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Abstract

The role of a positive feedforward loop in regulating
yeast glycolytic intermediate dynamics

S. Kotze

Department of Biochemistry,
University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc (Biochemistry)

December 2021

Yeast glycolysis is a well-studied model for metabolic pathways and fun-
damental aspects of regulation. Whereas negative feedback is common in
metabolic networks; positive feedforward regulation is much less often ob-
served. The aim of this project was to elucidate the function of feedforward
loops (FFLs); investigating why they occur and to discern their potential role
in disease states. A well-known FFL in glycolysis was investigated, namely
that of pyruvate kinase (PK) which is known to be strongly regulated. One of
its most important activators is fructose 1,6-bisphosphate (FBP), a metabo-
lite found upstream in the pathway. Certain cancer cell lines have been shown
to induce a particular isoform of PK, PKM2, which is not activated by FBP,
hinting at an advantage that the absence of this FFL may confer to cancer-
ous cells. By defining the fundamental function of FFLs, greater insights into
metabolism can be obtained by investigating the effects of its absence on gly-
colytic flux.

To probe this question, we used a systems biology approach of experimen-
tation in conjunction with mathematical modelling. Yeast PK was kinetically
characterised using cell-free extracts and was found to be activated by FBP
via an FFL and inhibited by inorganic phosphate (Pi). This kinetic data was
used to analyse several PK rate equations that incorporate allosteric models
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for its regulation by FBP and Pi. Based on these results a Hill-type equation
was selected to extend an existing detailed kinetic model for yeast glycolysis.
In addition, core model simulations were performed on systems with increasing
complexity to formulate the core model hypothesis that the function of FFLs
in metabolic networks is to buffer the intermediate metabolites between the
regulating metabolite and regulated reaction when flux through the pathway
changes, thereby preventing metabolic imbalance. We tested this hypothe-
sis via experimental analysis of yeast glycolytic intermediates and cofactors
over time after a glucose pulse to the pathway. The results showed interesting
cofactor dynamics; with ATP being fully converted to AMP during glucose
exhaustion and also indicated that Pi could not function as a switch-off mech-
anism for the FFL. These glycolytic intermediate dynamics also served as
an independent experimental data-set that successfully validated the full gly-
colytic model that was adapted with the Hill equation to better describe PK
activity and flux through the pathway as a whole.
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Tesis: MSc (Biochemie)

Desember 2021

Gisglikolise is 'n goed bestudeerde model vir metaboliese paaie en die funda-
mentele aspekte van regulering. Negatiewe terugvoer is algemeen in metabo-
liese netwerke en is dus goed bestudeer, maar positiewe terugvoerregulering
word selde waargeneem. Die doel van hierdie projek is om die funksie van
positiewe voorwaartse lusse (FFLs) uit te pluis; om te ondersoek waarom dit
voorkom, én om hul potensiéle rol in siektetoestande te onderskei. 'n Bekende
voorwaartse lus in glikolise word ondersoek, die van pyruvatkinase (PK), 'n
ensiem wat sterk gereguleer word. Een van die belangrikste aktiveerders van
PK is fruktose 1,6-bisphopshate (FBP), 'n metaboliet wat stroomop in die pad
voorkom. Daar is bewys dat sekere kankersellyne 'n spesifieke isoform van PK,
PKM2, uitdruk, wat nie deur FBP geaktiveer word nie. Dit dui moontlik op
'n voordeel wat die afwesigheid van die voorwaartse lus aan kankerselle kan
bestee. Deur die fundamentele funksie van voorwaartse lusse te definieer kan
ons beter insigte kry oor metabolisme, deur die uitwerking van die afwesigheid
daarvan op glikolitiese vloed te ondersoek.

Om hierdie vraag te ondersoek, het ons 'n stelselbiologie-benadering van
eksperimentering in kombinasie met wiskundige modellering gebruik. Gis-PK
is kineties gekarakteriseer deur gebruik te maak van selvrye gisekstrakte en
daar is bevind dat dit deur FBP via 'n FFL geaktiveer is, en deur anorga-
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niese fosfaat (Pi) geinhibeer word. Hierdie kinetiese data is toe gebruik om
PK-koersvergelykings te analiseer wat allosteriese modelle inkorporeer vir die
regulering van PK deur FBP en Pi. Op grond van hierdie resultate is 'n
Hill-tipe vergelyking gekies om 'n bestaande gedetailleerde kinetiese model vir
gisglikolise uit te brei. Verder het ons speelgoedmodelsimulasies uitgevoer op
stelsels met toenemende kompleksiteit om die kernmodelhipotese te formuleer
dat die funksie van FFLs in metaboliese netwerke is om die intermediére me-
taboliete tussen die regulerende en gereguleerde metaboliet te buffer wanneer
vloei deur die pad verander en sodoende help om metaboliese wanbalans te
ontmoedig. Ons het hierdie hipotese getoets deur middel van die ontleding
van gisglikolitiese tussenprodukte en ko-faktore oor tyd na 'n glukosepuls. Die
eksperimente het interessante kofaktordinamika getoon met ATP wat byna ten
volle omgeskakel is na AMP tydens glukose-uitputting. Met hierdie resultate
het ons ook Pi uitgesluit as 'n moontlike afskakel meganisme vir die PK-FFL.
Hierdie glikolitiese intermediére dinamika het ook gedien as 'n onafhanklike
eksperimentele datastel wat die volledige glikolitiese model- wat met die Hill-
vergelyking aangepas is- suksesvol gevalideer het in 'n poging om PK-aktiwiteit
en vloei deur die hele pad beter te beskryf.
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Chapter 1

Introduction

Glycolysis is one of the most widely studied and characterised biochemical
pathways. Due to its prevalence in almost all metabolically active cells in both
prokaryotic and eukaryotic organisms, it is known to be an ancient metabolic
pathway that has been conserved between species. Interest in glycolytic stud-
ies and altered glucose metabolism surged after Warburg identified increased
glycolytic rates in cancer cells [1|. In the vast majority of living organisms, the
glycolytic process lies at the very core of metabolism and is an integral target
of both biotechnological and health studies and/or applications. Humans have
also been exploiting glycolysis for centuries, and the fermentation of sugars
remains a fundamental cornerstone in the food industry for many dairy, baked
goods and beverage products [2]. Large strides have also recently been made in
the utilisation of the glycolytic process for the production of bio-fuels [3]. Fur-
thermore, altered glycolysis has been linked to numerous disease states such as
cancer [4] and diabetes [5]. In fundamental studies of glycolysis, the aim is to
increase our current understanding of glycolysis and how its components and
their activities are regulated to ensure homeostasis and metabolic stability in
dynamic environments. Individual glycolytic enzymes have been studied ex-
tensively in isolation; however, systems-level analyses of glycolytic flux control
have not been fully explored. As such, this project aims to investigate one
aspect of glycolytic regulation at a systems-level.

Glycolysis as a metabolic network consists of not only the series of reac-
tions that converts substrate to product, but also the regulatory mechanisms
that modulate the enzymes catalysing these reactions. This thesis aims to
investigate an aspect of glycolytic regulation that is not yet fully explored or
understood: the role of the feedforward loop (FFL) in metabolism. In con-
trast to the very prevalent and well-described phenomenon of feedback loops,
FFLs are not as common in metabolism, and their function is not immediately
obvious. In order to investigate these metabolic FFLs, the enzyme pyruvate
kinase (PK), which catalyses the last step in glycolysis, will be investigated
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in yeast cells. Fig 1.1 illustrates the molecular interactions of the glycolytic
pathway in Saccharomyces cerevisiae as modelled in this study. The PK re-
action results in the conversion of phosphoenolpyruvate (PEP) into pyruvate,
and it is coupled with ADP phosphorylation to yield ATP. PK is known to be
stimulated by fructose-1,6-bisphosphate (or FBP), which is the product of the
third reaction in glycolysis. Because PK is stimulated by a metabolite found
upstream in the pathway, this activation is described as a positive FFL.

Furthermore, several studies on bacterial PK have unearthed a pronounced
inhibitory effect of inorganic phosphate (Pi) on PK activity, showing higher
half-saturating constants for FBP in the presence of increased Pi concentra-
tions, suggesting a regulatory relationship between the two effectors [6]. The
experimental data put forth in this thesis suggests the same kinetic behaviour
for yeast PK. As such, another auxiliary aspect investigated in this project is
the inhibitory effect of Pi on PK, and the potential role it plays in the PK-FFL.
We postulate that it can function as an “off-switch" for the PK-FFL, allow-
ing us to experimentally investigate how glycolysis changes when the FFL is
inhibited. Fig 1.2 shows the three-noded PK-FFL. The nodes represent ei-
ther metabolites (FBP and PEP) or enzymes (PK), and the edges represent
reactions. Intermediary reactions may occur between the regulating and reg-
ulated node, as in the PK-FFL, where several reactions take place between
FBP synthesis and PEP conversion by PK.

The research question this thesis aims to address is: Can the purpose of a
positive feedforward loop in metabolism be understood in generic terms? To
investigate this question, we used a systems biology approach to study the
PK-FFL in yeast and how it regulates glycolytic intermediate dynamics. As
such, our approach was two-pronged: A combination of experimental work
and mathematical modelling was used to probe the FFL mechanism. With
regards to the mathematical modelling aspect of this project, we analysed
simple core models to formulate a core model hypothesis, and used a Hill-type
PK rate equation to adapt an existing yeast glycolytic model. Experiments
were performed to obtain fitted kinetic parameters for the new PK equation,
which is then incorporated into the full model which we aimed to validate with
experimental time-course data.

Chapter 2 of this thesis is a brief overview of the relevant literature on gly-
colytic regulation, regulatory loops, known FFLs and the regulation of PK in
yeast and other cell lines. Chapter 3 outlines the results of the first objective
of this project, which was the kinetic characterisation of PK using S. cerevisiae
extracts, in particular with regards to the respective activating and inhibitory
effects of FBP and Pi. Chapter 4 addresses the second objective, which was
to use the kinetic data obtained to perform a comparative analysis of novel
PK rate equations derived from allosteric models, which include terms for the
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Figure 1.1: A scheme of the model showing the molecular interactions of the
glycolysis pathway in S. cerevisiae strain X2180. The enzyme of particular interest
in this study, pyruvate kinase (PK) is shown in blue. Regulation of PK is indicated
by dashed arrows; with allosteric activation by FBP depicted in green (signifying the

feedforward loop under investigation), and inhibition by Pi in red.
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Figure 1.2: The PK-FFL illustrated with its activating effector, FBP. The bottom
panel shows the proposed inhibitory effect of inorganic phosphate (Pi) on the PK-
FFL.

observed regulatory effects of FBP and Pi on PK, and to obtain new parameter
estimates for PK. Chapter 5 outlines the results of the third objective, which
was to formulate a preliminary core model hypothesis for the general function
of FFLs in metabolic systems by setting up four minimal core model systems,
simulating the effects of an FFL and comparing them to the same systems
without a FFL. Chapter 6 addresses the fourth objective, where we aim to
illustrate the core model hypothesis for a real metabolic system, and outlines
the results of experiments investigating the glycolytic intermediate dynamics
of yeast after a glucose pulse to the pathway in the presence and absence of
Pi, as a proposed "off-switch" for the FFL. The fifth and final objective also
addressed in Chapter 6 was to validate the altered glycolytic model with the
novel PK equation using an independent set of time-course data for glycolytic
intermediates. Chapter 7 provides a general discussion and summary of the
findings presented in this thesis, as well as recommendations for future work.
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Background

2.1 Glycolysis

The Embden-Meyerhof-Parnas pathway for glycolysis is a linear series of ten
enzyme-catalysed reactions that converts glucose into two molecules of pyru-
vate, with ATP and NADH being formed by the free energy released [7]. The
reactions take place in the cytoplasm and are anaerobic. The intermediates
formed through these reactions can be funnelled off to various other pathways
in order to produce biomass in the form of proteins, lipids or nucleic acids.
Even though glycolysis is a process common to most organisms, the fate of
its end-product, pyruvate, is varied and dependent on the type of organism
or tissue. In cells that lack mitochondria (such as erythrocytes), or cells that
contain mitochondria but with limited oxygen supply (such as muscle cells
during exercise), anaerobic glycolysis occurs, otherwise known as fermentation
[8]. Depending on the cell type, the pyruvate is reduced and thus fermented
to products such as lactate, ethanol or acetic acid. In contrast, in the pres-
ence of oxygen, cells containing mitochondria transport the pyruvate into the
mitochondria where it is oxidised to acetyl coenzyme A (Acetyl-CoA) which
then passes on to the tricarboxylic acid (TCA) cycle to be metabolised into
carbon dioxide (CO3) and water, generating far greater amounts of ATP [9].
Thus, glycolysis occurs under both aerobic and anaerobic conditions, with the
pathway being exactly the same in both instances, except for the end product
formed and the ultimate energy yield.

The glycolytic pathway can be divided into two smaller sections, namely
lower and upper glycolysis. Upper glycolysis, also known as the preparatory
phase, consists of the first five reactions and requires ATP to convert glucose
into triose-phosphates. In contrast, lower glycolysis comprises the final five
reactions and produces ATP by converting triose-phosphates into pyruvate,
as such it is also known as the pay-off phase [8]. In total, 2 ATPs are con-
sumed and 4 ATPs produced, making the net energy product of glycolysis 2
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molecules of ATP per glucose converted [10]. Glycolysis can be considered
as performing two major roles: I) energy production and II) the formation of
biosynthetic precursors that are utilised by different metabolic pathways for
biomass production, metabolic stress protectants and secondary products such
as hormones [11, 2.

Control of the glycolytic flux is important as it contributes to circulating
glucose homeostasis and provides energy or biomass precursors vital for cell
proliferation. It has also been found that the flux through glycolysis is linked
to the concentrations of glycolytic intermediates that are sensed by various cel-
lular processes [12|. Indeed, the regulation of glycolysis is so integral to cellular
function that glycolytic dysregulation has been linked definitively to numerous
disorders. As will become evident, no consensus has yet been reached on which
enzymes, effectors, metabolites or external conditions contribute most to gly-
colytic regulation. Considering the recent implication of glycolysis in some
of the most pertinent diseases facing humanity today and its long-standing
importance for food security and alternative fuels, the continued interest in
glycolytic studies 80 years after it was first described comes as no big surprise.

As long as a functional description of its multi-layered regulation (which
includes changes in gene expression, post-translational modifications, and al-
losteric interaction) eludes us, the impetus for glycolytic studies remains, such
that we can learn to successfully intervene and manipulate the behaviour of
the pathway. The next section will explore regulation, how it contributes to
homeostasis and why it is important to include all its facets into glycolytic
models.

2.2 Regulation and control of glycolysis

First, it is important to distinguish the difference between control and reg-
ulation within the context of a systems biology view of metabolism. These
two terms are often used interchangeably, however a nuanced distinction has
been made by Sauro [13] who defines control as the ability to direct behaviour,
and regulation as the process which allows control to be achieved. Practically
speaking, in Metabolic Control Analysis (MCA), control refers to the ability
to change a flux or concentration, and regulation is the mechanism through
which homeostasis is achieved, i.e to resist changes [14].

