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Abstract

The design of control charts refers to the selection of the parameters implied, including the

sample size n, control limit width parameter k, and the sampling interval h. The design of the

X -control chart that is based on economic as well as statistical considerations is presently one of

the more popular subjects of research. Two assumptions are considered in the development and

use of the economic or economic statistical models. These assumptions are potentially critical. It

is assumed that the time between process shifts can be modelled by means of the exponential

distribution. It is further assumed that there is only one assignable cause. Based on these

assumptions, economic or economic statistical models are derived using a total cost function per

unit time as proposed by a unified approach of the Lorenzen and Vance model (1986). In this

approach the relationship between the three control chart parameters as well as the three types of

costs are expressed in the total cost function. The optimal parameters are usually obtained by the

minimization of the expected total cost per unit time. Nevertheless, few practitioners have tried

to optimize the design of their X -control charts. One reason for this is that the cost models and

their associated optimization techniques are often too complex and difficult for practitioners to

understand and apply. However, a user-friendly Excel program has been developed in this paper

and the numerical examples illustrated are executed on this program. The optimization procedure

is easy-to-use, easy-to-understand, and easy-to-access. Moreover, the proposed procedure also

obtains exact optimal design values in contrast to the approximate designs developed by Duncan

(1956) and other subsequent researchers.

Numerical examples are presented of both the economic and the economic statistical designs of

the X -control chart in order to illustrate the working of the proposed Excel optimal procedure.

Based on the Excel optimization procedure, the results of the economic statistical design are

compared to those of a pure economic model. It is shown that the economic statistical designs

lead to wider control limits and smaller sampling intervals than the economic designs.

Furthermore, even if they are more costly than the economic design they do guarantee output of

better quality, while keeping the number of false alarm searches at a minimum. It also leads to

low process variability. These properties are the direct result of the requirement that the

economic statistical design must assure a satisfactory statistical performance.

Additionally, extensive sensitivity studies are performed on the economic and economic

statistical designs to investigate the effect of the input parameters and the effects of varying the
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bounds on, a, 1- f3 , the average time-to-signal, ATS as well as the expected shift size t5 on

the minimum expected cost loss as well as the three control chart decision variables. The

analyses show that cost is relatively insensitive to improvement in the type I and type II error

rates, but highly sensitive to changes in smaller bounds on ATS as well as extremely sensitive

for smaller shift levels, t5 .

Note: expressions like economic design, economic statistical design, loss cost and assignable

cause may seen linguistically and syntactically strange, but are borrowed from and used

according the known literature on the subject.

111
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Opsomming

Die ontwerp van kontrolekaarte verwys na die seleksie van die parameters geïmpliseer,

insluitende die steekproefgrootte n , kontrole limiete interval parameter k , en die

steekproefmterval h. Die ontwerp van die X -kontrolekaart, gebaseer op ekonomiese sowel as

statistiese oorwegings, is tans een van die meer populêre onderwerpe van navorsing. Twee

aannames word in ag geneem in die ontwikkeling en gebruik van die ekonomiese en ekonomies

statistiese modelle. Hierdie aannames is potensieel krities. Dit word aanvaar dat die tyd tussen

prosesverskuiwings deur die eksponensiaalverdeling gemodelleer kan word. Daar word ook

verder aangeneem dat daar slegs een oorsaak kan wees vir 'n verskuiwing, of te wel 'n

aanwysbare oorsaak (assignable cause). Gebaseer op hierdie aannames word ekonomies en

ekonomies statistiese modelle afgelei deur gebruik te maak van 'n totale kostefunksie per

tydseenheid soos voorgestel deur deur 'n verenigende (unified) benadering van die Lorenzen en

Vance-model (1986). In hierdie benadering word die verband tussen die drie kontrole

parameters sowel as die drie tipes koste in die totale kostefunksie uiteengesit. Die optimale

parameters word gewoonlik gevind deur die minirnering van die verwagte totale koste per

tydseenheid. Desnieteenstaande het slegs 'n minderheid van praktisyns tot nou toe probeer om

die ontwerp van hulle X -kontrolekaarte te optimeer. Een rede hiervoor is dat die kosternodelle

en hulle geassosieerde optimeringstegnieke té kompleks en moeilik is vir die praktisyns om te

verstaan en toe te pas. 'n Gebruikersvriendelike Excelprogram is egter hier ontwikkel en die

numeriese voorbeelde wat vir illustrasie doeleindes getoon word, is op hierdie program

uitgevoer. Die optimeringsprosedure is maklik om te gebruik, maklik om te verstaan en die

sagteware is geredelik beskikbaar. Wat meer is, is dat die voorgestelde prosedure eksakte

optimale ontwerp waardes bereken in teenstelling tot die benaderde ontwerpe van Duncan (1956)

en navorsers na hom.

Numeriese voorbeelde word verskaf van beide die ekonomiese en ekonomies statistiese

ontwerpe vir die X -kontrolekaart om die werking van die voorgestelde Excel optimale

prosedure te illustreer. Die resultate van die ekonomies statistiese ontwerp word vergelyk met

dié van die suiwer ekomomiese model met behulp van die Excel optimerings-prosedure. Daar

word aangetoon dat die ekonomiese statistiese ontwerpe tot wyer kontrole limiete en kleiner

steekproefmtervalle lei as die ekonomiese ontwerpe. Al lei die ekonomies statistiese ontwerp tot

ietwat hoër koste as die ekonomiese ontwerpe se oplossings, waarborg dit beter kwaliteit terwyl

dit die aantal vals seine tot 'n minimum beperk. Hierbenewens lei dit ook tot kleiner

IV
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prosesvartasie. Hierdie eienskappe is die direkte resultaat van die vereiste dat die ekonomies

statistiese ontwerp aan sekere statistiese vereistes moet voldoen.

Verder is uitgebreide sensitiwiteitsondersoeke op die ekonomies en ekonomies statistiese

ontwerpe gedoen om die effek van die inset parameters sowel as van variërende grense op a,
1- f3 , die gemiddelde tyd-tot-sein, ATS sowel as die verskuiwingsgrootte 8 op die minimum

verwagte kosteverlies sowel as die drie kontrolekaart besluitnemingsveranderlikes te bepaal. Die

analises toon dat die totale koste relatief onsensitief is tot verbeterings in die tipe I en die tipe II

fout koerse, maar dat dit hoogs sensitief is vir wysigings in die onderste grens op ATS sowel as

besonder sensitief vir klein verskuiwingsvlakke, 8.

Let op: Die uitdrukkings ekonomiese ontwerp (economic design), ekonomies statistiese ontwerp

(economic statistical design), verlies kostefunksie (loss cost function) en aanwysbare oorsaak

(assignable cause) mag taalkundig en sintakties vreemd voordoen, maar is geleen uit, en word so

gebruik in die bekende literatuur oor hierdie onderwerp.
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Chapter One

Chapter One

Introduction

1.1. Background and problem statement

Statistical quality control is one of the more useful and economically important applications in

the field of industry. The purpose of statistical quality control is to ensure, in a cost efficient

manner, that the products shipped to customers meet their specifications. One of the important

tools in statistical quality control is the statistical control chart technique, which may be

considered as a graphical display of statistical hypothesis testing. It was developed in the 1920s

by Dr. Walter A. Shewhart as a statistical approach to the study of manufacturing process

variation for the purpose of improving the economic effectiveness of the process. The major

function of control charting is to detect the occurrence of assignable causes so that the necessary

corrective action may be taken before a large number of nonconforming products are

manufactured.

Saniga and Shirland (1977) indicated that the X -chart is used more often than any other control

chart technique when quality is measured on a continuous scale. The effective use of control

charts is largely dependent upon their design, that is, selection of the decision variables such as

sample size, n, sampling period or sampling interval, h , and control limit parameter, k, based

on some subjective and or objective criteria.

The problem of control chart design has received much attention because the design of the chart

has economic implications. It involves various expenses, such as the costs of sampling and

testing, costs associated with investigating out-of-control signals and possibly correcting

assignable causes and costs of allowing nonconforming units to reach the customer. Since all

these costs are affected by the choice of the three control chart parameters, it is reasonable to

consider the design of X -control charts from an economic viewpoint.

Consequently, several general methodologies have been developed in order to improve on the

design suggested by Shewhart. Economic design and economic statistical designs are the most

important designs that affect the cost and statistical considerations. The concept of an economic

design was first introduced by Girshick and Rubin (1952). Although the optimal control rules in

their model are too complex to have practical value, their work provided the basis for most cost-

based models in control chart designs. Duncan (1956) developed the first economic design
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Chapter One

model and applied it to an X -control chart. In the economic design, the objective is to determine

the control chart parameters, i.e. the sample size, n , sampling interval, h, and control limit

parameter, k that minimize the expected loss cost accrued by a production process. A

considerable amount of research has been done in the economic design of various control charts

after Duncan's paper. In 1986, Lorenzen and Vance provided a unified approach to the economic

design of process control charts. They considered various options regarding continuation of

production during search for or repair of the assignable cause. The economic statistical model

was first proposed by Saniga (1989). The objective is to minimize the expected total cost per unit

time, as in the economic design, subject to constraints on the average run lengths, ARL (or

equivalently type I and type II error probabilities or average time-to-signal, ATS).

With regard to the economic and economic statistical designs of the X -control chart, it can be

said that very few practitioners have adopted optimization procedures in designing their X-
control charts. The main reason is that the cost models and their associated optimization

techniques are often seen as too complex and difficult for practitioners to apply. Duncan (1956),

Gibra (1971), Chiu and Wetherill (1974) and Montgomery (1982) developed the optimization

procedures for determining optimal parameters for the X -control chart. The methodologies

described in these papers were difficult to use in practice. The optimization procedure presented

by Lorenzen and Vance (1986) employed Newton's method, the golden section search as well as

Fibonacci search methods. This could be the main reason that limits the application of their

method. However, in this paper, we propose an alternative optimization procedure, which is a

modification to the preceding optimization procedures. We develop a user-friendly Excel

program that can be used to calculate the optimal parameter values based on a unified approach

of the Lorenzen and Vance model for both economic and economic statistical designs of the X-
control chart. Hypothetical examples are used to show that the proposed optimization procedure

works well. Based on this optimization procedure, comprehensive comparisons of the economic

and economic statistical designs of the X -control chart are made. Extensive sensitivity analyses

are performed to investigate the effects of the key input parameter as well as the effect of varying

the bounds on the probability of the type I error, a, the power, 1- jJ , the average time-to-signal,

ATS, and the expected shift size, 8, on the minimum expected cost as well as the three control

chart decision variables n , h, and k .
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Chapter One

1.2. Objective of the study

The objective of the study is to investigate the relevance and applicability of the economic

aspects of statistical quality control and improvement in industry, by deriving a general

methodology for the minimization of the expected cost function. In this process the optimum

sample size, n, sampling period, h, and control limit parameter, k, for an X -control chart is

determined. A user-friendly, Excel program is developed to search for the optimal values of the

parameters by minimizing the total cost function in both economic and economic statistical

designs of the X -control chart. Hypothetical examples are used to show that the proposed

procedures do work, while also giving the optimal values for the parameters. Comprehensive

comparisons of the economic and economic statistical designs of the X -control chart are made

with cost as well as statistical performance as criteria. Effects of the bounds for statistical and

performance measures, such as type I error rate, a, the power, 1-p, the average time-to-signal,

ATS and shift sizes, 8 are extensively investigated. This study will focus on the expected cost

and the three decision variables with different bounds in a, 1-p, ATS and 8.

1.3. Scope of the study

The study aims to describe and understand several models that have been developed and applied

to most of the major types of control charts. To achieve this, an extensive investigation was

conducted into the economic aspect of statistical quality control and improvement literature,

including the practical implementation thereof. Whilst the emphasis of the study is on the

economic and economic statistical design of the X -control chart, comparisons and analyses of

major economic models have also been made in order to review the relevance in dealing with

statistical quality control and improvement.

1.4. Research methodology

The study was conducted by way of an extensive literature investigation of secondary sources of

information, including books, journal articles, academic and professional conference

proceedings, internet sources, and other reliable documents. The sources have been gathered by

accessing library and internet searches. These led to the delineation of a number of relevant

assumptions. Based on these assumptions, Duncan's (1956) single assignable cause model as

well as the unified approach of the Lorenzen and Vance (1986) model are considered. Hourly

cost functions are derived. An Excel program is developed to calculate the optimal values of
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Chapter One

sample size n, sampling interval h, and control limit width parameter k as well as the

corresponding value of the minimum expected cost. Hypothetical examples are used to show that

the proposed optimization procedures do work. Comprehensive comparisons as well as detailed

sensitivity analyses are performed on the economic and economic statistical designs of the X -
control charts.

1.5. Organization of the study

The study is organized and presented in six chapters. Chapter one provides an overview of the

study, objective ofthe study, scope of the study and research methodology.

Chapter two briefly discusses the economic design of the X -control chart. In an attempt to

understand and describe the assumptions, the notation of the X -control chart is explained. This

chapter looks in depth at the economic model, the total quality control cost, and the derivation of

the loss cost function.

Chapter three discusses numerical approximation techniques that can be used to minimize the

loss cost function. Duncan's approximation is derived and an iterative search technique is used to

obtain the minimum. Two examples of the X -control chart illustrate the solution procedure.

From these examples, we perform a brief sensitivity analysis to compare the cost parameters and

process parameters.

Chapter four discusses the economic and economic statistical designs of a unified approach as it

is applied on the X -control chart for controlling the process mean. In this section, further

assumptions and notations will be given. The expected cost functions of the economic and

economic statistical models are derived based on the assumptions stated and using the Lorenzen

and Vance unified approach methodology. An Excel program is developed to calculate the

optimal economic and economic statistical designs of the X -control chart. Finally, a brief

discussion of the optimization procedures is given.

Chapter five shows numerical examples of the economic and economic statistical designs. The

results of the economic statistical design are compared to those of the economic model. An

extensive sensitivity study of the economic and economic statistical designs is conducted on the

input variables and the statistical constraints such as the average run length (ARL) and the

4
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Chapter One

average time-to-signal (ATS) to determine which are crucial and a discussion of the results is

provided. Finally, the economic versus the economic statistical design of control charts is

studied.

In Chapter six, conclusions and remarks are presented.
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Chapter Two

Chapter Two

Economic design of the X -control chart

2.1. Introduction

In 1924 W.A. Shewhart introduced a new method for controlling the quality of a production

process, namely the control chart, more specifically, the X -control chart. The most general

control chart methodology consists of sampling from a process and evaluating the samples in

order to find a signal that the considered production process is out-of-control. Whenever such a

signal is observed the process of searching and removing the assignable causes takes place.

Implementation of control charts requires a number of technical and behavioural decisions. One

important technical decision comprises the design of the X -control chart. Designing a control

chart means making fundamental decisions about chart parameters such as the sample size, n,

sampling interval, h, and control limit width, k .

Traditionally, control charts are often designed with respect to statistical criteria only. This

usually involves selecting the sample size and control limits in such a way that the capability of

the control chart to detect a particular shift in the quality characteristic and the type I error

probability are equal to specified values. The frequency of sampling is rarely determined by

analytic methods. The practitioner is advised to consider such factors as the production rate, the

expected frequency of shifts to an out-of-control state, and the possible consequences of such

process shifts in selecting the sampling interval. The use of statistical criteria such as these along

with industrial experience has led to general guidelines and procedures for designing control

charts. These procedures usually consider cost factors only in an implicit manner. Recently,

however, interest has been aroused in examining control chart design from an economic point of

view, considering all the costs explicitly (Montgomery, 2001).

Economic design, that is a design that is based on an economic criterion is one of the popular

approaches in today's control chart design. The objective is to determine the control chart

parameters Le. the sample size, n, sampling interval, h, and control limit width, k that

minimize the expected loss cost accrued by a production process. Duncan (1956) developed the

firstmodel and applied it to an X -control chart. In this model Duncan assumed that one monitor

the process to detect the occurrence of a single assignable cause that causes a fixed shift in the

process, and then defines the relevant costs over a specified cycle.
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Chapter Two

This chapter is organized as follows. It begins by defining the results of previous research in

section 2.2. Assumptions and notations will be given in section 2.3. InSection 2.4, the economic

model of the control chart will be analysed. In section 2.5, the quality control cost will be

defined and the formulae will be derived for the expected loss function in section 2.6.

