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The spatial scale at which climate and species’ occupancy data are gathered, and the 
resolution at which ecological models are run, can strongly influence predictions of 
species performance and distributions. Running model simulations at coarse rather 
than fine spatial resolutions, for example, can determine if a model accurately predicts 
the distribution of a species. The impacts of spatial scale on a model’s accuracy are 
particularly pronounced across mountainous terrain. Understanding how these dis-
crepancies arise requires a modelling approach in which the underlying processes that 
determine a species’ distribution are explicitly described. Here we use a process-based 
model to explore how spatial resolution, topography and behaviour alter predictions 
of a species thermal niche, which in turn constrains its survival and geographic distri-
bution. The model incorporates biophysical equations to predict the operative tem-
perature (Te), thermal-dependent performance and survival of a typical insect, with a 
complex life-cycle, in its microclimate. We run this model with geographic data from 
a mountainous terrain in South Africa using climate data at three spatial resolutions. 
We also explore how behavioural thermoregulation affects predictions of a species per-
formance and survival by allowing the animal to select the optimum thermal location 
within each coarse-grid cell. At the regional level, coarse-resolution models predicted 
lower Te at low elevations and higher Te at high elevations than models run at fine-
resolutions. These differences were more prominent on steep, north-facing slopes. The 
discrepancies in Te in turn affected estimates of the species thermal niche. The mod-
elling framework revealed how spatial resolution and topography influence predic-
tions of species distribution models, including the potential impacts of climate change. 
These systematic biases must be accounted for when interpreting the outputs of future 
modelling studies, particularly when species distributions are predicted to shift from 
uniform to topographically heterogeneous landscapes.
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Introduction

A major challenge of climate change research is to develop 
accurate means of predicting species distributions and persis-
tence. Despite several advances in species distribution models 
(SDMs), a number of limitations still need to be addressed to 
improve their accuracy and broader applicability (Guisan and 
Thuiller 2005, Elith and Leathwick 2009, Levy et al. 2014). 
Both correlative and mechanistic modeling approaches are, at 
least to some extent, limited by spatial resolution due to the 
scale at which organism distribution and climatic datasets are 
currently available (Flint and Flint 2012, Beck et al. 2014). 
Many models, for example, are simulated across continental 
regions, with a resolution of 30 arc-seconds (approximately  
1 km2), a reflection of the most readily available Geographical 
Information Systems (GIS) datasets. While this spatial reso-
lution might be appropriate for relatively large and mobile 
organisms, average climactic conditions within large grid 
cells might misrepresent conditions encountered by small, 
less mobile species (Helmuth et al. 2006, Potter et al. 2013, 
Nadeau  et  al. 2017). The general ecology of the species in 
question, (e.g. endothermy vs ectothermy, body size, home 
range and mobility) and the spatial resolution of simulations 
can greatly influence the accuracy of the model’s predictions 
and management recommendations based thereon (Guisan 
and Thuiller 2005, Seo et al. 2009).

Assigning an appropriate spatial scale to a SDM is par-
ticularly important across heterogeneous terrain where 
elevation, slope, aspect, and thus local microclimates, can 
change markedly over small distances (Scherrer and Körner 
2011, Suggitt et al. 2011). Several studies have characterized 
variation in microclimates between adjacent sites that vary 
only in slope and aspect, typically finding substantial dif-
ferences in multiple microclimatic parameters. Bennie et al. 
(2008), for example, showed that temperatures on sunlit 
slopes exceeded ambient temperature by up to 14°C, while 
temperatures on shaded aspects remained close to ambient 
conditions. Such variability in temperature is comparable to 
broad-scale thermal variation along latitudinal and altitudi-
nal gradients, and far exceeds changes in temperature that 
are predicted to occur under future climate warming sce-
narios (Billings 1973, Suggitt et al. 2011). When SDMs are 
developed from coarse resolution datasets of climatic vari-
ables, often averaged within each grid, these variables will  
1) rarely represent the environments actually encountered 
by organisms (Weiss et al. 1988, Potter et al. 2013); 2) fail 
to capture thermal variability, and 3) overlook potential ref-
uges within which populations might persist (Suggitt et al. 
2011, Gillingham et al. 2012, Hannah et al. 2014). In light 
of these limitations, there has been a recent call for ecologists 
to not only re-address the scales at which underlying data are 
collated and models are run, but also to include topographic 
parameters (e.g. rugged versus flat terrain) when predict-
ing species survival and performance across the landscape 
(Luoto and Heikkinen 2008, Austin and Van Niel 2010, 
Potter et al. 2013, Slavich et al. 2014, Nadeau et al. 2017). 
This pressing need for more detailed modelling frameworks 
is particularly dire for studies across mountainous regions, 

into which species distributions are frequently shifting, 
where weather data on different slopes are less frequently 
collected, and where highly specialized montane species are 
increasingly stressed (Parmesan and Yohe 2003, Chen et al. 
2011, Nieto-Sanchez et al. 2015).