Although the basic functions of glycolysis (such as the production of energy
equivalents and biosynthetic precursors) are conserved amongst species, the
environment in which it occurs can vary greatly amongst tissues and species.
Fluctuations in external environmental dynamics necessitate that the enzymes
involved regulate glycolytic flux such that the right products are provided at
the appropriate time in the appropriate quantities. Due to this, organisms
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and tissues have formed fine-tuned, multi-level systems that control metabolic
flux over both short and long periods of time [2]. As such, the kinetic prop-
erties of enzymes differ amongst species, which affords flexibility and enables
different organisms and tissues to adapt the glycolytic process according to
their unique needs. Furthermore, regulation of metabolism is also important
to prevent futile cycling. Many pathways in metabolism are reversible, and so
can proceed in both the forward and reverse direction. To prevent futile cy-
cling of a metabolite like ATP it is important that a pathway does not proceed
in both directions at the same time. To prevent this, enzymes of opposing,
non-equilibrium reactions must be regulated reciprocally. As such, the specific
activity of an enzyme in one pathway is activated whilst the specific activity
of an enzyme in the opposing pathway is simultaneously inhibited, often using
the same mechanism (e.g., binding of the same allosteric regulator or using
the same covalent modification which results in opposite effects). Partial fu-
tile cycling, however, is a valuable tool in regulation as there can be greater
control of flux if two opposing pathways occur at the same time [15].

The simplest view of the control of metabolic flux can broadly be divided
into two categories: The control of I) substrate availability and II) enzyme
activity. Broadly viewed, enzyme activity can be modulated by changes in
the amount of enzyme present due to the processes of synthesis and degrada-
tion, the type of enzyme by the expression of different isozymes that differ in
catalytic activity, and lastly the specific enzyme activity. The regulation of
specific enzyme activity is a major mechanism to control metabolic rates and
is brought about mainly by allostery and covalent modification. The outer-
most layer of regulation involves hormones and extracellular signals that allows
communication between tissues and cells. For example, the hormone insulin
is known to promote glycolysis, whereas glucagon has the reverse effect [16].
Hormone signals are considered long-term modulators as their influence cannot
be seen on a second or minute timescale. As such, these will not be discussed
in great detail in this study, but it is worth keeping in mind the many layers
of regulation as metabolic needs may fluctuate in a manner of seconds or over
prolonged periods. Metabolic responses to changes in the environment may
occur in seconds, far more rapidly than the information in DNA can be read
and applied. As such, enzymes may be allosterically activated or inhibited by
non-covalent interactions with small molecules called effectors, modulators or
allosteric regulators which regulate metabolic flux on a millisecond to minute
timescale and this is the chief concern of this study. The collective purpose of
all these processes is to funnel metabolites through biochemical pathways at
levels required by cells or tissue depending on their function and their dynamic
environment.

The flow of carbon metabolites through the pathway is defined as the gly-
colytic flux. Eric Newsholme in the 1970’s was one of the first to describe



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 8

the behaviour of non-equilibrium, near-equilibrium and steady-state reactions
in the context of flux control through metabolic pathways [17]. He postu-
lated that due to the fundamental thermodynamic structure of biochemical
pathways, they can be controlled at non-equilibrium steps by effectors and
covalent modifications [18|. Non-equilibrium reactions are known to be es-
sentially irreversible under physiological conditions as there is a negative free
energy change at these steps that may be lost as heat or transferred to another
molecule (for example the formation of energy-rich phosphate bonds). Because
of this, irreversible reactions within biochemical pathways such as glycolysis
are described as “committed steps”, or flux-generating steps. The movement of
the flux of metabolites through irreversible reactions results in heat, products
and intermediates that are needed for the maintenance of cellular function.
As such, individual tissues or cells contain the appropriate levels of enzymes
and metabolites needed to steer the flux in the pathway towards a particular
product at required levels to serve a physiological function [19]. Newsholme’s
studies illustrated that metabolic pathways contain multiple steps, all under
coordinated regulation which resulted in the description of these pathways as
a series of enzyme-catalysed reactions which is initiated with a flux-generating
step and ends with a reaction preceding another pathway (i.e. another flux-
generating step), or loss of product. With this principle as a guide, the equi-
librium and non-equilibrium reactions of several metabolic pathways were de-
termined experimentally. With the identification of non-equilibrium reactions
and the flux-generating steps, researchers determined the key regulatory reac-
tions and the key enzymes that catalyse them. According to these principles,
the classic view of glycolytic regulation was established: The three virtually
irreversible reactions HK, PFK and PK were identified as the key steps [18,
11]. The activities of these key enzymes are regulated by one or more of the
mechanisms described above, such as reversible binding of allosteric effectors
or by covalent modifications such as phosphorylation. Additionally, the dy-
namic metabolic needs dictate the rate of transcription to regulate the levels
of these key enzymes.

However, many studies since have sought to dispel this simplistic view and
have argued that other factors may play a more significant role. For example,
Tanner et al insisted that enzymes in lower glycolysis such as PK do not exert
significant flux control. He concedes that the two committed phosphorylation
steps PFK and HK are indeed significant flux-controlling steps, but that the
rest of the control lies with glucose import and product export [11]. Another
recent study by van Heerden et al [15] argues that the over-expression of
glycolytic enzymes does not result in increased flux through the pathway and
argues that glycolytic flux control lies outside of the pathway itself. He posits
that two factors play a role, the first being glucose import which controls
flux only when supply is limiting. According to this study the second and
most significant factor that regulates glycolytic flux is ATP demand. True to
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supply-demand logic as laid out by Hofmeyr [20], a surplus of ATP inhibits
several glycolytic enzymes and thus ATP supply. However, he postulates that
PFK is the primary regulatory target of ATP demand, as it is insensitive to
its product yet sensitive to ATP. As such, the flux is controlled by PFK not
based on its product, but instead on ATP demand which exerts global control
as varying ATP levels dictates ATP synthesis via glycolysis by acting on PFK
[2]. The importance of the ATP/AMP ratio is also frequently cited, since ATP
allosterically inhibits key enzymes such as PFK, whereas AMP reverses this
effect |9, 21|. Since AMP is the signal for the low-energy state, enzymatic
activity increases with a lower ATP/AMP ratio, meaning that glycolysis is
stimulated as a result of a drop in energy charge [7].

Among the dissenters to the classic view of regulation was an early group
that was opposed even to the notion of relegating certain enzymes in a net-
work as rate-limiting and the use of terms such as "pacemakers" and "key
regulators". In two independent seminal papers, Kacser and Burns [22] as well
as Heinrich and Rapoport [23]| lay the foundations for MCA, which sought
to dispel the reductionist approach of hunting for rate-limiting steps within
pathways, arguments which they saw as fruitless. In metabolic steady-state
under which these pathways are studied, all reactions along a linear pathway
by definition have the same rate, so in principle when one tries to identify
the "slowest" step along a pathway, it is the one least able to go faster. An-
other way of framing it would be to say it is the step which would result in
the greatest change in flux throughout the pathway as a whole if its rate was
varied. Classic biochemical observation of enzymes in isolation, removed from
its physiological context, seemed to be poorly equipped to deal with the issue
of identifying this step. As stated before, when the activity of the supposed
rate-limiting enzymes was varied experimentally, the significant changes in flux
through the pathway one would expect within this paradigm was simply not
observed. Thus, early evidence showed that flux through even the simplest
pathways is most probably dependent on the rate constants of several of its
constituent reactions, and that a new approach would be needed to tackle the
issue of metabolic control [24]. Apart from MCA, two other approaches were
being developed to address this issue: a flux-orientated approach by Crab-
tree and Newsholme [25, 26|, and biochemical systems theory by Savageau
[27]. Though a contentious debate during the conception of this field, the
arguments of which theoretical framework is most appropriate for studying
real systems was put to rest by a study that proved that in essence, all three
theories reach the end by different means [28|. However, MCA has enjoyed
greater popularity and longevity as the field of metabolic control matures, and
is arguably the most important theoretical framework in the system biologist’s
toolkit today for analysing metabolic networks and regulation. Whatever their
differences, these approaches fundamentally re-framed the question of control
from qualitative to quantitative. That is, from asking whether a step is rate-
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limiting or not, to being able to assign a value to how much metabolic flux
changes as the enzyme activity varies. In so doing, MCA subverted the widely
accepted view that the degree of displacement of a reaction from equilibrium
necessarily correlates with its degree of control of flux. These theories formed
part of the first steps towards a systems view of biochemical reactions (an
approach which is explored more fully in the final section of this chapter), and
formed a more secure theoretical base for the analysis of the kinetic behaviour
of metabolic pathways.

The purpose of this study is not to elucidate which mechanisms or steps
are most important for the regulation of glycolysis, but rather to establish
the role of FFLs within the context of metabolic regulation as a whole. How-
ever, it is useful to remember that whatever the extent of the importance of
these loops, they form part of an intricate system with multiple components
that are in constant communication with one another to ensure cellular needs
are met in terms of energy production and biosynthetic precursors, without
any waste. Within the scope of the regulation mechanisms outlined above,
metabolic loops form part of allosteric regulation as they usually involve inter-
mediate metabolites from a pathway that act as effectors to enhance or inhibit
enzymatic activity within the same pathway. The next section will explore
the significance and prevalence of regulatory loops in biological networks such
as metabolism and gene expression in order to elucidate a possible common
cellular need that gives rise to these patterns.

2.3 Network motifs within biological networks

Glycolysis is considered a metabolic pathway because it consists of a chain of
enzymes that converts a substrate to a product with a series of intermediate
steps. However, like most metabolic pathways, glycolysis does not function in
isolation, as many other pathways (such as the Pentose Phosphate Pathway,
TCA cycle etc) share the same intermediates [7]. As such, these pathways
are connected in such a way that they become interdependent on one another.
Because of this, metabolism can be described as a network, which is in actual
fact a sub-network of the global network of the cell [29]. The metabolic net-
work consists not only of the reactions that comprise metabolism and whole
metabolic pathways, but also the regulatory mechanisms that modulate the
enzymes catalysing these reactions. The rise of systems biology has enabled
scientists to abandon the reductionist approach of viewing enzymes in isola-
tion. Instead, metabolism can now be thought of in terms of networks, allow-
ing for flexibility, since the network is continuously reconfigured at the behest
of changing environmental conditions and physiological needs [30]. Viewing
metabolic pathways as a network allows us to consider metabolites and en-
zymes as nodes and the reactions connecting them as edges [31].
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Since glycolysis can be viewed as a network at systems level, it has been
discovered that it adheres to properties typical of these diagrams. Within the
larger network, sub-graphs known as network motifs have also been identi-
fied [32]. Network motifs are recurring patterns found in almost all types of
networks [16]. These patterns are identified by comparison with randomised
networks that are comprised of the same number of nodes and edges as the real
network, but which have random linkages between metabolites. Patterns that
are found more frequently in real networks than in randomised networks are
considered meaningful since they have been selected for over an evolutionary
timescale and thus confer some kind of advantage [31]. When one considers
that a single mutation can result in either the loss or addition of an edge due
to the disruption or creation of a binding site, as well as the frequency with
which mutations occur (especially in a rapidly proliferating organism such as
yeast), it follows that under such forces of randomisation, any pattern of edges
which persists in biological networks over vast amounts of time and across
several types of organisms must be selected for.

It has been established how glycolysis can be considered as a network, how-
ever, there are several other types of biological networks which all share these
motifs. The most notable and well-studied of these is the gene transcription
network. Extensive experimental and theoretical studies have been done to
identify network motifs in physiological circuits and to discern their unique
contributions and how each arises specifically to fulfil an advantageous func-
tion. A wvast body of work by Uri Alon lays out these circuits in terms of
the design principles they share and describes how these principles form the
basis of systems biology [31|. However, the bulk of his work is focused on gene
transcription networks, and although some similarities between transcription
networks and metabolic networks may exist, it cannot be presumed that the
function of any network motif will serve the same purpose in these distinct
circuits. Metabolic networks differ from transcription networks in several fun-
damental ways, most notably by the properties of their respective nodes. In
transcription networks the nodes are genes, which act vastly different from
their counterpart in metabolic networks, which can be metabolites, regula-
tors or enzymes [33]. For example, many network motifs described by Alon
serves a primarily time-sensitive response, providing an advantageous delay in
the activation or deactivation of gene transcription as defined by the cellular
needs that gave rise to the motif. Indeed, Alon stresses the importance of
taking time-frames into account when setting out to elucidate how a network
motif affects network dynamics, since the functions of gene transcription net-
works are almost entirely inferred from the separation of timescales between
binding of transcription factors (TF) and protein accumulation. With Alon’s
description of these networks, TF levels can be assumed to be at steady state
within a mathematical description of the entire network because the binding
of the TF to its DNA site reaches equilibrium in a matter of seconds, whereas
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the accumulation of the transcribed protein product takes several minutes to
hours. Pivotal as these considerations are in gene transcription networks, the
same assumptions would not necessarily be applicable in metabolic networks.
An important distinction is that there is no flow of mass in gene transcription
networks as there is in metabolism, and they also tend to operate on a slower
timescale.

However, these differences in spatial and temporal reactions of various net-
works to their built-in motifs merely serve to illustrate the extensive and vary-
ing functions they may serve depending on where they are found. It remains
true that these motifs are common to a vast array of networks. Within living
organisms network motifs have been identified in gene transcription, metabolic,
developmental, and neuronal networks; as well as in signal transduction and
protein circuits found in processes such as bacterial chemotaxis [31]. When
one speaks of a network motif as a pattern, one refers to the configuration
of the nodes and edges comprising this section of the network. This includes
the number of nodes and edges involved, as well as their relationship to one
another. In other words, this “sub-graph” is merely a selection of particular
nodes and their edges exhibiting network motif behaviour within the larger
frame of the complete network. For example, a metabolic network such as
glycolysis may be comprised of numerous metabolites and enzymes (nodes)
all participating in one or many reactions (edges), however when isolating a
network motif, it involves only the metabolites directly involved in the motif,
regardless of whether other intermediates are present between the nodes of
interest [34].

As such, network motifs are usually classified according to the number of
nodes they are comprised of. This is because the function of the motif is
dictated and limited by the number of genes or metabolites involved. Another
important factor for classification is the edge interaction with the nodes, and
also the sign of the edge. The sign of the edge refers to the effect it has on the
node. Within the gene transcription framework, activation (positive control)
occurs when the binding of the effector increases the activity of the enzyme.
Conversely, inhibition (negative control), is brought about when the binding of
the effector decreases enzyme activity [31]. Similarly, in metabolic networks,
any reaction defined as an edge in a network motif serves to either increase
or decrease the levels of the metabolites involved and is therefore classified
as a positive or negative edge, respectively. Since most metabolic reactions
are reversible, it has been more commonly proposed to define the connecting
reactions as reversible edges, though it is often useful to simplify the motif for
analysis by defining the edge sign by the reactions prevailing equilibrium as
found in vivo. For example, since the final reaction in glycolysis catalysed by
PK is virtually irreversible, one considers the edge to be positive (towards the
production of pyruvate).
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As the entire metabolic network of the cell is too complicated to analyse,
it is necessary to restrict attention to specific sub-systems within the larger
network. A review of the literature on biological networks emphasises the
importance of studying cellular pathways as a network due to their highly
interconnected nature, as opposed to merely studying them as discrete reac-
tions in isolation. This provides a framework for local analysis of the dynamic
properties of these networks as brought about by motifs that result in spe-
cific, modular functions [34]. The most common of these recurring patterns
fall within three broad classes as shown in Fig 2.1: Auto-regulation, simple
regulation, and regulatory loops [35]. Auto-regulation, or auto-catalysis, con-
sist of only one node and one edge, and can be further split into negative or
positive auto-regulation depending on the sign of the edge, in other words,
whether the metabolite inhibits or activates its own synthesis. Simple regula-
tion, which consists of two nodes connected by one edge is simply when one
metabolite activates or inhibits the synthesis of another. However, our interest
lies primarily with regulatory loops, which are characterised by having three
nodes and three edges. This category of network motif can further be split up
into feedforward and feedback loops, which will be explored in greater detail
in the following section.

