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Abstract

The investigation of reservoir sedimentation has become an important and valuable research topic in

engineering practice. Sediment deposition in reservoirs can affect flood levels, drainage for agriculture

land, pumpstation and hydropower operation and navigation.

An extensive review of the technical literature pertaining to suspended sediment transports as well as

deposited sediment flushing from reservoirs has shown that most studies on sediment are still based on

empirical formulas and experimental work, despite the availability of sophisticated computers. This is

because sediment transport and particularly sediment deposition and erosion are complex processes, that

involve the interaction of many physical factors which are not easily modelled numerically. In addition,

most of the existing three-dimensional numerical models are not coupled hydrodynamic and sediment

transport models. They first simulate the velocity field and water depth and then the concentration

and bed change are calculated. Furthermore, they are not fully three-dimensional models for using

layer-averaged approaches in conjunction with Saint-Venant equations.

The key objective of the present research was to develop a coupled fully three-dimensional (3D) numerical

model based on Navier-Stokes equations which includes both the sediment transport component and

hydrodynamic parameters. In this regard, a physical model was set up in a laboratory flume in order

to investigate the bottom outlet sediment flushing under pressure in a controlled environment. The

proposed coupled fully 3D numerical model was used to simulate the experimental tests. Results from

these simulations were in good agreement with the measurements. The geometric features of the

scour hole (temporal and spatial hole development) upstream of the bottom outlet were reasonably

well predicted compared to the experimental data. Furthermore, the velocity field upstream of the

bottom outlet was in good agreement with measurements. The proposed numerical model can be

considered reliable provided that the model is correctly set up to reflect the condition of a particular

case study. Finally, the coupled fully 3D numerical model for turbulent suspended sediment transport in

reservoirs was validated against a range of typical reservoir sediment transport and deposition laboratory

flume cases. The proposed suspended sediment transport model successfully predicted both sediment

deposition and entrainment processes and therefore, it can be used for turbulent suspended sediment

transport assessments in reservoirs.
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Opsomming

Die ondersoek van damtoeslikking het ’n belangrike navorsing onderwerp in ingenieurswese praktyk

geword. Sedimentdeponering in damme kan vloed vlakke, dreinering van landbo grond sowel as pomp-

stasie en hidrokrag werking en navigasie benvloed.

’n Omvattende ontleding van die tegniese literatuur met betrekking tot gesuspendeerde sedimentvervoer

asook die spoel van gedeponeerde sediment uit reservoirs het getoon dat die meeste studies oor sediment

steeds op empiriese formules en eksperimentele werk gebaseer is, ten spyte van die beskikbaarheid van

gesofistikeerde rekenaars. Dit is omdat sedimentvervoer en veral sedimentafsetting en -erosie komplekse

prosesse is, wat die interaksie van baie fisiese faktore behels en nie moeiteloos numeries gemodelleer kan

word nie. Daarbenewens, in die meeste van die bestaande drie -dimensionele numeriese modelle is die

hidrodinamika en sedimentvervoer modelle nie gekoppel nie. Die numeriese modelle simuleer eerstens die

snelheid veld en waterdiepte en dan word die sedimentkonsentrasie en bedverandering bereken. Verder

is die bestaande modelle nie ten volle driedimensioneel nie, en gebruik laag-gemiddelde benadering in

samewerking met Saint- Venant vergelykings.

Die hoofdoelwit van die huidige navorsing was om ’n gekoppelde volle drie -dimensionele (3D) numeriese

model gebaseer op Navier -Stokes-vergelykings wat beide die sediment vervoer komponent en hidrodi-

namiese parameters insluit, te ontwikkel. In hierdie verband is ’n fisiese model opgestel in ’n laboratorium

kanaal om die bodem uitlaat spoel van sediment onder druk in ’n beheerde omgewing te ondersoek.

Die voorgestelde gekoppelde 3D numeriese model is gebruik om die eksperimentele toetse na te boots.

Resultate van hierdie simulasies het goed ooreengestem met die metings. Die geometriese eienskappe

van die erosie gat (tyd en ruimtelike gatontwikkeling) stroomop van die bodemuitlaat was redelik goed

voorspel vergeleke met die eksperimentele data. Verder is die snelheid veld stroomop van die bodem

uitlaat ook goed voorspel. Die voorgestelde numeriese model kan beskou word as betroubaar met die

wete dat die model korrek opgestel is om die toestand van ’n bepaalde gevallestudie te weerspiel. Ten

slotte, is n gekoppelde 3D numeriese model vir turbulente gesuspendeerde sediment vervoer in reservoirs

ontwikkel en getoets teen ’n reeks laboratorium kanaal eksperimente. Die voorgestelde gesuspendeerde

sediment vervoer model voorspel suksesvol beide die sediment afsetting- en erosieprosesse en daarom

kan dit gebruik word vir die simulasie van turbulente gesuspendeerde sediment vervoer in damme .
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1. Introduction

1.1 Background and Motivation

With a worldwide average annual sedimentation rate of about 0.8% of the original storage capacities,

reservoir sedimentation is expected to become a serious problem in many reservoirs during the next

50 years (Basson and Rooseboom, 2008). According to the same authors, reservoir sedimentation has

proven to be a serious problem in South Africa and therefore, extensive research has been undertaken in

this field over the past 30 years. This led to guidelines on the management of the reservoir sedimentation

problems published by Basson and Rooseboom (1997).

Sediment deposition in reservoirs can consequently affect flood levels, drainage from agriculture land,

pumpstation and hydropower operation and navigation. However, the loss in storage capacity for domes-

tic or industrial supply and irrigation is the major effect of reservoir sedimentation in semi-arid climates,

particularly in South Africa (Basson and Rooseboom, 1997). This loss in storage capacity has a serious

impact on irrigation systems and consequently, can undermine food security in semi-arid areas due to

water scarcity.

The flow of water over a mobile bed has the ability to entrain solid particles. Consequently, mixture from

the interaction between water and sediment will displace itself in the watercourse. The movement of

the sediment will modify the flow but also the bed in terms of its elevation, its slope and its roughness.

Therefore, the interaction between the water and the sediment is described as a coupled problem. When

a river enters a reservoir, sediment deposition occurs with coarser sediment which is generally deposited

in the upstream part of a storage reservoir while fine sediments (clay and silt fractions) are transported

much deeper into the reservoir towards the dam.

Turbulent suspended sediment transport is the dominant mechanism of sediment transport through most

reservoirs. According to Graf (1998) suspended sediment consists of particles that stay occasionally in

contact with the bed and they displace themselves by making more or less large jumps and remain often

surrounded by water. This type of transport concerns relatively smaller sediment particles.

During the past century, a large number of sediment transport equations have been derived and calibrated

in most cases by means of coefficients from laboratory and field data. Methods for the prediction of

reservoir sedimentation have been the subject of several empirical studies for many years. A number

1
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of studies conducted by White et al. (1975), Yang and Molinas (1982) and Van Rijn (1984b) have

compared the accuracy of these empirical methods in the prediction of sediment transport. These

studies found out that there was a wide range of results which are obtained with these equations, even

under controlled laboratory conditions. The reason for this is the complicated hydraulic processes which

involve simultaneously sediment transport, deposition and erosion. Therefore, the understanding of

sediment transport processes has not been developed well enough, even after many years of research in

this field. Sediment transport equations can basically be divided into two groups: those that predict bed

load and suspended load transport separately, and those that predict a total sediment load without the

distinction between bed load and suspended load. The interrelationship between bedforms, associated

roughness, hydraulic and sediment transport capacities and also the change in velocity profile when

sediment is being transported have not been adequately modelled (Basson and Rooseboom, 2008).

For reservoir conditions, the forecast of the transport of fine sediments (silt and clay) is also important

since in many impoundments they form the main sediment body. The prediction of the transport of fine

sediments within reservoirs has been based on the following approaches: use of the diffusion equation;

use of sediment transport equations which were calibrated originally for sand fractions adopted to include

fine sediments by recalibration with fine sediment transport data; and combinations of sediment transport

equations for sand fraction and diffusion equations for fine sediments.

A better understanding of reservoir sedimentation has a potential to limit sedimentation processes and

therefore, increase water storage capacity in reservoirs. At the end, adequate storage in reservoirs can

provide the much needed water for irrigation purposes. In the long run, it can help stabilise food

production, increase crop intensity, diversify agriculture and subsequently contribute to a significant

improvement in food security.

1.2 Objectives

Most of existing three-dimensional (3D) numerical models are not coupled flow and sediment transport

models. They simulate first the velocity field and water depth and then the concentration and bed change

are calculated using the velocity field and water depth. Furthermore, they are not fully three-dimensional

models for using layer-averaged approaches in conjunction with Saint-Venant equations.

The present research developed a fully coupled 3D numerical model based on Navier-Stokes equa-

tions which include both sediment transport component and hydrodynamic parameters. The research
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contributes to the knowledge and understanding reservoir sedimentation particularly the mathematical

modelling of turbulent suspended sediment transport dynamics and the bottom outlet sediment flushing

process. An improved coupled fully 3D model will help in the determination of the detailed spatial

and temporal pattern of the sediment concentration and also the extent of erosion during the pres-

surised bottom outlet flushing in reservoirs. The outcome from this proposed research contributes to

the management of the reservoir sedimentation problems, such as:

- Minimising deposition in reservoirs through sluicing.

- Removing accumulated sediment from the reservoir through bottom outlet flushing.

- Diverting flow with high sediment concentration to bypass the reservoir.

- Controlling the deposition of sediment at the bottom of an intake of hydropower scheme.

1.3 Methodology

To achieve the above mentioned aims, the following methodology was followed:

1. Review of literature on reservoir sedimentation processes including the bottom outlet flushing,

suspended-load sediment transport dynamics and turbulence modelling in the two-phase approach.

2. Carry out bottom outlet flushing laboratory tests in order to collect measurement data for the

validation of the coupled and fully 3D mathematical model of bottom outlet sediment flushing.

3. Develop a coupled and fully 3D numerical model which is able to accurately predict the experi-

mental test results of the bottom outlet sediment flushing.

4. Conduct sensitivity and uncertainty analysis of the proposed 3D numerical model.

5. Validate the proposed numerical model against data from literature in terms of suspended sediment

transport which includes sediment deposition and entrainment processes.
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2. Literature Review

2.1 Sediment Characteristics

2.1.1 Introduction

The study of sediment transport deals with the interrelationship between flowing water and sediment

particles. As individual particles, the sediments have their own characteristics. Therefore, an under-

standing of the physical properties of sediment particles is essential to model the sediment transport.

The properties of the sediments can be divided basically into two types: individual and bulk properties.

Although the list of parameters describing these properties may be very extensive, only those that are

relevant to the model presently developed are described in the following sections.

2.1.2 Individual Properties of Sediment

Sediment properties of a single particle that are important in the study of sediment transport are particle

size, shape, density and settling velocity.

2.1.2.1 Size

Size is the basic and most readily measurable property of sediment and it has also been found to

efficiently describe the physical property of the sediment particle in many practical purposes. The size

of sediment particle can be determined by sieve or visual-accumulation tube analyses. There are five

different definitions related to the concept of particle diameter. They are generally defined for spheres

and applied to sediments.

• Nominal Diameter is the diameter of a sphere having the same volume as the sediment particle.

• Sieve Diameter is the diameter of a sphere equal to the lenght of the side of the square sieve

opening through which the particle can just pass. The sieve diameter, as an approximation is

equal to the nominal diameter.

• Fall Diameter is the diameter of the sphere that has a specific gravity of 2.65 and has the same

average terminal fall velocity as the particle when each is allowed to settle alone in quiescent,

4
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distilled water. Average terminal particle fall velocity is defined as being the maximum velocity

reached by a particle falling in pure water at 24oC in a vessel of infinite dimensions (Simons and

Sentũrk, 1992).

• Sedimentation Diameter has the same definition as fall diameter, but the sphere specific gravity

is replaced by that of the particle. This diameter, therefore, provides more realistic values for

sediment particle diameter compared with nominal diameter.

• Triaxial Diameter is the arithmetic averaged value of the three orthogonal particle axes commonly

named, a, b and c.

2.1.2.2 Shape

Shape refers to the form or configuration of a particle regardless of its size or composition. The shape

of a particle affects the average velocity of the water flow, the fall velocity and the bed load transport

(Campos, 2001). Although many parameters describing the particle shape are found in the literature,

only three are presented in the present section due to their importance.

• Shape Factor is the most significant expression of particle shape from the viewpoint of simplicity

and effective correlation and it is defined by the following expression (Yang, 2003):

Sp =
c√
ab

(2.1)

In Equation 2.1, a, b and c are the lengths of the longest, the intermediate and the shortest

mutually perpendicular axes through the particle respectively and Sp is the shape factor. It has a

value of 1.0 for a sphere and naturally worn quartz particles have an average shape factor of 0.7

(Yang, 2003).

• Sphericity is the ratio between the surface area of a sphere with the same volume as the particle

and the actual particle’s area. Its value is 1.0 for a sphere and less than 1.0 for the other shapes.

The value of the sphericity for a single particle is difficult to determine due to the multiplicity of

a very small surface area on a particle, which is not easy to measure.

• Boundness is the ratio of the average radius of curvature of the several corners and edges to

the radius of curvature of the maximum inscribed sphere or the nominal radius of the particle

(Pettijohn, 1975).
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2.1.2.3 Density

The density of a sediment particle refers to its mineral composition and is defined as the ratio of the

weight of a single particle to its volume. Usually, specific gravity, which is defined as the ratio of specific

weight or density of sediment to the specific weight or density of water, is used as an indicator of density.

Commonly a specific gravity value of 2.65 is used for most non-cohesive quartz sediment particles found

in natural rivers.

2.1.2.4 Settling Velocity

Settling or fall velocity is the average terminal velocity that a sediment particle attains in the settling

process in quiescent, distilled water of infinite extent. It is directly related to relative flow conditions

between the sediment particle and water during conditions of sediment entrainment, transportation

and deposition. Settling velocity is generally considered as the most important individual property of

sediment particle and can be calculated from the balance between the particle submerged weight and

the resisting force resulting from fluid drag. The general drag force equation is expressed as (Yang,

2003)

FD = CDρA
ω2

2
(2.2)

where FD is the drag force, CD is the drag coefficient, ρ is the density of water, A is the projected area

of particle in the direction of settling and has a value of πr2 for a sphere, and ω is the settling velocity.

The submerged weight of a spherical sediment particle is

WS =
4

3
r3π (ρs − ρ) g (2.3)

where r is the sediment particle radius, and ρs and ρ are densities of sediment and water, respectively.

In the terminal stage of settling, the drag force (Equation 2.2) should be equal to the submerged weight

(Equation 2.3), yielding

ω =

(
8

3

1

CD

ρs − ρ
ρ

rg

)1/2

(2.4)

According to Equation 2.4, settling velocity can therefore, be calculated once the only remaining un-

known which is the drag coefficient has been determined. The drag coefficient is a function of Reynolds

number and shape factor. To determine the settling velocity, the analytical CD expressions were first

developed assuming that the sediment particle is spherical. For non-spherical particles, the first approach
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was modified by introducing an additional correction factor which takes into consideration the particle

shape.

• Settling velocity of spherical particles: In the laminar settling region, where the particle

Reynolds number Re is less than 1.0, the drag force on a spherical particle was derived by solving

the Navier-Stokes equations without inertia terms. The drag coefficient thus obtain is (Graf,

1971)

CD =
24

Re
(2.5)

where Re = ωd/ν and ν is the kinematic viscosity. Inserting Equation 2.5 into Equation 2.4

leads to the Stokes law for settling velocity of spherical particles:

ω =
1

18

ρs − ρ
ρ

g
d2

ν
(2.6)

where ω is the settling velocity and d is the particle diameter.

Oseen formula was obtained by solving the Navier-Stokes equations, including some inertia terms

(Wu, 2008):

CD =
24

Re

(
1 +

3

16
Re

)
(2.7)

The following drag coefficient, which is a relatively complete solution of Oseen’s approximation

was proposed (Wu, 2008):

CD =
24

Re

(
1 +

3

16
Re −

19

1280
R2
e +

71

20480
R3
e + · · ·

)
(2.8)

Equation 2.8 is only valid for Re up to 2.0 and for Re more than 2.0, the drag coefficient usually

has to be determine by experiments rather than theoretical solutions. By compiling the available

experimental data, Rouse (1936) obtained the relation between CD and Re (see Figure 2.12),

which can be used to find CD and then the settling velocity of the spherical particles.

It can be seen from the Figure 2.12 that when Re is beyond 1000, which corresponds to the

turbulent settling region, the drag coefficient has a constant value of about 0.45, thus yielding

ω = 1.72

(
ρs − ρ
ρ

gd

)1/2

(2.9)

• Settling velocity of sediment particles: In natural rivers, sediment particles usually have non-

spherical shapes and rough surfaces and therefore yield different settling velocity in comparison
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Figure 2.1: Relation between Cd and Re for sphere (Wu, 2008)

with spherical particles. Rubey (1933) derived the following formula for settling velocity of natural

sediment particles:

ω = F

√(
ρs
ρ
− 1

)
gd (2.10)

where F = 0.79 for particles larger than 1mm settling in water with temperatures between 10

and 25◦C. For smaller grain sizes, F is determined by

F =

[
2

3
+

36ν2

gd3(ρs/ρ− 1)

]1/2
−
[

36ν2

gd3(ρs/ρ− 1)

]1/2
(2.11)

Based on many laboratory data, Zhang (see Wu (2008)) produced the following formula for settling

velocity of naturally worn sediment particle:

ω =

√(
13.95

ν

d

)2
+ 1.09

(
ρs
ρ
− 1

)
gd− 13.95

ν

d
(2.12)

Equation 2.12 can be used in a wide range of sediment sizes from laminar to turbulent settling

regions. Van Rijn (1984a) recommended the use of the stokes law (Equation 2.6) to calculate

settling velocity for sediment particles smaller than 0.1mm, the Zanke (see Wu (2008)) formula

for particle sizes ranging from 0.1 to 1.0mm:

ω = 10
ν

d

{[
1 + 0.01

(
ρs
ρ
− 1

)
gd3

ν2

]1/2
− 1

}
(2.13)
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and for particles larger than 1.0mm the following formula is suggested by the same author:

ω = 1.1

[(
ρs
ρ
− 1

)
gd

]1/2
(2.14)

Cheng (1997) derived the following formula for the settling velocity that is valid for naturally worn

sediment particles with shape factors ranging from 0.5 to 0.7:

ω =
ν

d

(√
25 + 1.2D2

∗ − 5
)1.5

(2.15)

where D∗ = d
[
(ρs/ρ− 1)g/ν2

]1/3
.

2.1.3 Bulk Properties of Sediment

The most important bulk properties in the study of sediment transport are size distribution, specific

weight and porosity of the bed material.

2.1.3.1 Particle Size Distribution

Although the behaviour and properties of a single sediment particles are of fundamental concern, in

practice the greatest interest is in groups of sediment particles. It is necessary to determine the particle

size distribution due to the non-uniformity of the sediment particle. The commonly used methods for

particle size distribution are the direct measurement, the sifting method and the sedimentation method.

The direct measurement method is suitable for large particle and consists in the individual measurement

of the particle. In this method, the average of the three orthogonal axis of the particle is assumed to

be the particle diameter.

The sifting method is appropriate to sand, medium and small gravel particles. In this method, a

sediment sample is passed through a sieve series with different mesh opening sizes. After sifting the

sample and weighting the remaining sediment particles, the weighted fractions are computed in each

sieve. Subsequently, a statistical analysis can be conducted by representing the weighted fractions by a

size-frequency distribution curve and a cumulative frequency (Figure 2.2). Analysis of a large number

of samples indicates that the size-frequency curve approximates a normal probability curve as shown in

Figure 2.2-(a).

The most common terms used in describing particle size distribution are median diameter, geometric

mean size, geometric standard deviation and gradation deviation. The median diameter (d50) is the size
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(a) Normal size-frequency distribution curve (b) Cumulative frequency of normal distribution

Figure 2.2: Normal and cumulative frequency curve (Yang, 2003)

of sediment for which 50% of the sample is finer. The geometric mean size (dg) is the geometric mean

of the two sizes corresponding to 84.1% and 15.9% finer, respectively. That is,

dg = (d15.9d84.1)
1/2 (2.16)

The geometric standard deviation (σg) is defined as

σg =

(
d84.1
d15.9

)1/2

(2.17)

The gradation coefficient (G) is defined as

G =
1

2

(
d84.1
d50

+
d50
d15.9

)
(2.18)

2.1.3.2 Specific Weight

Specific weight or volumetric unit gives an idea of the space occupied by deposits of sediments. It

is related to the extent of consolidation of the sediment and also to the composition of the sediment

mixture. Specific weight is easily obtained by weighting an amount of sediment filling a vessel with
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known volume. The ratio of the sediment weight to the volume of the vessel, gives the sediment specific

weight (γs).

2.1.3.3 Porosity

Porosity is essential in the determination of the volume of sediment deposition. It is also important in

the conversion from sediment volume to sediment discharge, or vice versa. Porosity is the measure of

the volume of voids per unit volume of sediment. That is

P = Vv/Vt =
Vt − Vs
Vt

(2.19)

where P is porosity, Vv is volume of voids, Vt is total volume of sediment including that due to voids

and Vs is volume of sediment excluding that due to voids.

2.1.3.4 Angle of Repose

The angle of repose is the slope angle formed with horizontal by granular material at the critical condition

of incipient sliding. Experimental work done by Miller and Byrne (1966) has shown that the angle of

repose is mainly function of various material properties such as grain shape, size and sorting of the bed as

well as the ratio of particle diameter to the average bed grain diameter. The authors also concluded that

the angle of repose increases with decrease in size and in sorting, in addition, the angle of repose varies

from nearly 90o to less than 20o. During the bottom outlet sediment flushing the angle of repose can

be used to describe the side slope of the scour hole which is excavated within the deposited sediment,

if cohesive materials are absent. In case of cohesive sediments, slopes can be steeper than the angle of

repose for non-cohesive material. According to Morris and Fan (1997), the angle of repose of cohesive

sediment increases as a function of concentration.

