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  ABSTRACT 

The aim of the study was to investigate skeletal muscle changes induced by an acute 

bout of plyometric exercise before and after plyometric training. The study consisted of 

an acute study and training intervention study. The acute study, investigated whether 

direct evidence of ultrastructural damage and identification of indirect factors were more 

evident in subjects presenting with rhabdomyolysis. Moreover the training intervention 

study investigated whether plyometric training would protect the muscle from 

ultrastructural damage and rhabdomyolysis. 

During the acute intervention, twenty six healthy untrained individuals completed an 

acute bout of plyometric exercise (10 x 10 squat-jumps, 1 min rest). After, thirteen 

subjects continued with the training intervention. Eight of these subjects completed 8 

weeks of plyometric jump training, while five subjects were instructed to rest from 

physical activity for 8 weeks. Seven days after the final training session the training and 

rest group repeated a second acute bout of plyometric exercise. 

Acute Study: Creatine kinase (CK) activity increased significantly following the single 

bout of plyometric exercise in all subjects (baseline: 129 to day 4: 5348 U/l). This was 

accompanied by an increase in perceived pain, C-reactive protein (CRP) a marker of 

inflammation as well as white blood cells (WBCs). Electron micrographs of muscle 

biopsies taken 3 days post exercise showed evidence of ultrasructural damage and 

membrane damage was apparent by immunofluorescence by the loss of dystrophin 

staining. A stretch of the c-terminus of titin was observed by immunogold, and western 

blot analysis indicated an increase in calpain-3 autolysis. Based on individual CK 

responses (CK range: 153-71,024 U/L at 4days after exercise) the twenty six subjects 

were divided into two groups, namely the high (n=10) and low responders (n=16). 
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Training intervention: Following training the trained group did not experience: a rise of 

CK activity (110.0 U/l), perceived pain, CRP, WBCs, Z-line streaming, a stretch of titin or 

calpain-3 activation; while in the control group only two subjects presented with Z-line 

streaming. 

The results indicate that high responders have a more pronounced inflammatory 

response compared to low responders after eccentric exercise, therefore more WBCs 

and more specifically neutrophils are recruited to damaged areas resulting in greater 

membrane damage by respiratory burst in high responders. This damage can be limited 

with training by remodelling sarcomeric proteins via calpain activation resulting in the 

stable assembly of proteins in the sarcomere preventing the release of proteins.    
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UITTREKSEL 

Die doel van die studie was om skeletspier veranderinge wat teweeggebring is deur 

voor en na afloop van akute pleometriese oefening, te ondersoek.  Die studie bestaan 

uit ‘n akute intervensie en ‘n oefeningsintervensie gedeelte.  Die akute intervensie het 

ondersoek ingestel na die direkte bewyse van ultrastrukturele skade en identifikasie van 

indirekte faktore meer sigbaar is in proefpersone wat met rhabdomiolose presenteer.  

Meerso het die oefningsintervensie die moontlikheid dat pleometriese oefening die spier 

van ultrastrukturele skade en rhabdomiolose beskerm, ondersoek.   

Tydens die akute intervensie is 26 gesonde ongeoefende individue die akute 

pleometriese oefeningsessie (10 x 10 hurkspronge, 1 min rus) voltooi. Hierna het 13 

proefpersone voortgegaan met die oefeningsintervensie.  Agt van hierdie proefpersone 

het agt weke pleometriese sprongsessie oefeninge voltooi, terwyl vyf proefpersone 

gevra is om vir 8 weke geen oefeninge te doen nie.  Sewe dae na afloop van die finale 

oefeningssessie het die oefening en kontrole groep in ‘n tweede herhaalde akute 

pleometriese oefeningsessie deelgeneem. 

Akute intervensie:  kreatienkinase (KK) aktiwiteit het betekenisvol verhoog na die enkel 

pleometriese oefeningsessie in all proefpersone (basislyn: 129 tot op dag vier: 5348 U/l). 

Hierdie is vergesel met ‘n toename in die persepsie van pyn, c-reaktiewe proteïen (CRP) 

‘n merker van inflammasie sowel as witbloedselle (WBS).  Elektronmikrograwe van 

spierbiopsies wat geneem is drie dae na afloop van die oefeninge, het tekens van 

ultrastrukturele skade en membraanskade getoon wat ook deur immunofluoresensie 

duidelik warneembaar was deur die verlies van distrofienverkleuring.  ‘n Verrekking van 

die c-terminus van titin is ook waargeneem deur middel van immunogold.  Westernblot 

analyse het ‘n toename in calpain-3 outolise getoon.  Gegrond op individuele KK 
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response (KK grense: 153-71,024 U/L na vier dae post oefening) is 26 proefpersone 

verdeel in twee groepe naamlik ‘n hoë (n=10) en lae responders (n=16). 

Oefeningintervensie:: Na oefening het die geoefende groep nie ‘n toename in KK 

aktiwiteit getoon nie (KK aktiwiteit (110.0 U/l)), pynervaring, CRP, WBS, Z-lynstroming, 

‘n strekking van titin of calpain-3 aktivering; terwyl in die kontrole groep daar slegs twee 

proefpersone met Z-lynstroming geïdentifiseer is. 

Die resultate wyse daarop dat hoë responders ‘n meer uitgesproke inflammatoriese 

reaksie toon vergeleke met die lae responders na afloop van essentriese oefening.  

Daar word dus meer WBS en spesifiek meer neutrofiele na beskadigde areas 

gelokaliseer wat in grootter membraanskade deur respiratoriese inspanning in die hoë 

responders.  Hierdie skade kan beperk word deur oefening waardeur hermodulering van 

sarkomeriese proteïene via calpain aktivering tot stabiele rangskiking van proteïene in 

die sarcomere lei en daardeur proteïen vrystelling verhinder.   
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CHAPTER 1: Literature Review 

1.1 Introduction   

Many human exercise models have been developed to describe and study skeletal muscle 

damage and remodeling; the models used most are eccentric exercise interventions or 

post-competition monitoring. Studies on eccentric exercise models are more commonly 

found in the literature, but a limitation with these models is that they are highly 

standardized and do not replicate normal daily life movement; whereas with competitive 

event studies participants are followed during and after sport competition making this type 

of model more difficult to control. Therefore a plyometric jump model was adopted in this 

study, which incorporates eccentric contraction of the lower muscle groups.  

Structural muscle damage that results from eccentric exercise occurs when the sarcomere 

maximally contracts to resist an applied external load and once the external load is too 

high, a ‘damage threshold’ will be reached resulting in sarcomere disruption. A muscle 

proteinase, calpain-3, is specifically activated following eccentric exercise and is 

responsible for initiating muscle breakdown (Cagan et al. 1991; Huang and Forsberg 

1998); however controversy in the literature exists as to how this protein is regulated. 

Researchers are divided on whether calpain-3 is activated by mechanical stretch of titin or 

by small increases in resting cytoplasmic Ca2+ concentration (Murphy et al. 2007; Murphy 

and Lamb 2009). 

It has previously been determined using morphological methods that eccentric muscle 

damage results in preferential type II fibre disruption in human subjects (Friden et al. 1988; 

Friden et al. 1983). Currently the literature suggests that there is preferential type II muscle 

fibre damage in response to plyometric exercise and this is based on indirect methods by 
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using changes in peak power output at different velocities and fatigue (Twist and Eston 

2005).  

Certain markers of muscle damage can be detected in blood samples since these proteins 

are released into circulation following sarcolemmal disruption (Feasson et al. 2002). 

Creatine kinase (CK) is the most used indirect marker of muscle damage and is used as a 

diagnostic tool in the detection of a condition known as rhabdomyolysis (Chimera et al. 

2004). Exertional rhabdomyolysis is clinically diagnosed when increases in CK activity 

exceed 1,000 U/L (Thoenes 2010). A biological phenomenon that remains unexplained 

(Sayers and Clarkson 2002), is the way in which CK release in response to unaccustomed 

exercise varies amongst individuals with similar characteristics (Clarkson et al. 2005b); 

some may experience a greater increase in CK activity (>60,000 U/L) than others. Several 

single-nucleotide polymorphisms have been identified and been implicated with this varied 

response (Clarkson et al. 2005b; Devaney et al. 2007; Yamin et al. 2007; Yamin et al. 

2008); however this does not explain why high responders experience a blunted CK 

response after a second bout of eccentric exercise. 

 Due to skeletal muscles plasticity, the tissue is highly adaptable and responds to the 

above-mentioned stressors through remodeling (Proske and Morgan 2001). Plyometric 

training has been shown to increase muscle power and improve both vertical and 

horizontal jump performance (Markovic 2007; Markovic and Mikulic 2010; Vissing et al. 

2008). Ultrastructural adaptations occur in response to plyometric training, which can be 

observed by the absence of z-disk streaming following training. Studies investigating the 

effect of plyometric training on muscle fibre type transitions and cross-sectional area 

(CSA) in human subjects are few. Results are contradictory regarding the effects of 

plyometric training on human muscle fibre type transitions, although evidence points to 

increases in muscle CSA.   

Stellenbosch University http://scholar.sun.ac.za



3 

 

The aim of this thesis was to investigate skeletal muscle changes induced by an acute 

bout of plyometric exercise before and after plyometric training. 

1.2 Human models of muscle damage  

 Due to ethical reasons inducing different forms of muscle injury in humans is 

restricted and thus most researchers opt for exercise based methods. The way in which 

these methods are structured is to have participants perform exercise which places stress 

on the muscle resulting in ‘damage’ by using activities which may occur during everyday 

life or sporting events or training. The models are based on the understanding that 

eccentric contraction places higher stress on the working muscle than concentric 

contraction. Protocols are generally subdivided into a whole body exercise models 

whereby phases of eccentric and concentric contractions are cycled in the movement 

(usually mimics training and true motion) or an isolated muscle group model system where 

one specific muscle group is isolated and targeted (highly specific and does not mimic 

everyday motion), or field models where volunteers are followed during and after sporting 

competitions that are expected to contain at least a significant amount of eccentric 

contractions. 

• Elbow Flexor Models  

This model has been most extensively used by researchers in order to study exercise-

induced muscle damage. With this model the elbow flexor muscles are isolated and 

subjects perform triceps extensions against a maximal externally applied load which 

forces this muscle group to contract eccentrically, generally resulting in a severe form 

of muscle damage (Barroso et al. 2010). This type of muscle damage is usually 

induced using an isokinetic dynamometer. Dynamometers allow for eccentric motion at 

a constant angular velocity regardless of the applied load (Nikolaidis et al. 2008). The 
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load, number of repetitions, intensity and angular excursion of muscle actions vary 

according to the particular protocol used in the specific study.   

• Knee Extensor Models  

The knee extensor muscle group is another muscle group most frequently used to 

induce injury, similar to the way injury is induced in the elbow flexors (Byrne and Eston 

2002). The injury is induced by eccentric contractions performed using an isokinetic 

dynamometer or similar devices. The muscle injury is restricted to the knee extensors 

because the subjects are strapped down in a chair preventing unnecessary movement, 

while the lower leg is attached to the devices rotating arm. The subject is then told to 

resist an external load, which acts to bend the knee into flexion, using a maximal effort 

(Byrne et al. 2001).  

• Downhill Running Models 

Downhill running forces the hip and knee extensor muscle group to contract 

eccentrically which causes muscle injury due to these muscles resisting the body mass 

of the participant down a hill. This type of exercise is usually completed in the 

laboratory on a treadmill that is set at a particular gradient and at a speed based on the 

participants’ relative maximal oxygen consumption (VO2 max), peak treadmill speed or 

maximal heart rate (Nikolaidis et al. 2008; Simpson et al. 2006).  

• Plyometric model 

Plyometric jumping involves a sequence of rapid jumping movements whereby the 

large muscle groups of the lower body cycle between eccentric and concentric 

contractions. In this way concentric contractions create a greater force output when 

immediately preceded by eccentric contraction of the same muscle (Chimera et al. 
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2004). Plyometric models differ across studies by the number of sets, the number of 

jumps per set, time of rest in between sets and the type of jump. 

• Prolonged-Racing Events 

Prolonged running events such as marathon and ultra-marathon events are also used 

for inducing skeletal muscle injury (Kim et al. 2007; Knechtle et al. 2011; Koller et al. 

1998). However, the disadvantage of this type of model is that athletes competing in 

these races are generally well-trained to elite athletes whose muscles are adapted to 

the continuous running motion and hence are relatively injury resistant unless the 

terrain is extreme or other stressors are added; and it is also more difficult to control 

external factors.    

In summary, between all these unaccustomed exercises, plyometric exercise is both 

dynamic and easy to standardize. Other exercise protocols including eccentric contraction 

are too highly controlled hence is not a true reflection of real life situations. Competitive or 

training models used are difficult to control and impossible standardize.  

1.3 Plyometric Training 

Plyometric training (‘plyometrics’) now forms part of many elite athletes’ training 

regimens at least once or twice a week (Close et al. 2005; Twist and Eston 2005). 

Plyometrics of the lower body is a form of exercise that involves a series of explosive 

jumping actions. The end goal of this type of training is to increase maximum power of 

muscular contractions and has, in fact, been shown to result in improved athletic 

performance in sports involving sprinting and jumping (Chen and Hsieh 2001; Twist and 

Eston 2005).   
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Authors of a recent review point out that plyometric exercise improves strength, muscle 

power, coordination, and athletic performance by greater motor unit recruitment, enhanced 

reflex potentiation, changes in the elastic properties of muscle as well as connective tissue 

(Markovic and Mikulic 2010).  

Three phases, collectively termed the stretch-shortening cycle (SSC), are observed during 

plyometric movements (fig. 2.3) (Guerrero et al. 2008; Matavulj et al. 2001). Phase 1 

involves an eccentric motion where muscle lengthens while simultaneously producing 

force. Phase 2 includes the brief transition period from eccentric contraction to concentric 

contraction. Finally phase 3 is the muscle shortening phase (contraction) which concludes 

the jumping action (Chen and Hsieh 2001; Matavulj et al. 2001; Twist and Eston 2005).   

Twist and Eston 2005 suggested that selective damage of type II muscle fibres was 

induced because a reduction in force-velocity was observed in the athletes after an acute 

bout of plyometric exercise. Apart from this indirect suggestion, no studies have reported 

the effect of an acute bout of plyometric exercise on the sarcomere structure of muscle 

fibres.  

1.4 Structural Muscle Damage 

A vast array of literature exists and is growing surrounding the different events 

occurring during and after muscle damage. In 1902, Hough first described one of the 

symptoms of exercise-induced muscle damage known as delayed-onset muscle soreness 

(DOMS) which he noted as being due to micro-tears in muscle. It was only until the early 

80’s when research in muscle soreness and exercise-induced muscle damage picked up 

once again, and provided some of the most interesting findings to date. In 1981 Friden et 

al. first showed evidence of muscle fibre damage in 5 male participants performing 

eccentric downstairs running. Ultrastructural analysis was then performed using electron 
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microscopy on muscle biopsies from the soleus muscle up to one week post-exercise. 

From the images presented, abnormal sarcomeres were observed with myofibre 

disruptions in the form of Z-line streaming at a subcellular level. In a follow up study by 

Friden et al. 1983 it was then also found that muscle fibres which were damaged were 

predominantly type II fibres. The identification of fibre type was based on z-disk width and 

mitochondrial volume percentage. 

Acute muscle damage can be divided into two so-called phases. An early phase in which 

immediate changes occur in muscle following eccentric exercise. These early events 

leading up to fibre damage include the inability of fibres to generate the required tension, 

sarcomere length shifts outside of the optimum range and changes in excitation 

contraction coupling (Morgan and Allen 1999). Although there are different thoughts as to 

what could be responsible for the initial reduction in tension following exercise, it is 

strongly believed that it is mainly due to alterations in sarcomere structural arrangement 

and changes in excitation-contraction coupling both of which affect tension dependant on 

the length of muscle (Allen 2001; Davis and Epstein 2007; Morgan and Allen 1999). This 

exercise-induced sarcomeric damage is sufficient to cause a decrease in muscle 

functional capacity and performance (Komi 2000; Sorichter et al. 1997). Symptoms 

following eccentric exercise which can be termed as the late changes which occur in 

muscle following eccentric exercise (2nd phase) include DOMS; severe myofibre 

morphological changes and degeneration; decreased muscle strength and power, as well 

as the release of muscle cytoplasmic and contractile proteins into the circulation and 

localized inflammation (Chimera et al. 2004; Geronilla et al. 2003; Komi 2000; Sorichter et 

al. 1997; Sorichter et al. 1998; Yu et al. 2002).   

Several parameters in blood are used as indirect markers of muscle damage, the principle 

being that various muscle proteins will leak into the vasculature and can therefore be 
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evaluated and related to severity of the injury. The more common proteins include CK, 

myoglobin (Mb) and lactate dehydrogenase (LDH), with Mb assessed as a concentration, 

whereas both CK and LDH as enzyme activities. The most common marker is CK activity 

but this variable does not correlate well with pain, the amount of structural damage or the 

reduction of muscle function (Chimera et al. 2004; Sorichter et al. 1997). What makes it 

most difficult to explain is that whatever the acute adaptation is, it is unlikely to be the 

same kind of adaptation resulting from training; therefore it must be localized at the 

membrane. This may be due to the escape of this cytoplasmic protein through the 

sarcolemma after damage followed by membrane closure and is therefore not a good 

marker of contractile protein damage (Feasson et al. 2002).  

The level of C-reactive protein (CRP) in plasma has been proposed as a marker of 

inflammatory processes occurring as a result of skeletal muscle damage following 

exercise, since several similarities are shared with the acute phase response of 

inflammatory diseases. CRP is a member of the class of acute-phase reactants (proteins 

that increase or decrease their plasma concentrations in response to inflammation) as its 

levels rise dramatically during inflammatory processes occurring in the body (Miles et al. 

2007). CRP rises above normal limits within 6 hours, and peaks at 48 hours (Miles et al. 

2007; Phillips et al. 2003). In response to tissue injury white blood cells are recruited to the 

site of injury and release cytokines such as IL-6. IL-6 triggers the synthesis of CRP by the 

liver and activates the complement system by binding to phosphocholine present on the 

surface of dying cells (Thompson et al. 1999).  

In addition to membrane damage, which allows enzymes to be released, intramuscular 

structural and functional proteins that are damaged by the injury may be activated, such as 

calpains. Calpains breaks down myofibrillar proteins thereby facilitating their release into 

circulation and allowing them to be detected in blood.  
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1.5 Calpains and calcium dependant degradation 

Two types of Ca2+-dependant proteases are specific to skeletal muscle fibres and 

are responsible for the breakdown of myofibrillar proteins, namely the ubiquitous calpains 

(calpain-1 and calpain-2) and calpain-3 (Cagan et al. 1991; Murphy 2010). These 

proteases seem to be the initial trigger for skeletal muscle degradation (Cagan et al. 1991; 

Huang and Forsberg 1998). Ca2+-dependant proteases cleave important linking elements 

of the sarcomere, such as titin, at the start of skeletal muscle degradation. During rest, in 

the presence of resting intracellular Ca2+ concentrations these proteases are mostly 

present in their inactive full-length form. Activation of the protease function only occurs 

once part of the molecules structure is cleaved.  

Calpain-3 contains three additional insert regions in addition to the domains which are 

similar to the ubiquitous calpain isoforms. These additional inserts are the NS, IS1 and IS2 

regions. In order for calpain-3 to become active the IS1 region must first be cleaved. 

Importantly, the IS2 region is believed to be attached to the protein, titin under normal 

conditions (Hayashi et al. 2008; Kinbara et al. 1998).  

Interestingly, calpain-3 has been suggested to be involved in sarcomeric remodeling and 

maintenance of muscle integrity rather than its assumed role in muscle degradation 

(Beckmann and Spencer 2008). A defect in calpain-3 expression results in limb-girdle 

muscular dystrophy type 2A (LGMD2A), whereby affected individuals develop the disease 

later in life (approximately 10 years of age) (Gallardo et al. 2011). Previous studies 

proposed that the activity of calpain-3 might be regulated by the protein’s normal 

attachment to titin at its c-terminus, situated at the M-band (Hayashi et al. 2008; Murphy 

and Lamb 2009). Because, thus far in vivo activation of calpain-3 by eccentric exercise 

has been shown to be the only physiological situation in which this occurs and secondly 
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because mutations in the titin gene coding for the protein region adjacent to the calpain-3 

binding site results in tibial muscular dystrophy. Murphy et al. (Murphy et al. 2007) 

provided evidence that calpain-3 is autolysed 24hrs after a single maximal knee extension 

eccentric exercise bout in human vastus lateralis muscle. Taken together, this raises the 

question whether calpain-3 is regulated by increases in resting cytoplasmic Ca2+ 

concentrations or whether it is stretch dependant. 

