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SUMMARY 

 

Peel colour is an important quality factor in the production of bi-coloured apple fruit. Most 

markets set minimum requirements for red colour coverage. Fruit that do not meet these 

requirements are downgraded and has a major impact on the profitability of apple production 

in South Africa. South African apple production areas are amongst the warmest in the world.  

Since anthocyanin accumulation requires induction at low temperature and synthesis require 

mild temperatures, experiments were conducted to investigate optimum day and night 

temperatures for red colour development throughout fruit development for red and bi-coloured 

apple cultivars grown in South Africa. We found that redder strains of bi-coloured apple 

cultivars did not appear to owe their enhanced pigmentation to higher temperature optima for 

anthocyanin synthesis. The optimum day temperatures for red colour development in the 

different cultivars seemed to differ between seasons, but not between production areas. In 

general, red colour in the cultivars evaluated developed maximally between 17 ºC and 25 ºC. 

The optimum day temperature for red colour development remained constant throughout fruit 

development for most cultivars, but increased roughly from 14 ºC to 22 ºC in ‘Cripps’ Pink’ 

between January and April. The extent of red colour development increased during fruit 

development in all the cultivars assessed. We were unable to determine optimum induction 

temperatures for red colour development. ‘Royal Gala’ from Ceres seemed to benefit from 

induction at 4 ºC while red colour in ‘Fuji’ decreased with decreasing temperature. 

 

To explain the presence of anthocyanins in immature apple fruit, we tested the hypothesis  

that anthocyanins protect the peel from photoinhibition and photooxidative damage during 

conditions of increased light stress. First we established that the rate of colour change in 

response to a passing cold front appears to be sufficient to provide photoprotection during a 

cold snap. Also in agreement with the hypothesis, ‘Cripps Pink’ peel incurred significantly 

more photoinhibition at low temperature (16 ºC) compared to mild (24 and 32 ºC) and high (40 

ºC) temperature under high irradiance with visible light. Recovery rate was temperature-

dependent, being the slowest at low temperature and increasing with temperature. The 

photoapparatus in ‘Cripps Pink’ peel appears to be particularly sensitive to light stress at low 

temperature throughout the season, with significant photoinhibition occurring even at 

moderate temperature (24 ºC). The sensitivity of the apple peel to photoinhibition increased 
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throughout the season at lower irradiance levels, but remained the same at higher irradiance. 

In our final experiment, fruit were exposed to high irradiance at low and mild temperature 

before exposure to high temperature in combination with high irradiance. This was done to 

test the hypothesis that photoinhibition incurred during cold snaps predisposes peel to 

photothermal damage when temperature increases again after the cold snap. Unfortunately, 

due to the severity of the stress incurred in response to high temperature treatment, the 

results were inconclusive. 
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OPSOMMING 

 

Vrugkleur is ‘n belangrike kwaliteitsfaktor in die produksie van tweekleurappels. Die meeste 

markte stel minimum vereistes vir rooi kleurbedekking. Vrugte wat nie aan hierdie vereistes 

voldoen nie, word afgegradeer. Suid-Afrika se appel produksie areas word beskou as van die 

warmste ter wêreld. Antosianien akkumulasie benodig induksie by lae temperature gevolg 

deur sintese in lig by matige temperature.  Gevolglik het swak rooi kleurontwikkeling onder 

plaaslike toestande ‘n groot impak op die winsgewendheid van appelproduksie in Suid-Afrika. 

Eksperimente is uitgevoer om die optimum dag- en nagtemperature vir rooi kleurontwikkeling 

tydens vrugontwikkeling vir die rooi en tweekleur appel kultivars wat in Suid-Afrika 

geproduseer word te bepaal. Ons het gevind dat die verhoogde pigmentasie van rooier 

seleksies van tweekleurappel kultivars nie aan ‘n hoër temperatuur optimum vir 

antosianiensintese toegeskryf kan word nie. Die optimum dag temperature vir rooi 

kleurontwikkeling vir die onderskeie kultivars verskil klaarblyklik tussen seisoene, maar nie 

tussen produksie areas nie. Oor die algemeen het kleurontwikkeling maksimaal plaasgevind 

tussen 17 ºC en 25 ºC. Die optimum dagtemperatuur vir rooi kleurontwikkeling het konstant 

gebly tydens vrugontwikkeling, buiten vir ‘Cripps’ Pink’ waar dit toegeneem het van ongeveer 

14 ºC tot 22 ºC vanaf Januarie tot April. Die mate van rooi kleurontwikkeling het in al die 

kultivars toegeneem deur die loop van vrugontwikkeling . Ons kon nie daarin slaag om 

optimum induksie temperature vir rooi kleurontwikkeling vas te stel nie. Rooi kleurontwikkeling 

van ‘Royal Gala’ uit Ceres is moontlik bevorder deur induksie by 4 ºC, terwyl ‘Fuji’ se rooi 

kleur afgeneem het met ‘n verlaging in induksie temperatuur. 

 

Ten einde die teenwoordigheid van antosianien in onvolwasse appelvruggies te verduidelik, 

het ons die hipotese getoets dat antosianien die vrugskil beskerm teen fotoinhibisie en foto-

oksidatiewe beskadiging gedurende tydperke van verhoogde ligstres. Eerstens het ons 

bevestig dat die tempo van kleurontwikkeling in reaksie op ‘n koue front waarskynlik vinnig 

genoeg is om fotobeskerming te verleen. Vervolgens is gevind dat ‘Cripps’ Pink’ vrugskil 

aansienlik meer fotoinhibisie ervaar het by lae temperatuur (16 ºC) in vergelyking met matige 

(24 ºC en 32 ºC) en hoë (40 ºC) temperatuur onder hoë irradiasie met sigbare lig. Die 

hersteltempo was temperatuur-afhanklik; dit was die stadigste by lae temperatuur en het 

toegeneem met ‘n toename in temperatuur. Die foto-apparaat in ‘Cripps’ Pink’ vrugskil blyk 
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besonder sensitief te wees vir ligstres by lae temperatuur regdeur die groeiseisoen met 

aansienlike fotoinhibisie by selfs matige temperatuur (24 ºC). Die sensitiwiteit van die vrugskil 

vir fotoinhibisie het toegeneem deur die groeiseisoen by laer ligvlakke, maar het dieselfde 

gebly by hoër vlakke van irradiasie. Laastens is vrugte blootgestel aan hoë irradiasie by lae 

en matige temperatuur voordat dit vervolgens blootgestel is aan hoë temperatuur in 

kombinasie met hoë irradiasie. Dit was om die hipotese te toets dat fotoinhibisie wat 

opgedoen word gedurende ‘n onverwagte koue periode, die skil meer vatbaar maak vir foto-

termiese skade sodra die temperatuur weer styg na die koue periode verby is. Ongelukkig het 

die hoë temperatuur stres al die behandelings tot so ‘n mate geaffekteer dat dit onmoontlik 

was om enige gevolgtrekkings vanuit ons resultate te maak. 
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GENERAL INTRODUCTION 

 

Light and temperature are the major factors that determine the extent of red colour 

development in apple fruit (Lancaster, 1992; Reay & Lancaster, 2001; Saure 1990). 

Anthocyanins in ripening apples are apparently induced at low temperatures (<10 ºC) (Curry, 

1997) and synthesis takes place under high irradiation at mild temperatures (20 ºC to 27 ºC) 

in detached, mature apples (Curry, 1997; Reay, 1999; Saure, 1990 citing Nauman, 1964). 

Considering the importance of low night and mild day temperatures for anthocyanin synthesis 

in apple peel (Curry, 1997; Reay, 1999), it is not surprising that the high temperatures 

experienced in the Western Cape province give rise to poor red colour development (Wand et 

al., 2002, 2005). Different cultivars may differ in their optimum temperatures for anthocyanin 

synthesis (Curry, 1997). Knowing the optimum day and night temperatures for colour 

development for different cultivars may allow for more informed decisions with regard to 

cultivar choice in different production areas. Considering the above, we set out to determine 

the optimum day- and night-time temperatures for anthocyanin accumulation for red and bi-

coloured apple cultivars grown in South Africa. Redder strains of some of these cultivars were 

also evaluated to determine whether their enhanced anthocyanin synthesis is due to a shift in 

the optimum temperature for anthocyanin synthesis. Fruit were harvested from two different 

production areas to assess whether growing conditions may influence the temperature 

requirements for anthocyanin synthesis. 

 

Little is known about anthocyanin accumulation during early fruit growth in apple due to its 

economical non-significance and only speculated biological significance. Immature apples of 

at least some cultivars seem to accumulate anthocyanins at lower temperatures than mature 

fruit (Faragher, 1983). Anthocyanin synthesis in plants generally coincides with periods of 

high excitation pressure and increased potential for photo-oxidative damage (Steyn et al., 

2002). The same appears to be true for apple fruit (Steyn et al., 2009). Chlorophyllous tissues 

that receives more light energy than can be used in photochemistry undergo a decrease in 

quantum efficiency of photosynthesis, better known as photoinhibition (Adams et al., 2008; 

Long et al., 1994). As a response chloroplasts generate Reactive Oxygen Species (ROS) 

that, when in superabundance, may potentially destroy thylakoid membranes, damage DNA 
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and denaturate proteins associated with photosynthetic electron transport (Alscher et al., 

1997). ROS production increases in response to stresses such as low temperature (Prassad 

et al., 1994; Prassad, 1996) and have been implicated in photoinhibition (Hull et al., 1997) 

and cellular damage (Wise, 1995). We argued that anthocyanins in immature apple fruit 

protect apple peel from photoinhibition and photooxidative damage during conditions of 

increased light stress, which occur during sudden cold snaps. Subsequently, we set out to 

determine whether anthocyanins can accumulate fast enough to provide photoprotection 

during cold snaps. We also considered whether protection of fruit peel against photoinhibition 

during cold snaps lowers the risk of subsequent high light and high temperature- induced 

damage to fruit peel when temperatures increase again after the cold snap. Lastly, we 

determined whether the sensitivity of fruit peel to photoinhibition increases during fruit 

development, thereby explaining why anthocyanins apparently accumulate at lower 

temperatures in immature apples. 

