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ABSTRACT

A number of proteins essential for the survival of a plant are encoded by the chloroplast

genome. The characterization and sequencing of a number of algal and plant chloroplast

genomes has facilitated researchers understanding of cellular functions and metabolism.

Chloroplast DNA (cpDNA) has also been used to determine inter- and intraspecies

evolutionary relationships and this organelle offers an alternative means of expressing foreign

genes. Although a number of species' chloroplast genomes have been characterized and

sequenced, no previous attempts of this kind have been made for a chloroplast genome of the

family Vitaceae.

In this study, attempts were made to characterize and partially sequence the chloroplast

genome of Vilis vinifera. Chloroplast DNA was isolated from the Sultana and Sugra 1

cultivars and digested with restriction enzymes that produced cpDNA fragments of a suitable

size for cloning. The fragments were shotgun-cloned into a plasmid vector and white colonies

were screened by means of PCR and colony blotting. Three EcoRI-digested clones and one

PstI-digested clone were obtained in this manner. Walking outwards from a previously

sequenced grapevine rrn 16 gene region by means of PCR also allowed us to sequence a

further -3310 bp region of the Sultana chloroplast genome.

BAC clones containing V. vinifera cv L. Cabernet Sauvignon cpDNA inserts became

available later in the project. It was decided to use these clones for further library

construction instead of isolated cpDNA. The 5' and 3' end sequences of seven of the 24 BAC

clones were obtained. These were compared to sequences found in the NCBI database to find
-

homologous chloroplast regions and determine the size of each BAC insert. One clone

appeared to contain the entire grapevine chloroplast genome, apart from a 500 bp region.

This clone was selected for further analysis. The BAC clone DNA was isolated and

restriction-digested fragments were shotgun-cloned into a plasmid vector. White colonies

were screened by isolating the plasmid DNA and digesting it with appropriate restriction

enzy~es. The 5' and 3' ends of putative positive clones were sequenced and mapped onto the

Atropa belladonna chloroplast genome.

A total of 15 clones were obtained in this project. Five of these contain cpDNA isolated from

grapevine leaves and 10 contain fragments sub-cloned from the BAC clone. The biggest
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problem encountered with both methods used for library construction was genomic DNA

contamination. Genomic DNA either originated from the plant nuclear genome or from the

bacterial host cells in which the BAC clones were maintained. Many of the clones screened

contained genomic DNA, and these could only be identified and removed once the clones had

been sequenced. Even when a commercial kit was used for BAC clone isolation, 31% of the

clones screened contained genomic DNA. This kit was specifically designed for the isolation

of genomic DNA-free large constructs.

The clones obtained from the two strategies provided a good representation of the grapevine

chloroplast genome. The only region not represented was the Small Single Copy (SSC)

region. Approximately 40% of the grapevine chloroplast genome was covered by these

clones. This provides a basis for further genome characterization, physical mapping and

sequencing of the grapevine chloroplast genome.
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OPSOMMING

Die chloroplasgenoom kodeer VIr 'n hele aantal proteïene wat essensieel is VIr die

voortbestaan van 'n plant. Die karakterisering en volgorde bepaling van 'n aantal alg en plant

chloroplasgenome het dit. vir navorsers moontlik gemaak om sellulêre funksies en

metabolisme van plante te ontrafel. Chloroplas DNA (cpDNA) is ook gebruik om intra- en

interspecies evolusionêre verwantskappe vas te stel. Dié organel verskaf ook 'n alternatiewe

manier vir die uitdrukking van transgene. Alhoewel die chloroplasgenome van 'n hele aantal

species al gekarakteriseer is en die DNA volgorde daarvan bepaal is, is daar nog geen

navorsing van bogenoemde aard op die chloroplasgenoom van die Vitaceae familie gedoen

rue.

In hierdie studie is beoog om die chloroplasgenoom van Vitis vinifera te karakteriseer en

gedeeltelike volgordebepaling daarvan te doen. Chloroplas DNA is geïsoleer vanaf Sultana

en Sugra 1 kultivars en restriksie-ensiem vertering is gedoen met ensieme wat cpDNA

fragmente, met geskikte grootte vir klonering, produseer. Dié fragmente is in 'n

plasmiedvektor gekloneer met die haelgeweer-metode en wit kolonies is gesif deur middel

van PKR en die kolonieklad metode. Op hierdie manier is drie EcoRI-verteerde klone en een

PstI-verteerde kloon verkry. Deur uitwaarts te loop, deur middel van PKR, vanaf 'n druif

rrnl6 geenstreek, waarvan die volgorde voorafbepaal is, was dit vir ons moontlik om ook die

volgorde te bepaal van 'n verdere ~3310 bp streek van die Sultana chloroplasgenoom.

BAC klone wat V. vinifera cv L. Cabernet Sauvignon cpDNA fragmente bevat, het later in die

projek beskikbaar geraak. Daar is besluit om hierdie klone, i.p.v. die geïsoleerde cpDNA, te

gebruik vir verdere biblioteek konstruksie. Die 5' en 3' entpuntvolgordes van sewe uit die 24

BAC ~lone is verkry. Hierdie volgordes is vergelyk met volgordes in die NCB Idatabasis om

homoloë chloroplas streke te identifiseer, en die grootte van elke BAC fragment te bepaal.

Die het geblyk dat die hele druif chloroplasgenoom in een van die klone vervat is, behalwe vir

'n 500 bp streek. Die BAC-kloon DNA is geïsoleer en die restriksie-verteerde fragmente is in

'n plasmiedvektor gekloon d.m.V. die haelgeweer-metode. Wit kolonies is gesif deur die

isolering van plasmied DNA en die vertering daarvan met geskikte restriksie-ensieme. Die

volgorde van die 5' en 3' entpunte van skynbare positiewe klone is bepaal en gekarteer op die

Atropa belladonna chloroplasgenoom.
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In hierdie studie is 'n totaal van 15 klone verkry. Vyf hiervan bevat cpDNA wat vanaf

druifblare geïsoleer is, en 10 bevat fragmente wat vanaf die BAC-klone gesubkloneer is.

Genorniese DNA kontaminasie was die grootste probleem wat ondervind is tydens beide

metodes wat gebruik is vir biblioteek konstruksie. Genomiese DNA was afkomstig vanaf óf

die plant nukleêre genoom óf die bakteriële gasheerselle waarin die BAC-klone gehou is.

Baie van die klone wat gesif is, het genomiese DNA bevat, en dit kon eers geïdentifiseer en

verwyder word nadat die volgorde van die klone bepaal is. Selfs al is 'n kommersiële produk

vir BAC-kloon isolasie gebruik, het 31% van die gesifde klone steeds genomiese DNA bevat.

Dié kommersiële produk is spesifiek vir die isolasie van groot konstrukte, wat genomiese

DNA vry is, ontwerp.

Die klone wat deur die twee strategeë verkry is, het 'n goeie verteenwoordiging van die druif

chloroplasgenoom gegee. Die enigste streek wat die verteenwoordig is nie, was die Klein

Enkelkopie (SSC) streek. Ongeveer 40% van die druif chloroplasgenoom is deur hierdie

klone gedek. Dit verskaf 'n basis vir verdere genoomkarakterisering, fisiese kartering en

volgordebepaling van die druif chloroplasgenoom.
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Picture a palm tree growing peacefully on the shore of a spring, and a lion, lying hidden

beside the palm, all its muscles tense, blood lust in its eyes, ready to pounce on an antelope

and slaughter it. In order to understand fully the inner secret of this picture with its two such

drastically different manifestations of life, a palm tree and a lion, it is essential to appreciate

the theory of endosymbiosis. The life of the palm tree is so calm and peaceful because it is a

symbiosis, it contains a legion of workers, green slaves (plastids) that workfor it and nourish

it. The lion has tofeed itself.

Imagine that every cell of the lion's body was jilled with plastids, and I have no doubt that it

would immediately lay peacefully by the palm, feeling replete with nothing more than some

water and afew nutrient salts.' Mereschkowsky, 1905
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1. INTRODUCTION

1.1 General Introduction

The chloroplast is essential···for the survival of all photosynthetic algae and plants. This

organelle is believed to have originated from an endosymbiotic event between a primitive

eukaryotic host cell and a cyanobacterial progenitor, and has since become integrated into the

host cell's metabolism. Existing chloroplasts have lost the majority of their DNA, but still

encode for a number of proteins involved in photosynthesis. The eukaryotic cell has also

become dependant on the energy produced during photosynthesis by the chloroplast.

The chloroplast genome is relatively small (120 to 160 kb in plants) compared to the nuclear

genome, making it ideal for inter- and intraspecies phylogenetic studies. Restriction-site

mutations have traditionally been used for these types of studies (Palmer et al. 1985).

However, rapid improvements in cloning and sequencing technology have facilitated the

process of chloroplast genome characterization and sequencing. Phylogenetic studies

involving whole genome sequences are now being undertaken, offering more reliable results

that can assist in clarifying evolutionary relationships between photosynthetic eukaryotes

(O'Kane 1995).

The use of chloroplast genomes for foreign gene expression has become a viable alternative to

nuclear transgene expression (McFadden 2001a). The chloroplast genome is predominantly

maternally inherited and, therefore, foreign genes are less likely to be transferred to weedy

relatives or non-transgenic relatives. The high ploidy level of chloroplast genomes per plant

cell can allow for higher levels of foreign gene and protein expression in the chloroplast than

those encountered in nuclear transgene expression. Chloroplast genomes have a prokaryotic

nature and, as a result, allow the simultaneous co-transcription of a number of genes into a

polycistronic mRNA. The genes for entire metabolic pathways could therefore be integrated

into and expressed in the chloroplast genome with more ease than in the nuclear genome,

where genes are transcribed monocistronically The biggest advantage of chloroplast

transformation is that genes are integrated into the chloroplast genome by means of

homologous recombination. Consequently, transgenes can be targeted to a specific region of

the chloroplast genome, avoiding the position effect that often occurs in nuclear transformants

(Hager and Bock 2000, Daniell et al. 2002).
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The characterization and sequencing of chloroplast genomes provides valuable information

that can be applied in a number of areas. As already mentioned, this information facilitates

evolutionary studies. Chloroplast DNA (cpDNA) sequences are also used to design transgene

flanking regions, to allow targeted integration of the foreign DNA into the chloroplast

genome. The chloroplast genomes of a number of plant species have been characterized and

sequenced. However, no complete chloroplast genome sequences are available for fruit-

producing species and only the chloroplast genomes of two woody species have been

completely sequenced. The characterization and sequencing of the chloroplast genome of a

specie'ssuch as Vilis viniferacould therefore provide novel information.

All grapes belong to the family Vitaceae and the genus Vilis, which has been divided into two

sections; namely Vilis (Euvitis) and Muscadinia. These are further subdivided into 11 series

and more than 60 species, containing over 14 000 cultivars. True grapevines are found in the

Vilis (Euvitis) group (Alleweldt et al. 1991, Lodhi and Reisch 1995) and Vilis species are

regarded as one of the most important agronomic plant species in the world (Alleweldt et al.

1991, Lodhi and Reisch 1995). V vinifera, in particular, plays an important role in the

production of wine. In South Africa alone 108 000 hectares under vine are utilised for wine

production and 9.7% of the Western Cape's gross domestic product is provided by the wine

indus~ (SAWine Industry Information & Systems 1999, http://www.wosa.co.za).

The Vilis species has become quite varied over the years, making it difficult to determine its

history. Domesticated V. vinifera is thought to have first been cultivated in the Middle East

somewhere at the foothills of the Caucasus Mountains. This was concluded from evidence of

5000 year-old seeds found at Jericho. From there, this species was thought to have spread via

trade channels around the Mediterranean Basin to the Far East and Europe and later to the

New World (Alleweldt et al. 1991). However, recent studies performed on the cpDNA of

more than 500 varieties of grapevine grown around the Mediterranean Sea, as well as several

wild isolates, have come up with a different theory for the origin of grapevine domestication.

Unlike nuclear DNA, cpDNA is maternally inherited and has been relatively well conserved

through evolution. Chloroplast-specific molecular markers were therefore used to compare

the above-mentioned cultivars and determine their similarity to each other. The studies

concluded that wild vines and domesticated vines have strong homology within their cpDNA.

This implies that they are closely related and that the wild vines could have been

independently domesticated in a number of areas, rather than one line of domesticated vine
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having spread from one specific region (Garcia et al. 2002b). However, more phylogenetic

studies using V. vinifera cpDNA sequences are needed to determine the correct theory.

V. vinifera is at a high risk of contracting a number of pests as well as fungal, bacterial and

viral diseases, causing large-scale losses of grape yields worldwide. Methods of combating

these diseases include spraying the crops with insecticides and pesticides (Boubals 2000).

However, these methods are expensive and cause environmental pollution. The incorporation

of foreign resistance genes into the grapevine could serve as an alternative method of fighting

pests and diseases, as well as helping the grapevine withstand other tough environmental

conditions. This will naturally lead to improved grape quality and yields. Grapevine

chloroplasts are maternally inherited (Garcia et al. 2002a) and, therefore, chloroplast-specific

transg~ne expression could offer an environmentally safe method of controlling pests and

diseases.

1.2 Project Proposal

The initial goal of this study was to generate a library of overlapping clones covering most of

the grapevine chloroplast genome. These clones would then be characterized by partial

sequencing and mapped against completely sequenced chloroplast genomes to determine their

order.

The more specific aims of this study are:

• , The construction of a clone library of overlapping cpDNA fragments using cpDNA

isolated from either grapevine leaves or BAC clones containing grapevine cpDNA

inserts.

• The characterization and partial sequencing of the clone library.

• The organization of the clones in the correct order by mapping them against

completely sequenced plant chloroplast genomes.

• Physical mapping and partial genetic mapping of the grapevine chloroplast genome.
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2. LITERATURE REVIEW

2.1 THE CHLOROPLAST

The chloroplast is an organelle found in all phototrophic eukaryotes. lts most important

function of the chloroplast is photosynthesis, for which it contains the entire enzymatic

machinery (Sugiura 1992, Kato et al. 2000). The metabolic energy generated during

photosynthesis drives all photoautotrophic plant growth that forms an indispensable part of

the ecosystem (De Las Rivas et al. 2002).

The chloroplast is derived from an endosymbiotic event in which a cyanobacterial progenitor

was engulfed by a primitive eukaryotic host cell and integrated into the cell's metabolism.

This primary endosymbiotic event gave rise to red algae, green algae, and glaucophytes. Two

or more secondary endosymbiotic events have since taken place. These involved the

engulfment of an already existing red or green alga by an eukaryotic host cell and gave rise to

most of the algal diversity found today (Cavalier-Smith 2000, Archibald and Keeling 2002).

A number of plastid types can be found in algae or plants. Each of these contains different

pigments but the same genome. The chloroplast genome of higher plants is relatively

conserved in genome size and gene arrangement, but those of algae show a higher degree of

variation. Higher plant chloroplast DNA (cpDNA) is divided into four regions. Two

identical inverted repeats (IRs) separate the large single copy (LSC) and small single copy

(SSC) regions. Only about 10% of the genes required by the chloroplast are encoded by its

own genome. The remaining proteins are transcribed by the host nuclear genome and

imported into the chloroplast.

2.1.1 Structure and Function

Chloroplasts are oval to lenticular in shape with dimensions of 2 to 4 urn by 5 to 10 urn.

They are surrounded by a double membrane, enclosing a more complex third membrane

system. The outer chloroplast membrane is continuous and contains porins, making it

completely permeable to small molecules. The inner membrane, on the other hand, is

differentially permeable, allowing molecules to enter only through specific membrane

transporters. The cavity enclosed by the inner membrane is called the stroma and contains

DNA, ribosomes, lipid droplets and starch granules. The third membrane system is found in
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the stroma where it forms a series of flattened discs called thylakoids. Most thylakoids are

orientated parallel to the length of the plastid and are often arranged in stacks called grana.

These are interconnected by stromal lamellae and together they form a complex

photosynthetic system of which chlorophyll molecules form an integral part. The membrane

of each granum encloses a thylakoid lumen (Bowes 1996, Cooper 2000).

Int_bran.
Space

Figure2.1. Green algae and higher plant chloroplast structure (www.angelfire.comlon2/daviddarling!
chloroplast.jpg).

More than 100 chloroplasts may be found per leaf mesophyll cell, but numbers vary in

different plant tissues and plant species (Hager and Bock 2000). Each chloroplast contains a

number of circular DNA molecules that are unique to this organelle. A single leaf cell can

contain more than a thousand genetically identical copies of the chloroplast genome, while

cells found in other organs of the plant have 10times fewer copies (Heifetz 2000). The

genomes in a chloroplast are clustered together in groups called nucleoids. Proplastids and

chromoplasts mostly contain only one nucleoid, while chloroplasts have many nucleoids are

found throughout the stroma (Palmer 1987).

During photosynthesis, light energy is captured by the chloroplast's photosynthetic machinery

and used to power the conversion of CO2 into carbohydrates in the stroma (Smith and Ma

1985, Cooper 2000). The thylakoid membrane plays a very important part in the functioning

of the chloroplast since it contains the electron transport system. This system allows protons

to be transported into the thylakoid lumen, creating an electrochemical gradient. The

gradient, in turn, causes protons to move back across the membrane into the stroma and in the

Stellenbosch University http://scholar.sun.ac.za



6

process ATP is synthesized (Cooper 2000). The energy produced during photosynthesis is

made available for a number of processes in the cell. These include a number of metabolic

pathways, such as nitrate reduction and sulphur assimilations, as well as the synthesis of

amino acids, nucleotides, fatty acids, starch, vitamins, plant hormones and pigments (Palmer

1987, Sugiura 1992, Kunnimalaiyaan and Nielsen 1997, Leister 2003).

2.1.2 Plastid Types

A number of different plastid types are found in a plant, each having different morphologies

and functions in the cell. However, only one type of plastid is usually found in a cell at a

given time (Watson and Murphy 1999). Two membranes envelop all plastids and

chloroplasts contain a third, thylakoid membrane system (Bowes 1996, Cooper 2000).

The pigments found in plastids often play a role in their classification. Chloroplasts all

contain chlorophyll. Chromoplasts contain carotenoids and give a yellow, orange or red

colour to some fruits and flowers. Leucoplasts do not contain any pigments and are

responsible for storing a number of energy sources, such as starch and lipids. Proplastids are

the precursors of all other plastid types, and are found in plant roots and shoots. Mature

plastids also have the ability to convert from one type to another. For example, chloroplasts

change into chromoplasts during fruit ripening. During this process the chlorophyll and

thylakoid membranes are degraded, while carotenoids are synthesized (Bowes 1996, Cooper

2000).

Certain environmental signals and built-in cell differentiation programs regulate plastid

development. In a photosynthetic leaf cell protoplasts differentiate into chloroplasts in the

presence of light. The thylakoid membrane is formed by invagination of the inner membrane

and the machinery needed for photosynthesis are synthesized and assembled. However, if a

plant is stored in the dark, the development of the chloroplast is halted and only half-formed

thylakoid membranes are present with no chlorophyll having been produced. A plastid in this

intermediate stage is called an etioplast. If the plant is again exposed to light, the etioplasts

will complete their metamorphosis into mature chloroplasts (Cooper 2000).
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2.1.3 Plastid Origin and Evolution

2.1.3.1 Origin

The important role the chloroplast plays in the establishment of phototrophic eukaryotes

makes its origin one of the most important events in eukaryotic cell evolution (Archibald and

Keeling 2002). The endosymbiotic theory describes the most likely manner in which these

organelles originated. According to this theory the plastid was originally a free-living

cyanobacterial progenitor that was engulfed by a primitive (non-photosynthetic) eukaryotic

host cell and enclosed in a vacuole. Instead of being digested, the cyanobacterium managed

to escape the vacuole into the cytosol and was gradually integrated into the metabolism of the

host cell. . An endosymbiotic relationship developed between the host cell and the organelle,

with the photosynthetic plastid providing the host with some of its produced carbohydrates

and photosynthetic energy and the host providing the plastid with other compounds and

protection from the environment (Cavalier-Smith 2000, Archibald and Keeling 2002). The

mitochondrion originated in a similar way, but with an c-Proteobacteria (purple sulphur

bacteria) as its ancestor (Gray 1999).

Primary endosymbiosis is believed to have taken place at least two billion years ago (Raven et

al. 2002), giving rise to all plastids. There is, however, evidence of a second event that gave

rise to most of the plastid diversity found today. This involved the engulfment of an already

existing phototrophic eukaryotic alga by another eukaryote and is known as secondary

endosymbiosis (Bhattacharya and Medlin 1998, Archibald and Keeling 2002).

2.1.3.2 Evolution

2.1.3 .2.1 Cyanobacterial Ancestor

There is a substantial amount of evidence suggesting that the plastid progenitor originated

from a cyanobacterial ancestor. Firstly, all cyanobacteria except Gloeobacter have

thylakoids. However, no other Gram-negative bacteria contain thylakoids (Cavalier-Smith

2000). Plastid genome organization and gene order also show similarities to that of

cyanobacterial genomes, including the conservation of many large operon structures (Ohyama

et al. 1986, Douglas and Penny 1999, Stoebe and Kowallik 1999, McFadden 2001b).

Phylogenetic studies using plastid and cyanobacterial gene sequences have confirmed their
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close evolutionary relationship beyond all doubt (Bhattacharya and Medlin 1998, McFadden

2001a).
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Figure 2.2. The evolutionary pathway of photosynthetic eukaryotes and their plastids. Primary endosymbiosis
between a cyanobacterium and a phagotrophic eukaryote gave rise to green algae, red algae and glaucophytes.
Euglenozoans and chlorarachniophytes acquired green algae secondarily, while red algae were acquired
secondarily by alveolates, heterokonts, cryptophytes and haptophytes. These events gave rise to secondary
plastids. Some dinoflagellates have replaced their secondary red algal plastids with green algal- or haptophyte-
type plastids through secondary replacement and tertiary symbiotic processes (Moreira and Philippe 2001).
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Even though plastids appear to have a cyanobacterial ongin, the exact nature of this

predecessor is not known. Plastid genomes show no morphological or phylogenetic similarity

to anyone particular cyanobacterial group, suggesting that modem cyanobacteria have

diversified to a large degree since the primary endosymbiotic event occurred. Further

characterization of cyanobacteria and their genomes should provide researchers with more

information on this ancestor, while comparisons of these genomes to existing plastid genomes

could also provide more clues to plastid genome origin and evolution (McFadden 2001b,

Archibald and Keeling 2002, Palmer 2003, Stiller et al. 2003).

New information on plastid origin has already been provided by the use of the complete

genomes of the cyanobacteria Synechocystis (Kaneko and Tabata 1997) and Nostoe (Kaneko

et al. 2001) in a number of phylogenetic comparisons with plastid genomes (Martin et al.

1998, De Las Rivas et al. 2002, Martin et al. 2002, Maul et al. 2002). For example, the

placement of the glaucophyte alga, Cyanophora paradoxa, indicates that it is one of the

earliest diverging plastid-containing lineages (McFadden 2001a). Glaucophyte plastids have

already been found to have a higher degree of similarity in pigments, membranes and cell

walls to existing cyanobacteria than other primary plastid lineages (McFadden 2001b).

2.1.3.2.2 Primary Endosymbiosis

It is now widely accepted that only three eukaryotic lineages contain primary plastids: green

algae (including land plants), red algae and glaucophytes (cyanelles) (Palmer 2003). Two

membranes originating from the cyanobacterial ancestor surround primary plastids. The third

phagosomal membrane is believed to have been lost at some point during evolution (Cavalier-

Smith 2000). Primary plastids are found in the host cell's cytosol and require only transit

peptides to import proteins across the plastid membranes. All photosynthetic eukaryotic

plastids and cyanobacteria use chlorophyll a as their main light-harvesting pigment

(Bhattacharya and Medlin 1998, Archibald and Keeling 2002).

Primary plastid lineages also differ in a number of ways. While red algae and glaucophytes

contain the phycobilisomes and unstacked thylakoids found in the cyanobacterial ancestor,

green algae contain chlorophyll b but no phycobilisomes and have evolved thylakoid stacking.

Unlike red and green algae, glaucophytes have a peptidoglycan cell wall similar to that found

in cyanobacteria (Bhattacharya and Medlin 1998, Cavalier-Smith 2000, Moreira and Philippe

2001, Archibald and Keeling 2002).
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These differences have led researchers to question the monophyletic origin of the primary

plastid lineages. Most researchers do, however, believe that all primary plastids originated

from a single cyanobacterial progenitor (Martin et al. 1998, Cavalier-Smith 2000, McFadden

2001 b, Moreira and Philippe 2001, Archibald and Keeling 2002, Simpson and Stem 2002,

Palmer 2003). The high degree of similarity in plastid gene content is thought by many to be

convincing evidence for primary plastid monophyly (Bhattacharya and Medlin 1998, Nozaki

et al. 2002). However, it has been found that the loss of genes during plastid evolution was

not always a random event. Certain genes have been retained by the plastid genome in order

for it to remain viable. Other genes produce proteins that are difficult to transfer across

multiple membranes (Martin et al. 1998, Race et al. 1999, Cavalier-Smith 2000). Parallel

independent losses of plastid genes from multiple lineages have also been found to occur, and

actually outnumber unique losses by nearly five to one (Martin et al. 1998, Martin et al.

2002). This implies that convergent evolution could also have lead to similarities in gene

content in primary plastid genomes and, consequently, that plastid gene content may not

always be a reliable indicator of evolutionary relationships (Palmer 2003, Stiller et al. 2003).

Similarities in plastid genome organization are believed to indicate a common origin of

primary plastids. Two gene clusters (psbBINIH and atp/rps/rpo) have been found in all

plastid lineages, but not in cyanobacteria. This appears to be evidence for a single process of

reduction and rearrangement having occurred in the original plastid genome before the three

lineages diverged (Reith and Munholland 1993, Stoebe and Kowallik 1999). However, there

is a possibility that these similarities may also be the result of convergent evolution (Palmer

2003, Stiller et al. 2003). Although, since gene order does differ among cyanobacteria, a

considerable convergence would need to have taken place independently in each primary

plastid lineage to result in the present gene arrangement (Bhattacharya and Medlin 1998).

Further studies need to be undertaken to determine the likelihood of such an event (Stiller et

al. 2003).

The majority of phylogenetic analyses performed on plastid gene sequences point towards a

single primary endosymbiotic event (Douglas and Penny 1999, Turmel et al. 1999, Cavalier-

Smith 2000, Palmer 2003). Inaccurate evolutionary relationships have, however, been

obtained in the past when only limited sequence data from a single gene was used or when an

inadequate number of taxa were sampled (Bhattacharya and Medlin 1995, Stiller and Hall

1997, Moreira et al. 2000, Nozaki et al. 2002). Variations in the evolutionary rate of different
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groups of genes may also result in incorrect phylogenetic positioning (Moreira and Phillippe

2001). However, even studies including a number of different gene sequences and taxa

suggest a monophyletic origin of primary plastids (Martin et al. 1998, De Las Rivas et al.

2002, Martin et al. 2002). One consistent result of these studies is the grouping of primary

plastids as a monophyletic clade relative to cyanobacteria (Turner et al. 1999, Stiller et al.

2003). This does not necessarily provide proof for a single endosymbiotic event. There is the

possibility that each primary plastid lineage originated from related cyanobacteria and/or that

other related cyanobacterial lineages became extinct (Delwiche 1999, Palmer 2003, Stiller et

al. 2003).

Phylogenetic studies using nuclear gene sequences also give conflicting results. The most

convincing evidence for monophyletic primary plastid origin was obtained from a

phylogenetic study using the nuclear gene encoding for elongation factor 2 (EF2). This gene

has a relatively similar evolutionary rate among different lineages and the resulting tree

clearly demonstrates strong support for a sister-relationship between green and red algae

(Moreira et al. 2000). There are, however, two factors that could have led to incorrect

phylogenetic positioning in this study. Firstly, the cryptomonad nucleomorph was included as

the red algal sequence. The nucleomorph genome is the remnant nucleus of the secondary

endosymbiont and is highly divergent. Secondly, sequences of mitochondrial species' were

included that could have unusual gene substitutions. Studies performed on a wide range of

mitochondria-containing eukaryotic taxa have provided more reliable results, but still point

towards a monophyletic origin of all plastids (Nozaki et al. 2002).

Similarities in plastid targeting mechanisms and import machinery could help resolve

evolutionary relationships among primary plastids (Bhattacharya and Medlin 1998, Cavalier-

Smith 2000, Douglas et al. 2001, McFadden 2001 b, Gardner et al. 2002, Palmer 2003). Many

genes that were found in the original cyanobacterial ancestor(s) have been transferred to the

host cell nucleus over time. To facilitate transport of these proteins back into the plastid, an

N-terminal leader sequence (transit peptide) is attached to the protein. Translocation

complexes found embedded in the double plastid membranes recognize the leader sequence

and transport the proteins across the membranes and into the plastid (Bruce 2000). Studies

have shown that different transit peptides are able to complement protein translocation

function in various primary plastid lineages (Jakowitsch et al. 1996, Lang et al. 1998,

McFadden 2002b, Stiller 2003). It is believed that this provides proof of a common origin of

the plastid import machinery (Cavalier-Smith 2000, McFadden 2001b) and therefore primary
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plastids. However, this could also be a function that was conserved during bacterial evolution

as a whole (Stiller et al. 2003). Comparisons between plastid and mitochondrial protein

translocation apparatus show a high degree of similarity. Many leader peptides are able to

target proteins to both organelles at the same time. It has also been found that plant

chloroplast transit peptides can target proteins to fungal mitochondria (Peeters and Small

2001). More studies will need to be performed on transit peptides and especially on the

protein translocation machinery of primary plastid types to gain a better understanding of their

function and relationships (Palmer 2003, Stiller et al. 2003).

Although further clarification of the majority of evidence is needed for primary plastid

monophyly, no significant evidence has been found to refute this hypothesis (Palmer 2003).

Considering that, for each endosymbiotic event, thousands of genes need to be transferred and

successfully integrated into the nuclear genome, deleted from the chloroplast genome and

their transcribed proteins transported back into the chloroplast, it seems unlikely that

endosymbiotic events occurred more than the minimum number of times (Cavalier-Smith

2000). Further genomic and proteomic research needs to be performed on primary plastids,
and their host organisms to conclusively prove or disprove the occurrence of a single primary

endosymbiotic event.