. 2.2. Previous work

After the introduction of control charts in 1924 by W.A. Shewhart it took more than 25 years

until the first approaches for determining the control chart parameters according to economic

criteria appeared in statistical literature. The first who proposed such a procedure were the

Americans, Aroian and Levene (1950). They noted that what matters is not the probability of a

false alarm per sample, but the frequency of false alarms, which also depends on the time

interval between samples. They assumed a process which operates in exactly two states, a

desirable state and an undesirable state. Their aim was to minimize the number of product units

produced in the undesirable state. In a first approximation this number can be regarded as a

measure of costs connected with the production of nonconforming units. The new element in

their approach was that instead of the false alarm probability, they chose the average time

between two false alarms as a side condition. Through this, it was possible to determine the

control limits as a function of the admissible frequency of false alarms and the time interval

between samples. The inspection costs, however were not considered in this approach.

Weirler (1952) proposed a model to minimizes the average amount of inspection until discovery

of a process shift of magnitude, 80' with the sample size as the only decision criterion and 0'

being the process standard deviation. For example, in case of determining the control limits by

using a = 0.01, he obtained an optimal sample size of n = 4.482
• His approach totally neglects

the fact that the time interval between samples and the probability of detecting a process shift

directly influence the average run length of the process in an undesired state, and thus also the

costs related to the production of nonconforming units.

The next progress was presented by Pfanzagl (1954). His model had - due to the ideas of Aroian

and Levene - a lower limit for the time until the occurrence of a false alarm, but also an upper

limit for the average run length in an undesirable state. What was still not considered were the

costs related to a false alarm as well as the costs related to the production of defective units,

which arise while the production process is in an undesirable state. He also ignored the effects of

the frequency of shifts between the two process states (Mittag and Rinne, 1993).

'7
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Chapter Two

Mittag and Rinne (1993) noted that a major breakthrough to a full consideration of all the

previously mentioned factors came through the work of Duncan (1956). Duncan investigated

models with only one undesirable state and searched for control strategies which aimed at

minimizing the average total cost per time unit of the respective production and control system.

Over this period many theoretical treatises on minimal cost process control, have been written.

An overview of work up to 1980 is given by Montgomery (1980), whereas Lorenzen and Vance

(1986) provide one unified approach to the economic design of process control charts. They

considered a general process model that applied to all control charts, regardless of the statistics

used. A by-product of their effort is a unification of the notation used. Their model included

twelve cost and operating parameters, two indicator variables, which determine whether the

manufacturing activities continue during the search or repair stage, and three control chart design

parameters (subgroup size, sampling interval, and width of the control limits), which need to be

optimized in order to minimize the hourly-based expected loss. Two assumptions were

discussed. One was the use of the memoryless exponential distribution for time in control. The

other was the assumption of a single assignable cause and a shift of a known amount. A

numerical technique was presented to minimize the cost function. An example was given and a

sensitivity analysis was conducted. Lorenzen and Vance (1986) found that the expected

minimum loss per hour is sensitive to the change in magnitude of the process mean shift, 8, but

that the sampling plan itself is not sensitive to the change, 8. Therefore, a crude approximation

of the process parameters can be made to design a good sampling plan.

Collani (1988) also proposed a unified approach to the optimal design of process control charts.

However, he adopted a different approach. The stated emphasis in the paper is on "simplicity"

and "generality". In his model, the process is assumed to operate under one of two states. State-I

represents "satisfactory", in which no corrective action is thought to be necessary. State-II

represents "unsatisfactory", in which a corrective action is thought to be necessary. Three

different policies (monitoring, inspection, and renewal/replacement) were defined and

incorporated into his model. The model can easily be generalized to explicitly include further

activities, for instance, repair actions. One example using the X -chart was given. The objective

was to find the optimal design parameters (the interval between sampling, the subgroup size, and

the control limit) in order to maximize the net profit per item produced. Another example

assumed that the state of the process was known at all times, making monitoring and inspection

unnecessary. Thus the focus was on the renewal interval. Collani's approach unifies different

o
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Chapter Two

theories, reduces the number of input variables, results in a simpler objective function and

permits an approximation algorithm to be used.

2.3. Assumptions and notation

2.3.1. Assumptions

According to Montgomery (2001) to formulate an economic model for the design of a control

chart, it is necessary to make certain assumptions about the behaviour of the process.

(AI) The distribution of the quality characteristics of the process output is normal.

Applying the central limit theorem, this result is still approximately true for the X -chart

even if the underlying distribution is not normal.

(A2) The process is started in the in-control state with mean Po and standard deviation

a .The occurrence of the assignable cause results in a shift in the process mean from Po

to Po ±Da, where D> o. When the X -control chart identifies the shift of the process

mean, it is restored to the 'in-control' state by repairing and eliminating the cause.

(A3) The process is assumed to be characterized by a single in-control state and each

out-of-control state is usually associated with a particular type of assignable cause.

(A4) It is a customary to assume that the assignable cause occurs during an interval of

time according to the Poisson process. This implies that the length of time the process

remains in the in-control state, given that it begins in the in-control state, is an

exponential random variable with mean .!_, i.e. A is the mean number of shifts from the
A

in-control to the out-of-control state per unit time. This implies a memoryless process.

(AS) The transition from the in-control state to the out-of-control state is irreversible.

That is, once a transition to an out-of-control state has occurred, the process can be

returned to the in-control condition only by management intervention.

(A6) The process is monitored by random samples of size n at time h, 2h, 3h, and so

forth. The control limits of the X -chart are set at Po + 'Fn, where k is a multiple of the

standard deviation of the sample mean. In contrast to k, 0, in assumption A2 ,is' a"
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multiple of the standard deviation of the process (Chiu and Huang, 1996).

2.3.2. Notation

In order to formulate the cost function, we should consider the following important notation.

The parameters can be classified into three categories.

1) Design parameters

n sample size

k control limit width parameter

h sampling interval

2) Process parameters

8 magnitude of the process mean shift expressed in process standard deviation

units

a type I error probability of the chart = P( exceeding control limits I process in-

control)

jJ type II error probability of the chart = P( not exceeding control limits I process
out-of-control)

1- jJ = p power of the chart

3) Cost and time parameters

a the fixed sampling cost

b the variable sampling cost per sample unit

a + nb the cost of taking and inspection of samples of size n, where a and b are the

fixed and variable sampling costs, respectively

a3 the cost of finding an assignable cause given a signal

a4 the hourly penalty cost of operating out-of-control

a5 the cost of investigating a false alarm

g the average sampling, inspection, evaluation and plotting time for each sample

unit

gn the time used to test and interpret the results for a point X that falls outside a

control limit

D the time needed to discover the assignable cause following an action signal

1f\
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E(I) the expected net income per cycle

A the expected net income per unit time

E(C) the expected total cost incurred during a cycle

E(T) the expected length of a cycle

E(L) the expected cost of quality per unit time

2.4. Economical model

The usual approach to the economic design of the control chart is to specify a normal

distribution for the manufacturing process, estimate the relevant process and cost parameters,

and then minimize the expected cost per time unit, E(L), which is derived from the process

model and parameters. An economic model is generally formulated using a total cost function,

which expresses the relationships between the control chart design parameters and the three

types of costs (Montgomery, 2001).

The production, monitoring, and process adjustment with the help of a cost minimization X -
chart with sampling interval h can be seen as a series of independent renewal cycles. Each new

cycle starts when the process switches back to production in the in-control state. The production

then goes on until the control charts indicate that the process has shifted to the out-of-control

state. This signal causes a process adjustment (readjustment to in-control state), that concludes

the present cycle.

The length of the i th renewal cycle is a random variable and so are the total costs related to the

ith cycle (i=1,2,3, ....). Usually in this model, the cycle lengths as well as the total costs per

cycle are defined to be independently, identically distributed and because of this, we can pick

an arbitrary cycle for further analysis.

Let the length of the cycle be denoted by T and the related cost by C. Then the ratio C can be
T

interpreted as the total costs per time unit. The goal of economic process control models usually

is to minimize the expectation, E(C) of this cost variable. In our model E(C) can be
T T

approximated by (Ross, 2000)

1 1
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E(L)= E(C).
E(T)

(2.1)

Monitoring is carried out by taking successive samples at fixed sampling intervals. Corrective

action is taken whenever a sample average falls outside the interval bounded by upper and

lower control limits. The process starts in a state of statistical control and is allowed to continue

in operation during the search for the assignable cause.

In order to formulate a realistic cost function we need to derive the following characteristics.

(1) The time from the start of the j th sample interval until the process goes out of control is

denoted by t: . Duncan (1971) showed that the probability distribution of t is

J, (t) = Aexp( -At) ,
r 1- exp( - Ah)

o s. s h. (2.2)

Assume a fixed interval length and let the assignable cause occur in the j th interval. Then the

average time of the occurrence of the assignable cause within the sample interval is

h
E(-r)= ftAexP(-At)dt

o 1-exp(-Ah)

1 h

= f texp(-At)dt
1-exp( -Ah) 0

If u = -At and du = -Mt then this becomes

A hf uexp(u)du
1-exp( -Ah) 0 ..1,2

1 h
= fuexp(u)du
A(l-exp(-Ah» 0

1- (1+ Ah) exp( - Ah)= ---'------'----=--...;..._--'-

..1,(1- exp( -Ah»
(2.3)

(2) Montgomery (2001) stated a as the probability of a point falling outside the control

limits when the process is in control. Then

a=2<l>(-k)

Z2

Ol) '2
= 2 f¢(z)dz where ¢(z) = er;:::-.

k v2~
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Similarly, when an assignable cause non-conforming event has occurred, the probability that it

will be detected on the subsequent sample is

(1- fJ) = <D(8..Jn - k) + <D( -8..Jn - k)
-k-6.rn co

= f ¢(z)dz + f¢(z)dz
-co k-6.rn

(2.4)

co

~ f¢(z)dz
k-6.rn

since the first integral is very close to zero where 1- fJ is the power of the test.

(3) After the occurrence of the assignable cause, the probability that it will be detected on

the jth-inspected sample is given by pj-I(1_p), (Gibra, 1971). Therefore, the expected

number of samples taken before the assignable cause is detected, is given by
co

~jpj-I(1- P)
j=1

1= I-p' (2.5)

which is the expected value of the geometric distribution.

(4) As stated by Montgomery (2001), the expected number of the false alarms that will

occur before a shift is a times the expected number of samples taken before the shift, i.e.
co (J+l)h

a~ fjk-JJdt.
j=O jh

(J+l)h

Let's first resolve the integral JM-JJ dt , i.e.
jh

U+l)h

fk-JJ dt
jh

= (e- jAll _ e-(J+I)All ),

therefore
co U+l)h

a~ fjk-JJdt
j=O jh

co

=a~j(e-jAll _e-U+1)All)

j=O

1 ..,
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=a{l-e-Ah )Ije-jAh
j=O

(
-Ah) GIf. -jAh=-a 1-e -- LJe .

GA h j=O

Furthermore

= 1+ e-Ah + e-2Ah + e-3Ah + .

1

from which follows that

G 1( 1 )
GA h 1-e-Ah

Thus, putting it all together the expected number of false alarms as described above is given by

(1 -Ah) GIf. -jAh-a -e -- LJe
GA h j=O

(2.6)

2.5. Quality control cost

Montgomery (2001) explored the control chart design from an economic point of view,

considering three categories of cost explicitly. These categories are the costs of sampling and

testing, the costs associated with investigating out-of-control signals including the repair or

correction action of any assignable causes found, and the costs associated with the production

of nonconforming items.

(1) The cost of sampling and testing includes the out of pocket expenses of inspectors and

technicians' salaries and wages. Montgomery (2001) indicated that the cost consists of both

fixed and variable components, say a and b, respectively, such that the total cost of sampling

and testing a +bn .

1 "
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(2) The cost of investigating and possibly correcting the process following an out-of-control

signal, has been modelled in several ways. Some authors have suggested that the cost of

investigating false alarms will differ from the cost of correcting assignable causes and,

consequently these two situations must be represented in the model by different cost

coefficients (Montgomery, 2001). Furthermore, the cost of repairing or correcting the process

could depend on the type of assignable cause present. Thus, in models having S out-of-control

states, S + 1 cost coefficients might be necessary to model the search and adjustment procedure

associated with out of control signals. Usually, these cost coefficients would be chosen so that

large process shifts incurred large costs of repair or adjustment. Other authors have argued that

this level of modelling detail is unnecessary because in many cases small shifts are difficult to

find but easy to correct, whereas large shifts are easy to find but difficult to correct. Thus, one

would lose little accuracy by a single cost of investigating and possibly correcting the process

following an action signal.

(3) The costs associated with the production of defective items consist of typical failure costs

i.e. the costs of rework or scrap for internal failures, or the out of pocket costs of replacement or

repair for units covered by warranties in the case of external failures (Montgomery, 2001). In the

case of external failures there may also be secondary effects from production of non-conforming

items if the customer's dissatisfaction with the product causes him to alter his pattern of

purchasing the product or other products manufactured by the company. Finally, there may be

losses resulting from product liability claims against the company. In most cases these costs are

presented by a single average cost coefficient, expressed on either per unit time or per item basis.

2.6. Formulation of the loss cost function

Duncan (1956) assumed that the process starts under an in-control condition and is subject to

random shifts in the process mean. Once a shift occurs, the process remains there until it is

corrected. The cycle length is defined as the total period from when the process starts in-control,

to when it shifts to an out-of-control condition, to when the out-of-control condition is detected,

which results in the assignable cause being identified. These four time intervals are,

respectively, the interval during which the process is in-control, the interval during which the

process is out-of-control before the final sample of the detecting subgroup is taken, the interval

used to sample, inspect, evaluate and plot the subgroup results, and the interval used to search

for the assignable cause. When the average cycle length is determined, the cost components can

be converted to a "per hour of operation" basis. Given associated cost and time parameters, the

optimal values of the three decision parameters for the model can then be determined by using

1 c:
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optimization techniques.

2.6.1. Duration of a production cycle

In the economic model of Montgomery (200 1) the expected production cycle length for the

model was derived from the following four time periods:

(1) Assuming that the process begins in the in-control state, the time interval during

which the process remains in control is an exponential random variable with mean ..!_,
A

which is the average process in-control time.

(2) When an assignable cause occurs, the probability that this out-of-control

condition will be detected on any subsequent sample is (1- fJ), which is the power of

the control chart. Thus, the expected number of subgroups taken before a shift in the

process mean is detected is _1_. The average time, E(r) of occurrence of a shift
1- fJ

within an interval between the j th and (j + 1) st subgroups, given an occurrence of a

shift in the interval between these subgroups, is given by

U+l)hfA(t - hj)e -.<I dt
jhE(r) = ---'---:(-:-j+.,.,-l)h.,------

fAe-Á.1dt
jh

1-(1+Ah)exp(-Ah)
=

..1,(1- exp( -Ah»

Therefore, the expected length of the out-of-control period is

h
--E(r).
1-f3

16
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Undetected

h time units

j+l
Subgro-ups

Figure 2.1 : Average time of occurrence of a shift in the interval

(3) The average sampling, inspecting, evaluating, and plotting time for each sample

is a constant g proportional to the sample size n, so that the delay in plotting a

subgroup point on the X -control chart is gn.

(4) The time needed to find the assignable cause following an action signal is a

constant D.

Therefore, the expected length of a cycle, denoted by E(T), is

1 h
E(T) = - +-- -E('r)+gn+D.

A 1- f3
(2.7)

2.6.2. The expected net income

The net income per hour of operation in the in control state is defined as Vo' and the net income

per hour of operation in the out-of-control state is V;. The cost of taking a sample of size n is

assumed to be of the form a+bn; i.e. a and b represent the fixed and variable components,

respectively of the sampling cost. The expected number of samples taken within a cycle is the

expected cycle length divided by the time interval between samples, E(T). Montgomery
h

(2001) denotes the cost of finding an assignable cause by a3, and the cost of investigating a

false alarm by as. The expected number of false alarms generated during the cycle is a times

the expected number of samples taken before the shift, or

1'7

Stellenbosch University http://scholar.sun.ac.za



Chapter Two

= aexp(-Ah) ,from (2.6).
1- exp( -Ah)

Therefore, the net income per cycle is

E(I) = Vo..!.+V;(..!.+_h_-E(T)+ gn+ DJ-a
3

_ aas exp(-A.h) -(a+bn) E(T) .
A. A 1- f3 1- exp( - Ah) h

(2.8)

The expected net income per cycle for the process model of the above expression (2.8) consists

of the net income when the process is in control and the net income when the process is out of

control. It also includes the cost of finding of an assignable cause when it exists, the expected

cost of examining false alarms per cycle, and the expected cost of taking n samples per cycle.