 

The biosynthesis of anthocyanins have been widely studied and has been the theme of 

various reviews (e.g. Heller and Forkman, 1988; Lancaster, 1992; Macheix et al., 1990; 

Davies, 2009). Also, numerous literature studies on anthocyanin synthesis have been 

conducted in the Department of Horticultural Science at Stellenbosch University (Marais, 

2000; Reynolds, 2001; Schmeisser, 2002; Steyn 2003; Viljoen and Huysamer, 2005). Rather 

than repeating these reviews, we decided to focus the literature study of this thesis on the use 

of suspension cultures to study the regulation of anthocyanin synthesis. Unlike apples, 

(Marais et al., 2001; Steyn et al., 2005), pears do not synthesize anthocyanins after removal 

from the tree making it difficult to study the regulation of anthocyanin synthesis in pears. 

Under laboratory conditions, suspension cultures could be subjected to different 

environmental conditions (Kakegawa et al., 1987), potentially allowing the determination of 

optimum day- and night-time temperatures for anthocyanin accumulation. 
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LITERATURE REVIEW: USING CELL SUSPENSION CULTURES TO STUDY 

ANTHOCYANIN SYNTHESIS 

 

 

1. Introduction 

 

Apple fruit have the ability to synthesize anthocyanins from the tree, thus allowing 

researchers to study the temperature and light regulation of red colour development under 

controlled conditions in the laboratory (Curry, 1997). Unlike apples, pears do not synthesize 

anthocyanins after removal from the tree, i.e. after harvest (Marais et al., 2001b; Steyn et al., 

2005). This makes it difficult to study the regulation of anthocyanin synthesis in pear. 

However, plant cells of the fruit skin retain the ability to divide and synthesize anthocyanins 

(and other phenolics) as part of secondary metabolism - seeing that secondary metabolite 

synthesis is believed to be related to cell growth (Nakamura et al., 1998) and differentiation 

(Kakegawa et al., 1995). This concept of organogenesis can thus be used in laboratory 

conditions to potentially grow cells from a piece of fruit peel (by using callus culture 

suspension cultures) and subject them to many different environmental conditions, including 

temperature and light (Kakegawa et al., 1987), in order to study  the regulation of anthocyanin 

synthesis. 

 

2. Cell Suspension Cultures 

 

Cell suspension cultures consist of cells that rapidly divide within a liquid medium (Evans et 

al., 2003). The term normally refers to dispersed single cells as well as some cell aggregates, 

seeing that a cell suspension culture consisting entirely of only single cells is rarely achieved 

(Evans et al., 2003). The cells within the medium proliferate and complete a growth cycle 

while suspended in the liquid medium. Cell suspension cultures, initiated from callus cultures, 

grow more rapidly than a callus culture and are more suitable for experimental manipulations. 

In order to establish and maintain a fine cell suspension culture, consisting of many dispersed 

single cell and some small cell aggregates, it is compulsory to select and subculture for 

several generations (Evans et al., 2003). 
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2.1 History 

Making use of cell suspension techniques to study biological processes is a relatively new 

concept compared to other tissue culture work. Methods for generating plant callus tissue 

from several sources were only really well established in the 1950’s, more than 130 years 

after the Cell Theory, suggesting totipotency of cells (Gautheret, 1983). Callus formation in 

various species and the process of wound healing were first described in 1853.  In 1878, 

more detailed reports followed on the process of callus development (Gautheret, 1983).  In 

1902, the first but unsuccessful attempt at tissue culture was made by Gottlieb Haberlandt, 

which later led to root cultures, embryo cultures and the first true callus culture (Thorpe, 

2007).   

 

During the 1950’s, the study of human cancers became a very popular field of research. 

Since it was understood that plant callus development shared similarities to mammalian 

cancer development, research laboratories intensified their studies on plant callus and 

suspension cultures. These studies on “plant cancers” were well rewarded with generous 

grants (Trigiano et al., 2005). The prediction was made in the early 1950’s that a somatic 

plant cell could undergo embryogenesis. This idea was proved valid by Steward et al. (1958) 

and Reinert and Stewart (1958) who showed that somatic cells of carrots would differentiate 

into embryos when cultured within a proper nutrient medium. It led to the vision of great 

applications in propagation and genetic engineering. Today, somatic embryogenesis, or 

nonzygotic embryogenesis, has been demonstrated in most higher plant species (Trigiano et 

al., 2005). Murashige and Skoog (1962) developed a medium for rapid growth and bioassays 

with tobacco tissue cultures. This well established MS-medium is still being used as basic 

agar and liquid medium for callus growth as well as suspension growth. 

 

2.2 Callus Development 

A callus can be defined as an amorphous mass of unorganized (thin-walled) parenchyma 

cells (Evans et al., 2003). Callus formation can be seen at the cut surface of a wounded plant 

and is therefore thought to be a natural response by the plant to protect itself. In a culture, a 

callus can be initiated by simply placing a piece of plant tissue (called explant) on a solid 

culture media under aseptic conditions. The callus will then be induced and formed from 

proliferating cells. During initiation, the differentiated and specialized cells of the explant are 
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basically rejuvenated to an undifferentiated state. By simply applying the right growth 

medium, a callus can be initiated from a variety of tissues, depending on the species (Evans 

et al., 2003). In some species, rapid cell division is more easily induced. The presence of 

plant growth factors (hormones) in the medium enhances callus formation and proliferation 

(Gamborg and Phillips, 1995). Examples of such hormones are auxins and cytokinins that 

promote cell division and elongation. 

 

Callus varies in appearance and physical features depending mostly on the parent tissue, 

growth conditions and the age of the callus (Evans et al., 2003). Callus may be white, green 

or coloured due to the absence or presence of chlorophyll and anthocyanin. In general, two 

types of callus can be defined. Type 1 callus is non-friable, regenerates somatic embryos and 

organs and frequently produces leaf-like structures. Type 2 callus is friable, undifferentiated 

and regenerates only somatic embryos (Evans et al., 2003). The growth of the callus can be 

monitored in several different ways including fresh weight measurements, dry weight 

measurements and by in vitro estimation of the callus diameter. The first two techniques are 

only really useful for optimizing the growth medium and/or conditions, seeing that it will result 

in the death of the culture (Evans et al., 2003). 

 

2.3 Suspension Development 

The time it takes to establish a cell suspension culture varies among species and the medium 

used for culturing will also play a significant role. Dicots more easily  generate a suspension 

culture (Evans et al., 2003). High callus friability is an important factor for successful 

suspension initiation because of the need for easy fragmentation during agitation. Established 

cultures are sub-cultured every 1-3 weeks (when in early stationary growth phase) depending 

on the growth of the culture (Evans et al., 2003). The initiation of a suspension culture will 

usually entail the agitation of a healthy and vigorously in vitro-grown callus fragment in a liquid 

medium and on an orbital shaker. This breaks the callus into small masses of cells and single 

cells. The colour of the callus can give a good indication of the state of the callus. A light 

colour (white/cream) is generally indicative of a healthy callus whereas a dark brown callus 

most likely contains many dead cells (Evans et al., 2003). Evans Blue dye can be used to 

determine the number of healthy cells (staining of cells). Of course the most reliable method 

of determining viability and vigour of a callus is the culture growth rate (Evans et al., 2003). 
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Suspensions can be initiated from either a friable callus, a non-friable callus or from a callus 

treated with call wall degrading enzymes. Because of the easy fragmentation of a friable 

callus during agitation in a liquid medium, these calluses are the most commonly used. 

Considering the importance of friability in successful initiation of suspension cultures, 

procedures should be used to ensure that a suitable friable callus is produced. Examples of 

such procedures include cycling of a callus (e.g. 7-day cycle for 2-3 weeks) and ratio of 

hormones in the growth medium (e.g. higher auxin to cytokinin ratio) (Evans et al., 2003). The 

ratio of callus tissue to liquid medium at initiation is also important. For every 100 ml liquid 

medium used, the addition of about 2 to 3 g friable callus is recommended. The cells will start 

to break off from the callus in the liquid medium and form a suspension. It is necessary to 

subculture on a regular basis to fresh media to establish an actively growing culture of the 

desired density (Evans et al., 2003; Gamborg and Phillips, 1995). Pectinase, which breaks 

down the middle lamella of the plant cell wall and separates plant cells, is sometimes used as 

an enzyme treatment to promote suspension of cells (Evans et al., 2003). 

 

According to Gamborg and Phillips (1995), the basic steps for initiation and maintenance of a 

cell suspension culture may consist of the following: pieces of broken-up calli are transferred 

to an Erlenmeyer flask containing the liquid medium. The importance of keeping the work 

area sterile is emphasized and the Erlenmeyer flasks must be capped. It is advisable to 

prepare additional replicate flasks. Incubation follows on a gyratory shaker for 1 week after 

which sub-culturing must be done weekly. For the first few subcultures, a portion of the spent 

medium should be removed and replaced with fresh medium. When the cell mass has 

doubled, the culture must be split into two flask (containing an equal amount of fresh medium) 

followed by the repeating of the incubation cycle.  Upon the generation of a stable suspension 

culture consisting of finely dispersed cell clusters and aggregates, a dilution ratio of 1:4 to 

1:10 old culture to fresh medium should be possible on a 7 to 10 day basis to maintain the cell 

line. A mesh can be used in order to obtain a suspension consisting of only fine aggregates 

and cell clusters. 

 

A growth curve for a certain established cell suspension can be constructed as follows 

(Gamborg and Philips, 1995): Combine all replica cultures into a single batch for uniform 
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inoculums and prepare replicate suspensions from batch culture. Determine the zero-time 

value for the growth curve by spinning some of the culture in a centrifuge tube and measuring 

the volume of packed cells. Re-suspend the culture and incubate on rotary shaker. Repeat 

the centrifuge process every 2-3 days in order to attain 8-12 sampling times. Then the mean 

packed cell volume can be calculated as well as standard deviation for each sampling time. 

By using these data, a curve can be plotted as the growth curve of the established cell 

suspension. 

