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SUMMARY 

There is a need to monitor salt accumulation throughout agricultural irrigation schemes as it can 

have a major negative impact on crop yields and subsequently result in a lower food production. 

Salt accumulation can result from natural processes, human interference or prolonged 

waterlogging. Most irrigation schemes are large and therefore difficult to monitor via conventional 

methods (e.g. regular field visits). More cost-effective, less time-consuming approaches in 

identifying salt-affected and salt-prone areas in large irrigation schemes are therefore needed. 

Remote sensing has been proposed as an alternative approach due to its ability to cover a large 

region on a timely basis. The approach is also more cost-effective because less field visits are 

required. 

A literature review on salt accumulation and remote sensing identified several direct and indirect 

methods for identifying salt-affected or salt-prone areas. Direct methods focus on the delineation 

of salt crusts visible on the bare soil in multispectral satellite imagery, whereas indirect methods, 

which include vegetation stress monitoring and geomorphometry (terrain analysis), attempt to take 

subsurface conditions into account. A disadvantage of the direct approach is that it does not take 

subsurface conditions into account, while vegetation stress monitoring (an indirect method) can 

produce inaccurate results because the vegetation stress can be a result of other factors (e.g. poor 

farming practices). Geomorphometry offers an alternative (modelling) approach that can either 

replace or augment direct and other indirect methods.  

Two experiments were carried out in this study, both of which focussed on machine learning (ML) 

algorithms (namely k-nearest neighbour (kNN), support vector machine (SVM), decision tree (DT) 

and random forest (RF)) and statistical analyses (regression or geostatistics) to identify salt-

affected soils. The first experiment made use of very high resolution WorldView-2 (WV2) 

imagery. A number of texture measures and salinity indices were derived from the WV2 bands 

and considered as predictor variables. In addition to the ML and statistical analyses, a classification 

and regression tree (CART) model and Jeffries-Matusita (JM) distance thresholds were also 

produced from the predictors. The CART model was the most accurate in differentiating salt-

affected and unaffected soils, but the accuracy of kNN and RF classifications were only marginally 

lower. The normalized difference salinity index showed the most promise among the predictors as 

it featured in the best JM, regression and CART models.  

The second experiment applied geomorphometry approaches to two South African irrigation 

schemes. Elevation sources include the Shuttle Radar Topographic Mission (SRTM) digital 

elevation model (DEM) and a digital surface model (DSM) produced from stereoscopic aerial 
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photography. A number of morphological (e.g. slope gradient) and hydrological (e.g. flow 

direction) terrain parameters were derived from the SRTM DEM and the DSM and used as 

predictors. In addition to the algorithms used for the first experiment, the geostatistical method 

Kriging with external drift (KED) was also evaluated in this experiment. The source of elevation 

had an insignificant impact on the accuracies, although the DSM did show promise when combined 

with ML. KED outperformed regression modelling and ML in most cases, but ML produced 

similar results for one of the study areas. 

The experiments showed that direct and geomorphometry approaches hold much potential for 

mapping salt-affected soil. ML also proved to be a viable option for identifying salt-affected or 

salt-prone soil. It is recommended that a combination of direct and indirect (e.g. vegetation stress 

monitoring) approaches are considered in future research. Making use of alternative data sources 

such as hyperspectral imagery or higher spatial resolution DEMs may also prove useful. Clearly, 

more research is needed before such approaches can be operationalized for detecting, monitoring 

and mapping salt accumulation in irrigated areas.  
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salinity, salt accumulation, remote sensing, earth observation, geomorphometry, terrain analysis, 
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Stellenbosch University  https://scholar.sun.ac.za



 v 

OPSOMMING 

 

Daar is 'n behoefte om soutophoping deur middel van landboubesproeiingskemas te monitor 

aangesien dit 'n beduidende negatiewe uitwerking op oesopbrengste kan hê en gevolglik tot laer 

voedselproduksie kan lei. Soutophoping kan voortspruit uit natuurlike prosesse, menslike 

inmenging of langdurige deurdrenking. Die meeste besproeiingskemas is groot en daarom moeilik 

om te monitor via konvensionele metodes (bv. gereelde veldbesoeke). Meer koste-effektiewe, 

minder tydrowende benaderings is dus nodig om soutgeaffekteerde areas en areas wat geneig is 

tot soutophoping in groot besproeiingskemas te identifiseer. Afstandswaarneming is voorgestel as 

'n alternatiewe benadering weens sy vermoë om 'n groot streek op 'n tydige basis te dek. Die 

benadering is ook meer koste-effektief omdat minder veldbesoeke vereis word. 

'n Literatuuroorsig oor soutophoping en afstandswaarneming het verskeie direkte en indirekte 

metodes geïdentifiseer om soutgeaffekteerde areas of areas geneig tot soutophoping te identifiseer. 

Direkte metodes fokus op die afbakening van soutkorste wat in multispektrale satellietbeelde op 

die kaal grond sigbaar is. Indirekte metodes, insluitende plantstresmonitering en geomorfometrie 

(terreinanalise), aan die ander kant, poog om die ondergrondse toestande in ag te neem. 'n Nadeel 

van die direkte benadering is dat dit nie ondergrondse toestande in ag neem nie, terwyl 

plantstresmonitering ('n indirekte metode) onakkurate resultate kan veroorsaak, aangesien die 

plantstres die gevolg kan wees van ander faktore (bv. swak boerderypraktyke). Geomorfometrie 

bied 'n alternatiewe (modellering) benadering wat direkte of ander indirekte metodes kan vervang 

of uitbrei.  

In hierdie studie is twee eksperimente uitgevoer. Albei het gefokus op masjienleer (ML) 

algoritmes, naamlik k-nearest neighour (kNN), ondersteunende vektormasjien, besluitboom en 

ewekansige woud (EW), en statistiese ontledings (regressie of geostatistiek) om soutgeaffekteerde 

gronde te identifiseer. Die eerste eksperiment het gebruik gemaak van baie hoë resolusie 

WorldView-2 (WV2) beelde. 'n Aantal tekstuurmaatreëls en soutindekse is afgelei van die WV2-

bande en is beskou as voorspeller-veranderlikes. Benewens die ML en statistiese ontledings, is 'n 

klassifikasie- en regressieboom (KARB) model en Jeffries-Matusita (JM) afstandsdrempels ook 

van die voorspellers vervaardig. Die KARB-model het die mees akkuraatste differensiasie tussen 

sout-geaffekteerde en ongeaffekteerde grond gemaak, maar die akkuraatheid van kNN- en EW-

klassifikasies was slegs marginaal laer. Van al die voorspellers het die genormaliseerde-verskil-

saliniteit-indeks die meeste belofte getoon aangesien dit in die beste JM-, regressie- en KARB-

modelle presteer het.  

Stellenbosch University  https://scholar.sun.ac.za



 vi 

Die tweede eksperiment het geomorfometriese benaderings toegepas op twee Suid-Afrikaanse 

besproeiingskemas. Elevasiebronne sluit in die Shuttle Radar Topographic Mission (SRTM) 

digitale elevasie-model (DEM) en 'n digitale oppervlakmodel (DOM) wat uit stereoskopiese 

lugfotografie vervaardig word. 'n Aantal morfologiese (bv. hellingsgradiënt) en hidrologiese (bv. 

vloeirigting) terreinparameters is afgelei van die SRTM DEM en die DOM en is gebruik as 

voorspellers. Benewens die algoritmes wat vir die eerste eksperiment gebruik is, is die 

geostatistiese metode Kriging met eksterne dryf (KED) ook in hierdie eksperiment geëvalueer. Die 

bron van elevasie het 'n onbeduidende impak op die akkuraatheid gehad, hoewel die DOM belofte 

getoon het wanneer dit met ML gekombineer is. KED het in meeste gevalle beter presteer as 

regressie modellering en ML, maar ML het soortgelyke resultate vir een van die studiegebiede 

opgelewer. 

Die eksperimente het getoon dat direkte en geomorfometriese benaderings baie potensiaal het vir 

die kartering van soutgeaffekteerde grond. ML het ook bewys dat dit 'n lewensvatbare opsie is om 

soutgeaffekteerde grond of grond wat geneig is tot soutophoping, te identifiseer. Daar word 

aanbeveel dat 'n kombinasie van direkte en indirekte (bv. plantegroei-stresmonitering) benaderings 

in toekomstige navorsing oorweeg word. Die gebruik van alternatiewe databronne soos 

hiperspektrale beelde of hoër ruimtelike resolusie-DOM's kan ook nuttig wees. Dit is duidelik dat 

meer navorsing nodig is voordat sulke benaderings geoperasionaliseer kan word vir die opsporing, 

monitering en kartering van soutophoping in besproeide gebiede.  
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CHAPTER 1:  INTRODUCTION 

Salt accumulation or salinization, the process whereby soluble salts accumulate in soil (Al-Khaier 

2003), is of major concern throughout the world due to its negative impact on agricultural areas 

and crop yields (Metternicht & Zinck 2003). It can result from natural processes or through human 

interference such as vegetation clearing, landscape reshaping, earth works and irrigation (Mcghie 

2005) and can cause lower property values, engineering difficulties, increased soil erosion, damage 

to infrastructure and eutrophication of rivers (Metternicht & Zinck 2003). Salinization can also be 

a consequence of prolonged waterlogging (Dwivedi 1997). According to Dwivedi, Sreenivas and 

Ramana (1999), soils are said to be waterlogged when the water table rises to an extent that the 

pores in the root zone of a crop become saturated. The result is a reduction in normal air flow, 

lower levels of oxygen and increased levels of carbon dioxide in the soil. Poor drainage factors 

can produce waterlogged soil, such as the natural accumulation of water at footslopes and valley 

bottoms, regions close to or adjacent to large open water surfaces, poor surface water management, 

water leaking from dams, pipes, canals or irrigation mainlines close to man-made obstructions 

(e.g. bridges) and over-irrigation (Dwivedi 1997).  

Ghassemi, Jakeman and Nix (1995) state that about 77 million hectares (ha) of the global land 

surface is affected by extremely saline soil caused by human activity, of which 58% occurs in 

irrigated areas. According to Metternicht and Zinck (2003), 20% of global irrigated land is affected 

by salt accumulation. It has been estimated that 18% of South Africa’s irrigated soils are either 

affected by salt accumulation or waterlogging (Backeberg et al. 1996). Due to low rainfall, and 

therefore less leaching of salts from the soil, salt accumulation is more extensive in arid areas than 

humid areas (Metternicht & Zinck 2008). As a result of increased population pressure, more arid 

areas will be used for irrigated agricultural production in the future, increasing the severity of 

salinization. Given that only 13.7% of South African land is suitable for agricultural use 

(Department of Agriculture, Forestry and Fisheries 2013), measures are urgently needed to prevent 

the loss of fertile agricultural land. 

1.1 SALINIZATION 

Soil salinization is a well-known land degradation process that can have a negative impact on the 

size and productivity of agricultural land, especially in semi-arid and arid regions (Elnaggar & 

Noller 2010). Defined as the accumulation of soluble salts (e.g. chlorides, sulphates and carbonates 

of sodium, magnesium or calcium) in the ground water, subsoil or on the soil surface (Mashimbye 

2005), salinization can result naturally (primary salinization) or from human activity (secondary 

salinization) (Al-Khaier 2003). Primary salinization, caused by the leaching of salts from the soil, 
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is controlled by geological, geomorphic, climatic and hydrological factors (Ghassemi, Jakeman & 

Nix 1995). When primary minerals in crystalline rocks are eroded, salts are redistributed to form 

part of sedimentary rocks and sedimentary deposits at the earth’s surface. Weathering of the salt-

rich sediments and hard rocks therefore allows salts to enter the soil system (Metternicht & Zinck 

2008). Primary salinization is usually found at topographic depressions, footslopes, or where 

groundwater is naturally shallow (e.g. at or close to springs) (Ghassemi, Jakeman & Nix 1995). 

Secondary salinization, a result of human activity, affects the way in which salts move and 

accumulate in soils (Stals 2007). In irrigated areas, salinization can be a result of a rising 

groundwater table due to irrigation; saline water use for irrigation; saline seeps in close proximity 

to water reservoirs, ponds and canals; and the intrusion of saline water into depleted freshwater 

aquifers. Increased salinity in rainfed fields are mostly the result of increases or decreases in 

evapotranspiration, or result from  saline seeps from below the surface, such as at shallow water 

bodies and dry lakes (Metternicht & Zinck 2003; Metternicht & Zinck 2008). 

1.1.1 Saline soil 

There is no universally accepted definition for saline soil because the definition depends on the 

discipline and the type of measurement (Fitzpatrick 2002). For example, hydrogeologists 

distinguish between primary and secondary salt accumulation, whereas a range of electrical 

conductivity (EC) levels (slightly, moderate and severely) is used by plant and soil scientists. 

According to Nell et al. (2015), soil scientists in South Africa distinguishes between salt-affected 

and unaffected soils by making use of a EC threshold of 400 mS/m. Soils consisting of EC 

measurements equal to or greater than 400 mS/m are regarded as being salt-affected. Other 

scientific fields may make use of a combination of a low pH (< 3.5), the presence of sulphur, and 

high EC values to distinguish acid sulphate salinity. Salinity can also simply be referred to as soils 

containing high amounts of soluble salts (Fitzpatrick 2002; Al-Khaier 2003; Nell et al. 2015). 

1.1.2 Waterlogging 

Salt accumulation can also be a consequence of prolonged waterlogging. Waterlogging is caused 

by poor drainage and occurs when a rise in the water table saturates the soil pores in the root zone 

of the crop, resulting in a restriction of air circulation, lower oxygen levels and higher levels of 

carbon dioxide (Dwivedi, Sreenivas & Ramana 1999; Mcghie 2005). Prolonged waterlogging 

results in secondary salinization, a process whereby the soil root zone is enriched by soluble salts 

(e.g. sodium chloride and sodium sulphate) (Dwivedi 1997). Ponding, a severe form of 

waterlogging, occurs when the water table rises above the soil surface (Nell et al. 2015). Well-

known causes of waterlogging include over-irrigation (e.g. canal irrigation in agricultural areas), 
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large open water surfaces, natural accumulation of water (e.g. at foot slopes and valleys), leaking 

water and man-made objects’ proximity (e.g. bridges, canals, dams and pipes) (Rao et al. 1998; 

Dwivedi 1997; Dwivedi, Sreenivas & Ramana 1999). 

1.1.3 Types of salinization 

Salt types found in soil include carbonates, sulphates and chlorides. The more saline a soil, the 

higher the occurrence of more soluble salts. Unaffected or slightly saline soils are usually 

dominated by Ca2+, Mg2+ and HCO3
-, whereas highly affected soils are often dominated by 

chemicals such as NaCl and Na2SO4. Soils affected by alkaline soil-forming processes mostly 

consist of sodium salts (e.g. Na2CO3 and NaHCO3) (Metternicht & Zinck 2008). According to 

Metternicht and Zinck (2008) sodium chloride (NaCl), which is also highly soluble and toxic, is 

the most common salt found in saline soil. 

1.1.4 Effects of salinization 

Even though salinization affects smaller areas compared to other land degradation processes, it is 

still a severe environmental hazard that is of great concern. High soil salinity conditions result in 

a reduction in the uptake of water by plants (due to reduced osmotic pressure), which in turn has 

a negative impact on plant growth and agricultural crop yield (Mashimbye 2005; Barnard et al. 

2012; Nell et al. 2015). Droughts have a similar effect on plants (Metternicht & Zinck 2008).  

High soil salinity also has several secondary negative impacts on regions. This includes lower 

property values (due to degraded land on farms), engineering problems, increased soil erosion, 

eutrophication of rivers and infrastructure damage (Metternicht & Zinck 2003). 

1.2 REMOTE SENSING AND SALINIZATION 

The spectral properties of salt-affected soils have been investigated by several authors (Rao et al. 

1995; Abbas & Khan 2007; Metternicht & Zinck 2003; Elnaggar & Noller 2010; Farifteh, Farshad 

& George 2006; Khan et al. 2005; Iqbal 2011; Setia et al. 2013; Sidike, Zhao & Wen 2014). Rao 

et al. (1995) showed that salt-affected soils have a higher reflectance in the visible and near-

infrared (NIR) regions of the electromagnetic spectrum. This was confirmed by Metternicht and 

Zinck (2003) and Abbas and Khan (2007). Salt-affected soils with salt encrustations visible on the 

topsoil have been shown by Elnaggar and Noller (2010) to be smoother than non-saline surfaces. 

Surface roughness and the colour of saline soils has been found to also have an impact on the their 

spectral properties (Farifteh, Farshad & George 2006). Several salinity indices (SIs), calculated 

from multispectral image bands, were developed from these findings to effectively discriminate 

salt-affected soils from unaffected soils. These include the normalized difference salinity index 
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(NDSI) (Khan et al. 2005) and the combined spectral response index (COSRI) (Fernandez-Buces 

et al. 2006). Difficulties in discriminating saline soils from non-saline soils can arise from an 

increase in soil moisture, decreases in reflectance as a result of high clay content, an increase in 

ferric oxides, and the alteration of soil spectral properties due to irrigation and tillage, especially 

in highly dynamic irrigation schemes (Metternicht & Zinck 2003). Section 2.3.1 provides a more 

detailed discussion on SIs. More information can also be found in Fernandez-Buces et al. (2006), 

Abbas and Khan (2007) and Akhtar Abbas et al. (2013). Conventional methods of monitoring salt 

accumulation involve regular field visits to collect soil samples. This is followed by a laboratory 

analysis of the collected soil samples. Such an approach is not viable for large irrigation schemes 

due to the number of field visits required to effectively monitor the region. Remote sensing (RS) 

has been proposed as a less time-consuming, more cost-effective approach for monitoring salt 

accumulation in large areas (Abbas et al. 2013). RS approaches make use of electromagnetic 

radiation to derive information about the Earth’s surface from an overhead perspective. The 

electromagnetic radiation can either be reflected or emitted from the Earth’s surface (Campbell 

2006). 

Techniques to identify salt-affected soils using RS methods can be grouped into two categories, 

namely direct (soil-related indicators) and indirect (performance-related indicators and 

geomorphometry) approaches. Direct indicators include dark, greasy soil surfaces, puffy soil, 

white salt crusts, coarser topsoil and dehydrated cracks, whereas performance-related indicators 

include moisture stress, the presence of dead trees, spotty growth of crops and a blue-green tinge 

in vegetation (Farifteh, Farshad & George 2006). The main disadvantage associated with the direct 

approach is that the method is limited to the topsoil, and therefore does not take subsurface 

processes into account (Dwivedi 1997; Dwivedi, Sreenivas & Ramana 1999). Geomorphometry, 

the use of digital elevation data to perform terrain analysis (Pike 2000), is also considered an 

indirect approach, but is not strictly a RS approach (although elevation data is most commonly 

derived from RS data). 

Performance-related indicators and geomorphometry has been proposed as possible methods to 

overcome some of the limitations of the direct approach. They take subsurface processes into 

account and can be categorised as indirect methods for identifying saline soils. Performance-

related indicators focus on the identification of plant stress caused by salt accumulation (Muller & 

Van Niekerk 2016a). However, poor vegetation health, as detected by vegetation monitoring, can 

also be caused by poor farming practices and soil preparation (Furby et al. 1995). High bare ground 

reflectance can furthermore have a negative impact on the calculated vegetation indices and reduce 

their effectiveness (Douaoui, Nicolas & Walter 2006) and weak correlations between vegetation 
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indices and soil electrical conductivity (EC) have been found as a result of variations in different 

crop species’ salt tolerances (Maas & Hoffman 1977; Aldakheel 2011). Identifying areas 

susceptible to salt accumulation using geomorphometry techniques has yielded encouraging 

results (Sulebak, Tallaksen & Erichsen 2000; Elnaggar & Noller 2010; Akramkhanov et al. 2011; 

Taghizadeh-Mehrjardi et al. 2016). Sulebak et al. (2000) observed a strong, significant correlation 

between soil moisture and terrain data, namely slope, aspect and profile curvature, while 

Akramkhanov et al. (2011) found significant correlations between soil EC and several terrain 

derivatives (distance to drainage, ground water table depth, slope, profile curvature). Both studies 

employed stepwise regression modelling. Significant correlations between soil EC and elevation, 

slope and wetness indices have also been observed by Elnaggar and Noller (2010). A more recent 

study by Taghizadeh-mehrjardi et al. (2016) identified elevation, wetness indices and the multi-

resolution valley bottom flatness index to be the most important predictors of soil salinity. By 

employing a decision tree (DT) to terrain data, both Evans et al. (1996) and Elnaggar and Noller 

(2010) achieved high accuracies in identifying saline soil. Geostatistical methods applied on 

terrain derivatives have also shown promise in identifying soils affected by salt accumulation 

(Eldeiry & Garcia 2008; Eldeiry & Garcia 2009; Gallichand et al. 1992; Juan et al. 2011; Li et al. 

2007; Taghizadeh-Mehrjardi et al. 2014; Utset et al. 1998).  

1.3 MACHINE LEARNING 

Machine learning (ML) algorithms use training samples consisting of a known category to classify 

cases with an unknown category (Rees 2001; Campbell 2006). Unlike parametric classifiers, which 

assume that the data are normally distributed, ML classifiers are non-parametric. Non-parametric 

classifiers do not make assumptions about the data distribution to estimate essential parameters 

(Jain, Duin & Mao 2000; Hubert-Moy et al. 2001). This is especially advantageous when working 

with RS data, because in most cases RS data are not normally distributed. Several ML algorithms 

are available and have become popular for RS use, namely k-nearest neighbour (kNN) (Franco-

Lopez, Ek & Bauer 2001; Ying Li & Bo Cheng 2009; Falkowski et al. 2010), support vector 

machine (SVM) (Lizarazo 2008; Li et al. 2010; Petropoulos, Kalaitzidis & Prasad Vadrevu 2012), 

decision tree (DT) (Punia, Joshi & Porwal 2011; Gómez et al. 2012; Hladik & Alber 2014) and 

random forest (RF) (Gislason, Benediktsson & Sveinsson 2006; Chan & Paelinckx 2008; 

Rodriquez-Galiano et al. 2012a). ML can easily be automated, allows for combinations of 

categorical and continuous input variables, and has the ability to capture hierarchical and non-

linear relationships (Hladik & Alber 2014). More detailed discussions on ML classifiers are 

available in Sections 2.1.3.6, 3.3.2.7 and 4.3.3.3. 
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1.4 PROBLEM FORMULATION 

As discussed in Section 1.2, several RS approaches can be used to identify saline soil. Direct 

approaches have been frequently investigated, but most studies were performed within large 

cultivated fields affected severely by salt accumulation. The extent of the salt-affected areas were 

also large enough to employ medium spatial resolution satellite imagery, namely Landsat (30 m) 

(Lenney et al. 1996; McFarlane, George & Caccetta 2004; Fernandez-Buces et al. 2006; 

Rodríguez, González & Zaballos 2007; Iqbal & Mehdi 2008; Abdelfattah, Shahid & Othman 2009; 

Elnaggar & Noller 2010; Aldakheel 2011; Mohamed, Morgun & Goma Bothina 2010; Iqbal 2011; 

Wang et al. 2013; Taghizadeh-Mehrjardi et al. 2014; Taghizadeh-Mehrjardi et al. 2016), IRS 

(20 m) (Dwivedi & Sreenivas 1998; Dwivedi et al. 2001; Abbas & Khan 2007; Abbas et al. 2013) 

or ASTER (15 m) (Gao & Liu 2008). The occurrence of small patches of salt accumulation and 

the relatively small size of irrigated fields in South Africa (Nell & Van Niekerk 2014), coupled 

with the elongated shapes of many fields, reduces the effectiveness of medium resolution imagery 

to detect salt-affected areas. It is likely that high or very high resolution (VHR) imagery will be 

much more effective in the South African context, but such imagery has not yet been locally 

evaluated for salt accumulation monitoring. The few international studies that have employed 

VHR imagery for mapping salt-affected areas (Sidike, Zhao & Wen 2014; Setia et al. 2013; 

Douaoui & El Ghadiri 2015) did not consider advanced classification techniques such as ML. In 

addition, no comparison of ML and geostatistical techniques for modelling salt-affected soils – 

using empirical measurements and terrain derivatives as input – has been attempted to date. These 

gaps in knowledge open several research opportunities.   

