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Abstract
The results from this study revealed that crude extracts isolated from bacterial en‐
dophytes obtained from Crinum macowanii bulbs showed activity against both Gram‐
positive and Gram‐negative pathogenic bacteria, while Acinetobacter guillouiae crude 
extracts displayed anticancer activity. This study aimed to isolate and characterize 
bacterial endophytes and their crude extracts from C. macowanii bulbs. Endophytes 
were isolated using validated surface sterilization techniques, followed by pheno‐
typic and genotypic profiles of the isolates. Crude extracts were extracted from the 
endophytes using ethyl acetate, while methanol:dichloromethane (1:1) was used to 
obtain crude extracts from the bulbs. Antibacterial activity of crude extract from 
each endophyte was investigated against selected pathogenic strains using the broth 
microdilution method, and anticancer activity against U87MG glioblastoma and A549 
lung carcinoma cells was determined by the MTS (3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐
carboxymethoxy‐phenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium) assay. Acinetobacter guil‐
louiae, Pseudomonas moraviensis, Pseudomonas sp., Rahnella aquatilis, Bacillus cereus, 
Novosphingobium sp., Raoultella ornithinolytica, and Burkholderia tropica were suc‐
cessfully isolated. The crude extracts from the majority of endophytes showed an‐
tibacterial activity, ranging from 0.125 to >16.00 mg/ml against Gram‐negative and 
Gram‐positive pathogenic bacteria. Acinetobacter guillouiae extracts showed a high 
bioactive potential against U87MG glioblastoma cell lines by reducing their growth 
by 50% at concentrations of 12.5, 6.25, and 3.13 µg/ml. Crude extracts isolated from 
C. macowanii bulbs showed potential for possible drug lead against common patho‐
genic bacteria.
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1  | INTRODUC TION

Crinum macowanii Baker, from the Amaryllidaceae family, is a bul‐
bous plant which has been used traditionally to treat a number of 
different ailments (Watt & Breyer‐Brandwijk, 1962). The bulb is 
used to treat itchy rashes, boils, acne, backache, venereal disease, 
inflamed sores, swelling of the body, urinary tract problems as well 
as to increase lactation in women and cows (Maroyi, 2016). Maroyi 
(2016) reported that C. macowanii has antimicrobial, antifungal, an‐
tiviral, and antiplasmodial properties. Although there are a number 
of studies validating the antimicrobial properties of Crinum species 
(Maroyi, 2016), overharvesting and overuse of medicinal plants 
such as C. macowanii has led to overexploitation and extinction of 
some of these plants (Wyk & Prinsloo, 2018). Strategies need to be 
deployed to find alternative methods of extracting secondary me‐
tabolites from these plants, such as using microbial sources (Chen 
et al., 2016; Monakisi, Esler, & Ward, 2007). An extensive literature 
search suggests that C. macowanii remains unexplored with regard 
to both its endophytes and the bioactivities of its crude extracts, 
including crude extracts derived from the bulb of this plant.

Endophytes are considered to be outstanding sources of bioac‐
tive natural compounds, as they can mimic the chemistry of their 
respective host plants and biosynthesize almost identical bioactive 
natural products, or even derivatives which can be more bioactive 
than those of their respective hosts (Rodriguez, White, Arnold, & 
Redman, 2009). As such, there has been an increase in the biopros‐
pecting of novel efficacious bioactive compounds from microorgan‐
isms such as endophytes, to obtain novel bioactive products (Kusari 
& Spiteller, 2011; Martinez‐klimova, Rodríguez‐peña, & Sánchez, 
2017). Bioactive secondary metabolites obtained in this way could 
be alternative sources of therapeutic compounds which could help 
eradicate problematic infections affecting the human population, for 
example, antibiotic resistance (Menpara & Chanda, 2013; Tidke et 
al., 2017).

While fungal endophytes are a source of attention in most 
studies, bacterial endophytes are less explored due to the small 
yield recoveries of crude extracts (Brader et al., 2014). Ek‐Ramos 
et al. (2019) has reported that metabolites produced by endo‐
phytic microorganisms' act as antimicrobial and anticancer agents 
against human, animal, and plant pathogens and display significant 
potential in medical and veterinary treatments. With this in mind, 
the main aim of this study was to isolate and identify bacterial 
endophytes from C. macowanii bulbs and to explore the role of en‐
dophytic crude extracts as potential antibacterial and anticancer 
therapeutic agents.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

Fresh, healthy C. macowanii bulbs showing no apparent symptoms of 
disease or herbivore damage were collected from the Walter Sisulu 
National Botanical Garden (Roodepoort, Gauteng, South Africa, 

26°05′10.4″S 27°50′41.5″E). After collection, the samples were 
placed in sterile polyethylene bags and transferred to the laboratory 
at 4°C before being thoroughly washed with sterile distilled water 
and used within hours of harvesting.

