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ABSTRACT 

Fault detection and identification models are critical in process monitoring and control as the 

models are essential in maintaining normal operating conditions. Fault identification models 

identifies the types of fault which occur in a process and the cause of the fault which allows 

corrective measures to be applied. Many fault identification models operate by identifying a 

process fault once a fault detection model has detected the presence of a fault.  

Fault identification is posed as a multiclass classification problem with each class corresponding 

to a fault case with a normal operation class introduced to account for the fault detection 

aspect. A one-vs-one multiclass support vector machine (SVM) classifier is proposed as the fault 

identification model. A model parameter estimation method was proposed to improve the 

performance of the fault identification model. The parameter estimation behaves as a feature 

extraction method. 

Hybrid modelling is identified as a possible model parameter estimation method. Hybrid 

modelling combines first-principle models and data-based models. The data-based models are 

trained to estimate the model parameters based on incoming process data. The data-based 

models considered are partial least squares regression (PLS), dynamic PLS, and recursive PLS 

models.  

A non-isothermal jacketed continuous stirred tank reactor model is developed as a test case 

model with a catalyst deactivation fault, inlet concentration fault and heat transfer fault 

applied to the model. The fault identification models are trained using process data 

corresponding to a catalyst deactivation-inlet concentration fault pair and catalyst 

deactivation–heat transfer fault pair. The performance of the fault identification models is 

compared using the sensitivity and specificity measures.  

The performance of fault identification models using a standard SVM and kernel SVM with a 

radial basis function kernel were compared. The kernel SVM showed similar performance to the 

SVM for the catalyst deactivation fault and heat transfer fault with sensitivity values of 

0.684±0.044 and 0.752±0.067, and a shorter training time than the standard SVM model. 

When the performance of the classifiers incorporating non-linearly regressed model parameters 

were evaluated by identifying the catalyst deactivation fault and heat transfer fault it was 

found that the standard SVM model using the regressed parameters had higher sensitivities 

(0.686±0.042, 0.811±0.031) and specificities (0.989±0.005, 0.968±0.027) than the kernel SVM 

with sensitivities (0.633±0.058, 0.734±0.033) and specificities (0.974±0.005, 0.924±0.038) using 

the regressed parameters. When the performance of the hybrid fault identification models was 

evaluated, the standard SVM using dynamic PLS showed better performance than the other 

models with higher sensitivities (0.695±0.041, 0.761±0.056) and specificities (0.9800±0.004, 

0.949±0.049). When the performance of all the models were compared it was found that the 

standard SVM using non-linearly regressed parameters was the best performing model. 

The multiclass SVM approach has been shown a viable fault identification method. 

Implementing the model-based feature extraction method was shown to improve the 

performance of fault identification models. The SVM model using non-linearly regressed 

parameter estimates was found to be the best performing model. It is recommended that in 

future work the PLS models are replaced with another data-based model such as artificial 

neural networks. 
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OPSOMMING 

Foutopsporing- en -identifikasiemodelle is krities in prosesmonitering en -beheer omdat die 

modelle essensieel is vir handhawing van normale bedryfskondisies. Foutidentifikasiemodelle 

identifiseer die tipe fout wat plaasvind in ’n proses en die oorsaak van die fout, wat die korrekte 

maatreëls toelaat om toegepas te word. Baie foutidentifikasiemodelle word bedryf deur ’n 

prosesfout te identifiseer sodra ’n foutopsporingsmodel die teenwoordigheid van ’n fout 

opgespoor het.  

Foutidentifisering word voorgestel as ’n multiklas-klassifiseringsprobleem met elke klas wat 

korrespondeer met ’n foutgeval, met ’n normale bedryfklas voorgestel om die 

foutopsporingsaspek in berekening te bring. ’n Een-vs.-een multiklas 

ondersteuningvektormasjien (SVM) klassifiseerder word voorgestel as die foutidentifikasiemodel. 

’n Modelparameterberamingsmetode is voorgestel om die doeltreffendheid van die 

foutidentifikasiemodel te verbeter. Die parameterberaming tree op as ’n 

kenmerkekstraksiemetode. 

Hibried modellering is geïdentifiseer as ’n moontlike modelparameterberamingsmetode. Hibried 

modellering kombineer eerste-benaderingmodelle en datagebaseerde modelle. Die datagebaseerde 

modelle word opgelei om die modelparameters te beraam gebaseer op inkomende prosesdata. 

Die datagebaseerde modelle oorweeg is gedeeltelike kleinste kwadraatregressie (PLS), dinamiese 

gedeeltelike kleinste kwadraat-, en rekursiewe gedeeltelike kleinste kwadraatmodelle. 

’n Nie-isotermiese ommantelde kontinue geroerde reaktormodel is ontwikkel as ’n 

toetsgevalmodel met ’n katalisator deaktiveringsfout, inlaatkonsentrasiefout en hitte-

oordragfout wat toegepas is op die model. Die foutidentifikasiemodelle is opgelei deur 

prosesdata wat met ’n katalisator deaktiveringsinlaatkonsentrasiefoutpaar en katalisator 

deaktiveringshitte-oordragfoutpaar korrespondeer, te gebruik. Die doeltreffendheid van die 

foutidentifikasiemodelle was vergelyk deur die sensitiwiteit- en spesifisiteitmaatreëls te gebruik. 

Die doeltreffendheid van foutidentifikasiemodelle is vergelyk deur ’n standaard SVM en kern 

SVM met ’n radiale basiesfunksie te gebruik. Die kern SVM het soortgelyke doeltreffendheid 

getoon as die SVM vir die katalisator deaktiveringsfout en hitte-oordragsfout met 

sensitiwiteitswaardes van 0.684±0.044 en 0.752±0.067, en ’n korter opleidingstyd as die 

standaard SVM-model. Toe die doeltreffendheid van die klassifiseerders wat nie-liniêre regressie 

modelparameters inkorporeer geëvalueer is deur die katalisator deaktiveringsfout en hitte-

oordragsfout te identifiseer, is dit gevind dat die standaard SVM-model wat die parameters 

gebruik, hoër sensitiwiteite (0.686±0.042, 0.811±0.031) en spesifisiteit het (0.989±0.005, 

0.968±0.027) as die kern SVM met sensitiwiteite (0.633±0.058, 0.734±0.033) en  spesifisiteit 

(0.974±0.005, 0.924±0.038) wat die parameters gebruik. Toe die doeltreffendheid van die 

hibriede foutidentifiseringmodelle geëvalueer is, het die standaard SVM wat dinamiese PLS 

gebruik beter doeltreffendheid getoon as die ander modelle met hoër sensitiwiteite (0.695±0.041, 

0.761±0.056) en spesifisiteit (0.9800±0.004, 0.949±0.049). Toe die doeltreffendheid van al die 

modelle vergelyk is, is dit gevind dat die standaard SVM wat nie-liniêre regressie parameters 

gebruik, die beste presteer het. 

Die multiklas SVM-benadering is getoon as ’n uitvoerbare foutidentifikasiemetode. 

Implementering van die model-gebaseerde kenmerkekstraksiemetode is bewys om die 

doeltreffendheid van foutidentifikasiemodelle te verbeter. Die SVM-model wat nie-liniêre 

regressie parameter beraminge gebruik het, is gevind om die beste presterende model te wees. 

Dit word aanbeveel dat toekomstige werk die PLS-modelle vervang met ’n ander 

datagebaseerde model soos kunsmatige neurale netwerke. 
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1 

1 INTRODUCTION 

1.1 Fault detection and identification models 

The detection and identification of faults is a major component of ensuring and maintaining 

normal operation on a plant (Miljković, 2011). By detecting the onset of faults in processes, 

operators can be alerted to the occurrence of the fault and can begin preparing the relevant 

corrective measures. The source of a fault needs to be correctly identified to ensure that the 

correct action is implemented to rectify the fault and mitigate the effects of the fault on the 

system. Data driven and statistical models have seen more use in fault detection and fault 

identification models in recent times (Miljković, 2011). 

Fault detection models are responsible for detecting when processes deviate from normal 

operating conditions (Miljković, 2011). There are several possible fault detection methods used 

in industrial applications with many methods comparing the interactions between process 

measures and comparing the interactions to some set baseline performance. The baseline 

represents ideal process performance at normal operating conditions. If the absolute magnitude 

of error between the interactions and the baseline measure exceeds a set threshold the 

corresponding observations are identified as fault laden observations (Isermann, 2006). Fault 

detection models however only identify when a process fault occurs and not what the type of 

fault or what the cause of the fault is. The need to identify the type and cause of the faults 

gave rise to the development of fault identification models (Isermann, 2006). 

Fault identification models determine and classify process faults by comparing the process data 

to previously documented fault cases (Isermann, 2005). Fault identification can be posed as a 

multiclass classification problem where each class corresponds to a fault case. Fault 

identification models consists of some classification model such as support vector machine 

(Onel, Kieslich & Pistikopoulos, 2019) or artificial neural network (Heo & Lee, 2018) which acts 

as the fault identifier. Most of the fault identification models reviewed in this work operate by 

identifying the fault once a separate fault detection model has detected a fault. A dual fault 

detection and identification method is considered by introducing a class which represents 

normal operations conditions (Heo & Lee, 2018). The fault detection aspect is due to the model 

being able to distinguish between fault conditions and normal operation. 
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The performance of the fault identification models could be improved by introducing additional 

process information to the fault identifier. This was seen in the work done by Mid and Dua 

(Che Mid & Dua, 2017) in which first-principle model parameters were estimated and fed as 

inputs to a classification model.  The additional information could take the form of features 

selected from process data. Onel et al. (Onel et al., 2019) performed feature selection on process 

data before supplying the data to the fault identifier which increased the performance of the 

fault identification model. Thus, if feature selection can improve the performance of a fault 

identification model, then it is possible that feature extraction can exhibit a similar increase in 

performance. First-principle model parameters could be used as additional process information 

which can be used to improve the performance of the fault identification as was done by (Che 

Mid & Dua, 2017). A method of estimating the first-principle model parameters is found in 

hybrid modelling. 

Hybrid modelling is best described as the use of data-based models in conjunction with first-

principle based models to develop a model with improved accuracy and extrapolative 

capabilities (von Stosch, Oliveira, Peres & Feyo de Azevedo, 2014). The development of such 

models would make effective use of large process data reserves to improve the ability of models 

to describe real world process performance. A possible data based model which can be used is 

partial least squares regression (Wold, Ruhe, Wold & Dunn III, 1984) (Geladi & Kowalski, 

1986). In the context of fault identification, the hybrid model would be responsible for 

estimating model parameters based on incoming process data. The first-principle model would 

be used to estimate an initial set of training model parameters which corresponds to a set of 

training process data. A data-based model is then trained to estimate the model parameters 

based on incoming process data. The parameter estimates are then be fed to a classification 

model. 

A support vector machine-based fault detection and identification model is thus proposed as a 

possible fault identification method. The model will make use of hybrid modelling where 

variations of the partial least squares regression model will be considered as the data-based 

model. The hybrid model will be used to estimate model parameters which will be fed to fault 

identifier along with process data. 
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1.2 Aim and objectives 

Based on the on the points discussed above the aim of the project is to develop a fault 

classification model which incorporates hybrid modelling as model parameter estimator. The 

estimated model parameters are used in conjunction with the process data to perform the fault 

classification. The support vector machine (SVM) classifier is proposed as a fault identification 

model. 

The aim is achieved through fulfilling the following objectives:  

• Conduct a literature review to establish a fault identification approach  

• Developing a test case model on which to test fault identification approach 

• Develop a hybrid modelling approach for model parameter estimation with an 

appropriate data-based model 

• Developing a hybrid-SVM model classification approach  

• Evaluating identification performance of hybrid model to determine if the performance 

of the model is satisfactory 

1.3 Thesis Layout 

The thesis is organised in the following Chapters: Chapter 2 presents the theory used through 

the study. Chapter 3 contains a literature review in which applications of hybrid modelling, 

fault detection and fault identification models are discussed. Chapter 4 discusses the 

methodology and process of developing and implementing the hybrid models, fault identifiers 

and the finally the combined hybrid modelling based fault identification model. Chapter 4 also 

discusses the test model developed to evaluate the performance of the fault identification model. 

Chapter 5 discusses and illustrates the performance of the fault identification model. Chapter 6 

discusses the conclusions drawn from the study and the recommendations based on the 

conclusions. 
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2 THEORY  

The following chapter describes the fundamental theory and key equations which describe and 

form the basis of the work considered and the literature considered in this study. Each 

statistical method described in this chapter is accompanied by the key equations which describe 

and underly the method. The theory presented in this chapter can be referred to as needed, to 

provide context to the literature studied in this work and to understand the theoretical and 

mathematical basis of the work performed in the study. 

2.1 Fault detection and identification  

In process monitoring and control maintaining normal operating conditions (NOC) is crucial, 

however process faults do occur during plant operation. Faults can be defined as instances at 

which system operation deviates from standard operating conditions (Miljković, 2011). The 

identification and correction of these faults become key in maintaining standard operation. The 

need for eliminating these process faults as soon as they occur has given rise to the fields of 

fault detection and identification in process control and monitoring.  

Fault detection can be defined as the process of determining whether a fault occurs within a 

process (Miljković, 2011). The occurrence of a fault can be detected by considering the 

dependencies and relationships between different process measurements and comparing these 

relationships at a particular time point to what has been deemed normal operation. Faults can 

occur due to sensor errors, errors in process controllers and actuators as well as errors within 

the process itself. Fault detection techniques and methods can generally be categorised into 

three subgroups namely: data driven techniques, process model-based techniques and 

knowledge-based techniques (Miljković, 2011).  

Data driven techniques determines what can be deemed as normal process operation by only 

making use of historical process data (Miljković, 2011). Incoming process data is then compared 

to what is deemed normal operation and any significant deviations are identified as faulty 

instances. Some examples of data driven techniques are limit checking, principal component 

analysis (PCA) based fault detection, spectrum analysis and neural network based fault 

detection (Isermann, 2006). In limit checking fault detection some process measurement is 

compared to predetermined threshold values, once the threshold is exceeded a fault is detected 
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and an alarm is raised (Isermann, 2005). There are different forms of principal component 

analysis fault detection with one variation comprising of a process dataset subjected to PCA. 

Once projected to the principle components the data is then analysed to assess whether there is 

any significant change in the mean or variance of the data (Miljković, 2011) 

(Venkatasubramanian et al., 2003).  Other variations use Hotelling’s T2 statistic (Hotelling, 

1931) in conjunction with PCA(Wierda, 1994)(Kourti & MacGregor, 1995). Spectrum analysis 

statistically estimates a spectrum within which process signals represents normal operation. 

Once any process signal falls outside the spectrum it is deemed as faulty data (Isermann, 2006). 

Spectrum analysis performs similarly to the limit checking technique however a key difference is 

that spectrum analysis extracts relevant characteristics from the incoming process signal 

through means such as Fourier transformations (Miljković, 2011). Limit checking however 

compares the output signals directly to some set limit. In neural network fault detection, a 

neural network is trained using both normal operation and faulty operation data. The output of 

the neural network states whether incoming process data is faulty or not (Heo & Lee, 2018).  

Process model-based fault detection techniques compare actual process output to the output of 

a process model which describes the normal process operation (Isermann, 2005). An example of 

process model-based fault detection methods is the use of parity relationships to obtain output 

residuals (Gertler, 1997). The residuals obtained from the parity relations are then used in the 

fault detection. Another model-based technique is parameter estimation fault detection. In this 

technique unknown process model parameters are estimated using process input and output 

data. A relationship is obtained between the model parameters and the physical process 

parameters (Miljković, 2011). The estimated physical parameters are then compared to the true 

physical parameter values at normal operation and the residuals from the comparison are used 

for fault detection. Neural networks are also used in the model-based approach. A neural 

network can be trained as a non-linear process model to estimate process outputs. Residuals can 

then be estimated using parity equations (Schwarte & Isermann, 2002).   

Knowledge-based fault detection techniques involve the use of expertise and experience to 

develop a fault detection method for a specific process (Venkatasubramanian et al., 2003). 

Knowledge about the process is obtained from experienced plant operators and senior engineers 

on plant and is used to determine process production rules (Angeli, 2010). These rules are then 

used to determine when the process is operating under faulty conditions.  
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Fault identification (also referred to as fault diagnosis) is defined as determining the cause of 

the deviations from normal operation (Isermann, 2005). Where the aim of fault detection is 

determining when a fault occurs in a process and raising an alarm, fault identification 

determines the cause of the alarm being raised. As fault identification can be considered a 

classification problem, classification models are considered for use as fault identification models 

(Heo & Lee, 2018).  There are several classification models available with some of the most 

commonly used models being k-nearest neighbours models, artificial neural network models and 

support vector machine classifiers(Onel et al., 2019)(He & Wang, 2007)(Heo & Lee, 2018).  

2.2 Curse of dimensionality 

As fault detection methods are often trained on as much process data as is available, the 

training datasets become large with a large number of features. As the use of machine learning 

techniques in fault detection methods has become more common, when the techniques are 

applied to datasets with many features the curse of dimensionality becomes a concern. The 

curse of dimensionality is a common phenomenon in machine learning and mathematical 

modelling which was identified by Bellman (Bellman, 1961). It refers to the exponential increase 

in training data required for machine learning algorithms when applied to higher dimensional 

input datasets with many features (Bishop, 2006). This results in training data requirements 

which become unwieldy to effectively train machine learning models. Although this raises issues 

when applying machine learning algorithms to higher dimensional input datasets, these models 

can still be effectively applied. This is due to real world datasets often being able to be 

effectively expressed by some underlying features in a lower dimensional space which accounts 

for the variability in the original dataset (Bishop, 2006).  

This gives rise to the use of dimensionality reduction methods. Dimensionality reduction 

methods are used to transform a dataset from a higher dimensional space to a lower 

dimensional space that describes the characteristics of the dataset in the original space (Van 

Der Maaten et al., 2009).  One subset of dimensionality reduction techniques is feature 

extraction models. Feature extraction models derives a new set of variables/features which 

describe the characteristics and variability of the original dataset in a lower dimensional space. 

There are various dimensionality reduction methods available such as principal component 

analysis or linear discriminant analysis (LDA) (Van Der Maaten et al., 2009). 
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2.3 Introduction to hybrid modelling 

Fault identification models often implement feature extraction (or feature selection) methods to 

improve the performance of classifiers used for fault identification (Onel et al., 2019). A possible 

adaptation of feature extraction methods is be made by introducing concepts found in 

parameter estimation fault detection. Unknown model parameters can be estimated using 

process data and can be fed to a fault identifier. A possible estimation method which could be 

considered is hybrid modelling.  

Hybrid modelling (also known as grey-box modelling) represents a more robust method of 

describing the behaviour of a system (von Stosch et al., 2014). This is achieved through the 

combination of first-principle models and machine learning techniques with the machine 

learning techniques compensating for the shortcomings and errors associated with first-principle 

modelling. First-principle models are often not sufficient for applications in industry due to the 

constant variations in process conditions as well as aspects of the process which constantly need 

to be revised to ensure accuracy in the description of system behaviour (Bhutani et al., 2006). 

In understanding hybrid modelling it is critical that one understands first-principle models and 

empirical modelling. 

2.3.1 First-Principle Based modelling 

Fundamental-based models (also known as first-principle or white box models) are models 

based on real world phenomena and physical laws which can be proven. The fundamental 

models are based on principles such as mass balances, energy balances and thermodynamic laws 

as these can be proven in the real world and are well documented and explained (von Stosch et 

al., 2014). Fundamental models are also based on prior knowledge based on experience in 

running systems and are incorporated into first-principle based models. Developing and 

implementing fundamental models for specific processes can be  time consuming as it may 

require performing a wide range of tests to obtain model parameters which ensure the best fit of 

the model to the process(Willis & von Stosch, 2017). The first-principle model might only be 

applicable to the process under certain conditions or constant variations in process results in an 

ill-fitting model. Based on these conditions more efficient method of utilising fundamental 

models are required with a possible solution being the use of hybrid modelling (Bhutani et al., 

2006).  
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2.3.2 Data-based modelling 

Data-based models (also known as black box models) are models which are not based on 

physical laws but are data driven (Bhutani et al., 2006). Examples of data-based models are 

artificial neural networks (ANN), partial least squares regression and support vector machine 

regression (SVR) to name a few (Bishop, 2006)(Geladi & Kowalski, 1986).  

Training a data-based model refers to adjusting weights and parameters within the model to 

ensure that the model describes the training dataset. Ideally a data-based model is devised to 

describe the performance of a system and should not depend on the dataset used during 

training however this depends on the variance of the model (James et al., 2017). More flexible 

models typically exhibit higher variance which means that small changes in training datasets 

lead to large changes in the models (James et al., 2017). Bias refers to error incurred due to 

approximating a real-world problem via a mathematical model (James et al., 2017). Ideally a 

model should display low variance and low bias however often one needs to develop a balance 

between variance and bias. Models with low bias tend to have higher variance and vice versa 

and this is known as the bias-variance trade off (James et al., 2017).   

Data-based models can be easier to define than first-principle models as they only require input 

and output data (Bhutani et al., 2006). Thus, a combination of both modelling approaches 

would be ideal to incorporate the strongest aspects of both approaches. The desire for this 

combination gave rise to hybrid modelling.  

2.3.3 Hybrid modelling 

Hybrid modelling is defined as the combination of first-principle and data-based modelling 

approaches (von Stosch et al., 2014). As hybrid modelling is a combination of parametric 

fundamental models and nonparametric data-based models it results in a hybrid semiparametric 

model which compensates for the short comings of the individual approaches.  Based on this 

train of thought when presented with an equivalent dataset the hybrid model would provide 

more accurate predictions and would be developed in a shorter time than a fundamental model 

(von Stosch et al., 2014). Hybrid models also improve on the performance of empirical models 

by being more robust and providing more accurate results when extrapolated to inputs beyond 

the scope of the initial training dataset whereas pure empirical models do not provide sufficient 

results beyond the scope of the initial training dataset.  
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When using hybrid modelling to describe the behaviour of a single system, large variations can 

occur in the nature of the modelling approaches used for the system. The variation is a result of 

not only the different fundamental and empirical models which can be used but also in the way 

the models can be integrated (von Stosch et al., 2014). Variation also occurs due to the 

selection of which aspect of the system each class of model describes. Due to the variation the 

modelling approach followed depends heavily on the nature of the system as well as the nature 

of available data, the known and unknown aspects of the system.  

When considering the implementation of hybrid models the most common model structures are 

series and parallel structures. Series structures (as shown in Figure 1 below) are one of the most 

popular structures of hybrid models (von Stosch et al., 2014). Series structures work by feeding 

system inputs to an empirical model which produces an output which is fed to a fundamental 

model alongside the original input. Common uses of the empirical model is estimating model 

parameters or predicting model residuals (von Stosch et al., 2014). 

 

 

Figure 1: Series hybrid model structure  

Series configurations are most effective when the fundamental model considered is accurate. 

The series structure uses incoming data to accurately predict the correct parameters for a 

fundamental model. These guessed parameters when used in fundamental models can improve 

the accuracy of the predictions. Series hybrid models can also be used when there are large data 

sets which relate to unknown parameters but with no direct correlation between them as the 

empirical model can be used to infer the parameter values based on the data set (von Stosch et 

al., 2014).  
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An alternate series hybrid structure can be implemented as shown in Figure 2. In the alternate 

series configuration, the empirical model uses the output from the fundamental model to adjust 

process parameter values. These process parameters can be fed to the first-principle model, 

which can be used to adjust the process or can used in a different process model entirely 

(Aguiar & Filho, 2001). This configuration is not commonly used to describe the behaviour of 

chemical systems.  

 

 

Figure 2: Alternate series structure 

Parallel structures are another popular form of hybrid model structure as shown in Figure 3. In 

parallel structures the input data is fed simultaneously to both the empirical and fundamental 

models and the output of the respective models are then combined (von Stosch et al., 

2014)(Bhutani et al., 2006). In this application the empirical model is used to predict the 

residuals of the model prediction to the true output values. The residuals used to train the 

empirical model are calculated by comparing the first-principle models outputs estimated using 

parameters which are thought to belong to the current process and comparing them to the true 

output values (Lee et al., 2002). The residuals predicted using the incoming process data and 

the empirical model are then added to the output values estimated by the fundamental model. 

The aim of adding the predicted residuals to output values for the same observation is to 

improve the accuracy of the first-principle model prediction and to account for any mismatch 

between the predictions and real world values (Estrada-Flores et al., 2006). Parallel models are 

applied when the fundamental models considered are not accurate in predicting the behaviour 

of the system (von Stosch et al., 2014). 

