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Abstract

Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is con-

trolled by up to four regulatory mechanisms, including adenylylation of some or all of the

twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the

treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and

is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine syn-

thetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacte-

rial glutamine synthetase is of particular interest. Previously published reports show that,

when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli ade-

nylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase.

Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine syn-

thetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuber-

culosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis

glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP

based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme

inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well

as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macro-

phage assay.

Introduction

Tuberculosis (TB) is a worldwide pandemic, caused by infection with the bacterium Mycobac-
terium tuberculosis. Although current treatment can be effective, existing drugs must be taken

for at least six months to prevent relapse. Poor treatment compliance contributes directly to
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the emergence of multidrug- and extensively drug-resistant (MDR and XDR) strains of M.

tuberculosis. New targets for drugs are therefore required. These new drugs should also sim-

plify and shorten the treatment period, as well as reduce drug-drug interactions in patients co-

infected with HIV. Drug discovery programmes for infectious diseases are normally focussed

on pathogen proteins whose function is known to be essential to the bacterial cell, combined

with a lack of mammalian homologues. One such potential drug target for TB is adenylylated

glutamine synthetase (GS).

GS (EC 6.3.1.2) catalyzes the reversible conversion of L-glutamic acid, ATP and ammonia

to L-glutamine, ADP and inorganic phosphate via a γ-glutamyl phosphate intermediate [1]. It

is a central enzyme in nitrogen metabolism, and can be regulated by at least four different

mechanisms: (a) adenylylation and deadenylylation of a conserved tyrosine residue, (b) con-

version between a relaxed (inactive) and taut (active) state depending on the divalent metal

cation present, (c) cumulative feedback inhibition by multiple end products of glutamine

metabolism, and (d) repression and derepression of GS biosynthesis in response to nitrogen

availability [1].

Three distinct forms of GS occur, with GS-I found only in bacteria (eubacteria) and archaea

(archaebacteria) [2]. GS-II occurs only in eukaryotes, and soil-dwelling bacteria, while GS-III

genes have been found only in a few bacterial species. Two significant prokaryotic GS-I sub-

divisions exist: GS-Iα and GS-Iβ [3]. The GS-Iβ enzyme is regulated via the adenylylation/

deadenylylation cascade, which does not occur in the GS-Iα or GS-II sub-divisions. M. tuber-
culosis and Escherichia coli GS are regulated in this manner, while the human homologue

belongs to GS-II and is not subject to adenylylation, a difference that can be exploited by devel-

oping drugs that are only active against the adenylylated form of the enzyme.

The extent of adenylylation of the E. coli GS is regulated in response to the intracellular con-

centrations of 2-ketoglutarate and glutamine, via the reversible adenylylation of a tyrosine resi-

due (Tyr397) in each subunit of GS [1, 4–8]. The presence of adenylylated GS predominates in

a nitrogen-rich, carbon-limited media, while the deadenylylated form tends to predominate

under conditions of nitrogen limitation [1, 4–15]. The regulation of the adenylylation state of

GS is accomplished by three proteins: (1) uridylyltransferase/uridylyl-removing enzyme, (2)

the signal transduction protein PII, and (3) adenylyltransferase or ATase. High intracellular

concentrations of glutamine activate the uridylyl-removing enzyme, which causes the deuridy-

lylation of PII. This interacts with the ATase, which then catalyses the adenylylation of the GS.

A high intracellular 2-ketoglutarate concentration activates uridylyltransferase, which transfers

UMP to each subunit of PII, forming PII-UMP. The PII-UMP interacts with the Atase, which

in turn catalyses the removal of AMP from the GS. Research on the effect of glucose, ammonia

and glutamic acid concentrations has shown that the adenylylation state of GS is a function of

metabolic flux rather than absolute concentration only [10]. The activity of GS is therefore reg-

ulated by both the nature and the availability of the ammonia source [1,8]. The current view is

that the level of GS activity is inversely related to the degree of adenylylation [reviewed in 1, 9,

10] and that adenylylated residues may be present on any number of subunits from zero to 12,

depending on carbon and nitrogen availability [13, 16–21]. GS is therefore responsible for the

assimilation of ammonia when the available ammonia in the environment is restricted, as well

as for the formation of glutamine for the synthesis of protein and other nitrogen compounds.

In ammonia-rich medium, the level of GS is low and GS functions primarily for the synthesis

of glutamine.

A number of factors make GS a potential drug target in the fight against TB, including

being considered essential for the survival of M. tuberculosis [22–25]. The GS inhibitor L-

methionine-S,R-sulphoximine (MSO) inhibits growth of M. tuberculosis both in vitro and in
vivo [22,23]. It is located extracellularly, a characteristic that is found only in the pathogenic
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mycobacteria such as M. tuberculosis and Mycobacterium bovis, and not with the non-patho-

genic strains of Mycobacterium smegmatis and Mycobacterium phlei [21,22]. This location

means a potential drug does not have to pass the M. tuberculosis cell wall barrier. It appears to

play an important role in cell wall biosynthesis, in the form of a cell wall component found

only in pathogenic mycobacteria: poly-L-glutamate/glutamine [26, 27].

M. tuberculosis GS (MtbGS) has previously been successfully expressed in heterologous sys-

tems including the non-pathogenic mycobacterial strain M. smegmatis and E. coli [28–30].