1.6 Calpain-3 Regulation: Small changes in resting Ca2+ concentrations or Stretch 

dependant activation. 

It is clear that eccentric exercise results in the loss of calcium homeostasis (Morgan and 

Allen 1999). Two schools of thought exist as to how calpain-3 is autolysed following 

eccentric exercise and hence initiating muscle breakdown: 1) due to small changes in 

resting cytoplasmic Ca2+ concentrations following  eccentric exercise; and 2) due to 

mechanical stress placed on muscle during muscle lengthening. 

• Ca2+ concentration activation 

Numerous studies demonstrate that eccentric contractions result in membrane 

damage. Both transient muscle cell membrane disruption as well as the disruption 

of the sarcoplasmic reticulum structure, would allow Ca2+ to move down its 

concentration gradient thus raising intracellular Ca2+ concentrations. Increasing 

intracellular Ca2+ concentrations has the potential for activating the calpain 

proteolytic system which cleaves a wide variety of proteins such as cytoskeletal 

elements, contractile proteins or regulatory proteins, many of which are reported to 

be damaged following lengthening contraction. Therefore an influx of intracellular 

Ca2+ could initiate skeletal muscle breakdown following eccentric contraction, 

immediately after eccentric injury and as the injury progresses (Armstrong 1990).   
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• Mechanical activation  

Titin is a large abundant protein of skeletal muscle with elastic properties useful 

during regulation of contraction and relaxation (Kontrogianni-Konstantopoulos et al. 

2009; Ojima et al. 2005). The parallel alignment of two Z-disks marks the boundary 

of a single sarcomere within a muscle cells cytoskeleton. Titin is anchored to the Z-

disk and spans half the length of the sarcomere, forming a heterodimer with the 

protein obscurin (Kontrogianni-Konstantopoulos et al. 2009). Calpain-3 attaches to 

titin at its c-terminus which attaches at the M-line of the sarcomere (Kontrogianni-

Konstantopoulos et al. 2009; Ojima et al. 2005). It is thought that when sarcomeres 

are overstretched placing strain on titin; calpain-3 may detach from its normal 

arrangement resulting in its autolysis and thus initiating muscle breakdown.  

If calpain-3 is regulated by the above mentioned mechanical activation, one could argue 

that calpain-3 activity should commence immediately after eccentric contraction induced 

muscle injury. This does not account for the 24 hr delay in calpain-3 activation following a 

single eccentric exercise bout observed by Murphy et al. (Murphy et al. 2007). Murphy and 

Lamb (Murphy and Lamb 2009)provided evidence that calpain-3 in fact is governed by 

small increases in resting Ca2+ concentrations, concluding that calpain-3 remains tightly 

bound to titin at its c-terminus irrespective of fibre stretching or increased Ca2+ 

concentrations. 

1.7 Ultrastructural skeletal muscle damage   

The smallest functional unit of skeletal muscle contraction is the sarcomere and 

repeat sections of sarcomeres make-up the myofibrils. The Z-disks create the boundary of 

a single sarcomere and are part of the muscle cell cytoskeleton.  Cytoskeletal proteins 
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such as actinin, desmin and dystrophin stabilize the sarcomeres by adding structure and 

may be injured either by overstretched sarcomeres or by protease activation (Allen 2001).  

It is well documented in literature that eccentric or unaccustomed exercise results in 

skeletal muscle damage (Chimera et al. 2004; Geronilla et al. 2003; Komi 2000; Sorichter 

et al. 1998). The earliest changes observed following muscle damage induced by eccentric 

contraction, involve the disruption of sarcomere and cytoskeleton components resulting in 

structural and mechanical integrity being compromised (Lieber et al. 1996). Membrane 

disruption, loss of calcium homeostasis, the impairment of muscle contraction resulting in 

the loss of force production is all included in the early changes after eccentric contraction. 

Evidence from electron microscopic studies give a visual image of sarcomere 

disorganization and z-line streaming which can range from moderate to severe with t-

tubule and sometimes mitochondrial damage (Lauritzen et al. 2009; Takekura et al. 2001).  

However, the exact time course and sequence of events surrounding sarcomere disruption 

remain unknown (Morgan and Allen 1999). 

In animal models, Lehti et al. (Lehti et al. 2007) showed that titin; desmin and dystrophin 

(cytoskeletal proteins) are vulnerable to damage in the early phase after downhill running. 

Desmin forms a scaffold around the Z-disk of the sarcomere and connects the Z-disk to 

the subsarcolemmal cytoskeleton. It links the myofibrils laterally by connecting the Z-disks. 

Their functions during contraction are to maintain the structural and mechanical integrity of 

the fibre while also helping in force transmission and longitudinal load bearing (Paulin and 

Li 2004). A recent study by Seto et al (Seto et al. 2011) demonstrated that alpha actinin-3-

deficient muscle is more susceptible to damage. They showed that extensor digitorum 

longus muscle from ACTN3 knockout mice had significantly reduced force producing 

capacity following eccentric contractions induced with a force plate.   
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Very few studies have considered how vulnerable other myofibrillar or cytoskeletal proteins 

might be. Still, it has been demonstrated that nebulin (Trappe et al. 2002; Yu et al. 2003) is 

degraded following high-intensity eccentric resistance exercise in human research 

participants. Only one study has investigated muscle biopsies from subjects with exercise-

induced DOMS, whether or not obscurin is affected. It was either maintained in its position 

at the M-band level or diffusely spread over the sarcomeres (Carlsson et al. 2008). 

Collectively, the unique structural properties and subcellular locations of titin, nebulin, and 

obscurin suggest that they function as molecular scaffolds allowing actin and myosin 

filaments to remain in place in sarcomeres, providing binding sites for sarcomeric proteins 

and coordinating the sarcomeric alignment of nearby structures. For a comprehensive 

review see Kontrogianni-Konstantopoulos et al. (Kontrogianni-Konstantopoulos et al. 

2009). Obscurin and calpain-3 both bind titin at its c-terminus along the z-line where Type 

II muscle fibre damage due to eccentric contraction has been reported over the past 30 

years, while the type I fibres have been found to be less affected by this contraction type 

(Twist and Eston 2005). At first it was thought that the preferential fibre type II biased 

damage was due to metabolic differences between fibre types. However Patel et al. (Patel 

et al. 1998) suggested this not to be the case, when the researchers trained rabbit dorsi-

flexor muscles (predominant type II fibre composition) with an isometric electrical 

stimulation protocol to increase muscle oxidative capacity. Results showed that increasing 

muscle oxidative capacity was not sufficient to protect muscle from a subsequent bout of 

eccentric contraction induced injury. 

Focus then shifted to structural and cytoskeletal differences between different muscle fibre 

types. Fast twitch fibres are characterized by possessing narrower and weaker z-lines, 

therefore during muscle lengthening with contraction it is thought that the stronger 

sarcomeres pull the weaker ones apart resulting in z-line streaming and contractile protein 
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release (Marginson et al. 2005). Slow oxidative fibres appear to be better protected from 

repeat mechanical loading because they possess higher levels of certain cytoskeletal 

proteins which maintain its structural integrity (Tiidus 2008).  

1.8 Blood markers of muscle damage 

 Injury of skeletal muscle frequently occurs during normal life, following 

unaccustomed exercise and during contact sports (Smith et al. 2008). One symptom 

includes the release of muscle cytoplasmic and contractile proteins into the circulation. 

Several parameters in blood are used as markers of muscle damage, because these will 

leak into the circulation. Markers include proteins such as CK, Mb and LDH.  

CK is a key enzyme in muscle metabolism. CK is a dimeric globular protein and has an 

approximate molecular weight of 43 kDa (Brancaccio et al. 2008; Brancaccio et al. 2007). 

During muscle contraction it catalysis the transfer of high-energy phosphate between 

phosphocreatine and adenosine-diphosphate. There are at least five CK isoforms, three of 

which are present in the cytosol and two in the mitochondria. Eccentric exercise is 

associated with the greatest increases in serum CK enzyme activity but the time point at 

which CK peak release into circulation occurs, varies across the literature (Brancaccio et 

al. 2007). Brancaccio et al. 2008 report that peak CK release following eccentric exercise 

is at 96 hours post-exercise. However this will differ depending on the level of an 

individual’s training, exercise type, intensity, and duration. 

CK-MM is skeletal muscle specific and CK-MB is supposed to be cardiac muscle specific, 

although an increase in CK-MB can be representative of injury to cardiac or skeletal 

muscle injury. Physical activity may increase both total CK and CK-MB but using a ratio of 

CK-MB/total (% relative index) CK one can determine whether cardiac or skeletal muscle 
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has been damaged. An increased (% relative index) is indicative of cardiac injury as the 

cause of elevated CK-MB in serum. 

Mb release accompanying muscle damage, has also promoted the use of this indirect 

marker (Brancaccio et al. 2010). However this is also a cytoplasmic protein which causes 

the same problems of interpretation that exist with CK. Neither gives a clear indication of 

structural muscle damage; both are not specific to skeletal muscle force production which 

is possibly why they correlated poorly with the decrease in muscle function after damage 

(Chimera et al. 2004). Myoglobin is a relatively small protein with a molecular weight of 

17.8 kDa and is rapidly released into circulation therefore clearance of myoglobin from the 

blood is rapid (Sorichter et al. 1999). It functions as an oxygen carrying protein in muscle 

fibres and is predominantly present in slow oxidative muscle fibres.   

The LDH enzyme in recent times has been used less for the diagnosis of muscle fibre 

injury because of these same problems of not being a structural protein. LDH activity can 

be measured in a variety of tissues (most tissues). It converts pyruvate to lactate during 

glycolysis and has its maximal activities at high pyruvate concentrations (Brancaccio et al. 

2008). There exist five isoenzymes which are composed of a combination of the M-

polypeptide and H-polypeptide. Exercise has been found to induce a significant increase in 

LDH, the degree of which depends on the intensity and duration of the exercise bout. 

Eccentric exercise has been found to increase serum LDH levels much more so than 

concentric exercise and peak values in serum can be observed between three and five 

days following exercise (Brancaccio et al. 2008). 

One of the reasons for the increase in these proteins in the circulation is not structural 

protein damage, but that the sarcolemma is ruptured and allows the escape of cytoplasmic 

proteins into circulation (Schiaffino and Partridge 2008). However, the membrane has a 
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mechanism of ‘self-sealing’ and is able to close itself off as a protective measure, which 

could prevent further damage to contractile proteins and reduce the loss of muscle 

functional capacity (Schiaffino and Partridge 2008). Currently this process is unpredictable, 

and needs to be further investigated. 

If the skeletal muscle fibre is unable to seal itself off properly, this causes additional 

release and greater elevation in circulating levels of Mb especially because it is the 

smallest of the proteins discussed so far. Due to the relatively simpler assay and lower 

cost of assessing blood CK levels, it is often used clinically and in applied studies as a 

surrogate measure of Mb.  

1.9 Rhabdomyolysis  

 Adverse events may occur from eccentric exercise protocols and in the worst case 

this may lead to death from acute renal failure as a result of a condition called 

rhabdomyolysis (Moeckel-Cole and Clarkson 2009). This condition may occur in healthy 

individuals and goes hand in hand with large increases in serum CK and myoglobinurea, 

which can be exacerbated with heat stress and dehydration. 

Rhabdomyolysis occurs in varying levels of severity and consists of the rapid breakdown 

of skeletal muscle fibres in damaged muscle tissue (George et al. 2010; Moeckel-Cole and 

Clarkson 2009). Muscle destruction results in the release of muscle cell protein content 

into the bloodstream, such as CK and Mb (Sorichter et al. 1997). This condition in athletes 

and healthy populations normally is not dangerous and the symptoms are tolerable, 

however exertional rhabdomyolysis becomes clinically relevant when muscle damage is 

too severe (Sayers and Clarkson 2002). Severe muscle damage may result in the 

continued release in Mb which precipitates in the kidney tubules. There it binds to a protein 
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called Tamm-Horsefall protein and forms solid deposits which obstruct the normal flow of 

fluids and may lead to kidney failure and even death (Moeckel-Cole and Clarkson 2009). 

Light rhabdomyolysis generally affects athletes who train too strenuously in a mode to 

which they are unaccustomed, or sedentary subjects who take part in unaccustomed 

exercise for the first time. DOMS may occur with or without rhabdomyolysis. However, the 

increase in the muscle proteins (CK, Mb) released is greater with rhabdomyolysis and 5-

fold or higher elevations in CK have been proposed as a reasonable cut-off (Brown 2004). 

However, the definition of the normal range for CK varies e.g. normal range: 55 to 170 

U/L) (Brown 2004) or 15-195 U/L (Varsano et al. 2000). A 5-fold increase is also quite 

vague and possibly not so relevant to eccentric exercise where CK activity can easily be 

higher than 1 000 U/L. Importantly, although a vast amount of literature is currently 

available on rhabdomyolysis cases, however it still remains unclear why rhabdomyolysis 

occurs in some individuals and not in others who performed the same physical activity. 

1.10 Responders vs. Non-responders 

It has been reported that with eccentric exercise induced damage, protein markers 

of muscle damage usually increase in circulation after the exercise bout (Brancaccio et al. 

2008). However indirect marker variability in response to eccentric exercise exists 

amongst individuals. The literature reports that in a group of people exercising at a similar 

intensity and in a similar environment, only a small percentage of the group would 

eventually develop rhabdomyolysis, with most maintaining a lower CK profile (Clarkson et 

al. 2005b; Devaney et al. 2007; Yamin et al. 2010). Why selected individuals and not 

others present with rhabdomyolysis is unclear, although several predisposing conditions 

have been identified. These include genetics, training status, dehydration, bacterial or viral 
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infections and alcohol (Braseth et al. 2001; Knochel 1990; Marinella 1998; Vertel and 

Knochel 1967). 

1.11 Single Nucleotide Polymorphisms  

Single nucleotide polymorphisms (SNPs) are common variations within the genetic 

sequence with a frequency of at least 2% in a given population which is not due to new 

mutations. This DNA variation occurs when a single nucleotide in the genome differs 

between paired chromosomes in an individual. It is the most frequent form of DNA 

variation in the genome. SNPs can help explain inter-individual differences in many 

conditions and is useful in identifying an individual’s susceptibility for or protection against 

various diseases (15817725, 17289909, and 1579488(Clarkson et al. 2005b; Devaney et 

al. 2007; Wen et al. 2005). But they are also important in other phenotypes besides 

disease. For SNPs important in exercise physiology a comprehensive review is published 

regularly in Medicine Science Sport and Exercise (Bray et al. 2009; Hagberg et al. 2011; 

Rankinen et al. 2002). These reviews suggest that larger sample sizes are required to 

investigate the influence of SNPs on muscle characteristics. This is true however smaller 

studies can use the database of SNPs to determine whether subjects fit with the current 

SNPs put forward.  

Several genetic polymorphisms associated with exertional muscle damage variability have 

been the focus of recent publications. These studies indicated that genes involved in 

muscle structure (ACTN3) or that contribute to growth (IGF2), inflammation (TNFA and 

IL6), or force production (MYLK) can contain polymorphisms that affect baseline CK 

activity and exacerbate the muscle damage response to eccentric exercise, generally 

predisposing those with the rare alleles to greater levels of damage. 

• Myosin light chain kinase (MYLK): 
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Myosin light chain kinase (MLCK) is expressed by the MYLK2 gene (Stull et al. 2011) 

in skeletal muscle tissue where it is predominantly expressed in fast twitch muscle 

(Clarkson et al. 2005b; Stull et al. 2011). It acts to phosphorylate sarcomeric myosin’s 

regulatory light chain (RLC) (Clarkson et al. 2005b), which has an important regulatory 

function in force development (Clarkson et al. 2005b; Stull et al. 2011). Clarkson et. al. 

(Clarkson et al. 2005b) suggested that polymorphisms in MLCK would lead to an 

increase in regulatory light chain (RLC) phosphorylation in some people, allowing for 

greater tension generation during muscle lengthening and consequently greater muscle 

damage in those people compared to others without the SNP. 

Table 1.1 CK responses and various SNPs suggested as being associated with eccentric 

exercise-induced muscle damage. 

Subject # Exercise protocol CK (U/L) Mb (ng/ml)

in genotype groups at day 4 at day 4

157 78 men MYLK (C49T) CC 97 50 max tricep extensions using  non-dominant arm. 5660 316

79 w omen CT 50 8476 433

TT 6 29063 937

157 78 men MYLK (C37885A) CC 121 50 max tricep extensions using  non-dominant arm. 342

79 w omen CA 35 494

AA 1

157 78 men ACTN3 RR 35 50 max tricep extensions using  non-dominant arm. 106

79 w omen RX 78 126

XX 41 99

88 60 men CK-MM AA 9 physically active stepping up and dow n tw o stairs for 5 min 1048

28 w omen AG follow ed by 15 squats w hile w earing a backpack

GG 79 w eighted at 30% of their body w eight. 12

88 60 men ACE II n/a physically active stepping up and dow n tw o stairs for 5 min 26

28 w omen ID n/a follow ed by 15 squats w hile w earing a backpack

DD n/a w eighted at 30% of their body w eight. 146

70 42 males IL6 G-174C GG 44 physically active one set of 50 maximal eccentric movements 2604

28 w omen GC 24 of the elbow  f lexors (nondominant arm), 7592

CC 2 using a dynamometer. 8403

70 42 males TNFA G-308A GG 58 physically active one set of 50 maximal eccentric movements 5000

28 w omen GA 12 of the elbow  f lexors (nondominant arm), 1500

using a dynamometer.

156 78 females IGF-II TT 76 50 maximal isotonic eccentric (muscle lengthening) 5278 333

T13705C TC 1 contractions of the elbow  f lexor muscles of their 21152 1099

nondominant arm on a modified preacher curl bench.

78 males IGF2AS GG 16 50 maximal isotonic eccentric (muscle lengthening) 12069 492

G11711T TG 38 contractions of the elbow  f lexor muscles of their 6247 289

TT 20 nondominant arm on a modified preacher curl bench. 17160 659

SNP GenotypeSubject # Gender
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In the study by Clarkson et al (Clarkson et al. 2005b), participants performed 50 

maximal triceps extensions using the non-dominant arm. Two MYLK SNPs were 

tested: C49T (genotypes are CC, CT and TT) and C37885A (genotypes are CC, CA 

and AA); in 156 male and female subjects (numbers within genotype groups vary see 

table 2). The authors found that individuals with the homozygous TT rare allele (MYLK 

C49T) had significantly greater increases in CK and Mb compared to the heterozygotes 

and and subjects with the MLCK C37885A heterozygotes (CA) had significantly greater 

CK levels compared to the homozygous people.  

• �-actinin 3 (ACTN3): 

Alpha actinins functions to bind and anchor actin filaments (Clarkson et al. 2005a; 

North and Beggs 1996). Clarkson et. al. (Clarkson et al. 2005b) linked genetic 

variations in the myofibrillar protein ACTN3 which is localized to the z-disk and is fast-

twitch specific to explain the variability in response to exercise-induced muscle 

damage. A polymorphism of ACTN3 has previously been identified in humans and 

individuals who are homozygous for the ACTN3 577X allele cannot produce the 

ACTN3 protein in their muscle (Clarkson et al. 2005b; Doring et al. 2010). Clarkson et. 

al. (Clarkson et al. 2005b) tested blood from 157 individuals who completed an elbow 

flexion eccentric exercise protocol to test whether CK and Mb activity was associated 

with ACTN3 genotypes (RR, RX and XX). The authors however found no association 

with this mutation and increases in CK and Mb; although concluding that the 

polymorphism may affect resting CK levels in healthy individuals because they 

observed that subjects with the ACTN3 577X polymorphism had lower baseline CK 

levels compared to heterozygotes. 

• Insulin-like growth factor II (IGF2) genes: 
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Insulin-like growth factors are involved in both muscle damage and repair mechanisms 

(Evans and Cannon 1991; Florini et al. 1996; O'Dell and Day 1998). Devaney et. al. 

