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ABSTRACT 

Strain Hardening Cement Composites (SHCC) are cement-based materials with remarkable 

characteristics. Its strain hardening ability under tension enables it to carry increased loads, after the 

material has cracked. Combined with conventional reinforcement, this material has been 

demonstrated to have remarkable damage tolerance under severe loading conditions. SHCC has 

also been proven to show very small crack widths under service conditions. This is a very attractive 

characteristic for durability.  

There are very few design guidelines for using R/SHCC as a structural material, though its properties 

and characteristics have been widely studied. This study aims at providing the structural designer 

with an analytical design model for designing flexural members constructed from R/SHCC. The 

design model aims to be universal and applicable to most types of strain hardening cement based 

materials.  

The base design model is derived from first principles, using existing knowledge of the materials’ 

behaviour under uniaxial tension and compression. Both tensile and compressive responses are 

simplified into bilinear approximations in order to simplify the calculations. Even with this 

simplification, the base design model is calculated in three phases to incorporate the various stadia 

that the material undergoes under flexural bending. Phase one represents the elastic phase where 

the cement matrix has not yet cracked. Phase two starts with the onset of cracking in the tensile 

zone. During Phase 2, the compression part of the member is still assumed to be elastic as the 

compressive strain has not passed the ultimate compressive strain limit. This limit is set as the 

boundary where the compressive behaviour changes from elastic to plastic. The last phase starts 

with the compressive strain passing its plastic limit. The third phase ends with the member failing 

either in compression or in tension.  

As the base design model is very complicated and not user friendly, it is simplified into something 

that can be calculated on a hand held calculator. The simplification of the design model is done by 

analysing a number of different scenarios with different member sizes and different amounts of 

reinforcement. For each one, the tensile strain in the SHCC matrix is noted and a simple relationship 

between the height of the flexural member and the tensile strain can be found. The position of the 

neutral axis and the design compressive strain can then be found from existing relationships. This 

simplified design model is then tested against two other SHCC materials in order to establish the 

universality of the design model. 

During the reliability analysis, material factors are derived for the strength parameters of the material. 

Model factors are also derived from beam tests compared to model predictions. Twelve large beams 
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are tested and their load versus deflection graphs compared to the predicted loads versus deflections 

from the base design model.  

Finally, an example design is done to show how the simplified design model, combined with its model 

factors, can be applied to practical design work. The amount of reinforcement needed in an R/SHCC 

member is then compared to that needed in a conventional R/C member of the same size and 

constructed of concrete with the same compressive strength. As expected the tensile reinforcement 

needed in the R/SHCC member is less than that needed in the conventional R/C member in bending. 

However, the same is not always true for the compressive reinforcement.   
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UITTREKSEL 

Vervormingsverhardende Sementbasis Saamgestelde Materiale (SHCC) is ‘n sementbasis 

materiaal met buitengewone eienskappe. Die vermoë om, nadat die sement matriks reeds begin 

kraak het steeds hoër laste te dra is een van die mees kenmerkende eienskappe van hierdie 

material. Gekombineer met konvensionele staal bewapening, is dit bewys dat die materiaal oor 

uitmuntende skade tolleransie onder buitengewone las toestande beskik. Daar is ook bewys dat die 

materiaal baie klein kraak wydtes toon onder dienslas toestande, wat dit as ‘n duursame materiaal 

bevestig.   

Tot op hede is daar baie min ontwerpriglyne beskikbaar vir die gebruik van R/SHCC as ‘n strukturele 

materiaal, hoewel die eienskappe en gedrag van die materiaal wyd bestudeer is. Hierdie proefskrif 

poog om die ontwerper te voorsien van ‘n analitiese ontwerpmodel vir die ontwerp van R/SHCC 

strukturele elemente in hoofsaaklik buiging. Die model is universeel en toepaslik op die meeste van 

die verskillende tipes SHCC.  

The basismodel is afgelei uit eerste beginsels en bestaande kennis van die materiaal se gedrag 

onder een-assige trek en druk laste. Beide die trek en druk reaksies word vereenvoudig met ‘n bi-

lineêre benadering in ‘n poging om die berekeninge te vereenvoudig. Selfs met die vereenvoudiging 

moet die model steeds in drie fases bereken word sodat al die verskillende stadia wat die element 

in buiging ondergaan beskryf kan word. Fase een is die elastiese fase waar daar nog geen krake in 

die sementmatriks is nie. Fase twee begin wanneer die eerste krake in die sementmatriks vorm. Die 

druk deel van die element word aanvaar om steeds in ‘n elastiese toestand te wees gedurende Fase 

twee. Dit is omdat daar aanvaar word dat die drukvervorming nog nie die limiet drempelwaarde 

bereik het nie.  Hierdie limiet dui die grens tussen die plastiese en elastiese drukgedrag aan. Die 

derde en laaste fase begin wanneer die drukvervorming die plastiese limiet oorskry. Hierdie fase 

eindig wanneer die element faal. Die faling kan in trek of in druk wees.  

Aangesien die basismodel baie gekompliseerd en nie baie gebruikersvriendelik is nie, word dit 

vereenvoudig tot iets wat met die hand bereken kan word. Die vereenvoudiging is gedoen deur ‘n 

aantal verskillende moontlikhede te ondersoek waar die struktuurelement groottes en die volume 

staal gevarieer word. Vir elke situasie is daar ‘n nota gemaak van die trek vervorming in die sement 

matriks en ‘n eenvoudige eksponensiele vergelyking is gevind tussen die trekvervorming en die 

diepte van die buigelemente. Die posisie van die neutrale as en die ontwerp drukvervorming kan 

dan uit bestaande verhoudings bereken word. Die vereenvoudigde model word dan getoets met 

twee ander SHCC materiale om te bewys dat dit wel universeel is. 
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In ‘n betroubaarheidsstudie is daar materiaalfaktore afgelei vir die sterkte eienskappe van die 

materiaal. Modelfaktore is ook afgelei vir elke fase van die ontwerp deur die uitkomste van toetse en 

die voorspelling van die model teen mekaar op te weeg. Twaalf groot balke is getoets en die gemete 

las teenoor die verplasing vir elkeen is vergelyk met die voorspelde las en verplasing van die 

basismodel.  

Laastens is daar ‘n voorbeeld ontwerp gedoen om aan die ontwerper te demonstreer hoe die 

vereenvoudigde model in ‘n alledaagste ontwerp gebruik kan word. Die hoeveelheid bewapening 

wat die R/SHCC balk benodig is dan opgeweeg teenoor die hoeveelheid bewapening wat ‘n 

konvensionele R/C balk benodig. Soos verwag benodig die R/SHCC balk minder trekstaal as die 

gewone R/C balk. Dieselfde kan egter nie in alle gevalle gesê word van die drukstaal in die 

onderskeie balke nie.   
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FOREWORD 

Scope 

Fibre Reinforced Concrete (FRC) has been around for almost 50 years but has been used almost 

exclusively in non-structural applications. These applications include mostly crack controlling 

applications. It is only recently that the use of this material as structural material has been motivated 

by developments in the industry. One such development is the continual increase in the height of 

buildings. These higher buildings demand either bigger structural components or better structural 

materials. Another development is the increased use of prefabrication of structural elements [1]. This 

development allows for use of materials that would not be suitable for site applications to be used in 

a controlled environment.  

Strain Hardening Cement Composites (SHCC) are a relatively new class of fibre reinforced materials 

in the sense that it has been widely studied but not yet widely used. The majority of studies on this 

material are aimed at showing its advantages above other materials in terms of durability, strength, 

flexibility as well as resistance to damage. There is, however, very little information on how this 

material can be used in standardized structural design. This is the main reason why this material has 

mainly been used in experimental construction and not for general use.  

The Japanese Society of Civil Engineers has published recommendations for the design of High 

Performance Fibre Reinforced Cement Composites, or HPFRCC [2]. This document is used in Japan 

as a design guideline for the construction of reinforced SHCC. However, the document does not 

include any actual design models, but gives guidance on the specification of the material parameters 

and appropriate safety factors to be used and then refers the user back to the Japanese concrete 

code for the design of the structure itself. In doing so it does not take into account the strain hardening 

nature of the material. This approach is conservative and safe, but not necessarily economically 

viable as this material is more expensive than normal concrete. 

This study aims to provide the designer with an analytical design model for designing flexural 

members with reinforced SHCC. This model will take into account the material’s strain hardening 

potential under tension, but shear behaviour is ignored. Calculating crack widths also falls outside 

the scope of this study. The novelty of the work lies in the design model itself and not in the methods 

used for its calibration and testing. The only novel models developed in this study are the base 

design model and the simplified design model. Existing models are used in the derivation of these 

two models.  
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Overview 

In Chapter 1, a discussion of fibre reinforced concrete in general is given and then the focus moves 

on to Engineered Cement Composites (ECC), which is a type of SHCC. This chapter also touches 

on the durability of this material and its appropriateness in terms of sustainability.  

Chapter 2 describes the tensile and compressive behaviour of SHCC and also gives the reader the 

background on how the author came up with the design model that is described in detail in Chapter 

3. Here the calculations for the derivation of the design model equations are shown. This chapter 

also explains the simplification of the design model and the testing of it on different types of SHCC 

materials.  

The deflection model is explained in Chapter 4 and the serviceability limit states incorporated into 

this deflection model are also stipulated. The verification of the design model is done in Chapter 5. 

The performance function and its sensitivity to critical parameters is illustrated and the beam tests 

and their results are discussed at the end of this chapter.  

Chapter 6 discusses the reliability design of the design model. In this chapter, material factors are 

found for the strength properties of the material and model factors are derived for the three different 

phases of the design model.  

Chapter 7 illustrates to the designer how this design model can be used in the structural design of 

flexural members. It also compares flexural members designed with reinforced SHCC to those 

constructed with normal reinforced concrete.  

In Chapter 8 a final summary of the study is given along with the conclusions.   
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1. INTRODUCTION TO FIBER REINFORCED CONCRETE 

The inclusion of fibres into concrete was originally done to improve concrete tensile strength and to 

reduce brittleness. For low fibre volumes, typically less than 1% per volume fraction, a stress-strain 

curve as shown in Figure 1-1a, Curve A, is possible. For moderate to high fibre volumes, 1%≤Vf≤3%, 

a stress–strain curve such is shown as Curve B in Figure 1-1a can be achieved. Curve C could 

originally only be achieved for very high volumes of fibre [1].  

Lately it has become possible to achieve tensile responses as shown in Figure 1-1b with low to 

moderate fibre volumes, 1% ≤ Vf ≤ 3%. These materials are known as high performance fibre 

reinforced cement-based composites (HPFRCC). Strain Hardening Cement Composites (SHCC), 

one member of the HPFRCC, have significant ductility coupled with moderate tensile and 

compressive strengths, while ultra-high performance fibre-reinforced concretes (UHPFRC) show 

high tensile and compressive strengths coupled with moderate strain levels [1]. These UHPFRC 

materials are typically not tensile strain hardening as is the case with SHCC.  

Figure 1-1: Uniaxial Tensile behaviour of FRC (a) and HPFRC (b) [1] 

 

1.1 Classification 

There are three basic classes of fibre reinforced cement-based composites, FRCC. The first one 

contains less than 1% fibre per volume fraction (Vf), and utilizes the fibres to reduce shrinkage 

cracking in structural and non-structural elements. The second class contains between 1% and 3% 

fibre per volume fraction, and shows improved mechanical properties such as a higher modulus of 
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rupture (MOR), fracture toughness and impact resistance. The fibres in this class can be used as 

secondary reinforcement in structural members, such as in the partial replacement of shear steel. It 

can also be used to control crack widths. The third class of FRC, more commonly known as high 

performance FRC or HPFRC, shows increased tensile resistance, and in some cases, significant 

strain hardening behaviour after the first cracking. This material usually contains a high fibre volume 

content of Vf ≥ 3%. During strain hardening, the matrix undergoes multiple cracking, by means of 

which fracture localization is delayed. The width of these cracks needs to be controlled tightly, as 

that is the key to this material’s durability.  

Figure 1-1-2: Stress-Strain Relationships for Cement Composites 

 

The deformation behaviour of cement composites such as concrete, fibre reinforced concrete (FRC), 

and high performance fibre reinforced concrete (HPFRC) is typically distinguished according to their 

tensile stress-strain characteristics and post-cracking response in particular.  

Recently, a new kind of fibre reinforced cement composite, known as Engineered Cement 

Composites (ECC) was developed. ECC represents one specific class of HPFRC, which is defined 

by an ultimate strength higher than its first cracking strength and the formation of multiple cracks 

during the inelastic deformation process. In other words, ECC is a member of the SHCC family. In 
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conventional FRC, the strain is dependent on the gauge length. The reason for this dependence is 

the formation of a single, large crack at the point of maximum tensile stress. This single crack 

formation is indicative of localized deformation. In SHCC, the post cracking strain, and so the 

deformation, is uniform on a macro scale and is considered as pseudo strain, which is a material 

property and independent of the gauge length.  

ECC, a type of SHCC, uses a fibre content of up to 2% by volume, but shows strain hardening 

behaviour with strain capacities in the range of 3% - 7%. The typical ultimate tensile strength lies 

between 5MPa and 8MPa. Micro mechanical models, taking account of the mechanical interactions 

between the fibre, matrix and the interface, are used to optimize the micro structure to achieve an 

ultra-high ductility. As shown in Figure 1-2, brittle matrices, such as plain mortar and concrete, lose 

their tensile load-carrying capacity almost immediately after formation of the first matrix crack. The 

toughness of the cement matrices of conventional FRC is increased by the addition of fibres; 

however, the tensile strength and especially strain capacity beyond first cracking are not enhanced. 

FRC is thus considered to be a quasi-brittle material with tension softening deformation behaviour 

as seen in Figure 1-2.  

ECC’s ability to strain harden in tension rather than strain soften after first cracking, is what makes 

it different from FRC in general and also why it is categorized under strain hardening cement 

composites (SHCC). In normal FRC, the first crack continues to open up as fibres pull out or rupture 

and the stress carrying capacity decreases as the load increases. In SHCC, the first cracking is 

followed by a rising stress accompanied by an increase in strain. The strain capacity is attained 

through the formation of many closely spaced micro cracks, allowing for a tensile strain capacity over 

300 times that of normal concrete. These cracks, which carry increasing load after first crack 

formation, allow the material to exhibit strain hardening behaviour, similar to many ductile metals, as 

seen in an experimental uni-axial tensile stress-strain curve shown in Figure 1-3. This curve was 

typical for the tests done during this study. This strain-hardening response gives way to the common 

FRC tension-softening response only after several percent of straining has been attained. 

Closely related to the strain-hardening behaviour of SHCC, is the high fracture toughness of SHCC, 

similar to that of aluminium alloys. In addition, the material is extremely damage tolerant, and 

remains ductile even in severe shear loading conditions [3] [4]. The compressive strength of SHCC 

varies from 30 MPa to 250 MPa [3], depending on the matrix composition. Such high compressive 

strength SHCC is recent, typically referred to as UHP-SHCC, by the group of Prof Kuneida, now in 

Gifu, Japan. Note that high strength composites, termed ultra-high fibre reinforced concrete 

(UHFRC), with examples such as Ductal®, SIFCON and SIMCON, have been developed which form 

a particular class of HPFRC’s, with high fibre content (For a discussion of this particular material 

refer to Van Zijl, 2007) [4]. Compressive strengths of beyond 200MPa are achieved, and fibres 
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prevent explosive, brittle failure. Flexural strengths of up to 50MPa can be achieved. However, high 

to extremely high fibre contents (up to 20%) are used in UHFRC. The focus here is on low to 

moderate fibre contents, and high ductility, as opposed to high strength [4] [1]. 

Figure 1-3: Typical Tensile Stress-Strain graph for SHCC Material 

 

1.2 Strain Hardening Cement Composites (SHCC) 

1.2.1 The History of SHCC 

While ECC constituents are similar to those of fibre reinforced concrete (FRC), the distinctive strain 

hardening through micro-cracking is achieved through micromechanical tailoring of the constituents, 

along with controlled interfacial properties between these constituents. Coarse aggregates are not 

used in ECC, due to their unfavourable effect on fibre spreading and fibre performance. While most 

HPFRCC’s rely on high fibre volume for high performance, ECC uses low amounts of short 

discontinuous fibres. This low fibre volume along with the common constituents, allows for ECC 

mixing with conventional equipment. 

Micromechanics form the backbone of a materials design theory, and relate microscopic properties 

to the microstructures of a composite. It specifically allows systematic microstructure tailoring of ECC 

as well as material strength and ductility optimization. Microstructure tailoring can lead to composite 

ductility of several percent in tension which is a material property not seen before in discontinuous 
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fibre reinforced cement-based composites. Material strength and ductility optimization also leads to 

compositions that make highly flexible materials processing possible. ECC can now be cast 

(including self-compacting), extruded, or sprayed.  

What makes ECC ideal for a broad range of applications are the advantages of high composite 

ductility in the hardened state and flexible processing in the fresh state. A variety of experiments 

have been performed to assess the performance of ECC at a structural level for both seismic and 

non-seismic applications. These experiments provide new insights into how the material properties 

increase the response performance of the structure. At the same time, constitutive models of ECC 

have been constructed and implemented into finite element models for prediction of structural 

behaviour [3]. They should be useful for examining the different uses of ECC in critical elements of 

a structural system, without having to do expensive experiments. These activities are important in 

establishing rational means of designing structures made with ECC material.  

Apart from structural applications, ECC has also been researched as a protective layer for improving 

the corrosion durability of normal reinforced concrete structures. The typical formation of fine cracks 

and anti-spall properties of ECC show the potential of this material in achieving the durability 

function, as reported for PE-ECC (Polyethylene ECC) and PVA-ECC (Polyvinyl Alcohol ECC) [3]. 

ECC has also been shown to exhibit an unfamiliar kink-crack trapping behaviour when used as a 

repair layer in concrete structures [3]. This behaviour eliminates the deterioration mechanism of 

delaminating and spalling in the repair material usually seen in repaired concrete structures.  

Other potential applications of ECC are in high energy absorption structures/devices, which include 

short columns, dampers, joints for steel elements, and connections for hybrid steel/RC structures. 

The isotropic energy absorption behaviour of ECC may be very useful for structures subjected to 

impact or 3D loading. This may include highway pavements, bridge decks, and blast resistant 

building core elements. Other potential targets for ECC application are structures subjected to large 

deformations, such as underground structures that need to conform to soil deformation and require 

leak prevention, permanent formwork, extruded elements with structural properties, structures 

reinforced with FRP (fibre reinforced plastic), and structures to store radioactive waste.  

1.2.2 Unique characteristics of ECC 

A number of investigations into the use of ECC in improving structural performance have been 

conducted in recent years, often revealing unique characteristics of ECC and R/ECC (steel 

reinforced ECC) in a structural context.  

Among these characteristics are high damage tolerance, resistance to shear load, energy 

absorption, delaminating and spall resistance, and high deformability and tight crack width control 
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for durability. Another unique feature of ECC, its ultra-high ductility, which implies that structural 

failure by fracture, is significantly less likely in comparison to normal concrete or FRC.  

Damage tolerance: this is the ability of the structure to sustain load carrying capacity when 

overloaded into the plastic strain range. Damage tolerance is a critical characteristic, as the cost of 

repairing infrastructure after, for example an earthquake, is quite substantial. Further to that is safety 

becoming more and more important. 

Parra-Montesinos [5], has done a series of cyclic tests on the structural integrity of joints in hybrid 

steel-beam R/C column connections. The standard R/C joint experiences large crack opening, loss 

of bond between the axial reinforcement and the concrete, and therefore, loss of composite action, 

and suffers severe spalling, where the steel beam bears on the concrete. The ECC joint, however, 

undergoes strain-hardening with multiple micro-crack damage. There was no spalling observed in 

the R/ECC material which maintains its high bond efficiency despite all the shear reinforcement being 

removed. The R/ECC connection structurally needs no repair, not even after the imposed load and 

deflection are pushed to higher levels. This shows that the damage tolerance of ECC eliminates the 

spall failure usually seen in high stress-concentration zones where concrete and steel interact. This 

phenomena is very important in the current climate of safety first design. Even when this material is 

overloaded, it does not collapse. This could potentially save lives. 

Energy Absorption: Energy absorption is used in seismic hinge zones of structures, to dissipate 

energy input of an earthquake. In R/C structures, the concept of a plastic hinge is introduced by 

ductile yielding of the steel reinforcement in seismic detailing. However, it is typical that only a small 

fraction of the steel actually undergoes yielding due to the disintegration of the surrounding brittle 

concrete. Fischer and Li (2002) [6], did cyclic flexural experiments on cantilevered elements. In their 

study it is clear that the R/ECC absorbs much higher energy than the R/C element despite the fact 

that no hoop shear reinforcement was used in the R/ECC element. This result shows high shear 

resistance and the effect has been demonstrated in later studies of Fischer and Li, as well. This 

characteristic might save costs on parking lot flat slab design where punching shear always seems 

to be a problem. There have not yet been any studies done to support this theory, but there is a 

definite possibility for thinner parking lot slabs done in R/ECC. 

Resistance to delaminating and spalling: Spalling and delaminating between the old and the new 

concrete are the most common modes for failure in patch repair. In repairing bridge decks or 

pavements with overlays, reflective crack and spalling in the concrete substrate are often seen. This 

causes concern since it is difficult to address all modes of failure simultaneously. Strengthening the 

interfacial bond tends to enhance spalling while increasing the overlay strength tends to encourage 
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delamination, which means, the durability of concrete repair is compromised by one or the other of 

these failure mechanisms.  

Li and co-workers (1997, 2001) [7] [8], studied the resistance of ECC repaired structures to 

delamination and spalling. They used a specimen overlay on top of a joint together with an initial 

interface defect and found that the delamination and spalling mode is eliminated by means of a kink-

crack trapping process. The initial interface crack extends slightly as the load increases, but quickly 

kink into the ECC overlay. The crack is then trapped in the ECC by the fibres that act as 

reinforcement. The crack can only propagate further if the fibre is pulled out or broken and that only 

happens after crack saturation is reached. Crack saturation is that point where no new cracks form 

and the existing cracks start to open up. It is also known as crack localisation. The kink-trapping 

process then repeats itself, resulting in a succession of kink cracks in the ECC. Kink-trapping 

happens when a crack starts on the tensile face of the member and spreads inwards towards the 

centre of the member. However, as soon as the crack reaches a fibre, the tension is transferred from 

the matrix to the fibre. Now the crack can only propagate further if the fibre is pulled out or broken 

and so the crack is stopped. Spalling of the ECC is not observed as the kink crack does not reach 

the specimen surface. Delamination of the interface is also eliminated since the interface crack tip 

repeatedly returns into the ECC. On the other hand, the specimen with a regular FRC overlay also 

shows the expected kink-spall brittle fracture behaviour.  

1.2.3 Micromechanics 

ECC is a special member of the new breed of HPFRCC, with characteristics like high ductility and 

medium fibre content. Material engineering of ECC is based on the model of the relationship between 

material microstructures, processing, material properties, and performance, where micromechanics 

is highlighted as the binding link between composite mechanical performance and material 

microstructure properties (Li,1993) [9]. This is state of the art work by others such as Li, and will only 

be described briefly here as the main interest of this paper is the structural design of R/SHCC flexural 

members.  

The adaptation of composite constituents including fibre, matrix and interface are guided by 

established micromechanical models for overall performance [10]. This elevates the material design 

from trial-and–error empirical testing to a systematic, holistically ‘engineered’ combination of 

individual constituents. The link between microstructure and composite performance can be further 

extended to the structural performance level and combine the material design into a performance 

based design concept for structures. Seeing it this way, ECC resembles a material design approach 

as well as being an advanced material and thus gives an alternative degree of freedom in structural 

performance.  
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Tensile ductility is the main performance goal in ECC. Other secondary goals are high strength and 

elasticity modulus, tight crack width control and high durability. For most uses, a tensile strain 

capacity of 2% is seen as adequate. Evaluating strength, ECC should be able to compare to other 

normal strength concretes in terms of compressive strength. The water to binder ratio, w/b, is the 

main variable influencing strength of the matrix.  

Studies have shown that permeability would be in the same order of good quality concrete if the 

crack width is below 80 – 100 μm [10]. The ECC strength is governed by the fibres from the equation: 

𝜎𝑡𝑢 =
1

2
𝜏𝑉𝑓

𝐿𝑓

𝑑𝑓
                                 1-1 

Where: 

     = bond between the matrix and the fibres 

 𝑉𝑓
𝐿𝑓

𝑑𝑓
   = so-called fibre factor 

 Vf   = fibre volumes 

 Lf    = fibre length 

 df   = fibre diameter 

 𝜎𝑡𝑢  = Tensile strength of ECC 

Of course   might be influenced by the w/b (water/binder) ratio, but w/b ratio is less important in 

ECC. 

Different fibre types can be used in ECC, but the detail composition must comply with certain criteria 

imposed by micromechanical considerations. This implies that the fibre, cement-based matrix, and 

the interface (mechanical and geometric) characteristics must be of a certain combination to be able 

to achieve the special behaviour of ECC. This means that ECC designs are directed by 

micromechanical criteria. Micromechanical formulas show that fibres with diameter (df) less than 50 

μm are preferred, in order to attain strain-hardening with lower fibre volume fraction, Vf. For this 

reason polymeric fibres, generally drawn to such diameters, are preferable over steel fibres, normally 

in the 150-500 μm range. Steel fibres with smaller diameters can be made, but the cost escalates. 

Most data available today are for PVA-ECC and PE-ECC where PE stands for Polyethylene fibre. 

PVA fibre was found during a search for low cost high performance fibres for ECC. The hydrophilic 

nature of the PVA fibres created major problems in the composite design, as the fibres are prone to 

rupture instead of being pulled out. This is because the fibre tends to bond strongly to the cement-

based matrix. This needed careful engineering in fibre geometry, fibre/matrix interface and matrix 
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characteristics to attain high ductility in PVA-ECC. To help in the adapting process, micromechanical 

models taking into consideration the uniqueness of PVA-fibre were developed (Wang and Li).  

Tensile ductility can be measured by the strain-hardening index Jb’/Jtip, (Wang and Li) where Jb’ is 

the complementary energy of the fibre bridging stress versus crack opening relation σ(δ), and Jtip is 

the matrix toughness. The load carried by the bridging fibre is a function of the crack opening, 

characterised by a σ(δ) relationship that increases to a peak and then decreases. The peak value 

σ0, known as the fibre bridging capacity, varies from one crack plane to another due to the inevitable 

spatial non-uniformity in fibre dispersion [11]. For strain-hardening, Jb’/Jtip must be more than one 

and a higher Jb’/Jtip leads to more saturated multiple cracking. The fibre bridging complementary 

energy is calculated from single fibre pull-out tests and incorporating the fibre pull-out displacement-

resistance response as follows:   

𝐽′𝑏 = 𝜎0𝛿0 − ∫ 𝜎
𝛿0

0
(𝛿)𝑑𝛿                               1-2 

Where: 

 σ0 = peak bridging stress 

 δ0 = crack opening corresponding to the peak bridging stress 

 δ = crack opening 

 σ(δ) = crack opening relationship 

𝐽𝑡𝑖𝑝 =
𝐾𝑚

2

𝐸𝑐
                      1-3 

Where: 

 Jtip = energy equivalent of the matrix fracture toughness, Km 

 Ec = composite elasticity modulus  

The modelling of the σ(δ) relation is a very important element of ECC micromechanics. It not only 

connects the fibre, matrix and interface characteristics to Jb’, but also estimates the multiple crack 

width before failure. As a result of significant slip-hardening action during pull-out, PVA-fibre can be 

pulled out from both sides across the crack, in contrast to the one-way pull-out usually seen in steel 

and other polymeric fibres. Also, matrix spalling at the fibre exits has to be accounted for in the 

accurate estimation of crack opening. A very strong interface bond leads to fibre rupture at small 

crack opening, resulting in small Jb’. This is in contrast with the fact that a very weak interface may 

result in low bridging strength and large crack opening. A study of the parameters shows that to 
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reach the crack width performance target (below 80 μm) the most favourable interface properties 

should be in the range of 1.5 – 2.5 MPa for frictional stress, and below 1.5 N/mm for interface fracture 

energy, given enough fibre diameter and length for easy fibre scatter. However, without treating the 

PVA fibre, the bond properties are far above the optimal values. 

There are two approaches taken to reduce the excessive interface bond. On the fibre side, coating 

the surface with oil is investigated. The frictional stress and interface fracture energy decreases 

significantly when the oil content is increased. This means that, Jb’ increases with oiling content for 

a given matrix, as shown in Figure 1.4, where a fibre volume fracture of 2% is used. On the matrix 

side, fly ash is brought into the formula. It is found that a high volume fraction of fly ash reduces both 

the interface bond and matrix toughness. Figure 1.5 shows the effect of ASTM Type F fly ash content 

on Jb’/Jtip, where oiling content of 1.2% is used for fibre and the fibre volume fraction is 2.0%. Fly ash 

also improves the workability of the mixture and the sustainability of the material. A negative impact, 

however, is that high contents of fly ash lead to slower strength development at early stage. It is 

found that fly ash to cement at 1:2 weight ratio provides best overall performances although much 

higher fly ash proportions have been used successfully. 

Control of the matrix properties is as important as the interface bond adapting. It is preferred that the 

matrix toughness is below 12 N/m and the matrix cracking strength is kept below σ0. Controlling the 

matrix flaw size distribution may become necessary to make sure that saturated multiple cracking 

occurs. Saturated multiple cracking can, however, be guaranteed if the matrix tensile strength 

without macro defects is controlled to be below the variation range of σ0. Using a PVA fibre volume 

fraction of 2% and achieving the optimal interface properties, the more desirable matrix tensile 

strength without macro defect is around 3MPa – 5MPa. 
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Traditionally, in R/C structural design, the most often used and most important material characteristic 

of concrete is its compressive strength. That is why the key controlling parameter for structural 

strength and performance is usually material strength. This means that higher material strength 

(normally referred to as compressive strength in the concrete literature) is expected to lead to higher 

structural strength, but this is only valid if the material strength property really dominates the failure 

mode. For example, if tensile fracture failure takes place, a high strength material does not 

necessarily mean higher structural strength. Then it is rather a high toughness material that is 

needed, and in the extreme, a ductile material like SHCC, can then lead to a higher structural 

strength.  

1.3 Durability 

1.3.1 Introduction 

It is said that the production of cement, an energy intensive process, is responsible for 5% of global 

greenhouse gas emissions (WBCSD 2002), [12] .The need for such extensive cement production 

can be found in the rate at which development is taking place around the globe. Reinforced concrete 

is possibly the most used building material in the world, in spite of its limited durability when not 

properly maintained.   

The limited durability of reinforced concrete results in significant amounts of infrastructure repair, 

rehabilitation, and replacement. The reason for this limited durability is the combination of corrosion 

prone reinforcement embedded in brittle, crack prone concrete. Cracks provide pathways for the 

ingress of harmful substances which, in time, corrode the reinforcement. Besides the fact that the 

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Fly ash/cement

Jb
'/

Jt
ip

Figure 1-5: Effect of Fly Ash Content on J'b/Jtip 

(Polyvinyl Alcohol Fibre Reinforced Engineered Cementitious Composites: Material Design 

and Performance, [10]) 

 

w/c=0.24 

sand/c=0.8 

Stellenbosch University  https://scholar.sun.ac.za



 
14 

 

corrosion of the reinforcement tends to result in unsightly markings on the outside of the structure, it 

also reduces the strength of the structure. This, in turn, can lead to structural failures.  

It is possible that a more environmentally friendly concrete with improved durability for new and 

refurbished infrastructure provides the best solution to the infrastructure decay problem, while 

relieving environmental concerns. Given that cracking in concrete is a major cause for the 

rehabilitation of infrastructure, this makes the case for a future generation of concrete that is more 

damage resistant, and exhibits smaller crack widths.  

1.3.2 Durability of Strain Hardening Cement Based Composites (SHCC) 

Strain-Hardening Cement-Based Composites (SHCC) are known for their ability to control crack 

widths. This ability is what gives this material its strain-hardening characteristic. Crack widths are 

limited by means of fibres bridging the gaps formed by cracks. The fibre bridging results in multiple 

micro cracks, rather than one or two larger ones. When the tensile strain, however, reaches its 

maximum limit, the fibres bridging the cracks will either pull out or break off, causing one or two 

cracks to open up. This is called crack localization and happens when the member has reached 

crack saturation. It is thus important when designing with SHCC to ensure that the tensile strain in 

the concrete does not reach its ultimate limit. 

The durability of many reinforced infrastructures is negatively impacted by the tendency of concrete 

to crack in tension; tensile stress may be due to live load, restrained shrinkage or thermal loads. 

Past experiences have indicated that cracks and crack widths are difficult to control in the field by 

only using steel reinforcements. Given these facts, it would seem natural to look to SHCC for 

enhancement in structural durability [13]. Closely associated with the strain-hardening and multiple 

cracking behaviour is the small steady state crack width. Even at a strain of 4-5%, average crack 

widths of SHCC remain below 100μm. However, the maximum crack width can be much more than 

that [14]. 

Corrosion of steel reinforcing bars in concrete can commence when the chloride ion concentration 

on the rebar surface reaches a certain threshold level. By preserving low chloride ion diffusion rates 

after cracking, SHCC reduces chloride intrusion to effectively protect rebar from corrosion 

(Sahmaran et al, 2007) [15]. A second level of protection against corrosion is the anti-spalling ability 

of ductile SHCC. It can withstand expansive forces generated by steel corrosion. In many structures, 

steel reinforcing is used to control concrete crack width. Such reinforcement may be completely 

eliminated when SHCC replaces concrete since the crack width in SHCC is self-controlled [13]. 

One of the shortcomings of SHCC is the environmental penalty in higher energy and carbon 

footprints on a unit volume basis, associated with the incorporation of fibres and typically higher 
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cement content in SHCC compared with normal concrete. The higher cement content in SHCC 

results from the deliberate elimination of coarse aggregates used as filler material in normal 

concrete. It is possible to add fly ash to the mixture to save on cement content. More about this is 

said in the next paragraph of this chapter. Hence on a unit volume basis, the primary energy 

consumption of SHCC is a major concern. In the investigation of life cycle primary energy 

consumption and the equivalent carbon dioxide emissions for a bridge deck, Keoleian et al (2005) 

[16] [17], identified material production as the second largest contributor to these sustainability 

indicators, behind traffic alterations due to maintenance and reconstruction events. Thus it is 

important to consider approaches in greening SHCC, even though the enhanced durability of SHCC 

as discussed in the previous section should substantially reduce repair needs and therefore enhance 

infrastructure sustainability. 

The greening of SHCC can target replacement of virgin fibre with industrial waste stream materials. 

SHCC is optimized for tensile ductility with a minimum amount of fibres. Even so, typical amount of 

fibre used is 2% by volume. Attempts at using natural fibre or recycled fibres (e.g. carpet fibres) have 

met with limited success, given the requirements of strong fibre bridges in maintaining composite 

ductility (Li et al, 2000), [8]. Replacing PVA fibres with PET (polyethylene terephthalate) fibres, 

manufactured from recycled plastic bottles, resulted in similar compressive strengths but lower 

tensile and flexural strengths due to the inferior qualities of the material [18]. There have been a few 

successful cases where Portland cement and silica sand have been replaced with industrial wastes. 

The use of fly ash lowers compressive strengths in the early stages but improves the maximum 

tensile strength and ductility [18]. Increasing the use of recycled aggregate increases the 

compressive strength and the elastic modulus, but the bond strength between the fibre and cement 

matrix is reduces to an unacceptable level. Of all these substitutions, only the use of fly ash shows 

a reduction in the carbon dioxide emissions. The only other positive outcome from using these 

alternatives is that there is a saving in natural resources [18]. 

In Chapter 4 of this study, a design method is proposed for the design of reinforced SHCC members 

in flexure. The aim of the model is to design a reinforced SHCC beam in such a way as to ensure 

that it is not just structurally safe, but also strives to keep the deflection and crack widths within an 

acceptable range. Since SHCC has a reputation for showing very small crack widths, there might be 

a saving to be made from using this material. 

1.3.3 Fundamentals of Durability Design for SHCC 

The ductility found in SHCC is not due to plastic deformation, but is attributed to the formation of 

multiple micro cracks. This indicates that the material is progressively damaged in the strain 

hardening range [19]. However, as long as the crack widths stay within a small enough range, the 

material’s permeability is not really increased. There is also a possibility that the micro cracks will 
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close again under special environmental conditions by self-healing [19]. Therefore, it is essential to 

keep the micro crack widths under a certain critical width. The critical crack width for specific 

conditions will have to be found by means of experimental testing under those conditions.   

Strains imposed on structures are in two categories. The first is the mechanical strains which are 

caused by imposed design loads due to the specific use of the structure. These loads are normally 

quite well defined and the strains can easily be found by applying the design calculations given in 

Chapter 4.  

The second group of strains is environmentally imposed strains. These strains include thermal 

strains due to temperature changes, and drying shrinkage and expansion due to moisture in the 

environment. The environmental strains are linked to changing temperatures and seasons and are 

therefore cyclic in nature. Moisture shrinkage strain in SHCC can be in the order of 0.08% to 0.12%, 

while a temperature difference of 50˚C causes a thermal strain of around 0.05% [19]. These strains 

are quite substantial and if the mechanical strains are added, it would be prudent to check the 

ultimate design strain in order to ensure that strains are kept low enough. It would seem that a 

structure will have to be able to withstand at least 0.2% strain before micro cracking starts, in order 

for the environmental strains not to affect the durability negatively [19].  

1.3.4 Crack Control as Durability Measure 

An important part of the durability of structures, is limiting crack widths. Cracks are the weak spots 

in the structure where potentially damaging salts such as chlorides can find entrance into the 

concrete and cause damage to the reinforcement inside and to the concrete itself [19]. This damage 

causes restoration and maintenance costs in the building’s life cycle. By keeping the crack widths 

small enough, these costs can be reduced significantly and maintenance periods can be increased. 

Corrosion of reinforcement inside concrete structures weakens the structure and can cause 

premature collapse in extreme cases of weather, for instance. 

An alarming trend observed in the infrastructure sector internationally is that the growth rate of the 

maintenance and rehabilitation expenditure is increasing. The largest source of damage may be 

attributed to moisture, gas and salt ingress in cement-based composites like concrete, whereby steel 

reinforcement is subjected to degradation processes [19]. Tight crack control has the potential of 

addressing these issues.  

Crack width limitation or control is a well-established concept in RC design. Design standards and 

codes for concrete suggest limiting values for crack widths for different environments to assure 

durability of structures built in these environments. In Table 1-1, the various limits for some different 

codes are listed. 
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Table 1-1: Examples of crack width limitations in RC Structures for Durability (Carino and 
Clifton, 1995), [20] 

Exposure conditions Tolerable crack width (mm) 

ACI 224R, 90  

Dry air or protective membrane 0.41 

 
Humidity, moist air, soil 0.30 

De-icing chemicals 0.18 

Seawater and seawater spray, wetting and drying 0.25 

Water retaining structures 0.10 

ACI 318-89  

Interior 0.41 

Exterior 0.33 

ACI 350R-89  

Normal  0.27 

Severe 0.22 

CEB/FIP Model Code 1990  

Humid environment, de-icing agents, seawater 0.30 

 

Chloride has a detrimental effect on the fibre-matrix bond of the composite and consequently the 

mechanical properties of SHCC (Kabele et al., 2006) [21] [22]. As shown by Mechtcherine et al., 

(2007) [23] cracking has a significant influence on the transport parameters of the material. It is 

reasonable to expect that steel-reinforced SHCC members (R/SHCC) will generally have a superior 

durability compared to conventional RC members subjected to the same tensile strain, due to their 

limited crack widths. However, the durability of the material can only be fully utilized based on an 

accurate prediction of the time until chloride induced corrosion begins.  Altmann et al., (2008) [24], 

developed a fuzzy probabilistic model for chloride ingress in SHCC based on the DuraCrete model 

[25]. 

Chloride ingress and subsequent corrosion of the steel reinforcement is a critical corrosion process 

for R/SHCC members. To fully utilize material ductility and durability, a performance based durability 

design concept that is applicable to both crack-free and cracked SHCC is required. It is well known 

that cracks of limited widths as is present in SHCC may fully heal over time. Further investigations 
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into self-healing of SHCC are required to accurately model chloride ingress in the cracked material. 

The cracks in SHCC are not always evenly spaced. Localization of cracks has a major influence on 

quantification of an expected chloride diffusion coefficient at an arbitrary location in a member under 

tensile strain. Thus the spatial distribution as well as further properties such as length and width, as 

a function of the induced load or strain, needs to be investigated further. It is said that the age of the 

crack free material has a greater impact on the chloride ingress over the life time of the structure 

than the diffusion coefficient. For SHCC no information for the age factor is available, and thus 

significant research effort in this area is required [25]. There is new evidence of chloride-induced 

corrosion in R/SHCC. Chlorides enter SHCC through cracks and reach the steel within minutes or 

hours, despite the small crack widths mentioned earlier. However, the corrosion rate is low in cracked 

R/SHCC due to the small spacing of cracks [26] [27].   

Stopping the ingress of harmful substances into the concrete is a primary contributor to the durability 

of such concrete. These harmful substances can be moisture, gas and salts and they will cause 

degradation of the material itself or of the reinforcement within it. The most important mechanisms 

of moisture ingress and migration are capillary sorption and moisture diffusion. Moisture intake is 

governed by capillary sorption in the near surface zone, (Neithalath, 2006) [28], while it is believed 

that moisture fusion is the dominant mechanism for the longer term migration of moisture in the 

material through micro pores (Bažant and Najjar, 1971 [29]; Neithalath, 2006 [28]). In UHPFRC, 

capillary absorption is reduced by matrix densification, (Kuneida et al., 2007) [30], while inherent 

crack control reduces diffusivity in SHCC (Lepech and Li, 2005 [31]; Sahmaran et al., 2007 [15]). 

Wang et al. [32], (1997) have studied the influence of crack width on the water permeability of normal 

concrete.  It was found that for a crack width reduction from 550 to below 100μm, the permeability 

reduced by seven orders of magnitude. Li and Stang (2004) [33], found that SHCC has a similar 

permeability to that of normal concrete for the same width of cracks. Thus it should be possible to 

apply the rules of water permeability for normal concrete on SHCC.  

In a study done by Paul, Rens and Van Zijl [34], it was found that the crack spacing in R/SHCC is 

reduced with an increase in the cover to reinforcement depth. In this study, the threshold cover depth 

was found to be 25mm. It was also concluded that an increased crack spacing shows a higher 

corrosion potential and rate than a lower crack spacing. This fact was also concluded in a more 

recent study by Paul and Van Zijl [27]. Higher deflection levels were also shown to decrease the 

crack spacing, however, it also increases the average and maximum crack widths. This fact is in 

accordance to theory that the higher the tensile strain, the more cracks will form until such time as 

crack saturation is reached. Then the first cracks to form would start opening up and crack 

localization would take place.  
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In the study done by Adendorff, Boshoff and Van Zijl [35], it was found that although the average 

crack width in SHCC is less than 0.1mm, the maximum crack width is far more than that. In this 

study, measurements were taken from direct tensile tests as well as cyclic loaded tests. Both these 

tests showed average crack widths less than 0.1mm, but maximum crack widths as high as 0.4mm 

at a tensile strain of 3%. These large cracks appear in localized areas only. This was also concluded 

by Van Zijl et al., (2016) [36].  

It seems that, for a particular type of SHCC, containing PVA fibres in the range of 2.0% ≤ Vf ≤ 2.5%, 

the crack width is arrested at a strain level of 1% and at an average value of 50 - 60μm [19]. More 

cracks will appear in the structure, but it is believed that they will not exceed this width, until crack 

saturation is reached. This phenomenon is shown in studies done by Li and Weimann in 2003 [37], 

Li et al., in 2001 [38], and Wang and Li in 2006 [10].  

1.3.5 Conclusion 

While SHCC shows much promise in reducing the need for rehabilitation of reinforced concrete 

structures, developments to reduce the environmental impact of the material are required. Reducing 

the carbon footprint of this material will enhance its worth in the construction industry. 

As cracking and crack widths are the most important aspects of durability, these properties of SHCC 

need to be researched in greater depth. While average crack widths are shown to be small, maximum 

crack widths can reach up to the normal limits set in conventional concrete structures. During this 

study, it was found that the crack widths at the service limit state were too small to see with the 

naked eye.  

There are currently no models for estimating the crack widths in SHCC. The specific crack width 

limits that need to be applied in order to protect reinforcement against ingress of harmful substances 

are also lacking. In the absence of these limits, the supposedly higher durability found in R/SHCC 

than in normal R/C cannot be proven.   
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2. MATERIAL DESCRIPTION 

2.1 Response to Tension 

2.1.1 Material Behaviour 

Strain hardening cement composites are ideal for use in structural members subjected to bending 

because of their strain hardening ability under tension. Strain hardening is achieved by means of 

multiple cracking, which delays crack localization. As with normal concrete, the material cracks under 

tension. In normal concrete, however, the material has lost all tensile load-carrying ability after 

cracking and has failed. In SHCC, the initial cracks are generally too small to be seen on the surface 

and are spread along the length of the element by means of the fibres in the matrix. The fibres act 

as reinforcement, arresting the cracks and spreading the load to the nearby matrix where more fine 

cracks develop and more fibre bridging takes place. This enables the material to still carry higher 

tensile loads even though the matrix has been damaged.  When the tensile strain passes the ultimate 

strain value of the material, the fibres bridging a crack will either pull out or be broken off. Now crack 

localization has occurred, and the material has failed, and gradually loses its load carrying capacity.  

The first cracking strength of the material can vary from 1MPa to 5MPa, depending on the matrix 

design. The first cracking strain can be anything from 0.08% to about 0.2%. The ultimate tensile 

strength capacity is around 3MPa to 6MPa, and is accompanied by tensile strain of around 2.0% to 

5.0%. These values are true for normal strength strain hardening materials. They might be very 

different for higher strength materials. An UHPSHCC material is used later on in this study for 

checking the design model. This material has a first cracking stress of 11.8MPa with an 

accompanying strain of 0.000211. The ultimate tensile stress is 15MPa with an accompanying strain 

of 0.0039.   

Naaman and Reinhardt (2006), [39], proposed a classification model for Fibre Reinforced Concrete 

(FRC) based on the tensile properties of the material as this is considered the most important 

characteristic of this material. In Figure 2-1, the minimum information needed to design a strain-

hardening FRC material, according to Naaman and Reinhardt, is given diagrammatically. The 

number, 1, indicates the first percolation cracking point (σcc, εcc) or first cracking point, and the 

number, 2, indicates the peak stress point (σpc, εpc) or crack localization point. Because of the 

difficulty in calculating the first cracking point, Naaman and Reinhardt suggested that a minimum 

elastic modulus be specified. This allows the minimum coordinates of point 1 to be calculated 

beforehand. The actual modulus can be measured from tests but because the first cracking point is 

very hard to pin point, this is quite a tedious and not very accurate process.  
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In Visser’s study [40], the elasticity modulus for normally cast SHCC was measured to be around 

12.5GPa, and that of extruded SHCC around 31GPa. The extruded SHCC E modulus is high due to 

the air being forced out of the material during extrusion. During a previous study, elasticity modulus 

values of around 7GPa and 8GPa were also found, while during this study, E values of around 

20GPa were found. Further to the above, it was found in a study by Van Zijl (2005) [41], that the 

ultimate tensile strength and strain are significantly increased upon reduction in aggregate fineness. 

It was also found that the strength and strain is reduced with an increase in aggregate content, 

without the fineness of the aggregate playing a role.   