2.1.3.5 Cohesive and Non-Cohesive Sediments

Cohesive sediments are very fine (less than 2 micron) negatively charge clay minerals which have a certain

capacity to absorb cations (Basson and Rooseboom, 1997). They are characterised by their plasticity and

cohesion due to surface physico-chemical forces. More often, deposited sediment in reservoirs contains

a high percentage of clays and their interparticle cohesion forces can influence important sediment
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transport parameters such as the rate of sedimentation and compaction, erosion resistance, floculation

as well as the angle of repose (Morris and Fan, 1997).

For non-cohesive sediments, particle properties such as settling velocity, particle incipient motion and

erosion rate are determined by gravitational forces which are generally functions of sediment size. How-

ever the boundary between cohesive and non-cohesive sediment is not yet clearly defined and generally

varies with the type of sediment (Basson and Rooseboom, 1997). Furthermore, dominance of interpar-

ticle cohesion over gravitational force increases with decreasing particle size.

2.1.4 Summary

In this section, some of the most commonly used terminology in literature, pertaining to sediment particle

properties were discussed. This step was necessary because parameters describing these properties are

often included in sediment transport equations. The overview on sediment characteristics is important

for the description of the modes of sediment transport in rivers and also for a better understanding of

the reservoir sedimentation modelling.

2.2 Sediment Transport in Rivers

2.2.1 Introduction

The flow of water over a mobile bed has the ability to entrain solid particles. Consequently, mixture

from the interaction between water and sediment will displace itself in the watercourse. The material of

sediment load is mainly originated by erosion of material within a catchment area. In addition landslides

can also contribute to the sediment load in the stream. Sediment resulting from the erosion of catchment

becomes available for transport by water flow. The river bed material displaced by the stream shear

stress is also source of sediment load. The size of sediment varies along the reach and mainly depends

on catchment characteristics as well as the distance of the reach to the sediment source. However, the

amount of the transported sediment load is influenced by the sediment size, slope, discharge and channel

and catchment characteristics. In the following sections, various sediment transport mechanisms will

be presented although in most reservoirs the turbulent suspended sediment transport is the dominant

mechanism of sediment transport.
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2.2.2 Bed-Load Transport

Sediment transport is considered as bed-load transport if the motion of the sediment particles is rolling,

sliding, or sometimes jumping along the bed. Bed-load occurs at relatively low shear stress excess and

describes therefore, a movement which is generally in contact with the bed, whereby the individual

particles move intermittently. Generally, the bed-load transport rate of a river ia about 5− 25% of that

in suspension (Yang, 2003).

2.2.3 Suspended Load Transport

Suspended load transport occurs as the shear stress excess increases further, the amount of turbulence

generated at the bed and its diffusion upwards reaches a stage where the particles lose contact with

bed and are held in suspension. Furthermore, the upward diffusion of turbulence helps to maintain the

particles in suspension, against gravity.

2.2.4 Wash Load Transport

Wash load transport, usually consists of transport of very fine particle of clay and silt sizes. These

particles are transported into the streams by overland flow, washed off the land, and are usually not

present in quantities in the bed material. Wash load can also be originated from the abrasion of sediment

particles in transport. Unlike the suspended load, a certain amount of wash load is not a function of

the hydraulic parameters of stream flow. The very fine particles, especially fine clay, can remain in

suspension by Brownian motion, even in still water.

2.2.5 Total Load Transport

The total sediment load is the sum of bed-load, suspended load and wash load. Basically by knowing the

sediment load contribution of each sediment transport mode, the total load can readily be determined.

However, in many well-known sediment transport formulas such as Bagnold (1966), Engelund and

Hansen (1972) and Ackers and White (1973), total load can directly be calculated using total load

equations proposed by the same authors.
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2.2.6 Summary

Since flow in reservoirs is brought by rivers, in this section different sediment transport mechanisms in

rivers were presented and Figure 2.3 below summarises the mode of transport of sediment as well as its

origin.

Figure 2.3: Composition of sediment transport

2.3 Reservoir Sedimentation Processes

2.3.1 Introduction

Sediment transport capacity for a river flowing in a reservoir is considerably decreased and the sediment

load is directly dependent on the hydraulic conditions in the reservoir. For example, flow velocity for a

river entering a reservoir decreases due to the expansion of the lateral cross sectional area of the flow and

increase in depth, and subsequently sediment deposition occurs in the reservoir. In a typical reservoir,

sediment deposition is spatially distributed according to their size. The coarse sediment is found in the

upstream part of the storage reservoir and this particular zone refers to delta area. Fine sediments such

as silt and clay fractions are transported further downstream due to their light weight and deposited

near the dam.
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2.3.2 Sediment Transport in Reservoirs

Sediment transport within reservoirs can be classified into three different mode of transports, namely

turbulent suspended sediment transport, density currents and colloidal suspension (Basson and Roose-

boom, 1997). Turbulent suspended sediment constitutes the major mode of sediment transport through

most reservoirs as well as in rivers. In this mode of transport, sediment is maintained in suspension due

to presence of turbulence in the flow. Some suspended load transport formulas are given in Section 2.5.

Density currents or gravity currents are flows driven by gravity acting on difference in density between the

current and its surroundings (Gerber, 2008). However, differences in temperature, salinity or suspended

sediment concentration can also trigger a density current flow in the reservoir because variations in the

above mentioned parameters also imply variations in density. There are various types of density current

such as overflow, interflow and underflow. The underflow density current is often found in reservoirs and

according to Basson and Rooseboom (1997), density currents have been observed in several reservoirs

such as Lake Mead, USA and Sautet Reservoir in France.

Colloidal suspensions are mainly caused by electrostatic forces exerted on small particles and their

suspensions depend on both particle size and water quality. Colloidal suspended sediment size varies

between 10−3 to 1 micron (Basson and Rooseboom, 1997). According to the same authors, large

reservoirs with a large storage capacity to mean annual river flow trap most of the inflow sediment load,

but about 3% of the load could spill at the dam due to colloidal suspension.

2.3.3 Sediment Deposition in Reservoirs

When the river flows into the reservoir coarser sediment fractions which consists of sand fractions or

larger sizes are first deposited at the upstream side of reservoir. This leads to the formation of a delta

which may increase to reach the full supply level (FSL) of the reservoir. Consequently the reservoir

storage is reduced and this loss in storage capacity has a direct impact on the functioning of the

dam. For example, the flood hazard upstream of the reservoir could considerably increase. The second

sediment deposition area is located further into the reservoir closer to the dam. Sediment deposition in

this area is composed of fine sediment fractions (clay and silt) which are generally transported through

turbulent suspension. Due to its location, fine sediment deposition could cause the blockage of gates.

Furthermore, sediment entrainment into a hydropower intake, especially silt and sand, could also damage

the hydropower turbines.
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2.3.4 Sedimentation Control in Reservoirs

In order to secure a long-term sustainability of the use of reservoirs many techniques have been developed

to deal with reservoir sedimentation. Sediment management in reservoirs resulting to a long lifespan

operation of reservoirs can be achieved by adopting suitable sediment control techniques to minimise

the impacts of reservoir sedimentation. According to Basson and Rooseboom (1999) the following

techniques can be used for reservoir sedimentation control:

Minimise sediment loads entering reservoirs through

- soil and water conservation programmes

- upstream trapping of sediment (debris dams or vegetation screens)

- bypassing of high sediment loads.

Minimise deposition of sedimentation in a reservoir through

- sluicing (passing of sediment-laden floodwaters through the reservoir by mean of drawing the

water level down)

- density current venting.

Remove accumulated sediment deposits through

- flushing by mean of drawing the water level down during the rainy season

- excavation by mean of dredging or other mechanical equipment.

Compensating for reservoir sedimentation through

- maintain long-term storage capacity by raising the dam

- abandon/decommission the sedimented reservoir and construct a new reservoir or introduce water

from elsewhere.

Detailed descriptions of the reservoir sedimentation control techniques listed above can be found in

Basson and Rooseboom (1999) and Morris and Fan (1997). However, some reservoir sedimentation

control methods are discussed in this study.
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Reservoir sediment as mentioned before is not only a serious threat to water storage capacity but it

could also undermine some hydraulic structures such as hydropower intakes and bottom outlets. For this

reason, reservoir sedimentation has been a topic of high interest for engineers for many years. Prediction

of sedimentation in reservoir, therefore, becomes crucial and could help in the planning and design of a

reservoir. However, many reservoirs experience sediment deposition beyond the acceptable level. To deal

with reservoir sedimentation some remedial measures exist to prevent incoming sediment from settling

in the reservoir or to remove the existing deposited sediment. According to Shen (1999) the following

methods can be used to reduce sediment deposition in reservoirs; bypassing flow with heavy sediment

concentration from entering the reservoir, sluicing sediment through a reservoir by density currents,

mechanical removal of reservoir sediment by means of dredging or siphoning.

Bypassing of sediment is a reservoir sedimentation control method in which high sediment loads are

bypassed around the reservoir through a tunnel or canal. Due to its limitations in terms of topographical,

hydrological or economical conditions, bypass tunnels are not widely used for reservoir sedimentation

management. However, according to Sumi et al. (2004), sediment bypassing techniques have many

advantages such as they can be added into existing dams and prevent a loss of water storage caused by

the lowering of the reservoir water level. Furthermore, inflow discharge can pass through tunnels very

naturally during flood times without a serious impact on the environment downstream. The authors also

pointed out that this technique has been successfully implemented to control reservoir sedimentation

in Japan as well as in Switzerland. A similar study done by Kantoush et al. (2012) on the evaluation

of sediment bypass efficiency concluded that the bypass tunnel has proven to be efficient in mitigating

reservoir sedimentation.

Sluicing is a process in which sediment-laden inflows are released through a dam in order to avoid the

sediment particles to deposit, and therefore the trap efficiency of the reservoir is considerably decreased.

Sluicing operation is carried out at low water level during the flood season. After the flood season clear

water is stored by raising the reservoir water level. As reported by Basson and Rooseboom (1997),

sluicing techniques were applied on various reservoirs with varying degrees of efficiency. According to

the authors the following conditions have to be fulfilled for an efficient sluicing process:

- Sufficient inflow must be available for transporting sediment.

- Outlet works must be dimensioned according to reservoir capacity and be located at the original

river-bed level.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2. Literature Review Page 18

- Sediment must be discharged at the right time and duration by a trained operator.

- A narrow shape configuration for the reservoir basin throughout is recommended.

- The river should transport essentially suspended sediment and possess excess capacity in order to

transport through the reservoir.

Flood flushing consists of increasing the flow velocities by water level drawdown in order to first re-

entrain the previously deposited sediments and then to transport sediment particles through the bottom

outlet. Unlike the sluicing technique, the erosion process is observed during flood flushing operation.

The width as well as the slope of the river channel will tend to the original regime conditions for periodic

flushing events, depending on the reservoir shape, availability of excess water, size of the bottom outlets,

judicious operation, etc. (Basson and Rooseboom, 1997). Sediment flushing could be carried out with

free outflow conditions or under pressure. As pointed out by Basson and Rooseboom (2008) the following

aspects need to be considered for the efficiency of the flood flushing operation:

- Outlet discharge capacity, location and elevation.

- The geometry of the reservoir (width, length, slope, storage ratio).

- Flushing discharge and its duration.

- Characteristics of inflow and deposited sediment

- Water level drawdown and duration

Shen (1999) conducted a study on flushing sediment through reservoirs and described two types of sed-

iment flushing namely, drawdown flushing and local flushing. Drawdown flushing consists of decreasing

the water level up to the topset of the sediment deposition. During drawdown flushing sediment is re-

entrained leading to a general erosion of the previously deposited sediment in the reservoir. This process

will excavate a channel known as flushing channel. Figure 2.4 shows the lateral sediment deposition

pattern in reservoirs while Figure 2.5 depicts the reservoir bed after flushing event, including the local

scour hole known as flushing cone and the flushing channel for local flushing and drawdown flushing

respectively.
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Figure 2.4: Longitudinal sediment deposition patterns in reservoirs (Shen, 1999)
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Figure 2.5: Sediment erosion during flushing operation in reservoirs (Shen, 1999)

According to Mahmood (1987), this method is suitable for narrower, gorge-type reservoirs and very

effective in terms of amount of sediment removed in reservoir when the drawdown flushing is carried

out over a period of several months. On the contrary, the low water condition makes this method

inappropriate in case of hydropower system in which high water level in reservoir is generally required

for an effective power generation.

Local flushing consists of carrying out flushing operation by fixing the water level to the minimum

operating level. Consequently, the flow velocity is much less compared to the drawdown flushing method.

This combined conditions leads to the development of local scour hole just upstream of the bottom
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outlet. This hole has a conical shape and develops until the slope of the scour hole is equal to the

angle of repose. Furthermore in this method, sediment flushing has only a localised effect (upstream

of the bottom outlet) because velocities decrease proportionally to the square of the distance from

the outlets (Scheuerlein, 1993). The local flushing method is appropriate where localised bed scour at

intakes is required. For example in case of hydropower in which the bottom outlet is placed below the

intakes could minimise the entrainment of sediment particles into the turbine (Basson and Rooseboom,

2008). It is worth noting that local flushing is discussed in detail in the present study. Firstly, a physical

laboratory model of the non cohesive sediment bottom outlet flushing is investigated (see chapter 3)

and secondly a coupled fully 3D numerical simulation of the bottom outlet flushing is developed and

validated against laboratory data (See Chapter 4 and 5).

2.3.5 Summary

The main focus in this section was to explain deposition processes of sediment in a reservoir. In this

regard, the sediment deposition pattern along the reservoir in terms of sediment size distribution was

first described and then, various techniques for the removal of deposited sediment were discussed.

2.4 Overview on Bottom Outlet Sediment Flushing under Pressure

2.4.1 Introduction

Bottom outlets are very important components of a dam structure. Although a bottom outlet was

historically primarily designed as a safety structure for water releases in an emergency it can also be

used for the following purposes:

- Environmental flood release.

- Reservoir drawdown for sediment flushing: local or free flow flushing

- Flood discharge release

Bottom outlets can also be utilised as sediment wear protection in a turbine by initiating local flushing

when it is located below the power intakes (Fan, 1985; Basson and Rooseboom, 1997). However, an

in-depth research is needed to confirm the effectiveness of this method. In several existing dams outlets
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have been designed with very low discharge capacities while in some cases they do not exist. In order to

correct this, reconstruction of bottom outlets has been implemented on dams as reported by Basson and

Rooseboom (2008). However, outlet reconstruction is found to be costly and in many cases technically

challenging (Delft, 1992). To achieve this, special attention should be given to the analysis of hydraulic

conditions of the bottom outlet in order to design suitable outlets capable of withstanding high flows

and high sediment load events.

Basson and Rooseboom (1997) suggested the following rules for the design of a bottom outlet:

- The orifice of the outlet should be dimensioned to pass a 5 to 10 year Annual Recurrence Interval

flood without inundation of floodplains and with moderate deposition. This design consideration

results in very large and costly outlet structures in most cases.

- The bottom outlet elevation should be at the original river bed level. This will allow effective

flushing of suspended sediment load with high concentrations near the bed. Furthermore, coarse

sediments are also re-entrained through the flushing process.

- More than one outlet are recommended in case of hydropower system and the spacing between

them should be such that the local scour zone upstream of outlets covers all the intakes to turbines.

- The bottom outlets should be large enough relative to the outlet tunnel length and the initial

depth of the sediments above the outlet in order to avoid blocking of the outlets by debris or

sediment deposition.

- Abrasion-resistant material should be used to coat the outlets for protection against a potential

abrasive action of flushing sediment.

The bottom outlet dimension can be determined using the following equation proposed by United States

Bureau of Reclamation (USBR, 1987)

H = K1Hv or H = K2
Q2

A2
(2.20)

where H denotes the total available head, Hv is the velocity head, K1 and K2 are coefficients, Q is the

outlet discharge and A is the required area of the outlet orifice. From Equation 2.20 it can be noticed

that for a given constant total head H the outlet discharge Q increases with the increase of the outlet

area A. Therefore the use of a bottom outlet with a large orifice should improve the sediment flushing
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effectiveness. A similar equation known as the submerged flow/orifice equation gives a relationship of

the bottom outlet discharge Q, with both total head H and the outlet area A and reads

Q = CcA
√

2gH (2.21)

where Cc is the contraction coefficient of discharge for submerged or tube flow and g is the gravitational

constant. The contraction coefficient is defined according to the outlet orifice shape. For sharp edges

Cc = 0.6 while Cc = 0.8 in the case of rounded edge (SANRAL, 2013).

2.4.2 Previous Studies done on Bottom Outlet Flushing

The scour downstream of hydraulic structures such as stilling basins, diversion work, river barrages

has been an important topic of interest for engineers due to its frequent occurrence in engineering

applications. However, there are few studies in literature with main focus on the behaviour of the flow

as well as the sediment transport processes just upstream of the bottom outlet structures. The velocity

field upstream of a bottom outlet orifice was investigated by Shammaa et al. (2005) and this study

found that the shape of velocity contours near the outlet orifice are semi-ellipsoidal and became more

hemispherical and approaching uniformity further away from the orifice. Furthermore, the observed

velocity magnitude decreases rapidly from the orifice to a distance approximately equal to the outlet

diameter in the opposite direction of the flow. In addition, it was found that beyond a certain distance

the size and the shape of the bottom outlet do not impact the behaviour of the flow field as shown in

Figure 2.6

Figure 2.6: Isovelocity contours upstream of orifices of different shapes (Shammaa et al.,

2005)
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Shammaa et al. (2005) reached the above mentioned results by using the potential flow solution method.

This method consisted of a distribution of point or line sinks over the surface of an orifice or sluice gate

opening in order to determine the velocity field upstream of the bottom outlet.

A similar approach to Shammaa et al. (2005) method was adopted by Bryant et al. (2008) to investigate

the flow pattern upstream of orifices. A new potential flow solution method was therefore developed

by Bryant et al. (2008) in which pressure gradient effects close to orifices and the superposition of

the solution from multiple orifices were included. A physical model tests, including first, the small size

orifices with three cases; first test without the influence of surface or bottom boundary, the second test

consisted in placing the orifice near the surface and in the third test two orifices were chosen to be

close to each other. For the large size orifice case, the orifice was located far away from the surface and

bottom boundaries. Based on comparisons between results from these experimental tests and the new

potential flow solution method Bryant et al. (2008) concluded that the new proposed method improved

prediction of the velocity profiles near the orifice for one orifice condition as well as multiple orifices

conditions as depicted in Figure 2.7.

(a) Vertical velocity profile comparison (b) Horizontal velocity profile comparison

Figure 2.7: Velocity profile comparison with measurement (Bryant et al., 2008)

Rajaratnam and Humphries (1982) studied velocity behaviour upstream of vertical sluice gates through

an experimental rectangular channel setup as well as the geometrical properties of the surface eddy or

recirculation region and the pressure defect on the bed. Figure 2.8 depicts the different velocity profiles
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upstream of the sluice gate and the surface eddy as observed during the experimental test conducted

by the same authors.

Figure 2.8: Flow through a sluice gate - definition sketch (Rajaratnam and Humphries, 1982)

Firstly, it was found in this experimental study that turbulent flow has occurred at the downstream

end of the surface eddy while at the upstream end the flow was laminar within the recirculation region.

Secondly, due to high flow acceleration through the gate opening, Rajaratnam and Humphries (1982)

concluded that the pressure defect (pressure loss) on the bed decreases from the gate location and

reaches zero at an upstream distance approximately five times the gate opening as shown in Figure 2.9.

The third conclusion drawn from this study was that the velocity distribution becomes uniform after the

flow crosses the gate opening. In addition, for less than about four times the gate opening the profile

of the longitudinal component of the velocity has a shape of a wall jet in which the velocity increases

with respect to the vertical distance up to a maximum value and then decreases as the vertical distance

increases (see Figure 2.10).
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Figure 2.9: Pressure head dropped on the bed (Rajaratnam and Humphries, 1982)

Figure 2.10: Typical velocity upstream of the gate (Rajaratnam and Humphries, 1982)
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Most of previous research studies that have been conducted on bottom outlets and presented above deal

only with the flow field behaviour upstream of the outlet/sluice gate. However, the following studies will

specifically deal with the scour development upstream of the bottom outlet due to the flushing process.

Powell (2007) investigated both sediment transport and flow behaviour upstream of orifices through a

laboratory setup. The experimental study included a circular bottom outlet and the bed in the model

consisted of non-cohesive uniform sand. Unlike previous experimental studies on bottom outlets, the

packed bed inside the physical model was levelled with the invert of the orifice. The same procedure

was followed in the physical model presented in the present study (see Chapter 3). After running several

test cases by varying the sediment sizes and water level above the orifice, Powell (2007) concluded that

on one hand initial inception motion of sediment was driven by high shear stress and on the other hand

the equilibrium state of the scour hole was governed by a vortex system that developed in the vicinity of

the bottom outlet. Furthermore, based on measurements taken during the experimental tests the same

author derived the non-dimensional relationships for predicting maximum scour depth and maximum

scour length and width (see Equations 2.22 to 2.24)

SDC−M =
18576

H

D
+ 33273

ρU0

µ

(
d50
H

)0.1 (2.22)

SL =
72017

H

D
+ 45656

ρU0

µ

(
d50
H

)0.1 (2.23)

SWM =
55789

H

D
+ 144557

ρU0

µ

(
d50
H

)0.1 (2.24)

where SDC−M , SL and SWM are maximum scour depth, scour length, and scour width, respectively

along the orifice centreline, H is the head over the orifice, D is the diameter of orifice, ρ and µ are the

density and the dynamic viscosity of the fluid, U0 is the average orifice velocity and d50 is the sediment

size.