2.1.3.2.2.1 Green Algae

The green lineage is a morphologically diverse group of organisms found in a wide range of

different habitats. Land plants, believed to have originated some 480 million year ago, form a

large part of this group. Their emergence caused substantial alterations to the earth's

environment. By reducing the level of atmospheric CO2, and therefore lowering the

temperature of the earth's surface, they facilitated the colonization of landmasses by other

terrestrial organisms (Qiu and Palmer 1999).

All existing green algae can be classified into one of the two sister clades Streptophyta and

Chlorophyta. Streptophyta consists of charophytes (mainly fresh water algae) and land plants

(embryophytes), while Chlorophyta includes all the remaining green algae (Bhattacharya and

Medlin 1998, Qiu and Palmer 1999, Karol et al. 2001).

There are four mam classes of chlorophytes: Prasinophyceae, Ulvophyceae,

Trebouxiophyceae, and Chlorophyceae. Prasinophytes do not form a monophyletic group

with the other chlorophyte classes and a few members might even be included in
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Streptophyta. This group may also represent the earliest branch of the charophytes. The

similarities in cpDNA arrangement and the pattern of gene partitioning between the

prasinophyte Nephroselmis olivacea and land plants (two inverted repeat regions (IRs)

separated by a large single copy (LSC) and small single copy (SSC) region) could mean that

these characteristics were present in the first green algal ancestor, and most likely also in the

cyanobacterial progenitor that gave rise to all chloroplasts. In fact, an IR has already been

found in the chloroplast genome of the cyanobacterium Synechocystis (Bhattacharya and

Medlin 1998, Turmel et al. 1999).

The unicellular, flagellate alga Mesostigma vir ide is a prasinophyte that is very similar to

charophytes in cell ultrastructure and small subunit rDNA sequences. The evolutionary

positioning of this alga has still not been confirmed. There is evidence to suggest that M

viride could be at the base of the split of Chlorophyta and Streptophyta (Lemieux et al. 2000,

Turmel et al. 2002a, Turmel et al. 2002b, Grzebyk et al. 2003), but other data place it as a

basal lineage of land plants and sister to all green algae (Karol et al. 2001, Delwiche et al.

2002, Martin et al. 2002, Maul et al. 2002). The correct phylogenetic positioning of this alga

will provide important information on the early ancestor of land plants (Maul et al. 2002).

Charophytes consist of five orders: Charales, Chlorokybales, Coleochaetales,

Klebsormidiales and Zygnematales. The exact relationship between these five orders is not

known, but it is believed that, together, they form a paraphyletic group to land plants (Qiu and

Palmer 1999, Chapman and Waters 2002). Which of these groups contains the closest living

relative to land plants has also not been confirmed. Some phylogenetic studies suggest that

Charales is the closest order, with Coleochaetales placed as a sister lineage to the

Charales/land plant group (Karol et al. 2001, Delwiche et al. 2002). The completely

sequenced chloroplast genome of Chaetosphoridium globosum (Coleochaetales) shows a high

degree of similarity in gene order, gene content and intron composition to that of land plants

and phylogenetic analysis also places this species unambiguously at the base of the land plant

lineage (Turmel et al. 2002b).

Land plants form a monophyletic group of which bryophytes represent the earliest group (Qiu

and Palmer 1999, Kugita et al. 2003). Most molecular and morphological data suggests that

bryophytes are a paraphyletic group consisting of three classes: Musci (mosses), Hepaticae

(liverworts or hepaties) and Anthocerotae (hornworts) (Nishiyama and Kato 1999). There is

still some debate over the evolutionary relationships among the bryophyte classes and
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whether homworts or liverworts are the most basal group (Nishiyama and Kato 1999, Qiu and

Palmer 1999, Kugita et al. 2003). Analysis of mitochondrial genes (Qiu et al. 1998), fossil

evidence (Edwards et al. 1995) and some sequence data (Qiu and Palmer 1999) point towards
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liverworts being the most basal lineage, but chloroplast and nuclear phylogenetic analysis

(Nishiyama and Kato 1999, Qiu and Palmer 1999, Kugita et al. 2003), cladistic analyses

based on male gametogenesis (Garbary et al. 1993) and ultrastrutural information place

homworts basal to the other bryophyte lineages. An intron of rrn23, found in the same

location in Anthoceros as in the chlorophytes Chlorella and Chlamydomonas, but not found in

any other land plant chloroplast genome or in Chaetosphaeridium, supports the latter

argument (Kugita et al. 2003). The inclusion of gene data from the recently sequenced

Physcomitrella patents (moss) chloroplast genome (Sugiura et al. 2003) may provide new

insight into the relationship among mosses, homworts and liverworts.

Pteridophytes and seed plants (angiosperms and four groups of gymnosperms) make up the

existing vascular plants. Pteridophytes consist of four lineages: Lycopods, Equisetum,

Psilotaceae and ferns. This group is paraphyletic to seed plants and played an important role

in establishing the early land plants. Very little is presently known about the exact

phylogenetic relationships and evolutionary history of this group (Qiu and Palmer 1999,

Chaw et al. 2000).

The four gymnosperm seed plant groups are cycads, conifers, Ginkgo, and Gnetales.

Gymnosperms are believed to be a monophyletic group and sister to angiosperms and most

phylogenetic evidence places cycads as the basal seed plant lineage (Bowe et al. 2000, Chaw

et al. 2000). Bryophytes, pteridophytes and gymnosperms have enjoyed dominance on land

until approximately 90 million years ago when angiosperms replaced them (Pryer et al. 2001).

The large number of angiosperm species found on Earth today makes their classification a

difficult undertaking. The direct ancestor of angiosperms is also a mystery that still needs to

be solved (Bowe et al. 2000). Some phylogenetic studies have placed Amborella trichopoda

as the most basal angiosperm lineage (Graham and Olmstead 2000, Borsch et al. 2003) with

Nymphaeales (water lilies) sometimes placed as the subsequently evolving branch (Soltis et

al. 1999, Kuzoff and Gasser 2000). Most extant angiosperm species are grouped as monocots

or eudicots (Graham and Olmstead 2000), but an influx of new molecular and morphological

data have made it necessary to re-evaluate previous flowering plant classification systems. A

consortium called the Angiosperm Phylogeny Group (AGP) has recently been established to

enable this re-evaluation process (Angiosperm Phylogeny Group 1998). According to their

most recent report (APG II 2003) there are 453 flowering plant families including 27 basal

angiosperms, 81 mono cots and 345 eudicots (Hanson et al. 2003).
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By forming a consortium of plant research specialists to work on a project such as the APG,

information may be obtained in a coordinated manner. A similar collaborative effort, known

as "The Green Plant Phylogeny Research Coordination Group" (GPPRCG

http://ucjeps.berkeley.edu/bryolab/GPphyloQ is enabling the clarification of phylogenetic

relationships among all green plants. Studies performed by such groups will combine

information obtained by analysis of multigene sequence data, genomic structural characters,

morphological traits and fossil data to significantly improve our understanding of the origin

and evolution of land plants (Qiu and Lee 2000).

2.1.3.2.2.2 Red Algae

Rhodophytes are found mainly in coastal marine waters, with only a few living in freshwater

environments. No red algal lineages are found in terrestrial ecosystems. Rodophyta contains

relatively few existing taxa, including Porphyra purpurea and Cyanidium caldarium. Most

eukaryotic algal lineages contain red algal plastids obtained through secondary endosymbiosis

(Delwiche 1999, Grzebyk and Schofield 2003).

Red algae contain phycobiliproteins in their chloroplasts but they lack flagellae. These

features are also found in cyanobacteria and indicate a close relationship between red algae

and cyanobacteria (Nozaki et al. 2002). Most phylogenetic studies indicate that red algae

diverged after glaucophytes but before the green algal lineage (Martin et al. 1998, De Las

Rivas et al. 2002).

2.1.3.2.2.3 Glaucophytes

As mentioned previously, glaucophyte plastids (cyanelles) have very similar pigments,

morphology and cell walls to existing cyanobacteria (McFadden 2001b). These similarities,

together with the results of molecular phylogenetic studies, place the glaucophytes as the

earliest diverging primary plastid lineage (Martin et al. 1998, De Las Rivas et al. 2002,

Grzebyk et al. 2003, lino and Hashimoto 2003). In the past, C. paradoxa has even been

mistaken for a type of cyanobacterium (Delwiche 1999). Further investigation of this

intriguing lineage could provide further insights into the nature of the cyanobacterial

progenitor and early primary plastids.

2.1.3.2.3 Secondary Endosymbionts

The three lineages resulting from primary endosymbiosis account for a small part of the

diversity of plastid-containing eukaryotes found today (Moreira and Philippe 2001).
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Secondary endosymbiosis involving red and green algae has given rise to a number of major

eukaryotic lineages including more than 42 600 species (McFadden 1999). Plastids that

developed as a result of secondary endosymbiosis are found in two Kingdoms: Chromista

and Protoctista. Cryptomonads and chromobiotes (brown algae, heterokonts, haptophytes) are

members of the Kingdom Chromista, while euglenoids, chlorarachniophytes, dinoflagellates

and apicomplexans (sporozoa) are members of the kindom Protoctista (Cavalier-Smith 2000,

Yoon et al. 2002).

All secondary plastids are surrounded by three or more membranes and are otherwise known

as complex plastids. These extra membranes provide strong evidence for secondary

endosymbiosis, because membranes are seldom synthesized de novo by the cell and are

usually acquired elsewhere. Plastids with four membranes include those of chromobiotes

(heterokonts, haptophytes), apicomplexa, cryptomonads and chlorarachniophytes. The outer

membrane is the phagosomal membrane derived from the secondary host vacuole, while the

periplastid membrane (between the phagosomal membrane and the plastid double membrane)

is probably derived from the algal plasma membrane. Three membranes enclose euglenoid

and dinoflagellate plastids, although it is still not known why. The most logical explanation is

that one membrane has been lost; probably the periplastid membrane (Bhattacharya and

Medlin 1998, Cavalier-Smith 2000, Archibald and Keeling 2002).

As a result of the extra membrane(s) surrounding complex plastids, changes had to be made to

the protein transport mechanisms used by primary plastid containing organisms. One segment

of the bipartite transit peptide is a secretory signal that transports the protein through the

outermost membrane of the complex plastid and the other part is a normal transit peptide that

transfers the protein across the two inner membranes obtained from the primary plastid

(McFadden 1999, Palmer 2003).

There is a large amount of evidence to support the secondary endosymbiotic theory, but there

is still a great deal of debate over the number of secondary endosymbiotic events that

occurred during evolution. There is, however, a general consensus that at least two events

occurred: one giving rise to red algal complex plastids and the other giving rise to green algal

complex plastids (Cavalier-Smith 2000).

Euglenoids and chlorarachniophytes are two groups of protist algae that contain green

secondary plastids. They have very different ultrastructures, leading some researchers to
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believe that they have acquired their green algae by means of two separate secondary

endosymbiotic events (Bhattacharya and Medlin 1998, Archibald and Keeling 2002). Other

researchers believe that they originated from a single secondary endosymbiotic event

(Cavalier-Smith 2000, Archibald and Keeling 2002). Phylogenetic comparisons performed on

their nuclear and plastid DNA show no definite proof of a common or separate origin of these

two lineages. Further analysis of the nuclear genomes and protein import mechanisms found

in these two lineages may help resolve the issue (Palmer 2003).

Cryptomonads, chromobiotes, dinoflagellates, and apicomplexans all contain red algal

complex plastids. These lineages have a number of similar features, such as the presence of

chlorophyll c, but they are found in a wide range of different ecological regions and vary to a

large degree in morphology (Harper and Keeling 2003). There are a few researchers who

believe that a number of independent events gave rise to each of these groups (Bhattacharya

and Medlin 1998). However, it has been argued that the occurrence of independent

endosymbiotic events more times than required would be unparsimonious, especially when

taking into account the number of genes that are transferred from the plastid to host nuclear

genome over evolutionary time as well as the protein-targeting machinery needed to transfer

proteins back to the plastid (Cavalier-Smith 2000, Archibald and Keeling 2002). The

chromalveolate hypothesis proposed by Cavalier-Smith (2000) suggests that a single

secondary endosymbiotic event gave rise to all red algal complex plastids.

The original evidence for the chromalveolate hypothesis was provided by physical

characterisation of red algal complex plastid lineages. This includes the presence of

chlorophyll C2 and the fact that all chromist complex plastids are found in the lumen of the

rough endoplasmic reticulum (RER) (Yoon et al. 2002). The strongest genetic evidence

supporting the common origin of chromalveolate plastids is found in studies performed on

glyceraldehydes-3-phosphate dehydrogenase (GAPDH) (Fast et al. 2001). Two different

types of nuclear-encoded GAPDH genes are found in photosynthetic eukaryotes: one is

cytosolic and the other is targeted to the plastid. In the primary plastid lineages, Euglena and

Pyrocystis, the plastid-targeted GAPDH is homologous to the cyanobacterial GAPDH. In the

complex plastids of cryptomonads, haptophytes, heterokonts, dinoflagellates and

apicomplexans the plastid-targeted GAPDH shows homology to eukaryotic cytosolic

GAPDH. It is thought that the latter is a result of the replacement of the original plastid-

targeted GAPDH with a copy of a duplicated cytosolic GAPDH. Phylogenetic analysis of

plastid-targeted GAPDH sequences of these secondary endosymbiotic groups also indicate a
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close relationship between them, but no significant relationship to the cytosolic GAPDH

found in these groups (Archibald and Keeling 2002, Harper and Keeling 2003). This data as

well as results of another study performed on cryptophytes, heterokonts and haptophytes

provide convincing support for the chromalveolate hypothesis (Yoon et al. 2002).

Complex plastids have a variety of unique features. One example of this is the discovery of

the remnants of the secondary endosymbiont nuclear genome found in the periplastidial

compartment of cryptophytes and chlorachniophytes. This small double-membraned,

eukaryotic nucleus is called a nucleomorph and contains a highly reduced genome (551 kb in

cryptophytes and 380 kb in chlorachniophytes). The nucleomorph genome of a cryptomonad,

Guillardia theta, has been completely sequenced and, of the 511 genes identified, only 30

code for proteins that are targeted to the plastid. As found in all other secondary plastid-

containing algae without nucleomorphs, most genes coding for plastid-targeted proteins have

been transferred to the host nuclear genome. It is not known why cryptophytes and

chlorachniophyte algae still contain these nucleomorphs. It may be that they are in the

process of reduction or that, for some unknown reason, this process has stopped. Analysis of

the sequences of this nucleomorph DNA has already provided further evidence for the origin

of these plastids and may help us to gain a better understanding in the future of how genome

reduction occurs (Gilson and McFadden 1996, Bhattacharya and Medlin 1998, Cavalier-

Smith 2000, Douglas et al. 2001, Archibald and Keeling 2002).

The eukaryotic group Alveolata includes some of the most diverging plastid lineages found to

date. The three lineages that make up this group are dinoflagellates, apicomplexans and

ciliates. Dinoflagellates contain plastid genomes that are made up of a number of small

minicircles, each containing only a single gene (Zhang et al. 1999). Only half of

dinoflagellates actually contain plastids that are capable of photosynthesis. Of these, many do

not contain the original peridinin-containing red algal complex plastid. Some have replaced it

with another complex plastid from a green alga and others with a complex plastid from

cryptomonads or chromophytes. This type of plastid replacement is known as tertiary

endosymbiosis. In general, dinoflagellate plastids appear to be more prone to plastid loss and

replacement than those of other lineages, but the reason for this is not yet known (Delwiche

1999, Archibald and Keeling 2002, Cavalier-Smith 2000).

Apicomplexans (sporozoa) are all obligate intracellular parasites that are non-photosynthetic

and therefore contain no pigments (e.g. Plasmodium, responsible for causing malaria). Some
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apicomplexan species do, however, contain plastids with highly reduced genomes (Kohler et

al. 1997). These apicoplasts have been identified in a number of phyla including

Plasmodium, Toxoplasma, Eimeria, Babesia, Theileria, Sarcocystis and Hepatozoon

(McFadden and Roos 1999). Whether the original secondary endosymbiont was of red or

green algal origin is still unclear. A few apicomplexans appear to have plastids of green algal

origin (Kohler et al. 1997, Bhattacharya and Medlin 1998, Cavalier-Smith 2000, Archibald

and Keeling 2002) while others contain red algal complex plastids (Blanchard and Hicks

1999, Stoebe and Kowallik 1999, Cavalier-Smith 2000). The most likely explanation for this

is that the apicomplexan ancestor initially engulfed a red alga that was later replaced by a

green alga in some members (Palmer 2003). Ciliates also form a non-photosynthetic

alveolate group. Members of this group are known to acquire plastids ("kleptochloroplasts")

temporarily from their prey (Delwiche 1999). However, very little research has been done on

the plastids found in this group.

2.1.4 The Chloroplast Genome

In the early 1900s studies carried out on variegation in higher plants revealed that some

variegated leaf patterns were caused by factors inherited in a non-mendelian manner. After

further analysis of these plants it was suspected that the chloroplast was involved. This

implied that the chloroplast had its own genetic system, separate from that of the cell nucleus

(Shinozaki et al. 1986, Sugiura 1992). This discovery led to a greater interest in, and

therefore more intensive study of, chloroplasts and their DNA.

The use of CsCI gradient centrifugation demonstrated that the chloroplast contains its own

characteristic circular DNA with a specific buoyant density (Chun et al. 1963, Sager and

Ishida 1963, Manning et al. 1971). In fact, the chloroplast genomes of all algae and higher

plants studied thus far have been found to be circular DNA molecules, separate from the

nucleus. With the development of methods such as gene cloning and DNA sequencing

chloroplast genome research has advanced at an increasing rate (Sugiura 1992). In 1976 the

first physical map of cpDNA (maize) was constructed (Bedbrook and Bogorad 1976). The

first chloroplast gene was cloned in 1977 (Bedbrook et al. 1977), also from maize. Nine years

later the first chloroplast genomes where completely sequenced, namely those of tobacco

(Shinozaki et al. 1986) and the liverwort (Ohyama et al. 1986). These were also the first plant

genomes to be completely sequenced. The chloroplast genomes of 32 algae and plant species

(http://megasun.bch.umontreal.caJogmp/projects/other/cp list.html) have now been
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completely sequenced. Examples include the chloroplast genomes of Oryza sativa (rice)

(Hiratsuka et al. 1989), the Lotus japonicus (legume) (Kato et al. 2000), Zea mays (maize)

(Maier et al. 1995), Arabidopsis thaliana (Arabidopsis) (Sato et al. 1999), Nicotiana tabacum

(tobacco) (Shinozaki et al. 1986) and black pine (Pinus thunbergii) (Wakasugi et al. 1994).

2.1.4.1 Size and Structure

Most higher plant chloroplast genomes are between 120 and 160 kb in size (Hager and Bock

2000). The genomes of monocotyledonous plants are generally smaller than those of

dicotyledonous plants (Ogihara et al. 1988). The cpDNA molecule of higher plants is divided

structurally into four regions, namely: a large single copy (LSC - about 80 to 100 kb) and

small single copy region (SSC - about 15 to 25 kb), separated from each other by two copies

of an inverted repeat region (IR - 10-85 kb) (Palmer et al. 1985, Harris et al. 1994, Cosner et

al. 1997) (figure 2.4). The two IRs are identical to each other in genetic sequence as a result

of an active copy correction system (Harris et al. 1994). This region is also relatively well

conserved in higher plants, especially in angiosperms (De Las Rivas et al. 2002). However,

most variation in the size of the chloroplast genome in different plant species is a result of

changes in the size of the IR (Palmer 1987, Sugiura 1992, Harris et al. 1994).

Chloroplast genomes can be divided into three groups according to their inverted repeats:

those missing IRs (group I), those containing IRs (group II) and those with tandem repeats

(group III). The pea, broad bean and alfalfa are examples of chloroplast genomes lacking an

IR (Sugiura 1992). The black pine chloroplast genome has a short IR that has a tRNA gene

and part of the 3' end of the psbA gene, but lacks the rRNA genes (Wakasugi et al. 1994).

Six tribes of the Fabaceae (legume) family have lost one segment of the IR and therefore only

have one copy of each of the rRNA genes (Palmer and Thompson 1981). The chloroplast

genome of Euglena gracilis has no IRs, but instead contains three tandem repeats, each of

these having an rRNA gene cluster (Sugiura 1992). Intramolecular recombination often takes

place at a high frequency between the two parts of the IR, causing inversion isomers to form

in species containing these repeats. This allows chloroplast molecules to be divided into two

physically dissimilar, but genetically identical, groups according the relative orientation of the

single copy region. A small proportion of the molecules also exist in dimer, trimer and

tetramer forms (Palmer 1987, Sugiura 1992).
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Figure 2.4. Gene organization of the Atropa belladonna chloroplast genome. The identical inverted repeat
regions (IRA and IRs) separate the large sincle copy region (LSC) from the small single copy region (SSC).
Genes transcribed clockwise are drawn inside the circle, and those outside are transcribed anticlockwise. The
different gray-scales or patterns denote different functional groups. See Stoebe, Martin and Kowallik (1998) for
abbreviations and nomenclature of protein-coding genes (Schmitz-Linneweber et al. 2002)

Studies performed on chloroplast genomes have revealed that the chloroplast genomes of

higher plants have an overall genetic structure that is highly conserved. This is mainly as a

result of its uniparental inheritance, which excludes any recombination, and the stabilizing

action of long inverted repeats, resulting in a lower mutation rate than found in other cell

genomes (Wolfe et al. 1987, Maier et al. 1995, Cipriani et al. 1998, Ogihara et al. 2000).

However, the sequencing of algal plastid genomes has revealed a much larger degree of
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variation in chloroplast gene organization and genome size among different algae. This

variation is most evident in green algae. The siphonous green alga Codium fragile has a

plastid genome of 85 kb in size, while on the other end of the scale the giant green alga

Acetabu/aria has a very complex plastid genome that is 1500 kb in size (Sugiura 1992, Harris

et al. 1994, Simpson and Stem 2002).

2.1.4.2 Gene Arrangement, Function and Expression

The majority of genes present in the original cyanobacterial endosymbiont have been lost or

transferred to the host nucleus. Only 60 to 200 genes still remain in the chloroplast genome

of higher plants and green algae (Martin et al. 2002). The chloroplast genome codes for all of

its own tRNA and rRNA molecules and some the proteins that it requires (Hiratsuka et al.

1989). Two main groups of protein-encoding genes are found in chloroplast genomes. The

first group is involved in expression and translation of chloroplast genes and the second group

plays a role in bioenergetics and photosynthesis (Leister 2003). A number of hypothetical

open reading frames (yc/s) have been found of which the functions are not yet known (Watson

and Murphy 1999, Leister 2003). The remainder of the proteins required by the chloroplast

(about 90 %) are encoded in the nucleus and transported through the cytoplasm to the

chloroplast (Hiratsuka et al. 1989, Cooper 2000). Plastids are therefore only semi-

autonomous (Sato 2001).

The average chloroplast genome contains the genes for the transcription of four rRNA (23S,

16S, 5S and 4.5S) and 30 tRNA species. This means that, in contrast to the mitochondrial

genome, enough tRNA types are encoded by the chloroplast genome to allow the translation

of all mRNA codons according to the universal genetic code (Cooper 2000). The chloroplast

genome also codes for approximately 20 ribosomal proteins and a few RNA polymerase

subunits. About 30 proteins encoded by cpDNA are involved in photosynthesis. These form

part of photosystem I and II, the cytochrome bf complex, and ATP synthase. The large

subunit of Rubisco (Ribulose-l,5-bisphosphate Carboxylase/Oxygenase) is also encoded in

the chloroplast (Schopfer 1995). This enzyme plays a critical role in photosynthesis and is

believed to be the 'single most abundant protein on earth' (Cooper 2000). However, the

nuclear genome codes for at least one of the subunits of each of the above mentioned

complexes, giving the nucleus strict control over the expression of chloroplast genes (Watson

and Murphy 1999). Light and other external factors also play a role in chloroplast gene
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regulation, but these methods of control are still under investigation (Schopfer 1995, Gray et

al. 2003, Pfannschmidt 2003)

Chloroplast gene organization and expression has retained many of its prokaryotic features.

Many genes found in plastids are organized into operons and produce polycistronic mRNAs

by co-transcription. The gene order in several chloroplast operons is highly conserved and

very similar to that of Cyanobacteria and other Eubacteria. For example, the ribosomal RNA

operon is identical in chloroplast and eubacterial genomes. Another prokaryotic feature of

cpDNA is the presence of a number of overlapping genes that often code for proteins that

form part of the same complex (Palmer 1987, Stoebe and Kowallik 1999, Watson and

Murphy 1999, Hager and Bock 2000).

A number of eukaryotic features can also be observed in the chloroplast genome. Certain

proteins, e.g. those used in photo system II, are encoded by genes found throughout the

genome and are transcribed as monocistronie mRNAs. A distinctly eukaryotic feature is the

presence of introns, suggesting that an RNA-splicing mechanism is also present (Palmer

1987, Watson and Murphy 1999).

The gene regulation mechanisms used by chloroplasts have retained many of their prokaryotic

characteristics, but have made evolutionary adaptations to facilitate their integration into the

eukaryotic cell. The chloroplast has moved from the typically prokaryotic transcriptional

control mechanism to a primarily translational system of control. The latter method allows

the plastid to respond more rapidly to environmental changes, since the completed transcripts

are readily available for protein synthesis (Kunnimalaiyaan and Nielsen 1997, Hager and

Bock 2000).

2.1.4.3 Protein Import

Recent research on the Arabidopsis thaliana chloroplast genome suggested that between 2100

and 3600 proteins could be present in the chloroplast (Abdallah et al. 2000, The Arabidopsis

Genome Initiative 2000). This means that approximately 90% of proteins found in this

organelle are encoded by the nuclear genome, transported into the chloroplast and distributed

internally.
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The transport of proteins from the cytosol into the chloroplast is facilitated by chloroplast

transit peptides (cTPs). This N-terminal sequence of 30 to 100 amino acids is attached to the

end of the completed polypeptide in the cytosol. The translocation complex found in the

outer chloroplast membrane (the Toe complex) recognizes the cTP and assists in the transport

of the protein across this membrane. The protein is then transported in the same fashion

through a second translocation complex (the Tic complex) found in the inner membrane.

Molecular chaperones found in the cytosol and stroma also facilitate protein import, using

ATP in the process (Bruce 2000, Cooper 2000).

Once the protein is in the stroma the cTP is cleaved by a stromal processing peptidase. From

here the protein is transported to its destination in the chloroplast. Higher plants possess four

different pathways that the protein may follow to travel into or through the thylakoid

membrane. Three of these pathways rely on a second hydrophobic signal sequence found on

the C-terminal end of the cTP. Once the protein is in the thylakoid lumen this sequence is

cleaved by the thylakoidal processing peptidase. No extra cTPs are required to transport a

protein from the stroma to the inner membrane. Proteins targeted to the outer membrane

seem to be directly inserted. However, very little is known about the targeting sequences or

pathways used to transport proteins to the intermembrane space (Cooper 2000, Leister 2003).

2.1.4.4 Inheritance

Chloroplast genes are inherited differently to nuclear genes and do not obey a number of

Mendel's laws. While nuclear genes only undergo replication during mitosis (and therefore

not during asexual reproduction), chloroplast alleles undergo vegetative segregation as well.

This means that chloroplasts and their DNA segregate during mitosis as well as meiosis and

that the replication of chloroplast genomes occurs randomly (Birky 1995, Birky 2001). In this

way any heteroplasmy (where more than one type of chloroplast occurs in an individual) may

be sorted out in one or a few generations (Frey 1998).

Chloroplast genomes are usually inherited from one parent, i.e. uniparental inheritance, while

inheritance of nuclear genes is biparental. Some plants have been found to produce progeny

of maternal, paternal, and biparental origin. However, even where both parents donate

chloroplasts (in some flowering plants) no fusion or recombination of the respective genomes

takes place. Their inheritance is therefore still asexual. Both uniparental inheritance and lack
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of recombination could play an important role in the conservation of higher plant chloroplast

genomes (Palmer 1987, Birky 1995, Birky 2001).

Intramolecular and intermolecular recombination occurs in the chloroplast genome. These

kinds of recombination help to preserve the sequence homology between the two IR regions.

They can, however, also lead to changes in the single-copy regions' gene order and produce

dimeric genomes (Birky 2001).

2.1.4.5 Genetic Mutations

Chloroplast genomes share a large degree of similarity in size, structure and nucleotide

sequence, especially in the IR regions (Palmer 1987, Wolfe et al. 1987). Chloroplast genes

seldom undergo rearrangement and are rarely lost all together (Cosner 1997). Non-coding

regions, on the other hand, have a high evolutionary rate (Fujii et al. 1997) and the amount of

non-coding DNA appears to have actually increased with an increase in biological complexity

(De Las Rivas et al. 2002).

Most changes in sequence complexity are as a result of length mutations. This involves the

addition or deletion of fragments, usually 1 bp to a few dozen bp in length, found in non-

coding regions. Because these changes often occur near regions of short direct repeats, they

are thought to be a result of slipped-strand mispairing (Palmer 1987, Kelchner and Wendel

1996, Ogihara et al. 2000), intramolecular recombination between flanking or nearby repeats

(Palmer et al. 1985, Ogihara et al. 1988), and stem-loop secondary structures (vanHam et al.

1994, Ferris et al. 1995). Certain "hot spots" have also been discovered, where length

mutations occur more often than in the rest of the genome (Ogihara et al. 1988).

Other small structural changes occurring m higher plants are inversions (Howe 1985,

Hiratsuka et al. 1989) and translocations (Ogihara et al. 1988). Inversions are often larger

than deletions or insertions (1-62 kb) (Kelchner and Wendel 1996). One possible way in

which these inversions could occur is when IR regions undergo intramolecular recombination

(Ogihara et al. 1988, Kelchner and Wendel 1996). For example, the chloroplast genome of

Trache/ium caeruleum has a high level of rearrangement in comparison to other higher plant

chloroplast genomes. This divergence from the ancestral gene arrangement would require

contraction/expansion of the IR, at least seven inversions, two large deletions, several

insertions, and one or two possible transposition (Cosner 1997).
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Any other length mutations found in the chloroplast genome occur at a much lower frequency

than those already mentioned. Certain mutations of between 50 and 1200 bp have been

observed in restriction-fragment comparisons and are most likely a result of nucleotide

substitutions. These substitutions occur mainly as silent changes in the third codon position

and they are usually accumulated at a very slow rate in chloroplast genomes (Palmer 1987).