2.2 | Isolation of endophytic bacteria

The bulbs were surface sterilized separately using the method de‐
scribed by Jasim, Joseph, John, Mathew, and Radhakrishnan (2014) 
with slight modifications. Briefly, each bulb (approximately 10  g) 
was treated with 5% Tween‐20 (Sigma‐Aldrich) (enough to cover the 
plant material) and vigorously shaken for 5 min. Tween‐20 was re‐
moved by rinsing several times with sterile distilled water, followed 
by disinfection with 50 ml of 70% ethanol for 1 min. Traces of the 
ethanol were removed by rinsing with sterile distilled water 5 times. 
The sample was then treated with 1% sodium hypochlorite (NaClO) 
for 10 min and again rinsed five times with sterile distilled water. 
The last rinse was used as a control, and 100 µl of this was plated on 
potato dextrose agar (PDA; HiMedia) and nutrient agar (NA; Oxoid). 
The sample was then macerated in sterilized phosphate‐buffered 
saline (PBS), with the outer surface trimmed out. The macerated 
sample was serially diluted up to 10–3 dilution, and each dilution 
inoculated (using a spread plate method) in triplicate on nutrient 
agar. The NA plates were incubated at 30°C (IncoTherm, Labotec). 
Growth was monitored periodically for 5 days. Effectiveness of the 
sterilization was monitored on the wash control plate, with growth 
indicating poor sterilization. Under such circumstances, the plates 
for the plant part were discarded and the sterilization repeated. 
Distinct colonies were selected and subcultured on nutrient agar to 
obtain pure isolates. Pure bacterial isolates were preserved in 50% 
glycerol in a ratio of 500 µl glycerol:500 µl overnight broth culture 
and kept at −80°C.

2.3 | Morphological identification of 
endophytic bacteria

2.3.1 | Gram staining

Pure colonies were subjected to Gram staining to establish morpho‐
logical characteristics such as shape and Gram stain reaction. Gram 
stain slides were observed using a compound bright‐field micro‐
scope (OLYMPUS CH20BIMF200) with 1,000× magnification.

2.4 | Molecular identification

2.4.1 | Genomic DNA extraction, polymerase chain 
reaction, and sequencing

DNA extraction was done using a ZR Fungal/Bacterial Kit™ (Zymo 
Research, catalog no. R2014) according to the manufacturer's in‐
structions. Polymerase chain reaction (PCR) was done to amplify 
the 16S rRNA gene of each bacterial endophyte with the primers 
16S‐27F: 5′‐AGAGTTTGATCMTGGCTCAG‐3′ and 16S‐1492R: 
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5′‐CGGTTACCTTGTTACGACTT‐3′, using DreamTaq™ DNA poly‐
merase (Thermo Scientific™). PCR products were gel extracted 
(Zymo Research, Zymoclean™ Gel DNA Recovery Kit), and se‐
quenced in the forward and reverse directions on the ABI PRISM™ 
3500xl Genetic Analyser. The sequencing was performed at 
Inqaba Biotechnical Industries (Pty) Ltd. The PCR products were 
cleaned with ExoSAP‐it™ following the manufacturer's recom‐
mendations. Purified sequencing products (Zymo Research, ZR‐96 
DNA Sequencing Clean‐up Kit™) were analyzed using CLC Main 
Workbench 7, followed by a BLAST search (NCBI) (Kuklinsky‐Sobral, 
Arajo, Mendes, Pizzirani‐Kleiner, & Azevedo, 2005).