 

Figure 2-1: Minimum Information Needed for Design on Tensile Strain Hardening Stress-
Strain Response of FRP Composites [39] 

 

Naaman and Reinhardt assumed a minimum E value of 10.5GPa. They decided that the tensile 

strain could be set to a value close to that of the unreinforced matrix, and they chose εcc = 0.0002. 

Then, σcc can be calculated using one of the following equations: 

 𝜎𝑐𝑐 ≈ 𝜎𝑚𝑢   

 𝜎𝑐𝑐 = 𝐸𝑐𝜀𝑐𝑐 

 𝜎𝑐𝑐 = 𝐸𝑚𝑖𝑛𝜀𝑐𝑐 = 𝐸𝑚𝑖𝑛0.0002  

 𝜎𝑐𝑐 = 𝜎𝑚𝑢(1 − 𝑉𝑓) + 𝛼𝜏̅𝑉𝑓
𝜓

4𝑉𝑓
 

 𝜎𝑐𝑐 = 𝜎𝑚𝑢(1 − 𝑉𝑓) + 𝛼𝜏̅𝑉𝑓
1

𝑑
 

Where: 
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 σmu  = Tensile strength of unreinforced matrix 

 Ec  = Elastic modulus of the composite 

 Emin  = 10.5GPa 

 𝜏̅   = Average bond strength at the fibre matrix interface 

 𝛹   = Perimeter of one fibre 

 Af  = Cross sectional area of one fibre 

 d  = Fibre diameter 

 α = Product of several coefficients 

The first part of Reinhardt and Naaman’s classification is based on the specified tensile strength or 

peak tensile stress after cracking, σpc, of the material (See Figure 2-2). For example, a Class T-10 

composite would guarantee a post-cracking tensile strength of 10MPa. All the classes have the same 

required minimum level of strain at peak stress and the same minimum elastic modulus.  

Figure 2-2: FRC classification model proposed by Naaman and Reinhardt (2006) 
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The second part of the classification is the minimum strain capacity at peak stress, that is, εpc0.005. 

This strain level is more than twice the yield strain for normal reinforcement bars. The number is 

justified in that almost all failures occur when the strain in the reinforcement is significantly larger 

than the yield strain. This happens in under reinforced members. Naaman and Reinhardt, therefore 

considered it safe to specify a minimum peak strain of 0.5%. This is to ensure that the strain 

hardening FRC material will contribute towards crack control, ductility, energy absorption and the 

ultimate strength of the reinforced member. During this study, this limit was found to be low. Values 

of up to and more than 3% were found in a number of cases. 

The minimum elasticity modulus, 10.5GPa, is the tangent modulus at the origin. It seems that almost 

all cement composites will be able to comply with this specification easily. By fixing this minimum 

value, the first cracking point, the necessity of trying to determine the exact first cracking stresses 

becomes less important. This will, however, not be valid for all strengths of materials and some 

modelling will be necessary to determine the elasticity modulus for specific strengths of SHCC. This 

will be especially true for the higher strength SHCC materials.  

When using this classification system, it can thus be said that a Class T-10 strain-hardening FRC 

composite has the following properties: an ultimate tensile strength equal or higher than 10MPa, a 

minimum elastic modulus of 10.5GPa, and a strain at peak stress equal or higher than 0.5%.  

2.1.2 Test Models and Testing 

To test SHCC in uniaxial tension, it is cast in a dumbbell shape. The wider ends are used to grip the 

specimen and the narrow middle piece ensures that the cracks are confined to the reduced cross 

section piece of the dumbbell. This also simplifies the strain calculations and also ensures that the 

actual characteristic cracking response is captured in a known region of uniform cross-section by 

pre-placement of the deformation measurement devices.  

The specimen is placed inside a frame which is then inserted into a materials testing machine (MTM). 

Openings are provided in the frame for movement measuring devices, Linear Variable Differential 

Transformers (LVDT), to be installed. These elements are all then connected to a data capturing 

system, which in turn is connected to a computer which then tracks the movement in relation to the 

tensile load being exerted on the specimen. The data can then be transferred into an Excel 

spreadsheet from where stress and strain relationships can be drawn for every specimen tested. 

Figure 2-3 shows a typical tensile test setup.  

In recent work, and based on van Zijl et al., (2016) a larger dumbbell-shaped specimen was used in 

Stellenbosch, with a 40mm x 80mm cross section in the gauge region.  
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Figure 2-3: a) Extensometer consisting of a frame and 2 LVDT’s, b) The thin flat dumbbell 
shaped specimen, c) Tensile test setup in Zwick Z250 [42] 

 

2.1.3 Stress-Strain Relationships 

Examining the stress-strain graphs produced by analysing the data from the tests done during this 

study, three different phases are clearly definable in the tensile response of this material as is shown 

in Figure 2-4. (The tests are further described in chapter 3.) 

The first phase is a linearly elastic phase. It is the period from load inception until the first crack forms 

in the cement matrix. The elasticity modulus of the material is defined as the gradient of this part of 

the stress-strain graph. During this phase there are no cracks in the cement matrix and the material 

is assumed to be fully elastic.  

The second phase is the strain hardening phase which is initiated with the first cracks appearing in 

the cement matrix. These cracks can be very small at first and are not necessarily visible on the 

surface. The specimen has now entered a plastic state. Even now, after the concrete has started 

cracking, the specimen is able to endure even higher loads as the strain increases. This strain 

hardening phase is accompanied by multiple micro cracks forming along the length of the specimen. 

This phenomenon is known as multiple cracking and is in turn caused by fibres in the cement matrix 

which act as reinforcement, arresting crack propagation as soon as it passes a fibre, and re-

distributing the stresses throughout the length of the specimen. At some point, the stress will reach 

an ultimate level and the fibres will start pulling out or breaking off. This is then the end of phase 2 

and is called crack localization. 

The third phase is the failure phase. When crack localization has occurred, the member has failed 

in tension and under further loading the stress will gradually decrease as the strain still increases. 

One, or in some exceptional cases, two cracks in the matrix will now open up as the other cracks 
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close. This is still a ductile phase as the fibres in the matrix will keep slowing the crack’s progress 

through the specimen. 

 

Figure 2-4: Tensile Stress-Strain relationship 

 

2.1.4 Critical Parameters 

The strain hardening characteristic of SHCC is what makes it unique from other fibre reinforced 

materials. As strain hardening is SHCC’s most valuable characteristic, it is important to know the 

extent of this phase.  

As was indicated earlier, strain hardening is initiated with the first crack forming in the cement matrix. 

Knowing the stress and strain associated with this point is necessary in order to establish the 

elasticity modulus for this material in tension. This point is called the first cracking point and the 

stress and strain associated with it is called first cracking tensile stress, σct1, and first cracking tensile 

strain, εct1. 

The second point of interest will be the point of crack localization. The stress and strain associated 

with this point is called the ultimate tensile stress, σctu, and the ultimate tensile strain, εctu. When the 

ultimate tensile stress and strain have been reached, the material has reached the end of its strain 

Stellenbosch University  https://scholar.sun.ac.za



 
26 

 

hardening capacity and will gradually start to loose strength as the load increases. These four 

parameters at the two points of interest are shown in Figure 2-5. 

 

Figure 2-5: Simplified Stress-Strain Relationship 

 

The slope of the first leg of the graph describes the elasticity modulus of the material. Elasticity 

modulus, E, can then be defined as: 

𝐸 =
𝜎𝑐𝑡1

𝜀𝑐𝑡1
                                 2-1 

Finding the slope of the second part of the graph is essential in defining the strain hardening part of 

the tensile behaviour. In order to make this expression more generic, it is related to the original 

modulus, E. 

𝛼𝐸 =
𝜎𝑐𝑡𝑢−𝜎𝑐𝑡1

𝜀𝑐𝑡𝑢−𝜀𝑐𝑡1

𝜀𝑐𝑡1

𝜎𝑐𝑡1
                               2-2 

Equations 2-1 and 2-2 are used in Chapter 4 to define the design model for reinforced SHCC in 

bending 
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2.2 Response to Compression 

2.2.1 Material Behaviour 

The compressive behaviour of SHCC is assumed to be similar to that of normal concrete and 

therefore it has not been widely studied. It is believed that the material does not have any notable 

strain hardening properties in compression. Its compressive behaviour is similar to that of normal 

concrete. Compressive strength values of between 20 and 250MPa have been found. These values 

are associated with elasticity modulus values of between 18 and 34GPa [43].  

2.2.2 Test Program 

In order to establish the correct material properties for the flexural members tested, compression 

tests were carried out for each of the flexural test specimens. (These tests are further described in 

chapter 3.) A typical test setup is shown in Figure 2-6. 

The testing of the compressive strength of concrete is well established in practice, however, a 

challenging aspect of measuring the concrete properties of SHCC is the requirement that the strain 

related to the stress also need to be measured.  In order to record total load-deformational response 

during compressive tests, a suitable mounting frame as shown in Figure 2-6 was used. The frame 

allows for two or three LVDT’s to be mounted on it. The full load-deformational response was to be 

measured as well as a significant part of the post peak response. Measurement of the deformation 

of the post peak response was risky as the failing of the test specimen could result in damages to 

the movement sensors. The tests specimens were cylinders of 50mm diameter and approximately 

100mm in length. 

As for the tensile test the data acquired was processed via an analogue to digital converter and fed 

into a computer where it could be imported into an excel spreadsheet.  Here it could be manipulated 

and the stress-strain relationship could be drawn for each test done.     

2.2.3 Stress-Strain Curves 

As was expected for SHCC, a very similar compressive response to that of normal concrete was 

found. The true curvature represents a complicated curve with the maximum compressive strength 

at the turn of the curve. From there it has a near linear decline as the concrete crushes and fails.  

This is shown in Figure 2-7. 

As for normal concrete, this stress-strain response can be approximated with a parabolic expression. 

However, keeping the analytical solution to be developed in mind, a bi-linear approach was adopted 

in order to simplify the calculations. This approach was also followed by Li et al. [44]. According to 

them, the elasticity modulus, E, for the first part of the approximation, can be calculated as follows: 
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𝐸 =
2𝜎𝑐𝑐𝑢

3
𝜀𝑐𝑐𝑢

3

  =  
2𝜎𝑐𝑐𝑢

𝜀𝑐𝑐𝑢
                                2-3 

Figure 2-6: Apparatus for compressive specimens [45] 

 

From Equation 2-3 it is clear that Li et al. [44] have assumed a stress value of 2/3 of the ultimate 

value to coincide with a strain value of 1/3 of the ultimate value. This approach is shown in Figure 2-

7 on a single compression stress-strain curve. 

To define the next part of the relationship, the slope of the second line is needed.  In order to find an 

expression for this slope, and taking into consideration the assumed values of the starting point of 

this slope, it is possible to deduce the following: 

𝛿 =  
𝜎𝑐𝑐𝑢−

2𝜎𝑐𝑐𝑢
3

𝜀𝑐𝑐𝑢−
𝜀𝑐𝑐𝑢

3

 =   
𝜎𝑐𝑐𝑢

3
2𝜀𝑐𝑐𝑢

3

 =  
𝜎𝑐𝑐𝑢

3

3

2𝜀𝑐𝑐𝑢
=  

𝜎𝑐𝑐𝑢

2𝜀𝑐𝑐𝑢
                            2-4 

If the same approach is used as for the tensile behaviour and this second slope is expressed in 

terms of the elasticity modulus, the following can be derived: 
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𝛿𝐸 =
𝜎𝑐𝑐𝑢

2𝜀𝑐𝑐𝑢

𝜀𝑐𝑐𝑢

2𝜎𝑐𝑐𝑢
=  

1

4
                                2-5 

Figure 2-7: Compression Stress-Strain Behaviour according to Naaman and Reinhardt 

 

To determine how appropriate these assumptions are, a number of compressive responses were 

analysed to ascertain if the cut-off point of 1/3 of the ultimate strain value for the elastic part of the 

compressive response is reasonable. The results of the 6 compressive tests done during this study 

on cylindrical specimens and reported in Table 3.3 were used for this purpose. Trend lines were 

used to establish the point where the compression response is no longer linear. The average strain 

value of these points was then used to derive a new bilinear estimate. These tests are further 

described in chapter 3. Two of these responses are shown in Figures 2-8 and 2-9.  

Analysing Figure 2-8, it is clear that the assumed elasticity modulus of Equation 2-3, is larger than 

the true modulus, resulting in an over estimation of the stiffness for the compressive response. This 

discrepancy is much less in Figure 2-9, but it still shows an over estimation of the stiffness of the 

concrete in compression. It is thus clear that for some mix designs, the above assumption may be 

more valid than for others. 

Over estimating the compression stiffness of a member can lead to un-conservative under-

estimation of the deflection of the member. In order to find a more accurate solution, a two part 

approach was used with the first part taken as being linear. The second part was then approximated 
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with a polynomial curve of the second order, as this was found to fit the observed data curve best. 

The intersection point of these two approximations was then assumed to be the point where the 

elastic response ends and the plastic response starts. This was done for all the compression tests 

done for this study, which was a total of 6 tests.  

From the number of responses tested, the average strain value of this cutting point was found to be 

0.317 of the ultimate strain value. This verifies that the assumption of 0.333 of the ultimate strain 

value as was made by Li et al [44], was reasonable but perhaps overly simplistic.  

Figure 2-8: Compression Stress and Strain Response showing the change from elastic to 
inelastic response. 

 

The average stress value of the cutting point was found to be 0.533 of the ultimate stress, for the 

data considered here. The stress value assumed by Li et al. [44], of 0.667 of the ultimate stress is 

considerably higher, resulting in the un-conservative stiffness estimate. This relates to Equation 2-6 

below 

𝐸 =
0.533𝜎𝑐𝑢

0.317𝜀𝑐𝑢
                      2-6 

When this new approach is followed and the resulting approximation line plotted on the same graphs 

that were used in Figures 2-8 and 2-9, the results are given in Figures 2-10 and 2-11.  
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Figure 2-9: Compression Stress and Strain relationship showing the change from elastic to 
plastic response (2) 

 

Figure 2-10: Compression Stress and Strain Relationship with adjusted approximation 
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Figure 2-11: Compression Stress and Strain relationship with adjusted approximation (2) 

 

2.2.4 Critical Parameters 

The first points of interest on the compression response are the maximum stress and strain of the 

material under compression, and are called the ultimate compressive stress, σccu, and ultimate 

compressive strain, εccu. As shown in Figure 2-12, the compression model was simplified into a bi-

linear approximation instead of trying to fit the rather complicated curve into the analysis model. 

The above mentioned assumptions are reasonable for the materials tested. These materials included 

different volume fractions of fibres as well as different aggregate sizes, but were all designed to be 

strain hardening. These assumptions have, however, not been tested on an ultra-high performance 

strain hardening composite, with compressive strengths over 80MPa. Concrete materials with higher 

compressive strengths tend to be more brittle than those with lower compressive strengths.  

In order to find an analytical solution to this problem, more data of different mix designs and different 

compression strengths are needed.  
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Figure 2-12: Simplified compression stress-strain relationship 

 

2.3 Conclusion 

Both the tensile and compressive behaviours of SHCC are complex and difficult to model. In order 

to simplify the process, a bi-linear approach was adopted in both cases. Quantifying the tensile 

response requires the definition of the first cracking stress and strain as well as the ultimate stress 

and strain. For the compression response, only the ultimate stress and strain is needed since the 

stress-state point marking the onset of inelastic response is expressed as fractions of the ultimate 

stress-strain pair.  

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 
34 

 

3. TESTING AND VERIFICATION OF THE MODEL 

3.1 Critical Parameters 

3.1.1 Performance Function 

In order to do a reliability analysis on the base design model, it is necessary to define the 

performance function. The performance function is defined as the applied load subtracted from the 

resistance and should be positive, indicating a level of safety, but no less than zero. In this case, the 

performance function is defined as follows: 

P(f) = Mr - Mu            

𝑃(𝑓) =

 
𝜀𝑐𝑡2[1

6⁄ 𝐸𝑐𝑐𝑏𝑥3(2𝛾3+3𝛾(1−𝛾)(𝛾+1)+𝛿(1−𝛾)2(𝛾+2))+1
6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)3(2𝛽3+3𝛽(1−𝛽)(𝛽+1)+𝛼(1−𝛽)2(𝛽+2))+𝐸𝑠(𝐴′𝑠(𝑥−𝑑′)2+𝐴𝑠(𝑑−𝑥)2)]

(ℎ−𝑥)
−

𝑃𝐿

4
                        3-1 

Equation 3-1 is based on the base design model, derived in Chapter 4 of this dissertation.   

3.1.2 Sensitivity to critical parameters 

In order to determine the critical parameters of the performance function, the sensitivity of the model 

with respect to its defining parameters is needed. Determining the sensitivity involves finding the 

partial derivative of the performance function with regard to the specific parameter under 

consideration. This gives the deterministic sensitivity of the model to the specific parameter. The 

second part of the sensitivity analysis is the statistical sensitivity, which can be represented by the 

standard deviation of the specific parameter. These two values must be multiplied in order to find 

the model’s sensitivity toward this parameter [46].  

As can be seen from Equation 3-1, the parameters used in the model are not base material 

characteristics, but rather functions of base material properties. This means that it is not possible to 

find the partial derivative of the resisting moment function with regard to a base material property. 

An alternate estimate for the deterministic sensitivity is needed. The whole model was thus taken 

and the base material properties increased by 10% in turn. The difference this increase made to the 

resistance was noted in each case.  This difference in value was then used as the deterministic 

sensitivity of the model towards this specific material property. This could then be multiplied with the 

standard deviation of this material property, which was determined in the statistical analysis of the 

material’s response to tension and compression. These values are shown in Table 3-1.  
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Table 3-1: Model Sensitivity 

Material Property Difference in Mr 

(%) 

Standard deviation of 

material property 

Model Sensitivity 

εct1 0.004 0.395 0.00158 

σct1 0.438 0.183 0.08015 

 
εctu 0.021 0.263 0.00552 

σctu 0.076 0.090 0.00684 

εccu 2.603 0.215 0.55965 

σccu 2.235 0.079 0.17657 

 

It seems that the model is most sensitive to the compression characteristics of the material. Only the 

ultimate compression characteristics are used to determine the various compression elements 

needed for the design model. Thus there are only two material parameters involved in profiling the 

compressive behaviour of the element, the ultimate compressive stress and the ultimate 

compressive strain. It can be expected that the model will be quite sensitive to changes in said 

parameters.  

For the part of the section of the element in tension there are four parameters used to describe the 

tensile behaviour of the element in bending. These are the stress and strain at first cracking, or yield 

stress and strain, as well as the ultimate tensile stress and the ultimate tensile strain. The yield stress 

and strain is used to calculate the elasticity modulus as well as the parameter α, which defines the 

slope of the strain hardening leg of the tensile stress – strain graph. The tensile yield strain is also 

used in determining the value of β, and so it would have been thought that the model would also be 

very sensitive to this parameter. It is, however, the least sensitive of all. That might be explained by 

the fact that the parameter β, is mostly constant in the third phase of the model and also very small, 

compared to the distance to the neutral axis or the amount of reinforcing, while α is a material 

property. The yield stress and strain has large standard deviations due to the difficulty in measuring 

these values from tests.   

The standard deviation for the tensile strain values is relatively high. This phenomenon was seen in 

all the specimens that were tested during this study. These tests are described in the next part of 

this chapter. The stress values are fairly constant but the strain values vary considerably. An 

example is the tensile tests done along with the second set of beams. The ultimate tensile strength 

varies between 2.85MPa and 4.12MPa while the ultimate strain varies between 0.002 and 0.06.  
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3.2 Test Program 

3.2.1 General 

Two sets of six beams each were tested. In order to make the tests more realistic and avoid having 

the size effect impair the results, the test specimens were constructed to a realistic size. This meant 

that the experiments were quite expensive and time consuming, and so the number of tests was 

limited.  

For each beam, a set of tensile and compressive tests were performed, in order to determine the 

material properties for the each specimen tested. These properties were needed as input for the 

model to be able to predict the response of the beam accurately. Due to limitations on the amount 

of moulds available for the casting of these material specimens, there were only 3 tensile specimens 

and 3 compressive specimens made for each beam.     

The beams were designed to have both compression and tensile reinforcement as well as shear 

links. The shear behaviour of these elements does not form part of this study, but shear links were 

included to ensure that the beams failed in flexure and not in shear. It also improved the handling of 

the steel cages.  

3.2.2 Mixing and Casting 

For the first set of beams, the concrete was mixed in five batches for each beam due to the limited 

mixer capacity of 27 litres SHCC. The mixing time was set to 7 minutes, during which an ingredient 

was added roughly every minute, starting with the dry ingredients excluding the fibres, which were 

added last. The concrete was then carried with buckets and poured into the specially built, 

waterproofed, wooden formwork. After every three buckets, the concrete was compacted with a 

vibrating poker.  

For the second set of beams, a beam and its tensile and compressive tests could be cast from one 

batch as the beam sizes were smaller, 200x200x2800 instead of 300x300x3000, than the first set. 

This was more ideal as the same mixture was used for all the tests as well as for the beam, which 

was not possible for the first set of beams as the volume of concrete was too much for the mixer. 

The mixing time was increased on these specimens as there were lumps of fibre found in the first 

set of beams. The mixing time was not specified but the concrete was mixed until there were no 

more lumps found in the mixer when testing it by hand. The casting was done in the same manner 

as before and the concrete was again compacted with a poker vibrator. 

At first there were a few problems. Some leakage was experienced during the pouring of the first 

beam. This resulted in the first beams compaction being slightly less than the rest. This problem was 
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corrected on the following specimens by sealing the seams of the formwork with duct tape prior to 

applying the oil. The following beams were cast without any further problems of this nature. 

The material tests made for the tensile and compression testing were cured in water for 28 days, as 

is the norm, while the beams were cured by covering them under wet sacking for 28 days. On site, 

columns are wrapped in plastic to retain as much as possible of their moisture for the curing process. 

Beams and slabs, however, are sprinkled with water every day. Depending on the weather and the 

contractor, the sprinkling sometimes happens twice daily.  

3.2.3 Testing 

The beams were all tested on 28 days, or as close as possible to that age. It was never more than 

2 days over the 28 day limit and never under 27 days. For testing, a beam was supported at each 

end on a concrete block. A rubber bearing was placed between the beam and the support to prevent 

crushing of the support against the beam, or vice versa.  

A hydraulic Instron Materials Testing Machine (MTM) of 500kN capacity was used to apply the point 

load in the centre of the beam specimen. The test was deflection controlled and the jack was set to 

push down at a speed of 10mm per minute. The jack has a maximum travel of 100mm and as that 

was not enough to get the specimens with the higher reinforcement content to fail, the tests were 

done in up to three stages. The aim was to get as complete as possible a flexural load-deflection 

curve for each specimen.  

The deflection was measured by four LVDT’s connected to a computer via an analogue to digital 

signal converter. They measured the relative movement in four different places on the beam, which 

could then be used to determine the true deflected shape of the specimen. They were positioned on 

the ends of the specimen, as close as possible to the support, as well as in the middle, as close as 

possible to the load. They could, however, not be positioned in the centre of the beam as the jack 

applying the load was in the way. This meant that the actual middle deflection had to be calculated 

using a polynomial equation of the third order.  Figure 3-1 shows a photograph of the test setup. 

All the test specimens were painted with lime in order to make the cracks in the surface clearer. 

However, for the first set, the cracks were counted and tracked manually while the beam was loaded. 

This proved a very difficult task and as soon as the load was lifted, because the testing machine has 

reached its deflection limit, some of the cracks closed up again.  The cracks were not marked during 

the test, only measured visually. At the second set of tests, a video camera was used to film the test. 

The idea was that the video could be used to track the cracks in the beam as they form. However, 

because of the size of the beams, the video camera could not be placed in close proximity to the 

beam as this would have made it impossible to capture the length of the beam on the video. The 
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idea was that the video could afterwards be enlarged to see where and when the cracks formed. As 

the cracks forming in SHCC are as small as 0.1mm, it was near impossible to see when and where 

the first crack formed and how the cracking progressed. The picture resolution was not of a high 

enough standard to enable enlarging of the picture to a scale where the cracks would be clearly 

visible and measurable. 

Figure 3-1: Beam testing Setup 

The video did, however, give a very good record of the test. This was used to analyse the behaviour 

of the beam and also to establish what cracking could be seen in the specimens. It was found that 

when the beam was at its serviceability limit, no cracks could be seen on the video.   

3.3 Minimizing Sources of Uncertainty 

In order to minimize the uncertainty of the material parameters, tensile tests as well as compression 

tests were done on specimens cast from the same batch as the beam specimens. The results of 

these tests can be found in Tables 3-2, 3-3, 3-4. The size of the beams were also a way of minimizing 

the uncertainty. The size effect is well-studied in concrete, but not yet in SHCC, which means that it 

is an unknown. For this reason, it was opted to use beams of reasonable size, to be relevant to in-

field applications. 
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Table 3-2: Cube Test Results 

Tests specimen Age at 

testing 

(days) 

Weight (kg) Dimensions 

(mmxmm) 

Crushing Strength 

(MPa) 

Beam 1a,b (1st set 

of tests)  

1 28 1.71 98x100 21.122 22.485 

2 28 1.72 99x100 23.232 

3 28 1.75 100x100 23.100 

Beam 2a,b (1st set 

of tests)  

1 28 1.66 100x100 20.000 21.733 

2 28 1.76 100x100 22.100 

3 28 1.78 100x100 23.100 

Beam 3a,b (1st set 

of tests)  

1 28 1.74 100x100 22.400 22.691 

2 28 1.75 100x100 22.000 

3 28 1.75 98x100 23.673 

Beam 1a (2nd set of 

tests)  

1 30 1.974 100x100 43.600 45.067 

2 30 2.005 100x100 49.800 

3 30 2.023 100x100 41.800 

Beam 1b (2nd set of 

tests)  

1 31 1.966 100x100 41.000 44.200 

2 31 1.938 100x100 43.800 

3 31 1.96 100x100 47.800 

Beam 2a (2nd set of 

tests)  

1 27 1.949 100x100 41.000 40.900 

2 27 1.978 100x100 40.700 

3 27 1.949 100x100 41.000 

Beam 2b (2nd set of 

tests)  

1 27 1.959 100x100 40.600 41.367 

2 27 1.942 100x100 41.700 

3 27 1.991 100x100 41.800 

Beam 3a (2nd set of 

tests)  

1 29 1.956 100x100 41.900 40.067 

2 29 1.945 100x100 38.300 

3 29 1.962 100x100 40.000 

Beam 3b (2nd set of 

tests)  

1 29 1.974 100x100 51.400 45.767 

2 29 2.011 100x100 42.500 

30 29 1.968 100x100 43.400 
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Table 3-3: Concrete Cylinder test results - Second set of tests only 

Test 

specimen 

Height 

(mm) 

Diameter 

(mm) 

Age at 

testing 

(days) 

Ultimate 

Strength 

(MPa) 

Ultimate 

Strain 

Elasticity 

Modulus 

(GPa) 

Beam 1a 97.5 51 31 35.18 0.0033 17.924 

Beam 1b 96.3 51 31 33.08 0.0018 30.900 

Beam 2a 99.5 51 27 26.83 0.0083 5.435 

Beam 2b 101 51.2 29 29.57 0.0051 9.749 

Beam 3a 101 50.8 29 30.91 0.0029 17.921 

Beam 3b 100 51.2 29 28.19 0.005 9.480 

 

Table 3-4: Tensile test results 

Test 

Specimen 

Thickness 

(mm) 

Width 

(mm) 

Age 

(days

) 

Yield 

Stress 

(MPa) 

Yield 

Strain 

Elasticity 

Modulus 

(GPa) 

Ultimate 

Stress 

(MPa) 

Ultimate 

strain 

Beam 

1 (1st 

set of 

tests)  

1 17 30 31 2.69 0.00624 0.431 3.44 0.025 

3 17 30 31 2.22 0.00547 0.406 3.03 0.026 

5 16 30 31 2.40 0.00355 0.676 3.37 0.02 

8 17 30 31 2.47 0.00458 0.539 3.02 0.014 

9 16 30 31 3.06 0.00571 0.536 3.42 0.008 

Beam 

2 (1st 

set of 

tests) 

1 16 30 28 2.86 0.00579 0.494 3.34 0.011 

2 17 30 28 3.14 0.00458 0.686 3.89 0.024 

4 16 30 28 2.83 0.00324 0.873 4.08 0.02 

5 16 30 28 3.9 0.00325 1.200 3.94 0.021 

Beam 

3 (1st  

set of 

tests) 

1 16 30 28 3.28 0.00193 1.699 3.45 0.019 

2 17 30 28 2.29 0.00255 0.898 3.44 0.048 

5 16 30 28 3.23 0.00285 1.133 3.65 0.060 

6 16 30 28 3.08 0.00274 1.124 4.12 0.032 

Beam 

4 (1st 

set of 

tests) 

1 16 30 28 3.58 0.00381 0.940 3.72 0.024 

2 17 31 28 2.95 0.00356 0.829 3.09 0.024 

3 18 30 28 3.23 0.00381 0.848 3.64 0.018 

4 18 31 28 2.37 0.00216 1.097 3.89 0.026 

5 17 30 28 2.23 0.00216 1.032 3.51 0.021 
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Beam 

5 (1st 

set of 

tests) 

2 17 30 28 2.4 0.0001 24.000 3.22 0.012 

3 17 32 28 2.62 0.00014 18.714 3.35 0.017 

4 17 31 28 2.93 0.00016 18.313 3.22 0.007 

5 17 31 28 2.5 0.00015 16.667 3.61 0.039 

6 18 30 28 2.17 0.00068 3.191 3.2 0.029 

Beam 

6 (1st 

set of 

tests) 

1 17 30 33 2.86 0.00009 31.777 2.87 0.002 

3 16 30 33 1.66 0.00018 9.222 2.85 0.005 

4 17 30 33 2.5 0.00107 2.336 3.08 0.017 

 

Beam 

1a (2nd 

set of 

tests) 

1 16.7 29.5 28 2.51 0.00026 9.654 3.78 0.006 

2 17 30 28 3.12 0.00011 28.363 3.78 0.006 

3 16 30 28 2.40 0.00063 3.809 3.95 0.007 

4 17.5 30.5 28 1.72 0.00017 10.118 3.27 0.004 

5 16.5 29.75 28 2.24 0.00014 16.000 3.79 0.012 

6 16.2 30 28 3.27 0.00019 17.210 4.44 0.01 

 

Beam 

2a (2nd 

set of 

tets) 

1 17 30 27 4.4 0.00075 5.866 4.99 0.04 

4 16 30 27 3.83 0.00016 23.938 4.96 0.003 

6 18 31 27 2.72 0.00011 24.727 3.99 0.014 

Beam 

2b (2nd 

set of 

tetst) 

1 17 31 27 2.5 0.00026 9.615 4.32 0.013 

3 17 31 27 3.29 0.00119 2.765 3.56 0.017 

5 17 32 27 2.5 0.00012 20.833 3.62 0.014 

Beam 

3a (2nd 

set of 

tests) 

1 17 30.2 28 1.1 0.00013 8.462 3.41 0.005 

2 17 30.2 28 2.4 0.00059 4.068 3.68 0.018 

3 17 31.8 28 0.81 0.00031 2.613 4.04 0.01 

4 17 31.5 28 0.75 0.00006 12.5 3.2 0.01 

5 16.2 30 28 1.76 0.00021 8.381 3.14 0.006 

6 17 30 28 0.68 0.0001 6.8 3.07 0.01 

Beam 

3b (2nd 

set of 

tests) 

1 18 30 28 2.76 0.00005 55.2 4.22 0.005 

2 19 30 28 2.55 0.00023 11.087 3.12 0.003 

3 18 30 28 2.9 0.00013 22.308 4.43 0.007 

4 17.8 29.8 28 0.7 0.00015 4.667 3.38 0.005 

5 17.2 30.2 28 1.36 0.00016 8.500 4.01 0.019 

6 17.8 30 28 1.0 0.00015 6.667 2.93 0.004 
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3.4 Model Predictions 

3.4.1 First Set of Tests 

The flexural members to be tested are described in the next table. For each flexural member, a set 

of tensile and compressive test samples were also made in order to minimise uncertainties in the 

calibration of the base design model.  

Table 3-5: Test Specimen Details 

Parameters Beam 1 Beam 2 Beam 3 

1a 1b 2a 2b 3a 3b 

Length (m) 3.0 3.0 3.0 3.0 3.0 3.4 

Width (m) 0.3 0.325 0.3 0.295 0.31 0.302 

Height (m) 0.28 0.28 0.275 0.275 0.28 0.275 

As  2Y10 3Y20 2Y32+1Y16 

As’ 2Y10 2Y10 2Y10 

Shear  R8@300mmc/c R8@300mmc/c R8@300mmc/c 

Test age 28 days 28 days 28 days 

The mix design for the first set of tests is shown in Table 3-6. Take note that the Y grade reinforcing 

has a yield strength of 450MPa, while the R grade has a yield strength of 250MPa.  

Table 3-6: Mix design for both test sets 

Material Mass (kg/m3) 

CEM I 42.5 550 

Fly Ash: Durapozz 650 

Water 395 

Agg: Console no 2 550 

Fibre: PVA-Recs 15, 12mm 26 

Chryso Premia 2.2 

VMA 0.413 
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All beams showed similar flexural behaviour. During the first cycle of the press, the specimens 

reached and passed the first cracking strength of the specimen and so entered the tensile strain 

hardening zone. When the load was removed, there was a very definite elastic rebound on the 

deflection of the beam, but not a complete recovery.  

The second cycle sometimes pushed the specimen over the ultimate strength limit, causing cracks 

in or near the middle of the beam to open up. All, except beams 1a and b showed buckling of the 

compressive steel. This happened because the stirrups were too widely spaced for the diameter of 

the compressive steel used in the specimen.  The aim was not to test shear links and therefore the 

links were kept to a very minimum and in so doing they were spaced out too far. This was a mistake 

as when the compressive steel failed, it kinked either to the side or to the top of the specimen, 

breaking off the concrete cover. This then eliminated the compressive steel from the equation as it 

had no bond anymore with the concrete. However, this only happened after crack localization and 

thus tensile failure of the beam. This problem was rectified in the second set of tests where the shear 

link spacing was decreased when the diameter of the compressive reinforcement was small.  

During the last cycle, the tensile steel ruptured in beams 1a and b. The tensile reinforcement in 

beams 2 and 3 could not be ruptured. 

It was found that the concrete had lumps of fibres in places. This was the situation in all the 

specimens and could also be the reason for the easy spalling of the cover when the compressive 

steel failed. It was decided that the mixing of the concrete needed attention and the mixing time 

should possibly be lengthened for the next set of tests. This was done and the lumps of fibre were 

not found in the second set of tests. 

The following graphs show the load versus deflection curves for the six specimens as well as the 

model predicted curves for each. The first graph, Figure 3-2, shows Beams 1a and 1b. Beam 1a was 

only put through one cycle of the press as by the end of that, one of the tensile bars had ruptured. 

This happened after crack localization.  

Beam 1b was put through two cycles to overcome the limiting MTM stroke. It did not reach as high 

a load as did Beam 1a, however, the first tensile bar ruptured at a deflection twice as high as that of 

Beam 1a. The load at this point was roughly the same. 

It is strange that two beams with almost identical physical parameters should behave so differently 

when tested under the exact same conditions. It was found that Beam 1a did not show a wide spread 

of cracks as is characteristic of this material. It started cracking in the middle and after only a few 

cracks along the length had formed, the first crack in the centre of the span of the beam started 
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opening and opened up almost to the top of the beam. It was investigated if the beam was loaded 

asymmetrically to have the one tensile bar snap but not the other. It was found that the side where 

the tensile bar stayed intact showed concrete delamination along the length of the bar. The 

delamination would have been assisted by the fact that the concrete showed signs of segregation, 

in the form of fibre lumps. The fibres were possibly not distributed evenly through the mixture and so 

there were weak spots in the material. The other side had no signs of delamination. This could be 

the reason for the one side snapping and not the other. The compressive steel in this specimen did 

not fail and there were no shear cracks found on the sides of the beam. 

 
Figure 3-2: Beam 1a,b - Test results and model Predictions 

Beam 1b showed similar flexural behaviour than Beam 1a. This is again due to the segregation found 

in the concrete.  

Figure 3-3 shows the test results of Beams 2a and b compared to the model predictions of beams 

with similar characteristics. The two specimens showed very similar results in that the maximum 

loads are very close and roughly reached at the same deflection.  

During the first cycle of the press, beam 2a started showing tensile cracks and crack localization. 

Just after crack localization was observed, the compressive steel failed and cracks were noticed on 

the sides and top of the specimen. It was clear that the beams had buckled after the compression 

reinforcement kinked. A similar observation was made with Beam 2b. Both specimens showed 

multiple tensile cracks along the length of the member before crack localization.   
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Beams 3a and b were reinforced with 2.01% tensile reinforcement and 0.174% compressive 

reinforcement. The shear links were the same as for the other four specimens. It is clear from the 

graph that these beams did not fail in bending as was the intention. After crack localization, the 

compressive steel failed, kinking to the top and side, pushing the concrete cover off. This again 

eliminated the compression reinforcing from the design equation and the beams failed in a mixture 

of shear and bending.  

Figure 3-3: Beam 2a,b - Test Results and Model Predictions 
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Figure 3-4: Beam 3a,b - Test Results and Model Predictions 

3.4.2 Second Set of Tests 

These test specimens behaved in much the same way as the first specimens had done, with the 

exception that there was no failing of the compressive steel this time. It was, however, noticeable 

that there were fewer cracks in these specimens than what were found in the previous set. This was 

unexpected as the concrete was mixed until no lumps were evident in the mixture to ensure that 

there will not be segregation as was found in the first set of tests. This trend was, however, also seen 

in the material tests. The specimens seemed to be more brittle than the previous set and wide spread 

micro cracking did not occur as was expected. The test parameters are shown in Table 3-7. 

Table 3-7: Test specimen details 

Parameters Beam 1 Beam 2 Beam 3 

1a 1b 2a 2b 3a 3b 

Length (m) 2.805 2.83 2.795 2.805 2.83 2.828 

Width (m) 0.205 0.205 0.205 0.200 0.203 0.205 

Height (m) 0.207 0.20 0.197 0.193 

 

0.210 0.198 

As  2Y10 3Y20 3Y20 

As’ 2Y10 2Y10 2Y16 

Shear  R8@150mmc/c R8@150mmc/c R8@250mmc/c 

Test age 28 days 28 days 28 days 

 

Stellenbosch University  https://scholar.sun.ac.za



 
47 

 

The mix design for the second set of test was the same as for the first set and can be seen in Table 

3-6.  

The following graphs show the load versus deflection curves for the six specimens as well as the 

predicted curves for each. The first graph, Figure 3-5, shows Beams 1a and 1b. 

As can be seen from the graph, the two tests were similar, but not exactly the same, as can be 

expected due to variability of materials and the geometry of the test specimens. Beam 1a shows less 

deflection hardening than beam 1b. The model predictions for these two tests seem to be un-

conservative as the predicted deflections for a specific load is less than what was measured. It seems 

that there is a difference in the stiffness between the tests done and the predictions calculated which 

hints at the fact that the calculation of the elasticity modulus for compression and/or tension could 

be inaccurate. Alternatively the material properties inside the beam are different from the properties 

of the test specimens, which is also possible if considering that the beam is significantly larger than 

the test specimen which could influence the compaction and/or the fibre layout in the matrix. For this 

reason safety factors are applied to material properties for al construction materials. 

Figure 3-5: Beam 1a,b - Test Results and Model Predictions 
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The test result shown in Figure 3-6, are those of beams 2a and 2b. Here both the tests and the 

model predictions are very similar for the two beams and the model predictions are giving 

conservative results.  

The graph in Figure 3-7 shows the test results of beams 3a and 3b compared to the model 

predictions for these two beams. It seems that once again the model predictions are un-conservative 

and that there is a difference in the stiffness of the model versus the tests done. It must be noted 

that these test specimens and beams 2a and 2b, were reinforced with even more tensile 

reinforcement than Beams 3a and 3b for the first set of tests. As the shear link spacing was reduced 

for beams 2a and 2b, no compressive steel failure was noted and no shear cracks were observed in 

either of the beams. 

 

Figure 3-6: Beam 2a,b - Test Results and Model Predictions. 
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Figure 3-7: Beam 3a,b - Test Results and Model Predictions 

3.5 Interpretation of Results 

3.5.1 First set of Tests 

The model calculates the load versus deflection only to the theoretical point where crack localization 

occurs. The reason for all this is that the final design equation will have to be limited to within a 

margin of the maximum tensile stress and strain as this is where the element will fail. Before that 

happens, however, the beam is bound to have exceeded the serviceability conditions for cracking 

and deflection.  

The model predictions for the first set of tests were conservative and consistently so. The shape of 

the predicted model and that of the actual tests done were similar, indicating that the assumptions 

made on the stress and strain values for the different phases of the flexural response is fair. The 

failure of the compressive reinforcement influenced some of the results. 

3.5.2 Second Set of Tests 

For the second set of tests, the model predictions were found to be un-conservative in two of the 

three cases. For Beams 2a and 2b, the predictions were conservative and fairly accurate; similar to 

what was found for the first set of tests. However, for the other tests, the model was predicting a 

much less ductile behaviour than what was seen in the tests.  
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It can be seen that the shape of the predicted response and that of the measured response is still 

quite similar. Also, the ultimate load predicted shows a good relation with the ultimate load measured 

from the tests. The deflection, however, was predicted to be much lower than that which was 

measured. This lower deflection indicates that the stiffness of the test specimen was less than what 

was assumed in the model. This error can only come from inaccurate material properties for the 

specific specimens as the model shows good results for the other tests done. 

3.6 Conclusion 

The model seems to be most sensitive to the compression characteristics of the material used. This 

development is expected, as only the ultimate compression stress and strain is used to describe all 

the different compression characteristics.  

Two sets of six beams each were tested. The test setup consisted of a simply supported beam 

loaded with a point load in the centre of the beam. Tensile and compression test specimens were 

also made for each of the beams in order to minimize the uncertainties in the prediction model. No 

compression strain values were measured for the first set of tests. Both tests used the same mix 

design but different approaches were used in the actual mixing of the material.  

The first set of tests showed very good correlation with the predicted model values and even the 

stiffness of the material was closely predicted. The model showed mostly conservative results in this 

case.  

For the second set of tests there seems to have been a slight difference in the stiffness of the actual 

material versus the stiffness assumed in the model prediction. In some instances the prediction was 

conservative and in others it was not. This difference is assumed to be due to uncertainties in the 

elasticity modulus for the material used. Further research into this characteristic of SHCC is needed 

in order to propose a more accurate model for the elasticity modulus for SHCC.  
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4. ANALYSIS MODEL 

4.1 Description 

The design model is based on a simply supported beam loaded with a single point load in the centre 

of the beam. This configuration was chosen for simplicity of the calculations but also to simplify the 

testing of the beams. The resisting moment equation should be applicable to all load and support 

configurations as it is based on an applied moment and a resisting moment.  

A simply supported beam loaded in the centre with a single point load shows a sagging moment in 

the centre of the beam. This is shown in Figure 4-1. The maximum moment is found at the point 

where the load is applied, and the moment declines linearly to the sides until it reaches zero at the 

supports. This moment creates tension in the bottom part of the beam and compression in the top 

part of the beam. The two parts are separated by the neutral axis. Note that the neutral axis shown 

in Figure 4-1 is for the full elastic response, i.e. phase 1 of tensile and compressive response.  

Figure 4-1: Simply supported beam load and moment diagram 

 

The design model is based on a flexural member reinforced with tensile, compression and shear 

reinforcement, as is typically used in reinforced concrete structures. As is the case for normal 

reinforced concrete, the shear steel is not incorporated into the flexural design model, but was added 

to the test specimens to ensure that they do not fail in shear rather than bending, and also to facilitate 

the placing of the reinforcement cages.  
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As discussed in Chapter 2, because of the complex nature of the tensile stress-strain curvature, a 

bilinear approximation is used in the design model to simplify the calculations. The three phases of 

the tensile response can be clearly identified in Figure 2-4. 

The compressive response was also simplified into a bilinear approximation. The actual shape, 

which is often approximated with a parabolic expression, is too cumbersome to add into the design 

model and so it was simplified into two straight lines, similar to what was done by Li et al. [44]. 

From the above approximations a base design model was derived. It was clear that a phased 

approach to the model calculations would be required as well. The first one represents the elastic 

phase of the cycle, from load inception until the first cracks form in the tensile zone of the flexural 

member. During this phase, which may be quite short, the compression and tensile parts of the 

member are assumed to behave elastically. The theoretical stress development during Phase 1 is 

shown in Figures 4-2a,b, and c. These figures indicate the stress situation at the start of Phase 1, 

during Phase 1 and at the end of Phase 1.  

  

 

Figure 4-2a,b, and c – Progression of Stress through Phase 1 of Loading 
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The second phase represents the strain hardening part of the tensile cycle, but assumes that the 

part of the member in compression is still in its elastic phase. This was done as the first tensile 

cracking initiates at low strains and it is not sure whether the compressive strain has entered the 

inelastic phase at this time. This phase might be a material specific response as well and for some 

materials this second phase might not exist. This could typically happen when the ultimate 

compression strain for the material in question is low and so the member will either skip phase two 

entirely and just go straight to phase 3, or will have a very short period in phase 2 before it goes over 

into phase 3.  For the materials tested in this study, the second phase always existed. Figure 4-3a,b, 

and c shows the stress progression from the start of Phase 2 until the compression strain reaches 

its imposed elastic limit. The beginning of Phase 2 is shown in Figure 4-2c and is thus not repeated.  

  

 

Figure 4-3a,b, and c – Progression of Stress through Phase 2 of Loading 

 

The third and last phase assumes that the tensile part of the beam is still in its strain hardening 

phase, but that the compressive strain has moved past the imposed limit of 0.317εccu. (This value is 

discussed in more detail in Chapter 2) This phase ends with the failure of the beam. Failure can be 

because of tensile crack localization, or compressive crushing, depending on the amount of 

reinforcement and the material characteristics. Again, this can be material specific. Materials with 
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very high compressive strengths might fail in tension before this phase is reached. For the purpose 

of this study, all materials tested comprised of all three phases. Figure 4-4a, and b shows the 

progression of stress through Phase 3 of loading. The beginning of Phase 3 is shown in Figure 4-3c 

and is thus not repeated here.  

  

Figure 4-4a, and b - Progression of Stress through Phase 3 of Loading 

 

4.2 Formulation of the model 

4.2.1 Phase 1 – Elastic behaviour 

During the elastic phase of the model, both the tensile and compression parts of the flexural member 

are assumed to be in the elastic state. If the load is removed during this phase, it is assumed that 

the member will recover completely. It is essential that no cracks have yet formed in the beam.  

