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ABSTRACT 

Process monitoring and fault diagnosis are used to detect abnormal events in 

processes. The early detection of such events or faults is crucial to continuous 

process improvement. Although principal component analysis and partial least 

squares are widely used for process monitoring and fault diagnosis in the 

metallurgical industries, these models are linear in principle; nonlinear approaches 

should provide more compact and informative models. The use of auto associative 

neural networks or auto encoders provide a principled approach for process 

monitoring. However, until very recently, these multiple layer neural networks have 

been difficult to train and have therefore not been used to any significant extent in 

process monitoring.  

With newly proposed algorithms based on the pre-training of the layers of the neural 

networks, it is now possible to train neural networks with very complex structures, i.e. 

deep neural networks. These neural networks can be used as auto encoders to 

extract features from high dimensional data. In this study, the application of deep 

auto encoders in the form of Restricted Boltzmann machines (RBM) to the extraction 

of features from process data is considered. These networks have mostly been used 

for data visualization to date and have not been applied in the context of fault 

diagnosis or process monitoring as yet. The objective of this investigation is 

therefore to assess the feasibility of using Restricted Boltzmann machines in various 

fault detection schemes. The use of RBM in process monitoring schemes will be 

discussed, together with the application of these models in automated control 

frameworks. 

Keywords: RBM, auto encoders, dimensionality reduction, process monitoring 
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OPSOMMING 

Prosesmonitering en fout diagnose word gebruik om abnormale gebeure in prosesse 

op te spoor. Die vroeë opsporing van sulke gebeure of foute is noodsaaklik vir 

deurlopende verbetering van prosesse. Alhoewel hoofkomponent-analise en parsiële 

kleinste kwadrate wyd gebruik word vir prosesmonitering en fout diagnose in die 

metallurgiese industrieë, is hierdie modelle lineêr in beginsel; nie-lineêre benaderings 

behoort meer kompakte en insiggewende modelle te voorsien. Die gebruik van 

outo-assosiatiewe neurale netwerke of outokodeerders bied 'n beginsel gebaseerder 

benadering om dit te bereik. Hierdie veelvoudige laag neurale netwerke was egter 

tot onlangs moeilik om op te lei en is dus nie tot ŉ beduidende mate in die 

prosesmonitering gebruik nie. 

Nuwe, voorgestelde algoritmes, gebaseer op voorafopleiding van die lae van die 

neurale netwerke, maak dit nou moontlik om neurale netwerke met baie 

ingewikkelde strukture, d.w.s. diep neurale netwerke, op te lei. Hierdie neurale 

netwerke kan gebruik word as outokodeerders om kenmerke van hoë-dimensionele 

data te onttrek. In hierdie studie word die toepassing van diep outokodeerders in die 

vorm van Beperkte Boltzmann Masjiene vir die onttrekking van kenmerke van proses 

data oorweeg. Tot dusver is hierdie netwerke meestal vir data visualisering gebruik 

en dit is nog nie toegepas in die konteks van fout diagnose of prosesmonitering nie. 

Die doel van hierdie ondersoek is dus om die haalbaarheid van die gebruik van 

Beperkte Boltzmann Masjiene in verskeie foutopsporingskemas te assesseer. Die 

gebruik van Beperkte Boltzmann Masjiene se eienskappe in prosesmoniteringskemas 

sal bespreek word, tesame met die toepassing van hierdie modelle in outomatiese 

beheer raamwerke. 

Sleutelwoorde: Beperkte Boltzmann Masjiene, outokodeerders, dimensionaliteit 

vermindering,prosesmonitering
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CHAPTER 1 INTRODUCTION 

1.1 Process Monitoring and Fault Diagnosis 

Process monitoring and fault diagnosis are used to detect faults or abnormal events 

in processes. The early detection of these events or faults is crucial to continuous 

process improvement. Traditional methods have been based on mechanistic or 

causal process models. However, such models are not always available or may be 

expensive to construct and therefore alternative approaches based on multivariate 

statistical process control have been proposed. These models are based on empirical 

correlations built from normal plant operating data when common cause variation is 

present.  

A fault can be defined as an unpermitted deviation of at least one characteristic 

property of a variable from its normal acceptable behaviour (Isermann, 1997). 

Therefore, a fault is a state that may lead to a malfunction or failure of a system, 

which in turn results in process inefficiencies. Fault diagnosis has increasingly 

become an area of great importance in process control and automation. It provides a 

framework in which data is monitored and submitted to fault detection schemes. The 

fault detection scheme records alarms whenever faults are detected. These faults are 

then identified and classified according to their nature as well as trace their sources.  

The fault detection and diagnosis techniques that are used normally depend on 

process models. The process data from the plant historians is input to fault detection 

algorithms, and then comparisons are made with the corresponding plant outputs. A 

difference in these comparisons is an indication that a fault has occurred, and hence 

could be investigated. Once the type of fault is known, it can then be classified and 

corrective measures can be put in place to remedy the fault. 

Chapter 1: Introduction 
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As useful as they are, linear methods (such as Principal Components Analysis) do 

have significant limitations, although a large range of different nonlinear approaches 

have been considered to date, none of these approaches solve all problems all the 

time. A major limitation of current linear feature extraction benchmarks is their linear 

nature. It has been found that using a linear method to extract features from 

nonlinear data can be inadequate (Dong & McAvoy, 1996).  

The diversity that is found in process data structures motivates the exploration of 

other feature extraction methods. In light of this, many statistical inference 

techniques such as neural networks (Dong & McAvoy, 1996; Zhu & Li, 2006), kernel 

methods (Lee et al., 2004; Cho et al., 2005, 2005), random forests (Auret & Aldrich, 

2010b) and many others  have been investigated in feature extractive fault diagnosis. 

1.2 Restricted Boltzmann Machines 

Even though principal component analysis and partial least squares have generally 

been used in process monitoring and fault diagnosis, these models are linear in 

principle; therefore nonlinear approaches are more likely to  provide more accurate, 

compact and informative models. The use of auto associative neural networks; or 

auto encoders, provide a better approach to achieve this. However, until very 

recently, these multiple layer neural networks have been difficult to train and have 

therefore not been used to any significant extent in process monitoring.  

With newly proposed algorithms that are based on the pre-training of layers of the 

networks, it is now possible to train neural networks with complex structures, which 

are referred to as deep neural networks. These neural networks can be used as auto 

encoders to extract features from high dimensional data.  

Restricted Boltzmann machines have been used in many applications as generative 
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models for different types of data, including images (Hinton et al., 2006). 

Furthermore, Restricted Boltzmann Machines are very interesting because they are 

used as the building blocks in Deep Belief Networks, which can have many layers and 

hence are efficient at representing complicated distributions (Bengio, 2009). The 

process of learning one hidden layer at a time is in effect a very good way to train 

deep networks that have many hidden layers and millions of weights to deal with. 

Even though the learning is completely unsupervised, the highest-level features are 

usually much more useful for classification tasks than the raw data vectors that the 

network learns.  

These deep networks can then be fine-tuned to be better at classification or even in 

dimensionality reduction problems by using the backpropagation algorithm (Hinton 

& Salakhutdinov, 2006). Because of the fact that these RBMs can be stacked in deep 

learning schemes and are generative models, their use as a nonlinear approach in 

process monitoring and fault diagnosis will be investigated. In view of the above, the 

usefulness of the features extracted using these networks would be key in using 

RBMs for fault diagnosis. 

In this study, the application of deep auto encoders in the form of Restricted 

Boltzmann machines (RBM) to the extraction of features from process data is 

considered. These networks have mostly been used for data visualization to date and 

have not been applied in the context of fault diagnosis or process monitoring as yet. 

The objective of this investigation is therefore to assess the feasibility of using 

Restricted Boltzmann machines in various fault detection schemes. The use of RBM 

machines features in process monitoring schemes will be discussed, together with 

the application of these models in automated control frameworks. 

An auto encoder with RBM pre-training will be used to extract features from data, 

and these features used as a basis for process fault diagnosis in several case studies.  

Chapter 1: Introduction 
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1.3 Problem Statement 

Many chemical and metallurgical processes are characterized by highly nonlinear and 

complex dynamics, with long time constants and significant delays. A lot of research 

has been done on nonlinear process monitoring techniques over the past two 

decades. This research is driven by the fact that most processes are nonlinear and the 

methods used to model, monitor and control them are predominantly linear. 

Although the linear methods that are being used can model and monitor the 

processes to some good degree of accuracy, there are instances where they fail to 

capture the nonlinearity that is inherent in the process. Various nonlinear methods 

have been developed over the years, some of which are already being used in 

different applications in the chemical and mineral processing industry. There is no 

single technique that possesses all the desirable features to accurately model and 

monitor all processes, hence there is need to find more, and even better monitoring 

techniques. 

1.4 Research Objectives 

The overall objective of this study is to assess the feasibility of using Restricted 

Boltzmann Machines in various fault detection schemes. This objective will be 

covered by the following tasks: 

A literature review of the feature extraction fault diagnosis and the 

applications of Restricted Boltzmann Machines 

Numerical work in which features are extracted from process data with 

Restricted Boltzmann Machines (RBMs) and used as the basis for process fault 

diagnosis in several case studies. 

Comparison and evaluation of the results with other nonlinear approaches. 

Chapter 1: Introduction 
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1.5 Thesis Layout 

The rest of this thesis is organised as follows: In Chapter 2, the literature review of 

multivariate statistical process control and an overview of fault diagnosis is discussed. 

Chapter 3 deals with the theoretical framework of the Restricted Boltzmann Machine 

and how they are used as a basis for multilayer auto encoders. The applications of 

Restricted Boltzmann Machines for feature extraction are also discussed in this 

chapter. In Chapter 4, the methodology that was used in the study is discussed. The 

application of the RBM methodology in several case studies is dealt with in Chapter 

5. In Chapter 6, recommendations and conclusions from the study are discussed.

Chapter 1: Introduction 
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CHAPTER 2 MULTIVARIATE STATISTICAL PROCESS 

CONTROL – LITERATURE REVIEW 

This chapter briefly reviews the basics of MSPC (multivariate statistical process 

control). An overview of current nonlinear methods used for process monitoring is 

discussed. The overview is not meant to be exhaustive, but to give an outline of what 

has been studied in the industry in recent years.  

2.1 Basics of MSPC (Multivariate Statistical Process Control) 

Statistical process control can be a powerful tool to characterize the chemical process 

in both normal and abnormal conditions. Once the process is characterized, 

statistical process control can be used to monitor and give early warning of existing, 

or developing, abnormal conditions. 

2.1.1 Univariate Statistical Process Control 

For most metallurgical and chemical processes, there is a process control system 

where large amounts of data is collected and stored on historian data servers. In 

order to detect and correct problems and process inefficiencies, this data is used, in 

which only a single variable is considered. Even though the data is available and can 

be queried from the databases at any time, it is usually difficult for anyone to use this 

data and determine whether the process is being controlled according to the set 

control parameters.  

Statistical process control charts, such as the Shewart chart, cumulated sum plot, and 

the exponentially weighted moving average chart, (Venkatasubramanian et al., 

2003a) are well established charts and are used in many plants to  determine how 
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well the process is performing. An example of a univariate statistical process control 

chart is shown in Figure 2.1. From Figure 2.1, Var represents the variable that is being 

monitored, LCL is the lower control limit and UCL is the upper control limit.  

The confidence limits; the lower and the upper control limits, are usually calculated 

and then used as a basis for detecting the process deviations. When a confidence 

limit is exceeded, it shows that a fault has occurred and that the process is no longer 

operating according to the set conditions. These control limits are usually calculated, 

based on the normal operating conditions (NOC) data, which is taken when the plant 

is operating at the desired, optimum conditions. 

Figure 2.1: Univariate statistical control chart 

In this process diagnosis and monitoring scheme, there is only one variable that is 

measured and hence tested. When this scheme is used, it does not perform well for 

processes in which there are high correlations among the observed process variables. 

One of the disadvantages of this scheme is that for a single process, many variables 

are available that can be monitored and even controlled (Stefatos & Ben Hamza, 

2007). This monitoring scheme treats the variables independently, and, as a result, it 
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only extracts the deviations in each variable independent of all the others. In the 

process, it ignores the correlation structure between these variables. As a result, 

process deviations in the process may not be detected at all by the scheme. 

However, the use of multivariate statistical process control methods can provide a 

better alternative. 

The need to do multivariate data analysis arises when monitoring process 

performance becomes critical due to that fact that the number of measured process 

variables increases. This is briefly discussed in the next section (2.1.2). 

2.1.2 Multivariate Statistical Process Control 

Multivariate statistical process control (MSPC) is an advanced statistical method that 

attempts to identify the critical variables and patterns in process data. It also shows 

the relationships between the process variables and how they have an effect on each 

other. This is important, and applicable when dealing with complex metallurgical and 

chemical processes. 

 As done with the Shewart charts, process data is identified and defines the desired 

normal operating conditions (NOC data). An analysis is then performed, that does 

not isolate certain variables, so as to ensure that the correlations between the 

variables are also captured. The major benefit of MSPC compared to univariate 

monitoring is that the correlation between the original variables is also included in 

the analysis, which then decreases the chance to omit an out-of-control situation due 

to the correlation inherent in the data (Thissen et al., 2001). 

There are many advantages of multivariate as compared to univariate statistical 

process control, some of which have already been outlined in the foregoing 

Chapter 2: Multivariate statistical process control – literature review 
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discussion. Multivariate analysis can simplify the work of process operators, in that it 

can show all the process variables, including the relationships that cannot be 

detected when using univariate statistics. As a result, there is no need to construct 

process control charts for each variable. Such an analysis is able to reveal the 

correlation between process parameters and how they are related to faults that are 

detected in the analysis. MSPC, therefore, assists in understanding the interaction 

between variables, which makes it possible to create models that can predict effects 

on the process, before actually implementing these changes. 