The following research questions were set: 

1. How effective is VHR multispectral imagery for direct detection of salt accumulation in 

South African conditions? 

2. Which multispectral bands, SIs and other image transformation methods are the most 

effective for directly identifying salt accumulation? 

3. How viable is geomorphometry (indirect) for modelling salt accumulation within 

agricultural fields? 

1.5 RESEARCH AIM AND OBJECTIVES 

The aim of this research is to evaluate VHR EO (direct) and geomorphometry (indirect) 

approaches for identifying salt-affected or salt-prone areas within agricultural fields. 

To achieve the research aim, the following objectives have been set: 
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1. Review the EO and geomorphometry literature, specifically looking at how these 

approaches can be used to monitor salt accumulation. 

2. Identify appropriate study areas in which the various techniques can be evaluated.  

3. Collect and acquire empirical data, satellite images and elevation datasets for the selected 

study areas, and prepare them for analyses. 

4. Determine the VHR multispectral bands, SIs and other image transformations most 

appropriate for identifying salt accumulation. 

5. Apply several statistical and ML approaches to the multispectral derivatives to discriminate 

between salt-affected and unaffected areas. 

6. Identify the DEM derivatives that show the most potential for modelling salt-affected 

areas. 

7. Compare the effectiveness of ML and geostatistical approaches applied to DEM 

derivatives for classifying salt-affected and unaffected soils. 

8. Synthesise the results of the experiments to make recommendations on mapping salt 

accumulation in irrigation schemes. 

1.6 RESEARCH METHODOLOGY AND AGENDA 

This research consisted of two experiments: one carried out on VHR satellite imagery and the 

other on elevation datasets. An investigation was launched into the relationship between these 

datasets and the occurrence of salt accumulation, while the possibility of accurately mapping salt 

accumulation using quantitative methods was also determined. The first experiment examined 

VHR satellite imagery, while the second experiment focussed on elevation data and terrain 

analysis approaches. 

Figure 1.1 shows the structure of this thesis and the research design. This chapter, which 

introduced the aims and objectives of the study, is followed by an overview of earth observation 

(EO), geomorphometry and EO approaches in mapping salt accumulation (Chapter 2). Literature 

on ruleset-based approaches and supervised algorithms are also discussed in Chapter 2. Various 

variables that can be derived from RS data and elevation data are also discussed. 
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Figure 1.1: Research design for evaluating the potential of VHR WV2 imagery and elevation datasets for mapping 

salt accumulation within irrigation schemes 

Rationale and planning 
(Chapter 1) 

• Salinization and remote sensing (RS) of saline soils 

• Research problem: Potential of very high resolution (VHR) satellite 
imagery (direct) and geomorphometry (indirect) for mapping salt 
accumulation 

• Aim and objectives: Evaluate VHR EO and geomorphometry approaches 
for identifying salt affected or salt prone areas within agricultural fields 

Literature review 

(Chapter 2) 

• Overview of RS and geomorphometry 

• Review of RS and geomorphometry approaches in mapping salt 

accumulation 

Indirect approach: Geomorphometry 

(Chapters 4) 

• Obtain DEMs and stereoscopic aerial 

photographs for appropriate study areas 

• Extract a DSM from the obtained 

stereoscopic aerial photographs 

• Derive additional terrain analysis variables 

from the DEMs 

• Acquire training and reference samples from 

field surveys 

Direct approach: Remote sensing 

(Chapters 3) 

• Acquire a VHR WorldView-2 (WV2) satellite 

image of appropriate study areas 

• Orthorectify and atmospherically correct the 

obtained WV2 image 

• Derive additional variables (e.g. salinity 

indices (SIs)) from the pre-processed image 

• Acquire training and reference samples from 

field surveys 

Experiment 1: Direct approach 

(Chapter 3) 

• Compare the spectral properties of salt-

affected and unaffected soils 

• Identify the multispectral bands, SIs and 

image transformations most appropriate for 

mapping salt-affected areas 

• Determine the effectiveness of statistical and 

ML methods applied to the multispectral 

derivatives in identifying salt-affected areas 

 

Experiment 2: Indirect approach 

(Chapter 4) 

• Identify the DEM derivatives that show the 

most potential for modelling salt-affected 

areas 

• Apply ML and geostatistical approaches to 

the DEM derivatives and compare the 

effectiveness of the approaches 

 

Evaluation of Experiment 1 and 2 results 

(Chapter 5) 

• Experiment 1 (direct approach) discussion: 

▪ NDSI showed the most promise in identifying saline soils 

▪ CART, kNN and RF produced the highest overall accuracies in mapping saline soils 

▪ MaxL and SVM classifiers performed poorly 

• Experiment 2 (indirect approach) discussion: 

▪ Little difference between DSM and DTM potential in mapping salt accumulation 

▪ KED and DT produced highest overall accuracies 

• Aim and objectives 

▪ The literature showed that RS and geomorphometry holds much potential for mapping salt 

accumulation 

▪ Vaalharts and Breede River were chosen as appropriate study areas 

▪ WV2 imagery, the SRTM DEM and a DSM were acquired for the research 

▪ Several derivatives were derived from the WV2, SRTM DEM and DSM data 

▪ Several statistical and ML methods were applied to the derived WV2 and DEM derivatives 

▪ ML and geostatistical (kriging) approaches were compared 

• Concluding remarks for future research: 

▪ Evaluate the potential of higher spatial resolution satellite imagery and DEMs 

▪ Potential of imagery covering additional sections of the electromagnetic spectrum (e.g. short-wave 

infrared) and hyperspectral imagery 

▪ Combination of direct and indirect (e.g. vegetation stress monitoring and geomorphometry) methods 

in mapping saline soils 
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Chapter 3 presents the results of the first experiment (evaluation of a VHR multispectral image for 

soil salinity monitoring in a moderately affected irrigated area), followed by Chapter 4, which is 

based on the second investigation (efficacy of machine learning and geomorphometry for 

modelling salt accumulation in irrigated fields). The research done in Chapter 3 and Chapter 4 was 

prepared for submission to scientific journals and may therefore be duplicated in certain theoretical 

discussions, figures and tables. Chapter 5 provides a summary of the findings of the direct- and 

indirect approaches, revisits the aims and objectives, provides suggestions for future research and 

draws conclusions from the conducted experiments. 
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CHAPTER 2:  EARTH OBSERVATION 

This chapter provides an overview of the electromagnetic spectrum (ES), remote sensing (RS) and 

geomorphometry. The reflectance properties of particular surfaces and the importance of pre-

processing and image classification is discussed first, followed by a description of 

geomorphometry. In terms of the latter, focus is placed on digital elevation models, digital terrain 

modelling and the terrain derivatives that can be derived from elevation datasets. The chapter 

concludes with a discussion of geospatial techniques for detecting and modelling salt 

accumulation. These include spectral analysis of bare soil, vegetation stress monitoring, spatial 

indices, separability analysis, regression analysis, principal component analysis and geostatistics. 

2.1 REMOTE SENSING (RS) 

RS is the analysis of electromagnetic radiation (EMR) reflected from objects or phenomena where 

the observer is not in direct contact with the target (Lillesand, Chipman & Kiefer 2008; Mather & 

Koch 2011). Many activities can be included in such a broad definition. EO by RS is the 

interpretation of EMR emitted from objects on the Earth’s land, water or ice surfaces by airborne 

or satellite borne instruments (Mather & Koch 2011). Throughout this thesis, RS will be regarded 

as such.  

EMR reflected from the Earth’s surface contains information on the chemical, physical and 

biological properties of soils, water and vegetation (Chuvieco & Huete 2010). RS sensors capture 

EMR emitted and reflected from the earth’s surface. Many forms of EMR can be measured, namely 

visible light (blue, green and red), infrared (IR) and microwaves (Lillesand, Chipman & Kiefer 

2008). Other forms of EMR can also be captured, such as X-rays or ultraviolet, but these regions 

of the ES are less useful for RS purposes due to atmospheric scattering and absorption (Mather & 

Koch 2011). Figure 2.1 shows the extent of the ES utilized for RS purposes. The visible region 

(0.4 to 0.7 µm) can be subdivided into the three primary colours: blue (0.4 to 0.5 µm), green (0.5 

to 0.6 µm) and red (0.6 to 0.7 µm) (Chuvieco & Huete 2010). The blue region is most affected by 

atmospheric scattering and is therefore used less for RS purposes than the green and red regions 

(Mather & Koch 2011). IR radiation consists of wavelengths longer than the red portion of the 

spectrum, extending from 0.7 to 14 µm (Campbell 2006). This region can also be subdivided into 

three portions, namely NIR (0.7 to 1.2 µm), MIR (1.2 to 8 µm) and thermal infrared (TIR) (8 to 

14 µm). NIR is best used in discriminating green vegetation, MIR for soil and vegetation moisture 

content and TIR for mapping surface temperature (Lillesand, Chipman & Kiefer 2008; Chuvieco 

& Huete 2010). The longest wavelengths used for RS purposes are in the microwave region (>1 

mm) (Campbell 2006). Microwaves can penetrate clouds, rain, snow, smoke (Lillesand, Chipman 
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& Kiefer 2008; Mather & Koch 2011) and vegetation cover at various depths. This enables surface 

roughness and soil moisture analysis (Chuvieco & Huete 2010). 

 

Figure 2.1: Section of the electromagnetic spectrum most commonly used for remote sensing purposes 

The reflected radiation is captured by airborne or satellite borne sensors in several bands or regions 

of the ES. Two types of sensors can be used: passive or active sensors. Passive sensors make use 

of the sun as their source of energy, whereas active sensors emit their own energy and record the 

backscatter from the Earth’s surface (Harris 1987; Campbell 2006). Active sensors have the 

advantage of being able to operate at either day or night (Mather & Koch 2011). The data recorded 

by the sensors are stored in a digital image consisting of a two-dimensional array of pixels, referred 

to as a raster image (Liu & Mason 2009; Mather & Koch 2011), while the brightness of each pixel 

is called the digital number (DN). Each raster can also consist of several bands, where each band 

covers different ranges of the electromagnetic spectrum. This allows the capturing of an object’s 

reflectance at varying wavelengths, better known as the spectral reflectance signature. 

Remotely sensed imagery has several important properties, which can be grouped into spatial, 

spectral, radiometric and temporal resolutions. These properties vary among the available sensors 

and are therefore important to consider in relation to the problem at hand. Each will be discussed 

separately. 

It is difficult to define spatial resolution (Mather & Koch 2011), but for optic-electronic sensors, 

the concept of instantaneous field of view (IFOV) is most commonly used. IFOV can be described 

as the area on the ground captured by a sensor at a particular altitude and time (Chuvieco & Huete 

2010; Mather & Koch 2011). Higher spatial resolution will minimize mixed pixels, which is the 

average radiance of several objects encompassed by the pixel (Lillesand, Chipman & Kiefer 2008).  

The spectral resolution of remotely sensed imagery refers to the number of bands and their 

accompanying bandwidths (Harris 1987; Campbell 2006). Multispectral sensors collect data in 

several bands, each encompassing a wide range of the electromagnetic spectrum, while 

hyperspectral sensors capture information in many very narrow, contiguous bands throughout the 

visible, near-infrared (NIR) and mid-infrared (MIR) regions (Lillesand, Chipman & Kiefer 2008).  

The sensitivity (quantization levels) with which sensors record small variations in radiance is 

referred to as the radiometric resolution. The greater the radiometric resolution, the greater the 
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ability of the sensor to detect small variations in the target objects (Chuvieco & Huete 2010; 

Mather & Koch 2011).  

Temporal resolution is the revisiting period of a particular sensor and varies with the objectives 

set for the sensor (Chuvieco & Huete 2010). 

The most appropriate spatial, spectral, radiometric and temporal resolutions are dependent on the 

problem at hand (Chuvieco & Huete 2010). These characteristics need to be taken into careful 

consideration in conjunction with the classifications that need to be performed. High spatial, 

spectral and radiometric resolutions will allow an evaluation of small objects with varying spectral 

responses at different wavelengths. Section 2.1.1 will be focusing on surface reflectance 

properties. 

2.1.1 Surface reflectance properties 

EMR interacting with the Earth’s surface can either be reflected, absorbed or transmitted. 

Reflection is the result of redirected light as it interacts with a surface object, whereas transmission 

occurs when light energy passes through an object without significant attenuation (Campbell 

2006). The nature of the surface, the wavelength of the energy and the angle of illumination 

determine the amount of reflection, absorption and transmission that will occur (Lillesand, 

Chipman & Kiefer 2008). This section focuses on the reflectance properties of soil, vegetation and 

water. 

2.1.1.1 Soil reflectance properties 

Spectral reflectance of soils generally increases as wavelength increases (Mather & Koch 2011) 

and is influenced by the biochemical properties (e.g. organic matter or iron concentration), 

moisture content, texture and surface roughness of the immediate soil surface (Harris 1987; 

Lillesand, Chipman & Kiefer 2008; Chuvieco & Huete 2010). Dry soils normally have greater 

reflectance than moist soil at the same wavelength (Harris 1987), while the presence of iron oxide 

significantly reduces soil reflectance (Lillesand, Chipman & Kiefer 2008). The visible and NIR 

regions contain a weak absorption feature at 0.7 to 0.87 µm due to ferric iron, and a strong 

absorption feature near 1 µm attributed to ferrous iron  (Chuvieco & Huete 2010; Mather & Koch 

2011). Water absorption bands also occur between 1.3 to 1.5 µm and 1.75 to 1.95 µm, with a 

decline in reflectance at wavelengths longer than 2 µm if clay minerals are present (Lillesand, 

Chipman & Kiefer 2008; Mather & Koch 2011). Soil reflectance is the highest in the region 

between the two water absorption bands (Mather & Koch 2011). Soil moisture content is strongly 

related to soil texture, with coarse, sandy soils emitting higher reflectance than fine-textured soils, 

mainly because they tend to be well drained (Lillesand, Chipman & Kiefer 2008). 
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2.1.1.2 Vegetation reflectance properties 

The reflectance properties of vegetation are influenced by the leaf biochemical, plant physiologic 

and the canopy structural and morphologic properties. Chlorophyll A and chlorophyll B accounts 

for most (60 to 75%) of the absorption in the blue (0.45 µm) and red (0.65 µm) regions of the 

EMS, with carotenoids and xanthophylls pigments contributing most in the blue region (0.45 µm) 

(Chuvieco & Huete 2010). These bands are better known as the chlorophyll absorption bands 

(Lillesand, Chipman & Kiefer 2008). At 0.55 µm, absorption is less intense, resulting in the green 

appearance of healthy vegetation (Harris 1987; Chuvieco & Huete 2010). Reflectance from 

vegetation canopy increases sharply between 0.65 and 0.76 µm (red edge (RE)), remaining high 

in the NIR region (0.75 to 1.35 µm). Internal leaf structure has an impact on reflectance between 

1.35 and 2.5 µm, but reflectance is mostly influenced by leaf water content at 1.45 and 1.95 µm 

(Chuvieco & Huete 2010; Mather & Koch 2011). 

2.1.1.3 Water body reflectance properties 

Water generally has a low reflectance compared to other land cover features, but has higher 

reflectance in the visible region of the electromagnetic spectrum, which then decreases beyond 

0.7 µm (Harris 1987; Campbell 2006), with almost no reflection in the NIR region of the spectrum 

(Mather & Koch 2011). Reflectance from water bodies is influenced by water depth, chlorophyll 

content, dissolved particles and surface roughness (Chuvieco & Huete 2010). Higher reflectance 

occurs at the blue-green portion of the spectrum for clear water bodies, with increasing green 

reflectance and decreasing blue reflectance as chlorophyll content increases. Water containing 

high quantities of sediment resulting from soil erosion tends to have higher reflectance than clear 

water (Lillesand, Chipman & Kiefer 2008; Mather & Koch 2011). Shallow water bodies have 

greater reflectance than deep water bodies, with virtually no NIR reflectance at a depth of 20 m or 

more (Campbell 2006). 

2.1.2 Pre-processing of imagery 

Pre-processing is the correction of deficiencies and the removal of flaws present in satellite 

imagery (Mather & Koch 2011). This is performed before any analysis is carried out on satellite 

imagery. Sources of error can be grouped into four categories (Chuvieco & Huete 2010): 

1. Errors caused by the sensor platform. This includes geometrical problems resulting from 

variations in velocity, orbit altitude and orientation along the three axes (roll, pitch and 

yaw); 

2. Distortions produced as a result of the Earth’s rotation; 
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3. Radiometric and geometric distortions caused by sensor performance, such as geometric 

deformation caused by the sensor zenith angle and calibration deterioration; and 

4. Effects of the atmosphere on the Earth’s radiance, namely scattering (aerosols, gases and 

water vapour) and attenuation of the signal arriving at and leaving from the surface to the 

sensor. 

Not all of these errors are corrected at receiving stations, and therefore need to be handled by the 

analyst. Pre-processing steps typically include geometric (orthorectification) and radiometric (e.g. 

atmospheric correction) corrections (Campbell 2006). 

2.1.2.1 Orthorectification 

Orthorectification (or geometric correction) corrects distortions caused by variations in altitude, 

attitude and velocity of the sensor platform in relation to earth curvature, atmospheric refraction, 

relief displacement and panoramic distortions. The result is a geometrically corrected image 

(Lillesand, Chipman & Kiefer 2008). The process requires the collection of ground control points 

(GCPs) to relate the image coordinate system to a geographic coordinate system (Mather & Koch 

2011). GCPs should be evenly distributed throughout the image, with good coverage near the 

image edges (Campbell 2006). This is followed by resampling, a process that estimates the pixel 

values of the geometrically corrected image based on the uncorrected image pixels. Three 

resampling approaches are most commonly used (Chuvieco & Huete 2010): nearest neighbour 

(NN), bilinear interpolation and cubic convolution. NN assigns each pixel in the corrected image 

the value of the nearest pixel in the uncorrected image. Compared to the other two methods, this 

approach requires the least computational time and involves less transformation of the original 

DNs, but distortions are introduced in linear features (highways, roads and geological faults). 

Bilinear interpolation weighs each nearest pixel based on their distance to the corrected pixel, 

taking four pixels into account. Pixels nearest to the corrected pixel have the highest weight 

(Lillesand, Chipman & Kiefer 2008). The cubic convolution resampling approach determines each 

corrected pixel value by considering the nearest 16 pixels in the uncorrected image. Both bilinear 

interpolation and cubic convolution reduce the effect of linear distortions, but the original pixel 

values are altered and the methods are more computationally intensive than NN (Campbell 2006). 

2.1.2.2 Atmospheric correction 

The atmosphere modifies both the downward solar irradiance and the upward surface radiance 

leaving the earth (Chuvieco & Huete 2010). As mentioned in Section 2.1.2, the magnitude of the 

true ground-leaving radiance from a point are attenuated due to atmospheric absorption and its 

directional properties are altered by scattering (Mather & Koch 2011). Variations in the 
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illumination geometry, namely the slope of the ground, disposition of topographic features and the 

sun’s elevation and azimuth angles, also have an effect (Lillesand, Chipman & Kiefer 2008; 

Mather & Koch 2011). Another factor that needs to be taken into account is the angle of 

observation as it determines the path length of the atmosphere,  especially when working with off-

nadir (e.g. SPOT) or wide swath angle sensors (e.g. MODIS) (Chuvieco & Huete 2010). Taking 

these factors into account allows earth surface parameters such as reflectance, emissivity and 

temperature to be extracted (Richter 2014). Well-known atmospheric correction models include 

ATCOR (Richter 2014) and fast line-of-sight atmospheric analysis of spectral hypercubes 

(FLAASH). ATCOR performs atmospheric and topographic correction of optical imagery 

covering the solar spectral (0.4-2.5 µm) and thermal (8-14 µm) regions (Richter 2004), whereas 

FLAASH covers the visible to short-wave infrared (SWIR) regions (Cooley et al. 2002). The 

former is available in the PCI Geomatica and the latter in the ENVI software package (Chuvieco 

& Huete 2010). 

2.1.3 Image classification 

Image classification is the process of assigning informational (e.g. land cover) classes to all pixels 

in a remotely sensed image (Lillesand, Chipman & Kiefer 2008). Several classification approaches 

will be discussed in this section, namely unsupervised-, supervised- and rule-based classification. 

This will be followed by a description of well-known machine learning (ML) classifiers, including 

the k-nearest neighbour (kNN), maximum likelihood (MaxL), support vector machine (SVM), 

decision tree (DT) and random forest (RF) algorithms. 

2.1.3.1 Unsupervised classification 

Unsupervised classification is particularly useful when no prior knowledge (e.g. training samples) 

of  the study area is available (Liu & Mason 2009). The approach makes use of clustering 

(Campbell 2006; Chuvieco & Huete 2010), which involves the identification of natural groups 

within a feature set. These natural groups identified by the unsupervised classification are called 

spectral classes. Identification of the spectral classes that best represent informational classes is 

performed by the analyst after the clustering has been carried out (Mather & Koch 2011). The 

analyst needs to compare the resulting spectral classes to some form of reference data in order to 

assign a particular class to each natural group (Lillesand, Chipman & Kiefer 2008). A major 

advantage of unsupervised classification is that no prior knowledge of the study area is required, 

but the approach may result in spectrally homogeneous classes that do not correspond to the 

informational category that is of interest to the analyst (Campbell 2006). Well-known 
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unsupervised classifiers include k-means, modified k-means and ISODATA (Mather & Koch 

2011). 

2.1.3.2 Supervised classification 

The supervised classification approach classifies pixels of unknown identity by making use of 

samples of known identity, called training samples (Campbell 2006). Prior knowledge of the study 

area is therefore required by means of secondary sources or fieldwork. This allows the analyst to 

better identify representative areas for each target category. These areas are known as training 

fields (Chuvieco & Huete 2010). Supervised approaches consist of three stages, namely the 

training stage, classification stage and the output stage (Lillesand, Chipman & Kiefer 2008). 

During the training stage, the analyst identifies training samples suitable for each category (or 

class) and develops a numerical description of the target classes. The classification stage 

categorizes each pixel based on the class it most closely relates to. Lastly, an output is produced 

consisting of the classified study area (output stage). The selection of training samples within 

training fields is clearly an important step for a successful supervised classification, where the 

objective should be to collect sufficient training samples to accurately represent the spectral 

variation within each informational category (Campbell 2006; Mather & Koch 2011). A 

disadvantage of supervised classifiers is that the method is often biased due to the analyst assigning 

categories prior to considering the spectral characteristics of the image (Chuvieco & Huete 2010). 

2.1.3.3 Rule-based classification 

Rule-based approaches discriminate between target categories by establishing a set of rules (a 

ruleset) that is applied sequentially. The rules often consist of thresholds applied on the spectral 

values or other data sources (ancillary data), such as aspect, slope and elevation (Chuvieco & Huete 

2010). The approach is very flexible to input data, allowing each informational class to be extracted 

from a subset of the input data as opposed to the entire feature set (Mather & Koch 2011).  

Classification and regression trees (CART) is a well-known algorithm used to build DTs 

(Lawrence & Wright 2001). It recursively divides a feature set until an optimal degree of 

homogeneity is found at the terminal nodes. Results are improved by means of cross-validation 

using samples not used to build the trees, a process known as pruning (Chuvieco & Huete 2010). 