10
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Chapter Three

Minimization of the loss cost function

3.1. The expected loss cost function

The expected net income per cycle, divided by the expected cycle length, is denoted by A and

thus given by

A= E(I) .
E(T)

Applying the property of the renewal reward process (Ross, 2000), the expected net-income per

hour is given by

V; 1 v.( h E() DJ asaexp(-Ah) E(T) (a+bn)0-+ 1 -- - r + gn + - a3 - -
A = A 1- 13 1- exp( - Ah) h

1 h-+---E(r)+gn+D
A 1-13

V; 1 v. (h E() DJ asaexp(-Ah)0-+ 1 --- r + gn+ -a3 --=----=---.;_--'-
A 1- 13 I-exp(-Ah)=--__ ~~_~ ~ ~-'----

1 h-+---E(r)+gn+D
A 1-13

(3.1)

(a+bn)
h

Let a4 = Vo - V;, i.e., a4 represents the hourly penalty cost associated with production in the

out-of-control state, and then equation (3.1) can be rewritten as:

1 ( h J asaexp(-Ah)Vo -+(Vo -a4) ---E(r)+ gn+D -a3 ---=--"::""':"--'-

A 1- 13 1- exp( - Ah)
1 h-+---E(r)+gn+D
A 1-13

(a+bn)
h

Vo(! ..»:-E(r) + gn +DJ -a4
(-h- - E(r) + gn +DJ-a

3
__ a=--sa_e_x-=..p__;_(-_A_h_;_)

A 1- 13 1- 13 1- exp( - Ah)
1 h-+---E(r)+gn+D
A 1-13

a+bn
h

10

Stellenbosch University http://scholar.sun.ac.za



Chapter Three

(
h E() DJ asaexp(-Ah)-a4 --- r +gn+ -a3 ---=----=---..:.-~

1- fJ 1-exp( -Ah)
=Vo+ 1 h

-+---E(r)+gn+D
A 1-fJ

(a+bn)
h

Furthermore A = Vo - E(L) where

(hJ a aexp(-Ah)a
4

---E(r)+gn+D +a
3
+--=--s_-=---..:._~

E(L)= 1-fJ 1 h 1-exp(-Ah) + (a:bn),

-+---E(r)+gn+D
A 1-fJ

(3.2)

r.e, E(L) represents the expected loss per hour incurred by the process. E(L) is a function of

the control chart parameters n, h , and k. Clearly, maximizing the expected net income per

hour is equivalent to minimization of E(L). Montgomery (2001) noted that Vo is independent

of these variables.

3.2. Duncan's approximation

For mathematical simplicity and practical convemence Duncan (1956) introduced several

approximations to develop an optimization procedure in the actual structure of the model. It can

be shown that theorems 3.1 and 3.2 hold (see appendix (A.1), (A.2)) (Chung, 1995).

Theorem 3.1

1 1
0<-- Ah <1,

Ah e -1
for A > 0, and h > 0

Theorem 3.2

Theorem 3.1 tells us that the difference between _1_ and 1 is within the range between 0
Ah e'" -1

and 1 for any Ah. Duncan (1956) showed that the expected number of samples taken during an

in-control period is given by Ah
I. So, from the point of view of the expected number of

e -1

samples taken during the in-control period, the number, _1_ in general is a good approximation
Ah
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to ).JJ
1 , as the error is less than one sample.

e -1

Thus as

(
hJ a aexp(-Ah)a4 ---E(r')+gn+D +a3 +~s _..::......c... _ _;_

E(L)= 1-{31 h l-eXP(-Ah)+(a:bn).

-+---E(r)+gn+D
A 1-{3

h Ah2

Let p = 1- {3, and approximate E (r) by - - - (Duncan, 1956) as well as the expected
2 12

number of false alarms by

exp(-Ah)
l-exp(-Ah)

1
=----
exp(/th) -1

1
::::!-

Ah

Now it follows that E(L) can be expressed as

(
h h Ah

2 J aasa4 ---+-+gn+D +a3 +-
E(L) = P 2 12 Ah +~+bn

1 h h Ah2 h h-+---+-+gn+D
A p 2 12

(3.3)

1 1 Ah
where B =Ch+gn+D and C=---+-.

p 2 12

After further simplification E(L) becomes

(3.4)

3.3. Finding an approximation to the optimal design

A numerical study by Duncan (1956) of the function E(L) suggests that for realistic values of

the parameters 8, A, a, b, a3, a4, as. g and D, a local minimum does exist in the

neighbourhood of values of n, h, and k .

'"Il
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First, let us note what relationships must exist between the optimum values of n, h , and k

(Duncan, 1956). Setting equal to zero the partial derivatives of E(L) with respect to n, h , and

k (noting that p is a function of n and k , and a is a function of k and for the moment

treating nasifit were continuous), we get (see appendix (A3), (A4), and (A.5»

aE(L) =AhaB(a _ aas -Aa )+b(1+AB)2 =0
an an 4 h 3

(3.5)

with

_aE_(..;._L...;_)= Ah2 _aB(a
4

__ aa_s_ Aa
3
) -aas(l+ AB) -(a+bn)(l+ AB)2 = 0

ah ah h

aB = (_!__!+ Ah) and
ah P 2 6 '

(3.6)

with

aE(L) =A aB(a _ aas -Aa )+~aa (l+AB) =0
ak ak 4 h 3 h ak

(3.7)

hap
with aB =_ s

ak p

Thus, equations (3.5), (3.6), (3.7) do not give us simple expressions for evaluating the optimum

n, h, and k. We need to approximate the numerical values for the given parameters, e.g. for

small a, say 0.003, and with h equal to 1 or 2, and keeping in mind that A is small the terms

like aas and AB may be neglected. Duncan (1956) has approximated equations (3.5)-(3.7), by
h

assuming A small and neglecting all terms in an equation of a smaller order of magnitude than

the principal term. This gives us (see appendix A6, A7, and A.8)

(3.5')

2 (1 1)Ah a _-_ -aa -a-bn ~ 0
4 P 2 s (3.6')
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1h2 ap
/L a4 a
__ --'a=k=__+a ~::::::0 .

p2 5 ak (3.7')

Equation (3.6') immediately gives us (see appendix A.9)

aa5 +a+bn

Aa (_!_ - _!_) .
4 P 2

(3.8)

Using this approximate value of h in (3.5') we get after some rearrangement (see appendix

A.10),

p2(~ ~) aa5 +a
-n+ ap :::::: b .

an

(3.9)

When equation (3.7') is combined with equation (3.5'), and by substituting (see appendix A.12,

A.13, and A.14)

ap

[

-(k-O,/n)2] .s:
ap =_!_ e 2 and aa =_~

, an 2.rn.['2; ak.['2; .=Bk

Finally, it is found that (see appendix A.15)

aa 2b.rn
-=---
ak &5

or
_k2

e 2 bFn
.['2;= &5' (3.10)

E(L) is a function of the process parameters (8, A" a), the cost parameters (a, b, a3, a4,

a5, g, D), and the sampling and charting parameters (n, h , k). This function must be

minimized in order to pursue the economic goal, whereas the statistical objectives are reached

by minimizing a, and maximizing 1- jJ .
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The optimization procedure suggested is based on solving for a numerical approximation to the

system for the first partial derivatives of E(L) with respect to n , h, and k. An iterative

procedure is required to solve for the optimal n and k and a closed form solution for h is given

using the optimal value of n and k (Duncan, 1956).

Montgomery (2001) noted that various authors have reported optimization methods for

Duncan's model. Chiu and Wetherill (1974) have developed a simple, approximate procedure

for optimization of Duncan's model. They noted that by constraining the power of the chart

1- jJ to a specified value (say 0.90 or 0.95) the optimal value of n and k can be approximated

by the solution (see appendix (A.16) and (A. 17»

oJ;, -k =z (3.11 )

(3.12)

where z = 1.28264 if (1- P) = 0.90 and z = 1.6449 if (1- P) = 0.95 and ifJ(p) is the density

function of a standard normal random variable. The program uses z = 1.28264 to solve (3.11)

and (3.12). The resulting n , say n', from (3.11) is used to set lower and upper limits in the

search for the optimal sample size.

It was also noted that E(L) could be minimized by using an unconstrained optimization or

search technique. This is the approach to optimization most subsequent researchers have taken.

Pattern search and various modifications of the Fibonacci search approach have been used

effectively.

3.4. An example and its solution

In this section, a hypothetical example is presented to demonstrate the proposed approach. The

model parameters and the solution obtained are based on the assumption of normality.

Example: 3.1

To illustrate the solution procedure of the proposed model, the following industrial example

whose process and cost parameters borrow directly from Chou, Chen, & Liu, (2000) is

presented. A plant manufactures packed orange juice that has a "quantity of content"

specification of 250 cc with a tolerance of ±0.3 cc. From past data, the process standard
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deviation is estimated as 0.1 cc. Process shifts occur at random with a frequency of about one

every 20 hours of operation (A = 0.05). The manufacturer uses an X -chart to monitor the

process. Based on an analysis of quality-control technicians' salaries and the costs of test

equipment, it is estimated that the fixed cost of taking a sample is Rl (i.e., a = 1). The

estimated variable cost of sampling is about RO.10 per quantity of content (i.e., b = 0.10) and it

takes approximately 1 min (i.e., g = 0.0167) to measure and record the quantity of content of a

bottle of orange juice. On average, when the process goes out of control, the magnitude of the

shift is approximately two standard deviations (8 = 2.0). The average time required to

investigate an out-of-control signal is one hour (i.e., D = 1). The cost of investigating an action

signal that results in the elimination of an assignable cause is R25 while the cost of

investigating a false alarm is R50 (i.e., a3 = 25 and as = 50). The manufacturer estimates that

the penalty cost of operating in the out-of-control state for 1 hour is RIOD (i.e. a4 = 100).

Table 3.1: Output solutions for example 3.1

n k h a p 1-P E(L},RIhr
1 2.5 0.4 0.012419 0.691459 0.308541 14.84325
2 2.5 0.6 0.012419 0.371294 0.628706 11.89537
3 2.7 0.7 0.006934 0.222403 0.777597 10.89046
4 2.8 0.8 0.005110 0.115070 0.884930 10.49857
5 3.0 0.8 0.002700 0.070492 0.929508 10.37085
6 3.1 0.9 0.001935 0.036011 0.963989 10.38797
7 3.1 0.9 0.001935 0.014208 0.985792 10.48236
8 3.1 0.9 0.001935 0.005281 0.994719 10.62949
9 3.1 1.0 0.001935 0.001866 0.998134 10.79204
10 3.1 1.0 0.001935 0.000631 0.999369 10.95704
11 3.1 1.0 0.001935 0.000205 0.999795 11.12535
12 3.1 1.0 0.001935 0.000065 0.999935 11.29476
13 3.1 1.1 0.001935 0.000020 0.999980 11.45956
14 3.1 1.1 0.001935 0.000006 0.999994 11.61987
15 3.1 1.1 0.001935 0.000002 0.999998 11.78011

The goal of the economic design of the control chart is to find n , h, and k that minimize

E(L). Using a hand calculator this is an extremely difficult if not impossible task. The

appropriate level of computation is the personal computer. Therefore, using the spreadsheet for

a certain combination of n, h, and k, the program calculates the corresponding a risk and

power. The output from this program, using the values of the model parameters given in the

example, is shown in Table 3.1. The program calculates the optimal control limit width k and

sampling frequency h for various values of n, and the resulting value of the cost function in
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Equation (3.2). The optimal control chart design can be found by inspecting the values of the

cost function so as to find the minimum. From Table 3.1, we also note that the minimum cost is

RlO.37085 per hour, that the optimal X -chart uses samples of size n = 5 , that the control limits

are located at X ± kCY ,with k = 3.00, and that the samples are taken at intervals of h = 0.80

hour (approximately once every 48 minutes). The type I error probability of this design is

a = 0.0027 , and the power of the chart is p = (1- {3) = 0.9295 .

Example: 3.2

This example is borrowed from Montgomery (2001) exercise 9.30. An X -chart is used to

maintain current control of a process. A single assignable cause of magnitude 2CY (8 = 2 )

occurs, and the time that the process remains in control is an exponential random variable with

mean 100 hours (..1.=0.01). Suppose that sampling costs are RO.50 per sample (a=0.5) and

RO.lO per unit (b = 0.10). It costs R5 to investigate a false alarm (as = 5), R2.50 to find the

assignable cause (a3 = 2.50), and RIOO is the penalty cost per hour (a4 = 100) to operate in the

out-of-control state. The time required to collect and evaluate a sample is 0.05 hours (g = 0.05 ),

and it takes two hours to locate the assignable cause (D = 2). Assume operation carries on

during searches for the assignable causes.

Table 3.2: Output solutions for example 3.2

n k h a P I-P E(L),Rlhr
1 2.1 0.7 0.035729 0.539807 0.460193 4.249571
2 2.1 1.1 0.035729 0.233176 0.766824 3.717282
3 2.2 1.3 0.027807 0.103097 0.896903 3.609813
4 2.4 l.4 0.016395 0.054799 0.945201 3.620397
5 2.5 1.5 0.012419 0.024297 0.975703 3.680690
6 2.7 1.5 0.006934 0.013940 0.986060 3.761470
7 2.9 1.6 0.003732 0.008390 0.991610 3.854068
8 2.5 1.7 0.012419 0.000797 0.999203 3.975526
9 3.1 1.7 0.001935 0.001866 0.998134 4.053053
10 3.1 1.8 0.001935 0.000631 0.999369 4.154499
11 3.1 1.9 0.001935 0.000205 0.999795 4.255995
12 3.1 1.9 0.001935 0.000065 0.999935 4.355013
13 3.1 2.0 0.001935 0.000020 0.999980 4.453392
14 3.1 2.0 0.001935 0.000006 0.999994 4.549868
15 3.1 2.1 0.001935 0.000002 0.999998 4.645204

Using Excel, the program calculates the optimal control limit width k and sampling frequency

h for several sample sizes and displays the corresponding value of the cost function according to
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equation (3.2). The a risk (false alarm probability) and power, 1- f3 for each combination n,

h, and k are also provided. The optimal control chart design (n, h, k) is found by inspecting

the output values of the function to find the minimum.

The output is shown in table 3.2. Note that the optimal design has n = 3, k = 2.2 and h = 1.3

hours, with minimum cost R3.609813 per hour. The a risk for this control chart design is

0.027807 and the power of the chart is 1- f3 = 0.896903. Notice that there are several other

designs that employ a sample size slightly different from the optimal value of n = 3 that are

close to the optimal in terms of minimum cost.

3.5. Sensitivity analysis

A study of the sensitivity to the magnitude and frequency of process shifts in order to determine

the appropriate adjustment of control chart parameters for the eventual of improvement in the

expected cost was made. Table 3.3 shows the effects of model parameters on the economic

design of the X -control chart. Some important conclusions can be drawn about the optimal

economic design of the X -control charts. Some of these conclusions are illustrated below.

(1) Increasing the fixed cost of sampling, a and variable cost of sampling, b

r: increases the sampling interval, h. However, the control limits decrease slightly.

(2) Changes in the mean number of occurrences of the assignable cause per hour,

mainly affect the interval between samples. Table 3.3 shows that with A. = 0.01, the

optimum sampling interval increases considerably to 4.8 hours. The optimum sample size

increases slightly and the control limits also decrease slightly.

(3) The magnitude of the process mean shift, 8, has a significant effect on the

design. A larger value of 8 leads to a smaller sample size and a short sampling interval.

Table 3.3 illustrates the solution with 8= 10. The optimal sample size decreases

considerably to n = 1. The optimal control limit multiple increases to k = 3.1 and the

optimal sampling interval slightly decreases to h = 0.7 .

(4) The cost of investigating an action signal, a3, that results in the elimination of an

assignable cause and the cost of investigating a false alarm, as' mainly affect the value

of the control limit multiple, k. They also have a slight effect on the sample size.
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(5) The penalty cost of operating in the out-of-control state, a4, mainly affects the

interval between samples, h. A large value of a4 implies smaller values of h, (more

frequent sampling), while a smaller value of a4 implies large values of h (less frequent

sampling). Table 3.3 shows that increasing penalty cost to a4 = 150, the optimum

sampling frequency decreases to h = 0.7.