2.2 Process Monitoring and Fault Diagnosis 

2.2.1 Feature extraction process fault diagnosis 

In modern chemical and metallurgical plants, process data provides the basis for the 

monitoring of product quality, process control and improvement. With all the 

advances in instrumentation and data management technology, large volumes of 

process data is collected and stored on plant servers. There is a great deal of 

correlated information in these process variables that are being measured and 

stored. As a result, the information that is in these stored data should be extracted in 

such a way that the essential information is retrieved. 

To ensure that data that is collected and stored in process and chemical plants is 

utilized for process control and optimization, it is crucial that the significant features 

in these data is extracted and analysed. This approach of extracting features from 

high dimensional data enables plant engineers and metallurgists to better 

understand the process. Principal component analysis is commonly used for this 

purpose, as are other techniques such as partial least square, Sammon maps and 

multidimensional scaling (Zhang, 2009). 
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Process fault diagnosis can be viewed as a series of mappings of measured process 

variables. The first mapping is the transformation that is done from the process 

measurement space, i.e. normal operating data, to the feature space (it should be 

noted that this is not necessarily the usual case, but in this particular instance, it is). 

Secondly, a learning algorithm or method is then used to map this feature space 

unto a decision space. The mapping that is done from the feature space to a decision 

space is made in such a way that it meets some objective function. There are two 

categories of methods of developing the feature space from the measurement space, 

namely, the feature selection and the feature extraction methods. In feature 

selection, one simply selects a few important measurements of the original 

measurement space (Venkatasubramanian et al., 2003c). 

While in the feature extraction, it is the transformation of high dimensional data into 

a   representation that is useful, but of reduced dimensionality using many different 

techniques depending on the applications. The technique may be linear, as in 

principal component analysis, but many other nonlinear techniques do exist that can 

also be utilised. Dimensionality reduction can be illustrated as follows: 

Non-linear dimensionality reduction 

Assume that X is a dataset represented in a 𝑛 × 𝐷 matrix that consists of n data 

vectors with dimensionality D, with intrinsic dimensionality of d< D. The intrinsic 

dimensionality of data is defined as the minimum number of parameters that are 

needed to account for the observed properties of the process data (Van der Maaten 

et al., 2009). During this dimensionality reduction, the reduced dimensionality d  

contains the features that are extracted and used in process monitoring. This feature 

space must retain the geometry of the original data as much as possible, and hence 

contains the significant features that represent the original data. 
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2.2.2 Fault detection characteristics 

In order for one to select a desired feature extraction method to use in fault 

detection and diagnosis, different approaches are compared. In this comparison, 

certain characteristics or standards are used to show how these methods perform. All 

these characteristics are not meant to be satisfied by a fault detection method, but 

rather to give an indication on how different approaches are comparable. Some of 

the desirable characteristics looked for in fault detection and diagnostic algorithms 

are (Venkatasubramanian et al., 2003c): 

o Quick detection and diagnosis:

An algorithm should be quick to detect and diagnose faults in a process control

system. The time taken to detect these faults normally depends on the process

that is being analysed, as the retention time of processes differ. Nevertheless, it is

important that the quick detection of the faults does not generate many false

alarms, as that becomes a nuisance in the system.

o Adaptability:

Processes have a tendency to change and evolve as a result of changes in

external inputs, production quantities, and quality of consumables. The diagnostic

system should be able to adapt to these changes, and it has to be designed such

that changes in operating parameters can be captured and updated.

o Explanation facility:

Besides the ability to identify the source of the fault, a diagnostic system should

also provide explanations on the origin of the fault that is identified. If the source

of the fault is known, ways on how to take corrective actions, and design

improvements can then be investigated.

Chapter 2: Multivariate statistical process control – literature review 
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o Modelling requirements:

The amount of time and resources spent on modelling has to be kept as minimal

as possible for fast and easy deployment of the fault detection scheme. A system

that uses a lot of resources in modelling may not be ideal, as more time and

resources will be spent on the system than on improving the process.

In the next section, Principal Component Analysis is discussed, as it is the benchmark 

in multivariate statistical process control. 

2.2.3 Principal Component Analysis 

Principal Component Analysis (PCA) is a linear multivariate statistical method, 

generally used for data compression and information extraction by projecting high-

dimensional data onto a space with significantly lower dimensions. Specifically, PCA 

transforms a set of highly correlated variables, into a smaller set of new, uncorrelated 

variables called principal components (PC). PCA takes advantage of redundant 

information that exists in highly correlated variables to reduce the dimensionality. 

Mathematically, PCA relies on an eigenvector decomposition of the covariance or 

correlation matrix of the process variables. 

Principal components are orthogonal to each other and are a linear combination of 

the original variables. Principal components are traditionally ordered in decreasing 

order of eigenvalue; are rotated in the directions of maximum variance. In most 

cases, only the first few principal components that explain most of the variation in 

the data are retained in the analysis. In order to handle variables with different 

amplitude and frequency, all the process measurements are usually mean centred 

and scaled before PCA analysis is done (Rosen & Lennox, 2001). This is standard 

practise in process monitoring and fault diagnosis. 
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The columns of the matrix P are known as loadings while elements of the matrix T 

are called scores. The scores are the values of the original process variables that are 

mapped into the reduced dimensional space vectors. In the context of feature 

extraction, the score vectors obtained from projecting the process variables onto the 

principal components can be considered as the extracted features. The number of 

principal components to use in calculating the features can be determined by 

investigating the cumulative variance accounted for by including additional principal 

components (Zumoffen & Basualdo, 2008). 

The scores can then be transformed into the original vector as follows: 

𝑿� = 𝐓𝐏𝐓 Eqn.4 

The residual matrix R, is now evaluated as 

𝑹 = 𝑿 − 𝑿�   Eqn.5 

Finally, the original input data can be calculated as 

𝑿 = 𝐓𝐏𝐓 + 𝐑 Eqn.6 

Principal Component Analysis 

• For a data set X (n observations by m variables), create a covariance matrix E

o 𝑬 = 1
𝑛−1

𝑿𝑇𝑿 Eqn.1 

• Calculate the eigenvectors V and eigenvalues Λ for the covariance matrix E

using eigenvalue decomposition

o 𝑬 = 𝑽Λ𝑽𝑇 Eqn.2 

• Determine the reduced dimensionality a, that captures significant variance.

• Define the loading matrix (principal components) P as the first a

eigenvectors of V

• Calculate the principal component scores

o 𝑻 = 𝐗𝐏 Eqn.3 
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• Process Monitoring with PCA

After the PCA model that is based on historical data is constructed, multivariate 

control charts that are based on Hotelling’s T2 and square prediction error (SPE), or 

Q, can now be plotted. The process monitoring scheme is then reduced to only the 

two variables, T2 and Q, which characterizes two orthogonal subsets of the original 

data space. Hotelling’s T2 represents the major variation in the data and Q represents 

the random noise that is in the original data (Garcia-Alvarez et al., 2009). Hence, T2 

explains the variation within the score space by using all the retained PCs. Hotelling’s 

T2 value is calculated as 

𝑇2 = 𝑿𝑇𝑷Λα−1𝑷𝑻𝑿  Eqn.7 

where Λα is the square matrix  that is formed by the first a rows and columns of Λ 

The process will be considered to be normal if: 

𝑇𝛼2 ≤
�𝑛2−1�𝑎
𝑛(𝑛−𝑎) 𝐹𝛼(𝑎,𝑛 − 𝑎)     Eqn.8

where  𝐹𝛼(𝑎,𝑛 − 𝑎)  is the Fisher-Snedecor distribution with 𝑎,𝑛 − 𝑎  degrees of 

freedom and α the level of significance. 

The Q statistic or squared prediction error (SPE) measures the variability that breaks 

the normal process correlation in the data. Mathematically, Q is obtained as the sum 

of the squared errors in the residual space or the sum of variations in the residual 

space, which is defined as  

𝑸𝒋 = (𝑿𝒋 − 𝑿�𝒋)2      Eqn.9 

for the jth sample 

The Q statistic is thus a measure of the amount of the variations in each sample that 

is not captured by the retained PCA model. 
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The detection thresholds for the squared prediction errors can be calculated as: 

𝑸𝜶 = 𝜃1 �
ℎ0𝑐𝛼�2𝜃2

𝜃1
+ 𝜃2ℎ0(ℎ0−1)

𝜽𝟏
𝟐 �

1
ℎ0�

Eqn.10 

where 𝜃𝑖 = ∑ 𝜆𝑗2𝑛
𝑗=𝑎+1 , ℎ0 = 2𝜃1𝜃3

3𝜃22
and 𝑐𝛼is the value of the normal distribution, α is 

the level of significance and 𝜆𝑗 is the jth eigenvalue of E (Alcala & Joe Qin, 2011). 

The values of these two statistics are also calculated for the new data set. If, at a 

specific point, T2 or Q for the new data set is outside the calculated control limits, the 

process is said to be out of control at that point. In fact, this may mean that a fault 

has occurred at that point. When any fault has been detected using any of the T2 or 

Q statistics, it is crucial to identify the cause of that fault. This can be done by using 

contribution plots of the original data. In a PCA model, two types of contribution 

plots are used to identify the fault since two types of control charts are used, i.e., a 

chart for residuals and one for Hotelling’s (Teppola et al., 1998). 

The residual plots show the Q residual values plotted against the samples, and this 

shows the time when the fault occurs. The contribution plots are computed so that it 

can be determined what type of fault is detected. The contribution plots are 

calculated by computing the means of the columns of the residual matrix R that is 

based on the faulty data set (Ralston et al., 2004). The contribution plots are then 

used to determine which variables are associated with the faults that are detected. 

In determining whether the individual variable contribution to the T2 value is 

significant or not, one can calculate the control limits for the contribution plots. It is 

also possible to  compare the size of the variable’s contribution during the faulty 

conditions with the size of the same variable’s contribution under the desired normal 

operating conditions. Therefore, the variables with the largest contribution to the T2

value normally indicate the source of the fault (Johnson & Wichern, 2007). 
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Principal component analysis has been applied in many different areas such as 

science, biology, engineering, etc., but despite all these applications, it has its 

difficulties as well. Limitations of the PCA methodology include its lack of 

exploitation of autocorrelation (Venkatasubramanian et al., 2003b) and its linear 

nature. In order to address these and other drawbacks of PCA, several extensions of 

PCA have been developed, some of which are discussed in the next section.  

2.3 Developments in Nonlinear Feature Extraction Fault Detection 

In order to capture the nonlinear nature of measured process data for fault 

diagnosis, many feature extraction strategies have been investigated and studied 

over the last couple of years. The overview of these nonlinear feature extraction 

methods is not meant to be exhaustive, but only to highlight the different 

approaches to nonlinear feature extraction available in literature. The body of 

literature is also relatively large and hence only a brief review is given in this section. 

2.3.1 Neural Networks 

A neural network is an architecture that is made up of large numbers of units that are 

called neurons. An example of a neuron is shown in Figure 2.2 (Page 17). The neuron 

that is shown consists of n inputs;𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛. These inputs come from a variety of 

sources, not limited to the network structure in which they originate from other units, 

or may even be from some external sources (Pollard et al., 1992). The output of the 

unit y in this network is given as: 

𝑦 = 1
1+𝑒−𝐴

Eqn.11 

where 

𝐴 = 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ∑ wixi
𝑛
𝑖=1  Eqn.12 

𝑤𝑖 𝑖𝑠 𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 
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These units or neurons are arranged in layers, as shown, Figure 2.2. The network that 

is shown has three layers. The first layer consists of neurons that have inputs to the 

network; these inputs come from external sources. This is the layer that interacts with 

the outside environment. These neurons in the first layer then act as inputs to the 

second layer. In the same manner, the neurons in the third layer get their inputs from 

the second layer, and the third layer is the output of the entire network to the 

outside environment in case of a single hidden layer.   
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Figure 2.2 Artificial neuron 

Since the second layer has no direct connections with the environment as it only 

interacts with the first (input) and the third (output) layers, it is called the hidden 

layer. The number of hidden layers can be more than one, as network structures 

change, and depending on the intended use of the network. 
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Figure 2.3 An example of a neural network with a single hidden layer 

Chapter 2: Multivariate statistical process control – literature review 

Stellenbosch University  http://scholar.sun.ac.za



18 

The reason why we require these neural networks is to construct a mapping from a 

vector X to a vector Y. The size of the input layer X and output layer Y remains fixed 

by the number of neurons that are contained in them. As for the hidden layer, its size 

depends on the user’s requirements and the purpose for which the network is being 

used for. Since the network maps the input values to the output, the error between 

the predicted and the observed values should be as small as possible. During the 

training phase of the network, the network is presented with examples of the type of 

mapping that is required. These training examples are referred to  as training vectors, 

and they are pairs that consist of the input and the output (Pollard et al., 1992). 

There has been an interest in literature in the application of neural networks in order 

to have a solution to the fault diagnosis problem. The neural networks that have 

been studied can be classified into the following categories:  

(i) the architecture of the network such as sigmoidal, and  

(ii) the learning algorithm in form of either supervised or unsupervised 

(Venkatasubramanian et al., 2003b). 