2.1.5 The Vilis vinifera Chloroplast Genome

Very little information is currently available on the Vitis chloroplast genome. Most studies

done up to this point use chloroplast-specific microsatellite markers to screen different

grapevine cultivars. The results obtained give researchers an idea of the level of

polymorphism found among different cultivars, and allow them to divide grapevine varieties

into haplotypes. This information, in turn, aids in determining the distribution and evolution

of different grapevme cultivars (Garcia et al. 2002b,

www.biology.uoc.gr/gvd/contents/general-info/06b.htm). These microsatellite polymorphism

studies have also been used to prove the maternal inheritance of V vinifera chloroplast

genomes (Garcia et al. 2002a).

2.1.6 Applications of Sequenced Chloroplast Genomes

2.1.6.1 Phylogenetic Studies

Plastid genomes have an important application in research into eukaryotic evolutionary

relationships. They are ideal for these studies because of their small genome size and their

relatively well-conserved nature. Chloroplast genomes have a relatively low nucleotide

substitution rate found between individuals of the same species or between related species

(Matsuoka et al. 2002).

Chloroplast genome restriction-site mutations have been used by many researchers to study

the evolution of populations or closely related species (Palmer et al. 1985, Gounaris et al.

1986, Huang and Sun 2000, Katayama and Uematsu 2003). The restriction fragment patterns

obtained allow researchers to discern variation at an interspecies and, to a certain extent,

intraspecies level (Palmer 1987). With the development of improved cloning and sequencing

methods it has become possible to sequence entire chloroplast genomes with relative ease.

The chloroplast genomes of a wide variety of higher plant and algae species have already
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been completely sequenced. Phylogenetic studies using chloroplast sequences are presently

being used as an alternative to restriction site analysis because they allow evolutionary

relationships to be determined on a finer scale. Specific genes or gene regions can now be

compared among a wide variety of taxa and lineages. However, variations in the evolutionary

rates of different genes or gene regions do cause incorrect phylogenetic relationships to arise

at times. Therefore, the analysis of restriction sites still provides researchers with a good

overall idea of variation occurring on the genome level (O'Kane 1995).

Comparison of the nuclear-, chloroplast- and the related protein coding sequences of different

species will give researchers clearer insight, first, into the functioning of chloroplasts in the

cell (Sato et al. 1999) and second, into mechanisms and reasons for chloroplast gene

migration to the nucleus (Stoebe and Kowallik 1999). Phylogenetic studies using a number of

plastid, mitochondrial and nuclear chloroplast gene sequences from a variety of taxa will

provide a robust picture of evolutionary relationships among plastid-containing organisms.

This data, together with studies of plastid morphology, ultrastructure and genome

arrangement could help clear up many of the present discrepancies in evolutionary

relationships.

2.1.6.2 Plastid Transformation

The genetic engineering of plant nuclear genomes to express foreign proteins is now a routine

procedure that has had many successes (Bogorad 2000). However, nuclear transformation

does have a number of limitations. The development of technologies to integrate foreign

DNA into plant plastid genomes has recently developed as a promising alternative to nuclear

transformation (McFadden 2001a).

The most successful method of delivering foreign genes into the plastid involves biolistic

bombardment of the appropriate plant tissue with the cloned DNA (Hager and Bock 2000).

Other delivery systems that have been used with limited success are polyethylene glycol

(PEG) treatment and microinjection. Once inside the plastid the foreign DNA is integrated

into the organellar genome via homologous recombination. This is made possible by the

presence of transgene flanking regions with gene sequences homologous to the plastid

genome. Only one or a few genome copies found in a plastid will be successfully transformed

and, therefore, wild-type genomes will still be present. Selection of transformed cells is

carried out through repeated cell division on a selective medium, with the help of plastid-
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specific selectable markers (e.g. antibiotic resistance genes). The homoplasmie cells are

regenerated to form stable transplastomie plants (Hager and Bock 2000, Heifetz 2000, Maliga

2002, Reece 2004).

Plastid transformation offers a number of advantages over nuclear transformation. (i) Plastids

are maternally inherited in most plants. Transgenes are thus efficiently contained and foreign

DNA is not usually spread to related wild-type relatives via pollen, as is the case with nuclear

transformants (Hager and Bock 2000, Daniell et al. 2002). (ii) The high ploidy level of plastid

genomes per cell results in high levels of foreign gene expression and foreign protein

accumulation in plastids (Daniell and McFadden 1987, Hager and Bock 2000, McFadden

2001a). (iii) Foreign genes can be targeted to a specific site in the plastid genome, giving

more predictable levels of transgene expression and eliminating the position effect often

observed in nuclear transformants (Hager and Bock 2000, Daniell et al. 2002). (iv) Epigenetic

gene silencing is an effect often observed when foreign genes are incorporated into plant

nuclear genomes. These effects have not been observed in transplastomie plants (Bock and

Hagemann 2000, Daniell et al. 2002). (v) Many plastid chloroplast genes are organized into

operons and therefore allow the simultaneous co-transcription of several genes into

polycistronic mRNAs. There is the possibility that a number of foreign genes may be

incorporated into the plastid genome at one time, using a single transformation vector and

driven by one promoter. In this way a trait that is transcribed by multiple genes or even an

entire biochemical pathway can be expressed in plants. The nuclear genome, on the other

hand, is only capable of monocistronie transcription. The expression of multiple foreign

genes in nuclear genomes is therefore difficult to achieve (Bogorad 2000, Hager and Bock

2000, Daniell et al. 2002). (vi) Most selectable markers used at present are antibiotic

resistance genes. There is some concern that these genes could be transferred to other

organisms in the environment, offering them the same resistance. One alternative is to use the

plant-derived betaine aldehyde dehydrogenase (BADH) gene as a selectable marker.

Selection involves the conversion of toxic betaine aldehyde (BA) to non-toxic glycine betaine

by the chloroplast-specific BADH enzyme. This method has proven successful, with 25-fold

higher plastid transformation efficiency than obtained through spectinomycin selection

(Daniell et al. 2001, Daniell and Dhingra 2002). Another option is to remove the selectable

marker gene after transformation (lamtham and Day 2000, Corneille et al. 2001, Reece 2004).

There are a few concerns that still need to be addressed before plastid transformation can be

successfully and routinely used in the future. The first drawback of plastid transformation is
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the limitations on current methods of foreign DNA delivery. Particle bombardment remains

the most effective manner in which to incorporate foreign DNA into the chloroplast genome.

Transient foreign gene expression and difficulties in transferring the cloned DNA across the

double plastid membrane have been encountered with other methods. Second, successful

plastid transformation systems have been successfully produced for only a few higher plants.

Most major crop plants, especially monocotyledons, do not have a working plastid

transformation system. Third, the plastid genomes of a large number of commercial crops

have not yet been fully sequences. These sequences are needed to design foreign DNA

flanking regions to facilitate successful integration into the targeted plastid genome.

However, the conserved nature of the chloroplast genome in higher plants could allow

targeting sequences from one species to be used to target genes to chloroplast genomes of a

related species with an unknown plastid sequence. Lastly, the process of obtaining

genetically stable (homoplasmie) transplastomie plants is difficult and time-consuming.

Therefore, only a limited number of transformants can be produced at a time, making large-

scale transplastomie plant production a problem (Sidorov et al. 1999, Hager and Bock 2000,

Heifetz 2000, Daniell et al. 2002, Maliga 2002).

The first chloroplast genome to be stably transformed was that of Chlamydomonas reinhardtii

in 1988 (Boynton et al. 1988). Two years later a successful method for tobacco plastid

transformation was developed (Svab et al. 1990). Most subsequent plastid transformations

have been performed in tobacco (Gewolb 2002, Maliga 2002). Plastid transformation

technology has, however, not been successfully extended too many other plants. The

development of methods to transform crop plants such as maize will be of particular

importance for the success of plastid transgenies in the future.

Plastid transformation technology has a number of present and possible future applications in

scientific research, agronomy and biotechnology (Maliga 2002). Reverse genetics involves

the targeted deletion or mutation of a gene or its product in vivo with the help of plastid

transformation technology. This method is proving useful for the characterization of plastid

genes and for ascertaining the functions of hypothetical open reading frames (ycfs) (Rochaix

1997, Hager and Bock 2000, Heifetz 2000). Attempts to optimize metabolic functions and

photosynthesis by means of plastid transformation are already underway. Experiments

performed to improve the efficiency of Rubisco (Ribulose-l,5-bisphosphate

Carboxylase/Oxygenase) have already been successful (Whitney and Andrews 2001, Maliga

2002). A number of traits with potential agronomic value have been stably transformed into
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plastid genomes. These include antibiotic resistance (Svab and Maliga 1993), herbicide

resistance (Daniell et al. 1998), insect resistance (Kota et al. 1999) and bacterial and fungal

disease resistance (DeGray et al. 2001). The biodegradable protein-based polymer GVGVP

became the first pharmaceutical protein to be stably expressed in tobacco chloroplasts (Guda

et al. 2000). Since then, a number of human therapeutic proteins have been successfully

expressed in plastids. For example: human somatropin (hST) (Staub et al. 2000), cholera

toxin fragments (Daniell et al. 2001), tetanus toxin fragments (Tregoning 2003), and

"thermo statable xylanase" (Leelavathi et al. 2003). These experiments demonstrate that

plastid-expressed proteins are biochemically active, correctly folded, and produce the

appropriate disulfide bonds (Maliga 2003, Reece 2004). The production of human antibiotic

and antigen proteins at high levels in the edible tissue of plants could lead to the creation of

edible antibiotics and vaccines (Daniell et al. 2002). Transformation experiments performed

on tomato (Ruf et al. 2001) and potato plastids (Sidorov et al. 1999) have already shown

promising results. However, expression levels are much lower in non-green tissue than in

chloroplasts. The creation of more advanced expression tools could enhance expression

levels in future experiments (Maliga 2002).

Although foreign proteins have been successfully expressed and inserted into the chloroplast

genome, it is not known if these proteins can be exported from the chloroplast into the cytosol

or into other cellular compartments. Mechanisms of protein export from the chloroplast have

been studied (Weber et al. 2000, Weber and Flugge 2002) but further research still needs to be

performed.

2.1.6.3 Drug Targets

A number of apicomplexan parasites contain a reduced plastid genome of between 27 and 35

kb in size. The apicoplast is essential for the survival of these parasites, and is known to be

involved in fatty acid and isoprenoid metabolism. These metabolic pathways are

cyanobacterial in nature and therefore differ from the equivalent, cytosolic pathways found in

animal hosts. The apicoplast therefore has great potential as a drug target aimed at destroying

these parasites (McFadden and Roos 1999, Gardner et al. 2002).
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2.2 CHLOROPLAST GENOME CHARACTERISATION AND

SEQUENCING

Since the construction of the first physical map of cpDNA in 1976 (Bedbrook and Bogorad

1976) and the cloning of the first chloroplast genome a year later (Bedbrook et al. 1977) the

field of chloroplast genetics has progressed at an ever increasing rate.

A number of methods for cpDNA isolation have been developed and optimized for different

plant species. Physical and genetic maps have also been produced for many plant species and

have been used extensively for interspecies and intraspecies chloroplast genome comparisons.

Finally, the improvement in molecular cloning and sequencing techniques has allowed several

novel chloroplast genomes to be revealed, providing important information for further genetic

and proteomic studies (table 2.1).

2.2.1 Chloroplast DNA Isolation

"The problems inherent in working with plants are largely manifested in the DNA isolation

stage" (Milligan 1992). This is especially true when attempting to isolate cpDNA from plant

material. A number of methods are currently available for extracting cpDNA, but there are a

few general principles that apply to all of them.

The quality of the starting material and the way in which it is stored has played a critical role

in successful cpDNA extractions. Very fresh, young and healthy material has given the best

results. Storing the leaves for 48 h in a cool, dark environment gave the chloroplasts time to

deplete their stored starch grains. The presence of starch during cpDNA extraction makes the

chloroplast membranes more prone to rupturing and therefore lowers the yield of cpDNA

obtained (Palmer 1988, Mourad 1998, Milligan 1992, Lodhi et al. 1994, Mariac et al. 2000).

Most protocols that have been used to isolate cpDNA make use of aqueous buffers and have

two steps: First, the isolation of intact plastids, separate from the remaining cell contents and

second, the lyses of the plastid and purification of the cpDNA. These methods are often

simple, inexpensive and use non-toxic compounds (Milligan 1992).

Extraction steps carried out as swiftly as possible and at 0 to 4°C retard the action of

hydrolytic enzymes and reduce chloroplast membrane shearing. Problems in extracting pure,
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Table 2.1 Completely Sequenced Chloroplast Genomes (Last updated 12 Nov 2003)

(http://megasun.bch.umontreal.ca/ogmp/projects/other/cp list.htrnl).

Locus Accession Last updated Organism

AY178864 AY178864 02-May-2003 Adiantum capillus-veneris [Embryophyta]

ATR506156 AJ506156 22-Sep-2003 Amborella trichopoda [Embryophyta]

AB086179 AB086179 10-Mar-2003 Anthoceros formosae [Embryophyta]

APOO0423 APOO0423 08-Apr-2000 Arabidopsis thaliana [Embryophyte]

AL0294725 AJ294725 12-Apr-2001 Astasia longa [Euglenozoa]

ABE316582 AJ316582 06-Sept-2002 Atropa belladonna [Embryophyta]

CFE421413 AJ428413 07-Aug-2003 Calycanthus fertilis var. ferax [Embryophyta]

AF494278 AF494278 22-Aug-2002 Chaetosphaeridium globosum [Embryophyta]

ABOO1684 ABOO1684 14-Apr-2000 Chlorella vulgaris [Chlorophyta]

AF022186 AF022186 19-Jan-2000 Cyanidium caldarium [Rhodophyta]

CPU30821 U30821 13-Nov-1995 Cyanophora paradoxa [Glaucocystophyceae]

AY217738 AY217738 02-Jun-2003 Eimeria tenelIa [Alveolata]

EPFCPCG M81884 14-Apr-2000 Epifagus virginiana [Embryophyta]

CLEGCGA X70810 o 1-Feb-2003 Euglena gracilis [Euglenozoa]

AF041468 AF041468 03-Mar-1999 Guillardia theta [Cryptophyta]

AP002983 AP002983 22-Jul-2003 Lotus comiculatus var. japonicus [Embryophyta]

CHMPXX X04465 16-Feb-2000 Marchantia polymorpha [Embryophyta]

AC093544 AC093544 11-Mar-2003 Medicago truncatula [Embryophyta]

AF166114 AF166114 17-Mar-2000 Mesostigma viride [Chlorophyta]

AF137379 AF137379 08-Aug-2003 Nephroselmis olivacea [Chlorophyta]

CHNTXX ZOO044 27-Apr-1998 Nicotiana tabacum [Charophyta/Embryophyta group]

OXCHLPLXX Z67753 21-Jan-1998 Odontella sinensis [Stramenopiles]

OEL271079 AJ271079 I0-Mar-200 I Oenothera elata [Embryophyta]

X15901 X15901 29-Mar-2001 Oryza sativa (japonica cultivar-group) [Embryophyta]

APOO5672 AP005672 02-0ct-2003 Physcomitrella patens [Embryophyta]

PINCPTRPG D17510 14-Apr-2000 Pinus thumbergii [Embryophyta]

PPU38804 U38804 27-Mar-1998 Porphyra purpurea [Rhodophyta]

APOO4638 AP004638 15-Nov-2002 Psilotum nudum [Embryophyta]

SOL400848 AJ400848 20-Feb-2003 Spinacia oleracea [Embryophyta]

U87145 U87145 29-Jun-1999 Toxoplasma gondii [Alveolata]

AB042240 AB042240 13-Apr-2002 Triticum aestivum [Embryophyta]

ZMA86563 X86563 25-Jan-2003 Zea mays [Embryophyta]
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intact cpDNA have often been a result of high levels of secondary metabolites present in

certain plants. These contaminants include tannins and polyphenolics, and cause DNA

degradation, a viscous end sample and difficulties in PCR and restriction digestions. The

extraction buffer therefore usually needs to be optimised for a specific species. Most

extraction buffers have a pH of 8.0, but some have a pH as high as 9.0. The ingredients of the

extraction buffer often had a considerable influence on the success of the isolation. Most

extraction buffers include sucrose/mannitol/sorbitol, Tris-CI (pH 8.0) and EDTA (pH 8.0).

EDTA inhibits the action of cellular enzymes that could degrade the cpDNA. A number of

other components have also been included in extraction buffers that protect the cpDNA from

degradation by native enzymes or secondary metabolites. pyp helps to absorb tannins and

other secondary plant compounds. NaCI serves as an osmoticum, minimising nuclear DNA

contamination and removing polysaccharides. High levels of 2-mercaptoethanol, glutathione,

cysteine, dithiothreitol (DTT), and other thiols prevent phenolic oxidation. Bovine serum

albumin (BSA) causes surface denaturation of enzymes that degrade cpDNA (Herrmann et al.

1980, Bookjans et al. 1984, Smith and Ma 1985, Palmer 1988, Schuler and Zielinski 1989,

Mariac et al. 2000, Milligan 1992, Lodhi et al. 1994, Porebski et al. 1997).

Special care needs to be taken during the extraction process to disrupt only the cell walls and

not the chloroplast membranes. For this reason the use of a Waring blender is the preferred

method of leaf maceration. The homogenate is filtered through cheesecloth followed by

Miracloth to remove large pieces of tissue and cells. This mixture is then centrifuged to

separate chloroplasts from large cell debris (Palmer 1988, Schuler and Zielinski 1989, Mariac

et al. 2001).

Nuclear DNA contamination is the most common problem in aqueous cpDNA isolation

procedures. One of three methods is usually used to eliminate nuclear DNA. The first

method involves treatment with DNase, which digests nuclear DNA but is unable to digest the

cpDNA contained in the intact chloroplast membranes. This method gives very pure cpDNA,

but only at low yields. Degradation of the cpDNA also occurs due to the partial rupturing of

some chloroplast membranes (Herrmann et al. 1975, Palmer 1988, Triboush et al. 1998). The

second method involves the use of discontinuous (step) sucrose or percoll gradients, in which

the intact chloroplasts are banded separately from other cellular components according to

their buoyant densities. This method gives pure cpDNA, but is time-consuming (Hirai et al.

1985, Mourad 1998, Palmer 1988). The third method involves the differential lyses of

chloroplasts and nuclei and involves extraction of cpDNA with CTAB. This protocol has the
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advantage of being simple and inexpensive, but nuclear DNA contamination may still be

present (Palmer 1988, Milligan 1992).

The first step in cpDNA isolation is the lyses of the chloroplast membrane. CTAB, SDS

(sodium dodecyl sulphate), sodium sarkosinate and/or proteinase K (Bookjans et al. 1984,

Mariac et al. 2000, Mpoloka 2001) have been used for this purpose. Subsequent organic

(phenol/chloroform/isoamyl alcohol) extraction steps have been performed in some cases to

remove proteins that may still have been present. Further removal of proteins and RNA has

also been carried out through the use of CsCI density gradients. Chloroplast DNA and

nuclear DNA band at different densities and therefore very pure cpDNA can be recovered.

However, this is a time-consuming and costly process that gives relatively low yields

(Herrmann et al. 1975, Palmer 1988).

For certain plant species, especially those with narrow, fibrous leaves, aqueous isolation

methods do not give satisfactory results. Non-aqueous methods of cpDNA extraction have

been utilized as an alternative. These methods do not require the isolation of intact plastids

and therefore plant material may be stored for a long time before isolations need to be done.

Non-aqueous organic solvents, such as hexane-carbon tetrachloride and trichlorobenzene-

naphthalene, are used to isolate the cpDNA in these protocols (Milligan 1992).

2.2.2 Restriction Digestion, Physical and Genetic Map Construction

Once the cpDNA has been successfully isolated from a plant it is usually digested with a

number of different restriction enzymes and separated on an agarose gel. The banding

patterns created by the separation of the digested fragments on the gel aids in determining

which restriction enzymes are most appropriate for creating a physical map of the chloroplast

genome. These are usually enzymes that cut the chloroplast genome rarely (about 10-20

times) (Palmer 1988).

Physical (restriction site) maps give an indication of the number, order, and distance between

restriction enzyme cutting sites along the chloroplast genome (Klug and Cummings 1997).

They have allowed researchers to determine the size of the chloroplast genome and have

confirmed its circular nature. Restriction site maps have been created for a number of species

including N tabacum, Spinacea oleracea, and Z. mays (Bovenberg et al. 1981).
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A number of methods can be used to create a physical map of a chloroplast genome. One

method uses the sequential (reciprocal double digest) technique. The cpDNA is first digested

with a single enzyme and run on low-gelling-temperature agarose. The individual fragments

are excised from the gel and digested with a second enzyme. These digested fragments are

run separately on a second low-gelling-temperature agarose gel. By comparing the fragment

sizes obtained from both single and double digests, the fragments can be placed in the correct

order and a restriction site map can be created (Herrmann et al. 1980, Gounaris et al. 1986,

Palmer 1988, Lim et al. 1990).

A second method for creating a physical map makes use of overlap hybridization. A number

of restriction fragments, together covering the entire chloroplast genome, are used as probes.

These probes are hybridized to Southern blots of single- and double-digested cpDNA

separated on agarose gels. The resulting autorads are compared to the digested cpDNA run

on agarose gels and the order of the restriction fragments can be determined in this way

(Smith and Ma 1985). An alternative is to use the cpDNA probes in Southern hybridization

with restriction-digested total DNA (Palmer 1988, Lee et al. 1996, Cosner et al. 1997).

Genetic mapping allows genes to be placed in the correct place on a genome. Chloroplast

genes that have been isolated from another plant species are often used as probes (Ma and

Smith 1985). These heterologous, labeled probes are hybridized to Southern blots of

restriction-digested cpDNA run on agarose gels. The photographs are compared to ethidium

bromide-stained agarose gel photos of the digested cpDNA and a genetic map is constructed

of the entire chloroplast genome (Lee et al. 1996, Cosner et al. 1997, Katayama and Uematsu

2003).

2.2.3 Clone Library Construction and Genome Sequencing

The chloroplast genome is relatively small (usually between 120 and 160 kb) and is therefore

easier and faster to clone and sequence than plant nuclear genomes. A clone library that

covers an entire chloroplast genome usually consists of overlapping fragments to ensure that

small fragments are not overlooked (Shinozaki et al. 1986). A number of chloroplast

genomes of both plants and algae species have already been cloned and sequenced.

Restriction enzymes that cut the chloroplast genome between 10 and 20 times are ideal for use

in clone library construction. The restriction endonucleases PstI, Sac!, San, KpnI, XhoI, SphI,
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Smal and Nrul have proven to be most successful for this purpose. The cpDNA fragments are

usually cloned into plasmid vectors, although cosmid vectors and A. phage vectors have been

used to clone larger fragments (Palmer 1988, Sugiura et al. 1986, Lee et al. 1996). The entire

maize chloroplast genome has even been cloned into a yeast artificial chromosome (YAC)

vector (Gupta and Hoo 1991).

The commonly used strategy for library construction is to first shotgun-clone restriction

digested cpDNA fragments into a plasmid vector. Recombinant colonies are then isolated and

screened. The screening process involves isolating the clone DNA by means of an alkaline

mini prep procedure (e.g. Sambrook et al. 1989) and digestion of the clones with the

appropriate restriction enzyme(s). These clones are electrophoresed on an agarose gel to

determine their sizes. Any fragments that have not been successfully cloned can be isolated

from agarose gels and ligated in separate reactions (Palmer and Thompson 1981, Ohyama et

al. 1986, Palmer 1988, O'Kane 1995, Cosner et al. 1997). The Polymerase Chain Reaction

(PCR) has also been used to close gaps between restriction fragments (Schmitz-Linneweber et

al. 2001).

As mentioned previously, it is important to obtain overlapping DNA fragments that will cover

the entire genome. Therefore, more than one library is usually constructed; each consisting of

fragments digested with different restriction enzymes. The next step is to determine the

sequence of each clone and then compile and analyze the information using computer

software programs (Shinozaki et al. 1986, Hiratsuka et al. 1989, Sugiura et al. 2003).

2.3 LARGE-CONSTRUCT VECTORS

With the improvement in sequencing technology the sequencing of the entire genomes of

higher organisms became a viable option. However, most conventional plasmid vectors

cannot incorporate inserts larger than 20 kb and were therefore not ideal for the physical

mapping and large-scale sequencing of large genomes. For this purpose vectors that could

stably maintain very large inserts, but which would still be relatively easy to manipulate, were

required.

Several types of large-insert DNA vectors have been created. These can be classified into two

categories, namely bacteria- and yeast-based cloning systems. Yeast artificial chromosomes
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(YACs) are an example ofa yeast-based cloning system while cosmids, fosmids, PI, bacterial

artificial chromosomes (BACs) and P I-derived artificial chromosomes (PACs) are bacteria-

based cloning systems. The latter are often favored because insert DNA purification is much

easier for bacteria-based cloning systems than for those involving yeasts. Bacteria-based

systems are also all circular constructs and therefore protect their DNA from shearing during

purification (Zhang and Wu 2001).

2.3.1 Cosmids

Cosmids were one of the first vectors to be used for cloning large constructs and for the study

of large, complex genomes. Cosmids are hybrid vectors that include parts of both the lambda

chromosome and plasmid DNA. The cos sequence obtained from the lambda phage is

required for the packaging of the phage DNA into the phage protein coat. The plasmid

sequences for the antibiotic resistance gene and for replication are also included in the cosmid

vector. Fragments of up to 50 kb can be cloned into and maintained in a cosmid vector by

using the standard bacteriophage-based transfection system. Although this system was once

widely used and the cosmid DNA is easy to purify, it has limited use for large-scale physical

mapping and genome sequencing because of its limited cloning capacity and the instability of

insert DNA (Klug and Cummings 1997, Zhang and Wing 1997, Zhang and Wu 2001).

2.3.2 Yeast Artificial Chromosomes (YACs)

The YAC system were created in 1987 by Burke et al. (Burke et al. 1987) and have played an

important role in the initial physical mapping and genome sequencing of large genomes such

as the human chromosomes. YACs are linear constructs that have the typical features of a

chromosome. These include an autonomous replication sequence (ARS), a yeast centromere

(CEN), and two yeast telomeres (TEL). Selectable markers (TRPI and DRA3) are found on

each side of the centromere and a multiple cloning site is also present. Very large fragments

of up to one million base pairs (1 megabase) of DNA can be inserted into a YAC, a 25-fold

advance over cosmid vectors (Klug and Cummings 1997, Zhang and Wu 2001).

A number of problems have, however, been encountered when using YACs. YAC DNA is

difficult to purify from the yeast host genomic DNA. This can only be done via pulsed-field

gel electrophoresis (PFGE) and gel isolation (Zhang and Wing 1997, Venter et al. 1996).

Approximately half of YAC clones are chimeric, possessing two or more inserts in one clone.
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Many also contain inserts that are structurally unstable, with deletions or rearrangements

occurring. Such clones cannot be used for further mapping and sequencing and much time is

spent trying to identify and remove these clones. The presence of a large number of tandem

repeat regions in some genomes makes this task even more difficult.

2.3.3 Bacterial Artifical Chromosomes (BACs)

The development of BACs (Shizuya et al. 1992) provided an alternative method of

constructing large-insert based genome libraries and has the advantages of both cosmid and

YAC systems. The BAC vector is based on the Escherichia coli fertility (F-factor) plasmid

and contains the F-factor genes for replication and copy number. The F-factor strictly

regulates its own transcription and prevents more than one or two copies of the BAC from

being present in a bacterial cell at one time. Insert DNA is therefore stably integrated, with

only a small percentage of sequence artefacts present. BAC vectors usually also possess an

antibiotic resistance gene and a polycloning site situated within a reporter gene (Yang et al.

1997).

There are a number of advantages in using the BAC system. BACs are circular and

supercoiled and therefore easier to manipulate and less prone to shearing than the linear YAC.

Since BACs are transformed into normal E. coli bacterial cells they are easy to grow up and

isolate, with high transformation efficiencies. Conventional bacterial colony lifts and

hybridization methods can also be used to screen colonies in a library. Inserts of up to 500

kb, with most averaging around 150 kb, can be stably integrated and maintained in a BAC

vector (Yang et al. 1997, Zhang and Wu 2001).

Although the BAC system is relatively new, it has been used for the creation of high-

resolution physical maps and map-based gene cloning of a number of large genomes. It has

also facilitated the process of sequencing and subsequent sequence compilation. One example

is the crucial role BAC clones played in the clone-by-clone shotgun (CBCS) approach used in

the Human Genome Project (HGP). YACs and cosmid vectors were initially utilized for the

construction of a physical map of the genome, with more than 75% of genome being covered

by YAC contigs. However, difficulties in manipulating the large YAC inserts and eliminating

yeast host DNA during YAC purification were serious obstacles. Subeloning of large YAC

inserts into BACs was therefore an attractive option for further physical mapping and

sequencing (Zhang and Wing 1997, Zhang and Wu 2001).
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The CBCS system that was subsequently used involved a number of steps. Firstly, high

molecular weight genomic DNA was partially digested with restriction enzymes and

fragments of the correct size (40 to 400 kb) were cloned into a BAC vector. The next step

was to construct a physical map of the entire genome. This step was very important in

ensuring that only minimally overlapping clones were chosen for sequencing. A number of

different methods were used to obtain a physical map. One such strategy, originally proposed

by Venter et al. (1996), combined physical mapping and genome sequencing and has also

been used in the Arabidopsis (Mozo et al. 1999, Marra et al. 1999) and Drosophila (Adams et

al. 2000) sequencing projects. This method involved the sequencing of both ends of each

BAC, the so-called 'sequence-tagged connectors' (STCs). Fingerprint analysis, involving the

digestion of each BAC clone with a single restriction enzyme, was then performed. The

fragments were separated on electrophoretic gels, allowing insert sizes to be determined and

overlapping clones to be identified. 'Seed' BACs of interest were chosen and completely

sequenced. These were checked against the STC database to find overlapping clones. This

method allowed researchers to walk out from the seed BACs in a manner that would include

overlapping clones (Venter et al. 1996, Olson 2001, Zhang and Wu 2001).