 

2.4 Mediums Commonly Used 

Mediums used for callus and suspension cultures will typically consist of a carbon source, 

inorganic salts, vitamins and growth regulators (plant hormones). Other components such as 

organic nitrogen, organic acids and/or plant extracts for example, can be added for specific 

purposes. The Murashige and Skoog medium (MS medium) (Table 1) (Murashige and Skoog, 

1962), the Linsmaier and Skoog medium (LS-medium) (Linsmaier and Skoog, 1965) and the 

B5 medium (Table 1) (Gamborg et al., 1968) are the most frequently and widely used salt 

compositions. LS medium has the same salts as MS medium, but contains thiamone at 6.4 

mg L-1 and 100 mg L-1 inositol instead of glycine and MS vitamins. Na2EDTA and 

FeSO4.7H2O can be replaced with Ferric Na EDTA and Sequestrene 300 Fe respectively for 

MS medium (Gamborg and Philips, 1995). Over the past few years, a number of media has 

been developed for specific purposes (Gamborg and Philips, 1995), e.g., basal media for 

tissue culture of cereals (N6, NN, ER and L2 mediums), media for woody species (DKW and 

WPM mediums), media for embryogenic soybean (FN and LV mediums) and specialized 

vitamin and organic supplements (B5 supplements, Kao vitamins and Koa organic acids). 

 

According to Gamborg and Phillips (1995), compounds used as growth regulators include the 

following: cytokinins, e.g., benzyladenine (BA), isopentyl adenine (2-iP), kinetin (KIN) and 

zeatin (ZEA), synthetic cytokinins e.g.,  thidiazuron (TDZ), auxins, eg., indole-3-acetic acid 

(IAA), indole-3-butyric acid (IBA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic 

acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and picloram (PIC), gibberellic acid 

(GA3), abscisic acid (ABA) and silver nitrate (AgNO3). 
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2.5 Fruit Cell Suspension 

 

Over the past few years, research on anthocyanins has been conducted utilizing suspension 

cultures from a range of different horticultural commodities such as strawberry (Fragaria 

ananassa), Centaurea cyanus, Aralia codata, grape (Vitis vinifera), carrot (Daucus carota), 

poplar (Poplus deltoides) and also pear (Pyrus communis).  

 

2.5.1  Fragaria ananassa (Strawberry) 

Mori and Sakurai (1996a) induced callus from the leaf of a strawberry plant (cv. Shikinari) by 

using LS medium containing 3% sucrose, 0.2% Gellangum, 0.1 mg L-1 BA and 1 mg L-1 2,4-D. 

The tissue was incubated under a 16:8 h light-dark cycle. A cell suspension culture was 

initiated by transferring friable callus to  liquid LS medium containing 3% sucrose, 1 mg L-1 

2,4-D and 0.1 mg L-1 BA. Mori and Sakurai published at least two further papers in the same 

year (Mori and Sakurai, 1996b; Mori et al., 1996) and again in 2001 (Mori et al., 2001) 

reporting on anthocyanin production in strawberry cell suspensions by using the same 

technique/recipe, but adding a conditioned medium (filtered culture medium) as reported 

previously (Mori et al., 1994). Seki et al. (1999) also used a LS solid medium for the FAR cell 

line (strawberry) to produce anthocyanin in the dark. 

 

2.5.2  Aralia cordata (Traditional Japanese vegtable also known as “Udo”) 

Calli were induced from the leaves and stems of Aralia cordata. Culturing was done on MS 

agar medium supplemented with 3% sucrose, 1 mg L-1 2,4-D and 0.1 mg L-1 kinetin. 

Incubation was in the dark, after which calli were maintained by periodic transfer to fresh 

media in a light-dark cycle. Cell lines were selected afterwards for further experimental 

procedures (Sakamoto et al., 1994). 

 

2.5.3  Vitis sp. 

Do and Cormier (1991) used Gramborg B5 medium supplemented with 250 mg L-1 casein 

hydrolysate, 0.1 mg L-1 NAA, 0.2 mg L-1 kinetin and 88 mM sucrose for their grape cell 

suspension. Seven day-old cultures were transferred to a basal medium supplemented with 

various concentrations of sucrose and mannitol for experimental procedures. However, it was 
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not reported on which part of the grape/ vine was used for the induction of calli to start off 

with. 

 

Suzuki (1995) received the cell suspension used for his studies on anthocyanin accumulation 

due to pH and osmotic stress, as a gift. Thus no mention is given on the exact origin of the 

grape cells. The cell were however cultured in a myo-inositol, thiamine-HCL, 2,4-D and 

kinetin. Sub-culturing was done in continuous light conditions. 

 

Decendit and Merillon (1996) investigated effective conditions for cell growth and polyphenol 

production (tannins and anthocyanin) by using a suspension culture derived from V. vinifera. 

The callus used to establish the cell suspension culture was provided by an external source. 

The suspension cultures were maintained under continuous fluorescent light. The 

maintenance medium contained B5 macro elements, MS microelements and vitamins, 

supplemented with sucrose, casein hydrolysate, NAA and kinetin. Merillon et al. (1998) made 

use of the methodology developed by Decendit and Merillon (1996) to investigate the 

regulation of polyphenol synthesis by sugars. 

 

Macheix et al. (1995) used pulp fragments to generate calli, and thus cell suspensions of V. 

vinifera cv. Gamy Freaux in order to study the enhancement of anthocyanin synthesis in 

grape cell suspensions. The culturing medium consisted of Gamborg macro-elements, 

Murashige and Skoog microelements and Morel vitamins, supplemented with sucrose, casein 

hydrolysate and the growth factors kinetin and NAA.  The pH was adjusted to 6. 

 

2.5.4  Pyrus communis L. cv. Passe Crassane (European Pear) 

Pech et al. (1979) developed pear fruit callus cultures from the outer pulp (receptacle). One of 

these cultures used were initiated in 1972 from young fruit, 45 days after full bloom, and 

another in 1975 from mature fruit picked at harvest. Calli from the same cultivar were also 

initiated from stem and leaf petioles in 1975 from one-month-old shoots. The medium used for 

culturing contained mineral nutrients from Murashige and Skoog (1962), sucrose, asparagin, 

ascorbic acid, thiourea, a vitamin solution containing Capanthotenate, inositol, biotin, nicotinic 

acid, thiamin and pyridoxin. Growth factors used were 2,4-D and 6-benzylaminopurine (BAP). 

The culture established in 1972 was used in various subsequent studies to, for example, 
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study the senescence of pear fruit cells cultured in a continually renewed, auxin-deprived 

medium (Pech and Romani, 1979; Pech et al., 1982), the stimulation of cyanide-resistant 

respiration in suspension cultures of senescent pear fruit cells by cycloheximide (Romani et 

al., 1981), ethylene production by pear fruit suspension cultures (Romani and Puschmann, 

1983; Romani et al., 1985), and protein synthesis, and metabolic and respiratory responses of 

the suspensions cells (Lelievre et al., 1987, Romani et al., 1990, Kader et al., 1992).  Pech 

and Romani (1979) developed cell culture methodology that permitted renewal of the medium 

without removal of cells. 

 

3. Anthocyanin 

 

Anthocyanins are water-soluble vacuolar flavonoid pigments that colour various plant organs, 

including leaves and fruits (Harborne and Grayer, 1988). Anthocyanins are found 

predominantly in outer cell layers such as the epidermis and the cell layers directly beneath 

the epidermis (Mazza and Miniati, 1993; Lancaster et al., 1994).  

 

3.1 Biosynthesis - General 

Biosynthesis of flavonoids and anthocyanins have been widely studied and is well 

understood, with the exception of a few enzymatic steps (Macheix et al., 1990). It has been 

the theme of various reviews (e.g. Heller and Forkman, 1988; Lancaster, 1992; Neill, 2002; 

Davies, 2009). 

 

Anthocyanins are synthesized from two major precursory pathways: the phenylpropanoid 

pathway via the Shikimic acid pathway (in order to produce the amino acid phenylalanine) 

and the malonic acid pathway with the production of 3 molecules of malonyl-CoA (Hermann, 

1995). The conversion of phenylalanine to trans-cinnamate, mediated by phenylalanine 

ammonia-lyase (PAL), is considered the first committed step in the synthesis of phenolic 

compounds. Phenylalanine from the Shikimate pathway (see Figure 1) is condensed with the 

3 molecules malonyl-CoA (a 3 carbon unit derived from acetyl-CoA) by the enzyme chalcone 

synthase (CHS) to form chalcone (Koes et al., 1994). Chalcone is subsequently isomerized 

by enzymes such as chalcone isomerase (CHI) to the colourless pigment naringenin (a 

flavanone). Naringenin is oxidized by the enzymes flavanone hydroxylase (FHT / F3H), 
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flavonoid 3’ hydroxylase and flavonoid 3’5’- hydroxylase. The products are subsequently 

reduced by the enzyme dihydroflavonol 4-reductase (DFR), to the corresponding 

leucoanthocyanidins. Leucoanthocyanidins are the direct precursors of the anthocyanidins, 

although the enzymatic steps catalyzing the conversion are not well understood (Heller and 

Forkmann, 1993). Anthocyanidin synthase (ANS) is believed to catalyze the 2-oxoglutarate-

dependent oxidation of leucoanthocyanidin to 2-flavan-3,4-diol, which can then readily be 

converted to anthocyanidin by acidification (Heller and Forkmann, 1993). The resulting 

anthocyanidins, which are unstable, are further glycosylated by enzymes such as 

UDPGalactose: flavonoid-3-o –glycosyltransferase (UFGT). This results in the final and more 

stable anthocyanins. The colour intensity and stability of anthocyanins are determined by the 

number and position of hydroxyl groups, methyl groups, sugars and acylated sugars 

substituted to the molecule (Mazza and Miniati, 1993). 

 

3.2 Regulation of Anthocyanin Biosynthesis in Pear 

Most fruit experience a peak in anthocyanin synthesis during ripening, i.e. towards the harvest 

period (Saure, 1990). PAL activity increases with the accumulation of phenolic compounds 

including anthocyanin in many plant and fruit types including apple fruit (Lister et al., 1996). In 

apple fruit and grape berries, red colour development and thus anthocyanin accumulation, is 

seemingly regulated by the activity of the last enzyme of the biosynthetic pathway, UFGT (Ju 

et al., 1999; Kondo et al., 2002; Ban et al., 2003). UFGT activity has been strongly correlated 

with red colour developing in maturing apples (Lister et al., 1996). Steyn et al. (2004a) 

reported that UFGT activity is not likely to be the limiting factor for anthocyanin synthesis in 

pear peel, since UFGT activity in ‘Rosemarie’ and ‘Bon Rouge’ pears was found to increase 

during fruit development whereas red colour decreased. 