The standard of applying neural networks in fault diagnosis is used to classify the 

process data according to the operation of the process. The classification method 

uses the individual measurement patterns in the process data, and has no 

information about the direction of changes found in the process measurements. The 

classification of these individual measurement patterns is a very straightforward fault 

diagnosis method. When there is sufficient process measurements that are available, 

this classification can be done. This classification method is an off line fault diagnosis 

scheme, where process data is collected and the faults are properly defined. A 

classifier is then designed, and exposed to some test data. After this, the classifier is 

then used in the process (Sorsa & Koivo, 1993). 
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2.3.2 Nonlinear PCA with auto associative neural networks 

Nonlinear principal component analysis (NLPCA) is a nonlinear generalization of the 

standard principal component analysis that was discussed earlier. This is used in 

multivariate data, and generalizes the principle components from straight lines to 

curves. Therefore, the subspace in the original data space which is described by all 

nonlinear components is also curved (Scholz et al., 2007). The NLPCA is used to 

identify and remove correlations found within the problem variables, thereby 

assisting with the fault diagnosis problem. The main difference of NLPCA compared 

to PCA is that both linear and nonlinear correlations are uncovered within the data.  

Figure 2.4 Auto associative neural network architecture (from Scholz et al., 2007) 

Nonlinear PCA can be implemented by using a neural network (Figure 2.1). NLPCA 

operates by training a feed forward neural network to perform the identity mapping, 

where the network inputs are reproduced at the output layer (Kramer, 1991). 

However, we find in the middle of the network a layer that works as a bottleneck 

where dimensionality reduction of the data is applied. This bottleneck layer ensures 

that the network develops a representation of the input data, and that all the 

features in data are extracted in this layer. 
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2.3.3 Kernel PCA 

When dealing with neural networks for feature extraction, there are difficulties that 

are encountered. Some of these difficulties arise because one has to predetermine 

the number of features that must be extracted (Lee et al., 2004). An alternative to 

network based feature extraction that addresses some of the difficulties is Kernel 

PCA. What KPCA does is that it tends to transform the original data into a higher 

dimensional feature space, in which linear PCA can be applied, and then only the 

significant components are retained.  

The calculation of the Kernel principal components is an eigenvalue problem. The 

number of components that is retained is determined based on the variance 

decomposition (Cho et al., 2005). Figure 2.5 illustrates the way that Kernel principal 

components analysis is performed. 

Figure 2.5 Steps of KPCA projection and reconstruction (Lee et al., 2004; Auret, 2010) 

The setback that KPCA has is that no explicit demapping function is available to 

reconstruct the nonlinear principal components to the original input data. Some 

limitations to the KPCA approach includes the computational expense of calculating 
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the required dot product for large sample data sets, as well as the lack of 

interpretability of nonlinear components in the original input space (Cho et al., 2005). 

2.3.4 Random forests 

A development in statistical learning is the emergence of ensembles of learning 

machines. “An ensemble is described as a combination of a collection of classifiers in 

order to enhance the performance of the overall classifier” (Valentini & Masulli, 

2002). 

It has been shown (Valentini & Masulli, 2002) that these ensembles of classifiers 

normally perform better than the individual classifiers, even in cases where the base 

classifiers are considered weak.  By constructing an ensemble of classifiers, more 

thorough exploration of hypotheses can be accomplished (Valentini & Masulli, 2002). 

Random forests are nonlinear regression models that consist of ensembles of 

regression trees, in which each tree depends on a random vector that is sampled 

independently from the process data (Auret & Aldrich, 2010a). The random forest 

model is an example of ensemble methods, with the base classifiers consisting of 

unpruned decision tree classifiers (Breiman, 2001). A decision tree is a recursive 

subspace partitioning classifier, that works in such a way to reduce the class impurity 

of successive subsets (Breiman et al., 1993).  

The prevalent use of the random forest algorithm can be due to its high accuracy 

and fast computations (Breiman & Cutler, 2003).  The tree ensembles such as these 

random forests can further provide an added functionality in which one can interpret 

the variable importance (Breiman & Cutler, 2003) as well as partial dependence 

analysis (Friedman, 2001). The random forest feature extraction was applied to 

unsupervised fault diagnosis for process data, and compared to linear and nonlinear 
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methods. Random forest results were comparable to the existing techniques (Auret 

& Aldrich, 2010a; Auret, 2010).  

2.3.5 Biplots 

Gabriel (1971) introduced the concept of the biplot, which is defined as a graphical 

display which consists of a vector for each row and a vector for each column of a 

matrix that has a rank of two. The biplot is a multivariate equivalent of the scatter 

plot (used for univariate). An element of this matrix is then represented by the inner 

product of the vectors that correspond to both its row and its column (Gardner et al., 

2005).  Aldrich et al., 2004 and Gardner et al., 2005 proposed a related statistical 

process monitoring approach that emphasizes on the visualization of process 

correlations and variations in the process variables by using the biplot. In addition, 

this approach of bipot provides for an automatic detection and then the visualization 

of the process disturbances by use of bagplots (Rousseeuw et al., 1999) 
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CHAPTER 3 RESTRICTED BOLTZMANN MACHINES 

This chapter gives the theoretical framework of Restricted Boltzmann Machines, the 

network architecture and the training algorithm. The auto encoder is also discussed, 

in which the network is pre-trained with Restricted Boltzmann Machines. A review, on 

the use of RBMs for feature extraction is discussed in this chapter as well. 

3.1 Boltzmann Machines 

The Boltzmann machine is a collection of symmetrically connected, neuron-like, 

stochastic binary units (Figure 3.1, page 24). Each unit in the network selects to be on 

or off by considering the total input that it receives from all the other units.  

For any training set of state vectors, the weights and biases in a Boltzmann machine 

can be adjusted to assign high probability to vectors in the training data. The units in 

a Boltzmann machine can be partitioned into two subsets, namely, visible and hidden 

unit. The visible units are those units of the network whose states can be observed, 

while the hidden units are those with unobserved states.  These visible neurons 

provide an interface between the network and the environment in which the network 

operates (Haykin, 1999). 

In this study, the focus is in a special type of the Boltzmann Machine, in which there 

are no connections within layers (with no visible-visible or hidden-hidden 

connections). This special type is called the Restricted Boltzmann Machine. 
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Hidden (h)

Weight (W)

Visible (v)

Figure 3.1: The Boltzmann Machine 

3.1.1 The Restricted Boltzmann Machine 

A Restricted Boltzmann Machine (RBM) (Sejnowski, 1986) is a two-layer neural 

network that contains  a layer of visible, binary stochastic units, connected to a layer 

of hidden, binary stochastic units, without connections within each layer, i.e. no 

visible-visible and no hidden-hidden connections, as shown in Figure 3.2. The 

connections are symmetric, meaning that they have the same weight in both 

directions (Hinton, 2010). 

bias

biasHidden (h)

Weight (W)

Visible (v)

Figure 3.2: Restricted Boltzmann Machine 
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A configuration (𝒗,𝒉) of both the visible and hidden units has the following energy: 

𝐸(𝒗,𝒉) = −∑ 𝑎𝑖𝑣𝑖 − ∑ 𝑏𝑗ℎ𝑗𝑗∈ℎ𝑖𝑑𝑑𝑒𝑛 − ∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗𝑖,𝑗𝑖∈𝑣𝑖𝑠𝑖𝑏𝑙𝑒  Eqn.13 

where 𝑣𝑖, ℎ𝑗 are binary states of visible unit i and hidden unit j,𝑎𝑖, 𝑏𝑗 are their 
respective biases and 𝑤𝑖𝑗 is the weight. 

This network then assigns the following probability function for every possible pair of 

visible and hidden vector  

𝑝(𝒗,𝒉) =  1
𝑍
𝑒−𝐸(𝒗,𝒉) Eqn.14 

where the partition function, Z, is given by summing over all possible pairs of visible 

and hidden vectors: 

𝑍 = ∑ 𝑒−𝐸(𝒗,𝒉)
𝒗,𝒉  Eqn.15 

The probability that the network assigns to a visible vector, v, is given by summing 

over all the possible hidden vectors:  

𝑝(𝒗) =  1
𝑍
∑ 𝑒−𝐸(𝒗,𝒉)
𝒉  Eqn.16 

3.1.2 Training the RBM 

The derivative of the log probability of a training vector with respect to a weight (as 

shown in Eqn. 16) is simplified as: 

𝜕𝑙𝑜𝑔𝑝(𝒗)
𝜕𝑤𝑖𝑗

= 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 Eqn.17 

where  〈 〉𝑑𝑎𝑡𝑎 is the value that is expected of that distribution, and 〈 〉𝑚𝑜𝑑𝑒𝑙 is then 

the value that is expected of Boltzmann sampling vectors. 
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Since there are no direct connections between the hidden units in a Restricted 
Boltzmann Machine, it becomes easy to obtain an unbiased random sample 
of 〈vihj〉data. For a randomly selected training data from the input space, v, the binary 
state, hj,for each of the hidden unit, j, is set to 1 with a probability of 

𝑝�𝒉𝒋 = 𝟏 | 𝒗� = 𝜎�𝑏𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗𝑖 �     Eqn.18 

where 𝜎(𝑥) = 1
1+𝑒−𝑥

 is the logistic sigmoid function.  𝑣𝑖ℎ𝑗 is then an unbiased sample 

(Hinton et al., 2012). 

Similarly, since there are no direct connections between visible units in an RBM, it is 

also very easy to get an unbiased random sample of the state of a visible unit, 

provided the hidden vector is known 

𝑝(𝐯𝒊 = 𝟏 | 𝐡) = 𝜎�𝑎𝑖 + ∑ ℎ𝑗𝑤𝑖𝑗𝑗 � Eqn.19 

To get an unbiased sample of   〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 is very difficult, and requires adjustments 

in the training procedure.  To sample from  〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙  still requires multiple 

iterations that alternates between the updating of all the hidden units, and then 

updating all of the visible units and both updates are done in parallel. However, this 

learning still works very well if  〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙   is replaced by the corresponding 

〈𝑣𝑖ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛. A much faster learning procedure was proposed by Hinton (Hinton, 2002) 

which ensures that 〈𝑣𝑖ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛  is obtained as follows: 

a. Starting with a training data vector on the visible units, set the states of the

visible units to a training vector. Then update all of the hidden units in parallel.

b. Update all of the visible units in parallel to get a “reconstruction”.

c. Update all the hidden units again
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From Figure 3.3, it can be seen that if an input vector,𝒙𝑖 is used as a training vector, 

then the hidden units are all updated in parallel. Then update the visible units again 

to get a reconstruction, which is shown by the vector, 𝒙𝑖′ . 
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Figure 3.3: Training the Restricted Boltzmann Machine 

After all the updates, the change in weight is derived as 

∆𝑤𝑖𝑗 = 𝜀�〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛� Eqn.20 

where 𝜀 is the learning rate 

This learning procedure that is explained in the foregoing discussion approximates 

gradient descent in what is known as Contrastive Divergence (CD). 

3.2 Stacked Restricted Boltzmann Machines 

3.2.1 Dimensionality reduction using auto encoders 

A multilayer auto encoder is a feed forward neural network that has more than one 

hidden layer in the network structure. This network attempts to reconstruct the input 
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data at the output layer of the network (Hinton et al., 1997). The targets at the output 

layer of the network are normally the same as what you find at the input layer, 

therefore, the sizes of the input and output layers are the same. Since the hidden 

layer is smaller compared to the input data in terms of its size, the dimensionality of 

the original input data is reduced to a smaller dimensional space at this hidden layer 

(Vishnubhotla et al., 2010). The hidden layer gives a smaller dimensional 

representation of the data that preserves as much structure as in the original data. 

This ensures that the low dimensional, nonlinear structure of the data is revealed 

(Hinton & Salakhutdinov, 2006). 

Real world data such as; speech signals, process data, digital photographs, usually 

has a high dimensionality. In order to handle that type and nature of data effectively, 

there is a need to reduce its dimensionality to rather a level much lower than the 

original data. After this transformation, the reduced representation should have a 

dimensionality that corresponds to the intrinsic dimensionality of the data. The 

intrinsic dimensionality of data is the minimum number of parameters that are 

required to account for the observed properties of the data (Van der Maaten et al., 

2009). PCA is widely used in reducing the dimensionality of process data, but, as 

discussed earlier, its linear nature is a drawback. A neural network that has at least 

one hidden layer in its network structure can give a nonlinear mapping from input to 

output layer. However, the normal neural networks are usually unable to reduce the 

dimensionality of training data to the same extent as that of PCA (Tan & Eswaran, 

2008). 

High dimensional data can be converted to low dimensional space by training a 

multilayer network with a small central layer that reconstructs high dimensional input 

vectors. As Hinton and Salakhutdinov did in (Hinton & Salakhutdinov, 2006), they 

describe a way that initializes the weights that can allow deep auto encoder networks 

to learn low dimensional space that works better to reduce the dimensionality of the 
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training data. This is a nonlinear generalisation of principal components analysis. It 

uses a multilayer encoder network to transform the high dimensional training data 

into a low dimensional space, and then also uses a similar decoder network to 

recover the data from the reduced space, see Figure 3.4 (page 30).  

3.2.2 Stacked Autoencoder with RBM pre training 

In training this network, first start with a standard one hidden layer auto encoder. The 

weights are trained with the Restricted Boltzmann Machine.  The outputs from this 

first RBM are used as the inputs for the next encoder. The same training process is 

done in which the hidden layer is trained, and the outputs used as the input for the 

next network in the stack. This training process is repeated for as many layers as 

needed; thereby creating a stack of auto encoders. 