While the importance of assigning an appropriate spa-
tial scale in SDMs has been emphasized previously (Guisan 
and Thuiller 2005, Araújo and Guisan 2006), understand-
ing the direction and extent to which scale affects predic-
tions remains unclear (Guisan et al. 2007, Seo et al. 2009). 
For example, SDMs of alpine plant responses to climate 
change produced from coarse resolutions generated both 
smaller and larger predicted distributions in comparison 
to models run at relatively finer resolutions (Trivedi  et  al. 
2008, Randin et al. 2009). A subsequent study found that 
a finer resolution led to an increase in the predicted distri-
butions of 52 plant species in California; however, simula-
tions with projected climate warming scenarios generated 
inconsistent shifts between spatial scales and among species 
(Franklin  et  al. 2013). Similarly, Gillingham  et  al. (2012) 
found that increasing spatial resolution resulted in greater 
model accuracy but the impacts of climate change on pre-
dicted distributions of species did not vary in a system-
atic manner among resolutions. Thus, it remains unclear 
whether systematic, predictable errors exist when scaling up 
or down between resolutions when forecasting impacts, or 
whether the contrasting findings of these studies are con-
text-dependent. Consequently, these results add uncertainty, 
and perhaps even significant errors, when interpreting SDM 
outputs for climate change forecasting, thereby raising the 
issue of model validity and transferability of results among 
spatial scales and terrestrial environments.

The studies described above have predominantly focused 
on plant species (though see Gillingham et  al. 2012), with 
the assumption that individuals are constrained in space 
with limited mobility and little capacity for behavioural 
thermoregulation. For mobile organisms with the capacity 
to behaviourally buffer environmental stress however, the 
accuracy of species distribution models (both correlative and 
mechanistic) are improved when behavioural traits, such as 
site selection, are incorporated into the modelling framework 
(Buckley et al. 2013, 2015). As such, discrepancies between 
the outcomes of models run on different resolutions might 
be further affected if the organism has the ability to move 
across landscapes, to actively select preferred microclimates. 
Indeed, across a typical grid matrix used for modelling stud-
ies (cells of 1 km2), animals can shift across small distances 
within each cell, for example between vegetation and below 
ground refugia or across larger distances between grid-cells 
(Kearney et al. 2009, Ruiz-Aravena et al. 2014, Woods et al. 
2015). Depending on the mobility of the animal, opportu-
nities to behaviourally thermoregulate are greatest in habi-
tats with high levels of thermal heterogeneity (Slavich et al. 
2014, Sears  et  al. 2016, Basson et  al. 2017), such as those 
encountered in mountainous regions (Hertz  et  al. 1993, 
Deutsch et al. 2008, Bonebrake et al. 2014, Hannah et al. 
2014, Lawson et al. 2014). When SDMs are run at coarse 
resolutions, models might fail to capture fine-scale variation 
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in not only microclimates and their variability, but also 
the animal’s capacity to exploit thermal heterogeneity and 
optimize performance.

Moreover, many of these studies described above employ 
a correlative modelling approach whereby the effects of cli-
mate and topography on organism survival are implicitly cap-
tured in the species presence/absence datasets (Trivedi et al. 
2008, Randin  et  al. 2009, Franklin  et  al. 2013). While 
Gillingham et al. (2012) incorporate outputs of a microcli-
mate model as predictor variables in their correlative SDM, 
their final outputs predict only the the occupancy (presence/
absence) of the organism within a given grid cell. Despite the 
consideration of fine scale variation in microclimates in these 
models, the correlative approach provides minimal insights 
into the processes by which the discrepancies in the predic-
tions between different spatial resolutions arise. Biophysical 
models on the other hand explicitly define how topographic 
features of a landscape directly affect operative temperatures 
(Te hereafter), and subsequently, the performance and sur-
vival of the organisms within them. While mechanistic mod-
els often over-predict a species distribution (i.e. by predicting 
the fundamental rather than the realized niche; Kearney and 
Porter 2004), translating information of the physical envi-
ronment (in this case temperature) into biologically relevant 
traits of the organism provides more informative outputs than 
a habitat suitability prediction alone (Buckley et  al. 2010). 
Moreover, the physical equations, which explicitly define the 
interactions between an organism and its immediate environ-
ment, can be used to isolate any systematic changes in pre-
dicted microclimates, resulting Te, and species distributions 
between models run at different spatial resolutions. Explicitly 
predicting the Te of organisms within their microclimates also 
enables testing a number of additional questions as to how 
the assigned scale might overlook detailed climate–organism 
interactions across different types of terrain (e.g. rugged vs 
smooth; Sears  et  al. 2011). For example, one can test the 
extent to which behavioural thermoregulation of mobile 
organisms within a grid cell might alter a model’s predictions 
(Lawson et al. 2014, Woods et al. 2015).

Here, we use a mechanistic model to estimate the Te of 
a lepidopteran species within a typical microclimate, and 
then test how spatial resolution, topography and behavioural 
thermoregulation affect predictions of Te, performance of 
temperature-sensitive traits and mortality across a rugged 
landscape (Buckley et al. 2010). A biophysical model has pre-
viously been developed for the African bollworm Helicoverpa 
armigera (Lepidoptera: Noctuidae) (Barton and Terblanche 
2014), but here we present it as a general model for an insect 
with a complex life-cycle (holometabolous) that can complete 
multiple generations per year (multivoltine). The model was 
run on hourly time-steps tracking the animal as it matures 
and transitions through multiple life-history stages and gen-
erations, based on the predicted Te. Simulations were con-
ducted at three spatial resolutions using historical monthly 
averages for a region in the Western Cape Province, South 
Africa, across which topography varies substantially (Fig. 1d). 
With these simulations we undertook a sensitivity analysis, 

testing: 1) how spatial resolution affects predictions of Te, 
the number of generations completed as a proxy for fitness, 
and the thermal safety margin as a measure of thermal suit-
ability (Deutsch et al. 2008), 2) if variation in the predicted 
Te between scales is consistent with particular features of the 
landscape, and 3) the extent to which an animal’s thermoregu-
latory behaviour might alter predictions of its fitness. We then 
discuss our results in the context of future climate change.