 

Pear fruit attain their highest anthocyanin concentration midway between anthesis and 

harvest (Steyn et al., 2004a). The anthocyanin concentration, and red colour, decreases 

towards harvest due to a combination of decreasing synthesis, degradation at high 

temperatures and dilution (Steyn et al., 2004a, b).This means that the fruit colour at harvest 

will be the result of the competing factors, namely maximum anthocyanin concentration 

reached vs. the severity of colour loss and dilution towards harvest. 
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Environmental factors that contribute to anthocyanin accumulation in pear include 

temperature and light, although high temperatures together with high light, contribute to the 

fading of red colour due to degradation of anthocyanin (Steyn et al., 2004b). 

Light is essential for anthocyanin synthesis in most fruit and plant tissues (Mancinelli, 1983). 

The rate of anthocyanin synthesis in apples increases linearly with the level of light energy 

they are subjected to (Proctor, 1974). The anthocyanin concentration of apples within the 

raceme, is determined by the bearing position and position within the tree canopy and relates 

to the light levels that they received (Awad et al., 2000). Light is also a culprit when it comes 

to degradation of anthocyanin (Francis, 1989; Steyn et al., 2004b). Steyn et al. (2004b) 

reported that under limiting conditions for anthocyanin synthesis, light will probably contribute 

more to anthocyanin degradation in pear peel than to synthesis. Shading of ‘Sensation Red 

Bartlett’ pears during the month before harvest, decreased anthocyanin degradation (Dussi et 

al., 1995). Apple fruit, in contrast, require high light intensities during the ripening stage which 

is the stage of maximum anthocyanin accumulation (Macheix et al., 1990; Saure, 1990). 

 

Whereas colour development can be induced in detached apple fruit (Curry, 1997), Marais et 

al. (2001b) has not been able to induce anthocyanin synthesis in detached pear fruit. This 

makes it more difficult to determine optimum temperatures for anthocyanin synthesis for pear 

fruit. 

 

Reay (1999) reported that anthocyanin accumulation in detached ‘Granny Smith’ apples 

benefited from induction at low temperatures (4 ºC), while subsequent accumulation of 

anthocyanin required irradiation at higher temperatures (20 ºC). Anthocyanin synthesis in all 

apple cultivars that have been studied thus far benefited from low temperatures (Curry, 1997; 

Reay, 1999; Marais et al., 2001a). PAL, together with other enzymes forming part of the 

anthocyanin biosynthesis pathway including CHS and CHI, have been shown to be low-

temperature inducible in apple fruit (Faragher, 1983; Tan, 1980). Pears generally do not 

increase in red colour in response to low temperatures (Steyn et al., 2004a; Steyn et al., 

2005). There is, however, the exception of ‘Rosemarie’, which does require low temperature 

for red colour development. Steyn et al. (2004a) reported that PAL and UFGT activity as well 

as red colour increased with the passing of a cold front. PAL and UFGT activity showed a 

strong negative correlation with daily minimum temperatures. This suggests induction of 
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anthocyanin synthesis at low temperatures. In ‘Bon Rouge’, enzyme activity and red colour 

did not increase in response to low temperatures (Steyn et al., 2004b). 

 

3.3 Anthocyanin Synthesis in the Laboratory 

Anthocyanin accumulation in suspension cultures has been studied with cell cultures derived 

from many different horticultural commodities including strawberries (Mori and Sakurai, 

1996a, b), flowers (e.g. Centaurea cyanus) (Kakegawa et al., 1987), carrots (Ozeki, 1996), 

grapes (Macheix et al., 1995), poplar (Tholakalabavi et al., 1997), apples (Li et al., 2004) and 

pears (Pech et al., 1979). 

 

Light seems to be an important factor when it comes to anthocyanin synthesis even with cell 

suspension cultures. Generally, anthocyanin synthesis is prevented when cultures are kept in 

the dark (Kakegawa et al., 1987). However, when cultures are irradiated with ultraviolet (UV) 

and white light, anthocyanin synthesis is induced (Kakegawa et al., 1987; Seki et al, 2000). 

Anthocyanins usually only accumulate in small amounts within cultured cell lines (Seki et al., 

1999), and as mentioned above, requires strong light irradiation for synthesis. Some plant cell 

cultures, however, have been reported to produce anthocyanins in the dark (e.g. Daucus 

carota, Vitis hybrid and Aralia cordata), although only very low levels were attained (Dougall 

et al., 1980; Yamakawa et al., 1983). Producing anthocyanin at a commercially viable level 

(as natural colourant) has proved a difficult task (Sakamoto et al., 1994). It is also expensive 

to operate a photo-bioreactor, which produces a high light intensity. Thus for commercial 

applications, it would be preferable to produce anthocyanin in the dark. Seki et al. (1999) 

reported a cell line from strawberry callus that produced anthocyanin at high enough levels in 

the dark to be considered for the industrial production of anthocyanin. Seki et al. (2000) 

concluded in a later report that anthocyanin production in strawberry cells does not only 

depend on light intensity, but requires a light and dark cycle with second- or hour-scale 

periods. This was an enhancement on an earlier study that concluded that the production of 

anthocyanin in strawberry cells was greatly induced by high light intensity (Mori et al., 1993; 

Seki et al., 2000). 

 

Increasing the osmotic potential of the culture medium by increasing the sucrose 

concentration or by adding manitol to the culture medium (Vitis vinifera) caused a significant 
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increase in anthocyanin accumulation in pigmented cells (Do and Cormier, 1991; Suzuki, 

1995; Tholakalabavi et al., 1997). Suzuki (1995) reported increasing anthocyanin 

accumulation in cultured cells with increasing D-mannitol concentrations and thus osmotic 

stress. The proportion of pigmented cells to non-pigmented cells also increased, but cell 

growth was repressed with increasing osmolarity of the media. Increasing sucrose 

concentrations in suspension cultures proved to stimulate anthocyanin accumulation (Cormier 

et al., 1990; Yamakawa et al., 1983; Matsumoto et al., 1973), and has been regarded as 

providing a good carbon source. The stimulation of the methylation due to the higher osmotic 

potential and, therefore, the stability of anthocyanins has been described as the possible and 

most likely reason for this effect (Do and Cormier, 1991). Anthocyanin production was 

reduced in LS, MS and B5 basal mediums in both light and dark conditions when the sucrose 

concentrations used exceeded 5 % (v/w) (Sakamoto et al., 1994). Sucrose concentration of 9 

% and 12 % (v/w) respectively, resulted in growth reduction in all media. The higher sucrose 

concentration limits anthocyanin accumulation probably because of the higher osmotic 

strength of the media, which could negatively affect the water content of the vacuole. 

Sakamoto et al. (1994) reported an optimum sucrose concentration for the highest 

anthocyanin production to be 2 % for LS medium in the dark and 2 % for B5 medium in the 

light, respectively. The best overall conditions for anthocyanin production in light and dark 

were on LS medium with a sucrose concentration of 4 % and 2 %, respectively. 

 

Anthocyanin production purportedly benefits from a higher ratio of NO-3 / NH+4 (reported but 

no data shown), although in the dark, cell growth is increased if N is decreased to 20% of the 

total nitrogen of the standard medium (Sakamoto et al., 1994).  Both cell growth and 

anthocyanin concentration decrease with increasing pH of the basal medium (Suzuki, 1995).  

Anthocyanin production was higher in media with a low pH (4.5) than in neutral media (pH 7).  

The mechanisms of anthocyanin induction could possibly differ in response to the conditions 

used to induce osmotic stress and various pH values of the media (Suzuki, 1995).  However, 

Furusaki and Zhang (1997) reported that although a pH of 4.5 to 5.0 was favorable for cell 

growth and anthocyanin synthesis after inoculation – with no lag phase or adaptation period - 

the maximum anthocyanin production of suspended strawberry cells was obtained at pH 8.7. 
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Stuart and Street (1969) used filtered culture medium to stimulate cell growth of a subsequent 

culture. Their supposition is that conditioning factors are produced and released by cultured 

plant cells into the culturing medium. These cultured cells release metabolites into the 

medium during the lag phase prior to initiation of cell division to sufficient levels for growth to 

initiate, i.e. cell cycle initiation. These conditioning factors then promote cell growth and cell 

division. Mori and Sakurai (1996b) reported that anthocyanin accumulation could be 

enhanced by using ‘Conditioned Medium’. 

 

Sakuta et al. (1994) reported on the regulatory mechanisms of biosynthesis of anthocyanin in 

relation to cell division activity in Vitis sp. suspension cultures. Inhibition of cell division by 

means of a DNA inhibitor (aphidicolin) or reduction of phosphate concentration in the medium 

resulted in rapid accumulation of anthocyanin coinciding with the cessation of cell division. 

CHS and PAL activity increased to high levels when transfers were done to fresh medium, but 

decreased thereafter and remained at low activity levels during the exponential phase of cell 

division. When cell division ceased, PAL and CHS activity increased to high levels and 

remained at these high levels for the duration of anthocyanin accumulation (Sakuta et al., 

1994). A deficiency in inorganic phosphate during culture led to growth reduction, anthocyanin 

production and increased dihydroflavanol reductase (DFR) activity in the cell suspension 

(Macheix et al., 1995). 

 

4. Discussion 

 

Research on the use of plant cell cultures (including callus cultures and cell suspension 

cultures) have increased exponentially over the last half century, with a wide range of 

applications and implications for agricultural, horticulture and forestry. 