After the pre training of multiple layers, the model is unfolded (Figure 3.4, page 30) 

to produce the encoder and decoder networks that use the same network weights 

that it has learned during the training. The fine tuning stage of the network then 

replaces the stochastic activities by deterministic, real valued probabilities and then 

uses backpropagation through the whole auto encoder in order to fine tune the 

weights. A multilayer auto encoder is a feed forward neural network which has more 

than one hidden layer in the entire network structure.  This structure uses RBM pre 

training for each of the hidden layers.  
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Figure 3.4 Autoencoder with RBM pre-training (Hinton & Salakhutdinov, 2006) 

3.2.3 Stacked RBM network architecture 

After each RBM has been trained, a new layer is added in which the input is the 

output of the trained RBM. This new layer is trained as a separate RBM using the 

normal training process. In the greedy training procedure, one layer is added on top 

of the network at each stage, and only that top layer is trained (Hinton, 2007) (as an 

RBM, see Figure 3.5). 

Figure 3.5: Stages of the learning of layers of RBM’s (Hinton, 2007). 
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Using the layer-by-layer learning algorithm of section 3.1 (page 29), first learn a stack 

of RBM’s. After the learning is complete, the stochastic activities of the binary units in 

each layer are replaced by deterministic, real valued probabilities and the auto 

encoder is then used to initialize a multilayer, nonlinear mapping as shown in 

Figure 3.6. This learning is treated as a pre training stage that captures a lot of the 

higher order structure in the input data. In    Figure 3.6, greedy training a stack of 

RBM’s where samples from the lower level RBM are used as the data for training the 

next RBM is shown. The corresponding deep belief network that is formed after the 

learning is shown in Figure 3.7 (page 32). 

   Figure 3.6: Learning a stack of RBMs 
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     Figure 3.7: A deep multilayer network 

Successful applications of these networks have been applied among others, in 

classification problems (Bengio et al., 2007), regression analysis (Salakhutdinov & 

Hinton, 2008), dimensionality reduction (Hinton & Salakhutdinov, 2006; 

Salakhutdinov & Hinton, 2007), modelling textures (Osindero & Hinton, 2008), 

information retrieval (Krizhevsky & Hinton, 2011), robotics (Hadsell et al., 2008) and 

natural language processing (Collobert & Weston, 2008). With a few exceptions 

(Sutskever & Hinton, 2007; Hinton & Brown, 2000), the literature on RBMs is confined 

to modelling static data. Therefore, in the next section, a review of some of the 

applications of Restricted Boltzmann machines is given. 

3.3 Review of Applications of Restricted Boltzmann Machines 

This section briefly describes the review of the applications of Restricted Boltzmann 

Machines. As already highlighted, the use of RBMs in feature extraction is important, 

as this will determine its usefulness in process monitoring. 
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3.3.1 Reconstruction of images  

Reconstruction of face and digital images using auto encoders is discussed in this 

section. The training of the auto encoder using Restricted Boltzmann Machine as 

building blocks is discussed in section 3.1.1. The first step to consider when dealing 

with image reconstruction is to start by training the auto encoder. This auto encoder 

will have an input layer, a hidden layer and the output layer.  

The sizes of the hidden layers are set as desired in the experiment. The training 

images are set as fed into the auto encoder network, which then reduces the 

dimensionality of the training data in the middle hidden layer. During this 

dimensionality reduction, the training data is represented into a smaller code space, 

which is then reconstructed back into the images. The output of the hidden layer in 

this network is then used as the input to train the next auto encoder network. This 

process is then repeated for the next network. The output layer always reconstructs 

the image as input through the training and testing phase. 

The experiments were conducted on the ORL (Olivetti Research Laboratory) face data 

set. The training data had 400 images.  The training images are rescaled to size 

37 ×  30 by using the nearest neighbour interpolation. The pixel values of these 

images are then normalised to be in the range from 0 to 1. The dataset is then 

divided into 200 training images of two sets, one contains the first five (5) images 

and the other subset the last five images of each person.  

The network that was trained remained in such a way that the deepest hidden layer 

had 30 neurons. The deepest hidden layer in the network uses a linear activation 

function, whereas all the other layers use sigmoid activation functions (Tan & 

Eswaran, 2010). All the layers in the network were fully connected after the training 

was completed.  
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A standard one hidden layer stacked auto encoder network is initialised with small 

random weights and biases that range from 0 to 0.1. For the architecture in the 

experiments conducted, the weights and biases were pre-trained using RBM for 50 

epochs, the total number of epochs used for the training being 230. The MSE for the 

testing phase after 230 epochs was 6.8, which performed better than auto encoders 

without RBM pre training which had the reconstruction error of 9.1. From these 

experiments, auto encoders were successfully used to  reconstruct images, as was 

seen from the reconstruction errors in which they outperformed those without RBM 

pre-training. 

 

The same approach was considered but in this case using the MNIST dataset of 

handwritten digits (Tan & Eswaran, 2010). The training and testing sets were divided 

according to most of the other benchmarking experiments carried out by other 

researchers, in order to make it easier to do comparisons. By using similar network 

architectures, the MSE for the auto encoder with RBM pre-training was 1.21 

compared to 1.685 for the one without.  

 

It was shown in this experiment, that auto encoders with RBM pre-training can be 

used successfully in image reconstruction, and outperformed the networks without 

RBM pre-training. Since the MNIST database is a large dataset (with 6000 training 

images) compared to the ORL (with 400 images), the trained auto encoder has better 

generation since a good convergence is achieved at the end of the training phase. 

The reconstruction errors are shown for both data sets in Table 1. 

 

Table 1: MSE for MNIST & ORL datasets for whole image 

Model ORL MNIST 

Autoencoder 9.1 1.685 

Autoencoder with RBM pre-training 6.8 1.210 
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3.3.2 Using Auto encoders for Mammogram Compression 

The application of auto encoders for medical image compression was considered by 

Tan & Eswaran (2009). The paper presents the results obtained for medical image 

compression using auto encoder neural networks. These experiments show that auto 

encoders can be trained effectively by using image patches instead of the entire 

image, and still yield  results that are comparable to other approaches (Tan & 

Eswaran, 2009).  

 

The performance of the auto encoder is based on the parameters mean squared 

error (mse) and structural similarity (ssim) index. MSE is the one measure of 

distortion used for images. “The MSE averages the squared intensity differences of 

compressed and original image pixels” (Cosman et al., 1994). The ssim index varies 

between o and 1, with 0 being worst as it represents non-identical images and 1 

represents identical images. 

 

Experiments were conducted on Images from Digital Database for Screening 

Mammography (DDSM), a mammogram dataset for breast cancer diagnosis. Three 

categories of mammograms that consist of 100 patients with normal breasts, 80 

patients with breast cancer and 70 patients with benign were selected. The results for 

the MSE are shown in Table 2. The performances also depend on the size of the 

hidden layers, since smaller hidden layers decrease the performance as the 

reconstruction errors are higher. The auto encoder with RBM pre training managed 

to get the ssim index of 0.98, as compared to the one without pre training with an 

ssim index of 0.89.  

Table 2: MSE for different network architectures 

Network architectures training 

Autoencoder 0.1206 

Autoencoder with RBM pre-training 0.00974 
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3.3.3 Face Recognition 

The face recognition problem is addressed using an auto encoder with RBM pre-

training. The recognition problem using the auto encoder can be implemented using 

a number of steps that are discussed (Tan & Eswaran, 2010). As with many of these 

applications, the first step normally involves training the auto encoder. After the auto 

encoder is trained using the images, feature codes are then obtained from the test 

images.  

 

In the experiments conducted, the feature codes from the deepest hidden layer are 

extracted for classification. These experiments were conducted based on the two 

datasets, namely the MNIST and ORL face dataset. Table 3 shows the recognition 

rates that were obtained in the experiments. From the results, it is evident that the 

auto encoder with RBM pre training yielded good results with recognition rates of 

86% on the ORL dataset and 93.1% on the MNIST database.  

 

Table 3: Recognition rates (%) of different network architectures 

Models ORL MNIST 

Autoencoder 80.5 92.6 

Autoencoder with RBM pre-training 86.0 93.1 

 

3.3.4 Classification & filtering 

 

Collaborative filtering is the process of filtering for patterns (or information) by using 

techniques involving collaboration among viewpoints, data sources, etc. This involves 

very large datasets, and can include, but not limited to, sensing and monitoring data, 

financial data, and movie ratings. A widely used approach to collaborative filtering is 

to assign a low dimensional feature vector to each user and a low dimensional 

feature vector to each movie. This is done in order that the rating that each user 

assigns to each movie is then modelled by the scalar product of the two feature 
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vectors. In Salakhutdinov (2007), authors showed that RMBs can be used in 

modelling tabular data, for instance, the user’s ratings of movies.  

 

The Restricted Boltzmann Machine was applied to the Netflix data with very good 

results. The Netflix data represents the distribution of all ratings Netflix collected 

during the period of October 1998 to December 2005. The training data consists of 

100,480,507 ratings from 480,189 randomly chosen, anonymous users done on 

17,770 movie titles. Also provided in the research is the validation data that has 

1,408,395 ratings and a test set containing 2,817,131 user/movie pairs with the 

ratings withheld. The pairs that were selected contained the most recent ratings that 

were available.  

 

The RBM was trained using Netflix training data by means of various network 

specifications. The weights during the training phase were initialized with small 

random numbers that were sampled from a normal distribution with zero mean and 

a standard deviation of 0.01 (Salakhutdinov et al., 2007). The baseline root mean 

square error (RMSE) provided by Netflix on the same data, is 0.9514 using their own 

system, and the result of the experiment was an RMSE of 0.92. Restricted Boltzmann 

Machines can be successfully applied to large data containing approximately over 

100 million user/movie ratings. 
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CHAPTER 4 PROCESS MONITORING WITH RBM 

METHODOLOGY 

 

This section describes the methodology that was utilised to use the Restricted 

Boltzmann Machines to extract features from process data. The features will then be 

the basis for process diagnosis and monitoring. The stacked RBM that was used as 

generative model for extracting these features is also discussed in this chapter.  

 

4.1 Feature Extraction Overview 

 

A multilayer auto encoder with RBM training was used to extract features from 

process data. The Van der Maaten’s Matlab Dimension Reduction Toolbox (Van der 

Maaten et al., 2009) was used in this study to  extract features.  All of the layers of the 

auto encoder are trained in a single phase as the weights are pre trained with the 

Restricted Boltzmann Machines (RBM). The RBM is trained using contrastive 

divergence. All the experiments in the study were performed in MATLAB.  

 

Case studies were made on several data sets that have been studied in literature. The 

results will then be compared with results of other non-linear approaches. Even 

though the labels of the data are known, they are not used when features are 

extracted, the labels will only be used to show the quality of the features extracted.   

 

The methodology used for extracting features is summarized as follows: 
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The features that will be extracted at this stage will then be used in a process 
diagnosis & fault detection scheme. 
 

4.1.1 Feature Extraction fault diagnosis 

 

A general outline of fault diagnosis with feature extraction is presented as shown in 

Figure 4.1, with the aim of designing a framework based on Restricted Boltzmann 

Machines feature extraction. Process fault detection and identification with 

unsupervised methods consist of offline and online applications. In the offline 

routine, normal operating conditions data is used to specify the process and this 

forms the basis for the model calibration. The online application involves the testing 

of unseen data against the specified process features to  detect whether a fault has 

occurred.  

 

In fault diagnosis using feature extraction, features are extracted from the original 

process data X of dimension m by a forward-mapping function that reduces this into 

a feature space F of dimension p. A reverse mapping then reconstructs the original 

variables from the feature space. The residual space R is the error between the 

original variables and the reconstructed variables. See Figure 4.1 (page 40). 

Feature Extraction Algorithm: 

 

 Normalize (scale) the data (to be between 0 and 1). 

 Train the auto encoder with RBM training 

 Reduce the dimensionality as desired, but not less than the intrinsic 

dimensionality 

 Extract features from the reduced dimensionality 
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R(n×m)
residual space

X(n×m)
original 

process data

Xʹ(n×m)
reconstructed 

data

F(n×p)
feature spaceforward 

mapping
reverse 
mapping  

Figure 4.1: Feature Extraction Fault Diagnosis 

 

The algorithm for the feature extraction process is outlined below: 

 

 

Feature Extraction Fault Diagnosis Algorithm: 

 Original process data/variables refer to the physical measurements made during 

normal operating conditions and used as input to feature extractive algorithms, 

represented by the matrix X (n samples of m dimensions). 

 Features refer to the directional components or manifold definitions extracted by 

dimension reduction. 

 Scores are the sample-specific values along the defined features, represented by 

the matrix F (n samples of p dimensions). 

 The mapping function G (.) calculates the scores from the process variables: F =  

G(X). 

 Reconstructed variables are represented by 𝑿� (n samples of m dimensions), and 

are the approximation of the original variables from the scores.  

 The demapping function H (.) calculates the reconstructed variables from the 

scores: 

  𝑿� = 𝑯(𝑭) 
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4.2 Design Issues with RBM Fault Diagnosis 

Fault diagnosis requires more than simply a feature extraction step, as shown in the 

general fault detection and identification algorithms. The design issues as applicable 

to creating a RBM feature extraction fault diagnostic method are presented here. 

 

4.2.1 Reduced feature space dimension 

Selecting the number of features that capture significant information is a challenge 

with no clear solution. One approach, the crossing (Russell et al., 2000), makes use of 

multidimensional scaling eigenvalues. Through the plotting of both the structured 

and unstructured eigenvalues, the reduced feature space dimension can be 

approximated at that point where the structured eigenvalues cross the unstructured 

eigenvalues.  