The model is based on sectional analysis which is illustrated in Figure 4-5. The assumption is made 

that a cross-section remains in a flat plane in the deformed state. This assumption allows the linear 

strain distribution shown in the figure. A further assumption of a perfect bond between the 

reinforcement steel and the SHCC matrix is made. This assumption is based on the assumption that 

the section is in an elastic phase and also on the knowledge that the SHCC matrix and the steel 

reinforcement have similar ductile behaviour. This enables the composite to act in unison and for the 

bond to remain intact. 
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Figure 4-5: Phase 1 - Stress and Strain relationship 

 

The elastic stress-strain responses at points in the beam are considered to be one-dimensional, 

whereby Poisson effects are neglected. The elastic stress-strain relations for SHCC and 

reinforcement steel are expressed as follows: 

 𝜎𝑐𝑐 = 𝐸𝑐𝑐𝜀𝑐𝑐                                4-1 

 𝑓𝑠𝑐 =  𝐸𝑠𝜀𝑠𝑐                                            4-2 

 𝑓𝑠𝑡 =  𝐸𝑠𝜀𝑠𝑡                                            4-3 

 𝜎𝑐𝑡 =  𝐸𝑐𝑡𝜀𝑐𝑡                                4-4 

Where: 

 σcc  = SHCC compressive stress 

 σct  = SHCC tensile stress 

 fsc  = Reinforcement compressive stress 

 fst  = Reinforcement tensile stress 

 Es  = Elasticity modulus for reinforcement steel 

 Ecc  = Elasticity modulus for SHCC in compression 

 Ect  = Elasticity modulus for SHCC in tension 

 εcc  = SHCC compressive strain 

 εct  = SHCC tensile strain 

 εsc  = Reinforcement compressive strain 

 εst  = Reinforcement tensile strain 
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It has been discussed in chapter two, 2.1.4 and 2.2.3 that the compressive and tensile elasticity 

modulus differs slightly. For some materials these values might be almost the same and in other 

cases the differences are bigger, but to ensure that the model is applicable to all strain hardening 

materials, it was decided that the elastic moduli should be used in the model calculations as different 

entities. As the stresses and strains for the compression and tensile responses are also very 

different, they are also indicated by subscripts rather than simply changing the sign. This eliminates 

confusion when the calculations become more complex.  

From Figure 4-5, the following can be deduced: 

𝜀𝑐𝑐 =  
−𝑥

(ℎ−𝑥)
𝜀𝑐𝑡                                4-5 

𝜀𝑠𝑐 =  
−(𝑥−𝑑′)

(ℎ−𝑥)
𝜀𝑐𝑡                                4-6 

And, by assuming that there is no slip between the steel reinforcement and the SHCC: 

𝜀𝑠𝑡 =  
(𝑑−𝑥)

(ℎ−𝑥)
𝜀𝑐𝑡                                4-7 

Where: 

 x  = The distance to the neutral axis measured from the top of the beam 

 h  = The total depth of the beam 

 d  = The distance to the tensile reinforcement, measured from the top of the beam. 

 d’ = The distance to the compressive reinforcement, measured from the top of the beam. 

 b  = The width of the beam at this cross section. 

 As  = The area of tensile reinforcement in the member. 

 A’s = The area of compressive reinforcement in the member.  

Considering the equilibrium of forces in the cross section, we can derive the following expression: 

Σ𝐹 = 0 =
1

2
𝜎𝑐𝑐𝑏𝑥 + 𝐴′𝑠𝑓𝑠𝑐 +

1

2
𝜎𝑐𝑡(ℎ − 𝑥)𝑏 + 𝑓𝑠𝑡𝐴𝑠 

Substituting Equations 4-1 to 4-4 into the above, leads to: 

0 =
1

2
𝐸𝑐𝑐𝜀𝑐𝑐𝑏𝑥 + 𝐸𝑠𝐴′𝑠𝜀𝑠𝑐 +

1

2
𝐸𝑐𝑡(ℎ − 𝑥)𝑏𝜀𝑐𝑡 + 𝐸𝑠𝜀𝑠𝑡𝐴𝑠                            4-8 
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Substituting of Equations 4-5 to 4-7, into the Equation 4-8 leads to the expression: 

0 = −
1

2
𝐸𝑐𝑐𝑏

𝑥2

(ℎ−𝑥)
𝜀𝑐𝑡 − 𝐸𝑠𝐴′

𝑠
(𝑥−𝑑′)

(ℎ−𝑥)
𝜀𝑐𝑡 +

1

2
𝐸𝑐𝑡(ℎ − 𝑥)𝑏𝜀𝑐𝑡 + 𝐸𝑠𝐴𝑠

(𝑑−𝑥)

(ℎ−𝑥)
                          4-9 

Multiplying Equation 4-9 with 
(ℎ−𝑥)

𝜀𝑐𝑡
 produces: 

0 = −
1

2
𝐸𝑐𝑐𝑏𝑥2 − 𝐸𝑠𝐴′

𝑠(𝑥 − 𝑑′) +
1

2
𝐸𝑐𝑡𝑏(ℎ − 𝑥)2 + 𝐸𝑠𝐴𝑠(𝑑 − 𝑥)                      4-10 

Simplifying the above and changing the subject of the expression to x, a quadratic Equation for 

determining the position of the neutral axis in the member can be found and is given in 4-11. 

𝑥 =
𝐸𝑐𝑡𝐴𝑐+𝐸𝑠(𝐴′𝑠+𝐴𝑠)−√(−𝐸𝑐𝑡𝐴𝑐−𝐸𝑠(𝐴′𝑠+𝐴𝑠))

2
−(𝐸𝑐𝑡𝑏2ℎ2+2𝑏𝐸𝑠(𝐴′𝑠𝑑′+𝐴𝑠𝑑))(𝐸𝑐𝑡−𝐸𝑐𝑐)

𝑏(𝐸𝑐𝑡−𝐸𝑐𝑐)
                      4-11 

Where, Ac=bh and denotes the concrete area of the SHCC section.    

The stress and strain, both tensile and compressive, at which the first tensile crack appears in the 

member, represents a transition point in the design model. This point determines the end of the 

elastic tensile response and so also the end of phase 1 of the model. The tensile strain was 

eliminated in the previous equation in order to find the position of the neutral axis.  

Assuming a simply supported beam loaded in the centre with a single point load, the applied 

moments can be expressed as the product of the load and the length of the beam, divided by 4. Note 

that this can be generalized as different load configurations will require different formulas for 

calculating the applied moment.   

By taking the equilibrium of moments around the neutral axis, the following equation can be derived. 

Σ𝑀 = 0  

𝑀𝑢 =
1

2
𝜎𝑐𝑐𝑏𝑥

−2𝑥

3
+ 𝑓𝑠𝑐𝜀𝑠𝑐(−(𝑥 − 𝑑′)) +

1

2
𝜎𝑐𝑡𝑏(ℎ − 𝑥)

2(ℎ−𝑥)

3
+ 𝑓𝑠𝑡𝜀𝑠𝑡(𝑑 − 𝑥)                4-12 

Substituting Equations 4-1 to 4-4, into this moment equilibrium equation, leads to: 

𝑀𝑢 = −
1

3
𝐸𝑐𝑐𝜀𝑐𝑐𝑏𝑥2 − 𝐸𝑠𝐴′

𝑠𝜀𝑠𝑐(𝑥 − 𝑑′) +
1

3
𝐸𝑐𝑡𝜀𝑐𝑡𝑏(ℎ − 𝑥)2 + 𝐸𝑠𝐴𝑠𝜀𝑠𝑡(𝑑 − 𝑥)             4-13 
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By substituting Equations 4-5 to 4-7, into Equation 4-13 and multiplying it by 
(ℎ−𝑥)

𝜀𝑐𝑡
, the following 

expression is derived: 

M𝑢(ℎ−𝑥)

𝜀𝑐𝑡
=

1

3
𝐸𝑐𝑐𝑏𝑥3 + 𝐸𝑠𝐴′

𝑠(𝑥 − 𝑑′)2 +
1

3
𝐸𝑐𝑡𝑏(ℎ − 𝑥)3 + 𝐸𝑠𝐴𝑠(𝑑 − 𝑥)2                      4-14 

By simplifying the above and rewriting, an expression for calculating the tensile strain in the member 

is obtained and shown in Equation 4-15: 

𝜀𝑐𝑡 =
M𝑢(ℎ−𝑥)

1
3⁄ 𝑏(𝐸𝑐𝑐𝑥3+𝐸𝑐𝑡(ℎ−𝑥)3)+𝐸𝑠(𝐴′𝑠(𝑥−𝑑′)2+𝐴𝑠(𝑑−𝑥)2)

                         4-15 

Equations 4-11 and 4-15 enable calculation of the neutral axis position in the beam from load 

inception until the first tensile crack appears. It is also possible to find the exact load at which the 

first tensile crack is supposed to appear in the beam, which enables the determination of when phase 

1 of the model ends. 

4.2.2 Phase 2 – Strain Hardening 

The first crack has appeared in the tension zone of this flexural member and the tensile stress-strain 

relationship has moved on to Phase 2, the strain hardening phase. The compressive zone is 

assumed to still be in the elastic phase. The stress-strain relationship in the flexural member during 

Phase 2, is illustrated in Figure 4-6. 

Figure 4-6: Phase 2 - Stress and Strain relationship 
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From Figure 4-6, the following expressions for calculating the stresses and strains in the section can 

be derived. Equations 4-1 to 4-7 are valid in the un-cracked part of the section. For the cracked 

section, the relations change to: 

 𝜎𝑐𝑡2 = 𝐸𝑐𝑡𝜀𝑐𝑡2(𝛽 + 𝛼(1 − 𝛽))                4-16 

 𝜀𝑐𝑡1 = 𝛽𝜀𝑐𝑡2                              4-17 

 𝛼𝐸𝑐 =
𝜎𝑐𝑡𝑢−𝜎𝑐𝑡1

𝜀𝑐𝑡𝑢−𝜀𝑐𝑡1
                  4-18 

Where: 

 εct1  = Tensile strain at first cracking 

 εct2  = Tensile strain in the bottom most section of the tensile zone 

 εctu  = Ultimate tensile strain 

 σct1  = Tensile stress at first cracking 

 σct2  = Tensile stress at the bottom most section of the tensile zone 

 σctu  = Ultimate tensile stress 

 αEc  = Gradient of the strain hardening leg of the tension graph. 

By following the same steps as for Phase 1 and considering equilibrium of forces in the section, 

quadratic Equation 4-19 for calculating the position of the neutral axis is derived. 

 𝑥 =
[𝐸𝑠(𝐴𝑠+𝐴′𝑠)+𝐸𝑐𝑡𝐴𝑐𝑔−√(−𝐸𝑠(𝐴𝑠+𝐴′

𝑠)−𝐸𝑐𝑡𝐴𝑐𝑔)2−(2𝐸𝑐𝑡𝑏𝑔−2𝐸𝑐𝑐𝑏)(𝐸𝑠(𝐴′𝑠𝑑′+𝐴𝑠𝑑)+1
2⁄ 𝐸𝑐𝑡𝑏ℎ2𝑔)]

(𝐸𝑐𝑡𝑏𝑔−𝐸𝑐𝑐𝑏)
           4-19 

With: 

𝑔 = 𝛽2 + 2β(1 − 𝛽) + 𝛼(1 − 𝛽)2  

This relationship is considerably more intricate than the calculation needed for the first phase of the 

model.  

In order to find the deflections, the strains and stresses in the different parts of the flexural member 

are required. Equilibrium of moments around the neutral axis is used to find the following 

expressions: 

Σ𝑀 = 0  
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𝑀𝑢 =
1

2
𝜎𝑐𝑐𝑏𝑥

−2𝑥

3
+ 𝑓𝑠𝑐𝐴′𝑠(−(𝑥 − 𝑑′)) +

1

2
𝜎𝑐𝑡1𝑏𝛽(ℎ − 𝑥)

2𝛽(ℎ−𝑥)

3
+ 𝜎𝑐𝑡1𝑏(1 − 𝛽)(ℎ − 𝑥) (𝛽(ℎ − 𝑥) +

(1−𝛽)(ℎ−𝑥)

2
) +

1

2
(𝜎𝑐𝑡2 − 𝜎𝑐𝑡1)𝑏(1 − 𝛽)(ℎ − 𝑥) (𝛽(ℎ − 𝑥) +

2(1−𝛽)(ℎ−𝑥)

3
) + 𝑓𝑠𝑡𝐴𝑠(𝑑 − 𝑥)             4-20 

By following the same methodology as for Phase 1, Equation 4-21 can be deduced for calculating 

the tensile strain during phase 2. 

𝜀𝑐𝑡2 =
M𝑢(ℎ−𝑥)

1
3⁄ 𝐸𝑐𝑐𝑏𝑥3+1

6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)3k+𝐸𝑠[𝐴′𝑠(𝑥−𝑑′)2+𝐴𝑠(𝑑−𝑥)2]
                           4-21 

With: 

𝑘 = 2𝛽3 + 3𝛽(𝛽 + 1)(1 − 𝛽) + 𝛼(1 − 𝛽)2(𝛽 + 2)  

4.2.3 Phase 3 – Compressive inelasticity before crack localization 

During this phase, the tensile zone of the member is in the strain hardening phase and the 

compressive strain has passed the value of 0.317εccu. It is assumed that the compressive elastic 

phase has been exceeded at this level. Here it is assumed that a simple bi-linear compressive stress-

strain relation occurs. This assumption is similar to that in the tensile zone of the beam and is 

illustrated in Figure 4-7. 

Figure 4-7: Stress-Strain Relationship for Phase 3 

 

In the part of the section where the compressive strain exceeds 0.317 of the ultimate strain, the 

following relations are now valid: 

 𝜎𝑐𝑐2 = 𝐸𝑐𝑐𝜀𝑐𝑐2(𝛾 + 𝛿(1 − 𝛾))                          4-22 
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 𝜎𝑐𝑐1 = 𝐸𝑐𝑐𝜀𝑐𝑐1                   4-23 

 
𝜀𝑐𝑐1

𝜀𝑐𝑐2
= 𝛾                    4-24  

 𝜀𝑐𝑐1 =
−𝛾𝑥

(ℎ−𝑥)
𝜀𝑐𝑡2                           4-25 

 𝜀𝑐𝑐2 =
−𝑥

(ℎ−𝑥)
𝜀𝑐𝑡2                            4-26 

 𝛿𝐸𝑐𝑐 =
𝜎𝑐𝑐𝑢−𝜎𝑐𝑐1

𝜀𝑐𝑐𝑢−𝜀𝑐𝑐1
                            4-27 

By considering equilibrium of forces in the section, the position of the neutral axis can be expressed 

as per the quadratic Equation 4-28: 

𝑥 =
𝐸𝑐𝑡𝐴𝑐𝑔+𝐸𝑠(𝐴′𝑠+𝐴𝑠)−√(−𝐸𝑐𝑡𝐴𝑐g−𝐸𝑠(𝐴′𝑠+𝐴𝑠))

2
−(2𝐸𝑐𝑡𝑏𝑔−2𝐸𝑐𝑐𝑏𝑚)(1

2⁄ 𝐸𝑐𝑡𝑏ℎ2𝑔+𝐸𝑠(𝐴′𝑠𝑑′+𝐴𝑠𝑑))

𝑏(𝐸𝑐𝑡𝑔−𝐸𝑐𝑐𝑚)
           4-28 

With: 

 𝑔 = 𝛽2 + 2β(1 − 𝛽) + 𝛼(1 − 𝛽)2      

 𝑚 = 𝛾2 + 2γ(1 − 𝛾) + 𝛿(1 − 𝛾)2  

This is quite an extensive expression as was expected with both stress configurations having bilinear 

stress-strain relations. 

From moment equilibrium in the section at mid-span in this simply supported, centrally loaded beam, 

the expression shown in Equation 4-29 can be derived for the tensile strain in the lowest fibre. 

𝜀𝑐𝑡2 =
M𝑢(ℎ−𝑥)

1
6⁄ 𝐸𝑐𝑐b𝑥3n+

1

6
𝐸𝑐𝑡b(ℎ−𝑥)3k+𝐸𝑠(𝐴′𝑠(𝑥−𝑑′)2+𝐴𝑠(𝑑−𝑥)2)

                        4-29 

With: 

 𝑛 = 2𝛾3 + 3𝛾(1 − 𝛾)(𝛾 + 1) + 𝛿(1 − 𝛾)2(𝛾 + 2) 

 𝑘 = 2𝛽3 + 3𝛽(1 − 𝛽)(𝛽 + 1) + 𝛼(1 − 𝛽)2(𝛽 + 2) 

This base model enables prediction of the behaviour of a flexural member from load inception to 

crack localization or compressive crushing, whichever occurs first. This was done for the sake of 

completeness and to establish the behaviour of the beam over the full load-deflection response. 

However, for the actual design of a flexural member, this base model is too complicated and 
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cumbersome to use. The next part of this chapter is designated to simplifying the base model, so 

that it may be more suitable for structural design purposes.  

4.3 Simplifying the model: From analytical to design model 

The objective of this dissertation is to describe a method for calculating the reinforcement needed 

for a specific size of flexural member, constructed from reinforced SHCC, to withstand a specific 

load while still conforming to the serviceability limits set out in the applicable design standards. From 

the base model, this calculation is possible, but with considerable effort. The following section 

endeavours to simplify the design process. This simplification, however, leads to less accurate 

answers as some accuracy is lost in the simplification of the calculations. This is typical of design 

models used all over. Calibration of model uncertainty is usually done, and expressed in terms of 

various model and material factors. These factors typically ensure conservative resistance to actions 

and are calculated to acceptable levels of reliability.  

When designing a flexural member, there are a number of parameters known to the designer. These 

parameters will include the set of loads that are to be withstood, the material that is to be used, and, 

to a certain extent, the size of the member. The designer must calculate the amount of reinforcement 

needed for the flexural member to be able to withstand the applied load. Design expressions for this 

purpose can be found by rewriting Equations 4-20, 4-21, 4-28, and 4-29. However, the tensile strain 

in the bottom of the member, the compressive strain at the top of the member, and the distance to 

the neutral axis still remain unknown. These parameters are needed in the calculation of the required 

reinforcement.  

In order to simplify the model, the relationship between these three parameters and some of the 

known parameters, needs to be found. This is done by using the base model to analyse a number 

of different size fictional beams. The length of the beams were all set at 16 times their effective depth 

in order to conform to the rules for simply supported beams, as set out in the South African concrete 

design code [47]. The reinforcement in the beams were varied starting with a tensile reinforcement 

content of 0.1% of the concrete area and increasing to 2.5% of the concrete area. For each tensile 

reinforcement level, the compressive reinforcement was varied from 0.1% to equal that of the tensile 

reinforcement. It is very unusual to put more compression reinforcement than tensile reinforcement 

into a flexural member. For each one of these combinations, the ultimate load was found at which 

the tensile reinforcement just reaches its yield strength of 450MPa. This load was then divided by 

1.4 as an estimate for the service load which was in turn used to determine the deflection in the 

member at mid-span. The value of 1.4 is taken as the average of the loading factors prescribed in 

the South African Loading code SANS 10160, which is 1.2 for dead loads and 1.6 for live loads. The 

assumption is made that the dead and live loads are equal in this case.  

Stellenbosch University  https://scholar.sun.ac.za



 
63 

 

For each combination, the tensile strain, the position of the neutral axis, and the deflection was noted. 

(Deflections are discussed in chapter 5). Those combinations for which the deflection exceeded 

L/250 or 30mm, whichever was the smallest, were eliminated from the pool of values. Graphs were 

then produced via Microsoft Excel showing the relationship between the applied moment and the 

tensile strain, and the distance to the neutral axis respectively. This was done for Phase 2 and Phase 

3 separately. It was also split into the different heights of the beams that were used for the 

simplification calculations. This was all done in order to keep the estimates as accurate as possible. 

The graphs can be seen in Figures 4-8, 4-9, 4-10, and 4-11.  

Figure 4-8 shows a relationship between the tensile strain at the point of design divided by the 

ultimate tensile strain for the particular material, and a function consisting of the applied moment, 

the width of the beam, the effective depth of the beam, and the ultimate tensile stress of the particular 

material. It has been split into the different heights of beams for better accuracy. The relationship 

between the tensile strain and the function is then approximated with a power equation as is seen in 

Equations 4-31, 4-33, 4-35, 4-37, 4-39, 4-41, and 4-43. 

 

Figure 4-8: Tensile strain in relation to the applied moments for phase 2 

The relationship between the distance to the neutral axis and the same function used above is shown 

in Figure 4-9 and Equations 4-30, 4-32, 4-34, 4-36, 4-38, 4-40, and 4-42.  
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For h = 200mm 

𝑥 = 0.01512𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.06962                4-30 

𝜀𝑐𝑡2 = 0.1912 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0262

0.014 56                          4-31 

For h = 250mm: 

𝑥 = 0.017375𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.0884               4-32 

𝜀𝑐𝑡2 = 0.1828 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0188

0.01456                          4-33 

For h = 300mm: 

𝑥 = 0.02004𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.10737                4-34 

𝜀𝑐𝑡2 = 0.1776 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.015

0.01456                4-35 

For h = 400mm: 

𝑥 = 0.02536𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.3625                          4-36 

𝜀𝑐𝑡2 = 0.1714 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0105

0.01456                         4-37 

For h = 500mm: 

𝑥 = 0.02985𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.18285                4-38 

𝜀𝑐𝑡2 = 0.1678 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0078

0.01456                         4-39 

For h = 600mm: 

𝑥 = 0.03768𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.22098                4-40 
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𝜀𝑐𝑡2 = 0.1655 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0068

0.01456                         4-41 

For h = 750mm: 

𝑥 = 0.057975𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.279525                         4-42 

𝜀𝑐𝑡2 = 0.1632 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0061

0.01456                         4-43 

Figure 4-10 illustrates the relationship between the tensile strain and the same function as was 

previously used. Equations 4-44, 4-46, 4-48, 4-50, and 4-52 show the relationships. 

 

Figure 4-9: The distance to the neutral axis, x, in relation to the applied moment for phase 2 

The distance to the neutral axis is again plotted against the same function as used in the previous 

three graphs, and is shown in Figure 4-11, and the relationship is shown in Equations 4-45, 4-47, 4-

49, 4-51, and 4-53. 
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 Figure 4-10: Tensile strain in relation to the applied moment for phase 3 

Figure 4-11: The distance to the neutral axis in relation to the applied moment for phase 3 
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For h= 200mm: 

𝜀𝑐𝑡2 = 0.1935 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0227

0.01456                         4-44 

𝑥 = 0.01𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.0759                          4-45 

For h = 250mm: 

𝜀𝑐𝑡2 = 0.1846 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0146

0.01456                         4-46 

𝑥 = 0.0105𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.0967                          4-47 

For h = 300mm: 

𝜀𝑐𝑡2 = 0.1792 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0095

0.01456                         4-48 

𝑥 = 0.0099𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.1182                          4-49 

For h = 400mm: 

𝜀𝑐𝑡2 = 0.1725 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0052

0.01456                        4-50 

𝑥 = 0.01𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.1599                         4-51 

For h = 500mm: 

𝜀𝑐𝑡2 = 0.1687 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0028

0.01456                        4-52 

𝑥 = 0.0086𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.2028                         4-53 

To establish whether the design falls within Phase 2 or Phase 3, the compressive strain can be 

calculated from Equation 4-5. This will obviously be an iterative process as the stage will have to be 

guessed and the tensile strain and the distance to the neutral axis calculated, and with that 
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information, the compressive strain found. If the compressive strain shows the other phase from the 

one that was chosen up front, the first two calculations must be repeated. As a check, the 

compressive strain should be recalculated. 

With this information, the amount of tensile reinforcement needed for a specific size beam under a 

specific load can be found via the following equations. For the design compressive strain less than 

0.317 of the ultimate compressive strain, the design falls within Phase 2 of the model and Equations 

4-54 and 4-55 should be used to calculate the tensile and compressive reinforcement needed. 

𝐴𝑠 =

𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑′−𝑥)−1
6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)2(𝑘(ℎ−𝑥)+3𝑔(𝑥−𝑑′))

𝐸𝑠(𝑑−𝑥)(𝑑−𝑑′)
                        4-54 

𝐴′𝑠 =

𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑−𝑥)−1
6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)2(𝑘(ℎ−𝑥)−3𝑔(𝑑−𝑥))

𝐸𝑠(𝑥−𝑑′)(𝑑−𝑑′)
                       4-55 

If the compressive strain value found from equation 4-5 is more than 0.317 times that of the ultimate 

compressive strain value for the material, the design falls in the third phase of the model and the 

following equations should be used for obtaining the tensile reinforcement. 

𝐴𝑠 =

𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑏𝑥2(𝑥𝑛−3𝑚(𝑥−𝑑′))−1
6⁄ 𝐸𝑐𝑡(ℎ−𝑥)2𝑏(𝑘(ℎ−𝑥)+3𝑔(𝑥−𝑑′))

𝐸𝑠(𝑑−𝑥)(𝑑−𝑑′)
                       4-56 

𝐴′𝑠 =

𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑏𝑥2(𝑥𝑛−3𝑚(𝑑−𝑥))−1
6⁄ 𝐸𝑐𝑡(ℎ−𝑥)2𝑏(𝑘(ℎ−𝑥)−3𝑔(𝑑−𝑥))

𝐸𝑠(𝑥−𝑑′)(𝑑−𝑑′)
                      4-57 

With: 

 𝑔 = 𝛽2 + 2β(1 − 𝛽) + 𝛼(1 − 𝛽)2   

 𝑚 = 𝛾2 + 2γ(1 − 𝛾) + 𝛿(1 − 𝛾)2  

 𝑛 = 2𝛾3 + 3𝛾(1 − 𝛾)(𝛾 + 1) + 𝛿(1 − 𝛾)2(𝛾 + 2) 

 𝑘 = 2𝛽3 + 3𝛽(1 − 𝛽)(𝛽 + 1) + 𝛼(1 − 𝛽)2(𝛽 + 2) 

In order to establish the accuracy of the estimates done, the estimated tensile steel was plotted 

against the applied tensile steel and the same was done for the compressive steel. With estimated 

is meant that which is calculated from the formulas given above. With applied is meant that which 

was used to do develop the formulas. These comparisons are shown in Figures 4-12 and 4-13 for 

Phase 2 and 4-14 and 4-15 for Phase 3.  

Stellenbosch University  https://scholar.sun.ac.za



 
69 

 

From Figures 4-13 and 4-15 it is clear that the compressive steel estimation is not as accurate as 

that of the tensile reinforcement. The estimates for the tensile reinforcement is slightly conservative 

and getting more so as the moment increases. The most probable reason for the inaccuracy of the 

compressive steel estimate is the fact that the stress in the compressive steel is not fixed to a certain 

value in the design model as is the case for the tensile reinforcement. It was noted when the stress 

in the compression reinforcement reached the ultimate limit and higher stresses were not allowed, 

but the stress was not controlled as was the stress in the tensile reinforcement. Though the stress 

in the compression reinforcement will not exceed the ultimate limit, it is possible that the model will 

over predict the compressive reinforcement due to the fact that the stress in these bars will be much 

less than what is ultimately allowed by the design codes. 

Figure 4-12: Phase 2 – Comparing estimated and applied areas of tensile reinforcement 
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Figure 4-13: Phase 2 - Comparing estimated and applied areas of compressive reinforcement 

 

Figure 4-14: Phase 3 - Comparing estimated and applied areas of tensile reinforcement 
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Figure 4-15: Phase 3 - Comparing estimated and applied areas of compressive reinforcement 

 

4.3.1 Numerical Verification 

In order to establish what the influence of the inaccurate estimation of the compressive reinforcement 

is on the resisting moment, the resisting moment was calculated using the estimated values. The 

model factor was then applied to the reinforcement calculations and the resisting moment 

recalculated with these modified reinforcement areas. In practice, the estimated reinforcement areas 

will be used to determine what amount of rebar must be added to a certain section. As the rebar is 

only found in certain diameters the actual value of reinforcement entered into the beam is normally 

again increased to adhere to what is practically available and possible.  

To indicate the accuracy of the estimated calculations, all four moment values were plotted against 

each other for each height of beam evaluated. These are shown in Figures 4-16 to 4-27.    
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Figure 4-16: Phase 2 - h = 200mm 

 

Figure 4-17: Phase 2 - h = 250mm 
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Figure 4-18: Phase 2 - h = 300mm 

 

Figure 4-19: Phase 2 - h = 400mm 
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Figure 4-20: Phase 2 - h = 500mm 

 

Figure 4-21: Phase 2 - h = 600mm 
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Figure 4-22: Phase 2 - h = 750mm 

 

Figure 4-23: Phase 3 - h = 200mm 
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Figure 4-24: Phase 3 - h = 250mm 

 

Figure 4-25: Phase 3 - h = 300mm 
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Figure 4-26: Phase 3 - h = 400mm 

 

Figure 4-27: Phase 3 - h = 500mm 
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From the graphs it can be seen that the resisting moment without the model factor, is exactly equal 

to the applied moment, in spite of the inaccurate values for the compressive reinforcement. This is 

probably due to the fact that the tensile reinforcement is estimated slightly higher than the actual 

values and in most cases; the compressive reinforcement is also higher than the actual values.  

When the model factor is then applied to both the tensile and the compressive reinforcement, the 

resisting moment becomes conservative. By incorporating the actual steel areas used the resisting 

moment is once again increased. Thus the simplified model can be seen as slightly conservative.     

4.4 Testing the Simplified Model with Different Materials 

4.4.1 Materials used 

The main goal of this study is to derive an analytical model and a design model for the design of 

reinforced strain hardening cement composites, to be used as flexural members. The model should 

thus be compatible with all strain hardening materials, provided that the ultimate tensile strain is 

more than the strain limit of 0.00225, used for reinforcement in tension.  

The material used in calibrating the model can be classified as a low strength SHCC material. The 

materials chosen for the testing was chosen to represent the middle and high strength SHCC 

materials. The material properties of the three materials are shown in Table 4-1, where Material 1 is 

the low strength material used in the original calibration, Material 2 is a high performance SHCC 

material made up with Material 1 and 3 in mind, and Material 3 represents the ultra-high strength 

SHCC class of materials [48].   

Table 4-1: Material Properties 

 Material 1 Material 2 Material 3 

εct1 0.000240 0.000235 0.000211 

εctu 0.01456 0.0127 0.0039 

εccu -0.00508 -0.0053 -0.00725 

σct1 2.054MPa 3.54MPa 11.8MPa 

σctu 2.937MPa 5MPa 15MPa 

σccu -30.559MPa -55MPa -250MPa 

Ect 8.557GPa 15GPa 55.924GPa 

Ecu 10.112GPa 17.444GPa 57.966GPa 
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4.4.2 Verification 

The verification of Materials 2 and 3 was done in the same way as the calibration of the model was 

done. For each material, a set of the same fictional beams as before, with varying sizes were 

reinforced with varying amounts of tensile and compressive reinforcement. For each beam, the load 

was found at which the tensile reinforcement would just yield. This load was then divided by 1.4 to 

establish the service load, which in turn was used to find the predicted deflection for the member in 

question. The lengths of the members were kept at exactly 16 times the effective depth of the 

member.  Beams with deflections exceeding the lesser of L/250 or 30mm were again discarded. 

Examples of the calculations for Materials 2 and 3 can be seen in Annexure C. 

For each of these beams, the tensile strain, the value of the neutral axis depth, and the deflection at 

the point of design was noted. Figure 4-28, 4-29, 4-30, and 4-31 shows the comparison for phases 

2 and 3 between the tensile strain values and the position of the neutral axis for the three different 

materials. 

Figure 4-28: Phase 2 - Comparison between actual tensile strain for Materials 1, 2, and 3 
for beam heights under 500mm 
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Figure 4-29: Phase 2 - Comparison between actual tensile strain for Materials 1,2, and 3 for 
beam height over 500mm 

 

Figure 4-30: Phase 2 - Comparison between the neutral axis depth for Materials 1, 2, and 3 
for beam heights under 500mm 
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Figure 4-31: Phase 2 - Comparison between the neutral axis depth for Materials 1, 2, and 3 
for beam heights over 500mm 

 

Figure 4-32: Phase 3 - Comparison between the actual tensile strain for Materials 1 and 2 
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Figure 4-33: Phase3 - Comparison between the neutral axis depth for Materials 1 and 2 

 

From the graphs it can be seen that the tensile strain values are very similar for the different 

materials. The same can be said for the neutral axis depths. In this light it is thus expected that the 

estimated values should correspond for Materials 2 and 3 as their actual values are very similar to 

that of Material 1. The design for Material 3 was never outside of Phase 2. This is probably due to 

the very high compressive strength of the material.  

Figures 4-32 to 4-43 shows the comparison between the applied moments and the resisting 

moments for the three different materials.  
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Figure 4-34: Phase 2 - h = 200mm 

 

Figure 4-35: Phase 2 - h = 250mm 

Stellenbosch University  https://scholar.sun.ac.za



 
84 

 

Figure 4-36: Phase 2 - h = 300mm 

 

Figure 4-37: Phase 2 - h = 400mm 
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Figure 4-38: Phase 2 - h = 500mm 

 

Figure 4-39: Phase 2 - h = 600mm 
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Figure 4-40: Phase 2 - h = 750mm 

 

Figure 4-41: Phase 3 - h = 200mm 
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Figure 4-42: Phase 3 - h = 250mm 

Figure 4-43: Phase 3 - h = 300mm 
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Figure 4-44: Phase 3 - h = 400mm 

 

Figure 4-45: Phase 3 - h = 500mm 
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The accuracy found in Material 1 can be seen in Materials 2 and 3 as well. This shows that the model 

is applicable to any strain hardening material.  

4.5 Conclusion 

The original design model is based on three phases in order to incorporate the different phases of 

the tensile and compressive responses for this material. The first phase is known as the elastic 

phase and during this phase both the tensile and compressive responses are linear and no cracks 

have formed in the member. The second phase starts with the first cracks forming in the tensile zone 

of the member. This phase takes into account the tensile strain hardening of the material but 

assumes that the compression response is still elastic. When the compressive strain reaches the 

limit of 0.317 times its ultimate compressive strain, phase 2 ends and phase 3 starts. During phase 

3, both responses are assumed plastic and this phase ends in either tensile crack localization or 

compression crushing at the top of the flexural member.  

Because of the intrinsic nature of the base model, a simplified model is needed. In order to simplify 

the base model, certain information needs to be estimated from the base model in order to be able 

to establish enough information to do a flexural design. The design tensile strain value is found by 

calculating various different scenarios of beams and loads, and then assessing the information 

gathered into a single equation. When this value has been established, the distance to the neutral 

axis can be found by manipulating existing equations. Eventually the design compressive strain can 

be found from known relationships and with this information, the tensile and compressive steel can 

be calculated. It was found that the simplified model gives accurate results without a model factor 

being added to the equations. If the model factor is incorporated, a measure of conservancy is added 

to the answers. If the realistic steel values are used to establish the resisting moments, the safety 

factor on the resisting moments becomes quite big in some cases.   

A major drawback of the simplified model is that it is related to the depth of the member and 

equations are only available for depths up to 750mm for Phase 2 design and 500mm for Phase 3 

design. Interpolation can be used for values in between the available design values, but to estimate 

for depths higher than these are not possible at this stage.  

To prove that the model is applicable to all strain hardening materials, the simplified model was 

tested with two more materials of different strengths. The tensile strain values were found to be 

remarkably similar and again the simplified model gave highly accurate results. It does show, 

however, that the model is applicable to other types of SHCC. More material types should be tested 

in order to establish a more accurate way of calculating the design tensile strain. This would improve 

the accuracy of the simplified model.      
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5. DEFLECTION MODEL 

5.1 Fundamental Theory of Beam Deflection 

In traditional reinforced concrete, RC, beams it is unusual to see multiple cracks forming in the tensile 

zone. These cracks would normally form around the point of maximum moment or, as per Figure 4-

1, in the centre of the beam. It is assumed that at the crack positions, zero tensile stress is transferred 

by the concrete and all the tensile force is transferred by the steel reinforcement; thus assuming that 

the concrete loses all tensile strength as soon as it cracks. By friction transfer between the steel bars 

and the concrete, tensile stress builds up between the cracked sections. This implies that the tensile 

stress in the concrete at the level of the reinforcement may vary along the length of the beam, from 

zero (at the crack) to approaching the ultimate tensile strength (roughly one tenth of the concrete 

compressive strength) away from the crack. This means that different local curvatures, or strain 

distributions are found along the section height, and act in reality along the length of the RC beam. 

However, an average situation is normally considered, as shown in Figure 5-1, namely that a small 

amount, no more than 1MPa, of tensile stress is transferred by the concrete in serviceability limits 

states for calculating deflections in RC beams (SANS, EC2) [47] [49]. 

 

Figure 5-1: Assumed Stress Distribution in Traditional Reinforced Concrete [47] 
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To calculate the curvature, the equilibrium of forces is taken around the neutral axis, which can be 

derived from the strain distribution shown in the Figure 5-1, which in turn depend on the neutral axis 

depth, x;. This leads to the following equation: 

1

2
𝜎𝑐𝑠𝑏𝑥 = 𝑓𝑠𝐴𝑠 +

1

2

ℎ−𝑥

𝑑−𝑥
𝜎𝑡𝑏(ℎ − 𝑥)                               5-1 

With: 

 σcs  = Concrete compressive stress 

= Eεcs 

 b  = Width of the beam 

 x  = Depth to the neutral axis 

 fs  = Tensile stress in the reinforcement 

 As  = Area of tensile reinforcement 

 h  = Total depth of the beam 

 d  = Effective depth of the beam 

 σt  = Tensile stress in the concrete at the position of the tensile reinforcement (limited to 

1MPa for normal concrete) 

The sum of the moments around the neutral axis should be equal to zero. From that it can be 

deduced that: 

M𝑢 = (
1

2
𝜎𝑐𝑠𝑏𝑥)

2

3
𝑥 + 𝑓𝑠𝐴𝑠(𝑑 − 𝑥) +

1

2
(

ℎ−𝑥

𝑑−𝑥
𝑓𝑡𝑏(ℎ − 𝑥))

2

3
(ℎ − 𝑥)               5-2 

With: 

 Mu = applied moment 

It is also known that: 

𝜀𝑐𝑠

𝜀𝑠
=

𝑥

𝑑
 ⇒ 𝜀𝑐𝑠 =

𝑥

𝑑
𝜀𝑠                                 5-3 

𝑓𝑠 = 𝐸𝑠𝜀𝑠                       5-4 

𝜎𝑐𝑠 = 𝐸𝑐𝜀𝑐𝑠                       5-5 
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With: 

 εcs  = Compressive strain in concrete 

 εs  = Tensile strain in reinforcement 

 Es  = Elasticity modulus of reinforcement 

 Ec  = Elasticity modulus of concrete 

If Equations 5-1 and 5-2 is rewritten to take into account Equations 5-3, 5-4 and 5-5, the result is: 

1

2
𝐸𝑐

𝜀𝑠

𝑑
𝑏𝑥2 = 𝐸𝑠𝜀𝑠𝐴𝑠 +

1

2

(ℎ−𝑥)2

𝑑−𝑥
𝑏𝑓𝑡                               5-6 

1

3
𝐸𝑐

𝜀𝑠

𝑑
𝑏𝑥3 = −𝐸𝑠𝜀𝑠𝐴𝑠(𝑑 − 𝑥) −

1

3

(ℎ−𝑥)3

𝑑−𝑥
𝑓𝑡𝑏 +

𝑃𝐿

4
                             5-7 

Multiplying Equation 4-6 by  
2

3
𝑥 leads to the following expression: 

1

3
𝐸𝑐

𝜀𝑠

𝑑
𝑏𝑥3 =

2

3
𝐸𝑠𝜀𝑠𝐴𝑠𝑥 +

1

3

(ℎ−𝑥)2

𝑑−𝑥
𝑏𝑓𝑡𝑥                              5-8 

Subtracting Equation 4-7 from equation 4-8: 

𝐸𝑠𝜀𝑠𝐴𝑠 (𝑑 −
𝑥

3
) +

1

3

(ℎ−𝑥)2

𝑑−𝑥
𝑏𝑓𝑡ℎ =

𝑃𝐿

4
                               5-9 

The conditions involved in these equations are: 

 𝐸𝑠𝜀𝑠 ≤ 𝑓𝑦   

  𝑓𝑡 =
𝑑−𝑥

𝑥
𝑓𝑐𝑠 ≤ 1.0 

 𝑓𝑡 =  
𝑑−𝑥

𝑥
𝐸𝑐

𝜀𝑠

𝑑
𝑥 ≤ 1.0             

 𝑓𝑡 =
𝑑−𝑥

𝑑
𝐸𝑐𝜀𝑠 ≤ 1.0 

By solving Equation 5-8 and 5-9 simultaneously the depth of the neutral axis, x, can be obtained. 

The strain in the tensile reinforcement, εs, can also be found. With this information, the curvature can 

be calculated from Equation 5-10. 

𝜌 =
1

𝑟
=

𝜀𝑠

𝑑−𝑥
                               5-10 
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The vertical displacement of a beam can then be expressed by the differential equation: 

𝑑2𝑢

𝑑𝑥2
=

1

𝑟
= 𝜌                     5-11 

Where: 

 x  = Coordinate system axis along the beams’ centroid axis, 

 r  = Radius of the deformed shape of the beam in flexure 

Equation 5-11 can be solved by direct integration and the introduction of particular boundary values. 

The curvature-area method is useful for the solving of simple beam systems, for instance simply 

supported beams or cantilever beams, as shown in Figure 5-2.  

Figure 5-2: Simple Beam Configurations 

 

With this theory it can be shown that the maximum displacements are given by: 

Δ = ∫
1

𝑟
𝑥𝑑𝑥

𝑏

𝑎
                                       5-12 

Thus, the displacement is the first moment of the curvature area between points a and b, and about 

point a. 

Note that only time-independent deflection is considered in this study. To include time dependence, 

environmental strains are added to the mechanical strains to take into account shrinkage and creep. 

This changes the curvature. These environmental strains are mostly site specific and not dealt with 

here.  
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5.2 Linear-elastic behaviour 

For linear elastic material behaviour, the curvature is given by: 

1

𝑟
=

𝑀

𝐸𝐼
                               5-13 

It is also known that the moment along the length of the beam for a simply supported beam loaded 

with a point load in the centre of the beam can be calculated with Equation 5-14, where the maximum 

moment occurs when x = L/2: 

𝑀(𝑥) =
𝑃𝑥

2
                      5-14 

Likewise, the moment along the length of a cantilever beam loaded with a point load on the end of 

the cantilever can be calculated with Equation 5-15, where the maximum moment occurs when x = 

L: 

𝑀(𝑥) = 𝑃𝑥                     5-15 

By substituting Equations 5-13 and 5-14 into 5-12, the following expression for calculating the 

deflection of a simply supported beam with a point load in the centre is derived: 

Δ = ∫
1

2⁄ 𝑃𝑥

𝐸𝐼
𝑥𝑑𝑥 =

𝑃𝐿3

48𝐸𝐼

𝐿

2
0

                     5-16 

Then, by substituting Equations 5-13 and 5-15 into 5-12, the following expression for calculating the 

deflection at the end of a cantilever beam, can be derived: 

Δ = ∫
𝑃𝑥

𝐸𝐼
𝑥𝑑𝑥 =

𝑃𝐿3

3𝐸𝐼

𝐿

0
                             5-17 

Often, the maximum deflection is expressed in terms of a particular curvature. This is usually the 

maximum curvature ρm at mid-span, in a simply supported beam, and at the support, in a cantilever 

beam. The maximum deflection is then expressed as follows: 

Δ = 𝐾𝐿2𝜌𝑚                     5-18 

Where, K, denotes the coefficient taking into account the boundary value type as well as the load 

configuration. 
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5.3 Deflection calculation for R/SHCC beams 

5.3.1 Introduction 

Figure 5-3 shows the postulated schematic representation of the three different phases of deflection 

for a simply supported beam loaded with a single point load in the centre.  

Figure 5-3: Schematic representation of the three phases of deflection 

 

5.3.2 Phase 1 - Linear-elastic behaviour 

During phase 1, the cement matrix has not cracked and so the material is assumed to behave linear-

elastically. For linear-elastic material behaviour, the deflection can be calculated as for normal 
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concrete. The curvature can be calculated by using equation 5-13, and as the moment calculation 

does not change with the material type, the deflections can be calculated by using equations 5-16 

and 5-17 for simply supported beams, and cantilever beams respectively. 

Equation 5-19 is an expanded version of Equation 5-16 

Δ =  
𝑃𝐿3

48𝐸𝑐𝐼𝑡𝑟
                     5-19 

Where: 

 Δ  = Deflection at the centre of the beam. 

 P  = Point load applied in the centre of the beam. 

 L  = The effective length of the beam. 

 Ec  = Elasticity modulus of the cement material. 

 Itr  = Transformed moment of inertia of the cross section under consideration. 

This method was used in calculating the deflections for Phase 1 of the model predictions.  

5.3.3 Phase 2 – Strain Hardening 

In reinforced SHCC beams there are two main phases of deflection after the elastic limit has been 

reached. This is shown in Figure 5-4. 

 
Figure 5-4: Schematic Representation of SHCC Beam Load - Deflection Phases 
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Micro-cracking starts after the elastic limit is reached at load Pe, with the corresponding deflection 

Δe. Because the cement matrix is now cracked, it has lost some of its stiffness. As the cracks spread 

along the length of the beam, the cement-based matrix is weakened or damaged. The curvature in 

this damaged region will differ from the curvature in the undamaged areas of the beam. The cracks 

do not spread along the whole length of the beam, but stop at some point, when crack saturation is 

reached. This phase ends with crack saturation (Py, Δy) and a plastic hinge forms where crack 

localization occurs.  

The differential Equation 5-11 and the curvature-area Equation 5-12 may be used to determine the 

curvature and deflection of beam elements made up of inelastic materials. The simplified expression 

for determining the curvature for linear-elastic materials, Equation 5-13 is no longer valid. This is 

because the curvature is no longer proportional to the bending moment, but depending on the local 

cracking behaviour of the beam. As illustrated in Figure 5-4, the curvature increases at crack 

locations in the beam. This increased curvature needs to be taken into account when calculating the 

deflection. 

For design purposes, it is important to utilize the multiple cracking behaviour of SHCC. Figure 5-4 

shows that this phase starts at Pe, when the first crack is initiated, and ends at Py, when crack 

saturation is reached. Crack saturation is reached when all possible cracks have formed. After this, 

no new cracks will form, but a few existing cracks will widen up as a result of fibre pull-out and/or 

breakage. The strain hardening phase is the optimal phase for this material to be in, as this is where 

the tensile strain hardening has been activated, but the compression is still elastic. This will thus be 

the safest phase for design of a flexural member. This phase should thus be considered in the design 

for both ultimate limit state, crack width calculations, as well as serviceability limit state, deflection 

calculations. In Figure 4-4, an assumption is made of the strain and stress distributions at the end of 

the strain hardening phase at mid-span for the case of a centrally loaded simply supported beam. 

This point is where the maximum bending moment will occur and is also the position of the greatest 

curvature. This is also the case for the elastic phase, phase 1. This is not obvious because of the 

multiple cracking nature of SHCC, which shows uniform crack spacing and approximately uniform 

crack width over the entire cracked region. It is thus harder to find the point of maximum curvature, 

than it would be in a normal concrete element which will have one or two wide cracks at failure. 

The end of the strain hardening phase is marked by the start of crack localization at mid-span, 

meaning the widening of the central crack, where the largest bending moment acts. For this reason 

the tensile strain at the furthest tensile fibre in the cross-section is indicated as εtu in Figure 5-5. The 

strain value is defined in Figure 5-5, where the simplified uniaxial tensile behaviour of SHCC is shown 

schematically.  
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The stress state on the compression face is unknown. It may vary, depending on the particular SHCC 

relation between compressive and tensile strength, beam geometry, and the level of steel 

reinforcement in the R/SHCC. For the flexural model, the compression was kept elastic up to the 

point where the compressive strain reaches 0.317 times its ultimate strain value. From this point 

forward, the compressive stress and strain relation is shown in Equation 4-22. This is explained in 

more detail in Chapter 2. 