Pruning helps to minimize overfitting, a condition where the results are tailored to particular 

datasets (Lawrence & Wright 2001; Campbell 2006). CART is very sensitive to variations in the 

number of training samples and it is therefore important to ensure that the number of training 

samples for each category is balanced (Campbell 2006). 
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2.1.3.4 Pixel-based and object-based classifications 

Pixel-based classifiers apply decision logic on a per-pixel basis, that is, to each pixel individually 

in isolation (Lillesand, Chipman & Kiefer 2008). Such an approach can be effective when the 

spatial resolution is similar to the information classes (land cover features) of interest (Duro, 

Franklin & Dubé 2012), but is not effective when the target features are larger than the pixel size.  

Object-based approaches aggregate image pixels into non-intersecting, homogeneous image 

objects by making use of a segmentation algorithm. The results of multi-resolution segmentation 

(Comer & Delp 1995; Comer & Delp 1999), one of the most popular segmentation algorithms 

(Belgiu & Drǎguţ 2014), depend on the input data (e.g. spectral values) and the specified 

parameters (shape, compactness and scale) for the segmentation algorithm (Lillesand, Chipman & 

Kiefer 2008). The spectral homogeneity and the shape of the objects are influenced by the shape 

parameter, where the compactness factor adjusts the smoothness of boundaries and the 

compactness of edges. The scale parameter is the most crucial and influences the size of the 

produced objects by the segmentation algorithm (Myint et al. 2011). The resulting image objects 

are then classified (Liu & Xia 2010). Image objects allow the inclusion of additional information, 

namely texture, shape, the spatial relationship of image objects with neighbouring objects and 

ancillary spatial data (e.g. elevation) (Hussain et al. 2013). This approach also has the advantage 

of reducing within-class spectral variation and the severity of the well-known “salt-and-pepper” 

effect that is common in pixel-based approaches (Liu & Xia 2010). Even though object-based 

classifications have been shown to produce higher overall accuracies compared to pixel-based 

methods (Yan et al. 2006; Myint et al. 2011), the method has some limitations. The major 

disadvantages associated with object-based classification is over-segmentation and under-

segmentation. The former occurs when real-world objects are segmented into smaller image 

objects, whereas the latter occurs when several different real-world objects are grouped into a 

single large image object (Liu & Xia 2010; Hussain et al. 2013). 

Another problem associated with both pixel-based and object-based classifications is mixed pixels. 

Mixed pixels occur when pixels do not occupy a single homogenous class, representing the average 

brightness of several categories rather than one. Mixed pixels may also represent the brightness 

values of another category and increase in number as the spatial resolution of the image decreases 

(Campbell 2006). A pixel is also not a true geographic object in that each pixel is a cell 

representation of spectral values in a matrix that lacks real-world correspondence (Hussain et al. 

2013). Long, linear features (e.g. roads) or features on the edges of large parcels, where contrasting 

reflectance values are immediately adjacent to one another, are the regions where mixed pixels 
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often occur. Both pixel-based and object-based classifications become problematic when a feature 

of interest is small relative to the spatial resolution of the image (Campbell 2006). 

Duro, Franklin and Dubé (2012) compared pixel-based and object-based approaches by applying 

DT, MaxL and RF classifiers to SPOT-5 imagery in an agricultural setting. The results showed 

that object-based approaches produced a more visually appealing and generalized appearance for 

the land cover classes, but the improvement in overall accuracy (OA) of the object-based approach 

was not statistically significant compared to the OA of the pixel-based approach. The object-based 

approach was also found to be much more time-consuming than pixel-based classifications (Duro, 

Franklin & Dubé 2012). Cleve et al. (2008) found object-based approaches to better represent built 

area (e.g. urban) and surface vegetation, but yielded similar accuracies to pixel-based classifiers 

for the shadow and tree/shrub classes. Research performed by Yan et al. (2006) found both 

approaches to produce poor accuracies when classifying geological features (e.g. limestone, 

metamorphic and mixed sandstone with shale), and similar accuracies were observed for the 

agricultural and the river classes. 

2.1.3.5 Parametric classifiers 

A parametric classifier assumes the training data follow a normal (or Gaussian) distribution, which 

allows the classifier to calculate essential parameters (Jain, Duin & Mao 2000). Such classifiers 

extract the distribution from the data for each class by estimating the mean vector and the 

covariance matrix. The parametric classification (e.g. MaxL) is then based on the definition of 

some discriminant function based on the calculated parameters. Major disadvantages of parametric 

classifiers are that they assume that classes are symmetric in multispectral space and that they only 

use fixed-form decision boundaries (Hubert-Moy et al. 2001). 

The MaxL is a well-known parametric classifier that makes use of training data to estimate the 

means and variances of the classes by assuming the training data are normally distributed (Harris 

1987; Gibson & Power 2000). These estimates are then used to determine the probabilities for each 

class (Rees 2001; Albert 2002; Lillesand, Chipman & Kiefer 2008). According to Campbell 

(2006), MaxL is very sensitive to the quality of the training data and a decrease in accuracy has 

been observed with an increase in input features (Myburgh & Van Niekerk 2013). More 

information about the MaxL classifier is provided in the next section. 

2.1.3.6 Machine learning classifiers 

Non-parametric classifiers do not make any assumptions about the distribution of the training data 

and do not estimate parameters (Jain, Duin & Mao 2000). This is especially advantageous when 
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working with RS data, which are (in most cases) not normally distributed. ML thus provides good 

generality and versatility when it comes to classifications (Hubert-Moy et al. 2001). 

Several ML classifiers are available for use in RS, including kNN, SVM, DT and RF. Short 

overviews of these classifiers are provided in this section. More details on ML and the different 

algorithms are provided in Sections 3.3.2.7 and 4.3.3.3. 

kNN is a simple non-parametric, distance-based classifier that labels each unknown instance based 

on its k neighbouring known instances. A class is assigned to the unknown instance best 

represented by the training samples among the k neighbours (Cover & Hart 1967; Gibson & Power 

2000). The kNN algorithm is effective in classifying data that is not normally distributed, but has 

the disadvantage of assigning equal weight to all variables even though certain variables may have 

higher priority. This can result in incorrect class assignments and diffuse clusters (Cunningham & 

Delany, 2007). To avoid this, only odd k-values (e.g. 1, 3 and 5) should be used, as suggested by 

Campbell (2006). 

The efficiency of SVM classifiers for RS applications has been demonstrated by Lizarazo (2008), 

Li et al. (2010), Petropoulos, Kalaitzidis, and Prasad Vadrevu (2012). Myburgh and Van Niekerk 

(2013) showed that SVM produces more accurate results than kNN and MaxL for land cover 

mapping using SPOT-5 imagery. SVM determines the optimal separating hyperplane between 

classes (Novack et al. 2011) by focussing on the training samples close to the edge (support vector) 

of the class descriptors (Tzotsos & Argialas 2006; Lizarazo 2008). In cases where the relationship 

between classes and features are non-linear, the radial basis function (RBF) kernel is often applied 

(Li et al. 2010). (See Vapnik (2000) and Huang, Davis and Townshend (2002) for a detailed 

mathematical formulation of SVM.)  

A DT identifies relationships between a continuous response variable, known as the dependent 

variable, and multiple, continuous variables known as the independent variables. DTs 

hierarchically split a dataset into increasingly homogeneous subsets known as nodes (Lawrence & 

Wright 2001; Pal & Mather 2003; Punia, Joshi & Porwal 2011; Novack et al. 2011; Gómez et al. 

2012). By recursively splitting the feature datasets, a leaf node is reached, with the class associated 

with the node assigned to the observation (Pal & Mather 2003). According to Pal and Mather 

(2003) and Novack et al. (2011), each node is limited to a split in feature space orthogonal to the 

axis of the selected feature. Each branch of the DT consists of divisions (or rules) of the most 

probable class. Applying these rules will assign the most likely class to an unknown instance 

(Lawrence & Wright 2001). 

There has been a notable increase in the use of the RF classifier for RS applications (Gislason, 

Benediktsson & Sveinsson 2006; Lawrence, Wood & Sheley 2006; Duro, Franklin & Dube 2012; 
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Immitzer, Atzberger & Koukal 2012) and it has been shown to be effective for many classification 

tasks (Lawrence and Wright, 2001; Gislason et al., 2006; Novack et al., 2011; Rodriquez-Galiano 

et al., 2012a; Rodriquez-Galiano et al., 2012b). RF, an enhancement of DTs (Immitzer, Atzberger 

& Koukal 2012), generates each DT by using a random vector sampled independently from the 

input vector. A vote is cast by each of the generated DTs (Leo Breiman 2001; Pal 2005; Bosch, 

Zisserman & Muoz 2007). Each classifier contributes a single vote to the assignment of the most 

popular class of the input variable (Breiman 2001; Rodriquez-Galiano et al. 2012a). RF makes use 

of bagging (Breiman 1996; Rodriquez-Galiano et al. 2012a), a method which generates a training 

set for feature selection. This allows RF classifiers to have a low (even lower than DT classifiers) 

sensitivity to training set size (Rodriquez-Galiano et al. 2012a). Two parameters are required to be 

set, namely the number of trees and the number of active (predictive) variables. Rodriquez-Galiano 

et al. (2012a) showed that stability in accuracy is achieved at 100 trees and that a small number of 

split variables are optimal for reducing generalization errors and correlations between trees. A 

more detailed discussion of the RF classifier can be found in Breiman (1996), Breiman (2001), Pal 

(2005) and Rodriquez-Galiano et al. (2012a). The next section deals with Geomorphometry, 

focusing on digital elevation models, digital terrain modelling and terrain derivatives. 

2.2 GEOMORPHOMETRY 

Geomorphometry consists of a set of processes that produces a compilation of terrain 

characteristics. The resulting terrain characteristics are evaluated along with other properties to 

assign a value to a land unit, expressed either by a numeric value or by a judgement of its worth 

in qualitative terms (Townshend et al. 1981; Hengl, Gruber & Shrestha 2003). 

2.2.1 Digital elevation models 

A digital elevation model (DEM) can be defined as a digital or numerical representation of terrain 

(Li, Zhu & Gold 2004). Figure 2.2 shows a comparison between a digital terrain model (DTM) 

and a digital surface model (DSM). A DSM represents the uppermost level of surface features, 

namely vegetation canopies and buildings (Hengl, Gruber & Shrestha 2003), while DTMs do not 

include such surface features and can therefore be described as a “bare earth model” (Liu & Mason 

2009), representing only the terrain surface (Hengl, Gruber & Shrestha 2003; Campbell 2006). 
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Figure 2.2: Difference between digital terrain models (DTM) and digital surface models (DSM) 

An elevation dataset can either be stored as a raster (grid) or a vector triangulated irregular network 

(TIN). The TIN model represents the surface through contiguous, irregularly shaped triangles, 

whereas the raster format makes use of a matrix consisting of regularly spaced rows and columns. 

The coordinates associated with each node of a raster can be computed based on the coordinates 

of the origin of the area (Li, Zhu & Gold 2004). 

2.2.2 Digital terrain modelling 

Digital terrain modelling makes use of mathematical modelling to construct a DEM (Hengl, 

Gruber & Shrestha 2003; Li, Zhu & Gold 2004). DEM generation can be accomplished by means 

of photogrammetry, light detection and ranging (LiDAR) or synthetic aperture radar 

interferometry (InSAR) (Liu & Mason 2009). Photogrammetry is the process of obtaining useful 

spatial measurements and geometrically accurate data from photographs, namely DEM generation 

from stereoscopic images, thematic data and orthophotos (Lillesand, Chipman & Kiefer 2008).  

Height can be obtained from two or more images covering the same scene. The ability to do this 

is known as stereoscopy (Campbell 2006). When two or more images of the same scene are 

captured from different perspectives, a displacement of objects is found from one image to another. 

Stereoscopic parallax, which increases as the distance between the object and the observation point 

increases, allows for distance or height measurements (Zomer, Ustin & Ives 2002; Fabris & Pesci 

2005; Campbell 2006; Stal et al. 2013). An example of stereoscopic DEM development is the so-

called advanced spaceborne thermal emission and reflection radiometer (ASTER) stereoscopic 

subsystem, which consists of nadir- and rear-viewing sensors that capture data in the NIR region 

of the spectrum. The captured stereo pair allows for the generation of a DEM consisting of an 

accuracy ranging from 15 m to 30 m, depending on the number of available GCPs for the region 

(Abrams 2000). 

LiDAR is an active sensor that emits laser pulses to the observed surface and measures the time of 

pulse return (Lillesand, Chipman & Kiefer 2008; Chuvieco & Huete 2010). The computed return 

Stellenbosch University  https://scholar.sun.ac.za



 22 

time is then used to calculate the distance travelled by the emitted light to obtain the height of the 

surveyed ground position (Liu & Mason 2009). Imaging LiDARs are nadir viewing sensors that 

capture information in very narrow bands of wavelength in the visible and NIR region of the 

spectrum (Mather & Koch 2011). The NIR region has the ability to delineate open water, is 

sensitive to vegetation and has freedom from atmospheric scattering, whereas the green region is 

used to penetrate water bodies (Campbell 2006). Most LiDAR sensors are airborne, with the 

deactivated geoscience laser altimeter system (GLAS) being the most recent satellite platform 

sensor (Chuvieco & Huete 2010). 

Radio detection and ranging (RADAR) is an active sensor that captures electromagnetic energy in 

the microwave region of the spectrum (Campbell 2006). Types of sensors include side-looking 

radar (SLR), side-looking airborne radar (SLAR) and the more modern synthetic aperture radar 

(SAR) systems (Lillesand, Chipman & Kiefer 2008). The spatial resolution of SLR and SLAR is 

dependent on orbital height and antenna length, with larger orbital heights increasing the required 

length of the antenna to achieve a reasonable spatial resolution (Mather & Koch 2011). This is 

very impractical for satellite borne sensors as an antenna of enormous proportions will be required 

(Chuvieco & Huete 2010). SAR synthesises a longer antenna length based on the Doppler principle 

(Li, Zhu & Gold 2004). It records the amplitude and the phase of the return signals, which allows 

the calculation of the object position relative to the antenna (Mather & Koch 2011). A pair of SAR 

images and the recorded phase differences can then be used to derive a topographic map of the 

earth’s surface. This approach is a signal processing technique called InSAR (Li, Zhu & Gold 

2004). The Shuttle Radar Topographic Mission (SRTM) made use of interferometric methods to 

create a worldwide DEM at a 30 m spatial resolution (Rabus et al. 2003; Hensley, Rosen & Gurrola 

2000). 

2.2.3 Terrain derivatives 

DEMs allow for the extraction of several morphological and hydrological terrain parameters. 

Morphological terrain parameters are derived from DEMs by making use of neighbourhood 

operations to determine the rate of change, namely slope aspect, slope gradient and curvature. 

Hydrological (flow accumulation based) terrain parameters model the mass movement of water, 

nutrients and sediments between land units (Hengl, Gruber & Shrestha 2003; Li, Zhu & Gold 2004; 

Mather & Koch 2011). A brief overview of morphological and hydrological terrain parameters is 

provided in Sections 2.2.3.1 and 2.2.3.2 respectively. More detailed discussions can be found in 

Hengl, Gruber and Shrestha (2003) and Olaya (2004). The derivatives described below are all 

available in the System for Automated Geoscientific Analyses (SAGA) (Conrad et al. 2015). 
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2.2.3.1 Morphological terrain parameters 

Morphological terrain parameters can be grouped as follows (Hengl, Gruber & Shrestha 2003):  

• elevation change gradient (e.g. slope); 

• orientation change gradient (e.g. aspect); and 

• curvature gradient (e.g. plan and profile curvature). 

Slope gradient (often simply called slope), the rate of change in elevation in the x- and y-direction, 

is calculated by computing the geometric mean of the cardinal and diagonal slopes in a 3×3 

neighbourhood. High slope gradient values represent steep surfaces, whereas lower values 

represent flatter surfaces (Behrens et al. 2010). Slope aspect (shortened to aspect) is defined as the 

azimuth angle of the sloping surface. Values range from 0 to 360° (Li, Zhu & Gold 2004). Mid-

slope position (MSP) is computed by allocating zero to mid-slope positions, whereas a value of 

one is allocated to maximum vertical distances to the mid-slope (e.g. valleys and ridges). 

Normalized height (NH) is calculated by assigning zero to the lowest point and one to the highest 

point in an elevation grid. Standardized height (STDH) is produced by multiplying the absolute 

height with the NH (Dietrich & Böhner 2008). Both NH and STDH take into account the size of 

the catchment area and the vertical offset of a position (Böhner & Selige 2006). 

Curvature expresses the convexity or concavity of a surface, which includes measurements such 

as profile, plan and mean curvature. Profile (vertical) curvature, which is tangential to a contour, 

represents the ratio between the mean slope of cells with lower height values than the centre cell, 

and the mean slope calculated from the cells with higher cell values surrounding the centre cell. A 

convex profile is represented by positive profile curvature values, whereas negative values signify 

a concave surface. Plan (horizontal) curvature focuses on the aspect of the centre cell’s 

neighbouring pixels and is tangential to a flow-line (Behrens et al. 2010). A positive plan curvature 

indicates divergence of flow and negative values represent concentrations of flow. Mean curvature 

is a measurement of the average plan curvature. Mean-convex landforms are described by positive 

mean curvature, where negative values describe mean-concave landforms (Hengl, Gruber & 

Shrestha 2003). Other curvature measurements include the longitudinal, cross-sectional, minimum 

and maximum curvatures (Wood 1996). 

Additional well-known morphological derivatives include downslope distance gradient (DDG) 

(Hjerdt et al. 2004), convergence index, slope height (SH), valley depth, relative slope position 

(RSP), terrain ruggedness index (TRI), terrain surface texture and the topographic position index 

(TPI) (Olaya 2004; Böhner, Blaschke & Montanarella 2008; Conrad et al. 2015). 
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2.2.3.2 Hydrological terrain parameters 

Hydrological terrain analysis is dependent on the flow model, including flow direction, flow 

accumulation, drainage network and catchments. Flow direction is based on water’s downhill flow, 

i.e. from a higher to a lower point. This allows flow direction to be determined from a DEM (Li, 

Zhu & Gold 2004). Calculation of flow direction can be performed by using the deterministic 

eight-node (D8) method (Zhou & Liu 2002; Olaya 2004). The D8 method records flow in one of 

eight directions, namely north, east, south, west, north-east, north-west, south-east and south-west. 

Flow direction will always be in the direction of the largest downslope. Flow accumulation can be 

determined from a produced flow direction dataset. Defined as the flow of water across a 

landscape, flow accumulation assigns each pixel the number of pixels that flow through it (Evans, 

Caccetta & Ferdowsian 1996). Pixels with zero flow accumulation represent peaks and ridge lines. 

Flow lines (drainage network) and catchments (watersheds) can subsequently be delineated from 

the flow accumulation dataset. A simple threshold value can be used to obtain the drainage 

network; whereas watersheds are delineated by forming a polygon along the ridge lines (zero flow 

accumulation) (Li, Zhu & Gold 2004). 

The topographic wetness index (TWI), also known as the compound topographic index, describes 

the tendency of terrain to accumulate water (Hengl, Gruber & Shrestha 2003). High TWI values 

are an indication of high soil moisture (Olaya 2004). TWI can be defined as (Beven & Kirkby 

1979): 

Equation 2.1 

TWI = ln
𝑎

tan 𝛽
  

where tanβ is the local upslope of the terrain surface; and α is the upslope area per contour length, 

which can be computed as (Beven & Kirkby 1979): 

Equation 2.2 

𝑎 =
𝐴

𝐿
  

where A is the upslope area and L is the contour length. Two noteworthy assumptions are made by 

TWI, namely that the hydraulic conductivity of the soil and precipitation is uniform, and that the 

groundwater table slope is adequately represented by the terrain surface slope (Sørensen & Seibert 

2007). A modified version of the TWI, known as the SAGA wetness index (SWI), estimates a 

more realistic soil moisture for regions with small vertical distances to channels, such as valley 

floors. This is accomplished by making use of a modified catchment area calculation that does not 

simulate flow as a thin line (Böhner et al. 2002). 
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The height above nearest drainage (HAND) model produces a normalized DEM according to 

vertical distance distribution relative to drainage channels by making use of two steps (Rennó et 

al. 2008). First, the model produces a hydrologically sound DEM (e.g. removal of pits), delineates 

flow paths and extracts the channel network. This is followed by several computations performed 

on local drainage directions and the drainage network to produce the nearest drainage grid, or 

HAND model. Good drainage can be associated with high HAND values, whereas regions with 

poor drainage will consist of low HAND values. Regions with low drainage potential will more 

likely result in an accumulation of water, and therefore waterlogging (Nobre et al. 2011; Cuartas 

et al. 2012). A more detailed discussion on the HAND model’s computations are available in 

Rennó et al. (2008).  

2.3 GEOSPATIAL TECHNIQUES FOR DETECTING AND MODELLING SALT 

ACCUMULATION 

This section deals with viable approaches for monitoring salt accumulation, namely spectral 

analysis, vegetation stress monitoring, spatial indices, separability analysis, regression analysis, 

principal component analysis and geostatistics. First, a discussion on the spectral response of salt-

affected soils, including the salinity indices (SIs) calculated from multispectral imagery, is 

provided. This is followed by an overview of vegetation stress monitoring, spatial indices (e.g. 

texture), separability analysis and statistical approaches, namely regression modelling (RM), 

principal component analysis (PCA) and geostatistics, as these methods have been shown to be 

effective for delineating salt-affected soils. 

2.3.1 Spectral analysis (direct approach) 

The spectral response and the direct detection of salt-affected soils have been the focus of 

numerous RS studies (Khan et al. 2005; Abbas et al. 2013; Al-Khaier 2003; Setia et al. 2013; Wang 

et al. 2013). According to (Metternicht & Zinck 2003), the reflectance from salts is affected by 

salt quantity, salt mineralogy, surface roughness, soil colour and soil moisture. Khan et al. (2005) 

and Abbas et al. (2013) found that salt-affected soils have higher reflectance compared to other 

land cover or land use classes (e.g. crops, urban, water bodies). Similar results were found by 

Dwivedi and Sreenivas (1998). They showed that salt-affected affected soils have higher spectral 

responses than crops and waterlogged soils and reported that waterlogged soils have a lower 

spectral response in the NIR region of the spectrum, while having similar spectral responses to 

vegetation in the green and red bands due to the presence of hydrophytic vegetation. Several 

studies have shown that salt-affected soils have higher reflectance than unaffected soils (Al-Khaier 

2003; Khan et al. 2005; Setia et al. 2013; Wang et al. 2013). Setia et al. (2013) also found that 
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highly saline soils consist of bright white patches, whereas moderately affected soils appear dull 

white and are similar in spectral response to soils affected by low salt accumulation. Utilizing the 

IRS-1B LISS II sensor, Abbas & Khan (2007) and Abbas et al. (2013) found a strong relationship 

between salt-affected soils and the visible spectrum (blue, green and red bands), but a poorer 

relationship was observed with the NIR band. Based on this research, the following SIs were 

developed (Abbas & Khan 2007): 

Equation 2.3 

𝑆1 =
𝐵𝑙𝑢𝑒

𝑅𝑒𝑑
 

Equation 2.4 

𝑆2 =
𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑

𝐵𝑙𝑢𝑒 + 𝑅𝑒𝑑
 

Equation 2.5 

𝑆3 =
𝐺𝑟𝑒𝑒𝑛 × 𝑅𝑒𝑑

𝐵𝑙𝑢𝑒
 

Equation 2.6 

𝑆4 = √𝐵𝑙𝑢𝑒 × 𝑅𝑒𝑑 

Equation 2.7 

𝑆5 =
𝐵𝑙𝑢𝑒 × 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

Equation 2.8 

𝑆6 =
𝐵𝑙𝑢𝑒 × 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

where S1-S6 is the SI; 

 Blue is the blue band;  

 Green is the green band; 

 Red is the red band; and 

 NIR is the NIR band. 