 

Cell suspension cultures from different fruit types have been established and used for 

studying anthocyanin accumulation under different conditions. However, opposing conditions 

are required for induction of anthocyanin synthesis and for maintaining active cell division for 

culture growth (Ozeki, 1996). Hence, in most cultured plant cells, the activities of secondary 

metabolism (including the flavonoid pathway) are much lower than in differentiated organs 

and tissues of intact plants (Ozeki, 1996).  
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Pear cell suspension cultures have been widely used in research. Hence, in theory it seems 

possible to establish a pear cell suspension culture for studying temperature effects on 

anthocyanin accumulation in pear. As mentioned, pear fruit do not develop red colour once 

removed from the tree and so it is a difficult task to establish an optimum temperature range 

for colour development in pear fruit. Although pear cell suspensions may allow the study of 

anthocyanin accumulation in pear fruit, optimum temperatures for anthocyanin synthesis in 

culture may differ from optimum temperatures for anthocyanin synthesis in fruit. In the 

literature cited for this review, most cell suspension cultures are maintained at 25 ºC seeing 

that the temperature effect on anthocyanin synthesis was not studied. Optimum temperatures 

for anthocyanin accumulation in the epidermal layer of different apple cultivars were reported 

tot be in the range of 23 ºC tot 27 ºC (Curry, 1997; Arakawa and Bakhshi, 2006). Although 

these temperatures appear to correlate with the optimum temperature for anthocyanin 

synthesis in cultures, induction at low temperatures may be required as in intact apples 

(Reay, 1999; Curry, 1997). Also, the secondary metabolic pathway of cultured cells may differ 

from that in differentiated organs and intact plants. Thus, optimum temperatures for 

anthocyanin accumulation in intact fruit (differentiated organ) may very likely differ from 

optimum temperatures for anthocyanin accumulation in a culture of cells (from the same fruit). 

The effect of temperature, not falling in the optimum range for anthocyanin accumulation on a 

suspension culture, may be different from the effect of temperatures on the whole fruit. 

 

Few of the publications on pear cell suspensions provide a complete list of the exact materials 

and methods that were followed. This is because most of the cell suspension cultures were 

obtained from elsewhere. In one of the oldest publications on pear cell suspension cultures 

(Pech et al., 1979), it is mentioned that the callus cultures derived from the outer pulp of pears 

was already established in 1972 and 1975, with the procedures being described elsewhere. 

Subsequent papers all refer to the already established callus cultures from 1972 or the paper 

of Pech et al. (1979) for detail on the establishment of the cultures. In most of the work 

published, the researchers do, however, explain the conditions under which the suspensions 

were held and sub-cultured. It may prove difficult and time consuming to validate and repeat 

these studies if an established strain of suspension cultures is not readily accessible. Also, 

establishing a suspension culture will require access to culture facilities, and arduous study 
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and training in the concepts and techniques of general biotechnology, sterile techniques, 

media preparation, tissue cultures, callus development and cell suspension cultures. 
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Table 1. Composition of MS and B5 basal media (Gamborg and Phillips, 1995) 

Component MS B5 

Major salts mg L-1 mM mg L-1 mM 

NH4NO3 1650 20.6   

KNO3 1900 18.8 2500 25 

CaCl2.2H2O 440 3.0 150 1.0 

MgSO4.7H2O 370 1.5 250 1.0 

KH2PO4 170 1.25   

(NH4)2SO4   134 1.0 

NaH2PO4. H2O   150 1.1 

Minor salts mg/L µM mg/L µM 

KI 0.83 5.0 0.75 4.5 

H3BO3 6.2 100 3.0 50 

MnSO4.4H2O 22.3 100   

MnSO4.H2O   10 60 

ZnSO4.7H2O 8.6 30 2.0 7.0 

NaMoO4.H2O 0.25 1.0 0.25 1.0 

CuSO4.5H2O 0.025 0.1 0.025 0.1 

CoCl.6H2O 0.025 0.1 0.025 0.1 

Na2EDTA 37.3 100 37.3 100 

FeSO4.7H2O 27.8 100 27.8 100 

Vitamins and Organics 

myo-Inositol 100 555 100 555 

Nicotinic acid 0.5 4 1.0 8 

Pyridoxine HCL 0.5 2.5 1.0 5 

Thiamine HCL 0.1 0.3 10 30 

Glycine 2.0 27   

Sucrose 30 g  20 g  

pH 5.8  5.5  
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Figure 1. The flavonoid pathway based on the review by Neill (2002), modified from Shirley (1996). 

Abbreviations: PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-

coumarate:CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-

hydroxylase; F3’H, flavonoid 3-hydroxylase; DFR, dihydroflavonol reductase; ANS, anthocyanin 

synthase (leucoanthocyanidin dioxygenase); UFGT, UDPGalactose: flavonoid-3-o-

glycosyltransferase. CHS is considered as the first enzyme of the flavonoid biosynthetic pathway. PAL 

form part of the phenylpropanoid pathway. 
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PAPER 1: OPTIMUM DAY TEMPERATURES FOR RED COLOUR 

DEVELOPMENT IN APPLE FRUIT 

 

 

Abstract 

This study focused on determining the optimum day-time temperatures for anthocyanin 

accumulation for red and bi-coloured apple cultivars grown in South Africa. ‘Royal Gala’ (RG), 

‘Fuji’ (FJ), ‘Braeburn’ (BB), ‘Early Red One’ (ERO) and ‘Cripps’ Pink’ (CP) were sampled from 

two distinctly different production areas in the Western Cape. Peel discs were punched from 

the shaded sides of fruit, placed on Peltier temperature plates set to a temperature range 

from 16 to 31 ºC with 3 ºC intervals and exposed to photosynthetic photon flux (PPF) of 550 

to 650 µmol m-2 s-1 for 72 hours where after their change in hue was determined. During the 

2007/2008 growing season, the study mainly focused on determining optimum temperatures 

for red colour development at the peak of anthocyanin synthesis, i.e., from two weeks before 

the onset of commercial harvest. During the 2008/2009 season, the effect of temperatures on 

anthocyanin synthesis were evaluated at regular intervals throughout fruit development. 

Although apples from Ceres generally developed redder colour than apples from Grabouw, 

the response to temperature was the same in both areas. Colour development generally 

showed a quadratic response to temperature with reddest colour developing from 17 to 25 ºC. 

The response to temperature was less clearly defined in ERO where colour developed over a 

broader temperature range. The temperature optima for red colour development were 

appreciably lower in 2008/2009 compared to 2007/2008 for RG, FJ and BB suggesting that 

prior climatic conditions affect the potential to synthesise anthocyanin. Cultivars and their 

strains showed the same response to temperature with regard to red colour development. 

The optimum temperature for red colour development increased during fruit development in 

CP, but not in RG, BB, FJ and ERO. All cultivars showed an increase in the extent of red 

colour development from early fruit development until approximately halfway towards 

commercial harvest. 

 

Introduction 

Fruit colour plays an important role in the international markets. Preference is generally given 

to the better-coloured apple fruit and thus fruit colour will be a factor when it comes to grading 
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fruit for packing and exporting (Kevany et al., 2003; Reay, 1999). According to local packing 

specifications (Department of Agriculture, Forestry and Fisheries, 2010), Class 1 fruit of bi-

coloured cultivars, e.g. Braeburn, Fuji, Royal Gala and Cripps’ Pink require a minimum of 40 

to 50% red blush coverage. 

 

Two periods of colour development in the epidermal tissue of apple fruit can be distinguished. 

The first period occurs during the cell division phase, even in non-red apple cultivars, such as 

Golden Delicious and Granny Smith (Lancaster, 1992; Saure, 1990). The second period of 

colour development occurs from approximately halfway during fruit development until harvest 

and again some non-red cultivars are capable of some anthocyanin formation at this later 

stage of fruit development (Curry, 1997; Reay, 1999). Most fruit experience a peak in 

anthocyanin synthesis during ripening (Steyn, 2009). 

 

Light and temperature are the major factors that determine the extent of red colour 

development in apple fruit (Lancaster, 1992; Reay & Lancaster, 2001; Saure 1990). Light is 

not considered to be limiting to red colour development in South Africa (Pretorius and Wand, 

2003). Anthocyanins in ripening apples are apparently induced at low temperatures (<10 ºC) 

(Curry, 1997) and synthesis takes place under irradiation at mild temperatures (20 ºC to 27 

ºC) in detached, mature apples (Curry 1997; Reay, 1999; Saure, 1990 citing Nauman, 1964). 

Faragher (1983) found that maximum anthocyanin accumulation in attached immature 

‘Jonathan’ apples occurred at 12 ºC and for mature fruit at 16 to 24 ºC. The effect of 

temperature on red colour development is cultivar dependent (Saure, 1990). Curry (1997) 

reported that different apple cultivars have different optimum temperatures for optimum colour 

development (i.e., 21, 23 and 25 ºC for Braeburn, Gala and Fuji, respectively). Detached 

climacteric ‘Red Chief Delicious’ apples had a higher optimum temperature for anthocyanin 

accumulation (27 oC) compared to pre-climacteric apples (25 oC). Reay (1999) found two 

thirds less anthocyanin synthesis in ‘Granny Smith’ peel at a day temperature of 30 ºC 

compared to 20 ºC. A 3 h high temperature (30 ºC) pre-treatment also reduced subsequent 

anthocyanin synthesis at 20 ºC (Reay, 1999). Apart from inhibiting anthocyanin synthesis, 

high temperature and irradiation also accelerates anthocyanin degradation.  Irradiation of 

well-coloured ‘Cripps’ Pink’ apples for 144 h at 37 ºC resulted in a �50% decrease in 

anthocyanin and a 19º hue increase (Marais et al., 2001b). 
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Considering the importance of low night and mild day temperatures for anthocyanin synthesis 

in apple peel, it is not surprising that the high temperatures experienced in warm production 

areas such as the Western Cape province give rise to poor red colour development (Reay, 

1999; Wand et al., 2005; Wand et al., 2002). Since different cultivars have different optimum 

temperatures for anthocyanin synthesis, not all may be equally suited for all production areas. 

Knowing the optimum temperature for colour development for different cultivars can provide a 

good indication of where these cultivars can be grown.  

 

This study focused on determining the optimum day-time temperatures for anthocyanin 

accumulation for red and bi-coloured apple cultivars grown in South Africa, viz. Royal Gala, 

Braeburn, Fuji, Early Red One and Cripps’ Pink. During the 2007/2008 growing season, the 

study mainly focused on determining optimum temperatures for red colour development at the 

peak of anthocyanin synthesis from 2 weeks before scheduled harvest until commercial 

harvest. Redder strains of some of these cultivars were also evaluated to determine whether 

their enhanced anthocyanin synthesis is due to a shift in the optimum temperature for 

anthocyanin synthesis. Fruit were harvested from two different production areas to assess 

whether growing conditions may influence the temperature requirements for anthocyanin 

synthesis. During the 2008/2009 season, the effective temperatures for anthocyanin synthesis 

were evaluated at regular intervals throughout fruit development.  