Table 3.3: Effects of model parameters on the optimal design of the j{ -chart

parameters n k h a p I-p E(L),Rlhr
a =0.1 5 3.1 0.5 0.001935 0.08501 0.914989 9.0092851
a =1 5 3.0 0.8 0.002700 0.07049 0.929508 10.3708471
a =10 7 2.9 2.3 0.003732 0.00839 0.991610 16.1932360

b=O.OI 6 3.1 0.7 0.001935 0.03601 0.963989 9.6901249
b=O.1 5 3.0 0.8 0.002700 0.07049 0.929508 10.3708471
b=10 3 2.5 3.5 0.012419 0.16750 0.832503 25.1626522

a]=25 5 3.0 0.8 0.002700 0.07049 0.929508 10.3708471
a]=50 5 3.0 0.8 0.002700 0.07049 0.929508 11.5311102
a]=100 5 3.0 0.8 0.002700 0.07049 0.929508 13.8516364

a,l'=25 5 2.8 0.8 0.005110 0.04725 0.952751 10.2731858
a5=50 5 3.0 0.8 0.002700 0.07049 0.929508 10.3708471
a5=100 6 3.1 0.9 0.001935 0.03601 0.963989 10.4875851

Á=O.OI 7 2.9 4.8 0.003732 0.00839 0.991610 5.9612644
Á=0.05 5 3.0 0.8 0.002700 0.07049 0.929508 10.3708471
Á=0.5 5 2.9 0.4 0.003732 0.05796 0.942040 51.2375484

15=0.7 15 2.5 0.8 0.012419 0.41641 0.583591 14.9556028
15=2 5 3.0 0.8 0.002700 0.07049 0.929508 10.3708471
15=10 1 3.1 0.7 0.001935 0.00000 1.000000 9.2760910

g=O.OOI 6 3.1 0.9 0.001935 0.03601 0.963989 9.9874260
g=0.0167 5 3.0 0.8 0.002700 0.07049 0.929508 10.3708471
g=O.1 4 2.8 0.8 0.005110 0.11507 0.884930 11.8865026

D=O.1 5 3.0 0.8 0.002700 0.07049 0.929508 6.3821617
D=1 5 3.0 0.8 0.002700 0.07049 0.929508 10.3708471
D=10 5 2.9 1.2 0.003732 0.05796 0.942040 37.1512772

a4=50 6 3.1 1.2 0.001935 0.0360109 0.963989 6.5820120
a4=100 5 3.0 0.8 0.002700 0.0704921 0.929508 10.3708471
a4=150 5 3.0 0.7 0.002700 0.0704921 0.929508 13.8770310

(6) The average sampling, inspection, evaluation and plotting time for each sample,

g has an effect on the sample size and the control limit width.
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(7) The time required to find the assignable cause, D affects the sampling interval,

h . Large values of D correspond to infrequent sampling.

(8) Montgomery (1980) stated that the economic design is insensitive to changes in

all parameters except the magnitude of the shift, 8, the in-control state, ).Lo and the

standard deviation, a.
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Chapter Four

Economic and economic statistical design of the X -control chart-a

unified approach

4.1. Introduction

Statistical process control (SPC) concepts and methods have been successfully implemented in

manufacturing industries for decades. As one of the primary SPC tools, control charts playa very

important role in attaining process stability. The major function of control charting is to detect

the occurrence of assignable causes so that the necessary corrective action may be taken before a

large number of nonconforming products are manufactured. The control chart design has

received much attention since the design has behavioural, economic, as well as quality

implications (Saniga, 1992). As a result of that, several general methodologies have been

developed to improve on the design suggested by Shewhart.

There are two general methods of designing control charts in use today, the statistical design and

the economic design. With the statistical design, one considers statistical properties such as the

type I and type II error and the average run length when selecting the parameters for the control

chart (Saniga, 1991). In statistical design the objective is to have control charts signal shifts in

the process quickly and accurately and to keep false signals to a minimum. Woodall (1985)

addressed the issue of statistical design. As we have seen in the previous chapter, in the

economic design, the objective is to determine the control chart parameters that minimize the

expected loss cost occurring in a production process.

An alternative to statistical and economic designs has been proposed by Saniga (1989) and is

known as the economic statistical design. The economic statistical design is a method in which

statistical constraints are placed on economic models to yield a design that meets statistical

requirements at minimum cost. This approach maintains the effectiveness of economic designs

and simultaneously maintains the required statistical performance of the control chart

(Montgomery et. al., 1995).

In this chapter, we present two widely used designs of control charts. The first of these relates to

the selection of decision variables n, h, and k such that the expected cost per unit time is

minimized. This approach is the economic design. The second type is the method in which

statistical constraints are placed on the economic model. This approach is called the economic

Stellenbosch University http://scholar.sun.ac.za



Chapter Four

statistical design. Finally, we present the derivation, and optimization, of the economic and

economic statistical designs based on the unified Lorenzen and Vance (1986) single assignable

cause X -control chart model.

4.2. Design methods

A large number of design methods have been proposed in the literature. Although various design

approaches exist for different types of control charts, they can be classified into four general

categories: heuristic, statistical, economical and economic statistical (Saniga, 1989). Without

doubt the most popular is Shewhart's heuristic approach, which is to take a sample of size four

or five (for X and R charts), set three sigma control limits and sample perhaps once an hour.

Although the costs associated with the Shewhart charts are implicitly considered by setting the

sample size and sampling frequency, the resulting charts are not guaranteed always to be

economically optimal. In addition, statistical properties are not always in line with

management's desire to find process shifts promptly and correctly.

The lack of formal systematic criteria in the heuristic design of control charts led many

researchers and practitioners to search for more structured methods. Statistically designed

control charts (Woodall, 1985) form one such method. Saniga's (1991) statistical design of

control charts refers to the selection of the control limit parameter as well as the sample size in

such a way that certain statistical objectives can be achieved. In statistical designs, the type I

error probability and power are usually pre-specified at desired levels. Thus, the sample size and

control limits can be determined. The average run length (ARL) or average time to signal

(ATS) can be used to find the sampling frequency. Saniga (1989) applied his method to a joint

design of X and R charts.

The third method of designing control charts is based on economic criteria. The concept of an

economic design was first introduced by Gershick and Rubin (1952). Although the optimal

control rules in their model are too complex to have practical value, their work provided the

basis for most cost based models in control chart designs. Duncan (1956) developed a complete

economic design model of the X -control chart. The decision variables, n, h , and k are

selected in such a way that the expected net income per unit time is maximized or the expected

cost per unit time is minimized. Following Duncan's paper, a considerable amount of research

has been done in the economic design of various control charts. Lorenzen and Vance (1986)

'21
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proposed a unified approach to the economic control chart design that had major influences on

subsequent research.

The advantage of economic designs is that all of the factors and costs that are measurable are

considered in achieving a design. Thus the design is optimal in at least an economic sense

(Saniga, 1989). There are certain weaknesses related to both statistical designs and economic

designs. Statistical designs do not explicitly consider the economic point of view, and the choice

of control chart parameters does not take into account the costs associated with the operation of

the control chart. Some problems with economic designs have been noted by Woodall (1986)

and include the possibility of higher type I error probability, which implies a large number of

false searches, something that the production manager will not tolerate. Woodall (1986) also

indicated that the economic design can allow poor quality products even if the policy is

economically optimal. In the context of total quality management this is possibly unacceptable.

As far as the communication with (potential) clients is concerned, it is important to quantify

consumer's risk by means of the average time to signal for a process, which is out-of-control. A

client is interested in the statistical properties of detecting an assignable cause rather than the fact

that the producer has minimized his total cost in monitoring the production process. From the

viewpoint of clients the quality products are more essential than the fact that the producer has

minimized his total cost.

An alternative to the preceding design methods is known as the economic statistical design. The

economic statistical design was first proposed by Saniga (1989) in order to combine the benefits

of both pure statistical and economic designs while minimizing their weaknesses. The economic

statistical design is defined as a design in which the economic loss cost function is minimized

subject to constraints in terms of the minimum value of power and the maximum value of the

type I error probability, as well as on the average time-to-signal (ATS) of an expected shift in

process parameters.

4.3. The method of economic statistical design

The economic statistical design is a method in which statistical constraints such as a minimum

value (lower bound) on the in-control ARL (ARLL) and maximum value (upper bound) on the

out-of-control ARL (ARLu) are placed in the pure economic model so as to yield a design that

meets statistical requirements at which the loss cost function is minimized (Montgomery et. al.,

1995). The economical statistical design was proposed by Saniga (1989) in order to improve
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both the statistical properties and the economical properties of the resulting control charts

(McWilliams, 1994).

Alternatively, the ATS, which expresses the average run length in units oftime, can be used to

replace ARL in the formulation of the design model (Montgomery et. al., 1995). Linderman and

Love (2000a) showed that on the basis of the selected statistical constraints, control charts are

then designed to have long ARLo or ATSo values when the process is in control and small A~

or ATS1 values when the process is out of control.

In the following, optimal economic statistical design control charts are derived using ARL and

ATS constraints. Let F be the loss cost function for an economic model. The model for an

economic statistical design can be formulated as:

Minimize F(n,h,k)

Subject to

where ARLL and ARLu are the desired bounds at the expected shift level. The solution to this

model is an improvement on the pure statistical design because it has the required statistical

properties and still minimizes the lost cost function. A solution without the constraints will give

the optimal economic design. Montgomery et. al. (1995) showed that additional constraints

could be added to the design model if sensitivity to shifts that are different from the expected

shifts, is required.

Economic statistical designs are determined via non-linear constrained optimization techniques.

The objective is to minimize the expected total cost per unit time, as in the economic design,

subject to constraints on the type I error rate, power, and ATS (Montgomery et. al. 1995).

Alternative and additional constraints can be specified depending on the designer's needs.

Economic statistical designs are the constrained version of economic designs. If the constraints

alone are used in determining design parameters, without considering the cost objectives, they

become statistical designs. Zhang and Berardi (1997) showed that economic statistical designs

are generally more costly than economic designs due to the added constraints. However, the tight

limits on the statistical properties of the control charts can lead to low process variability that

enhances output quality which leads to reduction in cost of comebacks and rewards.
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4.4. Assumptions and notations of the unified approach

We make the following assumptions for the economic and economic statistical design of control

charts:

(1) The process is subject to a single assignable cause.

(2) The process starts in a state of statistical control with mean /-lo and standard

deviation 0' .

(3) The occurrence of the assignable cause results in a shift in the process mean from

/-lo to /-lo + 80' , where the shift size 8 is known.

(4) The distribution of the time between occurrences of the assignable cause is

exponential with a mean of () occurrences per hour (thus _!_ hours is the mean time in the
()

in-control state).

(5) If a single sample point falls outside the control limits, the process is assumed to

be out-of-control and the search for the assignable cause is initiated.

(6) Once the process is out-of-control and a signal is triggered, human intervention is

required.

(7) The economic and economic statistical designs of control charts assume a renewal

reward process. In essence, the corrective actions are assumed to return the process to the

initial state of statistical control.

Lorenzen and Vance (1986) provided a unified approach to the economic and economic

statistical design of the X -control chart and a unification of notation. The following notation

will be used in the formulation of the cost function. The parameters can be classified into four

categories. The definitions of these parameters are given below.

(1) Cost and operating parameters

E(r) = The expected time of occurrence of the assignable cause between two

samples while in-control

s = Expected number of samples taken while in-control
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a = Fixed cost per sample

b = Cost per unit sampled

Y = Cost per false alarm

W = Cost to locate and repair the assignable cause

Co = Quality cost /hour while producing in control

Cl = Quality cost /hour while producing out of control

g = Time to sample and chart one item

To = The expected search time when the signal is a false alarm

~ = The expected time to discover the assignable cause

T2 = The expected time to repair the process

C = Total cost per cycle

L = Total cost per time unit (hour)

ARLo = Average run length while in control

AR~ = Average run length while out of control

ARLL = Lower bound of the Average run length while in control

ARLu = Upper bound of the Average run length while out of control

ATS = Average time-to-signal

ATSu = Upper bound of the average time-to-signal

(2) Indicator variable

Yl = 1, if production continues during search

Yl = 0 , if production ceases during search

Y2 = 1, if production continues during repair

Y 2 = 0, if production ceases during repair

(3) Three control chart design parameters

n = Sample size

h = Sampling interval

k = Width of the control limit

(4) Assignable cause == assignable cause event
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4.5. Derivation of the economic and economic statistical models

The Lorenzen and Vance model provides practitioners with the most flexible of any of the

widely known single assignable cause models available by using average run lengths instead of

type I and type II errors in order to define an economic model (McWilliams, 1989). The authors

also include indicator variables in the model to identify whether production ceases or continues

during search and/or repair, so that any possible operation scenario can be appropriately

modelled (Simpson and Keats, 1995). It is in this regard that Lorenzen and Vance's model is

superior to that of Duncan. In the derivation of the economic or economic statistical model, there

are two major elements in the loss function: (1) the estimated expected length of the production

cycle and (2) the expected costs generated in a production cycle. After these elements have been

determined, the hourly costs and resulting operating loss cost function can be determined. Based

on the assumptions stated above, Lorenzen and Vance (1986) provided a unified approach to the

economic or economic statistical models of the control chart. They considered a general process

model that applies to all control charts (McWilliams, 1994).

4.5.1. The expected cycle of production time

The production cycle here is defined as the time length from the point in time when the process

is started in the in-control state to when it shifts to the out-of-control state, and onwards to where

in time the detection and elimination of the assignable cause takes place. The cycle time consists

of the following five parts:

Cycle Last sample Assignable Yu-st sample Lack aC Assipable Assignable
starts beCore cause after control canse cause

assienable occurs assien;ible Detected Detected Removed
cause canse Cycle ends

~ • .~ ~ ~, • .",

False sill:llal

In-central 1 Out-af-control

Figure 4.1: Diagram of in-control and out-of-control states of the process

(a) The time until the assignable cause occurs

Given that this is a memoryless process subject to random shocks, the time to occurrence of an
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assignable cause, is distributed as an exponential random variable with mean _!_.
8

If production continues during searches, the average time for occurrence of the assignable cause

. . I 1
IS simp Y -.

8

If production ceases during the search period, the average time until the assignable cause is _!_
8

plus the time spent searching due to false alarms. Let To be the expected search time when the

signal is a false alarm. Then, the expected time spent searching due to false alarms is To times

the expected number of false alarms i.e. To(-S-J, where ARLo is the average run length while
ARLo

in-control and s is the expected number of samples taken while in-control. This is the non-

production time because of false alarms (Lorenzen and Vance, 1986).

QQ

Note that s = LiP( assignable cause occurs between the ith and (i +1) st sample) (see appendix
;=0

(A.18))

1
=----
exp(8h) -1

and
1ARLo =-
a

where a = P( exceeding control limits I process in control).

QQ

= 2 J¢(z)dz
k

e 2
where ¢(z) = ~, so that

,,2tr

a=2<l>(-k)

Note that ARLo depends only on the assumed underlying distribution and the control limit

parameter k.

The way in which Lorenzen and Vance combines both conditions is as follows.

Let Yl = 1, if production continues during searches
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Yl = 0, if production ceases during searches

Then, the expected time until the assignable cause occurs is:

1 1'0-+(I-y)s--e I ARLo
(4.1)

(b) The time until the next sample is taken

Given the occurrence of an assignable cause signal between the i th and (i + I) st sample, the

expected time of occurrence within the interval, denoted by t , is (see appendix (A.19))

(i+l)h

fe(t - hi)e-a dt
ihE (r) = __;;':-('-i+"""I)"""h ---

flk-adt
ih

1 h_-- ,e exp(Bh)-1

which is independent of i. The expected time between the occurrence of the assignable cause

and the next sample then equals

h-E(r). (4.2)

(c) The time to analyze the sample and chart the result

Let g be the expected time to sample and chart one item. For a sample of n items, the time to

analyze the sample and chart the result is given by

ng. (4.3)

(d) The time until the chart gives an out-of-control signal

The expected time before an out-of-control signal occurs, is given by h(A~ -I), where A~

is the average run length when the process has shifted to an out-of-control state. If the sample

statistics are independent, then A~ = _1_, where fJ = P (in-control signal I process is out of
1- fJ

control), and
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(1- fJ) = <1>(8$z - k) + <1>( -8$z - k)
-k-o~ ~

= j tjJ(z)dz + jtjJ(z)dz.
-00 k-o~

Note that A~ depends on the underlying distribution, the control limit width parameter k, the

sample size n, and the extent of the shift 8 when the assignable cause occurs.