A high correlation between measured soil EC and SI S3 was found in Abbas and Khan (2007), but 

a more recent study (Abbas et al. 2013) showed SI S4 to perform better. Another SI is the 

normalized difference salinity index (NDSI) (Al-Khaier 2003): 
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Equation 2.9 

𝑁𝐷𝑆𝐼 =
𝑅𝑒𝑑 − 𝑁𝐼𝑅

𝑅𝑒𝑑 + 𝑁𝐼𝑅
 

where NDSI is the SI; 

 Red is the red band; and 

 NIR is the NIR band. 

NDSI is essentially an inverse of the normalized difference vegetation index (NDVI) and as such 

produces low values for vegetation and high values for salt-affected soil. Khan et al. (2005) found 

NDSI to more accurately delineate salt-affected soils than SI S4. Significant correlations (R2 = 

0.57; p < 0.05) were observed between NDSI and saline soil by Douaoui & El Ghadiri (2015). A 

strong relationship between the Quickbird sensor’s green (520-600 nm) and NIR (760–900 nm) 

bands was also found with salt-affected soil (Setia et al. 2013). Utilizing the WorldView-2 (WV2) 

sensor bands, Abood, Maclean and Falkowski (2011) proposed the following variations of the 

NDSI: 

Equation 2.10 

𝑁𝐷𝑆𝐼1 =
𝑌𝑒𝑙𝑙𝑜𝑤 − 𝑁𝐼𝑅1

𝑌𝑒𝑙𝑙𝑜𝑤 + 𝑁𝐼𝑅1
 

Equation 2.11 

𝑁𝐷𝑆𝐼2 =
𝑌𝑒𝑙𝑙𝑜𝑤 − 𝑁𝐼𝑅2

𝑌𝑒𝑙𝑙𝑜𝑤 − 𝑁𝐼𝑅2
 

Equation 2.12 

𝑁𝐷𝑆𝐼3 =
𝑅𝑒𝑑 − 𝑁𝐼𝑅1

𝑅𝑒𝑑 + 𝑁𝐼𝑅1
 

Equation 2.13 

𝑁𝐷𝑆𝐼4 =
𝑅𝑒𝑑 − 𝑁𝐼𝑅2

𝑅𝑒𝑑 + 𝑁𝐼𝑅2
 

Equation 2.14 

𝑁𝐷𝑆𝐼5 =
𝑅𝐸 − 𝑁𝐼𝑅1

𝑅𝐸 + 𝑁𝐼𝑅1
 

Equation 2.15 

𝑁𝐷𝑆𝐼6 =
𝑅𝐸 − 𝑁𝐼𝑅2

𝑅𝐸 + 𝑁𝐼𝑅2
 

where NDSI1-NDSI6 is the SI; 
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 Yellow is the yellow band; 

 Red is the red band; 

 RE is the red edge band; 

 NIR1 is the NIR1 band; and 

 NIR2 is the NIR2 band. 

Abood, Maclean and Falkowski (2011) found that the high soil reflectance in the visible bands 

(especially in the yellow band) makes NDSI1 useful for delineating salt-affected soils, but that 

NDSI2 provided better results owing to the relatively low reflectance of wet soils and water in the 

NIR2 band. NDSI4 and NDSI5 performed poorly, which was attributed to the low reflectance of 

salts in the red and RE bands. 

Fernandez-Buces et al. (2006) proposed a combined spectral response index (COSRI) to enunciate 

the combination of spectral responses of bare soil and vegetation. COSRI is defined as: 

Equation 2.16 

𝐶𝑂𝑆𝑅𝐼 = (
𝐵𝑙𝑢𝑒 + 𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝑁𝐼𝑅
) × 𝑁𝐷𝑉𝐼 

where COSRI is the SI; 

 Blue is the blue band; 

 Green is the green band; 

 Red is the red band; 

 NIR is the NIR band; and 

 NDVI is the normalized difference vegetation index. 

Vegetated areas will result in large COSRI values due to high reflectance in the NIR bands and 

low reflectance in the visible bands, whereas negative index values will be yielded for clouds, 

water, or salt-affected soils that have high reflectance values in the visible spectrum and low 

reflectance values with the NIR bands. Small concentrations of salt on the surface will result in 

index values close to zero (Fernandez-Buces et al. 2006). Wang et al. (2013) found COSRI to 

provide a good estimate of measured soil EC values (R2 = 0.72). 

2.3.2 Vegetation stress monitoring (indirect approach) 

Performance-related indicators focus on the identification of plant stress caused by salt 

accumulation (Muller & Van Niekerk 2016a). As explained in Section 2.1.1.2, healthy vegetation 

has a low reflection at the blue and red bands of a RS sensor, whereas the green region produces a 

higher reflectance from vegetation canopy. Stressed vegetation also has a lower reflectance (than 
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healthy vegetation) in the NIR region of the spectrum (Harris 1987). Vegetation indices (VIs) take 

these vegetation properties into account by performing transformations on two or more bands, 

typically the chlorophyll-absorbing red region (0.6 to 0.7 µm) and the high reflecting NIR region 

(0.75 to 1.35 µm) of the spectrum. Band transformations are done in a manner that minimizes non-

vegetation response and maximizes vegetation response (Chuvieco & Huete 2010). Several VIs 

are available, namely the simple ratio index (SRI), normalized difference vegetation index (NDVI) 

and soil-adjusted vegetation index (SAVI). Each of these VIs produce high values for healthy 

vegetation. SRI is a simple ratio-based index defined as (Campbell 2006):  

Equation 2.17 

𝑆𝑅𝐼 =
𝑁𝐼𝑅

𝑅𝑒𝑑
 

where SRI is the VI; 

 Red is the red band; and 

 NIR is the NIR band. 

NDVI is a variant of the SRI with a dynamic range of -1 to 1. The NDVI is very popular for RS 

use because the VI compensates for changing surface slope, aspect, illumination conditions and 

other irrelevant factors. NDVI is defined as (Lillesand, Chipman & Kiefer 2008): 

Equation 2.18 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

where NDVI is the VI; 

 Red is the red band; and 

 NIR is the NIR band. 

SAVI is an optimization of the NDVI as it reduces the reflected bare ground signal. This is done 

by including a parameter (L) related to the differential penetration of red and NIR light through 

the vegetation canopy. SAVI is defined as (Chuvieco & Huete 2010): 

Equation 2.19 

𝑆𝐴𝑉𝐼 = (
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
) × (1 + 𝐿) 

where SAVI is the VI; 

 Red is the red band; 

 NIR is the NIR band; and 

 L is the soil adjustment factor. 
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The main advantage of performance-related indicators is that the method takes subsurface 

conditions into account, which is a major limitation of the direct approach (see Section 2.3.1). The 

indirect approach, however, has several disadvantages, namely that poor vegetation health can be 

a result of poor farming practices or poor soil preparation (Furby et al. 1995); the effectiveness of 

VIs can be reduced due to high bare ground reflectance (Douaoui, Nicolas & Walter 2006); and 

poor correlations between VIs and soil EC has been found due to variations in different crop 

species’ salt tolerances (Maas & Hoffman 1977; Aldakheel 2011). 

2.3.3 Spatial indices (texture measures) 

Texture contains information on the spatial distribution of tonal variations, where tone is based on 

the varying shades of grey of cells in an image (Haralick, Shanmugam & Dinstein 1973). Baraldi 

and Parmiggiani (1995) define texture as the visual effect that is produced by the spatial 

distribution of tonal variations over relatively small areas, while Irons and Petersen (1981) 

describes tone as the brightness or darkness of a surface. Texture has been found to be useful for 

many RS applications (Haralick, Shanmugam & Dinstein 1973; Cai et al. 2010; Odindi & 

Mhangara 2013). Cai et al. (2010) classified salt-affected soil by making use of a SVM classifier 

and texture features. Results showed an improved OA with the inclusion of a single texture 

measure, but best results were achieved by including a combination of several texture measures. 

The mean, variance and homogeneity texture measures were found to provide the best results for 

mapping soil salinity. Puissant, Hirsch and Weber (2005) showed that window sizes larger than 

7×7 will contribute less to the separation of classes and that homogeneity is the optimal texture 

measure for RS classifications. 

2.3.4 Separability analysis 

Feature selection has been shown to improve classification accuracies (Lu & Weng 2007; Myburgh 

& Van Niekerk 2013), especially when the number of training sets is disproportional to the number 

of features (Pal & Mather 2005; Oommen et al. 2008; Myburgh & Van Niekerk 2014). Spectral 

separability analysis of salt-affected soils using the pairwise transformed divergence method and 

RS data has been performed by Dwivedi and Sreenivas (1998). Salt-affected soils were found to 

be easily separable from other classes. The Jeffries-Matusita (JM) distance, another separability 

analysis algorithm, has been used for RS purposes by several researchers (Gao et al. 2011; 

Laliberte, Browning & Rango 2012). The algorithm identifies variables that have the best 

separability between classes and can be calculated as (Nussbaum, Niemeyer & Canty 2006): 

Equation 2.20 

𝐽 = 2(1 − 𝑒−𝐵) 
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where J is the JM distance; and 

 B is the Bhattacharya distance. 

The Bhattacharya distance (B) is the mean and standard deviation of the training samples of the 

two classes (Bhattacharyya 1943). Ranging from 0 to 2, a J value equal to 2 is an indication of 

highly separable, uncorrelated classes, whereas a J value equal to 0 represents classes that are 

completely correlated and therefore inseparable. More classification errors can therefore be 

expected with lower J values (Heumann 2011). For a more detailed discussion on JM distance see 

Section 3.3.2.4 and Nussbaum, Niemeyer and Canty (2006). 

2.3.5 Regression analysis 

Regression analysis is used to describe a functional relationship, which means that the value of 

one variable (dependent variable) can be determined by the value of the second variable 

(independent variable), but the reverse is not true (McKillup 2006). The dependent variable can 

therefore be determined from the independent variable. Stepwise multiple regression is another 

regression method that can be used to describe a functional relationship (Clark & Kokaly 1999). 

It fits an observed dependent dataset using a linear combination of independent variables by 

simultaneously removing variables that are unimportant. Partial least squares (PLS) regression 

were found by Mashimbye et al. (2012) to be very effective for salt accumulation modelling using 

spectral data as it reduces a large number of measured collinear spectral variables to a few non-

correlated latent variables. This is done by utilizing a bilinear calibration method and using data 

compression. A linear relationship is specified between a set of dependent variables and predictor 

variables, thereby extracting the orthogonal predictor variables and accounting for as much of the 

variation of the dependent variables as possible (Hansen & Schjoerring 2003; Cho et al. 2007; 

Mashimbye et al. 2012). 

2.3.6 Principal component analysis 

PCA reduces the number of original images (variables) by identifying the ideal linear combination 

of the original images that accounts for the variation of pixel values (Campbell 2006). Based on 

the eigenvectors and eigenvalues of the variance-covariance matrix, principal components are of 

the form (O’Sullivan & Unwin 2003): 

Equation 2.21 

𝑃𝐶𝑖 = 𝑒𝑖1𝑋1 + ⋯ + 𝑒𝑖𝑗𝑋𝑗 + ⋯ + 𝑒𝑖𝑝𝑋𝑝 

where PCi is the principal component of the data; 

 ei is the eigenvector; and 
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 Xi is the original image data. 

The resulting principal component images are statistically uncorrelated and will be equal in 

number to the number of original images provided (Mather & Koch 2011). The first principal 

component contains the largest percentage of the total variance, decreasing in percentage with the 

second principal component, the third principal component and so on. This allows a subset of the 

resulting principal components to be used for further analysis (Lillesand, Chipman & Kiefer 2008). 

PCA approaches have been used for detecting soil salinity in agricultural fields with varying 

success (Eldeiry & Garcia 2008). 

2.3.7 Geostatistics 

Geostatistics, which includes kriging, is a non-linear, statistical interpolation technique that takes 

into account the spatial structure of the surface to be interpolated from by analysing the training 

(sample) data (O’Sullivan & Unwin 2003). Geostatistics have several advantages compared to 

other interpolation techniques. First, an analysis of the spatial structure of the data is performed. 

This allows the average spatial variability to be integrated into the estimation in the form of a 

variogram (semivariogram). Kriging also provides an estimation error, the kriging standard 

deviation (Wackernagel 2010), and non-linear interpolation eliminates the assumption of linearity 

present in linear interpolation methods (DeMers 2005). The approach also accounts for clustering 

when weighing neighbouring points (Gallichand et al. 1992). Kriging relies on a variogram, which 

is a weighting scheme where sampling points closer to the point of interest are assigned a higher 

weight than sampling points further from the point of interest (Li et al. 2007). The distance between 

the plotted samples is called the lag. By making use of a variogram to model the correlations 

between neighbouring samples, kriging is able to account for autocorrelation (Eldeiry & Garcia 

2009). The experimental variogram can defined as (O’Sullivan & Unwin 2003): 

Equation 2.22 

2𝛾(𝑑) =
1

𝑛(𝑑)
∑ (𝑧𝑖 − 𝑧𝑗)2

𝑛𝑖𝑗=𝑑

 

where γ(d) is the variogram; 

 D is the distance between the control points; 

 n(d) is the number of pair of points at separation; 

 zi is the value at location i; and 

 zj is the value at location j. 
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The squared differences in values between the locations are known as the variances 

(semivariances) (O’Sullivan & Unwin 2003). Important parameters to take into account when 

performing kriging is the nugget, range and the sill. The nugget is the variance at zero distance, 

while the range is the distance at which the variogram levels off and the variance is constant 

(Wackernagel 2010). The constant variance beyond the range is called the sill (Gundogdu & Guney 

2007). 

Several variations of the kriging algorithm are available, such as ordinary kriging (OK), co-kriging 

(CK), universal kriging (UK), kriging with external drift (KED) and regression-kriging (RK). 

Algorithms that only make use of the primary variable to perform the interpolation are known as 

univariate, whereas multivariate kriging algorithms make use of explanatory (secondary) variables 

to calculate the estimation (Wackernagel 2010). 

The estimation and mapping of soil attributes have been the principal use of geostatistics by soil 

scientists (Goovaerts 1999), particularly for interpolating salt accumulation from soil sample 

analysis results (Gallichand et al. 1992; Utset et al. 1998; Li et al. 2007; Eldeiry & Garcia 2008; 

Eldeiry & Garcia 2009; Juan et al. 2011; Taghizadeh-Mehrjardi et al. 2014). Bishop and 

McBratney (2001) found KED to produce better results in estimating EC than OK and RK, while 

Motaghian and Mohammadi (2011) showed similar results when comparing KED, RM, OK, CK 

and RK in modelling soil saturated hydraulic conductivity. The importance of incorporating 

ancillary variables were also noted by Li et al. (2007), in which case CK and RK showed higher 

performance than OK. For a more detailed discussion on the available kriging methods, see 

Sections 2.3.7 and 4.3.3.2. More information on the methods can also be found in Goovaerts 

(1999), Hengl, Heuvelink and Stein (2003) and Hengl, Heuvelink and Rossiter (2007). 

2.4 LITERATURE SUMMARY 

The literature reviewed in this chapter showed that RS (Section 2.1) and geomorphometry (Section 

2.2) holds much potential for identifying and mapping salt-affected soils. More research is clearly 

needed on the effectiveness of VHR multispectral imagery, as most research focused on low, 

medium and high resolution imagery. VHR imagery will also be the most appropriate for 

identifying salt accumulation in South African irrigation schemes, where salt accumulation 

generally occurs in small, elongated patches. The availability of a multitude of SIs and spatial 

indices that can be derived from multispectral datasets also increases the potential of multispectral 

images. These indices can also be produced from hyperspectral imagery, but due to the scarcity 

and cost of hyperspectral data and the low spatial resolution of currently available datasets, such 

an approach will not be viable or cost-effective for monitoring salt accumulation over large extents 

(e.g. irrigation scheme level). Multispectral imagery with several bands (e.g. WV2) allows for the 
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calculation of more SIs and spatial indices. VHR multispectral imagery is therefore the most 

appropriate for investigating the potential of the direct approach in the context of this study (see 

Chapter 3).  

Geomorphometry has been shown to be an alternative method for identifying salt accumulation in 

agricultural fields. The availability of global DEM data (e.g. SRTM DEM), the possibility to derive 

DEM data from other RS sources (e.g. stereoscopic images), and the potential to derive several 

morphological and hydrological terrain parameters from elevation data makes geomorphometry 

an attractive option. LiDAR shows the most potential for producing highly detailed VHR DEMs, 

but, as with hyperspectral imagery, the scarcity of LiDAR data makes it unfeasible for monitoring 

salt accumulation on a large scale. DEMs (globally available) and VHR DEMs (generated from 

freely available stereoscopic imagery) seem to be the most cost-effective elevation sources in the 

context of this study (see Chapter 4).  

Several possible approaches for identifying salt accumulation were discussed in Chapter 2, namely 

separability analysis, regression analysis, geostatistics (Section 2.3) and ML (Section 2.1.3). 

Applying these approaches to VHR multispectral and terrain transformations (geomorphometry) 

to identify the most successful transformation and best performing ML method in mapping salt 

accumulation is of interest. The potential of ML methods applied to VHR multispectral imagery 

needs investigation and the occurrence of salt accumulation in small, elongated patches in South 

African irrigation schemes must also be considered. Geomorphometry has shown potential in 

identifying salt-affected soil, but more research is needed on the comparison of the performance 

of ML methods with that of geostatistical algorithms (e.g. KED).  

Two experiments were carried out to investigate these gaps in the current knowledge and are 

discussed in the following two chapters. Chapter 3 focusses on the potential of VHR multispectral 

imagery and ML in identifying salt accumulation, whereas Chapter 4 presents a comparison of ML 

methods with geostatistical algorithms, applied to terrain derivatives (geomorphometry). Both 

experiments were applied in selected South African irrigation schemes. 
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CHAPTER 3:  AN EVALUATION OF MULTISPECTRAL VHR 

IMAGERY FOR SOIL SALINITY MONITORING* 

3.1 ABSTRACT 

Conventional methods for monitoring salt accumulation within irrigation schemes involve regular 

field visits to collect soil samples for laboratory analysis. RS has been proposed as a less time-

consuming, cost-effective alternative as it provides imagery covering large areas throughout the 

year. This study evaluated the efficacy of VHR WV2 imagery to map areas affected by salt 

accumulation. Classifications based on thresholds obtained from JM distance, RM, CART, as well 

as supervised classification approaches, were evaluated for discriminating between salt-affected 

and unaffected soils in Vaalharts, South Africa. The WV2 bands were supplemented with SIs, 

principal components and texture measures to increase the number of predictive variables. In situ 

soil samples were used for model development, classifier training and accuracy assessment. The 

results showed a simple threshold implemented on a NDSI was the most successful in separating 

classes, with an OA of 80%. The findings suggest that VHR satellite imagery holds much potential 

for monitoring salt accumulation, but more research is needed to investigate why the classification 

results tend to overestimate salt-affected areas. More work is also needed to evaluate the 

transferability of the techniques to other irrigation schemes. 

3.2 INTRODUCTION 

The term ‘salinity’ is used to describe the processes and impacts of salt and water, while also being 

a measure of the amount of salt in soil or water (Mcghie 2005). For the purpose of this study, 

salinity refers to the accumulation of soluble salts in the soil (Al-Khaier 2003). Salt accumulation 

can occur naturally or as a result of human interference. Processes such as the clearance of 

vegetation, irrigation and reshaping the landscape through earth works can increase the volume of 

water and salt in the landscape and change how and where these two components move and 

accumulate (Mcghie 2005). Salt accumulation is of major concern in many parts of the world due 

to its negative environmental impact on agricultural areas, which often leads to a reduction in crop 

yields. Salt accumulation can also lead to lower property values, eutrophication of rivers, damage 

to infrastructure, increased soil erosion and engineering difficulties (Metternicht & Zinck 2003). 

According to Ghassemi, Jakeman and Nix (1995), about 77 million hectares (ha) of the global land 

surface is affected by high salinity caused by human activity. As much as 58% of these salt-

affected areas occur in irrigated areas. 

 
*This chapter was published by the Applied Journal of Remote Sensing in Volume 10, Issue 2 (Vermeulen & Van Niekerk 2016) and 
consequently conforms to the prescribed structure of that journal. Some duplication between the content of this chapter and other chapters 

(especially Chapters 2 and 4) can also be expected.  
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Waterlogging, which is caused by poor drainage, is another major concern associated with salt-

affected soil. Dwivedi, Sreenivas and Ramana (1999) states than an area becomes waterlogged 

when the water table rises to an extent that the soil pores in the root zone of a crop become 

saturated, resulting in the restriction of the normal circulation of air, decline in the level of oxygen 

and increase in the level of carbon dioxide. Prolonged waterlogging results in secondary 

salinization, which in turn can influence soil salinity (Dwivedi 1997). Poor drainage can result in 

waterlogged soil, for example where there is a natural accumulation of water at foot slopes and 

valley bottoms; regions close to or adjacent to large open water surfaces; poor surface water 

management; water leaking from dams, pipes, canals or irrigation mainlines close to man-made 

obstructions (e.g. bridges); and over-irrigation. 

It has been estimated that 18% of South Africa’s irrigated land is either salt-affected or 

waterlogged (Backeberg et al. 1996). Although this proportion is relatively small compared to 

Argentina (34%), Egypt (33%), Iran (30%), Pakistan (26%) and the United States of America 

(23%) (Ghassemi, Jakeman & Nix 1995), only 13.7% of South Africa’s land area is suitable for 

irrigation (Department of Agriculture, Forestry and Fisheries 2013) and proactive measures are 

therefore required to prevent further losses of this scarce resource.  

Conventional methods for monitoring salt accumulation within irrigation schemes involve regular 

field visits to collect soil samples, followed by laboratory analyses. Many field visits are often 

required to effectively monitor large irrigation schemes. According to Nell and Van Niekerk 

(2014), salt-affected areas in South Africa are relatively small (often as narrow as 1–2 m), which 

further limits the viability of in situ methods. RS has been proposed as a less time-consuming and 

more cost-effective method for monitoring salt accumulation as satellite images cover large areas 

on a regular, timely basis (Abbas et al. 2013). According to Farifteh, Farshad and George (2006), 

there are two types of indicators that can be used for detecting salt-affected soils, namely soil-

related and performance-related indicators. Soil-related indicators, or direct methods, include 

white salt crusts, puffy soil, dark greasy surfaces, dehydrated cracks and coarser topsoil, while 

performance-orientated indicators, or indirect methods, include spotty growth of crops, the 

presence of dead trees, blue-green tinge and moisture stress.  

Several studies have investigated the spectral properties of saline soils. Rao et al. (1995) and Abbas 

and Khan (2007) found that salt-affected soils have higher reflectance values in the visible and 

NIR regions of the electromagnetic spectrum. This was confirmed by Metternicht and Zinck 

(2003) and Elnaggar and Noller (2010) who showed that salt-affected soils with visible surface 

salt encrustations are smoother than non-saline surfaces and cause high reflectance in the visible 

and the NIR regions of the spectrum. Farifteh, Farshad and George (2006) found that both the 
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colour and the surface roughness of salt-affected soils influence their spectral properties. However, 

increased moisture, ferric oxides and clay decreases reflectance and makes it difficult to identify 

salt-affected soils (Metternicht & Zinck 2003). Similar observations were made by Khan et al. 

(2005), Iqbal (2011), Setia et al. (2013) and Sidike, Zhao and Wen (2014). These findings led the 

development of several SIs calculated from image bands which have been shown to be effective 

in discriminating saline soils from unaffected soils (Fernandez-Buces et al. 2006; Abbas & Khan 

2007; Abbas et al. 2013). 

