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Abstract 

Growing concern around the risks associated with the use of some molluscicide chemicals has 

prompted research into alternative control methods for mollusc pests. One of the most 

successful biocontrol methods available in Europe is the use of the mollusc-parasitic nematode, 

Phasmarhabditis hermaphrodita, which cannot be used or sold in South Africa under the terms 

of the Agricultural Pest Amendment Act, No. 18 of 1989. It is, therefore, necessary to isolate 

local mollusc-parasitic nematodes and to assess their biocontrol potential. Nematodes 

associated with slugs from the KwaZulu-Natal province of South Africa was surveyed. 

Caenorhabditis elegans was the only nematode isolated, and pathogenicity tests concluded that 

it was not capable of causing mortality to the slug species Deroceras invadens, even when 

associated with a pathogenic bacterium. During this survey, a number of endemic slug species 

were collected, including Chlamydephorus gibbonsi. A detailed description of C. gibbonsi’s 

feeding process is given. Following the quest to isolate other mollusc-nematodes across Africa, 

a collaborative project led to the isolation and description of Phasmarhabditis sp. (KEN1), a 

new nematode species from Kenya. Phasmarhabditis sp. (KEN1) can be characterised by the 

females having a conoid tail shape, the presence of males with a bursa bearing nine bilateral 

pairs of genital bursal papillae, as well as the infective juvenile (IJ) having the longest body 

length thus far recorded in the genus. The life cycles of five nematodes associated with molluscs 

were then studied and described. Based on the ease of mass-culturing, the species were ranked 

in the following order: C. elegans, P. hermaphrodita and Phasmarhabditis bohemica, with 

Phasamrhabditis papillosa and Phasmarhabditis sp. (KEN1) being equally difficult to mass-

culture. The in vitro culturing of the nematodes P. papillosa, C. elegans, Phasmarhabditis sp. 

(KEN1) and P. bohemica was then studied using seven bacterial isolates from slugs and three 

associated with entomopathogenic nematodes. The results indicated that Kluyvera sp. would be 

a suitable bacterial candidate to support the growth of C. elegans and Phasmarhabditis sp. 

(KEN1), while Pseudomonas spp. would make suitable bacterial candidates for P. bohemica 

and P. papillosa. The nematode P. bohemica was then grown in association with the bacterial 

isolate Pseudomonas sp. (1), in liquid media cultures to test the effects of bacterial inoculum 

density and initial IJ inoculum density on the total nematode yield, the IJ yield and the IJ 

proportion in the cultures. The results showed that 1% bacteria inoculum and a higher initial 

inoculum concentration of 3000 IJs/ml led to higher total nematode and IJ yields. Lastly, a 

novel application method of metaldehyde was tested in an apple orchard on the snail Cornu 

aspersum. Baitchain, a new application method whereby bait pellets can be wrapped around the 

base of a tree was tested along with Sluggit, a metaldehyde bait pellet applied to the soil, to 
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compare their effectiveness in protecting apple trees from C. aspersum. All treatments caused 

a significant reduction in snail numbers after 28 days, and all treatments, except Sluggit applied 

at a concentration of 15 g/kg metaldehyde, caused significant mortality. 
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Opsomming 

Groeiende kommer oor die risiko geassosieer met die gebruik van sommige chemiese 

slakdoders, het gelei tot soeke na alternatiewe beheermetodes vir slakspesies. Een van die mees 

suksesvolle biologiese beheer opsies is die gebruik van die slak-parasitiese nematode, 

Phasmarhabditis hermaphrodita, wat nie gebruik of verkoop kan word in Suid-Afrika nie. Dit 

is daarom belangrik dat plaaslike nematodes gevind word en hul biologiese beheer potensiaal 

ondersoek word. ŉ Opname was gedoen van nematodes geassosieer met slakke van die 

KwaZulu-Natal provinsie van Suid-Afrika. Caenorhabditis elegans was die enigste nematode 

spesie wat geïsoleer is en toetse het bevestig dat dit nie mortaliteit kan veroorsaak in die slak 

spesie Deroceras invadens nie. Een van die slak spesies wat versamel was gedurende die 

opname was Chlamydephorus gibbonsi. Die slak is endemies aan oostelike Suid-Afrika, maar 

opnames het getoon dat die spesie besig is om na die Wes-Kaap te versprei. ŉ Beskrywing van 

die proses waarin die slak voed op ŉ Amynthas spesie erdwurm was volledig beskryf. 

Phasmarhabditis sp. (KEN1), ŉ nuwe nematode spesie van Kenia, was ook beskryf en word 

uitgeken aan die keëlagtige stert van die wyfie, teenwoordige mannetjies met ŉ bursa met nege 

bilaterale, gepaarde genitale bursale papille, asook ŉ infektiewe larwe (IL) met die langste 

liggaamslengte tot dusver gevind in die genus. Die lewenssiklusse van vyf nematode spesies 

geassosieer met slakke was toe bestudeer en beskryf. Gebasseer op die resultate, kan die spesies 

gelys word van maklik tot moeilik om te massa-produseer soos volg: C. elegans, P. 

hermaphrodita en P. bohemica, met P. papillosa en Phasmarhabditis sp. (KEN1) wat ewe 

moeilik sou wees om te massa-produseer as gevolg van hul stadige lewenssiklus en hul 

voortplantingsmetode. Die in vitro produksie van die nematodes P. papillosa, C. elegans, 

Phasmarhabditis sp. (KEN1) en P. bohemica was ondersoek. Die resultate het getoon dat 

Kluyvera sp. ŉ gepaste bakteriële kandidaat sou wees vir C. elegans en Phasmarhabditis sp. 

(KEN1), terwyl Pseudomonas spesies gepaste bakteriële kandidate sou wees vir P. bohemica 

en P. papillosa. Die nematode P. bohemica was vermeerder in vloeistof medium in assosiasie 

met die bakterieë Pseudomonas sp. (1), om die effek van bakteriële en die invektiewe larwe 

(IL) inokulum digtheid te toets op die totale nematode opbrengs, IL opbrengs en IL proporsie 

van die totale nematodes. Die resultate het getoon dat 1 % bakteriële inokulum en ŉ hoër 

inokulum konsentrasie van 3000 ILs/ml gelei het tot hoër totale nematode en IL opbrengste. 

Laastens was ŉ nuwe metode vir die aanwending van metaldehied in ŉ appelboord getoets. 

Baitchain, ŉ produk wat bestaan uit slakpille gerangskik op ŉ koord, is ontwerp om om die 

stam van ŉ boom gebind te word. Die produk was getoets tesame met Sluggit, ŉ metaldehied 

slakpil wat op die grondoppervlak aangewend word, om te toets hoe effektief die behandelinge 
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is daarin om die appelbome te beskerm teen die dopslak, Cornu aspersum. Alle behandelinge 

het ŉ beduidende afname veroorsaak in slak getalle na 28 dae en alle behandelinge, behalwe 

Sluggit teen ŉ konsentrasie van 15 g/kg metaldehied, het beduidende slakdood veroorsaak. 
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Chapter 1 

Literature Review 

Nematode control options for molluscs in South Africa and the potential 

for their future mass production 

Molluscs as crop pests 

Terrestrial gastropod molluscs (slugs and snails) are one of the most diverse and successful 

animal groups in the terrestrial environment (Barker, 2004). Crop damage from molluscs has 

occurred throughout history, however twentieth-century agricultural practices, such as the 

cultivation of new crops, the intensification of farming systems and the transportation of plant 

material, has led to molluscs adapting to these modified habitats, thus becoming significant 

crop pests of tropical and temperate regions (Barker, 2002a). Populations of non-native 

terrestrial molluscs are continuously being found worldwide (Rowson et al., 2014; Ross, 2019). 

Slugs are generalist feeders, making them significant pests of a wide range of crops, 

including ornamentals, arable crops and horticultural crops (Barker, 2002a). In pastures, slugs 

not only feed on grasses, but also cause damage to clover, which leads to a reduction in nitrogen 

fixation (Barker, 2002b). Deroceras reticulatum Müller (Agriolimacidae), originally endemic 

to the Palaearctic, is considered the most economically pestiferous slug species and is 

widespread in temperate regions, including New Zealand, Europe, Australia, North and South 

America and Asia (Godan, 1979; South, 1992; Speiser et al., 2001). However, many slug 

species are under-recorded and are, therefore, often only detected long after they have become 

established in their new environment (Rowson et al., 2014). The spread of slugs and their eggs 

is usually caused inadvertently through the movement of plants, soil, vehicles, livestock, or 

other goods (Rowson et al., 2016; Ross, 2019).  

Many snail species have also achieved pest status worldwide. The giant African snail, 

Achatina fulica (Férussac) (Achatinidae), is a serious pest of gardens and crops in subtropical 

and tropical regions, capable of consuming 10% of its own body weight in a day (Schreurs, 

1963). Cornu aspersum (Müller) (Helicidae) is a well-known, cosmopolitan pest that has been 

transported to most parts of the world (Guiller et al., 2012; Peltanová et al., 2012). Theba 
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pisana (Müller) (Helicidae) is a snail species that is mostly found in coastal regions and in 

agricultural crops, thriving in a wide range of habitats, from grasses through to shrubs and trees 

(Cowie et al., 2008; Herbert, 2010). Although being native to the Mediterranean coasts of 

North Africa and Europe, it has since spread to South Africa, Australia, the United States 

(California), Asia and the Netherlands (Cowie et al., 2008). The snail is known for its high 

reproductive rate and for its aggregative invasive behaviour, with one report of approximately 

3,000 snails surrounding a single citrus tree (Mead, 1971). Snails from the Achatinidae family 

are not only considered crop pests, but they also pose a human health risk for the transmission 

of Angiostrongylus cantonensis (Chen) and Angiostrongylus costaricensis (Morera & 

Céspedes) (Rhabditida: Angiostrongylidae) (Carvalho et al., 2003; Hollingsworth et al., 2007; 

Ross 2019). 

Molluscs in South Africa 

In 2010, it was estimated that approximately 34 non-native terrestrial mollusc species were 

present in South Africa (Table 1.1). Of these species, 28 are believed to have become 

established in the country and 13 are regarded as invasive species. Twenty-nine of these species 

originated in Europe, with nine coming from the Mediterranean. The above is mainly a result 

of the European colonial history of South Africa, but it is also because of the Mediterranean-

like, temperate winter rainfall climate of the Cape area (Herbert, 2010). Some of the most 

pestiferous introduced terrestrial molluscs in South Africa, although sometimes widely 

distributed, have fortunately not successfully spread into natural environments, with them 

being mostly restricted to transformed habitats and to monoculture crops. The snail, T. pisana, 

which was introduced to South Africa prior to 1881, is currently widespread between the West 

Coast and East London on the east coast of the country (Herbert, 2010). Due to the destruction 

that it causes, particularly in the grape-producing regions, it is classified as a pest in South 

Africa and Australia (Swart et al., 1976; Sanderson & Sirgel, 2002). Theba pisana (Fig 1.1b) 

and C. aspersum (Fig. 1.1a) are found in South African vineyards, with infestations of up to 

400 molluscs having been recorded on a single grapevine (Loubser, 1982). They feed on 

developing foliar buds and on the young leaves in spring, leading to stunted shoot growth and 

to decreased yield of the vines. In extreme C. aspersum infestations, crop losses of up to 25% 

have been reported (Sanderson & Sirgel, 2002). Cornu aspersum is also the only alien species 

that has been recorded in all nine provinces of South Africa, with it thriving in almost all areas 

of human settlement (Herbert, 2010). Eobania vermiculata (Müller) (Helicidae) is also an 
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invasive snail species that is found throughout South Africa, with it having spread to relatively 

undisturbed habitats (Herbert, 2010; Van Elden et al., 2015). 

Table 1.1. Alien terrestrial molluscs in South Africa with their date of introduction and status. 

(Adapted from Herbert, 2010).  

Species Introduction Status 

Achatina fulica  pre 1900 Not established 

Aegopinella nitidula (Draparnaud) pre 1930 Uncertain 

Ambigolimax valentianus (Férussac) pre 1961 Established, largely synanthropic 

Arion hortensis aggr. pre 1939 Established, locally invasive 

A. intermedius (Normand) pre 1898 Established, locally invasive 

Bradybaena similaris (Férussac) pre 1858 Established, synanthropic 

Cochlicella barbara (Linnaeus) pre 1909 Established, invasive 

C. cf. lubrica (Müller) pre 1978 Established, synanthropic 

C. cf. lubricella (Rossmässler) Anderson pre 1965 Established, synanthropic 

Cornu aspersum pre 1855 Established, largely synanthropic 

Deroceras laeve (Müller) pre 1898 Established, invasive 

D. panormitanum (Lessona & Pollonera) pre 1963 Established, invasive 

D. reticulatum pre 1898 Established, invasive 

Discus rotundatus (Müller) pre 1986 Established, locally invasive 

Eobania vermiculata (Müller) pre 1987 Established, largely synanthropic 

Hawaiia miniscula (Binney) pre 2006 Established, synanthropic 

Lauria cylindracea (da Costa) pre 1879 Established, locally invasive 

Lehmannia nyctelia (Bourguignat) pre 1939 Established, largely synanthropic 

Limacus flavus (Linnaeus) pre 1898 Established, synanthropic 

Limax maximus Linnaeus pre 1898 Established, locally invasive 

Milax gagates (Draparnaud) pre 1873 Established, synanthropic 

Otala punctata (Müller) pre 1986 Eradicated 

Oxychilus alliarius (Miller) pre 1894 Established, largely synanthropic 

O. cellarius (Müller) pre 1846 Established, largely synanthropic 

O. draparnaudi (Beck) pre 1908 Established, locally invasive 

Rumina decollata (Linnaeus) pre 1897 Eradicated 

Subulina octona (Bruguière) pre 1913 Probably not established in SA 

Testacella maugei Férussac pre 1893 Established, synanthropic 

Theba pisana pre 1881 Established, invasive 

Vallonia costata (Müller) pre 1980 Established, synanthropic 

V. pulchella (Müller) pre 1846 Established, synanthropic 

Vitrea contracta (Westerlund) pre 2004 Established, locally invasive 

V. crystallina (Müller) pre 1898 Uncertain 

Zonitoides arboreus (Say) pre 1898 Established, locally invasive 
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Figure 1.1. A: Cornu aspersum clustering on an apple tree; and B: a young Theba pisana. 

 

Some slug species, like those of Deroceras, have spread further than transformed habitats, 

and even into relatively pristine environments. Deroceras reticulatum, Deroceras laeve 

(Müller) and Deroceras invadens Reise, Hutchinson, Schunack & Schlitt (Agriolimacidae) 

have all been recorded from many different parts of South Africa (Herbert, 2010). The grey 

garden slug, D. reticulatum, which is a serious pest of agriculture, horticulture and gardens, is 

a non-specific herbivore that is capable of laying up to 500 eggs in one year (South, 1992; 

Herbert, 2010). Deroceras laeve has been recorded as a pest in ornamental crops, vegetables, 

legumes, pasture and maize, with it being a possible vector of human angiostrongyliasis, while 

Deroceras invadens is considered as a pest in greenhouses, pasture, commercial crops, 

suburban gardens and nurseries (Altena & Smith, 1975; Barker, 1999, 2002b; Hollingsworth 

et al., 2007). The black keeled slug, Milax gagates (Draparnaud) (Milacidae), is believed to be 

indigenous to the Mediterranean, but it has been recorded in the Western and Eastern Cape and 

in KwaZulu-Natal (Wiktor, 1987; Herbert, 2010). It is a known pest of native plants, pasture 

and arable land in various parts of the world (Cowie, 1997; Barker, 2002b), with it having been 

reported as an episodic pest in South African barley, wheat, canola (Tribe & Lubbe, 2010) and 

lucerne (W. Sirgel pers. comm.). The slug Urocyclus flavescens Kerferstein (Urocyclidae) was 

first classified as a pest in Mpumalanga in 1967 (De Villiers, 1973), but it has, since, become 

known in all the banana-producing regions of South Africa (De Jager & Daneel, 2002).  

A B 
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Current control 

CHEMICAL CONTROL 

Terrestrial mollusc pests are primarily controlled through the use of chemical molluscicide 

pellets (Fig. 1.2). The pellets consist mainly of wheat, bran or barley flour, which serves as an 

attractant, as well as 2-8% of an active ingredient or toxicant, usually metaldehyde, methiocarb 

or thiodicarb (Bailey, 2002). The chemicals are, however, harmful to certain non-target 

organisms, such as earthworms, soil arthropods and carabid beetles (Martin & Forrest, 1969; 

Homeida & Cooke, 1982; Bieri et al., 1989; Kennedy, 1990; Fletcher et al., 1991; Fletcher et 

al., 1993; Cardoso et al., 2015), and, when overused, can accumulate in the environment, or 

possibly lead to resistance (Fisher & Orth, 1975; Castle et al., 2017). Increased pressure has 

been exerted by the regulatory sector and by water suppliers to limit the agricultural use of 

metaldehyde, due to concerns about its presence in water bodies and drinking water (Castle et 

al., 2017; Ross, 2019).  

 

Figure 1.2. Molluscicide pellets sold at a nursery. 

Iron (Ferric) phosphate has been suggested as a preferred alternative to metaldehyde, with 

it being suitable for organic systems, although it is perceived to cost more per kilogram 

(AHDB, 2017; Castle et al., 2017). Initiatives in the United Kingdom have tried to overcome 

the cost issue, by bridging the price gap between metaldehyde and Iron (Ferric phosphate) 

(Castle et al., 2017). However, research suggests that high doses of Iron (Ferric) phosphate 

have negative effects on the earthworm, Lumbricus terrestris Linnaeus (Opisthopora: 

Lumbricidae) (Langan & Shaw, 2006). A study by Edwards et al. (2009) also found that 
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molluscicides that contain Iron (Ferric) phosphate, or the chelating agents 

ethylenediaminetetraacetic acid (EDTA) or ethylene diamine succinic acid (EDDS), might be 

hazardous to domestic animals, earthworms and humans and require further investigation 

(Edwards et al., 2009). 

CULTURAL CONTROL AND AGRONOMIC PRACTICES 

Conventional cultural control practices include proper soil cultivation, the minimisation of 

weeds and the establishment of beetle banks (Barker, 2002a; Ross, 2019). The quality and 

preparation of the seedbed is important for the control of slug populations in crops (Ross, 

2019). Ploughing is effective in reducing slug populations, with even the minimum amount of 

tillage leading to a reduction in the amount of damage caused by pest slugs. By minimising the 

amount of weed growth in crops, the food and shelter of the slugs is reduced, leading to 

decreased slug populations. Certain species of carabid beetles are known predators of slugs. 

However, in conservation agriculture, as proposed by the FAO (2008), minimum soil disturbance, 

or no till, is one of the main driving factors to promote agricultural soil health, although it might 

lead to an increase in slug and snail problems.  

PHYSICAL BARRIERS 

The use of physical barriers is an alternative control option. Electrified fencing on copper 

barriers is an effective way of deterring terrestrial slugs without killing them, but, because of 

the high costs involved, the method is more suited to small-scale use (Laznik et al., 2011). 

Another possible deterrent is the use of antifeedants, in the form of secondary metabolites in 

such plant tissues as alcohols, alkaloids and aldehydes (Dodds, 1996).  

BIOLOGICAL CONTROL 

Terrestrial molluscs have many natural enemies, including certain species of birds, 

mammals, centipedes, millipedes, insects, flatworms, other gastropods, mites, reptiles, spiders, 

nematodes, ciliophorans, and microsporidia, as well as some bacterial and non-bacterial 

diseases (Barker, 2004). In South Africa, some vine growers make use of the novel strategy of 

deploying ducks as a method of biological control over helicid gastropods (Sanderson & Sirgel, 

2002; Ross, 2019). The use of predatory gastropods to control the species has also been 

attempted, with low success rates, however (Sanderson & Sirgel, 2002).  
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To date, the most successful method of biological control across Europe, has been the use 

of the mollusc-parasitic nematode, Phasmarhabditis hermaphrodita (Schneider) Andrássy. 

Other nematode families that have been reported as being parasitic to molluscs include 

Mermithidae, Diplogasteridae, Rhabditidae, Alloionematidae, Angiostomatidae, Agfidae, 

Alaninematidae and Cosmocercidae (Barker, 2004; Pieterse et al., 2017a). 

The Phasmarhabditis Andrássy (Rhabditida: Rhabditidae) genus currently contains 13 

nominal species, with a rise in species descriptions in the past decade (Fig. 1.3): P. 

hermaphrodita (Hooper et al., 1999), Phasmarhabditis neopapillosa (Mengert in Osche) 

Andrássy (Hooper et al., 1999), Phasmarhabditis papillosa (Schneider) Andrássy (Tandingan 

De Ley et al., 2016), Phasmarhabditis tawfiki Azzam (Azzam, 2003), Phasmarhabditis 

huizhouensis Huang, Ye, Ren & Zhao (Huang et al., 2015), Phasmarhabditis apuliae Nermut’, 

Půža & Mráček (Nermuť et al., 2016), Phasmarhabditis bonaquaense Nermut’, Půža, Mekete 

& Mráček (Nermuť et al., 2017a), Phasmarhabditis californica Tandingan De Ley, 

Holovachov, McDonnell, Bert, Paine & De Ley (Tandingan De Ley et al., 2016), 

Phasmarhabditis bohemica Nermuť, Půža, Mekete & Mráček (Nermuť et al., 2017b), 

Phasmarhabditis meridionalis Ivanova & Spiridinov (Ivanova & Spiridinov, 2017), 

Phasmarhabditis safricana Ross, Pieterse, Malan & Ivanova (Ross et al., 2018), 

Phasmarhabditis circassica Ivanova, Geraskina & Spiridinov (Ivanova et al., 2019), and 

Phasmarhabditis clausiliiae Ivanova, Geraskina & Spiridinov (Ivanova et al., 2019). They are 

facultative mollusc-parasitic, soil nematodes, with the exception of P. huizhouensis from rotten 

leaves, found on all continents, except for Antarctica (Huang et al., 2015).  

 

Figure 1.3. The number of new Phasmarhabditis species that have been described every 

decade since the first description of Phasmarhabditis hermaphrodita in 1859, until 

September 2019. 
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Phasmarhabditis hermaphrodita 

Phasmarhabditis hermaphrodita is a facultative parasite that can reproduce either on rich 

organic material, such as slug faeces (Grewal et al., 2003), or form parasitic or necromenic 

symbioses with certain mollusc species (Maupas, 1900; Mengert, 1953; Wilson et al., 1993a; 

Grewal et al., 2003). 

Phasmarhabditis hermaphrodita was first isolated in Germany in 1859, from decaying 

terrestrial molluscs, and described as Pelodytes hermaphroditus Schneider (Schneider, 1859). 

Maupas (1900) later found the infective larvae of P. hermaphrodita in the intestine of the slug 

Arion ater (Linnaeus) in Normandy and called it Rhabditis caussaneli. Not considering the 

nematode to be a parasite, the author believed that it remained inside the slug as an infective 

larva until the slug died, after which it would feed and reproduce on the cadaver. In 1987, 

during a search for biological control agents for slugs in the United Kingdom, P. 

hermaphrodita was found actively reproducing in the slug D. reticulatum. Further research 

concluded that P. hermaphrodita was capable of infecting and killing a number of terrestrial 

mollusc species (Wilson et al., 1993a). 

The terrestrial mollusc families, Agriolimacidae, Arionidae, Milacidae, Limacidae and 

Vagnulidae (Wilson et al., 1993a; Iglesias & Speiser, 2001; Speiser et al., 2001; Grewal et al., 

2003) (Table 1.2), are susceptible to infection by P. hermaphrodita, which causes mortality in 

the aforementioned families. As it is a mollusc-specific parasite, studies have proven that P. 

hermaphrodita is not lethal to the earthworm, Eisenia fetida (Savigny) (Haplotaxida: 

Lumbricidae), or to the insect species Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae), 

Zephobas morio Fabricius (Coleoptera: Tenebrionidae) and Pterostichus melanarius (Illiger) 

(Coleoptera: Carabidae) (Wilson et al., 1993b, 1994a; DeNardo et al., 2004; Rae et al., 2005). 

Under laboratory conditions, the infective juveniles (IJs) of P. hermaphrodita invade D. 

reticulatum within 8-16 h of exposure (Tan & Grewal, 2001). The IJs enter the slug through a 

dorsal integumental pouch posterior to the mantle and move into the shell cavity, where the IJs 

develop into self-fertilizing hermaphrodites, and reproduce. Depending on the temperature and 

nematode density, susceptible hosts soon stop feeding and die within 4-21 days of infection. 

Once the host slug dies, the nematodes reproduce and feed on the cadaver, until food sources 

become scarce, after which IJs are formed, which move back into the soil in search of new slug 

hosts (Wilson et al., 1993a; Tan & Grewal, 2001). Phasmarhabditis hermaphrodita is currently 
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being mass-produced and sold commercially throughout Europe by BASF (formally Becker 

Underwood) and Dudutech, under the tradenames, Nemaslug® and SlugTech®, respectively 

(Rae et al., 2007; Ross, 2019). 

The techniques for the in vitro production of P. hermaphrodita are similar to those used for 

the commercial production of entomopathogenic nematodes (EPNs) (Morand et al., 2004). In 

order to produce high yields of IJs consistently and to eliminate the risk of other pathogenic 

bacteria in the medium or product, it is necessary to form a monoxenic nematode-bacteria 

combination that can be grown in liquid medium (Poinar & Hansen, 1986; Wilson et al., 

1995a). In BASF’s system, the nematodes are mass-produced in liquid medium in a monoxenic 

association with the bacteria species Moraxella osloensis (Bøvre & Henriksen) Bøvre 

(Pseudomonadales: Moraxellaceae) in large-scale fermenters (Rae et al., 2007). After 

undergoing several generations, IJs are formed, which are then harvested to be sold. The IJ 

larvae yield depends on the growth medium and conditions in the fermenters, with yields of 

more than 100,000 IJs ml-1 having been achieved (Glen et al., 1994). The IJs are then harvested 

through centrifugation, and repeatedly washed with water (Young et al., 2002). Once 

harvested, the nematodes are mixed with an inert carrier, of which the water content has been 

modified to a level where it causes the nematodes to become dehydrated and immobile, with 

them then being stored in trays sealed with polythene (Glen et al., 1994). The IJs can survive 

in the carrier for as long as 6 months (Grewal, 2001). 
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Table 1.2. The susceptibility of mollusc species to Phasmarhabditis hermaphrodita. 

Species Susceptible Reference 

Snails 

Achatinidae 

Achatina fulica Bowdich No Williams & Rae, 2015 

Clausiliidae 

Clausilia bidentata (Strøm) No Wilson et al., 2000 

Endodontidae 

Discus rotundatus (Müller) No Wilson et al., 2000 

Helicidae 

Cepaea hortensis (Müller) Yes Wilson et al., 2000 

Cepaea nemoralis (Linnaeus) No Wilson et al., 2000 

Cernuella virgata (Da Costa) Yes Coupland, 1995 

Cochlicella acuta (Müller) Yes Coupland, 1995 

Cornu aspersum (Müller) 

(AUTHORITY)

Juveniles only Glen et al., 1996 

Monacha cantiana (Montagu) Yes Wilson et al., 2000 

Theba pisana (Müller) Yes Coupland, 1995 

Lymnaeidae 

Lymnaea stagnalis (Linnaeus) Yes Wilson et al., 1993c; Morley & 

Morrit, 2006 

Physidae 

Physa fontinalis (Linnaeus) No Morley & Morrit, 2006 

Pomatiasidae 

Pomatias elegans (Müller) No Wilson et al., 2000 

Zonitidae 

Oxychilus helveticus (Blum) No Wilson et al., 2000 

Slugs 

Arionidae 

Arion ater (Linnaeus) Juveniles only Wilson et al., 1993a 

Arion distinctus Mabille Yes Wilson et al., 1993a; Iglesias & 

Speiser, 2001 

Arion hortensis Férussac No Grewal et al., 2003 

Arion intermedius Normand Yes Wilson et al., 1993a 

Arion lusitanicus Mabille Juveniles only Speiser et al., 2001; Grimm, 2002; 

Glen et al., 2000Arion silvaticus Lohmander Yes Wilson et al., 1993a 

Arion subfuscus Draparnaud No Grewal et al., 2003 

Limacidae 

Deroceras laeve (Müller) Yes Grewal et al., 2003 

Deroceras invadens (Reise, 

Hutchinson Schunack & Schlitt) 
Yes Wilson et al., 1993a 

Deroceras reticulatum (Müller) Yes Wilson et al., 1993a 

Limax maximus (Linnaeus) No Grewal et al., 2003 

Milacidae 

Tandonia budapestensis (Hazay) Yes Wilson et al., 1993a 

Tandonia sowerbyi (Férussac) Yes Wilson et al., 1993a 

Vagnulidae 

Leidyula floridana (Leidy) Yes Grewal et al., 2003 
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Commercial products with P. hermaphrodita are available for use in the garden market as 

packages of 12 million or 30 million nematodes, or for commercial use in packs with 30 million 

or 250 million nematodes (Rae et al., 2007) (Fig. 1.3). The product is applied by suspending it 

in water and by spraying it onto the moist soil with a watering can or hydraulic spraying 

equipment, at a recommended application rate of 3 × 109 IJs ha-1 (Glen et al., 1994).  