2.5 | Phylogenetic analysis

The obtained sequences were screened for chimeras using 
DECIPHER23 and subjected to BLAST analysis using the National 
Center for Biotechnology Information (NCBI) database against the 
16S rDNA sequence database (bacteria and archaea) to identify the 
closest bacterial species. Bacterial species with 98%–100% similari‐
ties were selected for phylogenetic analysis. Alignments of nucleo‐
tide sequences were performed using MUSCLE with default options. 
The positions containing gaps or missing nucleotide data were elimi‐
nated. Phylogenetic trees were constructed using a neighbor‐join‐
ing (NJ) method (Saitou & Nei, 1987) based on the Tamura–Nei 
model (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). A total 
of 1,000 replications were used for bootstrap testing. All branches 
with greater than 50% bootstraps were considered to be significant 
(Soltis & Soltis, 2003). All evolutionary analyses were conducted in 
MEGA 7.0 (Kumar, Stecher, & Tamura, 2016). The 16S rRNA gene 
sequences of bacterial isolates identified in the study were depos‐
ited in GenBank (https​://www.ncbi.nlm.nih.gov/genba​nk/) with the 
accession numbers as stated in Table 1. The assigned names of the 
bacterial isolates were based on the BLAST homology percentages 
as well as the phylogenetic results.

2.6 | Extraction of crude extracts from 
C. macowanii bulbs

Crinum macowanii bulbs were washed, chopped into small pieces, 
and air‐dried at room temperature. The dried plant material was 
blended into a fine powder using a commercial blender. Crude ex‐
tracts were obtained according to Yadav and Agarwala (2011). 
Briefly, 150 g of the prepared plant material was mixed with 2 L of 
a 50:50 methanol:dichloromethane solution. This was allowed to 
shake for 3 days on a platform shaker (Amerex Gyromax) at 200 rcf. 
The solution was filtered through Whatman No. 1 filter paper, and 
the filtrate was evaporated on a rotatory evaporator and allowed to 
air‐dry in a desiccator.

2.7 | Extraction of crude extracts from 
bacterial endophytes

For each endophytic bacterium listed in Table 1, 2 L of broth was 
measured into a 4‐L Erlenmeyer flask leaving room for aeration and 
autoclaved at 121°C for 15 min. Each 4‐L flask was inoculated with 
one of the endophytic bacterium as listed in Table 1 and shaken 
at 200 rcf and incubated at 30°C, an ideal temperature for the 
growth of the endophytes (Sardul Singh, Suneel, & Aharwal, 2014). 
After 7 days of cultivation, sterile XAD‐7‐HP resin (20 g/L; Sigma, 
BCBR6696V) was added to the culture for 2 hr, shaking at 200 rcf. 
The resin was filtered through cheesecloth and washed three times 
with 300 ml of acetone for each wash. The acetone‐soluble fraction 
was concentrated using a rotary evaporator, and a dark yellowish 
viscous extract was obtained, which was transferred into a meas‐
uring cylinder. Depending on the volume, ethyl acetate was added 
in a ratio of 1:1 (v/v). The mixture was vigorously shaken for about 
10 min, decanted into a separating funnel, allowed to separate and 
each phase collected in a conical flask. This process was repeated 
until the dark yellowish viscous liquid obtained after removing the 

TA B L E  1  The identities and morphological characteristics of the isolated bacterial endophytes from Crinum acowanii bulbs

Sample code
Assigned bacterial 
name

GenBank accession 
number Similarity (%) Gram reaction

Colony morphology (pigmenta‐
tion, texture, form)