Most studies that have investigated the use of RS methods for detecting and monitoring salt-

affected areas were carried out in areas where the cultivated fields are large, salt accumulation is 

severe and where the extent of affected areas are large enough to allow for the use of medium 

resolution imagery such as those acquired by Landsat (30 m) (Lenney et al. 1996; McFarlane, 

George & Caccetta 2004; Fernandez-Buces et al. 2006; Rodríguez, González & Zaballos 2007; 

Iqbal & Mehdi 2008; Abdelfattah, Shahid & Othman 2009; Elnaggar & Noller 2010; Aldakheel 

2011; Mohamed, Morgun & Goma Bothina 2010; Iqbal 2011; Wang et al. 2013; Taghizadeh-

Mehrjardi et al. 2014; Taghizadeh-Mehrjardi et al. 2016), IRS (20 m) (Dwivedi & Sreenivas 1998; 

Dwivedi et al. 2001; Khan et al. 2005; Abbas & Khan 2007; Abbas et al. 2013) or ASTER (15 m) 

(Gao & Liu 2008). VHR multispectral imagery (e.g. QuickBird, WV2) has been used to detect and 

map salt accumulation (Sidike, Zhao & Wen 2014; Setia et al. 2013; Douaoui & El Ghadiri 2015), 

but these studies did not take into account additional spatial features (e.g. texture measures) or 

applied ML classifiers to the feature datasets derived from the VHR imagery. Obstacles to also 

overcome in South African irrigation schemes is the relatively small size of irrigation fields 

(especially when the fields are elongated) and the occurrence of small patches of salt accumulation 

(Nell & Van Niekerk 2014). Medium resolution satellite imagery will therefore have little value 

in such cases. These obstacles were taken into account by Muller and Van Niekerk (2016a) and 

Muller & Van Niekerk (2016b), but these authors focused on indirect methods (e.g. vegetation 

stress monitoring) in mapping salt-accumulation. The aim of this study (which forms part of a 

larger research project (Commission 2011) was to evaluate the use of VHR WV2 imagery for 

detecting salt accumulation in highly dynamic irrigated fields where affected areas are relatively 

small in extent and where visible evidence of soil salinity (e.g. salt encrustations and precipitation) 

is often not present. The study evaluated both supervised and threshold-based classification 

approaches. Suitable thresholds were determined using three methods, namely 1) separability 

analysis; 2) RM; and 3) CART, while five supervised classification algorithms, namely 1) kNN; 

2) MaxL; 3) SVM; 4) DT; and 5) RF were assessed. The WV2 panchromatic and multispectral 

bands were supplemented with several additional features including the first principal component, 
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texture measures and SIs. Soil analysis results of samples collected during field surveys were used 

for model building, classifier training and accuracy assessment. 

This article is structured into four sections, the first of which provides an overview of the study 

area and methods used. This is followed by a description of the reflectance profiles of salt-affected 

and unaffected soils in the study area. The results of the separability analysis, RM and CART, as 

well as the performance of the supervised classifiers are discussed in the context of finding an 

operational solution for proactive salt accumulation monitoring in irrigation schemes. The paper 

concludes with a summary of the findings and suggestions for further research are made. 

3.3 METHODS 

3.3.1 Study area 

The study area (Figure 3.1c) is a 100  km2 section of the Vaalharts irrigation scheme (Figure 3.1b) 

located in the Northern Cape province of South Africa (Figure 3.1a), close to the small towns 

Hartswater, Pampierstad and Jan Kempsdorp. The area extends from 24.7° to 24.8°E and 27.7° to 

27.9°S and has an altitude ranging from 1064 to 1154 m above mean sea level. Vaalharts covers 

an area of 36 950 ha and has a semi-arid climate with cold winters and long, warm summers 

(Barnard et al. 2012). The mean annual rainfall of the scheme is 400 mm, most of which occurs 

during the summer months. The mean monthly rainfall from November to April is 47.3 mm 

(Schulze, Lynch & Maharaj 2006), while the mean maximum and minimum temperatures are 

38.8°C and 4.4°C respectively. During winter months the mean monthly rainfall drops to 4.1 mm, 

with a mean maximum temperature of 31.8°C and a mean minimum temperature of -4.8°C 

(Schulze & Maharaj 2006). 
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Figure 3.1: Location of the study area in South Africa (a) with the extent of the Vaalharts irrigation scheme (b) and 

the WorldView-2 image (c), as well as the distribution of sample points in the six collection sites (d1 to d6) 

Vaalharts is known for its sandy soils and insufficient natural drainage, which often lead to 

waterlogging and salt accumulation (Maisela 2007). The dominant salts in the study area are Ca 

and Mg (HCO3). Soils in the scheme typically consist of 8% clay, 2% silt, 68% fine sand and 22% 

medium and coarse sand (Streutker 1977). Maize, wheat, barley, lucerne and groundnuts are the 

main crops cultivated. Most of these crops are planted on a rotational basis (Maisela 2007; Kruger, 

Van Rensburg & Van den Bergh 2009). 

 

Stellenbosch University  https://scholar.sun.ac.za



 40 

3.3.2 Data collection and preparation 

3.3.2.1 Satellite image collection and pre-processing 

A WV2 image, captured on 23 May 2012, was acquired. The image has a spatial resolution of 0.50 

m (0.46 m at nadir) for the panchromatic band and 2 m (1.84 m at nadir) for the multispectral 

bands (DigitalGlobe 2015). WV2 was chosen because it offered the highest combination of spatial 

and spectral resolution at the time. The sensor provides eight multispectral bands, namely coastal 

blue (CB) (400–450 nm), blue (450–510 nm), green (510–580 nm), yellow (585–625 nm), red 

(630–690 nm), RE (705–745 nm), NIR1 (770–895 nm) and NIR2 (860–1040 nm) (DigitalGlobe 

2015). The acquisition date was chosen to coincide with the time of the year when most crops have 

been harvested and the majority of the fields are bare; therefore, when the proportion of exposed 

soils is maximized. 

Twelve GCPs collected during the field survey and the 5 m resolution Stellenbosch University 

digital elevation model (SUDEM) (Van Niekerk 2012) were used to orthorectify the WV2 image. 

The ATCOR-2 model was used for radiometric and atmospheric corrections (Richter 2014). Mean 

elevation (1138.8 m) of the study area was calculated from the SUDEM and provided as input for 

the ATCOR-2 model. Rural and mid-latitude winter were respectively selected as the appropriate 

aerosol type and atmospheric condition. Adjacency correction was also performed to improve the 

quality of the atmospheric corrected WV2 image. 

Vegetated areas were excluded from the analyses by using a NDVI threshold of 0.35. Man-made 

urban structures, such as roads and buildings, were also removed from the analysis by a digitized 

field mask of the irrigation scheme. All pre-processing operations were performed by making use 

of PCI Geomatica 2013 software. 

3.3.2.2 Field surveys 

A total of 51 in situ soil samples were collected from June to September 2012 using a clustered, 

random sampling scheme (Table 3.1). Soil samples were collected along transects or in regular 

grids in three sampling sites (Figure 3.1d1, Figure 3.1d2 and Figure 3.1d3). Individual samples 

were collected in the remaining three sample sites (Figure 3.1d4, Figure 3.1d5 and Figure 3.1d6). 

To improve the sampling efficiency, the sampling sites were selected to correspond to areas with 

visible evidence (e.g. precipitation) of salt accumulation. Samples were then collected in the 

immediate neighbourhood where no evidence of salt accumulation was apparent (Table 3.1). The 

samples were collected at a depth of 20 cm by means of a soil auger. A differential global 

positioning system (GPS) with accuracy of 10 cm was used to record the positions of each sample. 

Visible salt precipitation at each sample location was photographically recorded and qualified as 
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being either high, low or absent. The EC, which is a measure of how saline a soil sample is, was 

determined within a laboratory using the saturated paste technique (Committee 1991). Samples 

with EC measurements of less than 400 mS m-1 were classified as non-saline, whereas samples 

with EC measurements equal to or greater than 400 mS m-1 were grouped as saline in accordance 

with Nell and Van Niekerk (2014). 

Table 3.1: Summary of sample site EC measurements and field notes 

Sample 
site 

# of samplesa) EC (mS m-1) 

Sample site field notes 
SA UA Minimum Maximum Mean 

Standard 
deviation 

d1 20 0 2100 9500 5405 2594.5 
Clear indication of salt precipitation on the 

soil surfaces; Waterlogging occurs between 
45 and 70 cm at sample locations. 

d2 7 18 19 1050 220 249.9 
Salt accumulation on the soil surfaces and 

within the subsoil at sample locations. 
d3 2 1 150 7500 3716.7 3004.5 Salt precipitation on the soil surfaces. 
d4 0 1 90 90 90 0 Outlet to drainage canal. 
d5 1 0 4009 4009 4009 0 Salt precipitation on the soil surfaces. 

d6 1 0 800 800 800 0 
No signs of either salt accumulation or 

waterlogging. 
a) SA refers to salt-affected and UA to unaffected 

3.3.2.3 Feature set development 

A feature set consisting of 69 input variables were considered for differentiating salt-affected from 

unaffected areas (Table 3.2). All of the WV2 bands and several SIs developed specifically for the 

direct detection of salt-affected soil (Khan et al. 2005; Fernandez-Buces et al. 2006; Abbas & Khan 

2007; Iqbal 2011; Abbas et al. 2013; Setia et al. 2013; Sidike, Zhao & Wen 2014; Wang et al. 

2013) were included in the feature set. They are: 

Equation 3.1 

1. 𝑆1 = 𝐵𝑙𝑢𝑒 𝑅𝑒𝑑⁄  

Equation 3.2 

2. 𝑆2 = (𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑) (𝐵𝑙𝑢𝑒 + 𝑅𝑒𝑑)⁄  

Equation 3.3 

3. 𝑆3 = (𝐺𝑟𝑒𝑒𝑛 × 𝑅𝑒𝑑) 𝐵𝑙𝑢𝑒⁄  

Equation 3.4 

4. 𝑆4 = √𝐵𝑙𝑢𝑒 × 𝑅𝑒𝑑 

Equation 3.5 

5. 𝑆5 = (𝐵𝑙𝑢𝑒 × 𝑅𝑒𝑑) 𝐺𝑟𝑒𝑒𝑛⁄  

Equation 3.6 

6. 𝑆6 = (𝑅𝑒𝑑 × 𝑁𝐼𝑅) 𝐺𝑟𝑒𝑒𝑛⁄  

Stellenbosch University  https://scholar.sun.ac.za



 42 

Equation 3.7 

7. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 (𝑁𝐷𝑆𝐼) = (𝑅𝑒𝑑 − 𝑁𝐼𝑅) (𝑅𝑒𝑑 + 𝑁𝐼𝑅)⁄  

Equation 3.8 

8. 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛𝑑𝑒𝑥 (𝐶𝑂𝑆𝑅𝐼) = ((𝐵𝑙𝑢𝑒 + 𝐺𝑟𝑒𝑒𝑛) (𝑅𝑒𝑑 + 𝑁𝐼𝑅))⁄ ×

((𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑)) 

Table 3.2: Considered features for analysis 

Type Features 
# of 

features 

Spectral features Mean Panchromatic, CB, blue, green, yellow, red, RE, NIR1, NIR2 9 
Salinity indices Mean S1 × 4, S2 × 4, S3 × 4, S4 × 4, S5 × 4, S6 × 4, NDSI × 6, COSRI × 8 38 
Texture features 
(3×3; 5×5; 7×7) 

GLCM 
Histogram 

Contrast, entropy, homogeneity, variance 
Energy, entropy, variance 

21 

Image transformations Mean PC1 1 

For the purposes of this study, the SIs were modified for WV2 imagery by alternating the blue or 

CB WV2 bands as the ‘blue’ variable, the yellow, red or RE WV2 bands as the ‘red’ variable and 

the NIR1 or NIR2 WV2 bands as the ‘NIR’ variable. Various permutations of these band 

combinations were applied to the indices to produce a total of 38 SIs. 

A PCA was performed on the multispectral WV2 bands to condense most (96%) of the spectral 

variance into a single component (Campbell 2006). The resulting first principal component (PC1) 

was included in the feature set and used as input to the texture measures. Texture measures based 

on histogram statistics and second-order statistics computed from grey level co-occurrence 

matrices (GLCM) (Haralick, Shanmugam & Dinstein 1973; Clausi 2002) were included in the 

feature set. The histogram measures considered were energy, entropy and variance, while the 

GLCM measures were contrast, entropy, homogeneity and variance. Three window sizes, namely 

3×3, 5×5 and 7×7 were used for generating the texture measures. Texture measures were also 

carried out on the panchromatic band and each of the multispectral bands. This combination of 

input variables allowed the texture calculations to be assessed at all possible spatial and spectral 

resolutions offered by the WV2 image. PCI Geomatica 2013 software was used to perform all the 

texture calculations. 

3.3.2.4 Separability analysis 

The JM distance measure, as implemented in the SEaTH (SEparability and THresholds) software 

package (Nussbaum, Niemeyer & Canty 2006), was used to score the features according to class 

separation. The algorithm firstly identifies features that have the best separability between classes, 

and then the threshold of separation for each feature is determined (Nussbaum, Niemeyer & Canty 

2006; Gao et al. 2011; Heumann 2011). The JM distance is calculated as (Nussbaum, Niemeyer & 

Canty 2006): 
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Equation 3.9 

𝐽 = 2(1 − 𝑒−𝐵) 

where    J is the JM distance; and 

B is the Bhattacharya distance. 

The Bhattacharya distance (B) is the mean and standard deviation of the training samples of the 

two classes (Bhattacharyya 1943). The resulting J value ranges from 0 to 2, where J = 0 indicates 

that the two classes are completely correlated and therefore inseparable, while J = 2 indicates that 

the two classes are completely uncorrelated and separable. Lower values of J will consequently 

produce more classification errors (Nussbaum, Niemeyer & Canty 2006; Gao et al. 2011; 

Heumann 2011). According to Nussbaum, Niemeyer and Canty (2006), Heumann (2011) and 

Odindi and Mhangara (2013), a J value of 2 indicates excellent intra-class separation; a value equal 

to or greater than 1.9 good separation; and a value below 1.7 indicates poor separation. J values of 

less than 1 suggest a requirement for new training data (Nussbaum, Niemeyer & Canty 2006; 

Heumann 2011).  

A limitation of the JM distance is the assumption that sample values within classes are normally 

distributed. In cases where this is not true, the threshold value might be substantially different, but 

the separability measure is still likely to be valid (Gao et al. 2011). A more detailed discussion on 

the JM distance can be found in Nussbaum, Niemeyer and Canty (2006). 

Each of the features in Table 3.2 was included in the separability analysis. The scheme to which 

the analyses were applied is based on the quantitative soil EC measurements only and consists of 

a salt-affected (EC ≥ 400 mS m-1) and an unaffected (EC < 400 mS m-1) class. The features which 

provided the highest class separation (J value) and the accompanying threshold values were used 

to generate salt accumulation maps. 

3.3.2.5 Regression modelling 

RM was used to analyse the statistical relationship between the measured soil EC and the spectral 

bands, SIs and texture measures. IBM SPSS v20.0 software was employed to generate a series of 

linear, logarithmic, inverse, quadratic, cubic, power and exponential models. Stepwise multiple 

regression and PLS regressions were also carried out on all 69 variables. 

3.3.2.6 Classification and regression trees (CART) 

CART (by Salford Systems) was applied to the full feature set (all 69 variables) to generate a DT, 

with each branch consisting of divisions (thresholds) to the most probable class (Lawrence & 

Wright 2001). In accordance with Campbell (2006) and Lawrence and Wright (2001), a pruning 
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step was applied on the resulting tree to guard against overfitting. This involved cross-validation 

during which the data is divided into subsets and results from some subsets are validated against 

results from other subsets. 

3.3.2.7 Supervised classification 

A pixel-based supervised classification approach was used to classify pixels of unknown identity 

using samples of known identity (Rees 2001; Campbell 2006). The classifiers considered were 

kNN, MaxL, SVM, DT and RF. The kNN algorithm assigns a class to a pixel according to the k-

nearest trained pixels (Cover & Hart 1967; Gibson & Power 2000). The MaxL classifier makes 

use of training data to estimate the means and variances of each class (Harris 1987; Gibson & 

Power 2000) and determines the probability of an unknown pixel belonging to a particular class 

(Rees 2001; Albert 2002; Lillesand, Chipman & Kiefer 2008). SVM determines the optimal 

separating hyperplane between classes (Novack et al. 2011) by focussing on the training samples 

close to the edge (support vector) of the class descriptors (Tzotsos & Argialas 2006; Lizarazo 

2008). A DT classifier identifies relationships between multiple response (dependent) variables 

and an independent variable. DTs hierarchically split a dataset into increasingly homogeneous 

subsets known as nodes (Pal & Mather 2003; Novack et al. 2011; Punia, Joshi & Porwal 2011; 

Gómez et al. 2012). The algorithm reaches a leaf node by recursively partitioning the feature data. 

When a leaf node is reached, the class associated with the node is assigned to the observation (Pal 

& Mather 2003). RF is an ensemble classifier based on DTs, where each DT is generated using a 

random vector sampled independently from the input vector. Each DT casts a vote (Leo Breiman 

2001; Pal 2005; Bosch, Zisserman & Muoz 2007) and contributes to the assignment of the most 

popular class to the independent variable (Leo Breiman 2001; Rodriquez-Galiano et al. 2012b). A 

more detailed discussion on the RF classifier can be found in Breiman (1996); Breiman (2001); 

Pal and Mather (2005); and Rodriquez-Galiano et al. (2012a). 

OpenCV implementations of the kNN, SVM, DT and RF algorithms were used within eCognition 

8.9 software (Bradski 2000), while chessboard segmentation (with a scale parameter of one pixel) 

was used to emulate a pixel-based approach and ENVI 5.0 to apply the MaxL classifier. A k value 

of one, three and five was used for the kNN classifications (Campbell 2006). The RBF was chosen 

as the kernel type for the SVM classifier, as recommended by Hsu, Chang and Lin (2010) and Li 

et al. (2010). The maximum number of trees for the RF classifier was set to 100. The number of 

active variables, which is the number of randomly selected features used to find the best splits at 

each node, was set to three (Rodriquez-Galiano et al. 2012a). Default parameters were used for the 

MaxL and DT classifiers. 
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3.3.2.8 Accuracy assessment 

Maps were created from the rule-based (threshold-based) and supervised classification outputs to 

identify problem areas within the study area. An independent set of 20 soil samples was used to 

assess the accuracy of the maps. The root mean square error (RMSE) was calculated for the top-

performing regression models (Eldeiry & Garcia 2009; Adhikari et al. 2013). Confusion matrices 

were generated to calculate the OA, producer’s accuracy (PA), user’s accuracy (UA), Kappa 

coefficient and the area under receiver operating characteristic (AUROC) curve (Evangelista 2006; 

Congalton & Green 2009). 

3.4 RESULTS 

The results of the soil analyses are shown in Figure 3.2. The majority (60.8%) of the samples were 

salt-affected. The 2:3 balance between salt-affected and unaffected samples was considered 

suitable for classifier training and accuracy assessment purposes. 

 

Figure 3.2: EC values of the collected soil samples, showing that there was a good balance between salt-affected and 

unaffected soil samples 

Figure 3.3 shows photographic examples of sampled areas that were found to be salt-affected. In 

Figure 3.3a clear evidence of salt precipitation was present, while in Figure 3.3b very little 

evidence of salt precipitation was noticeable. In Figure 3.3c no salt precipitation was apparent, 

although some evidence of waterlogging was observed. These examples demonstrate that salt 

accumulation in the study area does not necessarily manifest in visible cues that can be easily 

exploited by using simple reflectance thresholds. Only eight (25%) of the salt-affected samples 

had clearly visible evidence of salt precipitation (Figure 3.3a). It was also observed that salt 
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accumulation is often concentrated in relatively small patches and salinity levels can vary 

substantially over very short (e.g. 2–5 m) distances. 

 

Figure 3.3: Examples of salt-affected soils in the study area. Clear evidence of salt precipitation is visible in (a), with 

less precipitation visible in (b). In (c) no salt precipitation is visible, but indications of waterlogging are observed. 

3.4.1 Spectral profiles and separability analysis results 

Figure 3.4 compares the reflectance of salt-affected and unaffected soils in each of the WV2 bands. 

The spectral properties of salt-affected and unaffected soils are very similar in the CB and blue 

bands, with more noticeable differences in the remaining bands. In contrast to Rao et al. (1995), 

Metternicht and Zinck (2003), Abbas and Khan (2007) and Elnaggar and Noller (2009), salt-

affected soils had lower reflectance values in the longer wavelengths (510–690 nm) of the visible 

spectrum. The standard deviation error bars in Figure 3.4 show that there is substantial overlap 

between the recorded reflectance values. This was confirmed when separability was quantified 

using SEaTH. The highest JM value (0.38) achieved was in the yellow band, which indicates that 

the classes are not separable when individual bands are used. The large overlap between the 

different classes was attributed to the inconsistencies in salt precipitation and other visible clues 

of salt accumulation that were observed during the field visits. 

 

Figure 3.4: Spectral profile of salt-affected and unaffected samples as extracted from the WorldView-2 image 

Better separability was achieved when multiple bands were combined as SIs. Of all the SIs 

evaluated, NDSI (using the red and NIR1 bands as input) produced the highest separability between 
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the salt-affected and unaffected classes, with a J value of 0.91 and a threshold of -0.19. This 

threshold was implemented to produce a thematic map of salt-affected and unaffected areas (see 

Section 3.4.3). 

3.4.2 Regression modelling and DT analysis 

Table 3.3 shows the results of the RM of EC measurements and the individual WV2 image bands, 

SIs and texture measures. For the sake of brevity, only features that achieved an R2 of 0.4 or more 

in any of the models are included in the table. None of the WV2 bands or texture measures met 

this requirement. The best fit was achieved by NDSI (using the yellow and NIR1 bands as input) 

(R2 = 0.64, p < 0.001, RMSE = 2498.3 mS m-1), with the cubic model providing the best description 

of this relationship. The NDSI had been successfully employed in several studies (Khan et al. 

2005; Iqbal 2011). 

Table 3.3: Results of regression analyses used to determine the relationship between EC and WorldView-2 features 

Salinity 
index 

Band 
combination 

Regression model (R2)a) 

Linear Logarithmic Inverse Quadratic Cubic Power Exponential 

NDSI Yellow; NIR1 0.26 - 0.27 0.47 0.64 - 0.34 

NDSI Yellow; NIR2 0.23 - 0.30 0.45 0.49 - 0.34 

NDSI Red; NIR1 0.18* - 0.39 0.56 0.56 - 0.25 

NDSI Red; NIR2 0.16* - 0.27 0.41 0.41 - 0.25 

COSRI CB; red; NIR1 0.19 0.28 0.33 0.43 0.43 0.38 0.28 

COSRI CB; red; NIR2 0.23 0.30 0.33 0.42 0.43 0.41 0.33 

COSRI CB; RE; NIR1 0.24 0.31 0.34 0.44 0.51 0.41 0.32 

COSRI CB; RE; NIR2 0.27 0.32 0.35 0.42 0.48 0.43 0.37 

COSRI Blue; red; NIR1 0.19 0.29 0.34 0.43 0.43 0.40 0.28 

COSRI Blue; RE; NIR1 0.22 0.30 0.34 0.43 0.43 0.42 0.33 

COSRI Blue; RE; NIR2 0.24 0.32 0.35 0.46 0.49 0.42 0.33 

COSRI Blue; red; NIR2 0.27 0.33 0.35 0.44 0.47 0.44 0.37 

a) All results were significant at a 0.001 level, except for those indicated with * (0.01 level) 

The results from the stepwise regression analyses showed that the NIR2 band was the first variable 

to be taken into account (R2 = 0.39, p < 0.001), followed by COSRI (blue, red and NIR2) and 

COSRI (CB, red and NIR1). The resulting model produced a R2 of 0.51 (p < 0.001). The best PLS 

regression model had a goodness-of-fit of 0.39 (R2) and took 38 variables into account.  

Figure 3.5 compares this model to the calculated NDSI and measured soil EC (mS m-1) values. 