Mehta et al expressed M. tuberculosis GS in E. coli host strains that were deficient in either

chromosomal GS, or both chromosomal GS and ATase [30]. They found that the E. coli ATase

was inefficient in adenylylating the heterologous M. tuberculosis GS, with only ~25% of sub-

units being modified. A lack of E. coli ATase yielded completely deadenylylated M. tuberculosis
GS. As a result no crystal structure exists for M. tuberculosis fully adenylylated GS [31]. A num-

ber of studies have been undertaken targeting MtbGS as a potential therapeutic target however,

in none of these investigations was an attempt made to exploit the dichotomy between adeny-

lylated and deadenylylated GS [32–39]. As outlined prokaryotic GS is regulated via a complex

cascade that is based on the availability of NH4
+ and glucose to the organism and the intracel-

lular concentrations of 2-ketoglutarate and glutamine [1, 4–8]. This regulation results in the

adenylylation or deadenylylation of the GS with a concomitant switch in the enzymes affinity

from Mn2+ to Mg2+[1, 4–8, 30]. The adenylylation and the switch in metal ion specificity sig-

nificantly impacts on the enzyme activity of GS and therefore probably impacts on the struc-

ture of the active site. It is proposed that this dichotomy may be exploitable in creating GS

inhibitors that target only prokaryotic GS as only bacterial GS have regulation via the adenyly-

lation/deadenylylation cascade.

Here, we describe the production of both the deadenylylated and adenylylated forms of

MtbGS in E. coli. Deadenylylated MtbGS is produced by constitutive expression of MtbGS in

an E. coli strain deficient in both E. coli GS and ATase activities, while adenylylated MtbGS is

produced when co-expressed with an inducible M. tuberculosis ATase. Adenylylation was mea-

sured using the γ-glutamyl transferase assay, mass spectrometry and determination of phos-

phate content. IC50 values of the known GS inhibitors MSO and phosphinotricin (PhosT)

were also determined. A battery of ATP scaffold compounds were identified and screened for

their differential inhibitory effect on adenylylated MtbGS and deadeylylated MtbGS. Two of

these compounds showed micromolar activity against MtbGS, acceptable activity against a

cell-free and macrophage model of M. tuberculosis indicating their possible druggability. The

two compounds identified here represent a good starting point for a hit-to-lead campaign to

develop selective, druggable agents capable of selectively inhibiting the adenylated form of

MtbGS in view of identifying novel agents against M. tuberculosis infection.

Experimental procedures

Plasmids and bacterial strains

E. coli JM109 (Promega Corporation) was used for cloning. Restriction endonucleases were

purchased from Fermentas Life Sciences and Ex TaqTM DNA polymerase from TaKaRa Bio

Inc.

M. tuberculosis glutamine synthetase glnA gene was PCR amplified from genomic DNA of

M. tuberculosis H37Rv (ATCC 25618) using the oligonucleotide primers TB1: 5’-GATGGATCC
ACCCGATAACCAG-3’and TB2: 5’-GATGGATCCTCGAAAAACCTCG-3’. The amplified

DNA was then digested with BamHI (sites underlined in primer sequences) and ligated with

similarly digested pBluescript SKII+, generating plasmid pTBSK, with the glnA gene under con-

tol of the constitutive T3 promoter.
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The M. tuberculosis H37Rv adenylyl transferase glnE gene was PCR amplified from genomic

DNA using the oligonucleotide primers TBglnE-8: 5’-TAGCATATGGTCGTGACCAAAC-3’
and TBglnE-9: 5’-CAGGATCCTTAACTCCCGAACAC-3’. The amplified DNA was then co-

digested with NdeI and BamHI (sites underlined in primer sequence) and ligated with NdeI
and BglII digested pCDFDuet-1 (Novagen) to construct pTBGlnE, with glnE downstream of

the IPTG-inducible T7lac promoter.

For MtbGS expression, the chromosomal adenylyl transferase glnE gene of the glutamine

synthetase auxotroph YMC11 was deleted using the Quick and Easy E. coli Gene Deletion Kit

(Gene Bridges, GmbH) to create the strain YMC11E [40]. The Novagen λDE3 Lysogenization

Kit was used to create YMC11E(DE3).

Production of adenylylated and deadenylylated MtbGS

Deadenylylated MtbGS was expressed in YMC11E containing pTBSK. This strain was inoc-

ulated in 50 ml M9ZB medium (1% w/v N-Z-Amine A; 85 mM NaCl) containing M9 Salts

(22 mM Na2HPO4; 22 mM KH2PO4; 18 mM NH4Cl; 8.5 mM NaCl) and supplemented with

100 μg.ml-1 ampicillin, 1mM MgSO4 and 4% (w/v) glucose. The inoculum was grown at

28˚C for 16 hours with shaking at 220 rpm. Subsequently, 5 ml of the culture was trans-

ferred to 250 ml of the same medium, which was grown at 28˚C for 16 hours. The cultures

were harvested by centrifugation for 10 min at 16,300g (4˚C) and the bacterial pellet used

for MtbGS purification.

Adenylylated MtbGS was produced using YMC11E(DE3) containing both pTBSK and

pTBglnE. This strain was inoculated into 50 ml of the same medium as above, including 50 μg.

ml-1 streptomycin. The cultures were incubated at 33˚C for 16 hours with shaking at 220 rpm.

Thereafter, 5 ml was transferred to 250 ml of the same medium and grown at 33˚C for a fur-

ther 8 hours. M. tuberculosis adenylyl transferase expression was then induced by the addition

1 mM IPTG. After a further incubation at 33˚C for 16 hours with shaking at 220 rpm, the cul-

tures were harvested by centrifugation for 10 min at 16,300g (4˚C) and the bacterial pellet used

for MtbGS purification.

Purification of adenylylated and deadenylylated MtbGS

The purification of adenylylated and deadenylylated MtbGS from a cell free extract was carried

out in a three stage process; a streptomycin sulphate precipitation to remove contaminating

nucleic acid, an anion-exchange chromatography stage which removed the major fraction of

contaminating proteins and an AMP-Sepharose affinity chromatography”polishing” stage

which produced the purified enzyme (See Supporting Information for detail, S1 File).