Meshkati et al. (2009) investigated the temporal evolution of the flushing cone upstream of a bottom

outlet during the pressurised flushing in a reservoir. For this purpose, a laboratory model was set

up and experimental tests were conducted for various flow conditions using a uniform silica bed and
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geometric properties of the flushing cone such as the maximum width, length and depth were measured.

These measurements were subsequently used for dimensional and regression analysis in order to derive

equations for temporal variations of flushing scour dimensions.

A similar laboratory experiments was conducted by Meshkati et al. (2010) to analyse the local scour

hole upstream of bottom outlet for different outlet diameters. Three bottom outlet diameters with five

discharges and three different water depths relative to the centre of the bottom outlet were tested.

Results from these experimental tests were used for regression analysis which led to dimensionless

equations (Equations 2.25 and 2.26 ) for calculating the volume of the removed sediment as well as to

the prediction of the width of the flushing cone.

Vs
H3

= 4.6

(
U0√

g (Gs − 1) d50

)0.21(
Hs

H

)2.2(D
H

)0.89
(2.25)

Ws

H
= 0.02

(
U0√

g (Gs − 1) d50

)0.1(
Hs

H

)0.75(D
H

)0.34
(2.26)

where Vs and Ws are respectively the volume and the width of the flushing cone, Hs is the deposited

sediment height above the centre of the bottom outlet, g is the gravitational acceleration and Gs is the

relative density.

Furthermore, results from these laboratory tests indicated that the cross section area of the bottom

outlet is strongly correlated with the flushing cone dimensions since the flushing scour hole dimensions

increase with the increase of the diameter of the bottom outlet.

Emamgholizadeh et al. (2006) also investigated the effect of both the discharge and the water depth at

the bottom outlet on the pressure flushing efficiency. For this investigation, laboratory experiments were

carried out and three separate non-cohesive sediment sizes were used in the physical model. The authors

concluded that the amount of removed sediment during flushing process increased with the increase of

the flow exiting the bottom outlet and the decrease of the water depth in the reservoir near the bottom

outlet. In addition, the same authors indicated that under the same flow conditions when the sediment

size decreased (from coarser to finer size) the quantity of the removed sediment increased.

In a similar study, Dodaran et al. (2012) experimentally investigated the effect of localised vibrations

in sediment layers on the geometric parameters of the flushing cone. The experimental tests were

conducted with two different outlet diameters, five flow rates, three different frequencies of vibrations

with three distinct position of the vibrators. The water depth relative to the centre of the bottom

outlet was the same for all experimental tests. Dodaran et al. (2012) showed that vibration frequency
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and the cross section area of the bottom outlet are correlated to the flushing cone dimension since

the results indicated that when the vibration frequency and the diameter of the bottom outlet increase

the scour hole becomes larger and extends further from the outlet. In addition, in the same study,

it was proven that an appropriate position of the vibrators, which is defined as the optimum vibrator

positions could improve the efficiency of the flushing operation. From the experimental results, the

above-mentioned positions are located at the maximum flushing length and width for an experimental

case without vibrators.

Laboratory experiments consisting of a one-dimensional reservoir model were conducted by Talebbey-

dokhti and Naghshineh (2004) to analyse the flushing processes by using polymer particles to model a

very fine and non-cohesive sediment. Results from the experimental tests showed that the scour hole

upstream of the bottom outlet was conical and symmetrical. In addition, the flushing channel started

with a meandering effect at the beginning of the flushing process. According to Talebbeydokhti and

Naghshineh (2004), these observations agreed with experimental data found in the literature.

In 1993, Scheueurlein proposed a simplified analytical approach in order to identify the governing pa-

rameters of flushing process as well as to estimate its efficiency (Scheuerlein, 2004). This method was

mainly based on the continuity equation applied on a three-dimensional grid of streamlines and isotachs

combined with some stability criteria of sediment deposit against erosion due to water flow (see Figure

2.11).

From the simplified analytical approach the following equation was derived

r

DG
=

1

2

√
µG (2gH0)

0.5

vr
(2.27)

where r is the radial distance of a sphere-shaped isotach from the bottom outlet, DG is the diameter

of the bottom outlet, µG is a loss coefficient at the outlet, H0 is the pressure head above the outlet, g

the gravitational acceleration and vr the flow velocity at distance r.
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Figure 2.11: Simplified flow pattern at bottom outlet (Scheuerlein, 2004)

Although physical models were extensively used to study the bottom outlet flushing process, several

numerical models have also been used to investigate sediment flushing in reservoirs. However, the

majority of these mathematical models were one-dimensional numerical modelling (Shen, 1999). Peng,

Niu and Ju (reported in Shen, 1999) developed a one-dimensional numerical model based on the diffusion

equation to predict the removed sediment volume, bed profile changes and the flushing channel width

during the flushing event under a constant discharge. A similar one-dimensional diffusion model which

is able to simulate the general trend of bed profile changes as well as the amount of removed sediment

was proposed by Lai and Shen (1996) to investigate the flushing processes during drawdown operations.

A two-dimensional numerical model based on the finite volume method and capable of modelling sedi-

ment transport under unsteady flow condition was developed by Lai (reported in Shen, 1999) to simulate

flushing channel formation during flushing sediment processes in reservoirs. In order to simulate flushing

of sediments from reservoirs, Olsen (1999) developed a two-dimensional numerical model that solves

depth-averaged Navier-Stokes equations in conjunction with a zero-equation turbulence model. In this

model, the sediment concentration is calculated using a convection-diffusion equation. Furthermore, the

simulated flow field was extrapolated to three dimensions and the secondary currents were not modelled.

However, according to the author, the model was able to reasonably simulate physical model cases.

Scheuerlein (2004) made use of a three-dimensional numerical model to investigate the removal of
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sediment deposits from reservoirs. Based on Finite Volume Method (FVM) this numerical model solves

the Reynolds-averaged Navier-Stokes equations in conjunction with k-ε turbulent model to compute the

flow fields. The sediment transport is computed using the convection-diffusion equation in combination

with Van Rijn’s (1984b) equation for sediment concentration near the bed and bed load transport

proposed by Van Rijn (1984b). The numerical model results were compared with results from the

simplified analytical approach (Scheuerlein, 1993) and the model successfully predicted flushing operation

under high water level. However, for water level drawdown conditions the model provided a poor

prediction compared to the simplified analytical approach.

2.5 Theoretical Considerations of Suspended Load Transport

2.5.1 Introduction

The sediment transport confined to bed load is only affected by a relatively small value of shear stress

excess. Increase in bed shear stress leads to suspension and transport as bed and suspended load. Since

suspended sediment is transported at the same velocity as the flow, the quantity of sediment transported

as suspended load is usually much greater than that of bed load which moves slowly. According to

Raudkivi (1998), the spreading of suspended matter arises from one or more of the following causes:

- Scattering due to random molecular motion of the host fluid.

- Turbulent mixing.

- Spreading due to systematic differences in the velocity in the cross section of the stream or by

convecting currents.

The spreading of suspended sediment due to random molecular motion and turbulence is referred to

as diffusion or dispersion whereas that due to velocity gradients is known as convective dispersion or

gradient diffusion. The colloidal particle sizes are primarily affected by the random molecular motion also

known as Brownian motion. Silt and sand sizes are maintained in suspension against the gravitational

fall velocity by diffusion of turbulence from the bed or by internal current in a convection process.

Unlike the diffusion process, little progress has been made with quantitative studies of the convective

suspension.
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Different models describing sediment in suspension found in the literature, are presented in the following

sections.

2.5.2 Diffusion Models of Suspension

Diffusion models are mostly based on the continuum hypothesis and Fick’s law which is given as

P = −D∂C
∂y

(2.28)

where P is the rate at which the quantity or property is transported across unit area normal to y-

direction, D is the coefficient of diffusion or diffusivity and c is the concentration of the same quantity

transported by diffusion. In turbulent flow and addition of gravitational settling velocity (ωs) term,

Fick’s law is rewritten as

∂cm
∂t

+ uim
∂cm
∂xi

=
∂

xi

(
Dij

∂cm
∂xj

+DM
∂cm
∂xi

)
+
∂(ωsc)

∂y
(2.29)

where DM refers to molecular diffusion, and Dij is the turbulent eddy diffusivity tensor. Generally Dij is

much larger than DM so that DM can be neglected. In the theoretical models for sediment suspension

the following assumptions are made; the concentration is a function of elevation y only and independent

of longitudinal or lateral coordinates, the continuity for solids and fluid must be satisfied and usually a

steady state is assumed. Therefore, at any elevation within the flow the downward convective movement

at settling velocity is balanced by the upward convective velocity due to diffusion of turbulence.

For steady flow with low sediment concentration, suspension of one particle size only at constant settling

velocity (ωs), Equation 2.29 is reduced to

ωs
∂c

∂y
+

∂

∂y

(
εs
∂c

∂y

)
= 0 (2.30)

where εs is the diffusion coefficient for sediment. Integrating Equation 2.30 once yields

ωsc+ εs
∂c

∂y
+A = 0. (2.31)

Assuming that the concentration at the water surface is zero leads to A = 0 and then Equation 2.31 is

reduced to

ωsc+ εs
∂c

∂y
= 0 (2.32)

which is usually the starting point of analyses of sediment suspension problems. From Equation 2.32,

the concentration distribution is deducted and given by

ln

(
c

ca

)
= −ωs

∫ y

a

dy

εs
(2.33)
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where a is a reference level at which c = ca is known. The form of the concentration profile mainly

depends on both the velocity distribution and the diffusion coefficient (εs) and by assuming that the

diffusion coefficient is constant leads to

c

ca
= exp

[
−ωs
εs

(y − a)

]
. (2.34)

By assuming that εs = ε, where ε is the momentum diffusion in fluid, Rouse (1937) proposed the most

widely known solution of the diffusion equation (Equation 2.30). By using the parabolic distribution

form of the momentum diffusion (ε) given as

ε = κu∗y

(
1− y

y0

)
(2.35)

where κ is the Karman constant, and setting the integrand dy/ε in Equation (2.33) as

dy

ε
= ρ

du

dy

τ0

(
1− y

y0

)
and then integration yields the concentration profile given by Rouse (1937)

c

ca
=

[
a(y0 − y)

y(y0 − a)

]Z
(2.36)

where Z = ωs/κu∗ and sometimes called Rouse number. The concentration profiles according to

Equation (2.36) are depicted in Figure 2.12.

For a given shear velocity, Z is proportional to ωs and as a result, fine sediment has a small Z value

and the particles are distributed fairly uniformly throughout the depth. A substantial variation in

concentration over the depth is observed for coarse sediments as shown in Figure 2.12. For a given

sediment with a constant settling velocity (ωs), an increase in shear velocity leads to increased uniformity

of concentration over the depth.

Van Rijn (1984a) proposed a concentration profile formula similar to Rouse’s Equation (2.36) by dividing

the flow depth into two parts and used a parabolic distribution form of the momentum diffusion (ε)

(Equation 2.35) in the lower half of the flow and the a constant ε in the top half. This leads to the

following concentration profile over the flow depth

c

ca
=

[
a(y0 − y)

y(y0 − a)

]Z
for y/y0 < 0.5 (2.37a)

c

ca
=

a

y0 − a
exp

[
−4Z

(
y

y0
− 0.5

)]
for y/y0 ≥ 0.5 (2.37b)

where Z = ωs/βκu∗ and β is the differences between diffusion of solids and fluid as defined by Van Rijn

(1984a). According to the same author, Equations (2.37a) and (2.37b) are only valid for c < ca < 0.001.
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Figure 2.12: Distribution of suspended load in a flow (Raudkivi, 1998)

2.5.3 The Energy Approach of Suspension

The energy approach of suspension problems also known as the gravitational theory was developed

by Velikanov (reported in Raudkivi, 1998). According to the author, suspension by diffusion involves

energy, and energy dissipation of flow is an irreversible transformation of energy via turbulence into heat.

Furthermore, the kinetic energy of turbulence provides the energy needed to maintain a suspension of

sediment. Assuming logarithmic velocity distributions and that shear stress varies linearly with depth,

Velikanov (reported in Raudkivi, 1998) obtained the following concentration profile formula

c

ca
= exp

{
−ωsκ∆

u∗S

∫ η

η0

[
(1− η) ln

η

a

]−1
dη

}
(2.38)

where the limits of integration are from ηa, a reference level, to η = y/y0 and a = ks/30y0. The

agreement of equation (2.38) with observed results is of the same order as in Equation (2.36) from

Rouse in the diffusion approach (Raudkivi, 1998).
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By stating that the rate of energy input per unit volume to a flow of water-sediment mixture must

be equal to the power of fluctuations, the rate of energy dissipation through motion and collisions of

particles, flow distortion and dissipation by water, Itakura and Kishi (1980) proposed

c

ca
=

[(
y0 − y
y0 − a

)1−ϕ a

y

]Z
(2.39)

where Z = ωs/κu∗, ϕ = ay0/L, L = u3∗(κg∆ωsc) and a is an experimental constant. Although the

application of Equation (2.39) to laboratory data yields good results, no studies involving field data are

known (Raudkivi, 1998).

2.5.4 Statistical Models of Suspension

Owing to the fact that suspension is maintained by turbulence which is a random process, suspension can

be described by probabilistic methods. Furthermore, the diffusion equation used to describe suspension

can be expressed in the form of a random functions where concentration (c) is interpreted as probability

of occurrence of a single particle in a given unit volume. Early studies on sediment suspension using

statistical methods made an attempt to relate the particle motion to turbulence. Although numerous

researchers have published on statistical methods for analysis of suspension, the statistical models have

not established themselves in suspended sediment studies or predictions (Raudkivi, 1998).

2.5.5 Numerical Models of Suspension

Numerical models, known as mathematical models, are powerful tool for the analysis of suspended

sediment problems. Based on momentum and mass balance equations for fluid and sediment, numerical

methods enable the use of more complex descriptions of turbulent mixing. A turbulence model is essential

because it defines the fluid and sediment mixing coefficients, which are solved numerically using a finite

differences procedure and appropriate boundary conditions. Boundary condition involves the description

of the exchange of sediment between the bed and suspension. From the Reynolds’ equations by applying

a k-ε turbulence model, where k is the kinetic energy of turbulent motion per unit mass and ε the rate

of dissipation, the fluid mixing coefficients can be calculated. In numerical models, the combination of

both Reynolds’ equations and the k-ε model is usually used and has proven to yield a good description

for velocity fields. Calculations of mixing coefficients in non-uniform flow were presented by Alfrink and

Van Rijn (1983).
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The numerical model approach is the method used in the present study to analyse turbulent suspended

sediment in reservoirs and therefore, more details will be given in the subsequent chapters dealing with

numerical modelling.

2.5.6 Summary

This section discussed empirical consideration of the suspended-load transport by giving various ap-

proaches to define the suspended sediment concentration profile in the flow. Suspended sediment

transport is part of the scope of the present study. Therefore, numerical modelling dealing with sus-

pended sediment in reservoirs which is able to predict sediment concentration profiles, is developed and

presented in Chapters 6 and 7.

2.6 Overview on Mathematical Modelling of Turbulent Suspended Sed-

iment Transport

2.6.1 Introduction

Because of the complexity of sediment transport processes, all existing sediment transport formulas are

empirical or semi-empirical. Based on these formulas several mathematical models have been developed

in the past to simulate reservoir sedimentation and sediment transport processes. Therefore, evaluation

of their performance in various situations is very important. Many models exist that are able to simulate

turbulent sediment transport in a reservoir. Some of these models are discussed in the following sections.

2.6.2 One-Dimensional Models

Mathematical one-dimensional (1D) models are mostly used in river and reservoir applications around

the world. These models are able to simulate large reaches of rivers or reservoirs due to the simplicity of

the formulation and the few requirements of computer resources. However, the main shortcomings of 1D

models are the inability of simulating curved flows and recirculating zones or secondary flows. The 1D

models also remain limited in terms of predicting suspended sediment distribution conveniently. As an

example, the lateral profile of the suspended sediments inside the reservoir is not described. According

to Campos (2001), 1D models exclusively developed for reservoir application have been available since
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the end of the 1970s and some of them are reviewed below.

2.6.2.1 HEC-6 Model

HEC-6 is a general one-dimensional sediment transport model developed by the US Army Corps of

Engineering in the early 1970s. The model was designed for the analysis of long-term river and reservoir

behaviour. It is capable of computing scour and deposition by simulating the interaction between the

hydraulics of the flow and the rate of sediment transport (U.S Army Corps of Engineers, 1972).

2.6.2.2 Mike11 Model

MIKE 11 is a 1D river model developed by the Danish Hydraulic Institute (DHI). It is able to simulate

water flow and sediment transport in rivers and also in reservoirs. The computational core of MIKE 11

is a hydrodynamic simulation engine and it has a wide range of additional modules and extensions that

cover almost all aspects of river modelling.

2.6.2.3 CCHE1D Model

CCHE1D is a 1D flow and sediment transport model for channel networks developed by the National

Centre for Computational Hydroscience and Engineering (NCCHE) at the University of Mississippi. The

model is able to compute unsteady flows in channels and also non-equilibrium transport of non-uniform

sediment mixture. The CCHE1D model can be a valuable predictive tool for the evaluation of flow and

sedimentation processes in primarily agricultural watersheds (Wu and Viera, 2002).

2.6.2.4 RESSASS Model

RESSASS (Reservoir Survey Analysis and Sedimentation Simulation) is a 1D model based on the equa-

tions that describe flow and sediment movement. The model can quantify reservoir storage volume

reductions due to sedimentation, and the impact of reservoir operating policies on these losses.
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2.6.2.5 GSTARS3 Model

GSTARS3 (Generalized Sediment Transport model for Alluvial River Simulation) is a 1D numerical model

for simulating the flow of water and sediment transport in alluvial rivers which has been developed by the

Sedimentation and River Hydraulics Group of the Technical Service Centre, U.S. Bureau of Reclamation,

Denver. The model is composed of four major modules namely; the use of both the energy and the

momentum equation for backwater computations, the use of the stream tube concept for sediment

routing computations, the use of the theory of minimum energy dissipation for channel width and

depth adjustments, and the inclusion of a channel bank side stability criteria for sediment continuity

computations (Yang and Simoes, 2003).

2.6.3 Two-Dimensional Models

The two-dimensional (2D) horizontal plane models are considered as a particular case of the three-

dimensional (3D) models. Therefore they are used as an initial step in the 3D models. The 2D models

are being gradually upgraded to or replaced by the 3D mathematical models. Several 2D hydrodynamic

and sediment transport models have been developed and some of them are discussed below.

2.6.3.1 MIKE21C Model

MIKE 21C is a numerical model that simulates the development in the river bed and channel plan form

in two dimensions. Like the MIKE11, it was developed by the DHI. In its basic form the model is a 2D

hydrodynamic model that can simulate dynamic as well as quasi-steady or steady-state hydrodynamic

solutions. MIKE 21C uses the traditional division of sediment transport into bed load and suspended

load, and the model can simulate both non-cohesive and cohesive sediment in a mixture (DHI, 2003).

The sediment transport and hydrodynamics are coupled in MIKE 21C model.

2.6.3.2 CCHE2D Model

The CCHE2D is an analysis model system for unsteady, turbulent free surface flow, sediment transport

and water quality evaluation. It is a depth-integrated 2D hydrodynamic and sediment transport model

based on a variant of the finite element method (Wu, 2001). The model is used for application in the

areas related to predicting river bed and bank erosion for both uniform and non-uniform sediment. The
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sediment transport and hydrodynamics are not coupled in CCHE2D model.

2.6.3.3 SUTRENCH-2D Model

SUTRENCH (Suspended sediment Transport in Trenches) is a finite-volume hydrodynamic and sediment

transport model developed by Van Rijn and Tan (1985) for simulating sediment transport and associated

bed level change under conditions of combined quasi-steady currents and wind-induced waves over

a sediment bed. The model solves the general advection-diffusion equations by incorporating a lag

coefficient to account for the settling of sediments.

2.6.3.4 TABS-2 Model

TABS-2 is a group of finite-element type model based on hydrodynamic and sediment transport computer

codes which are applicable to rivers, reservoirs and estuaries. The model is composed of the hydrody-

namic component, the sediment transport component and the water quality component (Thomas and

McAnally, 1985).

2.6.3.5 MOBED2 Model

MOBED2 (Mobile Bed) is a 2D finite-difference hydrodynamic and sediment transport model used in

a curvilinear coordinate system, developed by Spasojevic and Holly (1990). The model can simulate

water flow, sediment transport, and bed evolution in natural waterways such as reservoirs, estuaries,

and coastal environments where depth averaging is appropriate. The 2D numerical models, as pointed

out by Papanicolaou et al. (2008), cannot capture the hydrodynamic and sediment processes associated

with secondary flow, vertical acceleration around structures, etc. However, they offer the possibility of

a relatively long-term unsteady simulation when their simplifying assumptions are appropriate for the

problem under study.

2.6.4 Three-Dimensional Models

The largest difference between 3D and 2D models is that 2D models can only simulate depth-averaged

flow fields and sediment concentration fields, while 3D models can predict flow fields and sediment

concentration fields at different water depths or elevations. Furthermore, a 3D sediment transport
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model is necessary to compute lateral bed-load transport of sediments and erosion-deposition process.

Three-dimensional mathematical models are commonly used for modelling water-quality issues, sediment

distribution in stratified reservoirs (thermal stratification), and complex flow patterns by wind and waves.

These models are adequately suitable for predicting suspended turbulent sediment load in the reservoir

since the suspended turbulent sediment transport is a three-dimensional phenomenon. However, the

sediment transport and hydrodynamics are not coupled in most 3D numerical models. Some of 3D

models are reviewed below.