It is assumed that the strain is linear along a cross-section. This is shown in Figure 5-5. Considering 

the uniaxial material behaviour of SHCC, force equilibrium, and moment equilibrium, it is possible to 

derive the stress distributions as shown in Figure 5-5. 

Figure 5-5: Schematic Representation of SHCC Beam Sectional Strain and Stress 
distributions 
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The width of the cracked region, αL, as indicated in Figure 5-6, can be estimated from the first 

cracking tensile stress σty and the bending moment diagram in Figure 5-6. The relationship between 

the moment at the end of the linear-elastic phase, Me, that is when the first cracks in the beam occurs 

at mid-span, and the bending moment at the end of the strain hardening phase, My, determines the 

cracked length. This is based on the assumption that all material points have equal tensile strength. 

Then the cracked region can be derived as: 

𝛼 = 1 −
𝑀𝑒

𝑀𝑦
                     5-20 

Figure 5-6: Schematic Representation of SHCC Moment and Curvature Diagrams 

 

The simplified curvature diagram given in Figure 5-6 can be integrated by using the following 

relationship; 

𝜀𝑐 =
−𝑥

ℎ−𝑥
𝜀𝑡                     5-21 
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Or it can be numerically integrated by using; 

𝜌𝑦 =
𝜀𝑐

𝑥
                     5-22 

In order to calculate the mid-span deflection, however, the simple nature of the diagram allows for 

analytical integration, leading to the following expression for the mid-span deflection: 

Δ =
1

2
𝜌𝑒

𝐿2

4

2

3
(1 − 𝛼)2 + 𝜌𝑒

𝛼𝐿

2

𝐿

2
(1 −

𝛼

2
) +

1

4
(𝜌𝑦 − 𝜌𝑒)

𝛼𝐿

2
𝐿 (1 −

𝛼

3
)                      5-23 

This is the approach that was used to determine the deflection for phases 2 and 3 of the model 

predictions. The beam was divided into eighths and the curvature at the beginning and end of each 

eighth piece was calculated. The areas under these curvatures were then calculated and added as 

per Equation 5-23.     

5.3.4 Phase Three 

Phase 2 of the deflection path ends when crack saturation has occurred (Py, Δy) and a plastic hinge 

is formed. Phase 3 of the deflection path has now started. This allows for an increase in deflection 

without an increase in loads, or sometimes, deflection hardening (or strain hardening) up to a loading 

level Pu and a mid-span deflection of Δu. This last ultimate stage is indicated by the start of crack 

localization in a single crack at mid-span. The crack patterns at the various phases are shown in 

Figure 5-4.  

5.3.5 Tension Stiffening in R/SHCC members in flexure 

A tension stiffening effect has been reported in reinforced HPFRCC [50], where the concrete material 

has been reported to carry tension beyond the yield strain of the mild steel reinforcement. Moreno 

et al [50] concluded that splitting cracks in the concrete contributes to the spreading of strain along 

the reinforcing bars, resulting in larger displacement capacity. These splitting cracks are normally 

absent in SHCC members, implying that their displacement capacity would be lower than that of 

normal concrete.  

Moreno et al [50] also states that the ultimate fracture strain of the reinforcing bar is a function of the 

ability of the HPFRCC to resist or restrain splitting cracks and to prevent or allow the formation of 

dominant transverse cracks at specimen strains over 1%. If the formation of splitting cracks is 

prevented and no dominant cracks are allowed to form along the length of the length of the specimen, 

strain will localise in the first dominant transverse crack. This will then lead to early fracture of the 

steel reinforcement. If splitting cracks occur, strains are more evenly spread and several of the 
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multiple transverse cracks can grow wider together. This delays reinforcement fracture and higher 

deformation levels are possible.  

5.3.6 Comparing the Predicted Deflected shape to the Measured Deflected shape 

In Figure 5-7, the predicted shape of the deflection for one of the test beams was plotted against the 

measured shape of the deflection. The predicted deflection is conservative in all three phases of the 

model, over estimating the deflection by approximately 2mm. The shape of the predicted deflection 

is hard to calculate but the comparison is quite good in the image below.   

Figure 5-7: Predicted Deflection vs Measured Deflection along length of beam 

 

5.4 Serviceability 

According to SANS 10160-1:2011, serviceability limit states specify the following requirements for a 

structure under normal use: 

 The functioning of the structure or structural members. 

 The acceptability of the structure by users in terms of perceived safety and well-being 

 The appearance of the structure. 

All of the above hint at deflections, as excessive deflection can be the cause of a building not being 

able to function as intended. Doors and windows sticking in their frames and tiles popping from floors 
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are only a few phenomenon that will reduce the functionality of a building. Visibly sagging floors not 

only makes people feel unsafe, but it impacts on the aesthetics of the building.  

For a flexural member to be serviceable it needs to be within the deflection limits set in the various 

codes used for structural design. These limits are normally set according to the sensitivity of the 

finishes applied to the structure and vary between countries. For instance, glass will crack when 

exposed to too much deflection while brickwork is more flexible and can withstand larger deflection 

before it starts cracking.  

A general limit for deflections in slab and beam structures is L/250 or 30mm, whichever is the 

smallest. This is the limit used to calibrate the model in order to make sure that the information it 

gives will be both serviceable and structurally correct. When calibrating the model, a span/d limit of 

16 was used, but for lengths exceeding 10m, deflection was still a problem for the weaker materials. 

This is assumed to be because of the ductility of the material used, as SHCC is much more ductile 

than normal concrete. However, the concrete code also specifies that for spans over 10m the 

deflection must be proved by calculation and the span/depth ratios cannot be blindly followed.  

5.5 Conclusion 

The deflection of the SHCC member is found by applying the same principles as for conventional 

RC. When the material is elastic, an elastic approach can be adopted, but for a cracked section, the 

deflection must be found by means of analytical or numerical integration.  

Deflection calculations are important in order to establish the serviceability level of the member. Too 

much deflection can lead to unsightly cracking in structures and visible deflections makes occupants 

feel unsafe. The serviceability limits as set out for conventional concrete were adopted for SHCC in 

this instance.  
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6. RELIABILITY 

6.1 General 

The development of design methods needs to include measures for ensuring structural safety. This 

is done in the form of partial factors. Partial factors are normally calibrated on existing practice, but 

in the case of SHCC, reliability calibration methods will have to be used in the absence of existing 

practice data.   

A measure of reliability is the reliability index, βR, which is related to the probability of failure, pf, by 

the following equation [46]: 

𝑝𝑓 = Φ(−𝛽𝑅)                                  6-1 

Where, Φ, is the cumulative distribution function for the standard normal distribution.  

In the Eurocodes, the target reliability is given by βT = 3.8 (EN 1990). South African codes have a 

minimum target value reliability of βT = 3.0 for ductile failure modes [46].  

To ensure that the resistance model has an acceptable level of reliability, a partial resistance factor, 

γM, is used. The factor consists of two parts; a material factor, γm, to take into account the uncertainty 

in the material properties, and a model factor, γRD, to take into account the uncertainties in the design 

assumptions made when developing the model [46].  

A limit state is defined as the border between a safe and an unsafe state in the structure. When 

considering the performance function, g = R – E, the safe state is represented by g > 0 (R > E), and 

the unsafe state is given by, g < 0 (R < E) and the limit state is shown as g = 0 [46]. Where R is the 

resistance and E is the imposed load. 

In design codes, the design value method is normally used in finding the limit state expressions. This 

method includes finding a design value for each basic variable by making use of partial factors. An 

adequate design will then be one for which the limit states are not reached when the design values 

are used in the resistance model [46]. This can be expressed as: 

Ed < Rd 

Where:  

 Ed  = design value of load effects 
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 Rd  = design value of resistance 

6.2 Material Strength 

6.2.1 Statistical Properties of Critical Parameters 

The statistical properties of the critical parameters are required in order to determine acceptable 

levels of structural reliability. This may be done by determining characteristic values of the properties 

along with a reliable material factor, or by finding design values directly [46]. For the purpose of this 

study, it was important that the design could be used on most classes of strain hardening cement 

composites. It would thus be more efficient to find material factors that could be used along with 

characteristic values to find proper design values for the critical parameters.  

It was not possible to obtain big enough sample sizes in order to derive stable values of the mean, 

standard deviation, and skewness of the parameters in question. Most samples contained 6 or less 

elements. Combining the samples was not possible in most cases as the samples were taken from 

different material mixes. 

6.2.2 The Conversion Factor 

The conversion factor represents the ratio of in situ strength of a material to the cube, or laboratory 

tested strength, and is thus a factor that is derived over time and by experience [46]. This factor can 

either be accounted for in the determination of the design material strength parameters, or in the 

resistance model calibration. The ideal way of determining the conversion factor is to compare 

results from cubes cast and tested in laboratory conditions, and core samples taken from site. As 

SHCC has many critical parameters, and most of them show great variation when tested, it seems 

necessary that there should be a conversion factor for each critical point in the model. For normal 

reinforced concrete, the conversion factor is taken as 0.85, and has been derived from data 

accumulated over years of use. This factor is then applied only to the compressive strength of the 

concrete, as this is the only material parameter used in design calculations. 

The development of SHCC as a construction material only took place recently and no site related 

data exists for this material. Therefore, the conversion factor is unknown. As this material does not 

involve complicated mixing techniques and has the same curing procedure as normal concrete, it 

seems logical that the conversion factor for normal concrete could be a starting point for estimating 

the conversion factors needed for SHCC.  

For normal concrete, the conversion factor is only applied to the concrete compressive strength. 

SHCC, on the other hand, has compressive as well as tensile parameters that need to be defined 

and there are stresses as well as strains involved. The critical points in the model are defined by the 
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critical parameters of the material. These are the first cracking point or yield point, defined by the 

tensile yield stress and strain of the material. Then there is the point of crack localization which is 

defined by the ultimate tensile stress and strain of the material. The last critical point is the maximum 

compressive strength, defined by the ultimate compressive stress and strain of the material.  

All of these critical points have two critical parameters defining them. It seems inappropriate that 

both the parameters should have conversion factors applied to them as that would reduce the 

strength of the material considerably. As the conversion factor for normal reinforced concrete is only 

applied to the ultimate strength of the material, it seems prudent to do the same for SHCC and apply 

the conversion factors only to the strength parameters of the material. Based on the coefficient of 

variation for each of the parameters, and applying the 0.85 conversion factor to the ultimate 

compressive stress, the conversion factors for the rest of the strength parameters are shown in Table 

6-1. The coefficient of variation was derived from the tests done for this study, as well as other data 

received from a colleague research student in the group [51]. All inclusive, there was about 100 tests 

evaluated but the sample sizes were limited to a minimum of 3 and a maximum of 9. They could not 

be combined as they were not done form the same batch or with the same mix, but were roughly for 

the same strength of material. Only the test results for tests done during this study are shown in 

Chapter 3.  

Table 6-1: Conversion Factors 

Material Property Coefficient of Variation Conversion Factor 

σccu 0.090 0.850 

σct1 0.196 0.390 

σctu 0.097 0.790 

 

6.2.3 Material Factor 

The material factor for a specific critical parameter is defined as the coefficient of variation of the 

characteristic value multiplied by its conversion factor, and divided by the design value for this 

particular parameter [46]. The characteristic value was taken as the 0.05 fractile of the distribution 

and the design value as the 0.0082 fractile [46]. All samples were taken as having a normal 

distribution as there were not enough elements in the samples available to define the statistical 

properties of the various distributions.  

As per the derivation of the conversion factor, it was deemed to be overly conservative to apply a 

material property to the stresses as well as the strains of the material. As an alternative, it would be 
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better to apply the conversion and material factors to the stress or strength parameters of the 

material, and then impose limits on the strain parameters, rather than applying more factors. The 

material factors for the strength parameters are shown in Table 6-2. 

Table 6-2: Material Factors 

Material Property Conversion Factor Material Factor 

σccu 0.850 1.220 

σct1 0.390 2.833 

σctu 0.790 1.326 

 

The values shown in Table 6-2 were calculated by finding the material factors for each sample test 

data available, and then calculating the average value. The material factor for each sample was 

found by calculating the mean, coefficient of variation, skewness, and characteristic value and then 

also the design value, and then dividing the characteristic value by the design value. The coefficient 

of variation, VX, the characteristic value, Xk, and the design value Xd, were calculated by using the 

following equations: 

𝑉𝑋 =
1

𝑚𝑋
√

∑(𝑥𝑖−𝑚𝑋)2

𝑛−1
                                 6-2 

𝑋𝑘 = 𝑚𝑋(1 − 𝑘𝑛𝑉𝑋)                                 6-3 

𝑋𝑑 = 𝜂𝑑𝑚𝑋(1 − 𝑘𝑑,𝑛𝑉𝑋)                                6-4 

Where: 

 mX  = Sample mean obtained from test data 

 kn  = Fractile estimator 

 ηd  = Conversion factor 

 kd,n  = Design fractile estimator 

The fractile estimators can be found in the EN 1990 [52] or in [46]. 
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6.2.4 Limiting Strain Values 

6.2.4.1 Compressive Strain 

The strain values defining the critical points on the tension and compression responses for SHCC 

have a very high variation coefficient. As was indicated earlier, it seems inappropriate to impose a 

conversion and material factor on both the stress and the strain for compression and tension as this 

would lead to a very conservative design. Further to that, the high variation of the strain values would 

lead to very high material factors being imposed on the strain values. Combining these high factors 

with the factored down stress values, and the design would be ridiculously conservative. The 

alternative is to factor the stress values as was done in the previous part of this chapter, and then 

impose limits on the strain values, ensuring that they are conservative but not overly so.  

Examining the compression parameters, it was found that the compression value for elasticity 

modulus, was quite constant. The expression for calculating this value is given in Equation 2-3. This 

expression involves the ultimate compressive stress as well as the ultimate compressive strain. 

Finding the ultimate compressive stress is not a hard task, and if the E value can be defined as a 

definitive value, the strain value is not hard to come by either.    

From the test data available, it was found that the average value for the elasticity modulus is 

14.833GPa. An average value would, however, not be a conservative approach to use. For that 

reason the design value was calculated, using Equations 6-2 to 6-4. The design value was found to 

be 8.063GPa. This means that for a SHCC mix with ultimate compressive strength of 30MPa, the 

ultimate strain value can be calculated as follows: 

𝜎𝑐𝑐𝑑 =
𝜎𝑐𝑐𝑢

1.220
= 24.590𝑀𝑃𝑎 

𝜀𝑐𝑐𝑑 = 1.681
𝜎𝑐𝑐𝑑

𝐸𝑐𝑐𝑑
= 0.00513 

6.2.4.2 Tensile Strain 

Naaman and Reinhardt [39] proposed a classification for SHCC based on the tensile properties of 

the material. This classification is discussed in more detail in Chapter 2, but for clarification it is 

necessary to highlight a few points from their work.  

Naaman and Reinhardt proposed a tensile Elasticity Modulus of 10.5GPa. Although there are indeed 

some materials that show a value much lower or higher than that, this value ties in very well with the 

average values obtained from the material test data accumulated. Calculating the elasticity modulus 

for the tensile response is somewhat cumbersome as it is very difficult to find the exact strain values 
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where yielding takes place. Limiting the E-value to something sensible makes the process of 

determining the yield strain so much easier, as the yield stress is much easier to find from test data. 

In the work by Visser (2007) [40], E-moduli determined from tensile tests and those determined from 

compressive tests were in close proximity, within 0.1% for cast specimens, and 12.3% for extruded 

specimens. 

The ultimate tensile strain shows as much deviation as the yield strain, but a design value was found 

by analysing the available test data. An ultimate tensile strain value of 0.0246 is proposed as a 

maximum limit on the tensile strain. Naaman and Reinhardt, [39], proposed a value of 0.005, which 

seems to be very low as most of the tensile failures only happen at around 2 – 3% strain levels.  

6.3 Model Uncertainty 

6.3.1 Theoretical Predictions 

To establish the accuracy of the design model, it was tested against the results obtained from the 

actual tests. See Chapter 3.4.1 and 3.4.2 for the results. The test results were also broken down into 

the three phases of the model to establish the accuracy of each phase separately. This shed some 

light on the validity of the assumptions made in each phase as well as the limits defining the three 

phases.  

To be able to compare the model predictions with the test results, the values were plotted against 

one another on a graph. Figures 6-1, 6-2 and 6-3 show the different scatter plots for the three phases 

of the model.  
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Figure 6-1: Scatter Plot showing accuracy of Phase 1 of the Base Model 

 

From the scatter plot for Phase 1, it can be seen that the resistance moment calculated is generally 

lower than the actual resistance moment measured from the tests. This shows that, except in the 

cases of beams 1b, 3a and 3b, tested in November 2010, the model gives fairly conservative results. 

These were the second set of tests referred to in Chapter 3. All three these tests showed less 

stiffness than what was expected. (See Chapter 3, Figure 3-5, and 3-7) 

From Figure 6-2 it is clear that the second phase of the model is not as conservative as was the first. 

All the beams tested in November, except for Beams 2a and b, are shown to have un-conservative 

resistance moments. This indicates that the model might need a calibration factor to ensure that the 

resistance moments calculated is conservative to an appropriate level of reliability. This factor will 

be very important as Phase 2 is where the strain hardening starts and some instances either of the 

serviceability limit state design or the ultimate limit state design might happen within this phase. This 

is dependent on the material properties as well as the design parameters.  
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Figure 6-2: Scatter Plot showing accuracy of Phase 2 of the Base Model 

 

The third and last phase is again more conservative in the prediction of the resistance moment. 

Except for Beams 3a and b, tested in November 2010, all the results are fairly conservative.  
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Figure 6-3: Scatter Plot showing the accuracy of Phase 3 of the Base Model 

 

6.3.2 Interpretation of Results 

From Figures 6-1, 6-2 and 6-3, it is clear that the model is non-conservative in some instances. 

Therefore, it is necessary to find a model factor to calibrate the resistance model so that all resistance 

values calculated will be conservative. In order to do that, a statistical evaluation of the above results 

needed to be carried out. The aim is to find the bias and the uncertainty inherent in the theoretical 

model [46]. The method presented in the EN 1990 and also in [46], was used for this purpose. 

The probabilistic model of the resistance is set up as: 

𝑟 = 𝑏𝑟𝑡𝛿                       6-5 

With: 

 rt  = Theoretical resistance 

 b  = Correction factor or model bias 

 δ = Error term or model uncertainty 
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The correction factor is a way of predicting the model’s tendency to systematically over or under 

estimate the resistance [46]. It is calculated by finding the best fit to the slope as given in the scatter 

plots above.  

𝑏 =
∑ 𝑟𝑒𝑟𝑡

∑ 𝑟𝑡
2                        6-6 

With: 

 re  = Experimental resistance 

The error term indicates the scatter of the results. The uncertainty can be found in the coefficient of 

variation of the error term. The error term can be calculated from the following equation: 

𝛿𝑖 =  
𝑟𝑒𝑖

𝑏𝑟𝑡𝑖
                       6-7 

An estimate of the coefficient of variation of the error term, Vδ, is found by defining Δ such that:  

𝑉𝛿 =  √𝑒𝑥𝑝(𝑠Δ
2) − 1                      6-8 

Δ𝑖= 𝑙𝑛(𝛿𝑖)                      6-9 

 The estimate for the expected value, E(Δ), is given as: 

Δ ̅ =  
1

𝑛
∑ Δ𝑖

𝑛
𝑖=1                     6-10 

 The estimate for the variance, σΔ
2, is given as: 

𝑠Δ
2 =  

1

𝑛−1
∑ (Δ𝑖 − Δ̅)2𝑛

𝑖=1                   6-11 

The bias and coefficient of variation of the error term can be used to evaluate the model’s accuracy. 

A value of b < 1 indicates an un-conservative resistance model. This means that the model over 

estimates the resistance of the member. Naturally, a value of b > 1 indicates the opposite.  

The coefficient of variation of the error term, Vδ, indicates the scatter of the results. This means that 

a very high value for the coefficient of variation indicates that the model cannot very accurately 

predict strength over the range of situations studied. This also means that the model probably needs 

to be re-assessed and a possible solution for the variation should be found.  
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The calculations above were done for each of the beams tested and the results can be seen in the 

Table below.  

Table 6-3: Statistical Values for Model Predictions 

 Phase 1 Phase 2 Phase 3 

 b δ Vδ b δ Vδ b δ Vδ 

April B1a 1.707 1.364 0.365 1.130 1.038 0.080 1.072 1.000 0.015 

April B1b 1.287 1.063 0.086 0.914 1.034 0.107 0.994 1.003 0.031 

April B2a 1.430 1.182 0.219 1.167 1.020 0.043 1.131 0.999 0.011 

April B2b 1.300 1.102 0.135 1.040 1.024 0.046 1.092 0.990 0.053 

April B3a 1.545 1.158 0.214 1.316 1.015 0.030 1.180 1.028 0.092 

April B3b 1.261 1.101 0.151 1.160 1.008 0.016 1.136 1.001 0.009 

Nov B1a 0.564 1.123 0.182 0.699 0.898 0.165 0.946 0.999 0.043 

Nov B1b 1.024 1.056 0.081 0.808 1.043 0.074 0.950 0.992 0.090 

Nov B2a 1.424 1.057 0.089 1.259 1.009 0.024 1.252 1.006 0.034 

Nov B2b 1.585 1.109 0.413 1.346 1.020 0.039 1.291 1.008 0.029 

Nov B3a 0.863 0.847 0.334 0.825 1.076 0.106 0.841 0.983 0.086 

Nov B3b 0.601 1.222 0.311 

 

0.681 0.980 

 

0.051 

 

0.722 0.983 0.075 

 

 

From Equation 6-5, it can be seen that the real resistance is given by the modelled resistance 

multiplied by the bias, b, and the error term, δ. In other words, the bias can be multiplied with the 

error term to find a model factor. In Table 6-3, the values of each of these model factors are given 

for each of the beams tested. However, a single model factor is needed. To find this factor, the 

average of the product of the bias and the error term for each phase were found. The average is 

used because it seems over conservative to again apply the process of reliability on the calculated 

model factors in order to obtain a single factor. This is shown in Table 6-4. 

Phase 1 of the model is not really a concern as it will not be used for design purposes. However, for 

completeness, the standard deviation of the model factors is 0.115. Phase 2 and 3 will; however, be 

used for designing the reinforcement needed in a flexural member of a given size with a particular 

moment applied to it. The factors above should be applied to equations 4-54, 4-55, 4-56 and 4-57. 

The standard deviation for the model factors for Phases 2 and 3 respectively comes to 0.164 and 

0.135. These equations are used to calculate the amount of tensile reinforcement needed in the 

particular element. 
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Table 6-4: Model Factors for Phase 1, 2, and 3 

Phase 1 Phase 2 Phase 3 

b δ b*δ Vδ b δ b*δ Vδ b δ b*δ Vδ 

0.564 1.123 0.633 0.182 0.699 0.898 0.628 0.165 0.722 0.983 0.710 0.075 

0.863 0.847 0.731 0.334 0.681 0.980 0.667 0.051 0.841 0.983 0.827 0.086 

0.601 1.222 0.734 0.311 0.808 1.043 0.843 0.074 0.950 0.992 0.942 0.090 

1.024 1.056 1.081 0.081 0.825 1.076 0.888 0.106 0.946 0.999 0.945 0.043 

1.287 1.063 1.368 0.086 0.914 1.034 0.945 0.107 0.994 1.003 0.997 0.031 

1.261 1.101 1.388 0.151 1.040 1.024 1.065 0.046 1.072 1.000 1.072 0.015 

1.3 1.102 1.433 0.135 1.160 1.008 1.169 0.016 1.092 0.990 1.081 0.053 

1.424 1.057 1.505 0.089 1.130 1.038 1.173 0.080 1.131 0.999 1.130 0.011 

1.43 1.182 1.690 0.219 1.167 1.020 1.190 0.043 1.136 1.001 1.137 0.009 

1.585 1.109 1.758 0.143 1.259 1.009 1.270 0.024 1.180 1.028 1.213 0.092 

1.545 1.158 1.789 0.214 1.316 1.015 1.336 0.030 1.252 1.006 1.260 0.034 

1.707 1.364 2.328 0.365 1.346 1.020 1.373 0.039 1.291 1.008 1.301 0.029 

Model 

Factor 

1.562 

 

   1.125    1.082 

 

 

Standard 

deviation 

0.115    0.164    0.135  

St. deviation 

as % of mean 

7.36%    14.58%    12.48%  

 

6.4 Conclusion 

Partial factors are added to design models in order to ensure structural safety in design. These 

factors are normally calibrated on practical experiences but in the case of SHCC, no such data exists 

and reliability calibration methods have to be used.  

Calculating design values for the different material properties was done by finding characteristic 

values and combining them with material factors. The material factor is calculated by multiplying the 

conversion factor with the coefficient of variation of the characteristic value. It was decided to only 

apply these material factors to the strength parameters of the material and then impose limits on the 

strain parameters. This was done in order to not be over conservative in finding the design values.  

The limit on the ultimate compression strain is imposed via the Elasticity Modulus and Equation 2-3. 

A design value is needed for the Elasticity Modulus which is then used in correlation with the ultimate 

compressive stress to derive the ultimate compressive strain. In order to define this design value for 

the Elasticity Modulus, more research into the compression behaviour of SHCC is needed, in 

particular for the different material strengths available.  
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For the tensile strain limits, the E-value of 10.5GPa is proposed as a starting point. This is in 

accordance with Naaman and Reinhardt’s study [39]. This might not be true for all strengths of SHCC 

and further study is needed in this field as well. For the ultimate tensile strain, a limit of 0.0246 is 

proposed. This limit ties in with the material tested during this study but might not be viable for other 

strengths of SHCC. Again further study is needed.   

The model predictions seem to be conservative in most cases and a model factor is derived for each 

phase of the model. This model factor will increase the reliability of the design model further.    
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7. DESIGN 

7.1 Material Classification 

In Chapter 2, a discussion of the tensile and compression properties of SHCC can be found. From 

this discussion it is clear that the material is quite complex and in order to classify it, all aspects of 

the material must be taken into account.  

According to Naaman and Reinhardt’s classification [39] the tensile elasticity modulus of SHCC can 

be pinned to 10.5GPa. This eliminates the difficulty in finding the first cracking stress and strain point 

on the tensile response spectrum. This theory is also discussed in Chapter 6.4.2.  

The compression properties of SHCC have not been widely studied and it is mostly assumed that 

SHCC acts in a similar way as normal concrete in compression. In Chapter 2 of this study, the 

compression properties were discussed. From this discussion the compression response was found 

to be similar to that of normal concrete, but not the same. To be able to fully exploit the materials 

properties it is necessary to classify the material in terms of its compression behaviour as well as its 

tensile behaviour. There is still some work to be done before this will be achieved fully. 

To be able to use the proposed design model, the following material parameters are required:  

 ultimate tensile stress  

 ultimate tensile strain  

 ultimate compressive stress  

 ultimate compressive strain  

 Elasticity modulus for SHCC in tension  

 Elasticity modulus for SHCC in compression.  

 first cracking tensile stress  

 first cracking tensile strain  

It is not sufficient to have only the elasticity modulus for the tensile part of the response. However, if 

the elasticity modulus is known, and either the stress or the strain at first cracking is also available, 

the missing parameter could be calculated from the equations available; Equation 2-1 for the tensile 

Elasticity modulus and Equation 2-6 for the compressive Elasticity modulus.  

7.2 Limitations 

SHCC is known for its ductility and although this is one of its outstanding qualities, it can also be a 

negative quality when looking at the deflection of a flexural member. It is known that SHCC can 
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safely take much more deflection than normal concrete, but this might not be a serviceable situation. 

It is therefore important to closely monitor the deflection of flexural members constructed from SHCC.  

The design model was calibrated by using simply supported beams loaded with a single point load 

in the centre. The basic deflection rule of limiting the length of the simply supported beam to 16 times 

the effective depth was used in all cases. However, it was found that for beams of more than 10m 

length, the deflection sometimes exceeded the value of 30mm, which is the limit set down by 

SANS0100 [47]. This was found when the calculations were done for Material 1, as per Table 4-1, 

which had the lowest strength of the three materials considered in this dissertation. The 10m limit is 

also used in the concrete code when using the span/depth ratios. For beam lengths of more than 

10m, the deflection for normal RC beams must be proved.  

Material 3, the UHPCC, showed few deflection problems even for beam depths of 1m, where beam 

lengths of 15m were used. Material 2, which was a medium strength SHCC, also showed more 

deflection resistance than Material 1, but not as much as the ultra-high performance material. With 

this in mind, there is need for more tests to be done on the actual deflection limits for the various 

types and strengths of materials in order to define clear and precise rules that can safely be followed. 

For different materials with different elasticity moduli it might be necessary to have different rules 

regarding the span/depth ratios, in order to ensure deflections falling with the SLS criteria.   

Further to that, the calibration, discussed in Chapter 4.3, was done on beams with widths ranging 

from 200mm to 350mm and depths ranging from 200mm to 750mm. The reinforcement ranged from 

0.1% of the concrete area to 2.5% of the concrete area in both the compression and tensile areas. 

Within this range, any combination of compression and tensile steel was used. It was found, 

however, that for high amounts of tensile reinforcement, higher amounts of compressive 

reinforcement was needed to keep the beam deflection in check. When low amounts of compressive 

reinforcement was used with high amounts of tensile reinforcement, the compressive reinforcement 

would fail before the tensile reinforcement could reach its yield strength and normally the deflection 

of the member would then be more than the limits applied.   

During the calibration of the simplified model, the deflection was also used as a cut off for values 

added into the sample from where the simplified equations were deduced. When a specific beam 

was tested and it was found that for a specific amount of tensile reinforcement and compressive 

reinforcement, the beam would deflect too much under service loads; those values were discarded 

from the sample and were not used. This was done in order to find a simplified model that could be 

used without having to check the deflections of the beams as well. The upside of this is that any 

beam with a length shorter than 10m and a span/depth ratio of not more than 16, can be designed 

with the simplified model without having to check the deflection in order to make sure that it is within 
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the allowable limits. The downside to this is that there is already a safety factor built into the simplified 

model which might result in over conservative amounts of steel being introduced for shorter beams. 

7.3 Calculations 

For calculating the reinforcement needed in a specified beam with a specified load, the following 

information is needed: 

 h  = The height of the proposed beam 

 b  = The width of the proposed beam 

 L  = The length of the proposed beam 

 d  = The cover to the tensile reinforcement measured from the top of the beam 

 d’  = The cover to the compressive reinforcement measured from the top of the beam 

 Mu  = The ultimate moment to be applied to the beam 

 σct1  = The tensile stress at first cracking for the material to be used 

 σctu  = The ultimate tensile stress for the material to be used 

 σccu  = The ultimate compressive stress for the material to be used 

 εct1  = The tensile strain at first cracking for the material to be used 

 εctu  = The ultimate tensile strain for the material to be used 

 εccu  = The ultimate compressive strain of the material to be used 

This information can then be applied to the following equations: 

For finding the tensile strain at the point of design, Equations 4-31, 4-33, 4-35, 4-37, 4-39, 4-41, 4-

43, 4-44, 4-46, 4-48, 4-50, or 4-52 is used; depending on the height of the beam and whether the 

design falls within Phase 2 or 3. It is probably best to assume a design in Phase 3 at first as this is 

the most common phase for designs to fall, unless the material is an ultra-high performance material. 

It was found that because of the very high compressive strength of this material, the design rarely 

ventures into the third phase as the compressive strain never reaches the point of 0.317 times the 

ultimate compressive strain.  

Similarly, the position of the neutral axis can be obtained from Equations 4-30, 4-32, 4-34, 4-36, 4-

38, 4-40, 4-42, 4-45, 4-47, 4-49, 4-51, or 4-53; depending on the height of the member and the phase 

of the design.  

For Phase 2 and h = 200mm 

𝑥 = 0.01512𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.06962                 4-30 
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𝜀𝑐𝑡2 = 0.1912 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0262

0.01456                           4-31 

For h = 250mm: 

𝑥 = 0.017375𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.0884                4-32 

𝜀𝑐𝑡2 = 0.1828 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0188

0.01456                           4-33 

For h = 300mm: 

𝑥 = 0.02004𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.10737                4-34 

𝜀𝑐𝑡2 = 0.1776 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.015

0.01456                4-35 

For h = 400mm: 

𝑥 = 0.02536𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.3625                           4-36 

𝜀𝑐𝑡2 = 0.1714 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0105

0.01456                          4-37 

For h = 500mm: 

𝑥 = 0.02985𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.18285                4-38 

𝜀𝑐𝑡2 = 0.1678 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0078

0.01456                          4-39 

For h = 600mm: 

𝑥 = 0.03768𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.22098                4-40 

𝜀𝑐𝑡2 = 0.1655 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0068

0.01456                         4-41 

For h = 750mm: 
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𝑥 = 0.057975𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.279525                          4-42 

𝜀𝑐𝑡2 = 0.1632 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0061

0.01456                          4-43 

For h= 200mm: 

𝜀𝑐𝑡2 = 0.1935 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0227

0.01456                         4-44 

𝑥 = 0.01𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.0759                          4-45 

For Phase 3 and h = 250mm: 

𝜀𝑐𝑡2 = 0.1846 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0146

0.01456                         4-46 

𝑥 = 0.0105𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.0967                          4-47 

For h = 300mm: 

𝜀𝑐𝑡2 = 0.1792 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0095

0.01456                        4-48 

𝑥 = 0.0099𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.1182                          4-49 

For h = 400mm: 

𝜀𝑐𝑡2 = 0.1725 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0052

0.01456                         4-50 

𝑥 = 0.01𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.1599                          4-51 

For h = 500mm: 

𝜀𝑐𝑡2 = 0.1687 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0028

0.01456                         4-52 
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𝑥 = 0.0086𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.2028                          4-53 

For finding the compressive strain at the point of the design, Equation 4-5 can be used. 

𝜀𝑐𝑐= −𝑥ℎ−𝑥𝜀𝑐𝑡                                4-5 

If the compressive strain at the point of design, calculated above is less than 0.317 of the ultimate 

compressive strain, the design is based in the second phase of the base model and Equations 4-54 

and 4-55 are used to find the areas of tensile reinforcement and the compressive reinforcement 

respectively. 

𝐴𝑠 =

𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑′−𝑥)−1
6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)2(𝑘(ℎ−𝑥)+3𝑔(𝑥−𝑑′))

𝐸𝑠(𝑑−𝑥)(𝑑−𝑑′)
                        4-54 

𝐴′𝑠 =

𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑−𝑥)−1
6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)2(𝑘(ℎ−𝑥)−3𝑔(𝑑−𝑥))

𝐸𝑠(𝑥−𝑑′)(𝑑−𝑑′)
                          4-55 

In order to take the model factors into account, Equation 4-54 can be rewritten to Equation 7-1 and 

Equation 4-55 into Equation 7-2. 

𝐴𝑠 =

1.125𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑′−𝑥)−1
6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)2(𝑘(ℎ−𝑥)+3𝑔(𝑥−𝑑′))

𝐸𝑠(𝑑−𝑥)(𝑑−𝑑′)
                          7-1 

𝐴′𝑠 =

1.125𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑−𝑥)−1
6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)2(𝑘(ℎ−𝑥)−3𝑔(𝑑−𝑥))

𝐸𝑠(𝑥−𝑑′)(𝑑−𝑑′)
                          7-2 

Where: 

𝐸𝑐𝑡 =
𝜎𝑐𝑡1

𝜀𝑐𝑡1
                      7-3 

𝐸𝑐𝑐 = 1.681
𝜎𝑐𝑐𝑢

𝜀𝑐𝑐𝑢
                      7-4 

𝑔 = 𝛽2 + 2𝛽(1 − 𝛽) + 𝛼(1 − 𝛽)2                               7-5 

𝑘 = 2𝛽3 + 3𝛽(1 − 𝛽)(𝛽 + 1) + 𝛼(1 − 𝛽)2(𝛽 + 2)                            7-6 

With:  
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𝛽 =
𝜀𝑐𝑡1

𝜀𝑐𝑡2
                       7-7 

𝛼 =
𝜎𝑐𝑡𝑢−𝜎𝑐𝑡1

𝜀𝑐𝑡𝑢−𝜀𝑐𝑡1

1

𝐸𝑐𝑡
                      7-8 

The model factor of 1.125 is applied to the ultimate moment. The derivation of the model factor can 

be found in Chapter 6 and the model factors for the three phases are given in Table 6-4. 

If the compressive strain at the point of design, as calculated by Equation 4-5 is more than 0.317 of 

the ultimate compressive strain, the design is done in Phase 3 of the base model and Equation 4-

56, 4-57 can be used.  

𝐴𝑠 =

𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑏𝑥2(𝑥𝑛−3𝑚(𝑥−𝑑′))−1
6⁄ 𝐸𝑐𝑡(ℎ−𝑥)2𝑏(𝑘(ℎ−𝑥)+3𝑔(𝑥−𝑑′))

𝐸𝑠(𝑑−𝑥)(𝑑−𝑑′)
                       4-56 

𝐴′𝑠 =

𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑏𝑥2(𝑥𝑛−3𝑚(𝑑−𝑥))−1
6⁄ 𝐸𝑐𝑡(ℎ−𝑥)2𝑏(𝑘(ℎ−𝑥)−3𝑔(𝑑−𝑥))

𝐸𝑠(𝑥−𝑑′)(𝑑−𝑑′)
                      4-57 

When adding the model factor, Equation 4-56 changes as into Equation 7-9 and Equation 4-57 into 

Equation 7-10: 

𝐴𝑠 =

1.082𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑏𝑥2(𝑥𝑛−3𝑚(𝑥−𝑑′))−1
6⁄ 𝐸𝑐𝑡(ℎ−𝑥)2𝑏(𝑘(ℎ−𝑥)+3𝑔(𝑥−𝑑′))

𝐸𝑠(𝑑−𝑥)(𝑑−𝑑′)
                        7-9 

𝐴′𝑠 =

1.082𝑀(ℎ−𝑥)

𝜀𝑐𝑡2
−1

6⁄ 𝐸𝑐𝑐𝑏𝑥2(𝑥𝑛−3𝑚(𝑑−𝑥))−1
6⁄ 𝐸𝑐𝑡(ℎ−𝑥)2𝑏(𝑘(ℎ−𝑥)−3𝑔(𝑑−𝑥))

𝐸𝑠(𝑥−𝑑′)(𝑑−𝑑′)
                     7-10 

With: 

𝑛 = 2𝛾3 + 3𝛾(1 − 𝛾)(𝛾 + 1) + 𝛿(1 − 𝛾)2(𝛾 + 2)                         7-11 

𝑚 = 𝛾2 + 2𝛾(1 − 𝛾) + 𝛿(1 − 𝛾)2                           7-12 

Where: 

𝛾 =
0.317𝜀𝑐𝑐𝑢

𝜀𝑐𝑐2
                              7-13 

𝛿 =
𝜎𝑐𝑐𝑢−0.533𝜎𝑐𝑐𝑢

𝜀𝑐𝑐𝑢−0.317𝜀𝑐𝑐𝑢

1

𝐸𝑐𝑐
= 0.407                 7-14 
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The model factor of 1.082 is again applied to the ultimate moment used to calculate the amount of 

tensile reinforcement.  

Two more calculation examples are given in Annexure B. One is for a simply supported beam with 

a line load and one is for a one way spanning roof slab with up stand beams on the edges. These 

examples show the diversity of the design model in that it is not only applicable to simply supported 

beams with a single point load in the centre of the beam.  

7.4 Comparison with Normal R/C 

The properties of SHCC imply that it should be a more effective material when used in bending as it 

contains tensile strength and the idea is that less reinforcement should be needed. This would make 

it ideal for use in long span flexural members where the tensile reinforcement sometimes becomes 

cumbersome to fit into the beam. The durability of this material further promotes its use in flexural 

members, especially in severe environmental conditions such as close to the sea or in factories. 

However, the ductility of the material implies that it might deflect more than normal reinforced 

concrete and so, more reinforcement might be needed in order to stiffen it enough to limit the 

deflection to acceptable limits.   

The following example is done in order to see what the differences are in the design of a simply 

supported beam constructed of reinforced SHCC and the same beam constructed of normal 

reinforced concrete.   

A simply supported beam with dimensions 300x300mm and a length of 2.8m is loaded with a single 

point load in the centre of the beam. The ultimate applied moment is 150kNm.  

For a normal reinforced concrete beam, the calculations will take the following form. The material 

parameters are as follows: 

 Concrete design compressive strength = 30MPa 

 Reinforcement yield strength = 450MPa 

 Cover to the tensile reinforcement = 275mm (measured from the top of the beam) 

 Cover to the compressive reinforcement = 25mm 

According to SANS 0100 [47]: 

K’ = 0.156 (no redistribution of moments) 
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𝐾 =
𝑀

𝑏𝑑2𝑓𝑐𝑢
=  

150

0.3 ∗ 0.2752 ∗ 30𝑒3
= 0.220 

This means that K>K’ and thus both compressive and tensile reinforcement is required in this 

member.  

𝑧

𝑑
= 0.5 + √(0.25 −

𝐾′

0.9
) = 0.777 

For d = 0.275, z = 0.214 

The amount of compressive reinforcement is calculated first from the following equation: 

𝐴′𝑠 =
(𝐾 − 𝐾′)𝑓𝑐𝑢𝑏𝑑2

𝑓𝑦𝑐(𝑑 − 𝑑′)
 

With: 

𝑓𝑦𝑐 =
𝑓𝑦

𝛾𝑚 +
𝑓𝑦

2000
⁄

= 327𝑀𝑃𝑎 

The material factor, γm, for the reinforcement steel is 1.15.  

Then: 

A’s  = 0.00054m2 

 = 540mm2 which can be related to 3Y16 bars. 

The tensile reinforcement can be calculated from the following: 

𝐴𝑠 =
𝐾′𝑓𝑐𝑢𝑏𝑑2

0.87𝑓𝑦𝑧
+

𝐴′𝑠𝑓𝑦𝑐

0.87𝑓𝑦
 

As  = 0.00172m2 

 =1720mm2 which can be related to 2Y32 + 1Y20 bars. 
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In the above equation, the yield strength of the reinforcement is factored by the material factor for 

reinforcement steel of 1/1.15 = 0.87.  

For beam lengths of less than 10m, the span over effective depth for a simply supported beam must 

be less than or equal to 16. The beam length in this case is 2.8m which is less than 16 times the 

effective depth of 275mm. According to the code it is not necessary to check the deflection of this 

beam.  

The same calculation can be done for SHCC: 

Assuming that the design will fall within the Phase 3, Equation 4-48 is used to find the tensile strain 

at the point of design: 

εct2 = 0.00263 

From Equation 4-49 the distance to the neutral axis is. 

x = 0.126m 

Equation 4-5 is used to find the compressive strain at the point of design. 

εcc = -0.00191 

The characteristic properties of the SHCC material are as follows: 

 εct1 = 0.00024 

 εctu = 0.01456 

 σctu = 2.937MPa 

 σct1 = 2.054MPa 

 εccu = -0.00508 

 σccd = -30.589MPa 

The design of this flexural member will thus be in the third phase of the model as 0.317*εccu = 0.00161 

< εcc = 0.00191. That means we have assumed correctly and the design falls within Phase 3. 

From Equations 7-3, and 7-4, the elasticity modulus for the tensile part and the compression part of 

the beams respectively are: 

Ect = 8.558GPa 
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Ecc = 10.112GPa 

From Equations 7-7, 7-8, 7-13, and 7-14 the values for β, α, γ, and δ are:  

β = 0.256 

α = 0.00857 

γ = 0.843 

δ = 0.407 

Then g, k, m, and n can be found from equations 7-5, 7-6, 7-12, and 7-11. 

g = 0.451 

k = 0.762 

m = 0.985 

n = 1.958 

The amount of tensile and compressive reinforcement can be calculated by using Equations 7-9 and 

7-10 respectively. 

As = 0.00113m2 

     = 1130mm2 which can be supplied by using 3Y25 bars. 

A’s = 0.00110m2 

     = 1100 mm2 which can be supplied by using 2Y25 + 1Y16 bars. 

More of the same calculations were done for different beam sizes loaded with different moments and 

the results are shown in Figure 7-1. 

From the figure and the above calculations it is clear that the reinforced SHCC beam needs 

considerably less tensile reinforcement than the normal R/C beam. The compressive reinforcement 

needed in the R/SHCC is, on the other hand, more than that needed in the normal R/C. The reason 

for this is to keep the R/SHCC member from deflecting too much.  
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When looking at the total amount of reinforcement in the member, the SHCC and the R/C works out 

almost exactly the same. There is thus, no significant saving on the longitudinal reinforcement used 

in these members. The shear design of the member was not part of this study, and due to the 

confining effect of SHCC, there might be a saving on the amount of shear reinforcement needed in 

flexural members. This will, however, have to be studied in more depth elsewhere. 

In an article by Bandelt and Billington [53] it was found that the bond strength between HPFRCC and 

steel reinforcement is around 39% higher than for normal reinforced concrete. Further to this, it was 

found that an increase in cover and/or confinement, in the form of shear reinforcement, did not 

increase the bond strength of the reinforcement as is the case for normal R/C. The higher bond 

strength means that reinforcement lap lengths can be smaller. It is estimated that this can lead to a 

reduction of 30% in the length of reinforcement used for laps [53] . 

Figure 7-1: Comparison between Reinforcement needed in SHCC and normal R/C beams 

The downside of the increase in the bond strength is that delamination does not easily occur along 

the length of tensile reinforcement. The multiple micro cracking in the SHCC keeps the concrete and 

the reinforcement together, forcing them to deflect in the same way. When the concrete delaminates 

from the steel, as is the case in normal R/C, a longer piece of steel is allowed to yield, which spreads 

the tension force out a bit. In SHCC, this is not allowed to happen, which could lead to the premature 

breaking of the tension reinforcement, due to the localization of the force and thus the yielding in the 

rebar. It has also been found that an increase in tensile strength leads to lower deformation capacity 
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due to deformation being concentrated at a localized are instead of spreading out along the length 

of the member [53].  

However, as the SHCC shows multiple cracks at small spacing, the tension forces are spread out 

somewhat. This load spreading should in turn allow the reinforcement to yield along its length within 

the cracked area and not just at the point where the first crack starts. During the testing done for this 

study, only the longitudinal steel in the least reinforced beams could be loaded until failure. The 

larger diameter bars did not rupture, even at very large deflections. There was also some 

delamination present in these tests, which could probably then explain why the tensile reinforcement 

could not be pushed to breaking point.  

7.5 Conclusion 

The design of a flexural member constructed from reinforced SHCC is fairly simple as long as all the 

material parameters for the material to be used are available. When looking at the properties of 

SHCC compared to that of normal concrete, it seems logical that the design of the R/SHCC member 

would involve less reinforcement than the design of the conventional R/C member for the same 

loads. This does seem to be the case for the tensile reinforcement, but not for the compressive 

reinforcement. This is mainly due to the R/SHCC member’s proneness to relative large deflection 

due to its ductility. The economy of R/SHCC is based on the fact that it is assumed to need less 

reinforcement for the same amount of concrete and load. The assumption is based on the tensile 

properties of the material. Unfortunately, that does not seem to be true. However, R/SHCC might 

still be the more economic choice in the long run due to its enhanced durability, which normal R/C 

does not have. This is, however, hard to demonstrate as there are no buildings constructed from 

R/SHCC that can be compared with normal R/C buildings. 

The deflection for both the materials will need checking for lengths of more than 10m. This is because 

the rule for the ratio between the length and the depth of the beam is only valid for beam lengths 

under 10m. 
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8. SUMMARY, CONCLUSION AND RECOMMENDATIONS 

8.1 Summary 

8.1.1 Introduction 

While SHCC shows much promise in reducing the need for rehabilitation of reinforced concrete 

structures, developments to reduce the environmental impact of the material are required. Reducing 

the carbon footprint of this material will enhance its worth in the construction industry. 