Simple
0—0 0—0

Negative Positive

Feed-forward Autoregulation/) 0
\V4 1 Positive Negative

° ° Feedback

BV P a
© 0| 0-00-0

Negative Positive Positive Negative

Figure 2.1: Common categories of network motifs as can be found in most net-
works such as glycolysis. Simple regulation occurs when one metabolite regulates
the synthesis of another. Auto-regulation entails a single metabolite regulating itself.
Three-noded motifs are known as regulatory loops and are comprised of feedback and
feed-forward activation or inhibition. Positive regulation i.e., activation denoted by
A negative regulation i.e., inhibition denoted by @.
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2.4 Regulatory loops: Feedback and
feedforward

The literature on regulatory loops within the context of gene transcription
is extensive. However, as mentioned before these elucidations of mechanics
and function with transcription networks cannot be directly transposed onto
metabolic networks, and there is a dearth in the literature on what purpose
the FFL serves in metabolism specifically and how its structural properties
allow them to fulfil it. As such, detailed descriptions of several regulatory loop
sub-types and their functions within gene transcription networks can be found
elsewhere [31], and this section concerns itself with reviewing the available
literature on these loops specifically within the context of metabolic networks
such as glycolysis.

The two broad classes of regulatory loops are feedback and feedforward
loops. Feedback loops are prevalent in metabolism and as such have been the
focus of many studies in an attempt to capture their mechanisms of action,
origin and effects. Such studies have ascribed numerous biological functions
to feedback designs, such as signal amplification and bi-stability for positive
feedback; robustness and homeostasis for negative feedback; and polarisation
or oscillations for mixed feedback motifs [36, 34, 37]. Some well-known exam-
ples of negative feedback within glycolysis specifically include the inhibition of
PFK by citrate and ATP, so that enhanced TCA cycle activity which produce
these products provides negatives feedback which inhibits PFK and glycolysis.
For more examples, a recent review by Locasale explores the numerous known
feedback loops found within the regulation of glucose metabolism [12].

FFLs, however, are not as common and do not make as much intuitive sense
within a homeostatic framework. The uncertainty surrounding their exact role
within glycolytic regulation is the focus of this thesis. Though FFLs are slightly
more obscure than feedback loops, some known examples can be found within
metabolism. The activation of L-LDH by FBP in lactic acid bacteria is an
example of a glycolytic FFL that has garnered more attention in recent years
[38, 39]. One of the older examples of positive feedforward simulation is that
of PFK. Fructose 2,6-bisphosphate (F26BP), which is synthesised from PFK’s
substrate F6P had been found to be a strong activator of PFK. Thus, when
glucose increases, the resulting abundance of F6P stimulates the production of
F26BP, which in turn stimulates PFK [7]. More examples of such feedforward
loops within and outside of central metabolism are known [40]. It is interesting
to note that in many of the above examples of metabolic FFLs found in various
different organisms, whatever the enzymatic target, FBP and its derivatives
seem to be a recurring activator within FFLs. Similarly, PK, as the focus
of this study, has been proven to be activated by FBP via an FFL in yeast.
However, it is interesting to note that even in organisms and tissue types
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where FBP is not the activator, PK is often stimulated via an FFL by some
other intermediary metabolite. The stimulation of several isoforms of PK via
feedforward activation is explored in greater depth in the following section.

2.5 Pyruvate kinase

PK facilitates the 10th and final step in glycolysis, whereby the transfer of a
high-energy phosphoryl group from PEP to ADP yields pyruvate and ATP.

PEP + ADP <= pyruvate + AT P (2.5.1)

PK requires the monovalent cation K and the divalent cation M g** for its
activity. The reaction has a very large K., in the range of 10* —10* and is thus
virtually irreversible under physiological conditions. Due to the irreversible
nature of the reaction, it has classically been viewed to be a critical control
point of metabolic flux in lower glycolysis as mentioned in earlier sections.
PK is a homotetrameric enzyme with identical sub-units and responds to the
cellular energy state by transitioning between tense (T) and relaxed (R) states,
thereby regulating glycolytic flux [41].

In all three domains of life, PKs generate ATP in the ultimate step of gly-
colysis. Most PKs found in bacteria and eukarya are allosteric enzymes that
are activated by sugar phosphates [42]. FBP is the most common effector,
however, the activating metabolite varies across several organisms. F26BP,
ribose 5-phosphate and G6P have all been identified as specific feedforward
activating effectors of some bacterial PKs [43]. AMP, considered a sugar phos-
phate due to its phosphorylated ribosyl moeiety and the fact that it binds to
the same allosteric site as other sugar phosphates, is also a common general
regulator which acts largely in response to changes in cellular energy. Archaea
utilise slightly more unusual glycolytic pathways, but a recent study has found
that many PKs from the species in this domain is allosterically activated by
3PG generated in an irreversible reaction in the altered glycolytic pathway of
these archaea, and thus it also functions as a feedforward regulator [44]. It has
been proposed that the PK substrate PEP and the activating sugar phosphate
(such as FBP), cooperate to shift equilibrium towards the R state, while classic
inhibitors such as ATP and Pi favour the T state [45].

In mammalian cells, four PK isoforms have been identified: The L, R, M1
and M2 isozymes. The prevalence of a specific PK isoform in any given tissue
depends largely on its metabolic requirements. The R isoform is expressed
in erythrocytes. The L isoform is predominant in gluconeogenic tissues such
as the liver [46]. PKM2 is expressed in the kidneys and lungs, and is the



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 16

predominant isoform in proliferating cells such as embryonic and tumour cells.
The PKM1 isoform has been documented as being locked in the R-state, and
is often described as a constitutively active splice-variant of PKM2 [41, 47|.
Due to its high activity, it is found in adult skeletal muscle, brain and heart-
tissues which all require ample supplies of ATP. PKM1 is the only isozyme
that exhibits hyperbolic kinetics and is not allosterically activated by a sugar
phosphate via an FFL.

PKM2 is an interesting PK isoform due to its strong association with tu-
mour growth. PKM2 is the predominant PK isoform in cancer cells and ex-
hibits lower catalytic activity than its splice-variant PKM1, but is heavily
regulated to allow for metabolic flexibility and to aid with cellular adaptation
to changing environmental conditions [48]. It has been found that PKM2 can
shift glucose metabolism in favour of cancer cell proliferation, as it is a key
regulator of the glycolytic intermediates and their metabolic fate. One study
reported that decreased PKM2 activity leads to an accumulation of the gly-
colytic intermediates above the PK reaction, which means that they are more
readily available to be used as precursors for biosynthetic processes coupled
to glycolysis [49]. An example of this was a study that investigated a po-
tential link between the glycolytic and serine biosynthesis pathways, as both
have been proven to be crucial for cancer cell survival. If PKM2 is preferen-
tially expressed (as it is in cancer cells) overall PK activity drops and there is
a resultant accumulation of glycolytic intermediates which are then funneled
into the serine synthesis pathway. This is significant because they found that
depending on the properties of the binding site, PKM2 is independently al-
losterically activated by either FBP or serine [50]. A further study showed
that a certain intermediate of purine nucleotide biosynthesis called SAICAR
(succinylaminoimidazolecarboxamide ribose- 5’-phosphate), which is another
metabolite that is abundant in proliferating cells, also activates PKM2 [51]
and promotes cancer cell survival when nutrients are limited [52]. Both the
serine and SAICAR biosynthetic pathways shoot off from metabolites found
upstream from PK in glycolysis (3PG and G6P, respectively) [53], and it is
intriguing to suppose that these molecules act as independent effectors in ad-
ditional FFL loops that come into play when reduced PK activity results in
intermediate accumulation. Indeed, one study posits that it is erroneous to
view PKM2 merely as a constitutively inactive PK isoform, but rather as one
that can be specifically stimulated by ligands as dictated by cellular needs
[54]. As such, it is perhaps inaccurate to label PKM2 as inherently oncogenic,
as it would be more appropriate to associate low PK activity in general with
tumorigenicity [55].

The prevailing view at this point is that reduced PK activity creates a bot-
tleneck at the terminal end of glycolysis which is critical for tumour growth,
as it promotes anabolic metabolism and cell proliferation through the accu-



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. BACKGROUND 17

/ SAICAR «——— G6P \

V

Y

3G

<

FBP «+——

-

Serine +—

)

U

EP

PKM2 ( ﬁg‘;

N\ -/

Figure 2.2: The PK-FFL illustrated with its most common activating effector, FBP.
The nodes in metabolic networks can be metabolites (FBP and PEP) or enzymes

(PK).

mulation of glycolytic intermediates [47]. It plays a significant role in altered
cellular metabolism and it has been proven that the switch from the adult M1
PK isozyme to the M2 splice-variant in tumor cells is responsible for these
cells expressing the metabolic phenomenon known as the Warburg effect [56].
Indeed, replacing PKM2 with other more active PK isoforms has been shown
to reduce abnormal cellular metabolism [51].

The most important difference between the PKM1 and PKM2 two isoforms
lies in the fact that PKM2 is stimulated by FBP via an FFL, whereas PKM1 is
not [57]. The constitutively active PKM1 exhibits much higher activity than
PKM2, which requires FBP stimulation to reach its maximal activity levels.
Notably, when PKM2 is inhibited, PEP levels subsequently rise which has been
found to inhibit PFK-2 in certain cell lines. F26BP (a well-known activator of
PFK) levels consequently drop as PFK-2 is responsible for its synthesis, leading
in turn to decreased FBP concentrations. Studies have shown that cells which
predominantly express PKM2 have lower overall fructose-bisphosphate levels
when compared to PKM1 cells, which exacerbates the already low PK activity
in these cells, as there is now also less of its allosteric activator FBP to bolster
PK activity [56].

The splice-variants PKM1 and PKM2 in mammalian cells are by no means
an exception. Research into the isozymes specific to several classes of other
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organisms continue to reveal the presence of PK isoforms that differ specifically
with regards to whether they are sensitive to the feedforward activator FBP (or
any other sugar phosphate fulfilling the same role). For example, Escherichia
coli PK was also found to be activated by FBP [58]. However, further studies
revealed that two PK isoforms exist in F. coli, one that is sensitive to FBP,
and one that is not [59]. A study by Boles et al revealed that yeast cells
too encode a second functional PK isozyme that is catalytically insensitive to
FBP [43]. They propose that the expression of this unregulated PK isoform
is de-repressed only when glycolytic flux is low and intracellular FBP levels
are not sufficiently high enough to activate the normal PK variant. This trend
in the variable expression of PK isoforms that are either regulated via an
FFL or not hints that the FFL serves a very specific, evolutionary purpose.
Furthermore, the persistent prevalence of a FFL that activates PK across most
living organisms speaks to the importance of this network motif for central
cellular metabolism. The following section will look more closely at the PK-
FFL specifically and the varying theories that have been put forth to date to
explain its significance, as well as the potential role of Pi in the PK-FFL.

2.6 The PK-FFL

The background given in the preceding sections of this literature review aims
to highlight the importance of the regulation of PK within the context of gly-
colytic flux control. As is evident, glycolysis itself as a metabolic process is
fairly well-conserved between organisms, from the simplest bacteria to man.
Therefore, so too are its constituent enzymes and the mechanisms by which
they are regulated. The overarching aim of a systems biology approach is to un-
derstand the properties of a system such as glycolysis or cellular metabolism,
which emerges from the interaction of its well-characterised parts. S. cere-
vistae, as one of the simplest eukaryotic organisms that derives its energy from
glycolysis, is one of the most important model organisms for studying bio-
chemical pathways and genes. Many gene sequences are highly conserved and
encode for similar proteins in mammals. Systems modelling has enabled meth-
ods of investigating the interactions among various active components of the
cell, and comparative analysis of these pathways has shown that substantial
homology exists between the functional pathways of humans and yeast, includ-
ing the cell cycle and central metabolism, and thus glycolysis. Indeed, these
conserved biochemical pathways were originally identified and characterised in
yeast. Because of this, S. cerevisiae is used in this study as a model organ-
ism to study the role of a positive FFL in regulating glycolytic intermediate
dynamics.

As explored previously in this text, PK has risen and fallen in estimations
of importance for glycolytic flux control over the years. As the catalyst of one
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of the three virtually irreversible reactions of glycolysis, PK had initially been
considered a rate-limiting step and a critical point of glycolytic flux control.
Later studies disputed this view [56, 11]|. It does not seem that consensus has
yet been reached as to a definitive description of PK’s exact role and how its
regulation allows the fulfillment of that role. This is not surprising considering
the multiple facets and layers of hierarchical regulation which confounds a
simple description. However, the allosteric activation of PK by FBP via an
FFL has garnered some interest over the years, and as far as is evident, three
theories have been put forth as to its significance.

The first theory is based on PK’s implication in yeast’s ability to switch
rapidly between respiratory and fermentative glucose metabolism in response
to changing oxygen and sugar levels. S. cerevisiae exhibits remarkable metabolic
flexibility in response to fluctuating substrate levels. It has been proven that a
rapid switch to fermentative metabolism upon glucose addition is initially facil-
itated entirely through changing levels of the substrates, products and effectors
of glycolysis. A systems level study that calculated metabolic coefficients es-
tablished that regulation was entirely dominated by metabolic regulation in
the first 45 minutes after switching to fermentative conditions. It was only
after this initial period that transcription, translation and post-translational
modification came into play [60]. Once it had been established that metabolic
regulation was almost exclusively responsible for the rapid shift between gly-
colysis and gluconeogenesis, PK had once again been singled out as one of
the key enzymes whose regulation by these glycolytic metabolites and effec-
tors was crucial for the switch. It has been found that even though yeast PK
is covalently modified in response to glucose addition, allosteric regulation is
solely responsible for the control of PK activity. As such, this allostery allows
switch-like rapid activation and inhibition of PK upon glucose addition and
removal, respectively. Thus, not only is PK regulation central to the switch be-
tween gluconeogenesis and glycolysis, but the activation of PK by FBP results
in metabolic flux being controlled exclusively by enzymes and core metabo-
lites. This once again speaks to the presence of intrinsic metabolic regulation,
which does not rely on other methods of regulation such as transcription, co-
valent modification or signalling by small molecules [61]. The first theory thus
propounds that the PK-FFL mechanism allows cells to sense changes in glu-
cose availability by increasing glycolytic rate [15]. Gluconeogenic growth is
also associated with low FBP concentrations, which consequently results in
low PK activity. As such, it has been postulated that the positive control of
PK by FBP prevents futile cycling during gluconeogenesis and provides the
mechanism for switching between glycolysis and gluconeogenesis so that these
two opposing pathways are not operating simultaneously. When glucose is in
excess, PK activity needs to be high enough to supply ample amounts of pyru-
vate and ATP. But under gluconeogenic conditions when glucose availability
drops, it is required for PK activity to be down-regulated to avoid futile cycling
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between pyruvate and PEP [43].

The second theory proposes that the FF activation of PK by FBP ensures
robustness to rapid changes in substrate availability through the maintenance
of sufficient PEP levels, which is needed for sugar uptake and phosphorylation
in organisms that use the phosphotransferase system for glucose uptake [62].
It is postulated that the PK-FFL prevents an irreversible metabolic collapse
during sporadic periods of starvation by introducing a "safety valve" that
regulates the utilisation of PEP by PK based on glucose availability. FBP
activation and Pi inhibition of PK, as well as the regulation of PFK by PEP,
are important for an increase in PEP and delayed depletion of FBP [63]. This
theory claims that the PK-FFL is required for the rapid increase in PEP
concentrations after glucose exhaustion. The increase in PEP assures rapid
uptake of glucose upon its re-availability. Thus, high PEP concentrations are
maintained after glucose exhaustion which is a supposed requirement for the
resumption of glycolysis when glucose is restored |64]. However, it has also
been found that that this FFL is present even in organisms that do not rely on
high PEP concentrations to start-up glycolysis upon glucose addition, which
casts doubt over this theory for the PK-FFLs sole functional existence.