 

Materials and method 

Plant material:  

‘Royal Gala’ (RG), ‘Royal Beaut’ (RB), ‘Early Red One’ (ERO), ‘Braeburn Braestar’ (BB), 

‘Braeburn Frasier’ (BF), ‘Fuji’ (FJ), ‘Fuji Raku Raku’ (FR) and ‘Cripps’ Pink’ (CP) fruit were 

obtained from Oakvalley Estate in Grabouw (latitude: 34º 08’ S, longitude: 19º 02’ E, Altitude: 

300 m), while RG, ERO, BB, FJ and CP fruit were obtained from Vastrap in Ceres (latitude: 

33º 14’ S, longitude: 19º 14’ E, Altitude: 890 m). Both these regions are in the Mediterranean-

type climate of the Western Cape Province of South Africa. Average daily minimum and 

maximum temperatures recorded for these regions during the relevant months of the 2007-08 

and 2008-09 seasons are presented in Table 1 and 2, respectively. Apples were picked at 

random before 1100 HR from the same orchard row on each of the harvest dates with one 
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apple picked from the inner canopy of each of six (RG, RB and CP) or 12 trees. Only apples 

with a green/shaded side were picked. Fruit were placed in a cooler bag for transport to our 

laboratory and stored in the dark at 4 ºC for 72 h to induce anthocyanin synthesis (Curry, 

1997). 

 

2007/2008 season: Fruit were harvested on 28 January, 1 February and 8 February for RG 

and RB; 29 February, 7 March and 14 March for ERO, BB, BF, FJ, FR; and 4 April, 11 April 

and 18 April for CP. For RG, RB and CP six peel discs (15 mm in diameter, 5 mm thick) were 

punched from the shaded side of each apple to yield a total of 36 discs. Discs were randomly 

placed on the 12 peltier plates (5 cm x 6.5 cm) of a Celtec, constructed according to the 

design of Burke and Mahan (1993), with a H2O-moistend filter paper between the discs and 

the plate. Each plate contained 3 discs for each of RG-Ceres, RG-Grabouw, RB, CP-Ceres 

and CP-Grabouw. Each Peltier plate was covered with thin (0.5 mm) 100% crystal clear 

polyethylene wrap (Glad Wrap™, Glad products, Glad South Africa, Randburg, South Africa). 

A few holes were made in the plastic with a toothpick to prevent the build-up of CO2 and, 

possibly, ethylene and to reduce condensation of water on the inside of the plastic.  

 

For FJ, FR, BB , BF and ERO, one disc was punched from the shaded side of each apple to 

yield a total of 12 discs for each of FJ-Ceres, FJ-Grabouw, FR, BB-Ceres, BB-Grabouw, BF, 

ERO-Ceres and ERO-Grabouw. Discs were randomly placed on the 12 peltier plates of the 

Celtec as ascribed above so that each cultivar area combination was represented by 1 disc 

per plate.  

 

Temperature treatments:  

Set temperatures of 16 ºC, 19 ºC, 22 ºC, 25 ºC, 28 ºC and 31 ºC were randomly assigned to 

the 12 plates of the Celtec. The Celtec was placed in a growth cabinet set at 12 ºC with 2 

overhead lamps (400W High Pressure Sodium; SON-T; Osram Mgbh, Munich, Germany) 

providing irradiance of 550 to 650 µmol m-2 s-1 photosynthetic photon flux (PPF) measured 

with a quantum meter (LI-189; Li-Cor, Lincoln, Nebraska, USA) at disc level. Disc temperature 

was measured with an infrared thermometer (Raynger MX4, Raytek Corporation, Santa Cruz, 

USA) to ensure that the required temperatures were maintained. Peel temperatures of discs 
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in each plate, as well as the moisture level of the filter paper on which discs were placed, 

were assessed at least twice daily. 

 

Colour measurement:  

Disc hue angle was measured with a chromameter (NR-3000; Nippon Denshoku, Tokyo, 

Japan) before and again 96 h after placement on the Celtec. Hue angle (0º = red-purple, 90º 

= yellow, 180º = blue-green and 270º = blue) is the most relevant measurement to express 

the differences in color development in this study (McGuire, 1992). 

 

Maturity indexing:  

Firmness (by means of a penetrometer using an 8 mm plunger) and starch breakdown (by 

brushing iodine on a freshly cut apple half to stain the internal starch and therefore indicating 

the level of unconverted sugar) of apples were assessed. Internal ethylene levels were 

measured at harvest during the 2007/2008 season, which proved the fruit to be in the desired 

pre-climacteric state, i.e., core ethylene <0.5 �l L-1. 

 

2008/2009 season: RG, BB, FJ, ERO and CP apples were harvested from Grabouw and 

Ceres from shortly after fruit set until commercial harvest.  The respective harvest dates are 

presented in Table 3. Twelve apples were harvested on each date for every area cultivar 

combination with one disc punched from the green, shaded side of each apple. The same 

Celtec setup as for 2007/2008 was used and each area cultivar combination was represented 

by one disc per temperature plate. Hue angles of discs were measured before and 96 h after 

being placed on the Celtec. Fruit firmness and starch breakdown was assessed as mentioned 

above, while fruit diameter was also measured. 

 

Statistical analysis.  

The data were analyzed with the General Linear Models (GLM) procedures of Statistica 

version 9 (Statsoft Inc., Tulsa, Oklahoma), and this data analysis software was also used to fit 

nonlinear curves to data in order to calculate the inflexion point for each temperature curve 

according to the equation Y = a0(a1 + a2
��– 0.5�� 2) 
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Results 

Red colour development before commercial harvest in 2007/2008. 

No area-temperature or strain-temperature interaction occurred (Tables 4 and 5). Therefore, 

the main effects are presented.     

 

During the peak period of anthocyanin synthesis in 2007/2008, BB and FJ apples from Ceres 

showed a greater hue decrease during 72 h irradiation, i.e., a greater increase in red colour, 

compared to fruit from Grabouw (Fig. 1a). ERO and CP from Ceres appeared to increase 

more in red colour than fruit from Grabouw, but these area differences were not significant 

(p<0.1) (Table 4).   

 

Cultivars and their strains showed the same response to temperature with regard to red 

colour development (Fig. 1c). RB increased more in red colour than RG whereas FJ Raku 

Raku developed less red colour than standard FJ (Fig. 1c). No difference in colour 

development was observed between standard BB and BF (Table 5). 

 

According to a quadratic trend line fitted to the data of RG (R2 = 0.89), FJ, (R2 = 0.90) BB (R2 

= 0.92), ERO (R2 = 0.98) and CP (R2 = 0.79), the temperature optima (inflexion point) for red 

colour development were 25.16 ± 0.52 ºC, 22.72 ± 0.44 ºC, 21.13 ± 0.90 ºC, 18.73 ± 1.93 ºC 

and 22.92 ± 0.37 ºC, respectively (Table 6). There was no difference in red colour 

development in RG at 22 to 28 ºC while the least red colour developed at 16 and 19 ºC (Fig. 

2a).  Less red colour developed at 31 ºC than at 25ºC. In FJ, there was no difference in red 

colour development at 22 and 25 ºC, but less red colour developed at 16, 19 and 28 ºC. At 31 

ºC the least red colour developed (Fig. 2b). Red colour development in BB occurred 

maximally between 19 and 25 ºC with less red colour developing at 28 and 31 ºC. At 16 ºC 

less red colour developed than at 22 to 25 ºC but more than at 31 ºC (Fig. 2c). In ERO, red 

colour development occurred maximally at 16 to 25 ºC with less red colour developing at 28 

and 31 ºC (Fig. 2d). In CP, red colour development occurred maximally at 22 ºC with less red 

colour developing at 16, 19, 25, 28 and 31 ºC (Fig. 2e). At 19 and 28 ºC more red colour 

developed than at 16 and 31 ºC. Red colour development was more at 25 ºC than at 31 ºC. 
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Red colour development during the 2008/2009 season. 

Three-way interaction between temperature, stage of fruit development and area did not 

occur and there was also no interaction between area and temperature or between stage of 

fruit development and area (Table 7).   

 

RG and FJ from Ceres increased more in red colour than fruit from Grabouw during the 

2008/2009 season, BB and ERO did not show a area difference while CP from Grabouw 

appeared to increase more in colour than CP from Ceres, although the difference was not 

significant (p=0.0761) (Fig. 1b).  

 

According to a quadratic trend line fitted to the data of RG (R2 = 0.94), FJ, (R2 = 0.94) BB (R2 

= 0.93) and ERO (R2 = 0.80), the temperature optima for red colour development in 

2008/2009 were 18.39 ± 2.08 ºC, 17.41 ± 2.16 ºC, 19.12 ± 1.42 ºC and 21.75 ± 1.29 ºC, 

respectively (Table 6). Hence, the optimum temperatures for red colour development were 

lower for RG, FJ and BB and higher for ERO in 2008/2009 compared to 2008 (Table 6). 

Although CP was the only cultivar to show a significant change in temperature optima for red 

colour development during fruit development (Table 6), temperature optima during the last 

three harvests in 2009 were determined in order to compare temperature optima between 

seasons.  Even then, temperature optima for RG (20.44 ± 1.89 ºC) and FJ (18.62 ± 2.10 ºC) 

were still appreciably lower than in the previous season.  The temperature optimum for BB 

(19.95 ± 1.28 ºC) was comparable between seasons while ERO had a higher temperature 

optimum during 2008/2009 (21.70 ± 1.27 ºC) than in 2008 (Table 6).  There was no difference 

in red colour development in RG, FJ and BB at 16 to 22 ºC while the least red colour 

developed at 28 and 31 ºC (Fig. 3a, b and c).  Less red colour developed at 25 ºC than at 19 

ºC (RG), 16 to 22 ºC (FJ) and 19 to 22 ºC (BB). ERO showed a comparable change in hue 

over the entire temperature range (Fig. 3d). 