(e) The time to discover the assignable cause and repair the process

Lorenzen and Vance (1986) indicated T; to be the expected time to discover the assignable cause

and T2 the expected time to repair the process. Then the expected time to detect a shift, discover

the assignable cause, and repair the process equals

(4.4)

Combining (4.1) through (4.4), we obtain the expected cycle time as

1 T-
E(T) = -+ (1- Yl)S-O-- E(r) +ng +h(ARLl) +~ +T2.e ARLo

(4.5)

4.5.2. The cost function

The costs per cycle are incurred by defective production while in-control as well as out-of-

control, for false alarms, for locating and repair of the assignable causes, and also for sampling

and inspection.

(a) Cost per cycledue to defectiveproducts

Lorenzen and Vance (1986) used Co as the cost of quality control per hour while production is

in control and Cl as the cost of quality control per hour while production is out of control where

(Cl> Co)· Assume that production continues during both search and repair. Then the expected

cost per cycle equals

If production ceases during repair only, the expected cost per cycle equals

If production ceases during both search and repair, then the expected cost per cycle equals
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Define r 2 = 1 if production continues during repair and r 2 = 0 if production ceases during

repair. Then the expected cost per cycle due to defective products can be written as (Lorenzen

and Vance, 1986)

J4.6)

(b) Cost per cycle due to false alarms as well as locating and repair of assignable causes

Let Y be the cost per false alarm. This consists of the cost of search for the cause plus the cost of

down time if production ceases during the search. Let W be the cost of locating and repairing

the assignable cause when one exists. Again W includes any down time cost that is appropriate.

Then, the expected cost for false alarms and locating and repairing the true assignable causes is

given by

(4.7)

(c) Cost per cycle for sampling and inspection

Using Lorenzen and Vance's (1986) unified approach, if we let a be the fixed cost per sample

and b be the cost per unit sampled, then the expected cost for sampling and inspection is given

by

(a + bn{ prOduc~on time).

The production time depends on whether or not production continues during search and/or

repair. The expected cost per cycle for sampling equals

(4.8)

Adding (4.6), (4.7), (4.8), we obtain the total expected quality cost per cycle as:
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(4.9)

Because the cycle length is variable and is a function of n , h , and k, we must express the cost

function per unit of time (hour), not per cycle. Note that since this is a renewal reward process

(Ross, 2000), the expected cost per hour is found by dividing the total quality cost per cycle, by

the expected cycle length, (see equation (4.5) and equation (4.9», resulting in:

C ( ) sY
_0 +CI -E(r)+ng+h(ARLI)+Yl'l +Y2T2 +--+We ARLoE(L) = --l----T,---------::....._-

-+ (1- YI)S-O- - E(r) +ng +h(ARLI) +J; +T2e ARLo

1
a+bn --E(r)+ng+h(ARLI)+ YIJ; + Y2T2+ ~e~ _

1 T,-+ (1-YI)S-O- - E(r) +ng +h(ARLI) +J; +T2e ARLo
h

(4.10)

4.6. Optimal economic and economic statistical design of the control chart

In a given process, the function E(L) represents the expected cost per hour for the present model

and it should be noted that E(L) is a function of the three quality control chart parameters the

sample size, n , the sampling period, h, and the control limit width parameter, k. Note that a

and 1- f3 are also functions of n and k. As a result of these, the function E(L) is highly

nonlinear in each of the three parameters.

The algorithm by Lorenzen and Vance (1986) to find the most economical design is somewhat

complicated as it consists of Newton's method, the golden section search as well as the

Fibonacci search method. This could be the main reason why it is not applied often.

Montgomery (2001) also indicated that very few practitioners have implemented economic

models for the design of control charts. There are at least two reasons for the lack of practical

implementation of this methodology. First, the mathematical models and their associated

optimization schemes are relatively complex and are often presented in a manner that is difficult
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for the practitioners to understand and use. A second problem is the difficulty in estimating costs

and other model parameters.

During the present study, a user friendly Excel program was developed that can be used to

determine an economic or economic statistical design for an X -control chart. This program uses

the model of Lorenzen and Vance and is configured to be applicable to most actual production

situations.

Based on the model described in this chapter and the parameters just defined, Lorenzen and

Vance (1986) showed that the expected loss cost per hour of operation can be expressed as in

(4.10) and can be written as

E(L) = NUMl + NUM2

DEN DEN
(4.11)

where

and

1 T,
DEN=-+(1-rl)s-O--E(r)+ng+h(AR~)+~ +T2•e ARLo

The expected number of samples, s taken while in-control is (e.g. (A.18))

s = --i- (compare section 3.2)
e -1

and the average time of occurrence of the assignable cause between i th and (i + 1)st interval is

given by

......
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E (r) = 1- (1+Oh)exp( -Oh)
0(1- exp( -Oh))

1 h
(compare section 3.2)

=------o exp(Oh)-1

This is an exact solution in contrast to Duncan's approximate approach (see appendix (A. 19)).

Note that the input parameters are 0, 8, a, b, Y, W, Co' Cl' g, To, 1;, T2, Yl and Y2 and

thus are entered as fixed values. Note further that n, h , and k are input as variables.

The program calculates the optimal control limit width parameter k and the sampling interval h

for several sample sizes n, and displays the corresponding values of the expected cost function

E(L). It also calculates the corresponding a risk and power, (1- 13) (see appendix (A.20) and

(A.21)). All combinations of results are tabulated and the optimum combination is easily

obtained from the tables.

Using the Lorenzen and Vance model is fairly simple. The procedure consists of solving by

searching for the optimal control limit k and the sampling interval h for several values of n and

displaying the value of the cost function together with the associated in-control and out-of-

control average run lengths. Furthermore, no terms are neglected or approximated in finding the

optimum solution as in Duncan's and other approaches. Consequently, the solution is not only

reliable, but also more appropriate to use for the economic and economic statistical design of the

X -control chart than Duncan's model.

In the optimization of the economic statistical design of the X -control chart, one can determine

the optimal design parameters for the X -chart by introducing statistical constraints such as the

in-control and out-of-control average run lengths. Saniga (1989) noticed that these two sets of in-

control and out-of-control ARL bounds are ARLL and ARLu, respectively. In statistical designs

the ARL' s are the main objects of interest, i.e. the minimization of AR~ and the maximization

of ARLo. Using these ideas, constraints are put on the ARL's in the economical design. These

constraints then give rise to the economic statistical design.
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4.7. Summary

The general approaches for the design of control charts are the statistical, the economic and the

economic statistical approaches. Statistically designed control charts are those in which the

control limit width, which determines the type I error probability and the power, are presented.

These then determine the sampling frequency (e.g. Woodall 1985). The other method of

designing a control chart is based on an economic criterion. In economic design the objective is

to find the sample size, the control limit width, and the sampling frequency that minimize the

loss in profit accruing to the firm because of poor quality. This loss in profit is composed of the

cost of producing products not within specifications, the cost of false alarms, and the cost of

searching for and eliminating the assignable causes. Lorenzen and Vance (1986) developed a

single assignable cause economic control chart model and applied it to the X -chart.

An alternative to statistical and economic designs has been proposed by Saniga (1989) and is

known as the economic statistical design. The loss cost function of the process is minimized

subject to:

• a constrained minimum value for the power 1- f3 of the control chart,

• a maximum value for the type I error probability a , and

• a maximum value on the average time-to-signal for a specified shift in the process

parameters.

The economic statistical design has the advantages of improving the assurance of long term

product quality as well as a reduction of the variance of the distribution of the quality

characteristic. The disadvantage is that it yields a higher expected loss than the pure economic

design.

Lorenzen and Vance (1986) derived an expected cost function applicable to any quality control

chart of the form developed by Shewhart. This function depends on twelve cost and time

parameters that describe the process, two indicator variables that show whether production

continues during search or repair, and three design parameters that describe the charting

procedure. The minimization of this function over the choice of the design parameters leads to

the optimal economic and economic statistical X -control charts. In this thesis, a user-friendly

Excel program was developed to determine the optimal values of the economic or the economic

statistical design of an X -control chart. The program is based on an improved form of the

Lorenzen and Vance model. The application of this optimization procedure will be illustrated in

AA
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the next chapter. Numerical analyses and comparisons of both the economic and the economic

statistical designs are presented. An extensive sensitivity analysis is also conducted.
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Chapter Five

Numerical illustration and analysis

In this chapter, the optimal economic design is compared to the optimal economic statistical

designs by means of examples. Based on the unified approach of the cost model developed by

Lorenzen and Vance (1986), a more detailed comparison and analysis are made of the economic

and economic statistical designs in order to investigate the effects on the loss function, of the

input parameters and of adding constraints to the statistical performance measurements.

5.1. Numerical illustration

Three numerical examples are presented in order to demonstrate the solution procedure as well

as to make some comparisons of the economic and economic statistical designs of the X -control

chart. The model parameters in these examples are taken from the statistical constrained

economic EWMA control chart presented by Tomg, Cochran, Montgomery, and Lawrence

(1995).

5.1.1. Example of the economic design

Example 5.1

Tomg, Cochran, Montgomery, and Lawrence (1995) provide an application of the single

objective design of an X -control chart based on the Lorenzen and Vance unified approach.

Suppose that the fixed cost sampling is RO.50 (i.e., a = 0.50 ) and the variable cost of sampling

is estimated to be RO.IO (i.e., b = 0.10). It takes approximately three minutes (i.e., g = 0.05

hours) to take and analyze each observation. The magnitude of the process shifts is one standard

deviation ( 0 = 1), and process shifts occur according to the exponential distribution with a mean

frequency of about one every hundred hours of operation. Thus the e = 0.01. It takes two hours

to investigate an action signal (i.e., T; = 2). The cost of investigating a false alarm is R50 (i.e.,

Y = R50), and a true action signal costs R25 to investigate (i.e., W = R25). The hourly costs for

operating in the in-control state and in the out-of-control state are RIO (i.e., Co = RIO) and RIOO

(i.e., Cl = RIOO), respectively. The process continues operation during the search and repair

periods of the assignable cause.

AC
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Table 5.1: Optimal economic design of the X -control chart

n k h a p (I-Jl) ARLo ARLI ATSo ATSI E(L),R/hr

1 2.1 0.7 0.035729 0.863366 0.136634 27.989 7.319 19.592 5.123 19.22080

2 2.3 0.7 0.021448 0.812032 0.187968 46.624 5.320 32.637 3.724 17.35571

3 2.3 0.9 0.021448 0.714938 0.285062 46.624 3.508 41.962 3.157 16.42810

4 2.4 0.9 0.016395 0.655416 0.344584 60.994 2.902 54.895 2.612 15.87054
5 2.4 1.1 0.016395 0.565106 0.434894 60.994 2.299 67.093 2.529 15.51280
6 2.4 l.3 0.016395 0.480264 0.519736 60.994 1.924 79.292 2.501 15.27609
7 2.5 l.3 0.012419 0.442059 0.557941 80.519 1.792 104.675 2.330 15.10723
8 2.5 1.5 0.012419 0.371294 0.628706 80.519 1.591 120.779 2.386 14.99482
9 2.5 1.6 0.012419 0.308538 0.691462 80.519 1.446 128.831 2.314 14.91908
10 2.6 1.6 0.009322 0.286963 0.713037 107.268 1.402 171.629 2.244 14.87267
11 2.6 1.7 0.009322 0.236803 0.763197 107.268 l.310 182.356 2.227 14.84646
12 2.6 1.9 0.009322 0.193766 0.806234 107.268 1.240 203.809 2.357 14.83830
13 2.7 1.9 0.006934 0.182587 0.817413 144.216 1.223 274.010 2.324 14.84578
14 2.7 2.0 0.006934 0.148785 0.851215 144.216 1.175 288.432 2.350 14.86075
15 2.7 2.1 0.006934 0.120401 0.879599 144.216 1.137 302.853 2.387 14.88680
16 2.7 2.2 0.006934 0.096801 0.903199 144.216 1.107 317.275 2.436 14.92200
17 2.8 2.2 0.005110 0.092900 0.907100 195.680 1.102 430.496 2.425 14.96075
18 2.8 2.3 0.005110 0.074561 0.925439 195.680 1.081 450.064 2.485 15.00574
19 2.8 2.4 0.005110 0.059510 0.940490 195.680 1.063 469.632 2.552 15.05649
20 2.9 2.4 0.003732 0.057960 0.942040 267.970 1.062 643.128 2.548 15.10868

MIN

As mentioned in the previous chapter, Excel was used to search for an optimum. The optimal

control limit, k and sampling interval, h were computed for several values of n. The values of

the cost function together with the associated in-control and out-of-control average run lengths

were calculated and are shown in table 5.1. This is the same approach used by Montgomery

(2001), Alexander et. al. (1995) and Linderman and Love (2000b). Table 5.1 reveals that the

optimal design has n = 12, k = 2.6, h = 1.9 hours, with a minimum cost ofR14.83830 per hour.

The in-control and out-of-control average run lengths for this control chart design are 107.268

and 1.240, respectively. Note that the design at n = 13 has minimum cost close to the optimum

and also has slightly better statistical properties than the optimal design at n = 12. From table 5.1

we see that the power is improved from 0.806234 at n=12 to 0.817413 at n=13. The

improvement in statistical performance leads to a wider control limit parameter, i.e. from 2.6 to

2.7.

5.1.2. Example of the economic statistical design

In this problem we use the economic parameters from example 5.1, but apply some statistical

constraints in terms of ARLL' ARLu and ATS. This illustrates the use of the approach for

finding an economic statistical design. Table 5.1 shows that the probability that a single point

....
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falls outside the limits when the process is in-control, is 0.009322. That is, even if the process

remains in-control, an out-of-control signal will be generated every 107 samples, on average.

This large number of false alarms introduces extra variability into the process through over

adjustment and destroys confidence in the control procedure. In other wards, the average run

length while in-control, ARLo, is equal to 107. It is desirable to have this value larger so that

false alarms are avoided. Therefore, an economic statistical design should be investigated due to

this high false alarm rate associated with the economic design.

5.1.2.1. Optimal economic statistical designs with ARL constraints

Example 5.2

This example illustrates the economic statistical design of the control chart with ARL

constraints. The starting point for this example is the specified ARL bounds i.e. ARLL = 267

and ARLu = 40 for 0 = 1. Note that the reason for using the ARL bounds is to constrain the

economic statistical design to an in-control ARL value of at least 267, while keeping the out-of-

control ARL at a value of less than or equal to 40.

Table 5.2: Optimal economic statistical designs with ARL constraints

n k h a p (1-fJ) ARLo ARLI ATSo ATSI E(L),Rlhr
1 2.9 0.2 0.003732 0.971235 0.028765 267.970 34.765 53.594 6.953 21.44304
2 2.9 0.3 0.003732 0.931324 0.068676 267.970 14.561 80.391 4.368 18.50123
3 2.9 0.4 0.003732 0.878585 0.121415 267.970 8.236 107.188 3.294 17.16481
4 2.9 0.5 0.003732 0.815939 0.184061 267.970 5.433 133.985 2.716 16.40727
5 2.9 0.6 0.003732 0.746633 0.253367 267.970 3.947 160.782 2.368 15.92921
6 2.9 0.8 0.003732 0.673829 0.326171 267.970 3.066 214.376 2.453 15.59165
7 2.9 0.9 0.003732 0.600348 0.399652 267.970 2.502 241.173 2.252 15.35989
8 2.9 1.1 0.003732 0.528529 0.471471 267.970 2.121 294.767 2.333 15.19818
9 2.9 1.2 0.003732 0.460172 0.539828 267.970 1.852 321.564 2.223 15.07857
10 2.9 1.3 0.003732 0.396554 0.603446 267.970 1.657 348.361 2.154 14.99761
11 2.9 1.5 0.003732 0.338476 0.661524 267.970 1.512 401.955 2.267 14.94475
12 2.9 1.6 0.003732 0.286342 0.713658 267.970 1.401 428.752 2.242 14.91220
13 2.9 1.7 0.003732 0.240234 0.759766 267.970 1.316 455.549 2.238 14.89848
14 2.9 1.8 0.003732 0.199990 0.800010 267.970 1.250 482.346 2.250 14.89989
15 2.9 1.9 0.003732 0.165281 0.834719 267.970 1.198 509.143 2.276 14.91370
16 2.9 2.0 0.003732 0.135666 0.864334 267.970 1.157 535.940 2.314 ·14.93782
17 2.9 2.1 0.003732 0.110645 0.889355 267.970 1.124 562.737 2.361 14.97059
18 2.9 2.2 0.003732 0.089694 0.910306 267.970 1.099 589.534 2.417 15.01070
19 2.9 2.3 0.003732 0.072297 0.927703 267.970 1~078 616.331 2.479 15.05703
20 2.9 2.4 0.003732 0.057960 0.942040 267.970 1.062 643.128 2.548 15.10868

MIN

An
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The first ARLo constraint is equivalent to a:5; _1_ = 0.003745, and the AR~ constraint is
267

equivalent to 1- f3 ~ _1_ = 0.025 when a one o shift occurs. Thus, to obtain an economic
40

statistical design, we add two constraints, i.e. ARLo ~ ARLL and ARLJ:5; ARLu with

ARLo ~ 267 and A~ :5; 40.