The third theory discredits the importance of maintaining high PEP lev-
els. Instead, it favours the idea that high FBP levels tend to be indicative of
high flux, and that the PK-FFL aids in pulling at the intermediates in lower
glycolysis, thereby reducing the products of glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH). Since GAPDH functions close to equilibrium and is
very sensitive to mass action, the rapid removal of its products in this sce-
nario ensures that its activity increases with an increase in flux [14]. This is
important, because if upper glycolysis outpaces lower glycolysis, a significant
build-up op intermediate metabolites can occur in conjunction with reduced
ATP production [65]. In essence, what this theory proposes is that the PK-
FFL acts as a safety measure by accelerating the lower part of glycolysis when
FBP starts building up to prevent a metabolic imbalance which could result
in growth arrest [15]. One study of a patient with a erythrocyte PK mutation
which resulted in the anomalous absence of feedforward activation of PK by
FBP reported that the patient had glycolytic intermediate metabolite levels
that were four times higher than normal [66]. The aforementioned study was
in fact a modelling study of feedforward activation in human erythrocyte gly-
colysis and is remarkably pertinent to this project due to the overlap in aims.
It was only discovered quite recently due to its relative obscurity, however it
is of exceptional interest to the subject matter at hand and is discussed in
greater depth in chapter 5.

Even though these varying theories are intriguing, they are purely specu-
lative at this point and no study has definitively proven or discredited any of
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these ideas. Indeed, though these propositions are usually rooted in some form
of experimental observation, they are equally simply contradicted by other ex-
periments. Certainly, it may even be possible that these theories could all
prove to be true simultaneously. Whatever the case may be, one thing these
theories seem to agree on is that the PK-FFL must be a significant and potent
regulatory mechanism within glycolysis.

2.7 The role of Pi in the PK-FFL

The final factor considered in this thesis is the potential role Pi plays on the
PK-FFL. Some studies on various bacterial isoforms of PK have unearthed a
pronounced inhibitory effect of Pi on PK activity. Specifically, these studies
showed higher half-saturating constants for the activator FBP in the presence
of increased Pi concentrations, suggesting a regulatory relationship between
the two effectors |67, 68, 6]. It has since been found that Pi inhibition of
PK is a fairly conserved phenomenon in lactic acid bacteria and several other
classes of organisms, in contrast to the high variability in its activating effector
which may reflect metabolic differences in organisms based on their adaption
to different environments, as discussed earlier in this review [69].

Even though the inhibitory effect of Pi on PK has been known for years,
very few existing models or studies of central metabolism take this effect into
account. A study on lactic acid bacteria revealed that during starvation con-
ditions, phosphate is mostly incorporated into PEP, 3PG and 2PG or as un-
bound Pi. However, this shifts towards FBP and ATP during glycolysis. It
was found that FBP accumulation is dependent on extracellular phosphate
concentration, and that model fits to experimental data were remarkably im-
proved when phosphate uptake is included in the model [38]|. Indeed, it has
been stressed that the concentration of free phosphate is a potentially impor-
tant regulator, and should be included in glycolytic models as a free variable
so that the total phosphate pool is conserved, i.e. so that the concentration of
free Pi is dependent on the amount of glycolytic intermediates and ATP [14].
Making Pi a free variable rather than an input variable accounts for moiety
conservation and allows the total phosphate pool to be conserved, as it is in
vivo [63].

2.8 The Systems Biology approach

The use of a combination of computational modelling and experimental work,
as done in this project, is a hallmark of the interdisciplinary systems biology
approach to biochemistry, which eschews the reductionist approach that has
dominated the field in the past in favour of an integrated, systems view of
cellular function and metabolism. This is valuable as it allows for compu-
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tational experimentation that is less resource-intensive and more robust, yet
flexible, than traditional experiments performed in the lab. The construction
of models allows for the realistic prediction of the behaviour of complex sys-
tems such as cellular metabolism under specific conditions and with various
perturbations. The maturation of this comparatively new field in biology has
seen various approaches to metabolic modelling with varying levels of success
and applicability. A study by Teusink et al used the novel approach of at-
tempting to use the kinetic data measured in vitro to attempt to describe
glycolysis as it is in vivo, instead of fitting the data to the observed behaviour
of the pathway [70]. This study was one of the first of its kind, and sepa-
rated the metabolic modelling field into two distinct approaches: The more
traditional "top-down" approach and the novel "bottom-up" approach. The
phenomenological top-down approach goes from a general, broad view of the
system as a whole and tries to break it down into its smaller operating com-
ponents, whereas the mechanistic bottom-up approach starts with acquiring
knowledge about the fundamental working sub-units of a system that gives
rise to the more complex system. The bottom-up approach by Teusink et al
was considered a successful feasibility study for modelling yeast glycolysis in
terms of its constituent enzymes. Though not free from criticism and dispute,
it lay the groundwork for various improvements, alterations and adaptations
to these types of models over the years. As such, the approach in this thesis
aims to build on one such a mechanistic model by Du Preez et al [71] that has
sprouted from the original Teusink study in yet another attempt to refine its
predictive power.

In terms of metabolic modelling, a bottom-up approach means that ki-
netic models are constructed via the description of individual reactions within
a given pathway. The kinetic behaviour of each enzyme that catalyses these
reactions is dictated by its unique characteristics, and this enzyme behaviour
can be described mathematically by various models that have been developed
to describe enzyme kinetics. This results in the derivation of a rate equation
unique to each enzyme that is based on its substrates, products and effectors
and how all these components interact to determine the velocity with which the
reaction it catalyses proceeds. These equations are then fitted to experimen-
tal kinetic data obtained for each enzyme in isolation. The kinetic equations
with its set of kinetic parameters, as well as the full pathway stoichiometry are
then used to construct ordinary differential equations (ODEs), and the full set
of interdependent ODEs for a given pathway can be integrated over time to
simulate changes in metabolite concentrations. This allows for the visualisa-
tion of the change in concentration of the intermediary metabolites when the
kinetic parameters of each step is known. As such, the model is constructed
by fitting each equation individually to its own discrete biochemical data-set,
which makes this approach especially rigorous [70]. After model construction
comes model validation, and this essential step of kinetic modelling requires
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demonstrating that the full model which has been constructed from the char-
acterisation of enzymes in isolation can satisfactorily predict the steady state
flux and metabolite concentrations of its pathway over time. As such, when
the model is used as a whole it is not fitted to experimental data, but in-
stead predicts or attempts to simulate it in an attempt to discern whether the
proposed mechanisms can explain the observed behaviour of the system [72].

This project employs several of these key aspects of the system biology
approach. The following chapter deals with the kinetic characterisation of the
enzyme of interest which would allow the selection of a PK rate equation based
on its unique kinetic behaviour in response to its known effectors. The kinetic
parameters obtained in Chapter 3 are used to populate an existing glycolytic
model for yeast glycolysis which we attempt to validate in Chapter 6.
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Chapter 3

Kinetic characterisation of yeast
pyruvate kinase

3.1 Introduction

The objectives for this chapter were to capture the kinetic effects of both FBP
and Pi on PK activity. To this end we kinetically characterised yeast PK.
Cell-free extracts of the X2180 strain of S. cerevisiae were used to perform
LDH-coupled spectrophotometric assays. The X2180 strain was used as this
was the strain used to develop the detailed mechanistic model we adapt in this
study |71]. The activation of PK by FBP is a well-documented phenomenon,
however, in order to fully describe the FFL it is necessary to have a precise de-
scription of the kinetic behaviour of yeast PK both under standard conditions
and when activated by FBP. Furthermore, even though PK inhibition by Pi
is alluded to in literature, there seems to be no full description of either the
extent or mechanistic origins of this effect. It seems likely that Pi would affect
numerous enzymes in glycolysis [38], which is certainly a confounding factor
in this study. However, these assays may provide insights on how Pi affects
not only PK, but also the PK-FFL.

These assays served to provide the experimental data that is necessary to
estimate the kinetic parameters used in the model construction, and also al-
lowed for comparison of different kinetic equations in order to possibly shed
light on the mechanisms by which FBP and Pi exert their respective activat-
ing and inhibitory effects. As such, these assays were performed under four
conditions, namely; control conditions, with FBP, with Pi and also with a com-
bination of both FBP and Pi. In this chapter, the focus is on the experimental
data and the effects of FBP and Pi on PK’s binding constants and other kinetic
parameters is only described semi-quantitatively. The utility of these assays
in this study is two-fold: Comparative analysis of the PK kinetic parameters
could provide a better understanding of how the two proposed effectors work

24
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to alter PK activity. Secondly, these kinetic data were used in Chapter 4 where
a full theoretical analysis is performed by fitting novel PK rate equations to
the data and obtaining numerical values for the parameters, and then com-
paratively analysing these model fits. For model construction, it is necessary
to quantify the kinetic parameters of each enzyme in the system, a feat which
Teusink [70] and (to some extent) Du Preez [71] have already accomplished in
the construction of their models. However, since we are adapting the dupreez6
mechanistic model specifically with regards to its description of PK activity, it
is necessary to independently determine PK kinetics. This is especially impor-
tant since we are including previously omitted terms for FBP activation and
Pi inhibition, as the kinetic constants for these two effectors were not included
in the original model. This data thus also serves to aid in parameterising the
full glycolytic model which we attempt to validate in Chapter 6.

3.2 Materials and methods

3.2.1 Buffers and solutions

All buffers, solutions and media were prepared with reverse osmosis water
and autoclaved unless explicitly stated otherwise. Reagents and metabolites
sourced from Sigma-Aldrich and Merck & Co..

3.2.2 Culturing S. cerevisiae X2180 cells

A stock solution of 100 pL S. cerevisiae strain X2180 was used to prepare a
spread plate on solid yeast growth media (YGM) (10 g/L yeast extract, 20
g/L peptone, 20 g/L glucose and 20 g/L agar) which was incubated at 30 °C
overnight. A streak plate was prepared from the spread plate and a single
colony of X2180 cells was used to prepare a starter culture by inoculating
liquid YGM (100 mM Potassium phthalate, 1% m/v glucose and 6.7 g/L yeast
nitrogen base) which was placed on an orbital shaker at 30 °C and allowed
to grow overnight. The starter culture was transferred aseptically to 400 mL
liquid YGM (1% v/v) and the Erlenmeyer flasks were incubated at 30 °C on
an orbital shaker for the yeast to grow in suspension until glucose exhaustion
(£ 17-22 h). The cells were then harvested at diauxic shift. The yeast solution
was transferred to Beckmann centrifuge bottles and centrifuged (3 500 rpm, 15
min, 4 °C). The supernatant was discarded, and the pellets resuspended and
washed in 40 mL phosphate buffer (100 mM KH,PO,, pH 6.8) in Falcon tubes
and centrifuged (3 500 rpm, 15 min, 4 °C), twice. Pellets were resuspended in
phosphate buffer (5 % m/v) and starved for 3 h at 30 °C to allow the cells to
use any remaining energy stores and glycolytic intermediates. After starvation,
cells were centrifuged (3 500 rpm, 15 min, 4 °C) and pellets were stored at -20
°C.



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. KINETIC CHARACTERISATION OF YEAST PYRUVATE
KINASE 26

3.2.3 Preparation of cell-free X2180 extract

For cell lysis, pellets were weighed and resuspended in 1:1 m/v 1x PIPES
buffer (50 mM PIPES, 0.1 M KCI, 5 mM MgSO,). Dithiothreitol (DTT)
(100 mM) and phenylmethylsulfonyl fluoride (PMSF) (100 mM) were added,
followed by 1:1 m/m of acid-washed glass beads. Cells were vortexed for 2 min
and placed on ice for 30 s for a total of 8 cycles, and then centrifuged (3 500
rpm, 5 min, 4 °C) to pellet the beads and cell debris. The supernatant was
transferred to Eppendorf tubes and centrifuged (14 000 rpm, 20 min, 4 °C)
once again to further remove any remaining cellular debris. The supernatant
was aliquoted into 50 pL. samples which were stored at -80 °C until use. The
protein concentration of the cell-free extract was measured using Bradford’s
reagent [73]. Bovine Serum Albumin (BSA) was prepared and used as a protein
standard over a range of 0 - 4 mg/mL. A series of yeast lysate dilutions or BSA
was incubated with Bradford reagent in a 96-well plate before measuring the
absorbance at 595 nm using a SPECTROstar Nano Absorbance Plate Reader.

3.2.4 LDH-coupled enzyme Assays

Pyruvate kinase activity was quantified in the forward direction (due to its
irreversible nature) at 30 °C by coupling the reaction to the enzyme LDH and
evaluating the change in absorbance at 340 nm due to reduction/oxidation
of the secondary metabolites NADT and NADH with a SPECTROstar Nano
Absorbance Plate Reader. A standard PK kinetic assay protocol was followed
as found in the original Teusink study [70|. Assays were performed a total
of 5 times in 96-well microtiter plates at varying ADP concentrations (0, 0.1,
0.2, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 10, 15 and 20 mM) as well as varying PEP
concentrations (0, 0.1, 0.2, 0.5, 1, 1.5, 2, 3, 4, 5, 8 and 10) with 0.8 mM NADH,
1x PIPES buffer, 0.2 nL. LDH and cell-free extract (CFE) to a 0.025-0.07 ug/uL
final protein concentration (chosen for the optimal linear range) in the absence
of both FBP and Pi, with FBP (1 mM), with Pi (50 mM) and in the presence of
both FBP and Pi (1 mM and 50 mM, respectively). ADP assay reactions were
initiated after 2 min of stabilisation in the spectrophotometer with 5 mM PEP
and allowed to proceed for 20 min. PEP assay reactions were performed with
10 mM ADP and an additional 6 mM MgSO, to ensure sufficient cofactors and
were also initiated with PEP after 2 min of stabilisation. Assays with FBP
were initiated with the cell extract instead of PEP to prevent other enzymes
in the lysate from consuming the FBP.

3.3 Results and discussion

The PK kinetic assays resulted in the saturation curves for ADP and PEP
depicted in Fig 3.1 and Fig 3.2 both in the absence and presence of FBP
and Pi. These curves provide greater insights into the mechanisms by which
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FBP and Pi regulate PK activity. While it is generally known that FBP
activates PK via allosteric regulation, Pi inhibition remains poorly described
in literature.

ADP

:
i # : ° . ! o —Fne -

° | ® +FBP -Pi

PK activity (U/mg protein)

+ | @ +FBP +Pi

.
% ; | ® —FBP +Pi
¢

5 |
Of

5 10 15 20
[ADP](mM)

Figure 3.1: Substrate saturation curves for yeast PK substrate ADP under control
conditions (-FBP -Pi, blue), with 1 mM FBP (+FBP -Pi, green), with 50 mM Pi
(-FBP +Pi, purple) and with 1 mM FBP and 50 mM Pi (+FBP +P1i, navy). ADP
concentrations shown on X-axis in mM. PK activity shown on the Y-axis in U/mg
protein. Three independent experiments were performed (n = 3) for a total of five
technical repeats. Error bars represent standard error of the mean (SEM).