Figure 1.4. Phasmarhabditis hermaphrodita in its commercial biocontrol product form from 

BASF under the tradename Nemaslug®. 

Phasmarhabditis hermaphrodita has been successfully used in oilseed rape (Wilson et al., 

1995b; Speiser & Andermatt, 1996), winter wheat (Wilson et al.,1994b, 1994c), Brussel 

sprouts (Ester et al., 2003a), strawberries (Glen et al., 2000), asparagus (Ester et al., 2003b), 

cabbages (Grubisis et al., 2003), hostas (Grewal et al., 2001) and glasshouse orchids (Ester et 

al., 2003c) to reduce slug damage. However, P. hermaphrodita has been reported as not 

providing protection against slug damage, but the ineffectiveness of the product might be due 

to the application methods employed, with it requiring further investigation (Wilson et al., 

1995b; Glen et al., 2000; Iglesias et al., 2001; Tan & Grewal, 2001; Iglesias et al., 2003). 

Nevertheless, P. hermaphrodita is widely used in Europe, and by 2005, it was estimated that 

approximately 500 ha was being treated with P. hermaphrodita (Rae et al., 2007).  

Phasmarhabditis hermaphrodita has, to date, not yet been isolated in South African slugs, 

meaning that, due to laws prohibiting the introduction of exotic animals into the country, it can 

neither be imported into, nor be used in, South Africa.  
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Other mollusc-parasitic nematodes in South Africa 

Two surveys of nematodes associated with terrestrial molluscs have previously been 

conducted in the Western Cape province of South Africa, with four phasmarhabditids thus far 

found in South Africa (Table 1.3) (Ross et al., 2012; Pieterse et al., 2017b). A total of 13 

different nematode species were identified from slug hosts in the Western Cape, ten of which 

were previously undescribed (Ross et al., 2012; Pieterse et al., 2017b). The nematodes isolated 

in the first survey included Agfa flexilis Dujardin, Caenorhabditis elegans (Maupas), 

Panagrolaimus sp., Rhabditis sp., Phasmarhabditis sp. (SA1), Phasmarhabditis safricana 

Ross, Pieterse, Malan & Ivanova and Angiostoma margaretae Ross, Malan & Ivanova, with 

the latter two species described as a result of this particular survey (Ross et al., 2011, 2012, 

2018). The nematode species found in the second survey included A. flexilis, A. margaretae, 

Angiostoma sp. (SA1), C. elegans, a mermithid (SA1), Phasmarhabditis sp. (SA3) and 

Phasmarhabditis papillosa Schneider (Andrássy)(Pieterse et al., 2017b,c). This was the first 

record of P. papillosa in South Africa, with previous surveys reporting the nematode in 

Germany and the USA (Mengert, 1953; Tandingan De Ley, 2016). The mollusc-nematode 

fauna in South Africa is relatively understudied, with previous work focusing on the Western 

Cape. Therefore, it is important that surveys focus on other provinces in South Africa, such as 

KwaZulu-Natal where the weather is warm and humid, thus optimal for molluscs, as well as 

across the entire African continent. This is important for the discovery of potential candidates 

and the subsequent development of a biological control agent of molluscs in South Africa (Ross 

et al., 2012; Pieterse et al., 2017b). 
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Table 1.3. Slug-nematode associations found in previous surveys in South Africa. 

Slug species Native/ 

Introduced 

Nematode species Reference 

Ariopelta capensis Krauss Native Rhabditis sp. (Ross et al., 2012) 

Ariostralis nebulosa Sirgel Native Phasmarhabditis sp. SA1 (Ross et al., 2012) 

Chlamydephorus gibbonsi Binney Native - (Pieterse et al., 2017b; 

Ross et al., 2012) 

Deroceras panormitanum (Lessona 

& Pollonera) 

Introduced Angiostoma margaretae Ross, Malan 

& Ivanova 

Angiostoma sp. (SA1) 

Angiostoma spp. 

Caenorhabditis elegans (Maupas) 

Mermithid sp. 

Phasmarhabditis sp. (SA3) 

- 

(Ross et al., 2011) 

(Pieterse et al., 2017b) 

(Pieterse et al., 2017b) 

(Pieterse et al., 2017b) 

(Pieterse et al., 2017b) 

(Pieterse et al., 2017b) 

(Pieterse et al., 2017b) 

(Ross et al., 2012) 

Deroceras reticulatum (Müller) Introduced A. margaretae

C. elegans

Phasmarhabditis safricana 

Phasmarhabditis papillosa 

Rhabditis sp. 

(Pieterse et al., 2017b) 

(Pieterse et al., 2017b) 

(Ross et al., 2012, 2018) 

(Pieterse et al., 2017b) 

(Ross et al., 2012) 

Laevicaulis alte (Férussac) Native - (Ross et al., 2012) 

Ambigolimax valentianus (Férussac) Introduced Agfa flexilis Dujardin 

A. margaretae

C. elegans

Panagrolaimus sp. 

(Pieterse et al., 2017b; 

Ross et al., 2012) 

(Pieterse et al., 2017b) 

(Ross et al., 2012; 

Pieterse et al., 2017b) 

(Ross et al., 2012) 

Limax flavus Linnaeus Introduced A. flexilis

Angiostoma spp. 

C. elegans

Panagrolaimus sp. 

(Ross et al., 2012) 

(Pieterse et al., 2017b) 

(Pieterse et al., 2017b; 

Ross et al., 2012) 

(Ross et al., 2012) 

Milax gagates Draparnaud Introduced A. margaretae

Angiostoma sp. 

Angiostoma sp. (SA1) 

C. elegans

Panagrolaimus sp. 

(Pieterse et al., 2017b) 

(Ross et al., 2012) 

(Pieterse et al., 2017b) 

(Pieterse et al., 2017b) 

(Ross et al., 2012) 

Oopelta flavescens Collinge Native - (Pieterse et al., 2017b) 

Oopelta granulosa Collinge Native - (Ross et al., 2012) 

Oopelta polypunctata Collinge Native A. margaretae

- 

(Pieterse et al., 2017b) 

(Ross et al., 2012) 

Testacella maugei Férussac Introduced - (Ross et al., 2012) 
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Entomopathogenic nematodes 

It is possible to expand the culturing knowledge of P. hermaphrodita by reviewing the work 

done on EPNs (Morand et al., 2004). EPNs are used for the biological control of insect pests, 

and their desirability as biocontrol agents is based on their virulence and ease of culture 

(Gaugler & Han, 2002). The most commonly studied species, which are members of the genera 

Heterorhabditis and Steinernema, are used to control various insect pests (Grewal et al., 2005). 

The insects are killed as a result of the interaction between the nematodes and their symbiotic 

bacteria (Xenorhabdus spp. for Steinernema and Photorhabdus spp. for Heterorhabditis), with 

which they have an obligate mutualism (Poinar & Thomas, 1966; Poinar et al., 1977). Without 

the symbiotic bacteria, EPNs are ineffective as biocontrol agents, and their reproduction is 

negatively affected (Poinar & Thomas, 1966; Poinar et al., 1977; Han & Ehlers, 1998). The 

bacteria serves as a substrate for the nematodes to reproduce and grow, while also producing 

broad-spectrum antimicrobial agents that prevent the colonisation of other micro-organisms 

(Frost & Clarke, 2002). EPNs assist in suppressing the immune system of the host, and they 

serve as a vector for the bacteria, which they transport into the haemocoel of the insect, 

resulting in the death of the insect within 24-48 h of infection. The EPNs then feed on the 

bacteria concerned, as well as on the bioconverted insect tissue, completing one to three 

generations inside the host, before exiting and searching for a new host (Strauch & Ehlers, 

1998; Lewis & Clarke, 2012; Stock, 2015). To date, over 116 species of EPNs have been 

identified worldwide, with 11 species having been developed for commercialisation (Kaya and 

Koppenhofer, 1999). 

MASS PRODUCTION OF EPNS 

EPNs are mass produced using in vivo, in vitro solid or in vitro liquid culturing methods 

(Ehlers & Shapiro-Ilan, 2005). The chosen production method depends on the resources, 

expertise, cost, time and the amount of product required (El-Sadawy, 2011). Culturing using in 

vivo or in vitro solid methods is usually preferred by smaller organisations as it requires less 

capital investment. In vitro liquid culturing is mostly the method of choice for large companies 

in the developed countries, such as BASF, as it involves a high level of capital investment and 

running costs, sophisticated engineering and the close monitoring of processes (Ehlers & 

Shapiro-Ilan, 2005; Lacey & Georgis, 2012). 
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In vivo 

The simplest method for the production of EPNs is through in vivo culturing using living 

insects. The larvae of the greater wax moth, Galleria mellonella (Linnaeus) (Lepidoptera: 

Pyralidae), and mealworms, T. molitor, are both very susceptible to EPN infection and contain 

ample nutrients for the production of EPNs (Půža et al., 2016). The larvae of the wax moth are 

generally used for the rearing of EPNs, with yields of between 0.5 × 105 and 4 × 105 IJs per 

larva being achieved (Van Zyl & Malan, 2015; Devi & Nath, 2017). This in vivo production 

method, despite being affordable and simple, is labour-intensive and only cost-effective on a 

small scale, making it inappropriate for large-scale production (Shapiro-Ilan et al., 2012). 

Similarly, growing slug-parasitic nematodes on freeze-killed slugs would also be labour-

intensive, as the slugs would need to be collected by hand. 

In vitro 

A solid culture method was developed in 1981, in terms of which the EPNs were cultured 

on polyether polyurethane sponge crumbs that had been impregnated with emulsified pig’s 

kidneys and beef fat and inoculated with a symbiotic bacterium. Yields of between 6 × 105 and 

10 × 105 IJs were achieved (Bedding, 1981). In South Africa, low-cost solid in vitro culturing 

methods were tested by Ramakuwela et al. (2016) for the production of Steinernema 

innovationi (Cimen, Lee, Hatting & Stock). The highest concentration of IJs obtained was 

156,000 IJs/g after four weeks incubation in a larval puree of Musca domestica Linnaeus 

(Diptera: Muscidae) and 3% canola oil, absorbed in sponge cubes in Erlenmeyer flasks 

(Ramakuwela et al., 2016). 

In 1990, a liquid fermentation technique was developed, with which densities of 50 × 1012 

IJs/month were produced, which was significantly higher than were the 10 × 1012 IJs/month 

produced using the solid culture method (Friedman, 1990). This method has been used to 

produce the steinernematids Steinernema carpocapsae (Weiser) Wouts, Mráček, Gerdin & 

Bedding, Steinernema feltiae (Filipjev) Wouts, Mráček, Gerdin & Bedding, Steinernema 

glaseri (Steiner) Wouts, Mráček, Gerdin & Bedding, Steinernema riobrave Cabanillas, Poinar 

& Raulston and Steinernema scapterisci Nguyen & Smart at a scale of 80 000 L, and also the 

heterorhabditids Heterorhabditis megidis Poinar, Jackson & Klein, Heterorhabditis 

bacteriophora Poinar and Heterorhabditis indica Poinar, Karunaka & David at scales of 300- 

2,000 L (Friedman, 1990; Devi & Nath, 2017). 
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Liquid culture technology was commercialised for the first time in 1992 by Biosys, Palo 

Alto, California, using the nematode S. carpocapsae, upscaled to a fermenter of 80 000 L 

(Ehlers & Shapiro-Ilan, 2005). Typically, the EPN growth medium consists of a carbon source, 

such as glycerol or glucose, a protein source, of plant or animal origin, yeast extract, and lipids 

of plant or animal origin (Pace et al., 1986; Friedman et al., 1989; Han et al., 1993; Surrey & 

Davies, 1996; Ehlers et al., 1998). Increasing EPN yields can be achieved by altering the liquid 

medium (Ehlers, 2001), as different species have different medium requirements. 

Using internal-loop bioreactors consistently produces higher IJ concentrations than does the 

use of bioreactors with airlift, flat-blade impellers and bubble columns (Ehlers & Shapiro-Ilan, 

2005). Before adding the IJs, the medium is inoculated with the symbiotic bacterium associated 

with the EPN species, at a volume of 0.5-1% of the total volume, with it then being 

preincubated for a period of 24-36 h. The nematodes are then added, at a volume of 5-10% of 

the total culture volume (Ehlers & Shapiro-Ilan, 2005).  

The temperature used for culturing depends on the medium and on the EPN species used, 

and it should always be determined after the optimum growth temperature of the bacterial 

symbiont has been defined (Ehlers et al., 2000).  

Conclusion 

In conclusion, P. hermaphrodita is the only mollusc-parasitic nematode that has been 

developed as a commercial biocontrol product, which is currently sold across Europe by BASF 

and Dudutech, based on its natural distribution. It can however neither be sold, nor used, in 

South Africa as it has not yet been isolated, and it is considered to be an exotic species. 

Therefore, a local mollusc-parasitic nematode would be required for commercial development 

in order to adhere to current regulations. Once a suitable nematode has been found, it must be 

described and its life cycle analysed, before being established in monoxenic cultures with a 

bacterial isolate that is pathogenic to slugs. The protocol then needs to be optimised and 

upscaled to produce the nematode in industrial-scale fermenters. 

Aims and objectives 

The overall aim of the current study was to search for local nematode isolates, and 

investigate their biocontrol potential, and where nematodes fail, investigate suitable 

environmentally friendly alternative control methods.  
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The specific objectives of this study were to: 

1. Conduct a survey of mollusc-parasitic nematodes in KwaZulu-Natal, so as to gain a

better knowledge of the mollusc-parasitic nematode population of South Africa, and to

find a nematode with biocontrol potential;

2. Analyse the life cycles of local nematode isolates, as well control representatives from

Europe (e.g. P. hermaphrodita), so as to gain a better understanding of the nematodes,

and their potential culture methods;

3. Describe any nematode species found during the survey or through collaborative work

across the African continent;

4. Successfully mass-culture the chosen nematode in liquid medium, by means of in vitro

technology;

5. Investigate other control methods to be used in conjunction with nematodes in an

integrated control programme.

The “Instructions for Authors” for the journal Nematology have been followed in the writing 

of the current dissertation. Each chapter is written in the form of a separate paper, which 

necessarily entails some repetition. 
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Chapter 2 

Survey of nematodes associated with slugs in the KwaZulu-Natal province 

of South Africa 

Summary 

A survey of nematodes associated with slugs was conducted in the KwaZulu-Natal province 

of South Africa. A total of 300 slugs were collected from nine different sites, including gardens, 

nurseries and agricultural land. Of the slugs collected, 239 were invasive species from Europe 

and 61 are indigenous to Africa. The slug species collected were Ambigolimax valentianus, 

Chlamydephorus gibbonsi, Deroceras invadens, Deroceras reticulatum, Elisolimax flavescens, 

Laevicaulis alte, Milax gagates and Urocyclus kirkii. Dissection of the slugs revealed that five 

of the nine sites had slugs with internal nematodes, and that 19 of the 300 slugs collected were 

infected with nematodes. Caenorhabditis elegans, which was the only nematode species 

isolated, was cultured in liquid monoxenic cultures, together with the bacterial species 

Kluyvera sp., which has previously shown to be pathogenic to slugs. The nematode-bacterial 

combinations pathogenicity was tested on the invasive slug D. invadens, demonstrating that C. 

elegans was not capable of causing mortality in the slugs, even in association with pathogenic 

bacterium. 

Keywords - Caenorhabditis elegans; Deroceras invadens, Kluyvera; monoxenic culture; 

pathogenicity; KwaZulu-Natal 
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Introduction  

An estimated 34 non-native terrestrial mollusc species are currently found in South Africa. 

The majority of the species originate from Europe, mainly because of South Africa’s colonial 

history, as well as the favourable climate conditions of the Cape area (Herbert, 2010). Some of 

the species have become highly successful in the country, leading to their status as major 

agricultural pests (Swart et al., 1976; Loubser, 1982; De Jager & Daneel, 2002; Sanderson & 

Sirgel, 2002; Herbert, 2010; Tribe & Lubbe, 2010). The above has prompted research into 

finding a suitable nematode parasite for the control of invasive molluscs (Pieterse, 2016). 

Surveys and research conducted on all continents, except Antarctica, have identified eight 

nematode families that associate with terrestrial molluscs as definitive hosts. They are Agfidae, 

Alaninematidae, Alloionematidae, Angiostomatidae, Cosmocercidae, Diplogasteridae, 

Mermithidae and Rhabditidae (Pieterse et al., 2016). However, the only nematode species that 

has been successfully developed for the biological control of slugs is Phasmarhabditis 

hermaphrodita (Schneider) Andrássy. It is sold under the trade name Nemaslug® and is widely 

used in Europe, with it being pathogenic to a wide range of molluscs (slugs and snails) (Rae et 

al., 2007). However, P. hermaphrodita has, to date, not been isolated in South Africa, which 

means that it can neither be imported, nor used, in South Africa, as it is considered to be an 

exotic species (Agricultural Pests Amendment Act, No. 18 of 1989). Surveys of nematodes 

associated with molluscs in South Africa are, thus, of vital importance for the potential 

biocontrol development of a local nematode species to control invasive molluscs. 

Two surveys of nematodes associated with terrestrial molluscs have previously been 

conducted in the Western Cape province of South Africa (Ross et al., 2012; Pieterse et al., 

2017). The first was conducted in 2009, with 521 slugs being dissected, and the second being 

conducted between 2012 and 2015, with 3290 slugs being dissected. Thirteen different slug 

species were found from these two surveys combined, and seven of which were indigenous and 

six invasive. A total of 13 different nematode species were identified from slug hosts in the 

Western Cape, ten of which were previously undescribed (Ross et al., 2012; Pieterse et al., 

2017). The nematodes isolated in the first survey included Agfa flexilis Dujardin, 

Caenorhabditis elegans (Maupas), Panagrolaimus sp., Rhabditis sp., Phasmarhabditis sp. 

(SA1), Phasmarhabditis safricana Ross, Pieterse, Malan & Ivanova and Angiostoma 

margaretae Ross, Malan & Ivanova, with the latter two species described as a result of this 

survey (Ross et al., 2011, 2012, 2018). The nematode species found in the second survey 
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included A. flexilis, A. margaretae, Angiostoma sp. (SA1), C. elegans, a mermithid (SA1), 

Phasmarhabditis sp. (SA3) and Phasmarhabditis papillosa Schneider (Andrássy) (Pieterse et 

al., 2017). This was the first record of P. papillosa in South Africa, with previous surveys 

reporting the nematode in Germany and the USA (Mengert, 1953; Tandingan De Ley, 2016). 

To date, the only mollusc-nematode surveys in South Africa have focused on the Western Cape 

province, with the other province being overlooked despite their varied mollusc fauna.  

The purpose of the current study was to conduct a survey of nematodes associated with 

molluscs in KwaZulu-Natal, a sub-tropical area on the east coast of South Africa, known to be 

home to a diverse range of mollusc species. The second aim of the study was to test the 

pathogenicity of nematodes found during the survey, when grown on a bacterium known to 

cause mortality in slugs.  

Methodology 

COLLECTIONS 

Terrestrial slugs were manually collected from nine different sites, including farms, gardens 

and nurseries in the KwaZulu-Natal province of South Africa, between 7 February 2017 and 

29 November 2017, with the help of local growers, and with the permission of the landowners 

concerned (Fig. 2.1). The aim was to include a variety of sites, rather than a large number of 

sites. Plastic containers (145 mm × 205 mm × 80 mm) with perforated lids, and lined with 

moistened paper towels, were used to store and transport the slugs. The location and date of 

collection were noted on each container, with approx. 20 slugs per container. The slugs were 

fed carrot slices, which were replaced with new ones daily, and boxes were cleaned weekly.  

DISSECTION 

Once in the laboratory, the slugs were washed with 0.9% saline solution to remove any 

external nematodes, and dissected, using a dissecting microscope (Leica MZ7s), so as to 

determine visually the presence of internal nematodes. The nematodes that were found were 

placed on White traps (Dutky et al., 1964) to encourage reproduction, and then fixed in 70% 

ethanol for molecular analysis, or heat-killed with hot (85 °C) triethanolamine-formalin TAF 

(7 ml 37% formaldehyde, 2 ml triethanolamine, 91 ml distilled water) (Courtney et al., 1955), 

for the purpose of morphological analysis. 
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MORPHOLOGICAL AND MOLECULAR IDENTIFICATION 

For morphological observation, the nematodes that were heat-killed in TAF were mounted 

on temporary microscope slides, covered with a cover slip and studied with a compound 

microscope (Leica DM200, Leica Microsystems, Wetzlar, Germany), fitted with a digital 

camera (Ross et al., 2016). The morphology of the nematodes was then studied by observing 

the length and tail shape of the nematodes, and by checking for the presence of males.  

For molecular analysis, the nematodes from the 70% ethanol were removed, and their DNA 

extracted by picking into a mix of 25 µl Chelex beads and 5 µl Proteinase K in 0.2-ml PCR 

tubes (Ross et al., 2010). The tubes were placed in a thermocycler at 65 °C for 1 h, and then at 

95 °C for 10 min, after which they were centrifuged at 8000 rpm for 5 min, with the supernatant 

then being transferred to a clean tube, which was kept at -20 °C (Ross et al., 2010).  

The samples were then subjected to a polymerase chain reaction (PCR) of the small subunit 

(SSU) rRNA gene (Ross et al., 2010).The PCR cycling parameters involved a primary 

denaturation stage at 94 °C for 5 min, then 35 cycles of the three temperatures, 94 °C for 60 s, 

55 °C for 90 s and 72 °C for 2 min, followed by a final cycle of 72 °C for 10 min (Ross et al., 

2010). Sequence traces were inspected and assembled using CLC Main Workbench 7.6.4 

(https://www.qiagenbioinformatics.com/), and then compared to those on the database of the 

National Centre for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) by 

using the BLASTN tool (Altschul et al., 1990). 

ORIGIN OF BACTERIA  

Kluyvera sp. (Genbank accession number KX531097) was isolated by Pieterse et al. (2016) 

with its ability to cause mortality in slugs proven, making it an ideal choice for the present 

study. Kluyvera sp. were revived from 15% glycerol cultures stored at -80 °C, by adding 200 

µl to 30 ml Luria Broth (LB) (10 g NaCl, 10 g Tryptone, 5 g yeast extract per litre, autoclaved 

at 121 °C for 20 min) in a 250-ml Erlenmeyer flask, and then left on an orbital shaker (140 

rpm) at 28 °C for 48 h. 

MONOXENIC CULTURES 

To grow nematodes that were only associated with one bacterial species, the nematodes had 

to first be sterilised of all bacteria. This was done by using a method adapted from Lunau et al. 

(1993). Infective juveniles (IJs) of C. elegans were added to a frozen and defrosted slug on a 
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9.5-cm Petri dish lined with moistened Whatman® No. 1 filter paper. The dish was sealed with 

parafilm and incubated at 18 °C for 48 h, at which stage adult hermaphrodites with eggs were 

first observed. The Petri dish was then washed with 0.9 % saline solution and passed through 

a 32 µm sieve to remove all life stages, apart from that of the adult hermaphrodites. The 

hermaphrodites were then added to Eppendorf tubes, centrifuged and aspirated to 300 µl. The 

nematodes were then crushed, using a sterilised plastic grinding rod, for 30 sec, after which 

700 µl of a NaOH/bleach mix (0.2 g NaOH, 2.25 ml bleach in 7.75 ml sterile water) was added 

to the tubes. The NaOH/bleach mix was then left to work on the nematode debris and eggs for 

8 min, with the tubes being occasionally shaken. The mixture in the tubes was then washed by 

means of centrifuging the tubes, removing the top liquid layer and adding sterilised distilled 

water. The washing process was repeated three times. The remaining eggs were then pipetted 

into 200 µl sterile tryptone soy broth in a sterile 24-well culture plate (NuncTM), which was 

then sealed with parafilm and left at 25 °C for 48 h. Where there were no signs of bacterial 

contamination after 48 h, the nematodes involved were used for liquid culturing. 

LIQUID CULTURES 

After 48 h growth of the Kluyvera sp. in the LB, 1.2 ml (4%) of the bacteria was added to 

30 ml liquid culture medium (9 g pig kidney, 17.4 g yeast extract, 8.6 g egg yolk powder, 52.6 

g sunflower oil, in 1 L distilled water, autoclaved at 121 °C for 20 min) in a 250-ml Erlenmeyer 

flask, which was again incubated on an orbital shaker (140 rpm) at 28 °C for 48 h. After the 

bacteria had grown for 48 h in the medium, the sterile J1s of C. elegans were added. The flask 

was then incubated at 18 °C on an orbital shaker (140 rpm) for 14 days. After two weeks, the 

contents of the flask were washed several times with sterile distilled water through a 32 µm 

sieve to separate and remove all adult hermaphrodite stages, and then through a 25 µm sieve 

to remove any remaining medium and life stages that were smaller than the IJ. The above was 

then used as inoculum for the pathogenicity test.  

PATHOGENICITY TEST 

A total of 120 Deroceras invadens Reise, Hutchinson, Schunack & Schlitt (Agriolimacidae) 

slugs were used for the pathogenicity experiment. This species was chosen as it is a known 

slug pest in Europe and was the only species available in large numbers at the time of collection. 

The slugs were each kept in their own Petri dish (100 mm × 15 mm) lined with Whatman® No. 

1 filter paper. Twenty Petri dishes were then moistened with 800 µl of distilled water containing 

2000 IJs of C. elegans, monoxenically cultured with Kluyvera sp. The control dishes were 

Stellenbosch University https://scholar.sun.ac.za



35 

moistened with 800 µl of distilled water only. A total of 20 tested and 20 control slugs were 

provided with a carrot slice as a food source, with it being replaced every 2 days. The Petri 

dishes were kept at 18 °C for a period of 14 days. The plates were observed daily, and any dead 

slugs were dissected to determine whether nematode infection had occurred. The experiment 

was repeated three times with fresh slugs, using a total of 120 slugs. 

Results 

SLUGS COLLECTED 

A total of 300 terrestrial slugs were collected and dissected, consisting of seven species. 

Three of the species were introduced from Europe, with four being indigenous to Africa. Of 

the 300 slugs that were collected, 239 were invasive species. Only 61 of the slugs collected 

were endemic to southern Africa, including Chlamydephorus gibbonsi Binney, Elisolimax 

flavescens (Keferstein) (Fig. 2.2a) and Laevicaulis alte Férussac (Fig. 2.2c) (Table 2.2). 

Caenorhabditis elegans was only found in L. alte of the endemic species, while in the 

introduced species, it was only associated with the Deroceras species, including D. 

panormitanum, D. reticulatum (Fig. 2.2b), and D. invadens. 

Figure 2.1. Map of the collection sites in the KwaZulu-Natal province. 
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Table 2.1. Number of species of slugs collected in KwaZulu-Natal. 

Family Species 
Indigenous/ 

Introduced 

Number 

collected 

Agriolimacidae Deroceras invadens Reise, Hutchinson, Schunack & Schlitt Introduced 205 

Deroceras reticulatum (Müller) Introduced 10 

Chlamydephoridae Chlamydephorus gibbonsi Binney Indigenous 5 

Limacidae Ambigolimax valentianus Férussac Introduced 24 

Urocyclidae Elisolimax flavescens (Keferstein) Indigenous 40 

Urocyclus kirkii Gray Indigenous 11 

Veronicellidae Laevicaulis alte Férussac Indigenous 5 

Figure 2.2. A: Ambigolimax flavescens (endemic species), B: Deroceras reticulatum (invasive 

species), and C: Laevicaulis alte (endemic species) collected in KwaZulu-Natal. 

A B 

C 
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NEMATODES ISOLATED 

Five of the nine sites that were surveyed were found to have nematodes present (56%). Only 

19 of the 300 slugs that were collected and dissected were infected with nematodes (6.3%). 

The only nematode species that was isolated was Caenorhabditis elegans (Table 2.2; Fig. 2.3). 

 

Table 2.2. Nematodes isolated from slugs collected from KwaZulu-Natal, including host and 

location data. 

Location Coordinates Habitat Slug species Nematode parasite 

Underberg 29°45'02.9"S 

29°30'52.0"E 

Farm D. invadens C. elegans 

   
A. valentianus - 

Winterton 28°45'59.7"S 

29°26'46.5"E 

Farm D. invadens - 

Durban 29°49'36.6"S 

30°55'47.5"E 

Nursery D. invadens - 

   
Laevicaulis alte - 

Durban 29°46'17.4"S 

31°03'07.0"E 

Nursery Elisolimax flavescens - 

   
D. invadens - 

Durban 29°42'10.3"S 

31°02'08.4"E 

Nursery E. flavescens - 

   
D. invadens - 

Durban 29°45'37.7"S 

31°01'55.0"E 

Nursery E. flavescens - 

   
D. invadens C. elegans 

   
A. valentianus - 

   
Deroceras reticulatum C. elegans 

   
L. alte - 

   
Urocyclus kirkii - 

   
Chlamydephorus gibbonsi - 

Eshowe 28°53'07.7''S 

31°28'19.3''E 

Garden E. flavescens C. elegans 

Durban 29°49'46.7"S 

30°52'47.5"E 

Garden E. flavescens C. elegans 

   
U. kirkii - 

Tongaat 29°32'39.8"S 

31°08'11.4"E 

Garden E. flavescens C. elegans 
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Figure 2.3. Light microscope photo of Caenorhabditis elegans adult hermaphrodite isolated 

during the survey of KwaZulu-Natal. 