2.6.4.1 SSIIM Model

SSIIM (Sediment Simulation in Intakes with Multiblock Option) is a 3D sediment transport model for

use in rivers, channels and estuaries developed by Olsen (1994). It solves the Navier-Stokes equations

using the control volume method with the SIMPLE algorithm and the k-ε turbulence model. It also

solves the convection-diffusion equation for suspended sediment transport.

2.6.4.2 FLUENT Model

FLUENT is a product of ANSYS fluid analysis software and provides fast, accurate and robust Computa-

tional Fluid Dynamics (CFD) solutions. FLUENT is a computer program which can model fluid flow and

heat transfer in complex geometries using the finite volume method. It is able to simulate laminar and

turbulent flows in 3D geometries. One of the special features of FLUENT is the User-Defined Function

(UDF) which allows the user to customise for example, material properties and boundary conditions in

the FLUENT program.

2.6.4.3 Fang and Wang Model

The numerical model developed by Fang and Wang (2000) is a 3D sediment transport model that uses

equations for sediment-laden water with variable density. Therefore, the model can take account of

stratified flows and was applied to predict reservoir sedimentation in the Three Gorges Reservoir project

in China (Campos, 2001).
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2.6.4.4 MIKE3

MIKE3 is a 3D model with an orthogonal grid system developed by the Danish Hydraulic Institute (DHI)

for free surface flows. It includes modelling components for advection-diffusion, water quality, flooding

and drying of intertidal areas, and sediment processes (Jacobsen and Rasmussen, 1997). The model can

simulate interactions between the bed sediments and the water column, sediment transport, deposition

and entrainment.

2.6.4.5 DELFT3D

DELFT3D model is a 3D integrated modelling system developed by the Delft Hydraulic Laboratory

team that is solved through the finite difference scheme (Delft, 1999). The model contains several

submodels that simulate the temporal and spatial variation of six processes namely; flow, waves, water

quality, morphology, sediment transport, and ecology. DELFT3D model can simulate flow and sediment

transport processes and water quality.

2.6.5 Summary

In this section, an overview of numerical modelling of suspended sediment transport was given by review-

ing some existing numerical models that deal with sediment transport and hydrodynamic simulation.

They are grouped into three categories namely, 1D numerical models, 2D numerical models and 3D

numerical models. Although 3D mathematical model is the more convenient model because of its wide

range of applicability, it remains the most complex model. The sediment transport and hydrodynamics

are not coupled in most 3D numerical models. A coupled numerical model in terms of sediment trans-

port and flow field is very convenient in case of shallow water, river system or local scour process where

bed level change considerably affects the flow fields. In this regard, the scope of the present study was

to develop a fully coupled 3D numerical model able to simulate reservoir sedimentation processes and

will be discussed in the following chapters.
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3. Experimental Investigations of Bottom Outlet

Flushing under Pressure

3.1 Introduction

The prediction of the local scour process occurring upstream of the reservoir flushing bottom outlet un-

der pressure is challenging and it was the primary objective of the present study. One of the commonly

used methods to investigate the extent and depth of local scour is to carry out physical model tests.

Laboratory tests were conducted in the present research work, in order to assess the local scouring devel-

opment upstream of the bottom outlet during a flushing event. The main objective of this experimental

investigation was to collect data from measurements in a controlled environment. Subsequently, these

data would later be used for the validation of the coupled fully three-dimensional numerical model of the

bottom outlet flushing presented in Chapter 5. The physical model emulating reservoir conditions was

set up in a laboratory rectangular flume in which a packed bed made of sediment with uniform size was

built. Water was then released through the bottom outlet until local scour becomes apparent upstream

of the bottom outlet. More details on the experimental setup as well as the physical test procedure and

results are given and discussed in the following sections.

3.2 Physical Model Setup

The experimental investigation presented in this research was conducted in the hydraulic laboratory

of the Civil Engineering Department of Stellenbosch University. The physical model consisted of an

elevated rectangular flume of 40m long, 1.24m deep and a width of 1m (see Figure 3.1). The flume

was equipped with a permeable woven sheet located at its upstream side, near the pump supply system

which creates a smooth inflow and reduces the turbulence caused by pump fluctuations. In addition,

the flume was long enough to ensure a fully developed uniform flow with less turbulence and vortices

reaching the packed bed which was located far downstream of the flume.

A wall made of PVC with 1m high, representing the dam was mounted at the downstream end of

the model with a bottom circular orifice 0.09m in diameter and located at the centre of the wall,

0.26m above the floor of the flume. The orifice was connected directly to the outlet pipe equipped
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with a flowmeter and a manual valve. In this experimental study, an Endress + Hauser Promag 50W

electromagnetic flowmeter was utilised for the measurements of the flow exiting the bottom outlet.

Located just downstream of the flowmeter, the manual valve was used to adjust the flow rate according

to the necessary flow needed for the model test. The outlet flow rate was increased by pumping more

water out of the flume through the outlet pipe using a pump, which was located further downstream.

This additional setup allowed the testing of relatively high discharges, exceeding the discharge due to

gravity (0.021m3/s). The maximum pumped discharge reached in the present study was 0.036m3/s.

Figures 3.1 to 3.4 show the laboratory flume setup with its different features.
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Figure 3.1: Experimental flume layout
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Figure 3.2: Laboratory flume view from upstream
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Figure 3.3: Packed bed levelled with the outlet invert
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(a) Needle gauge used for scour hole survey (b) Flowmeter used for flow measurement

Figure 3.4: Measurement instruments
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The erodible part of the physical model was made of a packed bed with a total length of 5m and a

height of 0.26m relative to the flume floor, which corresponds to the bottom outlet invert (see Figure

3.3). In this experiment, the sediment was modelled using crushed peach pips. A standard sieve grading

analysis on the same sediment, done by Stephan (2013) showed that the sediment has a d50 diameter

of 0.74mm as indicated in Figure 3.5.

Figure 3.5: Sediment size distribution curve (Stephan, 2013)

Furthermore, a value of 1.65 was found for Gr known as the gradation coefficient. This value indicates

a relative high uniform sediment size distribution and this is also depicted in Figure 3.5 showing the

sediment cumulative frequency distribution curve with a steep section between 0.43mm and 1.18mm.

An average settling velocity of 0.023m/s was found after conducting a settling velocity test on a sample

of 54 sediment particles and the specific gravity of 1.35 was measured following the same procedure. All

the above mentioned values of crushed peach pips properties were taken from the sieve analysis done

by Stephan (2013).

Scour depth measurements were accomplished by utilising a moveable trolley equipped with needle gauge

which is able to roll along steel rails mounted on top of both side of the flume’s walls (see figure 3.4).

Measurements of erosion upstream of the bottom outlet were done by surveying the extent and depth

of the scour in a grid fashion. The extent and the depth of the local scour was therefore surveyed every

0.10m across the width of the flume and at 0.10m longitudinal intervals along the erodible area of the

model. These readings were relative to the bottom outlet position and provided a three-dimensional

grid data of the local scoured region useful to produce a map for visual analysis.
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3.3 Laboratory Test Procedure

Prior to the beginning of the physical model test, the surface of the packed bed inside the flume was

uniformly levelled to an elevation equal to the bottom outlet invert. Unlike some laboratory tests

conducted in previous research works (see Section 2.4.2) in which the packed bed height was placed

above the invert bottom outlet, only sediment level to the bottom outlet invert was considered in the

present study. The same condition was also adopted by Powell (2007) for the study of sediment transport

upstream of orifices and therefore one of his laboratory test is simulated and presented in Chapter 5. The

flume was filled with water at low flow rates (less than 0.002m3/s) in order to avoid any disturbances

to the surface of the packed bed before the starting of the actual test. The valve preventing water to

flow out of the flume was gently opened after the water height was above the bottom outlet invert. This

allowed the water to flow through the pipe system connected to the pump and ensures the removal of

any air trapped inside the pipe system. As a result, the pump was operating under its full capacity. After

the above mentioned preliminary steps, the flume was gradually filled with water until it spilled over the

wall. As soon as the flow was steady inside the flume, the water level was kept constant during the

tests. Thus, the actual test began with the activation of the pump at the outlet and in the meantime

the valve in conjunction with the flowmeter, was manually adjusted in order to obtain the preferred

outflow rate for the test. The time from the beginning to the end of the erosion process at specific

flow rates was recorded as well as the water level which remained constant during the model test. Once

the scour process reached its equilibrium point, that is when the scour depth reached its maximum size

and there was no more significant change in terms of scour hole depth and extent, the test was ended

by stopping the pump and closing the bottom outlet. It is worth noting that the equilibrium condition

of the scour hole is difficult to determine and it has been defined differently in previous studies. This

could be due to differences in the experimental setup conditions and most importantly the type of the

measurement device used for the survey of the bed level change during the test. For example, Powell

(2007) defined the equilibrium condition in his experiment by only assessing the centreline bed profile

change during the scour process.

After the erosion reached its equilibrium point, the water was drained from the flume through a bottom

outlet located further upstream at the back of the flume. This was done at a slow flow rate and far

from the scoured area in order not to alter the final scour pattern before any measurements were taken.

Finally, the scour depth and its extent were manually surveyed after the water was totally drained from

the scour area, upstream of the bottom outlet.
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In this experimental study, only three different flows were tested namely; 0.036m3/s (Test 1), 0.021m3/s

(Test 2) and 0.012m3/s (Test 3). These values were chosen based on the limitation of the labora-

tory setup. As mentioned before, the maximum discharge reached when water flows by gravity, was

0.021m3/s and this value was increased to 0.036m3/s using a pump further downstream. The flows

used during Tests 1 to 3 correspond to flow velocities in the outlet pipe of 5.66m/s, 3.30m/s and

1.89m/s respectively. All tests were run following the above mentioned procedure and ”clear water”

(no sediment imput) were maintained during the laboratory flume tests.

3.4 Physical Model Test Results

3.4.1 Visual Observations of the Scour Process

During the laboratory test, special attention was given to the area with high potential to scour. This

area is known as the critical shear zone and was closely monitored by visual observation in order to assess

the scour development upstream of the bottom outlet. From a direct visualisation, it was observed that

the primary stage of sediment motion occurred closer to the outlet and this was due to the bottom

shear stress of the flowing water. At that specific point, the shear stress exerted by the water onto

the bed surface exceeded the critical shear stress of the sediment causing its entrainment by the flow.

The sediment was first lifted from the bed and put in suspension motion and then sucked through the

bottom orifice following the streamlines. Furthermore, a scour hole was developed at the critical shear

zone which contributed to modifying the velocity field upstream of the bottom outlet. It is plausible to

mention that as the scour depth increases the velocities inside the scour hole will decrease. Consequently,

this will reduce the shear stress forces in the area and eventually may fall below the critical shear stress

value. As the bed was eroded, the slope inside the scour hole increased and became unstable, resulting

in slope failure. The unstable sediment layer collapsed by moving down along the slopes until it reached

the critical shear stress area. The sliding motion of sediment inside the primary scoured hole is described

in this study as the secondary scouring mechanism. The secondary scouring process was carried out

until the slope inside the scour hole reached the angle of repose, which is defined as the angle for which

the slope is stable. A transitional zone was observed between the primary scour and the secondary

scour zones. Figure 3.6 depicts the final scoured hole at the bottom outlet in which different scouring

mechanism zones are represented.
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Figure 3.6: Scour hole extent and scouring process based on visual observations
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Due to the complex flow-sediment interrelationship with the turbulent three-dimensional flow conditions

that occurred during the scour process, it is difficult to define the actual location of the transitional

zone. Finally, the edge of the scour hole was a semi-ellipsoid shape when the equilibrium condition was

reached. The extent of the scour hole in Figure 3.6 clearly illustrates the elliptical shape of the final

edge of the scour hole. Furthermore, it is shown that near the bottom outlet the slopes are relatively

unstable due to the presence of a ridge in the scour hole while they become stable further away from the

outlet. Results from the laboratory tests, which are discussed in the next section showed that the shape

of the scoured hole shifted from ellipse to a shape similar to a circle as the flow rate at the bottom

outlet increases. Powell (2007) reached the same conclusion in a similar study by increasing water level

above the bottom outlet.

3.4.2 Test Results of Scour Depth and Extent

As mentioned in Section 3.3, three experimental tests were run by varying the bottom outlet flow rate.

Each test was run twice to ensure that there is no major differences between results from experimental

tests conducted in the same flow conditions. Table 3.1 shows a summary of the different test results in

terms of scour depth, width and length as well as the length-width ratio.

Table 3.1: Experimental results

Discharge Scour depth Scour width Scour length Ratio

Q(m3/s) Dscour(m) Wscour(m) Lscour(m) L/(W/2)

Test 1 0.036 0.12 0.65 0.33 1.02

Test 2 0.021 0.10 0.56 0.29 1.04

Test 3 0.012 0.08 0.46 0.20 0.87

It can be seen from Table 3.1, that the scour depth. width and length increase with increasing flow rate

which was in this experimental study the only varying parameter. Furthermore, the length-width ratio

tends to a value closer to 1 as the discharge at the bottom outlet increases. This value implies that

the outline of the scour hole tends relatively to a circular shape as mentioned before. In order to render

the three-dimensional view of the bed topography upstream of the bottom outlet , data gathered from

the depth measurements of the scour hole were plotted using SURFER, which is a 3D surface mapping

software. The following figures show the final scour hole and 3D final bed topography for Test 1. The

same figures for Test 2 and Test 3 are shown in Appendix A.
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Figure 3.7: Scour hole for Test 1

Figure 3.8: 3D bed surface mapping for Test 1
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3.4.3 Test Results of Scour Bed Profiles

In this section more detailed representation of the experimental results is made. Both lateral and

longitudinal bed profile for different tests are plotted in a Cartesian coordinate system using the flume

floor and the centre of the bottom orifice as the vertical and horizontal datum respectively. Figure 3.9

shows the coordinate system adopted in this experimental study and final bed profiles from experiments

were given in both lateral and longitudinal directions.

(a) Plan view (b) Profile view

Figure 3.9: Cartesian coordinate system

• Lateral profiles

In order to describe the transversal changes of the scour hole from the different tested flow rates,

the lateral bed profiles are plotted along y-axis upstream of the bottom outlet every 0.05m away

from the orifice as depicted in Figure 3.10. In this figure the abscissa shows the lateral distance

(Y) and the ordinate depicts the bed surface elevation relative to the flume floor (Z).

The first observation is that the lateral slopes are more steeper for cross sections that are close to

the bottom orifice, and this shows that the deepest scour hole is near the bottom outlet (x = 0).

Secondly, the bottom of the scour hole at that particular location is sharp whereas lateral cross

sections away from the bottom orifice have a relatively flat bottom end. Similar lateral cross

section pattern was found for Test 2 and Test 3 (See Appendix A).
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Figure 3.10: Observed lateral cross sections of the scour hole for Test 1

• longitudinal profiles

The longitudinal bed profiles are plotted along the x-axis upstream of the bottom outlet every

0.10m on both sides of the centreline which is a horizontal line passing through the centre of

the bottom orifice. These longitudinal profiles help to describe how the scoured hole varies in the

flow direction. Figure 3.11 shows the longitudinal bed profiles for Test 1 in various locations y. In

this figure the abscissa represents the longitudinal distance (x) and the ordinate depicts the bed

surface elevation relative to the flume floor (Z).

The results show that the centreline profile (y = 0) has a uniform steep slope while in the other

longitudinal bed profiles, the upper part presents a relatively steep slope and the lower part is more

or less flat. These results confirm that the deepest scour hole is located closer to the bottom

outlet.
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Figure 3.11: Observed longitudinal cross sections of the scour hole for Test 1

• Scour hole profile variation with flow rate

In order to describe the bed profile changes due to flow variation, the lateral cross section located

at the bottom outlet (x = 0) and the centreline profile (y = 0) of the scour hole are plotted for

different discharges in the same graph.

Figure 3.12 shows the lateral bed profile at the deepest scour hole location for various flow rates

run in this experimental study.

It can be seen that the scour width becomes wider and the scour depth deeper as the discharge

increases. However, the shape of the lateral cross sections at the deepest scoured hole are similar

regardless of the flow rate.

Figure 3.13 describes the centreline bed profile for various flow rates tested in this physical model

study. It can be seen that the scour length and depth increase as the discharge increases. The

results show that the slope of centreline profiles are similar regardless of the discharge.
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Figure 3.12: Lateral cross section variation with flow rate

Figure 3.13: Longitudinal cross section variation with flow rate

The shape of the scour hole is highly dependent on the bottom outlet discharge as shown in

Figures 3.12 and 3.13.
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3.4.4 Experimental Test Limitations

The experimental work presented in this study consisted of simulating the bottom outlet flushing op-

eration and the main focus was on the area upstream of the bottom outlet which has a high potential

of erosion. The experimental tests were run for different flows. However, only a few flow rates were

tested due to the experimental setup limitations. The water level above the bottom outlet and the

suction head of the pump directly connected to the outlet pipe constituted the limiting factors in the

experimental setup. Furthermore, besides the flow rate and water level which remains constant for all

tests, velocity components upstream of the orifice were not measured due to lack of an appropriate ve-

locity measurement instrument. To overcome the lack of velocity field information, velocity component

data from similar experimental study found in the literature were used as additional data for the present

experimental work.

3.5 Summary

Laboratory tests were conducted in the present study to investigate the scour process upstream of the

bottom outlet. The physical model was set up in a rectangular flume in which sediment from crushed

peach pips was packed with the bed surface levelled with the invert of the bottom outlet. Three different

flow rates were tested namely, 0.036m3/s, 0.021m3/s and 0.012m3/s. The visual observation of the

experiment during different tests led to the spatial classification of the scour processes upstream of

bottom outlet into three separate scour areas. The primary scour area is known to be driven by the

bed shear stress while the secondary scour zone is due to slope instability which allows the unstable

bed layer to slide down and therefore causes erosion. The transitional scour area separates the primary

scour area from the secondary scour zone. However, the exact location of the transitional scour area

can not easily be determined by visual observation due to the complexity of the flow field upstream of

the bottom outlet.

Cross sections in both vertical and longitudinal variations of the scour hole were surveyed. The scour

depth for each test was measured. The analysis of the experimental test results showed that the shape

of the scour hole was directly dependent on the discharge at the bottom outlet. The scour depth, the

scour width as well as its length increase as the flow rate increases.
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4. Three-Dimensional Numerical Bottom Outlet

Flushing Model Development

4.1 Introduction

In this study, a coupled fully three-dimensional (3D) numerical model was developed to simulate the scour

pattern that occurred upstream of the bottom outlet during a flushing event. In this numerical model,

the hydrodynamics are coupled with a sediment transport model. Both flow and sediment transport

parameters are linked by the governing equations, which are presented in detail in the following sections.

The theory behind the proposed numerical model is discussed, which is divided into two parts. The first

part gives an insight into the basics of fluid dynamics through the well known Navier-Stokes equations

and the theory used to model the turbulence phenomena. In the second part, the sediment transport

model is discussed, focusing on the interaction flow-particle.

4.2 Computational Fluid Dynamics Modelling

4.2.1 Governing Equations

The general conservation equations used in the present study to model the flow field are presented in

this section.

Unlike the two-dimensional (2D) single phase flow equations, where many assumptions have to be made,

the 3D numerical model presented in this study follows an Eulerian multiphase approach. Thus, the

continuity equation for phase q in the model is given as

∂αq
∂t

+∇ · (αqVq) =
1

ρq

 n∑
p=1

(mpq −mqp) + Sq

 (4.1)

where αq denotes the volume fraction, Vq is the velocity of phase q, ρq is the density of phase q, mpq

is defined as the mass transfer from the phase p to phase q and mqp the mass transfer from the phase

q to phase p and Sq is the mass source term of phase q. Note that constant density (ρq) is assumed

and also the mass transfer between phases is neglected in this study and therefore, mpq = −mqp = 0.
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The momentum equation for phase q reads as

∂αqVq
∂t

+∇ · (αqVqVq) =
1

ρq

−αq∇p+∇ ·Tq + αqρqg +
∑
p∈F

Rpq (Vp −Vq) + Fq

 (4.2)

where Tq is the stress-strain tensor of phase q and given by

Tq = αqµq

(
∇Vq +∇VT

q −
2

3
∇ ·VqI

)
(4.3)

Here p is the pressure shared by all phases, g is the gravitational acceleration, Rpq is the interface

momentum exchange term, Fq is an additional volumetric forces of phase q, µq is the shear viscosity of

phase q and I denotes the unity tensor.

In this model, three phases are considered, namely; water (αw), rolling particles (αr) and saltating

grains (αs) that is, p, q ∈ F = {w, sal, rol}. Section 4.3 describes detailed classification of these

particles into saltating and rolling particles respectively. Also discussed in detailed is the mass source

term (Sq) which accounts for sediment deposition and erosion are discussed. Equation 4.3 is only

valid for Newtonian fluid as it is the case in this study. According to Anderson and Haff (1991), the

solids volume fractions are expected to be very small (less than a value of order of magnitude around

10−3). Thus, it assumed that µq ≈ µw where µw is shear viscosity of water. In order to close Equation

4.2 with appropriate expressions for the interphase momentum exchange coefficient which depends on

the friction, pressure, cohesion, and other effects (Fluent, 2011), the interaction fluid-solid momentum

exchange term is computed following Wen and Yu model (Fluent, 2011).