The results for assays with neither activator nor inhibitor (- FBP -Pi) as
shown in blue for both substrates ADP and PEP show positive cooperativity
apparent from its sigmoidal shape. Even though PK displays sigmoidal kinetics
towards both substrates the allosteric effect seems to be more pronounced for
PEP. As displayed in green, it is evident that FBP allosterically activates PK
(+ FBP -Pi), resulting in a shift to a hyperbolic shape for both substrate curves
and decreasing the substrate concentrations required to reach half-maximal
velocity. These values are denoted as [PEP|gs and [ADP]y5, and they are
similar to but not directly comparable to the K,, value in classic Michaelis-
Menten kinetics [74]. These values and their implications are only discussed
semi-quantitatively here. Although both [PEP]y5 and [ADP]qs decrease in
the presence of FBP, the effect is more pronounced for PEP in agreement with
previous studies [43, 42, 75]. Notably, the V.« does not increase significantly
in either case.
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Figure 3.2: Substrate saturation curves for yeast PK substrate PEP under control
conditions (-FBP -Pi, blue), with 1 mM FBP (+FBP -Pi, green), with 50 mM Pi
(-FBP +Pi, purple) and with 1 mM FBP and 50 mM Pi (+FBP +Pi, navy). PEP
concentrations shown on X-axis in mM. PK activity shown on the Y-axis in U/mg
protein. Three independent experiments were performed (n = 3) for a total of five
technical repeats. Error bars represent standard error of the mean (SEM).

In purple, the data (- FBP +Pi) show that Pi inhibits PK by increasing
the half-saturating substrate concentrations, [PEP|q 5 and [ADP]q 5, whilst also
decreasing the V.. Even though it was known a priori that high Pi concen-
trations would inhibit PK, the kinetic profile could not be predicted due to a
lack of understanding of the mechanism by which Pi exerts its effect. These
assays elucidated that Pi acts as an uncompetitive inhibitor, which not only
decreases the V., slightly, but also increases [PEP|y5 and [ADP]y 5, whilst
retaining a slightly sigmoidal shape in the kinetic curves, once again, more no-
tably so for PEP. The curves in navy colour depict the assays performed with
both FBP and Pi (+ FBP +Pi) and indicate that FBP can overcome the in-
hibitory effect of Pi to an extent at the concentrations used in this experiment,
as it decreases |PEP|q 5 and [ADP]|q 5 when compared to the Pi only conditions.
Even though these values are not restored to the levels seen when PK is fully
activated, the activation by FBP is still evident in the new, slightly hyperbolic
shapes of the saturation curves when compared to the control curves, even
though they exhibit diminished activity as brought about by the Pi inhibition.

The kinetic assays show that PK exhibits sigmoidal kinetics towards both
substrates under control conditions. FBP (1 mM) was found to act as an



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. KINETIC CHARACTERISATION OF YEAST PYRUVATE
KINASE 29

allosteric activator whereas Pi (50 mM) acts as an uncompetitive inhibitor.
A combination of both FBP and Pi shows that FBP is able to overcome the
inhibitory effect of Pi to a certain extent at the concentrations used in this
experiment. These assays thus served to confirm the well-described thesis that
yeast PK is regulated by FBP via an FFL. Furthermore, based on these results
we postulated that Pi may be able to act as an "off-switch" for the PK-FFL by
suppressing FBP activation of PK. In other words, Pi may be able to selectively
remove the activation of PK by FBP.

The kinetic data for PK obtained in this chapter is used in Chapter 4 to
analyse rate equations for PK based on different allosteric models by evaluat-
ing their goodness-of-fit to the experimental data presented here. Thus, where
the kinetic effects of PK’s effectors are only described semi-quantitatively here,
numerical values for these parameters will be estimated in the following chap-
ter. The resulting parameter values from fitting the PK equation to the kinetic
data is also used in Chapter 6 when we attempt to validate the full yeast gly-
colytic model which we have adapted to include the novel PK rate equation.
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Chapter 4

Comparative analysis of novel PK
rate equations

4.1 Introduction

The seminal study by Teusink et al [70] that attempted to discern whether
yeast glycolysis can be understood in terms of the kinetic properties of its
enzymes led to the development of one of the first full kinetic models for
glycolysis for which the parameters were directly measured experimentally.
This model has seeded the development of several other glycolytic models
adapted for such factors such as cell type, cellular environment etc. As such,
an existing kinetic model, dupreez6 [71| developed particularly for cell-free
extracts of S. cerevisiae X2180 could be sourced from the JWS online database
[76]. However, similar to the original study, this model does not account for
the known stimulation of PK by FBP. The concentration of FBP required
to maximally stimulate PK is quite low, a fact which played a major role
in the decision to not account for the allosteric regulation of PK by FBP in
Teusink’s original study. They asserted that cellular concentrations of FBP
was always significantly higher (by 1-2 orders of magnitude) than the half-
saturating substrate concentration of FBP and thus PK would be perpetually
saturated with FBP, and thus continually maximally stimulated. As such, they
used hyperbolic Michaelis-Menten kinetics for the PK rate equation. When one
considers the PK kinetics obtained in the previous chapter of this study, this
does not seem like an unreasonable decision, as PK exhibits fully hyperbolic
kinetics in the presence of 1 mM FBP.

Nonetheless, an older study by Hess [77] attempted to derive the PK equa-
tion with allosteric kinetics as observed experimentally. This seemed like a
prudent inclusion when a study by Crow et al a few years later revealed that
even though the intracellular concentration of FBP was much higher than the
minimum concentration needed to fully activate PK, this significantly higher
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FBP concentration may have been required to activate the enzyme n vivo to
overcome Pi inhibition [6]. According to this paper, [F'BP]q 5 values obtained
in kinetic studies may not be relevant in vivo where high concentrations of
phosphate ions could be present. A study is cited where intracellular Pi con-
centrations were found to be 10 times higher than that of the growth media
the cells were cultured in, and since 1 mM Pi increases the [F'BP]y 5 value by
a factor of five, quite high FBP concentrations may be required to activate
PK in vivo. As such, other studies since have used the allosteric equation with
minor alterations |78|. Later, a paper by van den Brink et al claimed that the
flux through PK could only be satisfactorily predicted in their study when its
activating effector, FBP, was added to the Teusink model [60]|. However, there
seemed to be no consensus on whether including the allosteric regulation of
PK improved model predictions until another paper by Kiewiet et al [79] was
published 12 years later. Kiewiet, along with authors that were part of the
original Teusink paper, aimed to revisit the Testing Biochemistry study and
contended that they were able to improve the modelling results substantially
by including the appropriate allosteric regulation where necessary, amongst
other modifications. They asserted that the implementation of the allosteric
regulation of PK by FBP proved crucial to these improvements, as it may play
a pivotal role in cellular contexts where the FBP concentration falls below the
concentration needed to maximally stimulate PK.

Considering that this project aimed to specifically study the effect of the
PK-FFL on glycolysis, it seemed prudent to test PK rate equations that include
a term for FBP. In order to fully describe the effect of the FFL, it may be crucial
to account for the allosteric regulation of PK by FBP. Moreover, since we have
postulated that Pi may act as an "off-switch" for this FFL, and considering
the kinetic data in Chapter 3 that shows that Pi inhibits PK, we also decided
to include Pi in the PK rate equation as an inhibitor. However, since various
models for allosteric enzymes exist, it was not immediately obvious which
would be the best choice. As such, a comparative analysis of three novel PK
rate equations sourced and adapted from literature was performed in order
to discern which would be the best choice for inclusion in the full dupreez6
model that we attempt to validate in Chapter 6. These equations are based
on the classic Monod-Wyman-Changeux (MWC) [80] and Hill [81, 82| models
for allosteric regulation.

The first rate equation is based on the two-substrate, two-product MWC
model with concerted allosteric regulation used by Rizzi et al [78] and Van den
Brink et al [60], but adapted in this study to describe inorganic phosphate as
the inhibitor instead of ATP. The allosteric constant, L., which is the ratio
between the T and R states in the absence of any ligand, was determined based
on experimental pH as in Galazzo et al [83] and n = 3 [46, 72, 84].
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PEP PEP]\n—
v — VMax[KPEP] (1 [I(PEP}> ! [ADP] (411)
I ( (1+}{P;]i)n )(1 n [PEP])n [ADP] + Kapp
0 (1+I[5FBBPI]3)R Kppp

The second rate equation is based on the bi-substrate MWC equation found
in Hanekom et al [85], once again adapted to include FBP activation and Pi
inhibition

V.,  |ADP|PEP] (14 [PEP] (1 [ADP] =

v = 2 KappKpEp Kpep Kapp
[P1]
[PEP]\,, [ADP]\,, Atz \n [PEP] [ADP]
<1 + KPEP) (1 + KADP> T Lo((l-i—l[fFiPl]g)) (1 + KTPEP)(l ™ KTADP)
(4.1.2)

The third equation was based on the bi-substrate reversible Hill equation
outlined by Rohwer et al [86], with two independent modifiers as described
by Hanekom [87] and Veith et al, who manually calculated the K., value and
mass action constant I" for 30 ° C [69].

ViraraB s L (atm) =1 (g4

_ Eq
U = 7 7 o R ok
(1+H1)(1+N2) (1+0'1 Ml)(1+0'2 l"2) h h h h
(+photh)+phadh) (1+u§ba§h)(1+u§a§h)[(a+ﬂ) +(B+p)"+(a+m)" (B+p)
(4.1.3)
_ [PEP] _[PYR) _[ADP) _[ATP] _[Pi)
Where « = $pp~, ™ = $yr,-0 B = Jpme P = drRs M = By and

_ [FBP)
H2 = FBRy 5"

As Pi is an inhibitor and FBP an activator, o; < 1 and o9 > 1.

4.2 Results and discussion

Data analysis and modelling was performed using the Wolfram Mathematica
12.0 software [88]. All three of the novel non-linear PK rate equations that
account for Pi inhibition and FBP activation were fitted to the experimen-
tal data using the built-in NonlinearModelFit function using the NMinimize
method, constrained only by the parameters having to be positive. The re-
sulting fitted model curve predictions were plotted with the experimental PK
kinetic data from Chapter 3 for all four assay conditions (control, with FBP,
with Pi and with both FBP and Pi) for both substrates ADP (Fig 4.1) and
PEP (Fig 4.2). The mean of the experimental data is represented as individual
data points with error bars indicating SEM of 5 repeats (n = 3). The solid
lines represent the model predictions of the PK rate equations. The resulting
parameter values as estimated by the three different rate equation fits to the
experimental data are shown in Table 4.1.



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. COMPARATIVE ANALYSIS OF NOVEL PK RATE

EQUATIONS 33
Parameter MWC Bi-MWC Hill
Kpep 0.77 £ 0.16 0.77 £ 0.20 1.41 £ 0.36
Kapp 1.29 £0.24 0.82+0.21 2.30 4+ 0.31
Krpp 0.23 £0.09 0.90 +0.22 2.12 4+ 0.40
Kp;i 951+ 4.70 73.74+ 16.0 1x 10713
Viaa 4.76 £ 0.25 5.13 £ 0.21 3.97 £+ 0.19
Krpop 2.36 = 0.58
Kr,op 2.99 + 0.66
r 0.03 £+ 0.01
01 0.68 + 0.02
- 2.03 & 0.18
h 1.74 + 0.15

Table 4.1: Parameter values as estimated by the three models + standard error.

Fitting the non-linear model equations to the data resulted in reasonable
trend estimations. For most of the conditions, all 3 models were able to predict
the general trend of reaction rate as a function of substrate concentration, with
markedly better results for PEP. However, it is worth noting the exceptions
to this rule. In the second row (+FBP -Pi) of Fig 4.1. the Hill model shows a
marginally better prediction of the effect of FBP on the ADP saturation curve.
Both MWC models fail to accurately capture the full extent of the allosteric
activation in terms of a much smaller half-saturating ADP concentration. For
the PEP curve with added Pi (-FBP +P1i) in Fig 4.2, a similar shortcoming is
noticeable for the Bi-MWC model which does not portray the allosteric nature
of the saturation curve.

Although the Hill model advantage was already visually evident from these
plots, the comparative analysis included evaluating the goodness-of-fit by the
overall sum of squared deviations of calculated values from model predictions
and experimental data (X?), normalised by variance. It was determined that
the Hill model described the data best as it had the lowest sum of squared dif-
ferences, and this equation was thus implemented further in the full glycolytic
model which we attempt to validate in Chapter 6. The selection of the Hill
model was based purely on its better fit, however this does not mean that it
is necessarily the better model. The Hill-type equation has more parameters
than the MWC models do, and we did not add a penalty for this in our current
assessment.
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Figure 4.1: Comparison of model simulations of PK activity plotted with kinetic
data for its substrate ADP at all four assay conditions: Control (-FBP -Pi), with 1
mM FBP (+FBP -Pi), with 50 mM Pi (-FBP +P1i) and with both 1 mM FBP and 50
mM Pi (+FBP +Pi). Colour lines represent model predictions. Experimental data
are shown as individual data points, with error bars representing SEM 5 repeats (n =
3). Reaction rate, v, shown on the Y-axis in gmol/min/mg. Substrate concentration
shown on the X-axis in mM.
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Figure 4.2: Comparison of model simulations of PK activity plotted with kinetic
data for its substrate PEP at all four assay conditions: Control (-FBP -Pi), with 1
mM FBP (+FBP -Pi), with 50 mM Pi (-FBP +P1i) and with both 1 mM FBP and
50 mM Pi (+FBP +Pi). Colour lines represent model predictions. Experimental
data are shown as individual data points, with error bars representing SEM of 5
repeats (n =3). Reaction rate, v, shown on the Y-axis in gmol/min/mg. Substrate
concentration shown on the X-axis in mM.
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Chapter 5

Core model simulations

5.1 Introduction

The third objective of this project was to perform core model simulations using
the Wolfram Mathematica 12.0 software [88] to try and discern whether there
is some basic, generic function one can define for an FFL in the context of
metabolic networks. The approach was to start with a linear metabolic path-
way with mass action kinetics. The steady-state system behaviour would then
be compared with and without the presence of an FFL to evaluate whether it
performs a role of interest at this most basic level. The complexity of the core
model system is then increased step-wise; first to evaluate the effect of having
intermediate metabolites between the enzyme that produces the regulator and
the regulated enzyme of the FFL. As a next step, we evaluated the effect of
making these intermediate reactions form part of a highly elastic equilibrium
block, as is the case with the intermediary reactions of lower glycolysis within
the PK-FFL. The final increment of complexity was to make the reactions fol-
low Michaelis-Menten kinetics instead of simple mass action kinetics to observe
whether the FFL system behaviour remains consistent across all conditions.
The ultimate aim of performing these simulations and analyses is to formulate
a hypothesis for the potential role FFLs play within metabolic networks.

5.2 Simple FFL system

The first minimal core model, the most basic FFL system possible, was com-
pared to a reference model with the same steady state but with no FFL. Since
the FFL effect is being evaluated at the most fundamental level in this system,
mass action kinetics were used as it is easy to solve for steady state solutions
using these kinetic equations. This system included only two metabolites, X
and Y, and the irreversible reaction linking them (v;), along with substrate
influx (v1) and product outflow (v3). The FFL was set up such that the first

36
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metabolite of the pathway, X, stimulated the conversion of the second metabo-
lite, Y, by stimulating the third enzyme of the pathway. Table 5.1 compares
these two systems in terms of their reaction rates, steady state kinetic con-
stants and the dependency of the regulated metabolite Y on the substrate
influx rate. The first difference to note between these two systems is that
the reaction rate vs is now not only dependent on the concentration of [Y],
but also on the concentration of the regulating metabolite [X]. In the steady
state, all metabolites are constant. As such, considering the rate of change
of the metabolites X and Y as zero allows us to solve the rate equations for
the steady state. Doing so reveals yet another core difference between the two
systems: The introduction of the FFL makes the regulated metabolite Y inde-
pendent of k;, in other words, independent from substrate influx. This result
is also presented graphically in the bottom panels of Table 5.1, where one can
see that the metabolite being regulated becomes independent of the substrate
influx rate in the FFL system. What this means in practice is that with an
FFL the substrate influx rate can be increased without the accumulation of
the intermediate Y.