(Devaney et al. 2007) investigated whether there were any associations between 

various SNP’s in the IGF2 gene region and indicators of muscle damage such as CK, 

and Mb, using the same study population and exercise protocol as mentioned above 

(Clarkson et al. 2005b). More significant associations were only found in men where 

IGF2 (C13790G, rs3213221), IGF2 (ApaI, G17200A, rs680), IGF2 antisense (IGF2AS) 

(G11711T, rs7924316), and IGFBP3 (_C1592A, rs2132570) were significantly linked to 

indicators of muscle damage; they found that men homozygous for the rare IGF2 

G13790C allele (CC) and rare allele for the ApaI G17200A (AA) SNP had high post 

exercise serum CK activities and those who were homozygous wild type for the 

IGF2AS G11711T (GG) SNP had greater CK and myoglobin responses to exercise. 

(Devaney et al. 2007). 

• Muscle specific CK: 

The muscle specific CK (CK-MM) can be found along the M-line and sarcoplasmic 

reticulum (Zhou et al. 2006). The CK-MM-encoding gene has been mapped to 

chromosome 19q13.2–13.3 (Heled et al. 2007; Zhou et al. 2006) where it is positioned 

in the same region next to two other genes associated with muscle function and 

specific muscle pathologies. Due to these observations Heled et. al. 2007 hypothesized 

that different genotypes of the CK-MM NcoI polymorphism may be associated with the 

inter-individual CK responses to exercise. Eighty eight physically active male and 

female volunteer subjects were subjected to an exercise protocol which included 

stepping up and down two stairs (for 5 minutes), followed by 15 squats while wearing a 

backpack weighted at 30% of their bodyweight. Heled et al 2007 classified nine 

participants as high responders according to their increases in serum CK, which on 
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average was significantly higher for the high compared to the low responder group, 

(1,048±421 U/L compared with 12±8 U/L, respectively). However Yamin et. al. (Yamin 

et al. 2010) argued that CK response following eccentric exercise was not associated 

with CK-MM Ncol polymorphism and that the cut-off point used to define high CK 

responders and other aspects of the study by Heled et. al. 2007 was flawed.  

• Angiotensin-converting enzyme (ACE): 

ACE is expressed in skeletal muscle tissue and plays an important role in the body’s 

renin-angiotensin system, which mediates extracellular volume and arterial 

vasoconstriction (Dietze and Henriksen 2008; Jones and Woods 2003). The two main 

functions of ACE include the generation of angiotensin (ANG) II and degrading kinins 

during exercise (Coates 2003; Jones and Woods 2003).  Since the discovery of an 

insertion (I)/deletion (D) polymorphism of the ACE gene (Danser et al. 1995), several 

studies have provided evidence of an association between this polymorphism and 

human physical performance (Giaccaglia et al. 2008; Rodriguez-Romo et al. 2010; 

Woods 2009). Due to extensive renin-angiotensin system involvement in skeletal 

muscle metabolism regulation and injury responses, Yamin et. al. 2007 hypothesized 

that the ACE ID genotype may explain inter-individual differences in CK response. The 

authors concluded that individuals with the II genotype may be more susceptible for 

developing muscle damage whereas individuals with the DD genotype are more 

protected.   

• TNFA (-308) and IL6 (-174) promoter polymorphisms: 

Yamin et. al 2008 investigated whether two gene promoter polymorphisms involved in 

the inflammatory response were associated with individual systemic CK response to 

eccentric injury using an elbow flexor model. A G/A polymorphism at position -308 of 
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the TNFA gene (Vishnoi et al. 2007) and G/C polymorphism at position -174 of the IL-6 

gene (Fishman et al. 1998) were assessed and a stronger association between the IL-6 

gene promoter polymorphism and CK response following eccentric exercise was found 

compared to a milder association between TNFA G-308A genotype and CK activity. 

Data presented by Yamin et. al. 2008 suggests that individuals expressing 

homozygosity for the IL6-174C allele are at greater risk for exercise induced muscle 

damage.   

1.12 Adaptation to muscle damage (Repeat bout effect) 

 Exercise-induced muscle damage does not lead to permanent damage but rather 

adaptation that follows. Adaptation may occur as early as changes from a single bout of 

exercise, with perhaps immediate subcellular adaptations occurring. The repeat-bout effect 

is a phenomenon where muscle protects itself from injury, compared to the extent of injury 

caused by the initial exercise session, the second time around. For the second bout, less 

damage is evident but it does not prevent muscle damage. This protective mechanism 

relieves the symptoms of muscle soreness, swelling and inflammation and improves 

recovery time for muscle strength and range of motion. It also reduces the release of 

muscle proteins into circulation.  

Typical early studies evaluated the repeat bout effect by introducing a single 

unaccustomed exercise bout and then repeating the same single exercise bout after a 

week to a month. A study done by Clarkson et al. (Clarkson et al. 1987) is an example of 

these early studies. The investigators assessed common indicators of muscle damage and 

found that subjects had both lower pain and CK responses to the exercised ipsilateral limb 

(same limb) on the second bout of exercise spaced seven days apart. However this 

phenomenon is more complicated than these earlier studies suggest, with recent studies 
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presenting even more surprising results since the protective effect is lost if the time 

between bout 1 and bout 2 is too long. This raises the question, “how long does the 

protective effect last?” Nosaka et al. 2001 provided evidence that the muscle adaptive 

protective effect may last for 6 months following the initial exercise bout. In this study high 

force eccentric exercise of the elbow flexors were performed in 2 bouts in 35 subjects 

across three groups; group 1, 2 and 3 repeated their second exercise bouts at 6, 9 and 12 

months respectively. The protective effects included were lost between months 9 and 12.  

Most studies used maximal or close to maximal (80% of the pre-exercise maximal 

isometric force) eccentric contractions to investigate the repeat bout effect (Chen 2006; 

Clarkson et al. 1987; Nosaka et al. 2001; Skurvydas et al. 2011). Recently Chen et al. 

(Chen et al. 2010) showed that by replacing one maximal high force exercise bout with 

four sub-maximal exercise sessions, would offer the same protection against a subsequent 

bout of maximal eccentric exercise. Results included no significant differences between 

both the 100% efforts of the second bouts between the control group and the group that 

performed the four submaximal bouts. In other words, where the CK, Mb and muscle 

soreness responses were significantly reduced after the second bout, both groups had 

adapted to the same extent.   

Although the repeat bout effect is extensively demonstrated in literature (Clarkson et al. 

1987; Howatson et al. 2007; McHugh 2003), a general consensus as to what the actual 

underlying mechanisms of this phenomenon are, are yet to be met, although several have 

been suggested. McHugh (McHugh 2003) categorized three main theories as: the neural 

adaptation theory of muscle damage; cellular adaptation theory and mechanical adaptation 

theory; although inflammatory adaptation needs to be considered as well. 
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Neural adaptation theory: To investigate the central nervous systems involvement as a 

potential mechanism to protect skeletal muscle from subsequent injury, neural adaptations 

would have to include one or more of the following: better motor unit recruitment, 

enhanced motor unit synchronization, the allocation of workload across more fibres and 

increased recruitment of slow fibres (Tiidus 2008).  

Using surface electromyography (EMG), Warren et al. (Warren et al. 2000) provided 

evidence of a decrease in median frequency in the tibialis anterior muscles during the 

second bout of eccentric contractions suggesting either the recruitment of slow twitch 

fibres or more efficient synchronisation of motor units. More evidence supporting the 

neural adaptation theory comes from studies by Howatson and van Someren 2007 and 

Newton et al. 2007. These authors showed that muscle damage (measured by changes in 

maximal isometric torque, upper arm circumference and plasma CK) in the repeat bout of 

eccentric exercise performed by the contralateral arm two weeks post, was significantly 

reduced, and they attributed to the reduction of some muscle damage markers’ responses 

as a possible learning effect. More recently Dartnall et al. 2011 demonstrated a 57% 

increase in motor unit synchronization on the second bout of eccentric exercise in human 

biceps brachii muscle compared to the first bout which was 1 week earlier. However 

evidence exists suggesting that the repeat bout effect can occur independent of neural 

adaptation: experiments using electrical stimulation of eccentric contractions in a human 

elbow flexor model showed that significantly reduced responses were observed for 

markers of muscle damage following a repeat bout of the same damaging protocol 

(McHugh 2003; Nosaka et al. 2002; Sacco and Jones 1992). From this it was concluded 

that the central nervous system’s involvement in the repeat bout effect is minimal and 

peripheral adaptation plays a more important role. 
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Cellular adaptation theory: Possible cellular adaptations that have been proposed in the 

literature include the addition of adjacent sarcomeres, better cycling of calcium during 

excitation contraction coupling, increased protein synthesis (also stress proteins), 

strengthened plasma membrane, adaptation of the inflammatory response and the 

removal and replacement of damaged with regenerated fibres.   

Proske and Morgan (Proske and Morgan 2001) suggested that the protective effect 

experienced on the second bout following the initial bout of eccentric exercise may be due 

to a shift in the length-tension relationship toward a longer muscle length, resulting from 

the addition of sarcomeres along the length of muscle fibres. Although this theory seems 

attractive and various animal (Lynn and Morgan 1994; Lynn et al. 1998) and recently 

human studies (Brockett et al. 2001) lend support to it, reports remain disagreeing. A study 

by Chen et al. 2007 provides evidence against the notion that the repeat bout effect 

depends on the shift in optimum angle. The authors compared the effect of four different 

unaccustomed eccentric exercise intensities (100%, 80%, 60% and 40%) on optimum 

angle shift and the extent of muscle damage induced by a second bout of eccentric 

exercise (two to three weeks later) at maximum intensity. They found a significantly 

greater rightward shift of the optimum angle for the higher intensities compared to the two 

lower exercise intensities following bout one. All groups however, showed significantly 

attenuated responses in muscle damage markers following bout two compared to bout one 

(100%).  Therefore it can be deduced that the repeat bout effect cannot merely be 

explained by an increase in sarcomere number in series. 

An impaired excitation contraction coupling system has also been implicated in muscle 

adaptation following a single bout of eccentric exercise (Warren et al. 2001). Changes in 

E-C coupling would affect an immediate loss of muscular strength following eccentric 

exercise (Howell et al. 1993). However if this were the case losses in strength experienced 
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immediately after the second bout of eccentric exercise would not mimic the initial loss of 

strength after the first bout as demonstrated by Balnave and Thompson (Balnave and 

Thompson 1993); Brown et al (Brown et al. 1997) and McHugh and Pasiakos (McHugh 

and Pasiakos 2004).  

Studies demonstrate a blunted inflammatory response following a repeat bout of eccentric 

exercise compared to the inflammatory response directly after the initial bout (Pizza et al. 

1999). This is possible, and could also explain why preconditioning muscle with passive 

stretching and isometric contractions also offers protection against a subsequent bout of 

eccentric exercise (Koh and Brooks 2001; Pizza et al. 2002), resulting in a blunted 

inflammatory response similar to that experienced from an initial bout of eccentric 

exercise. This led the authors to conclude that the initial inflammatory response to the 

initial exercise bout (regardless of whether it was concentric preconditioning or an 

eccentric bout) resulted in a protective effect. The initial bout of exercise causes 

mechanical disruption to myofibrils resulting in a local inflammatory response which results 

in secondary damage; however reduced mechanical disruption experienced immediately 

post-exercise in the repeat bout cannot be explained by an inflammatory adaptation, 

because inflammation takes time to develop.      

Mechanical adaptation theory: Mechanical adaptation to eccentric exercise includes an 

increase in either passive or dynamic muscle stiffness, cytoskeletal adaptations or an 

increase in intramuscular connective tissue as described in a review by McHugh (McHugh 

2003). Increases in both passive and dynamic muscle stiffness following eccentric training 

have been previously confirmed, both in human studies (Pousson et al. 1990) as well as 

animal studies (Reich et al. 2000). These observations could reflect adaptation to 

cytoskeletal elements responsible for the structure, maintenance and alignment of the 

sarcomere.   
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Parcell et al. (Parcell et al. 2009) observed an increase in desmin content after 12 weeks 

of resistance training in human subjects. This study provides evidence that the 

cytoskeleton is adaptable with a relatively long and consistent training programme. Barash 

et al. (Barash et al. 2002) demonstrates a loss of desmin immunostaining (qualitative 

observation) immediately after a single eccentric contraction bout but a tremendous 

quantitative increase in desmin content 72-168 h later, in rats. This study indicates a much 

more dynamic restructuring of the muscle's intermediate filament system and may provide 

a structural explanation for the protective effects observed in muscle after a single 

eccentric contraction bout. Contradicting evidence however exists: Sam et al. (Sam et al. 

2000) showed in a mouse model that muscles absent of desmin are less susceptible to 

muscle damage. This finding in the animal model is complemented by findings of McHugh 

et al. (McHugh et al. 1999) who found that muscle possessing more passive stiffness may 

in fact, have a greater susceptibility to an initial damaging event. This was demonstrated 

when comparing individuals classified as having stiff hamstrings with those who had more 

compliant hamstring muscles (McHugh et al. 1999); they showed that indicators of muscle 

damage (Strength loss, pain, muscle tenderness, and CK activity) were greater for 

individuals with stiffer hamstrings.  

Other theories attempting to explain the repeated bout effect includes possible protection 

by heat shock proteins and the ‘stress-susceptible fibre hypothesis’ (Koh 2002; Newham et 

al. 1987; Thompson et al. 2002; Thompson et al. 2001). Thompson et al. 2001 

demonstrated that heat shock proteins are increased by a single bout of elbow flexor 

eccentric exercise in humans. This observation led to the postulation that heat shock 

proteins may protect muscle tissue from a second bout of eccentric exercise, however 

direct evidence is needed. The stress-susceptible fibre hypothesis suggests that within a 

pool of muscle fibres, some fibres are stress resistant and other stress-susceptible. After a 
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bout of unaccustomed eccentric exercise the stress-susceptible fibres degenerate and 

after are regenerated and remodelled becoming stronger, thus the amount of stress-

susceptible fibres within the pool of muscle fibres are less resulting in less damage. This 

may be underlying mechanisms for extensive adaptation in response to training as 

opposed to a single bout effect. 

1.13 Adaptation to muscle following plyometric training  

Plyometric training results in various adaptation responses which may improve athletic 

performance by greater motor unit recruitment, enhanced reflex potentiation, and changes 

in the elastic properties of muscle as well as connective tissue (Vissing et al. 2008). It 

incorporates various jumping activities such as: drop, squat, vertical and depth jumps. 

Currently it forms part of many athletes training regimens at least two or three times per 

week and is associated with sporting activities such as sprinting, basketball, volley ball, 

soccer and even rugby.   

1.13.1 Musculoskeletal Adaptation 

Bone Adaptation 

During plyometric jumping the active eccentrically contracting muscle groups can 

withstand loads in excess of 5 times (well beyond the force which could be voluntarily 

produced) the athlete’s body weight (McMahon and Greene 1979) and this activation 

occurs in less than 60 ms (Toft et al. 1989). Some of the stressful forces are absorbed by 

the combined musculoskeletal complex during ground contact time of the jump. Stress 

transmitted to the bone would be stress that cannot be absorbed by the muscle. Therefore, 

bone adaptation to plyometric exercise would indicate that the forces applied by the 

protocol are high and exceed the muscle capacity to absorb the stress. Since the focus of 
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the thesis is on skeletal muscle only a few studies focussing on bone and tendon 

adaptation will be considered. 

In the short-term, osteocyte activity increases in response to stress placed on bone and 

acts to maintain bone turnover by signaling osteoblastic activity thus increasing bone 

formation (Klein-Nulend et al. 1995). An adaptation to bone tissue due to plyometric 

training would be the increase in bone mass, with most studies assessing the impact of 

jump activity over period of months. Increases in bone mass have been reported by 

Guadalupe-Grau et al. (Guadalupe-Grau et al. 2009), they showed a +0.78% relative 

improvement in whole body bone mineral content using dual-energy X-ray absorptiometry 

(DXA) when combining plyometric training with strength training over nine weeks. Here 43 

males and 23 females were assigned to a training (similar relative fitness levels) or control 

group, and exercised at a frequency of 3 times per week. Plyometric training included drop 

jumps and hurdles (40-60jumps) and strength training included inclined leg press (ILP), leg 

extension (LE), half squat (HS), and leg curl (LC). Guadalupe-Grau et al. 2009 also 

reported improvements in lumbar spine bone mineral content (+1.2–2%) with the 

combination of strength and plyometric training. Another study assessing the effects of 

only plyometric box jumps in children over a period of 12 weeks at a frequency of 5 days 

per week, found total body and leg bone mineral content to improve significantly compared 

to controls. 

Tendon Adaptation 

Linking structures between muscle and bone include the tendonous structures. Plyometric 

jumping incorporates the stretch shortening cycle motion, which affects stiffness 

characteristics of the muscle-tendon complex. Interestingly, Kubo et al. (Kubo et al. 2007) 

reported an increase in joint stiffness and not tendon stiffness following unilateral 
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plyometric training of plantar flexors in humans after 12 weeks of plyometric training; they 

concluded that improvements in jumping performance are due to adaptation of mechanical 

properties of muscle-tendon complex around the joint rather than muscle activation 

strategies. However this finding is contrasted by Burgess et al. (Burgess et al. 2007) who 

provided evidence for increased Achilles tendon stiffness following 6 weeks of plyometric 

training. Kubo et al. (Kubo et al. 2007) in the same article mentioned above assessed 

changes in the cross-sectional area (CSA) of the Achilles tendon and found no change in 

CSA after 12 weeks of plyometric training, this finding is supported by Foure et al. 2010 

who found no change in CSA following 14 weeks of plyometric training, thus attributing 

changes in mechanical properties to qualitative changes in tendinous tissues rather than 

geometrical changes to the Achilles tendon. 

1.13.2 Neuromuscular Adaptation 

Neural adaptation 

It has been previously suggested that neural adaptation rather than change in muscle 

morphology is responsible for muscle performance gains following plyometric exercise 

(Wilk et al. 1993); this has been suggested to occur via neuromuscular adaptation to the 

stretch reflex, elasticity of muscle, and Golgi tendon organs. Potteiger et al. 1999 

speculated that improvements in muscle performance observed following 8 weeks of 

plyometric training could be due to a combination of increased muscle CSA and enhanced 

motor unit recruitment patterns, although the authors did not measure any neuromuscular 

outcomes as part of their study. Other studies support this suggestion attributing jump 

performance improvements to adapted motor unit recruitment patterns and muscle activity 

of agonists and antagonists (Chimera et al. 2004; Van Cutsem et al. 1998). Using surface 

electromyography various studies investigated muscle activation strategies during vertical 
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jumps or maximal voluntary contraction post training intervention. Chimera et al. 2004 

investigated the effects of plyometric training on muscle-activation strategies of the lower 

extremity in females during jumping exercises. They assessed preparatory and reactive 

activity of the vastus medialis and lateralis, medial and lateral hamstrings, and hip 

abductors before and after six weeks of plyometric training. Surface electromyography 

revealed preparatory adductor activity to increase along with abductor-to-adductor co-

activation, indicating plyometric training resulted in learned pre-programmed motor 

activation strategies. Kyröläinen et al. 2005 demonstrated that vertical jump height 

improved significantly as a consequence of 15 weeks of stretch shortening cycle training, 

and a significant change in muscle activity of the plantar flexors but not the knee extensors 

were observed.  

This does not exclude that muscle itself could also be adapting. Adaptation in fibre-type in 

response to SSC training has been previously demonstrated in animal models (Almeida-

Silveira et al. 1994; Pousson et al. 1991). In humans, only a few studies have assessed 

fibre-type transitions due to only plyometric training and the results of these studies are 

contrasting. Both Kyröläinen et al. 2005 and Potteiger et al. 1999 found no significant fibre 

transitions resulting from 15 weeks of training of the gastrocnemius and 8 weeks of 

training of the vastus lateralis muscles respectively, whereas Malisoux et al. 2006 

observed a significant increase in the proportion of type IIa fibres due to 8 weeks of 

different stretch shortening cycle training.  

In humans, Potteiger et al. 1999 and Malisoux et al. 2006 showed that plyometric training 

induced an increase in the cross sectional area in both type I and type II fibres in strength 

trained individuals (Potteiger et al. 1999) and in subjects active in sports not involving high-

impact jumping (Malisoux et al. 2006b), while Vissing et al. (Vissing et al. 2008) did not 

observe any increase in muscle fibre CSA of untrained subjects but found significant 
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increases in whole-muscle cross-sectional area (CSA). This may be due to different 

techniques, rather than implying hyperplasia. Gains in CSA seem to be greatest when 

combining plyometric training with strength training as shown by Perez-Gomez et al. 2008, 

reporting significant muscle hypertrophy (+4.3%). Herrero et al. 2006 also reported on their 

observation of significant increases in CSA (7.1%) when combining plyometric training with 

electromyostimulation over a 4 week training period compared to only plyometric training.   