TES 01C Acinetobacter 
guillouiae

MF943224 99 − rod Faint yellow, viscid, circular

TES 01E Pseudomonas 
moraviensis

MF943225 100 − rod Faint yellow, mucoid, circular

TES 01F Pseudomonas sp. MF943226 88 − rod Cream white, mucoid, circular

TES 03A Rahnella aquatilis MF943229 99 − rod Cream white, pasty, rhizoid

TES 03B Bacillus cereus MF943230 99 + rod Cream white, moist, rhizoid

TES 03C Bacillus cereus MF943231 99 + rod Cream white, moist, rhizoid

TES 04A Novosphingobium sp. MF943232 99 − rod Cream white, viscid, circular

TES 09B Rahnella aquatilis MF943238 99 − rod Pale yellow, viscid, circular

TES 11A Raoultella 
ornithinolytica

MF943240 99 − rod Cream white, mucoid, filamentous

TES 12A Burkholderia tropica MF943241 98 − rods Pale yellow, viscid, circular

TES 13A Rahnella aquatilis MF943242 100 − rods Pale white, rugose, filamentous

https://www.ncbi.nlm.nih.gov/genbank/
info:ddbj-embl-genbank/MF943224
info:ddbj-embl-genbank/MF943225
info:ddbj-embl-genbank/MF943226
info:ddbj-embl-genbank/MF943229
info:ddbj-embl-genbank/MF943230
info:ddbj-embl-genbank/MF943231
info:ddbj-embl-genbank/MF943232
info:ddbj-embl-genbank/MF943238
info:ddbj-embl-genbank/MF943240
info:ddbj-embl-genbank/MF943241
info:ddbj-embl-genbank/MF943242
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acetone became a very light‐yellow liquid. The ethyl acetate frac‐
tion was evaporated using a rotary evaporator, and the brown ex‐
tract obtained was stored in an amber bottle in a cool dry place until 
analysis was done. The light‐yellow liquid was evaporated, and no 
reasonable extract or further analysis was done on this substance 
(Maloney et al., 2009). The brown crude secondary metabolite ex‐
tracts were used for antibacterial and anticancer assays.

2.8 | Antibacterial analysis of Crinum macowanii 
bulb crude extracts and endophytic bacterial crude 
secondary metabolite extracts

Microserial dilution was used to check for the minimum inhibi‐
tion concentration (MIC) of the samples to specific pathogenic 
bacterial species, namely Bacillus cereus (ATCC10876), Bacillus 
subtilis (ATCC19659), Streptococcus epidermidis (ATCC14990), 
Staphylococcus aureus (ATCC25923), Mycobacterium smegmatis 
(ATCC21293), Mycobacterium marinum (ATCC927), Enterobacter 
aerogenes (ATTC13048), Escherichia coli (ATCC10536), Klebsiella 
pneumonia (ATCC10031), Proteus vulgaris (ATCC 33420), and Proteus 
aeruginosa (ATCC10145). This was done following a method de‐
scribed by Andrews (2001) and Sebola, Ndinteh, Niemann, and 
Mavumengwana (2016). The antibiotic streptomycin was used as 
the positive control and was prepared by weighing 0.032 mg in 1 ml 
of sterile distilled water while 0.1% DMSO was used as a negative 
control.

2.8.1 | Sample preparation

The crude bulb extract and crude endophytic extracts were weighed 
separately into empty autoclaved McCartney bottles to ensure ste‐
rility. A minimal amount of dimethyl sulfoxide (DMSO; 0.1%) was 
used to dissolve the crude extracts, and Mueller–Hinton (MH) broth 
was added to bring the volume of the dissolved crude extract to a 
concentration of 32 mg/ml as the stock solution.

2.8.2 | Microtiter plate assay

Serial dilutions were carried out using the MH broth from 16 mg/
ml down to 0.031 mg/ml, which was the lowest inhibition observed. 
The experiment was carried out in five repeats using a 96‐well mi‐
crotiter plate. The outer wells of the plate were filled with sterile dis‐
tilled water (sdH2O). The inoculum (100 µl) was added into each well 
that did not contain the sdH2O. The diluted crude extract samples 
(100 µl) were added in five wells horizontally and the concentrations 
decreased in vertical order from 16 mg/ml down to 0.031 mg/ml. 
The plates were covered and incubated overnight at 37°C. After in‐
cubation, 10 µl of 0.02% (w/v) resazurin sodium salt dye solution was 
added to the wells and the resulting solution incubated for another 
2 hr. On reduction, resazurin changes color from blue to pink to clear 
as oxygen becomes limited within the medium, indicating metabo‐
lism and the viability of bacterial cells, as well as no effect of the 
crude extracts on the bacteria. Any well with a known concentration 

showing a slight color change was used as MIC. The wells were visu‐
ally inspected for color changes.

2.9 | Anticancer assays

Stock solution of 200 µg/ml of all crude extracts (bulb crude extracts 
and endophytic crude extract) was prepared in 0.1% DMSO and son‐
icated. Serial dilutions were done according to McCauley, Zivanovic, 
and Skropeta (2013) and Artun et al. (2016). Briefly, dilutions were 
carried out using growth media from 100 µg/ml to 3.13 µg/ml. MTS 
(3‐(4, 5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxy‐phenyl)‐2‐(4‐
sulfophenyl)‐2H‐tetrazolium) in vitro cancer cytotoxicity assay was 
carried out to determine a change in cell viability through the use 
of a color change. The MTS compound (yellow) is metabolized by vi‐
able cells to form a dark purple‐colored compound, while dead cells 
turn the color of the MTS compound pink. The samples were run in 
duplicate across three plates (n = 6), and the average values obtained 
were reported. The U87MG (glioblastoma) cells and A549 (lung car‐
cinoma) cells were grown using normal tissue culture techniques 
using Dulbecco's modified Eagle medium (Merk) supplemented with 
15% fetal bovine serum (FBS; Merck). The cells (1  ×  105  cells/ml) 
were incubated in 96‐well plates at 37°C overnight, with the sub‐
sequent addition of the crude bulb extracts and crude endophytic 
extracts, in concentrations of 100 μg/ml, 50.0 μg/ml, 25.0 μg/ml, 
12.5 μg/ml, 6.25 μg/ml, 3.125 μg/ml, and 0 μg/ml. The cells were left 
to incubate for 4 days, whereupon MTS (5 μl; Promega) was added 
to the cells. The absorbance values were measured at 490 nm after 
1‐hr, 2‐hr, and 4‐hr incubation periods. Cell viability was then calcu‐
lated using the formula.