No FFL FFL
M, x YLy B i, x Yy B
v — k?f V1 — k?f_
’UQ—>I€2+[X] 'l)g-)]f;r[X]
k) ki
z[t] = — z[t] = —
Ky ky
ky ky
t| — — tl - —
2.0
1S _
“ost v
0.0 ‘ ‘ ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
K ki

Table 5.1: Minimal core model: Comparison of system kinetics with and without
an FFL. Parameter values for simulations: k1 = 1,ke = 1, k3 = 1.



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CORE MODEL SIMULATIONS 38

5.3 Intermediates: Irreversible reactions

No FFL FFL
Lx B a4l phy B ﬁxéififﬁé
V1 — kf_ V1 — k’f
Ug-)k?;_[X] U2—>I€;[X]
V3 — k;r [A] V3 — kgr [A]
Vg — ]{?I[B] Vg — k’I[B]
vs = kZ[V] vs = K [V][X]
ki ki
ki ki
ki ki
bt] — = bt] — =
ki ki
ylt] = ¢ ylt] = =
kg ks
2.0r
=
% 0.5F — 3 %
0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
K Kt

Table 5.2: Minimal core model with intermediates: Comparison of system kinetics
with and without an FFL. Parameter values for simulations: k1 = 1,ky = 1,k3 =
1,kys=1,ks =1

Setting up a slightly more complex system, the intermediate metabolites
A and B were introduced between the regulating and regulated metabolite.
The linear pathway now describes a system where the substrate X is first
converted sequentially into the intermediate metabolite A, followed by B and
then converted to the final product Y. All reactions remain irreversible in
this system, and still follow simple mass action kinetics. The results depicted
in Table 5.2 are largely similar to the simple FFL results of the previous
section. It was found that the presence of an FFL renders only the substrate
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of the regulated enzyme, Y, independent of the influx value, whereas the other
intermediates A and B increase proportionally with influx. What this means in
practice is that the intermediates A and B are not constant with varying influx.
For a system without an FFL, an increase in k] results in all reactions speeding
up to reach a new steady state at whatever the influx value is, regardless of its
magnitude. Based on these results we propose that the FFL in simple systems
such as these helps to keep the substrate of the regulated enzyme at a constant
level as long as the regulated enzyme is sensitive to the regulator. This makes
intuitive sense since the enzyme is already being activated by the loop, and as
such it does not require an increase in substrate for an increase in flux.

5.4 Intermediates: Equilibrium block

Going yet another step further in terms of complexity, the intermediate re-
actions were made reversible and highly elastic, forming a block of reactions
close to equilibrium. This means that the reactions that fall within the loop
are now quite fast and reactive, so they should be sensitive to even minor
changes in intermediates to adapt their activity to the influx rate. In the bot-

No FFL FFL

vy — kf

vy — ky [X] — k3 [A]
vs — k3 [A] — k5 [B]
vy — kf[B] =k, [Y]
vs — ki [Y]

[
[

IS
IS

w
bl
w

[
)

x(1), a(t), b(b), y(t)
x(1), a(t), b(t), y(t)

'
i
i
i
<

o
o

Table 5.3: Minimal core model with intermediates in an equilibrium block following
mass action kinetics: Comparison of system kinetics with and without an FFL.
Parameter values for simulations: k; = 1,k = 0.()001,l<:§r = 10,ky = 10,]@1|r =
10,k =10,ks = 1.
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tom panel of Table 5.3 it can be seen that the FFL now results in buffering
of all intermediates when glucose influx increases, in stark contrast with the
no FFL system. The steady-state solution reveals that all intermediates in-
crease linearly without an FFL, whereas the introduction of an FFL keeps all
intermediates relatively steady at low concentrations relative to the substrate
influx rate.

5.5 Michaelis-Menten kinetics

No FFL FFL
\% )% V- V. V: Vi 1% V- V. Vs,
SXE A& B&Y B 7 4X@B<:A>/TY—>Z
+ [Y] + [Y]
'1}5 . V]\[ia]z K]\/I}[’ ] ’1}5 o VMTIE } KA[I}]/
- Y Z - Y Z
1+KMY+KMZ 1+KMY+KMZ
14 14
12 12
=10 —x =10 —X
= . z 8 .
£ 6 SN
S 4 — B S 4 —
= ) . E ) .
0 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Kt Kt

Table 5.4: Minimal core model with intermediates in an equilibrium block following
Michaelis-Menten kinetics: Comparison of system kinetics with and without an FFL.

Parameter values for simulations: k2, = 1,k%, = 1k, = Lk}, = 1k}, =
Lk, = Lky, = 1Lk, = 1L,va = 20,05, = 01,03, = 100,05, = 100,v,,, =

100, vy, = 100, v}, ; = 25,05, = 25,2z = 1.

rrmr

Since our principal focus is understanding the fundamentals of metabolic
regulation through FFLs, it is worth investigating whether the phenomena wit-
nessed for systems with mass action kinetics holds when the reactions follow
Michaelis-Menten enzyme kinetics, which are more commonly found within
biochemical networks. As such, the reactions, including the one being regu-
lated via an FFL, was given Michaelis-Menten kinetics instead of simple mass
action kinetics to test if the system would still exhibit the same behaviour.
In this system, V5 was assigned a relatively low value, which is necessary to
maintain a high concentration of the regulating metabolite X. Additionally,
the maximal velocity of the reaction being regulated via the FFL (V5) was
made 4 times lower than the preceding reactions. This is necessary because
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the enzyme being regulated must be limiting, and if this reaction rate is al-
ready high then it is not sensitive enough to the regulating metabolite X and
thus the regulator will have little to no effect. Table 5.4 shows the reversible
Michaelis-Menten rate equation derived for this system for vs with and without
feedforward regulation.The graphs show how the presence of the FFL affects
the concentrations of the intermediates when the influx value k; increases. At
ky = 15, the concentrations of the intermediates in the system without feed-
forward regulation are five times higher than the system being regulated by an
FFL. It was found that when k; is increased higher still, it can result in up to
a tenfold difference in intermediate concentrations between the two systems.
These results are congruent with our earlier findings, showing that the presence
of the FFL helps with maintaining lower levels of the intermediates between
the regulating and regulated metabolite. Thus, the fundamental finding holds
not only for systems following mass action kinetics, but also for those following
Michaelis-Menten kinetics.

5.6 Conclusions

Based on these core model simulations we formulated the preliminary hypoth-
esis that the function of the metabolic FFL is to buffer intermediates between
the regulating and the regulated metabolite when flux through the pathway
increases. For a metabolic network like glycolysis, this means that it would
prevent the accumulation of the intermediates of lower glycolysis after a glu-
cose pulse to the pathway. This stabilising influence of the PK-FFL on the
metabolite pools would thus be able to minimise transient fluctuations in the
concentrations of the metabolites within the loop during variations in glucose
availability. The synthesis of this hypothesis depended on summarising the
results above for the various systems in a generic way, and we are curious to
see whether this would hold for any pathway. However, most pertinent to
our project specifically is a system with a linear pathway and an intermediate
metabolite that positively stimulates one of the downstream reactions. These
simulations highlight some important factors necessary for such a FFL sys-
tem, the first of which is the need for a high concentration of the regulating
metabolite X as brought about by the requirement for a low wv,, the reaction
which uses X as a substrate. Notably, this is usually the case for the PK-FFL
system as FBP concentrations are usually relatively high in vivo. Another
consideration is that the enzyme must be limiting in some way, thus v, is also
made irreversible. This once again is reflected in the PK-FFL system as the
reaction catalysed by PFK producing the regulator FBP is also irreversible.
Lastly, the reaction being stimulated vs is also made comparatively slow as
otherwise the regulator X will have no effect on the rate. It is necessary that
this reaction is sensitive to the concentration of its regulating metabolite. The
aforementioned considerations informed our choices of parameter values during
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simulations and reinforced the idea that a system that is effectively regulated
via an FFL seems to possess certain generic qualities.

The proposed core model hypothesis speaks to several advantages that pos-
itive FFL regulation may confer to a pathway. As explored in Chapter 2, it has
been found that decreased PK activity leads to the build-up of the interme-
diates of lower glycolysis, which is the first hint that the FFL that stimulates
its activity may exist to prevent this from happening. There are many reasons
why a cellular system would want to avoid such an accumulation of products,
such as: maximising efficiency and avoiding waste; high concentrations of any
intermediate potentially leading to cytotoxicity; an imbalance between upper
and lower glycolysis which can lead to metabolic malfunctioning and growth
arrest; or an increased availability of metabolic precursors that are diverted
into anabolic processes. A modelling study [66] of human erythrocyte glycol-
ysis that attempted to explore the possible role of the PK-FFL by examining
steady-state solutions of glycolytic flux in the presence and absence of the FF
activation step made similar conclusions to the one hypothesised here. They
found that removal of the FFL had little to no effect on the glycolytic flux,
but resulted in significantly higher concentrations of the intermediates found
within the loop, i.e from FBP to PEP. This was accompanied by a decrease in
those intermediates upstream of the loop, like F6P and G6P. They found that
in the presence of the FFL, the concentrations of the intermediates within the
loop show little to no perturbation when the flux rate through the pathway
changes. As such, the FFL not only has a stabilising influence on metabolite
pools, but also results in increased sensitivity to changes in glycolytic flux [66].

In Chapter 6 we attempt to extrapolate the hypothesis formulated in this
chapter experimentally for glycolysis in S. cerevisiae by analysing the pathway
intermediate dynamics in the presence and absence of the PK-FFL.
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Chapter 6

Analysis of glycolytic intermediate
dynamics in yeast

6.1 Introduction

In order to test the core model hypothesis formulated in Chapter 5 for a real
pathway, the aim of this chapter was to observe how glycolytic intermediate
dynamics in a cell free extract change in the presence and absence of the PK-
FFL. According to the hypothesis formed with our core model simulations, Pi
may selectively remove the activation of PK by FBP, possibly allowing for the
investigation of the effects of the FFL on the dynamic behaviour of the system
in response to sudden glucose addition. Thus, in an experiment where Pi is
added to inhibit the FFL, you should see an increase in the intermediates of
lower glycolysis when compared to control conditions where the FFL is active.
High Performance Liquid Chromatography (HPLC) was used to evaluate how
the concentrations of pertinent metabolites change over time after a glucose
pulse to the pathway. Control experiments were set up to assess a system with
a fully functional PK-FFL, and this was compared to experiments where Pi
was added in order to see how the glycolytic intermediate dynamics change
in yeast when the FFL is supposedly inhibited. The HPLC glycolysis method
used in this study was developed by Cobus van Dyk [89], a former PhD student
in the Molecular Sytems Biology Lab of Stellenbosch University. The utility
of this method lies in the fact that it measures radioactive counts of carbon
intermediates in tandem with UV /Vis detection of cofactors at 245 nm. This
means that the intermediate metabolites as well as the cofactors of glycolysis
can be quantified simultaneously from the same sample.

The HPLC data obtained here serves a secondary purpose by acting as an
independent data-set with which the altered glycolytic model could be vali-
dated. As such, the fifth and final objective of this study concerns itself with
how the concentration of analytes change as a function of time for compari-
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son to the model predictions. As mentioned previously, the research question
this thesis aims to address was investigated via a two-pronged approach: that
of experimental work as well as mathematical modelling. Experimentally, we
obtained PK kinetic data in Chapter 3 to aid with model construction, and in
this chapter we acquired yeast glycolytic intermediate data in order to validate
the altered dupreez6 model.

6.2 Materials and methods

6.2.1 Incubation preparation

Cell-free extracts of S. cerevisiae strain X2180 were prepared as described
in Chapter 3 of this thesis, and the protein concentration was once again
determined using Bradford analysis.

Materials - All metabolites, purified enzymes and media components were
sourced from Sigma-Aldrich. 'C- glucose (*C-GLC) was obtained from
American Radiolabelled Chemicals Inc.

Glucose exhaustion pre-test - In order to ascertain whether assay conditions
were conducive to glycolysis as well as to determine an approximation of the
time it takes for 5 mg/mL of the CFE to deplete the added glucose, small-scale
glucose exhaustion tests were performed before every incubation set-up. The
following starting reagents were added to an Eppendorf tube to a final volume
of 100 pL: The cofactors ATP and NAD (2 mM each), 1 X PIPES buffer (50
mM PIPES, 0.1 M KCI, 5 mM MgSO,) and 1 mM glucose. The reaction mix
was allowed to stabilise for a few minutes at 30 °C, after which glycolysis was
initiated with yeast lysate to a final concentration of 5 mg/mL. Samples taken
at 2 min intervals were tested for glucose content using Humor Diagnostica
Combi 4/6 medi-test strips. The timescale of glucose exhaustion also aided in
determining the optimal time-points at which to sample in the full incubation
experiment.

Incubation preparation - The following reagents were added to an Eppen-
dorf tube to a final volume of 1 mL: The cofactors ATP and NAD (2 mM
each) and 1 X PIPES buffer (50 mM PIPES, 0.1 M KCI, 5 mM MgSO,). To
this, 9.5 mM of unlabelled glucose was added, as well as 5 uL 1*C-GLC (& 0.5
mM) for an approximate final glucose concentration of 10 mM. For incubation
lines that aimed to measure the Pi effect, 50 or 100 mM KPi buffer (Potassium
Phosphate, pH 7) was added to the reaction mix. The reaction mixture was
allowed to incubate in a water bath at 30 °C for a few minutes, after which
glycolysis was initiated with 5 mg/mL of the yeast CFE.

Sampling - Immediately after initiating the reaction, the first 100 pL sample
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was taken and added to 10 uL 50% perchloric acid (PCA) on ice in order to
quench the reaction at t = 0. Further samples were then taken at various
timepoints up to 100 min as optimally determined by the glucose exhaustion
pre-tests. The reaction mix was allowed to incubate with the acid on ice for
10 min, after which the PCA was neutralised to pH 7 with 56 uL ice cold 1
M K,CO;3. The Eppendorf tubes containing the timepoint samples were then
centrifuged (14 000 rpm, 20 min, 4 °C) and the supernatant was transferred
to HPLC injection vials.

Cofactor standards preparation - The HPLC method used requires the
preparation of cofactor standards for setting up a UV /Vis calibration curve
with which to quantify adenosine and nicotinamide moiety concentrations in
incubation samples. These standards were prepared using stock solutions of
AMP, ADP, ATP, NAD' and NADH in a 1:1:1:1:1 ratio. A serial dilution was
prepared using the 1 X PIPES buffer used for the yeast incubations for the
following cofactor concentrations: 2 mM, 1 mM, 0.75 mM, 0.5 mM, 0.25 mM,
0.1 mM and 0 mM. These standards were subjected to the same PCA/K>,COs
treatment to mimic extraction conditions of the incubations, as well as the
resulting dilution factor.

6.2.2 HPLC

The HPLC method used for this study is a novel ion-pairing reverse phase
liquid chromatography (IP-RPLC) method with tandem UV/Vis and radio-
label detection developed by Van Dyk [89].