PATHOGENICITY 

Pathogenicity studies showed that no significant difference was found in the number of 

deaths when the slugs were treated with C. elegans monoxenically grown with Kluyvera sp., 

compared to untreated slugs. Caenorhabditis elegans was found inside all dead slugs that were 

treated, but not in the dead control slugs. 

 

 

 

 

Figure 2.4. Graph displaying mortality of Deroceras invadens with untreated control vs. 

treatment with monoxenic cultures of Caenorhabditis elegans. 
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Discussion 

This is the first mollusc-nematode survey ever conducted in KwaZulu-Natal. Four slug 

species were found, including C. gibbonsi, endemic to the Transkei and the KwaZulu-Natal 

province; E. flavescens, endemic to central and southern Africa; Urocyclus kirkii endemic to 

central and southern Africa; and L. alte, originating in the Afro-Asian regions (Herbert & 

Kilburn, 2004). Three introduced slug species were found, including D. invadens, a well-

known pest species found in many parts of the world; D. reticulatum, a synanthropic species 

initially from Europe and A. valentianus, a European species that has been introduced in many 

countries in Africa, Oceania, North and South America and Asia (Waldén, 1961; Wiktor, 2000; 

Herbert & Kilburn, 2004; Reise et al., 2011).  

Of the 300 slugs that were collected, 239 were introduced species and 61 (20%) were 

indigenous to Africa. A possible reason for the large number of invasive species is due to many 

of the sample sites being disturbed sites, with a visible human impact. Further sampling in 

pristine areas might have delivered more indigenous species than the above. A low level of 

endemism was also found by Ross et al. (2012) and Pieterse et al. (2017), who found 6% and 

7% native slugs, respectively  

During this survey, five of the nine sites had nematodes present (56%), with only 19 of the 

300 slugs collected, having been infected with nematodes (6%). The results are similar to those 

of Ross et al. (2012) and Pieterse et al. (2017|), where 6% and 8% infectivity was recorded, 

respectively.  

The only nematode found during the mollusc-nematode survey of KwaZulu-Natal was C. 

elegans. Caenorhabditis elegans was also found in surveys of the Western Cape province of 

South Africa, however it is highly unusual for this to be the only nematode isolated (Ross et 

al., 2012; Pieterse et al., 2017). Caenorhabditis elegans is an androdioecious nematode that is 

mostly isolated from rotting fruit, compost, stems, and some invertebrates (Schulenburg & 

Félix, 2017). Its original substrate in nature seems to be microbe-rich rotting plant material 

(Schulenburg & Félix, 2017). Commonly forming phoretic or necromenic relationships with 

its invertebrate hosts, it is often found in slug intestines (Kiontke & Sudhaus, 2006). It 

possesses the ability to enter and exit the slug host, possibly as a means of transport, or to 

escape unfavourable environmental conditions (Petersen et al., 2015). It might also use the 

microbe-rich intestines of slugs as a suitable habitat for proliferation. The interaction between 
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Caenorhabditis species and slugs could hint at a possible mutualistic, commensal or parasitic 

relationship (Petersen et al., 2015; Schulenburg & Félix, 2017).  

Despite the high prevalence of C. elegans, pathogenicity studies demonstrated that C. 

elegans is not capable of causing mortality in D. invadens, even when it is grown with bacteria 

that is capable of causing mortality in slugs (Pieterse et al., 2016). A possible explanation for 

the above is that the nematodes do not enter the body of the slug, or perhaps they recovered 

from the IJ stage, and expelled the bacteria before entering the slug’s body. Petersen et al. 

(2015) found that C. elegans is capable of entering and exiting its slug host, possibly to escape 

adverse environmental conditions (Petersen et al., 2015). The Petri dishes, lined with moist 

filter paper and containing a slice of carrot, as used in the pathogenicity test in this study, 

possibly created a suitable enough environment for C. elegans, so that the nematodes did not 

need to enter the slug’s body. 

The isolation of C. elegans in the present survey, as well as in the other two previous surveys 

conducted in South Africa, indicates that it is widespread within the country, has a closer 

relationship with molluscs than previously thought, and is well-established in many different 

habitats (Ross et al., 2012; Pieterse et al., 2017). There are a number of possible reasons for C. 

elegans widespread occurrence. Hodgkin and Barnes (1991) found that the number of sperm 

produced, and the reproductive mode of the wild-type hermaphrodites of C. elegans, are 

optimised to enable rapid population growth (Hodgkin & Barnes, 1991). Caenorhabditis 

elegans is also capable of using slugs, isopods and chilopods as vectors, possibly to escape 

unfavourable environments, with it also having the ability to nictate to facilitate its contact and 

transport by associated animals or vectors (Kiontke & Sudhaus, 2006; Kruitbos & Wilson, 

2010; Petersen et al., 2015). The findings are also supported by population genetic studies, 

which suggest that C. elegans is capable of migrating over long distances, and even between 

continents (Koch et al., 2000; Sivarsundar & Hey, 2003; Barrière & Félix, 2005; Haber et al., 

2005; Petersen et al., 2015). 

The mollusc-nematode fauna in South Africa is relatively understudied, with previous work 

focusing on the Western Cape, and this study concentrating on KwaZulu-Natal. It is 

recommended that future work focuses on surveying the other provinces in South Africa, as 

well as across the African continent  
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Chapter 3 

Distribution and feeding behaviour of Chlamydephorus gibbonsi in the 

Western Cape province of South Africa 

(format adapted from the following published paper: 

Pieterse, A., Malan, A.P., Sirgel, W.F. & Ross, J.L. (2017). Distribution and feeding behaviour of Chlamydephorus gibbonsi 

in the Western Cape province of South Africa. Journal of Conchology 42(6), 523-529.) 

Summary 

The purpose of this study was to investigate the distribution and feeding behaviour of the 

South African predatory slug, Chlamydephorus gibbonsi Binney, 1879 (Mollusca: 

Gastropoda), which is endemic to the eastern region, but has now spread to the Western Cape 

province (WCP). A total of 210 C. gibbonsi specimens were collected from the WCP between 

January 2012 and December 2015. Slug numbers were found to steadily increase from nine 

specimens collected in 2012, to 111 specimens collected in 2015, indicating establishment of 

C. gibbonsi in its new habitat. Of the sample sites studied, 13.7% were found to be positive for

C. gibbonsi, including sites in George, Knysna, Swellendam, Hermanus and Stellenbosch. The

habitats of positive sample sites were all commercial nurseries. Feeding behaviour of C. 

gibbonsi is described using an earthworm of the genus Amynthas. 

Keywords - Chlamydephoridae; Distribution; Feeding; Invasion; Earthworms 
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Introduction 

Terrestrial pulmonate molluscs (both snails and slugs) are commonly herbivores feeding on 

algae, fungi and plant material, hence their interest as economically significant pests. However, 

occasionally species that are primarily herbivorous will feed on living invertebrates, or 

decaying flesh of dead animals, and under extreme conditions, can resort to cannibalism 

(South, 1992). Obligate carnivory occurs in several slug families e.g. Chlamydephoridae, 

Papillodermidae, Plutoniidae, Rathouisiidae, Testacellidae, as well as some snail species 

(Herbert, 2000).  

The families Rhytididae, Streptaxidae and Chlamydephoridae are all carnivorous terrestrial 

molluscs indigenous to South Africa, the latter of the three the sole slug representative. 

Chlamydephoridae are typically narrow, firm and dry to the touch and have a characteristic 

postero-dorsally positioned pneumostome. Additionally, the dorsal surface is marked with 

well-defined grooves radiating from the pneumostome. An anatomical review of the family 

was conducted by Watson (1915), and taxonomy and biogeography was examined by Forcart 

(1967), van Bruggen (1969, 1978) and Herbert (1997). Like many carnivorous slugs 

Chlamydephoridae are secretive, well camouflaged, and are subterranean, so little is known of 

their behaviour and distribution.  

Chlamydephoridae are represented by nine species in South Africa, and five are from the 

Eastern region, with Chlamydephorus gibbonsi Binney, 1879, Chlamydephorus burnupi 

(Smith, 1892) and Chlamydephorus dimidius (Watson, 1915) thought to be endemic to the area. 

Chlamydephorus gibbonsi occurs in a wide range of habitats, spanning open thornveld to 

indigenous forests. Initial distribution was thought to range from eastern Zimbabwe, through 

to the Eastern Cape of South Africa (Herbert, 1997). However, Herbert & Kilburn (2004) noted 

that C. gibbonsi had been found in KwaZulu-Natal at the Ngome Forest, Lake Sibaya, Colenso 

and Pietermaritzburg, and in the Eastern Cape from Transkei and East London. Herbert (1997) 

also found a single outlying specimen in the Western Cape, as did Ross et al. (2012), indicating 

that the species has invaded the WCP. To date, very little is known of the distribution or the 

invasive behaviour of C. gibbonsi.  

The feeding habits of chlamydephorids are poorly understood, and their proposed prey of 

earthworms and other molluscs, is based on distinctive anatomical features such as dagger-like 

teeth and a short digestive system. Herbert (2000) reported observations of C. dimidius feeding 

on snails, and C. burnupi, Chlamydephorus bruggeni (Forcart, 1967) and Chlamydephorus 
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sexangulus (Watson, 1915) have been reported feeding on pill millipedes (Herbert 2000). 

However, the feeding habits of C. gibbonsi have yet to be fully elucidated. Watson (1915) 

proposed that they feed on earthworms, but gave no details of observations, and Herbert (2000) 

supported this proposal based on the fact that the slug has subterranean habitats.  

During fieldwork in George (33°59'27''S 22°30'54''E), a specimen of C. gibbonsi was 

observed feeding on an earthworm (Amynthas sp.). The two invertebrates had been placed in 

the same sample box, and although the killing process had not been observed, the earthworm 

was alive when collected. This observation confirmed the proposal of Watson (1915) and 

Herbert (2000), but provided little information regarding the killing process. Therefore, 

additional samples of C. gibbonsi were brought back to the laboratory in order to explore this 

behaviour further. This study details observations on the distribution and feeding behaviour of 

C. gibbonsi in the Western Cape of South Africa. 

Materials and methods 

Fifty-one sample sites around the Western Cape were examined for slugs between January 

2012 and December 2015. Habitats included domestic gardens, nurseries, agricultural land, 

forest areas and road side verges. A total of one hour was spent at each location, focusing on 

as many different vegetation and microhabitat types as possible. Collected slugs were stored in 

sealed containers at one hundred percent humidity, and transported to the laboratory where 

they were identified using morphological analysis and dissection of genitalia.  

Under laboratory conditions, single specimens of C. gibbonsi were placed in plastic 

containers lined with moist paper towels. Slugs were kept in isolation for three days to allow 

for starvation. Individual earthworms (Amynthas sp.) were then added to the experimental 

arena. Feeding behaviour was recorded and photographed. 

Results 

A total of 2876 slugs were collected in the WCP between 2012 and 2015 and of these, 7.3% 

were C. gibbonsi. Numbers of C. gibbonsi were found to steadily increase, from nine specimens 

collected in 2012, to 111 specimens collected in 2015 (Fig. 3.1). Seven sample sites, all 

commercial nurseries, were positive for C. gibbonsi: three sites in George (33°59'27''S, 

22°30'54''E; 33°59'40''S, 22°32'19''E; 33°59'38''S, 22°23'35''E) and single sites in Knysna 

(34°01'57''S, 22°59'22''E), Swellendam (34°02'21''S, 20°32'49''E), Hermanus (34°24'41''S, 

19°12'01''E) and Stellenbosch (33°54'24''S, 18°50'38''E). 
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Figure 3.1. Number of Chlamydephorus gibbonsi specimens collected in the Western Cape 

between 2012 and 2015. 

On encountering prey C. gibbonsi spends an extended time exploring the surface of the 

earthworm with its inferior tentacles (Fig. 3.2A). It then slowly evaginates the anterior part of 

the buccal chamber through the mouth (Fig. 3.2B). By doing so, the odontophore covered by 

the radula is carried forward, but initially does not protrude from the buccal cavity. The 

odontophore is then rapidly thrust forward to collide with the prey, followed by a rapid 

retraction in a piston-like action. During this action, radular teeth are lodged into the body wall 

of the prey, resulting in the prey being partly drawn into the slug’s mouth. Simultaneously, the 

evaginated part of the buccal cavity is also invaginated. 

The finer details of the effective capturing and swallowing process can be understood by 

examining the morphology of the concerned structures. The process of hauling the prey into 

the alimentary system of the slug is permitted by adaptations of the radula, including numerous 

transverse rows of teeth borne on a radular membrane, which extend over the dorsal and 

anterior surface of the odontophore, and is U-shaped in cross section. The central tooth of the 

radula, which is situated at the deepest point of the ‘U’, and has a few lateral teeth on either 

side, are small and under developed. Following each transverse row laterally, the teeth 

gradually enlarge, and by approximately the tenth lateral tooth, are considered fully developed 

(Fig. 3.3). 
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Figure 3.2. Chlamydephorus gibbonsi capturing and killing the Amynthas sp. A, 

Chlamydephorus gibbonsi exploring the surface of the worm with its inferior tentacles. B, 

Evagination of the anterior section of the buccal cavity. C, D, Ejection of odontophore and 

hooking the hapless annelid on long radular teeth. E, F, Feeding and swallowing of the worm 

through a combination of suction and movement of the odontophore. 
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Figure 3.3. Radula of Chlamydephorus gibbonsi (magnification approximately 101x), showing 

the under developed centrally located teeth, as well as the more lateral, more developed teeth. 

Arrow indicating the direction of the mouth opening. 

Each fully developed lateral tooth has the shape of a long curved thorn, and consists of a 

cusp and a basal plate, which are carried on the radular membrane. The cusp consists of an 

apical and basal portion. The sharply pointed apical portion (Fig. 3.4A) is slightly flattened on 

its ventral side, and extends posteriorly within the buccal bulb. At its base, it passes over into 

the cylindrical basal portion, which gradually, but strongly, enlarges towards its base, 

especially in the antero-posterior plane (Fig. 3.4B). 

Near its base, this portion is also strongly curved ventrally to form an angle of approximately 

ninety degrees, where it transmits into the basal plate. The latter is an elongated disc-shaped 

structure implanted, and longitudinally orientated, on the radular membrane. It is important to 

note that this base plate is deeply concave as seen from its ventral side (Fig. 3.4C). The 

concavity gives the impression that it could function like an articulation socket. At the same 

time, the elongated basal plate would enable the cusp of each tooth to maintain its posterior 

orientation, even when traction is exerted on it during the process of inhauling of the prey. The 
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anterior margin of the radular membrane is fused to the ventral and lateral walls of the buccal 

cavity ventrally, and laterally to the anterior margin of the odontophore. 

Figure 3.4. Medio-dorsal view of a well-developed lateral tooth of Chlamydephorus gibbonsi 

(magnification approximately 450x) displaying; A, the apical portion with a sharp tip, 

orientated posteriorly; B, basal portion; and C, the deeply concave basal plate implanted on the 

radular membrane. 

Bearing the above mentioned morphology of the radula in mind, the capturing and hauling 

of the prey can further be elaborated on. During the final stages, when the odontophore is 

rapidly thrust towards the prey, it is clear that the inextensible radular membrane has to slide 

over the surface of the odontophore, and this will carry the teeth of at least the anterior part of 

the radula anteriorly, and glide over the anterior edge of the odontophore. As each of these 

curved teeth transgress the anterior edge of the odontophore, they naturally splay and flip over 

to then point anteriorly and laterally. This “flipping-over” action of each tooth could be 

facilitated by the concavity on the ventral side of the basal plate of each tooth. On impact with 

the surface of the prey, these now anteriorly directed sharp teeth thrust into the body wall of 

the prey. The odontophore then rapidly retracts and the teeth crossing the anterior edge of the 

odontophore flip back to restore their original, posteriorly directed position. The teeth that 

penetrated the prey perform a grabbing action, before returning to their original orientation, 
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thus drawing the prey into the buccal cavity of the slug. Teeth situated more anteriorly in the 

radula will hook onto the prey as they are retracted over the anterior edge of the odontophore, 

thus strengthening the hauling process (Fig. 3.2C, D). As mentioned above, the anterior section 

of the buccal cavity is simultaneously invaginated during the retraction of the odontophore. 

This exerts suction on the prey, thus aiding its intake. The swallowing process of the prey (Fig. 

3.2E, F) involves the radula repeatedly moving anteriorly and posteriorly within the buccal 

cavity. With each anterior movement, the teeth will be withdrawn from the prey only to hook 

further onto its body, when the next posterior movement commences. The entire capturing and 

swallowing process takes approximately one hour. 

Discussion 

Interest in the science and management of biological invasions has expanded in recent years 

due to the sharp increase in the introduction of invasive species in virtually all major habitats 

on Earth (Mack et al., 2000). An organism is considered invasive when it successfully 

establishes and thrives outside its natural range. Successful invasions arise from the 

transportation of alien species from one location to another, by activities of man, either 

intentionally or unintentionally, resulting in the establishment of these species in a new 

geographical region (Perrings et al., 2010). Invasions are occurring at an extraordinary rate due 

to the expansion of trade and the economical ease of travel. The introduction of alien species 

can have severe consequences on agricultural and horticultural industries, as well as having a 

direct impact on the economy, natural environments, biodiversity and human health (Mack et 

al., 2000). 

The observations of this study indicate that C. gibbonsi has successfully invaded the WCP 

and is now widespread, as far west as Stellenbosch. Previous studies by Herbert (1997) and 

Ross et al., (2012) found only a single specimen of C. gibbonsi in the Western Cape, however, 

this study demonstrates that slug numbers have increased in recent years. In order to regulate 

this process, it is important to have an increased understanding of the causes and mechanisms 

of the spread of these species. Reports from around the world suggest that the horticultural 

industry acts as a vector for invasive species (Cowie et al., 2008). This can be confirmed in 

this instance, with positive sample sites being commercial nurseries. We propose that the slug 

has been spread to the WCP through transportation of plant material. 

We herewith confirm that C. gibbonsi feeds on earthworms and this process is documented 

in figure 3.2. This procedure is very similar to the feeding habits of the carnivorous family 
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Testacellidae, which also prey on earthworms, as well as other molluscs (Webb, 1893; Quick, 

1960). Crampton (1975) provides a comprehensive study of the feeding process of Testacella, 

detailing a two phased process involving an initial stage of seizing the worm and drawing the 

first part of the body through the mouth; and then a second phase whereby the remainder of the 

worm is ingested. This process was previously observed by Stokes (1958) and further described 

and photographed by Liberto et al. (2011), who observed that feeding generally takes up to one 

hour.  

The introduction of C. gibbonsi to the WCP may have an impact on earthworm abundance, 

now that it has been confirmed that they play a role in the diet of C. gibbonsi. Future work 

should monitor the impact of C. gibbonsi on earthworm populations, as earthworms are 

important to the soil biota (Lavelle et al. 1997), nutrient dynamics (Schmidt & Curry, 1999), 

decomposition processes (Bonkowski et al., 2001), soil microorganisms (Clapperton et al., 

2001), microarthropods (McLean & Parkinson, 1998), seed germination (Grant, 1983) and 

plant growth (Brussaard, 1999). Furthermore, they also play a substantial part of the diet of 

aboveground invertebrate (Guillemain, Loreau & Daufresne, 1997) and vertebrate predators 

(Ferrari & Weber, 1995). 
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Chapter 4 

Phasmarhabditis sp. (KEN1) (Nematoda: Rhabditidae), a parasite of the 

slug, Polytoxon robustum, from Kenya 

Summary 

A new species within the Phasmarhabditis genus has been isolated from the slug, Polytoxon 

robustum, from Nairobi, Kenya. The nematode was isolated based on collaborative work, and 

identified using morphological, morphometrical, molecular and phylogenetic analyses. 

Phasmarhabditis sp. (KEN1) is characterised by an infective juvenile, currently with the 

longest body length in the genus, measuring 1232 (1107-1336) µm. Also by the presence of 

males with a bursa bearing nine bilateral pairs of genital bursal papillae, and one pair of 

papilliform phasmids flanking the tail, cephalate paired spicules, with an arc length of 71 (57-

81) µm, as well as by females with a vulva located at midbody region and a conoid tail shape,

with two phasmids located at ca 40% of tail length. The molecular phylogeny of the new 

species, as inferred from its SSU (small subunit) rRNA gene, places Phasmarhabditis sp. 

(KEN1) generically close to undescribed phasmarhabditids from South Africa, suggesting an 

African grouping, while the D2-D3 (large ribosomal subunit) and ITS region analyses relate 

Phasmarhabditis sp. (KEN1) with the Vietnamese Phasmarhabditis meridionalis, but only 

under weak bootstrap support, and only in the absence of D2D3 sequences for the 

aforementioned African phasmarhabditid group. The lack of such sequence data highlights the 

importance of encouraging any new species description to be supported by sequences for the 

small subunit (SSU) rRNA gene, the D2-D3 rRNA gene, the ITS1, 5.8S, ITS2 rRNA gene and 

the mitochondrial cytochrome c oxidase subunit I (mtCOI) gene. This is the fifth 

phasmarhabditid found on the African continant, and the third new species from Africa. This 

new species bringing the total complement of the genus to 14 species.  

Keywords – description; gastropods; morphology; morphometrics; new species; phylogeny; 

taxonomy; Africa 
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Introduction 

This year marks the 160th anniversary since the establishment of the genus Phasmarhabditis 

Andrássy, which was originally founded with the description of Phasmarhabditis 

hermaphrodita (Schneider) Andrássy (Pelodytes hermaphroditus) (Schneider, 1859). The 

above was followed by the description of Phasmarhabditis papillosa Schneider Andrássy in 

1866, and of Phasmarhabditis neopapillosa (Mengert in Osche) Andrássy in 1954 (Schneider, 

1866; Osche, 1954). However, it was over 60 years later that the genus boom occurred, with a 

notable nine new species added to the genus since 2015. To date, there are 13 nominal species 

in the genus Phasmarhabditis, including: P. hermaphrodita; P. neopapillosa; P. papillosa; P. 

tawfiki Azzam; P. huizhouensis Huang, Ye, Ren & Zhao; P. apuliae Nermuť, Půža & Mráček; 

P. bonaquaense Nermuť, Půža, Mekete & Mráček; P. californica Tandingan De Ley, 

Holovachov, Mc Donnell, Bert, Paine & De Ley; P. bohemica Nermuť, Půža, Mekete & 

Mráček; P. meridionalis Ivanova & Spiridonov; P. safricana Ross, Pieterse, Malan & Ivanova; 

P. circassica Ivanova, Geraskina & Spiridinov; and P. clausiliiae Ivanova, Geraskina & 

Spiridinov. Members of the Phasmarhabditis genus are soil-dwelling, facultative mollusc-

parasitic nematodes, with the exception of P. huizhouensis, which has been isolated from rotten 

leaves (Huang et al., 2015).  

A major reason for the recent growth of Phasmarhabditis relates to the worldwide search 

for nematode candidates to develop as biological control agents for molluscs. In 1993, Wilson 

et al. (1993) noted that P. hermaphrodita was capable of parasitising a range of slug species, 

and, in the following year, the nematode was launched as a commercial product under the 

tradename Nemaslug® by BASF (formally Becker Underwood). It is also produced by 

Dudutech, who sell it under the trade name SlugTech®. Nemaslug®, is currently sold in 15 

European countries and contains the free-living, non-feeding, third-stage infective juvenile (IJ), 

which is also known as the dauer larva. The larvae concerned have the ability to infect slugs 

through the dorsal integumental pouch, and then to enter the shell cavity below the mantle. 

Once the nematodes are inside the slug, they recover to the feeding third juvenile stage and 

develop into adults, which, subsequently, reproduce, causing a swelling of the mantle. Death 

of the slug usually occurs within 4 to 21 days after exposure (Wilson et al., 1993; Tan & 

Grewal, 2001). The nematodes then reproduce on the slug cadaver and, on depletion of the 

food source, enter the IJ stage, which leaves the cadaver in search of a new host (Wilson & 

Rae, 2015). The commercial strain of P. hermaphrodita is a monoxenic combination with the 

bacterium, Moraxella osloensis Bovre & Henriksen, although the relationship is not symbiotic, 
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but one that has been artificially created. Phasmarhabditis hermaphrodita can be successfully 

used to control a range of terrestrial molluscs, including members of the families 

Agriolimacidae, Arionidae, Milacidae, Limacidae and Vaginulidae (Rae et al., 2007). The 

success of the product, along with its restricted use in non-native territories, has inspired 

researchers around the world to survey slug-parasitic nematodes, and to investigate their 

biocontrol potential, in the quest to launch the next commercial bio-molluscicide product 

(Ross, 2019).  

With reference to Sudhaus (2011), the name Phasmarhabditis was regarded as a junior 

synonym of Pellioditis (Dougherty) Timm, with the type species being Pellioditis pellio 

(Schneider) Timm. However, such nomenclature has been rejected by Nermuť et al. (2016a) 

and Ross et al. (2018), based on phylogenic studies, and, therefore, the current paper describes 

the new species as being in the same genus referred to as Phasmarhabditis. The species within 

Phasmarhabditis are usually distinguished based on their morphometrics, the characteristics of 

the female tail, the spicule size, the presence or absence of males, and the bursal papillae, and 

are supported by molecular characterisation and phylogenetic analyses. The Phasmarhabditis 

genus has a worldwide continental distribution, with the exception of the Antarctica (France & 

Gerding, 2000; Azzam, 2003; Karimi et al., 2003; Genena et al., 2011; Ross et al., 2012; 

Wilson et al., 2012; Tandingan De Ley et al., 2014; Ivanova & Spiridonov, 2017; Pieterse et 

al., 2017; Waki, 2017; Ross et al., 2018; Ivanova, Geraskina & Spiridonov, 2019), and three 

of the species have been found on the African continent, including P. papillosa (South Africa), 

P. safricana (South Africa) and P. tawfiki (Egypt) (Azzam, 2003; Ross et al., 2018).

During a collaborative survey of the nematodes associated with terrestrial slugs in Kenya, a

nematode belonging to Phasmarhabditis was isolated from the slug, Polytoxon robustum 

(Simroth) (Gastropoda: Urocyclidae), from Nairobi. The objective of the current study was to 

use the biology, morphology, morphometrics and molecular methods to describe a new species 

in the genus, as Phasmarhabditis sp. (KEN1) and to add to the body of knowledge concerning 

the occurrence and diversity of this diverse group of nematodes. 

Materials and methods 

COLLECTION OF SLUGS 

The slug P. robustum was collected from a garden in Nairobi, Kenya. The slug was rinsed 

with 0.9% saline solution to remove any external nematodes, after which it was dissected, and 
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the internal nematodes were recovered. The nematodes were then maintained in vivo on 

defrosted, freeze-killed slugs, on a moistened Whatman No. 1 filter paper in a Petri dish.  

IDENTIFICATION OF NEMATODES 

Thirty nematodes of each life stage were observed for morphological identification and 

morphometric analysis. Ex-sheathed IJs were used for morphometric and morphological 

analysis. After being killed and fixed with hot (85°C) TAF (2% triethanolamine, 8% formalin 

in distilled water) (Courtney et al., 1955), the nematodes were mounted on a glass microscope 

slide with a paraffin wax ring, which was covered with a cover slip. The slides were then 

viewed, and the measurements were taken with a compound microscope (Leica DM200, Leica 

Microsystems), fitted with a digital camera and using the Leica Application Suite V3.5.0 

software, with live measurement capability. The bursa of the males were observed by 

transferring the males that were fixed in TAF to a drop of lactophenol with 0.002% acid fuchsin 

on a microscope slide for staining. After 20 min, the males were transferred to a clear drop of 

lactophenol, where their bursa was cut off, using the edge of a syringe needle, with the rest of 

the nematode being discarded. A cover slip was then added and gently pressed to position the 

bursa for ventral viewing (Nguyen et al., 2004), then again gently pressed and moved around 

to separate the gubernaculum and spicules from the rest of the bursa for observation (Malan et 

al., 2016).  

SCANNING ELECTRON MICROSCOPY (SEM) 

For SEM photos, the males, females and IJs were fixed in TAF, and left for 3 days, after 

which each nematode was washed three times in 0.05M cacodylate buffer for 15 min, and then 

dehydrated in a graded ethanol series (70%, 80%, 90%, 100%, and then again at 100%). The 

nematodes were then critical point dried using liquid carbon dioxide, mounted on SEM stubs 

and sputter coated with 20 nm gold/palladium (66/33%). The samples were then viewed, using 

an FEI Qanta 200 ESEM (Düren), operating at 10 kV in high-vacuum mode (Malan et al., 

2016). 