Production and purification of adenylylated and deadenylylated E. coli

GS

For comparison purposes, adenylylated and deadenylylated E. coli GS was also heterologously

expressed and purified. Recombinant deadenylylated E. coli GS was produced in an E. coli
strain lacking chromosomal glnA (GS) and glnE (ATase) genes. Adenylylated E. coli GS was

produced in a strain lacking chromosomal glnA (GS) and glnD (uridilyl transferase) genes (See

Supplementary Information for detail, S1 File) [41, 42]. Sodium dodecyl-sulphate polyacryl-

amide gel electrophoresis (SDS-PAGE) was used to analyse the molecular mass and purity of

the isolated enzymes [43]. Protein concentrations were determined by using the Quant-ITTM

Protein Assay Kit (Invitrogen, USA) used in conjunction with the QUBITTM fluorometer.
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Determination of degree of adenylylation of purified GS

Mass spectrometry. A 40 μl aliquot of purified GS in 10 mM imidazole pH 7.0 was loaded

on an OPTI-LYNX C4 trap cartridge at 100 μl/min using 2% ACN (Acetonitrile)/0.1% FA

(Formic Acid). Samples were eluted using linear acetonitrile gradient (2–90% ACN/5% FA) in

5min and TOF-MS spectra, in the range 700–1700 mz, collected using QSTRA-Elite mass

spectrometer with TurboIon source installed. The multiply charged series of TBGS was decon-

voluted by the Bayesina Protein Recostruct tool of Bioanalyst QS 2.0 using a mass range of 40–

70kD and signal to noise threshold of 3.

Hydrolysis of GS for determination of phosphate content. The relative phosphate con-

tent of the purified GS proteins was determined by hydrolysis to release the phosphate [44].

Purified GS (4 to 8 nmol in 1 ml) was digested by the addition of 4 M HCl (1 ml), and the mix-

ture was evaporated to dryness. The residue was resuspended in 2 M HCl (1 ml) plus 20 μl of

H2O2 (30% v/v), and the mixture was again evaporated to dryness. Five sequential additions of

H2O2 (200 μl) with evaporation to dryness were used to complete the hydrolysis. The residue

was resuspended in Milli-Q water (1 ml), and phosphate content was determined by using the

BioVision Phosphate colorimetric assay kit as per supplier’s manual.

γ-Glutamyl transferase assay. The GS γ-glutamyl transferase enzyme activity was used to

calculate the degree of adenylylation of the purified GS using the standard method as outlined

by Shapiro and Stadtman [41].

Dose response assays: MtbGS inhibitor screening and specific activity determination.

Standard GS inhibitors methionine sulphoximine (MSO), phosphinotricin (PhosT) and a bat-

tery of 213 compounds were tested for inhibition of the adenylylated and dedenylylated forms

of MtbGS. Serial 4-fold dilutions of MSO and PhosT were prepared in DMSO. Two dilution

series were set up, one starting at 1 mM and the other at 2 mM. Eight dilutions were performed

in DMSO, to produce a concentration range of 1 mM– 61 nM or 2 mM—122 nM. Twenty μl

of each dilution was distributed into duplicate wells of the reaction plate. Each well received

164 μl MtbGS in 50 mM HEPES, 4 mM NH4Cl, 1.8 mM MnCl2 or MgCl2. For adenylylated

MtbGS, HEPES pH 6.95 and MnCl2 were used, while for deadenylylated MtbGS, HEPES pH

7.15 and MgCl2 were required. The plates were incubated at 37˚C for 2 hours, after which the

reactions were initiated by adding sodium glutamate and ATP to final concentrations of 4 mM

and 0.8 mM respectively, with a final reaction volume of 200 μl. After further 2 hour incuba-

tion, the reactions were terminated by the addition of 1 μl 50% trichloro acetic acid to each

well. Blank wells (no enzyme) were also prepared for each individual compound. In addition,

each plate contained control wells (10% DMSO without inhibitor) and blank control wells

(10% DMSO, no inhibitor, no enzyme). After termination of the reactions, ADP levels in each

well were determined by HPLC.

HPLC based enzyme assay. The enzyme activity of GS was determined by measuring the

ADP concentration by HPLC [45]. Samples were analysed on a Hewlett Packard series 1100

HPLC fitted with a Luna 5μm C18 column. Each sample was automatically injected (2 μl) and

separated with a mobile phase containing 51 mM KH2PO4, PIC A Low UV Reagent, 25% (v/v)

acetonitrile. An AMP, ADP and ATP standard was used to calibrate the HPLC and the con-

centration of ADP in each sample was determined by the area under the curve using Agilent

Technologies ChemStation software. The ADP values in the blank wells were subtracted from

enzyme-containing wells, and percentage enzyme activity in each well calculated relative to

the average net ADP values of the control wells without inhibitor. The enzyme activity was

expressed as a percentage of the maximum enzyme activity in the absence of any inhibitor.

HeLa cell cytotoxicity assay. HeLa cells (Human Negroid cervix epitheloid adenocarci-

noma, ECACC) were routinely maintained as monolayer cell cultures in Eagle’s minimal
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essential medium (EMEM) containing 5% fetal bovine serum, 2 mM L-glutamine and 50 μg/

ml gentamicin at 37˚C in a 5% CO2 incubator. To perform the cytotoxicity assay, the cells (3–

19 passages) were used to inoculate 96-well microtiter plates at plating densities of 7000 cells/

well. After incubating for 24 hours, the culture medium was replaced with medium containing

serial dilutions of the experimental compounds. Each dilution series consisted of 8 x 3-fold

serial dilutions, spanning the final concentration range 100–0.05 μM. Triplicate wells were

used for each concentration point (n = 3). The dilutions were prepared from compound stocks

of 10 mM in DMSO, thus the final DMSO content in the highest compound concentration

wells was 1%. Control wells consisted of cells incubated in medium with 1% DMSO, while

blank wells contained medium without cells. Emetine was used as a positive control drug stan-

dard. The plates were incubated for 48 hours after addition of the compounds. The cellular

protein present after the incubation period was fixed to the bottom of each well with cold 50%

TCA, washed in tap water and stained with 0.4% sulforhodamine B (SRB) in 1% acetic acid.