 

Stellenbosch University https://scholar.sun.ac.za



 

11 

 

Figure 3: Parallel hybrid model structure 

2.4 Principal component analysis   

Principal component analysis (PCA) is a method of feature extraction and data analysis 

whereby the strength of interactions between variables of a given dataset are investigated 

(Wold, Esbensen & Geladi, 1987). The PCA algorithm represents a dataset as a linear 

combination of data variable projections (Shlens, 2014). PCA can also be used to screen the 

data for outliers as well. A dataset can be represented by a data matrix 𝑿 with N  rows which 

represent the observations and L columns which represent the features which can be analysed 

and decomposed by PCA. 

Geometrically PCA can be thought of as a projection of a data matrix into some mathematical 

subspace. Thus, a data matrix 𝑿 when projected into the subspace is represented as N  objects 

(or data points) in a L-dimensional space. The direction of the projection axis is then described 

by projection matrix 𝑷’ with the coordinates of each data point stored in matrix T (Wold et 

al., 1987). The rows of the projection matrix, 𝑷’, are known as loading vectors (𝒑) and the 

columns of the matrix 𝑻 are known as score vectors (𝒕). The projection matrix geometrically 

represents directions in the subspace along which the datapoints vary the most (James et al., 

2017). Therefore, the projection matrix entries (the loading vectors) represent the directions of 

the principal component axes. The score values represents the magnitude of the observations 

when projected onto the principal component axis (Wold et al., 1987). Thus, the scores 
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represents the location (or distance) of the observations with respect to the principal component 

axis. As an example, consider a 5x2 input data matrix (𝑿) where each column represents a 

variable/feature (thus 𝒙𝟏 represents the first variable and 𝒙2 the second), and each row 

represent an observation, a coordinate in (𝑥1, 𝑥2) space. The geometric projection of the dataset 

onto the first principal component is illustrated in Figure 4 below. 

 

Figure 4: Projection of data onto the first principal component. The x- and y-axes 

represent the original features 𝒙𝟏 and 𝒙𝟐, respectively. 

The red axis represents the principal component the direction of which is determined by the 

variability of the dataset. The projection of the data onto the principal component is the 

perpendicular distance between the data points and the principal component axis. These 

distances represent the scores of the observations with respect to the principal component as 

shown in the figure above.  

Mathematically PCA can be defined as illustrated in Equation 1 (Wold et al., 1987). In the 

definition 𝒙̅ represents the mean of the matrix and 𝑿 and 𝑬 represents residuals which are 

obtained from the difference between the PCA projection and the original data point. The 

loading vectors are normalized such that the sum of the mean square errors of the loading 

vectors are one (James et al., 2017). When PCA is performed on a dataset the variables are 
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scaled to have zero mean thus eliminating the 𝒙̅ term. The input is also normally normalized 

such that the standard deviation each feature in the matrix is one. 

 𝑿 = 𝒙̅ + 𝑻𝑷′ + 𝑬  [ 1 ] 

 

The principal component projections of the data matrix can be defined as a linear combination 

of the loading vectors and the datapoints(James et al., 2017). The principal component 

projections are composed of score vectors, 𝒕,  with the entries in the score vector determined as 

shown in Equation 2 which illustrates how the first entry in the score vector is determined 

(James et al., 2017).  The subscript 𝑖 indicates the 𝑖th observation thus 𝒕𝒊𝟏 corresponds to the 

𝑖th entry in the score vector for the first principal component. The subscript k corresponds to 

the number of features in the dataset 𝑿. 

 𝒕𝒊𝟏 = 𝒑𝟏𝟏𝒙𝒊𝟏 + 𝒑𝟐𝟏𝒙𝒊𝟐 + ⋯ + 𝒑𝒌𝟏𝒙𝒊𝒌   [ 2 ] 

 

This allows the loading vectors to be determined by the optimisation equation shown in 

Equation 3. The loading vectors are also constrained such that they are orthogonal to one 

another. The setting of the loading vector values (and as such the direction of the principal 

component) is referred to as rotating the components (Shlens, 2014). This ensures that each 

principal component is uncorrelated and maximises the variance captured by the principal 

components (James et al., 2017). 

 max
𝒑𝑗𝑘

{ 
1

𝑛
 ∑ (∑ 𝒑𝑚

𝑗=1
𝑛
𝑖=1 𝑗𝑘

𝒙𝑖𝑗)
2

} 𝑤𝑖𝑡ℎ ∑ 𝒑𝑗𝑘
2 = 1𝑚

𝑗=1    [ 3 ] 

 

The correlation of the variables is given by the covariance matrix obtained during the PCA. 

The covariance matrix (𝑪) is defined as shown in Equation 4. The diagonals of the covariance 

matrix represents the variance of the variables and the off-diagonal values represents the 

covariance between two variables (Shlens, 2014). If the covariance is zero it indicates that the 

variables are uncorrelated.  

 𝑪 =
1

𝑛
𝑿𝑻𝑿  [ 4 ] 
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The covariance represents the linear relationship between two variables (Shlens, 2014). The 

magnitude of the covariance indicates the redundancy between variables with a high covariance 

indicating a high redundancy. By knowing the redundancy between variables one can perform 

dimensionality reduction by excluding redundant variables (Shlens, 2014). In PCA the principal 

components (i.e the loadings 𝒑) are the eigenvectors of the covariance matrix (Shlens, 2014). 

As seen PCA can be used as not only a dimensionality reduction method (which is achieved 

through feature extraction) but also allows a user to determine the covariance between process 

features. By removing redundant features, the PCA method shows clearer relationships between 

process features which are hidden by redundant features. When the percentage variance 

explained by each principal component is calculated it reveals how many process features are 

required to accurately describe the dataset.  PCA has found use in fault detection methods such 

as the method shown by (Addo, 2019). PCA also forms the foundation of the partial least 

squares regression method. 

2.5 Partial least squares regression    

2.5.1 Standard partial least squares regression   

Partial least squares (PLS) regression is regression technique which involves the projection of 

data to a mathematical space where the data can be described by a set of latent variables. The 

regression model is then based on and relates the input (𝑿) and output (𝒀) observations in the 

latent space. The PLS regression obtains weight vectors 𝒘 and 𝒄 such that covariance is 

maximised as shown in Equations 5 and 6 (Rosipal, Trejo & Matthews, 2003).  

 max
𝒘,𝒄

([𝑐𝑜𝑣(𝑿𝒘, 𝒀𝒄)]2)  [ 5 ] 

Subject to: 

 𝒘𝑻𝒘 == 1  [ 6 ] 

An advantage of the PLS algorithm is that it will find an entire set of weight vectors which are 

stored in weight matrices 𝑾 and 𝑪. The set of weight vectors are obtained such that the latent 

variables are orthogonal. 

The projection of the data to the latent space is based on and resembles PCA (Geladi & 

Kowalski, 1986). The projection is performed on both the input, 𝑿, and output, 𝒀¸ dataset and 
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the score matrices (𝑻  for 𝑿 and 𝑼 for 𝒀) are obtained for both datasets (James et al., 2017). 

The equations resulting from the projection of the input (Equation 7) and output (Equation 8) 

matrices are shown below where 𝑬 and 𝑭 are residual matrices and 𝑷 and 𝑸 are loading 

matrices (Geladi & Kowalski, 1986). The loading matrices contain the loading vectors where 

each vector represents the direction of a projection axis. The number of PLS components 

retained are indicated by the subscript ℎ. 

 𝑿 = 𝑻𝑷′ + 𝑬 = ∑ 𝒕𝒉𝒑𝒉′ + 𝑬  [ 7 ] 

 

 𝒀 = 𝑼𝑸′ + 𝑭 = ∑ 𝒖𝒉𝒒𝒉′ + 𝑭  [ 8 ] 

 

A linear relationship between the score vectors can be described by Equation 9 where 𝑏 

represents the regression coefficient and 𝒓 represents the residual vector (Geladi & Kowalski, 

1986). This linear relationship is also referred to as the inner relationship.   

 𝒖𝑖 = 𝒕𝒊𝑏𝑖 + 𝒓𝒊𝑨  [ 9 ] 

In Equation 9 the subscript 𝑖 refers to which PLS component the vectors described i.e. the 𝑿 

score vector 𝒕𝟏 is the score vector for the first principle component.  

The inner relationship forms the foundation of the PLS regressions model by providing a 

relationship between the 𝑿 scores and the 𝒀 scores. The regression coefficients 𝑏 are adjusted 

iteratively to minimise the residual vector.  As the inner relationship relates 𝒕 and 𝒖 it can be 

used to provide a relationship between 𝑿 and 𝒀 (Geladi & Kowalski, 1986). The direct 

relationship can be expressed by deriving a mixed PLS model which uses the inner relationship 

regression coefficients to estimate 𝒀 directly. The mixed PLS relationship model can be derived 

by combining the above equations and is shown in Equation 10 below where 𝑩 =

 𝑑𝑖𝑎𝑔{𝑏1, 𝑏2 … 𝑏𝑛} represents the regression coefficient matrix: 

 𝒀 = 𝑻𝑩𝑸′ + 𝑭  [ 10 ] 

 

The objective of the PLS algorithm is to reduce the value of |𝑭| as this produces more accurate 

estimations of 𝒀. This is achieved through an iterative algorithm in which the score vectors are 

used in unison to obtain more accurate score vectors (Geladi & Kowalski, 1986). There are 
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various algorithms available for a PLS regression such as the Non-linear Iterative Partial Least 

Squares (NIPALS) (Geladi & Kowalski, 1986) algorithm and the SIMPLS algorithm (S. De 

Jong, 1993).  In this work the NIPALS algorithm is used as it the algorithm used in the 

recursive PLS variations. 

Both 𝑿 and 𝒀 datasets are projected and decomposed separately which results in a weak 

relationship between the projected matrices. In the NIPALS algorithm this potential 

shortcoming is addressed by relating the principal components of each decomposed data matrix 

(Geladi & Kowalski, 1986). The scores of the 𝑿 and the 𝒀 matrices are exchanged during the 

regression algorithm where the projected 𝑿 matrix gets the scores of the projected 𝒀 matrix and 

vice versa. This results in both input and output matrices obtaining information about each 

other strengthening the relationship between the two (Geladi & Kowalski, 1986).  

The NIPALS algorithm is described as shown where 𝒖 is the 𝒀 score vector, 𝒕 is the 𝑿 score 

vector, 𝒘 is the weight vector, 𝒑 and 𝒒 are the 𝑿 and 𝒀 loading vectors respectively: 

1. Estimate a first guess for 𝒀 score vector 𝒖. A normal first estimation would be using a 

vector from the 𝒀 output vector 

2. Set weight vector such that 𝒘𝑻 = 𝒖𝑻𝑿/𝒖𝑻𝒖 

3. Normalise weight vector 𝒘𝑻 𝒏𝒆𝒘 = 𝒘𝒐𝒍𝒅
𝑻  / ‖𝒘𝒐𝒍𝒅

𝑻 ‖ 

4. Calculate X score vector 𝒕 = 𝑿𝒘 

5. Calculate Y loading vector 𝒒′ = 𝒕𝑻𝒀/𝒕𝑻𝒕 

6. Normalise Y loading vectors 𝒒𝒏𝒆𝒘
𝑻 =  𝒒𝒐𝒍𝒅

𝑻  / ‖𝒒𝒐𝒍𝒅
𝑻 ‖   

7. Calculate Y score vector 𝒖 = 𝒀𝒒/𝒒𝑻𝒒 

8. Repeat steps 2-7 until 𝒕 converges. 

9. Calculate Y loading vector 𝒑𝑻 = 𝒕𝒕𝑿/(𝒕𝒕𝒕) 

10. Deflate 𝑿 and 𝒀 matrices (𝑿′ = 𝑿 − 𝒕𝒑𝑻, 𝒀′ = 𝒀 − 𝒃𝒕𝒄𝑻), then return to step 1 using 𝑿′ 

and 𝒀′ for next component. 

The mixed relationship can be used to predict new values of 𝒀 based on incoming 𝑿 data. 

When predicting the output (𝒀) data, the incoming input (𝑿) data is projected to the latent 

variable space by using the 𝑿 loadings 𝑷 obtained during the model training and using 
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Equation 2 (James et al., 2017). Once projected the scores of the incoming data are stored as 

they represent the location and magnitude of the data in the latent space. These scores are used 

along with PLS regression coefficients and the loadings 𝑸 in Equation 10 to obtain new 

predictions of 𝒀 (Geladi & Kowalski, 1986).S  

As the PLS regression technique is based on the PCA technique the regressed PLS retains the 

dimensionality reduction capabilities of the PCA technique. As the model is regressed on a 

dataset of reduced dimensionality this regression model can be used on datasets with many 

features. A possible example would be for a dataset comprising of one hundred variables the 

regression can be completed by projecting the dataset to ten latent variables. The regression is 

then performed using the projections onto the latent variables (James et al., 2017). 

This algorithm can be used to achieve a model which can predict outputs based on the 

predictor datasets used to train the model. Thus, it can be used to obtain parameter estimates 

for series and residuals for parallel hybrid models.   

2.5.2 Dynamic PLS 

A possible modification to the performance of the standard PLS model is dynamic PLS 

modelling. The dynamic PLS (dPLS) model introduces time lagged variables to the considered 

dataset as illustrated in Figure 5. In this work the time lagged variables are introduced in the 

predictor dataset. The introduction of time lagged variables into the PLS dataset has been done 

in the work conducted by Ricker (Ricker, 1988).  

The aim of introducing time lagged variables into the PLS model is capture the process 

dynamics (Ricker, 1988). The lag variable time window width is selected to capture the process 

dynamic cycle. In the dPLS model the standard PLS model is trained using all entries captured 

within the time window. In other words, features from previous time-points are added as 

features for the current time-point. By capturing all states within a dynamic cycle, the PLS 

model could possibly predict the responses more accurately. A point to note is that by 

introducing lagged variables one can greatly increases the dimensionality of the predictor 

dataset. This in turn increases the PLS model training and execution time. Also, the 

introduction of lagged variables is only logical if each observation in the dataset has the same 

time interval between them. If the observations are not sampled at equal time intervals the 

model will not capture the true process dynamics for a given timespan. 
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Figure 5: Illustration of time lagged input to dynamic PLS model 

2.5.3 Recursive PLS model 

The recursive PLS model is comprised of two standard PLS models trained using the NIPALS 

algorithm with one model continuously updated using information obtained from both models 

(Qin, 1998). The aim of the model is to capture and describe a process which undergoes time-

based changes by updating the model parameters based on new data. The algorithm is shown 

diagrammatically in Figure 6. 
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Figure 6: Recursive PLS algorithm 

If one considers a time-series of process data, in the recursive PLS algorithm a PLS model is 

trained using available process data by the NIPALS algorithm as described in Section 2.5.1.  A 

second PLS model is then trained using a second subsequent dataset of the same size as the 

first which consecutively follows the first (Qin, 1998). The PLS models are trained such that 

the number of PLS components are the same as the number of predictors. The 𝑿 and 𝒀 loading 

vectors and regression coefficient vectors (𝑷, 𝑸 and 𝑩 respectively) are extracted from the PLS 

models and used to reform 𝑿 and 𝒀 matrices. The reformed 𝑿 and 𝒀 matrices are shown in 

Equations 11 and 12 below (Qin, 1998).  

 𝑿 = [
𝑷𝑇

𝑷𝟏
]  [ 11 ] 

 

 𝒀 = [
𝑩𝑸𝑇

𝑩𝟏𝑸𝟏
] [ 12 ] 

These reformed matrices are then recursively fed back to the first PLS model and are used to 

retrain the model. A new set of measured data is then used to train the second PLS model and 

the process is repeated thus continuously updating the first PLS model (Qin, 1998). The first 

PLS model is thus the model used to describe the considered process or system. Once the PLS 

model is updated using the reformed matrices the resulting PLS model is referred to as the 

combined PLS model. The regression coefficients, score and loading vectors can be taken from 

the first PLS model to make predictions using a new set of predictors (Qin, 1998).  

PLS

Recursive PLS

PLS1

Reform X and 
Y 

Measured 
Data

Second 
Measured 
Dataset

[P,B,Q] [P1,B1,Q1]
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The recursive PLS algorithm thus becomes the sequence of steps as described below (Qin, 

1998): 

1. Formulate first 𝑿 and 𝒀 dataset. Centre and scale the matrices 

2. Derive PLS model for first dataset using NIPALS algorithm. Store 𝑻, 𝑼, 𝑷, 𝑸 and 𝑩. 

3. When new datasets 𝑿𝟏 and 𝒀𝟏 is available centre and scale the matrices. 

4. Derive a PLS sub-model using the newly available data set. Store the derived 

𝑻𝟏, 𝑼𝟏, 𝑷𝟏, 𝑸𝟏 and 𝑩𝟏 matrices. 

5. Determine the reformed matrices 𝑿 = [
𝑷𝑇

𝑷𝟏
] and 𝒀 = [

𝑩𝑸𝑇

𝑩𝟏𝑸𝟏
] and return to step 2. 

 

An adjustment to the recursive PLS method can be made through the introduction of forgetting 

factors. The forgetting factor acts as a weighting factor which determines the rate at which the 

contribution of older data to the PLS parameters decays exponentially. The reformed input and 

output matrices incorporating forgetting factors are shown in Equations 13 and 14 where 0 ≤

𝜆 ≤ 1 is the forgetting factor (Qin, 1998). A smaller forgetting factor represents a faster decay 

in the contribution of the older datasets (Qin, 1998). 

 𝑿 = [
𝜆𝑷𝑇

𝑷𝟏
]  [ 13 ] 

 𝒀 = [
𝜆𝑩𝑸𝑇

𝑩𝟏𝑸𝟏
] [ 14 ] 

In order to implement the recursive PLS model with forgetting factors one follows the recursive 

PLS algorithm as described above. The only adjustment which occurs is replacing the reformed 

matrices with those given in Equations 13 and 14. By implementing the recursive PLS model in 

a hybrid model the aim would be to constantly update the model to account for changing 

process dynamics. This would in turn result in more accurate model predictions.  

2.6 Support Vector Machine Classifiers 

As the fault detection problem is considered a multiclass classification problem the choice of 

classifier is of the utmost importance. As the inputs and outputs of the model may not be 

linearly separable in nature a classifier which can perform well with non-linearly separable data 
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is required. Thus the SVM classifier is selected as it is flexible and performs well with non-

linearly separable data due to the use of kernels (Vapnik, Golowich & Smola, 1997).  As SVM 

classifiers are kernel-based methods the choice of appropriate kernel has a large impact on the 

effectiveness of the method as the classifier only works as well as the kernel allows it to. The 

kernel used for this method is the gaussian/radial basis function (RBF) kernel. The gaussian 

kernel is chosen as it has wide applicability and performs well with many different non-linear 

datasets (Bishop, 2006).   

2.6.1 Linear SVM classifiers  

The SVM classifier separates classes by using a hyperplane which acts as the class boundary 

dividing the classes (Vapnik, 1998). This is illustrated in Figure 7 below where a SVM classifier 

is applied to a binary class dataset. As seen in Figure 7 a linear hyperplane separates the 

dataset based on the data class to which each data entry belongs. The data which belongs in 

class 1 (shown in blue) lie on one side of the hyperplane while the data which belongs to class 2 

(shown in green) lie on the other.  The SVM classifies data based on which side of the 

hyperplane the data lie. The position of the hyperplane margin is determined by the data 

entries. The data entries which are in contact with the margin determine the margin width (𝑑) 

and are known as the support vectors (Vapnik, 1998).  

 

  

Figure 7: Illustration of a two class linear SVM classifier separating hyperplane 
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The hyperplane takes the form shown in Equation 15 where 𝒘 represents the weight vector and 

𝑏𝑖 represents the bias. If the dataset is linearly separable then there exist a set of parameters for 

which the datapoints which belong to one class have predicted values (𝑦) which are positive 

(the positive class) with the points belonging to the other class being negative (the negative 

class) (Bishop, 2006). When the class labels are considered by the SVM method the target 

labels (represented by 𝑙𝑛) for the positive class are assigned the value +1 and the labels 

associated with the negative class being -1 respectively. 

 𝒘𝑇𝒙 + 𝑏𝑖 = 𝑦(𝒙) = 0  [ 15 ] 

 

The position of the hyperplane is set such that the distance between the hyperplane and the 

margin on either side of the hyperplane is maximised (Boser, Guyon & Vapnik, 1992). The 

margin surrounding the hyperplane defines the different class bounds based on the training 

data. The SVM method maximises the distance between the hyperplane and the margin with 

the position of the margins dependent on the training dataset (Christanni & Shawe-Taylor, 

2000). For linearly separable datasets the training set data points do not cross the margin 

boundary so that all data points lie outside the margin. Thus, the maximum width of the 

margin at any position along the hyperplane is when the margin boundary comes into contact 

with the data points (Steinwart & Christmann, 2008). The use of the support vectors to define 

the margin width is an advantage of the SVM approach as by using support vectors the class 

bounds are defined by only a subset of the datapoints as opposed to all the data points. This 

reduces the chances of overfitting the classifier as well as improving the training speed of the 

classifier (Bishop, 2006). 

The perpendicular distance from the hyperplane to any point 𝑥𝑛 is illustrated in Equation 16 

(Vapnik, 1998): 

 𝑙𝑛𝑦(𝒙𝑛) = 𝑙𝑛(𝒘𝑇𝒙𝒏 + 𝑏)  [ 16 ] 

 

To ensure that only correctly labelled and identified data is considered the constraint that 

𝑙𝑛𝑦(𝒙𝑛) > 0 is introduced (i.e. if correctly classified the target label and prediction will be of the 

same sign thus the product will be positive) (Boser et al., 1992). It is specified that the distance 

from the hyperplane to the nearest data points (the support vectors) is one thus the constraint 
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shown in Equation 17 is applied (Boser et al., 1992). If the distance between the support vector 

and the hyperplane is one, then the distance between any datapoint and the hyperplane is 

equivalent or greater than one (Vapnik, 1998).  

 𝑙𝑛(𝒘𝑇𝒙𝒏 + 𝑏) ≥ 1   [ 17 ] 

 

The objective of the SVM method is to maximise the margin width. This can be expressed as 

finding the weights which maximise the boundary width (i.e. Equation 16) (Vapnik et al., 

1997). Smaller weights will result in an invalid margin boundary in which data points will lie 

between the margin boundary and hyperplane. Thus, the solution to the SVM becomes finding 

the minimum weights for which the constraint in Equation 17 holds. This is represented as the 

optimization problem shown in Equation 18 subject to the constraints shown in Equation 19 

(Hastie, Tibshirani & Friedman, 2001). 

 

 min
𝒘,𝑏

1

2
||𝒘||

2
  [ 18 ] 

Subject to: 

 𝑙𝑛(𝒘𝑇𝒙𝒏 + 𝑏) ≥ 1    [ 19 ] 

 

In order to present a more simplified form of the optimization problem Lagrange multipliers are 

applied to the problem and simplified to present the dual representation form as shown in 

Equation 20 where N represents the number of samples in the training set and 𝑎 the Lagrange 

constants (Boser et al., 1992). 

 max
𝑎

∑ 𝑎𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝑎𝑛𝑎𝑚𝑙𝑛𝑙𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1   [ 20 ] 

Subject to the constraints: 

 𝑎𝑛 ≥ 0, ∑ 𝑎𝑛𝑙𝑛
𝑁
𝑛=1 = 0  [ 21 ] 

 

The above solution describes the hard margin approach to SVM classifiers in which the dataset 

must be clearly linearly separable. This is not always the case as often classes tend to have 

slight overlaps or class bounds that cannot linearly separate every datapoint. To the address 
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these issues the regularized approach to SVM classifiers (also known as the soft-margin 

approach) is adopted. Slack variables are introduced to loosen the restrictions on all datapoints 

having to be outside the margin boundaries(Bishop, 2006). This allows some data entries to 

cross the class boundaries. The regularised Lagrangian form of the optimization equation is 

shown in Equation 22 below with the constraints given in Equation 23 (Vapnik, 1998). As seen 

the objective function remains the same with the only change being to the constraints with the 

addition of the regularization constant (𝐶) which accounts for the tolerance of allowing data 

points behind the margin boundary.   

 max
𝑎

∑ 𝑎𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝑎𝑛𝑎𝑚𝑙𝑛𝑙𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1   [ 22 ] 

 

Subject to the constraints: 

 𝐶 ≥ 𝑎𝑛 ≥ 0, ∑ 𝑎𝑛𝑙𝑛
𝑁
𝑛=1 = 0  [ 23 ] 

 

2.6.2 Kernel SVM classifiers 

The above discussion considers datasets which are linearly separable and will not perform well 

on a training dataset which cannot be separated linearly. This issue is addressed through the 

use of kernels transformations. Kernels are used to transform the dataset to a space in which 

the data can be linearly separated and the SVM applied (Christanni & Shawe-Taylor, 2000).   