In summary the ability of short term lower-body plyometric training in improving muscle 

strength and explosive power is well known (de Villarreal et al. 2008; Malisoux et al. 

2006a; Markovic and Mikulic 2010; Vissing et al. 2008), and the literature suggests that 

these relative improvements occur regardless of gender or training state (Markovic and 

Mikulic 2010; Saez-Saez de Villarreal et al. 2010). Studies indicate that improvements in 

muscle strength and power could be due to both muscular and neural adaptations as 

demonstrated by studies investigating the mechanisms behind these systems in the same 

study (Kubo et al. 2007; Kyrolainen et al. 2005; Malisoux et al. 2006b). Potteiger et al. 

1999 provides evidence of increased leg extensor power accompanied by a significant 

increase in CSA of both type I and type II vastus lateralis muscle fibres. Improvements of 

power and strength seem be to greater when plyometric training is performed in 

combination with weight training or electromyostimulation. Both strength and muscle CSA 

were shown to improve in the studies by Herrero et al. (Herrero et al. 2006) and Perez-

Gomez et al. (Perez-Gomez et al. 2008) mentioned above.    

1.13.3 Jump performance 

Improving vertical jump performance is crucial to the success of athletic competition 

(Potteiger et al. 1999, Kyrolainen et al. 2005). Various jumping activities such as squat 

jumps, drop jumps and other SSC jumping exercise are used by athletic coaches to 
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improve muscular strength and power. Studies investigating change in muscle strength 

and power due to plyometric training generally show that these parameters do result in 

improved vertical jump height, although some studies report no change or even slight 

decreases in vertical jump performance (de Villarreal et al. 2008; Herrero et al. 2006; 

Luebbers et al. 2003; Markovic 2007; Markovic and Mikulic 2010; Turner et al. 2003; 

Young et al. 1999). Markovic 2007 employed a meta-analytical approach to investigate 

whether plyometric training did in fact improve vertical jump height. The assessment of the 

studies showed that inconsistency of reports on vertical jump height performance could be 

due to training program design, subject characteristics, and the use of different testing 

methods but mainly due to small sample size since group sizes typically ranged between 8 

– 12 participants and concluded that plyometric training does ultimately result in improved 

vertical jump height. 

1.14 Specific Aims 

1) To investigate whether rhabdomyolysis induced by an acute bout of plyometric 

exercise in sedentary individuals was caused by primary mechanical damage or 

secondary factors.  

2) To investigate whether plyometric training will protect the muscle from 

ultrastructural damage and rhabdomyolysis. 

We hypothesize that mechanical damage does not differ but high responders have greater 

secondary responses, to the same amount of damage. 
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Chapter 2: Materials and Methods 

2.1 Study overview 

The study overview is described in figure 2.1. Twenty-six subjects participated in this 

research study which was divided into: 1) acute study and 2) training intervention. All 

twenty-six subjects participated in the acute study and only thirteen of those twenty-six 

subjects continued with the training intervention. The acute study investigated the effects 

of a single unaccustomed bout of plyometric squat jumping on muscle ultrastructure and 

blood markers of muscle damage while the training intervention part of the study 

investigated the effects of 8 weeks of plyometric training on muscle fibre structure and 

ultrastructure. The acute study and training experimental intervention designs are 

described individually in figures 2.2 and 2.3 respectively. 

 

2.1.1 Subject recruitment and inclusion criteria 

This study was approved by Sub-committee C of the Research Committee of the 

University of Stellenbosch. The potential subjects, were recruited by means of a flyer and 

by word of mouth among students at the University. The subjects were informed of the 

procedures both verbally and in written form. They signed a written consent form before 

they were allowed to proceed with the study protocol. Subjects were included upon the 

fulfilment of the following criteria:  

 

Inclusion Criteria:  

• Age: 18 – 28 years 

• physically active 0 to 2 times per week 

• no training of the lower body – other than typical daily activities  

• signed informed consent  
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Figure 2.1 Study Overview 
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The exclusion criteria were:   

• trained athletes 

• no use of any anti-pain medication 1 week before the study  

• subjects currently or chronically treated by any corticosteroid-containing medication 

(including inhaled forms) 

• muscle injury in the previous 2 months (eg. haematoma, strains, sprains, laceration) 

• sports injury to the lower limb within the past 6 months (eg. any knee injury, ankle 

sprains or strains) 

• insufficient rehabilitation after any previous sports injury 

• a pathologic cardiovascular condition 

• informed consent was not obtained 

• unwilling to abstain from pain or anti-inflammatory medication during the study 

 

The subject characteristics for the acute study (n = 26) and training intervention (n = 

13) are presented in Table 2.1. 

 

Table 2.1 Subject characteristics. 

  Acute Study (n = 26) Training Study (n = 13) 

Age (yr)                                         21.5 ± 1.6 21.5 ± 1.7 

Height (cm)                                 175.9 ± 8.9 173.6 ± 10.3 

Weight (kg)                                   73.0 ± 14.1 68.3 ± 17.7 

Max Squat Jump height (cm)                     222 ± 12 220.2 ± 13.7 

95% squat jump height (cm)         210.9 ± 11 209.2 ± 13 

 

Data presented as mean ± sd. 
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2.2 Study 1: Acute muscle damage study 

 

2.2.1 Study design 

After informing the potential subjects of the details of the experiment, and informing 

them of the request to stop using any anti-inflammatory or anti-pain medication 

throughout the study and to abstain from heavy/high intensity exercise 1 week 

before the plyometric exercise intervention and for the duration of the study, until 

the last blood sample was taken, those who gave informed consent, were entered 

into the study. 

 

All participants were instructed to report to the testing site at the same time of day; 

8 times on specified days (fig. 2.2). On laboratory day -9 baseline blood samples 

were collected and muscle biopsies obtained. After the initial visit the subjects 

performed a 10 minute warm-up followed by the exercise intervention. Blood 

samples were collected as shown in figure 2.2. Thirteen participants’ baseline 

measurements were done on day -9 and the remaining thirteen participants who 

agreed to the training intervention had baseline samples collected on day -4. 

 

2.2.2 Plyometric exercise intervention 

Prior to the exercise intervention subjects completed a brief warm up which 

consisted of five minutes of backwards and forward running followed by five 

minutes of general stretching of the leg muscles. The subjects were allowed to 

perform short periods (<60 sec) of static stretching. This has recently been reported 

in a systematic review to not compromise maximal muscle performance (Kay and 

Blazevich 2012) and evidence that this duration of stretching could possibly provide 
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protection against mechanical injury is poor (McHugh and Cosgrave 2010). 

Nonetheless, many subjects felt comfortable with this action between sets. 

 

The exercise regime in this study involved a series of jumping which caused the 

subjects to stretch and shorten their quadriceps muscles consecutively. It is the 

eccentric component to a depth of a 90° degree knee angle against gravity in one 

phase of the plyometric jump and the short transition (15-120 ms) from that position 

to the concentric contraction phase that the subjects were unaccustomed to and 

which differed from their routine activities. 

�

�

 

Figure 2.2 Summary of the acute study design. 
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Maintaining the upper body in the upright position and minimising hip flexion 

ensured less contribution of the gluteus muscle group to the exercise, thus 

focussing on the anterior thigh muscles, which is also unusual for jumping from a 

deep position. Subjects performed ten sets of ten maximal vertical jumps, separated 

by a 60 second recovery time between sets. Prior to starting the exercise, a 

maximal vertical jump was performed and the maximum height reached by the top 

of the head was taken as the highest point of the jump. To do this the researcher 

stood on a chair to see the head height.  Ninety-five percent of this height then 

served as a target height that the participants attempted to maintain for each jump. 

 

 

Figure 2.3 Diagram of the plyometric jump and description of the various phases of 

contraction of the quadriceps muscle. 

 

On landing, participants were instructed to keep the trunk in an upright position 

minimising hip flexion while adopting a knee joint angle of approximately 90° in 
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order to promote muscle damage described by Twist et. al 2005. Between sets 

subjects were allowed to move around freely, sit down or do light stretching. 

 

Subjects who could not maintain their target jump height were stopped between 

sets and given a one minute rest period before having to complete the previous set, 

thereby completing all of their 100 jumps. The technique was observed by the 

researcher who stood on a chair to make sure participants maintained their target 

heights and trunk position. The co-supervisor observed whether their legs reached 

a 90° angle.   

This plyometric exercise protocol induced non-severe transient muscle damage and 

all subjects were instructed not to exercise for the duration of the study after the 

plyometric exercise intervention. 

 

2.3 Study 2: Training Intervention 

 

2.3.1 Study design 

All participants were instructed to report to the testing site at the same time of day; 

on specified days (fig. 2.4). On laboratory day 1 baseline blood samples were 

collected and muscle biopsies obtained by a medical doctor from the vastus 

lateralis (v. lateralis) muscle of a randomly selected leg. The blood samples were 

taken prior to the skeletal muscle biopsy to prevent any inflammatory related factors 

released into the blood as a result of the biopsy from affecting the baseline sample. 

Four days after the initial visit the subjects performed a 10 minute warm-up followed 

by the exercise intervention (10x10 maximal squat jumps). Blood and muscle 

samples were collected as described in fig. 2.4.  
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The training intervention included 3 phases: 

Phase 1 

Participants were expected to come to the laboratory 6 times on 5 different days. 

During these visits, the following happened: 

Visit 1: Participants were requested to sign the second part of the informed consent 

form. Then baseline measurements were taken. These included DOMS 

assessment, blood samples, a maximal vertical jump test (TENDO Weightlifting 

Analyzer V-206, AMR sport, Queensland, Australia), and a muscle biopsy. 

Visit 2: On this day Blood samples were collected and DOMS assessed before and 

6 hr after the exercise intervention (visit 3). Participants performed the plyometric 

exercise regime: a 10-minute warm-up followed by the exercise intervention.  

Visits 4, 5, 6 and 7: Blood samples were collected and DOMS was assessed with 

the final muscle biopsy taken at visit 6. 

Training commenced for eight weeks with the total number of jumps increasing 

progressively. Subjects performed 5x5 and 7x7 maximal squat jumps during the first 

two weeks and second two weeks respectively. A new target height was 

established every two weeks of training according to the participant’s individual 

jump improvements. At the start of the first training week and at the end of the last 

training week, the maximal vertical jump height of participants were recorded using 

the fitrodyne plyometric jump mat which determines average and peak power and 

velocity of the jump. 

Phase 2: 

This phase include 8 weeks of plyometric jump training, over which the number of 

jumps was progressively increased (see below). The controls were instructed to rest 

and to refrain from doing any jumping activity for 8 weeks. 
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Week 1&2: During the first 2 weeks subjects performed a brief 10 minute warm-up 

followed by 5x5 maximal squat jumps, 3 times each week at the same time of day. 

Week 3&4: Subjects performed a brief 10 minute warm-up followed by 7x7 maximal 

squat jumps, 3 times each week at the same time of day. 

Weeks 5 – 8: Participants’ performed a brief 10 minute warm-up followed by 10x10 

maximal squat jumps, 3 times each week at the same time of day. 

Phase 3: 

Phase 3 was a repeat of phase 1 and included the control subjects. 

 

   

 

 

Figure 2.4 Summary of the training study design. 
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2.4 Testing, sample collection and analysis   

 

2.4.1 Functional test 

Participants performed three maximal vertical jumps at baseline and after the 

plyometric training period with a spring cable attached to their waists, average and 

peak velocity (m/s) and power (w) of participant’s maximal vertical jumps were 

recorded using a FitroDyne device (TENDO Weightlifting Analyzer V-206, AMR 

sport, Queensland, Australia), similar to that described by Jennings et al. 2005.  

 

2.4.2 Blood collection 

All blood samples were drawn from the forearm vein in serum separating and EDTA 

tubes (SST and EDTA, BD Vacutainer, Becton Dickinson and Company, New 

Jersey, USA), with the subjects lying in the supine position for 10 minutes first. On 

the biopsy days, the blood samples were taken prior to the skeletal muscle biopsy 

to prevent presence of any acute inflammatory related factors released in the blood 

as a result of the biopsy. Nine or four days after the initial visit, blood was first 

drawn before the subjects performed a 10 minute warm-up followed by the exercise 

intervention and again six hours after the exercise intervention. Blood samples were 

then collected as described in figures 2.2 and 2.3.  

Fifteen ml of blood was collected in 3 separate vacuum sealed tubes. Two intended 

for serum separation (SST, BD Vacutainer, Becton Dickinson and Company, New 

Jersey, USA) were inverted 8 times, left to clot and then placed on ice. Thereafter, 

one tube was sent for independent analysis (see blood analysis) and the other 

centrifuged within 20 minutes of clotting, at 3500 rpm for 10 min at 4°C. Serum was 
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collected and stored at -80°C. One tube intended for plasma (EDTA, BD Vacutainer, 

Becton Dickinson and Company, New Jersey, USA) was inverted 5 times and 

centrifuged at 3500 rpm for 10 min at 4°C. Plasma was collected and stored at -

80°C.  

2.4.2.1 Blood analysis 

Total serum CK, Mb, LDH and CRP as well as plasma whole blood counts were 

determined by commercial laboratory PathCare pathology laboratory (Stellenbosch 

Medi Clinic, South Africa) using a one-step sandwich assay (Access CK-MB assay, 

Beckman Coulter, Inc.). 

 

2.4.2.2 ELISA 

A commercially available enzyme-linked immune-sorbent assay (ELISA)-based 

bead kit system (eBioscience ELISA IL-6 ref:  BMS625TWO and lot:  62920021, 

TNF� ref:  BMS622TWO and lot:  62913028, Saint Diego, USA refer to Appendix V 

for details) was used for the determination of plasma IL-6 and TNF-� 

concentrations. ELISA kits were stored at 4˚C and lyophilized controls stored at -

20˚C, and protocols were carried out as instructed by the manufacturer. All samples 

were run in duplicate. 

Briefly, the absorbance of the 96 well plates was read using Microplate Reader 

(EL800 Universal, Bio-Tek Instruments INC, Vermont, USA) and a software 

programme was used for analysis (KC junior, Bio-Tek Instruments INC, Vermont, 

USA). The system uses multiple colour-coded bead sets, each conjugated by 

covalent bonding with primary antibodies against IL-6 and TNF-� by.  The antibody-

coupled beads were then incubated with samples and standard solutions that bind 

target molecules, non-specific unbound proteins are then washed away. Another 
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primary antibody (biotinylated detection antibody specific for a different epitope on 

the cytokine) is added to the reaction solution, which then forms a sandwich of 

antibodies around the cytokine. Next phycoerythrin labeled streptavidin 

(streptavidin-PE) is added which binds the biotinylated primary antibodies allowing 

for detection by fluorescence. Finally, concentrations are determined by 

fluorescence intensity, after each well content was aspirated by an automated 

microplate reader (EL800 Universal Microplate (Bio-Tek Instruments INC, Vermont, 

USA), which identifies the cytokine according to the colour of the bead bound to it (a 

detailed protocol provided in Appendix IV).  

 

2.4.3 Muscle Soreness 

Perceived muscle soreness scores were obtained to indicate soreness of the knee-

extensor muscles (rectus femoris, rectus intermedius, vastus lateralis, and vastus 

medialis.). The scores were recorded with the subjects in different positions: during 

left and right leg squats and with their hands on their hips and squatting to an 

approximate knee angle of 90°. The participants were asked to describe the level of 

perceived soreness based upon the visual pain scale which is similar to Borg’s 

rating of perceived exertion scale (Sorichter et al. 1997).The scale is numbered 

from 0 to 10, with 0 being indicative of no distress of the quadriceps muscles and 10 

being agonizing pain (Table 2). Perceived muscle soreness scores were assessed 

each time the subjects visited the laboratory before blood was collected as 

described in figures 2.2 and 2.3.    
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Table 2.2 Rating of perceived soreness. 
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2.4.4 Muscle biopsies 

A total of two biopsies were obtained from each subject during the acute study and 

two more biopsies were obtained from the thirteen subjects who continued with the 

training intervention. A baseline biopsy was obtained from each subject from a 

randomly selected leg nine or four days before the exercise protocol was 

performed. The next biopsy was obtained on the 3rd day following the acute 

plyometric exercise intervention on the leg which was not biopsied the first time 

(figure 2.2). A third biopsy was collected from thirteen subjects after their 8 week 

training period, followed by a final biopsy 7 days after that (figure. 2.4). 

  

All muscle biopsies were performed by the same medical doctor with extensive 

experience in this procedure. The researcher provided all the support to the medical 

doctor before and during the procedure. Using local skin anaesthesia, trephine 

needle biopsies were used to obtain the sample from the vastus lateralis muscle. 

Although the hip extensor is the prime mover in a vertical jump, evidence exists for 

muscle damage of the vastus lateralis muscle after plyometric exercise (Marginson 

et al. 2005; Twist and Eston 2005). Moreover the vastus lateralis muscle was 

chosen as the site for the muscle biopsy because amongst all of the muscles 
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activated (Chimera et al. 2004) during the squat jump it is most easy to access and 

is routinely biopsied in laboratories around the world. The site of the biopsy was 

determined with the subjects lying down in a supine position, with their upper backs 

slightly elevated and with the arms alongside the body in the pronated position. 

Where the thumb points touched medially towards the upper leg the biopsy was 

taken.   

The biopsy procedure: A biopsy area was cleaned with 70% alcohol before 

commencing with the procedure. A local anaesthetic, containing 2% Lignocaine 

HCL, m/v, and 1:80 000 noradrenaline (Xylotox, Adcock Ingram Ltd., 

Johannesburg, SA), was injected (subcutaneously and then intra-muscularly) before 

the incision with a scalpel blade was made. The needle biopsy method was used (5 

mm Bergström biopsy needle; STILLE, Sweden). Whilst the researcher continued to 

assist the doctor in the sterile environment, the muscle sample was cut in three 

pieces by the co-supervisor: one was orientated and mounted in tissue freezing 

medium (Tissue-Tek, Jung; Leica Instruments GmbH, Germany) and then frozen in 

isopentane, precooled by liquid nitrogen and stored at -80°C until further analysis, 

one was fixed in gluteraldehyde solution for ultrastructural analysis and the third 

piece was snap frozen in liquid nitrogen for fibre-typing analysis.  

 

2.4.5 Muscle Biopsy Analysis 

Baseline muscle samples from each subject were used to determine their muscle 

fibre-type by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-

PAGE), immunofluorescence and electron microscopy.  
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2.4.5.1 SDS-PAGE 

Sample preparation 

The muscles were frozen in liquid nitrogen, and stored at -80°C. Small pieces of 

muscle were cut from the frozen muscle samples and placed in 500µl of ice-cold 

lysis buffer. The cut sections of muscle were subsequently homogenized with a 

tissue homogenizer (Ultra-Turrax, Germany) in glass test tubes. The homogenates 

were decanted into eppendorfs and centrifuged at 300 rpm for 5 mins at 4°C. The 

resulting supernatant was decanted into new eppendorfs and total protein was 

assayed according to the method by Bradford (Bradford 1976). The amount of 

protein run on the gel was 120 µg of total protein per lane in sample buffer 

containing 5% �-MEtOH, 2.5% SDS, 10% glycerol, 62.5 mM Tris, pH 6.8 and 0.1% 

bromophenol blue. Samples were then boiled for 5 min and allowed to cool prior to 

electrophoresis. 

Separation 

The large (Protean IIxi – gel size: 16 x 16 cm) electrophoresis system was used 

(Biorad Laboratories, Hercules, California, USA) for protein separation. The 

concentration of the separating gel was 8%. Separation of MHC isoforms was 

perfomed using a slightly modified method described by Kohn and Myburgh (Kohn 

and Myburgh 2006). The running conditions for the large-gel apparatus were 75V 

(constant voltage) for 38 h at 4°C.  

The mini electrophoresis systems (Biorad Laboratories, Hercules, California, USA) 

were used for protein separation. The concentration of the separating gel was 8%. 

The running conditions for the large-gel apparatus was 100V for 10 min and 200V 

for 70 min (constant voltage) at room temperature. 

Staining 
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Gels were stained with Coomassie Brilliant Blue. The gels were placed in 

Coomassie for 10 min at room temperature while gently rocking and then 

microwaved for 1 min on a high-power setting and left to stain further while rocking 

at room temperature for another 10 min. Coomassie solution was then removed and 

the gels placed in a destaining solution for a minimum of 2 hours.  Gels were 

scanned with a computer scanner and relative MHC proportions were determined 

using ImageJ (1.41 software National Institutes of Health, Bethesda, USA, 

http//rsb.info.nih.gov/ij). 