Material and methods

Climate and topographical data

The recently published microclimate model (Barton and 
Terblanche 2014; and Supplementary material Appendix 1) 
used in this study translates spatially explicit climatic datasets 

Figure  1. Predictions of mean annual operative temperature  
(Te, in °C) of a typical lepidopteran species modelled at (a) coarse, 
(b) medium and (c) fine resolutions. To obtain Te, all life-history 
stages were considered. Geographic extent encompasses a fruit 
growing region of the Western Cape Province in South Africa 
(inset), across which elevation ranges from 1 to in excess of  
1700 m a.s.l. (d).
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into the microclimatic conditions experienced by the organ-
ism. More specifically, the model predicts the Te of a typi-
cal holometabolous insect (Helicoverpa armigera) using a set 
of biophysical equations and accounts for the different life-
history stages occupying different sites within the habitat (i.e. 
eggs and larvae are located on a leaf in a tree canopy, pupae 
underground, and adults on the surface of a tree trunk). 
While we have populated the model with thermal sensitivity 
data from of H. armigera as an example, alternative datasets 
for a species of interest could be easily substituted if desired. 
For this study, we expand upon several aspects of the earlier 
model to address our study aims. Specifically, here climatic 
and elevation data incorporated into this model were sourced 
at 30 arc-second (approximately 1 km2) cell resolution from 
the Worldclim database, ver. 1.4 (Hijmans  et  al. 2005; 
< www.worldclim.org/current.htm >) for monthly averages 
from 1960–1990, interpolated across an agricultural region 
of the Western Cape, South Africa (extent: 33.82–34.22°S, 
18.63–19.36°E, Fig. 1d). Maximum temperature, mini-
mum temperature, and relative humidity (not available in 
Worldclim, and thus sourced from Schulze 1997), as well as 
elevation were required as input data. Furthermore, in this 
study, to generate measures of temperature at hourly time-
steps, we first splined the monthly records of maximum and 
minimum temperatures into 365 daily data-points, which 
were then used in an interpolation of a daily sinusoidal wave 
according to Campbell and Norman (1998). Topographic 
characteristics across the landscape were attained using the 
‘slope/aspect’ functions under the ‘raster’ package written for 
R (ver. 3.1.2, all analyses hereafter, Hijmans and van Etten 
2012) that compares the elevation of adjacent cells to com-
pute average slope and aspect of each grid cell. An additional 
calculation was included in the model (in comparison to 
that published in Barton and Terblanche 2014), in which 
hill-shading at a given location from adjacent sites was deter-
mined by comparing the horizon angle in the direction of the 
sun’s azimuth (with the ‘horizon’ package, Van doninck 2016) 
against the sun’s height in the sky (90-zenith) at each hour of 
the simulation (Supplementary material Appendix 1). If the 
corresponding horizon angle was higher than the sun’s eleva-
tion, we assumed that direct solar radiation, and any heat 
gained by the animal through this source, was negligible.

These raw climatic and topographic datasets were consid-
ered to be fine-scale, with a total of 4043 grid cells. Using 
these data we generated a medium resolution with 1033 
sites (60 arc-seconds, ~2 km2) and a coarse resolution with 
466 sites (90 arc-seconds, ~3 km2) input dataset using the 
aggregate() function in the ‘raster’ package. This function cal-
culates the mean values for elevation and each climatic vari-
able across 4 and 9 fine-grid cells for the medium and coarse 
resolutions respectively, where the top-left hand cell remains 
aligned in all resolutions (the same approach taken to gener-
ate the coarse resolution datasets for the Worldclim database; 
< www.worldclim.org/formats1 >; Supplementary material 
Appendix 2 Fig. A1). From the medium and coarse elevation 
datasets, aspect and slope were subsequently calculated using 

the ‘raster’ package (see previous paragraph). These resulting 
fine, medium and coarse resolution datasets of climate and 
topography were each used as inputs in the model to predict 
the insect’s Te (Bakken 1992, processes defined in detail in 
Supplementary material Appendix 1). We consider these fine, 
medium and coarse resolutions to be at the scale of a typical 
lepidopteran’s home range or expected core population occu-
pancy (King et al. 1990). Finer resolution climatic datasets 
for the region of interest are unfortunately unavailable and 
the computational time involved becomes extremely long. 
Finally, here we assume that Te equates to the insect’s body 
temperature, due to its small size, high thermal conductance 
and lack of physiological thermoregulatory mechanisms 
(Stevenson 1985).