where Ea is absorbance of the extract, Ba is absorbance of the blank, 
and Ca is the absorbance of the control (Handayani et al., 2018). The 
positive control used for all conducted tests was auranofin, as it is able 
to inhibit thioredoxin reductase as well as the ubiquitin–proteasome 
system (UPS) by targeting proteasome‐associated deubiquitinase, thus 
inducing lung cancer cell apoptosis by selenocystine (Coussens et al., 
2017; Fan et al., 2014; Roder & Thomson, 2015).

3  | RESULTS

3.1 | Isolation of endophytic bacteria

From the C.  macowanii bulbs, a total of eleven endophytic bacte‐
ria were isolated. As the control plates did not reveal any bacterial 
growth, it was concluded that the isolates reported were endo‐
phytes to the plant under study. Table 1 shows the sample code, 
assigned bacterial name, accession number as given by GenBank, the 
similarity percentage between the sample isolate, the Gram stain re‐
action and colony morphology (color, shape, elevation, and margin) 
as observed on an agar plate for each endophyte.

% Cell viability=
(

Ea−Ba

)

∕
(

Ca−Ba

)

×100
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3.2 | Phylogenetic analysis

The BLAST search of the 16S rRNA gene sequences resulted in 
varying bacterial genera; the isolates were classified as seven 
genera, namely Acinetobacter, Pseudomonas, Rahnella, Bacillus, 
Novosphingobium, Raoultella, and Burkholderia (Figure 1).

3.3 | Antibacterial evaluation of Crinum macowanii 
bulb and bacterial endophyte crude extracts

The lowest MIC (0.125  mg/ml) was observed mostly from 
Pseudomonas sp. crude extract against B. subtilis, S. epidermidis, and 
M. marinum. The crude extracts of most of the endophytes showed 
MIC values higher than 0.125 mg/ml (Table 2). The bulb extracts 
showed a comparable MIC only against S. epidermidis.

3.4 | Anticancer assays

Endophytic crude extracts showed varying activities against A549 lung 
carcinoma cells. However, T2 crude extracts showed a 62% reduction 
of lung carcinoma cells at a concentration of 25 µg/ml (Figure 2).

Acinetobacter guillouiae extract T3 also showed promising ac‐
tivity when tested against brain cancer cell lines, with the highest 

concentration, (100 µg/ml), showing minimal activity while at 6.25 µg/
ml concentration displayed a 50% reduction in the cell viability of brain 
cancer, compared to the other extracts (excluding extract T6; Figure 3).

4  | DISCUSSION

Endophytic bacteria are the most unexplored yet diverse group of 
microorganisms with a symbiotic association with plants, and are 
promising sources of biologically active agents (Raghu, 2012). Very 
few plants have been explored for their endophytic variety as most 
are found in distinct biological niches (Shiva Kameshwari, Mohana, 
& Thara Saraswathi, 2015).

Eleven bacterial strains were isolated from C. macowanii in this 
study. Micro‐morphological analyses of the culturable isolates 
showed that nine were Gram‐negative rods while two were Gram‐
positive rods. Ullah et al. (2018) reported that roots and bulbs harbor 
a greater number of endophytes with a diverse population, as com‐
pared to other plant parts of the plant. Menpara and Chanda (2013) 
and Rhoden, Garcia, Santos e Silva, Azevedo, and Pamphile (2015) 
reported that Pseudomonas, Acinetobacter, Staphylococcus, Bacillus, 
Burkholderia, Enterobacter, Pantoea, and Agrobacterium are the most 
predominant endophytes in medicinal plants.

