1 -0.310 0.024 
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YWHAB 
tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein beta 

-0.310 0.012 

HSPH1 heat shock protein family H (Hsp110) member 1 -0.309 0.014 

SF3B2 splicing factor 3b subunit 2 -0.309 0.021 

TES testin LIM domain protein -0.307 0.008 

ICMT isoprenylcysteine carboxyl methyltransferase -0.306 0.016 

TM9SF2 transmembrane 9 superfamily member 2 -0.306 0.034 

VAV3 vav guanine nucleotide exchange factor 3 -0.306 0.011 

THRAP3 thyroid hormone receptor associated protein 3 -0.306 0.028 

GTF2A1 general transcription factor IIA subunit 1 -0.304 0.010 

CANX calnexin -0.304 0.028 

FYB FYN binding protein -0.301 0.016 

REST RE1 silencing transcription factor -0.301 0.011 

TOP2B topoisomerase (DNA) II beta -0.300 0.014 

VPS35 VPS35 retromer complex component -0.298 0.020 

CHD4 chromodomain helicase DNA binding protein 4 -0.298 0.032 

PGK1 phosphoglycerate kinase 1 -0.298 0.024 

GNB4 G protein subunit beta 4 -0.297 0.032 

COPB1 coatomer protein complex subunit beta 1 -0.295 0.011 

STAT3 signal transducer and activator of transcription 3 -0.295 0.043 

RFC1 replication factor C subunit 1 -0.294 0.015 

ATP6AP2 ATPase H+ transporting accessory protein 2 -0.292 0.043 

IRF4 interferon regulatory factor 4 -0.292 0.033 

LDHA lactate dehydrogenase A -0.292 0.019 

XRCC5 X-ray repair cross complementing 5 -0.291 0.015 

TSPYL1 TSPY like 1 -0.291 0.015 

HIPK1 homeodomain interacting protein kinase 1 -0.291 0.038 

SP4 Sp4 transcription factor -0.291 0.014 

PLEK pleckstrin -0.291 0.024 

CPNE3 copine 3 -0.290 0.031 

ATP2B4 ATPase plasma membrane Ca2+ transporting 4 -0.289 0.046 

CLTC clathrin heavy chain -0.289 0.032 

NCOA3 nuclear receptor coactivator 3 -0.288 0.012 

DNAJA1 DnaJ heat shock protein family (Hsp40) member A1 -0.288 0.026 

XRN2 5'-3' exoribonuclease 2 -0.288 0.021 

EPRS glutamyl-prolyl-tRNA synthetase -0.285 0.023 

SMC3 structural maintenance of chromosomes 3 -0.284 0.026 

BHLHE40 basic helix-loop-helix family member e40 -0.282 0.047 

ITGB7 integrin subunit beta 7 -0.282 0.042 

PRPF40A pre-mRNA processing factor 40 homolog A -0.282 0.015 

SEPT7 septin 7 -0.282 0.025 

G3BP1 G3BP stress granule assembly factor 1 -0.282 0.018 

RB1 RB transcriptional corepressor 1 -0.281 0.021 

XIAP X-linked inhibitor of apoptosis -0.281 0.019 

ADD3 adducin 3 -0.281 0.015 

CALR calreticulin -0.279 0.043 

ATP2B1 ATPase plasma membrane Ca2+ transporting 1 -0.279 0.032 

ZNF148 zinc finger protein 148 -0.279 0.023 

RBBP7 RB binding protein 7, chromatin remodeling factor -0.279 0.016 

COPA coatomer protein complex subunit alpha -0.278 0.026 

ACTR2 ARP2 actin related protein 2 homolog -0.278 0.036 

CLINT1 clathrin interactor 1 -0.277 0.010 
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PJA2 praja ring finger ubiquitin ligase 2 -0.276 0.023 

NBR1 NBR1, autophagy cargo receptor -0.275 0.036 

RAB8B RAB8B, member RAS oncogene family -0.275 0.043 

PRKAA1 protein kinase AMP-activated catalytic subunit alpha 1 -0.274 0.017 

UBA6 ubiquitin like modifier activating enzyme 6 -0.272 0.020 

DDX3X DEAD-box helicase 3, X-linked -0.272 0.036 

GLUD1 glutamate dehydrogenase 1 -0.272 0.023 

PRRC1 proline rich coiled-coil 1 -0.271 0.027 

VCP valosin containing protein -0.270 0.036 

DEGS1 delta 4-desaturase, sphingolipid 1 -0.269 0.015 

BCLAF1 BCL2 associated transcription factor 1 -0.268 0.025 

RPN2 ribophorin II -0.268 0.018 

ZBTB33 zinc finger and BTB domain containing 33 -0.266 0.047 

HSD17B4 hydroxysteroid 17-beta dehydrogenase 4 -0.265 0.015 

IKZF3 IKAROS family zinc finger 3 -0.265 0.033 

SMC1A structural maintenance of chromosomes 1A -0.265 0.026 

ETS1 ETS proto-oncogene 1, transcription factor -0.264 0.019 

SSRP1 structure specific recognition protein 1 -0.264 0.043 

ACTR3 ARP3 actin related protein 3 homolog -0.264 0.026 

DHX9 DEAH-box helicase 9 -0.263 0.014 

SCAMP1 secretory carrier membrane protein 1 -0.262 0.025 

DCTN1 dynactin subunit 1 -0.262 0.049 

MTA2 metastasis associated 1 family member 2 -0.261 0.048 

KIDINS220 kinase D-interacting substrate 220kDa -0.260 0.024 

TMBIM6 transmembrane BAX inhibitor motif containing 6 -0.260 0.039 

MAP3K1 mitogen-activated protein kinase kinase kinase 1 -0.259 0.041 

MCM3 minichromosome maintenance complex component 3 -0.259 0.044 

ATRX ATRX, chromatin remodeler -0.258 0.032 

CHD8 chromodomain helicase DNA binding protein 8 -0.258 0.021 

UPF2 UPF2 regulator of nonsense transcripts homolog (yeast) -0.257 0.026 

STK38L serine/threonine kinase 38 like -0.257 0.042 

GNAI3 G protein subunit alpha i3 -0.257 0.038 

ACTB actin beta -0.257 0.046 

ZEB2 zinc finger E-box binding homeobox 2 -0.257 0.034 

G3BP2 G3BP stress granule assembly factor 2 -0.256 0.032 

HNRNPU heterogeneous nuclear ribonucleoprotein U -0.256 0.011 

STIP1 stress induced phosphoprotein 1 -0.255 0.032 

IL2RG interleukin 2 receptor subunit gamma -0.255 0.023 

UBE2J1 ubiquitin conjugating enzyme E2 J1 -0.255 0.043 

GABPA GA binding protein transcription factor alpha subunit -0.255 0.036 

YWHAG 
tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein gamma 

-0.255 0.021 

DCAF7 DDB1 and CUL4 associated factor 7 -0.253 0.023 

NARS asparaginyl-tRNA synthetase -0.252 0.042 

TBL1XR1 transducin (beta)-like 1 X-linked receptor 1 -0.251 0.049 

BAZ1B bromodomain adjacent to zinc finger domain 1B -0.251 0.021 

USP9X ubiquitin specific peptidase 9, X-linked -0.250 0.045 

VCPIP1 valosin containing protein interacting protein 1 -0.250 0.038 

AASDHPPT 
aminoadipate-semialdehyde dehydrogenase-

phosphopantetheinyl transferase 

-0.250 0.046 
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