The results are shown in the output table 5.2. The optimal design has n = 13, k = 2.9, h = 1.7

hours, with a minimum cost of R14.89848 per hour. The in-control and out-of-control average

run length for this control chart design are 267.970 and 1.316, respectively compared to 107.268

and 1.240 in the economic design. Note that the designs at n = 12 and n = 14 have minimum

costs close to the optimum. A comparison between the pure economical design and the economic

statistical design of the X -control chart with an ARL constraint as illustrated above, shows that

the economic statistical design with ARL constraints have wider control limits and smaller

sampling intervals than the economic design. The ARLL constraint of example 5.2 leads to a

significant reduction in the frequency of false alarms, while the additional cost incurred by

imposing the ARLu and ARLL constraints is minimal. Table 5.2 shows that it is not expensive to

achieve the desired statistical properties. We have calculated the percentage increase in the cost

of the economic statistical design over that of the economic design, and the increase in overall

expected cost is only 0.41%, i.e. from R14.83830 to R14.89848. This may, in many situations be

a relatively small price to pay in order to achieve the improved statistical performance of the

control charts. The false alarm rate is also reduced from 0.009322 to 0.003732. Note that the

output of the two examples agree very closely with the results of the two examples in the

statistical constrained economic EWMA control chart presented by Tomg, Cochran,

Montgomery, and Lawrence (1995).

5.1.2.2. Optimal economic statistical designs with ATS constraints

Since it is sometimes more appropriate in process monitoring to express shift detection

performance in time units, economic statistical designs for the X -control chart also investigate

average time-to-signal as the statistical constraint (Montgomery et. al., 1995). The desired ATS

bounds are then computed by multiplying the ARL by its corresponding sampling interval. The

constraint here could be written as

An
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hATS) =--
1- jJ

= h(ARL)),

where each signal shows an out-of-control situation.

Example 5.3

In this example, we use the same input parameters as in the previous two examples. Adding the

ATS constraint to the pure economic model of the X -control chart, we have the economic

statistical design of the X -control chart with an ATS constraint. Suppose the following

statistical constraint is added to the Tomg, Cochran, Montgomery, and Lawrence (1995)

example:

ATS) ~1.90.

Based on the optimization results, table 5.3 presents the optimal economic statistical design of

the X -control chart for the proposed model and ATS bound. Table 5.3 shows that the optimal

design has n = 12, k = 2.6, h = 1.5 hours, with a minimum cost of R14.89331 per hour. The

average time-to-signal is 1.861.

Table 5.3: Optimal economic statistical designs with ATS constraints

n k h a p (1-P) ARLo ARLl ATSo ATSl E(L),Rlhr
1 2.2 0.2 0.027807 0.884243 0.115757 35.962 8.639 7.192 1.728 23.13212
2 2.4 0.3 0.016395 0.837813 0.162187 60.994 6.166 18.298 1.850 18.49734
3 2.5 0.4 0.012419 0.778730 0.221270 80.519 4.519 32.208 1.808 16.99375
4 2.3 0.7 0.021448 0.617903 0.382097 46.624 2.617 32.637 1.832 16.19573
5 2.4 0.8 0.016395 0.565106 0.434894 60.994 2.299 48.795 1.840 15.67825
6 2.5 0.9 0.012419 0.520142 0.479858 80.519 2.084 72.468 1.876 15.35856
7 2.5 1.0 0.012419 0.442059 0.557941 80.519 1.792 80.519 1.792 15.20093
8 2.6 1.1 0.009322 0.409657 0.590343 107.268 1.694 117.995 1.863 15.05237
9 2.5 1.3 0.012419 0.308538 0.691462 80.519 1.446 104.675 1.880 14.97145
10 2.6 1.3 0.009322 0.286963 0.713037 107.268 1.402 139.448 1.823 14.92851
11 2.6 1.4 0.009322 0.236803 0.763197 107.268 1.310 150.175 1.834 14.90232
12 2.6 1.5 0.009322 0.193766 0.806234 107.268 1.240 160.902 1.861 14.89331
13 2.6 1.6 0.009322 0.157316 0.842684 107.268 1.187 171.629 1.899 14.89822
14 2.7 1.6 0.006934 0.148785 0.851215 144.216 1.175 230.746 1.880 14.91511
15 2.8 1.6 0.005110 0.141639 0.858361 195.680 1.165 313.088 1.864 14.95170
16 2.7 1.7 0.006934 0.096801 0.903199 144.216 1.107 245.167 1.882 14.99450
17 2.8 1.7 0.005110 0.092900 0.907100 195.680 1.102 332.656 1.874 15.03692
18 2.9 1.7 0.003732 0.089694 0.910306 267.970 1.099 455.549 1.868 15.09308
19 3.0 1.7 0.002700 0.087089 0.912911 370.379 1.095 629.645 1.862 15.16002
20 2.8 1.8 0.005110 0.047249 0.952751 195.680 1.050 352.224 1.889 15.21943

MIN
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To illustrate the effect of the ATS constraint in the economic statistical design, we will compare

it to the pure economic design. Table 5.3 also points out that the economic statistical design has a

smaller sampling interval, i.e. h = 1.5 for the economic statistical model with ATS constraint

and h = 1.9 for the pure economic model. The out-of-control ATS} for the economic statistical

design is much better than the corresponding ATS} for the pure economic design, i.e. 1.861

against 2.357, resulting in a cost increase of only about 0.37%, i.e. from R14.83830 to

R14.89331. Similar results were reported by Saniga (1989) and Montgomery et. al. (1995).

Note that the three examples above indicate that economic statistical designs are generally more

expensive than the economic design due to the added constraints. However, the tighter limits on

control chart statistical properties can guarantee long-term product or service quality and low

process variability. This results directly from the requirement that the economic statistical design

assures a satisfactory statistical performance.

5.2. Sensitivity analysis

In this section, the relationship between the twelve input parameters and the loss function is

investigated. Furthermore, the effects of variation in the bounds on a, 1- f3 , the average time to

signal ATS, the expected shift size ,), on the minimum expected cost as well as on the three

decision variables n, h, and k, are investigated. The sensitivity analysis is designed to provide

insight into the effect of those inputs having significant effects in the Lorenzen and Vance model

when the economic and economic statistical design control charts are employed.

5.2.1. Sensitivity on the economic design

When applying the Lorenzen and Vance (1986) model in the economic design of the X -control

chart, there are twelve input parameters related to the loss function. Each example in table 5.4

represents the economic design of the X -control chart, changing the value of one parameter at a

time. Therefore, the sensitivity analysis of the proposed model with regard to these input

parameters is fairly straightforward.

Note that the centre option is the default in the parameters which are kept fixed, e.g. in the case

of a = 0.25, we use e = 0.01, and b = 0.1 etc.
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Table 5.4: Sensitivity analysis on the economic design of the X -control chart

Parameters n k h a p (1-/1) ARLo ARLl E(L),Rlbr
8=0.005 13 2.7 2.6 0.00693 0.18260 0.81741 144.22 1.22340 12.93897
8 =0.01 12 2.6 1.9 0.01000 0.19400 0.80623 107.27 1.24030 14.83830
8=0.05 9 2.5 0.8 0.01242 0.30850 0.69146 80.52 1.44620 25.92872

a =0.25 11 2.6 1.6 0.00932 0.23680 0.7632 107.27 1.31030 14.69813
a =0.5 12 2.6 1.9 0.01000 0.19400 0.80623 107.27 1.24030 14.83830
a =1 13 2.6 2.2 0.00932 0.15730 0.84268 107.27 1.18670 15.08503

b=0.05 13 2.8 1.5 0.00511 0.21030 0.78975 195.68 1.26620 14.46620
b=O.l 12 2.6 1.9 0.01000 0.19400 0.80623 107.27 1.24030 14.83830
b=O.5 9 2.1 3.4 0.03573 0.18410 0.81594 27.99 1.22560 16.42690

Y=25 11 2.4 1.8 0.01640 0.17970 0.82033 60.99 1.21900 14.68092
Y=50 12 2.6 1.9 0.01000 0.19400 0.80623 107.27 1.24030 14.83830
Y=100 14 2.9 1.9 0.00373 0.20000 0.80001 267.97 1.25000 14.99482

W=10 12 2.6 1.9 0.00932 0.19380 0.80623 107.27 1.24030 14.69408
W=25 12 2.6 1.9 0.01000 0.19400 0.80623 107.27 1.24030 14.83830
W=50 12 2.6 1.9 0.00932 0.19380 0.80623 107.27 1.24030 15.07866

Co=5 12 2.6 1.8 0.00932 0.19380 0.80623 107.27 1.24030 10.02888
Co=10 12 2.6 1.9 0.01000 0.19400 0.80623 107.27 1.24030 14.83830
Co=100 13 2.6 2.7 0.00932 0.15730 0.84268 107.27 1.18670 53.22659

CI=50 13 2.6 3.0 0.00932 0.15730 0.84268 107.27 1.18670 12.78691

CI=100 12 2.6 1.9 0.01000 0.19400 0.80623 107.27 1.24030 14.83830
CI=200 11 2.6 1.2 0.00932 0.23680 0.7632 107.27 1.31030 18.41464

15=0.5 20 2.1 2.0 0.03573 0.44588 0.55412 27.99 1.80465 17.10696
15=1.0 12 2.6 1.9 0.01000 0.19400 0.80623 107.27 1.24033 14.83830
15=2.0 5 3.1 1.5 0.00194 0.08501 0.91499 516.7 1.09291 13.71214

To=O 12 2.6 1.9 0.01000 0.194 0.80623 107.27 1.24030 14.83830
To=0.2 12 2.6 1.9 0.01000 0.194 0.80623 107.27 1.24030 14.83830

To=O.4 12 2.6 1.9 0.01000 0.194 0.80623 107.27 1.24030 14.83830

TI=O 12 2.6 1.8 0.00932 0.1938 0.80623 107.27 1.24030 13.15016
TI=2 12 2.6 1.9 0.01000 0.194 0.80623 107.27 1.24030 14.83830
TI=l 12 2.6 1.9 0.00932 0.1938 0.80623 107.27 1.24030 14.00288

T2=1 12 2.6 1.9 0.00932 0.1938 0.80623 107.27 1.24030 15.65781
T2=0 12 2.6 1.9 0.01000 0.194 0.80623 107.27 1.24030 14.83830
T2=2 12 2.6 1.9 0.00932 0.1938 0.80623 107.27 1.24030 16.46186

Yl=0,Y2=0 12 2.6 1.8 0.00932 0.19377 0.806234 107.268 1.24033 12.89712
Yl=0'Y2=1 12 2.6 1.8 0.00932 0.19377 0.806234 107.268 1.24033 12.89712
Yl=1,Y2=0 12 2.6 1.9 0.00932 0.19377 0.806234 107.268 1.24033 14.83830
Yt=1,Y2=1 12 2.6 1.9 0.00932 0.19377 0.806234 107.268 1.24033 14.83830

Stellenbosch University http://scholar.sun.ac.za



Chapter Five

Based on the observations from table 5.4 we find that (), which is the average occurrence rate of

the assignable cause, has a significant effect on the optimum sampling interval as well as the

cost. A smaller () implies a larger optimal sampling interval and smaller cost. It can be seen that

when the value of () decreases by 80% (from 0.05 to 0.01) the value of h increases by

approximately 137.5% (from 0.8 to 1.9) and the value of E(l) decreases approximately 42.77%

(from 25.92872 to 14.83830). Consider for example the cases where () = 0.05 and () = 0.01 in

the table 5.4 the expected cost decreases from R25.92872 to RI4.83830. However, the optimum

control limit parameter k is rather robust to changes in ().

Table 5.4 also describes the economic design for three different shift sizes (8 = 0.5, 1.0, and

2.0). When the shift level 8 is increased, we obtain a different set of optimal design parameters.

As a result, the different shift sizes produce different hourly production costs. In general, as 8

increases, the excepted cost, the sample size and sampling interval decrease. However, the

control limit width increases.

Regarding the costs of sampling, when the fixed cost per sample a increases, there is an increase

in the sample size n and the sampling interval h. The control limit width parameter, k,

however, is unaffected. Increasing the variable cost per unit sampled, b, results in a significant

increase in the sampling interval h, but a slight decrease in sample size n and control limit

width parameter k. Moreover, the expected cost increases only slightly as the fixed and/or

variable costs increase.

The analysis of the economic design of the X -control chart based on the Lorenzen and Vance

(1986) approach shows that the time to sample and chart one item, g, the expected time to

discover the assignable cause , ~,and the expected time to repair the process, T2, all have little

effect on the optimal values. However, there are still some trends that can be observed. For

example, the larger ~, the larger E(l). However, To,the expected search time when the alarm

is false, seems to have no effect on the optimal values.

Table 5.4 shows that whether the production ceases or continues during the search and also

whether the production ceases or continues during repair affect the optimal values only slightly.

When the production continues during search, the cost will be slightly larger than when the

production ceases during search, regardless of whether the production ceases or continues during

repair. Variations in the quality cost per hour when the process is in-control and out-of-control
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(Co and Cl) can cause relatively large effects on the optimum values of h and E(L).

Surprisingly the cost per false alarm, Y, and the cost to locate and repair the assignable cause,

W , only have a small effect on the optimum values.

Summarizing the results in the sensitivity analysis of the economic design of the X -control

chart shown above, it is clear that the optimum control limit parameter k is relatively robust to

all the input parameters. Among all the factors, Co, Cl' (), and 0 have more impact on the

optimal cost and optimal sampling interval of the X -control chart. The remaining eight input

parameters have no significant effect. This result agrees with the finding of Simpson and Keats,

(1995).

5.2.2. Sensitivity on the economic statistical design

In this section, an extensive sensitivity analysis is performed. The major purpose is to find how

constraints on statistical performance measures such as a, 1- f3, and ATS affect the expected

cost (Saniga, 1989). Results of the sensitivity analysis will be valuable to users of control charts,

providing guidelines for making trade-off decisions between cost and statistical properties. In

order to perform the sensitivity analysis experiments, the same example provided by Tomg,

Cochran, Montgomery, and Lawrence (1995) is used. The parameters are () = 0.01, 0=1,

a=0.5, b=O.l, Y=50, W=25, Co=10, CI=100, g=0.05, To=O, ~=2, T2=0, YI=1

and Y 2 = 1. Here we investigate the effects of varying the bounds on a, 1- f3 , the average time

to signal ATS and the expected shift size 0 on the minimum expected cost and the three

decision variables n, h , and k , based on the unified Lorenzen and Vance approach when the

economic statistical design control chart is employed. Note that in the analysis of the economic

statistical design, the indicator variables, i.e. Yl = 1, and Y 2 = 1, indicate that production

continues during the search and repair periods.

The type I error rate or false alarm rate is the probability of concluding that the process mean has

shifted due to an assignable cause when in fact it has not. A high number of false alarms will

quickly undermine an operator's confidence in the use of the control charts and acquire

unnecessary search costs. In control chart terms, power is the probability of correctly identifying

a shift in the process when one exists. Power gives a performance measure of the control chart's

capability to detect undesirable shifts that may occur in the production process. ATS refers to

the promptness in which a significant process shift is in fact identified. It is a measure of the
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control chart design's responsiveness in detecting process shifts and is especially important when

producing defective products resulting in penalty costs as shown in Zhang and Berardi, (1997).