Kernel transformations are used to map a non-linear dataset to some mathematical space 

(referred to as the kernel space) where the data becomes linear in nature. One can consider a 

dataset 𝑿 which is not linearly separable. The dataset can be mapped to a higher dimensional 

feature space through a mapping function Φ (Bishop, 2006). In the new feature-space the data 

could possibly become linearly separable. The mapping of a dataset to a new feature space is 

shown in Figure 8. As seen the data is transformed from a two-dimensional space to higher 

dimensional, three-dimensional space where the data becomes linearly separable.  
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Figure 8: Mapping of non-linearly separable data 

The mapped dataset is represented by Φ(𝑥). Mapping each observation using a transformation 

function becomes a time consuming and computationally intensive process as it requires one to 

determine the function which results in the data becoming linear. This gives rise to what is 

known as the ‘kernel trick’ in which the product of two mapped data vectors is replaced by a 

kernel function (Aizerman, Braverman & Rozonoer, 1964)(Steinwart & Christmann, 2008). This 

results in only the pairwise comparison of the observations being considered thus removing the 

need to explicitly map each individual observation (Aizerman et al., 1964). Thus, a kernel 

function can be defined as shown in Equation 24 in which the kernel function is equivalent to 

the dot product of two mapped data vectors (Steinwart & Christmann, 2008). 

 𝑘(𝑥𝑖 , 𝑥𝑗) =  Φ(𝑥𝑖)𝑇 Φ(𝑥𝑗)  [ 24 ] 

Kernel functions have characteristics which define them with one of those being that the 

function must be positive definite (Steinwart & Christmann, 2008). The kernel function is then 

used to generate the Gram matrix which contains the results of the kernel function applied to 

all combinations of the input data(Bishop, 2006). The Gram matrix is shown in Equation 25. 

 𝑲 = [
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥𝑛, 𝑥1)

⋮ ⋱ ⋮
𝑘(𝑥1, 𝑥𝑛) ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

]  [ 25 ] 
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When a SVM classifier is applied to a mapped dataset the position of the hyperplane is 

determined in the mapped feature space. The Lagrange form of the optimization objective 

function with mapped data is shown in Equation 26 (Christanni & Shawe-Taylor, 2000). 

 max
𝑎

∑ 𝑎𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝑎𝑛𝑎𝑚𝑙𝑛𝑙𝑚Φ(𝒙𝑛)TΦ(𝒙𝑚)𝑁

𝑚=1
𝑁
𝑛=1   [ 26 ] 

 

As seen the optimization problem consists of the product of the mapped data as an input. The 

kernel trick can be applied to replace the product of the mapped data vectors with a kernel 

function. The kernel SVM optimization problem is now defined as seen in Equation 27 with the 

kernel function inserted (Boser et al., 1992). The performance of the kernel SVM method is 

heavily dependent on the selection of an appropriate kernel which transforms the data to some 

space in which the data can be separated by the SVM method.    

 max
𝑎

∑ 𝑎𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝑎𝑛𝑎𝑚𝑡𝑛𝑡𝑚𝑘(𝒙𝑛, 𝒙𝑚)𝑁

𝑚=1
𝑁
𝑛=1   [ 27 ] 

Subject to the constraints: 

 𝐶 ≥ 𝑎𝑛 ≥ 0, ∑ 𝑎𝑛𝑡𝑛
𝑁
𝑛=1 = 0  [ 28 ] 

 

2.6.3 Kernel functions 

As non-linear SVM implements kernel transformations for non-linear mapping the choice of 

appropriate kernel function is key. There are several kernel functions available with a few 

examples being linear kernels, polynomial kernels, sigmoidal kernels and radial basis function 

(RBF) kernels. The choice of kernel depends on the dataset considered.  

The RBF or Gaussian kernel is a commonly used kernel function in SVM (Bishop, 2006). This 

is due to the kernel performing well on several different non-linear datasets. The RBF kernel 

function used in this work is shown in Equation 29. The width parameter (𝛾) is optimized to 

ensure the best fit for the RBF kernel.  

 𝑘(𝒙𝒊, 𝒙𝒋) = exp (−𝛾‖𝒙𝒊 − 𝒙𝒋‖
2

 )  [ 29 ] 
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The polynomial kernel is used when the feature space can best be described using a polynomial 

function. The polynomial kernel is shown in Equation 30 below (Yekkehkhany, Safari, 

Homayouni & Hasanlou, 2014). The degree of the polynomial is set through the parameter 𝑝.  

 𝑘(𝒙𝒊, 𝒙𝒋) = (𝒙𝒊
𝑇𝒙𝒋 + 1)

𝑝
  [ 30 ] 

 

The sigmoid kernel is given in Equation 31 below. 

 𝑘(𝒙𝒊, 𝒙𝒋) = tanh(𝒙𝒊
𝑻𝒙𝒋 + 1)  [ 31 ] 

 

Due to the generalisation capabilities of the RBF kernel, it is often the first kernel function 

applied in models which use kernel transformations (Bishop, 2006). If the RBF does not 

perform well or if some knowledge is known about some underlying model which describes the 

data, a kernel which better fits the data can be selected. The selection of an appropriate kernel 

function can become a trial-and-error approach. In this work the RBF kernel is selected due to 

its generalisation ability. 

2.6.4 Multiclass SVM classifiers 

SVM classifiers operate as binary classification models thus to be applicable to fault 

identification an adjustment is needed to allow the SVM to effectively handle multiclass 

classification. The one-vs-one multiclass SVM approach is adopted to solve the proposed 

multiclass classification problem (James et al., 2017). As traditional SVM classifiers are 

designed for two class classification the one-vs-one approach involves using SVM classifiers 

being trained pairwise until all class combinations are accounted for. The pairwise classifiers for 

three classes are represented schematically Figure 9 in below. 
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Figure 9: Pairwise SVM classifiers for three classes 

When classifying new data points the data points are fed to all the classifiers. The resulting 

output labels from each classifier for each data point are collected and the number of labels 

corresponding to each fault for each observation is recorded. The label with the largest number 

of positive identifications is assigned as the most likely label for that observation. In this work 

the pairwise classifiers are trained using normal operation data as well as the fault laden 

datasets. The fitcsvm function in MATLAB is used to train all the SVM classifiers. Two-class 

SVM’s are trained on labelled process datasets. The classification predictions using the trained 

SVM classifiers are performed in MATLAB using the predict function. The one-vs-one approach 

is then applied to the prediction of new classes with the predicted labels summed to determine 

the most likely label.   

2.7 Cross Validation  

Cross validation is a data partitioning and error estimation method in which a dataset is 

subdivided into separate groupings in order to evaluate the performance of various statistical 

methods and machine learning algorithms (Stone, 1974). The data is portioned into two groups 

namely a training set which is used to train the machine learning technique and a test set 

which is used to evaluate the performance (Stone, 1974). The cross validation of datasets is 

particularly useful when the available process or system data is limited. By cross validating the 
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dataset one can train a model using the available data multiple times using different groupings 

within the dataset while still being able to determine the performance of the model using the 

test set.  

There are several cross-validation techniques available with an example technique being hold-

out cross validation. Hold-out cross validation comprises of partitioning a portion of the data 

(usually represented as a percentage) as the test set with the rest allocated as the training set 

(Kohavi, 1995). The holdout method has one noticeable and distinct disadvantage when 

compared to other cross validation methods in that it involves sub dividing the data set only 

once. The data which falls into the test set is thus never used to train the model and the 

performance of the model is only considered once.  

Another cross-validation technique is k-fold cross validation. This technique comprises of 

subdividing the data into several partitions (determined by the k factor) of equal size (Bishop, 

2006). One of these partitions is allocated as the test set with the rest being the training set. 

The model is then trained and tested, and the process is repeated by selecting the next 

partition as the test set and allocating the rest as the training set. The loop is repeated until all 

partitions have been selected as the test set. The k-fold cross validation ensures that the 

machine learning technique has be trained on all available data. This ensures that one gains the 

most use out of a limited dataset.  

2.8 Performance measures 

When evaluating the performance of the fault detection method there are different measures 

which can be used to quantify the performance and fault identification capabilities of the 

classifier. A performance measure used to quantify the performance of the fault identification 

method is the sensitivity measure. The sensitivity is evaluated according to Equation 32 where 

true positive represents the fault datapoints correctly identified as fault points and false 

negative represents fault datapoints misclassified as normal operation datapoints (non-fault 

datapoints) (James et al., 2017). The sensitivity represents the likelihood that fault datapoints 

are correctly classified as such.  

 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  [ 32 ] 

 

Stellenbosch University https://scholar.sun.ac.za



 

30 

Another commonly used fault identification performance measure is the specificity. The 

specificity is defined in Equation 33 where false positive represents the number of datapoints 

misclassified as positive fault readings (James et al., 2017). True negative represents the normal 

operation data which is correctly identified and false positive represents normal operation data 

which is incorrectly identified as faulty. The specificity represents the likelihood that a 

datapoint identified as a non-fault point is in fact a non-fault point and not a false 

identification.  

 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  [ 33 ] 

 

The sensitivity and specificity of the fault identification method are important measures and as 

such are commonly displayed simultaneously as receiver operating characteristic (ROC) curves 

(James et al., 2017). ROC curves are commonly used to compare the performances of different 

classifiers as the ROC displays both significant performance measures simultaneously.  

Many classification methods make use posterior probability thresholds with the thresholds 

determining which class a datapoint will be classified as. The ROC then displays the values of 

sensitivity and 1-specificity for all values of the probability simultaneously (James et al., 2017). 

The overall performance of the classifier can then be quantified by using the area under the 

curve (AUC).  

The SVM method however does not make use of probability thresholds with classification of 

data points being solely dependent on which side of the hyperplane that datapoint lies on. 

Posterior probabilities of the SVM can be estimated however by fitting a posterior probability 

curve to the SVM score vectors. There are different methods in which this can be done with one 

such method is Platt scaling which is implemented by using the fitPosterior function in 

MATLAB (Platt, 2000). 

2.9 Platt scaling 

A noticeable feature of SVM classifiers is that the position of the support vectors (and as such 

the decision boundaries) are determined by only maximising an objective function (Boser et al., 

1992). The output of the SVM is therefore only the class to which observations belong with no 

information on the likelihood or probability that observations belong to the resultant class. 
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Probabilistic outputs for classifiers provide useful information which can be used to further 

investigate and evaluate the classifier performance and make more informed classification 

decisions (Platt, 2000). One method of obtaining probabilistic outputs for SVM classifiers is 

Platt scaling (Platt, 2000). 

Platt scaling is a post-training method of obtaining probability outputs for trained SVM models 

by fitting a parametric sigmoid function to the output of the SVM classifier (Platt, 2000). The 

parametric sigmoid function is used to fit the posterior probability 𝑃(𝑙 = 1|𝑓) (i.e. probability 

that an observation lies on one side of the hyperplane) directly. Platt examined empirical data 

and based on the data stated that the class-conditional probabilities between the hyperplane 

margins are exponential (Platt, 2000). The sigmoid function form is determined by Bayes’ rule 

on two exponentials. The parametric sigmoidal function takes the form shown in Equation 34 

where 𝑓 is the SVM output. 

 𝑃(𝑙 = 1|𝑓) =
1

1+exp(𝐴𝑓+𝐵)
  [ 34 ] 

 

The sigmoid parameters (𝐴 and 𝐵) are determined by minimizing a negative likelihood function. 

In order to generate the likelihood function, a method of mapping the SVM outputs to 

representative probabilities must be set. This is done by setting a new training set (𝑓, 𝑝𝑡) where 

𝑝𝑡 is a target probability as defined in Equation 35 (Platt, 2000).   

 𝑝𝑡 =
𝑙+1

2
  [ 35 ] 

 

The likelihood function (given in Equation 36 below) is minimized by adjusting the sigmoid 

parameters to ensure the best fit of the probability mapping function. The minimization can be 

performed by using an appropriate optimization routine. 

 min (∑ 𝑝𝑡𝑖
log(𝑝𝑖) + (1 − 𝑝𝑡𝑖

) log(1 − 𝑝𝑖)) 𝑖   [ 36 ] 

Where: 

 𝑝𝑖 =
1

1+exp(𝐴𝑓𝑖+𝐵)
  [ 37 ] 
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Platt scaling is advantageous as it obtains probabilistic outputs using the outputs of a trained 

SVM model. Other methods can used to determine probabilities for SVM models such as the 

method proposed by Wahba (Wahba, 1992). The method involves introducing a maximum 

likelihood function during the training of the SVM function (Wahba, 1992). This could affect 

the position of the support vectors and thus the classification efficiency of the SVM model. 

Platt scaling however bypasses these concerns by being a post-training probability mapping 

method  
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3 LITERATURE REVIEW 

The following chapter reviews applications of hybrid modelling, fault detection and fault 

identification in available literature. The applications of the method in literature are described 

and the results of the studies conducted are summarised. The application of both hybrid 

modelling and the fault detection and identification are evaluated and compared. 

3.1 Fault identification using k-nearest neighbours 

There has been much work done in the application of data-based classification models in fault 

detection and identification. These approaches pose fault identification as a classification 

problem with each class corresponding to a different fault condition. This was the approach 

followed by He and Wang (2007) who made use of  k-nearest neighbour (kNN) classification 

models .  

He and Wang (2007) considered the use of the kNN classification model as a fault detection 

method. The kNN was trained on labelled datasets which contained both normal operation as 

well as faulty operation data. The performance of the kNN fault detection was compared to a 

PCA method utilising squared predictive error (SPE) and a PCA method utilising Hotelling’s 

T2 statistic (He & Wang, 2007).  

The kNN fault detection methodology proposed by He and Wang (2007) comprises of two 

parts, namely a model building part and a fault detection part. In the model building 

component for each observation in the training set the k nearest neighbours were identified and 

the distances were calculated. Once the distances were determined the fault detection threshold 

was set (He & Wang, 2007).  In the fault detection component when an unidentified 

observation was subjected to the fault detection the kNN for the observation among the 

training set were identified (He & Wang, 2007). The distance between the observation and its 

neighbours were calculated and compared to the fault detection threshold. If the distance 

exceeded the threshold value that observation was identified as being faulty (He & Wang, 

2007).  

It is noted that the performance of the kNN model can decrease when applied to a dataset 

comprising of a large number of input variables (He & Wang, 2007). This is due to the model 

treating each variable as equally important; thus it can classify data using irrelevant features. 
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By introducing some data pre-processing and feature extraction or feature selection the 

performance of the model can be increased (He & Wang, 2007). In this work however no feature 

extraction was used as the feature extraction requires human interaction and the aim was to 

automate the fault detection method as much as possible (He & Wang, 2007).  

The fault detection methods were applied to a process dataset obtained from an industrial 

process and the performances were compared. The industrial dataset contained twenty different 

process faults with the performance of the fault detection methods evaluated on each process 

fault. When the performances were compared it was seen that the PCA model using SPE was 

only able to correctly identify a small subset of the process faults with 11 out of the possible 20 

identified (He & Wang, 2007). The PCA model using T2 was only able to correctly identify 10 

out of the possible 20 process faults. The kNN model however showed an increase in 

performance correctly identifying 17 of the possible 20 process faults (He & Wang, 2007). This 

demonstrates that the kNN model can be used a viable fault identification method (He & 

Wang, 2007). 

3.2 Fault identification using artificial neural networks  

As seen the classification problem approach to fault identification is viable approach. Similar 

approaches were followed using different classification model types with each yielding a different 

result based on the model used. Heo and Lee (2018) followed a similar approach utilising 

artificial neural networks (ANN). 

Heo and Lee (2018) implemented an ANN based fault detection and fault classification model. 

The fault detection and classification were treated as a classification problem and ANN’s were 

developed to address the classification. The fault identification model was applied to the 

Tennessee Eastman process. 

For the fault detection method binary ANN’s were trained on normal operation data and faulty 

operation data (Heo & Lee, 2018). Binary ANN’s were then trained on each process fault in the 

process. The number of neurons in the ANN’s were adjusted and the fault detection 

performance was recorded. It was seen that when the ANN contained two hidden layers the 

fault detection performance increased greatly when compared to an ANN which only contained 

one hidden layer for all faults considered (Heo & Lee, 2018). Increasing the number of hidden 

layers beyond two yielded no significant increase in performance (Heo & Lee, 2018).  
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A data augmentation approach was attempted in which consecutive observations were 

combined and evaluated simultaneously by the ANN’s. When this approach was followed it was 

found that a significant increase in the detection accuracy occurred (Heo & Lee, 2018). The 

ANN fault detection method was compared to fault detection models using dynamic PCA, 

modified PCA, independent component analysis and deep belief networks using both Gaussian 

and sigmoid activation functions. It was seen that the ANN fault detection method on average 

showed a higher detection rate than the other fault detection models as well as a significantly 

lower false alarm rate (Heo & Lee, 2018). 

The fault classification was posed as a multiclass classification problem where normal operation 

and each fault was designated as its own class (Heo & Lee, 2018). Through this approach, both 

fault detection and classification occurred simultaneously (Heo & Lee, 2018). The performance 

of the fault classification method was compared when the standard dataset and augmented 

dataset are used. It was found that by performing the data augmentation the performance of 

the fault identification method increased (Heo & Lee, 2018).  

The fault identification performance was then compared to fault identification methods which 

used shallow neural networks, hierarchical neural networks and a stacked sparse autoencoder. It 

should be noted that the considered models only perform fault identification and thus are only 

trained on fault data and do not include normal operation as a class (Heo & Lee, 2018). It was 

seen that the ANN model showed significantly higher fault classification rates than the other 

considered fault identification models (Heo & Lee, 2018). This not only shows that ANNs are a 

viable fault identification model but also shows that the multiclass approach to fault 

identification is valid. Training a simultaneous fault detection and identification model is also 

an approach which performs well. 

3.3 Fault identification using support vector machines 

As seen not only does the classification approach to fault identification work with other 

classification models but a dual fault detection and identification approach is a viable approach 

as well. Another possible classification model which could be used in fault detection and 

identification is the SVM classifier. The SVM classifier has shown good classification 

performance for both linearly and non-linearly separable datasets thus could possibly work well 
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as fault identification model. One example of SVM fault detection was done by Yin et al. 

(2014).  

A support vector machine classifier was trained as a fault detection model and tested using the 

Tennessee Eastman process (Yin et al., 2014). The Tennessee Eastman process model is a 

process simulation model widely used in process control. This is due to wide array of process 

faults which can be applied to the model thus making it a suitable test model for fault detection 

techniques (Yin et al., 2014). The performance of the SVM fault detection model was compared 

to a PLS fault detection model.  

As the standard SVM is a binary classification model, for fault detection the SVM was trained 

using normal operation data as one class and data which corresponds to when a process fault 

was active as the other. The SVM was proposed as the fault detection method due to it 

generalization capabilities as well as its ability to classify non-linearly separable data due to the 

use of kernel transformations. The SVM classifier was trained and evaluated on one fault 

condition at a time thus following a binary classification approach and not a multiclass 

approach (Yin et al., 2014). The radial basis function was selected as the kernel used by the 

SVM. The PLS fault detection model was a standard PLS regression model trained using the 

normal operation data. Hotelling’s T2 statistic was used to detect when the process deviates 

from standard operation. When the T2 exceeded a threshold calculated based on confidence 

intervals, the process was then deemed to be under faulty conditions (Yin et al., 2014). 

When the performance of the SVM fault detection model was compared to the PLS fault 

detection model it was seen that the SVM consistently performed better than the PLS model 

across all process faults considered. This shows that not only is a SVM fault detection model a 

viable fault detection method but the ability of the SVM classifier to effectively separate non-

linearly separable data transfers well to fault detection (Yin et al., 2014). This is due to many 

process datasets containing data which are non-linear in nature. The performance of the 

classifier with non-optimized hyperparameters was also considered and it was found that 

optimization of the hyperparameters greatly improved the predictive performance of the fault 

detection (Yin et al., 2014).  

The performance of the SVM model was also tested when fault laden classes were created. The 

fault laden class was the result of a combination of fault condition datasets with the largest 

combination being of three separate fault conditions. A test data set comprising of a selection of 
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data generated under one fault condition was then fed to SVM classifier. It was found that 

under these conditions the SVM fault detection model still performed well (Yin et al., 2014). 

This shows that the SVM classifier is a viable fault detection method (Yin et al., 2014). In all 

conditions considered in this work however the SVM classifiers were binary classifiers. This 

would not be ideal for fault identification models as the classifier would possibly have to 

distinguish between several different faults.  This would result in a multiclass classification 

problem and as the SVM is a binary classifier and adaption is needed to account for the 

additional classes.  

As seen the SVM model can be used as fault detection technique however it’s capability as a 

fault identification model still needs to be evaluated. This was done in the approach followed by 

Onel et al. (2019). Not only is SVM as fault identifiers evaluated but also if the introduction of 

selected features improves the performance of the SVM classification model. 

In the work support vector machines were trained to perform feature selection, the selected 

features were then fed to SVM classifiers used for fault detection with the intention that the 

selected features would improve the fault detection performance (Onel et al., 2019). The fault 

detection technique was then applied and tested using the Tennessee Eastman process. The 

performance of the feature selection fault detection model was compared to the standard SVM 

fault detection model. 

In order to perform the feature selection a binary selection variable 𝑧 𝜖 {0,1} was introduced to 

select or discount a feature 𝑓. Each value of the selection variable corresponds to whether a 

feature is selected (𝑧𝑓 = 1), or whether the considered feature is discounted (𝑧𝑓 = 0). The SVM 

optimization problem with the selection variable included is shown in Equation 38 (Onel et al., 

2019). 

 min
𝑧

max
𝑎

∑ 𝑎𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝑎𝑛𝑎𝑚𝑡𝑛𝑡𝑚𝑘(𝑥𝑛 ∙ 𝑧𝑛, 𝑥𝑚 ∙ 𝑧𝑚)𝑁

𝑚=1
𝑁
𝑛=1   [ 38 ] 

 

Subject to constraints: 

 ∑ 𝑎𝑛
𝑁
𝑛=1 𝑦𝑛 = 0 , 𝑎𝑛𝜖[0, 𝐶]  [ 39 ] 

 

 ∑ 𝑧𝑓 = 𝑚𝑓  , 𝑧𝑓𝜖{0,1}  [ 40 ] 
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Where 𝑚 represents the optimal size of the reduced feature space. Solving the optimization 

problem to obtain a global solution in real world applications would be time consuming and 

impractical. A sensitivity analysis was performed on the inner optimization instead with respect 

to 𝑧𝑓 (Onel et al., 2019).  In order to derive the sensitivity of the inner optimization the partial 

derivative of the transformed Lagrange function was taken. From the resultant function the 

criterion function is obtained and is given in Equation 41 (Onel et al., 2019).  

 𝑐𝑟𝑖𝑡𝑓 = −
1

2
∑ ∑ 𝑎𝑛

∗ 𝑎𝑚
∗ 𝑡𝑛𝑡𝑚

𝛿(𝑘(𝑥𝑛∙𝑧𝑛,𝑥𝑚∙𝑧𝑚))

𝛿𝑧𝑓
|𝑁

𝑚=1
𝑁
𝑛=1

𝑧=𝑧∗
  [ 41 ] 

 

 𝑓𝑤𝑜𝑟𝑠𝑡 = arg max
𝑓

𝑐𝑟𝑖𝑡𝑓  [ 42 ] 

 

In order to perform the feature selection an iterative procedure was followed by which SVM 

models were trained. The features used in the training were then ranked according to the 

criterion value obtained in Equation 41. The feature with the lowest criteria value was then 

eliminated and the iterative loop repeated excluding the eliminated feature (Onel et al., 2019). 

The loop was then repeated until a predetermined feature space size is obtained. The feature 

selection was then performed for each error case.   

Similar to the work performed by Yin et al. (Yin et al., 2014), SVM classifiers were trained to 

detect each individual fault with the classifiers trained with normal operating data forming one 

class and fault laden data the other. When the feature selection fault detection method was 

applied only the selected features are used to train the SVM classifiers. It was seen that when 

the selected features were used for the fault detection there was noticeable improvement in the 

accuracy and decrease in the false detection rate. This shows that by including a feature 

selection (or a possible feature extraction) method with a fault detection or diagnosis method, 

the performance of said method is improved (Onel et al., 2019). By including a feature 

extraction method with a fault diagnosis method, the increase in performance could be worth 

the additional training and execution cost incurred by the additional model.  
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3.4 Model-based fault identification using multiparametric 

programming 

Introducing selected features to fault identification models was shown to increase the 

performance of the models thus the introduction of relevant information to the classifier 

increases fault identification performance. There are different methods of obtaining relevant 

information from a dataset with one possible way being based on ideas found in model-based 

fault identification. Estimating model parameters for fault detection was done in the work by 

Che Mid and Dua (2017). 