As cracking and crack widths are the most important aspects of durability, these properties of SHCC 

need to be researched in greater depth. While average crack widths are shown to be small, maximum 

crack widths can reach up to the normal limits set in conventional concrete structures. During this 

study it was found that the crack widths at the service limit state were too small to see with the naked 

eye.  

There are currently no models for estimating the crack widths in SHCC. The specific crack width 

limits that need to be applied in order to protect reinforcement against ingress of harmful substances 

are also lacking. In the absence of these limits, the supposedly higher durability found in R/SHCC 

than in normal R/C cannot be proven. 

8.1.2 Material Description 

Both the tensile and compressive behaviours of SHCC are complex and difficult to model. In order 

to simplify the process, a bi-linear approach was adopted in both cases. Quantifying the tensile 

response requires the definition of the first cracking stress and strain as well as the ultimate stress 

and strain. For the compression response, only the ultimate stress and strain is needed since the 

stress-state point marking the onset of inelastic response is expressed as fractions of the ultimate 

stress-strain pair. 

8.1.3 Testing and Verification of the Model 

The model seems to be most sensitive to the compression characteristics of the material used. This 

behaviour is expected, as only the ultimate compression stress and strain is used to describe all the 

different compression characteristics.  

Two sets of six beams each were tested. The test setup consisted of a simply supported beam 

loaded with a point load in the centre of the beam. Tensile and compression test specimens were 

also made for each of the beams in order to minimize the uncertainties in the prediction model. No 

compression strain values were measured for the first set of tests. Both tests used the same mix 

design but different approaches were used in the actual mixing of the material.  
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The first set of tests showed very good correlation with the predicted model values ad even the 

stiffness of the material was closely predicted. The model showed mostly conservative results in this 

case.  

For the second set of tests there seems to have been a slight difference in the stiffness of the actual 

material versus the stiffness assumed in the model prediction. In some instances the prediction was 

conservative and in other it was not. This difference is assumed to be due to uncertainties in the 

elasticity modulus for the material used. Further research into this characteristic of SHCC is needed 

in order to propose a more accurate model for the elasticity modulus for SHCC. 

8.1.4 Analysis Model 

The original design model is based on three phases in order to incorporate the different phases of 

the tensile and compressive responses for this material. The first phase is known as the elastic 

phase and during this phases both the tensile and compressive responses are linear and no cracks 

have formed in the member. The second phase starts with the first cracks forming in the tensile zone 

of the member. This phase takes into account the tensile strain hardening of the material but 

assumes that the compression response is still elastic. When the compressive strain reaches the 

limit of 0.317 times its ultimate compressive strain, phase 2 ends and phase 3 starts. During phase 

3, both responses are assumed plastic and this phase ends in either tensile crack localization or 

compression crushing at the top of the flexural member.  

Because of the intrinsic nature of the base model, a simplified model is needed. In order to simplify 

the base model, certain information needs to be estimated from the base model in order to be able 

to establish enough information to do a flexural design. The design tensile strain value is found by 

calculating various different scenarios of beams and loads, and then assessing the information 

gathered into a single equation. The distance to the neutral axis is also calculated from an equation 

developed in the same way and for different heights of beams. Eventually the design compressive 

strain can be found from known relationships and with this information, the tensile and compressive 

steel can be calculated. It was found that the simplified model gives accurate results without a model 

factor being added to the equations. If the model factor is incorporated, a measure of conservancy 

is added to the answers. If the realistic steel values are used to establish the resisting moments, the 

safety factor on the resisting moments becomes quite big in some cases.   

A major drawback of the simplified model is that it is related to the depth of the member and 

equations are only available for depths up to 750mm for Phase 2 design and 500mm for Phase 3 

design. Interpolation can be used for values in between the available design values, but to estimate 

for depths higher than these are not possible at this stage.  
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To prove that the model is applicable to all strain hardening materials, the simplified model was 

tested with two more materials of different strengths. The tensile strain values were found to be 

remarkably similar and again the simplified model gave highly accurate results. It does show, 

however, that the model is applicable to other types of SHCC. More material types should be tested 

in order to establish a more accurate way of calculating the design tensile strain. This would improve 

the accuracy of the simplified model. 

8.1.5 Deflection Model 

The deflection of the SHCC member is found by applying the same principles as for conventional 

RC. When the material is elastic, an elastic approach can be adopted, but for a cracked section, the 

deflection must be found by means of analytical or numerical integration.  

Deflection calculations are important in order to establish the serviceability level of the member. Too 

much deflection can lead to unsightly cracking in structures and visible deflections makes occupants 

feel unsafe. The serviceability limits as set out for conventional concrete were adopted for SHCC in 

this instance. 

8.1.6 Reliability 

Partial factors are added to design models in order to ensure structural safety in design. These 

factors are normally calibrated on practical experiences but in the case of SHCC, no such data exists 

and reliability calibration methods have to be used.  

Finding design values for the different material properties was done by finding characteristic values 

and combining them with material factors. The material factor is calculated by multiplying the 

conversion factor with the coefficient of variation of the characteristic value. It was decided to only 

apply these material factors to the strength parameters of the material and then impose limits on the 

strain parameters. This was done in order to not be over conservative in finding the design values.  

The limit on the ultimate compression strain is imposed via the Elasticity Modulus and Equation 2-3. 

A design value is needed for the Elasticity Modulus which is then used in correlation with the ultimate 

compressive stress to derive the ultimate compressive strain. In order to define this design value for 

the Elasticity Modulus, more research into the compression behaviour of SHCC is needed, in 

particular for the different material strengths available.  

For the tensile strain limits, the E-value of 10.5GPa is proposed as a starting point. This is in 

accordance with Naaman and Reinhardt’s study [38]. This value might not be true for all strengths 

of SHCC and further study is needed in this field as well. For the ultimate tensile strain, a limit of 
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0.0246 is proposed. This limit ties in with the material tested during this study but might not be viable 

for other strengths of SHCC. Again further study is needed.   

The model predictions seem to be conservative in most cases and a model factor is derived for each 

phase of the model. 

8.1.7 Design 

The design of a flexural member constructed from reinforced SHCC is fairly simple as long as all the 

material parameters for the material to be used are available. When looking at the properties of 

SHCC compared to that of normal concrete, it seems logical that the design of the R/SHCC member 

would involve less reinforcement than the design of the conventional R/C member for the same 

loads. This does seem to be the case for the tensile reinforcement, but not for the compressive 

reinforcement. This is mainly due to the R/SHCC member’s proneness to relative large deflection 

due to its ductility.   

The deflection for both the materials will need checking for lengths of more than 10m. This is because 

the rule for the ratio between the length and the depth of the beam is only valid for beam lengths 

under 10m. 

8.2 Conclusion 

8.2.1 Compression and Tensile Response Models 

The compression and tensile response models used in deriving the design model requires that the 

tensile yield stress and strain as well as ultimate stress and strain is known. It also requires the 

ultimate compressive stress and strain values to be known. Currently there is still a lot of variation in 

these values, even for materials mixed with the same constituents and in the same way. This results 

in a lot of uncertainty in the material properties, which in turns relates to very high material factors.  

As both the tensile and compressive responses are quite complex, a bilinear approach was used in 

both cases. These approaches were tested against the materials used in this study, and also used 

for the verification of the simplified model with the two other materials, but more study is required in 

order to ensure that these approaches apply to other SHCC materials as well.  

8.2.2 Design Model 

The novelty of this work lies in the analytical and simplified design model. The base model is broken 

into three phases. The first represents the elastic phase for both the compression and tension parts 

of the flexural member. During the second phase, the tension part of the member has passed into 

the strain hardening phase but the compression part is still considered in its elastic state. During the 
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last phase, the tensile response is still in the strain hardening state, and the compressive response 

is considered to have passed into a plastic state.  

The exact point of transition between the three phases was calibrated for the material used in this 

study. It was applied to Materials 2 and 3 as well, but as there are no material data to compare this 

assumption with, it is not known how accurate it is. The base model shows good correlation with the 

tests done and is considered accurate.  

The simplified model shows good correlation with the base model and is therefore also considered 

accurate. One of the main limitations of the simplified model is that it cannot be applied to any size 

beam. It is limited to the sizes tested in this study and further study will be needed to expand the 

range of the model. Though interpolation is possible between the set sizes, the model is not 

applicable to sizes bigger than those tested.  

Deflection can be a problem in the design of flexural members and unless the designer complies 

with the rules stated within this dissertation, the deflection will have to be calculated to ensure that it 

complies with serviceability limit state regulations.  

8.2.3 Comparing R/SHCC with R/C 

Due to the enhanced tensile capacity of SHCC over normal concrete, the expectation is that R/SHCC 

will require less reinforcement than normal R/C design. This was found to be true for the tensile part 

of the member, but not the compressive part. In general it was found that the tensile reinforcing 

required for a flexural member, as calculated with the simplified model, is less than the requirement 

for a normal R/C member of the same size and under the same loading conditions. However, the 

compressive reinforcing calculated for the SHCC member exceeds the compressive reinforcing 

required for the normal R/C member. The total volume of reinforcing needed in R/SHCC and normal 

R/C is about equal.  

8.3 Recommendations 

8.3.1 Material properties 

In order to minimise uncertainties in the design model, more accurate tensile and compressive 

response models are required. This should be done for a wide variety of different SHCC material 

types and strengths in order to ensure that all possible varieties are covered in the design.  

Special attention should be given to finding a relationship between the Elasticity Modulus and the 

strength of the material. A study should also be conducted into wither there should be a different 

Elasticity Modulus for the compression part of the member than for the tensile part, or whether there 
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should be only one for a type of material. This information could simplify the design model 

considerably.  

8.3.2 Deflection Model 

A lot of uncertainty exists around the calculation of the deflection of the R/SHCC flexural member. It 

will be prudent to devote more study into finding a more accurate model for calculating the deflected 

shape of a flexural member. It was found during this study that the deflection of this material could 

potentially become a problem and therefore it is important to ensure that an accurate and true model 

exist for the calculation of the short and long term deflection of this material.  

8.3.3 Shear Design 

The shear design of the flexural member was not included in this study. It is however, an important 

part of the design of flexural members and should be studied as well.  
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ANNEXURE A: ALGORITHM FOR CALCULATION OF NUMERICAL 

MODEL  

This Annexure endeavours to explain the calculation process of the numerical model in such a way 

as to enable the reader to do a flexural design without further consulting the main text.  

Information that must be known: 

Material Properties 

The following material properties must be known: 

 εct1 – First cracking tensile strain 

 εctu – Ultimate tensile strain 

 σct1 – First cracking tensile stress 

 σctu – Ultimate tensile stress 

 εccu – Ultimate compressive strain 

 σccu – Ultimate compressive stress 

Loading 

The ultimate moment, Mu, applied to the member is needed as well as the serviceability moment, 

Ms. The ultimate moment is used to find the right amount of reinforcement and the serviceability 

moment is used to check the deflection of the member. If the service loads are unknown, the ultimate 

load can be divided by 1.4 to approximate the service load.  

Structural element dimensions 

The following dimensions for the structural member to be design are needed: 

 h – Height of the member 

 b – Width of the member 

 l – Length of the member 

 d – Distance to the tensile steel (measured from the top of the member) 

 d’ – Distance to the compressive steel (measured from the top of the member) 

To be calculated up front 
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By using the information above, the following needs to be calculated: 

 𝐸𝑐𝑡 =
𝜎𝑐𝑡1

𝜀𝑐𝑡1
 

 𝐸𝑐𝑐 = 1.681
𝜎𝑐𝑢

𝜀𝑐𝑢
 

 𝛼 =
𝜎𝑐𝑡𝑢−𝜎𝑐𝑡1

𝜀𝑐𝑡𝑢−𝜀𝑐𝑡1

𝜀𝑐𝑡1

𝜎𝑐𝑡1
 

 𝛿 =
𝜎𝑐𝑡𝑢−𝜎𝑐𝑡1

𝜀𝑐𝑡𝑢−𝜀𝑐𝑡1

𝜀𝑐𝑡1

𝜎𝑐𝑡1
=

𝜎𝑐𝑡𝑢−0.533𝜎𝑐𝑡𝑢

𝜀𝑐𝑡𝑢−0.317𝜀𝑐𝑡𝑢

0.317𝜀𝑐𝑡𝑢

0.533𝜎𝑐𝑡𝑢
= 0.4067 

Where: 

 Ect – Elastic Modulus for the material in tension 

 Ecc – Elastic Modulus for the material in compression 

 α – The factor with which the Elastic Modulus for the material in tension must be applied to 

find the slope of the strain hardening part of the stress-strain graph 

 δ – The factor with which the Elastic Modulus for the material in compression must be applied 

to find the slope of the second part of the stress-strain graph 

Design Process 

1) Guess the amount of tensile (As) and compressive (A’s) reinforcement in the beam.  

2) The following equations will need to be solved simultaneously: 

 𝑥 =
𝐸𝑠(𝐴𝑠+𝐴′𝑠)+𝐸𝑐𝑡𝐴𝑐𝑔±√(−𝐸𝑠(𝐴𝑠+𝐴′𝑠)−𝐸𝑐𝑡𝐴𝑐𝑔)2−(2𝐸𝑐𝑡𝑏𝑔−2𝐸𝑐𝑐𝑏)(𝐸𝑠(𝐴′𝑠+𝐴𝑠)+1

2⁄ 𝐸𝑐𝑡𝑏ℎ2𝑔)

𝐸𝑐𝑡𝑏𝑔−𝐸𝑐𝑐𝑏
 

 𝜀𝑐𝑡2 =
𝑀𝑢(ℎ−𝑥)

1
3⁄ 𝐸𝑐𝑐𝑏𝑥3+1

6⁄ 𝐸𝑐𝑡𝑏(ℎ−𝑥)3𝑘+𝐸𝑠(𝐴′𝑠(𝑥−𝑑′)2+𝐴𝑠(𝑑−𝑥)2)
 

 𝛽 =
𝜀𝑐𝑡1

𝜀𝑐𝑡2
 

 𝑔 = 𝛽2 + 2𝛽(1 − 𝛽) + 𝛼(1 − 𝛽)2 

 𝑘 = 2𝛽3 + 3𝛽(𝛽 + 1)(1 − 𝛽) + 𝛼(1 − 𝛽)2(𝛽 + 2) 

 𝜀𝑐𝑐2 =
−𝑥

ℎ−𝑥
𝜀𝑐𝑡2 

3) If εcc2<0.317εccu the design is based in Phase 2. If  εcc2>0.317εccu the design falls within phase 

3 and the process from point number 7 should be followed. 

4) The amount of tensile and compressive reinforcement then needs to be changed until the 

strain the tensile reinforcement just reaches 0.00225 at the ultimate moment applied.  

5) Now the deflection needs to be checked for the above amounts of reinforcement at the 

serviceability moment. This is done as follows: 

 Find the part of the beam that is cracked. (see Figure A1) 
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𝛼 = 1 −
𝑀𝑒

𝑀𝑦
            with  Me = Moment at the first cracking stress 

   My = Applied Moment (serviceability limit state)  

 Find the curvature at each of the points indicated in Figure A1 

𝜌𝑦 =
𝜀𝑐

𝑥
      with  εc = Compressive strain at the point in question 

    x = Distance to the neutral axis at the point in question 

 The deflection at each point can then be found as follows: 

Δ1= 1
3⁄ 𝐿1

2𝜌1  

Δ2= Δ1 + 1
2⁄ 𝜌1(𝐿2 − 𝐿1)(𝐿1 + 𝐿2) + 1

6⁄ (𝐿2 − 𝐿1)(𝜌2 − 𝜌1)(𝐿1 + 2𝐿2)  

Δ3= Δ2 + 1
2⁄ 𝜌2(𝐿3 − 𝐿2)(𝐿2 + 𝐿3) + 1

6⁄ (𝐿3 − 𝐿2)(𝜌3 − 𝜌2)(𝐿2 + 2𝐿3)  

Δ4= Δ3 + 1
2⁄ 𝜌3(𝐿4 − 𝐿3)(𝐿3 + 𝐿4) + 1

6⁄ (𝐿4 − 𝐿3)(𝜌4 − 𝜌3)(𝐿3 + 2𝐿4)  

Δ5= Δ4 + 1
2⁄ 𝜌4(𝐿5 − 𝐿4)(𝐿4 + 𝐿5) + 1

6⁄ (𝐿5 − 𝐿4)(𝜌5 − 𝜌4)(𝐿4 + 2𝐿5)  

 

Figure A1: Deflection Calculation Diagram 
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6) If the deflection is more than L/250 or 30mm, whichever is the smaller, the tensile and 

compressive reinforcement must be increased until the deflection is ok, or the depth of the 

beam needs to be increased and the calculations start from the beginning.  

7) If the design falls in Phase 3 of the model, the following equations become valid: 

 𝑥 =
𝐸𝑐𝑡𝐴𝑐𝑔+𝐸𝑠(𝐴′𝑠+𝐴𝑠)±√(−𝐸𝑐𝑡𝐴𝑐g−𝐸𝑠(𝐴′𝑠+𝐴𝑠))

2
−(2𝐸𝑐𝑡𝑏𝑔−2𝐸𝑐𝑐𝑏𝑚)(1

2⁄ 𝐸𝑐𝑡𝑏ℎ2𝑔+𝐸𝑠(𝐴′𝑠𝑑′+𝐴𝑠𝑑))

𝑏(𝐸𝑐𝑡𝑔−𝐸𝑐𝑐𝑚)
 

 𝜀𝑐𝑡2 =
M𝑢(ℎ−𝑥)

1
6⁄ 𝐸𝑐𝑐b𝑥3n+

1

6
𝐸𝑐𝑡b(ℎ−𝑥)3k+𝐸𝑠(𝐴′𝑠(𝑥−𝑑′)2+𝐴𝑠(𝑑−𝑥)2)

 

 𝑔 = 𝛽2 + 2β(1 − 𝛽) + 𝛼(1 − 𝛽)2      

 𝑚 = 𝛾2 + 2γ(1 − 𝛾) + 𝛿(1 − 𝛾)2  

 𝑛 = 2𝛾3 + 3𝛾(1 − 𝛾)(𝛾 + 1) + 𝛿(1 − 𝛾)2(𝛾 + 2) 

 𝑘 = 2𝛽3 + 3𝛽(1 − 𝛽)(𝛽 + 1) + 𝛼(1 − 𝛽)2(𝛽 + 2) 

 𝜀𝑐𝑐2 =
−𝑥

ℎ−𝑥
𝜀𝑐𝑡2 

8) Again the amounts of compressive and tensile streel needs to be varied until the tensile strain 

of the tensile reinforcement is equal to 0.00225 at the ultimate moment applied.  

9) Check the deflection as per point number 5. If the deflection is more than L/250 or 30mm, 

whichever is smaller, the compressive and tensile reinforcement needs to be increased until 

the deflection is in order, or the depth of the beams needs to be increased and the calculation 

start from the beginning.  
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ANNEXURE B: COMPLETE ILLUSTRATIVE DESIGN 

The following examples endeavour to illustrate the applicability of the design model in the industry.  

Example 1 – Simply supported beam with line load 

Consider the following beam to be designed: 

 250x550deep and 6.0m long 

 simply supported on both ends 

 ultimate limit state line load, w, of 55kN/m applied to length of beam 

The moment is then calculated as follows: 

𝑀𝑢 =
𝑤𝑙2

8
= 247.5𝑘𝑁𝑚 

Properties of material to be used: 

 εct1 = 0.00024 

 σct1 = 2.054MPa 

 εctu = 0.01456 

 σctu = 2.937MPa 

 εccu = -0.00508 

 σccu = -30.559MPa 

From this the following can be calculated: 

𝐸𝑐𝑡 =
𝜎𝑐𝑡1

𝜀𝑐𝑡1
= 8.558𝐺𝑃𝑎 

𝐸𝑐𝑐 = 1.681
𝜎𝑐𝑐𝑢

𝜀𝑐𝑐𝑢
10.112𝐺𝑃𝑎 

𝛼 =
𝜎𝑐𝑡𝑢 − 𝜎𝑐𝑡1

𝜀𝑐𝑡𝑢 − 𝜀𝑐𝑡1

𝜀𝑐𝑡1

𝜀𝑐𝑡𝑢
= 0.00720 

𝛿 = 0.407 

0.317𝜀𝑐𝑐𝑢 = 0.00161 
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𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
= 1.247 

For h = 500mm 

𝑥 = 0.02988𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.18285 = 0.1894 

𝜀𝑐𝑡2 = 0.1678 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0078

0.01456 = 0.002447 

For h = 600mm 

𝑥 = 0.03768𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.22098 = 0.2293 

𝜀𝑐𝑡2 = 0.1655 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0068

0.01456 = 0.002413 

That means that for h = 550mm, the values can be interpolated, giving: 

𝜀𝑐𝑡2 = 0.00243 

𝑥 = 0.209𝑚 

This can now be used to determine the compressive strain in the top of the beam via: 

𝜀𝑐𝑐𝑢 =
−𝑥

(ℎ − 𝑥)
𝜀𝑐𝑡2 = −0.00149 < 0.317𝜀𝑐𝑐𝑢 = 0.00161 

The design is thus in Phase 2 and the reinforcement can now be calculated. 

First we need to calculate the following: 

𝛽 =
𝜀𝑐𝑡1

𝜀𝑐𝑡2
= 0.0988 

𝑔 = 𝛽2 + 2𝛽(1 − 𝛽) + 𝛼(1 − 𝛽)2 = 0.1937 

𝑘 = 2𝛽3 + 3𝛽(1 − 𝛽)(𝛽 + 1) + 𝛼(1 − 𝛽)2(𝛽 + 2) = 0.3077 
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𝐴𝑠 =

1.125𝑀(ℎ − 𝑥)
𝜀𝑐𝑡2

⁄ − 1
6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑′ − 𝑥) − 1

6⁄ 𝐸𝑐𝑡𝑏(ℎ − 𝑥)2(𝑘(ℎ − 𝑥) + 3𝑔(𝑥 − 𝑑′))

𝐸𝑠(𝑑 − 𝑥)(𝑑 − 𝑑′)

= 1043𝑚𝑚2 

𝐴′𝑠 =

1.125𝑀(ℎ − 𝑥)
𝜀𝑐𝑡2

⁄ − 1
6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑 − 𝑥) − 1

6⁄ 𝐸𝑐𝑡𝑏(ℎ − 𝑥)2(𝑘(ℎ − 𝑥) − 3𝑔(𝑑 − 𝑥))

𝐸𝑠(𝑥 − 𝑑′)(𝑑 − 𝑑′)

= 834𝑚𝑚2 

That means that we can use 2xY20’s with 1 Y25 in the bottom of the beam and 3xY20’s in the top 

of the beam. That gives us 1119mm2 for tensile reinforcement and 942mm2 for compressive 

reinforcement. The resisting moment of the beam can then be calculated as follows: 

𝑀𝑟 =
𝜀𝑐𝑡2 (1

3⁄ 𝐸𝑐𝑐𝑏𝑥3 + 1
6⁄ 𝐸𝑐𝑡𝑏(ℎ − 𝑥)3𝑘 + 𝐸𝑠(𝐴′𝑠(𝑑 − 𝑑′)2 + 𝐴𝑠(𝑑 − 𝑥)2))

ℎ − 𝑥
= 267.71𝑘𝑁𝑚 

This is more than the 247.5kNm that is the ultimate moment, so the design is safe.  

As the length of the beam is less than 10m, the deflection does not need to be checked.  

 

Example 2 – Roof slab with upstand beams 

 

Figure C1 - Roof slab and beam layout 

Loading on Slab: 

Dead Load = 13.95kPa 
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Live Load = 1.0kPa 

ULS = 1.35xDL+1.0xLL 

 = 19.833kPa 

SLS = DL+LL 

 =14.95kPa 

Slab is one way spanning so we take a 1m strip to do design. 

Mult = wl2/8 

       = 39.665kNm/m 

The same material as per Example 1 is used.  

First we assume that the design is in phase 2. Then: 

𝑥 = 0.01512𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.06962 

             = 0.058m 

And 

𝜀𝑐𝑡2 = 0.1912 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0262

∗ 0.01456 

      = 0.00273 

Then  

𝜀𝑐𝑐 =
−𝑥

ℎ − 𝑥
𝜀𝑐𝑡2 

    0.00112 < 0.00161  

Thus the design is indeed in Phase 2. 

The reinforcing can then be calculated from the following equations: 
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𝐴𝑠 =

1.125𝑀𝑢(ℎ − 𝑥)
𝜀𝑐𝑡2

⁄ − 1
6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑′ − 𝑥) − 1

6⁄ 𝐸𝑐𝑡𝑏(ℎ − 𝑥)2(𝑘(ℎ − 𝑥) + 3𝑔(𝑥 − 𝑑′))

𝐸𝑠(𝑑 − 𝑥)(𝑑 − 𝑑′)
 

𝐴′𝑠 =

1.125𝑀(ℎ − 𝑥)
𝜀𝑐𝑡2

⁄ − 1
6⁄ 𝐸𝑐𝑐𝑥2𝑏(3𝑑 − 𝑥) − 1

6⁄ 𝐸𝑐𝑡𝑏(ℎ − 𝑥)2(𝑘(ℎ − 𝑥) − 3𝑔(𝑑 − 𝑥))

𝐸𝑠(𝑥 − 𝑑′)(𝑑 − 𝑑′)
 

With: 

𝑔 = 𝛽2 + 2𝛽(1 − 𝛽) + 𝛼(1 − 𝛽)2 

𝑘 = 2𝛽3 + 3𝛽(1 − 𝛽)(𝛽 + 1) + 𝛼(1 − 𝛽)2(𝛽 + 2) 

The tensile reinforcement calculated from above comes to 0.000121m2 which is very little steel. For   

the 200mm thick slab. Y8@175mm, 0.000287m2, conforms to the minimum tensile reinforcing 

specified for normal reinforced concrete by the SANS 10100. This is 0.13% of the concrete area 

which in this case is 0.00026m2. As there are no minimum reinforcement limits set for SHCC this 

limit is used.  

The compression reinforcement calculated comes to 0.000065m2, which is even less than the tensile 

reinforcement.  The minimum compression reinforcement rule given by SANS 10100 is 0.2% of the 

concrete area. In this case it works out to 0.0004m2. Y10@175 will provide 0.000449m2 and so this 

is used.   

The span of the slab does not really necessitate checking the deflection, but if it is done according 

to chapter 4, the deflection at mid span is 7.197mm.   

The reinforcing for the up-stand beams can now be calculated.  

For the continuous beams on gridlines 1 and 2, the moments are calculated via Prokon and are 

given below: 

Mab = 193kNm = Mbc 

Mb = 345kNm 

No redistribution of moments were allowed. Seeing that deflection can be a problem for this material 

more research is needed to establish what amounts of redistribution should be allowed, if any. At 

this stage it is considered safe to not apply any redistribution.  

Stellenbosch University  https://scholar.sun.ac.za



 
155 

 

From the moments above, and assuming the design falls within Phase 2, the tensile and 

compressive reinforcement for each part of the beam can be calculated using the following formulas: 

𝜀𝑐𝑡2 = 0.1655 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
)

0.0068

0.01456 

𝑥 = 0.03768𝐿𝑛 (
𝑀𝑢

𝑏𝑑2𝜎𝑐𝑡𝑢
) + 0.22098 

From the above the following is calculated: 

𝜀𝑐𝑡2 = 0.00241 

𝑥 = 0.213𝑚 

𝜀𝑐𝑐 = −0.00132 

Which confirms that the design is indeed within Phase 2.  

Now the reinforcement can be calculated from the equations used for the slab design and the 

following is calculated: 

𝐴𝑠 = 0.000620𝑚2 

𝐴′𝑠 = 0.000409𝑚2 

The tensile reinforcement is changed to 2Y20’s which relates back to 0.000628m2 and the 

compressive reinforcement is changed to 2Y16’s which is equivalent to 0.000402m2. The deflection 

calculated for this beam is then 17.586mm which is smaller than the 30mm limit imposed on 

deflection by SANS 10160.  

To calculate the reinforcement needed for the hogging moment, the calculations have to be repeated 

from the start. The design is again assumed to be in Phase 2 and the tensile strain, the distance to 

the neutral axis and the compressive strain is calculated as follows: 

𝜀𝑐𝑡2 = 0.00242 

𝑥 = 0.235𝑚 

𝜀𝑐𝑐 = −0.00155 
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Confirming the design is indeed in Phase 2, the reinforcement can be calculated as follows: 

𝐴𝑠 = 0.001382𝑚2 

𝐴′𝑠 = 0.001108𝑚2 

The actual reinforcement for the hogging moment will then be 3Y25’s as tensile reinforcement. This 

is equivalent to 0.001473m2. The compressive reinforcement used will be 2Y20’s + 1Y25, which 

results in 0.001119m2 of reinforcement.  Deflection is not a problem for the hogging moment so 

there is no sense in calculating it.  

The short beam can be calculated in a similar way.  

From this example it is clear that the design model is not just applicable to single span simply 

supported beams with a single point load in the centre of the beam. As long as the material 

parameters is known and the moment is calculated, the model is applicable to all flexural members 

bending in one direction only.  
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ANNEXURE C: VERIFICATION OF DESIGN MODEL VIA DIFFERENT MATERIALS 

These tables show the analysis done on a beam in order to establish the ultimate moment resistance for a specific size beam reinforced with a specific amount of reinforcing. The first Table is done for Material 2 and the 

second one for Material 3.  

Material 2 

200x200x2800 (Phase 2) 

h 0,200                                         

b 0,2                                         

d 0,175                                         

d' 0,030                                         

l 2,8 11,2                                       

As 0,001                                         

As' 0,001                                         

Ect 15000000                                         

Ecc 17444340                                         

Es 200000000                                         

εct1 0,000236                                         

σct1 3540                                         

εctu 0,01270                                         

σctu 5000                                         

εccu -0,00530 -0,00168                                       

σccu -55000 -29308                                       

α 0,00781                                         

δ 0,407                                         

                                            

                                            

εct2 β g k x εct2 P εcc εsc εst σct2 σcc fsc %Ac As' Es fst %Ac As Es Mu Δ 

0,0027314 0,086 0,172 0,272 0,058 0,00273 20,152 -0,0011195 -0,00054 0,002250 3,832 -19,529 -108,376 0,100 0,00004 200000000 450,000 0,100 0,00004 199999512 14,106 3,812 

                                            

0,002744 0,086 0,171 0,271 0,061 0,00274 23,821 -0,0012083 -0,00062 0,002250 3,834 -21,079 -123,097 0,100 0,00004 200000000 450,000 0,200 0,00008 200000000 16,675 4,783 

0,0027407 0,086 0,171 0,271 0,060 0,00274 23,839 -0,001185 -0,00060 0,002250 3,833 -20,672 -119,236 0,200 0,00008 200000000 450,000 0,200 0,00008 200000000 16,687 4,707 

                                            

0,0027564 0,086 0,170 0,270 0,064 0,00276 27,463 -0,0012949 -0,00069 0,002250 3,835 -22,588 -137,436 0,100 0,00004 200000000 449,999 0,300 0,00012 200000000 19,224 5,631 

0,0027528 0,086 0,171 0,270 0,063 0,00275 27,491 -0,0012695 -0,00067 0,002250 3,835 -22,145 -133,228 0,200 0,00008 200000000 450,000 0,300 0,00012 200000000 19,244 5,550 

0,0027493 0,086 0,171 0,270 0,062 0,00275 27,516 -0,0012454 -0,00065 0,002250 3,834 -21,726 -129,243 0,300 0,00012 200000000 450,000 0,300 0,00012 200000000 19,261 5,473 

                                            

0,0027685 0,085 0,170 0,269 0,067 0,00277 31,083 -0,0013794 -0,00076 0,002250 3,837 -24,063 -151,446 0,100 0,00004 200000000 450,000 0,400 0,00016 200000000 21,758 6,356 

0,0027646 0,085 0,170 0,269 0,066 0,00276 31,121 -0,001352 -0,00073 0,002250 3,836 -23,585 -146,906 0,200 0,00008 200000000 450,000 0,400 0,00016 200000000 21,785 6,271 

0,0027609 0,085 0,170 0,269 0,065 0,00276 31,155 -0,001326 -0,00071 0,002250 3,836 -23,132 -142,603 0,300 0,00012 200000000 450,000 0,400 0,00016 200000000 21,808 6,189 

0,0027573 0,086 0,170 0,270 0,064 0,00276 31,185 -0,0013014 -0,00069 0,002250 3,835 -22,702 -138,520 0,400 0,00016 200000000 450,000 0,400 0,00016 200000000 21,829 6,112 

                                            

0,0027803 0,085 0,169 0,268 0,069 0,00278 34,680 -0,0014622 -0,00083 0,002250 3,838 -25,507 -165,168 0,100 0,00004 200000000 450,000 0,500 0,00020 199999924 24,276 6,979 
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0,0027761 0,085 0,169 0,268 0,068 0,00278 34,729 -0,0014329 -0,00080 0,002250 3,838 -24,996 -160,310 0,200 0,00008 200000000 450,000 0,500 0,00020 199999448 24,310 6,890 

0,0027721 0,085 0,170 0,268 0,067 0,00277 34,772 -0,0014051 -0,00078 0,002250 3,837 -24,511 -155,699 0,300 0,00012 200000000 449,991 0,500 0,00020 200000000 24,341 6,804 

0,0027684 0,085 0,170 0,269 0,066 0,00277 34,812 -0,0013787 -0,00076 0,002250 3,837 -24,050 -151,324 0,400 0,00016 200000000 450,000 0,500 0,00020 199999408 24,369 6,723 

0,0027648 0,085 0,170 0,269 0,066 0,00276 34,847 -0,0013536 -0,00074 0,002250 3,836 -23,612 -147,162 0,500 0,00020 200000000 450,000 0,500 0,00020 199999835 24,393 6,645 

                                            

0,0027919 0,085 0,168 0,267 0,071 0,00279 38,256 -0,0015435 -0,00089 0,002250 3,839 -26,925 -178,637 0,100 0,00004 200000000 450,000 0,600 0,00024 199999050 26,779 7,521 

0,0027875 0,085 0,169 0,267 0,070 0,00279 38,317 -0,0015123 -0,00087 0,002250 3,839 -26,382 -173,472 0,200 0,00008 200000000 450,000 0,600 0,00024 200000000 26,822 7,428 

0,0027832 0,085 0,169 0,267 0,070 0,00278 38,372 -0,0014827 -0,00084 0,002250 3,838 -25,865 -168,568 0,300 0,00012 200000000 450,000 0,600 0,00024 200000000 26,860 7,339 

0,0027792 0,085 0,169 0,268 0,069 0,00278 38,421 -0,0014546 -0,00082 0,002250 3,838 -25,375 -163,907 0,400 0,00016 200000000 450,000 0,600 0,00024 199998986 26,895 7,255 

0,0027754 0,085 0,169 0,268 0,068 0,00278 38,466 -0,0014278 -0,00080 0,002250 3,837 -24,908 -159,471 0,500 0,00020 200000000 450,000 0,600 0,00024 200000000 26,926 7,174 

0,0027718 0,085 0,170 0,268 0,067 0,00277 38,506 -0,0014024 -0,00078 0,002250 3,837 -24,463 -155,247 0,600 0,00024 200000000 450,000 0,600 0,00024 200000000 26,954 7,096 

                                            

0,0028033 0,084 0,168 0,266 0,073 0,00280 41,814 -0,0016234 -0,00096 0,002250 3,841 -28,319 -191,880 0,100 0,00004 200000000 450,000 0,700 0,00028 199999869 29,270 8,002 

0,0027986 0,084 0,168 0,266 0,072 0,00280 41,887 -0,0015905 -0,00093 0,002250 3,840 -27,745 -186,419 0,200 0,00008 200000000 450,000 0,700 0,00028 199999564 29,321 7,905 

0,0027942 0,084 0,168 0,266 0,072 0,00279 41,953 -0,0015591 -0,00091 0,002250 3,840 -27,198 -181,230 0,300 0,00012 200000000 450,000 0,700 0,00028 200000000 29,367 7,812 

0,0027899 0,085 0,169 0,267 0,071 0,00279 42,013 -0,0015294 -0,00088 0,002250 3,839 -26,679 -176,292 0,400 0,00016 200000000 450,000 0,700 0,00028 200000000 29,409 7,724 

0,0027859 0,085 0,169 0,267 0,070 0,00279 42,067 -0,001501 -0,00086 0,002250 3,839 -26,184 -171,592 0,500 0,00020 200000000 450,000 0,700 0,00028 199999896 29,447 7,640 

0,002782 0,085 0,169 0,268 0,069 0,00278 42,116 -0,0014739 -0,00084 0,002250 3,838 -25,712 -167,111 0,600 0,00024 200000000 450,000 0,700 0,00028 200000000 29,481 7,559 

0,0027783 0,085 0,169 0,268 0,069 0,00278 42,161 -0,0014482 -0,00081 0,002250 3,838 -25,262 -162,838 0,700 0,00028 200000000 450,000 0,700 0,00028 199999911 29,513 7,482 

                                            

0,0028096 0,084 0,167 0,265 0,074 0,00281 45,439 -0,0016674 -0,00100 0,002250 3,841 -29,087 -199,173 0,200 0,00008 200000000 450,000 0,800 0,00032 199999820 31,808 8,333 

0,0028049 0,084 0,168 0,265 0,074 0,00280 45,517 -0,0016344 -0,00097 0,002250 3,841 -28,512 -193,706 0,300 0,00012 200000000 450,000 0,800 0,00032 199999074 31,862 8,237 

0,0028004 0,084 0,168 0,266 0,073 0,00280 45,588 -0,001603 -0,00094 0,002250 3,840 -27,964 -188,501 0,400 0,00016 200000000 450,000 0,800 0,00032 200000000 31,912 8,145 

0,0027962 0,084 0,168 0,266 0,072 0,00280 45,653 -0,0015731 -0,00092 0,002250 3,840 -27,442 -183,542 0,500 0,00020 200000000 450,000 0,800 0,00032 199999232 31,957 8,057 

0,0027921 0,085 0,168 0,267 0,071 0,00279 45,711 -0,0015446 -0,00089 0,002250 3,839 -26,944 -178,812 0,600 0,00024 200000000 450,000 0,800 0,00032 199999961 31,998 7,973 

0,0027882 0,085 0,169 0,267 0,070 0,00279 45,765 -0,0015173 -0,00087 0,002250 3,839 -26,469 -174,299 0,700 0,00028 200000000 450,000 0,800 0,00032 200000000 32,035 7,893 

0,0027845 0,085 0,169 0,267 0,070 0,00278 45,814 -0,0014913 -0,00085 0,002250 3,839 -26,015 -169,987 0,800 0,00032 200000000 450,000 0,800 0,00032 199999640 32,069 7,816 

                                            

0,0028108 0,084 0,167 0,265 0,075 0,00281 49,148 -0,0016757 -0,00100 0,002250 3,842 -29,232 -200,548 0,400 0,00016 200000000 450,000 0,900 0,00036 200000000 34,403 8,527 

0,0028063 0,084 0,168 0,265 0,074 0,00281 49,223 -0,0016443 -0,00098 0,002250 3,841 -28,683 -195,338 0,500 0,00020 200000000 450,000 0,900 0,00036 199999076 34,456 8,436 

0,002802 0,084 0,168 0,266 0,073 0,00280 49,292 -0,0016143 -0,00095 0,002250 3,841 -28,160 -190,365 0,600 0,00024 200000000 450,000 0,900 0,00036 199999728 34,504 8,349 

0,0027979 0,084 0,168 0,266 0,072 0,00280 49,354 -0,0015856 -0,00093 0,002250 3,840 -27,660 -185,617 0,700 0,00028 200000000 450,000 0,900 0,00036 200000000 34,548 8,266 

0,002794 0,084 0,168 0,266 0,072 0,00279 49,412 -0,0015582 -0,00091 0,002250 3,840 -27,182 -181,079 0,800 0,00032 200000000 450,000 0,900 0,00036 199999838 34,588 8,186 

0,0027903 0,085 0,169 0,267 0,071 0,00279 49,465 -0,001532 -0,00088 0,002250 3,839 -26,725 -176,738 0,900 0,00036 200000000 450,000 0,900 0,00036 199999567 34,625 8,109 

                                            

0,0028076 0,084 0,168 0,265 0,074 0,00281 52,931 -0,0016531 -0,00098 0,002250 3,841 -28,838 -196,806 0,700 0,00028 200000000 450,000 1,000 0,00040 199999836 37,051 8,608 

0,0028035 0,084 0,168 0,266 0,073 0,00280 52,997 -0,0016244 -0,00096 0,002250 3,841 -28,337 -192,046 0,800 0,00032 200000000 450,000 1,000 0,00040 199999083 37,098 8,525 

0,0027996 0,084 0,168 0,266 0,073 0,00280 53,059 -0,0015969 -0,00094 0,002250 3,840 -27,857 -187,491 0,900 0,00036 200000000 450,000 1,000 0,00040 200000000 37,141 8,445 

0,0027958 0,084 0,168 0,266 0,072 0,00280 53,115 -0,0015706 -0,00092 0,002250 3,840 -27,398 -183,129 1,000 0,00040 200000000 450,000 1,000 0,00040 200000000 37,180 8,369 

                                            

0,0028087 0,084 0,168 0,265 0,074 0,00281 56,640 -0,0016612 -0,00099 0,002250 3,841 -28,978 -198,133 0,900 0,00036 200000000 450,000 1,100 0,00044 199999221 39,648 8,756 

0,0028048 0,084 0,168 0,265 0,074 0,00280 56,705 -0,0016336 -0,00097 0,002250 3,841 -28,497 -193,568 1,000 0,00040 200000000 450,000 1,100 0,00044 200000000 39,693 8,677 

0,002801 0,084 0,168 0,266 0,073 0,00280 56,765 -0,0016072 -0,00095 0,002250 3,840 -28,036 -189,192 1,100 0,00044 200000000 450,000 1,100 0,00044 199999607 39,735 8,601 

                                            

0,0028098 0,084 0,167 0,265 0,075 0,00281 60,351 -0,0016684 -0,00100 0,002250 3,841 -29,105 -199,340 1,100 0,00044 200000000 450,000 1,200 0,00048 200000000 42,246 8,886 
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0,002806 0,084 0,168 0,265 0,074 0,00281 60,414 -0,001642 -0,00097 0,002250 3,841 -28,643 -194,955 1,200 0,00048 200000000 450,000 1,200 0,00048 200000000 42,290 8,811 

                                            

0,0028107 0,084 0,167 0,265 0,075 0,00281 64,064 -0,0016751 -0,00100 0,002250 3,842 -29,221 -200,442 1,300 0,00052 200000000 450,000 1,300 0,00052 200000000 44,845 9,001 

 

200x200x2800 (Phase 3) 

h 0,200                                               

b 0,2                                               

d 0,175                                               

d' 0,030                                               

l 2,8 11,2                                             

As 0,001                                               

As' 0,001                                               

Ect 15000000                                               

Ecc 17444340                                               

Es 200000000                                               

εct1 0,000236                                               

σct1 3540                                               

εctu 0,01270                                               

σctu 5000                                               

εccu -0,00530 -0,00168                                             

σccu -55000 -29308                                             

α 0,00781                                               

δ 0,407                                               

                                                  

εct2 β g p γ m n x εct2 P εcc εsc εst σct2 σcc fsc %Ac As' Es fst %Ac As Es Mu Δ 

0,00281 0,084 0,167 0,265 0,987 1,000 2,000 0,075 0,00281 45,352 -0,00170 -0,00102 0,00225 3,842 -29,465 -204,938 0,100 0,00004 200000000 449,999 0,800 0,00032 200000000 31,747 8,219 

                                                  

0,00283 0,084 0,167 0,264 0,943 0,998 1,994 0,077 0,00283 48,852 -0,00178 -0,00109 0,00225 3,843 -30,030 -218,112 0,100 0,00004 200000000 449,999 0,900 0,00036 200000000 34,197 8,579 

0,00282 0,084 0,167 0,264 0,963 0,999 1,998 0,076 0,00282 48,966 -0,00174 -0,00106 0,00225 3,843 -29,763 -211,882 0,200 0,00008 200000000 449,999 0,900 0,00036 200000000 34,276 8,482 

0,00282 0,084 0,167 0,265 0,983 1,000 1,999 0,076 0,00282 49,064 -0,00171 -0,00103 0,00225 3,842 -29,512 -206,040 0,300 0,00012 200000000 449,999 0,900 0,00036 200000000 34,344 8,389 

                                                  

0,00284 0,083 0,166 0,263 0,902 0,994 1,983 0,079 0,00284 52,308 -0,00186 -0,00116 0,00225 3,845 -30,604 -231,507 0,100 0,00004 200000000 450,000 1,000 0,00040 199999570 36,616 8,907 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 52,450 -0,00182 -0,00112 0,00225 3,844 -30,316 -224,788 0,200 0,00008 200000000 449,999 1,000 0,00040 200000000 36,715 8,810 

0,00283 0,084 0,167 0,264 0,942 0,998 1,994 0,077 0,00283 52,574 -0,00178 -0,00109 0,00225 3,843 -30,046 -218,496 0,300 0,00012 200000000 449,999 1,000 0,00040 200000000 36,802 8,715 

0,00282 0,084 0,167 0,264 0,961 0,999 1,997 0,077 0,00282 52,682 -0,00175 -0,00106 0,00225 3,843 -29,793 -212,588 0,400 0,00016 200000000 450,000 1,000 0,00040 200000000 36,877 8,624 

0,00282 0,084 0,167 0,264 0,980 1,000 1,999 0,076 0,00282 52,776 -0,00171 -0,00104 0,00225 3,842 -29,555 -207,028 0,500 0,00020 200000000 449,999 1,000 0,00040 200000000 36,943 8,535 

0,00281 0,084 0,167 0,265 0,998 1,000 2,000 0,075 0,00281 52,858 -0,00168 -0,00101 0,00225 3,842 -29,330 -201,783 0,600 0,00024 200000000 449,999 1,000 0,00040 200000000 37,001 8,448 

                                                  

0,00285 0,083 0,165 0,262 0,864 0,989 1,969 0,081 0,00285 55,722 -0,00194 -0,00123 0,00225 3,846 -31,187 -245,119 0,100 0,00004 200000000 449,999 1,100 0,00044 200000000 39,006 9,210 

0,00284 0,083 0,166 0,262 0,884 0,992 1,977 0,080 0,00284 55,894 -0,00190 -0,00119 0,00225 3,845 -30,877 -237,896 0,200 0,00008 200000000 450,000 1,100 0,00044 200000000 39,126 9,112 

0,00284 0,083 0,166 0,263 0,903 0,994 1,984 0,079 0,00284 56,045 -0,00186 -0,00116 0,00225 3,845 -30,588 -231,138 0,300 0,00012 200000000 449,999 1,100 0,00044 200000000 39,231 9,017 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 56,178 -0,00182 -0,00112 0,00225 3,844 -30,316 -224,800 0,400 0,00016 200000000 449,999 1,100 0,00044 200000000 39,325 8,924 

0,00283 0,083 0,167 0,264 0,941 0,998 1,994 0,077 0,00283 56,296 -0,00179 -0,00109 0,00225 3,843 -30,061 -218,840 0,500 0,00020 200000000 450,000 1,100 0,00044 200000000 39,407 8,834 