Two outliers (labelled A and B in Figure 3.5) were identified and removed, resulting in a slight 

improvement in the goodness-of-fit (R2 = 0.68, p < 0.001) of the model. 
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Figure 3.5: Relationship between NDSI (red and NIR1) and measured soil EC. Two outliers (A and B) were 

identified and removed. 

A threshold value of 400 mS m-1 was applied to the regression model to produce a classification 

of salt-affected (< 400 mS m-1) and unaffected (>= 400 mS m-1) areas and a map was produced 

(see Section 3.4.3). The CART analysis identified a single feature – NDSI (using yellow and NIR1 

as input variables) – as primary splitter. Salt-affected (< 400 mS m-1) samples were associated with 

NDSI values of less than -0.22. This threshold was applied on the NDSI to produce a thematic 

map of salt-affected areas. 

3.4.3 Classification accuracy results 

The thematic maps obtained from implementing the thresholds of the RM and CART analysis 

were supplemented with a series of maps generated by the supervised classifiers. The accuracies 

of the resulting maps were assessed using an independent set of samples. Table 3.4 provides a 

summary of the accuracies achieved. 

Table 3.4: Summary of salt-affected and unaffected classification accuracies 

Method Approach Class 
Producer’s 
accuracy 

(%) 

User’s 
accuracy 

(%) 

Overall 
accuracy 

(%) 
Kappa AUROCa) 

SEaTH (NDSI) Threshold 
Salt-affected 66.7 88.9 

75 0.51 0.76* 
Unaffected 87.5 63.6 

Regression 
analysis (NDSI) 

Threshold 
Salt-affected 83.3 76.9 

75 0.47 0.74* 
Unaffected 62.5 71.4 

CART (NDSI) Threshold 
Salt-affected 75 90 

80 0.60 0.8* 
Unaffected 87.5 70 

kNN (k = 3) Classifier 
Salt-affected 84.6 91.7 

80 0.58 0.79* 
Unaffected 85.7 75 

DT Classifier 
Salt-affected 66.7 88.9 

75 0.51 0.76* 
Unaffected 87.5 63.6 

RF Classifier 
Salt-affected 83.3 83.3 

80 0.58 0.79* 
Unaffected 75 75 

SVM Classifier 
Salt-affected 100 60 

60 0 0 
Unaffected 0 0 

MaxL Classifier 
Salt-affected 83.3 71.4 

70 0.35 0.69* 
Unaffected 50 50 

a) AUROC results significant at a 0.05 level (*) 

y = -6E-13x3 + 1E-08x2 - 6E-05x - 0.195
R² = 0.4948
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The -0.22 NDSI (yellow and NIR1) threshold identified by CART produced the most accurate 

classification with an OA of 80%, Kappa of 0.6 and AUROC of 0.8. The salt-affected class 

recorded a very high UA (90%), but the PA was lower (75%). The accuracies of the thematic maps 

generated by the kNN (with k = 3 producing the best results) and RF supervised classifiers were 

only marginally lower, with both achieving an OA of 80%, Kappa of 0.58 and AUROC of 0.79. 

The accuracies of the maps produced using the regression analysis and SEaTH thresholds were on 

par with the supervised DT classifier, with OAs of 75%. MaxL achieved an OA of 70%, but the 

low Kappa (0.35) suggests high agreement by chance (Garrett & Viera 2005; Evangelista 2006; 

Johnson, Chawla & Hellmann 2012). The worst-performing classifier was SVM, which achieved 

an OA of only 60% and a very low Kappa (0) and AUROC (0). 

Figure 3.6 shows the thematic maps produced from the various classifications. Twenty-seven 

percent of the study area was covered by vegetation and was excluded from the maps (shown in 

white). At a glance it seems that there is substantial variation between the different outputs, with 

some of the models, in particular MaxL (Figure 3.6g) and SVM (Figure 3.6h), severely 

overestimating salt-affected areas. Based on previous research (Khan et al. 2005; Iqbal 2011), 

NDSI (red and NIR1) using a threshold of -0.23 (Figure 3.6a) seems to be the most realistic 

representation of salt accumulation in the study area. The maps produced from the NDSI (yellow 

and NIR1) cubic regression model (Figure 3.6b) and CART analysis (Figure 3.6c) is almost 

identical as NDSI (yellow and NIR1) is used in both cases. Only small differences are evident in 

the maps produced by the kNN (Figure 3.6d) and DT (Figure 3.6e) supervised classifiers, while 

RF (Figure 3.6f) classified fewer fields as salt-affected. 

 

Figure 3.6: Produced maps from the ruleset-based and supervised classifications, namely (a) NDSI (red and NIR1) 

SEaTH threshold, (b) NDSI (yellow and NIR1) cubic regression model, (c) NDSI (yellow and NIR1) CART 

threshold, (d) kNN (k = 3), (e) DT, (f) RF, (g) SVM and (h) MaxL 
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3.5 DISCUSSION 

Notable differences in the spectral properties of salt-affected and unaffected soils were recorded 

in the green, yellow, red, RE, NIR1 and NIR2 bands (Figure 3.4), but in contrast to the findings of 

Rao et al. (1995), Metternicht and Zinck (2003) and Elnaggar and Noller (2010), salt-affected soils 

generally had a lower reflectance in the visible region of the electromagnetic spectrum. This 

discrepancy is attributed to the relatively low levels of salt precipitation occurring in the study 

area. Soils with salt precipitation have high reflectance values in the visible and NIR regions of 

the electromagnetic spectrum (Rao et al. 1995; Metternicht & Zinck 2003; Elnaggar & Noller 

2010), but in this study only 25% of the samples representing salt-affected soils had sufficiently 

high levels of salt precipitation for it to be noticeable. In most cases salt-affected soils appeared 

smooth and dark, most likely because salt accumulation in the study area often coincides with 

waterlogging (i.e. secondary salinization) and the reflection of wet soils are generally lower in the 

visible and NIR spectra (Metternicht & Zinck 2003). It is noteworthy that, even in the absence of 

visible cues, relatively good classification accuracies were obtained. Clearly the non-visible bands 

(e.g. RE, NIR1, NIR2) must have contributed to the separation of the two classes. 

NDSI (using the yellow and NIR1 bands) produced a regression model with a moderately strong 

fit (R2 = 0.64, p < 0.001, RMSE = 2498.3 mS m-1), although the OA of the resulting model was 

relatively low (75%) compared to some of the other classifiers. When plotted (see Figure 3.5) it 

was observed that the relationship between NDSI and EC is erratic when salinity levels are high 

and that the model generally overestimated EC. PLS regression reduces a large number of 

measured collinear spectral variables to a few non-correlated latent variables (Hansen & 

Schjoerring 2003; Cho et al. 2007; Mashimbye et al. 2012), but in contrast to Mashimbye et al. 

(2012) PLS (38 latent variables) produced a weak model (R2 = 0.39) compared to the cubic 

regression model based on the NDSI. 

From the results it seems that most of the classifications overestimated salt accumulation. The way 

in which field samples were collected may have influenced the results, as areas where salt 

accumulation is likely to occur were targeted. Although samples were also systematically collected 

outside targeted areas (where no evidence of salt accumulation was apparent), most (63%) of the 

soil samples collected were salt-affected. This caused a slight bias towards salt-affected training 

and reference data, which may have had a negative effect on the classifications. The relatively high 

overall accuracies (80%) of the kNN and RF classifiers are partly attributed to their insensitivity 

to imbalanced datasets. The kNN classifier only considers the closest known values for 

classification purposes and RF uses bagging to overcome some of the limitations of other 

classifiers (Leo Breiman 2001; Johnson, Chawla & Hellmann 2012). Another likely reason for the 
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relatively good performance of RF is the relatively small sample set (51) and the large (69) number 

of features considered. RF has been shown to perform well under such conditions (Breiman 1996; 

Rodriquez-Galiano et al. 2012a). In contrast to Lizarazo (2008), Li et al. (2010), Petropoulos, 

Kalaitzidis and Prasad Vadrevu (2012) and Myburgh and Van Niekerk (2013), SVM produced low 

accuracies. Efforts to improve the accuracy of the SVM classifier by tuning the input parameters 

were unsuccessful. MaxL also showed poor accuracies, most likely due to its sensitivity to large 

input feature sets (Myburgh & Van Niekerk 2013). 

A factor that complicated the detection of salt accumulation in this study was the disturbance 

caused by soil preparations (e.g. ploughing). Vaalharts is a highly dynamic irrigation scheme in 

which crops are rotated throughout the year. Many of the fields visited during the survey were 

recently ploughed in preparation for planting. This altered the soil surface (and reflectance) and 

would have had a negative effect on classification accuracies. Also, even though the image 

acquisition date was specifically selected at a time of the year when most of the crops have been 

harvested, only 73% of the study area was bare at the time. The efficiency of targeting the spectral 

properties of bare soils (i.e. direct approach) for operational salt accumulation detection was 

thereby reduced, especially since costly imagery needs to be acquired over large areas.  

It was observed that salt accumulation was often concentrated in small patches and that salinity 

levels varied substantially over very short distances (e.g. 2–5 m) (see Figure 3.3). In many cases 

the spatial resolution of the WV2 imagery was sufficiently high to detect such variations, but some 

salt-affected areas were depicted as unrealistically large, continuous areas (see Figure 3.6). This 

overestimation of salt accumulation will likely be amplified when lower resolution imagery (e.g. 

Landsat 8, SPOT-5) is used. More work is needed to investigate the impact of spatial resolution 

on mapping small patches of salt-affected areas.  

The spectral resolution of the WV2 sensor is higher than most other VHR sensors, but is limited 

to the visible and NIR region of the electromagnetic spectrum. Using hyperspectral data on South 

African soils, Mashimbye et al. (2012) found that the 2257 nm band in the SWIR region of the 

electromagnetic spectrum showed  the strongest correlation to salt-affected soils. The addition of 

a SWIR (1195–2365 nm) band to the recently-launched WorldView-3 sensor consequently holds 

great potential for monitoring salt accumulation with multispectral imagery. 

3.6 CONCLUSIONS 

This study evaluated the use of VHR WV2 imagery for modelling and mapping salt accumulation 

by observing bare soils. In addition to the WV2 image bands, the first principal component, a 

number of texture measures and several SIs were also considered as possible predictor variables. 
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Three threshold classifications based respectively on RM, the JM separability measure and CART, 

as well as five supervised classifiers (kNN, MaxL, SVM, DT and RF) were evaluated. The results 

demonstrated that a threshold determined by CART analysis was the most accurate in 

differentiating salt-affected and unaffected soils, but that the accuracy of the kNN and RF 

classifications were only marginally lower. Overall, NDSI (yellow and NIR1) was the best 

predictor of salt accumulation as it featured in the separability analysis, RM and CART. 

We conclude that the use of WV2 imagery to identify salt-affected soils can produce good 

classification accuracies. The models, however, tended to overestimate salt accumulation and large 

variations between the results from the different classifications were noted. The inconsistencies in 

the visual appearance of salt-affected soils are the most likely reason for misclassifications. 

Temporal factors, such as soil preparation (e.g. ploughing) and the impact of water (e.g. rainfall, 

irrigation) will likely have a negative impact on the classification accuracies. Small patches of 

vegetation, the soil mineralogy and whether the soils are waterlogged will also influence the visual 

appearance of salt-affected soils. Salt-affected soils were also found to mostly occur in small 

patches and vary over short distances, making it difficult to accurately map. Subsurface conditions 

are also not considered in this approach. 

VHR imagery capable of recording radiation in the SWIR region of the electromagnetic spectrum 

(e.g. WorldView-3) might produce better results, but it is unlikely that it will overcome all of the 

limitations of the direct approach (i.e. detecting salt accumulation by observing bare soils). Indirect 

detection methods (e.g. vegetation stress monitoring, hydrological modelling) that take subsurface 

conditions into consideration might produce better results. Ideally a combination of direct and 

indirect methods should be used. Clearly, more research is needed before such methods can be 

operationalized for detecting and monitoring salt accumulation in irrigated areas. 
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CHAPTER 4:  MACHINE LEARNING PERFORMANCE FOR 

PREDICTING SOIL SALINITY USING DIFFERENT COMBINATIONS 

OF GEOMORPHOMETRIC COVARIATES* 

4.1 ABSTRACT 

Conventional methods of monitoring salt accumulation in irrigation schemes require regular field 

visits to collect soil samples for laboratory analysis. Identifying areas prone to salt accumulation 

by means of geomorphometry (i.e. terrain analyses using DEMs) can potentially save time and 

costs. This study evaluated the extent to which DEM derivatives and ML algorithms (kNN, SVM, 

DT and RF) can be used for predicting the location and extent of salt-affected areas within the 

Vaalharts and Breede River irrigation schemes of South Africa. In accordance with local 

management policies, salt-affected areas were defined as regions with soil electrical conductivity 

(EC) values greater than 4 dS/m. Two DEMs, namely the one-arch second SRTM DEM and a 

photogrammetrically-extracted digital surface model (DSM), were used for creating the 

derivatives. Wetness indices as well as hydrological and morphometric terrain analysis techniques 

were used to generate predictive variables. For comparative purposes, the predictive variables were 

also used as input to regression modelling and geostatistics, namely kriging with external drift 

(KED). Thresholds were applied to the regression models and KED results to obtain a binary 

classification. EC values based on in situ soil samples were used for model development, classifier 

training and accuracy assessment. 

The results show that KED achieved the highest overall accuracy (OA) in Vaalharts (79.6%), 

whereas KED and ML (DT) showed the most promise in the Breede River (75%). The findings 

suggest that the use of elevation data and its derivatives as input to geostatistics and ML holds 

much potential for monitoring salt accumulation in irrigated areas, particularly for simulating 

subsurface conditions. More work is needed to investigate the potential of using ML and DEM 

derivatives, along with other geospatial datasets such as satellite imagery (that have been shown 

to be effective for monitoring surface conditions), for the operational modelling of salt 

accumulation in large irrigation schemes. 

 
*This chapter was published by Geoderma in Volume 299 (Vermeulen & Van Niekerk 2017) and consequently conforms to the prescribed 

structure of that journal. Some duplication between the content of this chapter and other chapters (especially Chapters 2 and 3) can also be 

expected.  

Stellenbosch University  https://scholar.sun.ac.za



 54 

4.2 INTRODUCTION 

Salinity is a term used to describe the amount of salt in soil or water (Mcghie 2005). For the 

purpose of this study, salinity refers to the accumulation of soluble salts in the soil due to natural 

processes or human activities (Al-Khaier 2003). The way in which salts move and accumulate in 

soils can be affected by poor drainage (waterlogging), irrigation practices, clearance of vegetation 

and the reshaping of the landscape through earth works (Mcghie 2005). In large quantities, salts 

limit the normal growth of plants. This and other negative impacts of salt accumulation on crop 

production is a global concern (Metternicht & Zinck 2003).  

An estimated 18% of the soils in South African irrigation schemes is salt-affected or waterlogged 

(Backeberg et al. 1996). Although this percentage is relatively small compared to Argentina (34%), 

Egypt (33%), Iran (30%), Pakistan (26%) and the United States of America (23%) (Ghassemi, 

Jakeman & Nix 1995), only 13.7% of South Africa’s land area is suitable for irrigated agriculture 

(Department of Agriculture, Forestry and Fisheries 2013). Proactive measures to reduce the effect 

of salt accumulation are therefore needed to prevent loss of productive agricultural land. 

Preventative measures include careful consideration of crop water requirements and irrigation 

water quality, as well as frequent monitoring of salt levels in soils  (Shainberg & Shalhevet 1984).  

Conventional methods of monitoring salt-affected soils require regular field visits and laboratory 

analyses, which are often not viable for frequent monitoring of large areas. Although there has 

been an increase in the use of proximal (in situ) sensors (Viscarra Rossel et al. 2011), such 

instruments normally monitor soil conditions within relatively small ranges (within 2 m). This 

necessitates the incorporation of a large number of sensors to effectively monitor extensive areas 

at the required (i.e. within field) spatial resolutions. Owing to its ability to observe large areas on 

a regular, timely basis, remote sensing has also been used as an alternative method for monitoring 

salt accumulation (Abbas et al. 2013; Akramkhanov et al. 2011; Dwivedi 1997; Dwivedi et al. 

1999; Elnaggar & Noller 2010; Sulebak et al. 2000). However, a major drawback of using remotely 

sensed imagery is its inability to effectively monitor subsurface processes that do not directly 

influence the spectral responses of the topsoil (Vermeulen & Van Niekerk 2016). 

The use of geomorphometry – terrain analysis using digital elevation data (Pike 2000) – to model 

areas that are susceptible to salt accumulation has produced good results. Elnaggar and Noller 

(2010) found a significant correlation between soil EC, and elevation, slope and wetness indices. 

Similarly, Sulebak et al. (2000) identified a strong, significant correlation (R2 = 0.8) between 

terrain data (slope, aspect and profile curvature) and soil moisture using a stepwise RM approach. 

Sulebak et al. (2000) observed that low slope gradients were associated with high soil wetness 

values and Akramkhanov et al. (2011) found significant correlations (as determined by stepwise 
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multiple regression) between soil EC and environmental factors such as distance to drainage, 

profile curvature, slope and groundwater table depth. Taghizadeh-mehrjardi et al. (2016) found 

wetness indices, the multi-resolution valley bottom flatness index and elevation to be the most 

important predictors of soil salinity. 

Geostatistics have been used widely in salt accumulation studies  (Gallichand et al. 1992; Utset et 

al. 1998; Li et al. 2007; Eldeiry & Garcia 2008; Eldeiry & Garcia 2009; Juan et al. 2011; 

Taghizadeh-Mehrjardi et al. 2014), particularly for interpolating salt accumulation from soil 

sample analysis results. Kriging, a generic term used to refer to a group of generalized least squares 

regression algorithms, has been shown to produce good results, as it provides linear unbiased 

estimates and weights surrounding sample points to account for clustering (Hengl, Heuvelink & 

Rossiter 2007; Gallichand et al. 1992). Several variations of the kriging algorithm are available, 

but co-kriging (CK), universal kriging (UK), regression-kriging (RK) and KED seem to be the 

most popular for salt accumulation modelling (Gallichand et al. 1992; Bishop & McBratney 2001; 

Baxter & Oliver 2005; Li et al. 2007; Eldeiry & Garcia 2008; Motaghian & Mohammadi 2011; 

Taghizadeh-Mehrjardi et al. 2014). 

CK, the simplest of these algorithms, is a multivariate extension of kriging that allows for the 

incorporation of auxiliary data to improve predictive capacity (Wackernagel 2010). CK is suitable 

when only a few auxiliary variables are being considered and when these variables do not cover 

all sample locations (Hengl, Heuvelink & Stein 2003). UK, RK and KED are mathematically 

equivalent algorithms that make use of auxiliary variables to compute the kriging trend model 

(Pebesma 2006). UK models the trend using coordinates only, whereas KED makes use of other 

auxiliary variables for estimating the trend function. RK calculates the drift and residuals 

separately, after which the results are summed (Hengl, Heuvelink & Rossiter 2007). Gallichand et 

al. (1992) found CK to produce better EC models compared to moving average methods, while 

Eldeiry and Garcia (2008) observed that RK produced a stronger model compared to those 

generated with RM. Performing RK, Taghizadeh-Mehrjardi et al. (2014) observed a moderate 

significant correlation (R2 = 0.49) between soil EC and the evaluated variables, with wetness 

indices, geomorphological surfaces (rock outcrops), principal components, catchment aspect and 

valley depth being the main predictors. Li et al. (2007) showed that CK and RK produced better 

results than ordinary kriging (OK), emphasising the importance of incorporating ancillary data 

(e.g. terrain analysis derivatives) in the interpolation of EC. Comparing OK, RK and KED, Bishop 

and McBratney (2001) found KED to be the best predictor of soil EC, while Motaghian and 

Mohammadi (2011) demonstrated that KED produced more accurate results in modelling soil 

saturated hydraulic conductivity than RM, OK, CK and RK. Similarly, Baxter and Oliver (2005) 

Stellenbosch University  https://scholar.sun.ac.za



 56 

found that KED produced superior results (compared to CK and RK) in predicting potentially 

available nitrogen within agricultural fields. 

In contrast to geostatistical methods, ML algorithms use samples of known identity (categories) to 

classify instances of unknown identity (Rees 2001; Campbell 2006). Various ML algorithms, 

including kNN (Nemes et al. 1999; Nemes, Rawls & Pachepsky 2006; Coopersmith et al. 2014), 

artificial neural networks (Behrens et al. 2005; Aitkenhead et al. 2012), SVM (Kovacevic, Bajat 

& Gajic 2010; Li, Im & Beier 2013), DT (Bui & Moran 2001; Jafari et al. 2014) and RF (Heung, 

Bulmer & Schmidt 2014), accompanied by auxiliary variables, have been employed to predict soil 

properties and classes. Evans, Caccetta and Ferdowsian (1996) produced reasonable accuracies 

(> 60%) for mapping saline soils with DTs. Similar observations were made by Evans, Ferdowsian 

and Campbell (1996). Also employing DTs for salt accumulation mapping, Elnaggar and Noller 

(2010) achieved very accurate results (60% and 98.8% for unaffected and salt-affected soils 

respectively) and attributed it to the algorithm’s ability to incorporate a large number of disparate 

predictors in the model building process. DTs are, however, prone to overfitting (i.e. producing 

models that perform well on the training data, but poorly on general untrained data), while more 

powerful machine learning algorithms such as SVM and RF have been shown to be more robust 

(Rodriquez-Galiano et al. 2012a; Rodriquez-Galiano et al. 2012b; Myburgh & Van Niekerk 2014).  

Although much work has been done on combining ML algorithms and remotely sensed imagery 

for mapping salt-affected areas (Abbas et al. 2013; Abbas & Khan 2007; Abood, Maclean & 

Falkowski 2011; Dwivedi & Sreenivas 1998; Elnaggar & Noller 2010; Muller & Van Niekerk 

2016a; Vermeulen & Van Niekerk 2016), such data can only observe surface conditions. The use 

of DEMs (and its derivatives) as input to ML algorithms delineating salt-affected areas is of 

particular interest, as it would better represent subsurface conditions. However, we are not aware 

of any published studies in which ML algorithms were compared to other established methods 

(e.g. geostatistics) when only terrain variables were used as input. In addition, very little 

information is available on the impact of DEM properties on salt accumulation modelling.      

This study aims to evaluate the use of several ML algorithms (kNN, SVM, DTs and RFs) for 

identifying areas in irrigated fields that are salt-affected. The main purpose is to determine the 

effectiveness with which these methods can produce simple binary maps of salt-affected and 

unaffected areas so that they can be used as a scoping mechanism to prioritize more detailed (in 

situ) investigations and to discard unaffected areas from further consideration. The results are 

compared to binary classifications applied to models generated by two established methods, 

namely RM and KED. The Vaalharts and Breede River irrigation schemes in South Africa (Figure 

4.1 andFigure 4.2) were chosen as study sites. The landscapes of the two areas are very different, 
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with Vaalharts mostly consisting of flat terrain, while Breede River is located in a mountainous 

region. This allowed for a better comparison and evaluation of the techniques. 

4.3 MATERIALS AND METHODS 

4.3.1 Study areas 

The Vaalharts irrigation scheme (Figure 4.1) is located in the Northern Cape Province of South 

Africa in the Harts River valley, close to the small towns of Hartswater and Jan Kempsdorp. The 

irrigation scheme’s altitude ranges from 1 064 m to 1 154 m above mean sea level and it covers 

an area of 36 950 ha. Vaalharts is known for its semi-arid climate, mean annual rainfall of 400 mm 

(Schulze, Lynch & Maharaj 2006), cold winters and long warm summers (Barnard et al. 2012). 

Most rain occurs during the summer months (November to April) when the mean monthly rainfall 

is 47.3 mm and the mean minimum and maximum temperatures are 4.4°C and 38.8°C respectively. 