 

2.4.5.2 Western Blotting 

All mini gels were transferred to PVDF membrane (Immobulon, Millipore) for 1 hour 

15 mins at constant 0.5A and 15V, using the mini transblot system (Bio-Rad 

laboratories). Following the transfer membranes were incubated and blocked in 

blocking solution containing 5% dry milk in Tris Buffered Saline - Tween (TBS-T) for 

1h 30 min at room temperature. Calpain-3 protein levels were detected by 

immunoblotting using antibody: NCL-CALP-12A2 (calpain 3; dilution 1:1000; mouse 

monoclonal antibody, Santa Cruz Biotechnology, Santa Cruz, CA, USA). Blots were 

washed in T-TBS and incubated for 1 hour with a secondary antibody: horse-radish 

peroxidase-linked donkey anti-mouse (DAKO, Denmark; dilution 2:5000). 

The membranes were incubated with luminescence reagent (ECL Plus, Amersham, 

GE Healthcare, Biosciences, New Jersey, USA), exposed to X-ray film (Hyperfilm, 

Amersham, GE Healthcare, Biosciences, New Jersey, USA) according to 

manufacturer instructions, developed and scanned. Band analysis was performed 

with specialised software (ImageJ 1.41 National Institutes of Health, USA, 

http//rsb.info.nih.gov/ij). 
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2.4.5.3 Immunofluorescence 

Cross sections of the muscle tissue were cut at 10 µm using a cryostat microtome 

(Leica CM1100, Leica Microsystem Nussloch GmbH, Germany) at -22ºC and 

mounted on slides. The following day, the sections were brought to room 

temperature, and rinsed in 0.01 M phosphate buffered saline (PBS) containing 

0.25% detergent (Triton X-100) for 15 min and washed with PBS (3 X 5 min). The 

sections were incubated in a solution containing MHC II antibodies (1:250; A4.74, 

mouse monoclonal antibody, Developmental Studies Hybridoma Bank, Iowa City, 

IA, USA) for 1h, after which the sections were washed with PBS (3 X 5 min), 

incubated for 1h at room temperature  with conjugated secondary antibody (1:250, 

goat anti-mouse, conjugated to Alexa fluor 488, Invitrogen, Eugene, Oregan, USA), 

washed again with PBS (3 X 5 min), incubated for 1h at RT with dystrophin (1:250, 

rabbit polyclonal, Santa Cruz Biotechnology, Santa Cruz, CA, USA), washed again  

with PBS (3 X 5 min) and incubated for 1h at room temperature conjugated 

secondary antibody (1:250, goat anti-rabbit, Alexa fluor 594, Invitrogen, Eugene). 

The sections were then washed in PBS (3 X 5 min), and mounted with the 

fluorescent mounting medium (Dako, Denmark). Samples were observed with a 

direct fluorescence microscope (Leica DM 5000 B, Wisconson, USA) with x10 and 

x20 objectives. The researchers observed fibres for positivity to MHCII antibody 

(MHC I, negative; MHC IIx, faintly positive; MHC IIa, strong positivity) to calculate 

fibre type percentage whilst also assessing the fibres for loss of dystrophin staining 

around the fibres to determine which were damaged. When the loss in dystrophin 

staining was localized in the sarcolemmas of two adjacent fibres and it was 

impossible to determine with absolute certainty which fibre was damaged, both 

fibres were considered damaged. For each muscle sample, three sections were 
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stained for MHCII and dystrophin, and the best section was used to perform the 

analysis. 

 

2.4.5.4 Electron Microscopy (EM) 

Immediately following the biopsy, muscle specimens of eight participants were cut 

into thin long sections (1mm x 5mm) down with the specimen oriented longitudinally 

with respect to the fibre direction fixed in 2.5% gluteraldehyde stored in the fridge 

and transported to a pathology laboratory (Tygerberg hospital) the following day, 

where the microscopist dehydrated the samples with ethanol 30, 50, 70, 95, and 

100% v\v. After dehydration, tissue pieces were put in propylene oxide for 30 min 

and embedded into resin (EPON 812, Electron Microscopy Sciences, Hatfield, 

Pennsylvania) 24h before incubating to harden at 50°C for 48 hours. Ultrathin 

sections of resin-embedded muscle were examined with a Jeol-Jem 1011 

transmission electron microscope (Jeol-Jem 1011 TEM, Leica Microsystem 

Nussloch GmbH, Germany). 

 

With electron microscopy the researcher confirmed whether structural muscle 

damage typical of eccentric damage was evident and made certain that the muscle 

fibre was not damaged due to the muscle biopsy method. 

 

Muscle fibres were typed and studied quantitatively using the morphometric 

technique of Weibel et al. (Weibel et al. 1966). Ten fibres in longitudinal section 

were studied per section. For each fibre 3 micrographs (final magnification of 2000; 

12,000 and 30 000) were taken for Z-line measurement. The Z-line measurements 

were made on the region of filament overlap (Salmons et al. 1978), where 10 
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randomly chosen straight Z-lines were outlined and the mean widths of these were 

measured. 

 

 

Figure 2.5 Longitudinal section from a human muscle fibre indicating the central, 

filament overlap zone measured for Z-line width (30 000x).  

 

All fibres were classified as slow-twitch oxidative (SO) or fast-twitch muscle fibres. 

Wide Z-lines were previously shown to be associated only with slow-twitch fibres 

(Wroblewski and Jansson 1975).  

 

2.4.5.5 Immunogold 

Ultrathin longitudinal sections were cut at 60-70 nm (gold colour of section), and 

viewed with a transmission electron microscope (Jeol-Jem 1011 TEM, Leica 

Microsystem Nussloch GmbH, Germany), and placed on nickel grids on 150 mesh 

(formavar-coated). The sections were then treated with metaperiodate (saturated 

aqueous solution) to dissolve the resin, washed in TBS 10 x 5mins and placed in 

citrate buffer pH 6 for 40 min at room temperature. Next the sections were blocked 

with 1% BSA-C-TRIS buffer for 30 min, incubated with the primary antibody, Titin c-

20 (1:10 in 0.1% BSA-TRIS buffer; sc-8724, mouse monoclonal antibody, Santa 
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Cruz Biotechnology, Santa Cruz, CA, USA) at 4°C overnight and washed with 0.1% 

BSA-TRIS buffer 3 x 10 min the next day. Secondary antibody was then added 

which was diluted 1:50 in 0.1% BSA-TRIS buffer, after which the wash step was 

repeated. The samples were post-fixed with 2% gluteraldehyde in PBS for 10 min. 

Sections were then washed with 0.1% TBS-tween 6 x 12 min, stained using uranyl 

acetate (5 min), dried with filter paper and stained with lead citrate for 2 min in the 

dark. Finally the sections were washed with distilled water 2 x 5 min, dried with filter 

paper once more and were then ready to be viewed under the microscope.  This 

was performed by the co-supervisor in Italy (Department of Experimental 

Biomedicine and Neuroscience Clinical University of Palermo, Palermo, Italy). 

 

2.4.5.6 Genotyping analysis 

A piece of snap frozen sample (baseline muscle biopsy) was sent to the Central 

Analytical Facility (CAF, Stellenbosch University, South Africa). DNA extraction was 

performed by the CAF technicians and analysed for selected SNPs within the genes 

of selected muscle structure proteins. 

  

The TNF and IL6 loci were amplified using published primers. 

  PCR conditions were as follows: 

• 1x KAPA ReadyMix (Kapa Biotech / Lasec) 

•  4pmol of each primer 

•  20ng DNA template and a final volume of 20µl. 

The PCR was performed in a cycler (Verity, Applied Biosystems, Life Technologies, 

California, USA) with the following cycling conditions: 95°C for 5 minutes followed 

Stellenbosch University http://scholar.sun.ac.za



55 

 

by 35 cycles of 95°C for 30 seconds, 60°C (TNF) / 50°C (IL6) for 30 seconds and 

72°C for 30 seconds and a final extension of 72°C for 10 minutes. 

Post-PCR purification was done using a standard purification system (NucleoFast, 

Separations, Germany). Sequencing was performed with BigDye Terminator (V1.3, 

Applied Biosystems, Life Technologies, California, USA) followed by 

electrophoresis on the DNA Analyser (3730xl, Applied Biosystems, Life 

Technologies, California, USA). Sequences were analyzed and trimmed using 

Sequencing Analysis (V5.3.1, Applied Biosystems, Life Technologies, California, 

USA). Alignments were done using the ClustalW module (BioEdit version 7.0.4.1, 

Hall, 1999) with the downloaded SND-ID as reference. 

Possible polymorphism variants: 

• MYLCK C49T genotype (CC, CT, TT) 

• TNFA G-308A genotype (GG, GA) 

• IL6 G-174C genotype (GG, GC, CC) 

 

2.4.6 Statistical Analysis 

Data were assessed for normality by inspecting normal probability plots. A logarithmic 

transformation (Log10) was applied to non-normally distributed data (CK, Mb, LDH, CRP 

and DOMS) before analysis. Changes in DOMS (in squat and in standing position) and 

blood parameters (CK, Mb, LDH and CRP) in responders Vs no-responders over time 

were analysed by two-way mixed model repeated-measures analysis of variance. If a 

significant difference was detected, this was further evaluated by the post-hoc Fisher LSD 

test. Significance was accepted at an alpha of P � 0.05. 
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Chapter 3: Results 

Acute Study: 

3.1 Blood markers of muscle damage (CK & Mb): 

The data analysis of CK and Mb levels in the serum showed an immediate rise of these 

markers after the acute bout of plyometric exercise, although they have a different 

response over time. In fact, CK continues to rise until 4 days (P < 0.00001) after 

exercise (figure 3.1 A), while Mb presented a double peak, 6hrs (P < 0.00001) and 2 

days (P < 0.00001) after the exercise bout (figure 3.2 A). Closer observation of the data 

showed large inter-individual variability in both the CK and Mb response to exercise 

among the 26 subjects (CK range: 153-71,024 U/L at 4 days after; Mb range: (20-2382 

ng/ml 4days after). The subjects have been considered high (n=10) or low (n=16) 

responders based on CK activity after the plyometric intervention, on the base of the 

cut-off limit (1000 U/L) used to diagnose rhabdomyolysis. From this point forth the 

groups will be defined as high and low responders. 

CK and Mb levels peaked six hours (P < 0.00001) and one day (P < 0.00001) post 

exercise, respectively in the low responder group after which values return to baseline 

the following 24 hours. In contrast, CK levels continue to rise four days post exercise in 

the high responder group. Mb, interestingly once more presented with a double peak at 

6hrs and 3 days post exercise. The levels of CK and Mb were significantly higher in the 

high responder group compared to the low responders at respective time points (see 

figures 3.1 and 3.2).  
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Figure 3.1 Change in serum creatine kinase (CK) over time before and after a single bout of 

plyometric exercise. A) Average CK activity (Log10 U/L) of all subjects (n=26). B) The blue and 

red lines indicate CK activity (Log10 U/L) for the high (n=10) and low responder (n=16) groups 

respectively. The dashed line indicates the rhabdomyolysis cut-off. * Significantly different from 

time points -������	
����
�	�			���������������������������������������������� !��
����
�	�	"���#�

significantly different response between high and low responders, (P < 0.0001). Data are 

expressed as mean ± sd.  
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Figure 3.2. Change in serum myoglobin (Mb) over time before and after a single bout 

of plyometric exercise. A) Average Mb activity (Log10 U/L) of all subjects (n=26). B) The 

blue and red lines indicate Mb activity (Log10 U/L) for the high (n=10) and low (n=16) 

responder groups respectively. * Significantly different from time points 9 and 0, (P < 

	�			����������������������������������������
����
�	�	����#�����������������������������������

point  �!����$����������������������������������%��&����!��!�������&�����������
����
�

0.001). Data are expressed as mean ± sd.  
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3.2 Subject characteristics before the exercise intervention that may affect the CK 

response: 

3.2.1 Physical characteristics 

Neither weight, jump height nor the product of weight x jump height correlated with 

CK activity at 4 days post exercise, which was the time point of the peak response 

and all other time points (fig. 3.3 A, B and C). 

3.2.2 Muscle characteristics 

% Fibre type measured at baseline by immunofluorescence for MHC II (figure 3.19 

A) did not correlate with the CK response at any of the time points post- exercise 

(3.4 A, B, C and D). 

Baseline interleukin-6 receptors (IL-6R),  was quantified by counting fluorescent 

positivity along the muscle fibre membrane, in two different ways (figure 3.5) A) IL-

6R% cell + (S – section along the membrane expressing fluorescent positivity) and 

B) IL-6R% cell + (D –  fluorescent dots along the membrane) were not found to be 

associated with the CK response at any time point. 

3.2.3 Genetic characteristics (results not shown in a figure) 

IL-6 genes (IL6 -174) 

Subjects (n=26) were genotyped for the IL6 G-174C SNP and all samples were 

found to be homozygous wild type GG without the homozygous CC mutation.  

TNF� genes (TNFA�-308) 

Subjects (n=26) were genotyped for the TNFA-�-308A SNP and all samples were 

found to be homozygous wild type GG without the homozygous GA mutation. 

MLCK C49T 

MLCK C49T mutant homozygous CC was not found to be associated with either an 

increase in CK activity (figure 3.6 A) and Mb concentration (figure 3.6 B) at 4 days 

post exercise, which was the time point of the peak response and nor with any other 

time point investigated in this study. 
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Figure 3.3. Relationship between creatine kinase (CK) activity 4 days after plyometric 

exercise and (A) weight (kg), (B) jump height (m) and (C) weightxjump height (kg'm). Data 

are expressed as mean ± sd. 
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Figure 3.4. Relationship between creatine kinase (CK) activity 4 days after plyometric 

exercise and individual percentage fibre type (A) fibre I%, (B) fibre IIa% (C) fibre type IIx% 

and (D) fibre type II total %. Data are expressed as mean ± sd.   
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Figure 3.5. Relationship between creatine kinase (CK) activity 4 days after plyometric 

exercise and (A) IL-6R% cell + (S), (B) IL-6R% cell + (D). Data are expressed as mean ± 

sd. 
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Figure 3.6. Creatine kinase (CK) activity (A) and myoglobin (Mb) concentration (B) 4 

days after plyometric exercise by MLCK C49T genotype, (CC = wild type homozygous; CT= 

heterozygous; TT = mutant homozygous). Data are expressed as mean ± sd. 
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3.3 Response of subjects to the exercise intervention: 

 

3.3.1 Delayed Onset Muscle Soreness 

DOMS increased immediately after exercise (6 hrs) and increased until day 2 

before gradually returning to baseline values, although soreness was only recorded 

up to day 4. In all of the subjects, soreness of the quadriceps increased immediately  

 (6 hrs) post plyometric exercise in both positions (standing P < 0.02 and squat P < 

0.0002) compared to baseline and remained high until day 4 for the high 

responders only. The high responders peaked at day 1 in the standing position (P < 

0.01) and day 2 (P < 0.0002) in the squat position compared to baseline (figure 3.7). 

The low responders experienced significantly higher soreness scores at 6hrs post-

exercise than the high responders in the standing position, but the high responders 

continued to experience significantly higher muscle soreness after day 3 and 4 

compared to the low responders in the squat position (figure 3.8 A).  

 

3.3.2 Damaged fibres 

No correlation between the percentage of damaged fibres at day 3, measured by 

the loss of muscle fibre membrane loss of dystrophin staining, and the CK response 

was observed for all time points (figure 3.9). 
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Figure 3.7. Change in perceived muscle soreness over time in two different positions 

before and after a single bout of plyometric exercise. Blue and red lines indicate 

perceived soreness (Log10) of all subjects (n=26) in the squat and standing positions 

respectively. * Significantly different from time points -9 and 0, (P < 0.0001); # significantly 

�������������������������� !��
����
�	�		����#����������������������������������(�����)����
�

0.05). Data are expressed as mean ± sd.  
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Figure 3.8 Change in perceived muscle soreness over time in two different positions 

before and after a single bout of plyometric exercise. A) Blue and red lines indicate 

soreness (Log10 U/L) in the standing position for the high (n=10) and low (n=16) responders 

respectively. B) Blue and red lines indicate soreness (Log10 U/L) in the squat position for 

the high (n=10) and low (n=16) responders respectively. * Significantly different from time 

points -������	
����
�	�			��������������������������������������������� !��
����
�	�		����#�

significantly different from day 3 and 4 (P < 0.05). ‡ Significantly different response 

between high and low responders (P < 0.05). Data are expressed as mean ± sd.  

No significant differences were observed for DOMS between the high and low responders 

at any time point in the standing position (figure 3.8 B), except at 6 hours (P < 0.05) after 

exercise in the standing position. 
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3.3.3 Marker of inflammation (C-reactive protein) 

In all subjects six hours after exercise, CRP levels increased significantly and 

peaked at one day post exercise before returning to baseline values at day 3 (figure 

3.10 A). CRP levels for both high and low responders peaked one day post 

exercise, however CRP values were significantly higher on days  6 hrs, 1 and 2 for 

the high compared to low responders (figure 3.10 A). 

 

3.3.4 Blood Marker (Lactate dehydrogenase)  

Six hours after exercise LDH was significantly higher than day 0 and remained 

significantly higher at 1, 2, 3 and 4 days post exercise (figure 3.11 A).  

LDH values were significantly higher for the high compared to the low responders at 

time points 6 hours – 4 days (figure 3.11 B). 

 

3.3.5 White blood cell counts 

White Blood Cell 

White blood cells (WBCs) count peaked 6 hours in the blood for all subjects, after 

plyometric exercise, after which it decreased significantly lower than baseline 

values at days 1,2,3 and 4 (figure 3.12 A). The same pattern mentioned before 

(figure 3.12 A) was observed for both high and low responders, however high 

responders experienced a significantly greater increase in WBC 6 hours (figure 3.12 

B) after plyometric exercise.   
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Figure 3.9. Relationship between creatine kinase (CK) activity 4 days after plyometric 

exercise and damage percentage fibre type 3 days after plyometric exercise (A) fibre I%, 

(B) fibre IIa% (C) fibre type IIx% and (D) fibre type II total %. Data are expressed as mean ± 

sd.   
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Figure 3.10. Change in serum CRP over time before and after a single bout of 

plyometric exercise. A) Average CRP activity (Log10 U/L) of all subjects (n=14) at different 

time points. B) The blue and red lines indicate changes in CRP activity (Log10 U/L) for the 

high (n=5) and low (n=9) responders. * Significantly different from time points -4, (P < 0.01); 

������������������������������������������	
����
�	�	����#���������������different from time point 

6hrs, (P < 0.01; ‡ significantly different from time point 3 and 4 (P < 0.001); * significantly 

different from time point 4, (P < 0.01); + significantly different response between high and 

low responders (P < 0.05). Data are expressed as mean ± sd.  
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Neutrophils 

The neutrophils increased significantly 6 hours after plyometric exercise (figure 3.13 

A) for all subjects. The same trend was observed for both high and low responders, 

with a peak increase in neutrophils 6 hours after plyometric exercise, however high 

responders  experienced a significantly greater increase in neutrophils 6 hours 

(figure 3.13 B) after plyometric exercise.     

 

Lymphocytes 

In all subjects, lymphocyte numbers decreased significantly from day -4 and 

baseline, 6 hours after exercise and remained significantly lower on days  1, 2, 3 

and 4 (figure 3.14 A). No significant differences were observed between groups at 

any time point. Both high and low groups, lymphocyte numbers decreased 

significantly at 6 hours post exercise compared to day -4 and 0 and remained 

significantly lower  on days 1, 2, 3 and 4 (figure 3.14 B). 

 

Monocytes 

Monocytes peaked 6 hours after plyometric exercise in all subjects and returned to 

baseline values at day 1 for all subjects (figure 3.15 A). For both high and low 

responders monocyte numbers peaked  6 hours after exercise (figure 3.15 B). No 

significant difference was observed in monocyte numbers between the high and low 

responders.    
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Figure 3.11. Change in serum LDH over time before and after a single bout of 

plyometric exercise. A) Average LDH activity (Log10 U/L) of all subjects (n=26) at different 

time points. B) The blue and red lines indicate LDH activity (Log10 U/L) for the high (n=10) 

and low (n=16) responder groups respectively. * Significantly different from time point 0, (P 

< 0.01); # significantly different response between high and low responders, (P < 0.01). 