5.3. Discussions

An extensive sensitivity analysis is performed on a unified approach of the Lorenzen and Vance

model of the economic statistical design of the X -control chart in order to investigate the

relevant effect of the bounds on the statistical measures, such as the type I error rate, the power,

the ATS, and the shift size to be detected on the minimum expected cost.

Zhang and Berardi (1997) noted that when the sensitivity analysis is performed on the economic

statistical design, there is no general rule governing the selection of bounds for the statistical

constraints. They should be chosen based on the specific problem situation, the relevant cost

information, as well as the economic and statistical consequences.

The values and ranges for the sensitivity analysis are chosen as follows. The upper bound on a,

when fixed, equals 0.05 while the lower bound on (1- 13) is fixed at 0.95. The ATS upper

bound is set to 4.0 as this is the economic design's actual value. The investigated value for each

sensitivity variable is chosen to range from being relatively cost influential to high cost

influential. The upper bound of a ranges from 0.002 to 0.0167 and the lower bound of (1- 13)
ranges from 0.700 to 0.975, whereas the upper bound of ATS varies from 1.0 to 4.0. In line with

the literature we also use shift sizes to be detected in the range 0.20 to 2.50. Figs 5.1-5.3 contain

the effect of the expected cost per hour due to changing the bounds on a, (1- 13), and ATS,

respectively. Figure 5.4 gives the 8 sensitivity results. Each figure represents the effects on the

expected cost, sample size, sampling interval and control limit parameter for varying bounds.

The a and (1- 13) sensitivity data in Fig 5.1 and 5.2 designate similar cost sensitivity over the

investigated ranges. As the bounds are tightened, each shows the expected cost increase. Similar

results were reported by Saniga (1989). The sample size, sampling interval, and control limit

interactions account for these changes. The effects of the bounds on a and (1- 13) on the

decision variables n, h, and k are also shown in the figures. The patterns of the effects in these

figures are consistent with what one can expect. For example, the control limit parameter, k, is

determined by a, but is not related to the power, (1- 13) as can be seen in fig. 5.2.(d).
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Table 5.5: Effect of bounds on a on the optimal design of the X -control chart

EXPECTED SAMPLE SAMPLING CONTLIMIT ACTUAL ACTUAL ACTUAL
PARAMETER

ARLo au COST SIZE INTERVAL k a l-p ATS
60 0.0167 14.83830 12 1.9 2.6 0.00932 0.80623 2.35664

80 0.0125 14.83830 12 1.9 2.6 0.00932 0.80623 2.35664

100 0.0100 14.83830 12 1.9 2.6 0.00932 0.80623 2.35664

140 0.0071 14.84440 12 1.8 2.7 0.00693 0.77760 2.31482

190 0.0053 14.86360 13 1.8 2.8 0.00511 0.78975 2.27921

267 0.0038 14.89850 13 1.7 2.9 0.00373 0.75977 2.23753

500 0.0020 14.99650 15 1.8 3.1 0.00194 0.78023 2.30700
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Figure5.l: a sensitivity analysis results
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Table 5.6: Effect of bounds on 1- jJ on the optimal design of the X -control chart

EXPECTED SAMPLE SAMPLING CONTLIMIT ACTUAL ACTUAL ACTUAL
PARAMETER

A~ (1- jJ)L COST SIZE INTERVAL k a 1- jJ ATS'
1.0256 0.975 15.19497 20 2.7 2.5 0.01242 0.97570 2.76724
1.0526 0.950 15.06830 19 2.4 2.7 0.00693 0.95143 2.52251
1.0811 0.925 14.96862 16 2.4 2.5 0.01242 0.93319 2.57182
1.1111 0.900 14.92200 16 2.2 2.7 0.00693 0.90320 2.43579
1.1429 0.875 14.88680 15 2.1 2.7 0.00693 0.87960 2.38745
1.1765 0.850 14.86075 14 2.0 2.7 0.00693 0.85122 2.34958
1.2121 0.825 14.84588 13 2.0 2.6 0.00932 0.84268 2.37337
1.2500 0.800 14.83830 12 1.9 2.6 0.00932 0.80623 2.35664
1.4286 0.700 14.83830 12 1.9 2.6 0.00932 0.80623 2.35664
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Figure 5.2: 1- jJ sensitivity analysis results
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From figures 5.1 and 5.2 we observe that, as au decreases, the sampling size increases and the

control limits become wider. If the upper bound of the au risk is greater than 0.01, the optimal

design remains unchanged. The sampling interval is also affected by the value of au, but no

specific tendency can be seen. If the lower bound of the power, (1- jJ)L is less than 0.80, the

optimal design remains unchanged. As (1- jJ) L increases from 0.80, both the sample size and

the sampling interval increase, and the change in the control limits, in general, show no pattern.

Similar results were reported by Al-Oriani and Rahim (2002).

The sensitivity data in table 5.7 and Fig. 5.3 show increasing cost as the ATS upper bound

decreases, but on a much larger scale than on a and (1- jJ). When the ATSu is below 2.0, the

cost increases rapidly to a high ofR15.7l4 at the upper bound ATS of l.O. This suggests that an

appropriate selection of the bound on the ATS may be important in terms of the economic

consequence of low upper bounds on the ATS . The effect of the upper bounds on the ATS on

the sampling size is quite interesting (fig 5.3 (b)). Above the ATS bound of 1.25, the sampling

size is not sensitive to the bounds on ATS . From 1.00-1.25, the control limits first increase and

then decrease with a maximum value of 2.7 at the ATSu of 1.25. This phenomenon may result

from the interaction effect of the bounds on a, (1- jJ) and the ATS as suggested in the data

table 5.7. However, in this example the effect of ATSu on the control limit is not significant.

From Figs 5.1-5.3 as well as table 5.5-5.7, we find that in some instances the economic statistical

design corresponds to a statistical design. A statistical design results when the type I error rate,

a and the power are constrained at bounds which have an influence on the cost. This occurs in

the a sensitivity analysis for a upper bounds of 0.01 and below. Above this a bound, (1- jJ)

remains fixed while the actual a relaxes from the strict equality constraint. For lower bounds of

(1- jJ) at 0.80 and above or for ATS upper bounds of 2.50 and below, the designs are also pure

statistical designs.

The 8 sensitivity analysis in Fig. 5.4 indicates a relative cost insensitivity for shift values of 1.0

and above with an extreme sensitivity for smaller values. The sample size is quite sensitive to the

shift level with the highest value of25 at 8 = 0.2 and a lowest value of 3 at 8 = 2.5.

1:0
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Table 5.7: Effect of bounds on ATS on the optimal design of the X -control chart

EXPECTED SAMPLE SAMPLING CONTLIMIT ACTUAL ACTUAL ACTUAL

PARAMETER
ATSu COST SIZE INTERVAL k a 1- fJ ATS

4.00 14.83830 12 1.9 2.6 0.00930 0.80620 2.35664

3.00 14.83830 12 1.9 2.6 0.00930 0.80620 2.35664

2.50 14.83830 12 1.9 2.6 0.00930 0.80620 2.35664

2.00 14.86550 12 1.6 2.6 0.00930 0.80620 1.98454

1.75 14.93387 12 1.4 2.6 0.00930 0.80620 1.73647

1.50 15.06607 12 1.2 2.6 0.00930 0.80620 1.48840

1.25 15.29247 11 0.9 2.7 0.00690 0.73130 1.23075

1.00 15.71425 12 0.8 2.6 0.00930 0.80620 0.99227
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Figure5.3: ATS sensitivity analysis results
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Table 5.8: Effect on 8 on the optimal design of the X -control chart

EXPECTED SAMPLE SAMPLING CONTLIMIT ACTUAL ACTUAL ACTUAL
PARAMETER

8 COST SIZE INTERVAL k a 1- f3 ATS

0.2 23.07564 25 1.0 2.1 0.03573 0.13663 7.31882

0.3 19.95052 25 1.4 2.1 0.03573 0.27441 5.10182

0.4 18.12762 25 2.0 2.1 0.03573 0.46019 4.34600

0.5 17.10696 20 2.0 2.1 0.03573 0.55412 3.60930

1.0 14.83830 12 1.9 2.6 0.00932 0.80623 2.35664

1.5 14.07837 7 1.6 2.9 0.00373 0.85738 1.86615

2.0 13.71214 5 1.5 3.1 0.00194 0.91499 1.63936

2.5 13.51826 3 1.3 3.1 0.00194 0.89068 1.45957
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Figure 5.4: 8 sensitivity analysis results
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Note that the control limits are also affected by the shift size. We observe that an increase in the

size of the shift, t5 from 0.5 to 2.50 results in an increase in the control limit width parameter k

from 2.1 to 3.1. However, if 8 is less than 0.5, the control limit width parameter k remains

unchanged. Furthermore, the sampling interval first increases and then decreases with a

maximum value of2.0 at the shift size, 8 = 0.4.

5.4. Economic statistical design versus economic design

As seen in the previous chapter, the objective of both economic designs and economic statistical

designs is to minimize the expected total cost per unit time via a non-linear optimization

procedure, The differences are that in the economic designs it is required that the user estimates a

number of cost and system parameters, but yields a design that is economically optimal in that it

minimizes the expected total cost (McWilliams and Saniga, 2001). Economic statistical designs

on the other hand are subject to constraints on the type I error rate and power, or any other

constraints according to the designer's needs (Al-Oraini and Rahim, 2002). In other words, the

economic statistical designs are economic designs that are subject to constraints. Consequently,

economic statistical designs are costlier than economic designs due to the added constraints.

However, these added statistical constraints can guarantee long-term product or service quality,

keeping the false alarm searches at a minimum, and lead to low process variability. This results

directly from the requirement that the economic statistical design assures a satisfactory statistical

performance.

According to the comparisons in the three numerical examples in section 5.1 of the minimum

cost of the optimal economic design and optimal economic statistical designs with ARL as well

as ATS constraints, the costs in the economic statistical designs increase by 0.41% and 0.37%

for ARL and ATS constraints, respectively. This implies that the placing of statistical

constraints results in a relatively small increase in the expected cost, while an improved

statistical performance of the control chart has been achieved.

Perhaps the most important attribute of the economic statistical design is its flexibility. Saniga

(1989) points out that with the appropriate choice of design constraints the user can choose a

purely statistical design, a purely economic design or a design meeting any of the temporal

requirements of the system to which it is to be applied.

£"1
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An economical statistical design is at least as difficult to implement as an economic design since

the same parameters must be estimated and more complex algorithms must be employed. Also,

an economic statistical design can allow the process to operate out-of-control more often than an

economic design. Fortunately, if caution is used in the selection of the design constraints, this

problem can easily be remedied.
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Chapter Six

Concluding remarks

6.1. Conclusion

According to Deming's hypothesis, customer satisfaction is gained through a quality product

service, and it can be postulated that economic success is the measure of that satisfaction. The

X -control chart is the engineer's and statistician's most important tool for management of the

quality of the firm's products. Thus, when research is done with respect to the economic aspects

of quality control and improvement, it is clear that the design of the X -control chart is

substantive in any such research as it attaches directly to the way in which actual decisions are

made if the firm wishes to remain alive.

Designing a control chart means making fundamental decisions about chart parameters such as

the sample size n , sampling interval h and control limits width parameter k. The criteria used

for developing rational designs are typically based on either statistical performance or economic

considerations, or both. There are two important assumptions stated in the development and use

of economic or economic statistical models, which are potentially critical. The assumptions of

the exponential distribution as a model for the time between the process shifts, as well as the

assumption of a single assignable cause. Moreover, three categories of costs were considered: the

costs of sampling and testing, the costs associated with investigating an out-of-control signal and

with repair or correction of any assignable causes found, and the costs associated with the

production of defective items.

Economic or economic statistical models are generally derived using a total cost function per

unit time, where the function expresses the relationship between the control chart parameters n,

k and h as well as the three types of costs mentioned above. The cost function in the unified

approach of the Lorenzen and Vance model depends on twelve cost and time parameters that

describe the process, two indicator variables that show whether production continues during

search or repair, and three design parameters that describe the charting procedure. The

minimization of this function over the choice of design parameters leads to the most economic or

economic statistical X -control chart.

It is clear that few practitioners have adopted the economic modeling approach to design their
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control charts, because the cost models and their associated optimization techniques are often too

complex and difficult for practitioners to apply. However, the numerical examples shown in this

paper were executed on a user-friendly Excel program, and the proposed procedure is easy to use

and easy to understand. Moreover, the proposed procedure can also obtain an exact optimal

design rather than the approximate designs as derived by Duncan (1956) and other subsequent

researchers. Thus, this procedure can be used to implement both economic and economic

statistical designs of X -control charts.

In the case of an economic design, the program finds the optimal sample size, control limit

width and sampling interval by minimizing a total cost function. In the statistically constrained

economic design, statistical constraints are put on some parameter such as the average run

length (ARL) or the average time-to-signal (ATS) in the Lorenzen and Vance cost function.

The program calculates the optimal values of k and h for several sample sizes and displays the

corresponding values of the minimum cost for each value of n. The values of ARLo and A~

are also provided for each combination of n, k and h. All combinations of results are tabulated

and the optimum combination is easily obtained from the tables. Furthermore, no terms are

neglected or approximated in finding the optimum solution as is done in Duncan's approach, so

that the solution is deemed to be more reliable than that according to Duncan's approach. Hence,

this approach is more appropriate to use for the economic and economic statistical design of X -
control chart.

A comprehensive comparison was made of the economic and the economic statistical designs of

the X -control chart using cost and statistical performance as the criteria. Results of this study

point out that the economic statistical designs have several advantages of importance in today's

industry when compared to the economic designs. Economic statistical designs have wider

control limits and smaller sampling intervals than economic designs. In addition, while they are

more costly than the economic designs, they have other advantages such as guaranteeing high

output quality, keeping the number of false alarm searches at a minimum and low process

variability. This results directly from the requirement that the economic statistical design must

assure a satisfactory statistical performance.

An extensive sensitivity analysis was also performed to provide insight into the effect of the

significant inputs on the proposed cost function when the economic and economic statistical
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designs of the X -control chart were employed. The sensitivity study of the economic design of

the X -control chart has indicated that the four primary cost drivers such as the mean occurrence

rate of the assignable cause, (J, the shift level, 8, the quality control cost while producing in

control, Co and the quality control cost while producing out of control, Cl are significant

parameters while the remaining eight inputs are less significant.

Using the economic statistical design with an appropriate sensitivity analysis, one can readily

observe the impact on cost, sample size, sampling interval, and control limits due to the

constraints on the statistical error rates. The selections of bounds for the statistical constraints

were based on the specific problem situation, the relevant cost information, as well as the

possible economic and statistical consequences. The sensitivity analysis is useful to the designer

in making these decisions. As mentioned above, the statistical performance of control charts can

be improved significantly with only a slight increase in cost by using an economic statistical

design instead of an economic design. The cost increase is further shown to be relatively

insensitive to the improvement in the type I error and the power throughout the investigated

range. This implies that it may not be the correct approach for practitioners to implement control

charts with lower false alarm rates and with higher probability for detecting a process shift when

one actually exists. On the other hand, the bound on ATS should not be set too low since the

expected cost is highly sensitive to small ATS bounds. A reasonable bound on ATS may be

found from the actual ATS in the economic design. Moreover, relatively large shift sizes, 8

often result in relatively smaller cost sensitivity, but extreme sensitivity for smaller shift sizes,

8 . The optimal sample size and control limit width parameter were also largely determined by

the magnitude of the shift size, 8. This result agrees with the result of the analysis given by

Saniga (1989).

As a result of this study one can state that the principles of the economic statistical design are

fully consistent with the objectives of statistical quality control, i.e. simultaneously reducing

costs, while maintaining high quality. The flexibility of this method in developing alternative

designs is also illustrated and it was argued that this flexibility is of much importance in the

context of the firm's wider decision-making. Therefore, whenever possible, a unified approach

of the economic statistical model should be considered as a viable general method in the X-

control chart design.
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6.2. Remarks

Based on the discussions and conclusions of this study, the following remarks can be made:

• A further detailed study needs to be conducted to develop systematic methods for

parameter estimation from the process data in the economic or economic statistical design

of the X -chart. Moreover, sensitivity analyses should concentrate on identifying the

parameter and data requirements for particular models that have the greatest effect on the

economic or economic statistical designs of the X -chart.