MOLECULAR ANALYSES 

After being individually picked, the live nematodes were placed in 200-µl PCR tubes with 

a mix of Chelex® and Proteinase K, for the purpose of DNA extraction (Ross et al., 2010). The 

samples were then subjected to a polymerase chain reaction (PCR) of the small subunit (SSU) 

rRNA gene (Ross et al., 2010), the D2-D3 large subunit (LSU) rRNA gene (Nguyen, 2007; 
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Ivanova & Spiridonov, 2010) and the Internal Transcriber Spacer (ITS = ITS1, 5.8S, ITS2) 

rRNA region (Vrain et al., 1992; Nadler et al., 2005). The sequence traces were then inspected 

and assembled using CLC Main Workbench 7.6.4 (CLC Bio, Aarhus, Denmark), after which 

they were uploaded to the GenBank database (http://www.ncbi.nlm.nih.gov/), at the National 

Centre for Biotechnology Information (NCBI). 

PHYLOGENETIC ANALYSES 

Phylogenetic analyses of Phasmarhabditis sp. (KEN1) were conducted using the SSU, D2-

D3 genes and ITS region, along with additional sequences downloaded from GenBank, giving 

a total of 31 sequences with SSU, 32 of D2-D3, and 23 of ITS sequences for the analyses. 

Representatives were chosen of the genera Agfa Dougherty, Angiostoma Dujardin and 

Phasmarhabditis, along with the genera Oscheius and Pellioditis as outgroups. The sequences 

were aligned manually, using BioEdit Sequence Alignment Editor (Hall, 1999), and regions of 

ambiguous alignment were removed, leaving 406, 160 and 231 unambiguously aligned 

positions for SSU, D2-D3 and ITS, respectively. Maximum likelihood (ML), distance and 

maximum parsimony (MP) analyses were chosen for phylogenetic analyses, using the software 

packages PHYML (Guindon & Gascuel, 2003) and PHYLIP (Felsenstein, 2007). Sequences 

were analysed using Modeltest, with a time-reversible (GTR) model, and an eight-category 

gamma correction, with the fraction of the invariant sites being generated from ML analysis. 

Bootstrap support included 1000 replicates, with the figures 65% and above being included in 

the tree.  

Results 

Phasmarhabditis sp. (KEN1) n. sp. 

MEASUREMENTS 

See Tables 4.1-4.4. 
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Table 4.1. Morphometrics of Phasmarhabditis sp. (KEN1). Measurements are in µm and in 

the form: mean ± s.d. (range). 

Character 
Male 

Female Infective juvenile 

Holotype Paratype 

n – 20 20 20 

L 1992 
1989 ± 77 

(1835-2034) 

2151 ± 178 

(1918-2340) 

1232 ± 105 

(1107-1336) 

a 
23.1 

23.1 ± 1.2 

(20.9-24.2) 

22.1 ± 1.3 

(20.0-24.1) 

27.6 ± 2.0 

(25.3-30.5) 

b 
8.1 

8.7 ± 1.4 

(7.9-11.5) 

8.3 ± 0.5 

(7.6-8.9) 

6.4 ± 0.5 

(5.7-7.2) 

c 
31.9 

39.7 ± 7.8 

(31.9-49.7) 

12.9 ± 1.0 

(11.6-14.2) 

6.9 ± 0.4 

(6.3-7.5) 

c' 
1.2 

1.1 ± 0.2 

(0.7-1.3) 

3.9 ± 0.3 

(3.4-4.3) 

6.6 ± 0.5 

(5.8-7.3) 

V 
– –

50.5 ± 1.0 

(48.8-51.9) 
–

Body diam. 
86 

86 ± 2.0 

(83-89) 

98 ± 10.1 

(85-117) 

45 ± 4.8 

(38-50) 

Stoma length 
21 

25 ± 6.8 

(20-38) 

21 ± 1.5 

(19-23) 
–

Stoma diam. 
7.1 

6.2 ± 2.0 

(4.2-9.2) 

6.9 ± 0.9 

(6.0-8.5) 
–

Excretory pore 
254 

248 ± 25.0 

(201-276) 

241 ± 11.5 

(225-253) 

178 ± 9.5 

(170-192) 

Pharynx length 
246 

233 ± 36.3 

(160-256) 

259 ± 9.4 

(248-271) 

192 ± 11.5 

(183-214) 

Corpus length 
142 

136 ± 18.1 

(99-146) 

149 ± 3.0 

(144-153) 
–

Metacorpal 

expansion 26 
27 ± 0.8 

(26-28) 

29 ± 1.0 

(27-30) 
–

Basal bulb diam. 
37 

37 ± 0.7 

(36-38) 

41 ± 2.5 

(37-45) 

19 ± 1.8 

(17-22) 

Nerve ring 
170 

171 ± 17.0 

(142-194) 

185 ± 6.7 

(177-194) 

148 ± 11.3 

(138-168) 

Anal body diam. 
52 

49 ± 2.4 

(45-52) 

44 ± 3.6 

(38-49) 

27 ± 3.3 

(25-34) 

Tail 
55 

52 ± 10.5 

(37-63) 

168 ± 16.6 

(136-186) 

179 ± 11.9 

(165-196) 

Spicule length 
73 

71 ± 10.2 

(57-81) 
– –

Gubernaculum 

length 31 
32 ± 4.1 

(25-36) 
– –
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Table 4.2. Morphometric comparison of Phasmarhabditis species males grown in vivo. Measurements are in µm and in the form: mean ± s.d. (range). 

Character 
Phasmarhabditis 

sp. (KEN1) 

P.  

safricana 

P.  

papillosa 
SA 

P.  

circassica 

P.  

clausiliiae 

P. 

 apuliae BAR 

P. 

bohemica 
CH1 

P. 

bonaquaense 
NDV 

P. 

neopapillosa 
UK 

P. 

meridionalis 

P. 

tawfiki 

n 20 14 25 10 10 9 15 20 20 9 10 

L 1989 ± 77 

(1835-2034) 

1477 ± 139 

(1220-1702) 

1529 ± 79 

(1390-1679) 

1200 ± 236 

(916-1607) 

1183 ± 221 

(905-1540) 

2096 ± 128 

(1898-2363) 

1683 ± 91 

(1515-1818) 

1829 ± 224 

(1414-2121) 

1585 ± 90 

(1432-1771) 

1317 ± 140 

(1159-1526) 

1337 ± 159 

(980-1535) 

a 23.1 ± 1.2 

(20.9-24.2) 

22.6 ± 2.0 

(20.7-29.9) 

25.3 ± 2.0 

(20.6-28.3) 

24.4 ± 2.7 

(20.6-29.2) 

23.6 ± 3.6 

(16.8-28.6) 

21.8 ± 3.1 

(18.8-29.3) 

19.2 ± 2.2 

(15.4-22.5) 

20.8 ± 3.9 

(14.0-27.7) 

18.9 ± 1.3 

(16.7-21.3) 

22.1 ± 2.0 

(19.2-25.8) 

17.9 ± 1.7 

(14.8-19.9) 

b 8.7 ± 1.4 

(7.9-11.5) 

7.6 ± 0.8 

(6.8-9.6) 

6.9 ± 0.6 

(5.9-8.1) 

6.3 ± 0.6 

(4.9-6.9) 

6.2 ± 1.1 

(4.6-7.9) 

8.3 ± 0.6 

(7.4-9.7) 

7.7 ± 0.6 

(6.8-8.9) 

7.7 ± 1.3 

(5.9-10.5) 

6.5 ± 0.6 

(5.9-7.6) 

7.1 ± 0.5 

(6.5-7.6) 

5.8 ± 0.9 

(4.8-7.6) 

c 39.7 ± 7.8 

(31.9-49.7) 

38.7 ± 7.8 

(29.4-56.7) 

29.9 ± 2.1 

(25.8-35.4) 

37.2 ± 5.1 

(29.2-45.9) 

45.1 ± 9.6 

(28.3-61.6) 

37.2 ± 2.9 

(32.4-40.5) 

42.5 ± 4.1 

(35.2-51.1) 

36.1 ± 5.7 

(25.8-45.2) 

32.2 ± 2.7 

(27.5-33.7) 

41.5 ± 3.9 

(34.2-46.8) 

27.5 ± 4.6 

(18.2-34.9) 

c' 1.1 ± 0.2 

(0.7-1.3) 

1.0 ± 0.2 

(0.8-1.3) 

1.3 ± 0.1 

(1.1-1.5) 

1.1 ± 0.1 

(0.9-1.4) 

0.9 ± 0.2 

(0.7-1.2) 

1.4 ± 0.1 

(1.2-1.6) 

1.2 ± 0.1 

(1.0-1.5) 

1.4 ± 0.1 

(1.2-1.6) 

1.1 ± 0.1 

(0.9-1.2) 
_ _ 

Body diam. 86 ± 2.0 

(83-89) 

65 ± 5.0 

(55-74) 

61 ± 4.7 

(53-74) 

49 ± 7.0 

(40-64) 

52 ± 15.0 

(35-87) 

96 ± 8.4 

(80-101) 

89 ± 9.9 

(80-101) 

90 ± 10.9 

(70-101) 

84 ± 7.8 

(78-94) 

60 ± 7.0 

(45-67) 

81 ± 9.1 

(65-100) 

Stoma length 25 ± 6.8 
(20-38) 

20 ± 1.5 
(18-24) 

20 ± 1.1 
(18-22) 

20 ± 1 
(18-22) 

17 ± 1 
(16-18) 

16 ± 0.7 
(16-18) 

16 ± 1.0 
(14-18) 

20 ± 1.6 
(18-22) 

19 ± 0.8 
(17-20) 

_ 
21 ± 2.1 
(17-25) 

Stoma diam. 6.2 ± 2.0 
(4.2-9.2) 

4.2 ± 0.4 
(4.0-5.0) 

5.4 ± 0.5 
(4.6-6.8) 

4.0 ± 1.0 
(3.0-6.0) 

5.0 ± 1.0 
(4.0-7.0) 

6.2 ± 1.2 
(4.8-8.0) 

5.0 ± 0.5 
(4.8-6.4) 

5.8 ± 0.7 
(4.8-6.4) 

_ _ _ 

Excretory 
pore 

248 ± 25.0 
(201-276) 

174 ± 17.0 
(140-190) 

205 ± 13.1 
(178-226) 

163 ± 22.0 
(140-192) 

157 ± 12.0 
(144-175) 

223 ± 8.8 
(203-234) 

191 ± 8.0 
(183-207) 

196 ± 12.2 
(164-211) 

196 ± 10.6 
(185-220) 

176 ± 13.0 
(164-190) 

191 ± 36.3 
(113-250) 

Pharynx 

length 
233 ± 36.3 

(160-256) 

195 ± 13.0 

(169-210) 

224 ± 14.2 

(201-257) 

191 ± 29.0 

(147-244) 

193 ± 25.0 

(152-233) 

235 ± 6.1 

(226-246) 

202 ± 10.5 

(185-227) 

220 ± 18.4 

(176-252) 

246 ± 11.0 

(223-261) 

185 ± 11.0 

(174-208) 
_ 

Corpus length 136 ± 18.1 

(99-146) 

116 ± 10.0 

(100-130) 

130 ± 8.0 

(118-148) 

110 ± 20.0 

(87-152) 

111 ± 12.0 

(90-131) 
_ _ _ 

119 ± 4.5 

(114-128) 
_ 

114 ± 23.6 

(80-160) 

Metacorpal 

expansion 
27 ± 0.8 

(26-28) 

22 ± 2.0 

(20-25) 

30 ± 2.7 

(24-34) 

24 ± 3.0 

(19-29) 

22 ± 3.0 

(19-29) 
_ _ _ _ _ _ 

Basal bulb 37 ± 0.7 

(36-38) 

32 ± 2.0 

(28-36) 

38 ± 2.6 

(34-44) 

25 ± 4.0 

(15-30) 

29 ± 4.0 

(24-35) 

37 ± 3.2 

(31-39) 

33 ± 2.4 

(27-35) 

24 ± 2.8 

(27-35) 
_ _ _ 

Nerve ring 171 ± 17.0 

(142-194) 

142 ± 12.0 

(113-160) 

165 ±10.2 

(149-184) 

138 ± 21.0 

(108-167) 

133 ± 17.0 

(103-158) 

181 ± 4.6 

(176-191) 

160 ± 9.0 

(145-176) 

172 ± 13.9 

(140-195) 

164 ± 8.8 

(151-177) 

141 ± 7.0 

(135-154) 

152 ± 27.0 

(113-200) 

Anal body 

diam. 
49 ± 2.4 

(45-52) 

39 ± 5.0 

(30-48) 

41 ± 2.3 

(37-45) 

30 ± 3.0 

(25-32) 

29 ± 4.0 

(26-38) 

40 ± 3.6 

(35-47) 

33 ± 3.1 

(27-35) 

38 ± 2.7 

(31-43) 
_ _ _ 

Tail 52 ± 10.5 

(37-63) 

39 ± 6.0 

(30-51) 

51 ± 3.2 

(46-59) 

32 ± 4.0 

(27-40) 

27 ± 4.0 

(23-33) 

57 ± 2.7 

(51-59) 

40 ± 3.3 

(35-47) 

51 ± 3.0 

(47-55) 

49 ± 2.8 

(45-54) 

32 ± 5.0 

(25-38) 

49 ± 3.9 

(44-54) 

Spicule length 71 ± 10.2 

(57-81) 

61 ± 8.0 

(53-83) 

62 ± 3.4 

(55-69) 

58 ± 5.0 

(47-66) 

54 ± 8.0 

(46-67) 

81 ± 4.3 

(73-87) 

74 ± 5.0 

(66-82) 

77 ± 4.8 

(68-86) 

68 ± 2.8 

(60-71) 

76 ± 4.0 

(71-83) 

63 ± 8.2 

(54-75) 

Gubernaculum 
length 

32 ± 4.1 

(25-36) 

32 ± 3.0 

(25-34) 

31 ± 2.2 

(27-34) 

26 ± 3.0 

(20-40) 

28 ± 5.0 

(23-35) 

44 ± 5.4 

(35-49) 

35 ± 3.6 

(27-39) 

36 ± 3.3 

(29-40) 

33 ± 1.7 

(31-37) 

43 ± 2.0 

(40-46) 

36 ± 3.2 

(33-40) 

Stellenbosch University https://scholar.sun.ac.za



 

62 

 

Table 4.3. Morphometric comparison of Phasmarhabditis species females grown in vivo. Measurements are in µm and in the form: mean ± s.d. 

(range). 

 

Character Phasmarhab-

ditis sp. 

(KEN1) 

P. 

safricana 

P 

 papillosa 

(SA) 

P. 

hermaph-

rodita (UK) 

P. 

circassica 

P.  

clausiliiae 

P. 

apuliae 

(BAR) 

P. 

bohemica 

(CH1) 

P. 

bonaquaense 

(NDV) 

P. 

neopapillosa 

(UK) 

P. 

meridionalis 

P.  

tawfiki 

n 20 11 25 20 13 14 15 15 20 20 8 20 

 

L 
2151 ± 178 

(1918-2340) 

1598 ± 300 

(1160-2071) 

1923 ± 171 

(1622-2380) 

1799 ± 279 

(1509-2372) 

1830 ± 291 

(1522-2510) 

1276 ± 197 

(1050-1730) 

2623 ± 163 

(2262-2848) 

2079 ± 126 

(1777-2222) 

2349 ± 186 

(1878-2626) 

2227 ± 190 

(1817-2449) 

1612 ± 294 

(1057-1931) 

1716 ± 347 

(1150-2380) 

a 22.1 ± 1.3 

(20.0-24.1) 

15.6 ± 1.4 

(13.2-17.8) 

18.3 ± 2.0 

(14.2-22.2) 

19.5 ± 3.1 

(13.6-28.9) 

21.7 ± 1.8 

(18.9-25.1) 

22.0 ± 2.7 

(16.2-25.4) 

17.3 ± 1.9 

(15.4-22.3) 

14.4 ± 1.3 

(10.6-15.7) 

17.4 ± 2.3 

(13.3-21.7) 

16.0 ± 1.8 

(14.6-16.2) 

17.8 ± 3.1 

(14.3-24.6) 

17.3 ± 2.5 

(12.0-20.0) 

b 8.3 ± 0.5 

(7.6-8.9) 

7.9 ± 0.8 

(6.7-9.3) 

7.4 ± 0.7 

(6.5-9.5) 

7.2 ± 1.1 

(5.9-9.3) 

7.5 ± 0.5 

(6.7-8.6) 

6.0 ± 0.7 

(5.1-7.2) 

9.2 ± 0.8 

(8.0-10.9) 

8.2 ± 0.6 

(7.3-9.5) 

8.8 ± 0.8 

(6.9-10.5) 

7.7 ± 0.5 

(7.2-8.4) 

7.6 ± 1.0 

(5.6-8.5) 

6.5 ± 1.0 

(4.9-8.7) 

c 12.9 ± 1.0 

(11.6-14.2) 

26.6 ± 5.6 

(18.3-37.4) 

17.9 ± 1.9 

(13.9-21.0) 

15.8 ± 2.8 

(13.2-24.0) 

22.7 ± 3.4 

(16.8-27.5) 

13.7 ± 2.5 

(10.3-18.4) 

17.5 ± 2.3 

(14.1-21.3) 

20.3 ± 3.6 

(14.2-27.6) 

28.2 ± 5.0 

(20.0-38.0) 

14.2 ± 1.2 

(12.1-16.9) 

24.2 ± 2.3 

(19.0-32.9) 

11.1 ± 3.3 

(5.9-15.6) 

c' 3.9 ± 0.3 

(3.4-4.3) 

1.7 ± 0.2 

(1.4-2.0) 

2.0 ± 0.2 

(1.6-2.4) 

3.0 ± 0.3 

(2.4-3.6) 

2.4 ± 0.4 

(1.8-3.0) 

3.2 ± 0.8 

(2.2-5.3) 

3.4 ± 0.4 

(2.7-3.8) 

2.3 ± 0.4 

(1.7-2.9) 

1.2 ± 0.1 

(1.0-1.3) 

3.9 ± 0.5 

(3.3-5.0) 
– – 

V 50.5 ± 1.0 

(48.8-51.9) 

51.5 ± 0.9 

(51.1-54.0) 

49.3 ± 4.2 

(40.2-56.0) 

51.0 ± 2.6 

(48.0-60.0) 

53.1 ± 0.0 

(49.3-56.3) 

53.9 ± 0.0 

(47.4-59.3) 

48.8 ± 4.3 

(44.0-58.3) 

50.3 ± 5.2 

(38.9-62.5) 

54.0 ± 6.0 

(45.6-66.7) 

51.0 ± 1.1 

(48.0-52.0) 

52.5 ± 1.8 

(50.3-56.1) 
– 

Body diam. 98 ± 10.1 

(85-117) 

104 ± 26.0 

(65-155) 

107 ± 17.4 

(79-146) 

94 ± 15.8 

(71-118) 

85 ± 16.0 

(68-124) 

59 ± 12.0 

(42-80) 

153 ± 17.4 

(111-171) 

145 ± 10.9 

(141-181) 

136 ± 11.6 

(121-161) 

141 ± 19.2 

(101-174) 

94 ± 27.0 

(43-134) 

96 ± 13.2 

(70-110) 

Stoma length 21 ± 1.5 

(19-23) 

20 ± 3.2 

(12-23) 

23 ± 4.1 

(20-34) 

19 ± 0.8 

(17-20) 

23 ± 2.0 

(21-27) 

19 ± 2.0 

(17-24) 

21.5 ± 0.8 

(21-22) 

17 ± 1.2 

(16-19) 

20 ± 1.4 

(18-22) 

21 ± 1.2 

(19-24) 
– 

20 ± 1.7 

(17-24) 

Stoma diam. 6.9 ± 0.9 

(6.0-8.5) 

5.4 ± 1.2 

(4.0-8.0) 

5.5 ± 1.1 

(3.0-7.2) 
– 

6.0 ± 1.0 

(5.0-7.0) 

6.0 ± 1.0 

(5.0-8.0) 

7.0 ± 0.8 

(6.4-8.0) 

5.3 ± 0.7 

(4.8-6.4) 

6.5 ± 0.4 

(6.4-8.0) 
– – – 

Excretory pore 241 ± 11.5 

(225-253) 

178 ± 31.0 

(140-235) 

230 ± 16.1 

(200-287) 

212 ± 11.0 

(192-231) 

211 ± 26.0 

(168-278) 

171 ± 27.0 

(145-235) 

249 ± 11.6 

(222-258) 

204 ± 6.6 

(196-215) 

231 ± 12.9 

(203-246) 

216 ± 10.6 

(199-231) 

172 ± 23.0 

(142-210) 

223 ± 24.2 

(165-270) 

Pharynx length 259 ± 9.4 

(248-271) 

202 ± 33.0 

(147-259) 

260 ± 18.9 

(232-302) 

251 ± 10.4 

(235-270) 

243 ± 30.0 

(210-320) 

215 ± 30.0 

(180-282) 

250 ± 9.2 

(230-265) 

237 ± 9.8 

(217-256) 

249 ± 12.7 

(228-276) 

290 ± 8.0 

(277-303) 

212 ± 16.0 

(185-230) 

245 ± 27.7 

(178-270) 

Corpus length 149 ± 3.0 

(144-153) 

120 ± 20.0 

(86-150) 

148 ± 15.8 

(108-183) 

115 ± 5.6 

(109-126) 

146 ± 29.0 

(123-230) 

125 ± 17.0 

(106-159) 
– – – 

144 ± 10.7 

(126-168) 
– 

126 ± 18.4 

(100-156) 

Metacorpal 

expansion 
29 ± 1.0 

(27-30) 

32 ± 1.6 

(29-34) 

35 ± 4.1 

(29-43) 
– 

30 ± 3.0 

(27-35) 

24 ± 3.0 

(20-30) 
– – – – – – 

Basal bulb 

diam. 
41 ± 2.5 

(37-45) 

36 ± 5.0 

(28-43) 

45 ± 4.4 

(36-57) 
– 

34 ± 2.0 

(30-39) 

27 ± 3.0 

(20-30) 

39 ± 2.0 

(35-43) 

39 ± 2.7 

(35-47) 

40 ± 2.6 

(35-43) 
– – – 

Nerve ring 185 ± 6.7 

(177-194) 

145 ± 22.0 

(106-183) 

185 ± 15.8 

(163-217) 

166 ± 7.4 

(154-177) 

170 ± 24.0 

(140-238) 

155 ± 22.0 

(126-195) 

216 ± 4.3 

(207-222) 

184 ± 7.9 

(168-196) 

202 ± 11.6 

(188-215) 

188 ± 11.3 

(168-205) 

154 ± 16.0 

(133-180) 

168 ± 37.6 

(135-200) 

Anal body 

diam. 
44 ± 3.6 

(38-49) 

37 ± 7.0 

(28-50) 

54 ± 4.9 

(46-69) 
– 

37 ± 7.0 

(20-45) 

30 ± 6.0 

(20-40) 

45 ± 4.0 

(39-51) 

46 ± 2.7 

(43-51) 

72 ± 8.3 

(59-86) 
– – – 

Tail 168 ± 16.6 

(136-186) 

61 ± 13.0 

(46-87) 

108 ± 11.7 

(87-143) 

114 ± 7.8 

(99-129) 

82 ± 21.0 

(54-125) 

94 ± 13.0 

(79-111) 

152 ± 16.7 

(125-187) 

105 ± 16.0 

(78-137) 

85 ± 12.9 

(67-110) 

157 ± 15.3 

(141-174) 

68 ± 17.0 

(44-97) 

128 ± 22.7 

(85-140) 
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Table 4.4. Morphometric comparison of Phasmarhabditis species IJs grown in vivo. Measurements are in µm and in the form: mean ± s.d. 

(range). 

Character Phasmarhab-

ditis sp. 

(KEN1) 

P. 

 safricana 

P. 

papillosa 

SA 

P. 

circassica 

P. 

clausiliiae 

P. 

apuliae 

 BAR 

P. 

bohemica 

CH1 

P. 

bonaquaense 

NDV 

P. 

neopapillosa 

UK 

P. 

meridionalis 

P. 

tawfiki 

n 20 4 25 12 17 20 16 20 20 9 20 

L 1232 ± 105 

(1107-1336) 

543 ± 71 

(497-648) 

900 ± 63 

(813-1042) 

896 ± 43 

(813-982) 

742 ± 60 

(620-805) 

812 ± 53 

(707-888) 

553 ± 46 

(474-636) 

902 ± 77 

(808-1050) 

1010 ± 26 

(955-1063) 

839 ± 45 

(770-912) 

966 ± 109 

(750-1140) 

a 27.6 ± 2.0 

(25.3-30.5) 

24.1 ± 1.7 

(22.0-25.9) 

28.0 ± 1.6 

(25.5-32.9) 

24.6 ± 1.7 

(22.2-27.3) 

24.4 ± 1.6 

(21.7-27.0) 

29.2 ± 5.6 

(23.3-42.0) 

22.2 ± 4.4 

(15.7-29.0) 

30.7 ± 4.0 

(21.7-38.4) 

23.8 ± 0.7 

(22.4-24.8) 

24.5 ± 1.2 

(23.0-25.8) 

23.8 ± 2.3 

(18.8-27.5) 

b 6.4 ± 0.5 

(5.7-7.2) 

4.7 ± 0.8 

(4.0-5.9) 

5.4 ± 0.4 

(4.9-6.3) 

5.6 ± 0.3 

(5.3-6.0) 

4.8 ± 0.3 

(4.2-5.4) 

5.1 ± 0.4 

(4.5-5.7) 

4.3 ± 0.4 

(3.7-5.1) 

5.3 ± 0.6 

(4.6-6.7) 

5.6 ± 0.2 

(5.4-6.0) 

5.4 ± 0.2 

(5.3-5.7) 

4.9 ± 0.7 

(4.2-6.6) 

c 6.9 ± 0.4 

(6.3-7.5) 

9.8 ± 0.9 

(8.7-9.8) 

7.0 ± 0.4 

(6.5-8.4) 

7.8 ± 0.6 

(7.2-8.6) 

7.2 ± 0.8 

(5.9-8.6) 

6.9 ± 0.5 

(6.1-7.9) 

7.0 ± 0.9 

(5.5-9.3) 

11.2 ± 1.5 

(8.3-13.8) 

7.2 ± 0.4 

(6.2-7.8) 

7.4 ± 0.5 

(7.0-8.0) 

7.0 ± 1.3 

(5.0-8.8) 

c' 6.6 ± 0.5 

(5.8-7.3) 

9.8 ± 0.9 

(8.7-9.8) 

6.4 ± 0.5 

(4.9-7.1) 

5.9 ± 1.2 

(4.4-8.3) 

5.8 ± 0.6 

(4.6-6.8) 

6.9 ± 0.9 

(5.6-8.5) 

5.3 ± 1.0 

(3.8-7.7) 

4.5 ± 0.5 

(3.8-5.3) 

5.8 ± 0.5 

(4.8-6.8) 
– – 

Body diam. 45 ± 4.8 

(38-50) 

23 ± 2.0 

(20-25) 

32 ± 2.0 

(29-36) 

37 ± 3.0 

(32-43) 

31 ± 3.0 

(27-34) 

29 ± 3.7 

(20-30) 

26 ± 5.0 

(20-30) 

30 ± 3.4 

(24-39) 

42 ± 1.2 

(40-44) 

34 ± 2.0 

(32-38) 

40 ± 3.8 

(30-45) 

Excretory 

pore 
178 ± 9.5 

(170-192) 

111 ± 8.0 

(105-116) 
– 

137 ± 6.0 

(128-146) 

121 ± 10.0 

(107-137) 

148 ± 7.8 

(138-159) 

105 ± 5.7 

(92-119) 

151 ± 10.3 

(129-172) 

154 ± 4.6 

(148-159) 

125 ± 4.0 

(120-130) 

173.8 ± 

21.3 

(143-200) 

Nerve ring 148 ± 11.3 

(138-168) 

80 ± 15.0 

(65-95) 

115 ± 9.5 

(102-145) 

114 ± 6.0 

(105-130) 

105 ± 7.0 

(95-119) 

120 ± 7.8 

(111-135) 

84 ± 7.8 

(72-103) 

123 ± 7.9 

(110-137) 

119 ± 4.1 

(111-123) 

114 ± 6.0 

(103-122) 

137 ± 17.8 

(100-196) 

Pharynx 

length 
192 ± 11.5 

(183-214) 

117 ± 9.0 

(110-129) 

167 ± 14.0 

(147-207) 

161 ± 8.0 

(147-169) 

154 ± 7.0 

(140-167) 

141 ± 5.4 

(133-153) 

108 ± 6.0 

(98-119) 

149 ± 8.0 

(134-162) 

180 ± 7.3 

(168-187) 

156 ± 5.0 

(149-164) 

181 ± 28.5 

(154-255) 

Basal bulb 

diam. 
19 ± 1.8 

(17-22) 

10 ± 2.0 

(8-12) 

15 ± 1.2 

(13-18) 

13 ± 3.0 

(11-22) 

13 ± 1.0 

(13-14) 

16 ± 1.0 

(14-18) 

10 ± 1.1 

(8-13) 

18 ± 1.8 

(14-21) 
– – – 

Anal body 

diam. 
27 ± 3.3 

(25-34) 
– 

20 ± 1.9 

(18-25) 

20 ± 3.0 

(15-25) 

18 ± 1.0 

(15-20) 

17 ± 1.9 

(16-20) 

15 ± 2.2 

(12-20) 

18 ± 1.8 

(16-21) 
– – – 

Tail 179 ± 11.9 

(165-196) 

57 ± 4.0 

(52-60) 

128 ± 6.8 

(113-148) 

117 ± 13.0 

(90-134) 

104 ± 11.0 

(82-123) 

118 ± 7.4 

(109-132) 

80 ± 7.7 

(58-93) 

82 ± 7.8 

(72-102) 

141 ± 7.7 

(131-163) 

116 ± 13.0 

(100-135) 

144 ± 29.3 

(105-180) 
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DESCRIPTION 

Male 

Common in in vivo cultures. Body shorter and smaller than that of the female. Body straight, 

with a slight posterior curve when heat-killed. Body smooth, with slight transverse striation 

only visible with SEM. Lateral field with three ridges and four lines. Body tapering to blunt 

anterior end, with lips continuous with body. Six lips divided into pairs, each with one 

prominent inner labial papilla and one cephalic papilla, situated posterior to labial papilla. 