Data are expressed as mean ± sd.  
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Eosinophils 

Eosinophils decreased significantly from baseline values, 6 hours after exercise 

after which it increased significantly on day 1 compared to 6 hours  after exercise 

(figure 3.16 A). This same trend was apparent for both high and low responders, 

however eosinophil values were significantly higher for the high compared to the 

low responders at respective time points, except at day 3 (figure 3.16 B). 

 

Basophils 

A significant increase in basophils was observed 6 hours post plyometric exercise 

from baseline values after which levels decreased significantly at 1, 2 and days post 

exercise compared to 6 hours after exercise (figure 3.17 A).  

In the high group basophil levels increased significantly 6 hours after exercise after 

which it returned to baseline levels but again increased significantly at day 4 (figure 

3.17 B). Low responder basophil levels remained unchanged, although levels were 

significantly higher day -4 compared to 0, 1, 3 and 4. High responders had 

significantly greater basophil values compared to low responders at baseline and 6 

hours after exercise (figure 3.17 B).      
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Figure 3.12. Change in White blood cell (WBC) count over time. A) Average WBC 

activity (Log10 10^9/l) for all subjects (n=14) before and after plyometric exercise. B) The 

blue and purple bars indicate changes in WBC activity (Log10 10^9/l) for the high (n=4) and 

low (n=10) responders respectively. *significantly different from day -4, (P < 0.01); # 

significantly different from day 0, ���
�	�	"���#����������������������������� !��
����
�	�	��� ‡ 

significantly different from day 3, (P < 0.04); significant difference between high and low 

responders at respective time points, (P < 0.01); Data are expressed as mean ± sd. 
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Figure 3.13. Change in Neutrophil count over time. A) Average neutrophil activity (Log10 

10^9/l) for all subjects (n=14) before and after plyometric exercise. B) The blue and purple 

bars indicate changes in neutrophil activity (Log10 10^9/l) for the high (n=4) and low (n=10) 

responders respectively. *significantly different from day -4, (P < 0.00001); † significantly 

different from day 0, (P < 0.00001); # significantly different from 6hrs, (P < 0.00001); ‡ 

significant difference between high and low responders at respective time points, (P < 

0.003); Data are expressed as mean ± sd. 
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Figure 3.14. Change in Lymphocyte count over time. A) Average lymphocyte activity 

(Log10 10^9/l) for all subjects (n=14) before and after plyometric exercise. B) The blue and 

purple bars indicate changes in lymphocyte activity (Log10 10^9/l) for the high (n=4) and low 

(n=10) responders respectively. * Significantly different from day -4, (P < 0.05); # 

significantly different from day 0, (P < 0.05). Data are expressed as mean ± sd. 
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Figure 3.15. Change in Monocyte count over time. A) Average monocyte activity (Log10 

10^9/l) for all subjects (n=14) before and after plyometric exercise. B) The blue and purple 

bars indicate changes in monocyte activity (Log10 10^9/l) for the high (n=4) and low (n=10) 

responders respectively. * Significantly different from day -4, (P < 0.02); # significantly 

different from day 0, (P < 0.05). †significantly different from 6hrs (P < 0.05), Data are 

expressed as mean ± sd. 
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Figure 3.16. Change in Eosinophil count over time. A) Average eosinophil activity (Log10 

10^9/l) for all subjects (n=14) before and after plyometric exercise. B) The blue and purple 

bars indicate changes in eosinophil activity (Log10 10^9/l) for the high (n=4) and low (n=10) 

responders respectively. † Significantly different from day -4, (P < 0.03); * significantly 

different from day 0, (P < 0.02); #significantly different from 6hrs, (P < 0.03); ‡ significantly 

different from day 3, (P < 0.04); * significant difference between high and low responders 

at respective time points, (P < 0.04); Data are expressed as mean ± sd. 
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Figure 3.17. Change in Basophil count over time. A) Average basophil activity (Log10 

10^9/l) for all subjects (n=14) before and after plyometric exercise. B) The blue and purple 

bars indicate changes in basophil activity (Log10 10^9/l) for the high (n=4) and low (n=10) 

responders respectively. * Significantly different from 6hrs, (P < 0.05); # significantly 

different from day -4, (P < 0.04); † significant difference between high and low responders 

at respective time points, (P < 0.04); Data are expressed as mean ± sd. 
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3.3.6 Cytokines 

TNF-� 

TNF- � level was undetected in serum of all subjects at all time points.  

 

IL-6 

Serum IL-6 levels peaked six hours after plyometric exercise in all subjects and 

returned to baseline values by day 1 (figure 3.18 A), this same trend was apparent 

for both high and low responders. However no significant difference was observed 

between high and low responders at respective time points although serum IL-6 

levels were slightly higher in the high responders (figure 3.18 B). 

 

3.3.7 Damaged fibres 

Sarcolemmal damage was quantified by the loss of dystrophin staining (figure 3.19), 

this was indicative of membrane damage.  

 

Muscle damage in the form of z-disk streaming was apparent in all subjects from 

electron micrographs taken of biopsy 2. Damage ranged from no damage to severe 

damage as illustrated in figure. 3.20 B. Visible differences of structural and 

ultrastructural muscle damage were not apparent when comparing electron 

micrographs of high and low responders. 
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Figure 3.18. Change in serum IL-6 over time. A) Average serum IL-6 activity (Log10 U/L) 

for all subjects (n=26) before, 6hrs and 1 day after plyometric exercise. B) The blue and red 

lines indicate changes in serum IL-6 activity (Log10 U/L) for the high (n=10) and low (n=16) 

responders respectively. * Significantly different from -9 and day 1, (P < 0.03). Data are 

expressed as mean ± sd. 
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Figure 3.19 Immunofluorescence of cross-sections of muscle fibres from a biopsy 

taken 3 days after the plyometric exercise intervention, double immunostaining with anti-

dystrophin (A) and anti-myosin heavy chain II (B). Arrows show the loss in dystrophin 

staining; II indicates MHC-II positive fibres; I, MHC-I fibres. Scale bars 30 ,m. 
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Figure 3.20. A) Longitudinal section of human vastus lateralis muscle. Calibration bar 

corresponds to a distance of 1 µm (30 000x). (m-mitochondrion, z-Z-band, and t-

Transverse tubular system).  B)  Electron micrographs of longitudinal sections (1µm) 

illustrating different stages of Z-disk disruption/damage following eccentric exercise in 

human skeletal muscle, A-no damage, B-wavy Z-disks, D-strongly waved Z-lines and D-

severe damage (absence of Z-lines). Z-normal z-disk, Mt-mitochondria, sMt-swollen 

mitochondria, 1-wavy z-disk, 2-mild z-disk streaming, 3-disintegration of z-disk. No 

difference in ultrastructural damage was observed between high and low responder groups.  
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Training Intervention Study: 

3.1 Cross-sectional area 

No significant change in individual muscle fibre CSA was observed following 8 

weeks of plyometric training. Although fibre type IIa (3453-4168 µm2) and total fibre 

type II (3434-4118 µm2) CSA in the training group showed a trend toward (P=0.07) 

an increase in CSA following 8 weeks of plyometric training (figure 3.21). No 

significant changes in CSA for the control group were observed. 

 

3.2 Fibre shift 

No significant change in individual muscle fibre type percentage was observed 

following 8 weeks of plyometric training. However, the training group showed a 

trend (P=0.06) toward increased type IIa fibres (46.6-57.5%) following 8 weeks of 

plyometric training (figure 3.22). No significant changes in fibre percentage for the 

control group were observed. 

 

3.3 Performance results 

3.3.1 Average and Peak power 

Following 8 weeks of plyometric training, average and peak power increased 

significantly in the training group P < 0.0003 and P < 0.001 respectively (figure 3.23 

A and B). While no significant differences were observed for the control group. 

Both average and peak velocity increased significantly (P < 0.003 and P < 0.03 

respectively) in the training group post plyometric training, however a significant 

increase in peak velocity (0.05) was observed in the control group following 8 

weeks of rest (3.24 A and B). 
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Figure 3.21 Individual muscle fibre cross-sectional area before and after 8 weeks of 

rest or plyometric training. Fibre type IIa (3453-4168 µm2) and total type II fibre CSA (3434-

4118 µm2) in the training group showed a trend toward (P=0.07) an increase in CSA 

following 8 weeks of plyometric training 

 

Figure 3.22 Individual muscle fibre transitions before and after 8 weeks of rest or 

plyometric training. The training group showed a trend (P=0.06) toward increased type IIa 

fibres (46.6-57.5%) following 8 weeks of plyometric training 

Stellenbosch University http://scholar.sun.ac.za



85 

 

3.3.2 Maximum vertical jump height 

Significant increases in vertical jump height were noted after plyometric training in 

the training as well as control group (figure 3.25) P < 0.02 and P < 0.05 respectively. 

 

3.4 Blood marker response 

CK levels increased immediately 6 hours (P < 0.00001) following the first acute bout 

of plyometric exercise in the training group and continued to rise until day 4 (P < 

0.00001). Following plyometric training CK levels were significantly lower than pre 

training values at all time points in the training group (P < 0.001). CK levels in the 

control group peaked one day after the first acute bout of plyometric exercise and 

pre training values at days 1, 2, 3 and 4 were significantly lower than pre training 

values at the same days of the training group. Following 8 weeks of plyometric 

training, the CK response was blunted and CK levels were significantly lower than 

pre training values at respective time points in the training group (3.26 A). The 

control group had significantly lower CK levels compared to the training group 

following the first acute bout of plyometric exercise; however the training group had 

significantly lower CK levels in response to the second acute bout of exercise 

compared to the control group at day 3 post exercise. Mb peaked at 6 hours 

following the first acute bout of plyometric exercise in both control and training 

group (figure 3.26 B). At this time point the training group had significantly higher 

Mb levels compared to the control group. Following training the second acute bout 

of plyometric training, elicited a significantly lower Mb response in comparison with 

the first acute bout of exercise in both training and control groups. The peak 

increase at 6 hours following the second acute bout of exercise was significantly 

lower than the 6 hour time point following the first acute bout of exercise for both 
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groups. In fact, this was true for all time points following the second acute bout of 

exercise. 

 

 

Figure 3.23 Average (A) and Peak (B) power before and after 8 weeks of rest or 

plyometric training. * Significantly different from pre jump values within groups (P < 0.001). 
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Figure 3.24 Average (A) and Peak (B) velocity before and after 8 weeks of rest or 

plyometric training. * Significantly different from pre jump values within groups, (Training P 

< 0.003, Control P < 0.03). 
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3.5 Delayed Onset of Muscle Soreness 

In the squat position, soreness increased significantly from baseline to 6 hours (P < 

0.02, P < 0.01) following the first acute bout of plyometric exercise, peaked at day 2 

and decreased gradually in both groups (figure 3.28 A). Following 8 weeks of 

plyometric training/rest soreness was significantly lower in the training group 

compared to the control group in response to a second acute bout of plyometric 

training (figure 3.28 B). The control group experienced less soreness after 8 weeks 

of rest in response to the second acute bout of exercise compared to first acute 

bout of exercise. In the standing position DOMS peaked at 6 hours (P < 0.002) and 

day 1 (P < 0.00001) in the training and control groups respectively, however this 

peak increase was significantly lower than compared to the pre training value of the 

same time points. 

 

Figure 3.25 Maximum vertical jump height before and after 8 weeks of rest or plyometric 

training. * Significantly different from pre jump values within groups, (Training P < 0.02 and 

Control P < 0.05). 
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Figure 3.26 Change in serum creatine kinase CK and myoglobin Mb over time before 

and after plyometric training. The blue and red lines indicate CK (A) and Mb (B) activity 

(Log10 U/L) for the training (n=8) and control (n=5) groups respectively. * Significantly 

different from time point 6 hrs before training, (P < 0.04); # significantly different from day 1 

before training, (P < 0.01)��#����������������������������������-�%��������������
����
�	�	����$ 

significantly different from day 3 before training, (P < 0.01); � significantly different from day 

4 before training, (P < 0.01). Data are expressed as mean ± sd.  
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3.6 Inflammatory response (C-reactive protein) 

In the training group, CRP peaked one day (P < 0.01) following the first acute bout 

of plyometric exercise compared to baseline and returned to baseline values on 

subsequent days. Following 8 weeks of training no significant changes were 

observed in CRP values in the training group in response to a second acute bout of 

plyometric exercise. No significant changes in CRP levels were observed for the 

control group following the first and second acute bouts of plyometric exercise. 

 

 

Figure 3.27 Change in serum Lactate dehydrogenase (LDH) over time before and 

after plyometric training. The blue and red lines indicate LDH activity (Log10 U/L) for the 

training and control groups respectively. * Significantly different from day 0, (P < 0.004) 

%������ ���������� �� �������������� ���������� ����� ���� �
� %������ ��������� ��� 
� 	�		���� #�

significantly different from day 2 before training, (P < 0.001). Data are expressed as mean ± 

sd.  
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Figure 3.28 Change in perceived muscle soreness before and after 8 weeks of 

plyometric training. A) Blue and red lines indicate soreness (Log10 U/L) in the squat 

position for the training and control groups respectively. B) Blue and red lines indicate 

soreness in the standing position for the training and control groups respectively. Note 

normal values are used to indicate soreness in the standing position because LOG10 

statistical analysis cannot be performed on zero values. * Significantly different from time 

points 6 hrs, (P < 0.05) before training; # significantly different from day 1, (P < 0.01) before 

����������#���������������������������������-����
�	�	)��%����������������$�.�����������������������

from day 3 (P < 0.00001) before training; � significantly different from day 4 (P < 0.00001) 

before training. Data are expressed as mean ± sd.  
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3.7 White blood cell counts 

White blood cells (WBCs) peaked 6 hours (P < 0.002) in the blood (figure 3.30) 

compared to baseline for the training group following the first acute bout of 

plyometric exercise after which it decreased significantly to baseline levels on days 

1, 2,3 and 4 (P < 0.01). This peak was significantly higher than the control group at 

the same time point, following the first acute bout of plyometric exercise, and all 

time points before and after training (P < 0.01). In the control group white cells 

remained at baseline values after the first acute bout and second acute bout of 

training. 

 

 

Figure 3.29 Change in serum CRP over time before and after 8 weeks of plyometric 

training. Average CRP activity (Log10 U/L) of the training and control groups. * Significantly 

different from day 1 before training, (P < 0.03). Data are expressed as mean ± sd.  
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Neutrophils 

There was a peak in neutrophils 6 hours following the first acute bout of plyometric 

exercise in the training group (P < 0.00001). This peak was significantly greater (P 

< 0.01) than all-time points (training and control) before and after plyometric training 

(figure 3.31). 

Lymphocytes 

Lymphocyte counts was significantly lower at time points 6 hours, 1, 2, 3 and 4 (P < 

0.01) compared to day 0 in the training group (figure 3.32), before plyometric 

training. Day 0 (training group) before the first acute plyometric exercise was not 

significantly different from pre-training values compared to the control group at the 

same time point and post-training values of the training group at day 0, but was 

significantly different from post training control group values at the same time point 

(P < 0.04) .    

Monocytes 

Monocyte levels for both training and control groups were not significantly different 

6 hours following the first acute bout of plyometric exercise (figure 3.33), neither 

were these values significant compared to post training values at the same time 

point. However 6 hours after the first acute bout of plyometric exercise in the 

training group, monocyte levels were significantly different to days 0, 1, 2, 3 and 4 

(P < 0.04).     

Eosinophils 

No significant differences were observed for eosinophil levels between any time 

point’s pre and post training (figure 3.34). 
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Figure 3.30 Change in White blood cell (WBC) count over time. WBC activity (Log10 

10^9/l) before and after 8 weeks of plyometric training for the training and control (n=10) 

groups respectively. * Significantly different from time point 6 hrs before training, (P < 0.01); 

# significantly different from day 3 before training, (P < 0.01). Data are expressed as mean 

± sd. 

 

Figure 3.31 Change in neutrophil count over time. Neutrophil activity (Log10 10^9/l) 

before and after 8 weeks of plyometric training for the training and control groups 

respectively. * Significantly different from time point 6 hrs before training, (P < 0.01). Data 

are expressed as mean ± sd. 
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Figure 3.32 Change in lymphocyte count over time. Lymphocyte activity (Log10 10^9/l) 

before and after 8 weeks of plyometric training for the training and control groups 

respectively. * Significantly different from day 0 before training, (P < 0.05). Data are 

expressed as mean ± sd. 

 

Figure 3.33 Change in monocyte count over time. Monocyte activity (Log10 10^9/l) 

before and after 8 weeks of plyometric training for the training and control groups 

respectively. * Significantly different from time point 6 hrs before training, (P < 0.04). Data 

are expressed as mean ± sd. 
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Figure 3.34 Change in eosinophil count over time. Eosinophil activity (Log10 10^9/l) 

before and after 8 weeks of plyometric training for the training and control groups 

respectively. * Significantly different from day 0 before training, (P < 0.03). Data are 

expressed as mean ± sd. 

 

3.8 Titin localization by Immunogold 

With transmission electron microscopy, in the baseline muscle biopsy, immuno-

reactivity for titin was observed prevalently along the M-line region of sarcomere, 

while the negative control showed relatively low non-specific binding. The muscle 

biopsies obtained 3 days after the first plyometric intervention showed a higher level 

of immuno-reactivity compared to the baseline biopsy. The same levels of immuno-

reactivity were observed in the muscle biopsies obtained before and after the 

second acute bout of plyometric exercise. No qualitative differences were observed 

between the training and the control group at any time points. 
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Figure 3.36 Immuno-electron microscopic detection of anti-titin binding sites on ultrathin 

sections of LR-white resin embedded vastus lateralis muscle (z-Z-band, m-M-line and zs-Z-

disk streaming). A) Baseline muscle biopsies show, colloidal gold particles distributed along 

the M-line; B) An example of a muscle biopsy analysed after the first acute bout of 

plyometric exercise, colloidal gold particles are distributed throughout the sarcomere. 
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3.9 Calpain-3 activation 

There was an increase in calpain-3 autolysis after the exercise intervention at day 3 

for both the training and control group. The ratio between “total autolysed calpain-3” 

and the autolysed calpain-3 remain constant within subjects, however the ratio in 

the post plyometric exercise biopsy was higher after the first acute bout of exercise 

for both groups compared to the second acute bout.  

 

 

 

Figure 3.37 Effect of plyometric training on the extent of calpain-3 autolysis. Western 

blots of calpain-3 for 4 subjects n=2 training group; n=2 control group), before and after 

training. Figure shows autolysed calpain-3 58- and 56-kDa bands before and after training; 

and �-actin indicates the relative loading of the samples. 
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Discussion 

Acute Intervention 

In a recent publication we reported that the plyometric squat jump protocol used in 

this acute study, induced muscle damage that was visible by electron microscopy, 

alongside the often described increased perceived pain and high levels of blood 

markers of muscle damage. We were also the first to provide direct morphological 

evidence that plyometric exercise results in preferential damage to fast twitch 

muscle fibres (Macaluso F, Isaacs AW and Myburgh KH.  Plyometric exercise 

induces damage preferentially of type II muscle fibres. Journal of Athletic Training 

2012; in press). Two subjects developed rhabdomyolysis in response to the 

protocol. To determine if any indirect markers outside of CK are higher with 

rhabdomyolysis, two subjects are insufficient. Therefore the design of the acute 

study was to include 26 subjects while focusing more on potential physiological and 

structural mechanisms induced by a single bout of plyometric exercise. Studies in 

the literature generally focus on a single factor that could be responsible for the 

difference in increased CK susceptibility amongst individuals. The value this thesis 

offers is that various factors (physical characteristics, muscle characteristics, 

genetic characteristics and the response of subjects to the exercise intervention) 

were considered when investigating this phenomenon, since a single event cannot 

explain the complexities of muscle damage. It is clear that adaptations occur. Some 

adaptations to a single bout of plyometrics are not likely to be the same as those 

that occur in response to weeks of training where gene expression can cause the 

accumulation of specific proteins in response.     
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It still remains unclear why within a group of people exercising at a similar intensity 

and in a similar environment, only a small percentage would develop 

rhabdomyolysis (Clarkson et al. 2005b; Devaney et al. 2007; Yamin et al. 2010). 

The clinical significance is that rhabdomyolysis may lead to renal damage, when 

excess myoglobin released into the bloodstream precipitates in the nephron 

(Moeckel-Cole and Clarkson 2009). In this study we investigated whether indirect 

factors occur to a greater extent in the subjects who respond with very high CK 

levels.  