 

4.2.2 Mapping and demapping functions 

RBM feature extraction only provides feature scores for the training data, but cannot 

precisely calculate scores for the data that did not feature during the training. This 

problem is also present in other nonlinear feature extraction techniques. 

 

In order to calculate the scores and reconstructions of newly introduced data, explicit 

mapping and demapping models need to  be constructed. Since an auto encoder is 

used with RBM pre-training, the decoder part of it is used for demapping. 

 

4.2.3 Feature characterization  

Once features have been extracted, the normal operating conditions region within 

the feature space must be quantifiably characterized, so that a new process data 

sample can be evaluated in terms of its membership to this normal operating 

conditions region. The typical PCA process monitoring approach assumes a 
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multivariate Gaussian distribution of the features, leading to the Hotelling’s T2 

statistic thresholds. A more general approach to the definition of the normal 

operating conditions region in feature space is thus required. The problem of 

defining a region where data points occur, separating this from a region where data 

points do not occur, is termed support estimation. “One-class support vector 

machines provide data-adaptive, non-Gaussian support estimation” (Jemwa & 

Aldrich, 2006). 

 

4.2.4 Contribution calculations  

Process variables related to a fault condition could be determined by investigating 

the difference between actual values and reconstruction values, as obtained by the 

demapping function. The residual based contribution of variable j (Cr,j) is calculated 

from the actual variable value Xj and the reconstructed variable value X́ j. 

o 𝐶𝑟𝑗 = (𝑋𝑗 − 𝑋𝑗′)2        Eqn.21 

 

The calculation of the lack of fit statistics, (i.e. residual space) that is often used, is the 

squared prediction error (SPE), which is simply the sum of squares for each row of 

the residual matrix. This is a measure of the residual between an observation and its 

projection that is retained in the model.  

 

The control limit for the SPE-statistic is calculated as in MacGregor & Kourti (1995), 

using the normal inverse cumulative distribution function, the confidence threshold 

and the eigenvalues of the model. Data that falls outside the confidence limit is 

considered abnormal data. The process data is assumed to be normally distributed. 

The individual contributions are normalised with the 99th percentile of the 

contributions of the normal data to obtain individual relative contributions. An 

indication of the average individual relative contributions to the SPE-statistic is 

calculated as an indicator of variable importance. 

 

CHAPTER 4: Process Monitoring with RBM Methodology 
 

Stellenbosch University  http://scholar.sun.ac.za



43 
 

4.3  Process Monitoring Methodology 

4.3.1 Principal Components Analysis Fault Diagnosis 

 

In this section, PCA is discussed in detail because it will be used as a basis for 

comparison. Although PCA is a linear approach and the fact that RBMs are nonlinear, 

it is used simply because it is an industry standard at present. 

 

“Principal component analysis (PCA) is a vector space transformation often used to 

transform multivariable space into a subspace which preserves maximum variance of 

the original space in minimum number of dimensions” (Garcia-Alvarez et al., 2009) .  

This subspace will be new variables that are uncorrelated and retain most of the 

original information, where the variation in the signals is considered to be the 

information. PCA takes advantage of redundant information existent in highly 

correlated variables to reduce the dimensionality.   

 

The columns of the matrix P are known as loadings while elements of the matrix T 

are called scores. The scores are the values of the original process variables, which 

are mapped into the reduced dimensional space vectors. In the context of feature 

extraction and fault diagnosis, the score vectors obtained from projecting the 

process measurements onto the principal components can be considered as the 

extracted features. The number of principal components to use in calculating the 

features can be determined by investigating the cumulative variance accounted for 

by adding additional principal components to the score space. 

 

The Process Diagnostic Toolset (Yzelle, 2012) will be used to perform PCA fault 

diagnosis. The fault diagnosis scheme will involve an offline application for 

calibrating the model as well as an online application for testing unseen data. 
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PCA Fault Diagnosis - Offline Application 

 

 Feature Extraction 

• For a dataset X (n observations by m variables), determine a covariance 

matrix E 

o 𝑬 = 1
𝑛−1

𝑿𝑇𝑿       Eqn.22 

• Calculate the eigenvectors V and eigenvalues Λ for the covariance matrix E 

using eigenvalue decomposition 

o 𝑬 = 𝑽Λ𝑽𝑇        Eqn.23 

• Determine the reduced dimensionality a, which captures significant 

variance, n is the number of components accounting for 90% of cumulative 

variance. 

• Define the loading matrix (principal components)P as the first a 

eigenvectors of V 

• Calculate the principal component scores  

o 𝑻 = 𝐗𝐏        Eqn.24 

 

 Feature characterization 

• Calculate the score distance as the Hotelling’s T2 value: 

o 𝑇2 = 𝑿𝑇𝑷Λα−1𝑷𝑻𝑿      Eqn.25 

where Λα  is a squared matrix formed by the first a rows and 

columns of Λ 

• Determine the detection thresholds  for the score distance 

o 𝑇𝛼2 = �𝑛2−1�𝑎
𝑛(𝑛−𝑎) 𝐹𝛼(𝑎,𝑛 − 𝑎)     Eqn.26 

where  𝐹𝛼(𝑎,𝑛 − 𝑎) is the Fisher-Snedecor distribution with 𝑎,𝑛 − 𝑎 

degrees of freedom and α the level of significance. 
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PCA Fault Diagnosis - Offline Application continued 

 

 Variable reconstruction 

• Calculate the reconstructed input variables X’ 

o 𝑿′ = 𝑻𝑷𝑇         Eqn.27 

• Calculate the square prediction errors Q 

o 𝑸𝒋 = (𝑿𝒋 − 𝑿𝒋′)2        Eqn.28 

• Calculate the residual distance error r 

o 𝒓 = ∑ 𝑸𝒎
𝒋=𝟏 𝒋

        Eqn.29 

• Determine the detection thresholds  for the squared prediction errors: 

o 𝑸𝜶 = 𝜃1 �
ℎ0𝑐𝛼�2𝜃2

𝜃1
+ 𝜃2ℎ0(ℎ0−1)

𝜽𝟏
𝟐 �

1
ℎ0�

     Eqn.30 

o Where 𝜃𝑖 = ∑ 𝜆𝑗2𝑛
𝑗=𝑎+1 , ℎ0 = 2𝜃1𝜃3

3𝜃22
  and 𝑐𝛼is the value of the normal 

distribution with α the level of significance. 

 

 Contribution calculations 

• Calculate the score distance contributions 𝑪𝒔 

o 𝑪𝒔,𝒋 = 𝑻𝚲−𝟏𝑷𝒋
𝑇𝑿𝒋 for variable j      Eqn.31 

• Calculate the residual distance contributions 𝑪𝒓 

o 𝑪𝒓,𝒋 = 𝑸𝒋         Eqn.32 
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PCA Fault Diagnosis - Online Application Algorithm: 

For unseen data 

 Feature calculation 

• Scale new data using scaling model of normal operating conditions. 

• Calculate the principal component scores  

 Feature characterization 

• Calculate the score distances 

 Detection in feature space 

• Compare the score distance to detection threshold sα 

• Detection if value exceeds detection threshold 

 Reconstruction calculation 

• Calculate the reconstructed variables 

• Calculate the squared prediction errors 

• Calculate the residual distances 

 Detection in residual space 

• Compare the residual distance to detection threshold rα 

• Detection if value exceeds detection threshold 

 

 Contribution calculations 

• Calculate the score distance contributions 

• For identified faults, compare with upper limits of score distance 

contributions of normal operating conditions 

 

• Calculate the residual distance contributions 𝑪𝒓 

o For identified faults, compare with upper limits of residual distance 

contributions of normal operating conditions 
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4.3.2 Restricted Boltzmann Machines Fault diagnosis 

 

Model Calibration (Offline Application) 

The first part in this process diagnosis scheme is to calibrate the model. This involves 

the normal operating conditions (NOC) data. The algorithm for calibrating the model 

is as follows: 

 

 

Model Calibration (Offline Application) Algorithm: 
 

 Feature extraction: 

• Scaled original input variables X representing normal operating conditions 

are mapped to features F. 

• The Autoencoder with RBM training is used for this feature extraction 

 Variable reconstruction: 

• Features are demapped to the original input space to obtain reconstructed 

variable values X’. 

• The Multilayer Linear Regression is used for the reconstructions 

 Reconstruction Characterisation 

• A statistic is calculated to summarize the information not captured in the 

feature space, the residual distance (r). 

• A detection threshold for the residual distance (rα) is determined using the 

percentile approach 

• Calculate the squared reconstruction errors (Q). 

 Contribution calculations: 

• Feature space contributions (Cs) can be determined by decomposing the 

score distance into input variable contributions 

• Residual space contributions (Cr) can be determined by decomposing the 

residual distance into input variable contributions 
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Online Application 

 

 

 

A summary of the on-going description of the process methodology used in this 

study is shown in Figure 4.2 (page 49).  

Online Application Algorithm: 

For unseen data: 

 

 Feature calculation: 

• The process inputs for unseen data are scaled using the Restricted 

Boltzmann Machines for the normal operating conditions data.  

 Reconstruction Characterisation 

• With the feature scores of the unseen data, reconstructed input variables 

can be obtained, and squared reconstruction errors (Q) calculated. 

• Reconstructed variable values are used to calculate the residual distance (r) 

 Detection in residual space: 

• Residual distances are compared to  its detection threshold (rα), and 

detection is indicated if this statistic exceeds the detection threshold. 

 

 Contribution calculations: 

• Feature space and residual space contributions (Cs and Cr) are calculated 

with the offline algorithm. 

• For detected faults, these contributions can be inspected to identify the 

fault. The upper limit of contributions for normal operating conditions 

provides a useful comparison. 
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Principal Components Analysis Fault Diagnosis – offline training 
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RBM fault diagnosis – offline training 

Scaling
Process NOC 

data
[N×m]

RBM feature 
extraction
-select a

-mapping P
-demapping PT

Reconstruction
-demapping

Residual distance 
calculation

- summed squared 
reconstruction error

Residual 
contribution 
calculation 

r
[N×1]

X́
[N×m]

F
[N×a]

rα
[1×1]

cr
[N×m]

X
[N×m]

 

Figure 4.2: Schematic of PCA and RBM fault diagnosis training algorithms 
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4.4 Experimental Procedures Implemented 

 

In this study, three datasets are used and the various models performed. This section 

gives an overview of the experimental procedures that were performed. The results 

that were obtained from each dataset are shown in Chapter 5. Even though PCA and 

RBM are compared in all the case studies, various other non-linear approaches are 

compared, using the results which are found in literature. All the experiments that are 

discussed in the thesis were done using the MATLAB software. 

 

4.4.1 PCA 

The PCA execution uses MATLAB’s built in function princomp and a custom 

implementation of the details with regard to process monitoring, the Process 

Diagnostic Toolset (Yzelle, 2012) MATLAB toolbox.  

 

4.4.2 RBM 

 

The Autoencoder was implemented using a modified code from the dimensionality 

toolbox written by Van der Maaten. The code was modified to be able to work with 

Gaussian units and also to allow performing the back-propagation using MATLAB’s 

neural network toolbox. The algorithm uses Levenberg Marquart back propagation 

for networks with fewer than 100 weights, otherwise the scaled conjugate gradient 

descent algorithm was used. The auto encoder is pre-trained using the Restricted 

Boltzmann Machines. 

 

For the RBM that was used, a learning rate of 0.0015 with a weight decay of 0.00015 

was chosen. The momentum that was used equals 0.8 with a batch size of 30. All 

these parameters were chosen with trial and error. Weight decay works by adding an 

extra term to the normal gradient. Weight decay improves the generalization to new 
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data by reducing the over fitting to the training data and shrinks useless weights that 

are found in the hidden units. Weight decay also unsticks the hidden units that have 

developed larger weights early during the training phase of the algorithm  
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CHAPTER 5 CASE STUDIES 

 

This section gives the results obtained from various case studies that were done to  

validate the results. 

 

5.1 PGM Data 

In this case study, the feature extraction from textural information of froth structures 

generated from a platinum flotation plant is considered. The platinum group metals 

flotation data set consists of five inputs from digitized images of froths obtained 

from a PGM flotation plant, with three different observed operating regimes present 

and has a sample size of 297 (Jemwa & Aldrich, 2006).  

 

The PGM data (datapgm) has three categories of data, labelled A, B and C. The data 

that is in category B was taken as the normal operating condition (NOC) data. This 

data therefore was used to calibrate the model during the offline mode. The NOC 

data has five variables with 99 measurements. The Restricted Boltzmann Machine 

was used to extract features from this data as discussed in section 4.3.2. 

 

The training data consists of five image features characterizing the froth. Class B 

represents the normal operating conditions, while Classes A and C represent fault 

conditions. Class A is the data that represents fault 1, whereas Class C is the data that 

represents fault 2 in the case study. 

 

5.1.1 Feature Extraction 

Three features were extracted from the PGM data and used as a basis for process 

monitoring. An auto encoder with RBM pre-training was used to extract the features. 

The results for the features that were obtained are shown as follows: 
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Figure 5.1: Three dimensional features obtained for the copper flotation dataset 

 

It can be seen from Figure 5.1 that there is an almost complete separation of one 

class. Even though there is an overlap between the two classes represented by blue 

and green, the auto encoder shows reasonable separability. 