F I G U R E  1  Neighbor‐joining tree based 
on 16S rRNA gene sequence of eleven 
endophytic bacteria isolated from Crinum 
macowanii bulbs and other similar species 
selected from GenBank

MF943230 Bacillus cereus strain TES03B
MF351827 Bacillus cereus strain BAB-6967
MF943231 Bacillus cereus strain TES03C

MF943232 Novosphingobium sp. strain TES04A
AB461710 Novosphingobium sp. strain M234

MF943241 Paraburkholderia tropica strain TES12A
HQ023272 Burkholderia tropica strain CACua-100 
MF943224 Acinetobacter guillouiae strain TES01C
KJ147068 Acinetobacter guillouiae isolate OTU-b62

KY742758 Pseudomonas sp. strain 6.12.3
MF943226 Pseudomonas sp. strain TES01F
MF943225 Pseudomonas moraviensis strain TES01E
LN714047 Pseudomonas moraviensis strain Cc-2

MF943240 Raoultella ornithinolytica strain TES11A
JX860521 Rahnella aquatilis strain S T MRS 14
MF943242 Rahnella aquatilis strain TES13A
MF943238 Rahnella aquatilis strain TES09B
MF943229 Rahnella aquatilis strain TES03A
JX860521 Rahnella aquatilis strain S T MRS 14 
KU605236 Rahnella aquatilis strain IHB B 14970 

CP010557 Raoultella ornithinolytica strain S12
GQ203544 Hypocrea lixii strain SWFC8926

100

100

100

100

96

69
100

76

61

77

96

80

95

0.10
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The use of 16S rDNA gene sequence revealed that the isolated 
endophytes belong to diverse bacterial groups, namely the genera 
Pseudomonas, Bacillus, Acinetobacter, Rahnella, Novosphingobium, 
Raoultella, and Burkholderia. Our results support the findings of 
Menpara and Chanda (2013) and Rhoden et al. (2015), who found 
Bacillus and Pseudomonas to be the most frequently isolated en‐
dophytes in medicinal plants. Sequence identity of two of our 
isolates (TES03B and TES03C) showed 100% similarity to B.  ce‐
reus BAB‐6967, while TES01E and TES01F were similar to the 
Pseudomonas strain 6.12.3. Burkholderia tropica endophytes have 
been useful in nitrogen fixation and thus increase plant nutrient avail‐
ability (Tenorio‐salgado, Tinoco, Vazquez‐duhalt, Caballero‐mellado, 
& Perez‐rueda, 2013). Mercado‐blanco and Lugtenberg (2014) re‐
ported that Rahnella aquaqtilis endophytes stimulate plant growth 
of cereals and radishes, whereas endophytic Pseudomonas spp. have 
been used as biocontrols of different phytopathogens (Mercado‐
blanco & Lugtenberg, 2014). Endophytic Novosphingobium sp. has 
been reported to grow in rice plants and promotes the growth of rice 
(Rangjaroen et al., 2017). To the best of our knowledge, A. guillouiae, 
Novosphingobium sp., B. tropica, and R. aquaqtilis have not been re‐
ported in C. macowanii bulbs prior to this study.

Crinum macowanii bulbs have been used to treat diseases or 
ailments caused by bacteria (Maroyi, 2016). Rabe and Van Staden 
(1997) tested methanol extracts of C. macowanii bulbs on a number 
of bacteria such as E.  coli, K.  pneumoniae, S.  aureus, and S.  epider‐
midis and observed no antibacterial activities. Sebola et al. (2016) 
reported the inhibition of B. cereus, M. smegmatis, and S. epidermidis 
at 0.5 mg/ml, 0.125 mg/ml, and 0.0625 mg/ml, respectively, from 
methanol/dichloromethane (1:1, v/v) crude extracts of the bulb. The 
results obtained in this study indicate the inhibition of B.  cereus, 
S. epidermidis, and M. smegmatis at 0.500 mg/ml, 0.125 mg/ml, and 
0.500 mg/ml, respectively, which concur with the previous study of 
Sebola et al. (2016). Inhibition greater than 16 mg/ml, observed in 
K.  pneumonia, P.  vulgaris, and P.  aeruginosa, was not considered to 
be inhibitory. The inhibition of other bacteria by C. macowanii bulb 
crude extracts could be due to the relationship between the plant 
and its endophytes, which appears to confer certain benefits such 
as increased resistance to disease and induced growth (Rodriguez 
et al., 2009).