Unbound dye was removed by washing with 1% acetic acid, after which protein-bound dye

was solubilised with 10 mM Tris base and transferred to a duplicate 96-well plate. Optical den-

sity was measured at 540 nm using a Tecan Infinite F500 multiwell spectrophotometer. OD540

values of the blank wells were subtracted from the readings obtained for all the other wells, and

percentage cell viability at each test compound concentration calculated relative to the

untreated (DMSO alone) control wells. Percentage viability was plotted against Log (com-

pound concentration) and the IC50 for each compound calculated from fitted non-linear

regression dose-response curves using GraphPad Prism software.

Testing of compounds against M.tb strains in-vito and ex-vivo using the

BACTEC 460TB™ assay

Bacterial strains. All M.tb strains used were from a strain bank kept in the Division

Molecular Biology and Human Genetics of of Stellenbosch University. M.tb H37Rv reference

strain (ATCC 25618) and a clinical isolate of M.tb (Beijing220) were used to evaluate com-

pounds for anti-tuberculosis activity. The H37Rv strain was sensitive to the breakpoint con-

centrations (approximately 10x higher than their minimal inhibitory concentrations (MIC) of

isoniazid (0.25ug/ml), ethambutol (9.4ug/ml), and rifampicin (2.0ug/ml) [46]. However, the

Beijing220 clinical isolate was resistant to isoniazid and rifampicin [47, 48].

Test compounds. The compounds identified were used in the BACTEC 460TB™ assay

[49]. The identified compounds were dissolved and diluted with 100% DMSO.

Bacterial selection. All mycobacterial colonies were cultured and selected from Lowen-

stein-Jensen slant [50] cultures followed by culture in Middlebrook 7H9 mycobacterial growth

medium supplemented with OADC (0.005% v/v oleic acid (Merck), 0.5% w/v BSA Fraction V,

0.2% v/v glucose, 0.02% v/v catalase (Merck), w/v 0.085% NaCl). Cultures were stained by

acid-fast staining (Ziehl-Neelsen) to control for contamination.

BACTEC 460TB™ system determination of mycobacterial growth. The BACTEC

460TB™ system has been devised to monitor mycobacterial growth of the slow growing species.

The bacteria are grown on a radioactive substrate and the radioactive carbon dioxide produced

is directly proportional to the mycobacterial growth rate. Read-out values are expressed as

growth index (GI). M.tb reference strain H37Rv was cultured in 7H9 mycobacterial medium

(Difco) enriched with ADC (0.5% w/v BSA Fraction V, 0.2% v/v glucose, 0.015% v/v catalase

(Merck) with continuous stirring at 37˚C. When cultures reached a density of approximately

0.16 at OD600 (one McFarland), 0.1 ml was inoculated into a BACTEC 12B medium vial. These

primary cultures were incubated at 37˚C until a growth index of 500 (± 50) was reached. These

primary cultures were used for drug testing of known and unknown compounds. Compounds,
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resuspended in DMSO, were sterilized through a 13 mm organic solvent resistant syringe filter

with 0.22 micron pore size (Millex-LG). Undiluted and sequentially diluted samples were tested

for growth inhibitory activity. 0.1 ml of primary culture and 0.1 ml drug compound were added

to a BACTEC 460TB™ vial, the vials incubated at 37˚C, and the growth monitored every 24

hours. Controls included cultures with and without compound solvent. GI readings were con-

tinued until the controls reached the maximum GI value of or below 999. Control GI values

between 50 and 800 are normally used to evaluate the efficacy of compounds with possible anti-

tuberculosis activity.

Testing of screening hits against M.tb in a macrophage assay

M.tb cultures. M.tb clinical MDR strain (Beijing220) was cultured in 7H9 broth supple-

mented with 10% oleic acid-albumin-dextrose catalase (OADC, Difco, BD Biosciences, Moun-

tain View, CA, USA) and 2% glycerol and 0.05% Tween 80 (Glickman et. al., 2000). Liquid

cultures were grown for up to 3 weeks and stored at -80˚C in 1ml aliquots with 15% glycerol.

Clumps were eliminated by 30 passages through a needle (26-gauge 3/8; 0.45 x 10 for intrader-

mal injection; BD Biosciences, USA). Before infection, viability of mycobacteria was evaluated

by the propidium iodide exclusion method to ensure>90% viability. Contamination was

checked by the Ziehl-Neelsen stain. The required amount of mycobacteria was spun down at

16 300xg for 5 min. The supernatant was removed and the bacteria resuspended in PBS (phos-

phate buffered saline) and passaged again 20 times and then used for macrophage infection.