0,00282 0,084 0,167 0,264 0,959 0,999 1,997 0,077 0,00282 56,399 -0,00175 -0,00107 0,00225 3,843 -29,820 -213,223 0,600 0,00024 200000000 450,000 1,100 0,00044 200000000 39,479 8,746 
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0,00282 0,084 0,167 0,264 0,977 1,000 1,999 0,076 0,00282 56,490 -0,00172 -0,00104 0,00225 3,842 -29,593 -207,919 0,700 0,00028 200000000 450,000 1,100 0,00044 200000000 39,543 8,662 

0,00281 0,084 0,167 0,265 0,994 1,000 2,000 0,075 0,00281 56,570 -0,00169 -0,00101 0,00225 3,842 -29,378 -202,900 0,800 0,00032 200000000 450,000 1,100 0,00044 200000000 39,599 8,579 

                                                  

0,00286 0,082 0,165 0,261 0,828 0,983 1,951 0,083 0,00286 59,097 -0,00203 -0,00129 0,00225 3,848 -31,779 -258,947 0,100 0,00004 200000000 450,000 1,200 0,00048 200000000 41,368 9,493 

0,00285 0,083 0,165 0,261 0,848 0,986 1,961 0,082 0,00285 59,299 -0,00198 -0,00126 0,00225 3,847 -31,447 -251,201 0,200 0,00008 200000000 449,999 1,200 0,00048 200000000 41,509 9,394 

0,00285 0,083 0,165 0,262 0,867 0,990 1,970 0,081 0,00285 59,479 -0,00194 -0,00122 0,00225 3,846 -31,137 -243,963 0,300 0,00012 200000000 449,999 1,200 0,00048 200000000 41,635 9,297 

0,00284 0,083 0,166 0,262 0,886 0,992 1,978 0,080 0,00284 59,639 -0,00190 -0,00119 0,00225 3,845 -30,847 -237,181 0,400 0,00016 200000000 449,999 1,200 0,00048 200000000 41,747 9,204 

0,00284 0,083 0,166 0,263 0,904 0,995 1,984 0,079 0,00284 59,780 -0,00186 -0,00115 0,00225 3,845 -30,574 -230,809 0,500 0,00020 200000000 449,999 1,200 0,00048 200000000 41,846 9,112 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 59,907 -0,00182 -0,00112 0,00225 3,844 -30,317 -224,810 0,600 0,00024 200000000 450,000 1,200 0,00048 200000000 41,935 9,024 

0,00283 0,083 0,167 0,264 0,940 0,998 1,994 0,077 0,00283 60,018 -0,00179 -0,00110 0,00225 3,843 -30,074 -219,149 0,700 0,00028 200000000 449,999 1,200 0,00048 200000000 42,013 8,938 

0,00282 0,084 0,167 0,264 0,957 0,999 1,997 0,077 0,00282 60,118 -0,00176 -0,00107 0,00225 3,843 -29,845 -213,797 0,800 0,00032 200000000 450,000 1,200 0,00048 200000000 42,082 8,854 

0,00282 0,084 0,167 0,264 0,974 1,000 1,999 0,076 0,00282 60,205 -0,00173 -0,00104 0,00225 3,842 -29,628 -208,727 0,900 0,00036 200000000 450,000 1,200 0,00048 200000000 42,144 8,773 

0,00281 0,084 0,167 0,265 0,991 1,000 2,000 0,075 0,00281 60,283 -0,00170 -0,00102 0,00225 3,842 -29,421 -203,916 1,000 0,00040 200000000 450,000 1,200 0,00048 200000000 42,198 8,695 

                                                  

0,00287 0,082 0,164 0,260 0,795 0,975 1,930 0,085 0,00287 62,435 -0,00211 -0,00136 0,00225 3,849 -32,381 -272,988 0,100 0,00004 200000000 449,999 1,300 0,00052 200000000 43,704 9,759 

0,00287 0,082 0,164 0,260 0,814 0,980 1,943 0,084 0,00287 62,669 -0,00206 -0,00132 0,00225 3,848 -32,026 -264,703 0,200 0,00008 200000000 449,999 1,300 0,00052 200000000 43,868 9,659 

0,00286 0,083 0,165 0,261 0,833 0,984 1,953 0,083 0,00286 62,878 -0,00202 -0,00128 0,00225 3,847 -31,694 -256,969 0,300 0,00012 200000000 449,999 1,300 0,00052 200000000 44,015 9,562 

0,00285 0,083 0,165 0,261 0,852 0,987 1,963 0,082 0,00285 63,065 -0,00197 -0,00125 0,00225 3,847 -31,384 -249,729 0,400 0,00016 200000000 449,999 1,300 0,00052 200000000 44,146 9,467 

0,00285 0,083 0,165 0,262 0,870 0,990 1,971 0,081 0,00285 63,232 -0,00193 -0,00121 0,00225 3,846 -31,093 -242,934 0,500 0,00020 200000000 449,999 1,300 0,00052 200000000 44,263 9,374 

0,00284 0,083 0,166 0,262 0,888 0,993 1,978 0,080 0,00284 63,382 -0,00189 -0,00118 0,00225 3,845 -30,819 -236,541 0,600 0,00024 200000000 449,999 1,300 0,00052 200000000 44,367 9,284 

0,00284 0,083 0,166 0,263 0,905 0,995 1,984 0,079 0,00284 63,515 -0,00186 -0,00115 0,00225 3,845 -30,561 -230,514 0,700 0,00028 200000000 449,999 1,300 0,00052 200000000 44,461 9,197 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 63,635 -0,00182 -0,00112 0,00225 3,844 -30,317 -224,820 0,800 0,00032 200000000 450,000 1,300 0,00052 199999625 44,544 9,112 

0,00283 0,083 0,167 0,264 0,939 0,998 1,993 0,078 0,00283 63,742 -0,00179 -0,00110 0,00225 3,844 -30,086 -219,429 0,900 0,00036 200000000 449,999 1,300 0,00052 200000000 44,619 9,030 

0,00282 0,084 0,167 0,264 0,955 0,999 1,996 0,077 0,00282 63,837 -0,00176 -0,00107 0,00225 3,843 -29,867 -214,317 1,000 0,00040 200000000 449,999 1,300 0,00052 200000000 44,686 8,950 

0,00282 0,084 0,167 0,264 0,971 1,000 1,999 0,076 0,00282 63,922 -0,00173 -0,00105 0,00225 3,843 -29,659 -209,462 1,100 0,00044 200000000 450,000 1,300 0,00052 200000000 44,745 8,873 

0,00281 0,084 0,167 0,265 0,987 1,000 2,000 0,075 0,00281 63,997 -0,00170 -0,00102 0,00225 3,842 -29,461 -204,843 1,200 0,00048 200000000 449,999 1,300 0,00052 200000000 44,798 8,798 

                                                  

0,00289 0,082 0,163 0,259 0,764 0,967 1,909 0,086 0,00289 65,737 -0,00220 -0,00144 0,00225 3,850 -32,991 -287,239 0,100 0,00004 200000000 449,999 1,400 0,00056 200000000 46,016 10,011 

0,00288 0,082 0,164 0,259 0,783 0,972 1,922 0,085 0,00288 66,005 -0,00215 -0,00139 0,00225 3,849 -32,613 -278,398 0,200 0,00008 200000000 449,999 1,400 0,00056 200000000 46,203 9,910 

0,00287 0,082 0,164 0,260 0,802 0,977 1,935 0,084 0,00287 66,245 -0,00210 -0,00135 0,00225 3,849 -32,259 -270,154 0,300 0,00012 200000000 450,000 1,400 0,00056 199999643 46,371 9,812 

0,00286 0,082 0,165 0,260 0,820 0,981 1,946 0,083 0,00286 66,460 -0,00205 -0,00131 0,00225 3,848 -31,929 -262,443 0,400 0,00016 200000000 449,999 1,400 0,00056 200000000 46,522 9,716 

0,00286 0,083 0,165 0,261 0,838 0,984 1,956 0,082 0,00286 66,653 -0,00201 -0,00128 0,00225 3,847 -31,619 -255,212 0,500 0,00020 200000000 449,999 1,400 0,00056 200000000 46,657 9,622 

0,00285 0,083 0,165 0,261 0,855 0,988 1,964 0,082 0,00285 66,827 -0,00196 -0,00124 0,00225 3,846 -31,328 -248,416 0,600 0,00024 200000000 450,000 1,400 0,00056 200000000 46,779 9,531 

0,00285 0,083 0,166 0,262 0,872 0,990 1,972 0,081 0,00285 66,983 -0,00193 -0,00121 0,00225 3,846 -31,054 -242,012 0,700 0,00028 200000000 449,999 1,400 0,00056 200000000 46,888 9,442 

0,00284 0,083 0,166 0,262 0,889 0,993 1,979 0,080 0,00284 67,123 -0,00189 -0,00118 0,00225 3,845 -30,795 -235,967 0,800 0,00032 200000000 450,000 1,400 0,00056 200000000 46,986 9,356 

0,00284 0,083 0,166 0,263 0,906 0,995 1,985 0,079 0,00284 67,250 -0,00185 -0,00115 0,00225 3,845 -30,550 -230,247 0,900 0,00036 200000000 449,999 1,400 0,00056 200000000 47,075 9,273 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 67,363 -0,00182 -0,00112 0,00225 3,844 -30,317 -224,828 1,000 0,00040 200000000 450,000 1,400 0,00056 200000000 47,154 9,192 

0,00283 0,083 0,167 0,264 0,938 0,998 1,993 0,078 0,00283 67,465 -0,00179 -0,00110 0,00225 3,844 -30,097 -219,683 1,100 0,00044 200000000 449,999 1,400 0,00056 200000000 47,226 9,113 

0,00282 0,084 0,167 0,264 0,954 0,999 1,996 0,077 0,00282 67,557 -0,00176 -0,00107 0,00225 3,843 -29,887 -214,792 1,200 0,00048 200000000 449,999 1,400 0,00056 200000000 47,290 9,036 

0,00282 0,084 0,167 0,264 0,969 0,999 1,998 0,076 0,00282 67,639 -0,00173 -0,00105 0,00225 3,843 -29,688 -210,134 1,300 0,00052 200000000 449,999 1,400 0,00056 200000000 47,347 8,962 

0,00282 0,084 0,167 0,265 0,984 1,000 2,000 0,075 0,00282 67,712 -0,00171 -0,00103 0,00225 3,842 -29,498 -205,693 1,400 0,00056 200000000 449,999 1,400 0,00056 200000000 47,398 8,890 

                                                  

0,00290 0,081 0,163 0,257 0,735 0,958 1,886 0,088 0,00290 69,007 -0,00229 -0,00151 0,00225 3,852 -33,611 -301,697 0,100 0,00004 200000000 449,999 1,500 0,00060 200000000 48,305 10,251 

0,00289 0,082 0,163 0,258 0,754 0,964 1,901 0,087 0,00289 69,309 -0,00223 -0,00146 0,00225 3,851 -33,207 -292,283 0,200 0,00008 200000000 449,999 1,500 0,00060 200000000 48,516 10,149 

0,00288 0,082 0,164 0,259 0,772 0,969 1,915 0,086 0,00288 69,580 -0,00218 -0,00142 0,00225 3,850 -32,832 -283,513 0,300 0,00012 200000000 449,999 1,500 0,00060 200000000 48,706 10,050 

Stellenbosch University  https://scholar.sun.ac.za



 
161 

 

0,00288 0,082 0,164 0,259 0,790 0,974 1,927 0,085 0,00288 69,824 -0,00213 -0,00138 0,00225 3,849 -32,481 -275,319 0,400 0,00016 200000000 450,000 1,500 0,00060 200000000 48,877 9,953 

0,00287 0,082 0,164 0,260 0,808 0,978 1,938 0,084 0,00287 70,044 -0,00208 -0,00134 0,00225 3,848 -32,152 -267,641 0,500 0,00020 200000000 449,999 1,500 0,00060 200000000 49,031 9,858 

0,00286 0,082 0,165 0,260 0,825 0,982 1,949 0,083 0,00286 70,243 -0,00204 -0,00130 0,00225 3,848 -31,843 -260,430 0,600 0,00024 200000000 449,999 1,500 0,00060 200000000 49,170 9,766 

0,00286 0,083 0,165 0,261 0,842 0,985 1,958 0,082 0,00286 70,422 -0,00200 -0,00127 0,00225 3,847 -31,552 -253,641 0,700 0,00028 200000000 450,000 1,500 0,00060 200000000 49,296 9,676 

0,00285 0,083 0,165 0,261 0,858 0,988 1,966 0,081 0,00285 70,584 -0,00196 -0,00124 0,00225 3,846 -31,277 -247,236 0,800 0,00032 200000000 449,999 1,500 0,00060 200000000 49,409 9,588 

0,00285 0,083 0,166 0,262 0,875 0,991 1,973 0,081 0,00285 70,731 -0,00192 -0,00121 0,00225 3,846 -31,018 -241,181 0,900 0,00036 200000000 450,000 1,500 0,00060 200000000 49,512 9,503 

0,00284 0,083 0,166 0,262 0,891 0,993 1,980 0,080 0,00284 70,864 -0,00189 -0,00118 0,00225 3,845 -30,772 -235,446 1,000 0,00040 200000000 449,999 1,500 0,00060 200000000 49,605 9,421 

0,00284 0,083 0,166 0,263 0,906 0,995 1,985 0,079 0,00284 70,983 -0,00185 -0,00115 0,00225 3,845 -30,539 -230,005 1,100 0,00044 200000000 449,999 1,500 0,00060 200000000 49,688 9,341 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 71,092 -0,00182 -0,00112 0,00225 3,844 -30,318 -224,835 1,200 0,00048 200000000 449,999 1,500 0,00060 200000000 49,764 9,263 

0,00283 0,083 0,167 0,263 0,937 0,998 1,993 0,078 0,00283 71,189 -0,00179 -0,00110 0,00225 3,844 -30,107 -219,915 1,300 0,00052 200000000 449,999 1,500 0,00060 200000000 49,833 9,187 

0,00282 0,084 0,167 0,264 0,952 0,999 1,996 0,077 0,00282 71,277 -0,00176 -0,00108 0,00225 3,843 -29,906 -215,226 1,400 0,00056 200000000 449,999 1,500 0,00060 200000000 49,894 9,114 

0,00282 0,084 0,167 0,264 0,967 0,999 1,998 0,076 0,00282 71,357 -0,00174 -0,00105 0,00225 3,843 -29,714 -210,751 1,500 0,00060 200000000 449,999 1,500 0,00060 200000000 49,950 9,043 

                                                  

0,00291 0,081 0,162 0,256 0,708 0,949 1,863 0,090 0,00291 72,246 -0,00237 -0,00158 0,00225 3,853 -34,239 -316,359 0,100 0,00004 200000000 449,999 1,600 0,00064 200000000 50,572 10,481 

0,00290 0,081 0,163 0,257 0,726 0,955 1,879 0,089 0,00290 72,583 -0,00231 -0,00153 0,00225 3,852 -33,810 -306,355 0,200 0,00008 200000000 449,999 1,600 0,00064 200000000 50,808 10,378 

0,00289 0,082 0,163 0,258 0,744 0,961 1,893 0,088 0,00289 72,886 -0,00226 -0,00149 0,00225 3,851 -33,411 -297,045 0,300 0,00012 200000000 449,999 1,600 0,00064 200000000 51,020 10,278 

0,00289 0,082 0,163 0,258 0,762 0,966 1,907 0,087 0,00289 73,160 -0,00221 -0,00144 0,00225 3,850 -33,039 -288,355 0,400 0,00016 200000000 450,000 1,600 0,00064 200000000 51,212 10,180 

0,00288 0,082 0,164 0,259 0,779 0,971 1,920 0,086 0,00288 73,408 -0,00216 -0,00140 0,00225 3,850 -32,691 -280,218 0,500 0,00020 200000000 449,999 1,600 0,00064 200000000 51,385 10,084 

0,00287 0,082 0,164 0,260 0,796 0,975 1,931 0,085 0,00287 73,632 -0,00211 -0,00136 0,00225 3,849 -32,363 -272,582 0,600 0,00024 200000000 449,999 1,600 0,00064 200000000 51,542 9,990 

0,00287 0,082 0,164 0,260 0,813 0,979 1,942 0,084 0,00287 73,835 -0,00207 -0,00133 0,00225 3,848 -32,056 -265,398 0,700 0,00028 200000000 449,999 1,600 0,00064 200000000 51,685 9,899 

0,00286 0,082 0,165 0,261 0,829 0,983 1,951 0,083 0,00286 74,020 -0,00203 -0,00129 0,00225 3,847 -31,765 -258,625 0,800 0,00032 200000000 449,999 1,600 0,00064 200000000 51,814 9,810 

0,00286 0,083 0,165 0,261 0,845 0,986 1,960 0,082 0,00286 74,187 -0,00199 -0,00126 0,00225 3,847 -31,491 -252,227 0,900 0,00036 200000000 449,999 1,600 0,00064 200000000 51,931 9,724 

0,00285 0,083 0,165 0,262 0,861 0,989 1,967 0,081 0,00285 74,339 -0,00195 -0,00123 0,00225 3,846 -31,232 -246,170 1,000 0,00040 200000000 449,999 1,600 0,00064 200000000 52,038 9,640 

0,00285 0,083 0,166 0,262 0,877 0,991 1,974 0,080 0,00285 74,477 -0,00192 -0,00120 0,00225 3,846 -30,986 -240,427 1,100 0,00044 200000000 449,999 1,600 0,00064 200000000 52,134 9,558 

0,00284 0,083 0,166 0,262 0,892 0,993 1,980 0,080 0,00284 74,603 -0,00188 -0,00117 0,00225 3,845 -30,752 -234,973 1,200 0,00048 200000000 450,000 1,600 0,00064 200000000 52,222 9,479 

0,00284 0,083 0,166 0,263 0,907 0,995 1,985 0,079 0,00284 74,717 -0,00185 -0,00115 0,00225 3,845 -30,530 -229,785 1,300 0,00052 200000000 449,999 1,600 0,00064 200000000 52,302 9,402 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 74,820 -0,00182 -0,00112 0,00225 3,844 -30,318 -224,843 1,400 0,00056 200000000 450,000 1,600 0,00064 200000000 52,374 9,327 

0,00283 0,083 0,167 0,263 0,937 0,998 1,993 0,078 0,00283 74,914 -0,00179 -0,00110 0,00225 3,844 -30,116 -220,128 1,500 0,00060 200000000 450,000 1,600 0,00064 200000000 52,440 9,255 

0,00282 0,084 0,167 0,264 0,951 0,999 1,996 0,077 0,00282 74,999 -0,00177 -0,00108 0,00225 3,843 -29,923 -215,625 1,600 0,00064 200000000 450,000 1,600 0,00064 200000000 52,499 9,184 

                                                  

0,00291 0,081 0,162 0,256 0,700 0,947 1,856 0,090 0,00291 75,829 -0,00240 -0,00160 0,00225 3,854 -34,421 -320,612 0,200 0,00008 200000000 449,999 1,700 0,00068 200000000 53,080 10,599 

0,00291 0,081 0,162 0,257 0,718 0,953 1,872 0,089 0,00291 76,165 -0,00234 -0,00155 0,00225 3,853 -33,999 -310,748 0,300 0,00012 200000000 450,000 1,700 0,00068 200000000 53,315 10,498 

0,00290 0,081 0,163 0,257 0,735 0,958 1,886 0,088 0,00290 76,469 -0,00229 -0,00151 0,00225 3,852 -33,604 -301,547 0,400 0,00016 200000000 449,999 1,700 0,00068 200000000 53,528 10,398 

0,00289 0,082 0,163 0,258 0,752 0,964 1,900 0,087 0,00289 76,745 -0,00223 -0,00146 0,00225 3,851 -33,236 -292,941 0,500 0,00020 200000000 449,999 1,700 0,00068 200000000 53,722 10,301 

0,00288 0,082 0,164 0,259 0,769 0,968 1,912 0,086 0,00288 76,996 -0,00218 -0,00142 0,00225 3,850 -32,890 -284,870 0,600 0,00024 200000000 450,000 1,700 0,00068 200000000 53,897 10,206 

0,00288 0,082 0,164 0,259 0,786 0,973 1,924 0,085 0,00288 77,223 -0,00214 -0,00139 0,00225 3,849 -32,565 -277,283 0,700 0,00028 200000000 450,000 1,700 0,00068 200000000 54,056 10,114 

0,00287 0,082 0,164 0,260 0,802 0,977 1,935 0,084 0,00287 77,431 -0,00210 -0,00135 0,00225 3,849 -32,258 -270,133 0,800 0,00032 200000000 449,999 1,700 0,00068 200000000 54,202 10,024 

0,00286 0,082 0,165 0,260 0,818 0,980 1,944 0,084 0,00286 77,620 -0,00205 -0,00132 0,00225 3,848 -31,969 -263,384 0,900 0,00036 200000000 450,000 1,700 0,00068 200000000 54,334 9,936 

0,00286 0,083 0,165 0,261 0,833 0,984 1,953 0,083 0,00286 77,792 -0,00202 -0,00128 0,00225 3,847 -31,696 -256,998 1,000 0,00040 200000000 449,999 1,700 0,00068 200000000 54,454 9,850 

0,00285 0,083 0,165 0,261 0,849 0,986 1,961 0,082 0,00285 77,948 -0,00198 -0,00125 0,00225 3,847 -31,436 -250,947 1,100 0,00044 200000000 449,999 1,700 0,00068 200000000 54,564 9,767 

0,00285 0,083 0,165 0,262 0,864 0,989 1,968 0,081 0,00285 78,092 -0,00195 -0,00123 0,00225 3,846 -31,190 -245,203 1,200 0,00048 200000000 450,000 1,700 0,00068 200000000 54,664 9,687 

0,00284 0,083 0,166 0,262 0,879 0,991 1,975 0,080 0,00284 78,222 -0,00191 -0,00120 0,00225 3,846 -30,956 -239,742 1,300 0,00052 200000000 450,000 1,700 0,00068 200000000 54,756 9,608 

0,00284 0,083 0,166 0,262 0,893 0,993 1,980 0,080 0,00284 78,341 -0,00188 -0,00117 0,00225 3,845 -30,734 -234,541 1,400 0,00056 200000000 449,999 1,700 0,00068 200000000 54,839 9,532 

0,00284 0,083 0,166 0,263 0,908 0,995 1,985 0,079 0,00284 78,450 -0,00185 -0,00115 0,00225 3,845 -30,521 -229,583 1,500 0,00060 200000000 450,000 1,700 0,00068 200000000 54,915 9,458 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 78,549 -0,00182 -0,00112 0,00225 3,844 -30,318 -224,849 1,600 0,00064 200000000 449,999 1,700 0,00068 200000000 54,984 9,386 
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0,00283 0,083 0,167 0,263 0,936 0,998 1,993 0,078 0,00283 78,639 -0,00180 -0,00110 0,00225 3,844 -30,124 -220,324 1,700 0,00068 200000000 449,999 1,700 0,00068 200000000 55,047 9,316 

                                                  

0,00292 0,081 0,162 0,256 0,693 0,944 1,849 0,091 0,00292 79,418 -0,00242 -0,00162 0,00225 3,854 -34,593 -324,617 0,300 0,00012 200000000 449,999 1,800 0,00072 200000000 55,593 10,710 

0,00291 0,081 0,162 0,257 0,710 0,950 1,865 0,090 0,00291 79,753 -0,00237 -0,00157 0,00225 3,853 -34,176 -314,894 0,400 0,00016 200000000 449,999 1,800 0,00072 200000000 55,827 10,609 

0,00290 0,081 0,163 0,257 0,727 0,956 1,880 0,089 0,00290 80,058 -0,00231 -0,00153 0,00225 3,852 -33,787 -305,807 0,500 0,00020 200000000 449,999 1,800 0,00072 200000000 56,041 10,511 

0,00289 0,082 0,163 0,258 0,744 0,961 1,893 0,088 0,00289 80,335 -0,00226 -0,00149 0,00225 3,851 -33,422 -297,291 0,600 0,00024 200000000 449,999 1,800 0,00072 200000000 56,235 10,415 

0,00289 0,082 0,163 0,258 0,760 0,966 1,906 0,087 0,00289 80,588 -0,00221 -0,00145 0,00225 3,851 -33,079 -289,291 0,700 0,00028 200000000 449,999 1,800 0,00072 200000000 56,412 10,321 

0,00288 0,082 0,164 0,259 0,776 0,970 1,917 0,086 0,00288 80,819 -0,00217 -0,00141 0,00225 3,850 -32,756 -281,758 0,800 0,00032 200000000 449,999 1,800 0,00072 200000000 56,573 10,229 

0,00287 0,082 0,164 0,259 0,791 0,974 1,928 0,085 0,00287 81,029 -0,00212 -0,00137 0,00225 3,849 -32,452 -274,650 0,900 0,00036 200000000 450,000 1,800 0,00072 200000000 56,720 10,140 

0,00287 0,082 0,164 0,260 0,807 0,978 1,938 0,084 0,00287 81,222 -0,00208 -0,00134 0,00225 3,848 -32,164 -267,929 1,000 0,00040 200000000 450,000 1,800 0,00072 200000000 56,855 10,053 

0,00286 0,082 0,165 0,260 0,822 0,981 1,947 0,083 0,00286 81,398 -0,00204 -0,00131 0,00225 3,848 -31,891 -261,563 1,100 0,00044 200000000 450,000 1,800 0,00072 200000000 56,979 9,969 

0,00286 0,083 0,165 0,261 0,837 0,984 1,955 0,083 0,00286 81,559 -0,00201 -0,00128 0,00225 3,847 -31,633 -255,524 1,200 0,00048 200000000 450,000 1,800 0,00072 200000000 57,091 9,887 

0,00285 0,083 0,165 0,261 0,852 0,987 1,963 0,082 0,00285 81,707 -0,00197 -0,00125 0,00225 3,847 -31,387 -249,784 1,300 0,00052 200000000 450,000 1,800 0,00072 200000000 57,195 9,807 

0,00285 0,083 0,165 0,262 0,866 0,989 1,970 0,081 0,00285 81,842 -0,00194 -0,00122 0,00225 3,846 -31,153 -244,321 1,400 0,00056 200000000 450,000 1,800 0,00072 200000000 57,289 9,729 

0,00284 0,083 0,166 0,262 0,880 0,992 1,976 0,080 0,00284 81,965 -0,00191 -0,00120 0,00225 3,846 -30,929 -239,115 1,500 0,00060 200000000 450,000 1,800 0,00072 200000000 57,376 9,654 

0,00284 0,083 0,166 0,262 0,894 0,993 1,981 0,080 0,00284 82,079 -0,00188 -0,00117 0,00225 3,845 -30,717 -234,146 1,600 0,00064 200000000 450,000 1,800 0,00072 199999273 57,455 9,581 

0,00284 0,083 0,166 0,263 0,908 0,995 1,985 0,079 0,00284 82,182 -0,00185 -0,00115 0,00225 3,845 -30,513 -229,398 1,700 0,00068 200000000 450,000 1,800 0,00072 200000000 57,528 9,509 

0,00283 0,083 0,166 0,263 0,922 0,996 1,989 0,078 0,00283 82,277 -0,00182 -0,00112 0,00225 3,844 -30,319 -224,855 1,800 0,00072 200000000 450,000 1,800 0,00072 200000000 57,594 9,440 

                                                  

0,00291 0,081 0,162 0,256 0,703 0,948 1,859 0,090 0,00291 83,348 -0,00239 -0,00159 0,00225 3,854 -34,344 -318,814 0,500 0,00020 200000000 449,999 1,900 0,00076 200000000 58,343 10,714 

0,00291 0,081 0,162 0,257 0,719 0,953 1,873 0,089 0,00291 83,652 -0,00234 -0,00155 0,00225 3,853 -33,960 -309,843 0,600 0,00024 200000000 449,999 1,900 0,00076 200000000 58,557 10,617 

0,00290 0,081 0,163 0,258 0,735 0,958 1,886 0,088 0,00290 83,930 -0,00228 -0,00151 0,00225 3,852 -33,599 -301,421 0,700 0,00028 200000000 449,999 1,900 0,00076 200000000 58,751 10,521 

0,00289 0,082 0,163 0,258 0,751 0,963 1,899 0,087 0,00289 84,185 -0,00224 -0,00147 0,00225 3,851 -33,259 -293,496 0,800 0,00032 200000000 449,999 1,900 0,00076 200000000 58,929 10,429 

0,00288 0,082 0,164 0,259 0,767 0,968 1,911 0,086 0,00288 84,418 -0,00219 -0,00143 0,00225 3,850 -32,939 -286,022 0,900 0,00036 200000000 449,999 1,900 0,00076 200000000 59,092 10,338 

0,00288 0,082 0,164 0,259 0,782 0,972 1,921 0,085 0,00288 84,631 -0,00215 -0,00139 0,00225 3,850 -32,637 -278,959 1,000 0,00040 200000000 449,999 1,900 0,00076 200000000 59,242 10,250 

0,00287 0,082 0,164 0,260 0,797 0,976 1,932 0,085 0,00287 84,827 -0,00211 -0,00136 0,00225 3,849 -32,350 -272,273 1,100 0,00044 200000000 449,999 1,900 0,00076 200000000 59,379 10,164 

0,00287 0,082 0,164 0,260 0,812 0,979 1,941 0,084 0,00287 85,006 -0,00207 -0,00133 0,00225 3,848 -32,078 -265,933 1,200 0,00048 200000000 449,999 1,900 0,00076 200000000 59,504 10,080 

0,00286 0,082 0,165 0,261 0,826 0,982 1,949 0,083 0,00286 85,171 -0,00203 -0,00130 0,00225 3,848 -31,820 -259,910 1,300 0,00052 200000000 450,000 1,900 0,00076 200000000 59,620 9,999 

0,00286 0,083 0,165 0,261 0,840 0,985 1,957 0,082 0,00286 85,323 -0,00200 -0,00127 0,00225 3,847 -31,575 -254,180 1,400 0,00056 200000000 450,000 1,900 0,00076 200000000 59,726 9,920 

0,00285 0,083 0,165 0,261 0,854 0,987 1,964 0,082 0,00285 85,462 -0,00197 -0,00124 0,00225 3,846 -31,341 -248,721 1,500 0,00060 200000000 449,999 1,900 0,00076 200000000 59,823 9,843 

0,00285 0,083 0,165 0,262 0,868 0,990 1,970 0,081 0,00285 85,590 -0,00193 -0,00122 0,00225 3,846 -31,118 -243,513 1,600 0,00064 200000000 450,000 1,900 0,00076 200000000 59,913 9,769 

0,00294 0,080 0,161 0,254 0,870 0,990 1,971 0,079 0,00294 85,906 -0,00193 -0,00120 0,00233 3,857 -31,090 -240,045 1,700 0,00068 200000000 450,000 1,900 0,00076 192929877 60,134 9,721 

0,00284 0,083 0,166 0,262 0,895 0,994 1,981 0,080 0,00284 85,815 -0,00188 -0,00117 0,00225 3,845 -30,701 -233,782 1,800 0,00072 200000000 450,000 1,900 0,00076 200000000 60,071 9,625 

0,00284 0,083 0,166 0,263 0,909 0,995 1,986 0,079 0,00284 85,914 -0,00185 -0,00115 0,00225 3,845 -30,506 -229,227 1,900 0,00076 200000000 450,000 1,900 0,00076 200000000 60,140 9,557 

                                                  

0,00292 0,081 0,162 0,256 0,697 0,945 1,853 0,091 0,00292 86,948 -0,00241 -0,00161 0,00225 3,854 -34,503 -322,524 0,600 0,00024 200000000 450,000 2,000 0,00080 200000000 60,864 10,813 

0,00291 0,081 0,162 0,257 0,712 0,951 1,867 0,090 0,00291 87,252 -0,00236 -0,00157 0,00225 3,853 -34,124 -313,672 0,700 0,00028 200000000 449,999 2,000 0,00080 200000000 61,076 10,716 

0,00290 0,081 0,163 0,257 0,728 0,956 1,880 0,089 0,00290 87,530 -0,00231 -0,00153 0,00225 3,852 -33,767 -305,346 0,800 0,00032 200000000 449,999 2,000 0,00080 200000000 61,271 10,622 

0,00289 0,082 0,163 0,258 0,743 0,961 1,893 0,088 0,00289 87,786 -0,00226 -0,00149 0,00225 3,851 -33,431 -297,499 0,900 0,00036 200000000 449,999 2,000 0,00080 200000000 61,450 10,530 

0,00289 0,082 0,163 0,258 0,758 0,965 1,904 0,087 0,00289 88,020 -0,00222 -0,00145 0,00225 3,851 -33,113 -290,089 1,000 0,00040 200000000 450,000 2,000 0,00080 200000000 61,614 10,440 

0,00288 0,082 0,164 0,259 0,773 0,969 1,915 0,086 0,00288 88,236 -0,00217 -0,00142 0,00225 3,850 -32,813 -283,076 1,100 0,00044 200000000 449,999 2,000 0,00080 200000000 61,765 10,353 

0,00288 0,082 0,164 0,259 0,787 0,973 1,925 0,085 0,00288 88,434 -0,00213 -0,00138 0,00225 3,849 -32,528 -276,429 1,200 0,00048 200000000 449,999 2,000 0,00080 200000000 61,904 10,268 

0,00287 0,082 0,164 0,260 0,802 0,977 1,935 0,084 0,00287 88,617 -0,00210 -0,00135 0,00225 3,849 -32,258 -270,118 1,300 0,00052 200000000 449,999 2,000 0,00080 200000000 62,032 10,186 

0,00287 0,082 0,165 0,260 0,816 0,980 1,943 0,084 0,00287 88,785 -0,00206 -0,00132 0,00225 3,848 -32,001 -264,117 1,400 0,00056 200000000 450,000 2,000 0,00080 200000000 62,150 10,105 

0,00286 0,082 0,165 0,261 0,830 0,983 1,951 0,083 0,00286 88,940 -0,00202 -0,00129 0,00225 3,847 -31,756 -258,401 1,500 0,00060 200000000 449,999 2,000 0,00080 200000000 62,258 10,027 
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0,00286 0,083 0,165 0,261 0,843 0,985 1,959 0,082 0,00286 89,083 -0,00199 -0,00126 0,00225 3,847 -31,522 -252,951 1,600 0,00064 200000000 449,999 2,000 0,00080 200000000 62,358 9,951 

0,00285 0,083 0,165 0,261 0,857 0,988 1,965 0,081 0,00285 89,215 -0,00196 -0,00124 0,00225 3,846 -31,299 -247,747 1,700 0,00068 200000000 450,000 2,000 0,00080 199999658 62,450 9,877 

0,00285 0,083 0,165 0,262 0,870 0,990 1,971 0,081 0,00285 89,336 -0,00193 -0,00121 0,00225 3,846 -31,086 -242,771 1,800 0,00072 200000000 450,000 2,000 0,00080 200000000 62,535 9,805 

0,00284 0,083 0,166 0,262 0,883 0,992 1,977 0,080 0,00284 89,448 -0,00190 -0,00119 0,00225 3,845 -30,882 -238,009 1,900 0,00076 200000000 450,000 2,000 0,00080 200000000 62,614 9,735 

0,00284 0,083 0,166 0,262 0,896 0,994 1,982 0,080 0,00284 89,551 -0,00187 -0,00117 0,00225 3,845 -30,687 -233,446 2,000 0,00080 200000000 450,000 2,000 0,00080 199999562 62,686 9,666 

                                                  

0,00292 0,081 0,162 0,256 0,691 0,943 1,847 0,091 0,00292 90,554 -0,00243 -0,00163 0,00225 3,854 -34,654 -326,039 0,700 0,00028 200000000 449,999 2,100 0,00084 200000000 63,388 10,906 

0,00291 0,081 0,162 0,256 0,706 0,949 1,861 0,090 0,00291 90,857 -0,00238 -0,00159 0,00225 3,853 -34,280 -317,307 0,800 0,00032 200000000 450,000 2,100 0,00084 200000000 63,600 10,810 

0,00290 0,081 0,163 0,257 0,721 0,954 1,874 0,089 0,00290 91,135 -0,00233 -0,00155 0,00225 3,853 -33,927 -309,080 0,900 0,00036 200000000 449,999 2,100 0,00084 200000000 63,794 10,717 

0,00290 0,081 0,163 0,258 0,736 0,959 1,887 0,088 0,00290 91,391 -0,00228 -0,00151 0,00225 3,852 -33,594 -301,314 1,000 0,00040 200000000 449,999 2,100 0,00084 200000000 63,974 10,626 

0,00289 0,082 0,163 0,258 0,750 0,963 1,898 0,087 0,00289 91,627 -0,00224 -0,00147 0,00225 3,851 -33,280 -293,970 1,100 0,00044 200000000 449,999 2,100 0,00084 200000000 64,139 10,537 

0,00289 0,082 0,163 0,259 0,765 0,967 1,909 0,086 0,00289 91,844 -0,00220 -0,00144 0,00225 3,850 -32,982 -287,012 1,200 0,00048 200000000 450,000 2,100 0,00084 200000000 64,291 10,451 

0,00288 0,082 0,164 0,259 0,779 0,971 1,919 0,086 0,00288 92,045 -0,00216 -0,00140 0,00225 3,850 -32,699 -280,408 1,300 0,00052 200000000 450,000 2,100 0,00084 200000000 64,431 10,367 

0,00287 0,082 0,164 0,259 0,793 0,974 1,929 0,085 0,00287 92,230 -0,00212 -0,00137 0,00225 3,849 -32,430 -274,130 1,400 0,00056 200000000 450,000 2,100 0,00084 200000000 64,561 10,285 

0,00287 0,082 0,164 0,260 0,806 0,978 1,938 0,084 0,00287 92,401 -0,00208 -0,00134 0,00225 3,848 -32,174 -268,154 1,500 0,00060 200000000 449,999 2,100 0,00084 200000000 64,681 10,205 

0,00286 0,082 0,165 0,260 0,820 0,981 1,946 0,083 0,00286 92,559 -0,00205 -0,00131 0,00225 3,848 -31,930 -262,457 1,600 0,00064 200000000 449,999 2,100 0,00084 200000000 64,791 10,128 

0,00286 0,083 0,165 0,261 0,833 0,983 1,953 0,083 0,00286 92,705 -0,00202 -0,00129 0,00225 3,847 -31,697 -257,019 1,700 0,00068 200000000 449,999 2,100 0,00084 200000000 64,894 10,052 

0,00286 0,083 0,165 0,261 0,846 0,986 1,960 0,082 0,00286 92,841 -0,00199 -0,00126 0,00225 3,847 -31,474 -251,823 1,800 0,00072 200000000 450,000 2,100 0,00084 200000000 64,988 9,979 

0,00285 0,083 0,165 0,261 0,859 0,988 1,966 0,081 0,00285 92,965 -0,00196 -0,00123 0,00225 3,846 -31,261 -246,849 1,900 0,00076 200000000 449,999 2,100 0,00084 200000000 65,076 9,907 

0,00285 0,083 0,166 0,262 0,872 0,990 1,972 0,081 0,00285 93,081 -0,00193 -0,00121 0,00225 3,846 -31,057 -242,086 2,000 0,00080 200000000 449,999 2,100 0,00084 200000000 65,157 9,838 

0,00284 0,083 0,166 0,262 0,885 0,992 1,977 0,080 0,00284 93,188 -0,00190 -0,00119 0,00225 3,845 -30,861 -237,518 2,100 0,00084 200000000 449,999 2,100 0,00084 200000000 65,232 9,770 

                                                  

0,00291 0,081 0,162 0,256 0,700 0,947 1,856 0,090 0,00291 94,466 -0,00240 -0,00160 0,00225 3,854 -34,428 -320,761 0,900 0,00036 200000000 449,999 2,200 0,00088 200000000 66,126 10,900 

0,00291 0,081 0,162 0,257 0,714 0,952 1,869 0,089 0,00291 94,744 -0,00235 -0,00156 0,00225 3,853 -34,079 -312,635 1,000 0,00040 200000000 450,000 2,200 0,00088 200000000 66,321 10,807 

0,00290 0,081 0,163 0,257 0,729 0,956 1,881 0,089 0,00290 95,000 -0,00231 -0,00152 0,00225 3,852 -33,750 -304,953 1,100 0,00044 200000000 449,999 2,200 0,00088 200000000 66,500 10,717 

0,00289 0,082 0,163 0,258 0,743 0,961 1,892 0,088 0,00289 95,237 -0,00226 -0,00149 0,00225 3,851 -33,439 -297,678 1,200 0,00048 200000000 449,999 2,200 0,00088 200000000 66,666 10,629 

0,00289 0,082 0,163 0,258 0,757 0,965 1,903 0,087 0,00289 95,456 -0,00222 -0,00145 0,00225 3,851 -33,143 -290,776 1,300 0,00052 200000000 449,999 2,200 0,00088 200000000 66,819 10,543 

0,00288 0,082 0,164 0,259 0,770 0,969 1,913 0,086 0,00288 95,658 -0,00218 -0,00142 0,00225 3,850 -32,862 -284,218 1,400 0,00056 200000000 449,999 2,200 0,00088 200000000 66,961 10,460 

0,00288 0,082 0,164 0,259 0,784 0,972 1,923 0,085 0,00288 95,846 -0,00214 -0,00139 0,00225 3,849 -32,595 -277,978 1,500 0,00060 200000000 449,999 2,200 0,00088 200000000 67,092 10,379 

0,00287 0,082 0,164 0,260 0,797 0,976 1,932 0,085 0,00287 96,019 -0,00211 -0,00136 0,00225 3,849 -32,340 -272,031 1,600 0,00064 200000000 449,999 2,200 0,00088 200000000 67,213 10,300 

0,00287 0,082 0,164 0,260 0,811 0,979 1,940 0,084 0,00287 96,180 -0,00207 -0,00133 0,00225 3,848 -32,097 -266,356 1,700 0,00068 200000000 450,000 2,200 0,00088 200000000 67,326 10,223 

0,00286 0,082 0,165 0,260 0,824 0,982 1,948 0,083 0,00286 96,329 -0,00204 -0,00130 0,00225 3,848 -31,864 -260,934 1,800 0,00072 200000000 449,999 2,200 0,00088 200000000 67,430 10,149 

0,00286 0,083 0,165 0,261 0,836 0,984 1,955 0,083 0,00286 96,467 -0,00201 -0,00128 0,00225 3,847 -31,642 -255,748 1,900 0,00076 200000000 449,999 2,200 0,00088 200000000 67,527 10,076 

0,00285 0,083 0,165 0,261 0,849 0,986 1,961 0,082 0,00285 96,596 -0,00198 -0,00125 0,00225 3,847 -31,429 -250,782 2,000 0,00080 200000000 449,999 2,200 0,00088 200000000 67,617 10,005 

0,00285 0,083 0,165 0,262 0,862 0,989 1,967 0,081 0,00285 96,714 -0,00195 -0,00123 0,00225 3,846 -31,225 -246,021 2,100 0,00084 200000000 450,000 2,200 0,00088 200000000 67,700 9,936 

0,00285 0,083 0,166 0,262 0,874 0,991 1,973 0,081 0,00285 96,825 -0,00192 -0,00121 0,00225 3,846 -31,030 -241,452 2,200 0,00088 200000000 449,999 2,200 0,00088 200000000 67,777 9,869 

                                                  

0,00292 0,081 0,162 0,256 0,694 0,944 1,850 0,091 0,00292 98,081 -0,00242 -0,00162 0,00225 3,854 -34,568 -324,049 1,000 0,00040 200000000 449,999 2,300 0,00092 200000000 68,656 10,984 

0,00291 0,081 0,162 0,256 0,708 0,949 1,863 0,090 0,00291 98,358 -0,00237 -0,00158 0,00225 3,853 -34,225 -316,024 1,100 0,00044 200000000 450,000 2,300 0,00092 199999926 68,850 10,893 

0,00290 0,081 0,163 0,257 0,722 0,954 1,875 0,089 0,00290 98,614 -0,00233 -0,00154 0,00225 3,853 -33,899 -308,427 1,200 0,00048 200000000 450,000 2,300 0,00092 200000000 69,030 10,803 

0,00290 0,081 0,163 0,258 0,736 0,959 1,887 0,088 0,00290 98,851 -0,00228 -0,00151 0,00225 3,852 -33,590 -301,223 1,300 0,00052 200000000 449,999 2,300 0,00092 200000000 69,196 10,716 

0,00289 0,082 0,163 0,258 0,749 0,963 1,898 0,087 0,00289 99,071 -0,00224 -0,00147 0,00225 3,851 -33,297 -294,380 1,400 0,00056 200000000 450,000 2,300 0,00092 200000000 69,350 10,631 

0,00289 0,082 0,163 0,258 0,763 0,967 1,908 0,087 0,00289 99,275 -0,00220 -0,00144 0,00225 3,850 -33,018 -287,871 1,500 0,00060 200000000 449,999 2,300 0,00092 200000000 69,492 10,549 

0,00288 0,082 0,164 0,259 0,776 0,970 1,917 0,086 0,00288 99,464 -0,00217 -0,00141 0,00225 3,850 -32,753 -281,671 1,600 0,00064 200000000 450,000 2,300 0,00092 200000000 69,625 10,469 

0,00288 0,082 0,164 0,259 0,789 0,974 1,926 0,085 0,00288 99,640 -0,00213 -0,00138 0,00225 3,849 -32,499 -275,755 1,700 0,00068 200000000 449,999 2,300 0,00092 200000000 69,748 10,390 
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0,00287 0,082 0,164 0,260 0,802 0,977 1,935 0,084 0,00287 99,803 -0,00210 -0,00135 0,00225 3,849 -32,257 -270,106 1,800 0,00072 200000000 449,999 2,300 0,00092 200000000 69,862 10,314 

0,00287 0,082 0,164 0,260 0,814 0,980 1,943 0,084 0,00287 99,955 -0,00206 -0,00132 0,00225 3,848 -32,026 -264,704 1,900 0,00076 200000000 449,999 2,300 0,00092 200000000 69,968 10,240 

0,00286 0,082 0,165 0,261 0,827 0,982 1,950 0,083 0,00286 100,096 -0,00203 -0,00130 0,00225 3,848 -31,804 -259,532 2,000 0,00080 200000000 449,999 2,300 0,00092 200000000 70,067 10,168 

0,00286 0,083 0,165 0,261 0,839 0,985 1,957 0,082 0,00286 100,227 -0,00200 -0,00127 0,00225 3,847 -31,592 -254,575 2,100 0,00084 200000000 449,999 2,300 0,00092 200000000 70,159 10,098 

0,00285 0,083 0,165 0,261 0,852 0,987 1,963 0,082 0,00285 100,348 -0,00197 -0,00125 0,00225 3,847 -31,388 -249,820 2,200 0,00088 200000000 450,000 2,300 0,00092 200000000 70,244 10,029 

0,00285 0,083 0,165 0,262 0,864 0,989 1,968 0,081 0,00285 100,462 -0,00195 -0,00123 0,00225 3,846 -31,192 -245,253 2,300 0,00092 200000000 449,999 2,300 0,00092 200000000 70,323 9,963 

                                                  

0,00292 0,081 0,162 0,256 0,689 0,942 1,845 0,091 0,00292 101,699 -0,00244 -0,00164 0,00225 3,854 -34,703 -327,179 1,100 0,00044 200000000 449,999 2,400 0,00096 200000000 71,190 11,064 

0,00291 0,081 0,162 0,256 0,702 0,947 1,858 0,090 0,00291 101,975 -0,00239 -0,00160 0,00225 3,854 -34,363 -319,256 1,200 0,00048 200000000 449,999 2,400 0,00096 200000000 71,383 10,974 

0,00291 0,081 0,162 0,257 0,716 0,952 1,870 0,089 0,00291 102,231 -0,00235 -0,00156 0,00225 3,853 -34,041 -311,745 1,300 0,00052 200000000 449,999 2,400 0,00096 200000000 71,562 10,885 