Model simulations

For each site, at each hour of these simulations, the predicted 
Te was used to calculate 1) the developmental progression 
as the number of degree-day units attained (DD=Te–Tmin) 
where Tmin is H. armigera’s lower developmental threshold 
for each stage (Supplementary material Appendix 2 Table 
A1) and 2) the thermal safety margin that compares the 
predicted Te of the insect against its optimum tempera-
ture (TSM=Topt–Te) where Topt is 27.5°C, the optimum 
temperature for population growth (Mironidis 2014). 
The TSM formula follows Deutsch et al. 2008 and differs 
from that defined by Sunday et al. 2014, who used TSM 
as the difference between the species CTmax, and the high-
est predicted Te. As the simulations cycled through pro-
gressive time steps, the total numbers of degree-day units 
were tallied and the model transitioned through successive 
life-history stages. The thresholds for degree-day units were 
multiplied by 24, to account for the hourly time intervals 
of the model. Once the adult stage was reached, the model 
remained in the adult microclimate for an additional 100 
degree-day units (ranging from 4 to 36  h depending on 
the location and season), after which the model reverted 
back to the egg stage, as female adults are typically able 
to lay eggs soon after eclosion (Mironidis 2014). At this 
transitional hour, the accumulated degree-days were reset 
to zero and development as an egg re-commenced. At each 
site across the landscape the number of completed genera-
tions (referred to as voltinism hereafter) through the entire 
simulation period (8760 h in total), and the average Te and 
TSM were determined.

Defining the thermal niche

To understand how the model resolution affects predic-
tions of a species thermal niche, widely considered to be 
an important underlying process that constrains the sur-
vival and distribution of terrestrial ectotherms (Kearney and 
Porter 2004, Wiens et al. 2010), we set critical thermal lim-
its to simulate a cold- and a heat-sensitive species. For these 
simulations, we assumed that the animal could not survive 
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if Te exceeded thermal critical limits, i.e. the critical thermal 
minimum (CTmin) of the cold sensitive species was reduced 
to 8°C, while the critical thermal maximum (CTmax) for the 
heat sensitive species was held at 40°C (in comparison to the 
original H. armigea thermal tolerance measures; Mironidis 
and Savopoulou-Soultani 2008). If, at any hour during the 
simulation period, Te exceeded these thresholds, the organism 
(or population) was assumed to perish and be absent from 
that grid cell. These conditions were applied to the fine-, 
medium- and coarse-resolution Te outputs, and the resulting 
thermal niches, which included occupied cells only, were sub-
sequently mapped.

Behaviour within grid cells

We explored how incorporating behavioural thermoregu-
lation affects model predictions by allowing the animal to 
seek out and occupy thermally optimal sites, assuming their 
home-range is the size of a coarse grid cell in our simula-
tions (3 km2 is a typical home-range size in the absence of 
long-range dispersal events; King et al. 1990). We assumed 
that only the adult stage is sufficiently mobile to select 
optimum locations within this home range, and re-ran 
the coarse-scale simulation but this time, when the model 
transitioned into the adult phase, the most optimal fine-
scale grid cell, within which temperature was closest to the 
adult’s thermal optimum of 27.5°C (Rosenheim et al. 2008, 
Bonebrake et al. 2010, Mironidis 2014), was selected. On 
the first hour when the model transitioned back to the egg 
stage, conditions within the adult’s selected location (1 of  
the 9 fine grid cells) were used to represent the entire home-
range (the coarse-grid cell). In the subsequent hours of the 
egg, larval and pupal stages, the entire home-range con-
tinued to reflect the changing hourly climatic conditions 
(and Te) within this location. Upon reaching the adult stage 
once more (the following generation), the organism re-
selected the most optimal location within the coarse-grid 
cell, thereby once again dictating the subsequent conditions 
experienced by the offspring. This procedure was repeated 
for every generation. Ultimately, with this simulation we 
aim to explicitly test the extent to which female adult ther-
moregulatory behaviour during oviposition might affect the 
survival and performance of their offspring.

We then compared the predicted voltinism of this 
‘thermoregulator’ simulation with those measures of the 
previous coarse-model predictions considered as ‘sessile’ (i.e. 
no thermoregulation) as a measure of the impacts of behav-
iour on physiological performance. To ascertain how such 
behaviour might buffer extreme temperatures and thus sur-
vival, we also compared the total number of hours during 
which extreme cold- and hot-conditions were encountered 
by the ‘thermoregulator’ and ‘sessile’ organism. In this case, 
we assumed extreme-stress (and ultimately death) occurred 
when Te< CTmin or Te > CTmax, where CTmin and CTmax 
are 8°C and 40°C respectively (Mironidis and Savopoulou-
Soultani 2008).

Statistical analysis

To understand how resolution affected our predictions of the 
insect’s Te, TSM and voltinism (response variables hereafter) 
across the Western Cape Province, the coarse and medium 
resolution output datasets were disaggregated to the fine-scale 
resolution grid, such that each simulation output comprised 
of the same number of sites (n = 4043). In analyses, aspect 
was calculated in terms of deviations away from due north 
(the sun’s azimuth at noon in the southern hemisphere), 
making the assumption that northerly facing sites would, 
in general, receive higher loads of direct solar radiation than 
slopes with southern aspects.

We built a series of generalized linear mixed effects mod-
els (GLMMs) for each response variable, to explore how 
topographic features across the modelling extent affected the 
model’s predictions as a function of scale (Zuur et al. 2009). 
These ‘full’ models each included interactions between eleva-
tion, slope, aspect, and scale (coarse or fine resolution), as 
well as elevation to the second polynomial term, as fixed 
effects. Preliminary statistics indicated that there were no 
substantial differences in predictions between the medium 
and fine-resolution datasets, and so for simplicity, these 
analyses considered only data from the coarse and fine-scale 
resolutions. Site (or location/pixel) was included as a random 
factor to account for pseudo replication among the two spa-
tial scales (each site was represented two times). Predictions 
of Te and TSM were positively skewed (with relatively more 
sites at lower elevations), and thus a Gamma log-likelihood 
distribution was assigned to the GLMMs, while that for 
voltinism was modelled with a Poisson distribution.