A parameter estimation method using multiparametric programming has been proposed as a 

possible fault detection method (Che Mid & Dua, 2017). Multiparametric programming was 

used to develop a function which determines the model parameters as a function of the 

measured process data. The proposed method was tested on a single stage evaporator and a 

quadruple tank system case study (Che Mid & Dua, 2017). 

In the proposed method the parameter estimates were obtained using multiparametric 

programming. In parameter estimation fault detection, the parameters are obtained from non-

linear ordinary differential equations by minimizing an error measure by adjusting the 

parameter values (Che Mid & Dua, 2017). The parameter estimation can be performed with the 

differential equations by using different regression techniques.  

In the proposed multiparametric programming approach the first step in obtaining the model 

parameters is reforming the differential equations as a non-linear program by discretising the 

differential equations. The Karush-Kuhn-Tucker conditions for the non-linear program are 

obtained and the equality constraints are solved (Che Mid & Dua, 2017). By solving the 

equality constraints, one obtains a set of parametric algebraic equations which can be used to 

obtain model parameters as a function of process measurements. When performing the fault 

detection, the residuals between the estimated model parameters and the model parameters at 

normal operation are calculated. When the residuals exceed some threshold value a fault is 

detected, and an alarm is raised (Che Mid & Dua, 2017).  

When the fault detection method was applied to the single stage evaporator system case study 

it was seen that the fault detection method was able to correctly identify different faults applied 

to the model (Che Mid & Dua, 2017).  The same was found when the technique was applied to 
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the tank system case study. This shows that the incorporation of multiparametric modelling in 

the parameter estimation is a worthwhile endeavour. By including the multiparameter models 

in the fault detection, the model based parameter estimation fault detection can be 

implemented online (Che Mid & Dua, 2017). By replacing the differential equation parameter 

estimation with simple algebraic relationships, the computational costs are significantly 

reduced.  

3.5 Hybrid modelling for model parameter estimation 

Estimating model parameters for fault identification and including these parameters in the fault 

identification model was a possible method of improving fault identification performance. When 

these parameters were included in the fault identification model an increase in performance was 

noted. A possible parameter estimation method is hybrid modelling. As hybrid models combines 

first-principle modelling with data-based modelling it could be a viable method for parameter 

estimation. One example of hybrid modelling is found in the work done by Hu et al. (2011). 

In the work done by Hu et al. an acid leaching process was modelled using hybrid modelling 

techniques (Hu et al., 2011). The hybrid model proposed in the work made use of a bagging 

support vector regression (SVR) method which incorporated negative correlation learning. The 

performance of the proposed hybrid model was then compared to hybrid models which 

incorporated regular SVR, bagging and a model comprised of the mechanistic model only. 
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Figure 10: Hybrid series and parallel combination model structure as adapted from 

Hu et al (Hu et al., 2011) 

The model structure proposed in the paper comprised of a combination of series and parallel 

hybrid model structures. The series component is responsible for estimating the parameters of 

the mechanistic model and parallel component is responsible for estimating and compensating 

for the fault. The hybrid model structure as adapted from Hu et al. is shown in  

Figure 10 above (Hu et al., 2011).  

The series and parallel combination hybrid model presents a model structure which could 

include the advantages of both series and parallel structures thus providing a better performing 

model. A disdavatage of the combination structure is that by employing two emperical models 

the training and execution time of the hybrid model increases. Thus the use of the combination 

model is only justified if the model signifcantly improves on the performance of the model when 

using classical hybrid model structures. Another possible disadvantage is that by introducing an 

addition empirical model the risk of over-fitting increases as it introduces additional parameters 

within each empirical model.  

The negative correlation SVR bagging algorithm employed in the paper was introduced as an 

improvement on the standard SVR algorithm which addressed the issue of over-fitting. The 

bagging component of the algorithm reduced the bias incurred during the training stage by 

drawing random samples from the training dataset. This improved the generalisation 
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capabilities of the algorithm by reducing the generalisation error (Hu et al., 2011). The negative 

correlation learning component of the algorithm altered the training procedure of the SVR by 

introducing a correlation penalty. The algorithm comprised of training SVR’s using the negative 

correlation method and then combining the SVR’s obtained by this method. The full algorithm 

can be found in the paper written by Hu et al (Hu et al., 2011). 

The performance of the negative correlation SVR bagged hybrid model (NSBH) was compared 

to the performance of the mechanistic model (MM), basic bagging model (BBH) and SVR 

model. It was found that the NSBH model had better performance and lower error evaluations 

than the other models (Hu et al., 2011). Due to this the NSBH algorithm showed potential as a 

possible hybrid modelling approach. The NSBH approach could help alleviate the over-fitting 

problem which is prevalent in hybrid modelling (Hu et al., 2011). However, if the regular SVR 

is sufficient then the NSBH model will most likely not be applied as it is a more complex 

formulation which could possibly lead to errors in implementation and adjusting to fit other 

models.  

Another form of hybrid modelling was found the work done by Bhutani et al. (2006). In the 

work performed by Bhutani et al. (2006), an industrial petrochemical hydrocracking unit was 

modelled using hybrid modelling techniques. The hybrid modelling incorporated the use of 

artificial neural networks (ANN’s) as the empirical model in differing hybrid model structures 

namely series, parallel and series-parallel combination model structures. The performance of the 

differing model structures was then compared to each other as well as a purely mechanistic 

model and a purely data-based/empirical model. Lastly the performance of the hydrocracking 

unit was optimised using the data-based model. 

In the series hybrid model, the ANN was used to predict the kinetic parameters of the 

hydrocracking unit while in the parallel configuration the ANN was responsible for predicting 

the residuals. Although the series-parallel combination model used ANN’s to perform the afore 

mentioned functions the ANN in the parallel component of the combination model and the 

parallel structure were different while the series component ANN was the same. This resulted in 

different training times and performances for the different hybrid models with the combination 

model taking longer to train (Bhutani et al., 2006). This further reiterates the necessity of only 

using the more complex model structure if the performance is significantly improved.  
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Once the respective models were trained the performance of each model was compared. The 

performance of each model was compared by determining the average absolute percent error 

obtained by comparing the output predictions of each model to plant data.  It was seen that 

the series-parallel performance did noticeably improve on the performance of the series 

structure but did not significantly improve on the performance of the parallel structure 

(Bhutani et al., 2006). Thus, one would select the parallel structure due to the lower training 

time. It was found that the ANN with no hybrid modelling performed the best overall and this 

coupled with the short training time for the model lead the authors of the paper to optimise the 

hydrocracking unit based on this model. This further indicates that the selection of hybrid 

model structures and the use of data-based models vary on a case-to-case basis.  

The use of ANN in hybrid modelling was seen in the work of Conlin et al. (1997) and Lee et al. 

(2002).  In the work done by Conlin et al. (1997) hybrid modelling techniques were used to 

predict the pressure drop in a water treatment plant. The pressure loss profiles in the water 

treatment plant were modelled using both parallel and series hybrid structures. The ability of 

the hybrid models to correctly predict the pressure loss were then compared to each other as 

well as the first-principle model.  

The first-principle model considered was a polynomial relationship which describes the head loss 

pressure profile. The data-based model considered in the work was an ANN. In the series 

structure the ANN was used to predict parameters used by the mechanistic model (Conlin et 

al., 1997). The parameter prediction can be viewed as a feature extraction method as it extracts 

the parameters by predicting them using the input data.  In the parallel structure the ANN was 

used to estimate the output residuals based on the input data.  

When the performance of the parallel hybrid model was compared to that of the standard 

mechanistic model it was seen that both models accurately described the pressure loss which 

occurred. However, when a step input was applied to the system it was seen that the 

mechanistic model no longer accurately described the pressure. It was also seen that, although 

showing a slight improvement over the mechanistic model, the parallel structure did not 

account for the vast change in pressure drop due to the step input. This could be attributed to 

the parallel structure not being able to extrapolate the residuals between the mechanistic model 

prediction and actual pressure loss due to the step input (Conlin et al., 1997).  
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When the performance of the series structure was considered, it was seen that the structure 

performs significantly better. This was likely due to the neural network predicting new 

parameters at each time step which would be able to account for the step input (Conlin et al., 

1997). Thus, if one expects a system to undergo significant changes as time progresses it would 

be feasible to consider a series hybrid structure over a parallel structure. This is due to the 

parallel structure possibly not being able to extrapolate data well which lies outside the scope of 

the training data (Conlin et al., 1997). It can also be inferred that if the mechanistic model 

describes the process well, then a series configuration provides more accurate predications than 

a parallel configuration (Conlin et al., 1997). 

In the work performed by Lee et al. (2002) hybrid modelling techniques were used to model an 

industrial coke-plant wastewater treatment process. The performance of a series and a parallel 

hybrid model in modelling the process were compared to the performance of the mechanistic 

model. An ANN was used as the data-based model in both hybrid model structures. An ANN 

was also trained to obtain the process output with the performance compared to the previously 

mentioned model configurations. 

The mechanistic model was used to estimate four key parameters of the process. The 

mechanistic model was used to predict process data and was compared to actual measured data 

which corresponds to the respective input data. It was seen that the mechanistic model 

described some of the data well, however there were deviations between the actual data and the 

predictions. The deviations were particularly significant during a time duration where the 

process underwent a significant change (Lee et al., 2002).  

When the performance of the ANN was considered, it was found that the model does not 

predict the process data during the period of significant change well. This could be due to the 

training data not including the period of significant process change (Lee et al., 2002). When the 

series hybrid model performance was considered, it was seen that the hybrid model did not 

improve on the predictive capabilities of the mechanistic model (Lee et al., 2002). This 

reinforces the notion that a series hybrid model does not significantly improve the performance 

if the mechanistic model is mismatched to the system.   

The parallel hybrid model did show an increase in performance due to the ANN sufficiently 

describing the residuals of the process (Lee et al., 2002). This showed that the residuals of the 

process accounts for the dynamics of the system. By the residuals accounting for the system 
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dynamics the parallel structure partially accounts for the mechanistic model mismatch (Lee et 

al., 2002). Thus, if a proposed mechanistic model does not describe a process well a parallel 

hybrid model would be preferable as it could increase the predictive performance of the first-

principle model.  

3.6 Hybrid modelling using recursive PLS 

In the work performed by Jia et al., a copper extraction process was modelled using hybrid 

modelling incorporating recursive PLS (Jia, Mao, Chang & Zhao, 2011). The model structure 

proposed in the paper was an adaptive hybrid model which contains a recursive PLS model in 

parallel to the mechanistic model with an additional rectification model in parallel to the 

parallel hybrid model. The performance of the adaptive model was then compared to the 

performance of the mechanistic model and to hybrid models which contain a standard PLS 

model and a recursive PLS model respectively.  

The adaptive model structure is shown in Figure 11 below. The model rectification section is 

responsible for compensating for the error between the model predictions and lab analysis 

values by adding the overall offset to the model prediction (Jia et al., 2011). The offset of the 

model (𝑒(𝑡)) is determined by the weighted sum of the current bias of the model (𝑒0(𝑡)) and 

the overall offset of the model at the previous time step (𝑒(𝑡 − 1)) as shown in Equation 43 

where 𝜔 represents the weight parameter (Jia et al., 2011).   

 

 𝑒(𝑡) = 𝜔𝑒0(𝑡) + (1 − 𝜔)𝑒(𝑡 − 1)  [ 43 ] 
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Figure 11: Adaptive hybrid model structure as adapted from Jia et al.(Jia et al., 

2011) 

The model rectification was introduced due to the extraction process having many factors which 

could not be accounted for as well as the uncertainty in the output values attained by lab 

analysis (Jia et al., 2011). Thus, if a standard hybrid model is satisfactory in describing the 

behaviour of the process the adaptive component is not necessary as introducing an additional 

model component increases the execution time of the model.  An additional issue with 

implementing the model correction component is that by incorporating sample analysis the 

model correction is in fact time lagged and not a true estimate or representation of the real 

time behaviour of the system (Jia et al., 2011).  

When the performance of the adaptive hybrid model was compared to the mechanistic model, 

PLS hybrid model and recursive PLS model it was found that the adaptive model had the best 

performance (Jia et al., 2011). This was expected as the rectification section is specifically 

designed to reduce model error and offset. This along with the previously discussed work shows 

that there are many ways of improving the performance of standard hybrid models. The 

improvements are implemented on a case-to-case basis based on the model structure and 

information available. The adaptive model provides a feasible way of improving the model 

performance if the standard hybrid model structures are not satisfactory in their performances 

however the performance will need to be tested and scrutinised (Jia et al., 2011). The model 
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rectification is also not specific to the PLS empirical model and thus can be applied to hybrid 

models containing any empirical model. 

As the rectification model component receives input from the sample analysis section based on 

the analysis results each day the rectification section constantly improves the performance of 

the model. An advantage of the adaptive model is that the rectification calculation 

implemented is a simple calculation and thus implementing this in the model should not greatly 

impact the execution time of the model (Jia et al., 2011). The time lagged nature of the model 

could also possibly present a challenge in the implementation of the model with regards to a 

system with constantly changing or rapidly changing process conditions (Jia et al., 2011).  

3.7 Evaluation of Literature 

In the field of fault detection in process monitoring many different models and techniques have 

been developed to suit a wide array of process characteristics. Knowledge-based fault detection 

techniques require expert knowledge and experience of a particular process and as such is only 

applicable to a narrow range of processes (Miljković, 2011). As such the development of a 

knowledge-based fault detection technique will not be pursued. The two remaining sub-divisions 

of fault detection based on the categories found in Miljković (Miljković, 2011) are model-based 

fault detection methods and data-driven methods. Fault detection methods which incorporate 

machine learning and statistical techniques would be classified as data driven methods.  

Data-driven methods which use machine learning techniques at times pose fault detection as 

classification problems. In classification problems the process data is categorised as either 

belonging to a normal operation class or a faulty operation class. As the classification problem 

only comprises of two classes binary classifiers are used.  

Fault detection methods which utilise kNN as the fault detection method have shown high fault 

detection accuracy which indicates that kNN based fault detection is a viable method (He & 

Wang, 2007). A significant advantage of kNN models is the simplicity of understanding and 

implementing the model. Another advantage is that the model is easily expanded to multiclass 

classification (He & Wang, 2007). A significant drawback of the model is the computing cost 

involved with implementing the model. This is due to the model having to compare each new 

observation to the entire training dataset which can be time consuming to execute, especially 

with larger training sets (He & Wang, 2007).  
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Fault detection methods utilising ANNs have been evaluated and it was found that the 

technique showed both a high detection accuracy and low false alarm rate (Heo & Lee, 2018). 

The ANN technique shows good performance and can be applied to a large range of datasets 

both linear and non-linear in nature. ANN classifiers can also easily be extended to multiclass 

classification (Heo & Lee, 2018). An important note is that introducing neural networks models 

can rapidly increase the complexity of a proposed method as neural networks are not always 

easily interpretable. The computational cost of training a neural network can also become great 

depending on the architecture of the ANN.  

Fault detection models utilising SVMs have seen use and have shown good performance when 

applied to the Tennessee Eastman process (Yin et al., 2014). The use of kernel functions in the 

SVM model allow the classifier to perform well on non-linear datasets. SVM classifiers do not 

have as large a computational cost involved with classifying new observations. This due to the 

data entries only needing to be compared to the location of the support vectors and not the 

entire training dataset. A possible drawback of the method is that SVM classifiers are designed 

to be binary classifiers. Multiclass classification is possible using SVM classifiers however this 

requires adjustments to the classification method and the training of additional SVM classifiers 

(James et al., 2017).  

One method implemented to attempt to improve the performance of the fault detection 

methods which use machine learning techniques is to make use of feature extraction or selection 

in the data pre-processing stage. The extracted (or selected) features are fed to the classifier 

and used for the fault detection as was done by Onel et al. (Onel et al., 2019) where a feature 

selection method was coupled with a SVM fault detection method.  This leads to the idea of 

obtaining additional information from the available process data and using it to increase the 

performance of a fault detection and identification technique.  

A possible method of obtaining the additional information could possibly be derived from the 

principles behind model-based parameter estimation fault detection. In model-based parameter 

estimation a model is used to describe a process and process data is used to estimate model 

parameters which are then used for fault detection (Miljković, 2011). This was done in the work 

by Che Mid and Dua (Che Mid & Dua, 2017) where the parameter estimation is performed by 

using multiparameter programming which uses incoming process data. The fault detection using 

parameter estimation showed a high fault detection rate (Che Mid & Dua, 2017). A drawback 
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of the model-based method is that the considered process model should describe the process 

data and if there is significant model mismatch the fault detection will not perform well at all 

(Che Mid & Dua, 2017). Also performing a direct regression on incoming data online to obtain 

parameter estimates would be computationally intensive. 

Hybrid modelling could possibly be used as the parameter estimation method as the very nature 

of hybrid modelling includes the use of first-principle process models. As such hybrid modelling 

could be viable as a means of obtaining model parameters from incoming process data. An 

adjusted series structure is a possible option as series hybrid modelling involves using data-

based models to estimate model parameters from incoming process data (von Stosch et al., 

2014). These estimated parameters are then fed to a first-principle models. A parallel structure 

would not be feasible as in the parallel structure the data-based model is used to estimate the 

model output residuals. These residuals are then used to increase the accuracy of the model 

predictions (Bhutani et al., 2006). A modified series structure could be applicable, where the 

data-based model is trained using estimated model parameters and process data. The data-

based model is trained so that the model parameter estimates can be obtained from incoming 

process data. There are several data-based models which could implemented in the hybrid 

model. 

Some of the possible data-based models seen in the literature are ANN, SVR, PLS and recursive 

PLS. ANN has been shown as a viable data-based model in hybrid modelling in the work of 

Bhutani et al. (Bhutani et al., 2006). The SVR data based model has successfully been applied 

to hybrid modelling as seen in the work of Hu et al. (Hu et al., 2011). The SVR model does 

show good performance in parameter estimation however it could possibly increase the 

complexity of the parameter estimation model. The PLS model is a possible data-driven model 

which could be used as the parameter estimator. The PLS model operates as a multivariate 

regression and dimensionality reduction method (Geladi & Kowalski, 1986). The PLS method 

also does not have a high computational cost involved with online parameter estimation. The 

use of dynamic PLS is a possibility as by considering a range of process observations which 

encompass an entire dynamic cycle could lead to more accurate parameter estimates (Ricker, 

1988). The recursive modification of the standard PLS model is also considered. By 

incorporating parameter residuals recursively and updating the PLS model one could possibly 

obtain more accurate parameter estimates which could lead to improved classification 

performance (Jia et al., 2011). 
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As seen hybrid modelling provides a way of developing models which have improved accuracy 

and performance, and can also be used to retroactively improve developed models. This is 

achieved using system performance data which allows the developed model to mimic more 

closely the observed and recorded real world performance of the system. Hybrid modelling could 

be used to estimate additional information based on incoming process data (Conlin et al., 1997). 

This information could be used to improve the performance of a fault identification and 

classification model. 

 As fault identification involves identifying the appropriate fault which caused an alarm from 

different possible fault scenarios, fault identification can be posed as a multiclass classification. 

A simultaneous fault detection and identification method can be developed using the multiclass 

approach if normal operating conditions are specified as one of the classes as was done by Heo 

and Lee (2018). The multiclass adaption of the SVM classifier is considered to address this 

problem. This was done due to the ability of the SVM classifier to handle non-linearly separable 

datasets. In order for the possible fault identification method to handle non-linearly separable 

datasets the RBF kernel is selected as the kernel function. This due to the generalization ability 

of the RBF kernel (Bishop, 2006).  The performance of the classifier could possibly be increased 

by feeding additional information in the form of model parameters estimated from the process 

data to the classifier. This could possibly be viewed as a form of feature extraction.  

These key takeaways lead to the development of a potential simultaneous fault detector and 

identifier. The proposed method will utilise hybrid-modelling based parameter estimation, with 

parameter estimation based on the model-based parameter estimation as seen in parameter 

estimation fault detection. The classifier proposed for the fault identification is a multiclass 

SVM. The performance of the classifier will be evaluated when both the RBF kernel is applied 

as well when no kernel transformation is used. The classifier will be fed parameters estimated 

by the hybrid modelling technique will be fed to classifier along with the process data and the 

performance will be evaluated. The performance will conclude whether the additional parameter 

data does improve the fault classification. The PLS model along with the dynamic and recursive 

variations of the model are considered as the data driven models in the hybrid model and the 

performances of the models will be compared. The fault identifier will be tested on a test case 

continuous stirred tank reactor (CSTR) model similar in nature to the CSTR model 

implemented by (Addo, 2019).  
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4 METHODOLOGY  

The fault identification problem posed in this work can be treated as a multiclass classification 

problem. Based on this a multiclass classifier is chosen as the primary fault identification model. 

An SVM classifier adapted for multiclass classification is selected as the fault identifier. This is 

due to the SVM classifier being a robust classifier which performs well on many different 

datasets. The kernel SVM classifier is considered due to its ability in classifying non-linearly 

separable data. This a key feature as many process faults form part of non-linearly separable 

datasets.   

The performances of both standard and kernel SVM fault identification models are compared. 

In order to improve the performance of the fault identifier a hybrid modelling feature extraction 

method is suggested. A hybrid model will be used to extract model parameters from the 

available dataset. The parameters are then fed to the classifier alongside the dataset. By having 

additional information available the SVM classifier could possibly show an increase in 

performance as the model parameters could possibly reflect the process fault more clearly. This 

would result in clear class boundaries being present thus increasing the fault classification 

performance. 

Two hybrid model structures are considered for the feature extraction method, namely a 

shortcutting hybrid model structure and a recursive hybrid model structure. Both proposed 

hybrid model structures are altered series hybrid model structures. The shortcutting hybrid 

model makes use of standard PLS regression and dynamic PLS regression models while the 

recursive hybrid structure makes use of the recursive PLS model. The models are tested on a 

non-isothermal continuously stirred tank reactor (CSTR) model upon which three different 

faults are implemented. The performance of the hybrid models is compared to the performance 

of a fault identification models which only uses SVM and kernel SVM classifiers. The chapter 

describes the process of developing the test case CSTR model and the faults applied to the 

model. The chapter also describes the hybrid model structures and how they are applied for 

fault identification. 
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4.1 CSTR Model 

The CSTR model developed as the test case model is a jacketed non-isothermal CSTR reactor 

with one reaction with no side reactions producing by-products. The CSTR reactor is illustrated 

in Figure 12 below. The reaction is a first order exothermic, irreversible reaction as shown by 

the chemical equation in Equation 44 below: 

 𝐴 → 𝐵  [ 44 ] 

 

 

Figure 12: Jacketed CSTR with a feedback concentration controller 

The assumptions made during the development of the model are as follows: 

• The reactor is well mixed 

• The system volume remains constant due to the reactor having an overflow stream 

• There are no dead zones in the reactor 

• The fluid densities and heat capacities remain constant 

• The constant pressure and constant volume heat capacities are identical 

• The reactor jacket is an infinite reservoir  
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Based these assumptions and reaction the CSTR model is represented by the following pair of 

ordinary differential equations (ODEs) as shown in Equations 45 and 46 which describe the 

component balance of A and the energy balance of the reactor respectively (Seborg et al., 2010). 

The model equations describe the change in outlet concentration (𝐶𝐴,𝑜𝑢𝑡
) and the temperature of 

the outlet stream (𝑇𝑜𝑢𝑡) with respect to time. 

 
𝑑𝐶𝐴,𝑜𝑢𝑡

𝑑𝑡
=

𝐹𝑖𝑛

𝑉
(𝐶𝐴,𝑖𝑛 − 𝐶𝐴,𝑜𝑢𝑡) − 𝑘0(𝑒

(
𝐸𝑎

𝑅𝑇𝑜𝑢𝑡
)

× 𝐶𝐴,𝑜𝑢𝑡)   [ 45 ] 

 

Where 𝐶𝐴,𝑜𝑢𝑡  represents the outlet concentration of A, 𝑡 represents time, 𝐹 represents the inlet 

volumetric flowrate, 𝑉 the reactor volume, 𝐶𝐴,𝑖𝑛 the inlet concentration of A, 𝑘0 the pre-

exponential factor, 𝐸𝑎 the activation energy, 𝑅 the universal gas constant and 𝑇𝑜𝑢𝑡 the 

outlet/reactor temperature. 