• According to the study, the underlying assumption with respect to the distribution of the

process mechanism in the economic or the economic statistical designs of the X -control

charts is the exponential distribution. However, this assumption is not always appropriate

in practice for the process in which machine wear occurs over time. This means that the

assumption of an exponential distribution may not be appropriate when the process

describes deterioration over time. The fact is that the appropriate assumption in the case

for the economic or economic statistical designs of the X -control chart with a varying

sampling interval is the Weibull or Gamma failure mechanism. For instance, in the case

of a process with an increasing failure rate, a more realistic approach is to shorten the

sampling intervals since the process deteriorates further as time goes by. The gamma

distribution often is an appropriate distribution in the quality control chart as well as

reliability studies. For example, consider a standby redundant system having two

components with a perfect switch. While component 1 is on, component 2 is off, and

when component 1 fails, the switch turns component 2 on. If each component has a life

time described by the exponential distribution with parameter A then the system's life is

gamma distributed with scale parameter A and shape parameter r = 2 .

• Software developers should develop a simple, standard approach to economic and

economic statistical designs by stating problems and solutions clearly, by requiring the

estimation of only a few important parameters and providing a method to estimate these

parameters, providing easy-to-use, easy-to-understand and easy-to-access software.

• The Excel optimal procedure which was developed in this study can be extended for

other designs of control charts such as the p -chart, the c -chart, the cumulative sum

( CUSUM) control chart, moving average (MA) control chart, and the exponentially

weighted moving average (EWMA.) control chart. A further study is also needed using
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Chapter Six

this Excel optimal procedure for comparing the performances of the X -control chart, the

CUSUM control chart, and the EWMA control chart. Here, for the case of the EWMA

control chart the calculation of the in-control ARLo and out-of-control AR~ average run

lengths are required to use the control limit parameter k, the values of the weighted

factor A, and the shift size 8 . The calculation of the value of the weighted factor A may

not be straightforward since it considers Fredholm integral equations or numerical

integration methods.

• Last but not the least, since the Excel optimal procedure developed in this study is

simple-to-use, simple-to-understand, easy-to-access and performs better in finding the

optimal solutions in the designs of both the economic and the economic statistical X-
control charts than previous approaches, practitioners and researchers using these optimal

designs are encouraged to use this for both academic and industrial purposes.

• Moreover, it is recommended that a unified approach of the economic statistical design of

the X -control chart be used in practice since it considers indicator variables in the model

to identify whether production ceases or continues during search and or repair, so that

any possible operation scenario can be appropriately modelled. It gives also superior

protection over a wider range of process shifts and also have statistical properties that are

as good as control charts designed entirely from statistical considerations.

,-,.,
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Appendix

Appendix

(A.l) Theorem 3.1

1 1o < - - Ah < 1, for A > 0, and h > 0
Ah e -1

Proof

1 1
To prove 0<---- <1, for all x > 0

x eX-l

X x2 x3 x4

e =l+x+-+-+-+ .
2! 3! 4!

a) First we need to show that the above expression is greater than zero

1 1

1 1
>0= x x2

x+-+----
2!

b) In a similarly way it is also less than 1

1 1

=---
x(eX -1)

X x2-+-+-----
= 2! 3! < 1, for all x > 0

x2

x+-+-----
2!

Therefore from (a) and (b), the proof of theorem 3.1 is completed.

1 1
Hence, 0 < 1h - Ah < 1, for all A > 0 and h > 0

/L e-1

(A.2) Theorem 3.2

Proof

'71
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Appendix

From (b) in the proof of theorem 3.1

lim (.!. __ 1 ) = .!_
x-.o' x e" - 1 2

X x2-+-+-----
= lim 2! 3!

x-.o' x2

x+-+-----
2!

=.!_ (using L'Hospital)
2

This completes the proof of theorem 3.2

(A.3) Derivation of equation (3.5)

Aa4B +aas +Aa3 b
E(L)= h + a +~, setting equal to zero the partial derivative of E(L)

I+AB h h

with respect to n , we get BE(L)= O.
Bn

BBAa4 {1+AB)-(Aa
4
B+Aa

3
+ aas)BB A

Bn h Bn +~=O
(1+BA)2 h

BB ( aas ) {)2 BB Bp ( h ):.Ah- a4 ---Aa3 +b I+AB =0, where -=-- --2 +g.
Bn h Bn BnP

(A.4) Derivation of equation (3.6)

Aa4B + aas + Aa3 b
hanE(L)=-------'-"---+-+-

I+AB h h

BE(L)= 0
Bh
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Appendix

(
8B aas ) 8B ( aas )-Aa -- (I+AB)--A Aa B+Aa +-8h 4 h2 8h 4 3 h

.. (1+ BA)2

2 8B ( aa ) 2 8B (1 1 Ah)Ah - a4 __ s -Aa3 -aas(l+AB)-(a+bn)(I+AB) =0, where -= ---+-
8h h 8h P 2 6

(A.S) Derivation of equation (3.7)

8E(L) = 0
8k

8B Aa
4
+ 8a 5_(I+AB)-(Aa

4
B+Aa

3
+ aas)(8B A)

8k 8k h h 8k = 0
.. (l+BA)2

8B ( 2 2 2 aAas ) 8a as ( )- Aa +A a B-A a B-A a +-- +-- I+AB8k 4 4 4 3 h 8k h
.. (1+BA)2 = 0

8E(L) = 0 implies the numerator to be zero where (1+ BA)2 '* 0
8k

:. 8B+ -Aa + aas)+ 8a 5_(I+AB)=O with 8B =_!!_(8P).
8k 4 3 h 8k h '8k p2 8k

(A.6) For small a and A, the terms like aa3, aas , and AB may be neglected. Duncan (1956)
h

approximated equations (A.3)-(A.5) by assuming A. to be small and neglecting all terms in

"''1
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Appendix

an equation of a smaller order of magnitude than the principal term. This gives us

aB+_aas -Aa3)+b(1+ABY =0
an h

ee ee ap( h )-Aha4 +b~O and -=-- --an . an an p2

(A.8) aB A(a _ Aa + aas ) + aa !!2_(1+ AB) = 0
ak 4 3 h ak h

:. aB Aa + aa !!2_~0 and aB =
ak 4 ak hak

:. _}!_(ap)Aa + Ba !!2_~ 0
p2 ak 4 Bk h

1h2 ap
/l, a4 B
__ -=.;Bk:.=....+a~ ~ 0

p2 s Bk

h (BP)
p2 Bk

(A.9) Equation (A.7) immediately gives us

2 (1 1)Ah a --- -aa -a-bn ~ 0
4 P 2 5

:. h2:::::: aas +a+bn
Aa (_!_ - _!_)

4 P 2

:. h ~ aas +a+bn
Aa (_!_ - _!_)

4 P 2

'7A
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Appendix

(A.I0) Using this approximate value of h as in (A.9) in (A.6) we get after some rearrangement,

Ah2a ap
4_--::-=an~+b ~ 0p2

_ ap A aas +a+bn
an Aa (_!_ _ _!_) a

4

4 p 2
.. --__O__--::2:---_:_- +b ~ 0

p

p2( 1 1)
p 2 aas +a+bn.. ap ~ b

an

. p'G ~Laas +0
.. -n+ ap ~ b

an

(A.lt) fJ = P (in-control signal I process is out-of-control).

and (1- fJ) = cl>(a../n - k) + cl>(-a../n - k)

=
Z2

-k-o../n co -"2
f ¢(z)dz+ f¢(z)dz where ¢(z) = e~
-~../n ~~

co_ J¢(z )dz since the first integral is very close to zero
k-o../n

o../n-k
= f¢(z)dz

-co

= cl>(a../n - k ).

(A.12) ap = ~[ 1 e-'; dzJ
ak ak k-O.;n&
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-e
=---==---..&

[

Z2 JOp a co e-2
(A.13) :. - = - J r;;- dz

an an k-o../n '" 27r

(~JlJ e 2

= 2-rn ..&

(A.14) a = P( exceeding control limits I process in control).

Z2

co -2
= 2 J¢(z)dz, where ¢(z) = e~

k ",27r

-k

= 2 J¢(z)dz
-co

= 2<1>(- k)

2e 2

=- ..&

(A. IS) lh
2

:
4 = ab ,from (A.6) and combined with equation (A.8)

p _1!_
an

ap [ b 1 aa 0 d b bsti .-- -a +a5-~ an Y su stitutingak p ak
an

(-k-O../nYap -e 2

ak = ..& ' from (A.l2),

'7t:;.
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[

(-k-ó,fnY JBP 8 e 2- = Ir;:;-' from (A.13) and
Bn 2vn v21r

k2

Ba 2e 2- = _ r;:;-' from (A.14)
Bk v21r

Finally, it is found that

Ba 2bJ-;,
Bk =_~'

s

or
_k2

e 2 bJ-;,
J2;= &s·

(A.16) Chiu and Wetherill (1974) noted that in practice, A is a small quantity, say A = 0.01, and

hence AB is small compared with unity. Therefore, the term AB can be omitted from the

first denominator of

~_ aas
/'M4B +- +Aa3 b

E(L) = __ ---'-h~ __ + a + _n
l+AB h h

so that

, aas a bnE(L) = Aa4B+-+Aa3 +-+_
h h h

Substituting the value of n from o.,Jn -k = z and B = (: - ~} + gn +D in to E(L).

Since t: ~ h (theorem 3.1 and 3.2)
2

E(L) = Aa ((_!_ -_!_)h+ g(z + k)2 +DJ+ aas +Aa + a + b(z +k)2
4 P 2 82 h 3 h h82

E . th . 1deri . BE(L) b .quatmg e partia envative, to zero we 0 tam
Bk

(z+k) Baa (z+k) . .:.2Aa4g 2 +__ s +Zb 2 = 0 smee p IS a constant (say 0.90 or 0.95).
8 Bkh h8

"7"7
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(A.l7) From equation (A. 16), the term Aa4gh is usually small because g is often small, and

could have been omitted, as Duncan (1956) has done, but, Chiu and Wetherill (1974)

showed that the effect of omitting this term may be serious if g happens to be

moderately large, say g = 0.3. The presence of h in this term makes the equation in

(A.16) intractable and complicated. For the sake of simplicity and practicality, they

replaced Aa4gh by Aa4g by dropping the h only. Therefore, the optimal value of k

can be approximated by the solution

DO

(A.18) S = LiP( assignable cause occurs between the ith and (i +1)st sample)
i=O

= f i(ellJi - ellJ(i+l) )
i=O

1

(A.19) The expected time of occurrence of the assignable cause within the interval the i th and

(i + 1) st, denoted by E(r), is

(i+lr

JB(t - hi) exp( -Ot)dt
= ih (i+l)hfBexp( -Ot)dt

ih

_ - B-1 exp( -Ot)(1+ Ot)+ hi exp( -Ot)1 ~ii+l)

- - exp( -Ot)1 ~ii+l)

1- (1+Bh)exp( -Bh)= --'----'----=--..;'--_;_

B(I- exp( -Bh))

1 exp( -Bh) hexp( -Bh)
=
B(I- exp( -Bh)) B(1- exp( -Bh)) (1- exp( -Bh))

= l-exp(-Bh) hexp( -Bh)
B(I- exp( -Bh)) (1- exp( -Bh))

"7Q
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= 1 h . (Compare to Duncan's approximation.)o exp(Bh)-l

(A.20) Formula in Excel:

a = 2<D(-k)

= 2 * NORMDIST (-k, 0, 1,TRUE)

(A.2I) Formula in Excel:

f3 = <D(k- 5.[;z) - Cf>( -k - 5.[;z)

= NORMDIST (k - 5 * SQRT(n), 0, 1,TRUE)
-NORMDIST (-k-5*SQRT(n), 0, 1,TRUE)

"70
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Computer code

Computer code

a = 2 *NORMDIST (-B6, 0, 1,TRUE)

p = NORMDIST (B6 - $B$2 * SQRT(A6), 0, 1, TRUE)
-NORMDIST (-B6-$B$2 *SQRT(A6), 0, 1, TRUE)

E(r) = 1/$A$2-C6/((2.7182818)"'($A$2 *C6)-1)

s = 11((2.7182818)'" ($A$2 * C6) -1)

NUM! = $I$2/$A$2+$G$2*(-G6+A6*$H$2+C6* N6+$M$2*$K$2+$N$2*$L$2)
+H6*$E$2/ L6+$F$2

NUM2 = (($C$2/$D$2* A6)/C6)
*(1/ $A$2 - G6 + A6 * $H$2 + C6 *N6 + $M$2 * $K$2 + $N$2 * $L$2)

DEN = 1/$A$2+(I-$M$2)*(H6*$J$2)/ L6-G6+A6*$H$2+C6* N6+$K$2+$L$2)

E( L) = (/6 +J6) / 06

MIN=(P6:P655) (for n=l)

MIN OF MIN = (P6: P16555) (for n = 1,2,3, 20)

Example 5.2: Optimal economic statistical designs with ARL constraints

1
a ~ 267 ARLo ~ 267 CONSTRAINT ARLo = IF(K6 > 267,K6,"I")

1
1-p~ 40 ARL! ~40 CONSTRAINT A~ =IF(M6<=40,M6,"10000")

Example 5.3: Optimal economic statistical designs with ATS constraints.

_h_ ~1.90 ATS! s 1.90 CONSTRAINT ATS! = IF(L6 < 1.90,L6,"10000")
I-p

Sensitivity on the economic statistical design

(a) Effect of bounds on a on the optimal design of the X -control chart.

ARLL =60 CONSTRAINT ON ARLo =IF(K6>60,K6,"I")

ARLL =80 CONSTRAINT ON ARLo =IF(K6>80,K6,"I")

80
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Computer code

ARLL = 100 CONSTRAINT ON ARLo = IF(K6 > 100,K6,'1")

ARLL = 140 CONSTRAINT ON ARLo = IF(K6 > 140,K6,"1")

ARLL =190 CONSTRAINT ON ARLo =IF(K6>190,K6,"1")

ARLL = 267 CONSTRAINT ON ARLo = IF(K6 > 267,K6,"1")

ARLL =500 CONSTRAINT ON ARLo =IF(K6>500,K6,"1")

(b) Effect of bounds on 1- f3 on the optimal design of the j{ -control chart

ARLu = 1.0256 CONSTRAINT ON AR~ = IF(M 6 < 1.0256, M 6, "1")

ARLu = 1.0526 CONSTRAINT ON A~ = IF(M6 < 1.0526,M6,"1")

ARLu =1.0811 CONSTRAINT ON ARLI =IF(M6<1.0811,M6,"1")

ARLu =1.1111 CONSTRAINT ON A~ =IF(M6<1.1111,M6,"1")

ARLu = 1.1429 CONSTRAINT ON A~ =IF(M6 <1.1429,M6,"1")

ARLu = 1.1765 CONSTRAINT ON A~ =IF(M6 <1.1765,M6,"I")

ARLu = 1.2121 CONSTRAINT ON A~ = IF(M6 < 1.2121,M6,"I")

ARLu = 1.2500 CONSTRAINT ON A~ = IF(M6 < 1.2500,M6,'1")

ARLu = 1.4286 CONSTRIANT ON A~ = IF(M6 < 1.4286,M6,"I")

(C) Effect of bounds on ATS on the optimal design of the j{ -control chart

ATSu = 4.00 CONSTRAINT ATS1 = IF(L6 < 4.00,L6, "10000")

ATSu =3.00 CONSTRAINT ATS1 = IF(L6 < 3.00,L6, "10000")

ATSu = 2.50 CONSTRAINT ATS1 = IF(L6 < 2.50,L6,"10000")

ATSu = 2.00 CONSTRAINT ATS1 = IF(L6 < 2.00, L6, "10000")

ATSu =1.75 CONSTRAINT ATS1 = IF(L6 < 1.75,L6,"10000")

ATSu = 1.50 CONSTRAINT ATS1 = IF(L6 < 1.50, L6, "10000")
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Computer code

ATSu =1.25 CONSTRAINT ATS, =/F(L6<1.25,L6,"10000")

ATSu = 1.00 CONSTRAINT ATS, = /F(L6 < 1.00, L6, "10000")
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