To account for non-independence of errors due to spatial 
auto-correlation among the data, we also incorporated an 
auto-covariate term, calculated with the ‘autocov_dist’ func-
tion with the ‘spdep’ package in R (Dormann  et  al. 2007, 
Bivand and Piras 2015). This covariate is weighted by the 
square of the inverse distance among neighbourhood cells 
(set to a distance of 15 grid cells).

Starting with the full model for each response variable 
(described above), we sequentially removed interaction and 
polynomial parameter terms until the (‘reduced’) model 
of best fit was attained, determined by the BIC value (and 
where ∆BIC > 2), deemed to be a more conservative cri-
terion than AIC for models with large sample sizes and a 
relatively high number of predictor variables (Acquah 2010). 
Multi-collinearity among input variables of the reduced 
models was confirmed to not be a confounding effect, with 
all variance inflation factors below the accepted threshold of 
10 (Neter et al. 1996, Zuur et al. 2009). With the reduced 
model for each response variable, we then generated semi-
variograms of the normalized residuals to confirm that there 
were no confounding effects due to spatial auto-correlation. 
The GLMMs, model comparisons, and semi-variogram 
analyses were conducted in R with the ‘lme4’ (Pinheiro et al. 
2016), ‘MuMIn’ (Barton 2016), and ‘gstat’ (Gräler  et  al. 
2016) packages respectively.
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The predicted coarse, medium and fine resolution thermal 
niches (the number of occupied grid cells) for both the cold 
and heat sensitive species were compared using a Friedman 
rank sum test, with site included as a random factor. Finally, 
to determine if dispersal of the female adult to an optimum 
thermal location within each coarse grid cell had significant 
impacts on our predictions of thermal stress and voltinism, 
we ran paired t-tests comparing the ‘thermoregulating’ and 
‘sessile’ model predictions for each trait. Given the large 
sample size in these analyses (n = 466, the coarse grid), we set 
p < 0.001 as the threshold level for significance.

Data deposition

Code for the model (R scripts) and analyses, as well as raw 
output files from the model, are available from the authors 
on request.

Results

Regional simulations

The predicted annual mean Te of the insect varied spatially 
across the simulated region of the Western Cape. Predictions 
of Te from the fine and medium resolution simulations 
ranged from approximately 10°C to 19°C (Fig. 1b, c), while 
the coarse resolution model predicted Te from 11°C to 18°C 
(Fig. 1a). As elevation increased, Te declined, and was signifi-
cantly colder on shallow, southerly facing slopes as opposed 
to steep sites with northern aspects (Fig. 1, Table 1). These 
predictions of Te however varied among the fine and coarse 
spatial scales, depending on the elevation, slope and aspect of 
each site (Table 1).

To visualise the discrepancies in predicted Te across 
the mountainous terrain of the modelling region (i.e. the 
interaction between scale, slope, elevation and aspect), we 
calculated the difference in Te between the coarse- and fine-
scale model predictions and plotted these differences against 
slope and elevation (Fig. 2). At low elevations (< approx. 
500 m a.s.l.), the coarse resolution model predicted a lower 
Te in comparison to the fine resolution predictions, but 
with increasing elevation (> approx. 500 m a.s.l.) the coarse 
resolution simulation progressively predicted higher opera-
tive temperatures (Fig. 2a). Indeed, the greatest discrepancy 
between the fine and coarse resolution simulations was at 
an elevation of approximately 1369 m, where the average 
annual coarse prediction of Te was 4.3°C higher than that 
of the fine simulation. These discrepancies were typically 
greatest on steep, as opposed to shallow, slopes, as well as 
on sites with more northerly (sun-exposed) facing aspects 
(Fig. 2a).

These differences in Te among different topographi-
cal features and spatial scales in turn led to variation in the 
insect’s predicted TSM. Across this elevation gradient, pre-
dicted Te consistently fell below the insect’s optimum tem-
perature for performance (Table 1). The TSM increased with 

elevation, and sites with shallow, southerly facing slopes had 
higher TSMs than sites with steep, northerly facing slopes. 
The effects of slope and elevation on TSM however varied 
among the different spatial resolutions (Table 1). The coarse 
resolution estimated a higher average TSM at low elevations 
than that obtained under the fine-resolution simulations. 
However once elevation exceeded approximately 500 m a.s.l. 
the opposite pattern was observed: insects modelled using a 
coarse resolution had lower average TSM than that obtained 
under the fine-resolution simulations (Fig. 2b). Across this 
elevation transect, discrepancies were more prominent on 
steep, in comparison to shallow, slopes (Fig. 2b).