 
𝑑𝑇𝑜𝑢𝑡

𝑑𝑡
=

𝐹𝑖𝑛

𝑉
(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) −

Δ𝐻𝑟

𝜌×𝑐𝑝
× 𝑘0 (𝑒

(
𝐸𝑎

𝑅𝑇𝑜𝑢𝑡
)

× 𝐶𝐴,𝑜𝑢𝑡) −
𝑈𝐴

𝜌×𝑐𝑝×𝑉
× (𝑇𝑜𝑢𝑡 − 𝑇𝑗)  [ 46 ] 

 

Where 𝑇𝑖𝑛 represents the inlet temperature, 𝛥𝐻𝑟 represents the heat of reaction, 𝜌 the fluid 

density, 𝑐𝑝 the constant pressure heat capacity, 𝑈𝐴 the overall heat transfer coefficient and 𝑇𝑗 

the jacket temperature. The model inputs are the inlet flow rate (𝐹), the inlet temperature 

(𝑇𝑖𝑛), and the jacket temperature (𝑇𝑗) with the initial values of each given in Table 1 below.  

Table 1: Initial values of model inputs 

VARIABLE VALUE UNIT 

F 100 L/min 

T IN  350 K 

TJ 290 K 

 

The CSTR model is implemented using the parameter values listed in Table 2.  The parameters 

are adapted from a test case model found in Seborg et al. (Seborg et al., 2010). 
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Table 2: Model parameter values 

PARAM ETER VALUE UNIT 

K 0 7.2×1010 1/min 

𝐶𝐴,𝑖𝑛 1 mol/L 

EA -72 747.5 J/mol 

R  8.314 J/(mol·K) 

V  100 L 

Δ𝐻𝑟  -50 000 J/mol 

UA 50 000 J/(min·K) 

𝜌 × 𝑐𝑝  237 (mol·J)/(m3·K) 

 

The jacketed non-isothermal CSTR is selected as the test case model due to it being a widely 

used model which is applied to many different process systems and is easily understood. The 

CSTR model, despite appearing simple, can be easily adjusted to increase the model 

complexity. The non-isothermal CSTR model is non-linear with respect to certain model output 

values such as the outlet stream temperature. The non-linearity of the model allows the 

performance of the hybrid model fault identification techniques on non-linear systems to be 

evaluated. The model contains several process parameters which are set and remain constant 

during the simulation. Due to the nature of the model several different process faults can be 

applied to the model. The process faults are implemented such that they impact and alter the 

process parameters. The fault laden as well as normal operation scenarios are used to generate 

datasets upon which the fault identification models are then applied.  

4.2 Model implementation and system faults  

The model is built up and implemented in Simulink with the applied faults being adapted from 

the fault laden CSTR model developed by (Addo, 2019). The Simulink model includes feedback 

control implemented on the inlet flow rate to maintain the outlet concentration at a 

Stellenbosch University https://scholar.sun.ac.za



 

55 

predetermined setpoint. Under normal operating conditions and unless otherwise specified all 

process inputs remain at initial conditions. An in-depth description of the Simulink model is 

given in Appendix A. 

In order to generate a dataset which more closely mimics a dataset obtained from a real-world 

process, only select process variables were recorded. The variables were selected to represent 

important plant measurements which would be recorded in a real-world process to further 

emulate real word conditions. The measured variables were sampled and recorded every minute. 

In real-world processes, concentration readings are determined by analysing samples. The 

samples are taken at certain times during the day or upon request with the concentration of the 

sample only available once the analysis is complete resulting in a delay concentration values. It 

is assumed that the outlet concentration is measured instantaneously in the same way that the 

flow rate or temperatures are recorded. It is noted that this would not be possible in an actual 

process but is assumed for the purpose of this study. This was done to have real time 

concentration values which can be used in the fault identification. The selected measured 

variables are shown in Table 3 below. To further emulate plant conditions variable noise is 

added to each measurement to replicate noisy plant measurements. It is assumed that the noise 

would be normally distributed and the noise is implemented as an autoregressive function 

(Addo, 2019). 

Table 3: Recorded process measurements  

VARIABLE UNIT 

F L/min 

CA,OUT mol/L 

T I K 

TJ K 

TOUT K 

 

A feedback proportional integral (PI) controller is implemented in the CSTR model in order to 

maintain the outlet concentration of A near a predetermined setpoint. A block diagram 
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representing the feedback control is shown in Figure 13. The control is implemented by 

monitoring the outlet concentration of A (𝐶𝐴,𝑜𝑢𝑡) and adjusting the inlet flow rate 𝐹 as required. 

Applying a simple control scheme to the process simulation results in a simulation model which 

more closely resembles a real-world process as a real process would implement control to 

maintain product quality. This in turn generates data which more closely mimics process data 

which one would be able to obtain from a real-world process.   

 

Figure 13: Non-isothermal CSTR PI feedback control block diagram 

The outlet concentration of A is selected as the measured variable as one would want to 

maintain outlet product quality at some value. The set point for the outlet concentration is set 

as 0.955 mol/L. This value was obtained by considering the outlet concentration of the 

simulation at normal operation without the controller applied. The outlet concentration values 

are then averaged over a selected time window. The inlet flowrate is selected as the control 

variable as the inlet flowrate affects both the amount of A entering the reactor as well as the 

temperature of the reactor. The temperature of the reactor in turn affects the reaction rate and 

the outlet concentration of A. The inlet flowrate also represents a process variable which could 

be adjusted by some control action and would also be a process variable which would be 

selected as a control variable in a real-world process. In a real world process the control action 

would be implemented on some valve which would result in a change in the inlet flowrate. The 

valve opening percentage or position could be viewed as the control variable however for the 

purpose of this model the flowrate is selected as the control variable and is adjusted directly. 

The control parameters for the controller are given in Table 4.  The controller parameters given 
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are not the optimal controller parameters and were set as they provided an adequate controller 

response action. 

 

Table 4: PI controller parameters 

VARIABLE VALUE 

P 5 

I  50 

 

Three different process faults are applied to the CSTR model namely, a catalyst deactivation 

fault, an inlet concentration decline fault, and a heat transfer fault. Mathematically the process 

faults are implemented as ramp decline faults as shown in Equation 47.  

 𝑃𝑡 = 𝑃𝑡−1 − 𝑚𝑎𝑔 × 𝑃𝑁𝑂𝐶 × Δt  [ 47 ] 

 

Where 𝑃𝑡 is the process parameter at the current time step, 𝑃𝑡−1 represents the process fault at 

the previous time step, 𝑃𝑁𝑂𝐶 represents the process parameter under NOC, Δt represents time 

step magnitude and 𝑚𝑎𝑔 represents the fault ramp magnitude. The process fault magnitude is 

expressed as a percentage of the parameter value at NOC and describes the rate at which the 

process parameter decreases from the NOC value per minute.  

The catalyst deactivation fault is implemented to emulate the gradual reaction rate decrease 

due to a decrease in catalyst activity which occurs over time. As such the catalyst deactivation 

fault affects the reaction rate and does so by effecting the reaction pre-exponential factor (𝑘0). 

In a real process the decline in catalyst activity could be due to several factors such as catalyst 

fouling or catalyst denaturing (Fogler, 2006). The fault is implemented and evaluated at 

different fault magnitudes.  

The effect of the fault on the reaction rate (𝑘0 × 𝑒
(

𝐸𝑎
𝑅𝑇𝑜𝑢𝑡

)
) is illustrated in Figure 14. The 

reaction rate plot is generated when a fault magnitude of 62.5% is applied to CSTR model. As 

seen, there is significant decrease in the reaction rate once the error is applied to system 
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resulting in reaction rate of 0 min-1. This is a not a realistic process fault as such a decrease in 

reaction rate would not be seen in a real process and is implemented just to evaluate the 

performance of the fault identification method. It is assumed then when the appropriate 

corrective measure is applied to the remedy the fault the process immediately returns to normal 

operating conditions.  

 

Figure 14: Reaction rate for a time window from 500 - 1000 minutes  

The inlet concentration decline fault emulates changes in the quality of inlet stream. The 

quality decline effects the inlet concentration of reagent A (𝐶𝑎 𝑖𝑛 ).  The inlet concentration 

decline fault mimics a decrease in the inlet concentration of A which could be due to some 

upstream disturbance. The inlet concentration of A is a process variable which is neither 

measured in the simulation nor will be obtained by the parameter estimation. Thus, by 

implementing this fault it will evaluate the performance of the fault identification method in 

identifying a fault applied on a non-measured or estimated parameter. The effect of the inlet 

concentration fault is shown in Figure 15 below. 

 

Stellenbosch University https://scholar.sun.ac.za



 

59 

 

Figure 15: Effect of inlet concentration fault over a time from 800 - 1000 minutes 

The heat transfer coefficient fault mimics a decrease in the rate heat is transferred from the 

CSTR tank to the cooling jacket surrounding the tank by transferring heat across the wall of 

the reactor. The decrease in heat transfer rate in turn effects the heat transfer coefficient.  In a 

real process this decrease in heat transfer could be viewed as being caused by fouling on the 

reactor wall. The fouling would in turn increase the resistance to heat transfer thus decreasing 

the overall heat transfer coefficient.  The effects of the fault are shown in Figure 16. 
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Figure 16: Effect of overall heat transfer coefficient fault for a time window from 

500 - 1000 min  

These faults are chosen as the effects of the faults have on the system are not extremely large 

and have effects which cascade through the process. The faults are randomly implemented with 

mean durations and duration variance for both normal operation and fault conditions specified. 

It is assumed that both normal operation and fault operation durations are normally 

distributed. The faults are applied at different magnitudes to observe the performance of the 

fault identification models as the faults become larger and more prominent. The process faults 

along with the magnitudes, durations, and variance for each are given in Table 5 and the 

duration for normal operation between each fault instance is given in Table 6. The fault 

magnitudes given in Table 5 are the fault magnitudes (𝑚𝑎𝑔) used in implementing the process 

faults using Equation 47. The smallest fault magnitude represents the smallest fault magnitude 

considered; the largest fault magnitude is the largest considered with the fault magnitude step 

representing the magnitude of the difference between each fault considered. For example, if the 

heat transfer fault is determined based on the values given in Table 5 the range of fault 

magnitudes (and thus the values of 𝑚𝑎𝑔) are 0.15,0.152,0.154,0.156,0.158 and 0.16. 
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Table 5:  Process fault magnitudes, durations, and variance 

Process fault Smallest fault 

magnitude (%)  

Fault 

magnitude 

step (%) 

Largest fault 

magnitude 

(%) 

M ean 

duration 

Duration 

variance 

Catalyst 

deactivation 

6.94 1.39 62.5 80 25 

Overall heat 

transfer 

coefficient 

fault 

0.15 0.002 0.16 200 25 

Inlet 

concentration 

fault 

0.11 0.021 0.84 12 3 

 

Table 6: Normal operation durations for each process fault 

Variable Duration Duration 

variance  

Catalyst deactivation 600 150 

Overall heat transfer 

coefficient fault 

600 150 

Inlet concentration fault 800 130 
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4.3 Parameter estimation  

When the fault detection models are applied to the training datasets obtained using the CSTR 

model, some model parameters are regressed using the training data. The regressed parameters 

represents features extracted from the training dataset. Although all the parameter values are 

set when generating the datasets, it is assumed that some parameter values are unknown when 

applying the fault identification models. Thus, modified model equations are used as shown in 

Equations 48 and 49 below where certain parameters are grouped together and estimated. The 

grouped parameter terms comprise of the unknown parameters (𝑘0 and 𝑈𝐴) grouped with 

associated constants to make up one term in the equation.  The unknown model parameters 

which are estimated are the reaction rate (𝑘) and the grouped heat transfer coefficient (𝑈𝐴). 

The reaction rate comprises of the grouped 𝑘0 × 𝑒
(

𝐸𝑎
𝑅𝑇𝑜𝑢𝑡

)
 term and the grouped heat transfer 

coefficient represent the 
𝑈𝐴

𝜌×𝑐𝑝×𝑉
 term. 

 

 
𝑑𝐶𝑎,𝑜𝑢𝑡

𝑑𝑡
=

𝐹𝑖𝑛

𝑉
(𝐶𝑎,𝑖𝑛 − 𝐶𝑎,𝑜𝑢𝑡) − 𝑘 × 𝐶𝑎,𝑜𝑢𝑡   [ 48 ] 

 

 
𝑑𝑇𝑜𝑢𝑡

𝑑𝑡
=

𝐹𝑖𝑛

𝑉
(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) −

Δ𝐻𝑟

𝜌×𝑐𝑝
× (𝑘 × 𝐶𝑎,𝑜𝑢𝑡) − 𝑈𝐴 × (𝑇𝑜𝑢𝑡 − 𝑇𝑗)  [ 49 ] 

 

The estimated parameters then become additional features included in the process dataset. The 

catalyst deactivation fault and heat transfer fault thus have features on which the faults are 

directly applied. The inlet concentration fault has no associated feature on which the fault is 

directly applied. 

The parameters are estimated using non-linear regression in MATLAB where the regression is 

performed using the lsqnonlin function in MATLAB. The parameter estimates are then used to 

train the data-based model components of the hybrid models to predict the parameter values 

based on incoming data. This is done as non-linear regression can be a time-consuming process 

especially with a large set of inputs if real time online parameter estimation is desired or 

required.  
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The non-linear regression is implemented over a sliding window by considering each observation 

within the window. The regression using a sliding window as is illustrated in Figure 17. A 

sliding window is a window of predetermined length which is applied to a dataset. The window 

indicates a subset of the data on which actions and mathematical operations are performed. 

The window moves sequentially through the data once the desired actions are performed on the 

entries in the current window. The new starting point of the window sequentially follows the 

previous start point (i.e. start moving from 𝑡1 to 𝑡2).  In this work a window length of 16 

minutes is used as this twice the process time constant thus should be able to effectively 

capture the dynamics.  

 

Figure 17: Sliding window implementation of non-linear regression 

The parameter regression estimates are obtained by solving the model ordinary differential 

equations. The differential equations are solved over the time window using a differential 

equation solver. There are several different equation solvers one can use depending on the 

equations and data available. The ode45 ordinary differential equation solver is selected due to 

its versatility. Initial parameter estimates are set for the unknown model parameters based on 

available knowledge of the system. The parameter estimates are then used to solve the 

differential equations by setting the estimates as the respective parameters. This done for each 

time instance within the window.  

The outputs from the differential equations ( 𝑇𝑜𝑢𝑡 and 𝐶𝑎,𝑜𝑢𝑡) are compared to the actual CSTR 

outputs at each time instance within the window. The squared error between the equation 

outputs and the CSTR outputs at each time instance is determined.  The mean of the squared 
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errors is then taken over the entire time window. The mean squared error for the time window 

(i.e. the objective function) is minimized by adjusting the parameter estimates.  

The parameter estimates obtained through the regression are then set as the estimates for the 

time instance in the middle of the window. The new initial parameter estimates are set as the 

parameter estimates obtained by the previous error minimization. Once the window moves to 

the next input start point the regression is performed again. The entire regression process is 

repeatedly performed until the end point of the time window reaches the last available data 

point. 

4.4 Hybrid model shortcutting structure 

The first model structure considered for the fault identification models is the hybrid model 

shortcutting structure. The hybrid model shortcutting model is based on an alternate series 

arrangement in which the first-principle model is first followed by a black-box model. The 

hybrid model shortcutting structure is shown in Figure 18 and comprises of two components 

namely an offline and an online component. The offline component contains the first-principle 

model, and the online component contains both the data-based model and the SVM classifier. 

 

Figure 18: Hybrid-modelling shortcutting combination model structure 

The standard hybrid model involves estimating parameters from the measured data using a 

first-principle model by using non-linear least squares regression. Estimating these parameters 

continuously by using the first-principle model can become time consuming due to the 

continuous regression taking place. It is proposed that an initial set of parameters be estimated 

Stellenbosch University https://scholar.sun.ac.za



 

65 

by the first-principle model with the parameters then used to train a data-based model. The 

data-based model is then used to predict the parameter values based on incoming data. The 

first-principle model is only used in estimating the training parameters, if the shortcutting 

aspect is not implemented then the white-box model would be continuously used to estimate 

the process parameters by non-linear regression. The SVM classifier is then trained using 

process data as well as using parameter estimates estimated by the trained data-based-model. 

The regression of the parameters using the first-principle model and the training of the data-

based model and SVM classifier comprises the offline component of the hybrid model.  

The data-based model is used to estimate the parameters continuously using incoming 

measured data. This is the shortcutting aspect of the model as it removes the need to obtain 

the parameter estimates via non-linear regression. The data-based model parameter estimates 

are then fed to the SVM classifier for fault identification. The online component of the model 

consists of estimating the model parameters using the data-based model and identifying the 

fault using the SVM classifier. The performance of this model structure is evaluated using two 

different data-based models namely the ordinary PLS model and the dynamic PLS model.  

4.5 Recursive hybrid model structure 

The second hybrid model considered is the recursive hybrid model structure. The recursive 

hybrid model follows the standard series hybrid model structure where a data-based model is 

implemented first followed by a first-principle model with recursive feedback to the data-based 

model.  The recursive hybrid structure is illustrated in Figure 19 below which represents the 

online component of the hybrid structure. 
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Figure 19: Recursive hybrid model structure 

The data-based model trained using parameter estimates obtained from the training dataset 

predicts new parameter estimates based on incoming data fed to the model. These parameter 

estimates are then fed to the SVM classifier which, along with the measured data, is used to 

determine which fault condition the data corresponds to. 

 The recursive aspect of the model occurs when the parameter estimates are fed to the first-

principle model which predicts the system outputs using the parameter estimates. The output 

predictions are then compared to the actual measured output data. The information obtained 

from the comparison (the residuals) are then recursively fed back the data-based model to 

update the model to increase the accuracy of the parameter predictions. The proposed data-

based model for this hybrid structure is the recursive PLS model. 

By continuously updating the data-based model the recursive model structure continuously 

adapts to process changes which occur over time. This eliminates the need to manually update 

the model parameters as the recursive model structure does this by design. This also ensures 

that the model remains up to date with the current state of the process which is advantageous 

if the model is applied as an online fault identification method. The frequency at which the 

Stellenbosch University https://scholar.sun.ac.za



 

67 

data-based model updates its parameters as well as the importance of historical data against 

new incoming data is controlled by adjusting the window size and weighting parameter of the 

model.  A possible disadvantage of the recursive model is that if the system is running at fault 

conditions for an extended period the model would begin to recognise the fault state as normal 

operating conditions.   

4.6 Support Vector Machine (SVM) classifier approach 

As three different fault conditions are applied to the CSTR model the fault detection is 

considered a multiclass classification problem. The choice of an appropriate classifier is thus 

important to account for the multiple classes. As the model and outputs of the model are not 

linearly separable in nature a classifier which can perform well with non-linearly separable data 

is required. The one-vs-one multiclass SVM classification approach is followed. The SVM 

classifiers are trained pairwise on the process faults and normal operation conditions.  

As SVM classifiers are kernel-based methods the choice of appropriate kernel is key to the 

effectiveness of the method as the classifier only works as well as the kernel allows it to. The 

kernel used for this method is the gaussian or radial basis function kernel. The gaussian kernel 

is chosen as it has wide applicability and performs well with many different non-linear datasets. 

The performance of SVM classifiers which implement the linear kernel (thus being a standard 

SVM model), and the RBF kernel are compared using the sensitivity and specificity 

performance measures.  

4.7 Implementation approach 

To aid in the discussion of the method implementation and the results of the study the PLS 

models, SVM classifiers and hybrid model combinations are assigned abbreviations as shown in 

Table 7. 
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Table 7: Models and model combination abbreviations 

ABBREVIATION M ODEL  

kSVM  Kernel SVM 

r-SVM  SVM using non-linearly regressed parameters 

r-kSVM  Kernel SVM using non-linearly regressed parameters 

dPLS Dynamic PLS 

rPLS  Recursive PLS  

PLS-SVM  SVM using PLS estimated parameters 

PLS-kSVM  Kernel SVM using PLS estimated parameters 

dPLS-SVM  SVM using dynamic PLS estimated parameters 

dPLS-kSVM  Kernel SVM using dynamic PLS estimated parameters 

rPLS-SVM  SVM using recursive PLS estimated parameters 

rPLS-kSVM  Kernel SVM using recursive PLS estimated parameters 

 

The model combinations and fault identifier implementations are illustrated in Figure 20. The 

diagram illustrates the flow of data between the generated datasets and the fault identification 

models as well as displaying the performance measures. The datasets considered in this work 

are generated by running the CSTR Simulink model for each operation mode for a duration of 

4000 minutes. A dataset is generated for the normal operation mode as well as each fault mode 

where the fault is implemented at each of the fault magnitudes considered. In each fault mode 

only one of the process faults is applied with the frequency and duration of the fault being 

determined by the fault implemented. Each dataset is saved and then loaded for use as needed 

by each fault detection model. This ensures that all model performances are compared using the 

exact same dataset and fault conditions. This also reduces the execution time for each model by 

removing the need to generate each dataset by simulating the CSTR model for each run.  

Stellenbosch University https://scholar.sun.ac.za



   

69 

 
Figure 20: Study methodology illustrating flow data, model combinations and performance metrics  
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When the recursive PLS model is implemented an initial set of residuals is required as these 

account for the residuals for the first data block in the block-wise recursive PLS algorithm. 

These initial residual estimates are obtained by feeding the parameter estimates from the 

training dataset to the first-principles model. The output of the model is then compared to the 

actual output and the residuals obtained. These initial residuals are then fed and utilised by the 

recursive PLS model. 

The SVM classifiers are trained using the measured process data without the model parameters 

or either the non-linearly regressed parameter estimates or the PLS model estimates as 

specified. When only the kSVM classifier is applied to the datasets the radial basis function 

kernel is used which is the same SVM configuration utilised by the kernel SVM hybrid fault 

identification models. This is done to ensure that all model performances are comparable.  

The fault detection techniques are applied to identify and differentiate between two fault cases 

simultaneously. The fault case pairs considered are catalyst deactivation fault - inlet quality 

fault, and catalyst deactivation fault - heat transfer fault. The application of the fault 

identification method to the available process data for both the offline and online components 

are summarised in the steps below: 

Offline: 

1. Process data is obtained from the CSTR Simulink model for a particular operation mode 

2. The process data is labelled based on when faults are implemented 

3. Parameter estimates are obtained from the process data using the first-principle model 

and non-linear regression 

4. The process data is centred and scaled and used to train the data-based model 

5. The data-based model is used to predict model parameters based on the training data  

6. The pairwise SVM classifiers are trained using the process data, parameter estimates 

and labels 

Online: 

1. Incoming process data is projected to score variables 

2. Parameter estimates are obtained from data-based model based on incoming projected 

data 
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3. Process data and parameter estimates are fed to the pairwise SVM classifiers  

4. The label for each pairwise classifier is recorded and counted  

5. The label for a specific observation is set as the majority of labels obtained from the 

pairwise classifiers 

Once the training process data is available it is subjected to k-fold cross validation where 10 

folds are considered. The hybrid models are trained using the training datasets following the 

procedures outlined above. The performance of the hybrid models is evaluated using the test set 

by comparing the model parameter predictions made using the models to the true values of the 

models. The hybrid models are then incorporated with SVM classifiers to form the fault 

identification method described in Section 3. The performance of the fault identification 

methods is quantified and compared using the sensitivity and specificity measures. 

The MATLLAB scripts and function file used to implement the CSTR model, fault 

implementation, parameter regression, PLS models and fault identification have been uploaded 

to GitHub. These files represent the code used to generate the results discussed in this study. 

The GitHub repository can be accessed at the following link: https://github.com/Stellenbosch-

University-Process-Eng/Hybrid-modelling-feature-extraction-for-fault-identification   
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5 RESULTS AND DISCUSSION 

The performance of the fault classification methods for the different process faults and fault 

identification models are outlined and discussed in this chapter.  Firstly, the effects of the 

process faults on the system are evaluated and discussed. The performance of the standard and 

kernel SVM’s as fault identifiers are evaluated and compared. The performance of the classifiers 

using the non-linear regression estimates of the unknown process parameters (𝑘 and 𝑈𝐴) are 

compared and evaluated to determine if utilising the information about the process parameters 

will increase the classifier performance.  The hybrid modelling based fault identification models 

are tested and the performance quantified and compared when the different hybrid models and 

data-based models are used.  The values of the sensitivities and specificities for each cross-

validation test case is included in Appendix B. The values included in the sensitivity and 

specificity curves are given in Appendix B as well. 