 

5.1.2 Selecting number of features 

Variance and cumulative plots were generated to aid in the selection of features to 

select for both the PCA and the RBM algorithms. Figure 5.3 (page 54) shows the 

scree plot for the discrete and cumulative latents from the cumulative components 

analysis. This gives an indication of the variance explained by each principal 

component. Since the cumulative latent exceeds 0.8 at k=2 as shown in Figure 5.3 

(page 54), two features will be used, as they account for 84% cumulative variance in 

the training NOC data.  
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Figure 5.2: Scree plot and cumulative variance from PCA Analysis 

 

 
Figure 5.3 Selection of number of features  

 

For this study, three features were used for process monitoring using Restricted 

Boltzmann Machines (refer to Table 4 (page 56), as it shows the lowest MSE). The 

reconstruction correlation of the three features is 83.6%, which will give 

representative models. From the graph in Figure 5.4 (page 55) and Figure 5.6 (page 

56), we can see the reconstruction correlations for the NOC data.  
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Figure 5.4: Reconstruction Plot using PCA 

 

In this case study, because of the dimensionality of the data, only a simple two layer 

RBM’s were used. The network structure that was used in the training phase is shown 

in Figure 5.5. The network is trained on NOC data. First, the network was trained with 

five input nodes and 5 output nodes.  

 
Figure 5.5: The Network (5-3-5 architecture) 

 

The results of the error, for each architecture trained to  determine the number of 

hidden units, are shown in Table 4 (page 56). It is evident from the table that the 

network with 3 hidden units had the lowest error, hence it was used. The number of 

neurons in the mapping and demapping layers does not have much of an impact on 

the performance of the network.  

Output LayerHidden LayerInput Layer
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Increasing the number of neurons for the hidden layer improves the network 

performance (mean square error decreases). The auto encoder with RBM pre training 

algorithm works well with high dimensional data, because of the nature of the 

training that is involved. Since, in this case, the dimension of the data is small, adding 

more hidden layers in the network does not improve the performance of the network 

significantly.  

Table 4: MSE of network structure for PGM 

Number of hidden units MSE 

2 0.0354 

3 0.0212 

4 0.02356 

5 0.02319 

 

 

                  Figure 5.6 Reconstruction Plot using RBM 

 

5.1.3 Fault detection 

 

The missing alarm rates for the two faults of the PGM data are shown in Table 5. 

From the table, it can be seen that on fault 1, PCA performed better than RBM. This 

can be expected from data that has low dimensionality, as it means that the RBM 
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network does not have sufficient data points during training and hence the network 

gets trapped in local minima. Fault 2 shows a slightly different trend as compared to 

the first fault. It should be mentioned here that in terms of the chemical process, 

higher missing alarm rates have negative consequences on the process improvement 

initiatives. This is because the fault conditions are not identified on time, and hence 

causes a delay in ensuring that initiatives are done to bring the process back to  

normal operating conditions. Furthermore, it may also result in the process 

monitoring methodology to be reviewed, and that the process diagnosis framework 

has to be continuously trained to cater for many operating conditions.  

Table 5: Missing alarm rates for PGM 

Fault PCA RBM 

Fault 1 0.01 0.02 

Fault 2 0.95 0.67 

 

The variation of each observation within the PCA model (i.e. PCS) is indicated by 

Hotelling's T2 statistic. Figure 5.7 (page 58), shows the T statistic using PCA. The 

control limits are indicated in red. The first 99 samples represent the NOC samples 

and the rest represent the fault data samples thereof. 

 

In Figure 5.7 (page 58), both the SPE (Sqaure Prediction Error) and Hotelling’ T2 

statistic are displayed for fault 1. It can be clealry observed that the occurance of the 

fault at t=100 is identified. Both the 95% and the 99% control limits detect the fault. 

It is evident as shown in Figure 5.7 (page 58),  that the SPE did better than the T2 . 
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Figure 5.7: SPE and Hotelling’s T-statistic using PCA of Fault 1 datapgm 

 

The RBM squared prediction error (Q-statistic) is shown in Figure 5.8 for the PGM 

flotation data. From the graph, it can be observed that the RBM also was able to 

identify the fault when it occurred. 

 
Figure 5.8: Q-statistic using RBM of Fault 1 datapgm 
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Similarly, the fault diagnosis was carried with the second set of data, to see how fault 

2 will be diagnosed. The results are shown in Figure 5.9 and Figure 5.10. Both 

algorithms did not do well on fault 2. 

 

Figure 5.9: SPE and T-statistic using PCA of Fault 2 datapgm  

 
Figure 5.10: Q statistics using RBM of Fault 2 datapgm 
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5.1.4 Variable Contributions 

 

The variable contributions plots are shown in this section for the two faults, both 

using PCA and RBM. These were obtained from the Q/SPE or the Hotelling’s T2 

statistic. The contribution plots will identify which variables contributed to the Fault 

that is identified. From Figure 5.11, PCA identified variables 1 and 2 as the most 

contributing to the Fault represented by the data. 

 
Figure 5.11: SPE and T-statistic contributions using PCA of Fault 1 datapgm 

 

The RBM identified variables 2, 3 and 5 as the ones contributing to the fault 

condition, at 99% confidence limit. Figure 5.12 (page 61) shows the contribution 

plots generated using the RBM. 
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Figure 5.12: Contribution plots using RBM of Fault 1 datapgm 

 

A similar approach was also conducted for fault 2. The results obtained using PCA are 

displayed in Figure 5.13. The graph shows that variables 2, 3 and 5 contributed most 

with respect to fault 2. 

 
Figure 5.13: SPE and T contribution plots using PCA of Fault 2 datapgm  

 

The RBM was also used to make the variable contribution plots. Figure 5.14 (page 62) 

shows that RBM identified variable 4 and variable 5 as the variables that contributed 

most to the fault condition represented by Class A data. 
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Figure 5.14: Contribution plots using RBM for Fault 2 datapgm 

 

Since there is no prior knowledge of variables that contributes to these faults in this 

case study, it is difficult to identify which techniques correctly identified the correct 

variables.  

 

5.2  Copper Flotation Data Set (datacop) 

 

The copper flotation data sets consist of ten inputs extracted from digitized images 

of froths obtained from a copper flotation plant, with four different observed  

operating regimes function as class label. This data set contains 490 samples (Jemwa 

& Aldrich, 2006). 

 

The four cases are briefly described below: Class 1 represents an ideal froth structure 

that has bubbles that are well loaded with minerals. Class 2 represents a deep, well 

drained froth with a polyhedral froth structure, while Class 3 represents a tough froth 

with an ellipsoidal structure, which might have been caused by too low a pulp level, 

too high specific gravity or flotation of a particular type of particles. Class 4 

represents an excessively stable, stiff froth that might be attributed to low pulp levels. 
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5.2.1 Feature Extraction 

 

Four features were extracted from the Copper flotation data and used as a basis for 

process monitoring (as shown in Table 6, the lowest MSE network contains 4 

features). An auto encoder with RBM pre-training was used to extract the features. 

The results for the features that were obtained are shown as follows: 

 

5.2.2 Selecting number of features 

 

Variance and cumulative plots were generated to aid  in the selection of the number 

of features to select for both the PCA and the RBM algorithms. Figure 5.15 shows the 

scree plot for the discrete and cumulative latents from the cumulative components 

analysis. This gives an indication of the variance explained by each principal 

component. Since the cumulative latent exceeds 0.8 at k=3 as shown in Figure 5.16 

(page 64), two principal components will be used as they account for 90% cumulative 

variance in the training NOC data.  

 

 

Figure 5.15: Scree plot and cumulative variance from PCA Analysis 
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Figure 5.16 Selection of number of features  

 

With the RBM, similar to the previous case study due to the dimensionality of the 

data, only simple two layer RBMs were used. The results, for each architecture that 

was trained to determine the number of hidden units are shown in the following 

table (Table 6). It can be seen from the table that the network structure that contains 

4 hidden units had the lowest error, and hence was used. The number of neurons in 

the mapping and demapping layers does not have much of an impact on the 

performance of the network. The network performance (mean square error) does not 

improve much with an increase in the number of neurons for the input and output 

layers. Increasing the number of neurons for the hidden layer improves the network 

performance.  

Table 6: MSE of network structure for COP 

Number of hidden units MSE 

2 0.5392 

3 0.5154 

4 0.5115 

5 0.5237 

6 0.52218 
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5.2.3 Fault detection 

 

The missing alarm rates for the two faults of the Copper flotation data are shown in 

Table 7. It can be seen that on fault 1, PCA performed better than RBM. These 

missing alarm rates relate to the similar trends as highlighted in section 5.1.3. Due to 

the nature of the training of the RBM network, it is possible that the network was 

jammed in the local minima, as there were not many data points during the training 

phase. The fact that the network performed better on the second fault means that 

the nonlinear mapping that was learned during the training phase of the RBM 

networks had better generalization errors than that of the linear mapping as 

performed by PCA.  

 

Missing alarm rates do not help the process engineers and operators, as it means 

that the process monitoring that is designed to identify faults at times does not. As a 

result, faults are only identified when a lot of damage has been done in the process. 

 

Table 7: Missing alarm rates for COP 

Fault PCA RBM 

Fault 1 0.01 0.61 

Fault 2 0.03 0.03 

 

Hotelling's T2 statistic is a combined variance indicator across variables at each 

observation.   Figure 5.17 (page 66) shows the T statistic using PCA. The control limits 

are indicated in red. The Q statistic is shown in Figure 5.18 (page 66).  
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Figure 5.17: Hotelling’s T-statistic using PCA of Fault 1 datacop 

 

 

Figure 5.18: Q statistic for PCA of Fault 1 datacop 

 

 

Figure 5.19: Q statistic for RBM of Fault 1 datacop 

 

The RBM squared prediction error (Q-statistic) is shown in figure Figure 5.19 for the 

Copper flotation data. The graph shows that the fault was diagnosed clearly, though 

there are some missing alarms, as some of the fault condition data were not detected 

as faulty. 
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For fault 2, a similar analysis was done and yielded results that are displayed in Figure 

5.19 and Figure 5.20.  Both algorithms correctly identified fault 2. 

 

Figure 5.20: Q-statistic using PCA of Fault 2 datacop 

 

 
Figure 5.21: Q-statistic using RBM of Fault 2 datacop 

 

5.2.4 Variable Contributions 

The variable contributions plots are shown in this section for the two faults, both 

using PCA and RBM. For fault 1, both PCA (Figure 5.22) and the RBM (Figure 5.23, 

page 68) identified variables 8 and 9 as the contributing variables.  

 

Figure 5.22: T-statistic contributions using PCA for Fault 1 datacop 
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Figure 5.23: Q contributions using RBM for fault 1 datacop 

 

Figure 5.24 and Figure 5.25 show the results for fault 2 where both algorithms 

identified variables 8 and 9. 

 

Figure 5.24: Q contributions using PCA for fault 2 datacop 

 
Figure 5.25: Q contributions using RBM for fault 2 datacop 

 

It is important for a fault diagnosis method to be able to correctly identify the 

variables that are responsible for these faults, as it makes continuous improvements 

easier. Since there is no prior knowledge of the process, in terms of the variables that 

contribute to these faults, it is difficult to correctly identify which technique identifies 

the correct variables. In chemical and process plants, there is knowledge about the 
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process that can help identify the variables responsible for the faults. In case of the 

RBM techniques, it may mean, among others, that the network will have to be re-

calibrated regularly if the correct variables are not identified, for these faults. More 

data may also be required to ensure that the network performance is improved 

during the training phase. 

 

5.3 The Tennessee Eastman Process 

 

The Tennessee Eastman Process (TEP) is a simulation of an actual chemical process 

developed as a realistic industrial case study useful for plant-wide process control 

problems, including process monitoring and fault diagnosis (Russell et al., 2000). The 

process consists of five major units (a reactor, a product condenser, a recycle 

compressor, a vapor-liquid separator, and product stripper) and eight components 

labelled A, B, C, D, E, F, G and H. (Downs & Vogel, 1993). The simulation data of the 

Tennessee Eastman process (with plant-wide control based on proportional (p) and 

proportional integral (pi)) control is available for normal operating data and the 21 

fault conditions (Auret & Aldrich, 2011).  

 

The flow sheet of the TEP is given in Figure 5.26. Components G and H are liquid 

products produced from the four gaseous reactants, A, C, D and E. The inert product 

B is also fed to the reactor and the by-product F is produced. 

The reactions in the reactor are represented by 

 

 

Tennessee Eastman Process Equations: 

𝐴(𝑔) + 𝐶(𝑔) + 𝐷(𝑔) → 𝐺(𝑙𝑖𝑞), Product 1 

𝐴(𝑔) + 𝐶(𝑔) + 𝐸(𝑔) → 𝐻(𝑙𝑖𝑞), Product 2, 

𝐴(𝑔) + 𝐸(𝑔) → 𝐹(𝑙𝑖𝑞), Byproduct, 

3𝐷(𝑔) → 2𝐹(𝑙𝑖𝑞), Byproduct, 

Chapter 5: Case Studies 
 

Stellenbosch University  http://scholar.sun.ac.za



70 
 

The reactions are exothermic, irreversible and approximately first-order with respect 

to the reactant concentrations. The reaction resulting in G product formation has 

higher activation energy than reaction of H and, therefore has a high sensitivity to 

temperature. 

 

Process data contains 41 measured process variables and 11 manipulated variables. 

Normal operating conditions are represented by 500 samples, with a validation data 

sample of 960 samples for normal operating conditions. Each of the 21 fault data set 

consists of 960 samples, with the fault occurring after 161 time steps within the 960 

samples. 