BAC vectors offer a simple, fast and economic alternative to other large-construct vectors.

They have already become a popular choice for the physical mapping and sequencing of large

genomes and could provide a powerful tool in accelerating future genomic research of these

genomes.

2.4 CONCLUSION

Our understanding of the chloroplast has improved dramatically over the past few decades.

There are, however, many questions regarding both primary and secondary plastids that

remain unanswered. Although the chloroplast originated from a cyanobacterial progenitor, no

modem cyanobacterial group shows any specific similarity to chloroplasts and their genomes.

The number of primary and secondary endosymbiotic events also remains the subjects of

intense debate. Most evidence points towards a single primary endosymbiotic origin and at

least two secondary endosymbiotic events. However, a great deal of research still needs to be

performed to clarify these issues.
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The marked improvement in methods of cpDNA isolation, cloning technology, sequencing

methods, computer power and software programs have meant that complete chloroplast

genome sequences can be obtained at a faster rate. Large-construct vectors such as BACs

may also prove useful. Once isolated and cloned, the entire chloroplast genome could be

contained in only one or two BAC clones. Further manipulation of the genome would be

facilitated by the relative ease of bacterial DNA isolation and maintenance, in comparison to

the isolation procedures required for the isolation of cpDNA from plant material.

The information made available through chloroplast genome sequencing can be used in

further genomic and proteomic studies. Phylogenetic analysis including multiple genes and

taxa are now possible. Phylogenetic data, together with morphological observations and

fossil records, should provide us with a more comprehensive view of plastids and their

evolution. By understanding the evolution of plastids, researchers will have further insight

into early eukaryotic evolution.

Studies on gene expression and the regulation of gene expression, as well as studies of protein

transport mechanisms used to and from the nucleus will also be possible. This information,

together with improvements in plastid transformation technology, will contribute to more

successful foreign gene expression in the plastid.

Plastid transformation technology could provide researchers with a valuable alternative to

current methods of nuclear transformation. The former offers a number of advantages over

the latter, including containment of transgenes and higher expression levels. This technology

is already being applied for research and agricultural purposes and has a promising future for

pharmaceutical and edible vaccine production. Transplastomie plants have the potential to

provide a cost-effective, simpler and more effective method of foreign gene expression than

those currently available.
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3 MATERIALS AND METHODS

3.1 ISOLATION AND CHARACTERISATION OF VITIS VINIFERA

CHLOROPLAST DNA

V vinifera grapevine chloroplast DNA, isolated from the leaves of the cultivar Sultana and

Sugra 1, was digested with appropriate restriction enzymes and shotgun-cloned into a plasmid

vector. The clones obtained in this way were characterised, partially sequenced and mapped

against the Atropa belladonna chloroplast genome.

3.1.1 Plant Material

Young, green Vitis vinifera cv. L. Sultana leaves were collected from the Agricultural

Research Council (ARC) Infruitec-Nietvoorbij during spring and summer. During autumn

and winter Vitis vinifera cv L. Sugra 1 leaves were obtained from the glasshouse at the

Institute of Wine Biotechnology (lWBT), University of Stellenbosch. The leaves were stored

in the dark at 4°C for 48 hours before being utilised for chloroplast DNA (cpDNA)

extractions.

3.1.2 Isolation of V. vinifera Chloroplast DNA

A variation on the method of Yeoh and Joseph (1995) was used to isolate grapevine cpDNA

from both Sugra 1 and Sultana leaves. Leaves were washed in distilled water and cut into

pieces of 1 to 2 cm2. All further steps were performed at 0 to 4°C unless otherwise indicated.

Fifty grams of leaf material was added to 500 ml of extraction buffer (1.75 M NaCl; 20 mM

EDTA; 0.1 M Tris-CI, pH 8.0; 1% BSA (w/v); 0.2% ~-mercaptoethanol (v/v); 5% PVP-IO

(w/v)) and homogenised in a Waring blender with 5 pulses of 5 seconds each. The

homogenate was filtered through 4 layers of cheesecloth (with squeezing) and through 4

layers of Miracloth (Calbiochem; without squeezing). The filtrate was centrifuged (1800 x g,

10 min, 4°C) and the resulting pellets were resuspended in 10 ml of extraction buffer. The

centrifugation step was repeated and the pellet was again resuspended in 10 ml of extraction

buffer. A 1/10 volume of 10% CTAB (w/v) was added and the mixture was incubated at

60°C for one hour. An equal volume of phenol:chloroform:isoamylalcohol (25 :24: 1 v/v) was

added, the solution was mixed by inversion and centrifuged (11 000 x g, 10 min, 4°C). The
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aqueous phase was removed to new microfuge tubes and an equal volume of

chloroform:isoamylalcohol (24:1) was added and vortexed. The mixture was centrifuged

(11 000 x g, 10 min, 4°C). The aqueous phase was removed to new tubes containing a 1/10

volume of 3 M sodium acetate and 0.8 volumes of isopropanol and precipitated overnight at

-20°C. The DNA was concentrated by centrifugation (11 000 x g, 10 min, 4°C). The

resulting pellet was washed in 100% ethanol (11 000 x g, 10 min, 4°C) followed by a 70%

ethanol wash (11 000 x g,5min, 4°C). The pellet was air-dried for 5 to 10 minutes and

resuspended in 500 ul of double distilled water containing RNase A (30 ug/ml). The

resuspended cpDNA was incubated at 37°C for 20 minutes to allow RNA degradation. To get

an estimate of the cpDNA concentration, the cpDNA was run on an agarose gel in parallel

with lambda standards. The cpDNA was stored at -20°C until further use.

3.1.3 Restriction Enzyme Digestion

A total of 100 ng of isolated cpDNA was digested with a number of restriction

endonucleases with hexanucleotide recognition sequences. The enzymes included EcoRI,

PstI, XhoI, SaD, BamHI, HindUI, ClaI, BgnI and Xbal. All restriction digestions were

performed according to the manufacturer's instructions (Roche) with the appropriate buffer

and incubated at 37°C, overnight.

Restriction fragments were separated by electrophoresis on a 0.8% (w/v) agarose gel

(Hispanagar) in IX TAE (0.04 M Tris-acetate; 0.001 M EDTA, pH 8.0). The gel was run

at 20V for 16 to 20 h and stained in IX TAE buffer containing 0.5 ug/ml ethidium

bromide.

3.1.4 Library Construction

3.1.4.1 Shotgun Cloning

Fragments of cpDNA digested with EcoRI, BamHI, and PstI, respectively, were

precipitated with 1/10 volumes of NaOAc and 2 volumes of 100% ethanol. The dried

pellet was resuspended in 5 J.lI of ddH20. The plasmid vector pUCBM2l (Roche -

appendix 4) was digested with the appropriate restriction enzyme (EcoRI/BamHI/PstI), and

treated with lU of SAP (Shrimp Alkaline Phosphatase; Promega) for 15 minutes at 37°C.

The reaction was inactivated by incubating for 15 minutes at 65°C. Ligations were
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performed according to the manufacturer's instructions (New England Biolabs) and

incubated at 16°C, ovemight. Refer to table 3.1 for vector:insert ratios

Table 3.1. Ligation reactions: Column 1: The order in which ligation reactions were performed. Column 2:
Restriction enzymes used to digest the vector and cpDNA for ligation. Column 3: The vector to insert ratios
used during each ligation is shown.

Ligation no. Restriction enzyme Vector (pUCBM21): Insert (cpDNA)

1 EcoRI 1:2, 1:4, 1:6, 1:12

2 BamHI 1:2

3 PstI 1:12

3.1.4.2 Preparation of Competent Cells

The following rubidium chloride competent cell preparation protocol was adapted from

Hanahan (1985).

A single colony of E.coli DH5a was inoculated into 2.5 ml of LB medium and incubated at

37°C, overnight (225 rpm). The overnight culture was used to inoculate 250 ml LB medium

containing 20 mM MgS04, in a one-liter flask. The cells were incubated at 37°C, with

shaking (225rpm). The absorption value (A600) was determined after 2 h and every 30

minutes thereafter, until the A600 reached 0.4-0.6. The cells were pelleted by centrifugation

(4500 x g, 5 min, 4°C). The cell pellets were gently resuspended in 100ml of ice-cold TFBI

(30 mM KaOc; 10 mM CaCh; 50 mM MnCh; 100 mM RbCI; 15% (v/v) glycerol - pH

adjusted to 5.8 with 1 M acetic acid, filter sterilised (0.2 mm». The resuspended cells were

combined and incubated on ice for 5 min at 4°C. For the remainder of the procedure the cells

were kept on ice and all pipettes, tips, microfuge tubes and flasks were also chilled. The cells

were pelleted by centrifugation (4500 x g, 5 min, 4°C), and gently resuspended in 1/25 of the

original culture volume of ice-cold TFB2 (10 mM MOPS or PIPES, pH 6.5; 75 mM CaCh;

10 mM RbCI; 15% glycerol - pH adjusted to 6.5 with 1 M KOH, filter sterilized (0.2 mm) and

stored at room temperature). The competent cells were treated very gently due to their high

sensitivity to handling and elevated temperature. The competent cells were incubated on ice

for 15-60 minutes and then aliquoted 100 ul/tube for storage at -80°C. The cells were

subjected to quick-freezing in a dry ice/isopropanol bath before storage.
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3.1.4.3 Transformation

Competent Escherichia coli DH5a cells were transformed with the ligation mixture

according to a variation on the protocol found in the Promega "Protocols and Applications

Guide".

Fifty microlitres of competent cells were thawed on ice. One to ten microlitres of the ligation

mixture was added to the competent cells, gently mixed, and incubated for 20 minutes on ice.

The tubes were heat-shocked for 45 seconds at 42°C and rapidly placed on ice for 2 minutes.

Four hundred and fifty microlitres of LB medium was added and incubated for 90 minutes at

37°C with shaking (150 rpm). One hundred microlitres of the transformation mix was plated

out onto plates containing LB medium, 100 ug/ml ampicillin, 40 ul of a 0.1 M

Isopropylthiogalactoside (IPTG) stock and 40 f.!lof a 50 mg/ml 5-bromo-4-chloro-3-indocyl-

p-D-galactoside (X-gal) stock (Promega). Recombinant colonies were selected using

blue/white screening and transferred to fresh LB plates containing ampicillin (100 ug/ml),

Colonies were arranged in a grid pattern on each plate to facilitate their transfer to new plates

by replica plating.

3.1.5 Library Screening by PCR

Potentially positive clones were screened by means of PCR using vector specific M13

forward and reverse primers. Each colony was picked using a sterile toothpick and swirled

in 10 ul of water. The 20 ul PCR reaction contained 10 f.!lof clone DNA, 15 pmols of

each primer, 1.5 mM MgCh, 50 f.!M dNTPs, 0.25 U/f.!l BIOTAQ™ DNA polymerase

(Bioline) and 1 x NRt buffer (16 mM (NH4)2S04; 670 mM Tris-HCl, pH 8.8; 0.1% Tween-

20). The DNA was heat denaturated at 95°C for 5 minutes followed by 30 cycles of

30 seconds at 94°C, 30 seconds at 55°C and 60 seconds at 72°C.

3.1.6 Library Screening by Colony Blotting

3.1.6.1 Colony Lifts

The colonies in the EcoRI chloroplast DNA library were transferred and fixed onto 82 mm

diameter Hybond™-N nylon membrane discs (Amersham LIFE SCIENCE) according to a

variation of the protocol found in the "DIG Application Manual for Filter Hybridisation"

(Roche 2000). Replica plating was used to transfer colonies onto fresh LB plates
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containing ampicillin (100 ug/ml) and these were incubated overnight at 37°C to allow

growth. Nylon membranes were placed onto fresh LB plates containing ampicillin

(100 ug/ml) and the freshly grown colonies were transferred onto the membranes. Colonies

were incubated at 37°C, overnight. Membranes were removed from the plates and each

placed onto lml drops of Denaturation Solution (1.5 M NaOH; 1.5 M NaCl) on plastic film

for 15 minutes. They were transferred onto dry filter paper for one minute and onto one ml

drops of Neutralization Solution (1.5 M NaCI; 1.0 M Tris-HCI, pH 7.4) for a further 15

minutes. Membranes were again transferred onto dry filter paper for one minute and

submerged in 2X SSC (1.5M Tri-sodium citrate; 3M NaCl, pH 7) for 10 minutes. In order

to dry the membranes thoroughly, they were placed on filter paper for approximately 30

minutes and the DNA was cross-linked to the membranes by exposing them to UV light

(360 nm) for 4 minutes. To remove any remaining traces of bacterial debris the

membranes were washed overnight in 3X SSC and 0.1% SDS (w/v). They were then

submerged two times for 5 minutes in 2X SSC. The membranes were stored at 4°C until

further use.

3.1.6.2 Probe Labelling

Two PstI-digested grapevine cpDNA fragments of approximately 5500 bp and 2500 bp in

size were used as probes to find overlapping clones in the EcoRI clone library. These

fragments were randomly labelled with DIG-High Prime (Roche) according the

manufacturer's instructions. Approximately 500 ng of template DNA was added to sterile

ddH20 to a final volume of 16 I..il, The DNA was denatured in a boiling water bath for 10

minutes and flash cooled on ice. Four microlitres of DIG-High Prime was added to the

denatured DNA and centrifuged briefly. The labelling mix was incubated at 37°C for 20 h.

The reaction was stopped by adding 0.2 M EDTA and heating to 65°C for 10 minutes. The

probe labelling efficiency was checked by means of the direct detection method described

in the "DIG Application Manual for Filter Hybridisation" (Roche 2000), using labelled

control DNA (Boehringer Mannheim).

3.1.6.3 Prehybridisation and Hybridisation

The protocol found in the Roche "DIG Application Manual for Filter Hybridisation"

(Roche 2000) was followed for prehybridisation and hybridisation. Membranes were

placed in roller-bottles and prehybridised in DIG Easy Hyb (Roche) at 37°C for a

minimum of 1 h. The labelled probe was denatured at 95 to 100°C for 5 minutes. The
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probe was flash cooled on ice and diluted in DIG Easy Hyb to a final concentration of

25 ng/ml. This hybridisation solution was added to the roller-tubes after removing the

prehybridisation solution. Hybridisation was performed overnight at 37°C. Membranes

were washed two times for 5 minutes at room temperature in Low Stringency Wash Buffer

(2 x SSC; 0.1% SDS (w/v)) followed by two 15-minute washes in High Stringency Wash

Buffer (0.5 x SSC; 0.1% SDS (w/v)) at 65°C.

3.1.6.4 Detection

After the high stringency washes the membranes were placed in Washing Buffer (0.1 M

Maleic acid; 0.15 M NaCI, pH 7.5; 0.3% (v/v) Tween" 20) for 5 minutes and then

transferred into Blocking Solution (Roche) for 30 minutes. For a further 30 minutes the

membranes were placed in Antibody Solution containing al: 10 000 dilution of anti-

digoxigenin-AP Fab fragments (Roche) in Blocking solution. Two 15-minute incubations

in Washing Buffer were carried out followed by equilibration of the membranes in

Detection Buffer (0.1 M Tris-HCI; 0.1 M NaCI, pH 9.5) for 5 minutes. Each membrane

was placed between two sheets of plastic film. CDP-Star™ solution (200 JlI; Roche) was

spread over each membrane, and the top sheet of plastic was placed over this. The

membranes were incubated for 5 minutes and sealed in the plastic film. Exposure of the

membrane to X-ray film (hyperfilm - Amersham Pharmacia Biotech) was carried out for

30 minutes to overnight and the film was developed.

3.1.7 Plasmid DNA Isolation

A single colony of each clone that tested positive through PCR or colony blotting was picked

and inoculated into 5 ml of LB medium containing ampicillin (100 ug/ml). The culture was

incubated at 37°C for 12 to 16 h, with shaking (~225 rpm). DNA was isolated using the

Wizard® Plus SV Minipreps DNA Purification System (Promega). The centrifugation

protocol accompanying the kit was followed.

The 5 ml culture was pelleted (16 000 x g, 5 min) and the pellet was resuspended in 250 JlI of

Cell Resuspension Solution (50 mM Tris-CI, pH 7.5; 10 mM EDTA; 100 ug/rnl RNase A).

Two hundred and fifty microlitres of Cell Lysis Solution (0.2 M NaOH; 1% SDS) was added

and the tube was inverted 4 times. Alkaline Protease solution (10 JlI) was added and the tube

was inverted four times. The sample was incubated for 5 minutes at room temperature and

350 JlI of Neutralization Solution (4.09 M guanidine hydrochloride; 0.759 M potassium
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acetate; 2.12 M glacial acetic acid, pH 4.2) was added. The tube was inverted 4 times and

centrifuged (16 000 x g, 10 min, 22°C). The cleared lysate was transferred into a spin column

placed within a collection tube and centrifuged (16 000 x g, 1 min, 22°C). The flowthrough

was discarded and the spin column placed back into the collection tube. Seven hundred and

fifty microlitres of Column Wash Solution (60 mM potassium acetate; 8.3 mM Tris-Cl, pH

7.5; 40 J.lMEDTA; 60% ethanol) was added to the spin column and centrifuged (16 000 x g,

1 min, 22°C). The flow through was discarded; 250 J.lIof Column Wash Solution was added

to the spin column and centrifuged (16 000 x g, 1 min, 22°C). The flow through was

discarded; the spin column was placed back in the collection tube and centrifuged (16 000 x g,

1 min, 22°C). The spin column was placed in a sterile 1.5 ml tube and 50 to 100 J.lIof ddH20

was added. The sample was incubated for 5 minutes and centrifuged (16 000 x g, 2 min,

22°C). Plasmid DNA was stored at - 20°C.

3.1.8 Clone Sequencing and Sequence analysis

DNA samples were sequenced at the Central Analytical Facility (Genetics Department,

Stellenbosch University). Sequencing was carried out on an ABI Prism 3100 Genetic

Analyzer using vector-specific M13 primers. The nBLAST 2 program (Altschul et al. 1997)

was used to compare sequences to those found in the non-redundant NCBI database

(http://www .ncbi.nlm.nih.gov/).

3.1.9 PCR of the rrn16 Flanking Regions

In a previous study conducted at the Department of Genetics at the University of

Stellenbosch, the sequence of a region of the rrn 16 gene of the grapevine chloroplast

genome was determined. The 5' and 3' ends of this sequence were used to design

outward- facing primers. Degenerate complementary primers were designed by using

completely sequenced chloroplast genomes of a number of other plant species as a

template.

The primers were used in an Expand High Fidelity PCR reaction to amplify the rrn 16

flanking regions from isolated grapevine chloroplast DNA. The 50 J.lI PCR reaction

contained 200 J.lM dNTPs, 300 nmols of each primer, ~ 1 ng of cpDNA, 1 x buffer

(containing 15 mM MgCh), and 2.6 U of Expand High Fidelity PCR System enzyme mix.

Reactions were heated at 94°C for 2 minutes. This was followed by 10 cycles of 94°C for
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15 seconds, 58°C for 30 seconds, and 68°C for 45 seconds. The 10 cycles were followed

by a further 30 cycles with the same steps, except for an increase of the elongation step by

5 seconds for each cycle. After the completion of the last cycle the samples were kept at

68°C for a further 7 minutes for final elongation.

The PCR products were run on a 1% agarose gel in 1X TBE buffer and the resulting band

was excised from the gel and purified using a QIAGEN: QIAquick® Gel Extraction Kit.

The protocol found in the kit manual was followed.

The excised band was weighed and placed in a microfuge tube. Three volumes of buffer

QG were added for every 1 volume of agarose gel slice (100 mg - 100 Ill). The sample

was incubated at 50°C for 10 minutes, and vortexed every 2-3 minutes during the

incubation. A QIAquick spin column was placed in a collection tube and the completely

dissolved gel slice and buffer were loaded onto the spin column. The sample was

centrifuged (16 000 x g, 1 min, 22°C), the flow through discarded, and the spin column

placed back in the collection tube. Seven hundred and fifty microlitres of Buffer PE was

added to the spin column and centrifuged (16 000 x g, 1 min, 22°C). The flow through

was discarded; the spin column was placed back in the collection tube and centrifuged

(16000 x g, 1 min, 22°C). The spin column was placed in a sterile 1.5 ml microfuge tube

and 50 III of ddH20 was added. The sample was centrifuged (16 000 x g, 1 min, 22°C) and

the DNA was sequenced at the Central Analytical Facility as described in 3.1.8.

The rrn16 flanking region sequences were used to design new outward-facing primers with

degenerate reverse primers being designed using completely sequenced chloroplast

genomes as a template. These primers were used in a new Expand High Fidelity PCR

reaction in order to sequence the next flanking region. See table 3.2 for a complete list of

primers and figure 3.1 for the relative binding positions of each of these primers on the

grapevine chloroplast genome.

Stellenbosch University http://scholar.sun.ac.za



50

Table 3.2. The rrn16-flanking region primers: The names and sequences of the primers used to amplify the
rrn 16 flanking regions are indicated.

1 16S rRNA right forward TCG CTA GTA ATC GCC GGT CAG C

2 trol right reverse CTG TGA AGA TYC GTI GTI AGG TGC TCC

3 troV left forward GGT GGA AGT CAT CAG TIC GAG CC

4 16S rRNA left reverse AAC CAC ATG CTC CAC CGC TIG T

5 3'-trol forward GAT GGG GCG ATI CAG GTG AG

6 3'-troI reverse AGA GCC GCC GAC TCC AAC TA

7 5'-troV forward TGT TGG CAC CAG TCC TAC AT

8 5'-troV reverse CCA CGA GCC TCT TAT CCA CGA

8 5 6.... +-
~ ~

+- .... +-
4 1 2

7....
....
3

l::l:::::ml V-GAC

• rrn16

~ I-GAU

• A-UGC

D Sequenced rrn16 region

Figure 3.1 The relative binding positions of eacb of tbe 8 primers designed. Primers 1 and 4 were designed

using the already sequenced rrn16 region. The grapevine chloroplast gene regions amplified by the primer pairs

are also shown.
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3.2 HAC CLONE CHARACTERISATION AND SEQUENCING

Midway through the project BAC clones containing V vinifera cv. L. Cabernet Sauvignon

chloroplast genome inserts became available. One of these clones appeared to contain

most of the grapevine chloroplast genome and was used for further library construction,

sequencing and mapping.

3.2.1 HAC Clone Storage

Twenty-four pIndigoBAC-5 (HindIII-ready) clones transformed into the Escherichia coli

strain DHlOB were obtained from Dr. Anne-Francoise Adam-Blondon (Plant Genomic

Research UnitlUnité de Recherche en Génomique Végétale (URGV), France). Each clone

contained V vinifera cv. L. Cabernet Sauvignon chloroplast genome fragments. BAC

clones were grown overnight at 37°C, with shaking, in 3 ml FM 6% glycerol

chloramphenicol (2.5% .w/v granulated LB broth; 13 mM KH2P04; 36 mM K2HP04;

1.7 mM sodium citrate; 6.8 mM (NH4)2S04; 6% w/v glycerol; 12.5 ug/ml

chloramphenicol; 0.4 mM MgS04). Seven hundred microlitres of culture was added to

700 IJ.I30% glycerol and stored at -80°C. (See appendix 4 for pIndigoBAC-5 plasmid

map.)

3.2.2 HAC-End Analysis

The end-sequences of 7 of the BAC clones received were obtained from Dr. Adam-

Blondon. The BLAST algorithm was used to compare these sequences to those found in

the NCB I database. Homologous chloroplast genome sequences were used to determine

the location of each BAC-end on the grapevine chloroplast genome. The BAC clone

OOlAOl appeared to cover the entire chloroplast genome and was therefore chosen for

further analysis.

3.2.3 Isolation of HAC Clone DNA

A single BAC colony was inoculated into 5 ml of LB medium containing chloramphenicol

(12 ug/ml) and incubated for ~8 h at 37°C with vigorous shaking (~300rpm). The starter

culture was diluted 1/500 in 500ml ofLB medium containing chloramphenicol (l z ug/ml),

The BAC clone DNA was isolated using the QIAGEN® Large-construct Kit, according to

the handbook protocol accompanying the kit.
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The 500 ml culture was pelleted by centrifugation (6000 x g, 15 min, 4°C). The pellet was

resuspended in 20 ml Buffer PI (50 mM Tris-CI, pH 8.0; 10 mM EDTA; 100 ug/ml RNase

A). Twenty millilitres of Buffer P2 (200 mM NaOH; 1% SDS) was added, the sample was

inverted 4-6 times, and incubated for 5 minutes at room temperature. Twenty millilitres of

chilled Buffer P3 (3.0 M potassium acetate, pH 5.5) was added, the sample inverted 4-6

times, and incubated on ice for 10 minutes. The sample was centrifuged (~20 000 x g,

30 min, 4°C) and the supernatant was removed and filtered through a pre-wetted filter.

Room temperature isopropanol (0.6 volumes) was added to the cleared lysate, mixed, and

centrifuged (~15 000 x g, 30 min, 4°C). The supernatant was discarded. Five millilitres of

room temperature 70% ethanol was added to the pellet and centrifuged (~15 000 x g,

15 min, 22°C). The supernatant was discarded; the pellet was air-dried and dissolved in

9.5 ml Buffer EX. Two hundred microlitres of ATP-Dependent Exonuclease and 300 fll of

100 mM ATP solution were added to the DNA solution. The sample was mixed gently but

thoroughly and incubated in a 37°C water bath for 60 minutes. A QIAGEN-tip 500 was

equilibrated by applying 10 ml Buffer QBT (750 mM NaCI; 50 mM MOPS, pH 7.0; 15%

isopropanol; 0.15% Triton®, X-IOO) and allowing the column to empty by gravity flow.

Ten millilitres of Buffer QS was added to the digested DNA sample, the sample was

applied to the QIAGEN-tip and allowed to enter the resin by gravity flow. The QIAGEN-

tip was washed with 2 x 30 ml Buffer QC (1.0 M NaCI; 50 mM MOPS, pH 7.0; 15%

isopropanol). The DNA was eluted with 15 ml Buffer QF (1.25 M NaCl; 50 mM Tris-CI,

pH 8.5; 15% isopropanol), pre-warmed to 65°C. The DNA was precipitated by adding 0.7

volumes of room temperature isopropanol and centrifuged (~15 000 x g, 30 min, 4°C).

The supernatant was discarded, the pellet was washed in 5 ml of room temperature 70%

ethanol and centrifuged (~15 000 x g, 15 min, 22°C). The supernatant was discarded and

the pellet air-dried. The DNA was dissolved in a suitable volume of TE buffer

(100 - 200 ul), pH 8.0. BAC DNA concentration was estimated by electrophoresis of the

BAC DNA in parallel with lambda standards. The BAC DNA was stored at -20°C until

further use.

3.2.4 Restriction Digestion of BAC Clone DNA

Approximately 80 ng of the isolated OOIAOl BAC DNA was digested with NotI and a 6bp

cutter (SaD, PstI, XhoI and EcoRI, respectively). A digestion of OOlAOl with only NotI
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was also performed. All digestions were performed according to the manufacturer's

instructions (Roche) and with the appropriate buffer. The digestions were incubated at

37°C for more than 3 h.

The digestions were fractionated on a 0.7% (w/v) IX TAE agarose gel for 16 to 20 h at

20 V. The gel was stained in IX TAE containing ethidium bromide (0.5 ug/ml) and

visualized under UV light.

3.2.5 Library Construction

The 001A01 BAC clone DNA was digested with NotI in combination with BamHI, San,

PstI, and SaWPstI, respectively. All restriction digestions were performed according to the

manufacturer's instructions (Roche), in the appropriate buffer. The vector, pUCBM21 or

pBluescript SK (stratagene - appendix 4), was digested with the same enzyme(s) as the

BAC clone. Vectors were, however, not digested with Notl. Vector DNA digested with a

single enzyme was SAP-treated before ligation (see 2.1.4.1 for method). Ligations were

performed according to the manufacturer's instructions (New England Biolabs) and

transformed into competent DH5a cells as described in 3.1.4.3. Refer to table 3.3 for the

restriction enzymes and vectors used, as well as the vector to insert ratios.

Table 3..3: BAC DNA subcloning: The restriction enzymes used to digest the BAC clone DNA are listed in
the first column. The vector used during each ligation as well as the ratio of vector to insert in each ligation
are also shown.

Restriction enzyme Vector Insert :Vector ratio

BamHI pUCBM21 I: I, 1:5

PstIISali pUCBM21 1:6, 1:2

SaIl pUCBM21 1:1, 1:3,3:1

PstIISall pBluescript SK 1:1,1:2,1:3,3:1

3.2.6 Colony Screening

White colonies were picked and inoculated into 5 ml of LB containing ampicillin

(100 ug/ml). Liquid cultures were incubated at 37°C for 12 to 16 h, with shaking

(-225 rpm). A variation of a standard alkaline lysis protocol (Sambrook et al. 1989) was

used to isolate the plasmid DNA.
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One and a half millilitres of the 5 ml culture was pelleted (1 min, 16 000 x g, 22°C). The

supernatant was discarded and the pellet was resuspended in 100 ~l of cell resuspension

solution (50 mM glucose; 25 mM Tris-CI, pH 8.0; 10 mM EDTA, pH 8.0). A further

200 ~l of cell lysis solution (0.2 N NaOH, 1% SDS) was added. The sample was inverted

4 times and incubated for 5 minutes at room temperature. One hundred and fifty

microlitres of chilled potassium acetate solution was added, the sample was inverted 4

times and incubated for 5 minutes on ice. The sample was centrifuged (15 min,

16 000 x g, 22°C) and the supernatant transferred to a new microfuge tube. Two volumes

of 100% ethanol were added to the supernatant and incubated on ice for 10 minutes. The

sample was centrifuged (30 min, 16 000 x g, 22°C) and the supernatant discarded. Two

hundred microlitres of 70% ethanol was added to the pellet and centrifuged (5 min,

16 000 x g, 22°C). The supernatant was discarded; the pellet was air-dried and

resuspended in 30 to 50 ~l of ddH20. RNase A (30 ug/ml) was added to the dissolved

DNA and it was stored at -20°C.