5.1 Effects of process faults 

The process faults are applied to process variables and parameters which are not directly 

measured and recorded in the process. The process faults do however influence the process 

output variables namely the outlet temperature and concentration. The effect of the process 

faults on the process output variables are compared in Figure 21 and Figure 22 below. The 

catalyst deactivation fault has a clear effect on the outlet temperature thus it is expected that 

the fault identification procedure will perform well when this fault is active. The inlet quality 

fault also appears to influence the temperature resulting in a gradual increase. It also noted 

that the effects of inlet concentration fault are still seen after the fault is no longer actively 

implemented with the temperature still increasing. The effect of the heat transfer coefficient 

fault on the temperature is seen with the temperature values gradually increasing while the 

fault is active. When the outlet concentration values are compared, the inlet concentration fault 

does appear to influence the concentration with a decline in the concentration noticed when the 

fault is active. The other faults do not appear to have any significant visible effect on the outlet 

concentration over the time span displayed. 
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Figure 21: Outlet temperature under different operating conditions 

 

Figure 22: Outlet concentration under different operating conditions 
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A PCA is performed on the generated datasets to visualise the data and to examine whether 

the process fault laden observations form groupings which can be identified through the PCA. 

The first two principal components are retained as these capture the majority of the variance of 

the datasets. This is illustrated in Figure 23 below where a catalyst deactivation fault laden 

dataset with a fault magnitude of 62.5%. 

 

Figure 23: Cumulative percentage variance explained by principal components for 

catalyst deactivation fault dataset 

The first two scores of each observation are taken and illustrated on the plot shown in Figure 

24 below. Two components are selected as for the datasets generated in the study the bulk of 

the variance is captured in the first two principal components. On the plot it is seen that the 

catalyst deactivation fault observations cluster together and form groupings. This is promising 

as if the faults form identifiable groupings a classifier (in this work a SVM or kSVM classifier) 

should be able to identify observations belonging to the respective fault. The heat transfer fault 

observation does form a group however it overlays with the normal operation observations and 

is thus not discernible from the normal operation observations. The fault identification models 

thus might not be able to correctly identify the fault. The inlet concentration faut does not 

form any visible groupings and thus raises some concern on whether the fault would be 

accurately detected by the fault identifier. This could be due to the loss of information which 

by only showing two of the principal components with the additional components possibly 
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containing information which could result in a more identifiable grouping. Including estimates 

of unknown process parameters could also result in a clear grouping of the inlet concentration 

fault and heat transfer fault. 

 

Figure 24: Plot showing first 2 principal components for each fault case 

5.2 Standard SVM and kernel SVM performance 

As the SVM classifier used in this work has the capability to make use of kernel 

transformations one should determine if the use of kernels is necessary. A preliminary 

evaluation of the performance of the SVM and kernel SVM (kSVM) models is done by using 

receiver operating characteristic (ROC) curves. The RBF kernel with the width parameter set 

at one was used for the comparison. The ROC curves compare the true positive rate 

(sensitivity) and the false positivity rate (1-specificity) as a function of the posterior probability 

threshold. The threshold value is varied incrementally from 0 to 1 and the true and false 

positivity rates are recorded and displayed on the curve. This provides an indication of the 

performance over the entire range of probabilities. SVM classifiers does not make use of 

posterior probabilities thus Platt scaling is used (Platt, 2000). The fitPosterior function in 

MATLAB was used to fit posterior probabilities to the classifiers through Platt scaling. The 
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classifiers were trained using a small subset of data containing normal operation data and 

catalyst deactivation fault data. The ROC curves are shown in Figure 25 below. 

  

Figure 25: ROC curves for kSVM and SVM classifiers for catalyst deactivation 

fault 

The performance of the classifiers is compared by evaluating the area under the curve (AUC) 

for the ROC curves generated for each classifier. When the AUC for each curve was determined 

it was found that the AUC for the kSVM was 0.9865 and the AUC for the standard SVM was 

0.9650. As seen the kSVM does show a slight increase in performance when compared to the 

SVM. Based on this increase in performance the kSVM using a RBF kernel with a width 

parameter of one was used in this study. The slight increase however does not provide enough 

evidence to conclusively state that the kernel SVM will outperform the standard SVM on all 

fault cases considered in this work. The kernel SVM can be more computational resource 

intensive due to the use of kernel transformations thus the slight increase in performance does 

not justify the exclusion of the standard SVM classifier. Thus, further evaluations on the 

performance of both classifiers will need to be conducted. The fitting of posterior probabilities 

to results of the SVM classifiers was only done for a preliminary comparison of the SVM and 

kSVM performance. The performance of the fault identification models is evaluated using the 
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outputs of the SVM models without posterior probabilities fitted to the trained model outputs 

(thus showing the fault identification performance based on the classes assigned by the SVM 

models). 

As described in Chapter 4 the performance of the classification method is quantified and 

compared using the sensitivity and specificity measures. The fault identification method is 

evaluated on each available cross-validation test case with the sensitivities and specificities 

averaged and compared. The error bars included are based on the standard deviation for the 

sensitivity and specificity amongst the test case values. The sensitivities and specificities of the 

SVM classifiers when applied to the catalyst deactivation-inlet concentration fault pair where 

the catalyst deactivation fault is active are compared in Figure 26.  

 

 

Figure 26: Sensitivity and specificity for standard and kernel SVM fault 

identification models with no FE (feature extraction) when catalyst deactivation 

fault is active 

The sensitivities represent the portion faulty datapoints which are correctly identified as such, 

and the specificity represents the portion of non-faulty cases correctly identified as such. The 
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kernel SVM shows a higher sensitivity with a value of 0.852±0.030 than the standard SVM 

models which shows a value of 0.836±0.023. This indicates that by implementing the kernel 

transformation the classifier’s ability to correctly identify when the system is at fault is 

improved. This corresponds with the results obtained from the ROC analysis. Thus, the model 

correctly performs its function as both a fault detection and fault identification model as it can 

correctly distinguish between normal and faulty operating conditions. It is seen that both 

models have a high specificity rate with 0.988±0.005 for the SVM and for 0.988±0.005 the 

kSVM which indicates that both models result in a low false alarm rate for both models.   

When the fault detection method was applied to the inlet concentration fault, the model was 

not able to identify the fault at the listed fault magnitudes. The inlet concentration fault 

however does have a visible effect on both the outlet concentration and temperature. The non-

identification of the inlet concentration fault is likely due to the labelling procedure followed in 

this study where the observations where the fault is active are labelled as fault laden.  

The inlet concentration fault effects however are still felt once the fault is no longer active, 

resulting in observations where the effect of the fault is experienced being labelled as normal 

operation. This results in fault identifier not being able to differentiate between normal 

operation and the inlet concentration fault. A solution to this is by following a more traditional 

fault identification method whereby a separate fault detection model is first applied. Once the 

fault is detected it is then subjected to fault identification, this would remove the issue of 

labelling the data at the time instance at which the fault is active. Another solution is altering 

the data labelling process followed, where a fault detection model is applied to the training data 

where the fault is active. The data entries which are identified as faulty can then be attributed 

to the fault active in the considered training dataset (i.e. if a fault is detected in the catalyst 

deactivation training set the fault is considered as a catalyst deactivation fault). 
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Figure 27: Sensitivity and specificity for SVM and kSVM applied to catalyst 

deactivation – heat transfer fault pair 

The ability of the fault identification method to discern between two process faults still needs to 

be evaluated. The ability of the SVM classifiers to differentiate between the catalyst 

deactivation and heat transfer fault is evaluated by applying the classifiers to the concerned 

fault pair. The sensitivity and specificity measures obtained when the standard and kernel SVM 

are applied to the fault pair are shown in Figure 27 above. The sensitivities displayed for the 

catalyst deactivation fault are lower than those seen in Figure 26 due to the model being 

trained on a different dataset. 

The results presented in the two figures above represent the baseline performances to which the 

other fault identification models can be compared. The sensitivities shown by the kSVM and 

SVM were found to be identical for both faults with a value of 0.684±0.044 for the catalyst 

deactivation fault and 0.752±0.067 for the heat transfer fault. The classifiers display a higher 

detection rate (shown by a higher sensitivity) when identifying the heat transfer fault when 

compared to the catalyst deactivation fault. When the specificities are examined the SVM 

models do show slightly higher specificities for both the catalyst deactivation fault 
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(0.989±0.005) and heat transfer fault (0.934±0.058). The kSVM model specificities however do 

not show a large decrease for both the catalyst deactivation (0.989±0.005) and heat transfer 

fault (0.934±0.058). To further evaluate the performance of the SVM classifiers the training 

time of the models on the catalyst deactivation-inlet concentration fault training set are 

compared. 

The training and execution time of both models were recorded and compared. The kernel SVM 

fault identification model reported a total training time of 624 seconds (or 10 minutes 24 

seconds) while the standard SVM fault identification model reported a total time of 30053 

seconds (or 500 minutes 53 seconds). The increase in execution time of the standard SVM fault 

identifier could be attributed to the increase in training time of the SVM model. This could be 

due to the SVM taking a longer time to find an optimal position for the separation hyperplane 

which sufficiently separates the classes. This is likely due to the data set being non-linear. The 

kernel in the kernel SVM transforms the dataset to a space where the data possibly becomes 

linearly separable. This decreases the time taken to find an optimal position of the separating 

hyperplane and identification of the support vectors. This further indicates that the kSVM is a 

viable choice for the form of the SVM classifier used in the fault identification model. 

5.3 Fault identification models using non-linearly estimated 

parameters 

To evaluate whether introducing estimated parameters to the fault identification models 

improves the performance of the models, non-linearly regressed parameters are fed to the 

classification models. The non-linearly regressed parameter estimates represent the ideal 

estimates for the unknown process parameters however performing the non-linear regression in 

an online application is not feasible due to the execution time of the regression. The 

performance of the non-linear regression is evaluated by constructing parity plots for both the 

reaction rate and grouped heat transfer coefficient estimates when the respective faults are 

active as seen in Figure 28 and Figure 29 below. 

Stellenbosch University https://scholar.sun.ac.za



 

81 

 

Figure 28: Parity plot for non-linear regression reaction rate estimates where 

catalyst deactivation fault is active with 20% relative error margin (grey dashed 

line) and 45° line (dark grey dashed line) 

 

Figure 29: Parity plot for non-linear regression heat transfer coefficient estimates 

where heat transfer fault is active with 10% relative error margin (grey dashed 

line) and 45° line (dark grey dashed line) 
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When model performance is evaluated using parity plots, the better performing the model the 

closer the data points lie to the 45° line on the lie. In Figure 28 it is seen that there are entries 

which lie on the y-axis. These represents the entries at which the catalyst deactivation fault is 

active, and the reaction rate drops to 0 min-1. The poor prediction of these observations results 

in the spread of the entries along the y-axis with the ideal predictions lying close to the origins. 

As seen in Figure 28 there is noticeable scatter surrounding the 45° line with many of the data 

entries lying outside the 20% relative error margin.  

In Figure 29 the data entries display less scatter, and the majority of the entries lie within 10% 

margin. This indicates that the non-linear regression estimates for the heat transfer coefficient 

when the heat transfer fault is active are more accurate than the estimates for the reaction rate 

when the catalyst deactivation fault is active. One would expect the fault identifier to perform 

better when identifying the heat transfer fault when the classifier is fed the parameter 

estimates. As the changes in the parameter are accurately captured by the estimated 

parameters this suggests that changes due to the fault are captured. By capturing the change in 

the heat transfer coefficient value due to the fault it should allow the fault to be more easily 

identified.  

 

Figure 30: Time series plot of non-linearly regressed reaction rate estimates when 

catalyst deactivation fault is active 
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The non-linear regression can further be evaluated by comparing the non-linear regression 

estimates to the true values using a time series plot. The reaction rate estimates subject to the 

catalyst deactivation fault and the heat transfer coefficient subject to the heat transfer fault are 

shown in Figure 30 above and Figure 31 below respectively. 

 

Figure 31: Time series plot of non-linearly regressed grouped heat transfer 

coefficient estimates where heat transfer fault is active 

As seen in the plots above the parameter estimates of both the reaction rate and the heat 

transfer coefficient are able to track changes in the parameters due to the effects of the fault. It 

appears that the reaction rate estimates do closely track the true values which is not suggested 

or evident by the parity plot. This discrepancy between the expected performance and actual 

performance is likely due to the small magnitude of the reaction rate. A slight difference 

between the predicted and true values will lead to a large error. The entries on the parity plot 

which show the largest deviation from the ideal performance corresponds to observations where 

the catalyst deactivation fault is active. For these observations the non-linear regression either 

overshoots or undershoots the magnitude of the decline. It is noted that the negative reaction 

rate which is sometimes estimated by the non-linear regression is unrealistic and is a result of 

the regression technique used. 

The error of the regression technique is quantified using a scaled mean absolute percentage 

error (MAPE) measure as defined in Equation 50 below. When the MAPE was calculated for 
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the fault cases it was found that the MAPE value for the catalyst deactivation fault was 26.9% 

and the MAPE for the heat transfer fault was 2.72%. This coincides with the parity plots which 

illustrates that the heat transfer coefficient regression when the fault is active is more accurate 

than the reaction rate estimates when the catalyst deactivation fault is active. As the scaled 

MAPE value makes use of the mean of the true values, when the catalyst deactivation fault is 

active small differences between the true and predicted values leads to large MAPE values. 

 𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛 (
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑇𝑟𝑢𝑒|

𝑚𝑒𝑎𝑛(𝑇𝑟𝑢𝑒)
)  [ 50 ] 

 

To identify whether the parameter estimates will aid in separating and grouping the different 

faults a parameter comparison plot is generated where reaction rate estimates lie on the x-axis 

and heat transfer coefficient estimates on the y-axis. The plot allows one to evaluate whether 

there are any distinctions between the fault conditions with respect to the parameter estimates. 

The plot is shown in Figure 32 below where the parameter estimates were scaled to ensure the 

parameters are of comparable magnitude. The scaling is performed by dividing the parameters 

by their NOC values and then multiplying the value by 0.9. This results in the NOC value 

being assigned the value of 0.9 allowing for values to overshoot the NOC value while trying to 

maintain a maximum value of 1 for the scaled parameters. By using scaled parameters, one still 

can get a sense of whether groupings form however the actual magnitudes of the parameters 

might skew the results.  

When examined it is seen that heat transfer fault observations form a concentrated cluster 

however the cluster overlays the normal operation data thus not being distinct from the normal 

operation data. Based on the following plot one cannot determine whether the parameter 

estimates will improve the identification of the heat transfer fault. The catalyst deactivation 

fault does not form as close a cluster as the heat transfer fault but does still form a grouping. A 

notable point is that there are visible catalyst deactivation data entries which are separate from 

the normal operation observations. This could aid in achieving efficient classification of the 

catalyst deactivation fault. The inlet concentration fault does not form as close a grouping as 

the heat transfer fault. The inlet concentration fault observations show some scatter and the 

entries do overlap with the normal observation entries. Thus, it is not clear as to whether the 

parameter estimates will improve the identification of the fault as the grouping is not as clear 
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as the other faults. The inlet concentration fault also does not appear to have observations 

which are separate from the normal operating conditions.   

  

Figure 32: Scaled non-linearly regressed parameter estimates for each fault case 

The non-linearly regressed parameter estimates are fed to the fault identification models to 

evaluate whether the process parameters do impact the performance of the classifiers. The 

sensitivities and specificities for the catalyst deactivation-inlet fault pair and catalyst 

deactivation-heat transfer fault pair are shown in Figure 33 and Figure 34 respectively. For the 

catalyst deactivation-inlet concentration fault pair the sensitivity and specificity of both the r-

SVM (0.905±0.026 and 0.996±0.005) and r-kSVM (0.887±0.019 and 0.998±0.003) models show 

an increase in both sensitivity and specificity. The shows that the process parameters can 

increase the performance of the classifier. The r-SVM model shows the best performance with 

respect to considered fault pair. 

When the r-SVM and r-kSVM are applied to the inlet concentration fault test case the fault 

still cannot be detected with the additional parameters fed to the classification models. Based 

on this test case it can be concluded that if the SVM classifier itself cannot detect the fault, 

then implementing the hybrid modelling techniques will not result in the fault identification 

method being able to detect and identify the fault. It can also be stated that if a fault is 
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implemented on a process parameter which is neither measured nor estimated, the identification 

technique is not able to identify the process fault.  

 

Figure 33: Sensitivity and specificity for r-SVM and r-kSVM for catalyst 

deactivation-inlet fault pair with catalyst deactivation fault active 

When the parameters are fed to the catalyst deactivation-heat transfer fault identification 

models an increase in performance is experienced. The sensitivity of the r-SVM models to detect 

both the catalyst deactivation (0.686±0.042) and heat transfer fault (0.811±0.032) increases 

noticeably. This is due to the parameter estimates tracking the changes in the parameters due 

to the effects of the fault.  There is no significant in the specificity of identifying the catalyst 

deactivation fault (0.989±0.005) r-SVM model with an increase in the specificity when 

detecting the heat transfer fault (0.968±0.027). The increase in specificity is likely the result of 

the additional parameters creating clear separation boundaries between the classes. This in turn 

results in less false fault identifications resulting in a higher specificity value.  

The sensitivity and specificity values for the r-kSVM model when identifying the catalyst 

deactivation fault identification are 0.633±0.058 and 0.974±0.005. The results for the heat 

transfer fault identification are 0.734±0.033 and 0.924±0.038. The r-kSVM model does not 
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display an increase in the performance of the classification model but rather shows a decrease in 

performance. The decrease is due to the parameter estimates causing overfitting of the SVM 

model thus decreasing the performance. 

 

Figure 34: Sensitivities and specificities for r-SVM and r-kSVM applied to catalyst 

deactivation – heat transfer fault pair  

5.4 Fault identification models using shortcutting hybrid 

modelling 

The hybrid modelling approaches applied to the fault identification models can be categorised 

based on the data-based model used namely PLS and dPLS. It was shown that feeding 

estimated process parameters to the SVM classifiers improves the performance of the fault 

identification models. The hybrid models are proposed to reduce the execution time of the fault 

identification models as non-linear regression is time consuming. In the following chapter the 

performance of the hybrid models which use PLS and dPLS models were compared.  
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5.4.1 Standard and dynamic PLS 

When using PLS regression models an important decision that needs to be made is selecting the 

number of components used by the regression model. This can be done by considering the 

cumulative sum of the variance accounted for by each PLS component. This provides an 

indication as to how well the PLS model describes the original training dataset as when 

applying PLS models not all components are required for the regression. A standard PLS model 

was trained using a dataset containing catalyst deactivation fault data where the fault 

magnitude is 62.5%. The cumulative variance plot is shown in Figure 35 below. The cumulative 

variance shown in the figure is based on one case of the 10 possible cross-validation test cases. 

Most of the variance is explained by the first two components with only a slight increase in 

variance visible beyond the third component thus only two components are used in the 

regression.  

 

Figure 35: Cumulative variance explained by standard PLS components 

The dynamic PLS (dPLS) model can have different time window widths, with the window of 

the PLS model having a significant effect of the performance of the regression. One wants to 

select a window width which provides an increase in the accuracy of the regression predictions 

but not a window so large that it significantly increases both the training time and execution 

time. It is noted that that both the number of components and window length influences the 

performance of the dPLS model thus when find determining the optimal configuration for the 

model both parameters would have to be optimised simultaneously. It is seen however that two 
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PLS are sufficient for account for the bulk of the variance in catalyst deactivation laden dataset 

(as shown in Figure 35) with this seen with remaining two faults as well. Thus the sliding 

window width is selected with model utilising two PLS components. A good initial estimate for 

a time window length is selecting a time length which encompasses an entire dynamic process 

cycle. In the CSTR model during which the catalyst deactivation fault is active the process 

time constant is found to be approximately 8 minutes.  

The accuracy and performance of the dynamic PLS model is quantified through the MAPE 

measure. The MAPE values for different time window widths are shown in Figure 36 with the 

error bars representing the standard deviation obtained from the MAPE values for each test 

case allocated by the cross validation. When the MAPE values are compared it is seen that 

there is decrease in the error until a time window of 6 minutes is reached at which point the 

values begin to plateau before slightly increasing at 10 minutes. Based on the levelling out of 

the error values and the process time constant being 8 minutes a time window of 8 minutes is 

selected. By setting the window width as the process time constant the intention is that the 

window will efficiently capture the process dynamics. 

 

 

Figure 36: MAPE for different time window widths 
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In order to evaluate the performance of the various regression methods utilised in the hybrid 

models, parity plots are generated for each PLS model considered. Parity plots compare the 

true output of the regression model to the values of the output estimated using the regression 

model. Parity plots are constructed for the catalyst deactivation fault at specific fault 

magnitudes. The parity plots for the s PLS model and dPLS model using a catalyst 

deactivation fault-based test set are shown in Figure 37 and Figure 38 respectively.  

As seen in both figures there is considerable scatter around the 45° line with many data entries 

lying outside the 20% error margin. Many of the data entries lie to the left of the 45° line with 

these data entries corresponding to observations where the catalyst deactivation fault is active 

as is evident by the true reaction rate values lie close to zero. The values which are less than 

zero are due to noise associated with the non-linear regression when the parameter values are 

obtained during the regression. The parity plots for both PLS models are very similar thus a 

judgement on the performance of the models cannot be made based on the plots alone.  

 

Figure 37: Parity plot for reaction rate using standard PLS model when catalyst 

deactivation fault is active with 20% relative error margin 
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Figure 38: Parity plot for reaction rate using dynamic PLS model when catalyst 

deactivation fault is active with 20% relative error margin 

To further evaluate the performance of the PLS models the MAPE values of the models for the 

test set illustrated in Figure 37 and Figure 38 are calculated and compared. It is found that the 

standard PLS model has a MAPE value of 26.66% while the dynamic PLS model shows a 

MAPE of 25.75%. This indicates that for the test case considered the dynamic PLS provides 

more accurate reaction rate estimates. To further evaluate the performance of the models a box 

and whisker plot for the absolute percentage error (APE) is generated and is shown in Figure 

39 below.  
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Figure 39: Box and whisker plot comparing APE for standard PLS and dynamic 

PLS 

The box and whisker plot illustrates the variance of the APE values as well as indicating data 

entries which are outliers. The PLS and dPLS models both display similar variances with 

regards to the parameter estimates. This is expected as both models performed similarly in their 

respective parity plots. 

To further evaluate the performance of the PLS regression models, the reaction rate is 

estimated using the trained PLS and dPLS models over the entire time span covered by the 

simulated process data. The process data is taken from a simulation run when the catalyst 

deactivation fault active. The estimated reaction rate is compared to the true reaction rate used 

in the simulation as well as the reaction rate estimated using non-linear regression. The reaction 

rate estimates are compared in Figure 40.  
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Figure 40: Reaction rate estimates by PLS and dPLS models over a timespan 

between 500-1000 minutes with catalyst deactivation fault active 

As seen in the plot presented the PLS and dPLS reaction rate closely resemble one another. It 

is seen that the estimates predicted by the PLS models deviate from the true reaction rate and 

non-linearly regressed reaction rate estimates especially when the catalyst deactivation fault is 

active. When the reaction rate declines the PLS and dPLS models track and describe the 

decline in the reaction rate however the models do not match the magnitude of the decline.  

In order to further evaluate the performance of the PLS predictions the outlet concentration 

and temperature are predicted using the parameters obtained from the models. The outlet 

temperature is predicted and compared to the true temperature readings obtained from the 

CSTR simulation model in Figure 41 while the outlet concentration is predicted and compared 

in Figure 42. As seen in both plots there is no significant deviation between the predicted 

temperature and concentration and those obtained from the simulation. This indicates that 

although the predicted reaction rate estimates do not fully describe the magnitude of the 

applied fault this does not significantly affect the outlet temperature and concentration 

predictions. The MAPE between the predictions and the true simulation values are given in 

Table 8. Based on the MAPE values given the PLS model shows better performance than the 

dPLS model. 
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Figure 41: Outlet temperature prediction over a time window of 500-1000 minutes 

using parameter estimates from PLS and dPLS models 

 

 

Figure 42: Outlet concentration prediction over a time window of 500-1000 minutes 

using parameter estimates from PLS and dPLS models 
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Table 8: MAPE for outlet predictions 

Outlet variable Standard pls Dynamic pls 

Temperature  0.1507 0.4334 

Concentration 0.7787 1.017 

 

The performance of the hybrid models when the heat transfer coefficient fault is active is 

evaluated by predicting the overall heat transfer coefficient using the hybrid model structures 

considered. The PLS models used in the hybrid models are trained using normal operation, 

catalyst deactivation fault and heat transfer fault laden data with the training parameters 

obtained using non-linear regression. The coefficient estimates are compared to the true values 

as well as those estimated by the non-linear regression in Figure 43 below.  