Manipulation of mouse bone marrow-derived macrophages (MBMM). This research

study was approved by the Stellenbosch University Animal Ethics committee on Animal Care

and Use and complies with the South African Animal Protection Act (Act no 71, 1962). Ani-

mal Ethics No. SU-ACUD14-00041. Mice were supplied by the Animal House of the Univer-

sity of Stellenbosch, South Africa. Mice were cared for in accordance with ethical laws on

animal manipulation. Untreated mice were killed by cervical dislocation inside the Animal

House 10 minutes after being received. Bone marrow cells were isolated from the femurs and

tibias and differentiated into macrophages as previously described [51]. Bone marrow cells

were obtained from femurs of 6–8 week-old C57BL/6 female mice and seeded into 24-well tis-

sue culture plates. The culture medium was RPMI-1640 (Sigma, USA) supplemented with 10%

heat-inactivated fetal bovine serum (Gibco), 10% L-929 cell conditioned medium (a source of

colony stimulating factor-1) with no antibiotics. Incubation was performed at 37˚C, 5% CO2.

At 5 days after seeding, adherent cells were washed twice with RPMI and re-fed with complete

medium. Medium was then renewed every second day.

Macrophage infection and harvesting of TB. Frozen aliquots of M.tb (Beijing220) were

removed from the -80˚C freezer where they were kept for long-term storage and thawed and

processed as indicated. Infection of the 7-Day old MBMM in 24-well plates was performed in

triplicates with 100 μl of bacterial suspension relative to a multiplicity of infection (MOI) of 2,

and incubated for 4 hrs at 37˚C, 5% CO2. After the 4 hr incubation period, non-ingested M.tb
(Beijing220) was removed by washing 4 times with ice-cold PBS. Fresh RPMI medium (1 ml)

was added and again on day 2. At day 4 post infection the test compounds were added at the

desired concentrations between 10 μM and 100 μM. Included were uninfected, infected (no

drug) and an isoniazid drug controls. On day 2 post drug intervention the macrophages were

washed 3 times with cold PBS (4˚C) and then the bacteria harvested by adding 1 ml 0.025%

SDS for 5 min to lyse the adherent macrophages. The contents of each well were placed into sep-

arate Eppendorf tubes and the bacteria were pelleted at 13000 rpm for 5 min. The bacteria was

resuspended in 100 μl 7H9 Middlebrook medium and then inoculated into BACTEC 460TB™
vials. Growth was monitored over time until the BACTEC 460TB™ readings of the infected (no
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drug) control reached about 500. The percentage growth inhibition for each drug compound

was determined by relating the linear growth unit readings to the infected (no drug) control.

Results

Production and purification of adenylylated and deadenylylated MtbGS

Expression strain E. coli YMC11E was constructed by deleting the chromosomal glnE gene in

the GS auxotroph YMC11. For induction of M. tuberculosis ATase expression from pTBGlnE,

the strain was lysogenised with λDE3 to create YMC11E(DE3).

Deadenylylated MtbGS was expressed from pTBSK in E. coli YMC11E. Adenylylated

MtbGS was produced in YMC11E(DE3) via co-expression of MtbGS in pTBSK and M. tuber-
culosis ATase in pTBGlnE. MtbGS was expressed constitutively, while ATase production was

induced by the addition of IPTG. The two plasmids used contain compatible origins of replica-

tion and can thus be maintained stably in the same strain. Fig 1 illustrates a SDS-PAGE of the

cell-free E. coli soluble extracts, as well as the purified adenylylated and deadenylylated forms

of MtbGS. The average protein concentrations from three purifications of adenylylated and

deadenylylated MtbGS are 120 ± 28 and 145 ± 49 μg.ml-1, respectively. The estimated size is in

agreement with the theoretical ~53.4 kDa per subunit of the MtbGS dodecamer.

Determination of the adenylylation state of adenylylated and

deadenylylated MtbGS

MS analysis of deadenylylated MtbGS, yielded a single peak with a calculated mass of

53,438.00 Da (Fig 2), in agreement with the theoretical mass of 53.4 kDa. Deadenylylated E.

coli GS had a calculated mass of 51,773.00 Da (theoretical mass = 51.7 kDa). Adenylylated E.

coli GS was calculated to be 52,102.00 Da (theoretical mass = 52.1 kDa), with a single peak

indicating 100% adenylylation. The 330 Da adenyl moiety accounts for the mass difference

between the adenylylated and deadenylylated forms of each enzyme. Adenylylated MtbGS

would not ionise properly, therefore the spectra obtained (Fig 2) that shows 85% adenylylation,

could therefore be potentially higher than 85%. In order to confirm adenylylation of MtbGS,

other methods were also pursued.

The hydrolysis of GS for determination of phosphate content was carried out on the puri-

fied enzymes to confirm the degree of adenylylation (Fig 3). Each adenyl moiety contains 1

phosphate, and 1 μM of GS (containing 12 subunits) should contain 12 μM of phosphate, if

each subunit is adenylylated. The result obtained for the adenylylated MtbGS enzyme was the

formation of 0.93 μM phosphate produced per μM GS active site, i.e. 93% adenylylated. In the

case of the deadenylylated enzyme there was no formation of phosphate. The results obtained

for E. coli GS were 0.95 μM and 0 μM for adenylylated and deadenylylated GS, respectively.

The γ-glutamyl transferase enzyme assay was carried out with purified GS to: i) confirm the

functionality of the purified MtbGS enzymes, and ii) assess the degree of adenylylation of the

purified enzyme. At a specific pH, the total enzyme activity of GS (both adenylylated and dead-

enylylated) occurs in the presence of Mn2+. At the same pH in the presence of Mn2+ and an

excess Mg2+, only the deadenylylated component of the enzyme activity is measured. The

resultant ratio is then used to calculate the degree of adenylylation of the enzyme. After three

purifications, the typical degree of adenylylation for deadenylylated MtbGS is 3 ± 2%, while

the adenylylated form is 68 ± 4% adenylylated. For comparison purposes, adenylylated and

deadenylylated E. coli GS yielded results of 0% and 87 ± 3% adenylylation, respectively.