Plyometric jumping is perfect for studying mechanical muscle damage compared to 

other damage models such as downhill running which is more suited for the study of 

the immune response. The immune response has received a lot of attention by 

investigators in literature over the past decade and is thus not the focus of this 

thesis. Plyometric jumping could impart forces of up 5 times an individual’s body 

weight on the active muscle groups (McMahon and Greene 1979), therefore 

physical factors which could contribute to the condition of rhabdomyolysis, 

considered were individual weight, jump height and weight x jump height. The 

rationale behind this was that the weight of the subject can be considered the mass 

of an object that is dropped from a height equal to the jump height of the subject. 

Considering that gravitational acceleration is constant (9.8m/s2), the greater the 

subject’s mass the greater the acceleration will be. Thus the force of impact can be 

considered. However these characteristics all showed no association with the CK 

response.  As mentioned above plyometric jumping results in mainly fast twitch 

muscle damage, differences in individual % fibre type or the % of damaged fibres 

were not associated with the CK response therefore we can deduce that individuals 

with more type II fibres do not present with greater damage. 
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Muscle soreness increased immediately (6 hr) after the exercise intervention and 

was higher in the squat compared to the standing position in all subjects. On days 3 

and 4 following the plyometric exercise the high responders reported significantly 

higher soreness scores compared to the low responders. This could indicate that 

low responders perhaps recover faster than high responders. By analysing muscle 

structure and ultrastructure using light and electron microscopy, it was possible to 

observe muscle membrane damage and ultrastructural damage in the form of z-disk 

streaming. However no visible differences were observed when comparing electron 

micrographs of high and low responders. This does not indicate with any certainty 

that there are no differences, because one should remember that the muscle biopsy 

is representative of only a tiny section of the entire muscle.  We observed that 

damage included sarcolemmal disruption as observed by the loss of dystrophin 

staining which allowed the leakage of muscle proteins such as CK and Mb into 

circulation. CK and Mb levels showed wide variability amongst subjects ranging 

from 153 U/L to 71 024 U/L and 20 ng/ml to 2382 ng/ml 4 days post plyometric 

exercise respectively.  

An interesting observation was that high responders had a significantly greater 

inflammatory response to exercise compared to low responders. The inflammatory 

marker CRP peaked one day after plyometric exercise in both groups and remained 

significantly greater at time points 6 hours, day 1 and day 2, this corresponded with 

the earlier peak release of WBCs, neutrophils and IL-6 all at 6 hours after the 

exercise intervention. A possible reason for the more pronounced inflammatory 

response could be that high responders have a significantly higher number of 

circulating neutrophils than low responders. Neutrophils accumulate in the muscle 

injured area within two hours following mechanical damage, acting to phagocytise 
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cellular debris by producing oxygen free radicals (Pizza et al. 2005; Toumi and Best 

2003). Literature suggests that neutrophils may damage surrounding non-injured 

tissue by rapidly releasing reactive oxygen species known as respiratory burst 

(Brickson et al. 2001). Brickson et al. (Brickson et al. 2003) used a single stretch 

injury model in rabbit tibialis anterior muscle to demonstrate that by inhibiting 

neutrophils respiratory burst with an antibody the extent of muscle fibre damage 

was reduced and the muscle structural proteins desmin and dystrophin were 

preserved. We propose that initial mechanical injury would cause a greater 

inflammatory response in high responders; neutrophils thus migrate to the injured 

area via chemotactic signals produced by damaged skeletal muscle cells. High 

responders also have slightly higher circulating levels of IL-6 at 6 hours after 

exercise and IL-6R� at baseline. Muscle is known to produce IL-6 after a strenuous 

exercise bout (Tomiya et al. 2004; Willoughby et al. 2003) and not TNF-�. IL-6 can 

act as both inflammatory and anti-inflammatory mediator (Tilg et al. 1997). In this 

instance IL-6 would perform pro-inflammatory duties since the muscle is ‘damaged’ 

and recruit neutrophils to the compromised areas. Neutrophils would then produce 

more IL-6 and recruit more neutrophils to remove cell debris. The number of 

accumulating neutrophils will thus be higher in the high compared to the low 

responders, resulting in the over production of oxygen free radicals which target the 

proteins desmin and dystrophin resulting in further muscle membrane damage. This 

could be the reason for the continued rise in CK up to 4 days after the exercise 

event, the second peak in Mb release and the blunted CK response seen in the low 

responders. Should this be the case researchers need to add to the question “Why 

do only some individuals exercising at a similar intensity and in a similar 

environment, develop rhabdomyolysis” by asking an alternative question which may 
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well provide the answer to the first question: “Why do certain individuals exercising 

at a similar intensity and in a similar environment, develop a greater inflammatory 

response”. Recently, researchers have attempted to approach both of these 

questions using a genomic approach. 

Recent studies report that a series of SNPs are responsible for an individual’s 

predisposition to high increases in CK and Mb values post eccentric exercise. 

These studies have already established the genotypes of the different SNPs 

described in this thesis using larger study populations. In this thesis a preliminary 

check on how the subjects fitted into the published genotypes was done. We 

considered three of these SNPs namely MYLK (involved in muscle force 

production) and TNFA and IL6 (involved with inflammation) genes. Clarkson et al. 

and Yamin et al. (Clarkson et al. 2005b; Yamin et al. 2008) showed that individuals 

who possess the MYLCK (TT) and TNFA (GA) and IL6 (CC) alleles are more 

susceptible to exercise induced muscle damage than peers with similar 

characteristics exercising at the same intensity. However in this study, individuals 

who were genotyped with the rare MYLCK TT allele were not necessarily more 

susceptible to muscle damage. In fact the subject with the highest CK value (71024 

U/L) 4 days after exercise was genotyped as wild type homozygous CC. A point to 

make was that in the study by Clarkson et al. (Clarkson et al. 2005b) CK values 

between subjects (n=6) in the mutant group were largely varied and thus one 

individual with a really high CK level may increase the average CK value 

considerably. All individuals genotyped for the IL6 G-174C SNP were found to be 

homozygous wild type GG without the homozygous CC mutation and moreover all 

individuals were found to be homozygous wild type GG without the homozygous GA 

mutation when genotyped for the TNFA-�-308A SNP. These results clearly contrast 
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each other since the GG genotype IL6 G-174C and TNFA-�-308A has been shown 

to be associated with a low CK response profile and high CK response profile 

respectively. Controversially a 2008 publication stated that the reference numbers 

of the SNP IDs used by Yamin et al. (Yamin et al. 2008)  were incorrect, thus 

allowing us to focus our attention to other possible SNPs. However, results from the 

training study show that high responder individuals are able to protect themselves 

from being susceptible to damage, since post training CK and myoglobin values 

were blunted post plyometric training. Surely individuals with a genetic mutation 

should on subsequent bouts of exercise still elicit a similar response as before, 

since ones genetic make-up remains the same. 

Responses to the Plyometric Training Intervention 

Next we investigated whether plyometric training would protect the muscle from the 

ultrastructural damage and rhabdomyolysis seen after a single unaccustomed bout. 

Muscle adaptations resulting from plyometric training which could potentially affect 

damage include fibre type shifts and increasing muscle fibre size exist. Similar to 

the protocol used in this thesis, Potteiger et al. 1999 subjected individuals to 8 

weeks of plyometric training including vertical, bounding and depth jumping 

activities. The authors reported that individuals doing only plyometric training 

increased both type I (4.4%) and type II (7.8%) fibre cross-sectional area. In the 

current study training resulted in no significant increases in fibre CSA or a 

percentage fibre type shift toward an increased type II fibre profile, although the 

training group showed a trend toward increased CSA of the type IIa (P=0.07) fibres 

and percentage fibre shift toward type IIa (P=0.06) fibres. This finding is consistent 

with the data presented in this thesis that shows preferential damage of type IIa 
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fibres, therefore indicating significant recruitment. A reason that only a trend was 

observed could be that subjects performed less jumps during training than in the 

Potteiger protocol. The trend toward increased type IIa muscle fibre CSA area and 

percentage fibre shift is consistent with jump performance improvements obtained 

by the training group. The control group however also improved their vertical jump 

height, but this can be subscribed to improved coordination of the jump performed 

the second time around. However, despite the improvement in controls (which was 

taken into account by the statistical analysis), the improvement in the training group 

was still very significant. 

Soreness of the quadriceps peaked 2 days after the initial bout of plyometric 

exercise in both groups in the squat position. After the 8 week period of training or 

rest in the case of controls, soreness was significantly less for the training group 

compared to the control group indicative of muscle adaptation. Soreness was also 

less in the control group following 8 weeks of rest compared to the first acute bout 

of exercise. Interestingly, the blood markers of muscle damage CK and Mb as well 

as the inflammatory marker CRP, levels were all significantly lower after 8 weeks of 

training. The control group had no significant differences in these markers. This 

could be either because all of the subjects in the control group were low responders 

and that they are somehow protected, or the lower perceived muscle soreness in 

the control group could perhaps be due to the repeat bout effect. The ‘repeated 

bout effect’ phenomenon, has been characterized by reduced negative changes to 

muscle morphology, improvements in muscle function and less severe changes in 

markers of muscle damage. This has been documented in numerous studies, 

however; no clear adaptation mechanisms have been shown (Lynn and Morgan et 

al. 1994; McHugh 2003). The improvement in jump performance by the control 
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individuals could perhaps be due to improved neural co-ordination during the jump 

following the first acute bout of exercise and the reduction in biochemical indicators 

may be due to the remodeling effect of calpain-3 (Kramerova et al. 2007).  Nosaka 

et al. (Nosaka et al. 2001) provided evidence that the protective effect of the repeat 

bout may last for 6months following the initial exercise bout.  

Accompanying the blunted inflammatory response post training was a significant 

reduction in circulating WBC and neutrophil levels. This is an important finding since 

this provides a mechanism for exercise induced rhabdomyolysis, suggesting that an 

inflammatory adaptation occurred resulting in less membrane damage. The electron 

microscopy results indicated that membrane damage probably was not a result of 

mechanical influences. Intracellular mechanisms are also activated in the time 

period following the jumping.  

Currently two schools of thought exist as to how muscle specific calpain-3 is 

activated following eccentric exercise, since there is uncertainty on how this protein 

is regulated and what its function is. Murphy et al. (Murphy et al. 2007) provided 

evidence that calpain-3 is autolysed 24 hours following a single bout of eccentric 

exercise and in a subsequent article showed that calpain-3 is regulated by small 

increases in resting Ca2+ levels rather than mechanically via the stretch of titin 

(Murphy and Lamb 2009). We did not observe any difference in membrane damage 

following the first and second acute bouts of exercise (before and after training) by 

the loss of dystrophin staining. Using transmission electron microscopy we 

observed that all subjects with the exception of three control subjects presented 

with no z-disk streaming after training/rest, although still observing the stretch of titin 

in muscle biopsies taken from trained individuals. When blotting for calpain-3 we did 

not observe the 94 kDa band showed by Murphy et al. although the ubiquitous 
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calpains (at 53 and 54 kDa) showed total autolysed expression did not change. 

However, the second band showed higher expression in biopsy 2 in both training 

and control groups. Therefore we can speculate that only the first acute bout of 

exercise (before training) will stimulate the activation of calpain-3. 

Titin has been proposed to perform two main functions: it acts as a molecular 

scaffold for the myofilament thus contributing to the development of the sarcomere 

and has been termed a ‘molecular spring’ that stores and re-uses elastic energy 

thus contributing to passive and active force production by skeletal muscle (Trappe 

et al. 2002, Lehti et al. 2007, Kontrogianni-Konstantopoulos et al. 2009). In an 

animal downhill running model Lehti et al. (Lehti et al. 2007) trained rats over 5 

sessions and observed that titin expression increased significantly following 

repeated exercise although immunohistochemical observation showed normal titin 

staining. The results of this study indicate that this increase in titin expression is in 

fact a stretch of titin protein as seen 3 days following an acute bout of plyometric 

exercise (figure 3.36).      

All the results taken together lead to the following proposal: 

After training membrane damage occurs as described in the acute study, however 

the myofibrils do show disorganization regardless of the stretch of titin. We 

considered titin to be stretched and not over expressed as other studies indicate 

since the antibody Titin c-20 (1:10 in 0.1% BSA-TRIS buffer; sc-8724, mouse 

monoclonal antibody, Santa Cruz Biotechnology, Santa Cruz, CA, USA) binds and 

recognizes the C-terminus of titin as observed in fig. 3.36A along the M-line of the 

sarcomere. Following eccentric exercise this protein will stretch (protein unfolds) 

and expose a greater surface area for antibody binding as observed in fig. 3.37B 
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between the M-lines of adjacent sarcomere. Proteins such as CK can only be 

released if the sarcomere structure is compromised. A single eccentric bout of 

exercise is enough to desensitize calpain-3 to Ca2+ activation on a subsequent 

bout, suggesting calpain-3 is part of the remodelling effect (Kramerova et al. 2007) 

rather than degrading muscle proteins for breakdown.               

Conclusion 

The findings of this thesis suggest rhabdomyolysis could be caused by a 

combination of factors which increase the inflammatory response in the damaged 

area causing “secondary inflammatory damage”. These factors may include training 

state, myokine IL-6 response to acute exercise, neutrophil recruitment and ROS 

production. All of these factors may determine the extent of myofibre membrane 

damage experienced following eccentric exercise. Directly linking these factors to 

membrane damage specifically remains to be researched. This damage may be 

limited by training, although not necessarily by promoting less membrane disruption 

but by remodelling sarcomeric proteins via calpain activation. This allows a more 

stable and fixed assembly of proteins in the sarcomere preventing the release of 

proteins, independent of membrane damage. The data suggest that titin is stretched 

rather than overexpressed following eccentric exercise since the protein is found 

between the M-line of adjacent sarcomeres after plyometric exercise. Finally, the 

results lend support to the idea that calpain-3 activation is not due to the stretch of 

titin because biopsies post training still show the stretch of titin, without calpain-3 

activation present. 
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Appendix I 

 

Visual Pain Scale 
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Subject Questionnaire  

Name:     Surname:    US Number: 

Cell no:    Age:   Height:   Weight: 

 

Physical activity and Injury questionnaire: 

 

Physical Activity: 

Did you participate in any sports during high school?   

If yes, which sporting activity/ies?

 ………………………………………………………………………… 

At what level did you compete? 

  Recreational:  Regional Competition:  National: 

Did you, or are you participating in any competitive sport at university?  

If yes, what sport did/are you participating in? 

How long ago?  

currently: <2 months ago:  2 months ago:  6 months ago: 

 1 year ago:   > 1 year ago:   

Do you currently participate in any recreational physical activity? 

If yes, what? 

Y N 

Y N 

Y N 
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How often? 

 < twice a week  twice a week  3 times a week  > 3 times 

a week 

In the past 4 weeks? 

< twice a week  twice a week  3 times a week  > 3 times a 

week 

At what intensity?     

  Low:   moderate:  high: 

 

What is your current level of fitness currently? 

  Unfit:   Moderately fit:  Highly trained: 

 

Injury history: 

Have you had any injury to your lower extremities? 

If yes, where? 

  Hip:  knee:  Ankle:  upper leg: lower leg:   

Of what nature? 

  Sprain:  Strain:  Contusion: injury to bone: 

 Dislocation: 

How long ago? 

Y N 
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  < 2 months ago:  3 months ago:  6 months ago: 

 1 year ago: 

> 1 year ago: 
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Code: 

Name:       Height: 

Surname:     Weight: 

Student Number:    Vertical jump height ave: 

Friday 21st Aug   

Leg Dominance: 

Leg Of first Biopsy: 

Perceived Muscle Soreness Score: 

Standing Position:   Squat:   LL squat:  RL squat: 

Monday 31st Aug 

Perceived Muscle Soreness Score: 

Standing Position:   Squat:   LL squat:  RL squat: 

Perceived Muscle Soreness Score (6hrs post-exe): 

Standing Position:   Squat:   LL squat:  RL squat: 

Tuesday 1 Sept  

Perceived Muscle Soreness Score: 

Standing Position:   Squat:   LL squat:  RL squat: 

Wednesday 2 Sept 

Perceived Muscle Soreness Score: 
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Standing Position:   Squat:   LL squat:  RL squat: 

Thursday 3 Sept 

Perceived Muscle Soreness Score: 

Standing Position:   Squat:   LL squat:  RL squat: 

Friday 4 Sept 

Perceived Muscle Soreness Score: 

Standing Position:   Squat:   LL squat:  RL squat: 
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Appendix II 

S - dilution series 
H – High 
L – Low 
Blank 
 

  PRE SAMPLES IN 
BLACK 

   DAY 0 SAMPLES ARE 
IN RED 

  DAY 1 SAMPLES IN 
GREEN 

 
 
Kit 1 

  1 2 3 4 5 6 7 8 9 10 11 12 

A s1 s1 L L EvS EvS WD WD TR TR RH 
CON 

RH 
CON 

B s2 s2 H H DP 
CON 

DP 
CON JL JL PL PL PD 

CON 
PD 
CON 

C s3 s3 JM JM GA 
CON 

GA 
CON CvN1 CvN1 CA8 CA8 EvS EvS 

D s4 s4 TT4 TT4 WP WP LA2 LA2 JK JK DP 
CON 

DP 
CON 

E s5 s5 DL DL JF7 JF7 SA10 SA10 JM JM GA 
CON 

GA 
CON 

F s6 s6 GV11 GV11 RS 
CON 

RS 
CON WR WR TT4 TT4 WP WP 

G s7 s7 RH 
CON 

RH 
CON SB9 SB9 ZN6 ZN6 DL DL JF7 JF7 

H blank blank PD 
CON 

PD 
CON SR SR NB NB GV11 GV11 RS 

CON 
RS 
CON 

 

Kit 2 

  1 2 3 4 5 6 7 8 9 10 11 12 

A s1 s1 L SB9* ZN6 ZN6 DL DL JF7 JF7 SA10 SA10 

B s2 s2 H SR* NB NB GV11 GV11 RS 
CON 

RS 
CON WR WR 

C s3 s3 WD WD TR TR RH 
CON 

RH 
CON SB9 SB9 ZN6 ZN6 

D s4 s4 JL JL PL PL PD 
CON 

PD 
CON SR SR NB NB 

E s5 s5 CvN1 CvN1 CA8 CA8 EvS EvS WD WD TR TR 

F s6 s6 LA2 LA2 JK JK DP 
CON 

DP 
CON JL JL PL PL 

G s7 s7 SA10 SA10 JM JM GA 
CON 

GA 
CON CvN1 CvN1 CA8 CA8 

H blank blank WR WR TT4 TT4 WP WP LA2 LA2 JK JK 
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Appendix III 

• 38 samples of TNF-� and IL-6 

• Washed twice times slowly (wash buffer) 

• Do not allow wells to dry 

 

• Standard dilution: 

o (External) Label eppies 7 (S1-S7) 

o Make up Standard’s plus Control 

o 50ml standard plus 950ml sample Diluent 

o Control plus 200ml dH2O (10-30 minutes) 

o Swirl gently 

o Dilute: 50,l control in 950 sample Diluent 

o 225,l sample Diluent (25ml bottle) 

o 225,l Diluted Standard in S1 and mix 

o 225,l S1 in S2 and mix 

o 225,l S2 in S3 

o  225,l S3 in S4 

o 225,l S4 in S5 

o 225,l S5 in S6 

o 225,l S6 in S7 

• Added 100,l S1-S7 

• Added 100,l Control 1-2 

• Added 100,l Sample Diluent in blank 1-2 

• Added 50,l Sample(duplicate) 

• 60,l Biotin-Conj plus 5940,l Sample Diluent 
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• Added 50,l Diluted Biotin-Conj in ALL 

• Cover and incubate [2hours at RT on 100pm] 

• 20 minutes prior to completion after nr 8 

o Added 120ml Strep-HRP plus 11880ml Assay Buffer 

• Washed 6 times 

• Added 100,l Diluted Strep-HRP in ALL 

• Incubate for 1 hour  

• 6000,l Amp Diluent (2×) plus 6000,l dH2O (1×) 

o Centrifuge vial to collect liquid in Amp. Sel. 1 

• 24ml Amp Reagent 1 plus 11976 Amp Diluent (1×) 