Stoma triangular, cylindrical and cuticularised, with a length of 25 (20-38) µm and a diameter 

of 6.2 (4.2-9.2) µm. Pharynx with cylindrical procorpus, slightly swollen metacorpus, a thin 

isthmus surrounded by nerve ring near the anterior end of a swollen basal bulb. Excretory pore 

inconspicuous and located posterior to basal bulb. Spicules, gubernaculum and peloderan, 

proximally open bursa making up copulatory apparatus. Bursa bearing nine bilateral pairs of 

genital bursal papillae, and one pair of papilliform phasmids flanking the tail. Pairs 1-5 of the 

rays of the genital papillae located anterior to cloacal aperture, and pairs 6-9 post-cloacal, with 

the last three pairs of rays grouped together. Each ray with a single papilla, with the first ray 

located beyond the bursal rim, and its papillae located on the tip of rays. Fifth and ninth papillae 

located dorsally, and the other six ventrally. A precloacal papilla located on the anterior cloacal 

lip, pair of cone-shaped sublateral papillae present posterior to cloacal opening, and only visible 

with SEM. Spicules cephalate, paired and separate, with an arc length of 71 (57-81) µm. Spicule 

blades slightly curved, and gradually tapering to a pointed terminus. Gubernaculum short and 

ca 50% of spicule length. Tail short and blunt, flanked by pair of papilliform phasmids. See 

Figure 4.1C, G, H and Figure 4.2. 
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Figure 4.1. Line drawings of Phasmarhabditis sp. (KEN1). A: Infective juvenile anterior 

region; B: Female anterior; C: Male anterior; D: Female vulval region; E: IJ tail region, lateral 

view; F: Female tail region, lateral view; G: Male tail region, ventral view; H: Male 

gubernaculum (top) and spicule (bottom). (Scale bars: A, E, F = 50 µm; B, C, D, G = 20 µm; 

H = 10 µm). 

A B 
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Figure 4.2. Phasmarhabditis sp. (KEN1) male. A: En face view; B: Anterior end; C: Lateral 

field; D: Male caudal region with open bursa and nine pairs of papillae. Scale bars: A = 10 µm; 

B = 20 µm; C = 5 µm; D = 50 µm. Abbreviations: cp = cephalic papilla, lp = labial papilla, pcs 

= post-cloacal sensilla, pcp = precloacal papilla. 

lp 

cp 
cp 

lp lp 

A 

cp 

pcs pcp 
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Female 

Body 1.9-2.3 mm long and slightly bent in the middle when heat-killed, with transverse 

striations visible with SEM. Lateral field developed, with three ridges and two incisions. Body 

tapers to a blunt anterior end. Lip region protruding slightly from body, with six lips grouped 

into pairs. Each lip with one prominent inner labial papilla, and one slightly less prominent 

outer labial papilla. Mouth triangular and cylindrical. Stoma moderately cuticularised, with a 

length of 21 (19-23) µm and a diameter of 6.9 (6.0-8.5) µm. Procorpus of pharynx cylindrical, 

metacorpus slightly swollen, isthmus narrow and surrounded in the middle by nerve ring. Basal 

bulb large, with excretory pore situated opposite middle of the basal bulb. Excretory duct well 

cuticularised. Reproductive system didelphic, amphidelphic and reflexed. In mature females, 

gonads filled with round oocytes, eggs often hatching inside female body. Vulva located at 

midbody region (51%), a closed transverse slit with protruding lips. Anus an arcuate slit. Tail 

conoid shape, gradually tapering to a sharp tip, with two phasmids located at ca 40% of tail 

length. See Figure 4.1B, D, F and Figure 4.3.  
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Figure 4.3. Phasmarhabditis sp. (KEN1) female. A: En face view; B: Anterior end; C: Lateral 

field; D: Midbody region with vulva; E: Vulval region; F: Tail region. Scale bars: A = 10 µm; 

B = 20 µm; C = 10 µm; D = 50 µm; E = 20 µm; F = 50 µm.  
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Infective juvenile 

Body shorter and slenderer than that of adult stages, with a body length of 1.1-1.3 mm. 

Straight when heat-killed. Cuticle with clear transversal and longitudinal striations. 

Longitudinal striations ending near head region. Head rounded, not offset from body contour. 

Flat lip region with six lips, grouped in pairs. Mouth aperture closed. Amphidial apertures small 

and closed, situated on the side of the head. Weakly sclerotised excretory pore located across 

from basal bulb. Isthmus long and thin, surrounded by nerve ring 148 (138-168) µm from 

anterior end. Anus crescent-shaped transverse slit. Tail long and tapering to a sharp point. 

Hyaline region undeveloped and phasmids not observed. See Figure 4.1A, E and Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Phasmarhabditis sp. (KEN1) infective juvenile (ensheathed). A: Anterior end with 

amphid visible; B: En face view; C: Lateral field with sheath; D: Tail region. Scale bars: A = 

10 µm; B = 5 µm; C = 20 µm; D = 50 µm. 
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TYPE LOCALITY AND HABITAT 

Type specimens are nematodes isolated from the slug Polytoxon robustum, which was 

collected from Nairobi, Kenya, (1°13'40.5"S, 36°50'56.4"E) between April and May 2018. 

TYPE MATERIAL 

The holotype male and paratypes males, females and infective juveniles were deposited in 

the National Museums of Kenya repository. 

DIAGNOSIS AND RELATIONSHIPS 

Phasmarhabditis sp. (KEN1) is characterised by the morphometrics and morphology of the 

female, male and IJ (Table 4.1). The male is characterised by a spicule length of 71 (57-81) µm, 

a gubernaculum length of 32 (25-36) µm, and a bursa with nine pairs of papillae. The female is 

characterised by a body length of 2151 (1918-2340) µm, a body diameter of 98 (85-117) µm, 

and a conical, tapering tail. The IJ is characterised by the longest body length in the genus, 

measuring 1232 (1107-1336) µm, a body diameter of 45 (38-50) µm, and a long tail, measuring 

179 (165-196) µm. 

Table 4.1 summarises the morphometric data of the males, females and IJs of 

Phasmarhabditis sp. (KEN1), respectively, with it being used as a reference for the following 

comparison of the new species with other known Phasmarhabditis species. As the food source 

and bacterial species that Phasmarhabditis species feed on affect their body size, 

Phasmarhabditis sp. (KEN1) was only morphometrically compared with other 

Phasmarhabditis species grown in vivo. 

The males of Phasmarhabditis sp. (KEN1) can be distinguished from the males of P. 

safricana by the former’s longer body length and larger body diameter (Table 4.2). The female 

of Phasmarhabditis sp. (KEN1) can be distinguished from the female of P. safricana by its 

longer, thinner body and longer tail (Table 4.3). The female of Phasmarhabditis sp. (KEN1) 

has a vulva, with a transverse slit with protruding (Fig. 4.1D; 4.3D) lips, whereas the vulva of 

P. safricana consists of a wide transverse slit, with flat lips. The most important difference is

that the female tail of Phasmarhabditis sp. (KEN1) is conoid (Fig. 4.1F; Fig. 4.3F) and 

gradually tapers, whereas the tail of P. safricana is dome-shaped, with a spike. The IJs of 

Phasmarhabditis sp. (KEN1) are significantly larger than are those of P. safricana, with a body 

length of 1232 (1107-1336) vs 543 (497-648) µm and a body diameter of 45 (38-50) vs 23 (20-

25) µm (Table 4.4).
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The males of Phasmarhabditis sp. (KEN1) have longer and larger bodies than do those of 

P. papillosa (SA), with a body length of 1989 (1835-2034) vs 1529 (1360-1679) µm, and a

body diameter of 86 (83-89) vs 61 (53-74) µm (Table 4.2). The females of Phasmarhabditis sp. 

(KEN1) are similar in size to the females of the South African strain of P. papillosa, but the 

former can be distinguished based on the tail shape. Phasmarhabditis sp. (KEN1) females have 

a conoid, gradually tapering tail with a length of 168 (136-186) µm, whereas P. papillosa (SA) 

females have a cupola-shaped tail, with a length of 108 (87-143) µm, that constricts into a thin 

tip (Pieterse et al., 2017). The IJs of Phasmarhabditis sp. (KEN1) are significantly larger than 

are those of P. papillosa (SA), with a body length of 1232 (1107-1336) vs 900 (813-1042) µm 

(Table 4.4). 

Males are commonly found in cultures of Phasmarhabditis sp. (KEN1), but they are rarely 

found in P. hermaphrodita. The females of Phasmarhabditis sp. (KEN1) and the UK strain of 

P. hermaphrodita are similar in shape and size. Both species have a conical tail shape, with

Phasmarhabditis sp. (KEN1) having a longer tail length of 168 (136-186) vs 108 (87-143) µm 

(Table 4.3). The females can also be distinguished by the vulva, as Phasmarhabditis sp. (KEN1) 

has a transverse slit, with visibly protruding lips, whereas the vulva of P. hermaphrodita has 

only a transverse slit (Hooper et al., 1999).  

The males of Phasmarhabditis sp. (KEN1) are significantly larger than are those of P. 

circassica, with a body length of 1989 (1835-2034) vs 1200 (916-1607), and a body diameter 

of 86 (83-89) vs 49 (40-64) µm (Table 4.2). Phasmarhabditis sp. (KEN1) females can be 

distinguished from those of P. circassica by their longer tail, with a length of 168 (136-186) vs 

82 (54-125) µm (Table 4.3). The IJs of Phasmarhabditis sp. (KEN1) are significantly larger 

than are those of P. circassica, with the latter having a characteristic cuticular cap present on 

its head, which is not present in Phasmarhabditis sp. (KEN1) (Ivanova et al., 2019). The 

females, males and IJs of Phasmarhabditis sp. (KEN1) are significantly larger, with longer 

tails, than are those of P. clausiliiae (Tables 4.2-4.4). The IJs of P. clausiliiae also have a 

cuticular cap, which is similar to that of P. circassica, which distinguishes it from the IJs of 

Phasmarhabditis sp. (KEN1) (Ivanova et al., 2019). 

The males are similar in size and morphology to those of S. apuliae (Nermut’ et al., 2016a) 

(Table 4.2, 4.3). The females of P. apuliae (strain BAR) have a larger body size than has 

Phasmarhabditis sp. (KEN1), with a body length of 2623 (2262-2848) vs 2151 (1918-2340) 

µm, and a much larger body diameter, of 153 (111-171) vs 98 (85-117) µm (Table 4.3). 

However, the IJs of P. apuliae are significantly smaller than are those of Phasmarhabditis sp. 

(KEN1), with a length of 812 (707-888) vs 1232 (1107-1336) µm. The females of 
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Phasmarhabditis sp. (KEN1) and P. bohemica (strain CH1) are morphometrically similar, 

except for their body diameter. The females of Phasmarhabditis sp. (KEN1) have a smaller 

body diameter of 98 (85-117) µm, whereas P. bohemica females are more robust, with a body 

diameter of 145 (141-181) µm (Table 4.3). The males and IJs of Phasmarhabditis sp. (KEN1) 

have significantly longer body lengths than do those of P. bohemica, with Phasmarhabditis sp. 

(KEN1) IJs being almost double as long as P. bohemica IJs (Tables 4.2 and 4.4). The IJs of P. 

apuliae and P. bohemica have large, open amphidial openings in the head region, which are 

small and almost inconspicuous in Phasmarhabditis sp. (KEN1) (Nermut’ et al., 2016a, 2017). 

The males of Phasmarhabditis sp. (KEN1) and P. bonaquaense have similar morphometrics 

and morphology. The IJs of Phasmarhabditis sp. (KEN1) have a significantly longer body 

length and tail than do the IJs of P. bonaquaense (Table 4.4). The females of Phasmarhabditis 

sp. (KEN1) can be distinguished from those of P. bonaquaense (strain NDV) by their smaller 

body diameter of 98 (85-117) µm and a conical tail, as the P. bonaquaense females have a body 

diameter of 136 (121-161) µm and a cupola-shaped tail, with a long filiform terminus (Nermut’ 

et al., 2016b) (Table 4.3).  

The females of Phasmarhabditis sp. (KEN1) can be distinguished from the females of P. 

neopapillosa (UK strain) by their thinner bodies, with a body diameter of 98 (85-117) vs 141 

(101-174) µm. The males are morphometrically similar, except for a longer male body length 

in Phasmarhabditis sp. (KEN1), of 1989 (1835-2034) vs 1585 (1432-1771) µm (Hooper et al., 

1999). The IJs of Phasmarhabditis sp. (KEN1) have a longer body and tail than do those of P. 

neopapillosa (Table 4.4). The females of Phasmarhabditis sp. (KEN1) have a significantly 

longer body length and tail than do the females of P. meridionalis, with a body length measuring 

2151 (1918-2340) vs 1612 (1057-1931) µm, and a tail length of 168 (136-186) vs 68 (44-97) 

µm. The tail shape of the females in Phasmarhabditis sp. (KEN1) and P. meridionalis also 

differs, with the latter having a cupola-shaped tail with filamentous terminus (Ivanova & 

Spiridonov, 2017). The IJs of Phasmarhabditis sp. (KEN1) are significantly longer, and have 

longer tails, than do the IJs of P. meridionalis (Table 4.4). The females, males and IJs of 

Phasmarhabditis sp. (KEN1) are larger in body size than are those of P. tawfiki (Tables 4.2-

4.4), but with similar morphology (Azzam, 2003). 

MOLECULAR DIFFERENTIATION AND PHYLOGENETIC RELATIONSHIPS 

Sequences obtained for Phasmarhabditis sp. (KEN1) were deposited in the NCBI GenBank, 

under MN626643 for SSU rRNA gene, MN626640 for D2-D3 (LSU rRNA gene) and 
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MN626639 for ITS (ITS1, 5.8S, ITS2 rRNA). Phylogenetic analyses were conducted using the 

SSU, D2-D3 genes and ITS region of nematode taxa, representing the genera Agfa, Angiostoma 

and Phasmarhabditis, with Pellioditis and Oscheius spp. as the outgroups. Figures 4.5, 4.6 and 

4.7 show a representative ML tree, although bootstrap support illustrates each method of 

analysis.  

Phylogenetic analysis with ML, distance and MP methods of the SSU placed 

Phasmarhabditis sp. (KEN1) with Phasmarhabditis sp. SA1 and Phasmarhabditis sp. SA3 

(66/67/69), with the aforementioned nematodes forming a sister group to P. hermaphrodita, P. 

neopapillosa, P. bohemica, P. meridionalis, P. huizhouensis, P. apuliae, P. safricana, P. 

papillosa, P. californica, P. bonaquaense, Phasmarhabditis sp. EM434, A. gandavense, A. 

limacis, A. margaretae and A. norvegicum (Fig. 4.5).  

Phylogenetic analysis of the D2-D3 gene grouped Phasmarhabditis sp. (KEN1) with P. 

meridionalis, under weak bootstrap support. The nematodes, along with A. margaretae, A. 

milacis, A. norvegicum, A. gandavense, A. flexilis, A. tauricus, A. kimmeriense, 

Phasmarhabditis sp. EM434, P. apuliae, P. safricana, P. papillosa, P. bonaquaense, P. 

californica, P. bohemica and P. huizhouensis formed a sister group to P. hermaphrodita and A. 

limacis, with A. dentiferum being in the basal position (Fig. 4.6). 

Phylogenetic analysis of the ITS region grouped Phasmarhabditis sp. (KEN1) with P. 

meridionalis and A. dentiferum with weak bootstrap support. The nematodes, along with A. 

norvegicum, A. margaretae, A. gandavense, A. kimmeriense and A. flexilis, form a sister group 

to P. apuliae, P. bonaquaense, P. papillosa and P. californica, with P. hermaphrodita and P. 

neopapillosa in basal position (Fig. 4.7).  
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Figure 4.5. Phylogenetic relationships of Phasmarhabditis sp. (KEN1), along with other related 

Phasmarhabditis, Agfa and Angiostoma species, based on analysis of the 18S small subunit 

(SSU) rDNA gene, as inferred from the use of ML, distance, and MP methods. Oscheius tipulae, 

O. insectivore, Pellioditis marina and P. mediterranea were used as outgroup taxons. Bootstrap

values (65% and above) are assigned next to the relevant nodes. 

Phasmarhabditis sp. (KEN1) MN626643 
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Figure 4.6. Phylogenetic relationships of Phasmarhabditis sp. (KEN1), along with other related 

Phasmarhabditis, Agfa and Angiostoma species, based on analysis of the D2-D3 (LSU) rRNA 

gene, as inferred from the use of ML, distance, and MP methods. Oscheius tipulae, O. 

insectivore, Pellioditis marina and P. mediterranea were used as outgroup taxons. Bootstrap 

values (65% and above) are assigned next to the relevant nodes. 

Phasmarhabditis sp. (KEN1) MN626640 
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Figure 4.7. Phylogenetic relationships of Phasmarhabditis sp. (KEN1), along with other related 

Phasmarhabditis, Agfa and Angiostoma species, based on analysis of the ITS region, as inferred 

from the use of ML, distance, and MP methods. Oscheius tipulae, Pellioditis marina and P. 

mediterranea were used as outgroup taxons. Bootstrap values (65% and above) are assigned 

next to the relevant nodes. 

Phasmarhabditis sp. (KEN1) MN626639 
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Discussion 

To date, there are thirteen nominal species of Phasmarhabditis: P. hermaphrodita, P. 

neopapillosa, P. papillosa, P. huizhouensis, P. tawfiki, P. californica, P. bonaquaense, P. 

apuliae, P. bohemica, P. meridionalis, P. safricana. P. circassica and P. clausiliiae, with 

Phasmarhabditis sp. (KEN1) bringing up the total complement to 14 species. 

Phasmarhabditis species are often morphologically and genetically similar, making them 

difficult to identify accurately (Nermut’ et al., 2016a; Tandingan De Ley et al., 2016; Ivanova 

& Spiridonov, 2017); however, it is hoped that, in future, sequences of the Cox1 gene will help 

facilitate the identification of Phasmarhabditis species. Species in the genus are usually 

distinguished based on morphometrics, the female’s tail shape, the absence or presence of 

males, the bursal papillae, the spicule size, the morphology of the IJ and molecular and 

phytogenic analysis. Body size can also be greatly influenced by growth conditions (Wilson et 

al., 1995; Nermut’ et al., 2014), with Hooper et al. (1999) demonstrating the impact of in vivo 

and in vitro culturing on the body size of P. hermaphrodita.  

Phasmarhabditis sp. (KEN1) can be characterised by the conical shape of the female’s tail, 

the presence of males, the exceptional body length of the IJ (1232 (1107-1336) µm) and the 

molecular characteristics of the SSU, D2-D3 and ITS rRNA. 

The phylogenetic analyses of the SSU, D2D3 genes and ITS region show that certain 

members of Phasmarhabditis, Angiostoma and Agfa are difficult to differentiate molecularly, 

thus supporting the conclusions of Ross et al. (2010), who demonstrated that the genera Agfa, 

Angiostoma and Phasmarhabditis are molecularly conserved, yet morphologically diverse, with 

them having potentially evolved to adapt to their parasitic lifestyle. Nermut’ et al. (2016a) 

proposed the possibility of certain Angiostoma species being misidentified, due to their 

phylogenetic positioning, but the results of the current paper, along with the findings of 

Ivanova, Geraskina & Spiridonov (2019), reject the hypothesis, with Phasmarhabditis sp. 

(KEN1) being grouped with P. meridionalis, along with representatives of the Angiostoma and 

Agfa species, as being in the ITS tree (66/65/59), albeit only with weak bootstrap support. 

Phasmarhabditis sp. (KEN1) is the third Phasmarhabditis species to be described from the 

African continent, with P. tawfiki having been described from Egypt in 2003 (Azzam, 2003), 

and with P. safricana having been described from South Africa in 2018 (Ross et al., 2018). 

With no molecular data yet being available for P. tawfiki, it was not possible, at the present 

stage, to determine its phylogenetic relationship with Phasmarhabditis sp. (KEN1). However, 

from the phylogenetic analyses of the SSU, D2-D3 and ITS region, Phasmarhabditis sp. 
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(KEN1) did not group together with the South African nematode, P. safricana. However, in the 

SSU phylogenetic analysis, it can be seen that the Phasmarhabditis sp. (KEN1) grouped with 

Phasmarhabditis sp. SA1 and Phasmarhabditis sp. SA3, which are two undescribed 

phasmarhabditids isolated from slugs in South Africa, suggesting a possible African grouping. 

The above grouping, however, occurs in the absence of D2D3 sequences for the aforementioned 

African phasmarhabditid group. The lack of such sequence data highlights the importance of 

encouraging any new species description to be supported by sequences for SSU gene, the D2-

D3 gene, the ITS region and the mitochondrial cytochrome c oxidase subunit I (mtCOI) gene.  

The current record is the first record of a Phasmarhabditis nematode present in Kenya. The 

nematode was isolated from the local slug, P. robustum. This species is widespread in Africa, 

with it having been found in Rwanda, South Sudan, Uganda, Kenya, Tanzania, Zimbabwe and 

the Democratic Republic of Congo (Van Goethem, 1977; Rowson et al., 2016). Ross et al. 

(2010, 2012) found that surveys carried out in the USA and South Africa showed higher 

infection of invasive slugs by Phasmarhabditis spp. compared to that of native species (Ross 

et al., 2010, 2012). However, in Norway, the infection rate of the invasive Arion vulgaris 

Moquin-Tandon, 1855 by P. hermaphrodita was similar to that of the local arionid species 

(Ross et al., 2015). 

The discovery of the new species, as well as the number of new and unidentified 

Phasmarhabditis species found in South Africa (Ross et al., 2012; Pieterse et al., 2017; Ross 

et al., 2018), highlights the importance of conducting further nematode surveys across Africa. 

To date, the only African countries surveyed are South Africa, Egypt and now Kenya, opening 

up the possibility that many phasmarhabditids still await discovery. 
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Chapter 5 

Life cycle of five nematodes associated with terrestrial molluscs: 

Phasmarhabditis hermaphrodita, Phasmarhabditis papillosa, 

Phasmarhabditis bohemica, Phasmarhabditis sp. (KEN1) and Caenorhabditis 

elegans. 

Abstract 

The success of Phasmarhabditis hermaphrodita (Schneider) Andrássy (Rhabditida: 

Rhabditidae), as a biological control agent of molluscs, has led to a worldwide interest in 

phasmarhabditids. However, little information is available on the life cycle of nematodes within 

the genus. In the current study, the life cycle of P. hermaphrodita, Phasmarhabditis papillosa, 

Phasmarhabditis bohemica, and Phasmarhabditis sp. (KEN1), along with Caenorhabditis 

elegans due to its widespread distribution in KwaZulu-Natal, are studied using in vivo cultures, 

with the aim of understanding the biology and potential of the aforementioned nematodes to be 

mass-cultured in liquid media. Infective juveniles (IJs) of each species were added to defrosted 

slug cadavers and monitored, from IJ recovery through to second-generation egg formation. 

The results demonstrated that C. elegans had the shortest life cycle, and that it was able to form 

eggs 6 days after IJ recovery, while P. bohemica took 8 days, and P. hermaphrodita, P. 

papillosa and Phasmarhabditis sp. (KEN1) took 10 days to form eggs. Based on the time taken 

to complete a life cycle, as well as on the reproductive strategy involved, C. elegans is 

considered to be the easiest to mass-culture of the nematodes studied, due to its hermaphroditic 

reproduction strategy, as well as to the fact that it completes its life cycle 2 days earlier than 

does P. bohemica, and 4 days earlier than do P. hermaphrodita, P. papillosa and 

Phasmarhabditis sp. (KEN1). However, P. hermaphrodita has an advantage over the other 

Phasmarhabditis species, in that it is capable of forming self-fertilising hermaphrodites, 

whereas both males and females are required for the reproduction of P. papillosa, P. bohemica 

and Phasmarhabditis sp. (KEN1). The results of the study should contribute to the knowledge 

of the biology of the genus and of the in vitro liquid culture of different species of the genus. 

Keywords – infective juveniles; liquid media; reproduction; mass-culture, biocontrol 
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Introduction 

Mollusc-parasitic nematodes (MPN) are comprised of eight families, including Agfidae, 

Alaninematidae, Alloionematidea, Angiostomatidae, Cosmocercidae, Diplogasteridae, 

Mermithidae and Rhabditidae (Pieterse et al., 2017a). Within the Rhabditidae (Rhabditida), two 

of the nematode genera that are most commonly isolated from the molluscs are 

Phasmarhabditis and Caenorhabditis (Karimi et al., 2003; Ross et al., 2010, 2012; Wilson et 

al., 2016; Pieterse et al., 2017b).  

Phasmarhabditis hermaphrodita (Schneider) Andrássy is the only MPN to be successfully 

developed as a biological molluscicide (Rae et al., 2007). The nematode is commercially 

available from BASF (formally Becker Underwood) and Dudutech, under the trade names, 

Nemaslug® and SlugTech®, respectively. Like other rhabditid nematodes, P. hermaphrodita 

responds to depleting food supply and to poor environmental conditions with the formation of 

a metabolically-suppressed, third juvenile stage, which is known as the infective juvenile (IJ), 

or the dauer juvenile. IJs, which are adapted for long-term survival, actively search out 

molluscs, entering through natural openings (Wilson et al., 2012). The IJs then recover and 

develop into self-fertilising hermaphrodites, whereupon they start to reproduce. The host 

usually dies within 4 to 21 days following infection, after which the nematodes colonise the 

entire slug cadaver, feeding and reproducing until the food source is depleted. The IJs are then 

produced, which move back into the soil in search of new hosts (Wilson et al., 1993; Tan & 

Grewal, 2001). Phasmarhabditis hermaphrodita is capable of infecting a number of mollusc 

species, including the snail species Monacha cantiana (Montagu), Cepaea hortensis (Müller), 

Theba pisana (Müller), Cochlicella acuta (Müller), Cernuella vigata (Da Costa) and Lymnaea 

stagnalis (L.), as well as the slug species Deroceras reticulatum (Müller), D. panormitanum 

(Lessona and Pollonera), D. laeve (Müller), Arion silvaticus Lohmander, A. intermedius 

Normand, A. distinctus Mabile, Tandonia sowerbyi (Férussac), T. budapestensis (Hazay) and 

Leidyula floridana (Leidy) (Rae et al., 2007). It also has a necromenic life cycle (Mengert, 

1953), as well as being able to reproduce on such substrates as slug faeces homogenates and 

bacterial substrates (Tan & Grewal, 2001; MacMillan et al., 2009; Nermut’ et al., 2014). 

Although P. hermaphrodita has been the most studied MPN, to date, very little is known about 

its biology and life cycle. The information could be key, when considering improved mass 

production conditions.  

In addition to P. hermaphrodita, there are 12 other described species of phasmarhabditids, 

several of which have been considered for their potential commercial value, but none of which 
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has yet had its life cycles described. One such nematode is Phasmarhabditis papillosa 

(Schneider) Andrássy, which was first described in 1866, based on the minimal amount of 

information regarding the female body length, as well as regarding the basic morphometric data 

relating to the males and females (Schneider, 1866). Schneider (1871) later reported that the 

males and females of P. papillosa occur in roughly equal numbers, whereas the males are 

relatively rare in cultures of P. hermaphrodita (Andrássy, 1983; Tandingan De Ley et al., 

2016). In 2016, P. papillosa was re-described after being isolated for the first time in California, 

USA (Andrássy, 1983; Tandingan De Ley et al., 2016). In 2017, the description was further 

updated after the nematode was isolated for the first time in South Africa (Pieterse et al., 

2017b). In the same study, Pieterse et al. (2017c) demonstrated that P. papillosa is capable of 

causing mortality in the European slug species, Deroceras invadens Reise, Hutchinson, 

Schunack & Schlitt (Agriolimacidae) (Pieterse et al., 2017c).  