0,00290 0,081 0,163 0,257 0,729 0,957 1,881 0,089 0,00290 102,469 -0,00230 -0,00152 0,00225 3,852 -33,736 -304,614 1,400 0,00056 200000000 449,999 2,400 0,00096 200000000 71,728 10,799 

0,00289 0,082 0,163 0,258 0,742 0,961 1,892 0,088 0,00289 102,689 -0,00226 -0,00149 0,00225 3,851 -33,445 -297,833 1,500 0,00060 200000000 449,999 2,400 0,00096 200000000 71,883 10,715 

0,00289 0,082 0,163 0,258 0,756 0,965 1,902 0,087 0,00289 102,894 -0,00222 -0,00146 0,00225 3,851 -33,169 -291,375 1,600 0,00064 200000000 449,999 2,400 0,00096 200000000 72,026 10,633 

0,00288 0,082 0,164 0,259 0,768 0,968 1,912 0,086 0,00288 103,085 -0,00219 -0,00143 0,00225 3,850 -32,905 -285,216 1,700 0,00068 200000000 449,999 2,400 0,00096 200000000 72,160 10,554 

0,00288 0,082 0,164 0,259 0,781 0,972 1,921 0,086 0,00288 103,263 -0,00215 -0,00140 0,00225 3,850 -32,653 -279,336 1,800 0,00072 200000000 449,999 2,400 0,00096 200000000 72,284 10,476 

0,00287 0,082 0,164 0,260 0,794 0,975 1,929 0,085 0,00287 103,428 -0,00212 -0,00137 0,00225 3,849 -32,412 -273,715 1,900 0,00076 200000000 449,999 2,400 0,00096 200000000 72,399 10,401 

0,00287 0,082 0,164 0,260 0,806 0,978 1,937 0,084 0,00287 103,582 -0,00208 -0,00134 0,00225 3,848 -32,181 -268,335 2,000 0,00080 200000000 449,999 2,400 0,00096 200000000 72,507 10,327 

0,00286 0,082 0,165 0,260 0,818 0,980 1,945 0,084 0,00286 103,725 -0,00205 -0,00132 0,00225 3,848 -31,961 -263,180 2,100 0,00084 200000000 449,999 2,400 0,00096 200000000 72,608 10,256 

0,00286 0,083 0,165 0,261 0,830 0,983 1,952 0,083 0,00286 103,859 -0,00202 -0,00129 0,00225 3,847 -31,749 -258,236 2,200 0,00088 200000000 449,999 2,400 0,00096 200000000 72,701 10,186 

0,00286 0,083 0,165 0,261 0,842 0,985 1,958 0,082 0,00286 103,983 -0,00200 -0,00127 0,00225 3,847 -31,545 -253,490 2,300 0,00092 200000000 450,000 2,400 0,00096 200000000 72,788 10,118 

0,00285 0,083 0,165 0,261 0,854 0,987 1,964 0,082 0,00285 104,100 -0,00197 -0,00124 0,00225 3,846 -31,350 -248,928 2,400 0,00096 200000000 450,000 2,400 0,00096 200000000 72,870 10,052 

                                                  

0,00292 0,081 0,162 0,256 0,697 0,946 1,853 0,091 0,00292 105,597 -0,00241 -0,00161 0,00225 3,854 -34,495 -322,343 1,300 0,00052 200000000 449,999 2,500 0,00100 200000000 73,918 11,051 

0,00291 0,081 0,162 0,257 0,710 0,950 1,865 0,090 0,00291 105,852 -0,00237 -0,00157 0,00225 3,853 -34,177 -314,919 1,400 0,00056 200000000 450,000 2,500 0,00100 200000000 74,097 10,963 

0,00290 0,081 0,163 0,257 0,723 0,955 1,876 0,089 0,00290 106,090 -0,00232 -0,00154 0,00225 3,852 -33,875 -307,861 1,500 0,00060 200000000 450,000 2,500 0,00100 200000000 74,263 10,878 

0,00290 0,081 0,163 0,258 0,736 0,959 1,887 0,088 0,00290 106,311 -0,00228 -0,00151 0,00225 3,852 -33,587 -301,143 1,600 0,00064 200000000 450,000 2,500 0,00100 200000000 74,418 10,795 

0,00289 0,082 0,163 0,258 0,749 0,963 1,897 0,087 0,00289 106,517 -0,00224 -0,00147 0,00225 3,851 -33,313 -294,738 1,700 0,00068 200000000 450,000 2,500 0,00100 200000000 74,562 10,714 

0,00289 0,082 0,163 0,258 0,761 0,966 1,907 0,087 0,00289 106,709 -0,00221 -0,00144 0,00225 3,851 -33,051 -288,624 1,800 0,00072 200000000 450,000 2,500 0,00100 200000000 74,696 10,635 

0,00288 0,082 0,164 0,259 0,774 0,970 1,916 0,086 0,00288 106,888 -0,00217 -0,00141 0,00225 3,850 -32,800 -282,781 1,900 0,00076 200000000 450,000 2,500 0,00100 200000000 74,821 10,558 

0,00288 0,082 0,164 0,259 0,786 0,973 1,924 0,085 0,00288 107,055 -0,00214 -0,00139 0,00225 3,849 -32,561 -277,190 2,000 0,00080 200000000 450,000 2,500 0,00100 200000000 74,938 10,483 

0,00287 0,082 0,164 0,260 0,798 0,976 1,932 0,085 0,00287 107,211 -0,00211 -0,00136 0,00225 3,849 -32,331 -271,835 2,100 0,00084 200000000 450,000 2,500 0,00100 200000000 75,048 10,410 

0,00287 0,082 0,164 0,260 0,810 0,979 1,940 0,084 0,00287 107,356 -0,00207 -0,00133 0,00225 3,848 -32,111 -266,700 2,200 0,00088 200000000 450,000 2,500 0,00100 200000000 75,149 10,339 

0,00286 0,082 0,165 0,260 0,821 0,981 1,947 0,083 0,00286 107,492 -0,00205 -0,00131 0,00225 3,848 -31,900 -261,771 2,300 0,00092 200000000 450,000 2,500 0,00100 200000000 75,245 10,270 

0,00286 0,083 0,165 0,261 0,833 0,983 1,953 0,083 0,00286 107,619 -0,00202 -0,00129 0,00225 3,847 -31,697 -257,035 2,400 0,00096 200000000 450,000 2,500 0,00100 200000000 75,333 10,203 

0,00286 0,083 0,165 0,261 0,845 0,986 1,959 0,082 0,00286 107,738 -0,00199 -0,00126 0,00225 3,847 -31,502 -252,481 2,500 0,00100 200000000 450,000 2,500 0,00100 200000000 75,417 10,137 
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Material 3 

200x200x2800 (Phase 2) 

h 0,200                                         

b 0,2                                         

d 0,175                                         

d' 0,030                                         

l 2,8 11,2                                       

As 0,001                                         

As' 0,001                                         

Ect 55924171                                         

Ecc 57965517                                         

Es 200000000                                         

εct1 0,000211                                         

σct1 11800                                         

εctu 0,00390                                         

σctu 15000                                         

εccu -0,00725 -0,00230                                       

σccu -250000 -133219                                       

α 0,01551                                         

δ 0,407                                         

                                            

                                            

εct2 β g k x εct2 P εcc εsc εst σct2 σcc fsc %Ac As' Es fst %Ac As Es Mu Δ 

0,0027294 0,077 0,162 0,259 0,058 0,00273 61,439 -0,0011058 -0,00053 0,002250 13,985 -64,097 -106,101 0,000 0,00000 200000000 450,000 0,100 0,00004 200000000 43,007 3,183 

0,0027285 0,077 0,162 0,259 0,057 0,00273 61,450 -0,0010992 -0,00053 0,002250 13,984 -63,718 -105,016 0,100 0,00004 200000000 450,000 0,100 0,00004 199999996 43,015 3,166 

                                            

0,0027334 0,077 0,162 0,259 0,059 0,00273 65,113 -0,0011337 -0,00055 0,002250 13,988 -65,714 -110,722 0,000 0,00000 200000000 450,000 0,200 0,00008 199999997 45,579 3,639 

0,0027324 0,077 0,162 0,259 0,058 0,00273 65,127 -0,0011269 -0,00055 0,002250 13,987 -65,321 -109,601 0,100 0,00004 200000000 450,000 0,200 0,00008 199999997 45,589 3,617 

0,0027301 0,077 0,162 0,259 0,058 0,00273 65,130 -0,0011199 -0,00054 0,002249 13,985 -64,917 -108,483 0,200 0,00008 200000000 449,770 0,200 0,00008 200000000 45,591 3,595 

                                            

0,0027373 0,077 0,161 0,258 0,060 0,00274 68,778 -0,0011613 -0,00058 0,002250 13,991 -67,316 -115,302 0,000 0,00000 200000000 450,000 0,300 0,00012 199999884 48,144 3,950 

0,0027363 0,077 0,161 0,258 0,059 0,00274 68,795 -0,0011543 -0,00057 0,002250 13,991 -66,911 -114,144 0,100 0,00004 200000000 450,000 0,300 0,00012 199999922 48,156 3,928 

0,0027353 0,077 0,162 0,258 0,059 0,00274 68,811 -0,0011475 -0,00057 0,002250 13,990 -66,513 -113,007 0,200 0,00008 200000000 449,999 0,300 0,00012 200000000 48,168 3,906 

0,0027344 0,077 0,162 0,258 0,059 0,00273 68,826 -0,0011407 -0,00056 0,002250 13,989 -66,122 -111,890 0,300 0,00012 200000000 450,000 0,300 0,00012 199999292 48,178 3,885 

                                            

0,0027413 0,077 0,161 0,258 0,060 0,00274 72,434 -0,0011887 -0,00060 0,002250 13,995 -68,903 -119,841 0,000 0,00000 200000000 450,000 0,400 0,00016 199999007 50,704 4,254 

0,0027402 0,077 0,161 0,258 0,060 0,00274 72,454 -0,0011815 -0,00059 0,002250 13,994 -68,486 -118,648 0,100 0,00004 200000000 450,000 0,400 0,00016 199999522 50,718 4,231 

0,0027392 0,077 0,161 0,258 0,060 0,00274 72,473 -0,0011744 -0,00059 0,002250 13,993 -68,076 -117,476 0,200 0,00008 200000000 450,000 0,400 0,00016 199999231 50,731 4,208 

0,0027382 0,077 0,161 0,258 0,060 0,00274 72,491 -0,0011675 -0,00058 0,002250 13,992 -67,673 -116,324 0,300 0,00012 200000000 450,000 0,400 0,00016 199999514 50,744 4,186 

0,0027372 0,077 0,161 0,258 0,060 0,00274 72,508 -0,0011606 -0,00058 0,002250 13,991 -67,277 -115,193 0,400 0,00016 200000000 450,000 0,400 0,00016 199999505 50,756 4,164 

                                            

0,0027451 0,077 0,161 0,258 0,061 0,00275 76,083 -0,0012159 -0,00062 0,002250 13,998 -70,478 -124,341 0,000 0,00000 200000000 450,000 0,500 0,00020 199999308 53,258 4,546 

0,0027441 0,077 0,161 0,258 0,061 0,00274 76,105 -0,0012084 -0,00062 0,002250 13,997 -70,048 -123,113 0,100 0,00004 200000000 450,000 0,500 0,00020 199999930 53,274 4,522 

0,002743 0,077 0,161 0,258 0,061 0,00274 76,127 -0,0012012 -0,00061 0,002250 13,996 -69,626 -121,907 0,200 0,00008 200000000 450,000 0,500 0,00020 199999617 53,289 4,499 
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0,002742 0,077 0,161 0,258 0,061 0,00274 76,148 -0,001194 -0,00060 0,002250 13,996 -69,212 -120,722 0,300 0,00012 200000000 450,000 0,500 0,00020 199999649 53,304 4,476 

0,002741 0,077 0,161 0,258 0,060 0,00274 76,168 -0,001187 -0,00060 0,002250 13,995 -68,804 -119,557 0,400 0,00016 200000000 450,000 0,500 0,00020 199999692 53,317 4,454 

0,00274 0,077 0,161 0,258 0,060 0,00274 76,187 -0,0011801 -0,00059 0,002250 13,994 -68,404 -118,412 0,500 0,00020 200000000 450,000 0,500 0,00020 199999687 53,331 4,431 

                                            

0,002749 0,077 0,161 0,257 0,062 0,00275 79,723 -0,0012428 -0,00064 0,002250 14,002 -72,039 -128,805 0,000 0,00000 200000000 449,999 0,600 0,00024 200000000 55,806 4,825 

0,0027479 0,077 0,161 0,257 0,062 0,00275 79,749 -0,0012352 -0,00064 0,002250 14,001 -71,598 -127,543 0,100 0,00004 200000000 450,000 0,600 0,00024 199999612 55,824 4,801 

0,0027468 0,077 0,161 0,257 0,062 0,00275 79,774 -0,0012277 -0,00063 0,002250 14,000 -71,164 -126,303 0,200 0,00008 200000000 450,000 0,600 0,00024 199999406 55,841 4,777 

0,0027458 0,077 0,161 0,258 0,062 0,00275 79,797 -0,0012203 -0,00063 0,002250 13,999 -70,738 -125,085 0,300 0,00012 200000000 450,000 0,600 0,00024 199999805 55,858 4,754 

0,0027447 0,077 0,161 0,258 0,061 0,00274 79,820 -0,0012131 -0,00062 0,002250 13,998 -70,319 -123,887 0,400 0,00016 200000000 450,000 0,600 0,00024 199999630 55,874 4,731 

0,0027437 0,077 0,161 0,258 0,061 0,00274 79,841 -0,001206 -0,00061 0,002250 13,997 -69,907 -122,710 0,500 0,00020 200000000 450,000 0,600 0,00024 199999654 55,889 4,708 

0,0027427 0,077 0,161 0,258 0,061 0,00274 79,862 -0,001199 -0,00061 0,002250 13,996 -69,502 -121,552 0,600 0,00024 200000000 450,000 0,600 0,00024 199999600 55,903 4,686 

                                            

0,0027528 0,077 0,161 0,257 0,063 0,00275 83,355 -0,0012695 -0,00067 0,002250 14,005 -73,588 -133,233 0,000 0,00000 200000000 450,000 0,700 0,00028 200000000 58,349 5,091 

0,0027517 0,077 0,161 0,257 0,063 0,00275 83,384 -0,0012617 -0,00066 0,002250 14,004 -73,135 -131,938 0,100 0,00004 200000000 450,000 0,700 0,00028 200000000 58,369 5,066 

0,0027506 0,077 0,161 0,257 0,063 0,00275 83,412 -0,001254 -0,00065 0,002250 14,003 -72,690 -130,666 0,200 0,00008 200000000 450,000 0,700 0,00028 199999713 58,388 5,042 

0,0027495 0,077 0,161 0,257 0,062 0,00275 83,439 -0,0012465 -0,00065 0,002250 14,002 -72,252 -129,415 0,300 0,00012 200000000 450,000 0,700 0,00028 199999693 58,407 5,018 

0,0027484 0,077 0,161 0,257 0,062 0,00275 83,464 -0,001239 -0,00064 0,002250 14,001 -71,822 -128,185 0,400 0,00016 200000000 450,000 0,700 0,00028 199999672 58,425 4,994 

0,0027474 0,077 0,161 0,257 0,062 0,00275 83,489 -0,0012317 -0,00063 0,002250 14,000 -71,399 -126,975 0,500 0,00020 200000000 450,000 0,700 0,00028 199999691 58,442 4,971 

0,0027464 0,077 0,161 0,257 0,062 0,00275 83,512 -0,0012246 -0,00063 0,002250 13,999 -70,983 -125,786 0,600 0,00024 200000000 450,000 0,700 0,00028 199999623 58,459 4,948 

0,0027454 0,077 0,161 0,258 0,061 0,00275 83,535 -0,0012175 -0,00062 0,002250 13,998 -70,574 -124,617 0,700 0,00028 200000000 450,000 0,700 0,00028 199999716 58,474 4,926 

                                            

0,0027566 0,077 0,160 0,257 0,064 0,00276 86,980 -0,001296 -0,00069 0,002250 14,008 -75,125 -137,629 0,000 0,00000 200000000 450,000 0,800 0,00032 199999834 60,886 5,342 

0,0027554 0,077 0,161 0,257 0,064 0,00276 87,012 -0,001288 -0,00068 0,002250 14,007 -74,661 -136,301 0,100 0,00004 200000000 450,000 0,800 0,00032 200000000 60,909 5,317 

0,0027543 0,077 0,161 0,257 0,063 0,00275 87,043 -0,0012801 -0,00067 0,002250 14,006 -74,204 -134,996 0,200 0,00008 200000000 450,000 0,800 0,00032 199999902 60,930 5,293 

0,0027532 0,077 0,161 0,257 0,063 0,00275 87,073 -0,0012724 -0,00067 0,002250 14,005 -73,755 -133,712 0,300 0,00012 200000000 450,000 0,800 0,00032 199999790 60,951 5,269 

0,0027521 0,077 0,161 0,257 0,063 0,00275 87,102 -0,0012648 -0,00066 0,002250 14,004 -73,314 -132,451 0,400 0,00016 200000000 450,000 0,800 0,00032 199999903 60,971 5,245 

0,002751 0,077 0,161 0,257 0,063 0,00275 87,129 -0,0012573 -0,00066 0,002250 14,003 -72,880 -131,210 0,500 0,00020 200000000 450,000 0,800 0,00032 199999810 60,990 5,221 

0,00275 0,077 0,161 0,257 0,062 0,00275 87,155 -0,0012499 -0,00065 0,002250 14,002 -72,453 -129,990 0,600 0,00024 200000000 450,000 0,800 0,00032 199999718 61,009 5,198 

0,002749 0,077 0,161 0,257 0,062 0,00275 87,180 -0,0012427 -0,00064 0,002250 14,002 -72,034 -128,790 0,700 0,00028 200000000 450,000 0,800 0,00032 199999940 61,026 5,175 

0,0027479 0,077 0,161 0,257 0,062 0,00275 87,205 -0,0012356 -0,00064 0,002250 14,001 -71,621 -127,609 0,800 0,00032 200000000 450,000 0,800 0,00032 199999944 61,043 5,152 

                                            

0,0027603 0,076 0,160 0,256 0,065 0,00276 90,597 -0,0013224 -0,00071 0,002250 14,011 -76,652 -141,992 0,000 0,00000 200000000 450,000 0,900 0,00036 199999957 63,418 5,581 

0,0027592 0,076 0,160 0,256 0,065 0,00276 90,633 -0,0013142 -0,00070 0,002250 14,010 -76,176 -140,632 0,100 0,00004 200000000 450,000 0,900 0,00036 200000000 63,443 5,556 

0,002758 0,077 0,160 0,257 0,064 0,00276 90,667 -0,0013061 -0,00070 0,002250 14,009 -75,708 -139,295 0,200 0,00008 200000000 450,000 0,900 0,00036 199999917 63,467 5,531 

0,0027569 0,077 0,160 0,257 0,064 0,00276 90,700 -0,0012982 -0,00069 0,002250 14,008 -75,248 -137,980 0,300 0,00012 200000000 450,000 0,900 0,00036 199999988 63,490 5,506 

0,0027558 0,077 0,160 0,257 0,064 0,00276 90,732 -0,0012904 -0,00068 0,002250 14,007 -74,796 -136,687 0,400 0,00016 200000000 450,000 0,900 0,00036 199999935 63,512 5,482 

0,0027547 0,077 0,161 0,257 0,064 0,00275 90,762 -0,0012827 -0,00068 0,002250 14,006 -74,351 -135,415 0,500 0,00020 200000000 450,000 0,900 0,00036 200000000 63,533 5,458 

0,0027536 0,077 0,161 0,257 0,063 0,00275 90,791 -0,0012751 -0,00067 0,002250 14,006 -73,914 -134,164 0,600 0,00024 200000000 450,000 0,900 0,00036 199999948 63,554 5,434 

0,0027525 0,077 0,161 0,257 0,063 0,00275 90,819 -0,0012677 -0,00066 0,002250 14,005 -73,483 -132,934 0,700 0,00028 200000000 450,000 0,900 0,00036 199999904 63,573 5,411 

0,0027515 0,077 0,161 0,257 0,063 0,00275 90,846 -0,0012604 -0,00066 0,002250 14,004 -73,060 -131,724 0,800 0,00032 200000000 450,000 0,900 0,00036 200000000 63,592 5,388 

0,0027505 0,077 0,161 0,257 0,063 0,00275 90,872 -0,0012532 -0,00065 0,002250 14,003 -72,643 -130,533 0,900 0,00036 200000000 450,000 0,900 0,00036 199999961 63,610 5,365 

                                            

0,0027641 0,076 0,160 0,256 0,066 0,00276 94,207 -0,0013485 -0,00073 0,002250 14,015 -78,167 -146,325 0,000 0,00000 200000000 449,999 1,000 0,00040 200000000 65,945 5,806 

0,0027629 0,076 0,160 0,256 0,065 0,00276 94,246 -0,0013401 -0,00072 0,002250 14,014 -77,680 -144,933 0,100 0,00004 200000000 450,000 1,000 0,00040 200000000 65,972 5,781 

0,0027617 0,076 0,160 0,256 0,065 0,00276 94,284 -0,0013319 -0,00072 0,002250 14,013 -77,201 -143,564 0,200 0,00008 200000000 450,000 1,000 0,00040 199999970 65,999 5,755 
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0,0027605 0,076 0,160 0,256 0,065 0,00276 94,320 -0,0013237 -0,00071 0,002250 14,012 -76,731 -142,218 0,300 0,00012 200000000 450,000 1,000 0,00040 200000000 66,024 5,731 

0,0027594 0,076 0,160 0,256 0,065 0,00276 94,355 -0,0013157 -0,00070 0,002250 14,011 -76,268 -140,894 0,400 0,00016 200000000 450,000 1,000 0,00040 200000000 66,048 5,706 

0,0027583 0,076 0,160 0,257 0,064 0,00276 94,388 -0,0013079 -0,00070 0,002250 14,010 -75,812 -139,592 0,500 0,00020 200000000 450,000 1,000 0,00040 200000000 66,072 5,682 

0,0027572 0,077 0,160 0,257 0,064 0,00276 94,420 -0,0013002 -0,00069 0,002250 14,009 -75,364 -138,311 0,600 0,00024 200000000 450,000 1,000 0,00040 200000000 66,094 5,658 

0,0027561 0,077 0,160 0,257 0,064 0,00276 94,451 -0,0012925 -0,00069 0,002250 14,008 -74,923 -137,051 0,700 0,00028 200000000 450,000 1,000 0,00040 200000000 66,116 5,634 

0,002755 0,077 0,161 0,257 0,064 0,00276 94,481 -0,0012851 -0,00068 0,002250 14,007 -74,490 -135,811 0,800 0,00032 200000000 450,000 1,000 0,00040 200000000 66,137 5,611 

0,002754 0,077 0,161 0,257 0,063 0,00275 94,510 -0,0012777 -0,00067 0,002250 14,006 -74,063 -134,591 0,900 0,00036 200000000 450,000 1,000 0,00040 200000000 66,157 5,588 

0,0027529 0,077 0,161 0,257 0,063 0,00275 94,537 -0,0012705 -0,00067 0,002250 14,005 -73,643 -133,391 1,000 0,00040 200000000 450,000 1,000 0,00040 200000000 66,176 5,566 

0,0027678 0,076 0,160 0,256 0,066 0,00277 97,810 -0,0013745 -0,00075 0,002250 14,018 -79,673 -150,629 0,000 0,00000 200000000 450,000 1,100 0,00044 199999531 68,467 6,020 

0,0027666 0,076 0,160 0,256 0,066 0,00277 97,853 -0,0013659 -0,00075 0,002250 14,017 -79,175 -149,205 0,100 0,00004 200000000 450,000 1,100 0,00044 199999486 68,497 5,994 

0,0027653 0,076 0,160 0,256 0,066 0,00277 97,894 -0,0013574 -0,00074 0,002250 14,016 -78,685 -147,805 0,200 0,00008 200000000 450,000 1,100 0,00044 200000000 68,526 5,968 

0,0027642 0,076 0,160 0,256 0,066 0,00276 97,933 -0,0013491 -0,00073 0,002250 14,015 -78,203 -146,428 0,300 0,00012 200000000 450,000 1,100 0,00044 200000000 68,553 5,943 

0,002763 0,076 0,160 0,256 0,065 0,00276 97,971 -0,001341 -0,00073 0,002250 14,014 -77,730 -145,074 0,400 0,00016 200000000 450,000 1,100 0,00044 200000000 68,580 5,918 

0,0027618 0,076 0,160 0,256 0,065 0,00276 98,008 -0,0013329 -0,00072 0,002250 14,013 -77,264 -143,742 0,500 0,00020 200000000 450,000 1,100 0,00044 200000000 68,605 5,894 

0,0027607 0,076 0,160 0,256 0,065 0,00276 98,043 -0,001325 -0,00071 0,002250 14,012 -76,805 -142,431 0,600 0,00024 200000000 450,000 1,100 0,00044 200000000 68,630 5,870 

0,0027596 0,076 0,160 0,256 0,065 0,00276 98,077 -0,0013172 -0,00071 0,002250 14,011 -76,354 -141,142 0,700 0,00028 200000000 450,000 1,100 0,00044 200000000 68,654 5,846 

0,0027585 0,076 0,160 0,256 0,064 0,00276 98,110 -0,0013096 -0,00070 0,002250 14,010 -75,910 -139,873 0,800 0,00032 200000000 450,000 1,100 0,00044 200000000 68,677 5,822 

0,0027574 0,077 0,160 0,257 0,064 0,00276 98,141 -0,001302 -0,00069 0,002250 14,009 -75,474 -138,624 0,900 0,00036 200000000 450,000 1,100 0,00044 200000000 68,699 5,799 

0,0027564 0,077 0,160 0,257 0,064 0,00276 98,171 -0,0012946 -0,00069 0,002250 14,008 -75,044 -137,396 1,000 0,00040 200000000 450,000 1,100 0,00044 200000000 68,720 5,776 

0,0027553 0,077 0,161 0,257 0,064 0,00276 98,201 -0,0012873 -0,00068 0,002250 14,007 -74,621 -136,186 1,100 0,00044 200000000 450,000 1,100 0,00044 200000000 68,741 5,754 

0,0027715 0,076 0,160 0,255 0,067 0,00277 101,406 -0,0014003 -0,00077 0,002250 14,021 -81,168 -154,905 0,000 0,00000 200000000 450,000 1,200 0,00048 199999568 70,985 6,222 

0,0027702 0,076 0,160 0,256 0,067 0,00277 101,452 -0,0013915 -0,00077 0,002250 14,020 -80,659 -153,450 0,100 0,00004 200000000 450,000 1,200 0,00048 199999734 71,017 6,196 

0,002769 0,076 0,160 0,256 0,067 0,00277 101,497 -0,0013829 -0,00076 0,002250 14,019 -80,159 -152,019 0,200 0,00008 200000000 450,000 1,200 0,00048 199999796 71,048 6,170 

0,0027678 0,076 0,160 0,256 0,066 0,00277 101,539 -0,0013744 -0,00075 0,002250 14,018 -79,667 -150,611 0,300 0,00012 200000000 450,000 1,200 0,00048 200000000 71,078 6,144 

0,0027666 0,076 0,160 0,256 0,066 0,00277 101,581 -0,001366 -0,00075 0,002250 14,017 -79,182 -149,227 0,400 0,00016 200000000 450,000 1,200 0,00048 200000000 71,107 6,119 

0,0027654 0,076 0,160 0,256 0,066 0,00277 101,621 -0,0013578 -0,00074 0,002250 14,016 -78,706 -147,865 0,500 0,00020 200000000 450,000 1,200 0,00048 200000000 71,134 6,095 

0,0027642 0,076 0,160 0,256 0,066 0,00276 101,659 -0,0013497 -0,00073 0,002250 14,015 -78,237 -146,525 0,600 0,00024 200000000 450,000 1,200 0,00048 200000000 71,161 6,070 

0,0027631 0,076 0,160 0,256 0,065 0,00276 101,696 -0,0013418 -0,00073 0,002250 14,014 -77,776 -145,207 0,700 0,00028 200000000 450,000 1,200 0,00048 200000000 71,187 6,046 

0,002762 0,076 0,160 0,256 0,065 0,00276 101,732 -0,0013339 -0,00072 0,002250 14,013 -77,322 -143,909 0,800 0,00032 200000000 450,000 1,200 0,00048 200000000 71,212 6,022 

0,0027609 0,076 0,160 0,256 0,065 0,00276 101,766 -0,0013262 -0,00071 0,002250 14,012 -76,876 -142,633 0,900 0,00036 200000000 450,000 1,200 0,00048 200000000 71,236 5,999 

0,0027598 0,076 0,160 0,256 0,065 0,00276 101,799 -0,0013186 -0,00071 0,002250 14,011 -76,436 -141,376 1,000 0,00040 200000000 450,000 1,200 0,00048 200000000 71,259 5,976 

0,0027587 0,076 0,160 0,256 0,064 0,00276 101,831 -0,0013112 -0,00070 0,002250 14,010 -76,003 -140,139 1,100 0,00044 200000000 450,000 1,200 0,00048 200000000 71,282 5,953 

0,0027577 0,077 0,160 0,257 0,064 0,00276 101,862 -0,0013038 -0,00069 0,002250 14,009 -75,577 -138,921 1,200 0,00048 200000000 450,000 1,200 0,00048 200000000 71,304 5,930 

0,0027751 0,076 0,160 0,255 0,068 0,00278 104,996 -0,0014259 -0,00080 0,002250 14,024 -82,654 -159,153 0,000 0,00000 200000000 450,000 1,300 0,00052 199999871 73,497 6,414 

0,0027739 0,076 0,160 0,255 0,068 0,00277 105,045 -0,001417 -0,00079 0,002250 14,023 -82,135 -157,668 0,100 0,00004 200000000 450,000 1,300 0,00052 199999575 73,532 6,387 

0,0027726 0,076 0,160 0,255 0,067 0,00277 105,093 -0,0014081 -0,00078 0,002250 14,022 -81,624 -156,206 0,200 0,00008 200000000 450,000 1,300 0,00052 199999310 73,565 6,361 

0,0027714 0,076 0,160 0,255 0,067 0,00277 105,139 -0,0013995 -0,00077 0,002250 14,021 -81,121 -154,769 0,300 0,00012 200000000 450,000 1,300 0,00052 199999549 73,598 6,335 

0,0027701 0,076 0,160 0,256 0,067 0,00277 105,184 -0,0013909 -0,00077 0,002250 14,020 -80,626 -153,355 0,400 0,00016 200000000 450,000 1,300 0,00052 200000000 73,629 6,310 

0,0027689 0,076 0,160 0,256 0,067 0,00277 105,227 -0,0013825 -0,00076 0,002250 14,019 -80,140 -151,964 0,500 0,00020 200000000 450,000 1,300 0,00052 199999833 73,659 6,285 

0,0027678 0,076 0,160 0,256 0,066 0,00277 105,269 -0,0013743 -0,00075 0,002250 14,018 -79,661 -150,595 0,600 0,00024 200000000 450,000 1,300 0,00052 200000000 73,688 6,260 

0,0027666 0,076 0,160 0,256 0,066 0,00277 105,309 -0,0013662 -0,00075 0,002250 14,017 -79,190 -149,248 0,700 0,00028 200000000 450,000 1,300 0,00052 200000000 73,716 6,236 

0,0027654 0,076 0,160 0,256 0,066 0,00277 105,347 -0,0013582 -0,00074 0,002250 14,016 -78,726 -147,922 0,800 0,00032 200000000 450,000 1,300 0,00052 200000000 73,743 6,212 

Stellenbosch University  https://scholar.sun.ac.za



 
168 

 

0,0027643 0,076 0,160 0,256 0,066 0,00276 105,385 -0,0013503 -0,00073 0,002250 14,015 -78,269 -146,617 0,900 0,00036 200000000 450,000 1,300 0,00052 200000000 73,769 6,188 

0,0027632 0,076 0,160 0,256 0,065 0,00276 105,421 -0,0013425 -0,00073 0,002250 14,014 -77,820 -145,333 1,000 0,00040 200000000 450,000 1,300 0,00052 200000000 73,795 6,165 

0,0027621 0,076 0,160 0,256 0,065 0,00276 105,456 -0,0013349 -0,00072 0,002250 14,013 -77,378 -144,069 1,100 0,00044 200000000 450,000 1,300 0,00052 200000000 73,819 6,142 

0,0027611 0,076 0,160 0,256 0,065 0,00276 105,490 -0,0013274 -0,00071 0,002250 14,012 -76,943 -142,824 1,200 0,00048 200000000 450,000 1,300 0,00052 200000000 73,843 6,119 

0,00276 0,076 0,160 0,256 0,065 0,00276 105,522 -0,00132 -0,00071 0,002250 14,011 -76,514 -141,598 1,300 0,00052 200000000 450,000 1,300 0,00052 200000000 73,865 6,097 

                                            

0,0027788 0,076 0,159 0,255 0,069 0,00278 108,578 -0,0014514 -0,00082 0,002250 14,027 -84,131 -163,376 0,000 0,00000 200000000 450,000 1,400 0,00056 200000000 76,005 6,596 

0,0027775 0,076 0,159 0,255 0,068 0,00278 108,632 -0,0014423 -0,00081 0,002250 14,026 -83,601 -161,860 0,100 0,00004 200000000 450,000 1,400 0,00056 199999363 76,042 6,570 

0,0027762 0,076 0,159 0,255 0,068 0,00278 108,683 -0,0014333 -0,00080 0,002250 14,025 -83,080 -160,369 0,200 0,00008 200000000 450,000 1,400 0,00056 199999289 76,078 6,543 

0,0027749 0,076 0,160 0,255 0,068 0,00277 108,733 -0,0014244 -0,00079 0,002250 14,024 -82,566 -158,902 0,300 0,00012 200000000 450,000 1,400 0,00056 200000000 76,113 6,517 

0,0027737 0,076 0,160 0,255 0,068 0,00277 108,781 -0,0014157 -0,00079 0,002250 14,023 -82,062 -157,458 0,400 0,00016 200000000 450,000 1,400 0,00056 200000000 76,147 6,491 

0,0027724 0,076 0,160 0,255 0,067 0,00277 108,827 -0,0014071 -0,00078 0,002250 14,022 -81,565 -156,038 0,500 0,00020 200000000 450,000 1,400 0,00056 200000000 76,179 6,466 

0,0027712 0,076 0,160 0,255 0,067 0,00277 108,872 -0,0013987 -0,00077 0,002250 14,021 -81,076 -154,641 0,600 0,00024 200000000 450,000 1,400 0,00056 200000000 76,210 6,441 

0,0027701 0,076 0,160 0,256 0,067 0,00277 108,915 -0,0013904 -0,00077 0,002250 14,020 -80,595 -153,265 0,700 0,00028 200000000 450,000 1,400 0,00056 200000000 76,241 6,416 

0,0027689 0,076 0,160 0,256 0,067 0,00277 108,957 -0,0013822 -0,00076 0,002250 14,019 -80,121 -151,912 0,800 0,00032 200000000 450,000 1,400 0,00056 200000000 76,270 6,392 

0,0027677 0,076 0,160 0,256 0,066 0,00277 108,998 -0,0013742 -0,00075 0,002250 14,018 -79,655 -150,579 0,900 0,00036 200000000 450,000 1,400 0,00056 200000000 76,298 6,368 

0,0027666 0,076 0,160 0,256 0,066 0,00277 109,037 -0,0013663 -0,00075 0,002250 14,017 -79,196 -149,267 1,000 0,00040 200000000 450,000 1,400 0,00056 200000000 76,326 6,344 

0,0027655 0,076 0,160 0,256 0,066 0,00277 109,074 -0,0013585 -0,00074 0,002250 14,016 -78,745 -147,976 1,100 0,00044 200000000 450,000 1,400 0,00056 200000000 76,352 6,321 

0,0027644 0,076 0,160 0,256 0,066 0,00276 109,111 -0,0013508 -0,00073 0,002250 14,015 -78,300 -146,705 1,200 0,00048 200000000 450,000 1,400 0,00056 200000000 76,378 6,298 

0,0027633 0,076 0,160 0,256 0,065 0,00276 109,146 -0,0013432 -0,00073 0,002250 14,014 -77,862 -145,453 1,300 0,00052 200000000 450,000 1,400 0,00056 200000000 76,402 6,275 

0,0027623 0,076 0,160 0,256 0,065 0,00276 109,180 -0,0013358 -0,00072 0,002250 14,013 -77,431 -144,220 1,400 0,00056 200000000 450,000 1,400 0,00056 199999526 76,426 6,253 

                                            

0,0027824 0,076 0,159 0,255 0,069 0,00278 112,155 -0,0014767 -0,00084 0,002250 14,031 -85,600 -167,574 0,000 0,00000 200000000 450,000 1,500 0,00060 199999452 78,508 6,770 

0,0027811 0,076 0,159 0,255 0,069 0,00278 112,212 -0,0014674 -0,00083 0,002250 14,029 -85,059 -166,028 0,100 0,00004 200000000 450,000 1,500 0,00060 199999675 78,548 6,743 

0,0027797 0,076 0,159 0,255 0,069 0,00278 112,267 -0,0014582 -0,00082 0,002250 14,028 -84,527 -164,507 0,200 0,00008 200000000 450,000 1,500 0,00060 200000000 78,587 6,716 

0,0027785 0,076 0,159 0,255 0,069 0,00278 112,320 -0,0014492 -0,00082 0,002250 14,027 -84,004 -163,010 0,300 0,00012 200000000 450,000 1,500 0,00060 200000000 78,624 6,690 

0,0027772 0,076 0,159 0,255 0,068 0,00278 112,371 -0,0014403 -0,00081 0,002250 14,026 -83,489 -161,538 0,400 0,00016 200000000 450,000 1,500 0,00060 200000000 78,660 6,664 

0,0027759 0,076 0,159 0,255 0,068 0,00278 112,421 -0,0014316 -0,00080 0,002250 14,025 -82,982 -160,089 0,500 0,00020 200000000 450,000 1,500 0,00060 200000000 78,695 6,638 

0,0027747 0,076 0,160 0,255 0,068 0,00277 112,469 -0,001423 -0,00079 0,002250 14,024 -82,483 -158,664 0,600 0,00024 200000000 450,000 1,500 0,00060 200000000 78,729 6,613 

0,0027735 0,076 0,160 0,255 0,068 0,00277 112,516 -0,0014145 -0,00079 0,002250 14,023 -81,992 -157,260 0,700 0,00028 200000000 450,000 1,500 0,00060 200000000 78,761 6,588 

0,0027723 0,076 0,160 0,255 0,067 0,00277 112,561 -0,0014062 -0,00078 0,002250 14,022 -81,509 -155,879 0,800 0,00032 200000000 450,000 1,500 0,00060 200000000 78,793 6,563 

0,0027711 0,076 0,160 0,255 0,067 0,00277 112,604 -0,001398 -0,00077 0,002250 14,021 -81,033 -154,519 0,900 0,00036 200000000 450,000 1,500 0,00060 200000000 78,823 6,539 

0,00277 0,076 0,160 0,256 0,067 0,00277 112,646 -0,0013899 -0,00077 0,002250 14,020 -80,565 -153,180 1,000 0,00040 200000000 450,000 1,500 0,00060 200000000 78,853 6,515 

0,0027688 0,076 0,160 0,256 0,067 0,00277 112,687 -0,0013819 -0,00076 0,002250 14,019 -80,104 -151,862 1,100 0,00044 200000000 450,000 1,500 0,00060 200000000 78,881 6,492 

0,0027677 0,076 0,160 0,256 0,066 0,00277 112,727 -0,0013741 -0,00075 0,002250 14,018 -79,650 -150,564 1,200 0,00048 200000000 450,000 1,500 0,00060 200000000 78,909 6,468 

0,0027666 0,076 0,160 0,256 0,066 0,00277 112,765 -0,0013664 -0,00075 0,002250 14,017 -79,203 -149,286 1,300 0,00052 200000000 450,000 1,500 0,00060 200000000 78,935 6,445 

0,0027655 0,076 0,160 0,256 0,066 0,00277 112,802 -0,0013588 -0,00074 0,002250 14,016 -78,763 -148,027 1,400 0,00056 200000000 450,000 1,500 0,00060 200000000 78,961 6,423 

0,0027645 0,076 0,160 0,256 0,066 0,00276 112,837 -0,0013513 -0,00073 0,002250 14,015 -78,329 -146,787 1,500 0,00060 200000000 450,000 1,500 0,00060 200000000 78,986 6,400 

                                            

0,002786 0,076 0,159 0,254 0,070 0,00279 115,725 -0,0015019 -0,00086 0,002250 14,034 -87,060 -171,747 0,000 0,00000 200000000 450,000 1,600 0,00064 200000000 81,007 6,936 

0,0027846 0,076 0,159 0,254 0,070 0,00278 115,785 -0,0014924 -0,00085 0,002250 14,032 -86,509 -170,172 0,100 0,00004 200000000 450,000 1,600 0,00064 199999850 81,050 6,908 

0,0027833 0,076 0,159 0,254 0,070 0,00278 115,844 -0,0014831 -0,00084 0,002250 14,031 -85,966 -168,622 0,200 0,00008 200000000 450,000 1,600 0,00064 200000000 81,091 6,881 

0,002782 0,076 0,159 0,255 0,069 0,00278 115,901 -0,0014739 -0,00084 0,002250 14,030 -85,433 -167,096 0,300 0,00012 200000000 450,000 1,600 0,00064 200000000 81,131 6,855 

0,0027807 0,076 0,159 0,255 0,069 0,00278 115,956 -0,0014648 -0,00083 0,002250 14,029 -84,908 -165,595 0,400 0,00016 200000000 450,000 1,600 0,00064 200000000 81,169 6,828 

0,0027794 0,076 0,159 0,255 0,069 0,00278 116,009 -0,0014559 -0,00082 0,002250 14,028 -84,391 -164,118 0,500 0,00020 200000000 450,000 1,600 0,00064 200000000 81,206 6,802 
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0,0027782 0,076 0,159 0,255 0,068 0,00278 116,061 -0,0014471 -0,00081 0,002250 14,027 -83,883 -162,664 0,600 0,00024 200000000 450,000 1,600 0,00064 200000000 81,242 6,777 

0,0027769 0,076 0,159 0,255 0,068 0,00278 116,110 -0,0014385 -0,00081 0,002250 14,026 -83,382 -161,233 0,700 0,00028 200000000 450,000 1,600 0,00064 200000000 81,277 6,752 

0,0027757 0,076 0,159 0,255 0,068 0,00278 116,159 -0,00143 -0,00080 0,002250 14,025 -82,889 -159,825 0,800 0,00032 200000000 450,000 1,600 0,00064 200000000 81,311 6,727 

0,0027745 0,076 0,160 0,255 0,068 0,00277 116,205 -0,0014216 -0,00079 0,002250 14,024 -82,404 -158,438 0,900 0,00036 200000000 450,000 1,600 0,00064 200000000 81,344 6,702 

0,0027733 0,076 0,160 0,255 0,068 0,00277 116,251 -0,0014134 -0,00079 0,002250 14,023 -81,927 -157,072 1,000 0,00040 200000000 450,000 1,600 0,00064 200000000 81,375 6,678 

0,0027722 0,076 0,160 0,255 0,067 0,00277 116,294 -0,0014053 -0,00078 0,002250 14,022 -81,456 -155,728 1,100 0,00044 200000000 450,000 1,600 0,00064 200000000 81,406 6,654 

0,002771 0,076 0,160 0,255 0,067 0,00277 116,337 -0,0013973 -0,00077 0,002250 14,021 -80,993 -154,404 1,200 0,00048 200000000 450,000 1,600 0,00064 200000000 81,436 6,631 

0,0027699 0,076 0,160 0,256 0,067 0,00277 116,378 -0,0013894 -0,00077 0,002250 14,020 -80,537 -153,100 1,300 0,00052 200000000 450,000 1,600 0,00064 200000000 81,464 6,608 

0,0027688 0,076 0,160 0,256 0,067 0,00277 116,417 -0,0013816 -0,00076 0,002250 14,019 -80,088 -151,815 1,400 0,00056 200000000 450,000 1,600 0,00064 200000000 81,492 6,585 

0,0027677 0,076 0,160 0,256 0,066 0,00277 116,456 -0,001374 -0,00075 0,002250 14,018 -79,645 -150,550 1,500 0,00060 200000000 450,000 1,600 0,00064 200000000 81,519 6,562 

0,0027666 0,076 0,160 0,256 0,066 0,00277 116,493 -0,0013665 -0,00075 0,002250 14,017 -79,209 -149,304 1,600 0,00064 200000000 450,000 1,600 0,00064 200000000 81,545 6,540 

                                            

0,0027896 0,076 0,159 0,254 0,071 0,00279 119,288 -0,001527 -0,00088 0,002250 14,037 -88,512 -175,898 0,000 0,00000 200000000 450,000 1,700 0,00068 200000000 83,502 7,094 

0,0027882 0,076 0,159 0,254 0,070 0,00279 119,353 -0,0015173 -0,00087 0,002250 14,036 -87,950 -174,293 0,100 0,00004 200000000 450,000 1,700 0,00068 199999630 83,547 7,067 

0,0027868 0,076 0,159 0,254 0,070 0,00279 119,415 -0,0015078 -0,00086 0,002250 14,034 -87,398 -172,714 0,200 0,00008 200000000 450,000 1,700 0,00068 200000000 83,591 7,039 

0,0027855 0,076 0,159 0,254 0,070 0,00279 119,476 -0,0014984 -0,00086 0,002250 14,033 -86,854 -171,160 0,300 0,00012 200000000 450,000 1,700 0,00068 200000000 83,633 7,012 

0,0027842 0,076 0,159 0,254 0,070 0,00278 119,534 -0,0014892 -0,00085 0,002250 14,032 -86,319 -169,631 0,400 0,00016 200000000 450,000 1,700 0,00068 200000000 83,674 6,986 

0,0027829 0,076 0,159 0,255 0,069 0,00278 119,591 -0,0014801 -0,00084 0,002250 14,031 -85,793 -168,126 0,500 0,00020 200000000 450,000 1,700 0,00068 200000000 83,714 6,959 

0,0027816 0,076 0,159 0,255 0,069 0,00278 119,646 -0,0014711 -0,00083 0,002250 14,030 -85,275 -166,644 0,600 0,00024 200000000 450,000 1,700 0,00068 200000000 83,752 6,934 

0,0027803 0,076 0,159 0,255 0,069 0,00278 119,699 -0,0014623 -0,00083 0,002250 14,029 -84,765 -165,186 0,700 0,00028 200000000 450,000 1,700 0,00068 200000000 83,790 6,908 

0,0027791 0,076 0,159 0,255 0,069 0,00278 119,751 -0,0014537 -0,00082 0,002250 14,028 -84,262 -163,750 0,800 0,00032 200000000 450,000 1,700 0,00068 200000000 83,826 6,883 

0,0027779 0,076 0,159 0,255 0,068 0,00278 119,801 -0,0014451 -0,00081 0,002250 14,027 -83,768 -162,336 0,900 0,00036 200000000 450,000 1,700 0,00068 200000000 83,860 6,858 

0,0027767 0,076 0,159 0,255 0,068 0,00278 119,849 -0,0014367 -0,00080 0,002250 14,026 -83,281 -160,944 1,000 0,00040 200000000 450,000 1,700 0,00068 200000000 83,894 6,834 