The plasmid insert size was determined by restriction digestion of the isolated plasmid

DNA with the appropriate restriction enzyme(s) followed by the visualization of the inserts

on 0.8% (w/v) IX TBE (0.090 M Tris-borate, 0.002 M EDTA) agarose gels.

3.2.7 Sub-Clone Sequencing and Sequence Analysis

A single colony of each potentially positive clone was picked and inoculated into 5 ml of LB

containing ampicillin (100 ug/ml). The culture was incubated at 37°C for 12 to 16 h, with

shaking (~225 rpm). DNA was isolated using a Wizard'" Plus SV Minipreps DNA

Purification System (Promega), as described in 2.1.8, and handed in for sequencing at the

Central Analytical Facility. Sequencing was performed on an ABI Prism 3100 Genetic

Analyzer using Ml3 or T7/T3 primers. The nBLAST 2 program (Altschul et al. 1997) was

used to compare sequences to the non-redundant NCBI database.
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4. RESULTS AND DISCUSSION

4.1 ISOLATION AND CHARACTERISATION OF VlTIS VlNIFERA

CHLOROPLAST DNA

4.1.1 Chloroplast DNA Isolation

A number of protocols were followed to isolate chloroplast DNA (cpDNA). These include

the isolation methods of Bovenberg et al. (1981), Bookjans (1984), Hirai et al. (1985), Palmer

(1988), Edwards et al. (1991), Kim et al. (1997), Mourad (1998), Triboush et al. (1998),

Mariac et al. (2000) and Mpoloka (2001). A variation on the method used by Yeoh and

Joseph (1995), described in section 3.1.2, proved to be the most successful. This method gave

high yields of cpDNA (> 1 ug) that was of suitable quality for restriction digestion and

subsequent cloning. However, limited amounts of nuclear DNA contamination and/or

sheared cpDNA were still present at the end of the extraction procedure.

Leaves from two different grapevine cultivars were used for cpDNA extractions. Sultana

leaves were obtained from the ARC Infruitec-Nietvoorbij in season. Out of season, our only

source of leaf material was the Sugra 1 cultivar grown in the glasshouse at the Institute of

Wine Biotechnology (IWBT), University of Stellenbosch.

Extracting DNA from grapevine plants was particularly difficult due to the presence of high

levels of secondary metabolites. These contaminants include tannins as well as polyphenolics

that cause DNA degradation and a viscous DNA pellet. These impurities also impair

subsequent analysis of the DNA (Lodhi et al. 1994, Porebski et al. 1997, Kim et al. 1997).

The quality of the starting leaf material played a critical role in determining the quality and

quantity of the resulting cpDNA. The best results were obtained when fresh, young, healthy

leaves obtained early in the season or from a glasshouse were used. After collection, leaves

were stored in the dark for 48 h to allow the chloroplasts to deplete their stored starch grains.

All extraction steps were performed as swiftly as possible at 0 to 4 °C to inhibit the action of

hydrolytic enzymes and reduce chloroplast membrane shearing. The ingredients of the

extraction buffer had a considerable influence on the success of the isolation. The
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incorporation of PVP-I0 (5% w/v) and a high molarity of NaCI (1.75 M) resulted in the

isolation of higher quantities of more pure grapevine cpDNA. PVP-I0 helped to absorb

tannins and other secondary plant compounds. Sodium chloride served as an osmoticum,

minimising nuclear DNA contamination and removing polysaccharides. AIO: 1 buffer to leaf

ratio was used to dilute and separate contaminants from the DNA. High levels of

2-mercaptoethanol were also added to prevent phenolic oxidation (Bookjans et al. 1984,

Palmer 1988, Schuler and Zielinski 1989, Lodhi 1994, Milligan 1992, Porebski et al. 1997).

Special care was taken during the extraction process to disrupt only the cell walls and not the

chloroplast membranes. For this reason a Waring blender was used for leaf maceration

(Palmer 1988, Schuler and Zielinski 1989). The homogenate was filtered through two layers

of cheesecloth and then through two layers of Miracloth to remove large pieces of tissue and

cells (Mariac et al. 2001).

Three methods were followed in an attempt to eliminate nuclear DNA. The first method

involved the treatment of the homogenate with Dnase I (Herrmann et al. 1975, Triboush et al.

1998). However, this method gave very low yields of degraded DNA. Grapevine

chloroplasts appear to be quite fragile and, therefore, harsh handling of the chloroplasts before

DNase treatment could have disrupted the chloroplast membranes and allowed the cpDNA to

be digested (Mourad 1998). The second method involved the use of sucrose gradients (Hirai

et al. 1985, Mourad 1998, Palmer 1988, Mpoloka 2001) in which the intact chloroplasts

banded separately from other cellular components according to their buoyant densities.

However, since only a limited amount of the homogenate could be loaded onto a single

sucrose gradient and relatively low yields were obtained, this procedure became very time-

consuming when attempting to extract large amounts of cpDNA. The method that proved

most successful involved two low-speed centrifugation steps to pellet the chloroplasts, and the

resuspension of this pellet in the extraction buffer (Yeoh and Joseph 1995).

Different methods of lysing the chloroplast membrane were also attempted. A high degree of

success was experienced when using CTAB for this purpose as opposed to SDS, sodium

sarkosinate and/or proteinase K (Bookjans et al. 1984, Mariac et al. 2000, Mpoloka 2001). A

possible explanation for this is that SDS used alone, or with sodium sarkosinate, could

interfere with organic extractions performed afterwards (Gounaris et al. 1986). Organic

extractions (phenol/chloroform/isoamyl alcohol) removed proteins still present and resulted in

a much cleaner DNA pellet. CsCI density gradients were also performed in an attempt to
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remove contaminating proteins and RNA (Palmer 1988), but this proved to be a time-

consuming and costly process, giving low yields of DNA of poor quality.

Genomic DNA contamination has proven to be a common problem in cpDNA isolations

(Schuler and Zielinski, 1989). The optimised protocol for V. vinifera cpDNA isolation

(section 3.1.2) gave high yields of relatively pure cpDNA that could be digested with

restriction endonucleases and contained minimal amounts of genomic DNA (figure 4.1).

12 Kb

Figure 4.1 Chloroplast DNA isolated from Vilis vinifera cv. L Sugra one. Lane 1: IKb+ molecular marker
(Promega) Lane 2: Two microliters of cpDNA isolated according to the method of Mariac et al. (2000). Lane 3:
Two microliters of cpDNA isolated according to Mpoloka (2001). Lane 4: Five microliters of cpDNA isolated
according to variation on the method ofYeoh and Joseph (1995 (section 3.1.2).

4.1.2 Restriction Digestion

The isolated cpDNA was digested with a number of restriction enzymes to determine both the

quality of the cpDNA and which enzymes would give fragments of sizes optimal for further

cloning. Although difficulties in digesting the cpDNA were encountered at first, cpDNA

digested readily with restriction endonucleases once the isolation procedure had been

optimised and inhibitors such as tannins and polysaccharides had been removed. The cpDNA

isolated was therefore shown to be of suitable quality for further cloning and sequencing.

In figure 4.2 cpDNA isolated according to the optimised protocol (section 3.1.2) was digested

with EcoRI and run in lane 2. The cpDNA bands are clearly visible, but there is a background
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smear of genomic DNA. Digestion with BamHI and Psti yielded comparable results (not

shown). This indicates that the grapevine genomic DNA had not been completely removed

during the cpDNA isolation process. Spinach cpDNA was used as a positive control and run

in lane 3 (figure 4.2). The spinach cpDNA digested more efficiently with less genomic DNA

contamination, even when a simple extraction protocol was used. The reason for this is that

spinach leaves contain almost no polyphenols or other secondary metabolites that could

interfere with both cpDNA extractions and subsequent restriction digestion (Schmitz-

Linneweber 2001).

Figure 4.2 A typical chloroplast DNA restriction digestion: 1: IKb+ molecular marker. 2: V. vinifera cv L.
Sugra one cpDNA digested with EcaRI. 3: S. oleracea cpDNA digested with EcaRI.

4.1.3 Library Construction and Library Screening using PCR

The restriction enzymes PstI, EeaR! and BamHI digested the cpDNA into fragments of an

optimal size for cloning (1-1Okb). Psti digested the cpDNA into large fragments, while

EeaR! and BamHI produced smaller-sized fragments. Ligations and transformations were

carried out as described in 3.1.4. White colonies obtained from ligation 1, 2 and 3 were

screened by means ofPCR reactions using vector-specific M13 primers (table 4.1).

Ligation 1, 2 and 3 (table 4.1) had very low transformation efficiencies, with a low percentage

of white colonies testing positive during PCR. A possible reason for this could be the
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presence of impurities in the Sultana cpDNA used in these ligation reactions. This cpDNA

was not isolated according to the optimised extraction protocol and may have contained

inhibiting elements such as polyphenols.

The highest number of white colonies was obtained in ligation 4 (table 4.1). The quality of

the Sugra 1 cpDNA used in ligation 4 could have played a role in the high ligation efficiency

obtained. Leaves acquired from the IWBT glasshouse were used to extract the cpDNA

according to the optimised isolation protocol (section 3.1.2). The 604 colonies obtained in

ligation 4 (table 4.1) were transferred onto new LB plates in a grid pattern, with 48 colonies

per plate (6 X 8). These clones were maintained by replica plating them onto fresh plates

containing selective media once a month.

Table 4.1 Ligation efficiency: The number of white colonies obtained for each ligation are indicated, as well
as the number of fragments that amplified during the PCR reaction performed on each colony.

No. of white No. amplified in
Ligation no. Restriction enzyme Vector:insert ratio

colonies peR

1 EeaRI 1:6 15 5

2 BamHI 1:2 24 1

3 PstI 1:12 17 6

4 EeaRI 1:2, 1:4 604 No PCR performed

4.1.4 Library Screening by Colony Blotting

Colony blotting was chosen as a method of screening the EcoRI cpDNA library (ligation 4)

for overlapping clones. It was believed that this would be a more efficient method of

screening the large number of colonies obtained in ligation 4 than PCR. Two PstI-digested

clones that had been sequenced and found to be of chloroplast origin (P3 and P4 - ligation 3,

table 4.1) were used as probes to find overlapping clones. The positive EcoRI clones could

then be used as probes to screen a PstI library. The new positive PstI clones would then be

used to screen the EcoRI library again, and in this way we could walk outwards from the first

2 PstI clone.

DNA was transferred and fixed to nylon membranes by means of the colony lifting procedure.

The arrangement of colonies in a grid pattern facilitated this procedure, allowing 48 colonies

to be replica plated at a time. According to the protocol described in the "DIG Application

Manual for Filter Hybridisation" (Roche) colonies should be transferred from an LB plate
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onto a nylon membrane by placing the membrane face down onto the colonies and then lifting

it off, making sure that the colonies adhered to the membrane. We experienced problems

when following this method. Some colonies were only partially transferred and some were

not transferred at all. Replica plating the bacterial colonies directly onto the membrane and

incubating them overnight resulted in an efficient amount of bacterial DNA being transferred

onto the membrane (Shelly Deane, Pers. comm., US Microbiology Dept.).

The optimum length of time for UV fixation was determined by exposing a positive control

colony to UV light for different lengths of time, ranging from 1 to 5 minutes. Four minutes

proved to be the optimal time for UV fixation. Once DNA had been fixed to the membrane

all colony debris was removed by washing the membranes in 3 x SSC and 0.1 % SDS (w/v).

This was carried out to prevent cell debris from inhibiting the hybridisation of the probe to the

positive clone DNA fixed to the membrane.

The efficiency of probe labelling with DIG High Prime was tested by placing a dilution series

of the labelled DNA onto a nylon membrane, ranging from 0.01 pg/ul to 1 ng/ul. Labelled

control DNA (Roche) was also placed on the membrane using the same dilution series. The

signal intensity of the labelled probe was comparable to that of the control DNA,

demonstrating the efficiency of probe labelling.

After hybridisation with the PstI probes, only feint signals were observed on the

autoradiography film and no conclusions could be drawn from these results. Attempts to

optimise the hybridisation reaction by lowering the hybridisation temperature and adjusting

the temperature and salt concentration used in the high stringency wash resulted in minor

improvements. However, conclusive results were not obtained using colony blotting. This

method of colony screening was not optimised further as a result of the availability of an

alternative method of constructing a grapevine chloroplast genome library. This method used

BAC clones containing cv L. Cabernet Sauvignon chloroplast DNA inserts (see section 4.2).

4.1.5 Clone DNA Isolation and Sequencing

Clones selected for further sequencing were isolated with the Wizard® Plus SV Minipreps

DNA Purification System (Prornega). The isolated DNA was digested with the appropriate

restriction enzyme and electrophoresed on an agarose gel to determine the insert sizes. The

results of these digests are shown in figure 4.3 and figure 4.4.

Stellenbosch University http://scholar.sun.ac.za



61

The ligation 1 and ligation 2 clones (table 4.1) gave unexpected banding patterns when

digested with the appropriate restriction enzyme, with no vector fragment being visible (figure

4.3, lane 2-8). These results were reproducible and could not be explained. The clones were

therefore not analysed further. Clone 1, 2, 4 and 6 of the Psti ligation (P 1, 2, 3, 4) contained

insert DNA (figure 4.3, lane 9, 10, 12 and 14 respectively). Clone 3 did not contain an insert

and clone 5 gave unexpected banding patterns (figure 4.3, lane 11 and 13 respectively). Of

the 5 EcoRI clones randomly selected from the EcoRI library for sequencing (figure 4.4, lane

2-6), four contained insert DNA and only clone 5 did not. Clone 3 appeared to contain 2

insert fragments.

Four Psti clones (PI, P2, P3, P4 - figure 4.3) and three EcoRI clones (El, E3, E4 - figure 4.4)

were sequenced using vector-specific M13 primers. The BLAST algorithm was used to

determine sequence homologies between the sequences obtained and those found in the NCB!

database (table 4.3, table 4.4). PI and P2 showed no significant homology to any sequence in

the NCB! database. Only a 40 bp fragment of the P2 reverse sequence showed 92%

homology to the mitochondrial matK sequence of a number of species. P3 and the reverse

sequence of P4 both had a high degree of homology to higher plant chloroplast sequences

(sequences in addendum 1). The forward sequence of P4 was not of high enough quality to

be used in a BLAST search. All 3 EcoRI clones sequenced were of chloroplast origin

(sequences in addendum 1). E3 appeared to contain two inserts, with the forward sequence of

the one insert and the reverse sequence of the other insert having been sequenced. The results

of the BLAST search suggested that the insert was approximately 21 kb in size, which did not

correspond with the fragment sizes observed on the gel photo (figure 4.4).

Three of the 4 clones obtained have been mapped against the Atropa belladonna chloroplast

genome using BioEdit (Hall 1999) (figure 4.5). Clone E3 could not be placed on the map,

because two inserts were contained in this clone and only one end of each insert has been

sequenced. The forward sequence of clone P4 was not known, but the direction and size of

the clone could be determined and P4 could be placed on the map. P3 and E4 are found in the

inverted repeat region, while El is in the large single copy region. The gene regions where

each of these clones are found are shown in table 4.2
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Figure 4.3 Restriction digestions of possible positive clones. Lane 1: 1 Kb+ molecular marker. Lane 2-7:
EeaRl clones (ligation 1, table 1). Lane 8: Bamill clone (ligation 2, table 1). Lane 9-14: Pstl clones (ligation 3,
table 1).
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Figure 4.4 Five EeaRllibrary clones (ligation 4, table 4.1): Lane 1: IKb+ molecular marker. Lane 2: EeaRI I
(EI). Lane3: EeaRI clone 2 (E2). Lane4: EeaRl clone 3 (E3). Lane 5: EeaRI clone 4 (E4). Lane 6: EeaRI
clone 5.
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Table 4.2 The gene locations of the sequenced clones.

Sequenced Clone Gene location

EI rpsl6 - trnK (tRNA-Lys)

E3 ycj1 (insert I), ycj2 (insert2)

E4 rrn5, tRNA-Asn, tRNA-Arg, rrn4.5

P3 ycj2, ycj15,ndhB, rps7

P4 petB,petD

Table 4.3 The degree of homology found between cpDNA clones EI, E3 and E4 and the chloroplast genomes

of Spinacia o/eracia, Nicotiana tabacum and Atropa belladonna.

Clone Primer Plant species % Homology Clone region E value
P3 Ml3 Forward S. oleracia 94 37-778 0.0

N. tabacum 96 157-778 0.0
A. belladonna 96 157-778 0.0

MI3 Reverse S. o/eracia 96 1-559 0.0
90 586-668 3e-14
85 683-779 0.11

N. tabacum 96 5-467 0.0
88 496-710 2e-46

A. belladonna 96 5-467 0.0
90 496-710 8e-61

P4 Ml3 Reverse S. o/eracia 94 366-422 6e-15
93 438-610 le-62

N. tabacum 91 367-422 le-09
94 438-610 2e-67

A. belladonna 91 367-422 le-09
94 438-610 2e-67
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Table 4.4 The degree of homology found between cpDNA clones P3 and P4, and the chloroplast genomes of

Spinacia o/eracia, Nicotiana tabacum and Atropa belladonna.

Clone Primer Plant species % Homology Clone region E value
El M13 Forward S. oleracia 86 124-441 2e-68

N. tabacum 95 138-181 2e-09
94 195-430 e-IOO

A. belladona 95 138-181 2e-09
94 195-441 e-I02

MI3 Reverse S. o/eracia 89 18-183 8e-52
N. tabacum 89 17-190 6e-53
A. belladona 88 17-190 3e-51

E3 MI3 Forward S. oleracia 89 273-311 0.11
92 335-376 7e-06
88 399-469 3e-11
80 495-686 2e-21

N. tabacum 85 414-470 0.007
91 537-585 le-07

A. belladona 84 399-470 le-04
91 537-585 le-07

MI3 Reverse S. oleracia 96 1-63 8e-21
93 220-688 0.0

N. tabacum 94 1-690 0.0
A. belladona 94 1-690 0.0

96 713-740 1.5
E4 M13 Forward S. o/eracia 88 22-153 2e-34

93 260-490 8e-86
92 502-641 le-47
94 680-765 2e-21

N. tabacum 89 22-490 e-158
92 502-641 8e-46
94 678-765 le-22

A. belladona 92 30-179 2e-49
93 229-490 e-I05
91 502-641 2e-43
94 678-765 le-22

MI3 Reverse S. o/eracia 95 6-184 5e-71
92 166-206 1.4
94 227-491 e-144
95 474-497 5.7
96 672-701 0.001

N. tabacum 97 1-184 le-83
95 166-210 2e-05
98 226-497 e-144
90 519-656 5e-40
100 672-701 6e-06

A. belladona 97 1-184 le-83
95 166-210 2e-05
98 226-497 e-144
89 519-656 le-37

100 672-701 6e-06
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Figure 4.5 Four Vvinifera cpDNA clones mapped against the Atropa belladonna chloroplast genome by using
their forward and reverse sequences. The direction of each arrow indicates the orientation of the clone in the
plasmid vector pUCBM21 (Ml3 forward to Ml3 reverse). P3 and P4 contain Sultana cpDNA inserts, while E4
contains a Sugra I cpDNA insert. IR: Inverted repeat region. LSC: Large single copy region. SSC: Small single
copy region.

4.1.6 peR of the rrn16 Flanking Regions

At one point in the project leaf material was not available to allow further isolation of

cpDNA. At this time, walking outwards from the rrn 16 gene region was chosen as an

alternative method of chloroplast genome sequencing.

Enough cpDNA of high enough quality had previously been isolated to allow for a number of

PCR reactions to be carried out. The designed primers were successfully used in an Expand

High Fidelity PCR (table 3.2). Julia Robson performed the amplification of the region

immediately flanking the left side of the rrn16 region (using primers "16S rRNA left reverse"

and "trnV left forward"). This region's sequence was added to those that we sequenced. A

total region of approximately 3320 bp was successfully amplified from the V. vinifera cv L.

Sultana chloroplast genome (sequences in addendum 2). However, this method is expensive

and time-consuming and was not continued once leaf material became available again.
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4.2 HAC CLONE SEQUENCING

4.2.1 HAC-End Analysis

The BLAST algorithm was used to compare the BAC-end sequences received from Dr.

Adam-Blondon (URGV) to the NCB I database. One clone, OOlAOl, appeared to cover

almost the entire genome, except a region of approximately 500bp. This BAC clone was

chosen for further sub-cloning and analysis.

4.2.2 Isolation of HAC Clone DNA

Four different protocols were followed in an attempt to isolate BAC clone DNA. Protocol 1

was obtained from Dr. Adam-Blondon (URGV) and was a variation on a standard alkaline

lysis miniprep procedure. This method gave relatively pure BAC DNA, but only small

culture volumes were used (5 ml/reaction) and therefore low concentrations of DNA were

obtained (-60 ng/5 ml culture).

Protocol 2 (http://bioprotocols.bio.comlprotocolstools/protocol.jhtml?id=1338) was similar to

protocol I, but used much larger culture volumes (250 to 500 ml). A higher yield of BAC

DNA was therefore obtained, but a background smear of bacterial host-cell DNA was present.

This BAC DNA was not used in further analyses. When using traditional methods of BAC

DNA isolation, up to 30% of the resulting DNA can be genomic DNA contamination

(QIAGEN® Large-Construct Kit handbook). Only one or two copies of the BAC plasmid are

present per bacterial cell. Therefore, yields of BAC DNA are considerably lower than

obtained when isolating plasmid DNA. Large culture volumes are required for sufficient

BAC DNA to be obtained for further experimentation. However, the number of bacterial

cells also increases with larger culture volumes and, thus, the amount of cell debris and host

nuclear DNA present. The average E. coli genome is approximately 5 Mb

(http://www.ncbi.nlm.nih.gov/), and therefore makes up a large percentage of the total DNA

isolated.

Protocol 3 involved the purification of the BAC DNA according to the 'very low-copy

plasmid purification protocol' found in the QIAGEN® Plasmid purification handbook. The

QIAGEN® Plasmid Midi Prep Kit (100) was used to carry out the protocol. This method was

attempted in the hope that the column would prevent the genomic DNA from being eluted.
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However, the isolated DNA had a large background smear and a large percentage of bacterial

host cell DNA was present. It is possible that the bacterial lysate could have been mixed too

vigorously or that the column allowed sheared bacterial DNA to be eluted with the BAC

DNA.

The QIAGEN® Large-Construct Kit (10) was used to carry out protocol 4, according to the

protocol accompanying the kit. Both the protocol and the kit have been specifically adapted

for the isolation of BAC, PAC, PI, and cosmid DNA without genomic DNA contamination.

The protocol involved the digestion of the lysate with ATP-Dependent Exonuclease, prior to

loading the DNA onto a column. The Exonuclease only digested linear DNA, such as

genomic DNA and sheared or nicked BAC DNA, leaving the circular, supercoiled BAC DNA

intact. This method gave a very low yield of -200 ng of BAC DNA per 500ml culture.

Although the kit protocol was followed precisely, genomic DNA was still present in the

eluate. There are a few possible reasons for this contamination. The Exonuclease digestion

may have been insufficient. Large fragments of genomic DNA, not digested efficiently with

the exonuclease, may then have been eluted with the BAC DNA. Another reason could be

that the ATP, not supplied with the kit but obtained independently, may not have worked

efficiently.

4.2.3 Restriction digestion

The isolated BAC clone DNA was efficiently digested with a variety of restriction enzymes.

Notl was used to cut the insert out of the vector. The digested BAC DNA was run on a 0.7%

agarose gel overnight to ensure that the large fragments separated properly (figure 4.5).

The photo of the digested OOIAOI BAC DNA (figure 4.5, lane 2-6) was used to calculate the

size of the chloroplast genome. The software programs Scion image (Scion corporation 2000)

and dnafrag V3.03 (Schaffer and Sederoff 1981) were used to calculate the size of each

fragment in lane 3, 4 and 5 (figure 4.5). The totals were added together and this value was

divided by three to obtain an average value. The plndigo-5 BAC vector size was subtracted

from this to get a final size of -115 Kb. However, this is only a minimum size value. Some

fragments may actually be doublets, containing two identical IR fragments. Very large and

very small fragments may also not be clearly visible on a 0.7% gel. The digested BAC clone

DNA would need to be separated on both lower and higher percentage agarose gels to see

these fragments clearly. The size of the entire BAC insert run in lane 6 (figure 4.5) was
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calculated as being ~28 Kb, but this is inaccurate. The fragment in lane 6 runs higher on the

gel than the largest molecular marker fragment, making it difficult to determine an accurate

size value.

6.5kb

Figure 4.5 Restriction digestion ofBAC clone OOIA01: Lane 1: A/EcoRl molecular marker. Lane 2: OOIAOI
isolated with protocol I and digested with Notl and EcoRl. Lane 3: OOIAOI digested with Notl and Sail. Lane
4: OOIAOI digested withNotl andPstI. Lane 5: OOIAOI digested with Notl andXhoI. Lane 6: OOIAOI digested
with Notl. Lane 7: AlHindllI molecular marker.

23kb

4.8 kb ___. ~ •
+- 4.3kb

4.2.4 Subcloning and Colony Screening

Restriction digestion of the OOIAOI BAC clone DNA with BamH!, San, and a combination of

Pstï and SaIl, respectively, gave fragments of a suitable size for subeloning (1-10 kb).

Digested BAC DNA was ligated into either the pUCBM21 or pBluescript SK plasmid vector.

White colonies were screened by comparing clone insert sizes on agarose gels.

See table 3 for the results of the ligations performed. The limited success of the Bam HI and

San ligations (ligation 1 and 2, table 4.5) could have been a result of incomplete SAP

treatment and the consequent re-ligation of the pUCBM21 vector onto itself. The double

digestion of the vector with PstI and San eliminated this problem. However, the PstI and San

restriction sites are only 11 bp apart on the pUCBM21 vector's multiple cloning site. The

close proximity of these sites could have hindered the restriction digestion of the vector with

both enzymes (Sambrook and Russel 2001) and could explain the limited success obtained for

ligation 4 (table 4.5). The PstI and Sail restriction sites are 29 bp apart from each other on the

plasmid vector pBluescript SK. This vector was therefore chosen for further PstVSan

ligations (ligation 5- 7, table 4.5).
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Table 4.5 Ligation efficiency: The results of the ligation of restriction-digested BAC clone fragments into
appropriate plasmid vectors, as well as the number of possible positive clones obtained after screening of the
white colonies.

Ligation BAC isolation Restriction Vector Insert: Vector No. of white Possible

no. protocol used enzyme(s) ratio colonies (total) positive clones

1 1 BamHI pUCBM21 1:1 28 5

2 1 San pUCBM21 1:1,1:3,3:1 6 1

3 1 PstJJSan pUCBM21 1:6, 1:2 22 2

4 1 PstI/San pSK 1:1 16 9

5 1 Pstl/San pSK 1:3,3:1 200 5

6 3 PstI/San pSK 1:2 200 16

7 4 PstJJSan pSK 1:1, 1:2, 1:3 >400 13

All 56 colonies obtained from ligation 1, 2 and 3, and approximately 360 colonies obtained

from ligations 5, 6 and 7 (table 4.5), were screened. The plasmid DNA was isolated from

each colony and digested with the restriction enzyme(s) used for the ligation reaction. The

digested DNA was electrophoresed on agarose gels and the insert sizes were determined by

using a molecular marker (A/Styl). Fragments of similar size were digested with a range of

restriction enzymes (e.g. EcoRI, BamHI and Styl) and separated on an agarose gel to

determine the banding patterns produced. Since the entire BAC clone was included in the

ligation, some clones may have contained BAC vector insert. To determine the expected

sizes of these fragments, the plndigoBAC-5 vector was virtually digested with the appropriate

enzyme(s) by using the pDRA W32 1.0 (Olesen 1998) software program. Cloned fragments

of the same size as the expected BAC vector fragments were eliminated. The clones that

appeared to be novel after being subjected to the above-mentioned tests were selected for

sequencing.

4.2.5 Sequencing and sequence analysis

Selected clones were isolated with the Wizard® Plus SV Minipreps DNA Purification System

(Promega) and sequenced. The BLAST algorithm was used to compare sequences to those

found in the NCBI database in order to find homologous chloroplast sequences (table 4.7).

The 3 clones selected from ligation 1 were all positive, but 2 contained the same fragment

(table 4.6). Partial digestion of the clones could have lead to them appearing different during

gel photo analysis. The ligation 2 clone contained a fragment of the BAC vector (table 4.6).
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One of the ligation 3 clones was of chloroplast origin, but the second was of BAC vector

origin (table 4.6).

Of the nine ligation 4 clones (table 4.6), two were of chloroplast origin (PS1, PS2). However,

one of these contained the same insert as the positive ligation 3 clone. Bacterial DNA

contamination was detected for the first time in ligation 4. The two BAC vector fragments

that would be produced during a PstI/San-digest had both been cloned and sequenced in

ligation 4, and could be used for subsequent restriction fragment analysis to minimise the

chance of sequencing another BAC vector fragment. Genomic DNA contamination was

found in three of the five ligation 5 clones (table 4.6). The remaining two were of chloroplast

origin (PS3, PS4). BAC isolation protocol 3 was followed in an attempt to eliminate the

genomic DNA contamination. However, this method was unsuccessful, since all 16 clones

sequenced contained bacterial genomic DNA. Ligation 7 (table 4.6) gave seven clones of

chloroplast origin, of which three sets of two were identical and one contained an insert that

had already been obtained in ligation 5 (PS5, PS6, PS7). Four of the 13 sequenced clones

contained bacterial DNA inserts. This was a vast improvement over the results obtained from

the third protocol, but 31% (4/13) of the clones still contained bacterial DNA contamination.

In figure 4.6 the 00lA01 BAC clone digested with PstI, San and NotI was run in lane 2. A

background smear was visible in the digested BAC DNA, but this could be either genomic

DNA contamination or other impurities. Clone PSI to PS7 were run in lane 3 to 9 (figure

4.6).