Phasmarhabditis bohemica Nermuť, Půža, Mekete & Mráček was described in 2017 from D. 

reticulatum in the Czech Republic (Nermut et al., 2017). The ability of the specie to cause 

mortality in its hosts requires further investigation, as no apparent mortality was caused under 

natural conditions, but the mass mortality of D. reticulatum was observed under laboratory 

conditions (Nermut’ et al., 2017). In the description of males, females and IJs of the nematode 

it was reported that P. bohemica is capable of completing its life cycle on decaying animal 

matter within several days when it is kept at 15°C (Nermut’ et al., 2017). 

Phasmarhabditis sp. (KEN1) was isolated from the slug Polytoxon robustum (Simroth) 

(Urocyclidae), collected in Nairobi, Kenya. Details of the description of the nematode can be 

found in Chapter 4 and is currently under review for publication.  

Caenorhabditis elegans (Maupas), which is a free-living nematode, is believed to have a 

phoretic relationship with slugs, with no effect on host fitness (Kiontke & Sudhaus, 2006). 

However, Petersen et al. (2015) report that C. elegans, which is capable of entering the bodies 

of slugs, is transported and expelled alive within the faeces, hinting at a possible parasitic 

relationship. Caenorhabditis elegans is popular as a model organism, due to the ease with which 

it can be grown and maintained under laboratory conditions. It has a life cycle spanning 3 days 

when grown at 25°C, and an average life span of 2 to 3 weeks. The adult hermaphrodite can 

produce 300 to 350 offspring when self-fertilising, with even more being produced when males 

are present, which occur at very low frequencies (Wood, 1998). Caenorhabditis elegans 

reproduces through a form of protandrous hermaphroditism, which is different to 

hermaphroditism in other species. The gonads of morphological females first produce a certain 

amount of sperm, then switch over to oogenesis, without reverting to spermatogenesis. As the 
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hermaphrodites lack male reproductive organs, they use their own sperm to fertilise their own 

eggs. Transfer of sperm only occurs when the hermaphrodites mate with the males, which 

occurs rarely (Brenner, 1988; Stewart & Phillips, 2002). 

In the current study, the life cycles of the nematodes P. hermaphrodita, P. papillosa, P. 

bohemica, Phasmarhabditis sp. (KEN1) and C. elegans from in vivo cultures with freeze-killed 

slug cadavers were studied.  

Materials and Methods 

SOURCE OF NEMATODES 

The following nematode species were used in the study: P. hermaphrodita, P. papillosa, P. 

bohemica, Phasmarhabditis sp. (KEN1) (see Chapter 4) and Caenorhabditis elegans. The P. 

papillosa and C. elegans that were obtained from a collection of the Department of 

Conservation Ecology and Entomology at Stellenbosch University were collected during a 

survey conducted by Pieterse et al. (2017b). The P. bohemica and P. hermaphrodita isolates 

used in the study was kindly supplied by Dr Vladimir Půža from the Biology Centre CAS, 

Institute of Entomology ASCR, Laboratory of Entomopathogenic Nematodes, Czech Republic. 

The Phasmarhabditis sp. (KEN1) (see Chapter 4) was obtained in a collaborative study 

undertaken with Dr Solveig Haukeland from the International Centre of Insect Physiology and 

Ecology (icipe) in Nairobi, Kenya, and Dr Jenna Ross (co-supervisor). 

NEMATODE PREPARATION 

The life cycles of P. hermaphrodita, P. papillosa, P. bohemica, Phasmarhabditis sp. (KEN1) 

and C. elegans were studied by adding 100 IJs (rinsed with distilled water) of each specie to 1 

g freeze-killed, homogenised D. invadens, placed on modified White traps, along with a piece 

of damp filter paper in a 90-mm-diameter Petri dish. The cultures were sealed with Parafilm® 

and kept in darkness at 20°C. Every 24 h thereafter, for the duration of a complete life cycle 

(until egg formation for the next generation), one Petri dish of each species was washed with 

0.9% saline, and the nematodes were heat-killed (~85°C) with triethanolamine-formalin (TAF) 

fixative (Courtney et al., 1955). The nematodes were then classified into the different life stages 

and counted using a compound microscope (Leica DM200, Leica Microsystems), so as to 

determine the population structure on each day. All nematodes multiplied successfully on the 

homogenized slug substrate.  
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NEMATODE BIOLOGICAL OBSERVATIONS AND MEASUREMENTS 

Twenty-five nematodes of each life stage were measured to provide a clear classification of 

each of the nematode species studied. The nematodes were placed in a drop of water on a 

microscope slide covered with a coverslip, and killed with gentle heat on a hot plate. They were 

then measured using a compound microscope (Leica DM200, Leica Microsystems), fitted with 

a digital camera and with the software Leica Application Suite V3.5.0, with live measurement 

capability. The body length and width, as well as the life stage of the nematodes, were recorded. 

The experiment was repeated twice, providing an average measurement of each life stage, based 

on 50 nematodes. 

Results 

DEVELOPMENT OF THE DIFFERENT LIFE STAGES 

The life cycle development of each of the five nematode species, grown in vivo, is illustrated 

via bar graphs, demonstrating growth from egg hatch (J1) through to new egg formation (Fig. 

5.1). 
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Figure 5.1. Life span of the parental nematodes and F1 generation of A: Phasmarhabditis 

hermaphrodita, B: P. papillosa, C: P. bohemica, D: Phasmarhabditis sp. (KEN1) and E: 

Caenorhabditis elegans, when grown in vivo. The lines indicate when the population of each 

stage was less than 10% of the maximum. 

In populations of P. hermaphrodita, the recovery of IJs occurred 1 day after inoculation (DAI), 

with the males and hermaphrodites developing by the second DAI, with some nematodes 

reaching adulthood. On the third DAI, most of the population consisted of adult males and 

hermaphrodites, with eggs starting to hatch, and first juveniles (J1s) starting to appear. By the 

fourth DAI, the development of the second and third juvenile (J2 and J3) phases was observed. 

New IJs had developed by the fifth DAI. Adult hermaphrodites and males also started 

developing at the fifth DAI, reaching maturity only by the sixth DAI, with them showing 

fertilised eggs only by the end of the eighth DAI. In some hermaphrodites, endotokia matricida 

was observed after the eighth DAI. 

In the populations of P. papillosa, the IJs started recovering at the first DAI, and the males and 

females were distinguishable by the second DAI. By the third DAI, the males and females 

reached adulthood, by which time female egg development had also started. By the fourth DAI, 

the J1s of the next generation had started to appear, with them having developed into J2s by the 

fifth DAI, and into J3s by the sixth DAI. The males and females started developing again on 

the seventh DAI, while some juveniles developed into IJs at such a point. Mating started when 

the males and females reached adulthood, from the eighth DAI onwards, with fertilised eggs 

developing by the end of the tenth DAI. Endotokia matricida was observed at the tenth DAI in 

some females. 

In the populations of P. bohemica, the IJs started recovering on the first DAI, with the majority 

of adult males and females forming after the third DAI. By the fourth DAI, the first J1 larvae 

E 
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of the second generation had started to appear and develop into J2 and J3, or into J2d. By the 

fifth DAI, the majority of the nematodes in the population consisted of J4 males, J4 females, J3 

larvae, J2d larvae, or IJs. On the sixth DAI, many of the males and females had reached 

maturity, with them having already developed their reproductive organs. By the eighth DAI, 

the females contained fertilised and developed eggs, which were ready for release, or which 

hatched out inside the body of the adult female nematode. 

In the Phasmarhabditis sp. (KEN1) populations, the IJs had started to recover by the end of the 

first DAI, with them starting to show male and female characteristics by the second DAI. The 

first- generation males and females were fully developed by day 4, and started producing J1 

larvae by day 5. By the sixth DAI, most of the second-generation larvae had developed into J2, 

J3 or J2d stages, with, by the seventh DAI, J4 males, J4 females and IJs having formed. On the 

eighth DAI, the males and females had completed their development, and they were ready for 

mating, and, by the tenth DAI, the females had fertilised and developed their eggs, that were 

either released, or which hatched out inside the adult female’s body. 

The C. elegans adult hermaphrodites had already started to form by the second DAI. By the 

third DAI, the adult hermaphrodites had already produced offspring, with the juveniles of all 

stages being present (J1, J2, J3, J4, J2d). By the fourth DAI, the IJs had formed again, and the 

adult hermaphrodites had developed. The adult hermaphrodites then developed eggs on the 

sixth DAI. The presence of males was not observed. 

DIFFERENCE IN BODY LENGTH 

The comparison of the mean body length and width of the different life stages of each of the 

five species is shown in Table 5.1. The IJs of P. hermaphrodita are longer and thinner than are 

those of P. papillosa and P. bohemica, with a body length of 922 µm and a body width of 30 

µm, compared to a body length and width of 796 µm and 31 µm in P. papillosa, and of 737 µm 

and 36 µm in P. bohemica. The IJs of P. hermaphrodita are, however, generally shorter and 

thinner than are those of the undescribed Phasmarhabditis sp. (KEN1), which has the largest IJ 

body size, measuring 1134 µm in length and 41 µm in width. The IJs of each of the four 

Phasmarhabditis species are much larger than are those of C. elegans, whose IJs measure 659 

µm in length and 24 µm in width. 
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Table 5.1. Mean body length and width (µm) of the different life stages of Phasmarhabditis 

hermaphrodita, P. papillosa, P. bohemica, Phasmarhabditis sp. (KEN1) and Caenorhabditis 

elegans. 

Species Generation Stage Day Length Width 

P. hermaphrodita F1 J1 5 322 (312-340) 18 (17-18) 

F1 J2 6 398 (371-429) 22 (19-25) 

F1 J3 6 479 (442-501) 31.4 (29-33) 

F1 J4 7 913 (835-1040) 56 (44-63) 

F1 Hermaphrodite 8 2038 (1812-2201) 121 (108-136) 

F1 J2d 6 682 (540-825) 34 (29-39) 

F1 IJ 7 922 (835-1051) 30 (28-34) 

P. papillosa F1 J1 5 346 (283-422) 17 (12-23) 

F1 J2 6 475 (426-518) 24 (18-27) 

F1 J3 6 588 (538-628) 28 (24-32) 

F1 J4M 7 942 (847-1018) 45 (33-60) 

F1 J4F 7 1170 (1065-1264) 60 (53-67) 

F1 Male 8 1381 (1241-1484) 67 (61-73) 

F1 Female 8 1889 (1772-2012) 95 (90-101) 

F1 J2d 6 620 (541-697) 35 (29-39) 

F1 IJ 7 796 (749-852) 31 (26-36) 

P. bohemica F1 J1 4 292 (260-320) 17 (14-20) 

F1 J2 4 366 (339-411) 23 (21-25) 

F1 J3 5 408 (380-442) 24 (18-28) 

F1 J4M 5 563 (508-643) 33 (28-41) 

F1 J4H 5 854 (797-912) 57 (55-58) 

F1 Male 6 1627 (1520-1765) 94 (91-96) 

F1 Female 6 2247 (1997-2584) 133 (128-139) 

F1 J2d 4 542 (513-569) 37 (26-51) 

F1 IJ 5 737 (520-869) 36 (29-47) 

Phasmarhabditis sp. (KEN1) F1 J1 5 336 (328-350) 20 (16-25) 

F1 J2 6 466 (443-487) 30 (29-30) 

F1 J3 6 635 (510-725) 33 (29-38) 

F1 J4M 7 1126 (1008-1229) 73 (56-80) 

F1 J4F 7 1113 (1070-1203) 74 (60-88) 

F1 Male 8 1908 (1809-2041) 87 (77-96) 

F1 Female 8 2191 (1884-2335) 103 (89-117) 

F1 J2d 6 883 (862-905) 46 (44-47) 

F1 IJ 7 1134 (999-1301) 41 (32-56) 

C. elegans F1 J1 3 240 (206-265) 15 (11-19) 

F1 J2 3 358 (309-393) 18 (15-22) 

F1 J3 3 529 (492-553) 25 (24-27) 

F1 J4 4 771 (715-815) 35 (28-44) 

F1 Hermaphrodite 4 1172 (1003-1331) 69 (51-96) 

F1 J2d 4 456 (423-496) 21 (18-26) 

F1 IJ 4 659 (582-866) 24 (18-30) 
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Figure 5.2. Images of A: Hermaphrodite of Phasmarhabditis hermaphrodita; B: Female P. 

papillosa; C: Female P. bohemica; D: Female Phasmarhabditis sp. (KEN1); and E: 

Hermaphrodite of C. elegans (Scale bars: A-D = 200 µm; E = 100 µm). 

Figure 5.3. Images of males of A: Phasmarhabditis papillosa; B: P. bohemica; and C: 

Phasmarhabditis sp. (KEN1) (Scale bars: A = 100 µm; B = 100 µm; C = 200 µm). 
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The adult hermaphrodites of P. hermaphrodita are longer (2038 µm) and thicker (121 µm) than 

are the females of P. papillosa (1889 µm length, 95 µm width), but both are smaller than the 

adult females of Phasmarhabditis sp. (KEN1), which measure 2191 µm in length and 103 µm 

in width. The adult females of P. bohemica were the largest of the Phasmarhabditis species, 

measuring 2247 µm in length and 133 µm in width. The adult hermaphrodites of C. elegans 

were smaller than were those of the other Phasmarhabditis species, measuring 1171 µm in 

length and 69 µm in width. 

Of the three species that had males present, P. papillosa had the smallest males, measuring 

1381 µm in length and 67 µm in width. The males of P. bohemica were larger, measuring 1627 

µm in length and 94 µm in width, with the males of Phasmarhabditis sp. (KEN1) being the 

largest, with a length of 1908 µm and a width of 87 µm. 

Figure 5.4. Infective juveniles of A: Phasmarhabditis hermaphrodita; B: P. papillosa; C: P. 

bohemica; D: Phasmarhabditis sp. (KEN1); and E: C. elegans (Scale bars: A-C = 100 µm; D 

= 200 µm; E = 100 µm). 

Development into adulthood took approximately 48 h longer for P. hermaphrodita, P. papillosa 

and Phasmarhabditis sp. (KEN1) (day 8) compared to P. bohemica, which developed into adult 

males and females by day 6. All the life stages of C. elegans were markedly smaller than were 

those of P. papillosa and P. hermaphrodita. Adult C. elegans developed into the adult stage 

two days earlier (on day 4) than did P. bohemica, and 4 days earlier than did the P. 

hermaphrodita, P. papillosa and Phasmarhabditis sp. (KEN1).  
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The most important difference between the five species is the mode of reproduction. 

Phasmarhabditis papillosa, P. bohemica and Phasmarhabditis sp. (KEN1) formed males and 

females that required copulation to reproduce, whereas P. hermaphrodita and C. elegans only 

formed self-fertilising hermaphrodites, meaning that each nematode could reproduce on its 

own. 

Discussion 

Of the many nematode species associated with terrestrial molluscs, P. hermaphrodita is the 

only species, to date, to have been successfully formulated into a commercial biological 

molluscicide (Rae et al., 2007). Its success as a biocontrol agent can be attributed to its wide 

host range, to its capacity to form self-fertilising hermaphrodites, as well as to its ability to 

cause mortality to its mollusc hosts within 4 to 21 days after infection (Rae et al., 2007). The 

success of the product, paired with the fact that the regulation in many countries restricts the 

sale of P. hermaphrodita where the nematode is not indigenous, has led to an increase in the 

amount of research being done in the area. Over the last five years, a boom has occurred in the 

newly described Phasmarhabditis species, bringing the total complement of the genus to 

thirteen: P. hermaphrodita; P. neopapillosa (Mengert in Osche) Andrássy; P. papillosa; P. 

tawfiki Azzam; P. huizhouensis Huang, Ye, Ren & Zhao; P. apuliae Nermuť, Půža & Mráček; 

P. bonaquaense Nermuť, Půža, Mekete & Mráček; P. californica Tandingan De Ley,

Holovachov, McDonnel, Bert, Paine & De Ley; P. bohemica Nermuť, Půža, Mekete & Mráček; 

P. meridionalis Ivanova & Spiridonov; P. safricana Ross, Pieterse, Malan & Ivanova; P.

circassica Ivanova, Geraskina & Spiridinov; and P. clausiliidae Ivanova, Geraskina & 

Spiridinov. Aside from the work conducted on P. hermaphrodita, very little work has yet been 

published on the mass culture and virulence of other nematodes within the Phasmarhabditis 

genus (Pieterse et al., 2017c).  

The potential of a nematode candidate to be considered for biocontrol development depends on 

its virulence, as well as on the ease with which it can be mass-cultured. An important part of 

nematode mass production is having an understanding of, and the ability to manage, the 

nematode population dynamics. The current study provides new insights into the life cycles of 

the six nematodes associated with slugs: P. hermaphrodita, P. papillosa, P. bohemica, 

Phasmarhabditis sp. (KEN1) and C. elegans. Of the aforementioned nematodes, C. elegans 

was found to be the easiest to mass-culture in the liquid media in the study, due to its 

hermaphroditic reproduction strategy, and to its ability to complete its life cycle within 6 days, 

being 2 days earlier than P. bohemica, and 4 days earlier than P. hermaphrodita, P. papillosa 
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and Phasmarhabditis sp. (KEN1). Therefore, C. elegans could make an ideal candidate for 

commercial development. Petersen et al. (2015) found that C. elegans can be transported in the 

slug’s intestine without causing obvious harm to the slug itself, but they also concluded that, as 

a parasitic relationship might be possible, further investigation is required (Petersen et al., 

2015). In several slug-nematode surveys conducted in South Africa, C. elegans was found to 

be the nematode most commonly isolated from the slug hosts (Ross et al., 2012; Pieterse et al., 

2017b). The widespread distribution and high prevalence of C. elegans in South Africa warrants 

further investigation, in relation to its association with its slug hosts. 

In the current study, the commercially exploited nematode, P. hermaphrodita, took 10 days to 

complete its life cycle, with it taking 4 days longer in the case of C. elegans. However, P. 

hermaphrodita has an advantage over C. elegans, with its proven ability to parasitise a range 

of mollusc species (Rae et al., 2007). Phasmarhabditis hermaphrodita also has a benefit over 

the other phasmarhabditids in the present study, in that it forms self-fertilising hermaphrodites. 

The above means that the reproduction of P. hermaphrodita might be easier in liquid cultures, 

compared to that of P. papillosa, P. bohemica and Phasmarhabditis sp. (KEN1). However, it 

should be noted that P. bohemica has an advantage over the other Phasmarhabditis species, in 

that it develops into the adult stage 2 days earlier, but, due to the inability of P. bohemica to 

produce self-fertilising hermaphrodites, it can be regarded as a more complex biocontrol 

candidate. The above means that the culturing concerned would take longer, and that the 

conditions within the flasks or fermenters would have to be altered to allow copulation between 

the males and females. When mass-culturing nematodes, the goal is to produce the largest 

amount of IJs in the least amount of time. Even a day or two difference in the life cycle length 

of the nematodes will therefore have a significant effect on production efficiency. 

Phasmarhabditis papillosa was one of the three phasmarhabditids that took the longest to 

complete its life cycle (10 days). The result is that, despite the promising pathogenicity results 

noted by Pieterse et al. (2017c), of P. papillosa being able to control D. invadens, based on the 

life cycle results of the current study, it would not, necessarily, make a better biocontrol 

candidate, compared to P. hermaphrodita. 

So as to optimise the conditions in liquid cultures for the development of nematode species, it 

is crucial to understand their life cycles, and to have a basic knowledge of the different life 

stages concerned. The results of the study regarding the life cycle and the body size of the 

different species can be used for future improvements on the culturing of the nematodes and on 

the optimising of yields for possible commercial production. To enable the recommending of 

nematode species for, or their eliminating from, consideration for development as possible 
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biocontrol agents, the pathogenicity and the life cycles of the other species in the 

Phasmarhabditis genus should also be investigated.  
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Chapter 6 

In vitro liquid culture of nematodes associated with slugs 

Summary 

The only commercially available nematode for the biological control of molluscs is 

Phasmarhabditis hermaphrodita, grown in vitro with Moraxella osloensis. To-date this 

nematode cannot be used in South Africa due to regulations. Therefore, there is an interest to 

develop a locally isolated nematode and develop as a biocontrol candidate. However, to do this, 

one of the first processes is to identify potential nematode candidates through surveys (Chapter 

2) and reviewing current collections, and then the next process is to identify suitable bacterial

candidates for in vitro development. In this study, ten bacterial isolates were investigated, 

including five bacterial candidates isolated from slugs, namely Pseudomonas sp. (2), 

Pseudomonas sp. (3), Pseudomonas sp. (4), Aeromonas sp. and Buttiauxella sp., along with two 

previously isolated slug-associated bacteria (Pseudomonas sp. (1) and Kluyvera sp.), and three 

bacterial species associated with entomopathogenic nematodes (Photorhabdus heterorhabditis, 

P. luminescens subsp. noenieputensis and Xenorhabdus khoisanae). These bacteria were tested

for their ability to cause mortality to Deroceras invadens, as well as support nematode growth. 

The nematodes used in this study included Phasmarhabditis papillosa and Caenorhabditis 

elegans, isolated in South Africa, along with Phasmarhabditis sp. (KEN1) from Kenya, and 

Phasmarhabditis bohemica. Initial mortality studies demonstrated that the bacteria Kluyvera 

sp., Aeromonas sp. and Pseudomonas sp. (3) caused 100% mortality when they were injected 

into the haemocoel of D. invadens. However, in growth studies, Pseudomonas sp. (4) was the 

most preferred bacterium, leading to recovery and reproduction in all nematode species, with 

the exception of Phasmarhabditis sp. (KEN1), in which it caused the death of the infective 

juveniles (IJs). In flask studies, P. bohemica showed exceptional growth with Pseudomonas sp. 

(1), and so was chosen for further investigation. The effect of inoculating flasks with 1%, 3% 

or 5% Pseudomonas sp. (1) bacteria, as well as with 1000, 2000 or 3000 IJs/ml of P. bohemica, 

was evaluated by assessing the total number of nematodes and IJs, and the proportion of IJs in 

the flasks every 2 days for 14 days. The results indicated that a 1% bacteria inoculation led to 

higher total nematode and IJ yield, with flasks with the highest IJ inoculum (3000 IJs/ml) having 

a positive effect on the total number of nematodes and IJs in cultures of P. bohemica. 

Key words - Phasmarhabditis, mass production, bacteria, infective juveniles, pathogenicity 
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Introduction 

Terrestrial slugs (Mollusca: Gastropoda) are a major pest of many crops in South Africa and 

are mostly controlled through the use of chemical molluscicides. One possible method for the 

control of molluscs is biocontrol using mollusc-parasitic nematodes (MPNs). MPN include 

nematodes from the families Agfidae, Alaninematidae, Alloionematidae, Angiostomatidae, 

Cosmocercidae, Diplogasteridae, Mermithidae and Rhabditidae (Pieterse et al., 2017). 

Phasmarhabditis hermaphrodita (Schneider) Andrássy (Rhabditida: Rhabditidae), which is the 

only MPN that has been successfully developed into a biocontrol product to-date, is currently 

being mass-produced and sold commercially throughout Europe by BASF (formally Becker 

Underwood) and Dudutech, under the tradenames, Nemaslug® and SlugTech®, respectively 

(Rae et al., 2007; Ross, 2019). It is capable of parasitising various mollusc species from the 

families Agriolimacidae, Limacidae, Arionidae, Vagnulidae and Milacidae (Wilson et al., 

1993; Iglesias & Speiser, 2001; Speiser et al., 2001; Grewal et al., 2003) (see Table 1.2 from 

Chapter 1). The nematode is sold as a water-dispersible formulation with the active ingredient 

being the infective juvenile (IJ) stage which, when dissolved in water and applied, moves 

around in the soil in search of slug hosts, causing death 4-21 days after infection (Wilson et al., 

1993; Tan & Grewal, 2001).  

Phasmarhabditis hermaphrodita has been mass-produced using both in vivo and in vitro 

methods, although the former production involves the field collection, or rearing, of mollusc 

hosts in the laboratory, and it is not economically viable. The majority of research has, 

therefore, focused on the in vitro production of the nematode, either in xenic cultures, with a 

mix of unknown bacteria, or in monoxenic cultures, using only one known bacterial species 

(Wilson et al., 1995a). The use of monoxenic cultures, however, is known to offer more 

predictable results, with it being more effective in producing a high number of IJs with 

consistent pathogenicity (Wilson et al., 1995a; Ehlers & Shapiro-Ilan, 2005). 

In the search for a bacterial species for the monoxenic culturing of P. hermaphrodita, Wilson 

et al. (1995b) tested the pathogenicity of nine bacterial isolates by injecting 10 µl of each into 

the haemocoel of Deroceras reticulatum Müller (Agriolimacidae) slugs. Of the bacterial 

isolates tested, only Aeromonas hydrophila (Chester) Stanier (Proteobacteria: 

Aeromonadacaea) and Pseudomonas fluorescens (Flügge) Migula (Proteobacteria: 

Pseudomonadacea) caused significant mortality in the slugs. However, as A. hydrophila did not 

support the growth of P. hermaphrodita, it could not, therefore, be considered as a monoxenic 
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bacterial candidate. Bacterial isolates that supported the growth of P. hermaphrodita were then 

used in monoxenic foam chip cultures and/or liquid cultures, in combination with the nematode, 

after which the pathogenicity of the nematode was tested on D. reticulatum in a soil-based 

bioassay system. The results indicated that P. hermaphrodita caused significant mortality in 

slugs, producing the highest yields of IJs when grown together with the bacterial isolate 

Moraxella osloensis (Bøvre & Henriksen) Bøvre (Proteobacteria: Moraxellaceae). The above-

mentioned bacterial species was, therefore, chosen for the commercial production of P. 

hermaphrodita (Wilson et al., 1995b). 

The BASF P. hermaphrodita product is produced in large-scale fermenters using in vitro 

liquid culturing, similar to that which is used for the commercial production of 

entomopathogenic nematodes (EPNs), and in a monoxenic association with the bacterium 

species M. osloensis (Morand et al., 2004; Rae et al., 2007). Establishing a monoxenic 

nematode-bacteria combination that can be grown in a liquid medium is essential for the 

consistent production of high IJ yields, and to eliminate the risk posed by the presence of the 

other pathogenic bacteria in the medium (Poinar Jr & Hansen, 1986; Wilson et al., 1995a). The 

IJ life stage is produced when stressful environmental factors occur, or when the food sources 

become depleted (Ross, 2010). Depending on the growth medium concerned and the prevailing 

conditions in the fermenters, different levels of IJ concentrations are produced, with yields of 

over 100 000 IJs/ml having been achieved (Glen et al., 1994).  

The discovery of the potential of nematodes as the biocontrol agents of insect and mollusc 

pests has led to wide-scale interest in methods for their mass production. There is also a vast 

body of research on the mass-production techniques used for EPNs which can be translated to 

the mass-culturing of MPNs. Depending on the costs, time, resources, expertise and amount of 

product required, EPNs are mass-produced using in vivo, in vitro solid or in vitro liquid 

culturing methods (Ehlers & Shapiro-Ilan, 2005; El-Sadawy, 2011; Abd-Elgawad et al., 2017). 

Although in vivo and in vitro solid culturing methods are labour-intensive, they require 

relatively low capital investment, whereas the in vitro liquid culturing is the method of choice 

for large companies in the developed countries, as the method requires sophisticated 

engineering, a high level of capital investment and running cost, and close monitoring (Ehlers 

& Shapiro-Ilan, 2005; Lacey & Georgis, 2012). 

The objectives of the current study were to isolate, identify, culture and test the pathogenicity 

of bacterial isolates capable of supporting the in vitro culture of mollusc-associated nematode 
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species. In addition, the study also focused on optimising the in vitro liquid culture method of 

successful nematode-bacterial candidates, by means of testing the effect of bacteria inoculum 

and IJ inoculum density on the total nematode yield, on the IJ yield, and on the proportion of 

IJs present after 14 days. 

Materials and Methods 

SOURCE OF NEMATODES 

The following nematode species were used for this study: Phasmarhabditis bohemica Nermuť, 

Půža, Mekete & Mráček (Nematoda: Rhabditidae), Phasmarhabditis papillosa (Schneider) 

Andrássy (Nematoda: Rhabditidae), Phasmarhabditis sp. (KEN1) (see Chapter 4) and 

Caenorhabditis elegans (Maupas) (Nematoda: Rhabditidae). The P. papillosa and C. elegans 

were obtained from a collection of the Department of Conservation Ecology and Entomology 

at Stellenbosch University and were initially collected during a survey by Pieterse et al. (2017). 

The P. bohemica isolate used in the study was kindly supplied by Dr Vladimir Půža from the 

Biology Centre CAS, Institute of Entomology ASCR, Laboratory of Entomopathogenic 

Nematodes, Czech Republic. The Phasmarhabditis sp. (KEN1) (see Chapter 4) was obtained 

in a collaborative study with Dr Solveig Haukeland from the International Centre of Insect 

Physiology and Ecology (icipe) in Nairobi, Kenya, and Dr Jenna Ross (co-supervisor). 