A summary of the adenylylation state of the M. tuberculosis GS and E. coli GS as determined

by the different analysis techniques is out lined in Table 1.
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Fig 1. 12% SDS-PAGE gel of cell-free E. coli extracts, as well as purified adenylylated and deadenylylated

MtbGS. Lane 1: molecular weight marker with size in kDa indicated on left. Lane 2: Adenylylated MtbGS cell-free

extract. Lane 3: Adenylylated MtbGS purified protein. Lane 4: Deadenylylated MtbGS cell-free extract. Lane 5:

Deadenylylated MtbGS purified protein.

https://doi.org/10.1371/journal.pone.0185068.g001

Fig 2. Mass spectra of M. tuberculosis and E. coli GS purified proteins. The calculated mass and

presence of the major peak is shown within each spectrum (A) deadenylylated E. coli GS, (B) adenylylated E.

coli GS, (C) deadenylylated M. tuberculosis GS, (D) adenylylated M. tuberculosis GS.

https://doi.org/10.1371/journal.pone.0185068.g002
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Fig 3. Hydrolysis of M. tuberculosis and E. coli GS purified protein (adenylylated and deadenylylated) for phosphate concentration

determination. A blue colour indicates the presence of free phosphate.

https://doi.org/10.1371/journal.pone.0185068.g003

Table 1. Summary of the adenylylation states of M. tuberculosis and E. coli GS determined by different methods. (1) mass spectroscopy, (2) hydroly-

sis and phosphate concentration determination and (3) γ-glutamyl transferase assay.

M. tuberculosis E. coli

Deadenylylated Adenylylated Deadenylylated Adenylylated

MS 0% 85% 7% 100%

Phosphate Concentration 0 μM 0.93 μM 0 μM 0.95 μM

γ-glutamyl transferase 3 ± 2% 68 ± 4% 0 87 ± 3%

https://doi.org/10.1371/journal.pone.0185068.t001
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Specific activity, inhibitor studies, dose-response assays and M.tb

BACTEC 460TB™ assays

The specific activity of the adenylylated and deadenylylated MtbGS were determined. The con-

version of ATP to ADP was measured by HPLC and the typical specific activity of adenylylated

and deadenylylated forms of M. tuberculosis GS are 0.010 and 0.015 μmol ADP/min/mg pro-

tein, respectively.

Inhibitor studies with a library of 213 ATP scaffold based inhibitors were carried out to

reflect the differential inhibition of adenylated and deadenylated MtbGS. These assays were

also performed using the pre-incubation protocol, where the inhibitors were allowed to inter-

act with either adenylated or deadenylated MtbGS before the addition of substrates sodium

glutamate and ATP. Based on the results illustrated with the deadenylylated enzyme in Fig 4A,

six candidate inhibitors (indicated by the red data points) showed promising inhibitory activi-

ties. With the adenylylated enzyme, the % enzyme activities in the presence of the individual

compounds varied widely, producing a pronounced scatter of values around the mean and

consequently a very wide confidence interval (Fig 4B) nevertheless ten inhibitors (indicated by

the red data points) showed promising inhibitory activities with one inhibitor yielding an inhi-

bition of 99%. The scatter associated with the data when using the adenylylated GS is probably

associated with inter subunit allosteric regulation of adenylylated GS [42]. Some compounds

therefore allosterically activate the enzyme.

Fixed concentration evaluation of eleven candidate inhibitors were tested on both adenylated

and deadenylated MtbGS. Based on the results indicated in Table 2 there is a clear indication of

differential inhibition between the two forms of MtbGS. One compound (5045) displayed sig-

nificant selectivity for the deadenylylated MtbGS, while seven compounds suggested specificity

for the adenylylated MtbGS and three appeared relatively non-selective. The chemical structures

of these candidate inhibitors are indicated in Fig 5.

Dose-response assays were carried out to obtain a more accurate reflection of the activity of

adenylated and deadenylated MtbGS. These assays were performed on the 2 forms of the

enzyme to derive compound IC50 (50% inhibitory concentration) values, using the standard

GS inhibitors MSO and PhosT. Dose-response assays were performed using a pre-incubation

protocol, allowing the inhibitor to interact with the enzyme before addition of substrates

sodium glutamate and ATP. Based on the results illustrated in Fig 6, IC50 values derived from

the dose-response curves suggested, firstly, that adenylylated MtbGS is more sensitive to inhi-

bition by the standard inhibitors than the deadenylylated form of the enzyme and, secondly,

that PhosT is a more potent inhibitor of the Mtb enzymes than MSO. Compounds 10057 and

10059 both gave IC50 concentrations less than 100 μM. In duplicate assays run on different

days in triplicate the IC50 concentrations obtained were 3.51 and 15.6 μM and 13.2 and

17.1 μM, for the adenylylated enzyme and deadenylylated enzyme, respectively.

M.tb BACTEC 460TB™ assays were carried out on compounds identified following the pri-

mary screening for enzymatic activity against adenylylated and deadenylylated M.tb GS. Com-

pounds identified (see Fig 5) were tested for activity against M.tb H37Rv reference strain for

antibacterial activity. Growth inhibition was calculated as a percentage of the growth index

(GI) at day 6 of incubation where the GI of 1.0% of the control culture equalled 50 GI units. Of

the compounds directed against adenylylated GS (Fig 5), compound 10057 showed 53% (+/-

12.7) growth inhibition at 100 μM and also compound 5029 gave 66% (+/- 2.8) inhibition at