 

Figure 43: Heat transfer coefficient estimates over a timespan between 500-1000 

minutes using parameter estimates from PLS and dPLS models 

The true coefficient values are not subjected to noise as the coefficient is based on 

characteristics of the physical reactor and fluid properties which would not vary. It is seen that 

when the heat transfer coefficient value decreases due to effect of the fault the estimates 
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obtained by non-linear regression does appear to track the change in heat transfer coefficient. 

The scatter visible in the non-linear regression estimates is likely due to the noise on the process 

variables used in the non-linear regression.   

When the predictions of both the PLS and dPLS models are compared to the true values it is 

seen that the model predictions do not track the decrease in heat transfer coefficient. The PLS 

models do not display as much variance as the non-linear regression estimates and this could be 

due to the PLS models being trained on normal operation, catalyst deactivation and heat 

transfer coefficient fault data. The decrease in variance displayed by the PLS models could also 

be attributed to the PLS models only utilising two PLS components. It is a common feature of 

PLS models that the first few PLS components account for the majority of variance displayed 

in the dataset whereas the latter PLS components commonly account for the noise present in 

the dataset.  The dPLS predictions show less noise on the predictions than the PLS predictions. 

This is due to the dPLS model considering a set of observations over a time window and not a 

singular observation. By considering a set of observations over a window the dPLS model 

minimises the effect of noise on the model regression which results in smoother predictions. 

The decrease in the variance displayed by the PLS models could also possibly be due to the 

variance displayed in the catalyst deactivation fault set mitigating the variance displayed in the 

heat transfer fault set. When the error between the PLS predictions and the true values is 

quantified, it is found that the MAPE value for the standard PLS model is 6.17% and the 

MAPE value for the dynamic PLS is 6.06%. This shows that both PLS models perform 

similarly when predicting the heat transfer coefficient outputs for the heat transfer fault set.  

The reaction rate estimates obtained when the heat transfer fault is active is shown in Figure 

44. As expected, the reaction rate estimates obtained using non-linear regression tracks the 

changes in the reaction rate as exhibited in the true reaction rate values. The change in 

reaction rate is due to the change in temperature as a result of the heat transfer fault. When 

the reaction rate estimates are predicted using PLS and dPLS models however it is seen the 

estimates do not match the changes shown in the true values of the reaction rate. It is seen that 

the estimates deviate from the true values significantly.  
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Figure 44: Reaction rate estimates from PLS and dPLS models when heat transfer 

fault is active  

As the heat transfer estimates by the PLS and dPLS model do not show much variation this 

indicates the PLS models account for the effect of the heat transfer fault through the reaction 

rate estimates. If the heat transfer coefficient and outlet concentration remain constant the 

effects of the increase in temperature would be mitigated by the reaction rate remaining 

constant. As the reaction is exothermic by the reaction rate remaining constant and the heat 

transfer rate decreasing the temperature increase experienced in the reactor would be due to the 

heat generated by the reaction. As the rate at which the heat is generated remains constant and 

the rate at which the heat is removed decreases, the temperature of the reactor would increase. 

Parity plots are constructed for the PLS and dPLS models trained using normal operating data, 

catalyst deactivation fault laden data as well as overall heat transfer coefficient data as shown 

in Figure 45 and Figure 46. The performance of the PLS models is compared by considering a 

test case where the overall heat transfer coefficient fault is active. It is seen in both plots that 

there exists a noticeable portion of the data entries which lie outside the 10% error bounds. 

These data entries are due to the predictions at the time instances where the fault is active 

which indicates that the heat transfer coefficient predictions do not track the changes in the 
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overall heat transfer coefficient well at all. It is seen that once again both parity plots resemble 

each other closely, which indicates that both PLS models perform similarly.  

 

Figure 45: Parity plot for grouped heat transfer coefficient using PLS where heat 

transfer coefficient error is active with 10% relative error margins 

 

Figure 46: Parity plot for grouped heat transfer coefficient using dPLS where heat 

transfer coefficient error is active with 10% relative error margins 
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Figure 47: Box and whisker plot comparing APE for standard PLS and dynamic 

PLS where overall heat transfer coefficient fault is active 

The error of the PLS models in estimating heat transfer coefficient for the test case is quantified 

through the MAPE measure. The MAPE was calculated as 5.95% and 5.74% for the PLS and 

dPLS models respectively. A box and whisker plot was generated to compare the variance of 

the APE values used in the MAPE and is shown in Figure 47 above.  

When the plot is studied it is seen that the dPLS shows less variance in the predictions than 

the PLS model. It is seen that there are outliers experienced in the PLS model where the 

magnitude of the error is larger than those experienced by the dPLS model. This indicates poor 

predictions by the PLS model for those observations. These errors can be attributed to the 

nature of the observation as it could be that the model performs poorly on these observations 

due to the process variable values for those observations. The dPLS provides more accurate 

predictions, as by considering a range of observations which precede the observations the 

impact of one abnormal observation is not as great. 

The model parameters are used to predict the output variable using the model ordinary 

differential equations. The predicted outputs are compared to the true values for the outputs 

obtained from the simulation of the jacketed CSTR. The temperature predictions are compared 

in Figure 48 and the concentration predictions are compared in Figure 49. 
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Figure 48: Outlet temperature predictions over span of 500-1000 minutes with heat 

transfer coefficient fault active 

 

Figure 49: Outlet concentration prediction over a time window of 500-1000 minutes 

with heat transfer coefficient fault active 

Stellenbosch University https://scholar.sun.ac.za



 

101 

As seen above, the PLS and dPLS model predictions for the outlet temperature do display the 

changes in the outlet temperature however the model predictions do not capture the magnitude 

of the change. The outlet concentration estimates do not show as much variance as the true 

values however it does appear to reflect the changes in the concentration values. This indicates 

that the hybrid models using the standard and dynamic PLS provide reasonable output 

estimates for the heat transfer coefficient fault case. The error for both models for the output 

predictions are quantified using the MAPE values and are included in Table 9. The small 

MAPE values indicates that the PLS model predictions are accurate which is evident in the 

comparison plots.  

Table 9: MAPE for outlet predictions where heat transfer coefficient fault is active 

Outlet variable Standard pls Dynamic pls 

Temperature  0.839 0.899 

Concentration 0.916 1.16 

 

Based on the hybrid model performance comparisons both the PLS and dPLS models perform 

similarly. It appears that when the PLS and dPLS parameter estimates are used to predict the 

outlet conditions, the predictions provide reasonable estimates of the true outlet values. 

In the r-SVM and r-kSVM models it is seen that by introducing the model parameters to the 

classification models the fault identification performance increases. As both PLS models are 

proposed as alternate methods of obtaining the process parameters ideally the performance of 

the fault identifiers would be comparable to that of the r-SVM and r-kSVM models. The 

performance of the PLS and dPLS based fault identification models applied to the catalyst 

deactivation-inlet concentration fault pair are compared in Figure 50.  

The sensitivities of the PLS-SVM and dPLS-SVM models are 0.834±0.017 and 0.904±0.026 

respectively. When the standard SVM performance is considered the dPLS-SVM model displays 

a higher sensitivity than the PLS-SVM model, one expects a slightly higher sensitivity when 

using the dynamic PLS model as the model demonstrated a higher prediction accuracy.  

Stellenbosch University https://scholar.sun.ac.za



 

102 

 

Figure 50: Sensitivity and specificities for PLS and dPLS models for catalyst 

deactivation-inlet concentration fault pair with catalyst deactivation fault active 

The increase in sensitivity experienced is higher than one would expect, however the 

improvement in prediction accuracy was not as great as the increase in sensitivity. This shows 

that a slight increase in prediction accuracy can lead to a larger increase in sensitivity. The 

increase in sensitivity is due to the additional time lagged variables resulting in more accurate 

parameter estimates which provides a clear separation of the faulty data from the normal 

operation data. The more accurate parameter estimates alter the support vector locations which 

changes the position of the separating hyperplane to provide a clear separation between fault 

cases. The performance of this fault identifier configuration is comparable to that of the r-SVM 

model which represents the theoretical ideal performance for the considered fault pair. 

The sensitivities of the PLS-kSVM and dPLS-kSVM models are 0.860±0.022 and 0.869±0.015 

respectively. When the sensitivities of the kSVM fault identification methods are compared it is 

seen that the when the PLS-kSVM model is used there is a slight increase in the sensitivity. 

When the dPLS-kSVM model is used an increase in sensitivity is seen with the sensitivity being 

slightly larger than the PLS-kSVM model. This is likely due to the model parameters estimated 
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by the PLS models fed to the classifier resulting in a clear separation between the fault case 

and the normal operation case.  

The specificities of the PLS-SVM and dPLS-SVM models are 0.988±0.004 and 0.987±0.004 

while the PLS-kSVM and dPLS-kSVM specificities are 0.990±0.005 and 0.990±0.005. When the 

specificities of the SVM and kSVM models are considered, that there are only slight differences 

in the magnitudes of the fault identification models. When compared to the r-SVM and r-kSVM 

models the PLS fault identifiers show slightly lower specificities.  

The ability of the fault detection method to identify the catalyst deactivation fault at different 

fault magnitudes is evaluated using sensitivity curves as shown in Figure 51. Both the kSVM 

and PLS-kSVM model displays significant scatter in the sensitivity measures at different fault 

magnitudes. This indicates that the performance of the model is dependent on the dataset 

considered and does not directly correlate to the magnitude of the considered error. This could 

be due to the dataset available determining the position of the support vectors, with some 

datasets resulting in different support vectors selected which effect the performance of the 

classifier and in turn the sensitivity. When the dPLS model performance is evaluated, it is seen 

that as the fault magnitude increases the dPLS sensitivity steadily increases. It is also seen that 

for the majority of the fault magnitudes considered the dynamic PLS models display a higher 

sensitivity. This is the performance that one would expect. 

 

Figure 51: Sensitivity curves for catalyst deactivation fault at different magnitudes 
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Figure 52: Specificity curves for catalyst deactivation faults at different magnitudes 

The specificity values at several catalyst deactivation fault magnitudes are shown in the 

specificity curve illustrated by Figure 52 above. As seen the specificities do not show great 

variations, only showing slight noise in the readings as the fault magnitude increases. It also 

seen that the dPLS fault identification specificities are only slightly larger than the specificities 

than the other fault identification methods considered. This could be related to the increase in 

sensitivity experienced when the dynamic PLS fault detection method is used. By introducing 

the hybrid modelling components an increase in sensitivity is noted and this could possibly lead 

to a decrease in specificity as it could lead to increase in false fault detections. However, as the 

specificity does not show large variations the introduction of the PLS models do not increase 

false fault detection rates, even as the fault magnitudes increase. 

The ability of the fault identification method to discern between two process faults is evaluated 

by training the fault identification model on normal operation, catalyst deactivation fault and 

heat transfer fault data. As before, the performance of the fault identification model is 

quantified and compared using the sensitivity and specificity measures for the PLS- and dPLS-

SVM and kSVM models as seen in Figure 53. 
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Figure 53: Sensitivity and specificity for PLS and dPLS models for heat transfer – 

catalyst deactivation fault pair 

The sensitivities of the PLS-SVM and dPLS-SVM models when the catalyst deactivation fault 

is active are 0.684±0.044 and 0.695±0.041 respectively. The PLS-kSVM and dPLS-kSVM 

sensitivities are 0.683±0.045 and 0.645±0.054. When the fault identification models are applied 

to the test datasets in which the catalyst deactivation fault is active it is seen that most of the 

PLS and dPLS models do not improve the performance of the fault identification models. Only 

the dPLS-SVM model shows an increase in performance, it is even noticed that when the 

hybrid models are applied to the kSVM classifiers the sensitivities decrease. This is not what 

one would expect, as when the models were applied to the catalyst deactivation-inlet 

concentration fault pair an increase in sensitivity was seen. 

The decrease in sensitivities indicates that feeding the additional information not only does not 

add any value to the identification of the catalyst deactivation fault, but it also actually 

decreases the performance of the model in the kSVM models. The additional parameters cause 

the different fault cases to appear more similar thus decreasing the classification efficiency.  
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The specificities of the PLS-SVM and dPLS-SVM models are 0.988±0.004 and 0.979±0.005 

while the PLS-kSVM and dPLS-kSVM specificities are 0.986±0.005 and 0.985±0.005. The 

specificity measures do not improve based on which fault identification method is used which is 

similar to the performance shown in the previous testcase. 

The fault identification methods were also applied to test datasets where the overall heat 

transfer coefficient fault was active, and the sensitivities and specificities are also shown in 

Figure 53. The sensitivities of the PLS-SVM and dPLS-SVM models when the catalyst 

deactivation fault is active are 0.751±0.065 and 0.761±0.056. The PLS-kSVM and dPLS-kSVM 

sensitivities are 0.712±0.033 and 0.728±0.039. The PLS and dPLS fault identifiers performances 

are lower than that of the r-SVM and r-kSVM models. The classification models which do not 

use kernel transformation have shown better performance than the classification models which 

do. This is evident by the models which use the SVM classifier having both higher sensitivities 

and specificities.  

One would expect the hybrid models not to improve on the sensitivities of the classification 

models as the PLS models do not track the changes in overall heat transfer coefficient as seen in 

Figure 43. The dPLS model display a slight increase in performance when compared to the 

SVM and kSVM fault identifiers. Although the effects of the heat transfer fault are accounted 

for by the reaction rate as seen in Figure 44 the reaction rate estimates, although different from 

those of true values for the fault case, resembles the values at normal operation. As the 

estimates does not result in the heat transfer fault case being more clearly separable from the 

other cases the locations of the support vectors in the classifier do not change. This results in 

no increase in the sensitivity of the fault identification model being experienced.  

The specificities of the PLS-SVM and dPLS-SVM models are 0.935±0.060 and 0.949±0.049 

while the PLS-kSVM and dPLS-kSVM specificities are 0.913±0.045and 0.943±0.012. The 

specificity values when the heat transfer fault is active do change between the fault 

identification models. This is a similar performance to that experienced by the r-SVM and r-

kSVM (shown in Figure 34). The specificity values however are not significantly different from 

those shown by the SVM and kSVM models. The dPLS-SVM model however shows a higher 

specificity than the other models when the heat transfer fault is active. This increase in 

specificity is likely due the parameters fed to the classifier providing clear bounds for the 

normal operation class. The parameter estimates predicted by the dPLS model shows less 
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scatter (due to considering observations over a time window) than the PLS model resulting in 

clearer boundaries for the normal operation class. This in turn decreases the false fault 

identification rate which increases specificity. The overall increase in performance is not as 

great as that seen when using the non-linearly regressed parameter estimates as the sensitivity 

does not increase.    

The models which made use of SVM as the classification model showed better performance 

identifying the heat transfer fault than the kSVM models. Thus, the ability of the SVM fault 

identification models to identify the heat transfer fault at different fault magnitude is evaluated 

using a sensitivity curve seen in Figure 54. The dPLS-SVM shows the highest overall 

performance as for the majority of fault magnitudes the sensitivity is higher than that of the 

other fault identification models which agrees with the results discussed above. It is seen that 

the SVM and PLS-SVM show similar sensitivities for all magnitudes considered which is due to 

the PLS model not tracking the changes in heat transfer fault. There is scatter noticeable 

between the sensitivity measurements, this is likely the different data entries selected as support 

vectors at each fault magnitude. The training data used in each cross-validation case will have 

an impact on the performance of the classifier. 

 

Figure 54: SVM models sensitivity curves for the heat transfer fault at different 

fault magnitudes 
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The specificity curve for the heat transfer fault is shown in Figure 55 below. As seen the dPLS-

SVM model specificities shows higher performance than the other SVM fault identifiers. This 

agrees with the findings discussed above. Based on the results presented above the best 

performing shortcutting hybrid model is the dPLS-SVM model. 

 

Figure 55: SVM models specificity curves for the heat transfer fault at different 

fault magnitudes 
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5.5 Recursive PLS   

 

Figure 56: Parity plot using recursive PLS with 10% relative error bars 

A parity plot is constructed using the recursive PLS model as shown in Figure 56 below for the 

catalyst deactivation-inlet concentration fault pair. It is clearly visible that there is significant 

scatter surrounding the 45° line. This indicates that for the catalyst deactivation case 

considered the recursive PLS model does not predict the test set well at all. It is seen that by 

having many data entries lying below the x-axis the model tends to overestimate not only the 

magnitude of the decrease in the reaction rate due to the catalyst deactivation fault but also 

the portion of data which has the fault active. Based on the poor predictive performance of the 

r-PLS model one would not expect the parameter estimates will improve the fault identification. 

To evaluate the fault identification performance using the rPLS model is evaluated using the 

rPLS-kSVM model for the catalyst deactivation-inlet concentration fault pair. The sensitivity 

and specificity values are shown in Figure 57 below. As seen, there is a noticeable decrease in 

both the sensitivity and specificity values which can be attributed to the poor prediction 

capabilities of the rPLS model. Due to the poor performance of the rPLS fault identifier it is 

not considered further in the study. 
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Figure 57: rPLS-kSVM model for catalyst deactivation-inlet concentration fault 

with catalyst deactivation fault active 

5.6 Overall comparison  

The performances of the fault identification models can be compared to determine which model 

configuration provides the best performance.  The performances of the best performing models 

based on the comparisons performed in the preceding sections of this chapter are compared. 

The best performing models were found to be the r-SVM and dPLS-SVM models and are 

compared to the SVM model which acts as the baseline comparison model as well as the kSVM 

model which showed better performance. The performances of the models for the catalyst 

deactivation-inlet concentration fault pair are shown in Figure 58. The figure displays an 

enlarged section of the sensitivity and specificity comparison plot to better compare the 

performances of the models. 
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Figure 58: Overall comparison for catalyst deactivation-inlet concentration fault 

pair for the r-SVM and dPLS-SVM models with catalyst deactivation fault active 

From the comparison both the r-SVM and the dPLS-SVM models perform similarly for the 

considered fault pair. Both models would be preferable to the standard SVM fault identification 

model for this fault pair with the increase in performance due to the additional parameters fed 

to the classifier resulting in a clearer separation of the fault cases. For the fault pair considered 

above the dPLS-SVM would be the preferable fault identifier due to the shorter execution time 

when applied online. Real time non-linear regression is more time consuming than using a PLS 

model to estimate model parameters based on incoming data. Thus, implementing non-linear 

regression in an online fault identification technique would result in delays in the fault 

identification if the time interval between measurements is shorter than the execution time of 

the regression. 

The performance of the models for the catalyst deactivation-heat transfer fault pair are 

compared in Figure 59 below. When the catalyst deactivation fault is identified it is seen that 

the models perform similarly with the sensitivities not showing much variation between the 

models. This indicates that the different model configurations do not improve the ability of the 
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fault identifier to correctly identify the catalyst deactivation fault. The differences in 

performances are shown in the specificity measures with the hybrid models (r-SVM and dPLS-

SVM) showing lower specificities than the classifier only models. This indicates that introducing 

the additional parameters makes the models more likely to incorrectly identify normal operation 

instance as being faulty. The dPLS-SVM model shows higher specificity than the r-SVM model 

thus showing better performance than the r-SVM when identifying the catalyst deactivation 

fault.  

 

Figure 59: Overall comparison for catalyst deactivation-heat transfer fault pair for 

the r-SVM and dPLS-SVM models 

When identifying the heat transfer fault, the r-SVM model displays a higher sensitivity than 

the other models considered with a 5% difference between the sensitivities. This due to the 

parameter estimates included in the r-SVM tracking the change in heat transfer coefficient 

which is absent in the SVM only models and the dPLS model does not accurately track the 

changes in the parameter. When the specificities are considered the r-SVM model shows a lower 

overall value than the dPLS-SVM model which is due to the model being more likely to identify 

the fault (indicated by the higher sensitivity) thus misclassifying normal operation observations 

as faulty. The difference however is not large (approximately 2% deviation) which would 
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correspond to 8 normal operation misclassifications for a test set of 400 observations. Based on 

the specificities the false alarm rate for the r-SVM (which is indicated by 1-specificity) model is 

3% and the dPLS-SVM is 5%. This translates to the r-SVM having a false alarm rate which is 

20% lower than the dPLS-SVM model. Based on the higher heat transfer fault identification 

performance and comparable performance to rest of the models for the other performance 

measures the r-SVM model is identified as the best performing model. 

To better visualise and evaluate the performance of the fault identifier a confusion matrix is 

generated. The confusion matrix for the r-SVM model applied to the catalyst deactivation-heat 

transfer fault pair is shown in Figure 60. It is seen that the model correctly identifies a large 

portion of both faults correctly which explains the high sensitivities shown. An important point 

to note is that the identifier does not incorrectly identify one fault as the other (i.e identifying 

heat transfer fault as catalyst deactivation fault). This an important aspect of the fault 

identifier as it ensures that the correct rectification measures are applied to rectify the 

appropriate fault. If the wrong corrective measures are applied to a system, it could result in 

the process deviating further from desired specifications and performance. This also indicates 

that any misclassification of faults (which results in lower sensitivities) are due to the fault 

detection aspect of the model (i.e., distinguishing between normal and fault conditions) and not 

due to incorrect distinguishing between faults. The multiclass SVM approach results in 100% 

separation efficiency between the two process faults. Thus a possible method of improving the 

fault identification aspect of the model is by introducing a separate fault detection model before 

fault identification is applied as was done in the work by (Heo & Lee, 2018) for example. 
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Figure 60: r-SVM confusion matrix for catalyst deactivation-heat transfer fault pair 

Based on the results discussed the hybrid modelling feature extraction is a viable method of 

improving the performance fault identification models as the r-SVM model structures shows an 

improvement over the SVM classifiers. This is clearly seen as the introduction of the estimated 

parameters increases the performance of the fault identification models. As the PLS models do 

not track the changes in the overall heat transfer coefficient well another databased model 

might lead to better performance. A possible data-based model which can be used is the ANN 

as it has performed well in hybrid models such as the work done by (Bhutani et al., 2006) 
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6 CONCLUSIONS 

Fault detection and identification models are critical in maintaining plant operating and 

product quality. Many fault identification techniques have been developed to address these 

concerns however many fault identifiers operate by identifying the appropriate fault once a fault 

has been detected. A multiclass SVM classifier is proposed as the fault identification method 

and the simultaneous fault detection-identification is achieved by including normal operation 

data in the training dataset. 

A point of consideration is that additional process information can be obtained which could 

result in clearer separation and clustering of fault laden observations. Thus, feature extraction 

and selection methods have been applied to fault detection models which showed an increase in 

performance. A hybrid modelling feature extraction method in which model parameters are 

estimated and used in the fault identification was proposed. The PLS, dPLS and rPLS models 

are considered as possible data-based models which can be used in the hybrid models. 

A non-isothermal jacketed CSTR model was developed and used as test case model on which 

the fault identification models can be applied, and their performance recorded. Process faults 

were developed and applied to the test case model with two faults applied to parameters which 

are estimated, and one fault applied to a process variable which is neither recorded nor 

measured. The hybrid model was implemented to estimate model parameters based on incoming 

process data. The data-based models were trained using parameter values obtained using non-

linear regression. The fault identification models were trained on process fault pairs and tested 

on test cases to evaluate the performance of the fault identification models. The sensitivity and 

specificity measures were used to quantify the performance of each fault identification model on 

each process fault.  

As the SVM classifier can employ kernel transformations it needs to be established if the kernel 

transformation will improve the performance of the fault identification classifiers. A preliminary 

evaluation of the models was done it was found the kernel improved the performance of the 

SVM. Thus, kernel SVM classifiers were considered in the study.  The SVM and kSVM models 

were applied to the catalyst deactivation-inlet concentration fault and the catalyst deactivation-

heat transfer fault. It was found the kSVM showed slightly better performance. It was also seen 

that based on these results the multiclass SVM approach could be used for fault identification. 
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Using extracted features in the fault identification is proposed as method of improving the 

performance of the fault identification models. The performance of the fault identification 

models using the non-linearly regressed parameter estimates were evaluated to test whether the 

extracted features improve the fault identification performance. It was found that both the r-

SVM and r-kSVM models showed an increase in performance with the increase due to the non-

linearly regressed parameters being able to track the decrease in parameter values due to the 

process faults. The r-SVM model showed better performance than the r-kSVM model with the 

increase in performance due to the observations selected as support vectors with the r-SVM 

selected support vectors providing better separation between faults. This shows that utilising 

extracted features in the form model parameters does indeed improve the performance of the 

fault identification models 

The PLS, dPLS and rPLS models were proposed as a method of estimating model parameters 

based on incoming data. Parity plots were generated using the PLS and dPLS models, both 

models showed comparable performance in estimating the model parameter when the catalyst 

deactivation fault is active. The dPLS model displayed slightly higher accuracy for the 

considered test cases. The performance of models in estimating the parameters when the heat 

transfer fault is active was evaluated. It was seen that the heat transfer coefficient estimates did 

not reflect the changes due to the fault. The effect of the was accounted for in the reaction rate 

estimates. Thus, the PLS and dPLS models do not provide the most accurate model parameter 

estimates.   