During the winter months, the mean monthly rainfall drops to 4.1 mm and the mean minimum and 

maximum temperatures are -4.8°C and 31.8°C respectively (Schulze & Maharaj 2006).  

The Vaalharts irrigation scheme mostly consists of sandy soils, but is prone to waterlogging and 

salt accumulation due to insufficient natural drainage (Maisela 2007). The dominant salts in the 

study area are Ca and Mg (HCO3). Soils in the scheme typically consist of 8% clay, 2% silt, 68% 

fine sand and 22% medium and course sand (Streutker 1977). Maize, wheat, barley, lucerne and 

groundnuts are the main crops in the area (Kruger, Van Rensburg & Van den Berg 2009) and are 

mostly planted on a rotational basis (Maisela 2007). 

Sloping towards the south, the Harts River valley is bordered by two plateaus, one to the east and 

one to the west. Due to the low gradient of the Harts River and an absence of incisions by the river 

(Gombar & Erasmus 1976; Barnard et al. 2012), the valley has an unvarying topography (Figure 

4.1). Vaalharts consists of the Archaean Ventersdorp Supergroup and older basement rocks 

composed of Archaean Kraaipan Group sediments and volcanic rock. Most of the study area is 

overlaid by Rietgat and Allanridge Formations, both of the Ventersdorp Supergroup. The eastern 

region of the Harts River valley comprises the Allanridge Formation, which includes basalt and 

andesite. The Rietgat Formation includes sandstone, tuff, limestone and andesitic lavas 

(Liebenberg 1977). To the west of the valley, the Schimidtdrif and Camvellrand subgroups can be 

found, which consist of dolomite, limestone, quartzite, shale and chert (Schutte 1994). 
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Figure 4.1: Location of the Vaalharts study area. Also shown is the extent of the Vaalharts irrigation scheme and the 

distribution of the soil samples obtained during the field surveys. 

The Breede river irrigation scheme (Figure 4.2) is located in Breede River valley in the Western 

Cape province of South Africa and covers an area of 57 415 ha. Its altitude ranges from 91 m to 

2064 m above mean sea level. Nearby towns include Robertson and Worcester.  The area has a 

Mediterranean climate and a mean annual rainfall of 324 mm. Rainfall mostly occurs during the 

winter months (between May and October), when the mean monthly rainfall is 31 mm (Schulze, 

Lynch & Maharaj 2006). During these months, the mean minimum and maximum temperatures 

are 1.3°C and 30.7°C respectively (Schulze & Maharaj 2006). In summer the mean minimum and 

maximum temperatures increase to 4.3°C and 37.6°C respectively (Schulze & Maharaj 2006), 
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while the mean monthly rainfall drops to 10.8 mm (Schulze, Lynch & Maharaj 2006). Vines, 

orchards and lucerne are the main crops planted in the area. Due to the inflow of saline irrigation 

from various irrigation districts, the quality of the irrigation water in the Breede River 

progressively deteriorates in a downstream, south-eastern direction. This creates problems for 

users who extract water for agricultural irrigation at the lower end of the river (Ghassemi, Jakeman 

& Nix 1995). 

The central region of the Breede River valley has a gentle hilly topography and lies between the 

Langeberg Mountains in the north and the Riviersonderend Mountains in the south. The Langeberg 

Mountains can reach heights of about 2 064 m, whereas heights of the Riviersonderend Mountain 

range between 300 m and 800 m. These mountain ranges consist of sandstone and resistant 

quartzites to the north, and sandstone and shales to the south (Kirchner 1995; Ghassemi, Jakeman 

& Nix 1995). The mountain ranges composed of quarzites mostly comprise Hutton, Clovelly, 

Constantia, La Motte and Champagne soils, whereas pediments and valley floors consist of the 

Clovelly, Constantia, La Motte, Fernwood and Champagne soils. Irrigated soils along the Breede 

River may also be composed of Dundee, Oaklead and Fernwood soils (Lambrechts 1979). The 

dominant salts in Breede River are Na and Cl (NaCl). 

 

Figure 4.2: Location of the Breede River study area. Also shown is the extent of the Breede River irrigation scheme 

and the distribution of the soil samples obtained during the field surveys. 
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4.3.2 Data collection and preparation 

Stereoscopic aerial photographs, the SRTM DEM, as well as soil samples were collected for this 

study. Details about each dataset are provided in the following subsections. 

4.3.2.1 Digital elevation models (DEMs) 

The 30 m resolution SRTM DEM was acquired for both study areas (Rabus et al. 2003). The 

SRTM DEM covers the entire globe and is freely available. The DEM was produced from C-band 

radar (Hensley, Rosen & Gurrola 2000) and has a horizontal accuracy of 20 m and an absolute 

vertical accuracy of about 16 m (Smith & Sandwell 2003). According to Guth (2006) and 

Hayakawa, Oguchi and Lin (2008), the SRTM DEM underestimates slope in high-relief areas and 

overestimates average slope in flat regions. More information on the accuracy and resolution of 

the SRTM DEM can be found in Hayakawa et al. (2008) and Huggel et al. (2008). 

Stereoscopic aerial images acquired from the Chief Directorate: National Geospatial Information 

(CD: NGI) of South Africa was used to develop a 2 m spatial resolution DSM of each study area. 

The DSM generation comprised two steps, namely 1) epipolar pair generation; and 2) image 

matching. During epipolar pair generation, the y-parallax between left and right stereo images was 

removed to reduce the processing time of identifying matching pixels during the image matching 

step (Zomer, Ustin & Ives 2002; Deilami & Hashim 2011). Image matching was then used to 

automatically identify matching features (points, lines, curves and regions) on the overlapping 

stereo images. Elevation values were then extracted to produce high quality DSMs (Zhang & 

Fraser 2008). PCI Geomatica 2013 software was used for generating the DSMs in this study. 

Given that groundwater flow tends to follow general topographic patterns and therefore depend 

less on small-scale variations (Sørensen & Seibert 2007), the resolution of the generated DSMs 

was resampled to 20 m using the Aggregate tool in ArcGIS 10. A cell factor of four and the mean 

aggregation type was employed. Thompson et al. (2001) also found that lowering a DEM’s 

horizontal resolution reduces local variance (noise) and results in a product that is smoother and 

more suitable for terrain analyses. 

4.3.2.2 Input variable generation 

The System for Automated Geoscientific Analyses (SAGA) software package was used to 

generate the following DEM derivatives (Elnaggar & Noller 2010; Akramkhanov et al. 2011; 

Taghizadeh-Mehrjardi et al. 2014; Taghizadeh-Mehrjardi et al. 2016): 1) elevation; 2) slope 

aspect; 3) slope gradient; 4) convergence index; 5) cross-sectional curvature (CSC); 6) longitudinal 

curvature; 7) relative slope position (RSP); 8) mid-slope position (MSP); 9) normalized height 
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(NH); 10) slope height (SH); 11) standardized height; 12) downslope distance gradient (DDG); 

13) real surface area; 14) terrain ruggedness index; 15) terrain surface texture (TST); 16) 

topographic position index (TPI); 17) channel network base level (CNBL); 18) closed depressions; 

19) LS-factor (slope length and steepness factor); 20) valley depth; 21) vertical distance to channel 

network (VDTCN); 22) catchment area; 23) slope limited flow accumulation (SLFA); 24) 

topographic wetness index (TWI); 25) SAGA wetness index (SWI) (Böhner et al. 2002; Böhner, 

McCloy & Strobl 2006); and 26) height above nearest drainage (HAND) (Rennó et al. 2008). All 

26 variables were derived from the SRTM DEM and DSMs respectively, resulting in two feature 

sets per study area. 

A PCA, which condenses variables to produce a set of uncorrelated variables ordered in terms of 

variance (Eldeiry & Garcia 2009; Behrens et al. 2010), was applied to each feature set. Nearly all 

(99.9%) of the variance of the input variables were condensed to a single component for both the 

DSM and SRTM DEM derivatives in Vaalharts. In Breede River, the first principal component 

contained 99.9% of the variance associated with the DSM derivatives, while containing 85.6% of 

SRTM DEM derivatives. The resulting first principal component (PC1) was included in each 

feature set. Table 4.1 summarizes the derivatives (27) considered in this study. 

Table 4.1: DEM derivatives included in each feature set 

Type Variablesa) # of 
variables 

Elevation Mean height above sea level, NH, STDH 3 × 2 

Hydrology 
CNBL, closed depressions, LS-factor, valley depth, VDTCN, catchment area, SLFA, 
HAND 

8 × 2 

Morphometry 
Aspect, slope, convergence index, CSC, longitudinal curvature, RSP, MSP, SH, 
DDG, real surface area, terrain ruggedness index, TST, TPI 

13 × 2 

Wetness 
indices 

TWI, SWI 2 × 2 

Image 
transformations 

PC1 1 × 2 

a)NH, normalized height; CNBL, channel network base level; LS-factor, slope length and steepness factor; VDTCN, vertical distance to channel 
network; SLFA, slope limited flow accumulation; HAND, height above nearest drainage; CSC, cross-sectional curvature; RSP, relative slope 

position; MSP, mid-slope position; SH, slope height; DDG, downslope distance gradient; TST, terrain surface texture; TPI, topographic position 
index; TWI, topographic wetness index; SWI, SAGA wetness index; PC1, first principal component. 

4.3.2.3 Soil sample collection 

A total of 175 and 63 soil samples were collected for the Vaalharts and Breede River study areas 

respectively. The sample size was based on the suggestion of Beleites et al. (2013) that a minimum 

of 25 samples per class is needed to assess the performance of a classifier. A comparatively larger 

number of samples was collected in the Vaalharts area owing to the large range of annual crops 

that is being produced on a rotation basis throughout the year. Samples were clustered in and 

around areas where clear indications of salt accumulation occurred (e.g. visible salt crusts on the 

soil surface). Unaffected soil samples were also collected in the immediate neighbourhood. 

Topsoil samples were collected at a depth of 0–20 cm by means of a soil auger. The sample 

positions were measured using a differential GPS with an accuracy of 10 cm. The EC was 
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determined in a laboratory using the saturated paste technique described by the Non-Affiliated Soil 

Analysis Work Committee (1991) and Nell and Van Niekerk (2014). 

4.3.3 Analyses 

A range of 27 terrain derivatives were generated from two different DEMs and used as input to 

the ML classifiers. For comparison purposes, the same field data was used as input to RM and 

KED. The results of the experiments were interpreted in the context of finding an operational 

solution for monitoring salt accumulation in large irrigated areas. 

4.3.3.1 Regression modelling 

RM, as implemented in IBM SPSS v20.0 software, was used to statistically analyse the relationship 

between the soil EC and the DEM derivatives. Linear, logarithmic, inverse, quadratic, cubic, power 

and exponential regression models were evaluated. Stepwise multiple regression and partial least 

squares (PLS) were also carried out on the 27 input variables (Hansen & Schjoerring 2003; Cho et 

al. 2007). 

4.3.3.2 Geostatistics 

By considering a continuous attribute (z) at any unsampled location (u) using z-data ({z(u α), α = 

1,…,n}), the basic linear regression estimator (Z*(u)) for all kriging algorithms can be defined as 

(Goovaerts 1999): 

Equation 4.1 

𝑍 ∗ (𝑢) − 𝑚(𝑢) = ∑ 𝛽𝛼(𝑢)[𝑍(𝑢𝛼) − 𝑚(𝑢𝛼)]

𝑛(𝑢)

𝛼=1

 

where βα(u) is the weight assigned to datum z(uα) interpreted as a realization of the random variable 

Z(u α) and is located within a given neighbourhood W(u) centred on u. To minimize error variance, 

the n(u) weights are chosen under the constraint of unbiasedness of the estimator. Variants in 

kriging methods are dependent on the trend m(u) variable of the algorithm. Intended as a 

generalized case of kriging, KED models the trend as a function of the available auxiliary data 

(Hengl, Heuvelink & Rossiter 2007). The m(u) trend for KED is calculated as follows (Goovaerts 

1999): 

Equation 4.2 

𝑚(𝑢′) = ∑ 𝑎𝑘

𝐾

𝑘=0

(𝑢′)𝑓𝑘(𝑢′) 
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where  αk(u') ≈ ak constant but unknown ∀ u' Є W(u). 

A more detailed description of kriging can be found in Goovaerts (1999).  

KED was performed on each individual variable as well as on the full set (27). Subsets of 

derivatives were also evaluated to investigate whether a reduction in feature space dimensionality 

improves the results. The subsets consisted of the two, three and four individual derivatives with 

the highest OAs. In addition to the non-logarithmic KED models, logarithmic transformations 

were also applied to each of the models to reduce the effect of skewed distributions and very large 

values, as was the case with the EC values obtained in this study (Gundogdu & Guney 2007). 

Several variograms (e.g. exponential, quadratic) that define the variations between neighbouring 

values as a function of the geographic distance between the evaluated points within a study area 

(Eldeiry & Garcia 2009) were employed. 

Two types of variogram approaches to estimate a grid from a set of points, namely global-fit and 

local-fit, were used. The latter only takes into account the significant sample points identified for 

a selected area within the study area, whereas global-fit calculates a single function for the entire 

study area (Gundogdu & Guney 2007). The SAGA software package was used to perform the 

global-fit KED. 

A threshold value of 4 dS/m was applied to the regression and geostatistical models to produce a 

binary classification of salt-affected and unaffected areas. Modelled values greater than this 

threshold were considered salt-affected. A sensitivity analysis was carried out to investigate 

whether the use of different thresholds (from 2 to 6 dS/m) would have any marked impact on the 

classification results. 

4.3.3.3 Machine learning 

The kNN, SVM, DT and RF ML classifications were performed using the OpenCV 

implementations of the algorithms (Bradski 2000). kNN is a simple non-parametric, distance-

based classifier that labels each unknown instance based on its k neighbouring known instances 

(Cover & Hart 1967; Gibson & Power 2000). kNN has the disadvantage of assigning equal weight 

to all variables, even though certain variables may have higher priority. This can result in incorrect 

class assignments and diffuse clusters (Cunningham & Delany 2007). To avoid this, only odd k-

values (namely 1, 3 and 5) were used in this study, as suggested by Campbell (2006). 

SVM determines the optimal separating hyperplane between classes by focussing on the training 

samples (support vectors) close to the edge of the class descriptors and consequently minimizing 

misclassifications (Tzotsos & Argialas 2006; Lizarazo 2008; Novack et al. 2011). As 

recommended by Hsu et al. (2010), the kernel type for the SVM classifier was set to the radial 

Stellenbosch University  https://scholar.sun.ac.za



 64 

basis function. The remaining parameters were left as default. See Vapnik (2000) and Huang et al. 

(2002) for a more detailed explanation of SVM.  

A DT identifies relationships between a response variable known as the dependent variable, and 

multiple, continuous variables known as the independent variables. DTs hierarchically split a 

dataset into increasingly homogeneous subsets known as nodes (Punia, Joshi & Porwal 2011; 

Gómez et al. 2012). By recursively splitting the feature datasets, a leaf node is reached, with the 

class associated with the node assigned to the observation (Pal & Mather 2003). According to Pal 

and Mather (2003) and Novack et al. (2011), each node is limited to a split in feature space 

orthogonal to the axis of the selected feature. Each branch of the DT consists of divisions (or rules) 

of the most probable class. Applying these rules will assign the most likely class to an unknown 

instance (Lawrence & Wright 2001).  

RF is an enhancement of DTs (Immitzer, Atzberger & Koukal 2012) and generates each DT by 

using a random vector sampled independently from the input vector. A vote is cast by each of the 

generated DTs (Breiman 2001; Pal 2005; Bosch, Zisserman & Muoz 2007). Each classifier 

contributes a single vote to the assignment of the most popular class of the input variable  (Breiman 

2001; Rodriquez-Galiano et al. 2012a). RF makes use of bagging (Breiman 2001; Rodriquez-

Galiano et al. 2012b), a method that generates a training set for feature selection. This allows RF 

classifiers to have a low (even lower than DT classifiers) sensitivity to training set size (Rodriquez-

Galiano et al. 2012a). Two parameters are required to be set, namely the number of trees and the 

number of active (predictive) variables. The number of active variables for RF was set to one, 

three, five and ten, whereas the number of trees was set to 100. Rodriquez-Galiano et al. (2012a) 

showed that stability in accuracy is achieved at 100 trees and that a small number of split variables 

are optimal for reducing generalization errors and correlations between trees. A more detailed 

discussion of the RF classifier can be found in (Breiman 1996; Breiman 2001; Rodriquez-Galiano 

et al. 2012b).  

A total of 125 and 43 soil samples (70% of total) were used for training the classifiers in the 

Vaalharts and Breede River study areas respectively, while the rest of the samples were used for 

accuracy assessment. 

4.3.4 Accuracy assessment 

Maps were created from the rule-based and supervised classifications to identify salt-affected areas 

within the study areas. An independent set of 50 and 20 soil samples were used as reference 

samples in the Vaalharts and Breede River study areas respectively. Confusion matrices were used 

Stellenbosch University  https://scholar.sun.ac.za



 65 

to calculate the OA, PA, UA, kappa coefficient and the AUROC curve (Evangelista 2006; 

Congalton & Green 2009). 

4.4 RESULTS 

Figure 4.3 shows that a good balance between salt-affected and unaffected samples was achieved. 

More dramatic differences in salinity levels were noted during the field surveys for Vaalharts 

compared to Breede River. Samples consisting of EC values of less than 4 dS/m were classified as 

unaffected, whereas samples with EC measurements equal to or greater than 4 dS/m were 

considered to be salt-affected (Non-Affiliated Soil Analysis Work Committee, 1991; Nell & Van 

Niekerk, 2014). 

 

Figure 4.3: EC values of soil samples collected in the study areas 

Table 4.2 shows the mean, median, minimum, maximum, coefficient of variation (CV), kurtosis 

and skewness of the training and reference samples for each of the study areas. From Table 4.2 it 

is clear that there is sufficient relation between the training and reference. 

Table 4.2: Statistical profiles of the training and reference samples for each study area 

Measurement 
(dS/m)a) 

Vaalharts Breede River 

All 

samples 

Training Reference All 

samples 

Training Reference 

Mean 9.7 9.5 10.2 12.2 9.5 18.2 

Median 1.5 1.3 3 3.2 3.2 2.9 
Minimum 0.1 0.1 0.1 0.4 0.4 0.6 

Maximum 95 95 84 81.6 81.6 80.8 

CV 2.1 2.1 1.9 1.7 1.8 1.4 

Kurtosis 7.4 7.4 8.4 4.4 9.3 1.1 

Skewness 2.8 2.8 2.9 2.3 3 1.5 
a)CV, coefficient of variance 

Table 4.3 summarizes the accuracies of the RM, KED and ML classifications. For the sake of 

brevity, only the three strongest models for each method are included in the table. Also provided 
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are the source DEM and the feature set on which the method was performed. For the regression 

models the goodness-of-fit (R2) values are noted. 

Table 4.3: Three top-performing regression models, KED models and ML classifiers for the study areas 

Method 
Study 

areaa) 
DEM Featureb) Model R2(c) Class 

PA 

(%) 

UA 

(%) 

OA 

(%) 
Kappa 

AUROC
d) 

R
eg

re
ss

io
n

 m
o
d

el
li

n
g

 

VH SRTM SH Quadratic 0.68* 
Salt-affected 72 72 

72 0.44 0.72*** 
Unaffected 72 72 

VH SRTM SH Cubic 0.71* 
Salt-affected 76 65.5 

68 0.36 0.68*** 
Unaffected 60 71.4 

VH SRTM DDG Cubic 0.65* 
Salt-affected 40 50 

50 0 0.5*** 
Unaffected 60 50 

BR DSM NH Power 0.15** 
Salt-affected 60 66.7 

65 0.3 0.65*** 
Unaffected 70 63.6 

BR DSM VD Exponential 0.12** 
Salt-affected 20 50 

50 0 0.5*** 
Unaffected 80 50 

BR SRTM RSP Quadratic 0.11** 
Salt-affected 100 50 

50 0 0.5*** 
Unaffected 70 63.6 

K
ri

g
in

g
 

VH DSM 
CSC,AS
P,STDH 

KED  
Salt-affected 91.7 73.3 

79.6 0.59 0.8*** 
Unaffected 68 89.5 

VH SRTM TST KED  
Salt-affected 100 68.6 

77.6 0.55 0.78*** 
Unaffected 56 100 

VH DSM 
CSC, 

ASP 
KED  

Salt-affected 91.7 68.8 
75.5 0.51 0.76*** 

Unaffected 60 88.2 

BR SRTM NH KED  
Salt-affected 90 69.2 

75 0.5 0.75*** 
Unaffected 60 85.7 

BR SRTM DDG KED  
Salt-affected 80 72.7 

75 0.5 0.75*** 
Unaffected 70 77.8 

BR DSM TRI, VD KED  
Salt-affected 80 72.7 

75 0.5 0.75*** 
Unaffected 70 77.8 

M
ac

h
in

e 
le

ar
n

in
g
 

VH 
SRTM 

& DSM 
All DT  

Salt-affected 56 73.7 
68 0.36 0.68*** 

Unaffected 80 64.5 

VH DSM All RF (a = 5)  
Salt-affected 40 76.9 

64 0.28 0.64*** 
Unaffected 88 59.5 

VH SRTM All kNN (k = 1)  
Salt-affected 56 66.7 

64 0.28 0.64*** 
Unaffected 72 62.1 

BR DSM All DT  
Salt-affected 90 69.2 

75 0.5 0.75*** 
Unaffected 60 85.7 

BR SRTM All DT  
Salt-affected 70 70 

70 0.4 0.7*** 
Unaffected 70 70 

BR DSM All RF (a = 5)  
Salt-affected 50 62.5 

60 0.2 0.6*** 
Unaffected 70 58.3 

a)VH, Vaalharts; BR, Breede River 

b)SH, slope height; DDG, downslope distance gradient; NH, normalized height; VD, valley depth; RSP, relative slope position; CSC, cross-
sectional curvature; ASP, aspect; STDH, standardized height; TST, terrain surface texture; TRI,  terrain ruggedness index 

c)*, regression results significant at a 0.001 level; **, regression results significant at a 0.01 level 

d)***, AUROC results significant at a 0.05 level 

Note: The bold values represents the best performing model for each method. 

4.4.1 Regression modelling 

SH derived from the SRTM DEM produced the strongest model (R2 = 0.71, p < 0.001) in 

Vaalharts, with the relationship being best described by a cubic model. A scatterplot of this model 

is provided in Figure 4.4. From the scatterplot it is clear that RM tends to underestimate the EC 

for highly saline samples, with a large proportion of highly saline samples being modelled as 

having near-zero dS/m values. Weak regression models were produced in the Breede River, with 

normalized height generating the best model (R2 = 0.15, p < 0.001). Weaker models were produced 

from the stepwise multiple and the PLS regression for both Vaalharts (R2 < 0.6) and Breede River 

(R2 < 0.1). The kappa values of the best performing regression models suggest a “fair agreement” 

with the reference data (Landis & Koch 1977). 
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Figure 4.4: Scatterplot of Vaalharts SRTM DEM cubic regression model derived from slope height 

The model achieved an OA of 68% (kappa = 0.36) when classified. The marginally weaker (R2 = 

0.68, p < 0.001) quadratic model produced a slightly better classification (OA = 72%; kappa = 

0.44). In spite of the poor goodness-to-fit of this model, it was still reasonably successful (OA = 

65%; kappa = 0.3) in separating salt-affected from unaffected soils when classified. As explained 

in Section 4.3.3.2, different thresholds (from 2 to 6 dS/m) for classifying salt-affected and 

unaffected areas were considered to assess model sensitivity. The results (not shown here) were 

consistent with those when 4 dS/m was used as threshold. In some cases, overall accuracies did 

improve slightly, but at the expense of an imbalance between the user’s and producer’s accuracies. 