100uM against H37Rv on day 6 of incubation relative to the control cultures. However, the

growth rate (ΔGI = GI at day+1 minus GI at day) in both cases continuously increased over

the period of incubation and past day 6 of incubation indicating that bacterial doubling is tak-

ing place although at a slower rate. Most the compounds (5024, 12004, 5009, 5012, 5002, and
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Fig 4. M. tuberculosis GS enzyme screen using the pre-incubation protocol. The residual percentage adenylated (B) and deadenylated (A) GS enzyme

activities after incubation with 10μM of the individual compounds are shown, along with horizontal lines depicting the average % enzyme activity obtained with

all compounds, as well as an indication of the confidence interval of the results, expressed as the average activity ± 3 x standard deviation (SD). Percentage

activity obtained with methionine sulfoximine (MSO) and phosphinothricin (PhosT) is shown in blue. Candidate inhibitors previously identified in the

adenylated GS screen are shown as red datapoints. Additional compounds selected for further evaluation are shown as orange datapoints.

https://doi.org/10.1371/journal.pone.0185068.g004
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5016) showed no activity against M.tb H37Rv at 100 μM final concentration. Compound 5045,

designed to be directed against the de-adenylylated GS (Fig 5) showed an inhibition of 98%

(+/- 8.8) growth of the H37Rv mycobacterial cultures.

The 8 selective compounds identified in the enzyme assays namely compounds that were

de-adenylylated selective (5, 5002, 5012, 5016, 5029, 10057, 10059) and deadenylylated selec-

tive (5045), were tested in mouse bone-marrow derived macrophages infected with a clinical

multidrug-resistant strain actively spreading in the Western Cape region of South Africa

(Johnson et. al., 2010; Leisching et. al., 2016). Only compounds 5029, 5045, 10057 and 10059

showed activity at a concentration of 100 μM (see Fig 7). The percentage killing exhibited by

compounds 5029, 5045, 10057 and 10059 were 67%, 64%, 65% and 54% respectively at

100 μM.

The most active compounds 5029, 5045 and 10057 were tested further in macrophages at

concentrations 10 μM, 50 μM and 100 μM for 2 days (Fig 8). In this experiment compound

5045 showed the best activity (73% killing) at 100 μM. The growth inhibitory effect of com-

pound 5045 correlated well with the high inhibition observed in the extracellular BACTEC

assay against M.tb H37Rv (98% inhibition at 100μM).

Discussion

M. tuberculosis GS is a potentially valuable therapeutic target for TB drug intervention. Its reg-

ulation via adenylylation of a tyrosine residue on each subunit makes it distinct from the

human form of the enzyme. Prokaryotic GS is regulated via a complex cascade that is based on

the availability of NH4
+ and glucose to the organism and the intracellular concentrations of

2-ketoglutarate and glutamine [1, 4–8]. This regulation results in the adenylylation or deade-

nylylation of the GS with a concomitant switch in the enzymes affinity from Mn2+ to Mg2+[1,

4–8, 30]. The coordination chemistry of Mn2+ to Mg2+ are significantly different enough to

change the shape of the active site of the GS as is the effect of adenylylation. No crystal

Table 2. Fixed concentration evaluation of 11 candidate inhibitors in M.tuberculosis GS enzyme assays using the pre-incubation protocol. The

percentage enzyme inhibition obtained with the compounds (10μM final concentration) in 4 separate screens is shown, along with the average inhibition for

each compound over the 4 screens and the corresponding standard deviation (SD). The colour coding of the highlighted table cells is clarified in the bottom

legend. Compounds were defined as selective for the adenylylated or deadenylylated form of the enzyme based on at least a 30% difference in inhibition.

Adenylated Mtb GS (% inhibition) Deadenylated Mtb GS (% inhibition)

Compound (10μM) Screen 1 Screen 2 Screen 3 Screen 4 AVG SD Screen 1 Screen 2 Screen 3 Screen 4 AVG SD

PhosT 100 95 97 100 98 2 100 98 100 100 100 1

MSO 100 100 96 100 99 2 100 100 99 100 100 1

5 48 33 40 29 38 8 0 0 6 0 2 3

5002 68 40 38 35 45 15 0 10 8 14 8 6

5009 37 50 50 22 40 13 57 41 44 44 47 7

5012 55 31 32 42 40 11 14 16 4 24 15 8

5016 51 43 46 30 43 9 7 19 3 13 11 7

5024 46 48 43 36 43 5 49 44 52 44 47 4

5029 79 46 56 60 60 14 5 8 7 9 7 2

5045 0 0 0 0 0 0 44 45 54 48 48 5

10057 100 99 98 100 99 1 67 62 47 58 59 9

10059 82 99 82 100 91 10 49 48 36 43 44 6

12004 39 32 33 30 34 4 50 43 38 38 42 6

Non-selective

Adenylylated

Deadenylylated

https://doi.org/10.1371/journal.pone.0185068.t002
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Fig 5. Chemical structures of the 11 synthesized ATP scaffold based inhibitors which shown promising inhibition of M. tuberculosis GS enzymes.

They are divided into three distinct groups (1) non-selective (2) Deadenylylated selective and (3) Adenylylated selective.

https://doi.org/10.1371/journal.pone.0185068.g005

Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis GS

PLOS ONE | https://doi.org/10.1371/journal.pone.0185068 October 3, 2017 15 / 22

https://doi.org/10.1371/journal.pone.0185068.g005
https://doi.org/10.1371/journal.pone.0185068


Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis GS

PLOS ONE | https://doi.org/10.1371/journal.pone.0185068 October 3, 2017 16 / 22

https://doi.org/10.1371/journal.pone.0185068


structure exits for the fully adenylylated form of the enzyme [31]. A number of studies have

been undertaken targeting MtbGS as a potential therapeutic target however, in none of these

investigations was an attempt made to exploit this dichotomy that exists between adenylylated