Endophytic bacteria have been reported to produce a number of 
secondary metabolites such as alkaloids, steroids, terpenoids, pep‐
tides, and flavonoids with antibacterial, antifungal, and cytotoxic 
properties (Raghu, 2012). The endophytic crude extracts tested in 
this study showed antibacterial activity against selected pathogenic 
strains. Raoultella ornithinolytica crude extract had MIC values rang‐
ing from 0.250 to 16 mg/ml, with the most significant inhibition ob‐
served for K. pneumonia, E.  coli, and P.  aeruginosa at concentrations 
of 0.500 mg/ml, 0.500 mg/ml, and 0.250 mg/ml, respectively. To the 
best of our knowledge, this study is the first to report on the extraction 
of crude extract from R. ornithinolytica, A. guillouiae, Rahnella aquatilis, 
and Novosphingobium sp. endophytes and their antibacterial activity. 
The results show promising antibacterial activity, as crude extracts 
of activity <1 mg/ml are deemed to have noteworthy antibacterial TA
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properties (Zonyane, Makunga, & Vuuren, 2013). Crude extracts from 
B. cereus showed MIC values of between 1 and 16 mg/ml, inhibiting 
K. pneumonia at 1 mg/ml. Crude extract from B. cereus has been re‐
ported to possess antibacterial activity against a wide range of patho‐
genic microbes such as E. coli and K. pneumoniae (Kumar, Thippeswamy, 
& Shivakumar, 2013). This supports the findings in this study.

Pseudomonas moraviensis crude extract showed MIC values of 
between 0.125 and >16 mg/ml. The crude extract showed activity 
against B. cereus, S. epidermidis, S. aureus, M. marinum, and E. aero‐
genes at concentrations of 0.250 mg/ml, 0.500 mg/ml, 1.00 mg/ml, 
0.125 g/ml, and 0.500 mg/ml, respectively. Pseudomonas moraviensis 
crude extract had no significant activity on P. aeruginosa, showing 
values of >16 mg/ml (highest tested concentration). Pseudomonas 
moraviensis has been reported to possess antibacterial proteins 
and peptides such as bacteriocins (Ghequire & De Mot, 2014). 

Pseudomonas spp. have a significant metabolic potential due to ge‐
netic loci encoding secondary metabolites (Davis, 2017; Gross & 
Loper, 2009; Silby, Winstanley, Godfrey, Levy, & Jackson, 2011). 
Wauven et al. (2014) and Mohamed, Avis, and Tsopmo (2015) re‐
ported that Pseudomonas sp. produced antimicrobials such as mupi‐
rocin, pyrrolnitrin, and pyoluteorin. This could justify the results we 
observed. This may suggest that extracts from P. moraviensis could 
be used as antibacterial agents.

Rahnella aquatilis crude extract had MIC values ranging be‐
tween 0.125 and >16 mg/ml. Staphylococcus aureus was inhibited 
at 0.125 mg/ml. El‐Hendawy, Osman, and Sorour (2003) reported 
that R.  aquatilis strains obtained from soil were able to produce 
bacteriocin, which inhibited culture of different Gram‐positive and 
Gram‐negative bacteria. Novosphingobium sp. crude extract had 
MIC values ranging from 1 to >16 mg/ml, showing a lack of activity 

F I G U R E  2  Cytotoxic activity of endophytic‐derived crude extracts and bulb crude extracts on A549 lung carcinoma cells tested 
at different concentrations ranging from 100 to 3.13 µg/ml. The positive control used was auranofin. T1 = Crinum macowanii bulbs, 
T2 = Raoultella ornithinolytica, T3 = Acinetobacter guillouiae, T4 = Pseudomonas moraviensis, T5 = Pseudomonas sp., T6 = Rahnella aquatilis, 
T7 = Novosphingobium sp., T8 = Bacillus cereus, T9 = Burkholderia tropica
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F I G U R E  3  Cytotoxic activity of endophytic‐derived crude extracts and bulb crude extracts on UMG87 glioblastoma cells tested 
at different concentrations ranging from 100 to 3.13 µg/ml. The positive control used was auranofin. T1 = Crinum macowanii bulbs, 
T2 = Raoultella ornithinolytica, T3 = Acinetobacter guillouiae, T4 = Pseudomonas moraviensis, T5 = Pseudomonas sp., T6 = Rahnella aquatilis, 
T7 = Novosphingobium sp., T8 = Bacillus cereus, T9 = Burkholderia tropica
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against the tested organisms. Burkholderia tropica crude extract 
had MIC values ranging from 0.250 to >16 mg/ml. Bacillus subtilis 
was inhibited at 0.250 mg/ml. Mycobacterium marinum, E. coli, and 
K.  pneumonia had MIC values of >16 mg/ml, which was deemed 
noninhibitory. Burkholderia showing biocontrol and plant growth‐
promoting characteristics was reported (Ho & Huanga, 2015). It 
was observed in this study that the Gram‐positive bacterial species 
were more susceptible to the antibacterial compounds in the crude 
extracts than the Gram‐negative bacteria. This could be attributed 
to the difference in the cell walls of both groups of bacteria, as 
Gram‐negative bacteria are known to be resistant to most antibi‐
otics due to their outer membrane, which tends to expel antibiotics 
from the cells by acting as a selective barrier (in contrast to that 
of their Gram‐positive counterparts) (Delcour, 2009; Iannello et al., 
2014).