Rpq =
3

4
CD

αpαqρq|Vp −Vq|
dp

α−2.65q (4.4)

where

CD =
24

αqRep

[
1 + 0.15 (αqRep)

0.687
]

(4.5)

and dp denotes the diameter of the particulate phase p. The relative Reynolds number is computed

from

Rep =
ρqdp|Vp −Vq|

µq
(4.6)

4.2.2 Turbulence Model

In this research study the turbulence was modelled using the standard k-ε turbulent model. This

turbulence model was first developed by Launder and Spalding (1974) and later it has been widely used
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in industry due to its robustness and reasonable accuracy for a wide range of turbulent flow (Fluent,

2011). The standard k-ε turbulent model is defined as eddy viscosity model and Reynolds stresses are

computed through the Boussinesq hypothesis. The k-ε model is a two-equation model, namely it is

based on model transport for the turbulence kinetic energy (k) and its dissipation rate (ε). The transport

equations for the turbulent kinetic energy k and the turbulent dissipation rate ε are obtained from

∂ρk

∂t
+∇ · (ρkV) = ∇ ·

(
µt
σk
∇k
)

+Gk − ρε+ Sk (4.7)

and
∂ρε

∂t
+∇ · (ρεV) = ∇ ·

(
µt
σk
∇ε
)

+
ε

k
(C1εGk − C2ερε) + Sε (4.8)

where Gk represents the production of turbulence kinetic energy (k) due to the mean velocity gradients

and given as

Gk = −ρu′
iu

′
j

∂uj
∂xi

(4.9)

where u
′
iu

′
j is the Reynolds stresses and uj is the component of local time-averaged flow velocities. By

using Boussinesq concept, the turbulence production is simplified by

Gk = µtT
2
2 (4.10)

where T2 denotes the second invariant of the rate-of-strain tensor of the mixture, defined as

T2 ≡
√

2SijSij (4.11)

The turbulent or eddy viscosity µt in Equations 4.7, 4.8 and 4.10 is computed by linking k and ε as

follows

µt = ρCµ
k2

ε
(4.12)

Sk and Sε are additional user-defined source terms for the turbulent kinematic energy k and the turbulent

dissipation rate ε equations, respectively. These source terms are described in detail in Section 4.3.2.

In this present research the following default values for the model constants are used: C1ε = 1.44,

C2ε = 1.92, Cµ = 0.09, σk = 1.00, σε = 1.30. These default values have been determined from

comprehensive data fitting for a wide range of turbulent flows (Fluent, 2011) and they are found to be

suitable for this study. The density ρ and the velocity V of the mixture defined in Equations 4.7 and

4.8 are given as

ρ =
∑
q ∈F

αqρq and V =
1

ρ

∑
q ∈F

αqρqVq (4.13)
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4.3 Sediment Transport Modelling

Sediment erosion and deposition of a packed bed due to shear forces of a fluid is an important research

topic in engineering practice. For example, the sediment deposition that occurs at the bottom outlet of

a reservoir can seriously undermine the functioning of such a hydraulic structure if an adequate remedial

solution such as flushing is not found. In this regard, numerical modelling of sediment transport can be

used as tools in the management and design of existing bottom outlet as well as future reservoir outlet.

The prediction of sediment erosion and deposition is challenging and many researchers have developed

empirical formulas in order to get a better understanding of fluid-particle relationship. Based on work

done on particle transported by wind, Bagnold (1966) concluded that sand grains are put in motion if

the shear stress exerted by the wind onto the soil exceeds a certain threshold, which is known as fluid

threshold. A similar relationship called the Shield Parameter, was developed by Shields (1936) after

investigating sediment motion in river bed and assuming that resistance to motion depends only on the

form of the bed and the immersed weight of the particles. In order to improve previous findings on

fluid-particle motion relationship, a great deal of work has been published pertaining to fluid threshold

(Chepil, 1959; Schmidt, 1980).

The present section deals with the modelling of different particle transport modes. According to Bagnold

(1966), the particle transport mechanism is divided into three transport modes, namely, surface creeping,

saltation and suspension. Furthermore, landslide-like shear slides of a whole layer of grains could also

be considered as a particle transport mode and therefore it is accounted for in this study. Subsequently,

modelling of the changing topography of the packed bed is addressed in this section.

In order to model the local erosion and deposition, detailed behaviour of individual grains and the

interstitial fluid was the main focus and only the flow of the fluid above the packed bed was considered

since the fully resolved modelling approach is confined to very small geometries (Schneiderbauer and

Prokop, 2011). Therefore, the wall shear forces of the fluid determine the amount of entrained grains

and the surface of the packed bed is considered to be a rough wall. From this assumption, the behaviour

of the particles in motion can be modelled following two different approaches; in the first approach, the

particles are considered as a continuous phase (Ouriemi et al., 2009) while the second one consists in

tracking particle trajectories (Shao and Li, 1999). The first approach was followed in the present study

and therefore, the particulate phase was considered as continuum.

The deformation of packed bed surface due to erosion and deposition can be modelled by the following
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two methods. The first approach is defined as an Immersed Boundary method, which essentially consists

of tracking the packed bed’s surface. Khadra et al. (2000) used this method by first assuming an artificial

packed media throughout the computational domain and then adjusting the packed media’s porosity in

order to match the actual physical packed bed. The second approach is referred to Arbitrary Lagrangian

Eulerian method in which the computational grid for the fluid flow modelling is directly linked to the

changing topography of the packed bed. That is, the computational grid is deformed according to

the change at the surface of the packed bed due to erosion and deposition processes. The Immersed

Boundary method was used in the present research and therefore no more details are given on the

Arbitrary Lagrangian Eulerian method. However, the reader is referred to Schneiderbauer and Pirker

(2010) for a detailed description on the capability of both methods to model erosion and sedimentation

of a packed bed.

It is worth noting that the flow equations for Eulerian multiphase model in conjunction with the tur-

bulence model presented in previous sections were solved making use of the standard ANSYS FLUENT

code. On the contrary, the models proposed in this section, namely, the erosion and deposition model

as well as the modelling of the deformation of packed bed’s surface through the Immersed Boundary

method, were not implemented in the standard version of ANSYS FLUENT. Actually, these sub-models

were introduced by making use of User Defined Functions (UDFs), a special feature of ANSYS FLUENT

which allows the user to define his own functions or code in C programming language, as well as to

specify customised model parameters. After writing the UDFs code, it is compiled and dynamically

linked with ANSYS FLUENT solver.

The methodology follows in this study for the modelling of the erosion and deposition as well as the

changing topography of the packed bed surface was used in previous studies. For example, Schneider-

bauer and Prokop (2011) adopted the same approach to develop an atmospheric snow-transport model

while Schneiderbauer and Pirker (2014) used a similar method to study the erosion and the sedimen-

tation processes in a wind tunnel. It must be pointed out, however, that the above mentioned studies

deal with aeolian particle transport that is, the transport of particles is initiated by air, while only the

hydrodynamic non-cohesive particle transport mechanism (particle transported by water) was addressed

in the present study.
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4.3.1 Sediment Erosion and Deposition Model

The sediment erosion and deposition of non cohesive sediment are modelled by considering the following

particle transport modes: particle rolling due to the hydrodynamic shearing, particle rebound after

impact, particle entrainment due to shear stresses, particle erosion due to impacting particles, particle

deposition and accumulation as well as landslide shearing are considered.

For a better understanding of terms used to describe the particle transport mode in this chapter, the

following definition of the classification of the different modes taken from Gauer (1999) is used.

• Surface creeping /rolling: This mode describes the transport of particles which is not directly

affected by wind forces but their motion is rather caused by particle impact.

• Saltation and modified saltation: In this mode of transport, particles follow ballistic trajectories

determined by the time-averaged wind profile and are not influenced by turbulence of the wind.

This type of saltation is called pure saltation. In case the particle trajectories are highly affected

by turbulent fluctuations of the wind then, modified saltation is used to describe the motion.

• Reptation: In this mode particles splashed up on impact do not obtain enough energy from the

wind to rebound or eject other particles.

• Suspension: Particles are lifted and transported far from the bed without contact with the surface

bed.

4.3.1.1 Hydrodynamic Entrainment

The motion of particles from the packed bed due to hydrodynamic shear stress can be quantified

following Anderson and Haff (1991) formula, in which the number of sand grains entrained per unit

time and per unit area N ′A(m−2s−1) is given as

N ′A = Cη (τs − τt) (4.14)

where Cη is an empirical coefficient, τs is the shear stress at the surface and τt is the fluid shear stress

threshold for particle entrainment. Anderson and Haff (1991) used a value of 105N−1s−1 for Cη while

from an experimental work done for 350µm quartz particles, White and Schulz (1977) suggested that

the value of Cη is around 5×107N−1s−1, which is, in terms of orders of magnitude higher than the value
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proposed by Anderson and Haff (1991). In order to get a better understanding about the magnitude

of the coefficient Cη, Shao and Li (1999) proposed a modified version of Equation 4.14 in which, the

friction velocity u∗s =
√
τs/ρ is introduced and Cη is approximated by 1/(mux0), thus

NA ≈
ρ

mux0

(
u∗2s − u∗2t

)
(4.15)

where, ρ is the fluid density, m = ρpVp is the mass of particle, Vp = πd3p/6 is the volume of the particle,

dp is the diameter of the particle, ux0 = axu
∗
s is the mean lift-off particle velocity in x direction, ax is a

constant. Equation 4.15 is, therefore, rewritten as

NA =
C′ηu∗s
d3p

(
1 +

u∗2t
u∗2s

)
(4.16)

where C′η ≈ 6/(sπax) is a dimensionless coefficient proposed by Shao and Li (1999). Its value is around

1.74 × 10−3 by assuming that ax = 0.5, which is taken from White and Schulz (1977) and s the

specific gravity of particle with respect to air (2200). Schneiderbauer and Pirker (2014) found that the

coefficient C′η is proportional to the inverse of the particle diameter dp and therefore,

C′η ≈ 5.19× 10−7d−1p . (4.17)

Based on different values presented and due to the lack of a substantial experimental data for accurate

estimation of the coefficient, it is expected that C′η would vary considerably according to the case study.

Therefore, in this research, C′η is considered as a calibration parameter. However, the coefficient C′η as

described in Equations 4.14, 4.16, and 4.17 is referred to as aerodynamic transport of particle. Based

on the approximation done by Shao and Li (1999) (C′η ≈ 6/(sπax)) and using the specific gravity of

particle with respect to water (2.65), the value of C′η in the case of hydrodynamic transport of sand

grains, is around 1.44. This value gives an indication on the order of magnitude of C′η when the particle

entrainment is due to water flow. However, after an extensive numerical calibration with laboratory

data, it was observed that a value of C′η = 0.35 gives a better stability of the surface of the packed bed

during the numerical simulation. A greater value than 0.35 tends to considerably disturb the topography

of the packed bed. Thus, 0.35 was used as value of the coefficient C′η in the present research.

The total number of particles entrained due to shear forces of water flow is considered as the sum of

rolling particles and the saltating grains at the bed surface. According to Shao and Li (1999), the

classification of the resulting transport mode as surface rolling or saltation highly depends on the initial
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ejection velocity of the particle ui,o, which is given as

ui,o = Cvu∗s (4.18)

where, Cv is a dimensionless coefficient and u∗s is a shear velocity at the surface of the packed bed. In

Shao and Li (1999), Cv is around 0.5 and the same value was used in the present study.

Knowing the number of entrained particles NA (Equation 4.16), the total mass per unit volume and

unit time (kg.m−3.s−1) for the particles entrained into surface rolling (Serol) and for particles entrained

into saltation (Sesal) are obtained from

Serol = prmp
A

V
NA = pr

πρpd
3
p

6

A

V
NA (4.19)

and

Sesal = (1− pr)mp
A

V
NA = (1− pr)

πρpd
3
p

6

A

V
NA (4.20)

where ρp is the particle density, A is the area and V the volume of a grid cell adjacent to the packed

bed and pr defines the probability that a particle is entrained into the surface rolling transport mode.

In this study, it was assumed that the initial velocity of the rolling particles was 0 and also for a shear

velocity of magnitude less than 1, pr was approximately 0.5 and decreases as shear stresses increase at

the surface of the packed bed. The same approach was followed by Schneiderbauer and Pirker (2014)

in order to establish a relationship between the friction velocity u∗s and the probability pr.

In order to determine the fluid threshold τt and subsequently the shear velocity u∗t in Equation 4.16 two

approaches were considered; the first method is proposed by Chepil (1959) in which the critical drag

force F ′C required to entrain a spherical particle is

F ′C =

[
πd3p
6
g (ρp − ρ)− FL

]
tanβ (4.21)

where β denotes the mean drag level and FL is the lift force acting on a particle and from previous

experiments, FL = 0.85F ′C (Chepil, 1959). From Equation 4.21, the critical drag force FC per unit

cross-sectional horizontal area occupied by the particle is FC = F ′C/(πd
2
p/4). Then after simplification

FC =
2

3

(ρp − ρ) gdp tanβ

1 + 0.85 tanβ
(4.22)

By including in Equation 4.22, η the ratio of mean drag and lift per unit area on the whole bed to mean

drag and lift on the top grain entrained by the fluid and Γ the ratio of maximum to mean drag and lift
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on the particle, the fluid threshold that initiates the particle entrainment is given as

τt = ρu∗2t =
2

3

η

Γ

(ρp − ρ) gdp tanβ

1 + 0.85 tanβ
(4.23)

The second method for the fluid threshold calculation was taken from Schmidt (1980), which was similar

to Equation 4.23. In this method, two constants were included, namely, the slope angle θ with respect

to the flow direction and ϕ the angle of repose. Thus,

τt = ρu∗2t =
2

3

η

Γ

(ρp − ρ) gdp (cos θ − sin θ/ tanϕ) tanβ

1 + 0.85 tanβ
(4.24)

The fluid threshold τt was determined in this study, using the second method (Equation 4.24) because

it accounts for more parameters compared to Equation 4.23. However, the values for η, Γ and β were

taken from Chepil (1959) that is, 0.21, 2.5 and 24◦ respectively.The angle of repose ϕ was 45◦ in the

present research and it was obtained from the calibration of the numerical model.

4.3.1.2 Entrainment due to Particle Ejection

In this study, ejection of grains due to particle impacts at the surface of the packed bed is considered

since it contributes to the sediment transport process. The collision of saltating particles with velocity

UI impacting at angle αI at the surface of packed bed may cause the ejection of other particles with

velocity UE at the angle αE . In addition the impacting particles may rebound with velocity UR at the

angle αR or be trapped at the surface. Figure 4.1 describes the above mentioned different trajectories

followed by particles after a collision at the surface of the bed.

In order to study this mode of transport, several researches pertaining to the particle impacts on the

surface bed have been conducted for years. In this regards, some studies focus only on numerical

simulations (Werner and Haff, 1988; Anderson and Haff, 1991) while others make use of physical

models (Rice et al., 1995; Schneiderbauer, 2012) to investigate the particle-bed impacts. These studies

concluded that impacting particles have a similar behaviour. For example, there is a small variation on

the probability of the impacting particles to rebound, the impact angle and rebound angle as well as the

ratio of impact velocity to rebound velocity (Gauer, 1999).

According to Gauer and Issler (2004), the number of ejected grains per particle impact is linearly

dependent on the impact speed. On the contrary, Shao and Li (1999) and Andreotti (2004) assumed
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Figure 4.1: Sketch of particle impact at the surface of the packed bed

that the number of ejected particles depends mostly on the kinetic energy of impacting particles. The

number of particles N ′EpI ejected by a single impact of a particle is (Shao and Li, 1999)

N ′EpI = ςs
mim

msp

(
UIm
U∗t,sp

)2

(4.25)

where mim and msp are the impacting and splashed particle mass, respectively, ςs is the splash coefficient,

UIm is the velocity of the impacting particle and U∗t,sp is the threshold of the shear velocity. However,

in the present research, the number of ejected particles per impact NEpI , proposed by Andreotti (2004)

was used and reads

NEpI = 0.3

(
UIm

ci
√
gdp

)2

(4.26)

where UIm denotes the speed of impacting particle and ci is a dimensionless coefficient and defines

a velocity scale. In this work ci = 10 was chosen and the same value was used by Anderson and

Haff (1991), Andreotti (2004) and Schneiderbauer and Pirker (2014). Furthermore, based on the

energy balance between impacting, rebounding and ejecting particles, Shao and Li (1999) proposed a

theoretical limitation for the number of splashed (ejected) grains per impact as follows

Nmax
EpI =

cs − 1.9c2a

[
1− eUIm/(ci

√
gdp)

]
2c2h

(4.27)
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where cs denotes the fraction of energy not converted to heat after the impact, whereas ca and ch

are empirical coefficients. In the present study, the following values were used; cs = 0.5, ca = 0.5

and ch = 0.25. Previous studies such as, Shao and Li (1999), and Schneiderbauer and Prokop (2011)

used the same values for these coefficients. The total mass of splashed particles (Sejrol) per unit volume

and unit time (kg.m−3.s−1), due to particle impact at the surface of packed bed, is determined by

combining Equations 4.26 and 4.27 as follows (Schneiderbauer and Pirker, 2014)

Sejrol = ρpNim min(NEpI , N
max
EpI ) (4.28)

and

Nim =
αs
t′s

(4.29)

where Nim is the number of impacts with the packed bed per unit time and t′s is the mean travel time for

a saltating particle, which is calculated from the initial velocity ui,o (see Equation 4.18) of the entrained

particle as follows

t′s = 2
ui,o
g

(4.30)

Due to the relatively small kinetic energy generated by the splashed grains, Schneiderbauer and Pirker

(2014) suggested that the total number of ejected particles Sejrol should be included into the rolling

particulate phase. Furthermore, it was assumed that the energy from the rolling particle was not enough

to eject other particles from the packed bed. Similar assumptions were made in this study.

The formula proposed by Andreotti et al. (2002) for the calculation of the initial velocity of splashed

particles with an impacting angle of 45◦, was followed in the present research and reads

usp,o = ζrci
√
gdp (4.31)

In Equation 4.31, ζr is the restitution parameter of particle-bed collision, which is the velocity ratio of

the rebounding particle to the impacting particle; 0.5 was taken as its value in this work like, in Shao

and Li (1999), Gauer (1999), Andreotti (2004), and Schneiderbauer and Pirker (2014)

4.3.1.3 Particle Deposition

In the present research, it was considered that during the particle-bed collision some of the grains remain

trapped at each rebound event. Therefore, a probabilistic approach was used to quantify the amount of

trapped grains, which are initially a part of impacting grains on the surface of the packed bed. Based
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on numerical simulation, Werner and Haff (1988) proposed the probability pre of a particle rebound by

pre = pmaxre

[
1− e−UIm/(ci

√
gdp)

]
(4.32)

where pmaxre is defined as the rebound probability for a high velocity of the impacting particle, and

according to Quartier et al. (2000) the term ci
√
gdp represents a velocity threshold below which the

probability pre of rebound particles becomes relatively small. As a result, it is described as the velocity

needed by the impacting grains to escape the potential trapping at the surface of the packed bed.

Given that the probability of an impacting particle to rebound is known (Equation 4.32), the probability

of a grain to get trapped can be readily expressed as

ptr = 1− pre = 1− pmaxre

[
1− e−UIm/(ci

√
gdp)

]
(4.33)

In the present study, pmaxre was estimated at 0.95, which was taken from Andreotti (2004). Knowing

the number of impact Nim of a particle per unit time and the trapping probability ptr of a grain at

the surface of the bed, the total mass of deposition of saltating Sdesal and rolling particles Sderol per unit

volume and unit time (kg.m3.s−1) are calculated as

Sdesal = ρp
αs
t′s
ptr (4.34)

and

Sderol = ρp
αr
t′r
ptr (4.35)

By assuming that the hop height of the rolling grains is in the same order of magnitude of the surface

roughness ks, which is approximated by the particle diameter dp, the mean travelling time t′r of rolling

particle is given by

t′r ≈ 2

√
2dp
g

(4.36)

The contributing mass sources Sq, appearing in the continuity Equation 4.1, for the saltating particles

Ssal and the rolling grains Srol are given as

Ssal = Sesal − Sdesal (4.37)

and

Srol = Serol + Sejrol − S
de
rol (4.38)

It is worth noting that, in this work, the mass of ejected particles due to the impacting saltating particles

Sejsal were assumed to be part of the mass of rolling grains entrained Serol by the flow of water.
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4.3.1.4 Particle erosion and Deposition due to shearing slides

The particle mode of transport involving the shearing slides is only considered if the slope angle φ is

greater than the angle of repose ϕ. The amount of erosion Ssler, due to shearing slide was described as

(Schneiderbauer and Pirker, 2014)

Ssler =


ρbδA

∆tV
φ > ϕ

0 φ ≤ ϕ
(4.39)

where δ is the size of a discrete shearing slide (in meter), ∆t is the size of time step and ρb denotes the

bulk density of the packed bed, and it is calculated by

ρb = αprρp (4.40)

where αpr is the packing ratio and ρp the particle density. In this study, the packing ratio of 0.5 was

used and this value was obtained from the calibration simulation. From Equation 4.39, the amount of

deposition Sslde is computed as

Sslde,j =
∑
l∈Cj

Ssler,l (4.41)

in which a released discrete shearing slide is transferred to the nearest neighbour cell, which is located

along the steepest descent and adjacent to the packed bed. The set Cj is composed of all cells for which

cell j is the nearest neighbour cell located along the steepest descent. Note that the shearing slide mode

of transport as described above was used to model the sliding motion of sediment inside the scoured hole

observed during the experimental tests, which includes both sediment erosion and deposition processes.

4.3.2 Modelling of the Packed Bed Surface Deformation

The deformation or the changing topography of the packed bed is mainly due to occurrence of local

erosion and deposition areas at its surface. Therefore, the elevation of the packed bed increases within

the deposition zones whereas in the erosion areas it decreases. As a consequence, the local velocity field

is affected by the variation of the height of the packed bed. Furthermore, the change of the local fluid

flow causes time-dependent deformation of these areas. The methodology used in the present research

to model the deformation of the surface packed bed was the Immersed Boundary Method. This method

essentially consists of tracking the packed bed surface, in which immersed bodies or packed beds are

previously included inside the computational domain. Unlike in some previous work (Patankar et al.,
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2000; Uhlmann, 2005) where the immersed bodies are considered as rigid bodies and their motion is

described by Lagrangian marker points defining a free flow zone or a rigid body inside the computational

domain, Schneiderbauer and Pirker (2010) adopted a different approach by considering the immersed

body as a flexible body since erosion and deposition can occur at the surface of the body. Thus, the

volume fraction αb of the packed bed, which is a continuous parameter varying between 0 and 1 is

introduced in this approach. The same approach was followed in the present study to capture the

different changes of the packed bed topography.