Fig 6. Dose-response assays for MSO and PhosT standard inhibitors. Percentage GS activity was plotted

against log (compound concentration) and sigmoidal dose-response curves fitted to the data points using non-

linear regression analysis. The curves were used to derive the IC50 values for the inhibitors (displayed in the top right

legend).

https://doi.org/10.1371/journal.pone.0185068.g006

Fig 7. Intracellular survival of M.tb (Beijing220) in mouse bone-marrow derived macrophages after 4-day post-infection period followed by

intervention on D4 PI with different compounds, MOI 2:1, 4 day incubation at 37˚C, 5% CO2. Cells were sacrificed on Day 2 Post Drug Intervention. Only

Drugs 5029, 5045, 10057 and 10059 showed moderate activity. Where not shown, error bars fall within symbols.

https://doi.org/10.1371/journal.pone.0185068.g007
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and deadenylylated GS [32–38]. Previous reports of heterologous expression of MtbGS in E.

coli have shown that the endogenous ATase activity of E. coli does not adenylylate MtbGS suffi-

ciently, with only 25% of the MtbGS subunits produced displaying adenylylation [39]. The use

of this expression system was therefore not considered optimal for the expression of adenyly-

lated MtbGS for further study.

Here, we have described an E. coli production system, lacking endogenous GS and ATase

activity, which utilises the co-expression of the M. tuberculosis ATase with MtbGS. Each gene

was provided on a separate plasmid, the glnA gene on a pBluescript SKII+ plasmid with the

ColE1 origin of replication, and the glnE gene on a pCDFDuet-1 plasmid containing a CloDF13

Fig 8. Intracellular survival of M.tb (Beijing220) in mouse bone-marrow derived macrophages after 4-day post-infection period followed by

intervention on D4 PI with different compounds, MOI 2:1, 4 day incubation at 37˚C, 5% CO2. Cells were sacrificed on Day 2 Post Drug Intervention.

Drug 5045 showed the best activity (73% killing) at 100 μM. Where not shown, error bars fall within symbols.

https://doi.org/10.1371/journal.pone.0185068.g008
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replicon. These replicons are compatible, and the two plasmids can be stably co-maintained, pro-

vided the relevant antibiotic selective pressure is exerted: ampicillin for pBluescript SKII+ and

streptomycin for pCDFDuet-1[40]. In this way, we have produced MtbGS that has a better ade-

nylylation state than any previously reported. Three methods were used to assess the adenylyla-

tion of MtbGS, and E. coli adenylylated and deadenylylated GS. The E. coli enzymes were

produced recombinantly from pBluescript SKII+ in E. coli production strains lacking endoge-

nous GS (for deadenylylated enzyme) or both GS and uridylyl transferase (adenylylated enzyme).

Table 1 gives a summary of the results obtained. MS spectra showed distinct peaks for adenyly-

lated and deadenylylated enzymes, with calculated masses agreeing with the theoretical values.

Based on this data, it can be concluded that the adenylylation state of adenylylated MtbGS

expressed in this novel system is at least 85% based on the MS data, but possibly up to 93% based

on phosphate hydrolysis. Based on this data this investigation was carried out to demonstrate the

proof-of-concept that compounds could be obtained that selectively inhibit either adenylylated

or deadenylylated MtbGS an that these compounds would inhibit Mtb in macrophages.

The fixed concentration inhibition assays of the 213 ATP based scaffold inhibitors pro-

duced 11 potential inhibitors. The scatter associated with the data when using the adenylylated

GS is probably associated with inter subunit allosteric regulation of adenylylated GS [42].

Some compounds therefore allosterically activate the enzyme. This would be achieved as a

result of allosteric regulation occurring between two GS subunits as a result of the adenylyla-

tion. It is therefore conceivable that inhibitors binding one GS subunit may either activate or

inhibit the binding of another inhibitor or ATP to the associated allosteric site. There was also

differential inhibition of the adenylylated and deadenylylated MtbGS. Seven of the potential

inhibitors were directed against adenylylated MtbGS and one was directed against deadenyly-

lated MtbGS. Two of the inhibitors namely 10057 and 10059 showed promising anti-MtbGS

activity against adenylylated MtbGS with 99% and 91% inhibition respectively. The IC50 con-

centrations obtained for compounds 10057 and 10059 were approximately 9.6 μM and 15 μM,

for the adenylylated enzyme and deadenylylated enzyme, respectively. Taking into account the

large variation in ATP and glutamine concentrations used in the screening assays similar

low μM IC50 concentrations were obtained in the enzyme screens [32–38]. Imidazopyridine

amides have been found to inhibit Mtb in other studies indicating an alternative mechanism

via the cytochrome cytochrome bc1 complex impacting on the homeostasis of ATP synthesis

[39]. The inhibition of glutamine synthetase may also impact the ATP homeostasis as the

resultant accumulation of α-ketoglutarate, as a result of inhibiting glutamine synthetase, may

lead to the slowing down of metabolic flux via the TCA cycle.

Compounds 10057 and 10059 are structurally very similar. Also in the macrophage assays

compounds 10057, 10059 and 5029 which were GS-adenylylated specific, showed comparable

activities in the BACTEC assays. This indicates that these compounds can inhibit M.tb as effec-

tively in a macrophage environment. However, compound 5045, specific to the de-adenyly-

lated form of GS, inhibited M.tb killing in both the in vitro and ex vivo macrophage models

effectively at 98% and 73% respectively at 100μM. The GS adenylylation/deadenylylation status

of the M.tb strains used in the BACTEC assay and the macrophage assays were not known

which may explain the high killing effect of both the adenylylation- and de-adenylylation spe-

cific compounds. In further development, attention may be paid to improving the selectivity

of the compounds vis-à-vismammalian forms of GS, to reduce the possibility of side-effects.
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