ISOLATION AND SOURCE OF BACTERIAL ISOLATES 

A total of ten bacterial isolates were used in this study. Five bacterial candidates were 

isolated by dissecting Deroceras invadens Reise, Hutchinson, Schunack & Schlitt (Mollusca: 

Agriolimacidae), swabbing the intestine and body cavity, and streaking bacteria onto nutrient 

agar plates (3 g beef extract, 5 g Tryptone, 8 g NaCl, 15 g agar in 1 L of water, autoclaved for 

20 min at 121°C), which were incubated at 25°C for 48 h. The plates were then visually 

inspected and different bacterial colonies were subcultured onto fresh plates, until only a single 

species remained on each plate. Two additional slug-associated bacterial isolates, which were 

obtained from a collection of the Department of Conservation Ecology and Entomology at 

Stellenbosch University, were collected during a survey conducted by Pieterse (2016). Three 

bacterial species associated with EPNs, which were also included in the study, were obtained 

from the collection of the Department of Conservation Ecology and Entomology at 

Stellenbosch University. 
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IDENTIFICATION OF BACTERIA 

Bacterial isolates isolated from dissected D. invadens in this study were identified by 

extracting the total genomic DNA using a Zymo Research fungal/bacterial DNA kit (Zymo 

Research Corporation, Irvine, California, USA). The DNA of the 16S rRNA gene was then 

amplified, using the primer pair 8F and 1512R (Felske et al., 1997). The amplified products 

were then sequenced by the Central Analytical Facilities (CAF) at Stellenbosch University. 

Sequence traces were then inspected and assembled using the software CLC Main Workbench 

7.6.4 (CLC Bio, Aarhus, Denmark, http://www.clcbio/products/clc-main-workbench/) and 

analysed using the Basic Local Alignment Search Tool (BLAST) of the National Centre for 

Biotechnology Information (NCBI) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequences were 

then uploaded to the GenBank database (http://www.ncbi.nlm.nih.gov/), at the National Centre 

for Biotechnology Information (NCBI). 

BACTERIA PATHOGENICITY 

Bacterial isolates were streaked onto nutrient agar plates (3 g beef extract, 5 g Tryptone, 8 g 

NaCl, 15 g agar in 1 L water, autoclaved at 121°C for 20 min) and grown at 25°C for 24 h. The 

plates were then washed with 5 ml autoclaved 0.9% saline solution under sterile conditions, 

with 10 µl of each bacterial isolate being injected directly into the haemocoel of ten D. invadens 

specimens. The control slugs were injected with 10µl sterile 0.9% saline solution. After having 

been treated per bacterial isolate, ten slugs were placed in plastic containers (145 mm × 205 

mm × 80 mm) lined with moist tissue paper and covered with perforated lids. The boxes were 

kept at 18°C for 5 days, and the slugs were provided with carrot discs as food source that were 

replaced daily. After 5 days, the number of dead slugs was counted. The experiment was 

repeated with a fresh batch of slugs. 

BACTERIA FEEDING PREFERENCE 

Each of the ten bacterial isolates detailed earlier in this chapter were streaked onto five 

Wout’s agar plates (9.5-cm-diam.) each and left at 25°C for 24 h (Wouts, 1981). A hundred IJs, 

in ca. 200 µl distilled water, of the four nematode species (P. bohemica, P. papillosa, 

Phasmarhabditis sp. (KEN1) and C. elegans), were added to the plates. The plates were then 

covered with parafilm and left at 18ºC for 5 days. After 5 days, the plates were visually 

inspected with a light microscope (Leica MZ7s), so as to determine whether the nematodes had 

survived, recovered and reproduced in association with the different bacterial isolates. The 
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experiment was repeated three times. The plates were scored based on four categories: Dead 

(0), Alive (1), Recovered (2), and Reproduced (3). Plates categorised as ‘Dead’ showed 100% 

dead IJs; those categorised as ‘Alive’ showed that despite the IJs having survived, they neither 

recovered nor developed; those categorised as ‘Recovered’ showed that the IJs had developed 

into adults, but had not reproduced; and those categorised as ‘Reproduced’ showed the presence 

of adult nematodes with next-generation juveniles (J1-J3).  

AXENISATION OF NEMATODES 

As P. bohemica showed good survival, recovery and reproduction among a range of bacterial 

isolates in the previous section, it was used for the monoxenic cultures. To establish such 

cultures, the eggs were harvested from adult female nematodes. IJs were added to 9.5-cm- diam. 

Petri dishes, lined with a piece of moist filter paper, containing freeze-killed D. invadens. The 

Petri dishes were sealed with parafilm and left at 18°C. The IJs of P. bohemica were then left 

for 96 hours to develop into adult males and females, and for the females to form fertilised eggs. 

The plates were then washed with saline solution and passed through a 212-µm aperture sieve 

to remove any life stages that were not adult females. The adult females were then added to 

Eppendorf tubes and lightly crushed for 30 sec with an autoclaved plastic grinding rod. A 

mixture of bleach and NaOH (2.25 ml bleach, 0.2 g NaOH in 10 ml distilled autoclaved water) 

was then added to the tubes, with it being left to work on the nematode mix for 8 min. The 

mixture in the tubes was then centrifuged and washed three times with sterile water, so as to 

remove all bleach and NaOH solution, until only a pellet with eggs in water remained. The 

mixture was then pipetted into 200 µl sterile tryptone soy broth (TSB) in 24-well plates, sealed 

with parafilm and left for 2 days at 25°C to test for bacterial contamination. If, after 2 days, no 

bacterial growth had occurred, and the nematodes had hatched, the J1 and J2 nematodes were 

used for liquid media culturing. 

ESTABLISHING A LIQUID CULTURE 

For the liquid culture experiments, the bacterial isolate Pseudomonas sp. (1) (GenBank 

accession number: KX531096) and P. bohemica were used, as they demonstrated a good 

response in the experiment detailed, in the bacterial feeding preference section. Thirty millilitres 

of Luria Broth (LB) (10 g NaCl, 10 g Tryptone, 5 g yeast extract/L water, autoclaved at 121°C 

for 20 min) in a 250 ml Erlenmeyer flask was inoculated with Pseudomonas sp. (1) and 

incubated on an orbital shaker (140 rpm), at 28°C for 48 h. A 250-ml Erlenmeyer flask with 30 

ml liquid culture media (LCM) (9 g pig kidney, 17.4 g yeast extract, 8.6 g egg yolk powder, 
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52.6 g sunflower oil/L water; autoclaved for 20 min at 121°C) was then inoculated with 1.2 ml 

(4%) of Pseudomonas sp. (1) in LB. The flask was then again incubated on an orbital shaker 

(140 rpm) at 28°C for 48 h. Once the bacteria had grown inside the LCM, the sterile eggs and 

juvenile stages obtained after the axenisation of the nematodes were added to the flasks. The 

flasks were then incubated at 18°C on orbital shakers at 140 rpm for 14 days, at which point 

the majority of the population in the flask were at the IJ stage. This flask was then used as 

inoculum for the following experiments, with it, hereafter, being referred to as the ‘inoculum 

flask’. 

BACTERIAL INOCULUM CONCENTRATION 

To test the impact of bacteria inoculum density, nine 250-ml Erlenmeyer flasks containing 

30 ml LCM were inoculated with three different Pseudomonas sp. (1) inoculum concentrations: 

1%, 3%, or 5%. Three replicate flasks were set up per treatment. IJs from the inoculum flask 

were then added to the flasks to achieve an initial nematode density of 2000 IJs/ml. All nine 

flasks were incubated at 18°C on an orbital shaker (140 rpm) in the dark for 14 days. Every 2 

days, the total number of nematodes and the total amount of IJs were recorded. The experiment 

was conducted twice. 

NEMATODE INOCULUM CONCENTRATION 

To test the impact of nematode inoculum density, nine 250-ml Erlenmeyer flasks containing 

30 ml LCM were inoculated with 1.2 ml (4%) Pseudomonas sp. (1) in LB, after which they 

were incubated on an orbital shaker (140 rpm) at 28°C for 48 h. Three treatments were 

established: 1000 IJs/ml, 2000 IJs/ml, and 3000 IJs/ml, with three replicate flasks per treatment. 

The flasks were incubated at 18°C on an orbital shaker (140 rpm) in the dark for 14 days. Every 

2 days, the total number of nematodes and IJs were recorded. The experiment was conducted 

twice. 

STATISTICAL ANALYSIS 

For the bacteria pathogenicity data, a generalised linear model (GLZ) with a Poisson 

distribution and a log link function was used. The above was confirmed by means of a log-

likelihood ratio test, giving a chi-squared value of 2.7844 and P < 0.001. The liquid culture data 

were analysed using a repeated-measures analysis of variance (ANOVA), with the compound 

symmetry assumption on the correlations over the days concerned. 
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Results 

ISOLATION AND IDENTIFICATION OF BACTERIA 

Five bacterial isolates were identified in the current study from the intestine and body cavity 

of D. invadens (Table 6.1). They included three Pseudomonas spp., an Aeromonas sp. and a 

Buttiauxella sp., and the generated 16S rRNA sequences were submitted to GenBank (Table 

6.1). GenBank details of the additional slug-associated bacterial species and EPN-associated 

bacterial species are indicated in Tables 6.2 and 6.3, respectively. 

Table 6.1. The partial 16S rRNA gene accession numbers of five bacterial isolates from 

Deroceras invadens collected from George sample sites with NCBI matches, with identity and 

coverage of between 98 and 100%. 

 

Table 6.2. GenBank accession numbers of the two slug-associated bacterial species used in the 

current study obtained from the collection housed at the Department of Conservation Ecology 

and Entomology at Stellenbosch University. 

 

 

 

Bacterial isolate GenBank 

accession 

number 

Habitat NCBI match 

Species/strain GenBank 

accession 

number 

Query  

coverage  

(%) 

Percentage 

identity  

(%) 

Pseudomonas sp. (2) MN611311 Water treatment 

plant 

Pseudomonas sp. 

H3-5 

MN197816 100 99 

Pseudomonas sp. (3) MN611355 Soil Pseudomonas sp. 

36 DCP 

MK072848 100 99.78 

Pseudomonas sp. (4) MN611356 Woodland soil Pseudomonas sp. 

S3Bt34y 

MH463748 100 99.28 

Aeromonas sp. MN611353 Aquatic Aeromonas 

salmonicida 

SHY16-3432 

CP038102 100 99.29 

Buttiauxella sp. MN611312 Snails Buttiauxella sp. 

P5 

DQ223872 98 99.15 

Bacterial isolate GenBank accession number Reference 

Pseudomonas sp. (1) KX531096 Pieterse, 2016 

Kluyvera sp. KX531097 Pieterse, 2016  
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Table 6.3. The GenBank accession numbers of the three bacterial species associated with EPNs 

used in the current study obtained from the collection housed at the Department of Conservation 

Ecology and Entomology at Stellenbosch University 

 

BACTERIA PATHOGENICITY 

All bacterial isolates tested caused significant mortality (P < 0.001) in the slug host D. 

invadens, with the exception of Buttiauxella sp.in this study. Pseudomonas sp. (3), Kluyvera 

sp. and Aeromonas sp. all caused 100% mortality 5 days after being injected into the slugs. 

Photorhabdus heterorhabditis caused mortality in 16 slugs and Pseudomonas sp. (4), X. 

khoisanae and Pseudomonas sp. (1) caused mortality in eight of 20 slugs after 5 days. 

Pseudomonas sp. (2), P. luminescens and Buttiauxella sp. were the least pathogenic, with 

Pseudomonas sp. (2) and P. luminescens only killing four slugs, and Buttiauxella sp. killing 

none (Fig. 6.1). 

 

Figure 6.1. Mortality of Deroceras invadens, 5 days after being injected with different bacterial 

isolates. 
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Bacterial isolate

Bacterial isolate Strain 

GenBank  

accession 

number 

Reference 

Photorhabdus heterorhabditis SF41T HQ142626 Ferreira et al., 2014 

P. luminescens subsp. noenieputensis  AM7 JQ424880 Ferreira et al., 2013a 

Xenorhabdus khoisanae SF87T HQ142625 Ferreira et al., 2013b 
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BACTERIAL FEEDING PREFERENCE 

Phasmarhabditis bohemica was able to reproduce when feeding on Pseudomonas sp. (1), 

(2), (3) and (4), Buttiauxella sp., as well as P. luminescens and X. khoisanae from EPNs. 

Although the IJs recovered and developed into adults, they did not reproduce when feeding on 

Kluyvera sp., and they survived, but remained in their IJ phase, when they were tested with 

Aeromonas sp. and P. heterorhabditis (Table. 6.4).  

Table 6.4. Ability of different bacterial isolates to support the growth of the nematodes 

Phasmarhabditis bohemica, Phasmarhabditis papillosa, Phasmarhabditis sp. (KEN1) and 

Caenorhabditis elegans. 

Bacterial isolate 

Growth support score 

P. bohemica P. papillosa
Phasmarhabditis 

sp. (KEN1) 
C. elegans

Aeromonas sp. 1 2 0 1 

Buttiauxella sp. 3 1 3 2 

Kluyvera sp. 2 2 3 3 

Pseudomonas sp. (1) 3 2 3 2 

Pseudomonas sp. (2) 3 2 0 2 

Pseudomonas sp. (3) 3 2 0 2 

Pseudomonas sp. (4) 3 3 0 3 

Photorhabdus heterorhabditis 1 0 0 0 

Photorhabdus luminescens 3 1 0 3 

Xenorhabdus khoisanae 3 2 0 0 

Score: 0 = dead; 1 = alive; 2 = recovered; 3 = reproduced. 

Phasmarhabditis papillosa only reproduced when tested with Pseudomonas sp. (4). When 

tested with Pseudomonas species (1), (2) and (3), as well as with Kluyvera sp., Aeromonas sp. 

and X. khoisanae, the IJs, despite developing into adult males and females, did not reproduce. 

When tested with Buttiauxella sp. and P. luminescens, the P. papillosa IJs survived, but did not 

recover, and, with P. heterorhabditis, all the IJs died (Table 6.4).  

Phasmarhabditis sp. (KEN1) reproduced when tested with Pseudomonas sp. (1), Kluyvera 

sp. and Buttiauxella sp., but died when it was tested with any of the other bacterial candidates 

(Table 6.4).  

Caenorhabditis elegans was able to reproduce when feeding on Kluyvera sp., Pseudomonas 

sp. (4) and P. luminescens. The IJs of C. elegans developed into adults but did not reproduce 
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when tested on Pseudomonas sp. (1), (2) and (3), as well as on Buttiauxella sp., and they did 

not recover from the IJ phase when they were tested with Aeromonas sp. As with 

Phasmarhabditis sp. (KEN1), C. elegans died when it was tested with the EPN bacterial 

isolates, P. heterorhabditis and X. khoisanae (Table. 6.4). 

BACTERIAL INOCULUM CONCENTRATION 

All flasks displayed exponential growth in the combination of P. bohemica and 

Pseudomonas sp. (1) with regards to the total number of nematodes between days 2 and 6. This 

growth slowed down between days 6 and 10, and even more so between days 10 and 14. The 

flasks that were inoculated with 3% and 5% bacteria seemingly neared a stationary phase in 

nematode numbers by day 14 (Fig. 6.2a). The flasks containing 1% bacterial inoculum had a 

significantly higher (ANOVA, F = 3023, df = 30, 180, P < 0.001) total number of nematodes 

throughout the experimental period, reaching an average count of 63126 nematodes/ml on day 

14 (Fig. 6.2A). The flasks inoculated with 5% bacteria had the second highest total amount of 

nematodes throughout the experiment, reaching an average count of 42340 nematodes/ml on 

day 14 (Fig 6.2A). The flasks inoculated with 3% bacteria had the lowest total nematode yield 

throughout the experiment, reaching only 34965 nematodes/ml by day 14 (Figure 6.2A). 
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Figure 6.2. Influence of different bacterial densities (1%, 3% and 5% Pseudomonas sp. (1)) on 

(A) total number of nematodes/ml, (B) total number of IJs/ml, and (C) IJ proportion in total

nematode population of Phasmarhabditis bohemica. 
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The results show very low IJ numbers from day 2 to day 6, by which time most of the IJs 

had recovered and developed into other stages. However, by day 8, population numbers reached 

a point where IJ formation was again induced, causing a sharp increase in IJ numbers for all 

bacterial concentrations. The formation of IJs then slowed down again for all flasks from day 

12 onwards, reaching an almost stationary phase by day 14 (Fig. 6.2B). The flasks inoculated 

with 1% bacteria had a significantly higher total number of IJs (61515 IJs/ml) (F = 336.23; df 

= 30, 180; P < 0.001) on day 14 than did those inoculated with 3% or 5% bacteria. The flasks 

inoculated with 5% had 41,270 IJs/ml on day 14, and the flasks inoculated with 3% had the 

lowest number of IJs, with a concentration of only 32909 IJs/ml (Fig. 6.2B).  

The results show a sharp decrease in the IJ proportion from day 2 to day 4, with it slowing 

down by day 6, and reaching a low at day 8, as the IJs recovered and the other life stages came 

to make up a larger portion of the population than before. However, between days 8 and 12, an 

exponential increase occurred in the IJ proportion of the population, as overcrowding in the 

flasks induced the formation of the IJ stage. By day 12, the increase in IJ proportion slowed 

down, again nearing a stationary phase by day 14 (Fig. 6.2C). The flasks inoculated with 1% 

and 5% had the same proportion of IJs on day 14, both reaching 97% IJs. The proportion was 

significantly higher (F = 38.99; df = 30, 180; P < 0.001) than it was for the IJ proportion of 

flasks inoculated with 3% bacteria, which yielded 94% IJs (Fig. 6.2C).  

NEMATODE INOCULUM CONCENTRATION 

The flasks in the IJ inoculum density experiment showed a low total number of nematodes 

at day 4, which slowly increased between days 4 and 6, and then showed exponential growth 

between days 6 and 8. However, after day 8, the increase in the total number of nematodes 

started to slow down, and to near a stationary phase by day 14 in all the flasks (Fig. 6.3A). The 

flasks inoculated with 3000 IJs/ml showed a rise in total nematode numbers after day 6, yielding 

a significantly higher total number of nematodes (45156 nematodes/ml) (ANOVA, F = 3023; 

df = 30, 180; P < 0.001) by day 14 than did the other inoculum concentrations. Flasks inoculated 

with 1000 IJs/ml yielded 26839 nematodes/ml, which rate was also significantly higher 

(ANOVA, F = 3023; df = 30, 180; P < 0.001) than was that of the 24110 nematodes/ml yield 

of flasks inoculated with 2000 IJs/ml (Fig 6.3A). 
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Figure 6.3. Influence of different infective juvenile inoculum densities (1000, 2000 and 3000 

IJs/ml) on (a) total number of nematodes/ml, (b) total number of IJs/ml, and (c) IJ proportion 

in total nematode population of monoxenic cultures containing Phasmarhabditis bohemica and 

Pseudomonas sp. (1). 
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All the flasks showed a slow decrease in the total number of IJs from day 2 onwards, as the 

IJs recovered and developed into other life stages. The number of IJs reached a low at day 8, 

after which a sharp increase in numbers was observed in all the flasks between days 8 and 12, 

as overcrowding in the flasks induced the formation of IJs. The formation of IJs slowed down 

from day 12 onwards, nearing a plateau by day 14 (Fig. 6.3b). The flasks inoculated with 3000 

IJs/ml had significantly higher (F = 336.23; df = 30, 180; P < 0.001) numbers of IJs from day 

10 onwards, reaching a high of 37177 IJs/ml by day 14. No significant difference (P < 0.001; 

df = 30, 180; F = 336.23) was found in the total number of IJs in the flasks inoculated with 1000 

IJs/ml (22038 IJs/ml) and in the flasks inoculated with 2000 IJs/ml (21,621 IJs/ml) (Fig. 6.3b).  

A rapid decrease in the IJ proportion was observed for all the flasks between days 2 and 6, 

as the nematodes recovered from the IJ phase and started to reproduce. The IJ proportion 

reached a low on day 8, after which all the flasks showed a rapid increase in the IJ proportion. 

By day 12, all the flasks showed a relatively slow rate of increase in the IJ proportion, which 

neared a stationary phase by day 14 (Fig. 6.3c). On days 10 and 12, significant differences (F 

= 38.99; df = 30, 180; P < 0.001) were found in the IJ proportions of the three treatments, with 

the flasks inoculated with 2000 IJs/ml having the highest proportion of IJs, followed by the 

flasks inoculated with 1000 IJs/ml, with the 3000 IJs/ml flasks having the lowest IJ proportion. 

However, by day 14, the flasks inoculated with 2000 IJs/ml had a significantly higher (F = 

38.99; df = 30, 180; P < 0.001) IJ proportion (90%) than did the other two treatments, which 

showed no significant difference (F = 38.99; df = 30, 180; P < 0.001) in IJ proportion, with 

both having an average of 82% IJs each (Fig. 6.3c). 

Discussion 

In the current study, ten bacterial isolates were tested based on their pathogenicity to the slug 

host D. invadens, as well as their ability to grow with different slug-associated nematode 

candidates. Of these ten bacterial isolates, five were isolated from the body cavity of D. 

invadens, namely Pseudomonas sp. (2), Pseudomonas sp. (3), Pseudomonas sp. (4), Aeromonas 

sp. and Buttiauxella sp. The species, along with two previously identified slug-associated 

bacterial isolates from Pieterse (2016), and three bacterial species from EPNs, were used in the 

experiment. The nematode species that were tested were P. bohemica, P. papillosa, C. elegans 

and Phasmarhabditis sp. (KEN1). Pseudomonas sp. (4) was the bacterium preferred by most 

of the nematode species, leading to recovery and reproduction in all the species concerned, 

except for Phasmarhabditis sp. (KEN1), in which it caused mortality. In their search for a 
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bacterial species suitable for the monoxenic culturing of P. hermaphrodita, Wilson et al. 

(1995b) tested A. hydrophila, finding that it was capable of causing mortality in D. reticulatum. 

Although it was isolated from the intestines of P. hermaphrodita IJs, it was not capable of 

successfully supporting growth in P. hermaphrodita. Wilson et al. (1995b) also tested two 

isolates of Pseudomonas fluorescens in foam chip cultures, finding it capable of supporting the 

growth of P. hermaphrodita.  

The pathogenicity tests of the bacterial species isolated from slugs, and of the three bacterial 

species associated with EPNs, showed that Pseudomonas sp. (3), Kluyvera sp. and Aeromonas 

sp. were most pathogenic, causing 100% mortality of slugs. Buttiauxella sp. was the least 

pathogenic of the bacteria tested, as it was found to cause zero mortality. The other bacterial 

isolates, including the species associated with EPNs, despite causing significant mortality in 

slugs, were less pathogenic.  

In EPN studies, the association between the mutualistic bacteria of EPNs is very strong, and 

it was always believed that, in the case of Steinernema, each nematode species was always 

associated with its own unique bacterial species (Dreyer et al., 2018). However, it was found 

that X. khoisanae has the ability to switch between nematode species, and even between 

distantly related clades (Dreyer et al., 2018). Lee and Stock (2010) show that at least 17 host 

switches of strains of Xenorhabdus species occur between Steinernema species, and even 

between species of different clades. In the case of the slug nematode P. hermaphrodita, the 

association between the nematode and the bacteria concerned is relatively weak, and many 

bacterial species were tested to determine the optimum production and viability that could be 

attained from being grown together with P. hermaphrodita (Wilson et al., 1995b). 

While selecting a bacterium for the monoxenic culturing of P. hermaphrodita, Wilson et al. 

(1995b) found that, when M. osloensis was injected into the body cavity of D. reticulatum, it 

was not pathogenic. However, when P. hermaphrodita was grown in a monoxenic liquid culture 

together with M. osloensis, and the pathogenicity of the resulting nematodes was retested, they 

were pathogenic to D. reticulatum. Such was especially the case when the pathogenic bacteria 

species were injected into the body cavities of the slugs. Wilson et al. (1995b) concluded that 

the interaction between the bacterium and both the nematode and the immune system of the 

slug host is important, when testing the pathogenicity of different nematode-bacteria 

combinations.  
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Again, reflecting on EPN studies, EPNs have shown not to rely solely on the bacteria to kill the 

host after infection, but that, after recovery, the IJs tend to release venom proteins that are lethal 

and that actively contribute to the nematode-bacterium complex pathogenicity (Lu et al., 2017). 

Therefore, the bacteria that were tested for pathogenicity in the current study, by means of being 

injected into the haemocoel of slugs, need to be tested in combination with a slug-parasitic 

nematode species, as well. The procedures followed in the present study are similar to those 

used in work that was done by De Ley et al. (2017). The researchers collected 40 bacterial 

species associated with slugs, identifying them by means of using the 16S RNA gene. Currently, 

the bacterial species are systematically being screened in bioassays to determine their 

pathogenicity, along with the three species of Phasmarhabditis and the other available rabditid 

cultures found in North America (De Ley et al., 2017). 

Phasmarhabditis bohemica was established in in vitro liquid cultures with the bacterial 

species Pseudomonas sp. (1). The culture methods employed were then further refined by 

means of testing the effect of bacterial inoculum density and the number of IJs added to flasks 

on the total nematode yield, and the IJ yield and proportion. The results obtained showed that 

the flasks inoculated with 1% bacteria had significantly higher total nematode and IJ yields than 

did the flasks inoculated with 3% or 5% bacteria. The flasks inoculated with 1% and 5% 

bacteria had the same IJ proportions by day 14, which were higher than were obtained with 

those inoculated with 3% bacteria. The higher total nematode and IJ yields obtained with 1% 

bacteria inoculation confirm the recommendation by Ehlers (2001) that the inoculum density 

of the symbiotic bacteria be between 0.5 and 1% of the culture volume when mass-producing 

EPNs. 

The flasks inoculated with 3000 IJs/ml had the highest yield of nematodes and the highest 

yield of IJs when compared to the yield of flasks inoculated with 1000 IJs/ml or 2000 IJs/ml. 

The flasks inoculated with 2000 IJs/ml, however, had a significantly higher IJ proportion (90%) 

than did the flasks inoculated with 1000 or 3000 IJs/ml. The results differ from those of the 

EPN study in Dunn et al. (2019), who found that an inoculum concentration of 1000 IJs/ml 

gave a higher IJ yield in LCM flasks of S. jeffreyense than did a concentration of either 2000 or 

3000 IJs/ml. However, the effect of inoculum concentration seems to vary between nematode 

species, as Heterorhabditis bacteriophora tends to produce optimal yields with intermediate 

inoculum density, whereas Steinernema carpocapsae produces higher yields in higher 

inoculum concentrations, and Heterorhabditis indica is unaffected by inoculum concentration 

(Han, 1996; Ehlers et al., 2000; Shapiro-Ilan & Gaugler, 2002). 
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The small amount of media (30 ml) used in the current study is a possible reason for the high 

IJ yields obtained from all flasks by day 14. The finding is similar to the results that were 

obtained in the EPN study by Dunn et al. (2019), who found that 30 ml of liquid culture media 

produced higher yields of S. jeffreyense IJs than flasks with 50 ml of LCM. Dunn et al. (2019) 

postulate that the higher nematode yield in lower media volumes can be accredited to the greater 

surface-area-to-volume ratio in the flasks, which leads to the enhanced transfer, or distribution, 

of oxygen. A possible reason for the large proportion of the IJs in the cultures is the subsequent 

overcrowding in the media, which leads to the accumulation of waste products and ammonia 

(Shapiro-Ilan et al., 2000; San-Blas et al., 2008). High concentrations of ammonia are produced 

when nematode populations are overcrowded, which has been proven to induce the emergence 

of IJs in the EPN Steinernema feltiae (Filipjev) Wouts, Mráček, Gerdin & Bedding (Wright, 

2004; San-Blas et al., 2008). Ross (2010) also demonstrates that nematodes secrete a series of 

small-molecule pheromones when they encounter starvation or overcrowding, which facilitates 

the communication between the nematodes, and which causes the formation of IJs. 

The biocontrol potential of P. bohemica has not yet been researched. Although the focus of 

this chapter was to optimize the growth conditions and production of the nematodes, a 

pathogenicity test needs to be done on slugs to determine if P. bohemica and Pseudomonas sp. 

(1) are capable of causing slug mortality when grown in liquid culture media. In future research,

MPNs and bacterial candidates isolated in South Africa, as well as other African countries, 

should undergo similar testing if they are to be developed for commercial production. This is 

required to determine the ability of the bacteria to support the growth of the nematodes, and to 

cause mortality in various slug hosts known to be pestiferous. The best nematode-bacterium 

combination should, then be grown in in vitro liquid cultures, with the pathogenicity of the 

nematode-bacterium combination retested on slug hosts. If a nematode-bacterium combination 

is found that grows well and that causes significant mortality in slug hosts, its production should 

be optimized by testing the effect of different growth conditions on the IJ yield, as was done in 

the current study.  
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Chapter 7 

Efficacy of a novel environmentally friendly application method of 

metaldehyde pellets to control Cornu aspersum (Helicidae), the brown 

garden snail 

Summary 

The brown garden snail, Cornu aspersum (Helicidae), is an international pest that thrives in 

home gardens and in agricultural environments, such as apple orchards. It is also the only alien 

species that has been recorded from all the provinces of South Africa. Terrestrial mollusc pests 

are traditionally controlled through the use of chemical molluscicide pellets, with the active 

ingredient usually being metaldehyde, methiocarb or thiodicarb. However, when they are 

overused, the chemicals can be toxic to non-target organisms, or accumulate in the environment. 