Materials - MilliQQ water was used for the preparation of all mobile phases.
HPLC-grade acetonitrile (ACN) was sourced from Romil. Tetrabutylammo-
nium bisulfate (TBA) and formic acid (FA) was obtained from Sigma-Aldrich.

HPLC wnstrumental set-up - Chromatographic analysis was performed on
the SpectraSYSTEM HPLC set-up with the following instrumental compo-
nents: SpectraSYSTEM P4000 pump, SpectraSYSTEM AS3000 Autosam-
pler, SpectraSYSTEM UV6000LP UV-Vis detector connected in series with
a LabLogic S-RAM model 5 radio-label detector. The column used was a
reverse phase Phenomenex Luna Cig column (5 pum).

Mobile phases - Mobile phase A (MPA): 25 mM T'BA" and 0.1% FA in
MilliQ H»0O, filtered using 0.2 M Millipore Supor Membrane filters and son-
icated for 20 min. Mobile phase B (MPB): 97.5% ACN with 2.5% MilliQ,
sonicated for 30 min. Mobile phase C (MPC): MilliQ H,O with 0.1 % FA
filtered using 0.44 M Millipore HVLP filters and sonicated for 20 min.

HPLC glycolysis method - 5 uL of each sample/cofactor standard was in-
jected onto the column. The run-time was 20 min per sample at a flow-rate



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. ANALYSIS OF GLYCOLYTIC INTERMEDIATE DYNAMICS IN
YEAST 46

of 1 mL/min. The method employs the following gradient: From 0 to 4.4 min
95% MPA and 5% MPB; from 5 to 12 min 70% MPA and 30% MPB; from
13 to 20 min 95% MPA and 5% MPB. Radiolabel detection is initiated 1 min
after injection of the sample and is terminated after a run-time of 13 min.
Scintillation fluid was mixed with column effluent in a 3:1 ratio.

6.2.3 Data analysis

Radiolabelled glycolytic intermediates - IP-RPLC analysis of the S. cerevisiae
time-course samples resulted in chromatographic traces for most of the car-
bon intermediates of glycolysis. The chemical species GLC, G6P, F6P, FBP,
DHAP, 3PG, ACA and ethanol (ETOH) were quantified via the radiolabel
detector. Certain glycolytic intermediates such as PYR and G3P presented
no peaks at their respective elution times, but are suspected to be present in
the samples at undetectable concentrations. The elution times of the chemical
species of glycolysis have been determined methodically during the develop-
ment of the IP-RPLC method in use. Thus, each peak at a respective timepoint
could be associated with a certain intermediate through the use of the reten-
tion time values outlined in Table 6.1, which were determined experimentally
by van Dyk [89].

Intermediate Retention time (secs)

GLC 38
ETOH 76
ACA 121
G6P 157
F6P 182
DHAP 195
PEP 254
3PG 445
FBP 641

Table 6.1: Retention times of pertinent glycolytic intermediates in the yeast time-
course incubations as determined by van Dyk [89]

The radiolabel detector software (Laura) provides the radioactive counts
measured per second, and the resultant chromatographic traces were then inte-
grated using a Wolfram Mathematica script that was developed in the Molecu-
lar Systems Biology (MSB) lab. An example of the integrated chromatographic
traces of the radiolabelled intermediates in a yeast incubation sample (t = 25)
is shown in Fig 6.1. The script fits skewed normal distribution functions to the
chromatographic peaks, and integration of these functions results in values for
the area under the peak. This data was normalised to the total counts of each
sample, and the contribution of radiolabelled impurities was also accounted for
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by implementing a baseline subtraction. In order to determine how the nor-
malised area value corresponds to *C glycolytic intermediate concentration,
HK enzymatic assays were performed on the t = 0 samples to determine the
initial total GLC concentration to associate it with its respective radioactive
count. This ratio was then used to calculate the intermediate concentrations
of all consequent time samples.

14C-counts

TR g et 5y o* . . . .
Pt T TBSARD it 2 S N bl

Bttt A e,

Retention time (s)

Figure 6.1: 'C-chromatographic trace of a yeast time-course incubation at t —
25. The experimentally obtained radioactive traces are represented by the grey data
points, and the solid colour lines are the peak fits as performed in Mathematica.
Black = GLC, red = ETOH, brown = ACA, green = G6P, blue = F6P, orange =
DHAP, pink = PEP, dashed blue = 3PG and purple = FBP.

Cofactors - The IP-RPLC analysis also resulted in chromatographic traces
corresponding to the cofactors as detected at 254 nm via UV /Vis. Similarly
to the radiolabelled intermediates, the retention times of the adenosine and
nicotinamide moieties were determined experimentally by van Dyk during the
development of this IP-RPLC method and are shown in Table 6.2 [89].

The UV/Vis detector results in chromatographic traces for the cofactors,
and the software coupled to this detector (Chromquest) performs peak integra-
tion, resulting in values corresponding to the area under the peak associated
with each cofactor. This data obtained from the cofactor standards were used
to set up the calibration curve depicted in Fig 6.2. These curves were used to
quantify the concentrations of the adenosine and nicotinamide moieties in the
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Chemical species Retention time (secs)
NAD* 199
NADH 440-476
AMP 375
ADP 521
ATP 712

Table 6.2: Retention times of the adenosine and nicotinamide moieties separated by
IP-RPLC as determined during the method development and quantified via UV /Vis
detection by van Dyk [89].

yeast incubation samples using the linear relationship (72 > 0.99) between the
measured area and the concentration of each cofactor.

x 100000

Area

0 0,5 1 15 2 2,5

Concentration (mM)

® ATP ® ADP ® AMP ® NAD NADH

Figure 6.2: Calibration curves for the adenosine and nicotinamide moieties ob-
tained through the preparation of cofactor standards at known concentrations. The
chromatographic traces obtained via UV /Vis detection at 254 nm were integrated
and the resulting area values were plotted against the concentration values of the
corresponding cofactor.

6.3 Model validation

The mechanistic model used in this study was constructed by Du Preez who
adapted the Teusink model for S. cerevisiae X2180 [71|. After the model had
been constructed, it was also validated [90]. However, as we are proposing to
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alter the model with a novel PK rate equation that accounts for its allosteric
regulation in an attempt to better describe the FFL, it is necessary to indepen-
dently validate the adapted model with our own experimental data. To this
end, the novel PK equation and parameters were incorporated into the existing
model to simulate how the dynamics of yeast glycolytic intermediates change
over time in order to determine whether this adapted model could describe the
experimental time-course data obtained via IP-RPLC.

6.3.1 Model set-up

The dupreez6 yeast glycolytic model for cell-free extracts was sourced from
the JWS online database [76] and adapted by replacing the existing PK rate
equation with the Hill equation (Eq 4.3.1) selected in Chapter 4 of this study.
As such, the allosteric regulation of PK by FBP and Pi is now accounted for in
the model. Furthermore, the rate constant for glucose addition was removed
since this is a cell extract and we are interested to see what happens after
a single glucose pulse to the pathway. A schema of the overall network as
it is modelled in this study is shown in Fig 1.1. Barring the aforementioned
changes, the dupreez6 model was used as is, with parameter values unchanged
save for the incorporation of the new parameters for PK determined by the Hill
model as shown in Table 4.1. Furthermore, the cofactors were considered to be
conserved moieties as described in Eq 6.3.1, an assumption which is justified
by the fact that the reactions regulating the nucleotide pool are much slower
than the rate of glycolytic flux. Therefore, the sum of adenine nucleotides
to account for the conversion of ADP to AMP and ATP (and vice versa) by
adenylate kinase (AK) (Eq 6.3.1) was altered to reflect the average sum of the
adenosine moeities per incubation series in the t = 0 samples as determined
via IP-RPLC. Similarly, the sum of NAD' and NADH was adjusted to reflect
the average concentration calculated per incubation series. Lastly, the protein
concentration was adjusted to reflect that of the experimental conditions. This
model assumes a constant Pi concentration.

NADryiq = NADT + NADH

6.3.1
AX Protaq = AMP + ADP + ATP ( )

6.3.2 Model analysis

Modelling was performed in Wolfram Mathematica software and the time-
course was observed by integrating the model ODEs using the NDSolve func-
tion. The dupreez6 model was extended with the parameterised PK Hill equa-
tion (Eq 4.3.1) and the initial concentrations of glucose and cofactors were
adjusted in the model as quantified via IP-RPLC in the t = 0 sample.
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6.4 Results and discussion

6.4.1 Yeast glycolytic intermediate dynamics

The yeast time-course incubations that were analysed in this chapter were ex-
pected to shed light on the function of the PK-FFL in glycolysis through the
evaluation of how glycolytic intermediates change in the absence and presence
of this FFL. The PK kinetic data obtained in Chapter 3 suggested that incu-
bations with added Pi would have a largely inactive FFL, and the core model
hypothesis predicts that this would result in glycolytic intermediates no longer
being buffered. As such, Pi incubations were expected to have increased con-
centrations of the intermediates of lower glycolysis when compared to control
incubations.

Unfortunately, both under control and Pi conditions, it was found that
the concentrations of most metabolites of lower glycolysis (such as 2PG, 3PG
and PEP) lie below the detection limit of the IP-RPLC method. This could
mean that 50-100 mM Pi added to inhibit the PK-FFL was not a sufficient
amount to significantly perturb the loop for intermediate accumulation to ex-
ceed the limit of detection and be quantifiable. Alternatively, there may yet
be a difference in the concentrations of glycolytic intermediates between the
control and phosphate sets of data that could prove to be significant in vivo,
but as the concentrations are too low and cannot be quantified and compared
in vitro, this difference remains speculative. As the two sets of data cannot be
compared in this regard, the hypothesis could not be verified experimentally
via that route. However, results from the initial study published by van Dyk
to demonstrate the IP-RPLC method using the same yeast incubation pro-
tocol with Pi had found substantial levels of FBP accumulation after glucose
exhaustion, to the extent that it was purported almost all GLC goes to FBP
before lower glycolysis is able to proceed [89]. This result was substantiated
by a literature survey that revealed that the accumulation of FBP was crit-
ically dependent on Pi concentration [38]. The accumulation of FBP in the
presence of Pi hinted that it may be possible to observe the inhibition of the
PK-FFL effect indirectly, instead of through the observation of the fluctuation
of intermediates that cannot be detected.

It was postulated that the FBP build-up could be as a result of the sys-
tem attempting to compensate for the inhibition by producing enough FBP
to overcome it. In this way, PK can be adequately stimulated to allow lower
glycolysis to proceed at a rate that prevents the accumulation of its interme-
diate metabolites. In order to investigate this theory, control incubations were
performed and compared to Pi incubations in order to replicate the significant
FBP accumulation to verify the core model hypothesis of this study.
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6.4.1.1 Control incubations

The time-dependent concentrations of the glycolytic intermediates and cofac-
tors for the S. cerevisiae extract control time-course incubations are shown in
Fig 6.3 and 6.4, respectively. These incubations were performed and analysed
in triplicate using three independent cell-free yeast extracts (n = 3) and the
datapoints represent the mean of these biological repeats, with error bars in-
dicating standard error of the mean. The mean starting concentrations these
experiments were initialised with is 7.8 mM glucose, 1.3 mM ATP and 2.0
mM NAD*. The datapoints in Fig 6.3 illustrates the concentrations of the
intermediates of upper glycolysis as a function of time. GLC runs out after
approximately 20 min and FBP accumulates to a maximum of around 1.5 mM
at around the same time of glucose exhaustion. ETOH increases sharply soon
after glucose exhaustion at 20 min, and continues to increase steadily. The
intermediates of lower glycolysis remains relatively low and are not presented
here. The solid and dashed lines in these figures are related to the model and
will be discussed in the next section.

One unexpected and interesting outcome from these experiments was that
of the cofactor dynamics. Fig 6.4 shows that ATP is rapidly depleted to
almost 0 mM within the first 15 minutes after glycolysis was initiated up until
the point of GLC run-out. This is coupled with an unintuitive concomitant
increase in AMP within the same time-span due to the high activity of AK
in yeast, which facilitates the interconversion from ADP to ATP and AMP
via phosphate transfer. This swift formation of additional ATP is necessary
as the effective ATP concentration required for upper glycolysis increases and
this rapid depletion of ATP continues until the entire pool of adenosine has
been converted into AMP. In contrast, ADP remains low and stable. In the
top panel of Fig 6.4 it can be seen that NAD™ decreases similarly between 0
and 20 min, with a resultant brief increase in NADH at the same time, before
restoring to and stabilising at their respective initial values.

6.4.1.2 Phosphate incubations

The time-dependent concentrations of the glycolytic intermediates and cofac-
tors for the S. cerevisiae extract time-course incubations with added Pi are
shown in Fig 6.5 and 6.6. The Pi incubations were performed a total of five
times (n = 5), and the datapoints represent the mean of these pooled repeats,
with error bars representing the standard error of the mean. The mean start-
ing concentrations these experiments were initialised with is 6.9 mM glucose,
1.6 mM ATP and 2.0 mM NAD™. Three differences were noted between the
control and Pi incubations. Fig 6.5 shows that the addition of Pi results in I)
decreased rate of glucose consumption, as the GLC run-out time doubles from
20 to 40 min, II) decreased rate of ETOH production and III) greater build-up
of FBP at the point of glucose exhaustion.
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Figure 6.3: Correlation of model simulations to time-dependent concentrations of
glycolytic intermediates (GLC, G6P, F6P, FBP, DHAP and ETOH) as determined
via IP-RPLC analysis for control experiments. Individual datapoints represent the
mean concentrations at a given time of three independent experiments (n = 3) and
error bars show SEM. The solid lines show the altered dupreez6 model predictions.
The dashed lines show the original dupreez6 model predictions.
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Figure 6.4: Correlation of model simulations to time-dependent concentrations
of adenosine and nicotinamide moieties (NAD, NADH, AMP, ADP and ATP) as
determined via IP-RPLC analysis for control experiments.
represent the mean concentrations at a given time of three independent experiments
(n = 3) and error bars show SEM. The solid lines show the altered dupreez6 model
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Figure 6.5: Correlation of model simulations to time-dependent concentrations of
glycolytic intermediates (GLC, G6P, F6P, FBP, DHAP and ETOH) as determined
via I[P-RPLC analysis for phosphate experiments. Individual datapoints represent
the mean concentrations at a given time of five independent experiments (n = 5) and
error bars show SEM. The solid lines show the altered dupreez6 model predictions.
The dashed lines show the original dupreez6 model predictions.
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Figure 6.6: Correlation of model simulations to time-dependent concentrations
of adenosine and nicotinamide moieties (NAD, NADH, AMP, ADP and ATP) as
determined via IP-RPLC analysis for phosphate experiments. Individual datapoints
represent the mean concentrations at a given time of five independent experiments
(n = 5) and error bars show SEM. The solid lines show the altered dupreez6 model
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However, even though the addition of Pi did result in increased FBP ac-
cumulation, the levels were three times lower than that reported by van Dyk.
After many attempts, the substantial FBP accumulation of up to 5-6 mM re-
ported could not be replicated in this study. Instead, FBP accumulation at the
point of glucose exhaustion increased only from 1.5 mM to 2.5 mM with the
addition of Pi. Subsequent enzymatic assays performed on these samples con-
firmed the comparatively low FBP concentrations quantified by the IP-RPLC
method was not anomalous. Since this difference was of particular interest to
us, a student’s T-test was performed on the control and Pi datasets and the
1 mM difference at the point of peak FBP accumulation was found to be not
significant.