4.4.2 Geostatistics 

The exponential algorithm was chosen as the appropriate variogram for both the non-logarithmic 

and logarithmic KED models for Vaalharts and for the logarithmic Breede River KED model, 

while the quadratic algorithm was found to best represent the non-logarithmic model for Breede 

River. The non-logarithmic KED model combining the DSM derived cross-sectional curvature, 

aspect and SH variables achieved the highest OA (79.6%) for Vaalharts (kappa = 0.59). When the 

scatterplot of this model is interpreted (Figure 4.5a), it is clear that the relationship between the 

modelled and measured EC is erratic. The KED model also tends to underestimate a large number 

of highly saline samples as non-saline. The SRTM derived normalized height model (non-

logarithmic) showed the most promise for Breede River, producing the highest accuracy (OA = 

75%; kappa = 0.5). According to the kappa values of these models, there is a “moderate agreement” 

with the reference data (Landis & Koch 1977). Interestingly, a logarithmic transformation of the 

input data produced lower OA compared to the untransformed models for both Vaalharts (OA < 

65%) and Breede River (OA < 70%). As with the RM model for Vaalharts, a number of highly 

saline samples were incorrectly classified as being non-saline by the model. 
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Figure 4.5: Scatterplots of (a) Vaalharts KED model produced from cross-sectional curvature, aspect and 

standardized height and (b) Breede River SRTM DEM KED model derived from normalized height 

As with the RM, the KED models were largely insensitive to variations in classification thresholds 

(from 2 to 8 dS/m). 

4.4.3 Machine learning 

The DT classifier achieved the highest accuracy in both Vaalharts (OA = 68%; kappa = 0.36) and 

Breede River (OA = 75%; kappa = 0.5). The former model was based on both the SRTM DEM 

and the DSM variables, while in the latter only DSM derivatives were required to achieve the 

highest accuracies. RF (based on DTs) also attained higher accuracies than the other classifiers, 

achieving an OA of 64% (kappa = 0.28) in Vaalharts and an OA of 60% (kappa = 0.5) in Breede 

River. Both RF classifications consisted of the DSM feature set. 

4.4.4 Classified maps 

Figure 4.6 and Figure 4.7 show the thematic maps of the top four performing classifications for 

Vaalharts and Breede River respectively. The KED classifications in Vaalharts (Figure 4.6a to 

Figure 4.6c) appear to be very similar, whereas a substantial difference in the distribution of 

modelled salt-affected areas is observed when the quadratic regression model (based on SH) 

classification (Figure 4.6d) is considered. 
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Figure 4.6: Maps produced from the (a) DSM KED model derived from CSC, aspect and standardized height, (b) 

SRTM DEM KED model derived from TST, (c) DSM KED model derived from CSC and aspect, and (d) quadratic 

regression model produced from SH for Vaalharts 

In Breede River, the maps of the KED models (Figure 4.7a to Figure 4.7c) are less similar, but as 

with the Vaalharts, the KED models predict large, continuous salt-affected regions. The DT 

classification (based on the DSM derivatives) resulted in smaller patches of salt accumulation 

(Figure 4.7d). 
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Figure 4.7: Maps produced from the (a) SRTM DEM KED model derived from normalized height, (b) SRTM DEM 

KED model derived from DDG, (c) DSM KED model derived from TRI and VD, and (d) DSM-based DT classifier 

for Breede River 

4.5 DISCUSSION 

In spite of its superior resolution, there was little difference between the DSM-based results and 

those generated from the SRTM DEM. This can be attributed to the influence of land cover features 

(e.g. vegetation), particularly in the Breede River where the crops are mainly perennial and woody 

(e.g. fruit trees and vineyards) (Ghassemi, Jakeman & Nix 1995). Improvements in accuracies 

were observed in some cases (especially in Vaalharts) where both the SRTM and DSM derivatives 

were used as input to the ML classifiers, which suggests that the data source did have an influence 

on the results. Better results may have been obtained with using a DTM generated from light 

detection and ranging (LiDAR) data, since it has the ability to penetrate foliage (Hesse 2010), but 

to obtain such data for large regions is still prohibitively expensive, especially in developing 

countries such as South Africa. 

KED produced the most consistent results (OA and kappa standard deviation of 1.75% and 0.03 

respectively) and attained the highest accuracies (mean OA and kappa of 76.28% and 0.53 

respectively) throughout, which suggest that this technique is most suitable for modelling salt 
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accumulation when only DEM derivatives are used as input. This result is in agreement with 

Douaoui and El Ghadiri (2015); Douaoui, Nicolas and Walter (2006); Eldeiry and Garcia (2009); 

Gallichand et al. (1992); Juan et al. (2011); Taghizadeh-Mehrjardi et al. (2014). Although these 

studies focussed on OK, CK or RK, the high OA of the KED classification in the present study 

demonstrates its potential for modelling salt-affected soils. Our results also support the findings of 

Bishop and McBratney (2001), who applied KED to elevation and terrain data to model soil EC.  

A major advantage of KED is its ability to include more than one terrain derivative as input. 

However, based on our experiments, a decrease in accuracy was observed when more than three 

derivatives were included in the KED model. Some form of input variable selection is 

consequently required prior to performing KED. The iterative variable selection approach used in 

this study will likely be too laborious for operational implementations.  

Classifying the regression models into salt-affected and unaffected areas produced relatively poor 

results (mean OA of 59.2%). This is attributed to the large spatial variation of salt accumulation 

and the inability of regression modelling to consider autocorrelation effects (Overmars, De Koning 

& Veldkamp 2003). Spatial autocorrelation, which occurs when information from samples located 

near each other are not independent (Dormann et al. 2007), can have a positive or negative impact 

on accuracy assessment results due to the influence of errors at particular locations on 

neighbouring locations (Congalton 1991). 

The ML classifiers showed improvement in accuracies (mean OA = 66.8%; kappa 0.34) over the 

regression models, but generally attained lower accuracies than the KED models (mean OA = 

76.28%, kappa = 0.53). However, in Breede River, the DT classifier (based on DSM variables) 

was able to match the accuracies of KED (OA = 75%; kappa = 0.5), but was unable to compete 

with KED in Vaalharts. All of the other ML classifiers (kNN, RF and SVM) performed relatively 

poorly (OA < 70%; kappa ≤ 0.4) in both study areas when compared to the KED models. In spite 

of this relatively poor performance, ML should not be disregarded, as a major advantage of ML 

algorithms is their ability to incorporate various types of input data, including remotely sensed 

imagery. Several studies have shown that ML algorithms are very effective for mapping salt-

affected areas using satellite imagery (Dwivedi & Sreenivas 1998; Abbas & Khan 2007; Abood, 

Maclean & Falkowski 2011; Muller & Van Niekerk 2016a; Abbas et al. 2013; Vermeulen & Van 

Niekerk 2016), but many authors have noted that such data only consider surface conditions 

(Dwivedi 1997; Dwivedi, Sreenivas & Ramana 1999; Metternicht & Zinck 2003). In this study we 

specifically focussed on using terrain data only because it is likely to better represent subsurface 

conditions. The fact that the DT classifier was able to match the KED results in Breede River is 

encouraging, because it supports the findings of Elnaggar and Noller (2010) that ML can be used 
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to investigate both surface (using remotely sensed imagery) and subsurface (using terrain data) 

conditions. Another advantage of DT is that the resulting tree can be interpreted to better 

understand the relationships between the input variables and salt accumulation. A model based on 

DT can also potentially be transferred to other areas with similar conditions without the need for 

collecting new samples. Clearly more work is needed to investigate the value of using DT (and 

other ML algorithms) when terrain data is combined with remotely sensed imagery – and other 

geospatial datasets such as soil type maps (where available) – for the operational monitoring of 

salt accumulation.  

A number of highly saline samples were incorrectly classified by both KED and RM as having a 

near-zero salinity levels (see Figure 4.4 and Figure 4.5). During the field surveys it was observed 

that salt accumulation often occurred in small patches and that salinity levels varied dramatically 

over very short distances (< 10 m). In many cases, these variations occurred on homogenous terrain 

and were likely caused by farming practices (e.g. over-irrigation). The modelling errors could also 

have been a factor of the poor quality of the DEMs employed, as small variations within fields 

were often inadequately represented. The use of more detailed DEMs (e.g. those obtained from 

high-density LiDAR) will likely improve results.  

In this study, a binary classification scheme (i.e. affected and unaffected) was adopted because the 

purpose was to identify salt-affected and unaffected areas so that they can be used as a scoping 

mechanism to prioritize more detailed (in situ) investigations. However, it would be of great value 

to investigate whether the techniques considered in this study would be able to differentiate more 

salinity classes, e.g. non-saline (< 2 dS/m), slightly saline (2–4 dS/m), moderately saline (4–8 

dS/m) and strongly saline (> 8 dS/m). 

4.6 CONCLUSION 

This study evaluated the use of RM, KED and ML techniques for identifying areas in irrigated 

fields where salts are likely to accumulate. The methods were evaluated in two study areas, namely 

the Vaalharts and Breede River irrigation schemes of South Africa. The SRTM DEM and a DSM 

derived from high resolution stereoscopic aerial photographs were used as the primary data 

sources. A total of 27 derivatives were generated from the DEMs and used as input to the models 

evaluated. The results showed that KED outperformed the RM and ML classifiers in most cases, 

but that ML (specifically the DT classifier) was able to match KED in the Breede River. The source 

of elevation data did not have a marked influence on the model outputs; however, the higher 

resolution DSM performed better when combined with ML in the Breede River study area.   
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From the results of this study, it can be concluded that the use of elevation data and its derivatives, 

along with geostatistics and ML algorithms, hold much potential for identifying salt-affected areas 

in irrigated fields. More research is needed to investigate the value of using ML algorithms for 

classifying a combination of DEM derivatives, satellite images, proximal sensors, other geospatial 

datasets and a salinity classification scheme making use of multiple cut-off values. This is 

important in the context of finding operational solutions for identifying areas prone to salt 

accumulation, especially when considering that the routine collection of large sets of training (and 

reference) data is not viable for large irrigation schemes and that terrain derivatives can not 

adequately explain variations in ECe. 
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CHAPTER 5:  DISCUSSION AND CONCLUSIONS 

This chapter summarizes the findings of the experiments presented in Chapters 3 and 4. Findings 

from the direct- and geomorphometry approaches in mapping salt-affected soils are discussed, the 

aims and objectives are revisited, suggestions for future research are provided and conclusions 

from the experiments are made. 

5.1 REFLECTION ON RESEARCH OBJECTIVES  

The aim of the study was to identify direct- and indirect methods for mapping salt-affected or salt-

prone soils within agricultural fields using ruleset-based (JM distance, CART and statistical 

modelling) and supervised classification (ML) approaches. The evaluated approaches were applied 

to features derived from VHR multispectral satellite imagery (direct approach) and elevation 

datasets (indirect approach). Conventional methods for monitoring salt accumulation within 

irrigation schemes require regular field visits and are therefore time-consuming and costly. It is 

therefore important to identify methods and derivatives (multispectral and terrain) that have the 

most potential for identifying salt-affected regions over large areas (e.g. irrigation schemes). The 

main objective of this study was thus to investigate the potential of multispectral RS and 

geomorphometry approaches for mapping salt accumulation in irrigated agricultural fields. 

The first objective was to carry out a review of the literature on RS, geomorphometry and 

salinization (Chapter 2). Obtained literature showed that both RS and geomorphometry holds 

much potential for mapping salt accumulation. Most multispectral, bare soil studies focused on 

medium to low spatial resolution satellite imagery, which are not suitable for identifying salt 

accumulation in small irrigated fields or the occurrence of salt accumulation in small patches (as 

it often does in South African irrigation schemes). Although some previous studies had used VHR 

satellite imagery, none took into account additional spatial features, such as texture measures, and 

none applied ML. 

Geomorphometry was chosen as an indirect method for modelling salt accumulation owing to its 

ability to take subsurface conditions into account, thereby addressing a well-known limitation of 

the direct approach. The potential of elevation datasets and geomorphometry techniques in 

mapping salt-affected soils has been shown in several studies, but none compared the potential of 

ML approaches to other established methods. 

The purpose of the second objective was to identify appropriate study areas in which RS and 

geomorphometry techniques can be applied to discriminate between salt-affected and unaffected 

areas. Sections 3.3.1 and 4.3.1 provided information related to the chosen study areas. 
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The third objective was to collect and acquire empirical data, satellite images and elevation 

datasets for the selected study areas, and to prepare them for analyses. The acquired WV2 image 

was described in Chapter 3. The chapter also provided information on the pre-processing steps 

applied to the imagery, focusing on orthorectification and atmospheric correction. Two DEMs 

were obtained for the geomorphometry experiment, namely the SRTM DEM (DTM) and a DSM 

extracted from stereoscopic aerial photographs (Chapter 4). Accounts of the field visits during 

which in situ data (soil samples) were collected were provided in Chapters 3 and 4. 

Determining the VHR WV2 multispectral bands, SIs and other image transformations most 

appropriate for identifying salt-affected soils in agricultural areas was the focus of the forth 

objective (first experiment). A description on the SIs, texture measures and image transformations 

applied to the WV2 image was documented in Chapters 2 and 3. 

The fifth objective (first experiment) focused on applying several statistical and ML methods to 

the derived VHR WV2 derivatives for identifying salt accumulation (direct approach). Statistical 

methods included regression analysis, PCA and separability analysis (e.g. JM distance). The MaxL 

parametric classifier and several non-parametric, ML classifiers (namely kNN, SVM, DT and RF) 

were applied to the multispectral derivatives. Descriptions of the applied statistical- and ML 

approaches were provided in Chapters 2 and 3. 

As previously stated (see Chapter 3), direct approaches for mapping saline soil do not consider 

subsurface conditions. To overcome this limitation, the second experiment (objective six) focussed 

on geomorphometry techniques for identifying salt-affected or salt-prone regions within 

agricultural fields. Identifying DEMs derived from the SRTM DEM and the stereoscopically 

extracted DSM that showed the most potential for identifying salt-affected areas were the main 

focus of objective six. Derivatives attained from the elevation datasets, including several image 

transformations, wetness indices, and hydrological, morphometric and elevation algorithms were 

considered. Each of these algorithms were described in Chapters 2 and 4. 

A comparison between the effectiveness of ML and geostatistical (kriging) approaches was the 

goal of the seventh objective (second experiment). ML approaches included kNN, SVM, DT and 

RF, where KED was the applied geostatistical approach. Chapters 2 and 4 provides descriptions 

of the approaches applied to the DEM derivatives. 

The eight objective aimed at combining the results from the two experiments and providing 

recommendations on mapping salt accumulation in irrigation schemes (Chapter 5). 
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5.2 FINDINGS OF DIRECT AND GEOMORPHOMETRY APPROACHES IN 

MAPPING SALINE SOILS 

The two experiments evaluated the efficacy of direct approaches and indirect approaches, 

specifically geomorphometry, in mapping saline soil in irrigation schemes. The findings of both 

experiments are summarized in this section. 

5.2.1 ML using VHR multispectral imagery 

An evaluation of the reflective properties of salt-affected soils in the Vaalharts irrigation scheme, 

located in the Northern Cape province of South Africa, found that soils affected by salt 

accumulation had lower reflectance in the visible region of the electromagnetic spectrum 

compared to unaffected soils. This is in contrast to the findings of Rao et al. (1995), Metternicht 

and Zinck (2008) and Elnaggar and Noller (2010), who found salt-affected soils to produce higher 

reflectance in the visible and NIR regions. The low number of samples (25%) representing high 

levels of salt precipitation on the soil surface and the frequent occurrence of waterlogging (i.e. 

secondary salinization) and salt accumulation within the same sampling regions most likely 

contributed to this discrepancy. Waterlogged or wet soils generally have lower reflectance in the 

visible and NIR regions, resulting in a smooth and dark appearance (Metternicht & Zinck 2003). 

Differences in the spectral reflectance of salt-affected and unaffected soils were noted in the green, 

yellow, red, RE, NIR1 and NIR2 bands of the WV2 image. Higher reflectance was found for salt-

affected soils in the NIR1 and NIR2 regions, which agrees with the findings of Rao et al. (1995), 

Metternicht and Zinck (2008) and Elnaggar and Noller (2010). In addition to the WV2 bands, 

several SIs, texture measures and the first principal component were also evaluated. NDSI, 

calculated from the yellow and NIR1 bands, showed the most promise in predicting salt 

accumulation as it featured in the separability analysis, RM and CART. This result supports the 

findings of Abood, Maclean and Falkowski (2011), who showed that NDSI calculated from the 

WV2 yellow and NIR1 bands is a good predictor of saline soil. Other studies have also found NDSI 

to provide a good estimate of saline soils (Khan et al. 2005; Setia et al. 2013; Douaoui & El Ghadiri 

2015). 

Several methods for predicting salt-affected soils were evaluated, namely RM, the JM separability 

measure, CART analysis and five supervised ML classifiers (kNN, MaxL, SVM, DT and RF). The 

threshold determined by the CART analysis produced the most promising result. NDSI (yellow 

and NIR1) was selected by the CART analysis as the main and only predictor of the resulting tree. 

Assessment of the ML classifiers showed kNN and RF to produce accuracies that are only 

marginally lower than that of the CART analysis. The MaxL classifier attained poor accuracies in 

separating saline soils from unaffected soils, most likely a result of the method’s inability to assess 
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large input feature sets (Myburgh & Van Niekerk 2013). SVM also performed poorly, which is in 

contrast to what Lizarazo (2008), Li et al. (2010), Petropoulos, Kalaitzidis and Prasad Vadrevu 

(2012) and Myburgh and Niekerk (2013) found. A moderately strong fit was obtained by the NDSI 

(yellow and NIR1) cubic regression model, but the resulting model achieved a lower OA and kappa 

than the CART, kNN and RF classifications. Both the multistep and PLS regressions produced 

weaker models than the cubic regression. 

Overestimation of salt accumulation were evident in the results. Most cases of salt accumulation 

were concentrated in small patches and varied substantially over short distances (e.g. 2–5m), but 

some salt-affected areas were depicted as unrealistically large, continuous areas. This can be 

attributed to the way in which soil samples were collected. Although both affected and unaffected 

areas were targeted during the field surveys, most samples were salt-affected (63%). The slight 

bias towards salt-affected training and reference samples may have had a negative impact on the 

classifications. This may explain the relatively good performance of kNN and RF, as both methods 

are insensitive to imbalanced training datasets (Breiman 1996; Breiman 2001; Johnson, Chawla & 

Hellmann 2012; Rodriquez-Galiano et al. 2012a). Soil preparations, such as ploughing, may also 

have had a negative effect on the classifications due to alteration of the soil surface, which affects 

the reflectance from the soil. Another factor to consider is the difficulty in obtaining imagery 

during a period in which the soil is completely bare within the irrigation fields. For this experiment, 

the WV2 image was acquired during the harvesting period, but only 73% of the study area was 

found to consist of bare soil. For more information on this experiment see Chapter 3. 

5.2.2 Geomorphometry 

The greatest disadvantage of the direct approach (i.e. detecting salt accumulation by observing 

bare soils) is that the method is limited to the spectral reflectance of the topsoil and therefore it is 

unable to detect subsurface conditions. Indirect methods, such as vegetation stress monitoring 

(Muller & Van Niekerk 2016a) and geomorphometry (see Section 2.2) allow subsurface processes 

to be taken into account. For the second experiment, digital elevation data were used to model 

areas that are susceptible to salt accumulation. In addition to the main objective, a DTM (30 m) 

and a DSM (20 m) were used to derive the evaluated terrain derivatives, and several methods, 

namely RM, KED and ML approaches, were compared. The Vaalharts and Breede River irrigation 

schemes of South Africa were chosen as study areas. The higher spatial resolution DSM showed 

no notable difference in accuracies compared to the lower spatial resolution DTM, but accuracy 

improvements were observed when both DEMs were provided as input for the machine learning 

classifiers. The small difference in accuracies may be a result of land cover features (e.g. 

vegetation) present in the DSM. 
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KED achieved the highest accuracy in identifying soils susceptible to salt accumulation in both 

Vaalharts and Breede River, whereas the DT classification performed on par with KED in Breede 

River. The potential of geostatistical approaches in mapping saline soil has been demonstrated by 

Gallichand et al. (1992), Bishop and McBratney (2001), Douaoui, Nicolas and Walter (2006), 

Eldeiry and Garcia (2009), Juan et al. (2011), Taghizadeh-Mehrjardi et al. (2014) and Douaoui 

and El Ghadiri (2015). A combination of the CSC, aspect and STDH variables, derived from the 

DSM, were included in the KED model for Vaalharts. NH (SRTM DEM derived) were the only 

trend variable included for the Breede River KED model. Although KED allows the inclusion of 

several variables to calculate the trend, a decrease in accuracy was observed when more than three 

variables were included. This severely limits the size of the method’s feature dimensionality. 

Overall, RM mostly showed poor accuracies compared to KED and the ML classifiers, achieving 

a moderately strong fit between SH (DTM) and soil EC for Vaalharts (cubic). Weaker models 

were produced in Breede River, with the strongest fit achieved by NH derived from the DSM 

(power). Multistep and PLS regression showed no improvement in accuracies. The DT ML 

classifier also attained reasonable accuracies, especially in Breede River where DT performed on 

par with KED. For more information on this experiment, see Chapter 4. These results support the 

findings of Elnaggar and Noller (2010) who found that ML can be applied to map both surface 

(direct approach) and subsurface (indirect approach) conditions. ML approaches are also less time-

consuming, allow the inclusion of a larger feature set (Myburgh & Van Niekerk 2013) and can 

more easily be automated in comparison to geostatistical methods. 

5.3 SUGGESTIONS FOR FUTURE RESEARCH 

An important approach that needs to be considered is a combination of direct and indirect methods 

(e.g. geomorphometry and vegetation stress monitoring). As stated in Section 3.6, direct methods 

do not take subsurface conditions into account. Combining vegetation stress monitoring and 

geomorphometry techniques with direct methods will overcome this disadvantage. Making use of 

hyperspectral imagery may also prove useful as it consists of 100s of narrowly defined spectral 

bands. Higher spatial resolution DEMs should also be considered when using geomorphometry, 

especially when the data is used in combination with high resolution multispectral or hyperspectral 

imagery. Geostatistical approaches, namely KED, clearly show high potential for identifying salt-

affected areas in irrigation fields (see Chapter 4), but other kriging algorithms, such as RK or UK, 

should also be considered. A salinity classification scheme making use of multiple cut-off values 

should also be investigated. 
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5.4 CONCLUSION 

Salt accumulation can have a severe negative impact on agricultural areas and crop yields. 

Traditional methods of monitoring salt accumulation in agricultural regions are costly and time-

consuming, while RS approaches that can monitor large areas simultaneously are potentially more 

cost-effective. 

This study investigated the potential of VHR multispectral satellite imagery and geomorphometry 

in identifying salt-affected or salt-prone soil. Focus was placed on the performance of ML 

classifiers, by comparing their outputs to those of other classification approaches (e.g. JM distance, 

RM and KED). 

From the experiments presented in this thesis it can be concluded that direct and geomorphometry 

approaches hold much potential for mapping salt-affected soil. The ML classifiers also proved to 

be a viable option in identifying salt-affected or salt-prone soil. A combination of direct- and 

indirect (e.g. vegetation stress monitoring) approaches should be considered, and making use of 

alternative data sources such as hyperspectral imagery or higher spatial resolution DEMs may also 

prove useful. This thesis demonstrated that RS and geomorphometry are viable alternatives to 

conventional methods for monitoring salt accumulation. More work is needed to operationalize 

these methods so that they can be routinely applied over large areas. The resulting information 

should be made available to all agricultural producers so that South Africa’s limited agricultural 

land can be protected from further degradation. Making this data available to producers will also 

help maximize agricultural yields and crop quality, thereby increasing food security and 

stimulating the economy in rural areas. 
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