 

Interaction between the stage of fruit development and temperature was found for CP, but not 

for RG, BB, FJ and ERO (Table 7). The latter cultivars all showed an increase in red colour 

development from early fruit development until approximately halfway towards commercial 

harvest (Fig. 4a, b, c and d).  CP apples harvested on 21 Nov 2008 showed a similar small 

change in hue to irradiation over the entire temperature range (Fig. 5a). The optimum 
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temperature for red colour development gradually increased during fruit development, but 

more gradually after 20 March until the final collection date (3 April 2009). According to a 

quadratic trend line fitted to the CP data on 16 January 2009 (R2 = 0.93), 20 February 2009 

(R2 = 0.84), 20 March 2009 (R2 = 0.82) and 3 April (R2 = 0.93), the temperature optima for red 

colour development were 13.91 ± 6.12 ºC, 20.23 ± 0.84 ºC, 21.21 ± 0.67 ºC and 22.34 ± 0.46 

ºC respectively (Fig. 5b). There was no difference in red colour development on 16 January 

2009 between 16 to 22 ºC while the least red colour developed at 28 and 31 ºC (Fig. 5a).  

Less red colour developed at 25 ºC than at 19 ºC. There was no difference in red colour 

development on 20 February 2009 at 19 to 22 ºC while the least red colour developed at 28 

and 31 ºC (Fig. 5a). Less red colour developed at 16 and 25 ºC than at 19 ºC. There was no 

difference in red colour development on 20 March 2009 at 19 to 22 ºC while the least red 

colour developed at 28 and 31 ºC (Fig. 5a). Less red colour developed at 16 and 25 ºC than 

at 22 ºC. There was no difference in red colour development on 3 April 2009 at 22 to 25 ºC 

while the least red colour developed at 31 ºC (Fig. 5a). Less red colour developed at 16, 19 

and 28 ºC than at 22 ºC. 

 

Discussion 

Our data indicate that redder strains of bi-coloured apple cultivars do not owe their enhanced 

pigmentation to a higher temperature optimum for anthocyanin synthesis. Instead, their 

redder colour (as observed in the field) is most likely due to a general up regulation of 

anthocyanin synthesis transcription factors (Espley et al., 2007).  FJ Raku Raku developed 

significantly less red colour than standard FJ, Royal Beaut developed redder colour than 

standard RG while BB and BB Frasier did not differ in colour. However, fruit of these strains 

did appear redder when viewed in the orchard at harvest compared to their respective parents 

(personal observation). It is uncertain why the colouring potential of FJ Raku Raku and BB 

Frasier was less under laboratory conditions than in the orchard.   

 

In both seasons, FJ from Ceres developed significantly redder colour than FJ from Grabouw.  

ERO showed the same trend, although area differences were not significant. BB and RG from 

Ceres developed redder colour in 2007/2008 and 2008/2009, respectively. CP from Ceres 

and Grabouw did not differ in their ability to develop red colour. 
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Since the extent of anthocyanin synthesis in apples of the same cultivar can be affected by 

cultural practices such as pruning, thinning, irrigation, fertilization, especially excess nitrogen, 

rootstocks (Saure, 1990) and since fruit were collected from only one farm in each area, the 

observed regional differences in the ability to develop red colour should be interpreted with 

caution. However, on the whole, it does appear that fruit from Ceres generally developed 

redder colour than fruit from Grabouw. It is possible that the warmer Grabouw climate (Table 

1) might inhibit anthocyanin synthesis compared to the cooler Ceres climate. Reay (1999) 

found that a 3 h pre-treatment at 30 ºC reduced subsequent anthocyanin synthesis at 20 ºC 

by two thirds compared to pre-treatment at 20 ºC. To validate our results, these experiments 

have to be repeated with a minimum of three experimental orchards per cultivar from each 

production area. 

 

Light is required for anthocyanin synthesis in apple (Lancaster, 1992; Saure, 1990). However, 

due to radiant heating of apple peel exposed to high irradiance (Schrader et al., 2003), the 

optimum temperatures for red colour development in situ should be lower than the 

temperatures reported here. In addition, detached apples have a higher temperature optimum 

for anthocyanin synthesis than attached fruit, possibly as a result of accelerated ripening 

(Ritenour and Khemira, 1997). Previously, Faragher (1983) as well as Diener and Naumann 

(1981) found that the temperature optimum for anthocyanin accumulation in whole detached 

apples increased during fruit development. In the current study, the optimum temperatures of 

detached apple cultivars seemed to differ between seasons, but not between Ceres and 

Grabouw (Table 7). CP in 2008/2009 was the only cultivar that showed a gradual increase in 

optimum temperature for colour development as the season progressed with the optimum 

temperature around harvest being similar for both seasons. The increase in optimum 

temperature during fruit development concurs with previous research by Faragher (1983). 

The optimum temperature for RG, FJ and BB red colour development was lower in 2008/2009 

than during the 2007/2008 harvest period. The biggest difference in optimum temperature 

between 2007/2008 and 2008/2009 was for RG (25.1 ± 0.5 ºC vs. 18.4 ± 2 ºC) and FJ (22.7 ± 

0.4 ºC vs. 17.4 ± 2.2 ºC). Although there were no interaction between stage of fruit 

development and temperature throughout the 2008/2009 season, the optimum temperatures 

for colour development in RG, FJ and BB for the last three harvest dates was slightly higher 

than the average over fruit development. However, the temperature optima for colour 
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development in 2008 compared to 2009 are still higher for RG (25 ± 0.5 ºC vs. 20.1 ± 4.2 ºC) 

and FJ (22.7 ± 0.4 ºC vs. 18.8 ± 2.6 ºC). The shift in optimum temperature for colour 

development occurred in both Ceres and Grabouw. Although climatic conditions may have 

played a role in the shift in optimal temperature for red colour development in RG and FJ, 

there is no apparent causal correlation between optimum temperatures for colour 

development and monthly average temperatures (Table 1 and 2). Reay and Lancaster (2001) 

found that apart for temperature, maturity and the previous exposure to light are major 

modifying factors in the accumulation of anthocyanin in ‘Gala’ and ‘Royal Gala’. 

 

Except for ERO, each cultivar evaluated showed a distinct quadratic response to temperature 

with regard to red colour development. In general, red colour development decreased �17 ºC 

and �25 ºC.  This is in agreement with Faragher (1983) who reported that the optimum 

temperature range for red colour development in green mature ‘Jonathan’ apples was 16 ºC 

to 24 ºC. Christie et al. (1994) reported on the greater anthocyanin accumulation at 25 ºC 

following a period of low temperature (10 ºC) in maize seedlings. Anthocyanin synthesis was 

less in seedlings kept at 5 ºC, which is likely a consequence of both transcriptional and 

translational failure or possibly due to a higher temperature requirement for post-

transcriptional steps. Temperatures above 30 ºC may decrease red colour development by 

accelerating the degradation of anthocyanins (Kevany et al., 2003; Marais et al., 2001; Reay, 

1999). Some cultivars (e.g. ERO) seem to develop good colour over a broad temperature 

range while other cultivars (most notably FJ and CP) have a much narrower optimum 

temperature range.  Cultivars with a narrow range of optimum temperatures as well as those 

with a low optimum temperature will be most inclined to develop poor colour in warmer 

production areas. Due to slightly lower temperature optima in 2009 and a limited number of 

temperatures that could be evaluated, the quadratic response to temperature was not as 

clearly defined in 2008/2009 (Fig. 4). Curry (1997) indicated that the early season cultivar, 

Gala, had a lower temperature optima for red colour development than the later season 

cultivar, Fuji. Although it appears that RG may have a higher optimum for anthocyanin 

synthesis, our data does not indicate the same distinction between early and late season 

cultivars. The optimum temperatures for red colour development in pre-climacteric ‘Gala’ (23 

ºC), FJ (25 ºC) and BB (21 ºC) reported by Curry (1997) were determined by measuring the 

actual fruit peel temperatures with an infrared thermometer, for fruit harvested 7 days prior to 



 38 

commercial harvest. Bakhshi and Arakawa (2006) studied red colour development in FJ, 

Jonathan and Orin at 10 ºC, 17 ºC, 24 ºC and 30 ºC and found an temperature optimum of 24 

ºC for all three cultivars. Reay and Lancaster (2001) found that ‘Gala’ and ‘Royal Gala’ 

accumulated more anthocyanin at 20 ºC than at 10 ºC. These wide temperature intervals do 

not allow distinction of temperature optima between different cultivars. 

 

Diener and Naumann (1981) found that riper apples had a higher optimal temperature range 

for colour development. They subsequently suggested that each ripening stage had a 

different optimal temperature regime for colour formation. Faragher (1983) also reported that 

the optimum temperature for anthocyanin synthesis increased during fruit development in 

‘Jonathan’ apples from 12 ºC in immature apples to 16 to 24 ºC in mature apples. This would 

seemingly explain why anthocyanins accumulate more readily towards harvest in apple peel. 

In this study, RG, FJ, BR and ERO did not show any interaction between temperature and the 

stage of fruit development, i.e., each cultivar coloured at the same temperature optimum 

throughout the season. However, the extent of red colour development did increase during 

fruit development until about the beginning of February where after it stabilized. Bakhshi and 

Arakawa (2006) also did not find an increase in the optimum temperature for anthocyanin 

accumulation during fruit development, but the large temperature intervals (7 ºC) used in their 

study would make it difficult to detect small shifts in optimal temperatures. On the contrary, 

the optimum temperature for red colour development in CP clearly increased during fruit 

development in the 2008/2009 season (Fig. 5) from �14 ºC in January 2009 to 22.5 ºC in April 

2009 in accordance with the data of Faragher (1983) and Diener and Naumann (1981). 

 

It should be kept in mind that although apples in a pre-climacteric state, i.e. ethylene 

production <0.5 µ l l-1 (Curry, 1997), were used in this study, the temperature trials were done 

using peel discs, i.e., wounded material that produces ethylene. Wounded apple tissue shows 

an increase in ethylene synthesis (Burg and Thiman, 1959). Ethylene stimulates anthocyanin 

synthesis in apple peel (Faragher and Brohier, 1984; Saure, 1990). Temperature also plays a 

significant role in ethylene production. Burg and Thiman (1959) found that the optimal 

temperature over a two hour period for ethylene production in apple was 32 ºC and the Q10 

between 10 and 25 ºC was 2.8. However, at 31 ºC, and even at 28 ºC, hardly any red colour 

developed in any of the cultivars, suggesting that wounding-related ethylene synthesis does 
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not invalidate the results of this study. Previous research on colour development in peel discs 

(Curry 1997) did not refer to this issue.  