Table 4.6 Sequencing results

Ligation no.
Possible positive Actual positive clones

BAC vector Bacterial DNA clones
clones (Name)

1 3 3 (Bl, B2, B3) 0 0

2 1 0 1 0

3 2 1 1 0

4 9 2 (PS 1, PS 2) 4 4

5 5 2 (PS 3, PS 4) 0 3

6 16 0 0 16

7 13 7 (PS 5, PS 6, PS 7) 2 4
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Figure 4.6 A 0.7% agarose gel containing digested 001AOI DNA and V vinifera chloroplast DNA sub-clones.
Lane I: IKb+ molecular marker. Lane 2: OOIAOI DNA isolated by means ofprotocol4 and digested with Pstl,
San and Notl. Lane 3: Clone PS5. Lane 4: Clone PS6. Lane 5: Clone PSI. Lane 6: Clone PS4. Lane 7: Clone
PS3. Lane 8: Clone PS7. Lane 9: Clone PS2.

Figure 4.7 indicates the mapped positions of the OOlAOl BAC sub-clones against the A.

belladonna chloroplast genome. Clone B3 was not included on the map, because it contained

two inserts and only one end of each insert was sequenced. Seven of the clones were found in

the LSC region, with PS3, PS2 and PS6 lying next to each other. Two clones mapped to the

IR region, but no fragments from the SSC region were successfully cloned. The gene regions

covered by each of the clones on the map are given in table 4.8.

The location of all the clones sequenced in this project, except for B3 and E3, are mapped

against the Atropa belladonna chloroplast genome. The clones are well distributed across the

IR and LSC regions, with only the SSC region not having been cloned.

In table 4.9 the size of each clone obtained, apart from B3 and E3, has been determined. By

adding the values together a total of 44434 bp is obtained. When taking into account that the

IR repeat regions are identical to each other, the values of clones falling into this region can

be doubled. This increases the total to 54263 bp. The grapevine chloroplast genome is
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probably between 120 and 160 kb in size. Therefore, the clones obtained in this project cover

roughly 40% of the genome.

IR
PSt PS4

B3••
\

146231

-, 81135786 20891

125341
sse

114896

Atropa belladonna
156687 bp

\ \

94006 62671
/

83561 73116

PS5

Figure 4.7 The V. vinifera cv L. Cabernet Sauvignon sub-clones from BAC clone OOIAOIwere mapped onto the
Atropa belladonna (deadly nightshade) chloroplast genome. The forward and reverse sequences of each clone
were used to map the clones. The direction of each arrow indicates the orientation of the clone in the plasmid
vector used (M13 forward to M13 reverse, or T3 to T7). SSC: Small single copy region. LSC: Large single
copy region. IR: Inverted repeat.
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Table 4.7 The percent homology found between the sequenced BAC sub-clones and the chloroplast sequences
of Atropa belladonna, Nicotiana tabacum and Spinacia o/eracia.

Clone Primer Plant Species
0/0 Clone

Homologous area
E-

Homology region value
Bl MB forw A. belladonna 94 12-839 24897-24067 0.0

N. tabacum 94 12-839 25130-24300 0.0
S. o/eracia 94 8-812 23241-22437 0.0
A. thaliana 92 8-811 23946-23143 0.0

MI3 rev A. belladonna 86 532-788 23382-23645 3e-63
84 240-463 23113-23330 6e-50
83 1-187 22881-23060 3e-37

N. tabacum 85 532-788 23614-23878 3e-59
86 240-463 23345-23562 4e-55
83 1-187 23113-23299 3e-37

S. o/eracia 82 322-788 21517-21986 2e-93
84 2-147 21209-21361 2e-27
89 244-282 21447-21485 0.001
90 27-59 80179-80211 0.063

A.·thaliana 86 601-788 22500-22690 2e-45
83 240-457 22133-22342 6e-39
92 5-81 21878-21953 3e-19
90 130-181 22012-22063 2e-09

B2 MB forw A. belladonna 94 1-239 101805-102038; 141752-141519 e-I02
90 225-523 102090-102383; 141467-141174 e-IOO
93 519-618 102484-102577; 141073-140980 2e-31

N. tabacum 94 1-239 101537-101770; 141089-140856 e-l02
90 276-523 101842-102084; 140784-140542 le-81
93 519-618 102185-102278; 140441-140348 2e-31
92 225-263 101801-101839; 140825-140787 5e-04

S.o/eracia 97 1-239 96480-96718; 136965-136727 e-114
88 237-523 96753-97044;136692-136401 2e-86
88 519-815 97139-97441; 136306-136004 2e-80

A. thaliana 95 1-206 99557-99762;139092-138887 2e-89
93 521-693 100208-100380; 138441-138269 6e-65
89 220-384 99809-99969; 138840-138680 3e-42
87 714-840 100404-100542;138245-138107 3e-20
93 418-462 99988-100032;138661-138617 le-07
94 490-523 100070-100103;138579-138546 0.002

MB rev A. belladonna 98 3-831 104738-103903; 138819-139654 0.0
N. tabacum 98 3-831 104428-103594; 138198-139032 0.0
S. o/eracia 98 91-831 99522-98781;133923-134664 0.0

96 13-98 99612-99527;133833-133918 4e-32
A. thaliana 98 1-831 102677-101846;135972-136803 0.0

PSI Ml3 forw A. belladonna 98 9-981 98427-99399; 145130-144158 0.0
N. tabacum 98 9-981 98161-99133; 144465-143493 0.0
S. oleracia 96 13-981 93411-94373; 140034-139072 0.0
A. thaliana 96 9-981 96060-97036;142589-141613 0.0

M13 rev A. belladonna 95 199-409 100066-99858;143491-143699 6e-91
94 5-157 100255-100103;143302-143454 3e-62

N. tabacum 95 199-409 99793-99585; 142833-143041 6e-91
94 5-157 99982-99830;142644-142796 3e-62

S. o/eracia 96 199-409 95406-94838;138399-138607 3e-93
94 1-157 95239-95083;138206-138362 le-64

A. thaliana 95 199-409 97731-97523; 140918-141126 6e-91
94 1-157 97924-97768; 140725-140881 le-64
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PS2 M13 forw A. belladonna 92 312-454 49830-49973 4e-45
93 1-76 49482-49556 7e-19
85 109-230 49643-49765 1e-14
90 892-946 50379-50433 ge-09

N. tabacum 92 315-454 50186-50326 2e-43
93 1-76 49841-49915 7e-19
84 109-230 50002-50119 1e-14
92 892-946 50738-50792 4e-11

Si oleracia 97 363-444 46932-47013 7e-32
100 1-46 46558-46603 2e-14
77 109-225 46675-46787 7e-06
87 504-536 47041-47073 4.5

A. thaliana 94 368-451 48175-48258 7e-28
93 391-419 48018-48046 0.31
97 4-43 47451-47490 2e-09
93 906-968 48597-48658 2e-14

MB rev A. belladonna 91 1-749 57975-57228 0.0
N. tabacum 92 1-749 58322-57575 0.0
S. oleracia 90 1-747 54552-53801 0.0
A. thaliana 92 1-749 55685-54938 0.0

PS3 T3 A. belladonna 91 1-663 57980-58642 0.0
90 710-758 58755-58805 0.004

N. tabacum 91 1-686 58327-59012 0.0
90 710-758 59102-59152 0.004

S. oleracia 92 1-689 54557-55245 0.0
A. thaliana 92 1-688 55690-56377 0.0

T7 A. belladonna 93 97-159 63493-63431 5e-16
92 256-293 63343-63306 0.002
92 802-852 62856-62803 0.002
82 503-588 63115-63027 0.11
92 43-70 63538-63511 6.9

N. tabacum 87 97-159 63292-63230 2e-06
92 802-852 63189-63136 0.002

S. oleracia 89 802-856 59104-59047 0.44
A. thaliana 100 105-128 60581-60558 0.028

PS4 T3 A. belladonna 94 545-749 13268-13 063 1e-83
98 8-73 13724-13659 5e-25
89 238-284 13513-13467 4e-04
91 494-527 13304-13271 0.38

N. tabacum 95 545-749 13480-13275 6e-86
100 8-73 13918-13853 2e-27
89 238-284 13714-13668 4e-04
91 494-527 13516-13483 0.38

S. oleracia 96 553-733 12109-11929 1e-80
96 8-73 12549-12484 1e-22
87 179-233 12387-12332 0.024

A. thaliana 92 560-748 12811-12622 7e-67
96 8-72 13326-13262 5e-22
93 239-284 13156-13111 3e-08
86 187-237 13191-13141 0.095

T7 A. belladonna 90 485-774 10387-10680 5e-87
98 213-310 10192-10289 5e-44
98 1-66 9982-10047 6e-25
96 33-59 37840-37866 0.11

N. tabacum 90 485-774 10619-10912 2e-89
98 213-309 10421-10517 2e-43
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98 1-66 10201-10266 6e-25
96 33-59 38101-38127 0.11

S.o/eracia 89 474-720 9164-9411 4e-69
97 210-310 9030-9130 5e-41
98 1-61 8875-8935 6e-22
96 36-63 35205-35232 0.028

A. thaliana 86 501-721 9948-10169 2e-46
98 217-294 9585-9662 4e-32
96 1-61 9372-9432 le-19
95 36-59 36536-36559 6.9

PS5 Compl. Sequ A. belladonna 95 1-64 82358-82295 5e-19
93 129-588 82245-81786 0.0
91 616-724 81773-81665 le-31

N tabacum 95 1-64 82125-82062 5e-19
93 129-588 82012-81553 0.0
91 616-724 81540-81432 le-31

S.o/eracia 91 1-62 78172-78111 4e-13
91 129-589 78011-77551 e-167
88 631-724 77524-77425 le-19

A. tha/iana 90 1-64 79562-79499 7e-12
90 181-585 79386-78982 e-136
92 641-724 78937-78854 8e-24

PS6 T3 A. belladonna 97 125-207 48163-48245 5e-33
N tabacum 97 125-207 48503-48585 5e-33
S.o/eracia 95 124-228 45492-45595 le-36

96 29-57 45377-45405 0.003
A. thaliana 98 131-210 46209-46288 le-33

T7 A. belladonna 85 1-389 49487-49112 3e-96
87 404-670 49108-48840 2e-75
83 740-794 48785-48730 0.064

N tabacum 84 1-389 49846-49465 5e-91
87 404-670 49461-49198 8e-75
82 740-816 49138-49062 0.004

S.o/eracia 91 429-566 46352-46212 7e-46
88 1-145 46563-46411 2e-39
97 351-389 46412-46374 7e-09
84 739-790 46052-46000 0.064

A. tha/iana 84 271-566 47179-46894 le-73
89 1-131 47453-47322 3e-37

PS7 T3 A. belladonna 93 1-802 36585-35777 0.0
N tabacum 93 1-802 36830-36022 0.0
S. o/eracia 91 1-802 33867-33059 0.0
A. thaliana 91 1-802 35071-34263 0.0

T7 A. belladonna 92 1-779 26489-27267 0.0
N tabacum 92 1-779 26722-27500 0.0
S. o/eracia 90 1-779 24829-25607 0.0
A., tha/iana 90 186-772 25725-26311 0.0

92 3-139 25542-25678 8e-46
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Table 4.8 The gene locations of the OOIAOI sub-clones.

BAC OOlAOl sub-clone Gene location

Bl rpoB - rpoC

B2 rps7,tRNA-Val (GAC) - rrnl6

PSI rps7 - ndhB

PS2 tRNA-Leu (UAA), tRNA-Phe(GAA) - rbcL

PS3 rbcL-ycf4

PS4 a/pF, a/pH - tRNA-Gly(UCC), tRNA-Arg(UCU), atpé:

PS5 rpoA, rps II ,rp136

PS6 tRNA- Thr(UGU) - tRNA-Leu(UAA)

PS7 psbC - rpoB

Table 4.9 The insert size of each cpDNA clone.

CpDNAClone Size of insert (bp)

EI 1304

E4 1186 (x2)

P3 3866 (x2)

P4 1200

BI 2005

B2 2935 (x2)

PSI 1842 (x2)

PS2 8493

PS3 5601

PS4 3750

PS5 703

PS6 1453

PS7 10096
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Figure 4.8 Sultana and Sugra 1 cpDNA clones, as well as BAC OOIAOIsub-clones, mapped onto the Atropa
belladonna (deadly nightshade) chloroplast genome. The forward and reverse sequences of each clone were
used for mapping. The orientation of each clone in the appropriate plasmid vector is indicated by the direction
of the arrows. SSC: Small single copy region. LSC: Large single copy region. IR: inverted repeat.
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4.3 GENERALDISCUSSION

The primary goal of this project was to create a library of overlapping clones covering most of

the V. vinifera chloroplast genome and to characterise these clones. The first step towards

accomplishing this goal was to isolate pure grapevine cpDNA. The cpDNA would then be

digested with appropriate restriction enzymes and the fragments shotgun-cloned into a

plasmid vector. Clones would be partially sequenced and arranged correctly on a map by

comparing them to already sequenced higher plant chloroplast genomes.

The isolation of pure cpDNA from grapevine proved to be a challenging task. High levels of

secondary metabolites present in grapevine leaves hindered the isolation procedure and made

it difficult to eliminate contaminating genomic DNA. A number of methods were attempted

for grapevine cpDNA isolation and chemicals such as PVP-I0 and high levels of NaCI were

included to counter the actions of secondary metabolites. The optimised protocol did not

involve the use of sucrose gradients or DNAse I treatment. Cell debris and genomic DNA

were removed by means of a simple centrifugation step and CTAB was utilized for

chloroplast lysis. Proteins and other impurities were removed by means of organic extraction.

The optimised protocol' gave high yields of relatively pure cpDNA, with low levels of

genomic DNA contamination.

The second step involved the digestion of the isolated cpDNA with a number of restriction

enzymes, to determine which of these would be suitable for further library construction. The

restriction enzymes BamHI, PstI and EcoRI were selected and the digested cpDNA was

shotgun-cloned into the plasmid vector pUCBM21. White colonies obtained from ligation 1,

2 and 3 (table 4.1) were screened by means of PCR amplification. PCR is a relatively quick

and inexpensive method of determining the actual number of positive clones. Clones that

may have contained identical inserts could have been eliminated by subsequent restriction

digestion of the PCR products with frequent-cutter restriction enzymes. Thirteen of the 56

clones screened were amplified during PCR. It was, however, later realised that clones that

appeared negative after PCR may have contained large fragments that were not optimally

amplified during PCR. We did, however, manage to amplify fragments of up to 5 500 bp.

Due to the seasonal nature of grapes, leaves were not available always available for cpDNA

extractions and another strategy had to be followed. A region of the grapevine rrn 16 gene

had been sequenced by a previous student and we decided to use this sequence as a starting
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point from which to walk out. This was done by designing outward facing primers using the

rrn 16 region and designing complementary primers using sequences of other higher plant

chloroplast genomes. Using this approach an area of 3320 bp was covered. However, the

expense and time consuming nature of this method meant that it was not continued once leaf

material became available again.

An alternative method was attempted for screening the 604 clones obtained from ligation 4

(table 4.1). Since two PstI clones had already been sequenced and found to be of chloroplast

origin these were used to find overlapping clones in the EcoRI library. The strategy was to

then construct a separate PstI clone library and use the positive EcoRI clones to find

overlapping clones in the PstI library. The positive PstI clones would again be used to screen

the EcoRI library. In this way we would be able to walk outwards from the two original PstI

clones. Although the positive control signal was observed on the autoradiography film, no

conclusive results were obtained from the hybridisation of the PstI clones to the EcoRI

library. One possible reason could have been that the PstI clone was too large (~5 500bp) and

homologous regions may have been very small, resulting in only a feint signal being visible

on the autoradiography film. Further optimisation of this method was not carried out due to

the availability of BAC clones containing chloroplast DNA.

The BAC clones offered an alternative method of sub-cloning chloroplast DNA that appeared

to be less arduous than the methods already used. While the isolation of pure chloroplast

DNA is made difficult by secondary metabolites and genomic DNA contamination, cloning

the chloroplast genome into BACs could make further restriction digestion and sub-cloning

easier. BAC clone isolation only requires a variation on a standard alkaline lysis procedure.

It is therefore cheaper and easier to obtain high enough yields to carry out further analysis

than obtained from cpDNA isolation procedures.

The end sequences of seven of the BAC clones received were compared to the sequences

available in the NCBI database, using BLAST 2. Analysis of the search results allowed us to

estimate the size of each chloroplast insert, as well as the percentage of the genome covered

by each clone. BAC clone 001A01 was found to contain most of the genome, except for a

~500 bp region, and was therefore chosen for further analysis.

Four methods were used for the isolation of the BAC clone 001A01 DNA. Although the

variation on a plasmid miniprep procedure (protocol 1) gave relatively clean DNA, it was not
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enough to use for further analysis. Large culture volumes were therefore required. Protocol 2

and 3 did not give much success, with large amounts of genomic DNA being present.

Protocol 4 gave low yields of clean BAC DNA, but -31 % genomic DNA contamination was

still present.

The OOIAOI BAC clone DNA was digested with a number of restriction enzymes and

fragments were separated by agarose gel electrophoresis. The size of the fragments as

represented on the agarose gel were used to calculate the size of the grapevine genome and to

determine which restriction enzymes were suitable for library construction. The minimum

size of the grapevine chloroplast genome was calculated as -115 Mb. Possible doublet bands

containing IR fragments, as well as very small and very large fragments, could not be detected

on a gel photo. The sizes of these fragments would need to be added to the value obtained.

However, the value is consistent with the size of the average higher plant genome (120 to

160 kb). The restriction enzymes BamHI, San and PstI were selected for further sub-cloning

of the BAC clone DNA into a plasmid vector. The insert DNA was not separated from the

BAC vector backbone prior to digestion and cloning because of the difficulty of purifying

such a large insert fragment from a gel. The DNA could be sheared during the gel

purification process and yields would be lowered.

Plasmid DNA isolation and restriction digestion of this DNA with the appropriate enzyme(s),

proved to be a more successful method of screening white colonies for positives than PCR or

colony blotting. Enough plasmid DNA was isolated from each clone to allow for a number of

subsequent restriction digestions to be performed. Clones containing BAC vector fragments

or identical inserts were eliminated. Putative positive clones were sequenced. A total of three

BamHI clones (Bl, B2; B3) and seven PstIlSan clones (PSI-PS7) were obtained in this

manner.

The use of BAC clones to create a sub-genomic library of grapevine cpDNA proved to be

more effective than isolating cpDNA from grapevine leaves. While only 5 clones (El, E3,

E4, P3, P4) were obtained from extracted cpDNA, 10 clones were obtained from ligations

using the BAC clone DNA. All the clones obtained in this project were mapped against the

A. belladonna chloroplast genome. They represented most of the chloroplast genome well,

apart from the SSC region, and they covered approximately 40% of the grapevine chloroplast

genome.
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5. CONCLUSION

The chloroplast genome encodes for a number of genes that are vital for plant survival. The

characterization and sequencing of cpDNA therefore provides researchers with information

that will help them understand the functions of the chloroplast in the cell as well as its

evolution. This understanding will allow them to manipulate the chloroplast genome to

improve cellular and plant functioning.

The aim of this project was to create a library of overlapping clones that would cover most of

the V. vinifera chloroplast genome. Chloroplast DNA was initially isolated from grapevine

leaves for library construction, but the use of BAC clones containing grapevine chloroplast

DNA proved to be more successful. However, even when a commercial BAC DNA isolation

kit was used, ~31% of clones still contained genomic DNA inserts. In fact, problems with

genomic DNA contamination were experienced throughout this project. Clones containing

genomic DNA could also only be identified and removed once putative positive clones had

been sequenced.

Plant nuclear DNA as well as secondary metabolites hindered the isolation of cpDNA from

leaves, but the addition of compounds such as PVP-I 0 and NaCl did help in eliminating these

contaminants. Further optimization of the cpDNA isolation procedure could help in purifying

the grapevine cpDNA even further. Sodium chloride levels have been found to play an

important role in minimizing nuclear DNA contamination, and could be added to the

chloroplast suspension during chloroplast lyses. The addition of NaCl (0.7 M) to the

chloroplast suspension with CTAB has had positive results (Milligan, 1994). The pH of the

isolation buffer as well as the components of the isolation buffer used to protect the DNA

from harmful enzymes or secondary compounds could also be further adapted (Milligan,

1994). A pH of 8.0 to 9.0 for the isolation buffer is preferable. The inclusion of PEG (lO-

25%), as well as higher 'concentrations of PVP-IO (up to 10%) or 2-mercaptoethanol (up to

25 mM), could minimise the degradation of cpDNA by secondary compounds (Milligan,

1992). An option that came to light when using the QIAGEN® Big Construct Kit is the use

of ATP-Dependent Exonuclease for the digestion of genomic DNA contamination. This may

prove to be a very useful tool for obtaining pure cpDNA in future isolations.
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The isolation of high yields of clean BAC DNA also proved to be difficult. The low copy

number of BACs (1-2 per cell) meant that large culture volumes were needed; with the added

implication of an increase in host cell genomic DNA. Further optimization of the BAC clone

DNA isolation procedure will need to be performed to eliminate the genomic DNA

completely. Protocol I gave the purest BAC DNA and attempts to carry out this method on a

large-scale, followed by further purification steps could eliminate genomic DNA further.

Purification of isolated BAC DNA by means of Cs-Cl gradient centrifugation has proven

successful (Dr. Adam-Blondon, Pers. comm.). However, this method is very time consuming

and gives low yields of BAC DNA. The digestion of linear genomic DNA fragments with

ATP-Dependent Exonuclease may provide cleaner BAC DNA. Success has been obtained

with this type of protocol (http://wheat.pw.usda.gov/~lazo/methods/caltech/caltech.html).

Although attempts at cloning were hindered by the above-mentioned contamination, a total of

15 grapevine chloroplast genome fragments have been cloned and partially sequenced in this

project. Ten of the clones obtained were BAC sub-clones and the remaining five were

obtained from the isolated Sultana and Sugra 1 cpDNA. The use of BAC clones for cpDNA

library construction therefore gave better results than when using cpDNA extracted from

grapevine leaves. This could also partially be a result of the screening technique used. The

isolation and digestion of putative positive clones gave more consistent results than PCR, and

was less expensive and time-consuming than colony blotting. Further library construction

would involve the isolation of the remaining PstIISall clones, either by means of additional

shotgun-cloning or by excising individual fragments from a gel and cloning each into a

plasmid vector. The restriction enzyme XhoI also produced fragments of optimal sizes for

library construction. Digesting the BAC DNA with different combinations of XhoI, PstI and

SalI could assist in generating overlapping clones. A second BAC clone could be used to

generate clones of the region not covered by clone 001AO1.

Towards the end of this project we were approached by Dr. J. Martinez-Zapater (Centro

Nacional de Biotecnologia, Madrid, Spain) who was interested in entering into a collaboration

with us to complete the sequencing of the V. vinifera cv L. Cabernet Sauvignon chloroplast

genome. We agreed to this and have since sent him the BAC clones we obtained from Dr.

Adam-Blondon. His group will also use these clones to construct grapevine chloroplast DNA

libraries. The clones produced by both the Spanish group and ourselves will be combined to

provide overlapping clones of the entire Cabernet Sauvignon chloroplast genome. Further

sequencing of this genome could then be carried out.
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The clones and information produced by the project we have undertaken will also contribute

to a larger project aiming to sequence the entire grapevine genome (470 Mb). The

'International Grape Genome Project' (lGGP) involves labs in many wine-producing

countries around the world. The goal of the IGGP is to analyze genetic traits that have not

previously been researched by other genome sequencing projects. Examples include grape

quality, pathogen resistance and tendril development traits. This information will give

researchers, plant biologists, viticulturists and oenologists a better understanding of Vitis and

help them to improve both grapevine resistance and grape quality (Ablett et al. 2001,

http://www.vitaceae.org/).

In conclusion, even though we encountered problems with genomic DNA we still managed to

clone 15 fragments, covering approximately 40% of the grapevine chloroplast genome. These

clones represent the genome well, with only the sse region not having clones mapped to it.

These clones provide a valuable tool for further characterization and sequencing of the

grapevine chloroplast genome. The knowledge gained from this research will, in turn, give

us a better understanding of how the chloroplast genome of a woody, fruit-producing plant

functions and novel characteristics, not yet observed in chloroplast genomes, may even be

discovered.
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Addendum 1

Sugra 1 and Sultana cpDNA Sequences

El (Ml3 forward)

1 ATTCTTTATT CAATTCCGAC ATAAATGAAA TATTATTGAG TAGTCTACTT CCCTTCGAAT GATGAATCCC CTTAAACTTA

81 AATTAAAAAT TAAAGGAGTA CCTTAGAATT CTATACATCG ACATAACTTT GAATCATTTT TTCTCGAGCC GTACGAGGAG

161 AAAACTTCTT ATACGTTTCT AGGGGGGGGG GGTATTGTTC ACCTACATCT ATCCCAATGA GCCGTCTATC GAATCGTTGC

241 AATTGATGCT CGATCCCGAA GAGAAGGAAG AGATCTTCGG AAAGTGGGTT TTTATGATCC GATAAAGAAT CAAACTTATT

321 CAAATGTTCC TGCTATTCTA TATTTCCTTG AAAAAGGAGC TCAACCTACA GGAACTGTTC ATGATATTTC AAAGAAAGCG

401 GAGGTTTTTA CGGAACTTCG TCTTAATCAA ACGAAATTCA AATTCAATCA ATGAAATACA AAAAACGAGG GGGGGATGAC

481 TCGTATATAG CTTTGTATAA CTTTCTCTAC TACTGCCCCT TAATCTATCT TATTGATATA AGATGGATAG AAAAAAGATC

561 AAGTGNATAG ATGAAGGAAT TATATCTAGA AATATAAAAT TCTGACATTA CCTTCAATCA GGCGGTTTTT CTTAGAACTC

641 TACTAACAAA CACGGGATCA AGTTTGCTTA TTATACATTC TCTTTATATT GATTGAATAG ATNATGGAAT AGACCGCCGA

721 TTTTTCCTAC TTTTTCCTTA TTATTCGCCA TCTAACCTTT TTGTATCTAT GTAGATTTCT ATATAGGGCC ATCAC

El (Ml3 reverse)

1 AATTCTCCAT TGgTAagTTG ATACGACATG CTGTTTTTTC CATTCATTCC CTTTCAGGGT ATCAGTCGCG GTCTTACAAA

81 CTATACCAAT GGTATGGACG AATCCGTTCC TTCATCCAAA TGTGTAAAAG ATTCTAGCCG CACTTAAAAG CCGAGTACTC

161 TACCATTGAG TTAGCAACCC GAATAAGATA AAATTCAATT GAAAATAATT AGGGTATGTA GATACAACCG GAATCAAAAC

241 AAATGAAAGT AAAGAGATTG GGTTACACGA CGCAATCggA aCATTGAACT AACaATAAGA TAAATAAAAT AAAAAAGAAA

321 ACACACaTTT TCTAATCGAT TCTGAAGATA AAAATGAACA GCTCAGATGA AAATACAAGA AATTCTTAGt TATTAGATAG

401 ATAAATGTAA AAATTTATAG ACCAACTCTT ATCTTTTCCA TTTTTTTGAT TGAAAAAACT GCTTATCTTA TGGCACAGCG

481 AATACAACGA AACCATCATT TGAATGAGGT AgAGtAAAAA CCAAACCTAT GGAATGGAGA AAAGAAGATT CATTTATCTA

561 CGATCAAATT ATAGTTGGTT TCTACACAGT GTCAATATGA ATGAATGTTG AGAAAAAGAA TACAATGTAG AAAACAAAAA

641 AA

E3 (M13 forward)

1 TGAATYCTTT GAAGGCTNCA TCATGAAGAG CAAGTCAACC ACTCGAGCTA GTGCATGCCG ACATATGTGG TCCAATGCAA

81 ACGTTGTCTC TCAACAAAAG, TAGTTCTCAT CTTTGTTGAT GATTTCACTA GGGGTATATT TTATTAAAAA CAAAGAAGAT

161 GCATTTCCTG TTTTTCTTCA ATTCAAAGCT TATGTAGAAA AACATATTGG TCATAATTGG AAGGTCCTTC GAACTGCTTA

241 TAGTCTAATA TAGCCGGTGG TGAGTTCACA TCGAATTCCA CTTTAAAGAG ACATGCTACA AAAATAGCCC AGTTTATGAA

321 ACTTCTTATC TGGATGGGAA TCAAGAAAAT TCGAAGTTAG AAATACTTAA AGAAGATGAA GATAATAAAA ACAAAAAATG

401 GTTTGAAAAA CCCCTTGTGA CTCTTCTTTT TGACTATAAA CGATGGAATC GTCCATTGCG ATATATAAAG GCTCGATTTC

481 AAATTAAAAA AGCTGTAAGA AATGAAATGT CACAATATTT TTTTTATACA TGCCTCAGTG ATGGAAAACA AAGAATATCT

561 TTTACATATC CCCCCAGTTT GTCAATTTTT TTGGAAATGA TACAAAGAAA GATGTCTTTG TCCACAACAG AAAGACTCTC

641 CTATGACGAA CTATATAATC ATTGGATTTA TACCAATGAA CCAAAAGAAA CACACTAAGA AAGGGTTTAT ACGAGAATCG

721 AGGCTCTAGA CAATGGATCG CTTACTCTGG ATGTACTGGA AAAAGACTAG ATGTGTATGA TGCACTAAAA AGATACTTGC

801 CTAAATATAT GATCTTTCTG ACGACCTATC GTGAACATCA AAATGTTTCC CTCATCTATG AACTC
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E3 (M13 reverse)

1 AATTCCATAT TCGAAGTTGC GATCGGATCT ATTCATTAAA AAGAATCGAT TCAATACATT TCTTATGTAC CCATAGGTGC

81 TATATTGGAT TTGAATCAGA TTTCGGATCA ATATATATTG ATTGACTGCC TCCATTATGT TGTTGCTAGC AAATACCACT

161 ATTTTTGGTT TTGGATCTTC CAAATCATTT CCGCAGGAGA TCCGGACCCA TTTTTTTCTG ATCCTTCGAT AAAAAGATTC

241 ATTCTCTTCA TAAAAACTAG GAGGTAGAAC CAATAAAGAT TTCTTGTTCG ATTCATCCCT GGAGTTAAAT ACCTCATTCA

321 AGAATTGTTT TTGATCCAAT CCGTAGGAAT CAATAGAAAA GGCAAATCCC TTATGATACA CCAGATCCGG CTCGGTTATT

401 GATAGAGTGA ATCGATCTGC CATTTCTTGA AATCTCTCTT CTGATTCAAA ATCGTGGTGT AACGTGTATC CCCCCCTGTT

481 CCGGTCATGG AATAGATGAA ATAAATCAAA AAATGGATTT TTGTTCAAGA ATGAAATCTT ATTGGAACTG TCCATATCCG
I
561 GTTCATCCTT CGGAACCATA TCACATCCCG GATCTGATGA AATAGGATGA ATTGAGACGG TATTTTGTAA ATACGTAATW