The ability of the fault identifiers to identify the catalyst deactivation fault in the catalyst fault 

– inlet concentration fault pair was tested. When the PLS model was implemented as the model 

parameter estimator no significant increase performance seen. The dPLS fault identification 

models showed an improvement in performance when compared to the SVM and kSVM models. 

The dPLS-SVM model showed a larger increase in sensitivity.  

The specificity of the PLS-SVM showed a decrease when compared to the other models which 

could be attributed to the higher fault detection rate. This results in a higher false normal 

identification rate which results in a decrease in specificity. The specificities for the other 

models were determined, and it was found that the values do not vary significantly between the 

models. This indicates that when the rest of the models were compared that none of the models 

were more susceptible to false normal identification than the other. It was found that under 
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these conditions the dPLS model is a sufficient substitute for the non-linear regression as the 

dPLS fault identification models have performance comparable to the r-SVM and r-kSVM 

models. 

The fault identifiers were then trained on the catalyst deactivation – overall heat transfer 

coefficient fault pair to evaluate the capability of the fault identifiers to discern between two 

different process faults. When evaluated on the catalyst deactivation fault the PLS fault 

identification models showed no improvement over the SVM and kSVM. The dPLS-SVM model 

shows a significant increase in performance. 

The fault identification models were applied to the overall heat transfer coefficient fault test 

sets and the sensitivities and specificities were obtained. It was seen that the PLS and dPLS did 

not improve the performance of the fault identification models under these conditions. It is seen 

that the models are not only able to detect the fault but are also able to differentiate between 

the heat transfer coefficient and catalyst deactivation faults.  

The specificities were determined, and it was found that all the specificities were similar with 

the dPLS model showing slight increase. This indicates that for all faults considered the fault 

identification models are not susceptible to false fault identifications. It was seen that the SVM 

models showed better performance overall than the kSVM models with the dPLS-SVM model 

showing the best performance. Based on the results the dPLS model could be used an alternate 

method of estimating parameter estimates and replacing non-linear regression. The dPLS-SVM 

model could be used as a fault identification model which improves on the performance of the 

SVM and kSVM fault identification models. 

The rPLS fault identification model was then considered. When a parity plot was generated 

using the recursive PLS model it was found that the PLS model does not perform well on the 

considered datasets. It was thus expected that the rPLS fault identification models would not 

perform well. The performance rPLS-kSVM model was evaluated and was shown to have poor 

performance, performance worse than the SVM and kSVM fault identification models. Thus, 

the rPLS fault identification models were not considered further and would not be an 

appropriate model to use as a parameter estimation model. 

The r-SVM and dPLS-SVM models were compared to determine the best performing fault 

identification model. It was seen that the r-SVM showed higher sensitivity and specificity than 

the dPLS-SVM model.  Therefore, the r-SVM was the overall best performing model. It was 
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seen that hybrid modelling feature extraction is a feasible method of improving fault identifier 

performance. As the PLS models did not capture the change in parameters values as well as the 

non-linear regression another data-based model can be used which better tracks the changes in 

parameter values. 

6.1 Recommendations based on current work 

Based on the conclusions of the study as discussed above the following recommendations are 

proposed to possible improve on the work performed: 

1. SVM and kSVM classifiers should be considered when designing and implementing fault 

identification methods 

2. For the CSTR process considered in this study the SVM classifier should be 

implemented 

3. If a process model is available for a system, the model-based feature extraction method 

should be considered as method of improving fault identification 

4. For the parameter estimation the dPLS model should be used instead of the PLS model 

5. If possible real time non-linear regression should be used as parameter estimation as the 

regression provides the most accurate parameter estimates 

6. For the considered process the r-SVM fault identification model should be used and can 

be used as a first attempt at improving fault identification model performance for other 

processes 

6.2 Recommendations for future work 

Based on the results and conclusions of the study the following recommendations for future 

work which could for the basis of a new study are proposed: 

1. Applying the hybrid modelling based feature extraction fault identification model to 

more realistic process datasets and models such as the Tennessee-Eastman process to 

evaluate the applicability of the model to real world processes 
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2. Evaluate the performance of the fault identification model where a different data-based 

model is used in hybrid modelling such as the ANN model as the ANN model has been 

proven to perform well in hybrid models 

3. Consider the use of relevance vector machine classifiers in lieu of the support vector 

machine classifiers used. The relevance vector machine classifier makes use of 

probabilities thresholds for classification. The probabilities can then be used to further 

evaluate the performance of the classifier  
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APPENDIX A – SIMULINK MODEL 

IMPLEMENTATION 

A Simulink model of the non-isothermal jacketed CSTR model proposed in Section 4.1 was 

developed to generate process datasets on which the fault identification models will be trained. 

The overall Simulink model of the CSTR is shown in Figure 61 below. Feedback control is 

implemented in the model to maintain the outlet concentration by adjusting the inlet flowrate. 

The controller is implemented through the PID controller block with control parameters set as 

the values listed in Table 4 above.  

 

Figure 61: Simulink model of CSTR 

 

Two subsystems were created to contain the material balance and the energy balance. The 

material balance of A (Equation 45) is implemented in the mass balance subsystem as seen in 

Figure 62. 
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Figure 62: Material balance of A in the mass balance subsystem 

 

 The energy balance of the CSTR (Equation 46) is implemented in the energy balance 

subsystem of the Simulink model as shown in Figure 63. 
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Figure 63: Energy balance subsystem 

 

Each process input has noise associated with the readings; the noise is used to cause the 

Simulink model to more closely resemble a real world process. The input noise is modelled as a 

first-order autoregressive process as shown in Equation 51 where 𝜙 represents the autoregressive 

constant and 𝑒 the normally distributed noise (𝑒~𝑁(0, 𝜎𝑒
2)). For this model the value of 𝜙 is set 

as 0.9. The noise variance for each variable is captured in Table 10.  

 𝑦𝑖+1 = 𝑦𝑖𝜙 + 𝑒  [ 51 ] 
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Figure 64: Input fault application to TJ 

 

Table 10 : Variable noise variances 

VARIABLE VARIANCE (𝝈𝒆
𝟐) 

F 1.9 

T I 0.475 

TJ 0.05 

 

 

Sensor error is applied to Ca,out to mimic real world conditions. The error is comprised of sensor 

drift applied to the concentration reading. The sensor drift is modelled a ramp signal which is 

added to the true concentration. This drift error is modelled in Simulink as seen in Figure 65 

below. The white noise added to the concentration is normally distributed with zero with a 

variance of 0.001.  
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Figure 65: Sensor error applied to Caout 

 

The process faults applied to model take the form ramp input with the gradient of the ramp set 

as the magnitude of the error. The catalyst deactivation fault implementation in Simulink is 

shown in Figure 66. The fault ramp was determined using a MATLAB script where the fault 

was randomly implemented using the durations and variances described in Table 5 and Table 6 

and saved to a workspace named k0Data.mat. The workspace is then read into Simulink and 

the fault is applied. A saturation block used to ensure that the k0 fault does not result in a 

negative k0 parameter. 

 

 

Figure 66: Catalyst deactivation fault Simulink implementation 
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APPENDIX B – NUMERICAL VALUES FOR MAPE, 

SENSITIVITIES AND SPECIFICITIES 

The following appendix contains the numerical values for the MAPE, sensitivities and 

specificities used in the plots in the Chapter 4.  The training data sets used for sensitivity and 

specificity comparison plots were subjected to k-fold cross-validation where k was set as 10. For 

each cross-validation case (or fold) the respective model was trained using the training data and 

the sensitivities and specificities were calculated using the testing data for the respective cross 

validation case. 

Table 11: MAPE values for dynamic PLS window lengths 

Window 

span 

(min) 

Cross Validation Cases 

CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10 

1 0.2600 0.2612 0.2658 0.2665 0.2651 0.2651 0.2631 0.2671 0.2667 0.2641 

2 0.2594 0.2589 0.2633 0.2646 0.2622 0.2628 0.2618 0.2651 0.2644 0.2614 

3 0.2586 0.2588 0.2613 0.2633 0.2609 0.2602 0.2606 0.2624 0.2618 0.2583 

4 0.2573 0.2576 0.2596 0.2613 0.2603 0.2595 0.2601 0.2609 0.2602 0.2564 

5 0.2560 0.2562 0.2581 0.2604 0.2587 0.2589 0.2592 0.2613 0.2591 0.2550 

6 0.2552 0.2552 0.2572 0.2600 0.2583 0.2595 0.2585 0.2614 0.2591 0.2540 

7 0.2548 0.2549 0.2566 0.2598 0.2582 0.2597 0.2587 0.2611 0.2592 0.2541 

8 0.2547 0.2559 0.2555 0.2572 0.2581 0.2596 0.2600 0.2616 0.2598 0.2547 

9 0.2540 0.2548 0.2559 0.2597 0.2562 0.2611 0.2593 0.2623 0.2597 0.2546 

10 0.2550 0.2560 0.2582 0.2588 0.2573 0.2617 0.2591 0.2628 0.2594 0.2555 

Average 0.2565 0.2569 0.2591 0.2612 0.2595 0.2608 0.2600 0.2626 0.2609 0.2568 
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The sensitivity and specificity used in the respective sensitivity and specificity curves were 

obtained by first obtaining model data at each process fault magnitude considered. The process 

data was then partitioned into a training dataset and a test dataset with the test set containing 

10% of the available model data. The fault identification models were trained using the training 

data and the sensitivity and specificity were then calculated using the test data as described in 

Chapter 2.8. 

Table 12: Sensitivity curve values for catalyst deactivation fault 

M agnitude Kernel 

SVM  

Standard 

PLS 

Dynamic 

PLS 

6.94 0.7550 0.7414 0.7826 

8.33 0.7179 0.7485 0.7953 

9.72 0.7407 0.7469 0.7864 

11.11 0.7136 0.7670 0.8164 

12.50 0.7745 0.7824 0.8252 

13.89 0.8263 0.7606 0.8205 

15.28 0.7887 0.7537 0.8191 

16.67 0.8093 0.8062 0.8449 

18.06 0.8088 0.7984 0.8353 

19.44 0.8293 0.7967 0.8424 

20.83 0.8421 0.7956 0.8419 

22.22 0.8142 0.8105 0.8508 

23.61 0.8750 0.8232 0.8547 

25.00 0.7557 0.7864 0.8278 

26.39 0.8241 0.8169 0.8618 
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27.78 0.8033 0.8149 0.8707 

29.17 0.8376 0.8188 0.8596 

30.56 0.7477 0.8286 0.8688 

31.94 0.8438 0.8192 0.8590 

33.33 0.8042 0.8215 0.8569 

34.72 0.8768 0.8142 0.8688 

36.11 0.7926 0.8268 0.8716 

37.50 0.8040 0.8242 0.8757 

38.89 0.8626 0.8435 0.8880 

40.28 0.7811 0.8210 0.8554 

41.67 0.8586 0.8488 0.8880 

43.06 0.8396 0.8322 0.8765 

44.44 0.8177 0.8387 0.8844 

45.83 0.8284 0.8284 0.8749 

47.22 0.8186 0.8413 0.8783 

48.61 0.8333 0.8440 0.8844 

50.00 0.7970 0.8181 0.8739 

51.39 0.8513 0.8372 0.8832 

52.78 0.7981 0.8542 0.8898 

54.17 0.8299 0.8221 0.8700 

55.56 0.8358 0.8444 0.8848 

56.94 0.8438 0.8584 0.9003 

Stellenbosch University https://scholar.sun.ac.za



 

134 

58.33 0.8116 0.8490 0.8938 

59.72 0.8164 0.8428 0.8928 

61.11 0.8534 0.8429 0.8988 

62.50 0.8492 0.8598 0.8745 
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Table 13: Specificity curve values for catalyst deactivation fault 

M agnitude Kernel 

SVM  

Standard 

PLS 

Dynamic 

PLS 

6.94 0.9915 0.9931 0.9969 

8.33 0.9908 0.9892 0.9985 

9.72 0.9878 0.9925 0.9969 

11.11 0.9945 0.9939 0.9992 

12.50 0.9931 0.9876 0.9992 

13.89 0.9922 0.9961 0.9977 

15.28 0.9900 0.9869 0.9969 

16.67 0.9908 0.9946 0.9992 

18.06 0.9931 0.9916 0.9969 

19.44 0.9918 0.9901 0.9977 

20.83 0.9924 0.9962 0.9992 

22.22 0.9916 0.9900 0.9969 

23.61 0.9930 0.9969 0.9985 

25.00 0.9940 0.9939 0.9955 

26.39 0.9931 0.9922 0.9985 

27.78 0.9916 0.9901 1.0000 

29.17 0.9900 0.9883 0.9992 

30.56 0.9906 0.9938 0.9984 

31.94 0.9946 0.9931 0.9969 
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33.33 0.9924 0.9939 1.0000 

34.72 0.9876 0.9924 0.9961 

36.11 0.9924 0.9915 0.9961 

37.50 0.9892 0.9915 0.9969 

38.89 0.9915 0.9916 0.9985 

40.28 0.9908 0.9884 0.9985 

41.67 0.9923 0.9939 0.9969 

43.06 0.9953 0.9922 0.9954 

44.44 0.9961 0.9931 0.9984 

45.83 0.9910 0.9924 0.9985 

47.22 0.9931 0.9876 0.9970 

48.61 0.9901 0.9877 0.9992 

50.00 0.9916 0.9862 0.9984 

51.39 0.9954 0.9915 0.9985 

52.78 0.9923 0.9893 0.9970 

54.17 0.9939 0.9962 0.9977 

55.56 0.9892 0.9916 0.9977 

56.94 0.9901 0.9923 0.9985 

58.33 0.9915 0.9954 0.9977 

59.72 0.9907 0.9931 0.9985 

61.11 0.9862 0.9901 0.9969 

62.50 0.9915 0.9901 0.9977 
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Table 14: Sensitivity values for catalyst deactivation-inlet fault trained model with 

catalyst deactivation fault active 

CV  

Cases 

kSVM  r-

kSVM  

PLS-

kSVM  

dPLS-

kSVM  

SVM  r-SVM  PLS-

SVM  

dPLS-

SVM  

CV1 0.8492 0.9202 0.8698 0.8689 0.8241 0.9468 0.8281 0.9468 

CV2 0.8482 0.8667 0.8557 0.8702 0.8429 0.8974 0.8497 0.8974 

CV3 0.8085 0.8601 0.8081 0.8857 0.8191 0.9016 0.8673 0.8964 

CV4 0.8883 0.8724 0.8564 0.8592 0.8511 0.8673 0.8367 0.8673 

CV5 0.8507 0.8838 0.8482 0.8619 0.8109 0.9091 0.8220 0.9091 

CV6 0.8421 0.8848 0.8737 0.8706 0.8316 0.8848 0.8220 0.8848 

CV7 0.9048 0.9021 0.8723 0.8768 0.8889 0.9381 0.8177 0.9330 

CV8 0.8750 0.8854 0.8507 0.8384 0.8438 0.8958 0.8168 0.8958 

CV9 0.8281 0.8883 0.8852 0.8622 0.8281 0.8777 0.8505 0.8777 

CV10 0.8274 0.9096 0.8783 0.8945 0.8173 0.9309 0.8307 0.9309 

Averag

e 

0.8522 0.8873 0.8598 0.8688 0.8358 0.9050 0.8342 0.9039 

Std. 

dev 

0.0295 0.0189 0.0220 0.0154 0.0227 0.0264 0.0168 0.0258 
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Table 15: Specificity values for catalyst deactivation-inlet concentration fault 

trained model with catalyst deactivation fault active 

CV  

Cases 

kSVM  r-kSVM  PLS-

kSVM  

dPLS-

kSVM  

SVM  r-SVM  PLS-

SVM  

dPLS-

SVM  

CV1 0.9944 0.9977 0.9944 0.9944 0.9860 0.9954 0.9860 0.9831 

CV2 0.9830 0.9985 0.9830 0.9829 0.9943 0.9969 0.9972 0.9943 

CV3 0.9916 0.9985 0.9944 0.9944 0.9944 0.9954 0.9860 0.9888 

CV4 0.9831 0.9962 0.9831 0.9830 0.9774 0.9962 0.9802 0.9802 

CV5 0.9860 0.9992 0.9860 0.9860 0.9916 0.9946 0.9888 0.9916 

CV6 0.9915 0.9977 0.9915 0.9915 0.9887 0.9969 0.9887 0.9887 

CV7 0.9860 0.9977 0.9860 0.9860 0.9888 0.9931 0.9916 0.9888 

CV8 0.9971 1.0000 0.9971 0.9971 0.9826 0.9977 0.9884 0.9855 

CV9 0.9915 0.9977 0.9915 0.9915 0.9887 0.9954 0.9887 0.9859 

CV10 0.9944 0.9985 0.9944 0.9944 0.9860 0.9969 0.9888 0.9860 

Average 0.9899 0.9982 0.9901 0.9901 0.9879 0.9959 0.9884 0.9873 

Std. 

dev 

0.0050 0.0010 0.0052 0.0052 0.0052 0.0014 0.0043 0.0041 
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Table 16: Sensitivity values for catalyst deactivation-overall heat transfer 

coefficient fault trained model with heat transfer fault active 

CV  

Cases 

kSVM  r-kSVM  PLS-

kSVM  

dPLS-

kSVM  

SVM  r-SVM  PLS-

SVM  

dPLS-

SVM  

CV1 0.7677 0.7742 0.7548 0.7219 0.7677 0.8645 0.7677 0.6821 

CV2 0.6420 0.6790 0.6728 0.7222 0.6420 0.7901 0.6420 0.7593 

CV3 0.7750 0.7750 0.7688 0.7250 0.7750 0.8375 0.7750 0.8000 

CV4 0.7919 0.7584 0.7248 0.7436 0.7919 0.8188 0.7919 0.8718 

CV5 0.6943 0.7643 0.7197 0.6548 0.6943 0.8025 0.7006 0.6726 

CV6 0.8383 0.7186 0.7006 0.7793 0.8383 0.7844 0.8323 0.7724 

CV7 0.6623 0.7208 0.6688 0.6832 0.6623 0.7987 0.6623 0.7578 

CV8 0.7329 0.7081 0.6832 0.7261 0.7329 0.8199 0.7329 0.7643 

CV9 0.8182 0.7013 0.7078 0.7818 0.8182 0.7532 0.8182 0.7758 

CV10 0.7953 0.7368 0.7193 0.7452 0.7953 0.8363 0.7895 0.7580 

Average 0.7518 0.7336 0.7121 0.7283 0.7518 0.8106 0.7513 0.7614 

Std. dev 0.0666 0.0333 0.0328 0.0388 0.0666 0.0317 0.0648 0.0560 
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Table 17: Sensitivity values for catalyst deactivation-overall heat transfer 

coefficient fault trained model with catalyst deactivation fault active 

CV  

Cases 

kSVM  r-kSVM  PLS-

kSVM  

dPLS-

kSVM  

SVM  r-SVM  PLS-

SVM  

dPLS-

SVM  

CV1 0.7000 0.6000 0.6400 0.6400 0.7000 0.7000 0.7000 0.7000 

CV2 0.6522 0.5870 0.5870 0.5870 0.6522 0.6522 0.6522 0.6957 

CV3 0.6429 0.6190 0.6190 0.6190 0.6429 0.6429 0.6429 0.6905 

CV4 0.7917 0.6250 0.6458 0.6458 0.7917 0.7917 0.7917 0.7917 

CV5 0.6875 0.6667 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 

CV6 0.6667 0.5208 0.5417 0.5625 0.6667 0.6667 0.6667 0.6875 

CV7 0.6667 0.7333 0.7333 0.7556 0.6667 0.6667 0.6667 0.6444 

CV8 0.6364 0.6818 0.6818 0.6818 0.6364 0.6591 0.6364 0.6591 

CV9 0.6905 0.6667 0.6429 0.6429 0.6905 0.6905 0.6905 0.6667 

CV10 0.7037 0.6296 0.6296 0.6296 0.7037 0.7037 0.7037 0.7222 

Average 0.6838 0.6330 0.6409 0.6452 0.6838 0.6861 0.6838 0.6945 

Std. dev 0.0446 0.0585 0.0535 0.0543 0.0446 0.0424 0.0446 0.0407 
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Table 18: Specificity values for catalyst deactivation-overall heat transfer 

coefficient fault trained model with heat transfer fault active 

CV  

Cases 

kSVM  r-kSVM  PLS-

kSVM  

dPLS-

kSVM  

SVM  r-SVM  PLS-

SVM  

dPLS-

SVM  

CV1 0.9549 0.9631 0.9590 0.9440 0.9918 0.9959 0.9918 0.9549 

CV2 0.9202 0.9370 0.9202 0.9447 0.9664 0.9790 0.9748 0.9202 

CV3 0.9292 0.9375 0.9292 0.9697 0.9667 0.9792 0.9667 0.9292 

CV4 0.8720 0.8880 0.8720 0.9449 0.9040 0.9240 0.9000 0.8720 

CV5 0.9215 0.9339 0.9215 0.9341 0.9752 0.9835 0.9752 0.9215 

CV6 0.8707 0.8836 0.8707 0.9339 0.8664 0.9440 0.8664 0.8707 

CV7 0.9796 0.9755 0.9796 0.9541 0.9878 0.9878 0.9878 0.9796 

CV8 0.9538 0.9622 0.9538 0.9440 0.9664 0.9916 0.9706 0.9538 

CV9 0.8408 0.8694 0.8408 0.9268 0.8204 0.9265 0.8163 0.8408 

CV10 0.8860 0.8904 0.8860 0.9352 0.8991 0.9693 0.8991 0.8860 

Average 0.9129 0.9241 0.9133 0.9431 0.9344 0.9681 0.9349 0.9129 

Std. dev 0.0443 0.0382 0.0447 0.0122 0.0584 0.0268 0.0604 0.0443 
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Table 19: Specificity values for catalyst deactivation-overall heat transfer 

coefficient fault trained model with catalyst deactivation fault active 

CV  

Cases 

kSVM  r-kSVM  PLS-

kSVM  

dPLS-

kSVM  

SVM  r-SVM  PLS-

SVM  

dPLS-

SVM  

CV1 0.9857 0.9857 0.9857 0.9857 0.9943 0.9943 0.9943 0.9943 

CV2 0.9859 0.9859 0.9859 0.9859 0.9915 0.9915 0.9887 0.9887 

CV3 0.9888 0.9888 0.9888 0.9888 0.9860 0.9860 0.9832 0.9832 

CV4 0.9886 0.9886 0.9886 0.9886 0.9943 0.9943 0.9915 0.9915 

CV5 0.9858 0.9858 0.9858 0.9858 0.9829 0.9829 0.9829 0.9829 

CV6 0.9801 0.9829 0.9829 0.9829 0.9858 0.9858 0.9858 0.9858 

CV7 0.9746 0.9774 0.9746 0.9746 0.9887 0.9887 0.9887 0.9887 

CV8 0.9859 0.9859 0.9859 0.9859 0.9831 0.9831 0.9831 0.9831 

CV9 0.9776 0.9776 0.9776 0.9776 0.9972 0.9972 0.9972 0.9972 

CV10 0.9855 0.9855 0.9855 0.9855 0.9855 0.9855 0.9855 0.9855 

Average 0.9838 0.9844 0.9841 0.9841 0.9889 0.9889 0.9881 0.9881 

Std. dev 0.0048 0.0040 0.0046 0.0046 0.0051 0.0051 0.0050 0.0050 
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Table 20: Sensitivity curve values for heat transfer fault 

Fault 

M agnitude 

0.15 0.152 0.154 0.156 0.158 0.16 

SVM  0.7100 0.6736 0.7055 0.7046 0.6919 0.7518 

PLS-SVM  0.7100 0.6736 0.7055 0.7046 0.6919 0.7513 

dPLS-SVM  0.7153 0.6719 0.7128 0.7161 0.7018 0.7614 

 

 

Table 21: Specificity curve values for heat transfer fault 

Fault 

M agnitude 

0.15 0.152 0.154 0.156 0.158 0.16 

SVM  0.9627 0.9631 0.9626 0.9523 0.9695 0.9344 

PLS-SVM  0.9623 0.9635 0.9626 0.9523 0.9695 0.9349 

dPLS-SVM  0.9675 0.9689 0.9677 0.9541 0.9659 0.9497 
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