Voltinism of the insect varied across the landscape, rang-
ing from one to four generations per year, predictions that 
correspond with observed phenology of Helicoverpa spp. in 
the region (K. L. Pringle pers. comm.). Moreover, variation 
in topography and spatial resolution had direct impacts on 
insect voltinism, such that the number of generations com-
pleted each year declined with increasing elevation (Table 1). 
The strength of this relationship however, depended on the 
slope of each site as well as the spatial resolution at which 
the model was run (Table 1). Indeed, at low elevations the 
coarse resolution predicted lower voltinism in comparison to 
the fine scale resolution, while this pattern was reversed at  
high-elevations (Fig. 2c). The discrepancies in voltinism 
between spatial resolution was higher on relatively steep 
slopes (Table 1; Fig. 2c)

Defining the species thermal niche

The discrepancies in Te predictions between the different 
spatial resolutions led to differences in size of the predicted 
thermal niche of the cold and heat sensitive species. For the 
cold sensitive species the coarse resolution predicted a larger 
thermal niche (3975 of 4043 cells) than both the fine (3841 
of 4043 cells) and medium resolutions (3860 of 4043 cells; 
Friedman χ = 237.6, p < 0.001; Fig. 3a, c, e). In contrast, 
for the heat sensitive (montane-specialist) species, the fine 
resolution predicted a larger thermal niche (1150 of 4043 
cells) in comparison to the medium (1100 of 4043 cells) and 
coarse (1005 of 4043 cells) resolutions (Friedman χ = 136.13, 
p < 0.001; Fig. 3b, d, f ).

Simulating thermoregulatory behaviour within coarse 
resolution cells

Allowing the adults of each generation to select the most 
thermally-optimal conditions for their performance, and 
thus the conditions encountered by their relatively more 
immobile offspring, led to significant variation in predicted 
voltinism and extreme thermal-stress in comparison to simu-
lations in which no thermoregulatory behaviour was allowed 
(Fig. 4). Allowing adult movement within a coarse grid cell 
meant that the insect could complete, on average, 0.25 more 
generations per year (t462 = 7.698, p < 0.001; Fig. 4a, b), and 
avoid, on average, 62.6 h of extreme cold-stress (t464 = –4.63, 
p < 0.001; Fig. 4c, d). However, laying eggs where Te was 
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the most optimal for adults resulted in the immature stages 
experiencing, on average, 1.47 more hours of extreme heat-
stress in comparison to the ‘sessile’ organism (t464 = –4.45, 
p < 0.001; Fig. 4e, f ).

Discussion

Using a mechanistic modelling approach we show how varia-
tion in topography, combined with differences in the scale 
used for modelling, affects predictions of Te, and in turn 
fitness parameters. We also illustrate how model resolution 
and landscape features interact to influence determination 
of the potential thermal niche of a typical lepidopteran spe-
cies. Our results reveal systematic differences in predictions 
of Te among models that differ in spatial resolution, largely 
attributed to variation in local topographic features.

The interactive impacts of elevation, slope, aspect and 
spatial scale on the discrepancies in Te appear to have arisen 
primarily through the associated topographical effects on the 
calculated solar radiation loads. In our biophysical simula-
tions, an increase in elevation was coupled with an increase in 
slope, and so at high elevations, calculations of slope between 
adjacent coarse grid cells are steeper than those between fine 
grid cells (calculated by the difference in elevation between 
adjacent cells irrespective of their size; Suggitt  et  al. 2011, 
Barton and Terblanche 2014). These apparent steeper slopes 
in the coarse resolution cells at high elevations in turn led 
to higher solar radiation loads and warmer predicted Te 
(Fig. 2b). In comparison, across ‘lowland’ topographies fine 
resolution cells had relatively higher slopes than their coarse-
cell counterparts (that are averaged across seemingly flat ter-
rain), and thus predicted a higher solar radiation load and Te. 
When calculated loads of direct and diffuse solar radiation are 
considered in isolation, it becomes evident that the total solar 
radiation to which the insect is exposed at high elevations 
is greater in the coarse-, in comparison to the fine-, resolu-
tion simulations, while the opposite is true in lowland regions 
(Supplementary material Appendix 2 Fig. A2). Overall, such 
variation in slope among sites is likely to be more accurately 
represented with fine, rather than coarse, resolution simula-
tions (Scherrer  et  al. 2011), although we cannot make any 
inferences here that ‘finer is better’. Validations of the model 
predictions, at both fine and coarse scales, are required to 
ascertain how accurately this model, as a whole, performs.

An important consideration of our results is to ascertain 
if the discrepancies in model predictions between the two 
spatial scales have arisen as a consequence of topographic fea-
tures specific to the Western Cape region, or if they can be 
generalized more broadly. For example, the particular shape 
of the mountain range, which would in turn affect relative 
changes in slope and aspect across the elevation gradient, 
might have primarily led to the discrepancies in predictions 
between the different spatial scales (Elsen and Tingley 2015). 
To test the generality of our findings we therefore ran some 
additional simulations (full details shown in Supplementary 
material Appendix 3), integrating Worldclim datasets of 
Tmin,Tmax, elevation and corresponding slope and aspect at 