Baitchain, a novel molluscicide formulation consisting of metaldehyde bait pellets arranged on 

a cord is a new product that is designed to be tied around the base of the plant or the tree’s stem 

or trunk for protection. In this study, Baitchain is tested in a shaded apple orchard, by means of 

tying the bait-assembly around the base of the trees’ trunks, and by means of comparing with 

the commercial product Sluggit, which is a metaldehyde bait pellet that is applied to the soil 

surface, to determine their impact on Cornu aspersum. Two different concentrations were used 

of each product; Baitchain 15 and Sluggit 15, at 15 g/kg metaldehyde and Baitchain 40 and 

Sluggit 40, at 40 g/kg metaldehyde, which were either applied on their own, or in combination. 

All treatments caused a significant decrease (64-86%) in snail numbers after 28 days. In 

addition, all treatments applied at 40g/kg metaldehyde caused significant snail mortality. 

Baitchain 15 applied on its own or in combination with Sluggit 15 also caused significant snail 

mortality. Sluggit 15 applied on its own to the soil surface showed decreased effectiveness, 

possibly due to the high rainfall levels experienced during the trial. The increased effectiveness 

achieved by using Baitchain, even at the lower 15/kg concentration, means that it could be 

applied alone, or in combination, as part of an integrated pest management strategy for snail 

control. 

Keywords - Cornu aspersum; molluscicides; Sluggit; Baitchain 
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Introduction 

In 2010, it was estimated that approximately 34 non-native terrestrial mollusc species were 

present in South Africa. Of the species, 28 are believed to have become established, with 13 

being regarded as invasive species (Herbert, 2010). Twenty-nine of the species originate from 

Europe, of which nine are from the Mediterranean. The above is mainly a result of the European 

colonial history of South Africa, but it is also because of the Mediterranean-like, temperate 

winter rainfall climate of the Cape area (Herbert, 2010). Although many introduced terrestrial 

gastropods in South Africa have become widely distributed, many have not successfully spread 

into the natural environments, being mostly restricted to transformed habitats and to 

monoculture crops (Herbert, 2010).  

The brown garden snail, Cornu aspersum (Müller, 1774) (Helicidae), is an international pest 

that thrives in areas of human settlement. It is also the only alien species that has been recorded 

from all nine provinces of South Africa (Herbert, 2010). During unfavourable seasonal 

conditions, the snail hibernates in the soil at depths of 10-20 mm, and, when conditions 

improve, it emerges from the soil for mating, thereafter laying eggs at a depth of 30-40 mm 

(Basinger, 1931). The snail then moves up into the trees, where it spends most of its time resting 

on the trunk, feeding mostly at night or during moist periods. The snail feeds on developing 

foliar buds and young leaves in spring, leading to stunted shoot growth and decreased yield of 

the crops. During the dry summer months, C. aspersum may aestivate, by sealing the shell 

opening with an epiphragm (Sakovich, 2002). In areas of extreme C. aspersum infestation, 

growers estimate that crop losses can reach up to 25% (Sanderson & Sirgel, 2001).  

Terrestrial mollusc pests are primarily controlled through the use of chemical molluscicide 

pellets, usually containing metaldehyde, methiocarb or thiodicarb (Bailey, 2002). The pellets 

consist mainly of wheat, bran or barley flour, which serves as an attractant, and which is 

combined with 2-8% of an active ingredient or toxicant (Bailey, 2002). The molluscs encounter 

the chemicals by feeding on the pellets, or by coming into dermal contact with them, which 

causes the chemicals to act as stomach or contact poisons (Henderson & Triebskorn, 2002). 

However, when overused, the chemicals can be toxic to non-target organisms, or they can 

accumulate in the environment (Fisher & Orth, 1975; Castle et al., 2017). In addition, increased 

pressure has been exerted from the regulatory sector, and from water suppliers in Europe, to 

limit the agricultural use of metaldehyde, due to concerns about its presence in drinking water 

(Castle et al., 2017) and in small mammals (Ross, 2019). Iron phosphate is another chemical 

that is effective at controlling slugs, with it being less harmful to non-target organisms (Roberts 
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et al., 1990; Clark, 1993; Koch et al., 2000). The use of iron phosphate is, however, more 

expensive than is the use of metaldehyde (Sepasi et al., 2019). 

The molluscicidal properties of metaldehyde were discovered in the 1930s in South Africa, at 

which time it was sold as fuel tablets (Gimingham, 1940). Within four years, it became the most 

popular bait poison recommended for use against terrestrial gastropod pests in the UK 

(Gimingham, 1940). In 1996, it was estimated that metaldehyde was used on 55% of the crop 

areas where chemicals were being used against terrestrial gastropods (Garthwaite & Thomas, 

1996). 

A recent study reported that the use of a physical barrier, in combination with mineral oil and 

a snail-repellent paint (Sabzarang) containing copper and iron salts, painted as a barrier around 

the tree trunk was more effective at reducing the numbers of the citrus white snail, Helicella 

candeharica Pfeiffer (Panpulmonata: Helicidae) in citrus trees than was the surface 

broadcasting of metaldehyde pellets, or iron phosphate pellets, applied to the soil (Sepasi et al., 

2019). 

The current study tested the efficacy of a novel formulated molluscicide pellet with the active 

ingredient, metaldehyde, on a cord forming a continuous chain of bait pellets, which is tied 

around the base of trees’ trunks in an apple orchard, and which differs from the conventional 

surface broadcast of molluscicide pellets. The efficacy of the method was investigated by 

testing whether C. aspersum was able to cross the baited cord barrier and move up into the 

trees. The innovative product was also compared with molluscicide pellets applied to the soil, 

to compare the difference in efficacy between the two application methods. The C. aspersum 

numbers in the treated areas were also noted before and after the experiment, so as to determine 

whether the treatments involved caused a decrease in the snail numbers concerned. 

Materials and Methods 

ORIGIN OF THE CHEMICALS 

The chemical products tested in the trial were obtained from the manufacturer, Orchard 

Agrikem, based in Worcester in the Western Cape province of South Africa. The efficacy of 

two different molluscicide products was tested, namely Baitchain, which is a metaldehyde bait 

pellet formulated on a cord, which is tied around the base of a tree’s trunk as a barrier (Fig. 

7.1), and Sluggit, a metaldehyde bait pellet, which is applied to the surface of the soil. The 

products both consist of a bait to attract molluscs, combined with two different concentrations 

of the active ingredient metaldehyde. 
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Figure 7.1. Baitchain applied to the trunk of an apple tree in the orchard, with a Cornu aspersum 

snail. 

TEST AREA 

The trial was conducted in August 2018, and repeated in August 2019, in an apple orchard 

(34°2'40.74''S, 19°19'0.51''E) covered with 30% shade cloth, outside Villiersdorp, in the 

Western Cape province of South Africa. Each of the 28 experimental plots measured 14 × 4 m 

in size. Each plot consisted of a row of six apple trees, planted 2 m apart, on a strip of bare soil, 

and flanked by a 1-m wide strip of grass on each side. The plots were separated by a barrier of 

2 m (Fig. 7.2). The experimental layout consisted of four randomised blocks, each of which 

was separated into seven different treatment plots. Before the application of treatments, the 

number of C. aspersum snails on the plots were counted. The snails found in the trees were 

counted and placed on the soil inside the plot, so as to determine whether they were able to 

survive moving up the base of the tree and crossing the barrier treatment concerned.  
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Figure 7.2. Layout of a single block in the orchard, showing seven plots, with one for each 

treatment. 

TREATMENTS 

Two different concentrations were used for each product: Baitchain 15 and Sluggit 15, at 15 

g/kg (1.5%) metaldehyde, and Baitchain 40 and Sluggit 40, at 40 g/kg (4.0%) metaldehyde. The 

treatments were: T1 = Baitchain 15; T2 = Sluggit 15; T3 = Baitchain 15 and Sluggit 15; T4 = 

Baitchain 40; T5 = Sluggit 40; T6 = Baitchain 40 and Sluggit 40; T7 = control. 

Sluggit pellets were applied at 8 kg/ha, and Baitchain 15 and Baitchain 40 were applied at 4.79 

kg/ha in plots, by tying the product around the base of the trees’ trunks, approximately 20 cm 

above the soil surface. The number of dead snails in the plots were counted and removed every 

7 days, for 28 days, after application of the treatments. On day 28, the number of live snails on 

the plots were also counted. 

STATISTICAL ANALYSIS 

Repeated-measure analysis of variance (ANOVA) was used to compare the number of live 

snails in each treatment both before and after the trial. Repeated-measure ANOVA was also 

used to compare the number of snails killed by each treatment each week during the 28-day 

trial.  

Results 

The results of the trial show that all the treatments, compared to the control, caused a significant 

decrease in the number of live snails after 28 days (F = 1.754; df = 6, 21; P < 0.001). Although 

the number of live snails per treatment varied before the start of the trial, with the T5 plots 

having significantly more live snails than the other treatments, by day 28 no significant 

difference was discernible (F = 1.754; df = 6, 21; P < 0.001) between the numbers of live snails 
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per treatment, with there being only an overall reduction in the snail numbers concerned (Fig. 

7.3).  
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Figure 7.3. The number of live snails counted before ( ) and after ( ) the field trial for 

each treatment, with six different concentrations and combinations of Baitchain 15 and Sluggit 

15 and Baitchain 40 and Sluggit 40, and an untreated control, after 28 days. The same letters 

indicate no significant difference (P > 0.05) between the different treatments and the number 

of live snails. 

The results of the trial also show that T1 and T2 did not have significantly more snail deaths 

than did the control, however, when used in combination in T3, significantly more snail deaths 

occurred than was found in the control on days 14 and 21 (F = 1.340; df = 18, 63; P < 0.001). 

All three treatments containing the higher dose (40 g/kg) of metaldehyde (T4, T5 and T6) 

caused significantly more snail deaths than were found to have occurred in the control on days 

7, 14, 21 and 28 (F = 1.340; df = 18, 63; P < 0.001). The combination treatment, T6, caused the 

highest snail mortality levels, which was found to be highest on day 14 (F = 1.340; df = 18, 63; 

P < 0.001). The above-mentioned number was significantly higher than was the number of dead 

snails caused by all the other treatments, except in the case of T5 on day 14 (F = 1.340; df = 18, 

63; P < 0.001; Fig. 7.4). 

T1 = Baitchain 15 

T2 = Sluggit 15 

T3 = Baitchain 15 & Sluggit 15 

T4 = Baitchain 40 

T5 = Sluggit 40 

T6 = Baitchain 40 & Sluggit 40 

T7 = control 
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Figure 7.4. The number of dead snails counted for each treatment every 7 days for 28 days, 

with six different concentrations and combinations of Baitchain 15 and Sluggit 15 and Baitchain 

40 and Sluggit 40, and an untreated control. The same letters indicate no significant difference 

(P > 0.05) between the different treatments and the number of dead snails found. 

In the case of the T1 treatment, the dead snail numbers were highest on day 14, followed by the 

numbers that were found dead on day 21, with days 7 and 28 having the lowest number of dead 

snails. Significantly more dead snails than in the control were found only on day 21 (F = 1.3399; 

df = 18, 63; P < 0.001; Fig. 7.4). For the T2 treatment, the number of dead snails was highest 

on day 14, with 168 dead snails being counted on the day, followed by the number that were 

counted on day 7 (107 snails), with days 21 (96 snails) and 28 (57 snails) having the lowest 

snail mortality. For the T3 treatment, the highest number of dead snails were recorded on day 

21, followed by on day 14, day 28 and day 7, providing 281, 264, 226 and 124 dead snails, 

respectively. The T4, T5 and combination treatment T6 all had the highest number of dead 

snails on day 14, with 520, 640 and 818 dead snails being present, respectively (Fig. 7.4). 

Discussion 

Metaldehyde is usually applied in a compressed pellet form, so as to slow down disintegration, 

but it has also been applied by means of incorporation into an edible matrix, which is then used 

to coat an inert granular core, and in emulsified form as a spray (Henderson & Triebskorn, 

2002). Another method that has been developed in South Africa is to apply a paste of bran and 

T1 = Baitchain 15 

T2 = Sluggit 15 

T3 = Baitchain 15 & Sluggit 15 

T4 = Baitchain 40 

T5 = Sluggit 40 

T6 = Baitchain 40 & Sluggit 40 

T7 = control 
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metaldehyde around the trunk of vines, so as to prevent the molluscs from moving into the vines 

(Schwartz & Siebert, 1987). The application method tested in the trial is considered novel as it 

does not apply the existing bait formulation to the surface of the soil. Instead, it combines the 

compressed pellet method, which slows down disintegration of the product, with the quick-and-

easy application of the bait to the tree’s trunk by hand, or with a mechanical applicator mounted 

to a farm vehicle. 

The results of the field trial show that all the treatments at a concentration of 15 g/kg 

metaldehyde caused a significant reduction in snail numbers. The same treatments, at a 

metaldehyde concentration of 40 g/kg, also caused a significant decrease in snail numbers. All 

the treatments using 40g/kg metaldehyde caused significant snail mortality during the trial. The 

40 g/kg treatments also caused significantly higher snail mortality than did the 15 g/kg 

treatments on most days. Baitchain applied at 15g/kg metaldehyde on its own and in 

combination with Sluggit at 15g/kg also caused significant snail mortality. Sluggit applied on 

its own at 15g/kg did not cause significant snail mortality but did kill 196 snails in the first 

season and 232 snails in the second season. A possible reason for the decreased effectiveness 

of the 15 g/kg pellets when applied to the soil in this study, was the high rainfall experienced 

in the area in the winter months, when the trial was conducted. A total of 72,6 mm rainfall was 

recorded during the first season and 20,4 mm in the second season. High rainfall periods might 

require the pellets to be reapplied more often than at other times of the year.  

The effectiveness of the string of pellets, when wrapped around the trunks of the trees, even at 

a relatively low concentration, means that the method can be used as part of a wider integrated 

pest management (IPM) strategy, and incorporated into the Ross (2019) mollusc IPM pyramid. 

The University of California’s Statewide IPM Program (UCSIPMP) has defined guidelines for 

the integrated control of C. aspersum in citrus. The guidelines involve the application of a 

molluscicide early in the season, before the snails move into the trees, in combination with 

skirt-pruning of the trees, the applying of copper barriers to the trunks, and the releasing of the 

snail Rumina decollata (Linnaeus, 1758), as a biological control measure (UCSIPMP, 1991). 

However, as R. decollata is not present in South Africa, it cannot be used as a biological control 

method under the terms of the Agricultural Pest Amendment Act, No. 18 of 1989 (South Africa, 

1989), which forbids the introduction of exotic species to the country (Ross et al., 2012).  

Another biological control strategy is the use of the mollusc-parasitic nematode 

Phasmarhabditis hermaphrodita (Schneider, 1859) Andrássy, 1983 (Rhabditida: Rhabditidae) 

to control C. aspersum. The nematode is currently being sold as a commercial biocontrol 
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product by BASF and Dudutech, under the tradenames Nemaslug® and Slugtech®, respectively 

(Rae et al., 2007; Ross, 2019). However, the species has not, as yet, been found in South Africa, 

which prohibits its sale within the country. The potential of locally isolated mollusc-parasitic 

nematodes to control invasive molluscs in South Africa is currently being researched (Pieterse, 

2016; Pieterse et al., 2017a, b; Ross et al., 2018), and, should a candidate be found capable of 

infecting C. aspersum, it could be used in combination with Baitchain products, as part of an 

IPM strategy. 
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Chapter 8 

Conclusion 

Terrestrial gastropod molluscs (slugs and snails) (Mollusca: Gastropoda) are primarily 

controlled through the use of chemicals in the form of molluscicide pellets. Due to growing 

concern about the environmental and health risks associated with the use of some of the 

chemicals, alternative control methods are being researched. One of the most successful 

biocontrol methods available is the use of the mollusc-parasitic nematode, Phasmarhabditis 

hermaphrodita (Schneider) Andrássy, a nematode that has been commercialised by BASF 

(formally Becker Underwood) and Dudutech, and sold under the trade names, Nemaslug® and 

SlugTech®, respectively. To date, P. hermaphrodita has not been isolated in South Africa, 

which means that it can neither be commercially used, nor sold, due to the laws that prohibit 

the introduction of exotic animals to South Africa (in accordance with the amendment of Act 

18 of 1989, under the Agricultural Pest Act 36 of 1947). Therefore, the methods of indigenous 

control require investigation through surveying and isolating local mollusc-parasitic 

nematodes, and through assessing their potential as biocontrol candidates.  

The first part of the current study was focused on surveying the nematodes associated with 

slugs collected from the KwaZulu-Natal province of South Africa. Previous surveys have 

focused on the Western Cape, thus the present study is the first to have investigated the mollusc-

parasitic nematode populations of KwaZulu-Natal. The majority of the slug species found in 

the study were invasive, although a number of endemic species were also isolated, being found 

to contain a high prevalence of Caenorhabditis elegans (Maupas). In contrast to the previous 

surveys, C. elegans was the only nematode isolated in KwaZulu-Natal, with 6.7% of the slugs 

surveyed being infected, thus its association with molluscs warrants further investigation. 

Caenorhabditis elegans commonly forms phoretic, or necromenic, relationships with its 

invertebrate hosts, with it having often been found in slug intestines. It is capable of entering 

the body of slugs, possibly as a means of escaping adverse environmental conditions, and of 

exiting it again through the faeces. The interesting association of slugs with C. elegans 

prompted the conducting of an experiment, in which the pathogenicity of the nematode was 

tested on the commonly found slug specie, Deroceras invadens Reise, Hutchinson, Schunack 

& Schlitt (Agriolimacidae), after being grown in in vitro liquid cultures in association with 

Kluyvera sp., a bacterium that is known to cause mortality in slugs. A pathogenicity test of 14 
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days, conducted on 120 D. invadens specimens, concluded that C. elegans was incapable of 

causing mortality in the slug species, even when it is associated with a pathogenic bacterium.  

One of the slug species collected during the survey was the endemic slug, Chlamydephorus 

gibbonsi Binney. Further research revealed that little information was available about the 

species, so that the third chapter of the current study was focused on describing the feeding 

behaviour and distribution of C. gibbonsi in the Western Cape. Research from previous 

mollusc-nematode surveys in South Africa revealed that, although C. gibbonsi is endemic to 

the eastern region of the country, its numbers have increased in the Western Cape, and it has 

become established in its new habitat. To understand the ecological effects that the above might 

have on its new habitat, its feeding behaviour was investigated. Observations were made in the 

laboratory, with scanning electron microscopy photos being taken of the radula and teeth of the 

snail. A detailed description of the feeding process, during which the slug encounters, attacks 

and feeds on an Amynthas sp. earthworm, was given. The results of the chapter indicate that the 

introduction of C. gibbonsi to the Western Cape might have an impact on earthworm 

abundance, and that future work should monitor its impact on the earthworm populations 

concerned.  

The fourth chapter describes a new Phasmarhabditis species isolated from Polytoxon 

robustum (Simroth, 1896), collected in Kenya. Phasmarhabditis sp. (KEN1) is characterised 

by the females having a conoid tail shape, with two phasmids on the tail, located at ca 40% of 

the tail length, by the presence of males with a bursa, bearing nine bilateral pairs of genital 

bursal papillae on rays, and one pair of papilliform phasmids flanking the tail, as well as by the 

infective juvenile (IJ) having the longest body length thus far found in the genus. Phylogenetic 

analyses placed Phasmarhabditis sp. (KEN1) in close proximity to undescribed 

phasmarhabditids from South Africa, suggesting an African grouping, while the D2-D3 large 

subunit (LSU) rRNA gene and the ITS (ITS1, 5.8S, ITS2) rRNA region analyses relate 

Phasmarhabditis sp. (KEN1) to the Vietnamese Phasmarhabditis meridionalis Ivanona & 

Spiridinov, but only under weak bootstrap support, and only in the absence of D2-D3 sequences 

for the aforementioned African phasmarhabditid group. The lack of such sequence data 

highlights the importance of encouraging any new species description to be supported by 

sequences for the small subunit (SSU) rRNA gene, the D2-D3 and the ITS region. The species 

description is only the third new such description of a Phasmarhabditis from the African 

continent, and the fourteenth specise in the genus to have been described, once accepted for 

publication. The biocontrol potential of the new nematode is, as yet, unknown. 
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The potential of a nematode for development into a biocontrol product depends on its 

pathogenicity, but also on the ease with which it can be mass-cultured. The mass culturing of a 

nematode requires a deep understanding of its population dynamics, and of the ability to 

manage its life cycle. In the fifth chapter, the life cycles of five nematodes associated with 

molluscs were studied and described. The species chosen were Phasmarhabditis papillosa 

(Schneider) Andrássy and C. elegans (due to its high prevalence in KwaZulu-Natal, as detailed 

in Chapter 2), isolated in South Africa, along with Phasmarhabditis sp. (KEN1) from Kenya 

(detailed in Chapter 4), and P. hermaphrodita and Phasmarhabditis bohemica Nermuť, Půža, 

Mekete & Mráček, with both European nematodes having been included in the current study as 

a reference source for comparing the African phasmarhabditids. The results obtained showed 

that C. elegans was the easiest to mass-culture, due to its hermaphroditic reproductive strategy, 

and its comparatively short life cycle. Phasmarhabditis bohemica had a shorter life cycle than 

did the other Phasmarhabditis species, developing from the IJ stage into adults with fertilised 

eggs in 8 days, as opposed to in 10 days, as was noted for the other phasmarhabditids in the 

study. However, P. hermaphrodita has an advantage over the other Phasmarhabditis species, 

in that it was the only phasmarhabditid in the study that required neither males nor females for 

reproduction. The above, therefore, means that, based on the ease of mass culturing, the tested 

species are ranked in the following order: C. elegans, P. hermaphrodita and P. bohemica, with 

P. papillosa and Phasmarhabditis sp. (KEN1) being equally difficult to mass-culture, due to 

their slow life cycle and reproduction strategy. It is recommended that any phasmarhabditid 

isolated in the future, and considered for its biocontrol potential, should be subjected to similar 

testing. 

The sixth chapter focused on the in vitro culturing of four of the nematodes detailed in 

Chapter 5: P. papillosa and C. elegans, isolated in South Africa, Phasmarhabditis sp. (KEN1) 

from Kenya, and P. bohemica from Europe, with the latter being included as a reference source 

for the African phasmarhabditids. The ability of 10 different bacterial isolates to support the 

growth of the nematodes was tested. They included five bacterial candidates isolated from 

slugs, namely Pseudomonas sp. (2), Pseudomonas sp. (3), Pseudomonas sp. (4), Aeromonas sp. 

and Buttiauxella sp., two previously isolated slug-associated bacteria (Pseudomonas sp. (1), 

Kluyvera sp.), and three bacterial species associated with entomopathogenic nematodes 

(Photorhabdus heterorhabditis, P. luminescens subsp. noenieputensis and Xenorhabdus 

khoisanae). The results obtained demonstrated that Pseudomonas sp. (4), a bacterium isolated 

from the slug D. invadens, was the most successful bacteria, and able to support growth in all 

species, except for in Phasmarhabditis sp. (KEN1). Almost all of the nematode species grew 
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well in association with at least one of the four Pseudomonas species, suggesting that the 

Pseudomonas genus is ideal for culturing mollusc-parasitic nematodes. Three bacterial isolates 

associated with entomopathogenic nematodes were also tested. Surprisingly, two of the isolates 

were able to support growth in the nematodes, with P. bohemica growing well on Photorhabdus 

luminescens and Xenorhabdus khoisanae, and C. elegans growing on P. luminescens. The 

above situation opens up the possibility that slug-parasitic nematodes could be maintained in 

laboratory conditions on bacterial isolates associated with EPNs.  

The next focus of the sixth chapter was to determine the pathogenicity of the bacterial 

isolates to the slug host D. invadens, through injection into the haemocoel. The most pathogenic 

(100% mortality) bacterial species were found to be Kluyvera sp., Pseudomonas sp. (3), and 

Aeromonas sp. In addition, P. heterorhabditis was also highly pathogenic, causing 80% slug 

mortality. However, Aeromonas sp. and P. heterorhabditis were unable to support successful 

growth in any of the nematode species, and can, thus, be disregarded. Therefore, Kluyvera sp. 

would be a suitable bacterial candidate for supporting the growth of C. elegans and 

Phasmarhabditis sp. (KEN1), while Pseudomonas spp. would make ideal bacterial candidates 

for P. bohemica. 

Noteworthily however, the previous studies concluded that the pathogenicity of bacterial 

isolates to slugs differs when they are injected into slugs, and when they are applied in 

association with a nematode specie. The pathogenicity of the bacterial isolates, therefore, 

requires testing after being grown in vitro in association with slug-parasitic nematodes. Future 

work should, therefore, include the in vitro culturing of the nematode/bacterial associations, 

followed by the conducting of pathogenicity tests on the pestiferous slug species.  

The final part of the sixth chapter was focused on growing the nematode P. bohemica in 

association with the bacterial isolate Pseudomonas sp. (1) in liquid media cultures, and on 

testing the effects of bacterial inoculum density and initial IJ inoculum density on the total 

nematode yield, the IJ yield, and the IJ proportion in the cultures. Results showed that 1% 

bacteria inoculum led to higher total nematode and IJ yields than 3% or 5%, and 1% and 5 % 

bacteria inoculum yielded the same IJ proportion, but higher than 3% bacteria inoculum. These 

results are similar to those found for the mass-culturing of EPNs. The results obtained from the 

initial IJ density experiment showed that a higher initial inoculum concentration of 3000 IJs/ml 

resulted in higher total nematode and IJ yields compared to an initial concentration of 1000 or 

2000 IJs/ml, but that an initial concentration of 2000 IJs/ml resulted in a higher IJ proportion. 

The effects of IJ inoculum density are, however, variable between species, with the results 

obtained possibly being applicable only to P. bohemica. It is, therefore, recommended that the 
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effect of IJ inoculum density be tested when optimising new candidates for in vitro liquid 

culturing in future. 

The seventh chapter of the thesis focused on testing a novel application method of 

metaldehyde in an apple orchard. The motivation for the work was the suggestion that the shell 

of snails has been co-opted to kill parasitic nematodes, thus making nematodes, potentially, an 

ineffective method for controlling snails. However, the potential harmful effects of 

metaldehyde, applied as pellets directly to the soil, are well-documented, due to their impact on 

water resources and non-target organisms, thus suggesting that an alternative, more 

environmentally aware, product is required. Baitchain is a novel molluscicide application of 

metaldehyde, with the bait pellets being strung out on a cord, designed to be wrapped around 

the base of a tree to protect it against mollusc damage, thus meaning that the system avoids 

applying metaldehyde to the orchard floor. The product was tested along with Sluggit, which is 

a metaldehyde bait pellet that is applied to the soil, to compare their effectiveness in protecting 

apple trees from the snail, Cornu aspersum (Müller). Both products were tested at two different 

metaldehyde concentrations, which were applied separately, or in combination. All the 

treatments used caused a significant reduction in snail numbers after 28 days, and all treatments, 

except Sluggit, applied at a concentration of 15 g/kg metaldehyde, caused significant mortality. 

The treatments with a higher concentration of metaldehyde (40 g/kg metaldehyde) were all 

successful and caused significantly higher levels of snail mortality than did the lower 

concentrations, as could have been expected. However, the fact that Baitchain, at a relatively 

low concentration, caused a significant reduction in snail numbers after 28 days, as well as 

causing significant snail mortality, was an important finding. The novel application method for 

metaldehyde would tend to have a decreased negative effect on the environment, as it does not 

come into contact with the soil, where it can affect groundwater, or the soil biota, while still 

remaining highly effective at limiting snail damage to the trees themselves. It could also be 

used as part of an integrated pest management system, in conjunction with other control 

methods.  

Future work should be focused on conducting continual surveys of the nematodes associated 

with molluscs, not only in other provinces of South Africa, but across the African continent. 

The nematodes should then be identified and described, based on the morphological, 

morphometrical, molecular (SSU, D2-D3 and ITS) and phylogenetic data concerned, with their 

life cycles being analysed to test with what degree of ease they can be mass-cultured. Different 

bacterial candidates should also be isolated and considered for their ability to support the growth 

of nematode isolates, and their pathogenicity against pestiferous molluscs. The 
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nematode/bacterial combination should then be grown in vitro, with the impact on in vitro 

culturing being noted in terms of the morphometrics of the nematode, with the pathogenicity of 

the combination then being tested. The optimisation of the nematode/bacterial combination 

should then be considered, including the inoculum density, the bacterial concentration, the 

media composition and the temperature. The next step would be upscaling from shaker flasks 

to desktop fermenters, which is bound to bring about a new set of challenges, before scaling up 

to commercial level occurs. In addition, the formulation of the nematode/bacterial combination 

should be considered, along with its shelf life, application method and registration for different 

crop types.  

The development of a nematode into a biocontrol agent for use against molluscs in South 

Africa can, however, only be successful with the management of an appropriately skilled 

research team, as well as with the granting of financial support to facilitate the testing and 

upscaling of the process. South Africa has a wealth of mollusc-parasitic nematodes that have 

yet to be isolated elsewhere in the world, thus demonstrating the country’s unique ecological 

importance. 
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