0,0027755 0,076 0,160 0,255 0,068 0,00278 119,896 -0,0014285 -0,00080 0,002250 14,025 -82,801 -159,574 1,100 0,00044 200000000 450,000 1,700 0,00068 200000000 83,927 6,810 

0,0027743 0,076 0,160 0,255 0,068 0,00277 119,941 -0,0014203 -0,00079 0,002250 14,024 -82,329 -158,224 1,200 0,00048 200000000 450,000 1,700 0,00068 200000000 83,959 6,786 

0,0027732 0,076 0,160 0,255 0,067 0,00277 119,985 -0,0014123 -0,00078 0,002250 14,023 -81,864 -156,894 1,300 0,00052 200000000 450,000 1,700 0,00068 200000000 83,989 6,762 

0,0027721 0,076 0,160 0,255 0,067 0,00277 120,027 -0,0014044 -0,00078 0,002250 14,022 -81,406 -155,584 1,400 0,00056 200000000 450,000 1,700 0,00068 200000000 84,019 6,739 

0,0027709 0,076 0,160 0,255 0,067 0,00277 120,069 -0,0013966 -0,00077 0,002250 14,021 -80,955 -154,294 1,500 0,00060 200000000 450,000 1,700 0,00068 200000000 84,048 6,716 

0,0027698 0,076 0,160 0,256 0,067 0,00277 120,109 -0,0013889 -0,00077 0,002250 14,020 -80,510 -153,023 1,600 0,00064 200000000 450,000 1,700 0,00068 200000000 84,076 6,694 

0,0027688 0,076 0,160 0,256 0,067 0,00277 120,147 -0,0013814 -0,00076 0,002250 14,019 -80,072 -151,771 1,700 0,00068 200000000 450,000 1,700 0,00068 200000000 84,103 6,672 

                                            

0,0027931 0,076 0,159 0,254 0,071 0,00279 122,846 -0,0015519 -0,00090 0,002250 14,040 -89,956 -180,026 0,000 0,00000 200000000 450,000 1,800 0,00072 200000000 85,992 7,246 

0,0027917 0,076 0,159 0,254 0,071 0,00279 122,915 -0,001542 -0,00089 0,002250 14,039 -89,384 -178,392 0,100 0,00004 200000000 450,000 1,800 0,00072 199999394 86,040 7,218 

0,0027903 0,076 0,159 0,254 0,071 0,00279 122,981 -0,0015323 -0,00088 0,002250 14,037 -88,822 -176,785 0,200 0,00008 200000000 450,000 1,800 0,00072 199999646 86,087 7,191 

0,002789 0,076 0,159 0,254 0,071 0,00279 123,045 -0,0015228 -0,00088 0,002250 14,036 -88,268 -175,202 0,300 0,00012 200000000 450,000 1,800 0,00072 199999475 86,132 7,163 

0,0027876 0,076 0,159 0,254 0,070 0,00279 123,107 -0,0015134 -0,00087 0,002250 14,035 -87,724 -173,645 0,400 0,00016 200000000 450,000 1,800 0,00072 199999792 86,175 7,136 

0,0027863 0,076 0,159 0,254 0,070 0,00279 123,167 -0,0015041 -0,00086 0,002250 14,034 -87,187 -172,112 0,500 0,00020 200000000 449,999 1,800 0,00072 200000000 86,217 7,110 

0,002785 0,076 0,159 0,254 0,070 0,00279 123,226 -0,001495 -0,00085 0,002250 14,033 -86,660 -170,603 0,600 0,00024 200000000 450,000 1,800 0,00072 199999869 86,258 7,084 

0,0027837 0,076 0,159 0,254 0,070 0,00278 123,283 -0,0014861 -0,00085 0,002250 14,032 -86,140 -169,118 0,700 0,00028 200000000 450,000 1,800 0,00072 199999518 86,298 7,058 

0,0027825 0,076 0,159 0,255 0,069 0,00278 123,337 -0,0014772 -0,00084 0,002250 14,031 -85,628 -167,655 0,800 0,00032 200000000 450,000 1,800 0,00072 200000000 86,336 7,033 

0,0027812 0,076 0,159 0,255 0,069 0,00278 123,391 -0,0014685 -0,00083 0,002250 14,030 -85,125 -166,215 0,900 0,00036 200000000 450,000 1,800 0,00072 199999480 86,373 7,007 

0,00278 0,076 0,159 0,255 0,069 0,00278 123,442 -0,00146 -0,00082 0,002250 14,028 -84,629 -164,797 1,000 0,00040 200000000 450,000 1,800 0,00072 199999562 86,409 6,983 

0,0027788 0,076 0,159 0,255 0,069 0,00278 123,492 -0,0014516 -0,00082 0,002250 14,027 -84,140 -163,400 1,100 0,00044 200000000 450,000 1,800 0,00072 200000000 86,444 6,958 

0,0027776 0,076 0,159 0,255 0,068 0,00278 123,540 -0,0014433 -0,00081 0,002250 14,026 -83,659 -162,025 1,200 0,00048 200000000 450,000 1,800 0,00072 199999650 86,478 6,934 

0,0027764 0,076 0,159 0,255 0,068 0,00278 123,587 -0,0014351 -0,00080 0,002250 14,025 -83,185 -160,669 1,300 0,00052 200000000 449,999 1,800 0,00072 200000000 86,511 6,911 
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0,0027753 0,076 0,160 0,255 0,068 0,00278 123,633 -0,001427 -0,00080 0,002250 14,024 -82,718 -159,335 1,400 0,00056 200000000 450,000 1,800 0,00072 199999559 86,543 6,887 

0,0027742 0,076 0,160 0,255 0,068 0,00277 123,676 -0,0014191 -0,00079 0,002250 14,023 -82,258 -158,020 1,500 0,00060 200000000 450,000 1,800 0,00072 200000000 86,574 6,864 

0,002773 0,076 0,160 0,255 0,067 0,00277 123,719 -0,0014113 -0,00078 0,002250 14,022 -81,805 -156,724 1,600 0,00064 200000000 450,000 1,800 0,00072 200000000 86,603 6,841 

0,0027719 0,076 0,160 0,255 0,067 0,00277 123,760 -0,0014036 -0,00078 0,002250 14,021 -81,358 -155,448 1,700 0,00068 200000000 450,000 1,800 0,00072 200000000 86,632 6,819 

0,0027709 0,076 0,160 0,255 0,067 0,00277 123,801 -0,001396 -0,00077 0,002250 14,021 -80,918 -154,190 1,800 0,00072 200000000 450,000 1,800 0,00072 199999013 86,660 6,797 

                                            

0,0027967 0,075 0,158 0,253 0,072 0,00280 126,398 -0,0015767 -0,00092 0,002250 14,043 -91,392 -184,133 0,000 0,00000 200000000 450,000 1,900 0,00076 199999573 88,479 7,392 

0,0027952 0,075 0,159 0,254 0,072 0,00280 126,470 -0,0015666 -0,00091 0,002250 14,042 -90,811 -182,470 0,100 0,00004 200000000 450,000 1,900 0,00076 199999512 88,529 7,364 

0,0027938 0,076 0,159 0,254 0,072 0,00279 126,540 -0,0015568 -0,00090 0,002250 14,040 -90,238 -180,834 0,200 0,00008 200000000 450,000 1,900 0,00076 200000000 88,578 7,336 

0,0027924 0,076 0,159 0,254 0,071 0,00279 126,609 -0,001547 -0,00090 0,002250 14,039 -89,675 -179,224 0,300 0,00012 200000000 450,000 1,900 0,00076 199999418 88,626 7,308 

0,0027911 0,076 0,159 0,254 0,071 0,00279 126,674 -0,0015375 -0,00089 0,002250 14,038 -89,121 -177,639 0,400 0,00016 200000000 450,000 1,900 0,00076 199999675 88,672 7,281 

0,0027897 0,076 0,159 0,254 0,071 0,00279 126,738 -0,0015281 -0,00088 0,002250 14,037 -88,575 -176,078 0,500 0,00020 200000000 450,000 1,900 0,00076 200000000 88,717 7,254 

0,0027884 0,076 0,159 0,254 0,071 0,00279 126,800 -0,0015188 -0,00087 0,002250 14,036 -88,037 -174,542 0,600 0,00024 200000000 450,000 1,900 0,00076 199999678 88,760 7,228 

0,0027871 0,076 0,159 0,254 0,070 0,00279 126,860 -0,0015097 -0,00087 0,002250 14,035 -87,509 -173,030 0,700 0,00028 200000000 450,000 1,900 0,00076 199999557 88,802 7,202 

0,0027858 0,076 0,159 0,254 0,070 0,00279 126,918 -0,0015007 -0,00086 0,002250 14,034 -86,988 -171,541 0,800 0,00032 200000000 450,000 1,900 0,00076 199999465 88,843 7,176 

0,0027846 0,076 0,159 0,254 0,070 0,00278 126,975 -0,0014918 -0,00085 0,002250 14,032 -86,475 -170,075 0,900 0,00036 200000000 450,000 1,900 0,00076 199999159 88,882 7,151 

0,0027833 0,076 0,159 0,254 0,070 0,00278 127,030 -0,0014831 -0,00084 0,002250 14,031 -85,970 -168,631 1,000 0,00040 200000000 450,000 1,900 0,00076 199999086 88,921 7,126 

0,002782 0,076 0,159 0,255 0,069 0,00278 127,081 -0,0014745 -0,00084 0,002250 14,030 -85,471 -167,206 1,100 0,00044 200000000 449,992 1,900 0,00076 200000000 88,957 7,101 

0,0027809 0,076 0,159 0,255 0,069 0,00278 127,134 -0,0014661 -0,00083 0,002250 14,029 -84,982 -165,807 1,200 0,00048 200000000 450,000 1,900 0,00076 200000000 88,994 7,077 

0,0027797 0,076 0,159 0,255 0,069 0,00278 127,184 -0,0014577 -0,00082 0,002250 14,028 -84,499 -164,427 1,300 0,00052 200000000 450,000 1,900 0,00076 200000000 89,029 7,053 

0,0027785 0,076 0,159 0,255 0,069 0,00278 127,232 -0,0014495 -0,00082 0,002250 14,027 -84,024 -163,067 1,400 0,00056 200000000 450,000 1,900 0,00076 200000000 89,063 7,029 

0,0027774 0,076 0,159 0,255 0,068 0,00278 127,279 -0,0014415 -0,00081 0,002250 14,026 -83,555 -161,728 1,500 0,00060 200000000 450,000 1,900 0,00076 199999557 89,095 7,006 

0,0027762 0,076 0,159 0,255 0,068 0,00278 127,325 -0,0014335 -0,00080 0,002250 14,025 -83,093 -160,408 1,600 0,00064 200000000 450,000 1,900 0,00076 199999993 89,127 6,983 

0,0027751 0,076 0,160 0,255 0,068 0,00278 127,369 -0,0014257 -0,00080 0,002250 14,024 -82,639 -159,108 1,700 0,00068 200000000 450,000 1,900 0,00076 199999327 89,158 6,960 

0,002774 0,076 0,160 0,255 0,068 0,00277 127,412 -0,0014179 -0,00079 0,002250 14,023 -82,190 -157,826 1,800 0,00072 200000000 450,000 1,900 0,00076 199999426 89,188 6,938 

0,0027729 0,076 0,160 0,255 0,067 0,00277 127,453 -0,0014103 -0,00078 0,002250 14,022 -81,748 -156,563 1,900 0,00076 200000000 450,000 1,900 0,00076 199999651 89,217 6,915 

                                            

0,0028002 0,075 0,158 0,253 0,073 0,00280 129,944 -0,0016013 -0,00094 0,002250 14,046 -92,822 -188,219 0,000 0,00000 200000000 450,000 2,000 0,00080 199999697 90,961 7,533 

0,0027987 0,075 0,158 0,253 0,072 0,00280 130,020 -0,0015911 -0,00093 0,002250 14,045 -92,230 -186,528 0,100 0,00004 200000000 450,000 2,000 0,00080 200000000 91,014 7,504 

0,0027973 0,075 0,158 0,253 0,072 0,00280 130,094 -0,0015811 -0,00092 0,002250 14,043 -91,648 -184,864 0,200 0,00008 200000000 450,000 2,000 0,00080 199999866 91,066 7,476 

0,0027959 0,075 0,158 0,253 0,072 0,00280 130,166 -0,0015712 -0,00092 0,002250 14,042 -91,075 -183,225 0,300 0,00012 200000000 450,000 2,000 0,00080 200000000 91,116 7,448 

0,0027945 0,076 0,159 0,254 0,072 0,00279 130,236 -0,0015615 -0,00091 0,002250 14,041 -90,511 -181,613 0,400 0,00016 200000000 450,000 2,000 0,00080 199999653 91,165 7,421 

0,0027931 0,076 0,159 0,254 0,071 0,00279 130,303 -0,0015519 -0,00090 0,002250 14,040 -89,955 -180,025 0,500 0,00020 200000000 450,000 2,000 0,00080 200000000 91,212 7,393 

0,0027918 0,076 0,159 0,254 0,071 0,00279 130,369 -0,0015424 -0,00089 0,002250 14,039 -89,409 -178,462 0,600 0,00024 200000000 450,000 2,000 0,00080 199999930 91,258 7,367 

0,0027905 0,076 0,159 0,254 0,071 0,00279 130,432 -0,0015332 -0,00088 0,002250 14,038 -88,870 -176,923 0,700 0,00028 200000000 450,000 2,000 0,00080 199999784 91,303 7,340 

0,0027891 0,076 0,159 0,254 0,071 0,00279 130,494 -0,001524 -0,00088 0,002250 14,036 -88,340 -175,408 0,800 0,00032 200000000 450,000 2,000 0,00080 199999800 91,346 7,314 

0,0027879 0,076 0,159 0,254 0,070 0,00279 130,554 -0,001515 -0,00087 0,002250 14,035 -87,818 -173,915 0,900 0,00036 200000000 450,000 2,000 0,00080 200000000 91,388 7,289 

0,0027866 0,076 0,159 0,254 0,070 0,00279 130,612 -0,0015061 -0,00086 0,002250 14,034 -87,304 -172,446 1,000 0,00040 200000000 450,000 2,000 0,00080 199999803 91,428 7,263 

0,0027853 0,076 0,159 0,254 0,070 0,00279 130,668 -0,0014974 -0,00085 0,002250 14,033 -86,798 -170,998 1,100 0,00044 200000000 450,000 2,000 0,00080 200000000 91,467 7,238 

0,0027841 0,076 0,159 0,254 0,070 0,00278 130,723 -0,0014888 -0,00085 0,002250 14,032 -86,299 -169,572 1,200 0,00048 200000000 450,000 2,000 0,00080 199999646 91,506 7,214 

0,0027829 0,076 0,159 0,255 0,069 0,00278 130,775 -0,0014803 -0,00084 0,002250 14,031 -85,807 -168,167 1,300 0,00052 200000000 450,000 2,000 0,00080 200000000 91,543 7,189 

0,0027817 0,076 0,159 0,255 0,069 0,00278 130,827 -0,001472 -0,00083 0,002250 14,030 -85,323 -166,783 1,400 0,00056 200000000 450,000 2,000 0,00080 199999494 91,579 7,165 

0,0027805 0,076 0,159 0,255 0,069 0,00278 130,877 -0,0014637 -0,00083 0,002250 14,029 -84,846 -165,419 1,500 0,00060 200000000 450,000 2,000 0,00080 199999808 91,614 7,142 

0,0027794 0,076 0,159 0,255 0,069 0,00278 130,925 -0,0014556 -0,00082 0,002250 14,028 -84,376 -164,075 1,600 0,00064 200000000 450,000 2,000 0,00080 199999866 91,648 7,119 

0,0027782 0,076 0,159 0,255 0,069 0,00278 130,972 -0,0014476 -0,00081 0,002250 14,027 -83,913 -162,751 1,700 0,00068 200000000 450,000 2,000 0,00080 200000000 91,680 7,096 
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0,002777 0,076 0,159 0,255 0,068 0,00278 131,012 -0,0014397 -0,00081 0,002250 14,026 -83,453 -161,440 1,800 0,00072 200000000 449,974 2,000 0,00080 200000000 91,709 7,072 

0,002776 0,076 0,159 0,255 0,068 0,00278 131,062 -0,001432 -0,00080 0,002250 14,025 -83,006 -160,159 1,900 0,00076 200000000 450,000 2,000 0,00080 200000000 91,743 7,050 

0,0027749 0,076 0,160 0,255 0,068 0,00277 131,105 -0,0014243 -0,00079 0,002250 14,024 -82,563 -158,891 2,000 0,00080 200000000 450,000 2,000 0,00080 200000000 91,773 7,028 

                                            

0,0028037 0,075 0,158 0,253 0,073 0,00280 133,484 -0,0016259 -0,00096 0,002250 14,049 -94,244 -192,285 0,000 0,00000 200000000 450,000 2,100 0,00084 199999249 93,439 7,669 

0,0028022 0,075 0,158 0,253 0,073 0,00280 133,565 -0,0016155 -0,00095 0,002250 14,048 -93,642 -190,566 0,100 0,00004 200000000 450,000 2,100 0,00084 200000000 93,495 7,640 

0,0028008 0,075 0,158 0,253 0,073 0,00280 133,643 -0,0016053 -0,00094 0,002250 14,046 -93,050 -188,873 0,200 0,00008 200000000 450,000 2,100 0,00084 199999592 93,550 7,611 

0,0027993 0,075 0,158 0,253 0,073 0,00280 133,718 -0,0015952 -0,00094 0,002250 14,045 -92,468 -187,207 0,300 0,00012 200000000 450,000 2,100 0,00084 200000000 93,603 7,583 

0,0027979 0,075 0,158 0,253 0,072 0,00280 133,792 -0,0015853 -0,00093 0,002250 14,044 -91,894 -185,568 0,400 0,00016 200000000 450,000 2,100 0,00084 199999910 93,654 7,555 

0,0027965 0,075 0,158 0,253 0,072 0,00280 133,863 -0,0015756 -0,00092 0,002250 14,043 -91,329 -183,953 0,500 0,00020 200000000 450,000 2,100 0,00084 200000000 93,704 7,527 

0,0027951 0,075 0,159 0,254 0,072 0,00280 133,932 -0,001566 -0,00091 0,002250 14,042 -90,773 -182,364 0,600 0,00024 200000000 450,000 2,100 0,00084 200000000 93,752 7,500 

0,0027938 0,076 0,159 0,254 0,072 0,00279 133,999 -0,0015565 -0,00090 0,002250 14,040 -90,226 -180,798 0,700 0,00028 200000000 450,000 2,100 0,00084 199999685 93,799 7,474 

0,0027925 0,076 0,159 0,254 0,071 0,00279 134,064 -0,0015472 -0,00090 0,002250 14,039 -89,687 -179,257 0,800 0,00032 200000000 450,000 2,100 0,00084 199999605 93,845 7,447 

0,0027912 0,076 0,159 0,254 0,071 0,00279 134,127 -0,0015381 -0,00089 0,002250 14,038 -89,156 -177,739 0,900 0,00036 200000000 450,000 2,100 0,00084 199999711 93,889 7,421 

0,0027899 0,076 0,159 0,254 0,071 0,00279 134,189 -0,0015291 -0,00088 0,002250 14,037 -88,632 -176,243 1,000 0,00040 200000000 450,000 2,100 0,00084 200000000 93,932 7,396 

0,0027886 0,076 0,159 0,254 0,071 0,00279 134,248 -0,0015202 -0,00087 0,002250 14,036 -88,117 -174,771 1,100 0,00044 200000000 450,000 2,100 0,00084 199999675 93,974 7,371 

0,0027874 0,076 0,159 0,254 0,070 0,00279 134,306 -0,0015114 -0,00087 0,002250 14,035 -87,610 -173,320 1,200 0,00048 200000000 450,000 2,100 0,00084 199999265 94,014 7,346 

0,0027861 0,076 0,159 0,254 0,070 0,00279 134,362 -0,0015028 -0,00086 0,002250 14,034 -87,110 -171,890 1,300 0,00052 200000000 450,000 2,100 0,00084 199999209 94,053 7,321 

0,0027849 0,076 0,159 0,254 0,070 0,00278 134,416 -0,0014943 -0,00085 0,002250 14,033 -86,617 -170,482 1,400 0,00056 200000000 450,000 2,100 0,00084 200000000 94,091 7,297 

0,0027837 0,076 0,159 0,254 0,070 0,00278 134,469 -0,0014859 -0,00085 0,002250 14,032 -86,132 -169,094 1,500 0,00060 200000000 450,000 2,100 0,00084 199999925 94,128 7,273 

0,0027825 0,076 0,159 0,255 0,069 0,00278 134,520 -0,0014777 -0,00084 0,002250 14,031 -85,653 -167,726 1,600 0,00064 200000000 450,000 2,100 0,00084 200000000 94,164 7,249 

0,0027814 0,076 0,159 0,255 0,069 0,00278 134,570 -0,0014695 -0,00083 0,002250 14,030 -85,182 -166,378 1,700 0,00068 200000000 450,000 2,100 0,00084 199999461 94,199 7,226 

0,0027802 0,076 0,159 0,255 0,069 0,00278 134,619 -0,0014615 -0,00083 0,002250 14,029 -84,717 -165,050 1,800 0,00072 200000000 450,000 2,100 0,00084 199999753 94,233 7,203 

0,0027791 0,076 0,159 0,255 0,069 0,00278 134,665 -0,0014536 -0,00082 0,002250 14,028 -84,259 -163,740 1,900 0,00076 200000000 450,000 2,100 0,00084 200000000 94,266 7,180 

0,002778 0,076 0,159 0,255 0,068 0,00278 134,711 -0,0014458 -0,00081 0,002250 14,027 -83,807 -162,449 2,000 0,00080 200000000 450,000 2,100 0,00084 199999582 94,298 7,158 

0,0027769 0,076 0,159 0,255 0,068 0,00278 134,755 -0,0014381 -0,00081 0,002250 14,026 -83,362 -161,177 2,100 0,00084 200000000 450,000 2,100 0,00084 199999886 94,329 7,136 

                                            

0,0028072 0,075 0,158 0,253 0,074 0,00281 137,019 -0,0016503 -0,00098 0,002250 14,052 -95,659 -196,332 0,000 0,00000 200000000 450,000 2,200 0,00088 199999572 95,913 7,800 

0,0028057 0,075 0,158 0,253 0,074 0,00281 137,104 -0,0016397 -0,00097 0,002250 14,051 -95,048 -194,584 0,100 0,00004 200000000 450,000 2,200 0,00088 200000000 95,973 7,771 

0,0028042 0,075 0,158 0,253 0,074 0,00280 137,186 -0,0016294 -0,00096 0,002250 14,049 -94,446 -192,864 0,200 0,00008 200000000 450,000 2,200 0,00088 200000000 96,030 7,742 

0,0028027 0,075 0,158 0,253 0,073 0,00280 137,265 -0,0016191 -0,00096 0,002250 14,048 -93,854 -191,171 0,300 0,00012 200000000 450,000 2,200 0,00088 200000000 96,086 7,713 

0,0028012 0,075 0,158 0,253 0,073 0,00280 137,339 -0,001609 -0,00095 0,002250 14,047 -93,269 -189,500 0,400 0,00016 200000000 449,985 2,200 0,00088 200000000 96,137 7,685 

0,0027999 0,075 0,158 0,253 0,073 0,00280 137,417 -0,0015992 -0,00094 0,002250 14,046 -92,697 -187,863 0,500 0,00020 200000000 450,000 2,200 0,00088 199999514 96,192 7,657 

0,0027985 0,075 0,158 0,253 0,072 0,00280 137,490 -0,0015894 -0,00093 0,002250 14,044 -92,132 -186,247 0,600 0,00024 200000000 450,000 2,200 0,00088 200000000 96,243 7,630 

0,0027971 0,075 0,158 0,253 0,072 0,00280 137,561 -0,0015798 -0,00092 0,002250 14,043 -91,575 -184,655 0,700 0,00028 200000000 450,000 2,200 0,00088 200000000 96,292 7,603 

0,0027958 0,075 0,159 0,254 0,072 0,00280 137,629 -0,0015704 -0,00092 0,002250 14,042 -91,027 -183,088 0,800 0,00032 200000000 450,000 2,200 0,00088 200000000 96,340 7,576 

0,0027944 0,076 0,159 0,254 0,072 0,00279 137,696 -0,001561 -0,00091 0,002250 14,041 -90,487 -181,545 0,900 0,00036 200000000 450,000 2,200 0,00088 199999560 96,387 7,550 

0,0027931 0,076 0,159 0,254 0,071 0,00279 137,761 -0,0015519 -0,00090 0,002250 14,040 -89,955 -180,024 1,000 0,00040 200000000 450,000 2,200 0,00088 199999891 96,432 7,524 

0,0027918 0,076 0,159 0,254 0,071 0,00279 137,823 -0,0015428 -0,00089 0,002250 14,039 -89,431 -178,526 1,100 0,00044 200000000 450,000 2,200 0,00088 199999832 96,476 7,498 

0,0027906 0,076 0,159 0,254 0,071 0,00279 137,884 -0,0015339 -0,00089 0,002250 14,038 -88,915 -177,051 1,200 0,00048 200000000 450,000 2,200 0,00088 199999470 96,519 7,473 

0,0027893 0,076 0,159 0,254 0,071 0,00279 137,944 -0,0015252 -0,00088 0,002250 14,037 -88,406 -175,597 1,300 0,00052 200000000 450,000 2,200 0,00088 199999391 96,560 7,448 

0,0027881 0,076 0,159 0,254 0,070 0,00279 138,001 -0,0015165 -0,00087 0,002250 14,035 -87,905 -174,164 1,400 0,00056 200000000 450,000 2,200 0,00088 200000000 96,601 7,424 

0,0027869 0,076 0,159 0,254 0,070 0,00279 138,057 -0,001508 -0,00086 0,002250 14,034 -87,411 -172,752 1,500 0,00060 200000000 450,000 2,200 0,00088 199999648 96,640 7,399 

0,0027857 0,076 0,159 0,254 0,070 0,00279 138,111 -0,0014996 -0,00086 0,002250 14,033 -86,925 -171,361 1,600 0,00064 200000000 450,000 2,200 0,00088 199999812 96,678 7,375 

0,0027845 0,076 0,159 0,254 0,070 0,00278 138,164 -0,0014913 -0,00085 0,002250 14,032 -86,445 -169,990 1,700 0,00068 200000000 450,000 2,200 0,00088 199999302 96,715 7,352 
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0,0027833 0,076 0,159 0,254 0,070 0,00278 138,215 -0,0014832 -0,00084 0,002250 14,031 -85,972 -168,638 1,800 0,00072 200000000 450,000 2,200 0,00088 199999388 96,750 7,329 

0,0027822 0,076 0,159 0,255 0,069 0,00278 138,265 -0,0014751 -0,00084 0,002250 14,030 -85,506 -167,306 1,900 0,00076 200000000 450,000 2,200 0,00088 200000000 96,785 7,306 

0,002781 0,076 0,159 0,255 0,069 0,00278 138,313 -0,0014672 -0,00083 0,002250 14,029 -85,047 -165,992 2,000 0,00080 200000000 450,000 2,200 0,00088 199999341 96,819 7,283 

0,0027799 0,076 0,159 0,255 0,069 0,00278 138,360 -0,0014594 -0,00082 0,002250 14,028 -84,594 -164,697 2,100 0,00084 200000000 450,000 2,200 0,00088 199999711 96,852 7,261 

0,0027788 0,076 0,159 0,255 0,069 0,00278 138,405 -0,0014517 -0,00082 0,002250 14,027 -84,147 -163,420 2,200 0,00088 200000000 450,000 2,200 0,00088 199999789 96,884 7,239 

                                            

0,0028107 0,075 0,158 0,252 0,075 0,00281 140,549 -0,0016746 -0,00100 0,002250 14,055 -97,068 -200,359 0,000 0,00000 200000000 450,000 2,300 0,00092 199999847 98,384 7,927 

0,0028091 0,075 0,158 0,252 0,074 0,00281 140,637 -0,0016639 -0,00099 0,002250 14,054 -96,447 -198,584 0,100 0,00004 200000000 450,000 2,300 0,00092 199999674 98,446 7,897 

0,0028076 0,075 0,158 0,253 0,074 0,00281 140,723 -0,0016533 -0,00098 0,002250 14,052 -95,836 -196,837 0,200 0,00008 200000000 450,000 2,300 0,00092 200000000 98,506 7,868 

0,0028061 0,075 0,158 0,253 0,074 0,00281 140,807 -0,0016429 -0,00098 0,002250 14,051 -95,234 -195,117 0,300 0,00012 200000000 450,000 2,300 0,00092 199999597 98,565 7,839 

0,0028047 0,075 0,158 0,253 0,074 0,00280 140,888 -0,0016327 -0,00097 0,002250 14,050 -94,642 -193,423 0,400 0,00016 200000000 450,000 2,300 0,00092 200000000 98,621 7,810 

0,0028032 0,075 0,158 0,253 0,073 0,00280 140,966 -0,0016227 -0,00096 0,002250 14,049 -94,058 -191,755 0,500 0,00020 200000000 450,000 2,300 0,00092 200000000 98,676 7,782 

0,0028018 0,075 0,158 0,253 0,073 0,00280 141,043 -0,0016128 -0,00095 0,002250 14,047 -93,484 -190,113 0,600 0,00024 200000000 450,000 2,300 0,00092 199999875 98,730 7,755 

0,0028004 0,075 0,158 0,253 0,073 0,00280 141,117 -0,001603 -0,00094 0,002250 14,046 -92,918 -188,496 0,700 0,00028 200000000 450,000 2,300 0,00092 200000000 98,782 7,727 

0,0027991 0,075 0,158 0,253 0,073 0,00280 141,189 -0,0015934 -0,00093 0,002250 14,045 -92,361 -186,903 0,800 0,00032 200000000 450,000 2,300 0,00092 200000000 98,832 7,700 

0,0027977 0,075 0,158 0,253 0,072 0,00280 141,259 -0,0015839 -0,00093 0,002250 14,044 -91,812 -185,334 0,900 0,00036 200000000 450,000 2,300 0,00092 200000000 98,881 7,674 

0,0027964 0,075 0,158 0,253 0,072 0,00280 141,327 -0,0015746 -0,00092 0,002250 14,043 -91,272 -183,788 1,000 0,00040 200000000 450,000 2,300 0,00092 200000000 98,929 7,648 

0,0027951 0,075 0,159 0,254 0,072 0,00280 141,393 -0,0015654 -0,00091 0,002250 14,042 -90,739 -182,265 1,100 0,00044 200000000 450,000 2,300 0,00092 200000000 98,975 7,622 

0,0027938 0,076 0,159 0,254 0,072 0,00279 141,458 -0,0015563 -0,00090 0,002250 14,040 -90,214 -180,765 1,200 0,00048 200000000 450,000 2,300 0,00092 199999854 99,020 7,596 

0,0027925 0,076 0,159 0,254 0,071 0,00279 141,520 -0,0015474 -0,00090 0,002250 14,039 -89,697 -179,287 1,300 0,00052 200000000 450,000 2,300 0,00092 200000000 99,064 7,571 

0,0027912 0,076 0,159 0,254 0,071 0,00279 141,581 -0,0015386 -0,00089 0,002250 14,038 -89,188 -177,831 1,400 0,00056 200000000 450,000 2,300 0,00092 199999812 99,107 7,546 

0,00279 0,076 0,159 0,254 0,071 0,00279 141,640 -0,00153 -0,00088 0,002250 14,037 -88,686 -176,395 1,500 0,00060 200000000 450,000 2,300 0,00092 199999563 99,148 7,522 

0,0027888 0,076 0,159 0,254 0,071 0,00279 141,697 -0,0015214 -0,00087 0,002250 14,036 -88,191 -174,981 1,600 0,00064 200000000 450,000 2,300 0,00092 199999561 99,188 7,497 

0,0027876 0,076 0,159 0,254 0,070 0,00279 141,752 -0,001513 -0,00087 0,002250 14,035 -87,703 -173,586 1,700 0,00068 200000000 450,000 2,300 0,00092 200000000 99,227 7,474 

0,0027864 0,076 0,159 0,254 0,070 0,00279 141,807 -0,0015047 -0,00086 0,002250 14,034 -87,222 -172,211 1,800 0,00072 200000000 450,000 2,300 0,00092 200000000 99,265 7,450 

0,0027852 0,076 0,159 0,254 0,070 0,00279 141,859 -0,0014965 -0,00085 0,002250 14,033 -86,748 -170,856 1,900 0,00076 200000000 450,000 2,300 0,00092 199999655 99,301 7,427 

0,0027841 0,076 0,159 0,254 0,070 0,00278 141,910 -0,0014885 -0,00085 0,002250 14,032 -86,281 -169,521 2,000 0,00080 200000000 450,000 2,300 0,00092 199999714 99,337 7,404 

0,0027829 0,076 0,159 0,255 0,069 0,00278 141,960 -0,0014805 -0,00084 0,002250 14,031 -85,820 -168,203 2,100 0,00084 200000000 450,000 2,300 0,00092 199999739 99,372 7,381 

0,0027818 0,076 0,159 0,255 0,069 0,00278 142,008 -0,0014727 -0,00083 0,002250 14,030 -85,366 -166,905 2,200 0,00088 200000000 450,000 2,300 0,00092 199999465 99,406 7,359 

0,0027807 0,076 0,159 0,255 0,069 0,00278 142,055 -0,001465 -0,00083 0,002250 14,029 -84,918 -165,624 2,300 0,00092 200000000 450,000 2,300 0,00092 200000000 99,438 7,337 

                                            

0,0028141 0,075 0,158 0,252 0,075 0,00281 144,073 -0,0016988 -0,00102 0,002250 14,058 -98,471 -204,369 0,000 0,00000 200000000 450,000 2,400 0,00096 199999646 100,851 8,050 

0,0028126 0,075 0,158 0,252 0,075 0,00281 144,165 -0,0016879 -0,00101 0,002250 14,057 -97,840 -202,566 0,100 0,00004 200000000 450,000 2,400 0,00096 200000000 100,916 8,020 

0,002811 0,075 0,158 0,252 0,075 0,00281 144,255 -0,0016772 -0,00100 0,002250 14,055 -97,219 -200,792 0,200 0,00008 200000000 450,000 2,400 0,00096 200000000 100,979 7,990 

0,0028095 0,075 0,158 0,252 0,074 0,00281 144,343 -0,0016666 -0,00100 0,002250 14,054 -96,608 -199,044 0,300 0,00012 200000000 450,000 2,400 0,00096 200000000 101,040 7,961 

0,002808 0,075 0,158 0,253 0,074 0,00281 144,428 -0,0016563 -0,00099 0,002250 14,053 -96,006 -197,324 0,400 0,00016 200000000 450,000 2,400 0,00096 199999510 101,100 7,932 

0,0028066 0,075 0,158 0,253 0,074 0,00281 144,510 -0,001646 -0,00098 0,002250 14,052 -95,414 -195,630 0,500 0,00020 200000000 450,000 2,400 0,00096 199999822 101,157 7,904 

0,0028051 0,075 0,158 0,253 0,074 0,00281 144,591 -0,001636 -0,00097 0,002250 14,050 -94,830 -193,962 0,600 0,00024 200000000 450,000 2,400 0,00096 199999831 101,213 7,876 

0,0028037 0,075 0,158 0,253 0,073 0,00280 144,668 -0,0016261 -0,00096 0,002250 14,049 -94,256 -192,319 0,700 0,00028 200000000 450,000 2,400 0,00096 200000000 101,268 7,848 

0,0028023 0,075 0,158 0,253 0,073 0,00280 144,744 -0,0016163 -0,00095 0,002250 14,048 -93,690 -190,701 0,800 0,00032 200000000 450,000 2,400 0,00096 199999742 101,321 7,821 

0,002801 0,075 0,158 0,253 0,073 0,00280 144,818 -0,0016067 -0,00095 0,002250 14,047 -93,132 -189,107 0,900 0,00036 200000000 450,000 2,400 0,00096 199999798 101,372 7,794 

0,0027996 0,075 0,158 0,253 0,073 0,00280 144,889 -0,0015972 -0,00094 0,002250 14,045 -92,583 -187,536 1,000 0,00040 200000000 450,000 2,400 0,00096 199999205 101,423 7,767 

0,0027983 0,075 0,158 0,253 0,072 0,00280 144,959 -0,0015879 -0,00093 0,002250 14,044 -92,041 -185,989 1,100 0,00044 200000000 450,000 2,400 0,00096 199999853 101,471 7,741 

0,002797 0,075 0,158 0,253 0,072 0,00280 145,026 -0,0015787 -0,00092 0,002250 14,043 -91,508 -184,465 1,200 0,00048 200000000 450,000 2,400 0,00096 199999722 101,518 7,715 

0,0027957 0,075 0,159 0,254 0,072 0,00280 145,092 -0,0015696 -0,00091 0,002250 14,042 -90,983 -182,962 1,300 0,00052 200000000 450,000 2,400 0,00096 199999666 101,564 7,690 
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0,0027944 0,076 0,159 0,254 0,072 0,00279 145,156 -0,0015607 -0,00091 0,002250 14,041 -90,465 -181,482 1,400 0,00056 200000000 450,000 2,400 0,00096 199999572 101,609 7,665 

0,0027931 0,076 0,159 0,254 0,071 0,00279 145,218 -0,0015519 -0,00090 0,002250 14,040 -89,955 -180,023 1,500 0,00060 200000000 450,000 2,400 0,00096 199999719 101,652 7,640 

0,0027919 0,076 0,159 0,254 0,071 0,00279 145,278 -0,0015432 -0,00089 0,002250 14,039 -89,452 -178,585 1,600 0,00064 200000000 450,000 2,400 0,00096 199999446 101,695 7,616 

0,0027907 0,076 0,159 0,254 0,071 0,00279 145,337 -0,0015346 -0,00089 0,002250 14,038 -88,956 -177,168 1,700 0,00068 200000000 450,000 2,400 0,00096 199999592 101,736 7,591 

0,0027895 0,076 0,159 0,254 0,071 0,00279 145,394 -0,0015262 -0,00088 0,002250 14,037 -88,467 -175,770 1,800 0,00072 200000000 450,000 2,400 0,00096 199999695 101,776 7,568 

0,0027883 0,076 0,159 0,254 0,070 0,00279 145,449 -0,0015179 -0,00087 0,002250 14,036 -87,985 -174,393 1,900 0,00076 200000000 450,000 2,400 0,00096 200000000 101,814 7,544 

0,0027871 0,076 0,159 0,254 0,070 0,00279 145,503 -0,0015097 -0,00087 0,002250 14,035 -87,510 -173,035 2,000 0,00080 200000000 450,000 2,400 0,00096 200000000 101,852 7,521 

0,0027859 0,076 0,159 0,254 0,070 0,00279 145,555 -0,0015016 -0,00086 0,002250 14,034 -87,042 -171,696 2,100 0,00084 200000000 450,000 2,400 0,00096 199999901 101,889 7,498 

0,0027848 0,076 0,159 0,254 0,070 0,00278 145,606 -0,0014936 -0,00085 0,002250 14,033 -86,580 -170,375 2,200 0,00088 200000000 450,000 2,400 0,00096 200000000 101,924 7,475 

0,0027837 0,076 0,159 0,254 0,070 0,00278 145,656 -0,0014858 -0,00085 0,002250 14,032 -86,124 -169,073 2,300 0,00092 200000000 450,000 2,400 0,00096 200000000 101,959 7,453 

0,0027826 0,076 0,159 0,255 0,069 0,00278 145,704 -0,001478 -0,00084 0,002250 14,031 -85,675 -167,788 2,400 0,00096 200000000 450,000 2,400 0,00096 199998964 101,993 7,431 

                                            

0,0028176 0,075 0,157 0,252 0,076 0,00282 147,591 -0,0017229 -0,00104 0,002250 14,061 -99,867 -208,361 0,000 0,00000 200000000 450,000 2,500 0,00100 199999712 103,314 8,170 

0,002816 0,075 0,158 0,252 0,076 0,00282 147,688 -0,0017118 -0,00103 0,002250 14,060 -99,227 -206,531 0,100 0,00004 200000000 450,000 2,500 0,00100 199999806 103,382 8,139 

0,0028144 0,075 0,158 0,252 0,075 0,00281 147,783 -0,001701 -0,00102 0,002250 14,058 -98,597 -204,729 0,200 0,00008 200000000 450,000 2,500 0,00100 199999874 103,448 8,109 

0,0028129 0,075 0,158 0,252 0,075 0,00281 147,874 -0,0016902 -0,00101 0,002250 14,057 -97,976 -202,956 0,300 0,00012 200000000 450,000 2,500 0,00100 199999737 103,512 8,080 

0,0028114 0,075 0,158 0,252 0,075 0,00281 147,963 -0,0016797 -0,00101 0,002250 14,056 -97,365 -201,209 0,400 0,00016 200000000 450,000 2,500 0,00100 200000000 103,574 8,051 

0,0028099 0,075 0,158 0,252 0,075 0,00281 148,049 -0,0016693 -0,00100 0,002250 14,054 -96,764 -199,489 0,500 0,00020 200000000 450,000 2,500 0,00100 199999924 103,635 8,022 

0,0028084 0,075 0,158 0,253 0,074 0,00281 148,133 -0,0016591 -0,00099 0,002250 14,053 -96,171 -197,795 0,600 0,00024 200000000 450,000 2,500 0,00100 199999730 103,693 7,993 

0,002807 0,075 0,158 0,253 0,074 0,00281 148,215 -0,001649 -0,00098 0,002250 14,052 -95,587 -196,126 0,700 0,00028 200000000 450,000 2,500 0,00100 200000000 103,750 7,965 

0,0028056 0,075 0,158 0,253 0,074 0,00281 148,294 -0,0016391 -0,00097 0,002250 14,051 -95,012 -194,483 0,800 0,00032 200000000 450,000 2,500 0,00100 199999927 103,806 7,938 

0,0028042 0,075 0,158 0,253 0,074 0,00280 148,371 -0,0016294 -0,00096 0,002250 14,049 -94,446 -192,864 0,900 0,00036 200000000 450,000 2,500 0,00100 200000000 103,860 7,911 

0,0028028 0,075 0,158 0,253 0,073 0,00280 148,446 -0,0016197 -0,00096 0,002250 14,048 -93,888 -191,269 1,000 0,00040 200000000 450,000 2,500 0,00100 199999897 103,912 7,884 

0,0028015 0,075 0,158 0,253 0,073 0,00280 148,519 -0,0016102 -0,00095 0,002250 14,047 -93,339 -189,697 1,100 0,00044 200000000 450,000 2,500 0,00100 199999341 103,963 7,857 

0,0028001 0,075 0,158 0,253 0,073 0,00280 148,590 -0,0016009 -0,00094 0,002250 14,046 -92,797 -188,148 1,200 0,00048 200000000 449,999 2,500 0,00100 200000000 104,013 7,831 

0,0027988 0,075 0,158 0,253 0,073 0,00280 148,659 -0,0015917 -0,00093 0,002250 14,045 -92,263 -186,622 1,300 0,00052 200000000 450,000 2,500 0,00100 200000000 104,061 7,805 

0,0027975 0,075 0,158 0,253 0,072 0,00280 148,726 -0,0015826 -0,00093 0,002250 14,044 -91,737 -185,119 1,400 0,00056 200000000 450,000 2,500 0,00100 199999670 104,108 7,780 

0,0027962 0,075 0,158 0,253 0,072 0,00280 148,791 -0,0015737 -0,00092 0,002250 14,043 -91,218 -183,636 1,500 0,00060 200000000 450,000 2,500 0,00100 200000000 104,154 7,755 

0,002795 0,075 0,159 0,254 0,072 0,00279 148,855 -0,0015649 -0,00091 0,002250 14,041 -90,707 -182,175 1,600 0,00064 200000000 450,000 2,500 0,00100 199999697 104,198 7,730 

0,0027937 0,076 0,159 0,254 0,072 0,00279 148,916 -0,0015562 -0,00090 0,002250 14,040 -90,204 -180,735 1,700 0,00068 200000000 450,000 2,500 0,00100 199999282 104,241 7,706 

0,0027925 0,076 0,159 0,254 0,071 0,00279 148,976 -0,0015476 -0,00090 0,002250 14,039 -89,707 -179,315 1,800 0,00072 200000000 450,000 2,500 0,00100 199999876 104,283 7,682 

0,0027913 0,076 0,159 0,254 0,071 0,00279 149,034 -0,0015391 -0,00089 0,002250 14,038 -89,217 -177,915 1,900 0,00076 200000000 450,000 2,500 0,00100 200000000 104,324 7,658 

0,0027901 0,076 0,159 0,254 0,071 0,00279 149,091 -0,0015308 -0,00088 0,002250 14,037 -88,735 -176,535 2,000 0,00080 200000000 450,000 2,500 0,00100 199999235 104,364 7,634 

0,0027889 0,076 0,159 0,254 0,071 0,00279 149,146 -0,0015226 -0,00088 0,002250 14,036 -88,258 -175,174 2,100 0,00084 200000000 450,000 2,500 0,00100 200000000 104,402 7,611 

0,0027878 0,076 0,159 0,254 0,070 0,00279 149,200 -0,0015145 -0,00087 0,002250 14,035 -87,789 -173,832 2,200 0,00088 200000000 450,000 2,500 0,00100 200000000 104,440 7,588 

0,0027866 0,076 0,159 0,254 0,070 0,00279 149,252 -0,0015065 -0,00086 0,002250 14,034 -87,326 -172,508 2,300 0,00092 200000000 450,000 2,500 0,00100 200000000 104,476 7,566 

0,0027855 0,076 0,159 0,254 0,070 0,00279 149,303 -0,0014986 -0,00086 0,002250 14,033 -86,869 -171,203 2,400 0,00096 200000000 450,000 2,500 0,00100 200000000 104,512 7,543 

0,0027844 0,076 0,159 0,254 0,070 0,00278 149,352 -0,0014909 -0,00085 0,002250 14,032 -86,419 -169,915 2,500 0,00100 200000000 450,000 2,500 0,00100 200000000 104,547 7,521 

 

200x200x2800 (Phase 3) 

h 0,200                                               

b 0,2                                               

d 0,175                                               

d' 0,030                                               
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l 2,8 11,2                                             

As 0,001                                               

As' 0,001                                               

Ect 5145414                                               

Ecc 30983137                                               

Es 200000000                                               

εct1 0,000894                                               

σct1 4600                                               

εctu 0,02100                                               

σctu 5300                                               

εccu -0,00306 -0,00097                                             

σccu -56400 -30054                                             

α 0,00677                                               

δ 0,407                                               

                                                  

εct2 β g p γ m n x εct2 P εcc εsc εst σct2 σcc fsc %Ac As' Es fst %Ac As Es Mu Δ 

0,00271 0,329 0,553 0,959 0,969 0,999 1,998 0,054 0,00271 31,532 -0,00100 -0,00044 0,00225 4,663 -30,440 -88,678 0,000 0,00000 200000000 450,000 0,300 0,00012 199999955 22,072 6,294 

0,00271 0,330 0,554 0,960 0,981 1,000 1,999 0,053 0,00271 31,533 -0,00099 -0,00043 0,00225 4,663 -30,297 -86,787 0,100 0,00004 200000000 450,000 0,300 0,00012 199999929 22,073 6,262 

0,00271 0,330 0,554 0,960 0,992 1,000 2,000 0,053 0,00271 31,532 -0,00098 -0,00042 0,00225 4,663 -30,159 -84,979 0,200 0,00008 200000000 450,000 0,300 0,00012 200000000 22,073 6,230 
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