Figure 2. Discrepancies in predicted (a) operative temperature (Te), 
(b) thermal safety margin (TSM) and (c) voltinism between coarse 
and fine scale model predictions (coarse–fine). Significant interac-
tions were detected between slope, elevation for TSM and volt-
inism, and also aspect for Te. Surface plots represent predictions of 
the GLMM regressions, while points show the raw predictions. For 
Te, coloured surface plot represents discrepancies on sites with 
northerly aspect, while the surface plot with grey grid lines represent 
those on southerly facing slopes. Dashed line indicates where there 
was no difference between coarse and fine simulation predictions.
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two resolutions: a coarse-scale at 10 arc-minutes and a fine-
scale at 5 arc-minutes. Given H. armigera is a pest on apple 
in the Western Cape of South Africa, we focused on other 
apple growing regions across the globe that cover areas of low 
and high elevations in: Europe (Fig. 5a), Australia (Fig. 5c), 
China (Fig. 5e) and the USA (Fig. 5g). Discrepancies in 
predictions of Te between the fine- and coarse-scale simu-
lations were similarly detected (Fig. 5). While the magni-
tude of these discrepancies differed slightly between the 
regions, all showed a pattern that was consistent with that 
observed for the Western Cape: in comparison to the fine-
scale resolution, the coarse-scale resolution predicted lower,  
and then higher Te at low and high elevations respectively 
(Fig. 5b, d, f, h). These simulations therefore confirm that 
the patterns detected in this study hold over multiple spatial 
scales, geographic regions, and mountain shapes.

Discrepancies in the predictions of Te among the differ-
ent resolutions led to variation in not only fitness param-
eters (e.g. voltinism), but also in the potential species’ 
thermal niche based on Te surpassing critical thermal limits 
throughout the organism’s lifetime. The results are informa-
tive for understanding impacts of scale on forecasting efforts 
for example tropical vs temperate ectotherms (Deutsch et al. 
2008, Kearney et al. 2009, Clusella-Trullas et al. 2011). For 

example, at high elevations the fine-scale simulation pre-
dicted colder Te such that the cold sensitive species appears 
to be relatively more constrained at this resolution resulting 
in a smaller thermal niche, in comparison to the coarse- and 
medium-scale resolution (in which the warmer predicted Te 
allows them to persist into higher elevations). By this same 
process, the heat sensitive species could persist over a broader 
elevation range (and thus had a larger thermal niche) if 
the (colder) fine-scale resolution, rather than the (warmer) 
medium-scale or (hotter) coarse-scale resolutions were 
considered.

It is important to reiterate here however, we are mapping 
only the thermal niche (as opposed to the realized niche) of 
the species – regions where predicted microclimates sustain 
survival based on thermal suitability (Kearney and Porter 
2004). Incorporating additional processes, such as host plant 
availability (i.e. presence of microclimates and resources), 
hydro-regulation, rainfall or moisture availability, dispersal 
barriers and corridors, and species interactions will place fur-
ther constraints on the species survival and consequently, gen-
erate predictions that are closer to the species realised niche, 
and geographic distribution. Moreover, while the discrepan-
cies in thermal niches among the three scales are relatively 
small compared to the overall extent of our simulated region 

Figure 3. Predictions of the thermal niche for cold ((a, c, e) ‘Lowland’) and heat ((b, d, f ) ‘Montane’) sensitive species at fine, medium and 
coarse grid cell size. Cells with occupancy are shown in black. For the lowland species, predicted thermal niche became progressively smaller 
as resolution became finer, the opposite pattern occurred for the montane species.
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(Fig. 3), the modelling approach undertaken here explicitly 
shows how the spatial resolution of a species’ distribution 
model, whether it be characterizing the fundamental or real-
ized niche, can inherently bias its predictions.

The accuracy of an SDM is likely to be affected not only 
by its spatial resolution, but also the temporal resolution at 
which it is run. Across our modelling extent, daily weather 
data are unfortunately unavailable, and thus we depend on the 
interpolation of monthly average maximum and minimum 
thermal conditions into hourly time-steps. While species’ 
distributions may be correlated with such long-term climatic 
averages, individuals do not typically encounter such condi-
tions in the field, and many studies have shown that SDMs 
run at high temporal resolutions are more accurate than those 
run with average long-term climate data (Reside et al. 2010, 
Sheldon and Dillon 2016). For insects with a holometabolous 
life-cycle, for which the different life-stages vary in thermal 
sensitivity and/or developmental requirements, the timing of 
extreme weather events with respect to the species phenology 
is likely to a be particularly important determinant of the 
species distribution (Kingsolver  et  al. 2011). Incorporating 
such extreme weather events as part of the input climatic data 
in the model would likely result in more constrained ther-
mal niches across our modelling extents, though it remains 
unclear how such constraints would vary among the three 

spatial resolutions tested here (Buckley and Kingsolver 2012, 
Buckley and Huey 2016). While running model simula-
tions at different temporal resolutions is beyond the scope 
of the current study, the modelling framework now devel-
oped provides a versatile tool to assess how temporal, as well  
as spatial, resolution affects the predictions of a species 
thermal niche.