• Washed 6 times 

• Added 100,l Amp Solution 1 to ALL 

• Incubated for 15minutes  

o Centrifuge 2 vials Amp Solution 2 

• 15+9=24,l Amp. Reagent 2 plus 11976 Assay buffer 

• Washed 6 times 

• Added 100,l Amp. Reagent 2 to ALL 

• Incubate for 30 minutes 

• Washed 6 times 

• Added 100,l TBS substrate to ALL 

• Incubate 10-20minutes in dark/shade 

o If highest standard is dark blue, add 100,l STOP solution  

• Read at 450nm plus 620nm as reference  

 
 

Reagent provided 
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o Aluminium pouch with a Micro well plate coated with monoclonal antibody to human 

TNF-� 

o 1 vial (100,l) Biotin-conjugate anti-human TNF-� polyclonal antibody 

o  IL-6 monoclonal antibody 

o 1 vial (150,l) Streptavidin-HRP 

o vial human TFN-� Standard lyophilized, 1 ng/ml upon reconstitution 

o 2 vial human IL-6 Standard lyophilized, 200 pg/ml upon reconstitution  

o 1 vial Control high, lyophilized 

o 1 vial Control low, lyophilized 

o 1 bottle (12ml) Sample Diluent 

o 1 vial (5ml) Assay Buffer Concentrate 20× (PBS with 1% Tween 20 and 10% BSA) 

o 1 vial (5ml) Assay Buffer Concentrate 20× (PBS with 1% Tween 20 and 10% BSA)  

o 1 vial (25ml) Sample Diluent 

o 1 vial (7ml) Amplification Diluent Concentrate (2×)  

o 2 vials (75,l) Amplification Reagent 1 

o 1 vial (75,l) Amplification Reagent 1 

o 1 vial (15,l) Amplification Reagent 2 

o 2 vials (15,l) Amplification Reagent 2 

o 2 bottles (50ml) Wash Buffer Concentrate 20× (PBS with 1% Tween 20) 

o 1 vial (15ml) Substrate Solution (tetramethyl-benzidine) 

o 1 vial (15ml) Stop Solution (1M Phosphoric acid) 

o 8 Adhesive Films 

TNF/ IL6 

Some for both 

Materials required but not provided 
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o 5ml and 10ml graduated pipettes 

o 5,l to 1000,l adjustable single channel micropipettes with disposable tips 

o 50,l to 300,l adjustable multichannel micropipette with disposable tips 

o Multichannel micropipette reservoir 

o Beakers, flasks, cylinders necessary for preparation of reagents 

o Device for delivery of wash solution (multichannel wash bottle or automatic 

wash system) 

o Microplate shaker 

o Microwell strip reader capable of reading at 450nm (650nm as optional 

reference wave length) 

o Glass-distilled or deionized water 

o Statistical calculator with program to perform regression analysis 

o Paper towels 

TNF-� 

Streptavidin-HRP 

Streptavidin-HRP must be used within 30minutes after dilution 

Make a 1:400 dilution of the concentrated Streptavidin-HRP solution with Assay Buffer(1×) 

in a clean plastic tube as needed according to the following table: 

Number of strios Streptavidin-HRP 

(ml) 

Assay Buffer(1××××) 

(ml) 

1-12 0,030 11,970 

 

Amplification Solution 1 
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Make a 1:300 dilution of Amplification Reagent 1 in Amplification Diluent (1×)  as needed 

according to the following table 

Number of strips Amplification Reagent 1 

(ml) 

Amplification Diluent 

(ml) 

1-12 0,04 11,96 

 

Amplification Solution 2 

Make a 1:2000 dilution of Amplification Reagent 2 in Assay Buffer(1×) as needed 

according to the following scheme: 

Number of strip Amplification Reagent 2 

(ml) 

Assay Buffer (1××××) 

(ml) 

1-12 0,006 11,994 

  

Reagent Preparation Summary 

Wash Buffer(1××××) 

Add Wash buffer Concentrate 20× (50ml) to 950ml distilled water. 

Number of Strips Wash Buffer 

Concentrate 

(ml) 

Distilled Water  

(ml) 

1-12 50 950 

 

Assay Buffer(1××××) 
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Add Assay Buffer Concentrate 20× (5ml) to 95ml distilled water. 

Number of strips Assay Buffer Concentrate 

(ml) 

Distilled Water 

(ml) 

1-12 5,0 95,0 

 

 

IL6 

Streptavidin-HRP 

Streptavidin-HRP must be used within 30minutes after dilution 

Make a 1:400 dilution of the concentrated Streptavidin-HRP solution with Assay Buffer(1×) 

in a clean plastic tube as needed according to the following table: 

Number of strips Streptavidin-HRP 

(ml) 

Assay Buffer(1××××) 

(ml) 

1-12 0,12 11,88 

 

Amplification Solution 1 

Make a 1:500 dilution of Amplification Reagent 1 in Amplification Diluent(1×)  as needed 

according to the following table 

Number of strips Amplification Reagent 1 

(ml) 

Amplification Diluent 

(ml) 

1-12 0,024 11,976 

 

Amplification Solution 2 
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Make a 1:500 dilution of Amplification Reagent 2 in Assay Buffer(1×) as needed according 

to the following scheme: 

Number of strip Amplification Reagent 2 

(ml) 

Assay Buffer (1××××) 

(ml) 

1-12 0,024 11,976 
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Appendix IV 

• Defrost the primers in ice  

• Perform nano drop test on the samples of DNA(tests that the samples are in a 

correct concentration for the experiment, dilute if not in correct concentration) 

o Clean pedestal between samples 

o Use water as a blank 

o Use clean tip 

o Add sample ID 

o Dilute if its more than 20ng 

• Primer dilution: 

o Received in 100 mmol 

o Make up 10 µmol solution, dilute with PCR water or distilled water 

o Make up 20-30 ml 

• PCR reaction: 

o Keep cold but do not allow the tray to get wet. 

• Do not touch the bottom of the tube anything o this surface will interfere with the 

readings 

• This is a 20 µl reaction: 

o 10 µl of HRM mix containing: 

o 4 µl of reverse primer 

o 4 µl of forward primer 

o 2 µl of DNA 

• Place in Rotogene(Corbett) and balance 
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DNA Extraction 

1. Tissue was placed in 1.7ml tube and homogenise with the TissueLyzer (Qiagen). 

2. Add 400µl of Buffer PL2 (NucleoSpin Plant II Kit, Separations) with 2µl of 

proteinase K (10mg/ml; Sigma-Aldrich). 

3. The sample was incubated overnight in a waterbath at 60°C. 

4. The protocol of the manufacturer was followed. 

5. The extraction was performed on the Tecan TMP 2000 Liquid Handling Platform. 
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Appendix V 

Staining procedure 1 

• Leave 3min at room temperature 

• Place in Paraformaldehyde(2%) in PBS for 8min 

• Place in 0.25% Triton X-100 in PBS for 15 min 

• Place in PBS 3x5min 

• Dry around section and mark with wax pen 

• Pipette blocking serum onto section area(20% goat in PBS) allow to sit for 30 min 

o 5ml PBS  

o 2% BSA(0,1g) 

o 0.2% milk powder (0.01g) 

• Wash in PBS  

• Pipette Ab IL6 R� (rabbit monoclonal) allow to sit overnight 

o 8µ/ IL6 R� +1600µl PBS 

• Wash in PBS 

• Pipette Alexa flour 594(goat anti-rabbit) allow to sit for 1 hour 

o 8µ/ Alexa flour 594 + 160 µl PBS 

• Wash in PBS 

• Pipette Laminin (mouse polyclonal) allow to sit for 2 hours 

o 8µ/ Laminin + 160 µl PBS 

• Wash PBS 

• Pipette Alexa flour 488(goat anti-mouse) allow to sit for 1 hour 

o 8µ/ Alexa flour 488 + 160 µl PBS 

• Wash in PBS 
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• Pipette Hoescht and allow to sit for 15 min 

• Wash in PBS 

• Mount coverslips onto slide with mounting media 

• Cover slide in foil 

• Store in freezer (-20°C) 

Staining procedure 2 

• Leave 3min at room temperature 

• Place in Paraformaldehyde(2%) in PBS for 8min 

• Place in 0.25% Triton X-100 in PBS for 15 min 

• Place in PBS 3x5min 

• Dry around section and mark with wax pen 

• Pipette blocking serum onto section area(20% goat in PBS) allow to sit for 30 min 

o 5ml PBS  

o 2% BSA(0,1g) 

o 0.2% milk powder (0.01g) 

• Wash in PBS  

• Pipette Ab MHC II (mouse monoclonal) incubate 1 hour 

o 8µ/ IL6 R� +1600µl PBS 

• Wash in PBS 

• Pipette Alexa flour 488 (goat anti-mouse) incubate for 1 hour 

o 8µ/ Alexa flour 594 + 160 µl PBS 

• Wash in PBS 

• Pipette Dystrophin (rabbit polyclonal) incubate for 1 hours 

o 8µ/ Laminin + 160 µl PBS 

• Wash PBS 
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• Pipette Alexa flour 594 (goat anti-rabbit) incubate for 1 hour 

o 8µ/ Alexa flour 488 + 160 µl PBS 

• Wash in PBS 

• Pipette Hoescht and allow to sit for 15 min 

• Wash in PBS 

• Mount coverslips onto slide with mounting media 

• Cover slide in foil 

• Store in freezer (-20°C) 
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Appendix VI 

Materials 

• 2-Mercaptoethanol – Sigma- Aldrich, M7154- 100ML 

• 50ml Falcon tubes - BD Biosciences, Adcock- Ingram Scientific group, 0420964AAd 

• Acrylamide: N,N’ – Methylethylene – Disacrylamide 37:5:1 – FLUKA, 01709 

• Ammonium persulfate (APS) – Sigma, A3678 – 25G 

• Bradford reagent1 

• BSA (1mg/ml) 

• Chemiluminescence film – Amersham, 28906836 

• Chromatography paper (3mm) – Whatmann, 3030917 

• ECL detection reagents – Amersham, RPN2209 

• Electrotransfer apparatus – TRANS-BLOT SD. Semidry transfer cell , BIO-RAD 

• Eppendorf tubes (1.5ml) – QSP, 509-GRD 

• Ethanol 

• Milk powder 

• Milli.q. water 

• N,N.N’,N’ – Tetramethylethylene – diamine (TEMED) – Sigma, T9281- 50ML 

• Plastic containers 

                                                      
1 APPENDIX II 
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• Primary antibodies – A4.74 (MHCIIa; dilution 1:1000; Developmental Hybridoma 

Bank, Iowa) and A4.951 (MHC I; dilution 1:1000; Developmental Hybridoma Bank, 

Iowa) 

• Protein markers – Precision plus protein standards dual colour, 161-0374. 

peqGOLD prestained protein marker IV, 27- 2110  

• PVDF membrane – Immubilon- P, Millipore, IPVH000010 

• Lysis buffer* 

• Running buffer2 

• Sample buffer* 

• Secondary antibody – Anti-mouse IgG, horseradish peroxidase (from donkey), 

NA934V 

• Shaker - The Belly Dancer’, STOVALL LIFE SCIENCE incorporated. 4,702,610 

• Sodium dodecylsulfate (10%) – Sigma, L3771- IKG 

• Table-top centrifuge – LAB NET International, Spectrafuge 16M- C0160-230 

• TBS* 

• Tris-HCl , 1.0M (pH6.8)* 

• Tris-HCl ,1.5M (pH 8.8) 

• Tween 20 – Saarchem MERCK chemicals , SAAR6164500RF 

• U-shaped adaptor cassette and loading system – BIO- RAD 
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• Vortex – Thermolyne, Type 16700 Mixer, Maxi-Mix 1 

• Western blotting apparatus – BIO- RAD 

• X-ray developer – AXIM , FDC-DEVRU0010BB 

• X-ray fixative – AXIM, FFC- F1XRUHS10BB 

Technique 

Sample Preparation 

 

1. Test tubes and Eppendorf tubes were marked and placed on ice to chill 

2. Muscle samples were removed from the -80°C freezer and kept in liquid nitrogen 

3. 500,l lysis* buffer was added to marked test tubes 

4. Small sections of muscle were cut from each sample and placed into specifically 

marked test tubes 

5. The samples in the test tubes were homogenized up and down 5 times or until 

tissue appears homogenized completely 

6. The samples were left on ice for 5 min and then decanted into marked epis 

7. Centrifuge at 300 rpm, 5 min, 4°C 

8. The supernatant was decanted into newly marked eppendorf tubes, ready for use or 

storage at – 80° C. 

Protein Determination 

1. A 1:5 dilution of Bradford reagent was made up and filtered twice with filter paper.  
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2. A standard curve was obtained using a 200,g/ml BSA solution using dilution stated 

below: 

 

3. Samples were vortexed and allowed to stand for 5 min.  

4. The spectrophotometer was zeroed with the blank and absorbencies were read 

within 30min at 595nm. 

5. 5,l of each sample was pipetted into an eppendorf tube with 95ml dH2O and 900,l 

Bradford reagent.  

6. Samples were vortexed and read at 595nm. 

7. A standard curve was plotted to determine how much of each sample must be used 

for Western blot analysis. 

200,g/ml 

BSA  

(=,g 

protein) H2O Bradford reagent 

100,l 20 0,l 900,l 

80,l 16 20,l 900,l 

60,l 12 40,l 900,l 

40,l 8 60,l 900,l 

20,l 4 80,l 900,l 

10,l 2 90,l 900,l 

0,l 0 100,l           900,lBLANK 
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Protein separation by SDS-PAGE 

1. Glass was cleaned with 70% alcohol and placed into assembly 

2. Assembly was placed onto rubber to center, with corner on foot rubber, and clipped 

into place while pushing down. 

3. Separating gel* was then added to assembly with a plastic squeeze pipette 

4. A few drops of  butanol was added to prevent oxidation of gel and to ensure a 

straight line with no meniscus 

5. It was allowed to set for 30min or overnight 

6. Butanol was washed off with dH2O 

7. Stacking gel3 was made up and added on top of the already set separating gel 

8. Combs were placed in at an angle to prevent bubbles from forming 

  

9. It was allowed to set for about 30 min 

10. 16,l sample buffer* (850,l + 150,l mercaptoethanol) was added to each sample 

11. Samples were denatured by boiling for 5min, after making a hole in each lid of the 

eppendorf tubes. 

12. Samples were centrifuge for 1min at 468g 

13. Combs were removed carefully and acrylamide was washed off with dH2O 

14. Gels were taken off assembly stand and clicked into U-shaped core-latch 
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15. The U-shaped assembly was placed into tank and inside running buffer* was added 

in the middle compartment so that it just overflowed into the wells. 

Loading the samples 

1. A molecular marker was added into the first well on the left- 10,l 

2. Outside running buffer was placed in outer compartment to ½ way up 

3. Electrodes were attached and the gel run was done at 75V, for 38 hrs 

 

Electrotransfer  

12 Whatmann 3MM papers and I PVDF per gel = 8.8cm x 5.3cm were used 

1. PVDF membranes were soaked in methanol for 15sec and then rinsed with water 

and soaked in anode buffer 2* 

2. 3 papers were soaked in anode buffer 1* 

3. 1 paper was soaked in anode buffer 2* 

4. 4 papers were soaked in cathode buffer4 

5. On anode plate: 3 papers soaked in anode 1 

6. 1 paper from anode 2 was placed on top of the previously placed papers 

7.  PVDF membrane was placed and rolled flat 

8. Stacking gel was cut off and gel was placed on PVDF membrane with marker on 

the left 
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9. 4  papers soaked in cathode buffer were then added and  rolled flat 

10. Power supply: limit 0.5A, 15 volts, 7 hours. 

Specific binding of proteins 

1. Membranes were washed in TBS –Tween5 (washing buffer) x3 

2.  Milk (5%) in TBS-T used to block membranes and placed on belly dancer on lowest 

setting for 1.5 to 2 hrs. 

3. 5,l Ab in 5ml TBS-Tween (primary antibodies) in 50ml Falcon tubes 

4. Membrane was placed in falcon tube with tweezers, with marker at the bottom and 

proteins to inside 

5. It was mixed on rotator in fridge for 5 hrs or overnight 

6. Membranes were washed well with TBS-Tween 5 times for 5min. 

7. Secondary antibody was added:  2.5,l Ab in 5ml TBS-Tween 

8. Membrane was put on rotator for 1 hour 

9. Membranes were washed 3 x 5min in TBS-tween and keep wet at all times 

Exposure 

1. ECL detection reagents were used at room temperature 

2. 2x transparencies were cut and taped together on the left side 

3. 500,l of each reagent was added into a falcon tube 

4. Membrane was placed in tub and exposed to ECL for 1min 
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5. Membrane was placed in between transparencies  

6. 2 pieces X-ray film were cut to fit area were proteins are expected to be 

7. The bottom X-ray is placed first and top X-ray second 

8. After 5-10min, top film was developed for 5min and fixed  

9. After another 5min the bottom film was developed 

Rapid Coomassie Staining Procedure  

1. Make up the following solutions 

Staining solution: 40% methanol; 10% acetic acid; 50% water; 0.1% (w/v)                                  

Coomassie Brilliant Blue R250. 

De-stain solution: 40% methanol; 10% acetic acid; 50% water. 

2. Commence staining procedure (with the mini-gels results can be seen in 10 

minutes; however use longer incubation times for thicker gels). 

a. Place gel in a glass staining container with lid 

b. Add enough stain to cover gel well. 

c. Microwave on high for 1 minute. 

d. Stain while rocking gently for up to 10 minutes. 

e. Pour out stain (may be re-used), and add a large amount of de-stain. 

f. Destain on belly dancer gently at room temperature. 

g. Leave for 2 hours to overnight for complete destaining. 
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Appendix VII 

Solution Composition 

1. Anode Buffer 1 

� 18.2g Tris + 380ml water 

� pH  

� 100ml methanol  

� Completed to 500ml water 

2. Anode buffer 2 

� 1.51g Tris + 380ml water 

� pH 

� 100ml methanol 

� Completed with 500ml water 

3. Bradford reagent 

� 500mg Coomassie Brilliant Blue G 

� 250ml 95% EtOH 

� 500ml Phosphoric acid  

� Made up to 1L with dH2O 

� Filtered 

� Stored on ice/ in fridge 
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4. Cathode buffer 

� 1.51g Tris-base 

� 2.6g 0- aminohexanoic acid 

� pH 

� 100ml Methanol 

� Completed to 500ml with water 

5. Lysis Buffer 

� 50 mM Tris pH 7.4 

� 150 mM NaCl 

� 1% Triton X-100 

� 1% IGEPAL (NP-40) 

� 0.1% SDS 

� DIH2O 

� Prior to use add Protease inhibitor cocktail (Sigma) 20µl 

6. Inside Running Buffer 

� 11.25g Glycine 

� 12.1g Tris 

� 1g SDS 

� 1000 ml Distilled water 

7. Outside Running Buffer 

� Dilute 1 part inside running buffer with 1 part distilled water 

Stellenbosch University http://scholar.sun.ac.za



154 

 

8. Sample buffer 

� 0.0625M Tris-HCl ph 6.8 

� 2% SDS 

� 5% �-Mercaptoethanol 

� 10% Glycerol 

� 0.01% Bromophenol Blue 

9.  8% Separating gel 

  1 x large gel 2 x small gels  

100% Glycerol 7.5ml 3ml 

Millipore H20 3.75ml 1.5ml 

1.5M Tris-

HCl,pH8.8  3.35ml 1.33ml 

10%SDS stock 1ml 400,l 

Glycine 2.5ml 1ml 

30% 

Acrylamide 6.7ml 2.7ml 

10% 

APS(0.1g/ml) 250,l 100,l 

Temed 20,l 5,l 
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10. 5% Stacking gel 

  1 x large gel 2 x small gels  

100% Glycerol 1.5ml 500µl 

Millipore H20 1.68ml 560µl 

0.5M Tris-

HCl,pH6.8  700µl 235µl 

10%SDS stock 200µl 65,l 

0.1M EDTA pH 

7.0 200µl 65µl 

30% 

Acrylamide 667µl 220µl 

10% 

APS(0.1g/ml) 50,l 15,l 

Temed 10,l 3,l 

 

 

11. TBS (10 X) 

� 121g Tris base 

� 40g NaCl 

� 5L H2O 
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� pH 7.6 

12. Tris-HCl (pH 8.8, 1.5M) 

� 181g Tris 

� 800ml dH2O 

� HCl to pH 8.8  

� Made up to 1L 

13. Tris-HCl (pH 6.8, 0.5M) 

� 120g Tris 

� 800ml H2O 

� HCl to pH 6.8 

� Made up to 1L 
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