The transport equation of the volume fraction αb of the packed bed is given by the following diffusion

equation

ρb
∂αb
∂t

= St (∇ · Γb∇αb + Ssd) (4.42)

where the bulk density of the packed bed ρb is calculated using Equation 4.40 and St is defined as a

time scaling factor. In order to subsequently reduce the required computational time, time scale of the

fluid tf (in Equations 4.1 and 4.2) and the time scale of the surface deformation of the packed bed

th (in Equation 4.42) are decoupled by introducing the scaling factor St = tf/th. As a result, for a

physical time scale th, the flow field is considered as steady for a time duration of Stth. In the present

study, the time scaling factor St = 60 was used.

The diffusion coefficient Γb appearing in Equation 4.42 is given as

Γb =

 0 αb ∈ [0, 1]

λb αb /∈ [0, 1]
(4.43)

The diffusion coefficient λb was approximated at ρ× 10−2 = 10, where ρ = 1000 kg.m−3 is the density

of water. This diffusion coefficient value was obtained from the calibration simulation conducted in the

present work. In this model, the surface S of the packed bed, which is the interface between fluid body

and the packed bed, is defined by the value of αb = 0.5. Note that cells with αb ∈ [0, 1[ are defined as

first fluid cells, whereas the neighbour cells with αb ≥ 1 are cells located within the packed bed. Figure

4.2 describes the Immersion Boundary Method in which the packed bed is indicated by orange coloured

cells, the green coloured cells represent the first fluid cells and the red line is the surface of the packed

bed. These definitions were taken from (Schneiderbauer and Pirker, 2014).

Equation 4.43 specifically controls the relocation of the cell layer of first fluid cells in the computational

domain. That is, during the erosion process, if the volume fraction αb1 of Cell-1 located within the

packed bed decreases until αb1 < 0, then Cell-1 is refilled by diffusion from the neighbour Cell-2 in which
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Figure 4.2: Sketch of Immersed Boundary Method

αb2 ≥ 1 until αb1 = 0 in Cell-1. Finally, the cell layer of first fluid cells is relocated to the neighbour

Cell-2 satisfying αb2 ∈ [0, 1[. Conversely, if the volume fraction αb1 of Cell-1 of the packed bed increases

until αb1 > 1 due to particle accumulation event, then Cell-1 is emptied by diffusion to the neighbour

Cell-2 satisfying αb2 < 1 until αb1 = 1. The cell layer of the first fluid cells is therefore, relocated to

the partially filled neighbour Cell-2 in which αb2 ∈ [0, 1[.

The source term Ssd, appearing in Equation 4.42 and accounting for the amount of erosion and deposition

is given by the sum of the individual contributions to erosion and deposition mentioned in Section 4.3.1.

Thus,

Ssd = −Ssal − Srol + Sslde − Ssler (4.44)

or

Ssd = Sdesal − Sesal + Sderol − Serol − S
ej
rol + Sslde − Ssler (4.45)

Note that in the expression of Ssd mentioned above, the positive sign denotes the mass contribution

from the deposition process while the negative sign describes the mass from the particle erosion at the

surface of the packed bed.

In order to prescribe a rigid body motion to the fluid and the particulate phases within the packed

bed, a forcing scheme was applied to the momentum equations. The purpose of this scheme was to

prescribe a desired velocity values at a selected cells. In this work, the direct forcing approach proposed

by Uhlmann (2005) was followed and reads

Fq = −αqρq
Vq −Vb

∆t
(4.46)
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where Fq is the additional volumetric forces of phase q appearing in Equation 4.2 and Vq is the velocity

of phase q. Note that Equation 4.46 is only applied to cells inside the packed bed that is, all cells with

αb ≥ 1. Since the rigid body motion condition was applied, the velocity within the packed bed was set

to Vb = 0. The direct forcing approach is equivalent to the rigidity constraint introduced by Patankar

et al. (2000) in which the deformation rate tensor in conjunction with the rigid motion is zero inside

the packed bed.

The erosion and the deposition processes generally occur under turbulent flow regime at the surface of

the packed bed. Therefore, boundary conditions for the turbulent kinetic energy k and the turbulent

dissipation rate ε have to be prescribed at the first fluid cells. The turbulent production term Gk,

appearing in Equation 4.7 was calculated at the first fluid cells as (Pope, 2000)

Gk =
τ2w

κρyp

√
C

1/2
µ kp

for αb ∈ [0, 1[ (4.47)

where τw is the wall shear stress exerted by the mixture phase onto the surface of the packed bed, ρ is

the mixture phase density, yp is the cell-wall distance and kp is the turbulent kinetic energy at the first

fluid cells. The turbulent dissipation εp at first fluid cells was applied to Equation 4.8 by direct forcing

as proposed by Pope (2000) and reads

Sε = −ρε− εp
∆t

for αb ∈ [0, 1[ (4.48)

where

εp =

√
C

3/2
µ k3p

κyp
(4.49)

The turbulent kinetic energy k and its dissipation rate ε inside the packed bed have to be adjusted in

order to account for the dissipation property of the packed bed. For example, turbulence of a potential

background gas flow in real packed beds is dissipated instantaneously due to the presence of particles

(Schneiderbauer and Pirker, 2014). As a result, the production of turbulent kinetic energy Gk disappears

inside the packed bed, that is

Gk = 0 for αb ≥ 1 (4.50)

The production of the turbulent dissipation rate ε which is given in Equation 4.8 by the term (C1εGk−

C2ερε) was also

C1εGk − C2ερε = 0 for αb ≥ 1 (4.51)

In order to suppress the diffusion of the turbulent quantities within the packed bed a small value closer

to zero was given to the turbulent viscosity µt and in the calibration simulation conducted in this study
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the value was set to

µt = 0.001 for αb ≥ 1 (4.52)

Finally, in Equation 4.47, the wall shear stress τw exerted by the mixture phase onto the surface of

the packed bed was determined by applying the standard logarithmic law-of-wall. This law-of-wall is a

simplified version of the original logarithmic law-of-wall (see Equation 4.57) proposed by Prandtl (Fluent,

2011) and it is commonly used in some commercial and open source CFD sovers such as; FLUENT,

OpenFOAM. The wall shear stress τw is given by

τw =
ρup

√
C

1/2
µ kp

U+
(4.53)

with

U∗ =
up
u∗

=


1

κ
ln

(
EY ∗

fr

)
Y ∗ ≥ 11.225

Y ∗ Y ∗ < 11.225

(4.54)

in which U∗ is the dimensionless velocity, up is the mean velocity at the first fluid cells, u∗ is the wall

shear velocity, E is an empirical constant with a value of 9.793 and Y ∗ is a dimensionless distance from

the wall, which is given by

Y ∗ =
ρyp

√
C

1/2
µ kp

µ
(4.55)

In Equation 4.54, fr defines a roughness function and it was calculated, in this study as follows

fr = 1 + 0.5
ρr

√
C

1/2
µ kp

µ
(4.56)

where r is the physical roughness height. In the standard logarithmic law-of-wall, the wall shear stress

τw is highly dependent on the turbulent kinetic energy kp at the first fluid cells as shown in previous

Equations (from 4.53 to 4.56).

4.3.3 Estimation of Water Induced Shear Stress for Hydrodynamic Entrainment

The shear velocity u∗s which appears in Equations 4.15, 4.16 and 4.18, was described as the most

sensitive parameter for the numerical simulation of erosion and deposition (Schneiderbauer and Pirker,

2014). Therefore, it is essential to evaluate its value with high accuracy using a suitable empirical

formula. The shear velocity can be calculated following the equation for the logarithmic law-of-the-wall

given by
us
u∗s

=
1

κ
ln

(
EY +

fr

)
(4.57)
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with the dimensionless distance from the wall

Y + =
ρwypu

∗
s

µw
(4.58)

and the roughness function

fr = 1 + 0.5
ρwru

∗
s

µw
(4.59)

where ρw is the water density, u∗s is the friction velocity exerted by the water flow onto the surface of

the packed bed and µw is the molecular viscosity of water. Since Y + and fr are not explicit functions,

Equation 4.57 has to be solved by the mean of an iterative method, which requires the differenciation

of implicit functions and possibly failing to converge (Schneiderbauer and Pirker, 2010). To solve this

problem, an explicit form of Equation 4.57 is proposed by substitutions (yp → EY + and r → fr),

leading to (Gauer, 2001)

us(yp) =
u∗s
κ

ln
(yp
r

)
(4.60)

However, the use of this explicit form of the law-of-the-wall leads to an overestimation of the rise of

shear stress as wind speed increases in the fully turbulent logarithmic area (Schneiderbauer and Prokop,

2011).

The second approach to solve the problem involves establishing a direct relationship between the friction

velocity u∗s and the turbulent kinetic energy kp. In this approach, the turbulent production and dissipation

are first assumed to be at equilibrium states and then by using similarity theory (Stull, 1988), the shear

velocity u∗s is given by

u∗s =

√
C

1/2
µ kp (4.61)

The substitution of Equation 4.61 into Equations 4.57, 4.58 and 4.59 leads to the standard logarithmic

law-of-the-wall given in Equations 4.53, 4.54, 4.55 and 4.56. Although this approach yields an explicit

formula for the evaluation of u∗s, its application is only limited to the fully developed steady flows. As

a result, recirculation zone and high flow disturbance area are not accounted for in this method.

The third method proposed by Lew et al. (2001), relates to decoupling the shear stress from the turbulent

kinetic energy, by applying a linearised implicit scheme in order to solve Equation 4.57. In this approach,

the shear stress (τs = ρwu
∗2
s ) is expressed as

τ (n+1)
s ≈ τ (n)s +

∂τ
(n)
s

∂U
(n)
s

(
U(n+1)
s −U(n)

s

)
(4.62)
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The superscript (n) denotes the number of time step. Equation 4.57 can be rearranged, after substituting

u∗s =
√
τs/ρw, as follows

τs = −f(us)
Us
us

(4.63)

with

f(us) = ρw

(
κus

ln (EY +/fr)

)2

(4.64)

The substitution of Equation 4.63 into Equation 4.62 gives

τ (n+1)
s = −f(u(n)s )

U
(n+1)
s + U

(n)
s

u
(n)
s

−
U

(n)
s

(
U

(n+1)
s ·U(n)

s

)
(
u
(n)
s

)3
−

∂f(u
(n)
s )

∂U
(n)
s

U
(n)
s

(
U

(n+1)
s ·U(n)

s

)
(
u
(n)
s

)2 −U(n)
s


(4.65)

The advantage of this method is its ability to evaluate the shear stress τs with less computational effort

and subsequently, increase the τs estimation stability (Schneiderbauer and Pirker, 2014).

In the last method, the logarithmic law-of-the-wall (Equation 4.57) can be solved using Newton’s

Method. This method was chosen, in the present research, for the evaluation of water induced shear

stress. Furthermore, it has been shown by Schneiderbauer and Pirker (2014) that the linearised scheme

presented in Equation 4.65 leads to the same shear stress evaluation compared to the logarithmic law-

of-the-wall solved by Newton’s Method.

4.4 Summary

The main focus of this chapter was to underline the different approaches followed in the present study

for the development of a coupled fully three-dimensional numerical model capable of simulating bottom

outlet flushing process. In this regard, an insight into the basics of fluid dynamics through the Navier-

Stokes equations in conjunction with turbulence model was first addressed. The second part focused

on describing the method used to model sediment transport processes. Therefore, the sediment erosion

and deposition were modelled by considering the following mechanisms of sediment particle transport

in water; particle rolling due to the hydrodynamic shearing, particle rebound after impact, particle

entrainment due to shear stresses, particle erosion due to impacting particles, particle deposition and

accumulation and landslide shearing mode of transport. Finally, the immersion boundary method was

used to model the surface deformation of a packed bed.
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5. Three-Dimensional Numerical Simulation of

the Bottom Outlet Flushing

5.1 Introduction

Bottom outlets, for sediment control are among the most important components of hydraulic structures,

especially when sediment yields are high and reservoirs are small. The failure of such structures could

undermine the water storage in reservoirs and could also be a serious threat to hydropower project if

sediment deposition upstream of the outlet reaches the hydropower intake invert. Consequently, the

transport of fine sand into the intake could cause erosive and abrasive damage to the turbines. Although

many studies pertaining to bottom outlet, have focused on the flow area downstream of the outlet with

high potential to erosion due to high velocity, little research have been conducted to understand the

flow and the scouring process on the upstream side of the bottom outlet. These studies mainly used

physical models to investigate the scour development and the flow field upstream of the bottom outlet.

In the present research, a fully three-dimensional numerical model coupled in terms of flow field and

sediment transport is presented. Numerical models are important tools by means of which the formation

of the scour hole upstream of the bottom outlet may be investigated. In addition, numerical models are

not limited in terms of scale restrictions of the experimental studies. However, the underlying assump-

tions on the governing equations, computer constraint in terms of processors and memory capacity, and

the computational effort required to obtain the solution are the potential limitations of the numerical

models.

The first part of this chapter presents the model setup in which the computational fluid dynamics

software, the model geometry and grid cells, the model boundary conditions as well as the solution

technique are described in detail. In the second part, results from the numerical simulation are presented

and will be compared with experimental measurements of Chapter 3 in the third part of the chapter.

Finally, sensitivity analysis of the model to a certain parameters is discussed.

5.2 Numerical Model Setup

The numerical model presented in this work was set up by adopting the following steps:

78
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1. Define the model geometry representing the computational domain.

2. Generate mesh in order to divide the computational area into small grid cells.

3. Set up the model boundary conditions.

4. Adopt a solution technique and procedure.

5. Post-process and analyse simulation results.

More details on the different steps are presented in the following sections.

5.2.1 Computational Fluid Dynamics Software

ANSYS FLUENT is the Computational Fluid Dynamics (CFD) package used in the present research

work. ANSYS FLUENT is a computer program which has been used extensively in fluid flow modelling

under complex geometries using the finite volume method. ANSYS FLUENT package is composed of:

• A preprocessor engine which includes ANSYS Design Modeler for geometry modelling, ANSYS

Meshing for mesh generation.

• A processor engine, FLUENT solver which is a computer code for solving governing equations.

• A postprocessor engine for results visualisation and analysis.

The flow domain in ANSYS FLUENT was first discretised into a large number of cell volumes and

then the governing equations were solved in each generated cell by FLUENT solver. The software

version used in this study was ANSYS FLUENT version 14.0. The main reasons for using ANSYS

FLUENT software package in the present research was first, to avoid the unnecessary time consuming

of developing a CFD custom software code and secondly, ANSYS FLUENT is equipped with a special

feature named User Defined Function (UDF) which allows the user to define his own functions. However,

as mentioned previously in Chapter 4 only the modelling of the flow and the turbulence were carried out

in the standard version of ANSYS FLUENT. The sediment transport component was introduced using

UDF and therefore, a customised code was developed based on the different particle transport modes

explained in Chapter 4.
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5.2.2 Model Geometry and Grid Cells

The main goal of the present study was to develop a coupled fully 3D numerical model that is able to

accurately simulate the different experimental tests under the same laboratory conditions, discussed in

Chapter 3. Therefore, the laboratory flume setup was modelled by applying the same dimension. That

is 1m wide, 1.05m height and 7m long of which 2m was covered by the packed bed with a thickness

of 0.26m. The bottom outlet orifice diameter was 0.09m which was extended by a pipe of 1m length

with the same diameter. Note that the laboratory flume was 40m long but only 7m long was modelled

because the area of interest was located just upstream of the bottom outlet and the distance used in

the numerical model was enough to get a fully developed and stable flow at the surface of the packed

bed. The laboratory test results also showed that the maximum scour length upstream of the bottom

outlet was less than 1m and therefore, only 2m length of the packed bed was modelled instead of 5m

as it was the case in the physical model. The shortening of the model length has significantly reduced

the number of generated cells and subsequently, the computational time was considerably decreased.

Figure 5.1 shows the modelled geometry of the laboratory setup as presented in Design Modeler.

Figure 5.1: Computational model geometry

The most crucial step in developing a numerical model is the construction of an appropriate compu-

tational grid in order to obtain a stable and grid independent solution. The governing equations are

solved at the nodes of this grid iteratively until convergence is reached for important model parameters

such as flow velocity and direction, and pressure. The construction of mesh can lead to high number

of cells which in return may require a long computational time for a single solution. Therefore, the
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modelling of the physical environment have to be done in the most efficient way taking into account the

different aspects mentioned above. In this study, the geometrical cell volume chosen was a hexahedral

shape. This type of mesh was chosen because it provides high-quality solutions with fewer cells/nodes

particularly for flow-aligned geometries, which was the case in this study. Furthermore, the hexahedron

mesh reduces numerical diffusion when the mesh is aligned with the flow. Numerical diffusion is referred

to as an overestimation of the diffusion coefficient by the model.

Cells in the direction perpendicular to the flow represented in the model by Y-axis, were uniform in size

while in the flow direction (X-axis) finer cells were used closer to the upstream of the bottom outlet,

area of high potential of erosion and flow turbulence, and further upstream of the flume, coarser cells

were applied. In the vertical direction (Z-axis) the packed bed area was made of finer mesh, which

increases as approaching the free surface of water. Figure 5.2 shows the generated mesh used in the

simulation and Table 5.1 provides some information on the number of cells as well as the cell quality

and its resolution.

Figure 5.2: Computational grid cell

A mesh is defined as good quality mesh when the orthogonal quality is 1 and bad when this value is

0. The generated mesh in this study has an average orthogonal quality of 0.99 which is very close to 1

(see Table 5.1). This shows that the mesh used has an acceptable quality.
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Table 5.1: Details of generated mesh

Number of cells 90210

Number of nodes 97883

Minimum cell size (m) 0.017

Maximum cell size (m) 0.08

Average skewness 0.006

Average orthogonal quality 0.99

5.2.3 Model Boundary Conditions

Boundary conditions are very important in computational fluid dynamics and they specify physical

values at the boundaries of the computational domain. Therefore, it is crucial to define these conditions

correctly and understand their role in the numerical algorithm because boundary conditions have a direct

impact on the quality of the final results of the simulation. In ANSYS FLUENT a limited set of boundary

types is available and the choice of the boundary condition type should comply with the availability of

the flow information at that particular surface location. In this study, four boundary condition types

were used to model the laboratory tests namely, the inlet-flux, the outlet-pressure, the symmetry and

the wall.

The inlet-flux boundary type was used as inlet boundary because the discharge at the bottom outlet was

known for being measured during the laboratory tests. The flows prescribed at the inlet were the same

flow as used in the physical model namely; 0.036m3/s for Test 1, 0.021m3/s for Test 2 and 0.012m3/s

for Test 3. The hydraulic diameter (Dh = 4/(A/P )) of 1m, where A is the inlet cross section area and

P its perimeter. The default value of 5% was used for the turbulent intensity at the boundary inlet.

The outlet-pressure type was set at the outlet boundary, which requires to specify a gauge pressure. In

this study, the gauge pressure was set to 0Pa, and since in ANSYS FLUENT the absolute pressure is

equal to the sum of a reference pressure and a gauge pressure, then the reference pressure is set to the

atmospheric pressure (101320Pa). The hydraulic diameter (Dh) of 0.09m was used and the turbulent

intensity of 5% was also prescribed as boundary conditions at the outlet.

The free surface in this study was modelled by using a symmetry boundary type, which implies that

the velocity component normal to the free surface is zero, as well as the gradients of all the other flow

variables normal to the symmetry axis (Fluent, 2011). This boundary condition was suitable to describe
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the free surface in the present research, because the water level was constant in the numerical model as

it was during the laboratory tests.

The sidewalls and the floor of the flume were set as wall boundary type in which no-slip condition was

specified.

5.2.4 Numerical Solution Technique and Procedure

In this section, the different steps involving the settings of the numerical model through the Graphical

User Interface (GUI) of ANSYS FLUENT are discussed. First, the ANSYS FLUENT launcher was started

by activating the following options; 3D , double precision and parallel as processing option. In order to

speed up the computational time, 12 processors were used in parallel for the processing option. This

enables the computational task to be shared amongst the processors and therefore, the computational

time was considerably reduced. The mesh file previously generated in design Modeler was loaded in

ANSYS FLUENT interface. The User-Defined-Function was compiled and loaded. The solver options

used were; Pressure Based for solver type, absolute for velocity formulation type and transient for time.

The gravitational acceleration was activated in this simulation.

The eulerian model with three phases were chosen in the multiphase options. The primary phase

was water and the remaining two phases were used to model saltating and rolling particles. Material

properties such as viscosity, diffusivity, density and particle diameter were specified for each phase. The

mass and momentum source term provided by the User Defined Function (UDF) were hooked for each

phase and passed on to FLuent solver in order to implement the modelling of sediment transport and

the deformation of surface of the packed bed.

In the viscous model, the k−ε model in conjunction with the standard wall functions were chosen for

the turbulence model. In this option, the turbulent viscosity was computed using the customised UDF

code.

In the operating conditions of the fluid domain, the operating pressure was set to atmospheric pressure

(101325Pa) and the reference pressure in this model was located at the free surface. The boundary

conditions were specified using the laboratory test flow values as discussed in previous sections.

For the solution methods, the Phase Coupled SIMPLE scheme was used as Pressure-Velocity Coupling

method and spatial discretisation schemes for the solution variables were set up in the model.
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The solution variables in the computational domain were first initialised from the inlet value and then

by using region adaption function from GUI, the area representing the packed bed in the model was

marked and patched with a new User Defined Scalar (UDS) value and velocity. The UDS patched value

representing the volume fraction of the packed bed was 1.15 and the initial velocity was set to 0 at the

marked region.