641 ATCTTGAATA TATTACCATT TCTTTTATTT TCCGATCGCC TGGAAGGGAC AAAAAAACAT CTTGGTGTTC TCACAATTTC

721 TGATCTCTAG GGACCTCTCA TAGGATCGAC CCGAGAAGTT CTGACATCTG TC

E4 (M13 forward)

1 GATGTACTCT TACTAGCAGC AGCATCAAAG ATGCAGTCAT CGATTCTCCC GAGAGGCCAC AATTACCGCG AGCAAACATA

81 TTAATGACGA GGAACGCATT TTTGCTATGC TACTAATACT TGTACTTGCT CTGCTATTCT GCCCAAGCCT GGCTGAGGAA

161 GAGTTACGGG GCGTAAAACA AAAAAATATG CTGATTCGGG CCGGGCATAC TATAAGTAAT GATTATATCA TTCGCGATAA

241 ATATAAATAA AAAGTAAGGC CATTCCATTT CGACAAAAGA CCCACACCCA AGCCAAGTTC CATAGCTTTG GGTCCGCTAT

321 CCCGATCAGG ATTTTCCTAC CCTCAGAGGG AAAGGTCCTT CCCTTTTGGG CCGGTTGTGG GCGAGGAGGG ATTCGAACCC

401 CCGACACCGT GGTTCGTAGC CACGTGCTCT AATCCTCTGA GCTACAGGCC CCACCCCGTC TCCACTGGAT CTGTTCCCGG

481 GAGTACCCTC AAAAAAAAAA AGGAACCTTT CCTCTCCCCA GACATTTCGG GTTAAGAAGA TGTGAAAGCG CATTTCTCTC

561 TATAACTATA AGAAGGGTGC GTTCCGAGGT GTGAAGTGGG AGAGAAGGGA TGTCATAATT GGGGTTTTGA ATAAAACGAC

641 CTTTCTTTTC ATTTTTTTCT TTTTCATATT TAAAAGTATA AGAATGAGAG GTGTAGCTTT TTATCATCCT GGCGTCGAGC

721 TATTTTCCGC AGGACTCCCC TACAGTATCG TCACGCAGTA GAGTTACACA GTTCGGGATG GATGGGGGGG GTCCTCTACC

801 CTAGGACCCG AATTCGAACC TGAACGAAAA AGGCTGAAAA AAAGCTTTTG GCTAG

E4 (M13 reverse)

1 AATTCAAGAG AAGGTGCACG GCGAGACGAG CCGTGTTATC ATTACGATAG GTGTCAAGTG GAAGTGCAGT GATGTATGCA

81 GCTGAGGCAT CCTAACAGAC CGGTAGACTT GAACCTTGTT CCTACATGAC CCGATCAATT CGATCAGGCA CTCGCCATCT

161 ATTTTCATTG TTCAACTCTT TGACGAACAT GTAAAAAACC AAAAGCTCTG CCCCCCCTCT CTATCGGATG GAAGGGCAGA

241 GGCCTTTGGT GKCCCTTCCA GTCAAGAATT GGGGCCTCAC AATCACTAGC CAATATGCTT TTCTCTCATG CCTTTCTTCG

321 TTCATGGTTC GATATTCTGG TGTCCTAGGC GTAGAGGAAC CACACCAATC CATCCCGAAC TTGGTGGTTA AACTCTACTG

401 CGGTGACGAT ACTGTAGGGG AGGTCCTGCG GAAAAATAGC TCGACGCCAG GATGATAAAA AGCTTAACAC CTCTCATTCT

481 TATTACTTTT TAAATATGAA AAAGAAAAAA ATGAAAAGAA AGGTCGTCTT ATTCAAGACC CCAATTATGA CATCCCTTCT

561 CTCCCACTTC ACACCTCGGA ACGCACCCTT CTTATAGTTA TAGAGAGAAA TGCGCTTTCA CATCTTCTTA ACCCGAAATG

641 TCTGGGGAGA GGAAAGTTCC TTTTTTTTTT TGAGGGTACT CCCGGGAACA GATCCAGTGG AACGGGAGGG GCCTGTAACT

721 CAAAGATTAA A

Stellenbosch University http://scholar.sun.ac.za



86

P3 (Ml3 forward)

1 GACGAAGGGA AGGTCTTCCA TTTATTAGTA TTCAGTAACC CATGATTCGT TATGGAGCAG GTAGCAGCAA CCATTCATCA

81 GACATGGGTA TTTTTGATTT TCCAATGGAT TACATCTTTC ATTAATGGAA ATTTTTGATG TAGGGAGTAA TAGGCTCTGG

161 TGGTTCGCTG TTCAAGAATT CTTGTTTAGG CAGTTTWTAC CATCCATACA TAGTGTTTTG ATCTRAGATT TCAATTCTTC

241 CCATGTTTCA GCAGTAGCAT ATTGTTCCCA TGGAGCTAAG GTCCAAAATA TGGAAGAAAC AAGTGTTTCC ACGACTCTAC

321 CACACAGTCA ATTCTGTTCC ACTTAATCCC TATTTCATGG CCACATATCT TTCCGGCTAA GGAATGGGAA ATCTTTCTCC

401 TGTTACATGA ATCCAATTTT CATTTCATCC GGGAAAAGCC ATCTTTTTCT CAACAATGTC TTTGTCATTT GATCCAATAG

481 CCTTGCGTTA GATAGGAACA GATTTGATAA ATACTGATAA CTCTCGGATG GAGTATTAGA ACGGAAAGAT CCATTAGATA

561 ATGAACTATT GGTTCTAAGC CATCTCTGGC GATGAATCAA CAATTCGAAG TGCTTTTCTT GCGTATTCTT GATAAACCAG

641 CGTTTATATA TAGATGTAGG AGGATCTGTT TGGGAAGTAA GAAGCCCCTT TGACATCTCT TCATCTGCAA AGAATTCTCG

721 ATGTGAAAAC ACAGAGACAA AGGGCTGATC TTTGAATAGG AAAAAGAGTG GATCTGCA

P3 (M13 reverse)

1 GAAGAAAAAA CTGCAAAATC CGATCCAATT TATCGTAATC GATTAGTTAA CATGTTGGTT AACCGTATTC TGAAACACGG

81 AAAAAAATCA TTGGCTTATC AAATTATCTA TCGATCCGTG AAAAAGATTC AACAAAAGAC AGAAACAAAT CCACTATCTG

161 TTTTACGTCA AGCAATACGT AGGAGTAACT CCCGATATAG CAGTAAAAGC AAGACGTGTA GGCGGATCGA CTCATCAAGT

241 TCCCATTGAA ATAGGATCCA CACAAGGAAA AGCACTTGCC ATTCGTTGGT TATTAGGGGC ATCCCGAAAA CGTCCGGGTC

321 GAAATATGGC TTTCAAATTA AGTTCCGAAT TAGTGGATGC TGCCAAAGGG AGTGGCGATG CCATACGCAA AAAGGAAGAG

401 ACTCATAGAA TGGCAGAGGC AAATAGAGCT TTTGCACATT TTCGTTAATC CATGAACAGG ATCTATATAG ACACATAGAT

481 CCATGGATCC AATCCATACA TCTCGATCGG AAAAGAATCA ATAGAAAAAG AAAGAATCGG AATTGATCGA TATATTTCTC

561 GAAACAAACG AAAAGGAAAC GAAAGATGAA ACATAAATCA TGGGATCCAC TAAGTCCTCT CGGGGACTTG CTTAAGAATA

641 AGAAAGAGGA TCTCATGTAA ATACCATGGA ATAAGGTTGA TCCTATTCAT GGCGATTCGT AAATATTCCA TTCCAAAATA

721 GAACATTTGG GATTTTTTGG AGATTGGWTG CAGTACTATC ATGATCTGGC ATATACAGAT GAACTTCATC TCGATCTCGA

801 GATTTATGAA GCTTCATTGC TCTCTCGATG AGTTTTTTCC AGATGATCTA TTTGCAATCT CTCGAGACGA TCACTCTGWC

881 AAAGATACTG GGTATTCTCC TCAA

P4 (Ml3 reverse)

1 GGGAGGGATC CGCGGAACCT ATACACATAC TATGCCATCG ACCTATCCGG GTCATACCAT CATTGACCAA AAAACCTATC

81 CTATCCATAC CAGATGAGCC ATTCCTTCTC CGTCTGGCCC AAGGTATCAC CATCGTTACA AAGACCGGAT AAGGCGGCAG

161 ATGCTTCCTT GAAGCGAACG AGTTGTCCCA ATCGGGCACG TAGAACAGAT ATCGGAAAGG CAAGGCAGTT CTTGCAGGGC

241 AGAGGGATAC ATAGAGATAG ATCTCCATCT ATGCGCATGG AAATAGCTAC GGGAGGGTTT GATCGGGATA AGTAGGCCGT

321 TATATCTAGT GCCTGACCTC GCCTGCCCAA AATCCAGTAG TTGGCCTATG ATTGGTTCGA AGAACGTCTC GAGATTCAGG

401 CGATTGCAGA TTCTATAACT AGCTGATCTA CGACCAACCT CCTCATGTCA ACATATTTTA TTGTCTAGGA GGAATTACGC

481 TTACTTGTTT TTTAGTACAA GTAGCTACGG GGTTTGCTAT GACTTTTGAC TATCGTCCGA CGGTTACTGA GGCTTTTGCT

561 TCTGTTCAAT ACATAATGAC TGAAGCTAAC TTCGGtTGGT TAATCCGATC
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Addendum 2

rrn16 Flanking Region Sequences

Right flanking region 1

1 CTACGGCGGT GAATTCGTTC CCGGGCCTTG TACACACCGC CCGTCACACT ATGGGAGCTG GCCATGCCCG AAGTCGTTAC

81 CTTAACCGCA AGGAGGGGGA TGCCGAAGGC AGGGCTAGTG ACTGGAGTGA AGTCGTAACA AGGTAGCCGT ACTGGAAGGT

161 GCGGCTGGAT CACCTCCTTT TCAGGGAGAG CTAATGCTTG TTGGGTATTT TGGTTTGATA CTGCTTCACA CCCAAAAAGA

241 AGCGAGCTAC GTCTGAGTTA AACTTGGAGA TGGAAGTCTT CTTTCGTTTC TCGACGGTGA AGTAAGACCA AGCTCATGAG

321 CTTATTATCC TAGGTCGGAA CAAGTTGATA GGATCCCCTT TTTTACGTCC CCATGTCCCT CCCGTGTGGC GACATGGGGG

401 CGAAAAAAGG AAAGAGAGGG ATGGGGTTTC TCTCGCTTTT GGCATAGCGG GCCCCCAGTG GGAGGCCCGC ACCGCACGAC

481 GGGCTATTAG CTCAGTGGTA GAGCGCGCCC CTGATAATTG CGTCGTTGTG CCTGGGCTGT GAGGGCTCTC AGCCACATGG

561 ATAGTTCAAT GTGCTCATCA GCGCCTGACC CTGAGATGTG GATCATCCAA GGCACATTAG CATGGCGTAC TCCTCCTGTT

641 CGAACCGGGG TTTGAAACCA AACTTCTCCT CAGGAGGATA GATGGGGCGA TTCAGGTGAG ATCCAATGTA GATCCAACTT

721 TCTATTCACT C

Right flanking region 2

1 CATGTAAATC ACTTTCTATT CCTCGTGGGA TCCGGGCGGT CCGGGGGGGA CCACCACGGC TCCTCTCTTC TCGAGAATCC

81 ATACATCCCT TATCAGTGTA TGGACAGCTA TCTCTCGAGC ACAGGTTTAG GTTCGGCCTC AATGGGAAAA TAAAATGGAG

161 CACCTAACAA CGCATCTTCA CAGACCAAGA ACTACGAGAT CACCCCTTTC ATTCTGGGGT GACGGAGGGA TCGTACCATT

241 CGAGCCTTTT TTTTTTTCAT GCTTTTCCCG GAGGTCTGGA GAAAGCTGCA ATCAATAGGA TTTTCCTAAT CCTCCCTTCC

321 CGAAAGGAAN AACGTGAAAT TCTTTTTCCT TTCCACAGGG ACCAGGAGAT TGGATCTAGC CGTAAGAAGA ATGCTTGGTA

401 TAAATAACTC ACTTCTTGGT CTTCGACCCC CTCAGTCACT ACGAACGCCC CCGATCAGTG CAATGGGATG GGTCTATTTA

481 TCTATCTCTT GACTCGAAAT GGGAGCAGGT TTGAAAAAGG ATCTTANAGN GTCTAGGGTT GGGCCAGGAG GGTCTCTTAA

561 CGCCTTCTTT TTTCTTCTCA TCGGAGTTAT TTCACAAAGA CTTGCCATGG TAAGGAAGAA GGGGGGAACA AGCACACTTG

641 GAGAGCGCAG TACAACGGAG AGTTGTATGC TGCGTTCGGG AAGGATGAAT CGCTCCCGAA AAGGAATCTA TTGATTCTCT

721 CCCAATTGGT TGGACCGTAG GTGCGATGAT TTACTTCACG GGCGAGGTCT CTGGTTCAAG TCCAGGATGG CCCAGCTGTG

801 CCAGGGAAAA GAATAGAAGA AGCATCTAAC TCCTTCATGC ATGCTCCACT TGGCTCGGGG GATATAGCTC AGTTGGTAGA

881 GCTCCGCTCT TGCAATTGGG TCGTTGCGAT TACGGGTTGG ATGTCTAATT GTCCAGGCGG TAATGATAGT ATCTTGTACC

961 TGAACCGGTG GCTCACTTTT TCTAAGTAAT GGGGAAGAGG ACCGAAACAT GCCACTGAAA GACTCTACTG AGACAAAGAT

1041 GGGCTGTCAA GAACGTAGAG GAGGTAGGAT GGGCAGTTGG TCAGATCCTA GTATG

Left flanking region
1 GAGAAGGGGG CTCAGCGGGA AAGAGGATTG TACCATGAGA GAAGCAAGGA GGTCAACCTC TTCTCTTTCA AATATACAAC

81 ATGGATTCTG ACAATGCAAT GTAGTTGGAC TCTCATGTCG ATCCGAATGA ATCATCTTTT CAACGGAGGT AATGCCTGCT

161 AGGTAAGAGG ATAGCAAGTT ACAAATTCTG TCTCGGAAGG AATTTGTCCA TTTTTCGGGG TCTCAAAGGG GCGTGGAAAC

241 ACATAAGAAC TCTTGAATGG AAATGGAAAA GAGATGTAAC TCCAGTTCCT TCGGAAATGG TAAGATCTTT GGCGCAAGAA

321 GAAGGGGTTG ATCCGTATCA TCTTGACTTG GTTCTGATTC CTCTATTTTT TTAAGAATAC CCGAGTCGGG TTCTTCTCCT
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401 ACCCGTATCG AATAGAACAT GCTGAGCCAA ATCTTCTTCA CTGCTTGCTT TAGATCGGGA AAATCGTACG GTTTTATGAA

481 ACCATGTGCT ATGGCTCGAA TCCGTAGTCA ATCCTATTTC CGATAGGAGC AGTTGACAAT TGAATCCCAT TTTTCCCATT

561 ATTTTCGTAT CCGTAATAG'I'GCGAAAAGAA GGCCCGGCTC CAAGTTGTTC AAGAATAGTG GCGTTGAGTT TCTCGACCCT

641 TTGCCTTACT TAGGATTAGT CAGTTCTATT TCTCGATAGG GGCAGGGAAG GGATATAACT CAGCGGTAGA GTGTCACCTT

721 GACGTGGTGG AAGTCATCAG TTCGAGCCTG ATTATCCCTA AACCCAATGT GAGTTTTCTA TTTGACTTGC TCCCCCGCCG

801 TGATCGTGGA TAAGAGGCTC GTGGGATTGA CGTGAGGGGG TAGGGATGAC TATATTTCTG GGAGCGAACT CCAGGCGAAT

881 ATGAAGCGCA TGGATACAAG TTATGCCTTG GAATGAAAGA CAATTCCGAA TCCGCTTTGT CTACGAACAA GGAAGCTATA

961 AGTAATGCAA CTATGAATCT CATGGAGAGT TCGATCCTGG CTCAGGATGA ACGCTGGCGG CATGCTTAAC ACATGCAAGT

1041 CGGACGGGAA GTGGTGTTTC CAGTGGCGGA CGGGTGAGTA ACGCGTAAGA ACCTGCCCTT GGGAGGGGAA CAACAGCTGG

1121 AAACGGCTGC TAATACCCCG TAGGCTGAGG AGCAAAAGGA GGAATCCGCC CGAGGAGGGG CTCGCGTCTG ATTAGCTAGT

1201 TGGTGAGGCA ATAGCTTACC AAGGCGATGA TCAGTAGCTG GTCCGAGAGG ATGATCAGCC ACACTGGGAC TGAGACACGG

1281 CCCAGACTCC TACGGGAGGC AGCAGTGGGG AATTTTCCGC AATGGGCGAA AGCCTGACGG AGCAATGCCG CGTGGAGGTA

1361 GAAGGCCCAC GGGTCGTGAA CTTCTTTTCC CGGAGAAGAA GCAATGACGG TATCTGGGGA ATAAGCATCG GCTAACTCTG

1441 TGCCAGCAGC CGCGGTAATA CAGAGGATGC AAGCGTTATC CGGAATGATT GGGCGTAAAG CGTCTGTAGG TGGCTTTTTA

1521 AGTCCGCCGT CAAATCCCAG GGCTCAACCC TGGACAGGCG GTGGAAACTA CCAAGCTGGA GTACGGTAGG GGCAGAGGGA

1601 ATTTCCGGTG GAGCGGTGAA ATGCGTAGAG ATCGGAAAGA ACACCAACGG CGAAAGCACT CTGCTGGGCC GACACTGACA

1681 CTGAGAGACG AAAGCTAGGG GAGCGAATGG GATTAGATAC CCCAGTAGTC CTAGCCGTAA ACGATGGATA CTAGGCGCTG

1761 TGCGTATCGA CCCGTGCAGT GCTGTAGCTA ACGCGTTAAG TATCCCGCCT GGGGAGTACG TTCGCAAGA
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Addendum 3

BAC Sub-Clone Sequences

Bl (M13 forward)
1 ATCCTCCAAA AGGGTGGTTC TAGTTATAAT CCAGAAACGA TTCGTGTATA TATTTCACAG AAACGTGAAA TCAAAGTAGG

81 TGATAAAGTA GCTGGAAGAC ATGGAAATAA GGGTATCATT TCCAAAATTT TGCCTAGACA AGATATGCCT TATTTGCAAG

161 ATGGAAGACC TGTTGATATG GTCTTTAACC CATTAGGAGT ACCGTCACGA ATGAATGTAG GACAGATATT TGAATGCTCG

241 CTGGGGTTAG CGGGGGGTCT GCTAGACAGA CATTATCGAA TAGCACCTTT TGATGAGAAA TATGAACAAG AGGCTTCGAG

321 AAAACTAGTG TTTTCTGAAT TATATGAAGC CAGTAAGCAA ACAGCGAATC CATGGGTATT TGAACCCGAG TATCCGGGAA

401 AAAGCAGAAT ATTTGATGGA AGAACGGGAG ATCCTTTTGA ACAACCTGTT ATAATAGGAA AGCCTTATAT CTTGAAATTA

481 ATTCATCAAG TTGATGATAA AATCCATGGA CGTTCCAGTG GACATTATGC ACTTGTTACA CAACAACCCC TTAGAGGAAG

561 GGCCAAGCAA GGGGGACAAC GGGTAGGAGA AATGGAGGTT TGGGCTCTAG AGGGATTTGG AGTTGCTCAT ATTTTACAAG

641 AGATGCTTAC TTATAAATCT GATCATATTA GAGCTCGCCA GGAAGTACTT GGTACTACGA TCATTGGAGG AACAATACCT

721 AACCCTGGAG GATGCTCCAG AATCTTTTCG ATTGCTCGTT CGAGAACTAC GATCTTTGGC TCTRGAATGA ATCATTTCCT

801 TGTATCTGAG AGAACTTCCG ATTAATGGAA GGAAGCTTAT CGAATCGGAC TGAATCAAAA TTTTT

Bl (M13 reverse)
1 GATCCTATAG GATCTCCCCC CTTCAAAATC GGACGTGAAA GTTTCCTCTC GTCCGGCTCA AGTAGTTACA CCAAATAAAG

81 ATAAAGAAAG GGGTTCTGGC TTTCAAATTC TAGAAAATCC TCAAAACAAC TACTCCTTAC TCAAGTTCCC AGTGAAGACC

161 AAGCAACATT TCATTGATTC ATTCTTCCTT ATTATTTAGA TTTTCTGAAT TCTTTATTCA ATTACGACAT AAATGAAATA

241 TTATTGAGTA GTCTACTTCC CTTCGAATGA TGAATCCCCT TAAACTTAAA TTAAAAATTA AAGGAGTACC TTAGAATTCA

321 TAAGGGATTT ACTTGTCTAT GTATCGTTTC ATTCGATCTT TTTAGGTCCT GACTTCGCCT CGACGGTTAT GCCACGATGC

401 CCTTAAAGCC TATATGCGAT GGATAGACTC CTGTAACCAT GACATATTTG TTTACTTGAA CATAAAAAAA ATTCTTTCTA

481 AAAGAAAGAG AAAAGAGAAT GGTTAATTCC ACAAAAGCAA AAGAAAGAAG TCTTTTTTCA CGAGGTACAA CTAAACATTC

561 CTATTTATTT GTTACGGAAT CGACCATAGA TCAATTACCC TTTTATTTGG TAGTATAGAA TACACCCCAT AATTCTGAGC

641 TTCATGTTAC TCCTCTTAAG AGACATGTCA GAGCCGAGGC ATCCATTGGA TTGAATGGGA TGACAGTTTC TCATTCTGAA

721 TCTGTAAATC AGAATTCGAT CAAATCCCAC ATCGCAATAT ACTAGGCCTT CTAATTCTTT AAGAGGTTAT CTAAAGATTT

801 GGGATTA

B2 (M13forward)
1 ATCCCAAATT GACGGGTTAG TGTGAGCTTA TCCATGCGGT TATGCACTCT TCGAATAGGA ATCCATTTTC TGAAAGATCC

81 TGACTTTCGT GCTTTGGTGG GTCTCCGAGA CCCTTTCGAT GACCTATGTT GTGTTGAAGG GATATCTATA TGATCCGATC

161 GATTGCGTAA AGCCCGCGGT AGCAACGGAA CCGGGGAAAG TATACAGAAA AGACAGTTCT TTTCTATTAT ATTAGTATTA

241 GTTAGTGATC CCGGCTCAGT GAGCCCTTTC TTACGTGATG AACTGTTGGC ACCAGTCCTA CATTTTGTCT CTGTGGACCG

321 AGGAGAAAGG GGGCTCAGCG GGAAGAGGAT TGTACCATGA GAGAAGCAAG GAGGTCAACC TCTTCTCTTT CAAATATACA

401 ACATGGATTC TGACAATGCA ATGTAGTTGG ACTCTCATGT CGATCCGAAT GAATCATCTT TTCAACGGAG GTAATGCCTG

481 CTAGGTAAGA GGATAGCAAG TTACAAATTC TGTCTCGGAA GGAATTTGTC CATTTTTCGG GGTCTCAAAG GGGCGTGGAA

561 ACACATAAGA ACTCTTGAAT GGAAATGGAA AAGAGATGTA ACTCCAGTTC CTTCGGAAAT GGTAAGATCT TTGGCGCAAG

641 AAGAAGGGGT TGATCCGTAT CATCTTGACT TGGTTCTGAT TCCTCTATTT TTTAAGAATA CCGAGTCGGG TTCTTCTCCT

89
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721 ACCCGTATCG AATAGAACAT GCTGAGCCAA TCTTCTTCAC TGCTTGCTTT AGATCGGGAA AATCGTACGG TTTTTGAAAC

801 CATGTGCTAT GGTTCGATCC GTAGTCATCC TATTTCCGAT GGGaCAG

B2 (M13 reverse)
1 GATCCTATCA ACTTGTTCCG ACCTAGGATA ATAAGCTCAT GAGCTTGGTC TTACTTCACC GTCGAGAAAC GAAAGAAGAC

81 TTCCATCTCC AAGTTTAACT CAGACGTAGC TCGCTTCTTT TTGGGTGTGA AGCAGTATCA AACCAAAATA CCCAACAAGC

161 ATTAGCTCTC CCTGAAAAGG AGGTGATCCA GCCGCACCTT CCAGTACGGC TACCTTGTTA CGACTTCACT CCAGTCACTA

241 GCCCTGCCTT CGGCATCCCC CTCCTTGCGG TTAAGGTAAC GACTTCGGGC ATGGCCAGCT CCCATAGTGT GACGGGCGGT

321 GTGTACAAGG CCCGGGAACG AATTCACCGC CGTATGGCTG ACCGGCGATT ACTAGCGATT CCGGCTTCAT GCAGGCGAGT

401 TGCAGCCTGC AATCCGAACT GAGGACGGGT TTTTGGAGTT AGCTCACCCT CGCGGGATCG CGACCCTTTG TCCCGGCCAT

481 TGTAGCACGT GTGTCGCCCA GGGCATAAGG GGCATGATGA CTTGACGTCA TCCTCACCTT CCTCCGGCTT ATCACCGGCA

561 GTCTGCTCAG GGTTCCAAAC TCAACGGTGG CAACTAAACA CGAGGGTTGC GCTCGTTGCG GGACTTAACC CAACACCTTA

641 CGGCACGAGC TGACGACAGC CATGCACCAC CTGTGTCCGC GTTCCCGAAG GCACCCCTCT CTTTCAAGAG GATTCGCGGC

721 ATGTCAATCC CTGGTAAGGT TCTTCGCTTT GCATCGAATT AACCACATGC TCCACCGCTT GTGCGGGCCC CcGTCAAtTC

801 CTTTGGATTT CATTCTTGCG AAcGTACTCC CAGGGGGATC TTACGCGTTA CTAAGCACTG C

B3 (M13 forward)
1 GTAATCGACT CaCTATAGGG CGAATTGGGT ACCGGGCCCC CCCTCGAGGT CGACGGTATC GATAAGCTTG ATTACGATTT

81 AGGTGACACT ATAGAATACT CAAGCTATGC ATCCAACGCG TTGGGAGCTC TCCCATATGG TCGACCTGCA GGCGGCCGCG

161 AATTCACTAG GGGAATTCGA TTGATACTCA ATCATAAACC AACCTATGAG AATACTTTTT ATTACTATTT TAGTTTTAGT

241 TGAAATAAAG AAATAAAAAA AACTTAGAAA AGTAAAAGAC TACTAAGATA AATAAAAGAC TACTAAATAA AGGAGCAATA

321 CCATCCCCCT TGATAAAAGA GGAAATTGGT TATTGCTCCT TTACATTCAA AAACTCGTAA ACACTAAGAC GGAAATCAAT

401 CACTAGTTCT AGAGCGGCCG CTTTACTTGT ACAGCTCGTC CATGCCGTGA GTGATCCCGG CGGCGGTCAC GAACTCCAGC

481 AGGACCATGT GATCGCGCTT CTCGTTGGGG TCTTTGCTCA GGGCGGACTG GGTGCTCAGG TAGTGGTTGT CGGGCAGCAG

561 CACGGGGCCG TCGCCGATGG GGGTGTTCTG CTGGTAGTGG TCGGCGAGCT GCACGCTGCC GTCCTCGATG TTGTGGCGGA

641 TCTTGAAGTT CACCTTGATG CCGTTCTTCT GCTTGTCGGC CATGATATAG ACGTTGTGGC TGTTGTAGTT GTACTCCAGC

721 TTGTGCCCCA GGATGTTGCC GTCCTCCTTG AAGTCGATGC CCTTCAGCTC GATGCGGTTC ACCAGGGtGT CGCCCTCGAA

801 CTTCACCTCG GCGCGGGTCT TGTAATTGCC

B3 (M13 reverse)
1 AGCTCCACCG CGGAATGATA CAAGTCTTGG ATAAGAATCT ACAACGCACT AGAACGCCCT TGTTGACGAT CCTTTACTCC

81 GACAGCGTCT AGAGTTCCTC GAACAATGTG ATATCTCACA CCGGGTAAAT CCTTAACCCT TCCCCCTCTT ACTAAGACTA

161 CAGAATGTTC TTGTGAATTA TGGCCAATAC CAGGTATATA AGCAGTGATT TCAAATCCAG AGGTTAATCG TACTCTGGCA

241 ACTTTACGTA AGGCAGAGTT TGGTTTTTTG GGGGTGATAG TGGAAAAGTT GACAGATAAG TCACCCTTAC TGCCACTCTA

321 CAGAACCGTA CATGAGATTT TCACCTCATA CGGCTCCTCG TTCAATTCTT TTGAAGTCAT TGGATCCTTT TCCTCGTTCG

401 AGAATCTCCT CCCCTCTTCC ACTCCGTCCC GAAGAGTAAC TAGGACCAAT TCAGTCACGT TTTCATGTTC CAATTGAACA

481 CTTTCGATTT TTGATTATTC TCAAATCAAA GGAGAAGATT ATTCTTTTTA CCAAACATAT GCGGATCAAA TCACGATCTT

561 ATAATAAGAA CAAGAGATCT TTCTCGATCA ATCCCTTTGC CCGAGAATCA GAAAGATCCT TTTCAAGTTT GAATTTGCTC

641 ATTTGGAATC TGGGTTCTTC TACTTCATTT TTATTTACTT ATTTATTtAT tATTTTGATT TCCCTCTCTT TTCTTTTTTt

721 ATCCCTTCCA TCATTCCTTA AGTCCCATAG GgTTGATCCt GGTAGAATCT GACCCATTTT CTCATTGAGC GAaGGGTACG

801 AAATAATCAa ATGATTTTCG ATCAAAGT
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PSl (~3 forward)
1 TCGACGGAAT GCTCCTATTA CACTCGTAGT CTCTGAAGGA TGAGAACCAA CTATGTAGCA TCTACATCGA GAATTCAAGT