6.4.2 Model validation

The model constructed by Du Preez resulted in a set of ODEs that describe
the change for each variable metabolite in glycolysis according to the reaction
velocities as catalysed by individual enzymes. These enzymes were bound by
the kinetic parameters as used by Du Preez and the starting glucose and cofac-
tor concentrations obtained via IP-RPLC. For PK, the kinetic parameters that
were obtained in Chapter 4 of this study were used instead. As the dupreez6
model has been altered, it is necessary to validate it using an independent
dataset that was not used in the model development. This validation is im-
portant for estimating the predictive capabilities of the model, and it requires
comparison between model simulations and observed trends in data from addi-
tional experiments not used during the construction of the model. To this end,
we attempted to validate the altered dupreez6 detailed kinetic model describ-
ing glycolysis in yeast cell extracts to the experimental data obtained above
via IP-RPLC analysis of S. cerevisiae extracts. The starting concentrations
of metabolites and cofactors shown in Table 6.3 as measured via [IP-RPLC in
the t = 0 samples were used as initial values in the model. The values in the
table represent the mean of all repeats for each condition (Control and Pi).
Though intermediates such as G6P and F6P were already present at quantifi-
able concentrations in the t = 0 sample, their initial concentrations were set to
0 mM. Similarly, the protein concentration was also set to reflect that which
was analysed in the incubation samples.

Figures 6.3 and 6.4 show the concentrations of the glycolytic intermediates
and cofactors over time for the control incubations as quantified via IP-RPLC,
along with model predictions of both the original dupreez6 model and the
adapted model. The experimental data obtained via IP-RPLC is shown as
individual datapoints and represent the mean of 3 repeats, with error bars
representing SEM. The solid lines represent the timecourse simulation of the
dupreez6 model extended with the Hill-type PK rate equation and the param-
eter estimates obtained in chapter 4. The dashed lines represent the original
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Metabolite Control Phosphate

GLC 7.802 6.862
AMP 0.211 0.137
ATP 1.323 1.301

NADH 0.215 0.090

Table 6.3: Initial concentrations of metabolites in mM as obtained via IP-RPLC
analysis of time-course incubations of yeast extracts, taken at t = 0 and averaged
over all repeats.

dupreez model predictions. Overall, the simulations of these two models are
quite similar. The sum of the squared differences of simulated values from
experimental data was calculated for both models and it was found that the
adapted model was a slightly better fit. However, it is worth noting that the
origanal dupreez6 model estimates a higher FBP concentration, which is also
more congruent with the experimental data for this metabolite. It also predicts
a slightly higher glycolytic flux as is evident from the simulation of more rapid
depletion of glucose and ethanol production than what was experimentally ob-
served. For these two metabolites the predictions of the adapted model are
closer to the experimentally observed values. While it is necessary to include
the simulations of the original model for comparison to the adapted model,
the rest of the discussion will focus solely on the results of the adapted model.

For most metabolites, the correlation between model predictions of fluxes
and time-dependent data obtained via IP-RPLC is quite good, with the ex-
ception of F6P and DHAP. It is worth reiterating that these are not model
fits, but rather model predictions, and as such overall trends showing similar
shapes to the data can also be considered a moderately positive outcome, even
if it falls short in terms of quantifying the magnitude. Here the model accu-
rately predicts the rate of glucose consumption, following the dynamic trace of
GLC closely. Similarly, there is a good correlation between the predicted trace
for G6P and the general trend of G6P concentrations obtained experimentally.
However, the model underestimates the concentrations of F6P, which may be
linked to its chromatographic peak overlapping with that of G6P. Deconvolu-
tion of these peaks is tricky and more likely to be error-prone, which may lead
to inaccurate calculations of concentration during analysis of the IP-RPLC
data. Notably, for the control dataset, the model simulates a comparable
maximal FBP concentration to that quantified experimentally, but there is a
delay as FBP peaks 10 minutes later in the simulation. The model also overes-
timates the concentrations of DHAP by approximately 1.5 mM, probably due
to a slight overstatement of GAPDH activity. The rate of ETOH production
is simulated fairly well, albeit with a slight underestimation. Barring the few
exceptions, the altered model fares remarkably well at predicting the trends in
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the intermediate metabolite timecourse data obtained for the control incuba-
tions, especially when one considers how few changes had to be implemented.
Simulations of the conserved adenosine and nicotinamide moieties shown in
Fig 6.4 seem exceptionally accurate, with model predictions closely following
the traces obtained experimentally for all cofactors, AMP, ADP, ATP, NAD*
and NADH.

Figure 6.5 and 6.6 shows the concentrations of the glycolytic intermedi-
ates and cofactors over time for the Pi-spiked incubations as quantified via
IP-RPLC, along with model predictions. The experimental data obtained via
IP-RPLC is shown as individual datapoints and represent the mean of 5 re-
peats, with error bars representing SEM. The solid lines represent the adapted
dupreez6 model simulations, and the dashed lines show the original dupreez6
predictions. The models were adjusted with an increased Pi concentration (10
X) to see whether it could predict the concomitant changes in yeast glycolytic
intermediate dynamics when the inhibitor is added. Once again the two sim-
ulations are quite similar, with a slightly better fit for the adapted model as
determined by calculation of the sum of squared differences.

Similar to the control experiment, the adapted model fares reasonably
well at predicting the time-dependent concentrations of most of the perti-
nent metabolites, but falls short with some. The model favourably predicts
the slightly longer glucose exhaustion time with Pi inhibition. However, under
Pi conditions the simulations of the G6P trend fares slightly worse than that
of the control as the magnitude of G6P accumulation is accurate, but the peak
trace is slightly premature. The simulation of the F6P trace is poor, similar to
control results. However, there is a notable improvement in the trend of FBP
build-up: the model accurately simulates a slight increase in FBP accumula-
tion congruent with experimental results, and the peak timing is also notably
better. Once again, DHAP is significantly overestimated. For the Pi model,
the simulated rate of ETOH production once again agrees favourably with the
experimental trace, and the peak concentrations are also closer in this case.
Similarly accurate simulations of the cofactor traces were obtained as shown
in Fig 6.6, with the data showing more or less the same trends as the control
data, with the notable difference being that the model is able to simulate the
slight (approximately 10 minute) delay in peaks that can be seen due to the
Pi inhibition.

6.5 Conclusions

In terms of the first objective of this chapter, which was analysing the differ-
ences in glycolytic intermediate dynamics, the incapability of quantifying the
intermediates of lower glycolysis made us turn our sights to FBP accumulation
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to study the FFL effect. However, the FBP accumulation with added Pi was
found to be not significant in these experiments. As such, the investigation of
the Pi effect on the PK-FFL was inconclusive in this study. This does not nec-
essarily negate the core model hypothesis formulated in Chapter 5, but rather
that we could not test it stringently enough. These inconclusive results could
also be a symptom of an incorrect assumption of how, and to what extent,
Pi affects the PK-FFL. Initially, we postulated it can act as an "off-switch"
for the FFL based on our observations that it inhibits PK activity, even in
the presence of its feedforward activator, FBP. However, it is likely that Pi
does not act exclusively on PK considering phosphate’s central role in other
glycolytic reactions. Furthermore, as mentioned earlier, the use of 50 - 100
mM Pi as in this study might simply not perturb the FFL strongly enough
to stimulate significant FBP accumulation. As such, with Pi ruled out as a
PK-FFL suppressor, there remains no way as yet of experimentally altering
the magnitude of PK activation alone in order to observe the effects of its
removal [66].

The second objective of this chapter was the validation of the altered
dupreez6 model. With the inclusion of a novel, detailed rate equation for
PK that includes its allosteric regulation by FBP and inhibition by Pi, the
model for yeast glycolysis follows the IP-RPLC data closely for the majority
of glycolytic intermediates in both the control and Pi experiments. As such,
we can state that the model’s predictive power is relatively good.
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Chapter 7

Conclusion and future work

There is a need to understand the fundamental aspects of metabolic regula-
tion. This can lead to a greater understanding of core pathways in central
metabolism such as glycolysis, the dysregulation of which often leads to dif-
ferent disease states. Positive feedforward loops form part of one such aspect
of metabolic regulation that has not yet been fully characterised in the way
their counterpart, negative feedback loops, have. The aim of this project was
to see whether the function of a positive feedforward loop could be described
in generic terms. To investigate this question, we studied the PK-FFL in gly-
colysis using a systems biology approach by performing experiments with S.
cerevisiae cells and using computational biology to perform core model sim-
ulations. Furthermore, we attempted to improve upon the mathematical de-
scription of PK’s activity and flux through the pathway as a whole based on its
positive feedforward regulation in a detailed kinetic model of yeast glycolysis.

To achieve this aim, five objectives were set: Firstly, the kinetic characteri-
sation of yeast PK to capture the effects of its effectors on the enzyme’s kinetic
parameters. The second objective was to use this kinetic data to comparatively
analyse the suitability of three different rate equations for PK derived from
allosteric models which include terms for the observed regulatory effects of
FBP and Pi on PK. The third objective was to perform minimal core model
simulations to compare the kinetic behaviour of systems with and without
positive feedforward regulation in order to formulate a preliminary core model
hypothesis. The fourth aim was to attempt to illustrate this hypothesis for
a real metabolic system by studying glycolysis in yeast and the role that the
PK-FFL plays. The fifth objective was to validate the glycolytic model al-
tered with the novel PK rate equation we selected with an independent set of
time-course data for glycolytic intermediates.

The first objective was addressed and met in chapter 3 of this thesis. Cell-
free extracts of the X2180 strain of S. cerevisiae were used to perform LDH-
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coupled spectrophotometric assays to characterise its PK. The effect of the
proposed effectors on PK’s kinetic behaviour was quantified by determining
its kinetic parameters under standard conditions, with FBP, with Pi and with
a combination of both FBP and Pi. Analysis of the ADP and PEP substrate
saturation curves obtained in these experiments established that yeast PK is
allosterically stimulated by FBP via an FFL, that Pi acts as an uncompetitive
inhibitor of PK, and that FBP can partially overcome this inhibitory effect of
Pi at the concentrations used in this study. From these results we postulated
that Pi can act as an "off-switch" for the PK-FFL, allowing us to potentially
study the behaviour of glycolytic intermediates with and without such a posi-
tive feedforward loop. Chapter 4 provided the necessary parameters that were
used to adapt the full, detailed kinetic model for yeast glycolysis in an attempt
to improve upon its description of PK activity and flux through the pathway
as a whole. Since the dupreez6 model was altered specifically with regards to
its description of PK activity, it necessitated the independent determination
of PK activity. Since the model was extended with previously omitted terms
for FBP activation and Pi inhibition the kinetic constants for these two effec-
tors are not present in the existing model. Thus, the second objective met in
chapter 4 utilised the PK kinetic data obtained in chapter 3 to comparatively
analyse the suitability of three different rate equations for PK based on the
MWC and Hill models for enzymes that are allosterically regulated. This was
necessary because the PK rate equation in most detailed kinetic models for
glycolysis, including the dupreez6 model used in this study, does not include
terms for PK regulation by FBP and Pi. Since our study is concerned with the
PK-FFL which depends upon PK’s activation by FBP, and our suspicion that
Pi may switch off this FFL, it is imperative that the model takes these effects
into account. The model predictions of these rate equations populated with
the PK kinetic parameters was compared to the experimental kinetic data and
it was found that even though all three models perform comparatively well at
estimating PK kinetics, only the Hill model accurately predicts the hyperbolic
response due to the allosteric activation of PK by FBP seen in the substrate
saturation curves. Statistical analysis of these model fits confirmed the Hill
model performed best, and thus the Hill equation for PK with two independent
modifiers was selected to extend the full glycolytic model.

The third objective was met in chapter 5 where we performed several core
model simulations with increasing complexity to evaluate whether a general
trend could be observed that could be indicative of the function of FFLs within
metabolic networks. It was found that both in systems where the reactions
follow mass action kinetics and Michaelis-Menten kinetics, the presence of a
positive FFL tends to result in substantially lower and/or more stable con-
centrations of the intermediates found within the loop when the influx value
is perturbed. As such, the outcome of this objective was the formulation
of a core model hypothesis which proposed that the function of the FFL in
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metabolism is to buffer the intermediates between the regulating and the reg-
ulated metabolite when flux through the pathway increases. For a metabolic
network like glycolysis, this means that it would prevent the accumulation of
the intermediates of lower glycolysis found between FBP synthesis and PEP
conversion to pyruvate after a glucose pulse to the pathway.

In chapter 6 we used [P-RPLC to analyse the intermediates and cofactors
of glycolysis over time after a glucose pulse to the pathway. For our fourth
objective, we attempted to test the core model hypothesis we formulated on
a real system, and for this we tried to analyse the differences in glycolytic
intermediate dynamics in the presence and absence of the PK-FFL. However,
the FBP accumulation with added Pi to suppress the FFL was found to be not
significant in these experiments. As such, the investigation of the Pi effect on
the PK-FFL and whether it could sufficiently suppress the loop to result in a
discernible difference in system behaviour was inconclusive in this study. This
does not necessarily negate the core model hypothesis, as many confounding
factors could be at play, most probably an incorrect assumption of how, and
to what extent, Pi affects the PK-FFL. It is likely that Pi does not act exclu-
sively on PK. Furthermore, and perhaps most importantly, Pi might simply
not perturb the FFL strongly enough to stimulate significant FBP accumula-
tion. However, based on the hypothesised and observed impeding factors, Pi
can be ruled out as an effective suppressor of PK exclusively. Alternatively,
there may yet have been significant differences in the dynamics of the interme-
diates of lower glycolysis as brought about by the successful suppression of the
FFL, but we were unable to quantify these intermediates using the IP-RPLC
method. However, with this analysis we did observe some unforeseen and very
interesting results in terms of cofactor dynamics. The fact that ADP remains
low and does not rise after initialising glycolysis with a high concentration
of glucose ran counter to our intuitions. Model simulations then accurately
predicted this same trend for the adenosine moieties dynamics, where AMP
instead of ADP rises significantly. Clearly this result is indicative of very high
adenylate kinase activity in yeast. The fifth objective of this study also ad-
dressed in chapter 6 was the validation of the altered dupreez6 model. With
the inclusion of a novel, detailed rate equation for PK that includes its al-
losteric activation by FBP and inhibition by Pi, the adapted detailed kinetic
model for yeast glycolysis follows the IP-RPLC data fairly close for the major-
ity of glycolytic intermediates and very close for cofactors in both the control
and Pi experiments.

In conclusion, based on the literature and the outcomes of the objectives
pursued in this study, we propose that the generic function of the positive feed-
forward loop in metabolism is to buffer intermediates within the loop when flux
through the pathway increases. Furthermore, we have altered and successfully
validated a detailed kinetic model for yeast to account for PK stimulation by
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FBP via an FFL and the inhibitory effect of Pi. Future studies that attempt
to study the PK-FFL effect on glycolysis should not bargain on Pi acting ef-
fectively and exclusively to switch off the PK-FFL. To our knowledge, there
remains currently no direct method of experimentally modifying PK to remove
just the activation by FBP without affecting other aspects of the enzyme’s ki-
netics. Instead, the difference in system behaviour as brought about by the
presence of a positive FFL might be better studied using cells lines with PK
isoforms where the PK-FFL is naturally absent, a few of which have been dis-
cussed in chapter 2 of this thesis. Furthermore, it would also be of interest to
investigate whether the properties that have been observed for the PK-FFL
and the suggested core model hypothesis holds for other known FFLs, for
example that of LDH in lactic acid bacteria.
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