In order to run the calculations the time-step size, the number of time-steps and the maximum number

of iterations per time-step were specified in the model. The time step size was set to 0.001s and

maximum iteration per time step was set to 10. Note that these values were obtained after many trial

runs and they are found to be appropriate in terms of solution stability and convergence. The number

of time step was taken from the longest laboratory run time test which was around 30min. By applying

the time scale (T = 60) discussed in Section 4.3.2, the number of time step was set to 30000 s and

multiplying this value with the time step size gives the time duration of 30 s which is actually 30min .

According to the time scale adopted in this model, 1 s is equivalent to the physical time of 60 s.

The governing equations were finally solved for each time-step and results are plotted and analysed.

The model procedure is summarised in the following flowchart in which t is time.

Note that the computer used to run the different simulations in this study was a Dell Precision T5600

tower system running Windows 7 Professional. The specifications are as follows:

- Dual Intel Xeon CPU E5− 2643 3.30GHz, 3.30GHz (2× 8 cores CPUs)

- 16 GB RAM

- NVIDIA Quadro graphics card

The processing time required for one numerical simulation using the above mentioned computer was

about 48 hours.
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Start

Geometry and mesh generation

Initialise Vq, k, ε and αb

Solve Eq. 4.1 and 4.2 +

Eq. 4.46, 4.7, 4.8 and 4.42

• Computer adaptions of

Eq. 4.1 and 4.2 by Eq.

4.47 and 4.48

• τs from Newton Method

• Amount of erosion and

deposition from Eq.

4.37 and 4.38

• Shearing slides from Eq.

4.39 and 4.41

t < tend

Final solution

End

no

yes

Ssal, Srol, Fq

Gk, Sε, Ssd

Figure 5.3: The proposed numerical model flowchart
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5.3 Simulation Results

In this section, simulation results of the experimental tests are discussed. These simulated experimental

tests included the laboratory tests (Test 1 to 3) discussed in Chapter 3 and the physical model test taken

from Powell (2007). The latter was simulated because it provided a more comprehensive experimental

result for the validation of the present 3D fully coupled numerical model. For example, in this laboratory

test results a vertical and horizontal distribution of flow velocity upstream of the bottom orifice were

available for comparison against numerical model results.

5.3.1 Model Calibration

The first simulation consisted of calibrating the model against the laboratory data. The parameter

chosen for calibration was the dimensionless empirical coefficient C′η, which appears in Equation 4.16.

As mentioned in Section 4.3.1.1, this coefficient would considerably vary according to the case study.

Furthermore, different values of C′η presented in the literature were based on air-particle condition studies

while water-particle case is addressed in the present research. In this regard, the model was calibrated

against experimental results of Test 1, which corresponds to a highest simulated flow (0.036m3/s).

After the model was successfully calibrated, Test 2 , Test 3 and test from the literature (Test 4) were

simulated using the first simulation setup with the corresponding flow rate for each test.

5.3.2 Bed Deformation Results

The primary objective of the simulations conducted in this study was to predict the laboratory test

results. Therefore, the final simulated scour hole should represent the equilibrium condition as it was

the case during the experimental study. Figure 5.4 shows the longitudinal variation with time of the

scour hole in the centreline.

It can be seen that the scour depth increases at the beginning of the simulation and then reduces with

increasing time until there is no more change. This shows that the final scour hole from the simulation

corresponds to the equilibrium condition.
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Figure 5.4: Simulated longitudinal variation of the scour hole with time for Test 1

Figure 5.5 depicts the simulated scour hole result for Test 1 in three-dimensional view. It shows that the

model accurately simulated the elliptical shape of the edge of the scour hole. Furthermore, the scour

hole is located closer to the bottom outlet, while further upstream, the surface of the pack bed remains

at its initial level. That is there was no bed deformation or erosion that occurred at that part of the

packed bed.

The shape of the scour hole was similar for all the simulated tests and the simulated results for Tests 2,

3 and 4 are presented in Appendix B.
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Figure 5.5: Simulated scour hole for Test 1 (after 1800 s)

5.3.3 Hydrodynamic Results

The acceleration of the flow through the bottom orifice causes a drop in pressure at the bed just

upstream of the bottom outlet. Figure 5.6 depicts the simulated static pressure distribution upstream

of the bottom outlet. It shows that the pressure dropped below hydrostatic for a region closer to the

bottom outlet, which corresponds to the location of the scour hole. The drop in pressure begins at a

distance approximately 9 times the orifice diameter (0.09m), upstream of the bottom outlet. At the

bottom outlet, the pressure decreased to 55% of the hydrostatic pressure as shown in Figure 5.6. Similar

observations were made by Rajaratnam and Humphries (1982) when they studied the flow behaviour

upstream of a sluice gate. The authors found that the decrease in pressure just upstream of the gate

was approximately 40% of the hydrostatic pressure and this drop in pressure was extended to a distance

of approximately 5 times the sluice gate opening.

The simulated flow field upstream of the bottom outlet for Test 1 is presented in Figures 5.7 to 5.10.

The simulated velocity contours show that the area with high velocity is located closer to the bottom

outlet. The flow is accelerated at that particular area due to the contraction caused by the bottom

outlet. This zone was defined, in this study, as the primary scour area in Chapter 3. Furthermore, the
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Figure 5.6: Simulated static pressure distribution at the bed

contour of simulated velocity at the bed shows a transitional area where the velocity is closer to zero.

This zone is located just at the top of the slope inside the scour hole (see Figure 5.7). The streamline

representing the path of the simulated flow is shown in Figure 5.8. Simulated Eddy viscosity is presented

in Figure 5.9 and it shows that inside the scour hole, the eddy viscosity is higher closer to the bottom

outlet while at the transitional zone it is closer to zero. It is evident from the comparison of the contours

of the simulated shear stress in Figure 5.10 and the simulated scour hole in Figure 5.5 that the location

of the area with high shear stress coincides with the zone of maximum depth inside the scour hole. This

confirm that the primary scour area is driven by the shear stress exerted by the flow onto the surface of

the bed. The simulated flow results for Tests 2, 3 and 4 are given in Appendix B.
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Figure 5.7: Contours of simulated flow velocity for Test 1 (after 1800 s)

Figure 5.8: Simulated flow streamline for Test 1 (after 1800 s)
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Figure 5.9: Contours of the simulated eddy viscosity for Test 1 (after 1800 s)

Figure 5.10: Contours of the simulated bed shear stress for Test 1 (after 1800 s)
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5.4 Validation of the Simulation Results against Experimental Data

In order to validate the numerical model, it has to be compared with the experimental measurements

conducted in Chapter 3. In the first part of this section, the simulated bed deformation in terms of

scour bed extent and shape are compared with experimental data. This is followed by more detailed

comparison of the cross section profiles of the scour hole. In the third part the simulated flow field is

compared with experimental data from the literature.

5.4.1 Comparison of Bed Deformation

Figures 5.11 to 5.13 show the contour map of the scour hole of the experimental tests compared with

the simulation results. It can be seen from the contour map that the simulated scour hole reasonably

agrees with the measurements from the experimental test in terms of the scour extent and the maximum

scour depth. However, for Test 3 the scour width was overestimated compared to the experimental test

result.

(a) Observed (b) Simulated

Figure 5.11: Plan view of final bed level for Test 1
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(a) Observed (b) Simulated

Figure 5.12: Plan view of final bed level for Test 2

(a) Observed (b) Simulated

Figure 5.13: Plan view of final bed level for Test 3
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5.4.2 Comparison of Scour Hole Profiles

The simulated lateral bed profiles, were plotted every 0.05m away from the orifice and then, compared

with measurements. The simulated longitudinal profiles of the scour hole along the x-axis upstream

of the bottom outlet with 0.10m interval on both sides of the centreline were also compared with

experimental results. Besides the three experimental tests simulations, an additional experimental test

was simulated. This experimental work was conducted by Powell (2007) to investigate the scour process

and the flow behaviour upstream of the bottom orifice. Since the different experimental tests carried

out in the present study did not provide measurements for velocity distribution upstream of the bottom

outlet, Powell (2007)’s laboratory test was then simulated in order to validate the proposed numerical

model in terms of velocity field prediction upstream of the bottom outlet. The model geometry consisted

of a 2.14m wide, 6m long and 1.06m height flume, in which a sand of 0.73mm was used as packed

bed. The surface of the bed was levelled with the bottom orifice invert located at 0.3m from the flume

floor. Powell (2007) used a bottom orifice diameter of 0.152m and tested many scenarios. However,

only one scenario from the author’s work was simulated in this study. In this scenario, the water head

relative to the orifice invert was 0.76m. In Table 5.2, the simulated maximum scour depth (Ds), the

scour width (Ws), the scour length (Ls) and the Ratio (= Ls/(Ws/2)) are compared with experimental

results. The simulated maximum scour depth for all tests is in good agreement with the measurement

as shown in Table 5.2. The scour width and the length were also well predicted by the present numerical

model.

The simulated scour hole profiles for Test 1 (0.036m3/s), Test 2 (0.021m3/s), Test 3 (0.012m3/s),

as well as Test 4 (0.054m3/s) were compared with experimental results. These are shown in Figures

5.14 to 5.20. From these figures, it can be observed that the shape of the simulated lateral and

longitudinal bed profiles were well predicted by the present numerical model for all tests. However, the

scour depth for cross sections away from the bottom outlet is overestimated by the numerical model

for Test 1. For Test 4 the measured cross sections are deeper than the simulated cross sections. Powell

(2007) concluded during the experimental tests that the vortex played a major role in the scour process

upstream of the bottom outlet. Based on this, the discrepancy between the simulated cross sections

and the measurement for test 4 could be due to the fact that the vortex is not fully developed in the

numerical model to produce more erosion as observed during the experimental test.
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Table 5.2: Summary of result comparisons

Q Ds (m) Ws (m) Ls (m) Ratio

(m3/s) Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim.

Test 1 0.036 0.12 0.12 0.65 0.61 0.33 0.37 1.02 1.21

Test 2 0.021 0.10 0.09 0.56 0.58 0.29 0.29 1.04 1.00

Test 3 0.012 0.08 0.06 0.46 0.55 0.20 0.17 0.87 0.62

Test 4 0.054 0.10 0.09 0.66 0.72 0.33 0.33 0.91 0.92

Obs. = Observed and Sim. = Simulated

Figure 5.14: Lateral bed profile results comparison for Test1
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Figure 5.15: Longitudinal bed profile results comparison for Test 1

Figure 5.16: Lateral bed profile results comparison for Test2
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Figure 5.17: Longitudinal bed profile results comparison for Test 2

Figure 5.18: Lateral bed profile results comparison for Test3
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Figure 5.19: Longitudinal bed profile results comparison for Test 3

Figure 5.20: Lateral bed profile results comparison for Test 4
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5.4.3 Comparison of Flow Velocity

The simulated velocity variations on both vertical and horizontal plane are compared with velocity

measurements from Test 4 (Figures 5.21 to 5.23). Overall, the velocity profile shape and values are well

predicted by the numerical model, even though velocity is being slightly overestimated for the velocity

profiles in both the vertical and horizontal plane away from the bottom outlet. The velocity variation

on the centreline is however, in good agreement with the measurements as shown in Figure 5.23.

Figure 5.21: Results comparison of velocity variation on the vertical plane

Figure 5.22: Results comparison of velocity variation on the horizontal plane
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Figure 5.23: Results comparison of velocity variation on the centreline

5.5 Sensitivity Analysis of the Proposed Numerical Model

This section investigates how certain parameters of the proposed numerical model affect the final sim-

ulation results. In this regard, only parameters with physical meanings are considered for sensitivity

analysis. The sensitivity study consisted of simulating two different values of a given parameter and

then comparing the results with the calibration simulation results (Test 1) displayed as reference sim-

ulation (Ref) in the following graphs. The following gives more details on the parameters used for

sensitivity test as well as the results of this analysis. Results are given under the form of lateral and

longitudinal profile as well as the scour hole extent.

5.5.1 Creeping Parameter

The creeping or rolling parameter (Cr) is a parameter in the present numerical model, which gives an

indication on the dominant transport mode between the saltating and the rolling particle modes. Its

value varies between 0 and 1. It is 1 when particles are exclusively transported through creeping mode

and 0 when saltating is the only way by which particles are transported by the flow. Figure 5.24 shows

the sensitivity results of the creeping parameter (Cr). Figures 5.24-(a) and 5.24-(b) show that the

scour depth increases with increasing creeping coefficient (Cr). Furthermore, the edge of the scour hole

becomes wider and longer as the creeping (Cr) value increases as shown in Figure 5.24-(c). This means
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that the scour is deeper when the dominant transport mode of particles is saltating. Clearly, a saltating

particle is more likely to be entrained by the flow of water than a rolling particle that remains most of

the time at the surface of bed. The creeping coefficient (Cr), therefore, is a sensitive parameter in the

present numerical model.

(a) Lateral profile (b) Longitudinal Profile (c) Scour hole extent

Figure 5.24: Results of sensitivity analysis for creeping parameter

5.5.2 Diffusion Coefficient

The diffusion coefficient (see Equation 4.43) is linked to the volume fraction of the pack bed. Figure

5.25 shows the simulation results done on three different values of the diffusion coefficient. The results

show that for a diffusion coefficient (Diff) varying from 1 to 10 the scour depth increases rapidly,

whereas for a variation of the diffusion coefficient from 10 to 100 the increase of the scour depth is slow

(Figures 5.25-[a] and 5.25-[b]). The scour hole extent follows the same trend as above (Figure 5.25-[c]).

This could mean that the proposed numerical model is sensitive to the diffusion coefficient value up

to a certain point. Beyond this point the numerical model seems not to be affected by the diffusion

coefficient. However, more thorough studies need to be done to confirm the above observation.

(a) Lateral profile (b) Longitudinal Profile (c) Scour hole extent

Figure 5.25: Results of sensitivity analysis for diffusion coefficient
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5.5.3 Packing Ratio

Packing ratio is defined as ratio of the packed bed density to the particle density. It gives an indication

of the compaction of the bed. Figure 5.26 depicts the results of the sensitivity analysis of the packing

ratio. Figures 5.26-(a) and 5.26-(b) show that the maximum depth for the simulation occurred at the

smallest packing ratio (PR) value. The length of the scour hole increases with a decrease in packing

ratio value (Figure 5.26-[c]).

Furthermore, in the simulation with the smallest packing ratio the scour hole profile is not smooth as

shown in Figures 5.26-(b) and 5.26-(c). This means that the present numerical model is sensitive to

the value of packing ratio (PR) because for a small packing ratio, which is equivalent to a small bed

density, the surface of the packed bed becomes more unstable causing an irregular shape of the scour

hole.

(a) Lateral profile (b) Longitudinal Profile (c) Scour hole extent

Figure 5.26: Results of sensitivity analysis for packing ratio parameter

5.5.4 Sediment Size

The sensitivity of the numerical model in terms of sediment size is presented in Figure 5.27. The results

show that the scour depth increases with the decrease in the sediment size. The extent of the scour

hole follows the same trend; that is, the edge of the scour hole is wider for a small sediment size as

shown in Figure 5.27-(a). This was expected because particles with small size, and probably with light

weight, are more likely to be entrained by the water flow. Sediment size, therefore, is considered as a

sensitive parameter for the present numerical model.
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(a) Lateral profile (b) Longitudinal Profile (c) Scour hole extent

Figure 5.27: Results of sensitivity analysis for sediment size

5.5.5 Sediment Roughness

The sensitivity of the numerical model in terms of sediment roughness is presented in Figure 5.28.

Apart from some instability observed on the extent of the scour hole shown in Figure 5.28-(a), the

lateral and the longitudinal scour hole profile are similar to the three simulated sediment roughness

values. Therefore, it is concluded that the sediment roughness is not a sensitive parameter for the

present numerical model. The sediment roughness should have the same order of magnitude with the

sediment size.

(a) Lateral profile (b) Longitudinal Profile (c) Scour hole extent

Figure 5.28: Results of sensitivity analysis for sediment roughness

5.5.6 Sediment Density

The sensitivity of the numerical model in terms of sediment density (SD) is presented in Figure 5.29.

The results clearly show that the maximum scour depth increases with the decrease in the sediment

density. Simulation with high sediment density value was expected to scour deeper. However, the scour

hole is unstable at a small value of the sediment density, showing an irregular scour hole profile (5.29).

The sediment density is, therefore, a sensitive parameter in the present numerical model.
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(a) Lateral profile (b) Longitudinal Profile (c) Scour hole extent

Figure 5.29: Results of sensitivity analysis for sediment density

5.5.7 Mesh Size

Three different mesh sizes were simulated in order to analyse the sensitivity of the choice of the mesh

size in the numerical model. Figure 5.30 shows the comparison of simulated results for three mesh

sizes. Two different mesh sizes relative to the mesh size in Test 1 were simulated. A finer mesh which

was 2/3 times the reference mesh (Test 1) and a coarser mesh which was 2 times the reference mesh

were evaluated. The results for the different mesh size simulations show that the deeper scour hole is

observed for simulation with the finer mesh. The results from the same mesh size present a narrow

lateral scour cross section (Figure 5.30-[a]). In addition, the scour hole becomes unstable for a small

mesh size. Figure 5.30-(c) shows that the mesh size increases with the decrease of the scour length.

The large differences between the three simulated mesh sizes clearly show that the mesh size is a very

sensitive parameter for the proposed numerical model. Therefore, the choice of the mesh size is very

crucial because a coarser mesh can lead to an underestimation of the scour depth and scour length, and

an overestimation of the scour width. On the contrary, a finer mesh could result in instability at the

surface of the bed causing an irregular shape of the scour hole.

(a) Lateral profile (b) Longitudinal Profile (c) Scour hole extent

Figure 5.30: Results of sensitivity analysis for mesh sensitivity
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5.6 Summary

A coupled and fully three-dimensional numerical model as presented in Chapter 4, was used to simulate

the bottom outlet flushing of non-cohesive sediment. The first part of the present chapter consisted of

the numerical model setup and model technique and procedure. In the second part, the experimental

tests were simulated by the proposed numerical model. The coupled fully three-dimensional model

presented in this study successfully predicted the laboratory tests and therefore it was validated against

the measurements in terms of sediment transport and velocity fields. It is worth noting that even though

the proposed numerical model simulated the bottom outlet sediment flushing which is mainly dominated

by erosion processes, both sediment erosion and deposition were considered in the coupled fully three-

dimensional numerical model as discussed during the numerical model development in Chapter 4. In

the last part of the chapter, the sensitivity analysis was conducted on the numerical parameters. This

analysis shows that creeping parameter, the diffusion coefficient, the packing ratio, the sediment size,

the sediment density and the mesh size are sensitive parameters for the proposed numerical model.

Amongst the sensitive parameters, the mesh size was the most sensitive parameter.
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6. Three-Dimensional Suspended Sediment

Transport Model Development

6.1 Introduction

Turbulent suspended sediment transport is the dominant mechanism of sediment transport through most

reservoirs. One of key objective of this study was the development of a coupled fully 3D numerical model

based on Navier-Stokes equations which include both sediment transport and hydrodynamic parameters.

With the aid of a finite volume procedure the coupled fully 3D numerical model aims to determine a

detailed spatial and temporal pattern of the sediment concentration and also the sediment deposition

and erosion in the reservoir.

The hydrodynamic model composed of continuity and momentum equations, turbulence model and the

sediment transport model is presented in the next sections. Boundary conditions prescribed in both

hydrodynamic and sediment transport model are also described in the following sections.

6.2 Hydrodynamic Modelling

The flow field was obtained by solving the Reynolds-averaged Navier-Stokes equations in a three-

dimensional coordinate system. The k-ε model was used for turbulence modelling.

6.2.1 Continuity and Momentum Equations

For an incompressible fluid flow, continuity and momentum equations are given as:

∂Ui
∂xi

= 0 (6.1a)

∂Ui
∂t

+ Uj
∂Ui
∂xj

=
1

ρ

∂

∂xj

[
−
(
P +

2

3
k

)
δij + νT

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
(6.1b)

where ρ is fluid density, Uj is the component of local time-averaged flow velocities, P is the dynamic

pressure, k is the turbulent kinematic energy, δij is the Kronecker delta and νT is the eddy viscosity.
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Since relatively low sediment concentrations were considered in this study, the flow was treated as single

phase and buoyancy effects are neglected.

6.2.2 Turbulence Model

The turbulence model used, in the present 3D numerical model, is the standard k-ε model. In this

turbulence model, the local state of turbulence is described by two parameters; the turbulent kinematic

energy (k) and the rate of its dissipation (ε) which are both related to eddy viscosity by

νT = Cµ
k

ε2
(6.2)

where Cµ is a constant value of 0.09 in the standard model. The distribution of (k) and (ε) are

determined from the following model transport equations:

∂k

∂t
+ Uj

∂k

∂xj
=

∂

∂xj

(
νT
σk

∂k

∂xj

)
+ Pk − ε (6.3a)

∂ε

∂t
+ Uj

∂ε

∂xj
=

∂

∂xj

(
νT
σε

∂ε

∂xj

)
+ Cε1

ε

k
Pk + Cε2

ε

k
ε (6.3b)

where Pk known as the production of turbulent kinematic energy, is given by

Pk = νT
∂Uj
∂xi

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(6.4)

and Cε1 , Cε2 , σk and σε are empirical constants.

6.2.3 Boundary Conditions

Five types of boundaries were defined; inlet-velocity, outlet-pressure, bed (wall), flume walls (wall)

and water surface (symmetry). In the present suspended sediment transport numerical model, the

velocity profile and the concentration profile from the experiment data were prescribed in the inlet

boundary according to the different simulated cases and presented in Chapter 7. At the water surface,

the symmetry condition was applied that includes zero gradients and zero fluxes perpendicular to the

boundary. At the flume walls, a wall boundary condition was applied and parameters were set as defaults.