81 ATTGTATACG CCATTAGTCC GATCCTTTGT AGGAACTACC CGTAATAACG AACTTGCAAA ATGGATCTGT TTATCATAAA

161 GAGATTCGTT GTTCCTGACC CTGCTTCACC TTAATTGTTA TTTGAACAAG TAAAAGTTAT GTCTTGGTCC GAGTGGGGAT

241 AGCATTTCTC TTCTGCATGT CCATGGAGTT TTGAAAAATC CAAACATCTC AGAGATAGAT AGAGAGGTAG GAATTTATCG

321 AACGAACCGC ACTCCTTCGT ATACGTCAGG AGTCCATTGA TGAGAAGGGG CTGGGGAAAG CTTGAACCCA ATTCCTACAG

401 TGATGAATAT AAGCGCAATT GAAATTCCTG GGGAGTTATA CATTTGTGTA TTGATAAGAC CATTCACTAT TTCTTGAAGC

481 TCGATCTCTC CCCCGGATGA ACCATATAGC CAAGAGAAAC CATGAACCAG AATAGAAGAA CTTGCCCCAC CCATGAGTAA

561 ATATTTCGTA GTAGCCTCAT TAGACCGTAC ATCTTTCTTG GTATATCCAG ATAATAGGTA GGAGCATAAA CTGAAACATT

641 CTGGAGCTAC AAAGATAGTT ATTAAATCGT TAGCACCGCA TAAAAACATT CCTCCTAGAG TAGCTGTTAA TACGAATAAG

721 AGAAACTCTG TTATAGCCAT TTCTGTACAT TCAATGTACT CTACGGATAG AGGAATACAT AGAGTTGAAC ATAGTAAAAT

801 AAGAAATTGA AAGATTTCGT TGAAATTGTT CGTTTGGAAA TTTCCCGAAA GCTAATCATA GGTTCTTCTC TCCATCGGAA

881 CAATAGGGCC GTTATGCTCA TTACTAAACT tGTTGAAGAG ATGAAATATA ACCAAGGTAT ATCTTTTTTG ATCAGAGGtT

961 GAATCGATCA TCAGAAGAAG ATTAGGCAAA TAGGATACTT CTGGGAAATA AAACTtCcTC GAAAGAGCAA TGAAGcTTTC

1041 ATAAAATCTC GTAgATCGAg ATGAGTTTCa TT

PSl (M13 reverse)
1 GAAGAAAAAA CTGCAAAATC CGATCCAATT TATCGTAATC GATTAGTTAA CATGTTGGTT AACCGTATTC TGAAACACGG

81 AAAAAAATCA TTGGCTTATC AAATTATCTA TCGATCCGTG AAAAAGATTC AACAAAAGAC AGAAACAAAT CCaCtaTATC

161 TgGTTTcaCG CCAAGCATGG GGGAACCCCC TCCCCGATAT ATAGCAGTAA AAGCAAGACg TGTGGGGGCG GATCGACTCA

241 TCAAGTTCCC ATTGAAATAG GATCCACACA AGGAAAAGCA CTTGCCATTC GTTGGTTATT AGGGGCATCC CGAAAACGTC

321 CGGGTCGAAA TATGGCTTTC AAATTAAGTT CCGAATTAGT GGATGCTGCC CAAGGGAGtG GcGATGCCCT TCGCAAAAAG

401 GAAGAGACT

PS2 (~3 forward)
1 GTCGACTTTA AAAATCGTGA GGGTTCAAGT CCCTCTATCC CCAAAAAAGC CTACTTGACT CCCTAACTAT TTATCCTATC

81 CTATCCTCTC TTTGCAGAAA TTTTTTTTCT CTTATCACAA GTCTTGTGGT ATATATATAT GATACGCGTA CAAACGAACA

161 TCTTTGAGCA AGGAATCTCC ATTTGAATGA TTCACAGTAC ATATCATTAT TCGTACTGAA ACTTACAAAG TTTTTTTTTT

241 TGAAGATCCA AGAAATTCCA GGTCCTGGAT AATACTTTGT TTTGTAATAC AATACCCTTT CGTCTTTTTA TTTTTAATTG

321 ACATAGACCA AGTCATCTAG TAAAATGAGG ATGATGTATC GGGAATAGCC GGGATAGCTC AGCTGGTAGA GCAGAGGACT

401 GAAAATCCTC GTGTCACC~G TTCAAATCTG GTTCCTGGCA CATGATTAAT TTGTCTGAGT ATCTATTCTA CAAATTCATT

481 GATGTTTAGA TGAATCGATA TACATATTCA TTAATAGTCT AGATCATGAT ATATACTTAT CCCTCTAGGT GTCTGGAGAT

561 ATACTCCTCC ATCTTTTAGA TAAGTAAAAA GTATATAAAA TATGTAAAAG AAAAGAATTC GATTATGTTT CCTCTTCTTT

641 TTTATTTTTT TTGTTCATAT TGTGTCTTGT CTACTCTCAT TCAAAAAGAA TGTTAATACT TCATACATAC ATATTCGAAA

721 GATTAAATTA GTTAGTTGAA AGACCCAAAA GTATAGTCTA GAGTAGTTGA AGGATGGGAA TAGACAAGGT TCATCTCAGA

801 TATAGTACAA ATATAATCCG ATCCCCTTTC ATTTCCTTTG GATTTTCTTT CATATCTATT TTCTATTTCC TTCATTCCCC

881 CCTACGtGGA TTTTCTAGAG CCCATCTAAG TTATGTGCGC GGGACAAAGT TCATGATGCA gAACTCTTTT TCTTTTAGTT

961 CATCCTATGG CTAGGCTCTA AGTATCTTCA AATTGaGAAT CTCAAtGaGC CTTTCTTTTT TTTTATTaTT TTaGCCCatC

1041 CTAAtCAA
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PS2 (~3 reverse)
1 GTAGCATTCA AGTAATGCCC TTTGATTTCA CCTGTTTCAG CCTGTGATTT AAAAATGGCT TCGGCACAAA ATAAGAAACG

81 GTCTCTCCAA CGCATAAATG GTTGGGAGTT CACGTTCTCA TCATCTTTAG TAAAATCAAG TCCACCGCGG AGACATTCAT

161 AAACTGCTCT ACCATAGTTC TTAGCGGATA ACCCCAATTT AGGTTTAATA GTACATCCCA ATAGGGGACG ACCATACTTG

241 TTCAATTTAT CTCTCTCAAC TTGGATGCCA TGAGGCGGGC CTTGGAAAGT TTTAGAATAA GCAGGGGGGA TTCGCAGATC

321 CTCTAGACGT AGAGCGCGCA GAGCTTTGAA CCCAAACACA TTACCCACAA TGGAAGTAAA CATGTTAGTA ACAGAGCCTT

401 CTTCAAAAAG GTCTAAAGG~ TAAGCTACAT AAGCAATAAA TTGACTTTCT TCTCCAGCAA CGGGCTCGAT GTGGTAGCAT

481 CGTCCTTTGT AACGATCAAG GCTGGTAAGT CCATCAGTCC ACACAGTTGT CCATGTACCA GTAGAAGATT CAGCAGCTAC

561 CGCGGCCCCT GCTTCTTCGG GTGGAACTCC AGGTTGAGGA GTTACTCGGA ATGCTGCCAA GATATCAGTA GGTTTGGTCT

641 CATATTCAGG AGTATAATAA GTCAATTTGT AATCTTTAAC ACCGGCTTTT GAATCCAACA CTTGCTTTAG TCTCTGGTTG

721 GGGGGGACAT AGTCCCTCCC TACAACTCAC GA

PS3 (T3)
1 GGTACATGCG AAGAAATGAT CAAAAGGGCT GTATTTGCCA GAGAATTGGG AGTTCCTATC GTAATGCATG ACTACTTAAC

81 AGGGGGATTC ACCGCAAATA CTAGCTTGGC TCATTATTGC CGAGATAATG GCCTACTTCT TCACATCCAT CGTGCAATGC

161 ATGCAGTTAT TGATAGACAG AAGAATCATG GTATGCACTT TCGTGTACTA GCTAAAGCCT TACGTCTGTC TGGAGGAGAT

241 CATATTCACG CCGGTACCGT AGTAGGTAAA CTTGAAGGAG AAAGAGAGAT CACTTTGGGC TTTGTTGATT TATTACGTGA

321 TGATTTTGTT GAAAAAGACC GAAGTCGCGG TATTTATTTC ACTCAAGATT GGGTCTCTCT ACCAGGTGTT CTGCCAGTGG

401 CTTCTGGGGG TATTCACGTT TGGCATATGC CTGCTCTGAC CGAGATCTTT GGAGATGATT CCGTACTACA GTTCGGTGGA

481 GGAACTTTAG GACACCCTTG GGGAAATGCA CCGGGTGCCG TAGCTAATCG AGTAGCTCTT GAAGCATGTG TACAAGCTCG

561 TAATGAGGGA CGTGATCTTG CTCGTGAGGG TAATGAAATT ATCCGTGCAG CTAGCAAATG GAGTCCTGAA CTAGCTGCTG

641 CTTGTGAAGT ATGGAAGGAA ATCAAATTTG AATTCCCAGC AATGGATACT TTGTAATCCA GTAATTATGT TCGTTTCCTA

721 AATTGAATTG CAATTAACTC GGCCCATCTT TTACTAAA

PS3 (T7)
1 GTCGACTCTC GATCTAATAG TTCTATCAAG CATGAGTTCT ATTACAAGGT ATCGAGCCTA TGAATCTATT CTATGTTTTT

81 TATTTGCGAT TCAGCAGTTA GTCCTTGAAT CTAGAAAGAA TACAGAAATA GAATAAGAGT CCACTTCGAA TGAAGAAATA

161 ATAAAAAATA TTGTTTCCAG ATATCTCCGC AATTGGTCAA ATTCTAAGCA CCCCTTTCGA TGAATGCCCA AGAATGCCCG

241 AAAGAACCGC TTTTTTAATG AATATTATTC GGATTTCAAG ACGAAAGAAC TCCCTTTCGA CCATTTCTAT CAATATATTT

321 AATATTTCGA AAAACTTTTG CTGGCTACCG GAATAATTGA GAGAAATTTC TGAAGAATAT TGTGATGGGC TGAAGTGGCA

401 AAACAAGATA GAAATTTGAT AGTTATCATT ATAAGAGGTT TAGTCATTAA GGAACACAAA AGAAAGGATA AAAAGAAACG

481 CCGATTGACA AAAAAGAGAG AGAATTTACA AGATATGATC TATCTGCATC TAGCGTATCA ATTCCAAATA TTGGACCTAA

561 AATAAATTCT TTATTTCGAA ATGTTTTGAT ATATGGGAAT TTTTCGATTT GTTACTTGCT TTGTTACTGT GAGTAGATTT

641 CCATACGCAT AAAAGACCAT TTTTGCGGAC AAAAACAGTT TCCTTTTATG ATCGTATACG TCTGCTTTGG CTCAAATGAG

721 CGAACCTTCA GTTAGGTTAT GCTATAGAAA AgGAAGGGCG GATTCTTGAA TTTTTCCTCC TGCTAAGAAA TCAGTTCATT

801 CAAATACTtC ATCGGTACaC GCAAGAAATA GGCTATTCAG CAGCTTTTGT TCCATT
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PS4 (T3)
1 GGCATGCAAG CTTTAACAAT TTATGGACTG GTTGTAGCAT TAGCACTTTT ATTTGCGAAT CCTTTTGTTT AATTGTTTAA

81 TCCTAGAAAT ATGAAAAATA CGTATTTTTC ATATTTTCTT ATTTTATTTC CTTGGACCTG TCGCTTGCTT TTTAGAATTA

161 TATCAAGATT GAACTACGAC AATTACTTAT TCGTTGAGAT AATAACCCAT GGGAAGGACT GATTTGAGGA TGAGGAAGAT

241 TTGAGGATGA GGAATTAGCA AATCGACTCG CTTTCTTCCT TCCCTTCCCG TTCTTAGTCC AATGAAAACC TTTTTTTTAG

321 TAAGTGTTGG AACAAACGAA GTATTTCGTA ATTGACATGA GACTCGGTAT CTCATTTTTC ATTCTTATTG GAAATTTCAA

401 TTGAAAAAAT AAAATCCAGT TATAAATTAT AAATCGAATA TTTTTTTTTC TGTTTAGAAA TAGAGAAATT AATAAAAAAG

481 AAAATAAAAA ATAAGGGGTG AAGTGATAGA AAAAGAACTC TGTTCGATTT TTTTAGTCTA TCTATTTTAG TCTATCTATA

561 AGAGGAGATC ATATGAAAAA TGTAACCGAT TCTTTCGTTT CCTTGGGTCA CTGGCCATCC GCCGGGGGTT TCGGGTTTAA

641 TACCGATATT TTAGCACCAA ATCCAWTAAA TCTAAGTGTA GtGCTTGGTG TATTGATCTT TTTTGGAAAG GGAGTGTGTG

721 CGAGTTGTTT ATTCCAGAAT AGGCTGGACT C

PS4 (T7)
1 GTCGACTATA ACCCCTAGCC TTCCAAGCTA ACGATGCGGG TTCGATTCCC GCTACCCGCT CAATATTATA CTCTATATTA

81 TTTAGAATGA AAATGAAATT AATGCATCAT TGAATTGAAT ATGCAATTCC CGAAATTCTC TCACACACAA TCCGATTCTT

161 TTTTTCCGAA CAAGAGATAG GAAAGCAAAA ATGCGAAAAG AAAAAAAAAT CGGAATGAAA AGCGTCCATT GTCTAATGGA

241 TAGGACAGAG GTCTTCTAAA CCTTTGGTAT AGGTTCAAAT CCTATTGGAC GCAACTTATT TCCATATATT CTATTCTTTT

321 ATCAGTAAAG AAATTTGGAA TGATTTAAAT CAGAGACGCT TTTATTTATT ATTTATTTAA TTTTCTTAAT ATTTAATATA

401 AAGGATTACC TTTTTATTAT TAAATATTCA TTTTTTTTAT TTATTATTAA ATTCATTAAT TAGACTAAGA ATTAAGAGTG

481 ATCAATTTCT TTATGCTTGT TCCTGAAGTA GAAAGCGTTC CATCTGTTCC TGAATAGTTT CTTTCAAAAG GGTTTCTGCT

561 TCCTCGGTGA ATGTCTTGGT AGAAGATATG ATTTCTTGGA ACTGAGGTTT ATTCGTTTTT AAGTAATTAC GTAACTCAGC

641 AAGAAATTTC CTTACCTGTC CAATTTCTAA TGAATCAGAT AACCATTTGT TCCAGTATAA ATAGTCATTA TCTGTTCTTC

721 CCCGTAGGAG GGGCTGCTGG GGATGTTTGA GCAATCACGT AATCGTTGAC CTCTGCCAAT GGATCTGAGT GCTTTTCAGA

801 TAGAAGAGAA TGtGCAAgGC TCTATCTGCG AATGCCCAGT CCATTTGATT G

PSS (T3)
1 GTGTCCGAGT AGATACTGTT ACTTTCTCTC GAACCATAGT AATATTACTT GATCAGATCA TTGAATCATT TATTTCTCTT

81 GAAATCTCTT CAATGTTTAT TTCTACACAG TTTATTCCTA TACACGTCTT TTTTTAGGAG GTCTACAGCC GTTATGTGGC

161 ATAGGAGTTA CATCCCGTAC GAAACTTAAT AGTATACCAC TTCTACGAAT AGCTCGTAAT GCTGCATCTC TTCCGAGACC

241 AGGACCCTTT ATCATGACTT CTGCTCGTTG CATACCTTGA TCCACTACTG TACGAATAGC ATTTCCTGCT GCGGTTTGAG

321 CAGCAAATGG CGTCCCTCTT CTTGTACCCC TGAATCCACA AGTACCGGCC GAGGACCAAG AAACCACCCG ACCCCGTACA

401 TCTGTAACGG TCACAATGGT ATTGTTAAAA CTTGCTTGAA CATGAATAAC TCCCTTTGGT ATTCTACGCG CACTCTTACG

481 TGAACCAATA CGTCCATTCC TACGTGAACC AATTCTTGGT ATAGGTTTTG CCATATTTTA TCATCTCATA AATATGAGTA

561 AGAGATATAT GGATATATCC ATTTCATGTC AAAACATGAT TTTTTTTTAT TTGTACATCG GGTTCTTTAG AGAATCTCTT

641 TTCGAGAAAT TATCCTTGGC CTTTGTTATG TCTCGGGTGG GACAAATTAC TATAATTCGT CCCCGTCTAC GGATCAGTCG

721 ACCTCGAGGG GGGGCCCGGG ACCCAATTCG CCCTATAGTG AGTCGTATTA CAATTCACTG GGCGGCGTTT TACAACGTCG

801 TGACTGGGAA AACCTGGCGT TACCCAACTT AATCGCCTTG CAGCACATCC CCCTTTCGCC AGGTGGGGTA ATAC
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PS5 (T7)
1 GTCGACTGAT CCGTAGACGG GGACGAATTA TAGTAATTTG TCCCAACCCG AGACATAAAC AAAGACAAGG ATAATTTCTC

81 GAAAAGAGAT TCTCTAAAGA ACCCGATGTA CAAATAAAAA AAAATCATGT TTTGACATGA AATGGATATA TCCATATATC

161 TCTTACTCAT ATTTATGAGA TGATAAAATA TGGCAAAACC TATACCAAGA ATTGGTTCAC GTAGGAATGG ACGTATTGGT

241 TCACGTAAGA GTGCGCGTAG AATACCAAAG GGAGTTATTC ATGTTCAAGC AAGTTTTAAC AATACCATTG TGACCGTTAC

321 AGATGTACGG GGTCGGGTGG TTTCTTGGTC CTCGGCCGGT ACTTGTGGAT TCAGGGGTAC AAGAAGAGGG ACGCCATTTG

401 CTGCTCAAAC CGCAGCAGGA AATGCTATTC GTACAGTAGT GGATCAAGGT ATGCAACGAG CAGAAGTCAT GATAAAGGGT

481 CCTGGTCTCG GAAGAGATGC AGCATTACGA GCTATTCGTA GAAGTGGTAT ACTATTAAGT TTCGTACGGG ATGTAACTCC

561 TATGCCACAT AACGGCTGTA GACCTCCTAA AAAAAGACGT GTATAGGAAT AAACTGTGTA GAAATAAACA TTGAAGAGAT

641 TTCAAGAGAA ATAAATGATT CAATGATCTG ATCAAGTAAT ATTACTATGG TTCGAGAGAA AGTAACAGTA TCTACTCGGA

721 CACTGCAGCC CGGGGGGATC CACTAGTTCT AGAGCGGCCG CCACGCGGTG GAGCTCCAGC TTTTGTTCCC TTTAGTGAGG

801 GTAATTCGAG CTGGGCGTAT CATGGTCATA GCTGTT

PS5 Complete Sequence
1 GTCGACTGAT CCGTAGACGG GGACGAATTA TAGTAATTTG TCCCAACCCG AGACATAAAC AAAGGCCAAG GATAATTTCT

81 CGAAAAGAGA TTCTCTAAAG AACCCGATGT ACAAATAAAA AAAAATCATG TTTTGACATG AAATGGATAT ATCCATATAT

161 CTCTTACTCA TATTTATGAG ATGATAAAAT ATGGCAAAAC CTATACCAAG AATTGGTTCA CGTAGGAATG GACGTATTGG

241 TTCACGTAAG AGTGCGCGTA GAATACCAAA GGGAGTTATT CATGTTCAAG CAAGTTTTAA CAATACCATT GTGACCGTTA

321 CAGATGTACG GGGTCGGGTG GTTTCTTGGT CCTCGGCCGG TACTTGTGGA TTCAGGGGTA CAAGAAGAGG GACGCCATTT

401 GCTGCTCAAA CCGCAGCAGG AAATGCTATT CGTACAGTAG TGGATCAAGG TATGCAACGA GCAGAAGTCA TGATAAAGGG

481 TCCTGGTCTC GGAAGAGATG CAGCATTACG AGCTATTCGT AGAAGTGGTA TACTATTAAG TTTCGTACGG GATGTAACTC

561 CTATGCCACA TAACGGCTGT AGACCTCCTA AAAAAAGACG TGTATAGGAA TAAACTGTGT AGAAATAAAC ATTGAAGAGA

641 TTTCAAGAGA AATAAATGAT TCAATGATCT GATCAAGTAA TATTACTATG GTTCGAGAGA AAGTAACAGT ATCTACTCGG

721 ACAC

PS6 (T3)
1 GAGATCTAAC TCCTTCTATT TTGATTCATA GTTGTAAGTT CCTACGACAT AATAGATCGG TTTTGGAGAA AGGAGAATAA

81 TCTTTATTCT TTGATTTTAA AGAGACATTA TCAATAACCA AACAAATAGA GAAAAGCCAG CTATCGGAAT CGAACCGATG

161 ACCATCGCAT TACAAATGCG ATGCTCTAAC CTCTGAGCTA AGCGGGCTCA CCAGAAATTG TACATGCATA GAAATTCAGT

241 AAACTGCTGG TATCTTAGCT ATTAACTATT CCTTCTTAGC TAGTCACAAT TAATATGAAT ATATAAAAGA ATAAGAATAT

321 AGATTCAAAA AAAATTATTG ATTATTAACG ATTATTAGAT AGAGCAATAT AGAATTCCGA TCTATTTTCA ATTATATGTT

401 TAAAAATATC CATATCTTAT TAGATAGGA

PS6 (T7)
1 GTCGACGGAT TTTCCTCTTA CTATAAATTT CATTGTTGTC GGTATTGACA TGTAGAATGG GACTCTATCT TTATTCTCGT

81 CCGATTAATC AGTTCTTCAA AAGATCTATC GGACTATGGA GTGAATGATT TGATCAATGA ATATTCGATT CTTTTCTTTC

161 TTCAACTTGG AATCGATTTA CAACAATTCT TTCATTTTTC ATATCAAAAA ATACAGATTC GAGCCATCAT TAATCATTTG

241 ATATAATATT TCAGTACCTA TGTATATAGG TTTATCCTTC ATCCTTTCTG GTTCTGGAGT TTTGATGGAA GGATTCGTTT

321 AACAACGCAA CATAGTCAAC TCCATTTGTT TTTGTTAGAA CAGCTTCCAT TGAGTCTCTG CACCTATCCT TTTTTTATTA

401 TCGTTTTCTG AACCCTTGGT TGTTTTCGGA AAACAGGATT TGGCTCAGGA TTGCCCATTT TTTATTCCAG GGTTTCCCTG

481 AATTTGAAAG TTATCACTTA GTAGGTTTCC ATATTAAGGC TCAATCCAAT TAAGTCCGTA GCGTCTACCA ATTTCGCCAT
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561 ATCCCCCCTT ATTTTGTTTT GAGATTTGAA TCTCTTTGTG ATGCCGCTCC CCTTTTCCTT TCATTTATGC TTATGCTGGA

641 ACCTTTGAAT TCATTAGATA CCGATTCCTA AAAAGTCCTT CCTCCTTTTT TTCTTGCCTA TCTTCTTTCA TCTCATCTCT

721 CTTGGGGACC ATATTTGTAT TTGGTCCAAT CAGAAATGAT CCTATCATTC TGTATCTGCA ATTCAATATA CATGAAATAT

801 ATACCACACA TATATGCTTC CCTTCT

PS? (T3)
1 GCTGCACGAG CCCTTCCCGC GTGCCACAAA TGACCTACGA ATAGGAAGAA TCCTAGAACA AAATGAGAAG TAGCTAACCA

81 ACTTCTAGGA GAGACATAAT TGACTGCATT GATCTCGGTA GCTACGCCAC CCACGGAATT TAAAGAACCT AAAGGAGCGT

161 GAGTCATATA TTCCGCGGAA CGCCGTTCTT GCCAAGGTTG TATGTCTTTT TTCAGCCTAC TCAAGTCCAA ACCATTGGGA

241 CCCCTTAGAG GTTCTAACCA GGGAGCACGC AGATCCCAAA AACGCATAGT TTCTCCTCCA AAAATGACTT CTCCAGTCGG

321 GGAACGCATT AGATATTTAC CTAAACCAGT AGGTCCTTGA GCGGATCCCA CGTTAGCCCC AAGACGCTGG TCTCTAACTA

401 GAAAAGTAAA TGCTTGAGCT TGAGACGCTT CGGGTCCAGT TGGCCCGTAA AACTCACTAG GATAAGCGGT ATTATTGAAC

481 CAGACAAAGC AACAAGCAAT GAAACCAAAG ACAGCTAAAG CACCTAAACT ATAAGACAAG TAAGCCTCTC CAGACCATAC

561 AAGTGCACGG CGAGCCCACG CAAAGGGTTT GGTTAAGATA TGCCAGATTC CACCAAATAT ACAAATGGAA CCTAACCATA

641 CATGTCCTCC AATTATATCT TCCAAATCGT CCACACTAAC CATTCCATCC TTCTCCTCCA AGGGCGATTT TAGTAATACC

721 AATATAACAC TTGGGCTAaG GTCAGGTGGT AATTTTCTTA CATCTCCCCT CCGGGAGCCC AGGTATCATA TACGCCGCCA

801 AATAAGAGCC TGGAATCTAG AagAAAGCCC TATCCTAA

PS? (T?)
1 GTCGACCTAT CCTTCCTAAT TCACATCTTT GTTGAAAGAA TTTCTTTTGT AATTCCTTAC ATAATGATTC AGAAAATACC

81 GGATCCCCAC CTACACAAGC AAATTGTTGA TAAAACTCCA AAATGGCACT TTCTTTTGAC CCAATTTTTT TTTTCTCCTT

161 ATCATTCAGG AAAGACAAAA AAATCTCAGG ATAGCAAACA TTCTCTAGAA TTTCTCTTAG ATTCGAACCC ATAGCTGATG

241 ATAGAACTAG AATAGATATT TTTTGTTTCC TACTCACACG AGCCCATATC CTTGCTTTTC TATCAATCTC TAATTCTAAT

321 CTTCCTCCCC AATCTGAGAC TATGGTGCCG GTATAGACCG AAATTCCGTT ATGGTCCAAT TCTGACCGGT AATAAATGCC

401 GGGGCTTTGC AATATTTGAT TAATCACAAT TCTGTATAGT CCATTTACTA TAGAAGTTCC CAGGGAATTC ATTAGAGGAA

481 TGTTTCCAAT AAAAATTGTT TGTTCTTGCA TATCTCTGCT GGTTTTCCAA ATTAATCCCG CAGATACATA TAATTCAGAA

561 GAATATGTGA GTGATTCATA CACGGCATCT CTTTCTTTTA TCAATGGTTC CACCAATTGA TATGTTTCCA CAAATAATTG

641 AAATTCAATT TCTTGATCTG TATCTTCAAT TTTTGGAAAC TTATAAGGTT CTTCTGTCAA GCCCTGATCA ATAAACCTAC

721 AAAATCCTTC AAATGGGATC TGATTAAACC CAGGTATTGT AGACATTCCC TCATTTCCAC CCGGAACATT TTTGGTTCCC

801 ATTATCGAAA AATCCCATTA TGTATGGGAT GGGTCGTCTT CATCGAATCA TATGGATCGA TCGATCGAGA TCTAGCATGA

881 TG
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Addendum 4

Vector Maps

pUCBM21:
207

pUC8M20
2722

pUCBM21
2725 DraD 728

Sc1111227

Ani
TIIIIIIIIIon IIIr! Hlndll 2!!... ,...

...----.-..... SI)! ~ Md fclXl SIINI

_[I .!!!!!!~~...!!!..~ ~...!!!...~ KjIIII _..!!!!_ ~ ~~ ~
~TATGACCATGAnACGCCMGCnCCATGGGATATCGCATGCCTGCAGAGCTCTAGAGTCGACGGGCCCGGTACCGCGGCCGCaCTTMGttACGCGTGGATCCCCGGGMTTCACTGGCCj

207 pUC8M21 336
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pBluescript II SK (+)

Na.1131

pBluescrlpt II SK (+/-)
2961 bp

Sacl759 t
B.saH II 792 T3

An1ll1153

pBluescript 11SK (+/-) Multiple Cloning Site Region
(sequence shown 598-826)

~1091 ~:~clli
IlssH I T7 Promoter ~ Kpn I 0 ... II Xho I Soil
I I I I I ITTGTAAAACGACGGCCAG}GAGCGCGCGTAATACGACTCACTATAGGG~GAATTGGGTACCGGGCCCCCCCTCGAGGTCGAC •..

Mn -20 primer binding sII T7 prim., "'ndill9 ,i. KS primer bindIng ......

f!sp 106 I . Noll1'" I ~ind II ~(oIt V (rok I ~II jma I ,amH I t.,., I f"a I Ifagl 1s«I re II i°tl
.•.GGTATjGA TAAGCTT~TATCGM TTCCTGCAGCCCGGGGr TCCACTAGITCTAGAGCGGCCGCCACCGCGGTGGAGCTC ...

... kS prim ,binding sIIe SK prim., binding sII.

.. Tl Promot... BssH I "P'FI (l·fl'OQlMlttil i...CAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTGGCGTAAT~TGGTCATAGCTGTTTCC
~ IJ prim., binding .sikt 13 Kw.... prim.r binding d.
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plndigoBAC-5

LACZ'

parC

nr.....,.,'nlnr..oore (100,0%)
(333)
HJ (354)

(382)
HindIII (384)

SP6 promotor (95.0%)
-_, ...M13r (100.0%)

~_"_......::= 1(640)
1(640)

1(794)

CM(R)
Spel

parB--- plndigoBAC-5
7506 bp

repE
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