 

 
Figure 5.26: Process Flow diagram of the TEP (Russell et al., 2000; Auret, 2010)  
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Table 8: Process Faults of Tennessee Eastman Process (Russell et al., 2000; Auret, 2010) 

Fault Description Type 

1 A /C feed ratio (B composition constant) – Stream 4 Step change 

2 B composition  (A /C feed ratio constant) – Stream 4 Step change 
3 D Feed temperature – Stream 2 Step change 
4 Reactor cooling water inlet temperature Step change 
5 Condenser cooling water inlet temperature – Stream 2 Step change 
6 A Feed loss – Stream 1 Step change 

7 C header pressure loss (reduced availability)  – Stream 4 Step change 

8 A, B, C feed composition – Stream 4 Random variation 

9 D feed temperature – Stream 2 Random variation 

10 C feed temperature – Stream 4 Random variation 

11 Reactor cooling water inlet temperature Random variation 

12 Condenser cooling water inlet temperature Random variation 

13 Reaction kinetics Slow drift 

14 Reactor cooling water valve Sticking 

15 Condenser cooling water valve Sticking 

16 - 20 Unknown Unknown 

21 Valve – Stream 4 Constant position 

 

Table 9: Process Variables of the Tennessee Eastman Process 

Variable Description Variable Description 

1 A feed – Stream 1(PM) 27 Reactor feed component E (CM) 

2 D Feed – Stream 2 (PM) 28 Reactor feed component F (CM) 

3 E Feed – Stream 3 (PM) 29 Purge component A (CM) 

4 Total Feed – Stream 4 (PM) 30 Purge component B (CM) 

5 Recycle flow (PM) 31 Purge component C (CM) 

6 Reactor feed rate (PM) 32 Purge component D (CM) 

7 Reactor pressure  (PM) 33 Purge component E (CM) 

8 Reactor level (PM) 34 Purge component F (CM) 

9 Reactor temperature (PM) 35 Purge component G (CM) 

10 Purge rate (PM) 36 Purge component H (CM) 
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11 Separator temperature (PM) 37 Product component D (CM) 

12 Separator level (PM) 38 Product component E (CM) 

13 Separator pressure (PM) 39 Product component F (CM) 

14 Separator underflow (PM) 40 Product component G (CM) 

15 Stripper level (PM) 41 Product component H (CM) 

16 Stripper pressure (PM) 42 D feed Flow – Stream 2 (MV) 

17 Stripper underflow (PM) 43 E feed Flow – Stream 3(MV) 

18 Stripper temperature (PM) 44 A feed Flow – Stream 1 (MV) 

19 Stripper steam flow (PM) 45 Total Feed Flow – Stream 4 (MV) 

20 Compressor work 46 Compressor recycle valve (MV) 

21 Reactor cooling water outlet temp. (PM) 47 Purge valve (MV) 

22 Separator cooling water outlet temp.(PM) 48 Separator product liquid flow (MV) 

23 Reactor feed component A (CM) 49 Stripper product liquid flow (MV) 

24 Reactor feed component B (CM) 50 Stripper steam valve (MV) 

25 Reactor feed component C (CM) 51 Reactor cooling water flow (MV) 

26 Reactor feed component D (CM) 52 Condenser cooling water flow (MV) 

 

5.3.1 Selecting the number of features 

 

Variance and cumulative plots were generated to aid in the selection of features to 

select for both the PCA and the RBM algorithms. Figure 5.27 (page 73) shows the 

scree plot for the discrete and cumulative latents from the cumulative components 

analysis. This gives an indication of the variance explained by each principal 

component. From Figure 5.28 (page 73), it can be seen that thirteen principal 

components will be used in the training NOC data.  
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Figure 5.27: Scree plot and cumulative variance from PCA Analysis 

 

 

Figure 5.28 Selection of number of features  

 

For the RBM model, ten components were used during the study. The reconstruction 

correlation of these features is 87.4%, which will give representative models. From 

the graphs in Figure 5.29 (page 74), we can see the reconstructions for the NOC data. 

In this case study, stacked RBM’s were implemented. Different network architectures 

were employed to monitor how the features extracted could explain the input data.  
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Table 10: MSE of network structure for TE 

Network Structure MSE 

52-40-10-40-52 0.254 

52-10-52 0.390 

52-30-10-30-52 0.312 

52-30-5-30-52 0.3356 

52-20-5-30-52 0.372 

 

The results obtained on different network structures are shown in Table 10. The 

network structure with the lowest error (MSE) was used in the study. It should be 

noted however, that due to the nature of the stacking auto encoders and the 

dimensionality of the data in this case study, increasing the number of hidden layers 

improves the network performance. The results that are shown in Table 10, is as a 

result of a variety of trials, but it should be mentioned that a complete exhaustive 

search would be very expensive to perform due to the computational demands that 

it would require. 

 
Figure 5.29 Reconstruction plot using RBM for NOC data 
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5.3.2 Missing alarm rates  

The missing alarm rate δ  is the fraction of all the known fault samples that are not 

detected in a data set. The overall missing alarm rate δ  is the minimum of the score 

distance missing alarm rate δ s and the residual distance missing alarm rate δ r. 

 

A comparison of the score and residual distance missing alarm rates for PCA with 13 

features and RBM with 10 features are given in Figure 5.30. Score and residual 

distance missing alarm rates for RBM fault diagnosis does not outperform PCA score 

and residual distance missing alarm rates, but the residual at times performs 

comparably. PCA score and residual distance alarm rates are similar, with score 

distance missing alarm rates better (lower) than their residual distance counterpart 

for some of the faults. A comparison of PCA and RBM missing alarm rates to results 

obtained in literature for random forests (RF) and Kernel Independent Component 

Analysis (KICA) are shown in Figure 5.31 (page 76) and Figure 5.32 (page 79) (Auret & 

Aldrich, 2010b; Zhang & Qin, 2008). 

 

 
Figure 5.30: Score and residual distance missing alarm rates on fault data 
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Table 11 (page 77) shows the score missing alarm rates δ s of the Tennessee Eastman 

process. The table gives a comparison of four techniques on the score missing alarm 

rates. For a fault in which a technique scores a 0 as a missing alarm rate, that 

technique performed best on that fault as it was able to correctly identify the fault. 

The RBM technique did not perform well on the following faults: 3,9,15 and 19. These 

high missing alarm rates indicate that the network was not able to correctly detect 

the abnormal normal, and that corrective measures to improve the process would 

have been delayed. In terms of the continuous improvement that is normally done to  

improve process control, this prolongs the time it takes for a process deviation to be 

rectified. This may also entail that the process engineers re-calibrate the model, so 

that its performance can improve and this may need more training data. 

 

From Figure 5.31, KICA score distance missing alarm rates are the overall best, and RF 

score distance missing alarm rates are the overall worst. From Figure 5.32 (page 79), 

KICA and PCA have better (lower) residual distance missing alarm rates than RBM 

and RF. 

 

 
                    Figure 5.31: Missing alarm rates based on score of the TE process 
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Table 11: Missing alarm rates (δs) for 20 faults of TE 

Fault PCA RBM RF KICA 

1 0.010 0.165 0.980 0.000 

2 0.020 0.170 0.980 0.020 

3 0.990 0.825 0.990 0.990 

4 0.700 0.783 1.000 0.190 

5 0.750 0.709 0.990 0.750 

6 0.010 0.172 1.000 0.000 

7 0.000 0.197 0.960 0.000 

8 0.030 0.159 0.970 0.030 

9 0.990 0.827 1.000 0.990 

10 0.610 0.601 0.990 0.190 

11 0.530 0.595 1.000 0.420 

12 0.020 0.163 0.940 0.010 

13 0.050 0.215 0.950 0.050 

14 0.000 0.307 1.000 0.000 

15 0.980 0.809 1.000 0.970 

16 0.660 0.619 1.000 0.230 

17 0.060 0.348 1.000 0.090 

18 0.100 0.244 1.000 0.110 

19 0.910 0.871 1.000 0.300 

20 0.480 0.621 1.000 0.500 

 

Table 12 (page 78), shows the residual missing alarm rates δ r of the Tennessee 

Eastman process. It can be seen from the table (on page 78), that where the value is 

0, those are the techniques that are able to identify that specific fault as the fault 

data is considered faulty. The results in Figure 5.32 (page 79) show that the RBM 

algorithm on the known faults has a tendency not to  detect the fault data as faulty, 

especially in faults 3, 9 and 15.  

 

This has adverse consequences on the process, as it means that the intervention that 

is needed from the technical and operational teams will be delayed to correct the 
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process deviations. With fault 3, a step change in temperature is done, and if this is 

not diagnosed earlier, it will result in problems in the formation of product G, since 

that reaction has a very high sensitivity to temperature. This in turn can lead to losses 

in process efficiencies and consumables. In order to improve on this performance, 

more training data will be required. This is because with stacking RBMs during 

training, more data is required so that the network is not held in local minima.   

 

Table 12: Missing alarm rates (δr) for 20 faults of TE 

Fault KICA PCA RBM RF 
1 0.000 0.000 0.151 0.000 
2 0.020 0.010 0.167 0.020 
3 0.970 0.099 0.848 0.950 
4 0.000 0.020 0.151 0.000 
5 0.720 0.770 0.655 0.720 
6 0.000 0.000 0.157 0.000 
7 0.000 0.000 0.160 0.000 
8 0.020 0.060 0.159 0.020 
9 0.970 0.980 0.832 0.960 

10 0.220 0.620 0.426 0.220 
11 0.230 0.490 0.303 0.190 
12 0.010 0.050 0.159 0.010 
13 0.050 0.050 0.191 0.050 
14 0.000 0.000 0.154 0.000 
15 0.950 0.980 0.806 0.940 
16 0.130 0.660 0.417 0.130 
17 0.030 0.060 0.196 0.030 
18 0.090 0.100 0.225 0.090 
19 0.150 0.910 0.624 0.150 
20 0.350 0.480 0.421 0.350 
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Figure 5.32: Missing alarm rates based on residual distances of the TE process 

 

5.3.3 Variable Contributions 

To assess the ability of PCA and RBM fault diagnosis methods and to determine the 

affected process variables, five of the twenty-one faults, for which causal or affected 

variables are known, were chosen to assess variable contributions. These faults are 

faults 4, 5, 11, 12 and 14, and the causal process variables were identified, based on 

observations made in fault diagnostic literature on the Tennessee Eastman process. 

The contributions are calculated as the average contributions of samples that are 

both indicated as faulty and known to be faulty. 

 

The identified variables may not be causal, but may be closely related to the fault. For 

example, when the reactor temperature increases due to some external disturbance, 

the cooling water flow rate to the reactor will increase due to closed loop control. 

Cooling water flow rate is then an affected variable, and not a causal variable. 

 

• Fault 4 
 

Fault 4 is simulated by introducing a step change in the reactor temperature (variable 

9). As control loops compensate for the temperature increase, a step change in 

reactor cooling water flow rate (variable 51) is induced, while all other variables 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

KICA δr PCA δr RBM δr RF δr

Chapter 5: Case Studies 
 

Stellenbosch University  http://scholar.sun.ac.za



80 
 

return to steady state. Variable 51 is assumed to be most closely associated with the 

fault (Russell et al., 2000). From the following contribution plots it is clear that both 

PCA and RBM can successfully identify variable 51 for this fault. This correct 

identification will result in time and monetary savings, since it means that corrective 

action can be taken to remedy the fault. The contribution plots for PCA is displayed 

in Figure 5.33. 

 

Figure 5.33: Contribution plots for fault 4 using PCA 

 
             Figure 5.34: Contribution plots for fault 4 using RBM 

 

It can be seen from Figure 5.34 that although the RBM algorithm has correctly 

identified variable 51 as the variable that contributes to the fault, variables 9, 21 and 

42 are also associated with the fault. This will mean that the process engineers who 

are undertaking fault finding, will also have to ensure that these other variables are 

also inspected and that they are operating according to the optimum operating 

conditions.  
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• Fault 5 
 

A step change in condenser cooling water inlet temperature is the defining condition 

for fault 5. This induces a step change in condenser cooling water flow rate (variable 

52), and increases the flow rate of the vapour liquid separator feed, which 

subsequently results in an increase in the vapour liquid separator temperature 

(variable 11). This temperature increase further induces an increase in the separator 

cooling water outlet temperature (variable 22) (Russell et al., 2000; Shao & Rong, 

2009). 

 

The contributions plot based on PCA scores (Figure 5.35, page 82) show variable 50 

with the most significant contribution, and does not rank variable 22 as contributing 

to the fault significantly. The contribution plot based on RBM residuals (Figure 5.36, 

page 82) rank variable 18 as most significant, with more than fifteen other variables 

also shown as significant. Variable 52 is, however, only shown as significant in the 

PCA contribution plots. This has a negative effect on the process, as it means that the 

process engineers and operators will not have identified the correct variable as being 

responsible for the fault. Such a case will result in process inefficiency, and more time 

will then have to be invested in figuring out the variables responsible for the fault, as 

well as training the network again so that it can improve in its performance. Since the 

network training of the RBM does require data pre-processing, this scenario will 

disturb the continuous improvement in the process. 

 

One important observation that was made from these experiments is that the RBM 

pre-training tends to make the auto encoders more focused on the training data 

(NOC), resulting in a low generalization for faulty data. This results in some of the 

variables not being correctly ranked in terms of their contribution to the fault, as can 

be seen in this case. 
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Figure 5.35: Contribution plots for fault 5 using PCA 

 
Figure 5.36: Contribution plots for fault 5 using RBM 

 

• Fault 11 
 

Fault 11 is simulated as random variation in reactor cooling water inlet temperature. 

This causes large oscillations in the reactor cooling water flow rate (variable 51) and 
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the reactor temperature (variable 9) (Russell et al., 2000). From the following 

contribution plots in Figure 5.37 and Figure 5.38, it is clear that both PCA and RBM 

successfully identified variables 9 and 51 for this fault.  