At the bed, wall boundary condition was also applied with the standard wall-function approach.
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6.3 Transport Model

The suspended sediment concentration was determined by solving the convection-diffusion equation, in

which the particle settling velocity was introduced.

6.3.1 Convection-Diffusion Equation

A convection-diffusion equation was used as a transport model for suspended sediment concentration.

It was formulated as follows:

∂C

∂t
+ Uj

∂C

∂xj
+ ωs

∂C

∂z
=

∂

∂xj

(
νT
σc

∂C

∂xj

)
(6.5)

where C is the sediment concentration, ωs is the settling velocity of the particles and σc is the turbulent

Schmidt number.

6.3.2 Boundary Conditions for Sediment Transport

A near-bed reference concentration or a sediment flux near the bed was needed for solving the above

mentioned convection-diffusion equation. As proposed by Van Rijn (1984a, 1986), a widely used ap-

proach was to set the reference concentration Cb equal to its equilibrium value Cbmax. However the

equilibrium-concentration assumption was valid only for loose beds with unlimited sediment supply,

according to the same author.

The rate of entrainment e is equal to the rate of deposition d when sediment transport reaches its

equilibrium condition. On the contrary, under nonequilibrium situations, the flow entrains as much

sediment from the bed as long as there is sufficient sediment available on the bed. From this, Celik and

Rodi (1988) developed the following entrainment model:

e =ωsCbmax (for loose bed) (6.6a)

e = min(ωsCb, ωsCbmax) (for fixe bed with an upstream sand source) (6.6b)

The same entrainment model approach was adopted in the present study.

For the net-deposition case, the net-deposition rate to the bed was defined in the model as:

d− e = aωsCb (6.7)
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where d is the deposition rate, e is the entrainment rate and a is defined as the settling probability that

a particle reaching the bed is deposited there. This approach was used by Celik (1983) to predict the

downstream development of concentration profiles of Jobson and Sayre (1970a,b) experiments. Accord-

ing to Celik and Rodi (1988), once the entrainment rate is known, the settling probability introduced

in the above equation can be calculated as a = 0 for Cb < Cbmax and a = 1 − Cbmax/Cb for

Cb > Cbmax. The same approach was followed, in the present study, to model the deposition process

at the bed.

6.4 Model Solver: ANSYS FLUENT

In order to solve all these above mentioned equations, a computer code (programm) was needed.

Therefore ANSYS FLUENT version 14 code was used in this study. The main reason for using ANSYS

FLUENT was to avoid the time consuming necessity of developing a custom software code. As mentioned

in Chapter 5, ANSYS FLUENT is a computer programm for fluid analysis in complex geometry using

the finite volume method. It provides fast, accurate and robust CFD (computational fluid dynamics)

solution. It is worth noting that ANSYS FLUENT is not specifically a sediment transport model.

However, unlike other computer programs, ANSYS FLUENT allows users to customise for example

materials properties and boundary conditions through its User-Defined Function (UDF). This special

tool was extensively used in this study in order to define the sediment transport equation and also the

different sediment boundary conditions at the bed.

6.5 Summary

A coupled fully 3D numerical model for turbulent suspended sediment transport was developed in this

chapter. The two main components of this numerical models were; the hydrodynamic modelling based

on Navier-Stokes equations in conjunction with k-ε turbulence model. The second part consisted of

computing the suspended sediment concentration using the convection-diffusion equation. Furthermore,

boundary conditions for sediment transport were modelled using formulas that link both the rate of

entrainment and deposition with the settling velocity and the reference concentration. In the next

Chapter, the proposed turbulent suspended numerical model is validated against experimental data.
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7. Three-Dimensional Suspended Sediment

Transport Model Testing and Validation

7.1 Overview on Experimental Cases Simulated by the Model

The present coupled fully three-dimensional numerical model was tested with a wide range of laboratory

flume set of data from the study done by Jobson and Sayre (1970a). The main purpose of these

experimental tests, according to Jobson and Sayre (1970a) was to measure the turbulent mass transfer

coefficients for dye and sediment particles of varied grain size distribution and also the fall velocities of

the sand particles in open channel and steady flow. These laboratory experiments utilised a recirculating

flume of 2.44m wide by 1.22m deep by 60.96m long. The water depth was held constant at 0.41m.

In order to test the model under various experimental conditions, laboratory flume data from work done

by Van Rijn (1981a), and Ashida and Okabe (1982) were also used. Van Rijn (1981a) conducted a net-

entrainment experiment in which velocity and concentration measurement were taken under uniform

flow conditions without initial sediment load and with a movable bed (fixed to loose). Therefore,

sediment load was only supplied from the erosion of the bed. Ashida and Okabe (1982) conducted two

experiments namely, a net entrainment and the net deposition case. In the net entrainment experiment,

a fixed bed was used and covered with a mixture of gravel and sand in order to avoid scour at the

beginning of the experimental test. As for the net-deposition experiment, sand with a diameter of

0.165mm was discharged in the flow and the sediment was distributed over the whole depth of the

channel.

These sets of data were found to be suitable for the validation of the model. Furthermore, the work of

these authors has been widely used in other research studies such as those conducted by Celik and Rodi

(1988) and Campos (2001). It is worth noting that all the laboratory flume dimensions are the same

as those used in the numerical model. More experimental data used in this study are compiled in Table

7.1, where h is the water depth, Um is the mean velocity, U∗ is the shear velocity, Ks is the average

roughness size, ρs is the sediment density and dm is the mean sediment diameter.
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Table 7.1: Experimental measurements

Experiment h Um U∗ Ks ρs dm ωs Cbmax

(Reference) (m) (m/s) (m/s) (m) (kg/m3) (mm) (m/s) (mg/l)

Dye-mixing (Jobson 0.41 0.32 0.03 0.08 - - 0.00 -

and Sayre (1970a))

Zero net flux (Jobson 0.40 1.00 0.10 0.10 2420 0.12 0.01 -

and Sayre (1970a))

Net deposition (Jobson 0.41 0.60 0.06 0.10 2650 0.12 0.01 192

and Sayre (1970a))

Net entrainment 0.25 0.47 0.03 0.01 2650 0.23 0.03 2000

(Van Rijn (1981a))

Net deposition (Ashida 0.04 0.37 0.04 0.01 2650 0.17 0.02 295

and Okabe (1982))

7.2 Numerical Solution Procedure

A finite-volume method is used for solving the Navier-Stokes equations in this study. These equations

are discretised on a three-dimensional grid with 610×12×16 in the longitudinal, transversal and vertical

directions with total number of cells of 117120. Figure 7.1 shows the geometry and the grid used in the

simulation.

Figure 7.1: Zoomed view of simulated geometry and grid cells
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The simulation of the experimental cases consisted of discharging dye as well as various types of sediment

particles continuously from a line source located near the water surface into a fully developed channel

flow. In some cases, only clear water was discharged over a sand bed leading to suspension of sediment.

In most cases considered, the downstream development of the concentration is predicted after prescribing

both velocity and concentration profile at the inflow boundary. These boundary conditions were provided

by the experimental data. The velocity profile was computed using the von Karman log-law for rough

walls:
V

U∗
= 8.5 + 2.5 ln

(
Z

Ks

)
(7.1)

where V is the velocity, U∗ is the shear velocity, Z is the depth and Ks is the average roughness size.

7.3 Dye-Mixing Simulation

In order to determine the value of the turbulent Schmidt number (σc) for very fine sediment, Jobson and

Sayre (1970a) discharged dye instead of sediment particle. The turbulent Schmidt number is defined

as the ratio of momentum turbulent transfer coefficient and sediment mass transfer coefficient. For

their experiment, Jobson and Sayre (1970a) found a value of 1.0 as turbulent Schmidt number. Further

studies done by Karim (1981) and Celik (1983), have shown that values of σc can range from 0.5 to 1.0.

According to Celik and Rodi (1988), a value of σc = 0.5 yields better agreement between calculated

and measured concentration profile. Therefore this value was used in the present numerical model.

Boundary conditions for dye-mixing simulation were defined as follows:

• The measured profile of the dye concentration was used at the inlet as the initial condition.

• The observed flow velocity profile was set at the inlet as the initial condition.

• A zero dye concentration flux was prescribed at the bed.

The settling velocity (ωs) of the dye, in this simulation, was assumed to be zero. Comparison of

downstream development of the predicted dye concentration with measurements is given in Figure 7.2.

Due to the available measurements only concentration profiles on the vertical centre plane in the flow

direction were compared. The axes of the graphs represent the concentration and the vertical distance,

and were made dimensionless with the initial discharge concentration (Cref ), and the water depth (h)

respectively.
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Although the model predicted too much mixing near the free surface, the dye concentration development

further downstream is better predicted. As observed in the experimental case, a uniform dye concentra-

tion was reached at about x/h = 24. The overall prediction of the downstream development of the dye

concentration by the present 3D numerical model was in good agreement with the measurements from

the experimental case conducted by Jobson and Sayre (1970a).

Figure 7.2: Comparison of simulated dye-concentration profiles with experimental data

7.4 Sediment Transport Simulation with Known Net Flux at the Bed

7.4.1 Zero Net Flux at the Bed

In this simulation, the dye was replaced by fine sediment with 0.123mm of diameter. By prescribing

a lower discharged suspended sediment load than the full transport capacity, all the sediment reaching

the bed were re-entrained into the flow at the same deposition rate. As a result, a zero sediment flux

was set at the bed. Comparisons of the predicted and the measured downstream development of the
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concentration profiles are given in Figure 7.3. It can be seen that, the predicted concentration profiles

yield a reasonable agreement with the observed data from the experimental case, especially in terms of

concentration profile shape.

Figure 7.3: Comparison of simulated concentration profiles with experimental data for zero

net flux at the bed

7.4.2 Net Deposition to a Fixed Bed

For this simulation, fine sediment (sand) with 0.123mm of diameter was discharged into the flow

with relatively high velocity. However, the velocity was not high enough to transport all the discharged

sediment so that net deposition occurred until the suspended load reached the carrying capacity. Further-

more, equilibrium state was reached at the far downstream station from the sand source. Comparisons

of the predicted concentration profiles with the measures ones, depicted in Figure 7.4, indicate that

both the simulated shape of the profiles and the calculated concentration values are quite similar to

those observed during the laboratory experimental case.

Figures 7.5 and 7.6 show the stream wise variation of the suspended load Qs and the near-bed concen-

tration Cb. Just like in the experiments done by Jobson and Sayre (1970a), the 3D numerical model

predicted accurately both the initial increase of the near-bed concentration and the overshooting of the

asymptotic equilibrium value. As a result, the model was realistically capable of predicting both the

deposition and entrainment processes.
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Figure 7.4: Comparison of simulated concentration profiles with experimental data for net

deposition to a fixed bed

Figure 7.5: Downstream development of suspended load in net deposition case

Figure 7.6: Downstream development of near-bed concentration in net deposition case
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7.5 Sediment Transport Simulation with Net Entrainment and Net De-

position Model

7.5.1 Net Entrainment from a Loose Bed

This case simulated Van Rijn’s (1981a) laboratory experiments in which initially clear water was dis-

charged over a sand bed leading to the suspension of sediment until the full transport capacity was

reached. It can be seen in Figure 7.7 that at the beginning of the loose bed the model over predicted

both the entrainment and the near bed concentration. Celik and Rodi’s (1988) model yielded a sim-

ilar result and according to them, this could be due to the use of flat bed in the model while in the

experimental case a scour hole developed downstream of the beginning of the loose bed. Overall, the

development of the concentration profile was simulated fairly well by the 3D numerical model.

Figure 7.7: Comparison of simulated sediment concentration profiles with experiment data in

case of net entrainment from a loose sand bed

7.5.2 Net Entrainment on a Fixed Bed

This case deals with the simulation of experiments done by Ashida and Okabe (1982) in which a section

of the upstream bottom part of the channel was made of loose bed (sand source) while in the remaining

part, a fixed bed was prescribed. The calculated results of the concentration profiles for this case are

compared with the measured ones in Figure 7.8. The 3D numerical model over predicted the entrainment

near the beginning of the sand source and further downstream, the model over predicted concentrations

at the surface while the near bed concentration was under predicted. These differences between the data
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and the predictions could be due to the use of a fixed value for roughness characteristics, which tends

to vary as sand erosion occurs during the experimental test. However, from the predicted results of

concentration profiles, the 3D numerical model proposed in this study, showed its ability to realistically

simulate the net-entrainment process.

Figure 7.8: Comparison of simulated sediment concentration profiles with experiment data in

case of net entrainment on a fixed bed

7.5.3 Net Deposition on a Fixed Bed

During the experimental tests of this case done by Ashida and Okabe (1982), a vertical sand concentra-

tion profile at the upstream end of the flume and a fixed bed at the downstream end of the flume were

prescribed. Comparisons of the predicted and the measured downstream development of the sediment

concentration profiles for this case are given in Figure 7.9. As seen in Figure 7.9, concentration profiles

were predicted fairly well in terms of the shape and the sediment concentrations.
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Figure 7.9: Comparison of simulated sediment concentration profiles with experiment data in

case of net deposition on a fixed bed

7.6 Summary

This chapter presented a fully coupled 3D numerical model based on Navier-Stokes equations in conjunc-

tion with a turbulent model and the convection-diffusion equation for the suspended sediment transport.

To validate this numerical model, a range of experimental cases conducted in a laboratory flume, were

simulated. These experimental cases can be divided into two groups. The first experiments involved

discharging a dye as well as various types of sediment particles continuously from a line source located

near the water surface into a fully developed channel flow. While the second group of experiments

consisted of discharging clear water under uniform flow conditions, over movable bed causing erosion

followed by the suspension of sediment. Subsequently in both cases, the downstream development of

the suspended sediment concentration profiles and flow conditions were determined. These laboratory

sets of data were compared with results from CFD simulations that were carried out under the same

experimental conditions. The overall predictions of the downstream development of the suspended sedi-

ment concentration by the present 3D numerical model were in good agreement with the measurements.

Both the shape and the sediment concentrations profiles were predicted reasonably well. Consequently,

the model was also capable of predicting both the deposition and entrainment processes. Note that the

present suspended sediment transport 3D numerical model was validated against 2D laboratory tests

because they were the only available experimental data on suspended sediment transport. The bottom

outlet sediment flushing simulations have, however, shown that the present numerical model can simu-

late a 3D sediment flushing conditions. As a result, the proposed 3D numerical model in this study can

be used to predict turbulent suspended sediment transport processes in reservoirs.
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8. Conclusions and Recommendations

The investigation of reservoir sedimentation has become an important and valuable research topic in

engineering practice. Sediment deposition in reservoirs can affect flood levels, drainage for agriculture

land, pumpstation and hydropower operation and navigation.

An extensive review of the technical literature pertaining to suspended sediment transports as well

as deposited sediment flushing from reservoir under hydraulic condition has shown that most studies

on sediment are still based on empirical formulas and experimental work, despite the availability of

sophisticated computers. This is because sediment transport, particularly sediment deposition and

erosion are complex processes, that involve the interaction of many physical factors which are not

easily modelled numerically. In addition, most of the existing three-dimensional numerical models are

not coupled hydrodynamic and sediment transport models. They simulate first, the velocity field and

water depth and thereafter concentration and bed change are calculated. Furthermore, they are not

fully three-dimensional models for using a layer-averaged approach in conjunction with Saint-Venant

equations.

The key objective of the present research was to develop a coupled fully 3D numerical model based on

Navier-Stokes equations which include both sediment transport component and hydrodynamic param-

eters. In this regard, a physical model was set up in the laboratory flume in order to investigate the

bottom outlet flushing in a controlled environment. The proposed 3D numerical model was calibrated

against experimental data, then executed and the simulation results were satisfactory.

Note that the 3D numerical model which has been developed in this study is able to simulate both

sediment erosion and deposition at the same time. However, the validation of this numerical model was

done separately for deposition and erosion processes. Measurements from experimental investigation

conducted in this research were mainly used to validate the proposed numerical model in terms of

sediment erosion, while data from laboratory flume study found in literature were used for the validation

of sediment deposition and entrainment component of the numerical model. The later validation was

based on suspended sediment transport and did not include bed change simulation.
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8.1 Physical Modelling of the Bottom Outlet Flushing under Pressure

Laboratory tests were carried out in the present study to investigate scour processes upstream of the

bottom outlet. The physical model was set up in a rectangular flume in which sediment from crushed

peach pips was packed in the way that the bed surface was levelled with the invert of the bottom outlet.

Three different flow rates were tested, namely, 0.036m3/s, 0.021m3/s and 0.012m3/s. The results

showed that the shape of the scour hole was directly dependent on the discharge at the bottom outlet.

The scour depth, the scour width as well as its length increase as the flow rate increases.

8.2 Coupled and Fully 3D Numerical Modelling of the Bottom Outlet

Flushing under Pressure

The fluid dynamics were modelled in this study using the Navier-Stokes equations in conjunction with

k-ε turbulence model. The sediment erosion and deposition were modelled by considering the following

mechanisms of sediment transport; particle rolling due to the hydrodynamic shearing, particle rebound

after impact, particle entrainment due to shear stresses, particle erosion due to impacting particles,

particle deposition and accumulation, and landslide shearing mode of transport. Finally, an immersed

boundary method was used to model the surface deformation of a packed bed. It is worth noting that

the standard ANSYS FLUENT code was used to solve flow and turbulent model equations. In contrast,

the sediment transport component and the modelling of the deformation of the packed bed’s surface

were executed using the User Defined Functions (UDF), a special feature of ANSYS FLUENT which

allows the user to define his own functions or code as well as to specify customised model parameters.

The proposed coupled and fully 3D numerical model was used to simulate the experimental tests. Results

from these simulations were in good agreement with the measurements. The geometric features of the

scour hole upstream of the bottom outlet were reasonably well predicted compared to the experimental

data. Furthermore, the velocity field upstream of the bottom outlet was in good agreement with

measurements. The proposed numerical model for bottom outlet flushing was, therefore, validated

because of its ability to accurately predict the temporal and spatial scour hole development during

flushing process. The proposed numerical model can be considered reliable provided that the model

is correctly calibrated and set up to reflect the condition of a particular case study. The sensitivity

to certain simulation parameters such as mesh size, diffusion coefficient and packing ratio should be
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considered in the proposed numerical modelling.

8.3 Coupled and Fully 3D Numerical Modelling of Suspended Sediment

Transport

In this study, the suspended sediment transport was modelled using the convection-diffusion equation.

The hydrodynamic and turbulence model equations in the present suspended sediment transport model

were solved using the standard ANSYS FLUENT code whereas the convection-diffusion equation and

boundary conditions for sediment transport equations were solve through the User Defined Function

(UDF).

A range of experimental cases found in the literature and conducted in a laboratory flume, were simulated

for model validation. The overall predictions of the downstream development of the suspended sediment

concentration by the present coupled and fully 3D numerical model were in good agreement with

the laboratory test results. Both the shape and the sediment concentration profiles were predicted

reasonably well. Furthermore, the proposed numerical suspended sediment transport model was capable

of predicting both the deposition and entrainment processes. As a result, the proposed numerical model

can be used to predict turbulent suspended sediment transport processes in reservoirs.

8.4 Recommendations for Further Research

The coupled and fully 3D numerical models discussed in this study, with sufficient resources can be

improved in several ways as follows:

• The present experimental setup can be improved by including the use of Acoustic Doppler Ve-

locimeter (ADV), which is useful in providing a 3D flow velocity data to be used for the verification

of the 3D numerical modelling of the bottom outlet flushing.

• The bottom outlet numerical model could be modified so that it is able to simulate more than

one sediment fraction size as well as a cohesive sediment case.

• The bottom outlet flushing numerical model can be altered in order to simulate the case of packed

bed levelled above the invert of the bottom outlet.
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• In order to fully capture the effect of the turbulence upstream of the bottom outlet, a more

robust turbulence model could be used such as; Detached Eddy Simulation (DES) model, a scale

resolving large eddy model and a Reynolds stress model.

• Finally the coupled and fully 3D numerical model for bottom outlet flushing, developed in this

study, can serve as a framework for investigation of local scour that could occur at hydraulic

structures such as bridge piers and abutments. It could also be used for the validation of sediment

transport models in case of a 3D reservoir sedimentation as well as a laboratory flume 3D data.
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A.1 Experimental Results for Test 2

Figure A.1: Scour hole for Test 2

Figure A.2: 3D bed surface mapping for Test 2
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Figure A.3: Observed lateral cross sections of the scour hole for Test 2

Figure A.4: Observed longitudinal cross sections of the scour hole for Test 2
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A.2 Experimental Results for Test 3

Figure A.5: Scour hole for Test 3

Figure A.6: 3D bed surface mapping for Test 3
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Figure A.7: Observed lateral cross sections of the scour hole for Test 3

Figure A.8: Observed longitudinal cross sections of the scour hole for Test 3
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B.1 Simulation Results for Test 2

Figure B.1: Simulated scour hole for Test 2

Figure B.2: Contours of simulated flow velocity for Test 2
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Figure B.3: Simulated flow streamline for Test 2

Figure B.4: Contours of the simulated eddy viscosity for Test 2
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Figure B.5: Contours of the simulated bed shear stress for Test 2
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B.2 Simulation Results for Test 3

Figure B.6: Simulated scour hole for Test 3

Figure B.7: Contours of simulated flow velocity for Test 3
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Figure B.8: Simulated flow streamline for Test 3

Figure B.9: Contours of the simulated eddy viscosity for Test 3
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Figure B.10: Contours of the simulated bed shear stress for Test 3
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B.3 Simulation Results for Test 4

Figure B.11: Simulated scour hole for Test 4

Figure B.12: Contours of simulated flow velocity for Test 4
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Figure B.13: Simulated flow streamline for Test 4

Figure B.14: Contours of the simulated eddy viscosity for Test 4
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Figure B.15: Contours of the simulated bed shear stress for Test 4
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