The interactions between topography and model reso-
lution on Te can, to some extent explain the discrepancies 
observed between model resolutions found in previous 
modelling studies. For example, the future distribution of 
a Coleoptera species at low elevations declined to a greater 
extent if models were run at a fine, rather than coarse resolu-
tion (according to our findings the fine resolution predicts a 
higher Te at low elevations; Gillingham et al. 2012). Similarly, 
Trivedi  et  al. (2008) found that at relatively low elevations 
(between sea level and 1214 m, comparable to our study) 
modelling species distributions under climate change scenar-
ios led to smaller distributions in fine scale, rather than coarse 
scale, simulations (also observed in Thomas et al. 2006). In 
contrast, Randin and colleagues (2009) ran a similar study 
at higher elevations (ranging from 1480 and 4634 m) and 
found that climate change led to a greater decline in distribu-
tions if models were run at coarse, rather than fine resolutions 
(with the former likely having a higher predicted Te). The 

Figure 4. Predicted voltinism, and hours of extreme cold- and heat-stress for sessile (a, c, e) and behaviourally thermoregulating (b, d, f ) 
adults. Overall, the ‘thermoregulator’ simulation predicted greater voltinism and fewer hours of cold stress, however also encountered a 
greater number of hours of extreme heat, in comparison to the ‘sessile’ organism.
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two latter correlative modelling studies inherently captured 
the interactions between the model’s resolution and topog-
raphy (with associated variation in solar radiation loads) by 
including measurements of elevation and solar radiation, and 
topographically adjusted climate predictors in their models 
respectively, giving rise to discrepancies in model predictions 
that are consistent with our findings. These results high-
light the importance of accounting for species sensitivity 

and landscape topography when interpreting the outputs of 
SDMs, with due consideration given to the mechanism(s) by 
which such model biases might occur.

While fine-scale resolutions might be required for accurate 
predictions of sessile organisms such as plants (Trivedi et al. 
2008, Randin  et  al. 2009, Potter  et  al. 2013), it has been 
proposed that animals with the capacity to move between 
grid cells might be accurately modelled at a resolution 

Figure  5. Simulations across four global apple growing regions across which elevation varies, including: (a) Mediterranean Europe;  
(c) Tasmania, Australia; (e) Shandon, China and (g) California, USA. The largest city in each region is included for reference. Discrepancies 
in predicted Te varied between the coarse and fine-scale resolution model simulations in each region, with lower and then higher predicted 
Te by the coarse resolution at low and high elevations, respectively (b, d, f, h). Dashed line indicates no difference in Te between coarse and 
fine predictions.
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that reflects their home-range size, rather than their body size 
(see discussions in Kearney  et  al. 2009, Sears  et  al. 2011). 
The topographic variability of the landscape considered here 
provides a natural mosaic of microclimates across which to 
test the effects of an animal’s behavioural thermoregulation 
on performance, survival and hence evolutionary fitness 
(Woods et al. 2015). Indeed, across the Western Cape, ther-
moregulating insects have an overall increase in the number 
of generations compared to those that experience the aver-
age conditions of the coarse grid cells. The extent to which 
thermoregulation can improve relative fitness appears to vary 
with topography: behaviour of individuals at higher eleva-
tions had a larger impact on performance than that of indi-
viduals at lower elevations, likely due to the greater variation 
in temperature within each coarse grid cell (unpubl., but see 
Buckley  et  al. 2013). Adult thermoregulation also reduced 
the number of hours of extreme cold-stress, but on the other 
hand, it simultaneously led to more frequent hours of extreme 
heat for the offspring. This apparent trade-off highlights the 
importance of accounting for the life-stage specific sensi-
tives when modelling holometabolous insects, at both spatial 
and temporal scales (Kingsolver et al. 2011, Kingsolver and 
Buckley 2015). Quantifying the extent to which adults can 
optimise conditions for their sessile offspring, as opposed to 
behaving in a manner that optimizes their own performance 
as assumed here, warrants further exploration; particularly at 
resolutions sufficiently fine enough to realistically represent 
a terrestrial ectotherm’s home range (Buckley  et  al. 2013). 
The modelling framework developed here provides a sound 
basis on which to validate such behavioural responses against 
species of interest.

Our findings highlight that climatic datasets, especially 
those produced at fine-scales, contain some unavoidable 
biases (Araújo and Guisan 2006). The Worldclim dataset 
used here, for example, is interpolated across the landscape 
using data from isolated weather stations (themselves not 
uniformly distributed across habitat types), and thus down-
scaling these conditions into increasingly finer resolutions 
compounds any inherent biases associated with this proce-
dure (Wilby and Wigley 1997, Tabor and Williams 2010). 
While further validations of the model here are required, our 
findings suggest that our understanding of how species ther-
mal niches, and ultimately their distributions, are likely to 
shift along elevation gradients will at least partly depend on 
the resolution at which models are run, and inherent issues in 
the downscaled climatic data are, at least with current global 
circulation models, unfortunately unavoidable.

Mountainous regions are commonly identified as refuges 
for terrestrial species, with distributions shifting (often con-
tracting) into higher elevations (Chen  et  al. 2011, Nieto-
Sanchez  et  al. 2015). These relatively cooler regions, with 
microclimatic heterogeneity that can perhaps be better 
exploited by mobile organisms, provide important landforms 
for the persistence of biodiversity under increasingly stressful 
climates. Our findings confirm that it is this inherent ther-
mal heterogeneity that makes mountainous regions far more 

difficult to simulate (i. e. model) than regions with relatively 
flat terrain. Nonetheless, developing accurate methods to 
predict how these ecosystems are likely to fare under future 
climatic and land transformation scenarios is imperative 
for developing appropriate management and conservation 
approaches for geographically-restricted or rare species. This 
is also the case for managers dealing with invasive species, 
agricultural pests and disease vectors. Here, we have shown 
systematic differences in how spatial scale can affect model 
predictions with respect to elevation, differences that should 
be accounted for when interpreting predictions of species 
distribution models.
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