 

 

 

Figure 5.37: Contribution plots for fault 11 using PCA 

 

 

Figure 5.38: Contribution plots for fault 11 using RBM 
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• Fault 12 
 

Fault 12 is simulated as random variation in the condenser cooling water 

temperature, which induces abnormal behaviour in many variables, including the 

separator temperature (variable 11), separator pressure (variable 13) and separator 

outlet cooling water temperature (variable 22) (Russell et al., 2000; Shao & Rong, 

2009). PCA score contributions rank variables (Figure 5.39) 13, 7 and 16 as first, 

second and third most significant, respectively. PCA residual contributions rank 

variable 11 eighth most significant, while RBM contributions (Figure 5.40, page 85) 

rank variable 11 and 13 eighth and first most significant. 

 

 

 
Figure 5.39: Contribution plots for fault 12 using PCA 
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Figure 5.40: Contribution plots for fault 12 using RBM 

 

• Fault 14 
 
A sticking valve for reactor cooling water is simulated for fault 14, causing large 

fluctuations in reactor temperature (variable 9), the reactor cooling water outlet 

temperature (variable 51) and the reactor cooling water flow rate (variable 21) 

(Russell et al., 2000; Shao & Rong, 2009). PCA score and residual contributions 

(Figure 5.41) and RBM contributions (Figure 5.42, page 86) successfully rank these 

three variables as the three most significant variables related to this fault. 

 

 

Figure 5.41: Contribution plots for fault 14 using PCA 
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Figure 5.42: Contribution plots for fault 14 using RBM 

 

5.3.4 Discussion of the Tennessee Eastman Process 

 

The Tennessee Eastman has a relatively weak connectivity structure, and contains a 

lot of statistically unrelated variables. This is mainly attributed to the fact that the 

defined normal operating condition (NOC) data contains mostly common cause 

variation (hiding the underlying relational structure within the data). The PCA and 

RBM fault diagnosis algorithms require the specification of two parameters: the 

number of model components and the confidence level for limits. A confidence level 

of 99 % was selected for this study; representing an expected false alarm rate on 

unseen normal operating conditions data of one false alarm sampled every hundred 

samples. The number of model components is also very crucial, and was chosen as 

13 for the initial PCA model and 10 for the initial RBM model. This selection is based  

on at least 90 % cumulative variance explained for PCA. 

 

Reconstruction of process variables from features for the PCA and RBM models were 

expressed as linear reconstruction correlations for both PCA and RBM. RBM showed 

very high correlations for seen NOC, and very low correlations for unseen NOC, while 

PCA showed lower correlations than RBM on seen NOC and better correlations than 

RBM on unseen NOC.  These results suggest that, for this data set, PCA generalizes 

better to unseen NOC. The low generalization ability of RBM may be due to lack of 

(or representative enough) training data for NOC conditions.  As with many deep 
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learning strategies, the size of the training data influences the performance of the 

network that is trained. 

 

Comparing PCA and RBM missing alarm rates to RF and KICA results from literature, 

shows overall superior performance for the KICA model, based on five faults. The 

other sixteen faults show very similar results for PCA, RBM, RF and KICA models. RBM 

contributions are fairly successful on the five faults that were investigated, showing 

correct significance and ranking for three faults and at least one correct variable 

indication or ranking for the other two faults. 

 

Finally, RBM fault diagnosis is much more computationally expensive than PCA fault 

diagnosis, and this expense increases with the number of features included. This 

provides additional motivation for the use of fewer features in using the RBM 

approach.  
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CHAPTER 6 CONCLUSIONS AND 

RECOMMENDATIONS 

 

6.1 Conclusions on objectives 

Conclusions are made in terms of the objectives specified in the introduction to this 

work (Chapter 1). The overall objective of this study was to  assess the feasibility of 

using Restricted Boltzmann Machines in various fault detection schemes. 

 

The objectives of this work are restated here as follows: 

• A literature review of the feature extraction fault diagnosis and the 

applications of Restricted Boltzmann Machines 

• Numerical work, in which features are extracted from process data with 

Restricted Boltzmann Machines (RBMs) and used as the basis for process fault 

diagnosis in several case studies. 

• Comparison and evaluation of the results with other nonlinear approaches. 

 

The first objective was a literature survey on feature extraction techniques in fault 

diagnosis and the application of Restricted Boltzmann Machines. Chapter 2 dealt 

with this survey, with concepts gained from literature incorporated in the 

development of the RBM algorithms.  From a survey of process monitoring methods, 

the benefits of feature extraction, as well as the limitations of linear feature 

extraction, were discussed.  

 
RBM feature extraction did not outperform all other feature extraction methods on 

all data sets, and this should be expected. In feature extraction applications, certain 

techniques are suited better to certain types of data structures.  
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The second objective considered the development of an unsupervised fault 

diagnostic scheme using RBM feature extraction. The result of this development is 

found in Chapter 4.  Another aspect of the second task was the testing of the RBM 

fault diagnostic scheme on a benchmark process engineering problem and real-

world mineral processing data. Flotation (copper and PGM) data sets and the 

Tennessee Eastman process were employed for this purpose, and relevant 

performance measures evaluated (Chapter 5).  

 

Overall, from the fault diagnosis method criteria, the RBM approach developed in 

Chapter 4 could be considered a suitable option for fault diagnosis. However, the 

RBM approach is computationally expensive, and this expense increases with the 

number of features extracted, as can be expected with all deep learning training 

strategies. 

 

6.2 General conclusion 

 

With the creation of process data, the increasing complexity of process plants and 

the escalating demands of profitability and safety standards, automated process 

monitoring is an important tool for acquiring valuable information and enabling 

efficient operation of process plants. Data-driven fault diagnosis schemes aim to 

exploit the availability of large databases of process data to detect and identify 

abnormal process conditions. Due to the limitations of linear feature extraction 

methods, the application of nonlinear feature extraction is a growing topic of 

interest.  

 

The suitability of nonlinear feature extraction methods to detect abnormal data is 

considered here. Given a distribution of normal operating conditions data, a 

nonlinear feature extraction method will attempt to find some nonlinear manifold or 

transformation that captures the structure of the data. If the distribution of new data 
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representing fault conditions conforms to the same manifold or transformation, but 

is located in a sparse region of the normal operating conditions data; this data points 

will be flagged as faults in the nonlinear  pace. However, if the distribution of the new 

data representing the fault conditions does not conform to the same nonlinear 

manifold or transformation as the normal operating conditions data, the projection 

of this data unto the normal operating conditions manifold will give rise to  

reconstruction errors in the original variable space, and the faulty data are flagged as 

faults. 

 

This validates the use of nonlinear feature extraction techniques for fault diagnosis in 

general, and the use of RBM feature extraction, specifically. The performance of the 

fault diagnosis method depends on the suitable selection of model parameters. In 

the case of RBM feature extraction, the selection of the number of features has been 

discussed, and a heuristic proposed.  

 

6.3 Recommendations 

 
From the above conclusions, the application of the proposed RBM feature extraction 

frameworks for fault diagnosis is recommended as a tool for process monitoring. The 

effectiveness of these frameworks, as for all data-based process monitoring schemes, 

depends on a number of factors. 

 
Firstly, for a fault to be detected from process data, the process data must show 

some distributional change from normal operating conditions to the fault conditions. 

If the data shows no changes, no data-based fault diagnosis scheme will detect a 

change. The availability of representative process data is then a necessary, but not 

sufficient, condition for fault detection with data-based fault diagnosis. Data pre-

processing then remains a vital component of process monitoring. 
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Secondly, the estimation of expected false alarm rates for a fault diagnosis scheme is 

vital. Given the labelling of new data as representing fault conditions, an expected 

false alarm rate will aid in risk assessment when decisions need to be made in terms 

of process recovery. This work has not explicitly investigated the calculation of 

expected false alarm rates.  

 

An important parameter for the RBM fault diagnosis framework is the number of 

features to extract to represent normal operating conditions. A disadvantage of deep 

learning strategies, compared to linear approaches, has been its high computational 

expense. There are various strategies that can be used in training Restricted 

Boltzmann Machines, exploring the effect of the different training techniques can be 

considered to investigate if the performance of the RBM fault diagnosis scheme can 

be improved (Breiman & Cutler, 2003). 

 

To ensure that the benefits of the deep learning approach involved with stacking 

RBMs is realised, it is ideal to ensure that high dimensional data is used as the RBMs 

will tend to perform better as more layers are added to the network structure, as 

compared to data whose dimension is smaller, as discussed in this work. In plants 

where process models cover large numbers of variables, auto encoder with RBMs are 

recommended, as successful training of auto encoders require availability of large 

amounts of data. 
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APPENDIX A: NOMENCLATURE 

〈 〉𝑑𝑎𝑡𝑎 =  expected value of the data distribution 

ℎ𝑗  =binary state of hidden unit j 

𝑎𝑖 = bias of visible unit i  

𝑏𝑗 =bias of hidden unit j 

𝑣𝑖  = binary state of visible unit i 

𝑤𝑖𝑗 =  weight between unit i and j 

∆𝑤𝑖𝑗 =  change in weight between unit i and j 

h = hidden vector 

v = visible vector 

Z =  partition function 

𝐸 = Energy function 

𝑝 = probaility 

𝜀  =  learning rate 

δ   =missing alarm rate  

δ s =score distance missing alarm rate  

δ r = residual distance missing alarm rate  

𝜆𝑗 is the jth eigenvalue 

LCL=Lower control limit 

UCL= Upper control limit 

Var =  Variable that is monitored 
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APPENDIX D: DATA CHARACTERISTICS 

 

D.1. Introduction  

 

This section discusses some data types in order to show how auto encoders perform 

on different data structures. This is not a comprehensive list of all the suitable and 

unsuitable data sets, but rather a list that highlights some of the statistical properties 

of the data, where the auto encoders can either be very useful or not. This will give 

an idea of what type of data stacked RBM auto encoders can perform and that it is 

better than other approaches, since the non-linear techniques performance depend 

on the statistical properties of the underlying data. Training times for the auto 

encoders are also given, only as an indication as these depend on the computational 

platforms that are used during experiments. 

 

The experiments are done on data that is often used in the manifold learning 

literature, as comparisons with other results can be made. The dataset was selected 

to check how RBM network structure deal with 

(i) Data that lies on a low dimensional manifold 

(ii) Data that lies on or near a discontinuous manifold 

(iii) Data forming a manifold with a higher intrinsic dimensionality 

 

D.2. Experimental Setup 

 

In the experiments conducted on the datasets, auto encoder with RBM is used to  

extract features from the high dimensional representation of the data. The quality of 

the resulting low dimensional data representation is then assessed by evaluating to 

what extent the local structure of the data is retained. This evaluation is performed 

by measuring the generalization errors of 1-nearest neighbour classifiers that are 
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trained on the extracted features. The use of 1-nearest neighbour classifiers as a 

numeric evaluation criterion method has been used, and it requires prior knowledge 

in terms of class membership (Van der Maaten et al., 2009). This method classifies 

each data point to the same class as its nearest neighbour. If nearest neighbours in 

the original input space still remain nearest neighbours in the reduced dimension 

space, it serves as an indication that local structure has been preserved. 

 

The Matlab Pattern Recognition Toolbox (Duin et al., 2007) is used to calculate the 1-

nearest neighbour generalization error. 

 

The data that is used in these experiments is as follows: 

(a) SWISS roll 

(b) Broken SWISS roll dataset 

(c) High dimensional (HD) dataset 

(d) MNIST database 

 

The HD dataset consists of points that are randomly sampled from a 5-dimensional 

non-linear manifold that is embedded in a 10 dimensional space. Each of the 

datasets contains 5000 samples. The MNIST dataset is a database of 60 000 

handwritten digits. The images in the MNIST database have 28x28 pixels, and hence 

can be considered as points in a 784-dimensional space. 

 

Table 13: Experimental Results 

Dataset PCA KPCA RBM 

Swiss roll 0.30 0.29 0.48 

Broken swiss 0.27 0.31 0.29 

HD 0.22 0.28 0.30 

MNIST 0.06 0.13 0.07 
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The experimental results are shown in Table 13 (page 104), showing the 1-nearest 

neighbour generalization errors. The high generalization errors on the broken swiss 

roll data indicate that many nonlinear dimensionality reduction methods do not 

perform well on the presence of disconnected (i.e., non-smooth) manifolds. The RBM 

network performed slightly better than KPCA, but linear PCA still did better. This is an 

indication that RBM’s perform better on highly dimensional data, than data that lies 

on a low manifold and data that lies on a discontinuous manifold as with the broken 

swiss data. 

 

From the results on the HD dataset, the RBM has a 1-nearest neighbour 

generalisation error of 0.3 (i.e. 30%) compared to PCA that has 0.22. From the results 

on the MNIST data, it is evident that with highly dimensional data, the stacked auto 

encoders perform much better as can be seen with lower generalisation errors than 

the rest of the datasets. The stacked auto encoder with RBM pre training provides 

deep architectures (with multiple nonlinear layers). The main advantage of such deep 

network architectures is that it will require less data points to learn the structure of 

highly varying manifolds. 

 

D.3. Training times 

 

In order to give an idea of the training time of deep networks, the training time on 

the MNIST data, using a machine with the following specifications:  Intel (R) Core 64 

(TM) i3-370M CPU @ 2.40 GHz: is 1700 minutes (28 hours). Depending on the 

network architecture that is employed, this training can last a couple of days as the 

network is trying to come to equilibrium. 
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