Greenwell and Rahman (2015), Seca and Pinto (2018) reported 
that secondary metabolites (alkaloids, brassinosteroids, and taxols) 
from plants possess anticancer properties, and most are currently in 
clinical trials or being used in therapeutic applications. Crinum ma‐
cowanii bulb crude extract T18 showed a cell viability of above 80% 
against A549 lung carcinoma, and an above 100% cell viability was 
observed on UMG87 glioblastoma cell lines for all the concentra‐
tions tested, indicating no activity on those cell lines. In contrast, 
Maroyi (2016) reported that alkaloids such as crinamine, bulbisper‐
mine, and lycorine isolated from C. macowanii have cytotoxic activity 
against human oral epidermoid carcinoma KB cells, apoptosis‐resis‐
tant cell lines, and BLS mouse melanoma cells.

Acinetobacter guillouiae crude extract showed notable ac‐
tivity on UMG87 glioblastoma cell lines, with 58% cell death at 
6.25  µg/ml. However, increased concentrations of A.  guillouiae 
crude extract showed an increase in cell viability. The extracts 
had a lower cell viability compared to that of the positive con‐
trol at this concentration. Acinetobacter sp. are known to contain 
amine compounds reported to have higher tumor toxicity against 
human oral squamous cell carcinoma (Arora, 2015; Shimada et 
al., 2014). Those amines could be responsible for the activity ob‐
served. Bacillus cereus crude extract exhibited a low cell viability 
of 48% at 100 µg/ml on the A549 lung carcinoma cell lines. Other 
species of B. cereus have been reported to have cytotoxicity on a 
human cervical cancer cell line (HeLa) and a breast cancer cell line 
(MCF‐7) (Ferdous, Shishir, Khan, & Hoq, 2018). This could explain 
the results obtained in this study. Raoultella ornithinolytica crude 
extract exhibited a low cell viability of 57% at 100 µg/ml on the 
A549 lung carcinoma cell lines, despite a recovery of cell viability 
when the cells were exposed to a low concentration of 3.13 µg/
ml. This observation is supported by studies carried out by Zhang 
et al. (2006) where the researchers reported that after a low dose 
of chemotherapy, tumor tissue has a propensity to regrow, causing 
tumor repopulation. Hutf and Grady (1996) stated that anticancer 
drugs used for lung carcinoma cells have concentration–effect re‐
lationships and this could explain our results.

A puzzling finding was the increased cell viability in the UMG87 
glioblastoma cell in response to the R.  aquatilis crude extract. 

However, UMG87 glioblastoma cell lines are known to undergo hy‐
poxia, resulting in metabolic abnormalities such as increased uptake 
of glucose and acid resistance; this increased glucose uptake and 
high aerobic glycolysis induces proliferation of cancer cells (Jiang, 
2017; Zhou et al., 2011). This would explain the high cell viability of 
100% and above on the glioblastoma cell lines. Further studies are 
needed to elucidate this phenomenon. The activities observed from 
the methanol/dichloromethane crude plant extracts could be caused 
by artifacts as Sauerschnig, Doppler, Bueschl, and Schuhmacher 
(2018) mentioned that artifacts are generated by methanol during 
sample extraction and storage.

5  | CONCLUSION

A diverse microbial community was isolated from C.  macowanii 
bulbs, with notable inhibitory activities against Gram‐positive and 
Gram‐negative bacterial species. From these results, it can be con‐
cluded that endophytic‐derived crude extracts isolated from medici‐
nal plant C. macowanii bulbs produce potential bioactive compounds 
which should be explored further for their biological activities.
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