 

Conclusion 

In general, red colour in the cultivars evaluated developed maximally between 17 ºC and 25 

ºC, except for ERO that developed red colour over a broad temperature range. The optimum 

temperature for red colour development in RG, FJ, BR and ERO remained constant 

throughout fruit development, but increased during fruit development in CP in the 2008/2009 

season. The extent of red colour development did increase during fruit development. Although 

it appeared that apples from Ceres generally developed redder colour than fruit from 

Grabouw, a regional difference in the ability to accumulate anthocyanin needs to be validated 

using fruit from more orchards in each region. The optimum temperatures for anthocyanin 

synthesis in detached apples did not differ between Ceres and Grabouw, but did seem to 

differ between seasons. This suggests that growing conditions affects the potential for 

anthocyanin synthesis. Finally, our data indicate that redder strains of bi-coloured apple 

cultivars do not owe their enhanced pigmentation to higher temperature optima for 

anthocyanin synthesis. 

 

Literature cited 

 

Bakhshi, D. and Arakawa, O., 2006. Induction of phenolic compounds  biosynthesis with light 

irradiation in the flesh of red and yellow apples. J. Appl. Hort. 8:101-104. 

Burg, S.P. and Thimann, K.V., 1959. The physiology of ethylene formation in apples. Proc. 

Natl. Acad. Sci. U.S.A. 45:335-344. 

Burke, J.J and Mahan, T.C., 1993. A controlled, eight-position, thermal plate system for 

physiological investigations. Appl. Eng. Agric. 9:483-486. 

Christie, P.J., Alfenito, M.R. and Walbot, v., 1994. Impact of low-temperature stress on 

general phenylpropanoid and anthocyanin pathways: enhancement of transcript 

abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541-549. 

Curry, E.A., 1997. Temperatures for optimal anthocyanin accumulation in apple skin. J. Hort. 

Sci. 72: 723-729. 



 40 

Department of Agriculture, Forestry and Fisheries (DAFF), 2010. Subdirectorate Agricultural 

Product Quality Assurance. Export standards for apples, 2010. <www.nda.agric.za/ 

docs/PlantQuality/default.htm>. 

Diener, H.-A. and Naumann, W.-D., 1981. Influence of day and night temperatures on 

anthocyanin synthesis in apple skin. Gartenbauwissenschaft. 46:125-132. 

Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-Amma, S. and Allan, A.C., 

2007. Red colouration in apple fruit is due to the activity of the MYB transcription 

factor, MdMYB10. Plant J. 49:414–427. 

Faragher, J.D., 1983. Temperature regulation of anthocyanin accumulation in apple skin. J. 

Exp. Bot. 34: 1291-1298. 

Faragher, J.D. and Brohier, R.L., 1984. Anthocyanin regulation in apple skin during ripening: 

regulation by ethylene and phenylalanine ammonia-lyase. Sci. Hort. 22:89-96. 

Kevany, B.M., Van Agtmael, R., Dilley, D.R. and Golding, J.B., 2003. Postharvest 

temperature affects colour development in 'Rome' apples. Acta Hort. 628:623-625. 

Lancaster, J.E., 1992. Regulation of skin colour in apples. Crit. Rev. Plant Sci. 10:487-502. 

Marais, E., Jacobs, G. and Holcroft, D.M., 2001a. Light and temperature affect postharvest 

colour development In ‘Cripps’ Pink’ apples. Acta Hort. 553:91-94. 

Marais, E., Jacobs, G. and Holcroft, D.M., 2001b. Colour response of ‘Cripps’ Pink’ apples to 

postharvest irradiation is influenced by maturity and temperature. Sci. Hort. 90:31-41. 

McGuire, R.G., 1992. Reporting of objective colour measurement. Hort. Sci. 27:1254-1255. 

Pretorius, J.J.B. and Wand, S.J.E., 2003. Late-season stomatal sensitivity to microclimate is 

influenced by sink strength and soil moisture stress in B̀raestar' apple trees in South 

Africa. Sci. Hort. 98:157-171. 

Reay, P.F., 1999. The role of low temperature in the development of the red blush on apple 

fruit (‘Granny Smith’). Sci. Hort. 79:113-119. 

Reay, P.F. and Lancaster, J.E., 2001. Accumulation of anthocyanins and quercetin glycosides 

in ‘Gala’ and ‘Royal Gala’ apple fruit skin with UV-B-Visible irradiation: modifying 

effects of fruit maturity, fruit side, and temperature. Sci. Hort. 90: 57-68. 

Ritenour, M, and Khemira, H., 1997. Red colour development of apple: A literature review. 

tree, fruit, research and extension centre. Washington State University. 

<http://postharvest.tfrec.wsu.edu/REP2007A.pdf> 

Saure, M.C., 1990. External control of anthocyanin formation in apple. Sci. Hort. 42:181-218. 



 41 

Schrader, L., Zhang, J. and Sun, J., 2003. Environmental stress that cause sunburn of apple. 

Acta Hort. 618:397-405. 

Steyn, W.J., 2009. Prevalence and functions of anthocyanins in fruits. In Anthocyanins, K. 

Could et al. (ed). Springer Science and Business Media. New York, U.S.A. p 85. 

Wand, S.J.E, Steyn, W.J., Mdluli, M.J., Marais, S.J.S. and Jacobs, G., 2002. Overtree 

evaporative cooling for fruit quality enhancement. S.A Fr. J. 2:18-21. 

Wand, S.J.E, Steyn, W.J., Mdluli, M.J., Marais, S.J.S. and Jacobs, G., 2005. Use of 

evaporative cooling to Improve ‘Rosemarie’ and ‘Forelle’ pear fruit blush colour and 

quality. Acta Hort. 671:103-111. 

 

 

 



 42 

Table 1: Temperatures recorded by the Eikenhof weather station in Grabouw (latitude: 34º 13’ S, 

longitude: 19º 05’ E, altitude 365 m) and the Paardekloof weather station in Ceres (latitude: 33º 

26’ S, longitude: 19º 26’ E, altitude 878 m) during the 2007/2008 production season. 

Area 2007 / 2008 Production season temperatures (ºC) 

 December January February March April 

 Day Night Day Night Day Night Day Night Day Night 

Grabouw 

Average 25.1 14.4 26.4 15.0 26.4 15.3 26.1 13.7 23.3 11.7 

Highest 36.2 18.7 33.1 18.5 33.9 20.6 34.7 18.0 33.4 18.7 

Lowest 17.8 8.0 17.3 11.8 21.2 11.5 17.2 9.2 15.2 7.3 

Ceres 

Average 24.6 12.2 27.4 15.5 26.0 13.6 25.6 12.5 21.5 7.8 

Highest 32.0 17.5 33.1 22.0 32.0 20.0 32.0 19.5 30.5 18.0 

Lowest 17.5 5.0 18.5 9.5 18.0 8.5 15.0 7.0 11.5 0.1 
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Table 2: Temperatures recorded by the Eikenhof weather station in Grabouw (latitude: 34º 13’ S, longitude: 

19º 05’ E, altitude 365 m) and the Paardekloof weather station in Ceres (latitude: 33º 26’ S, longitude: 19º 26’ 

E, altitude 878 m) during the 2008/2009 production season. 

Area 2008 / 2009 Production season (ºC) 

 October November December January February March April 

 Day Night Day Night Day Night Day Night Day Night Day Night Day Night 

Grabouw 

Average 21.1 10.4 22.1 11.8 25.6 14.0 25.3 14.45 27.6 15.8 27.0 14.1 24.6 12.9 

Highest 30.3 14.6 31.2 14.3 35.7 18.1 30.9 17.17 33.2 18.5 36.8 23.4 35.2 16.2 

Lowest 13.6 4.5 14.3 8.2 18.3 8.5 19.7 12.02 19.1 12.3 16.5 9.4 16.0 10.0 

Ceres 

Average 20.2 7.3 22.1 9.5 25.4 12.3 24.1 10.4 26.3 13.2 26.8 * 22.9 9.4 

Highest 27.5 14.0 30.5 16.5 34.0 17.5 29.5 17.0 32.5 20.0 27.0 * 32.0 16.5 

Lowest 9.5 0.0 12.5 4.5 16.5 2.5 19.5 6.5 20.0 9.0 26.5 * 11.5 4.00 

* Data missing
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Table 3: Harvesting dates of apple cultivars during the 2008/2009 season. 

Harvest date Cultivar 

 Royal Gala Fuji Braeburn Early Red One Cripps’ Pink 

21-Nov-08 X X X  X 

28-Nov-08 X X X X  

9-Jan-09 X X X X  

16-Jan-09 X X X  X 

13-Feb-09 X X X X  

20-Feb-09 X X X  X 

6-Mar-09 X X X X  

20-Mar-09  X X  X 

3-Apr-09   X  X 

 

 

Table 4: Significance values for the change in hue of ‘Royal Gala’, ‘Braeburn’, ‘Fuji’, ‘Early 

Red One’ and ‘Cripps’ Pink’ peel discs harvested from Ceres and Grabouw in 2007/2008 and 

irradiated at 550 to 650 µmol m-2 s-1 for 72 h at different temperatures.  

Pr > F Royal Gala Fuji Braeburn Early Red One Cripps’ Pink 

Area (A) 0.6768 <0.0001 0.0009 0.0695 0.0867 

Temperature (T) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

       A x T 0.0851 0.4731 0.5679 0.8177 0.1519 

 

 

Table 5: Significance values for the change in hue of peel discs of ‘Royal Gala’, ‘Fuji’ and 

‘Braeburn’, as well as their respective strains at different temperatures in 2007/2008.  

Pr > F Royal Gala Fuji Braeburn 

Strain (S) 0.0470 0.0027 0.3459 

Temperature (T) 0.0103 <0.0001 0.0006 

       S x T 0.2901 0.7626 0.4533 
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Table 6: The temperature at which the maximum change in hue angle occurred for each 

cultivar (i.e., inflection point), harvested weekly for three weeks prior to commercial harvest in 

2007/2008, throughout the 2008/2009 season and the last three harvests in 2009, according 

to a polynomial fitted trendline and therefore representing the optimum temperature for red 

colour development for each of these cultivars. 

Cultivar Inflection point 

2007/2008 (ºC) 

Inflection point 

2008/2009 (ºC) 

Inflexion point for the last 

3 harvests in 2009 (ºC) 

Royal Gala 25.16 ± 0.52 18.39 ± 2.08 20.44 ± 1.89 

Braeburn 21.13 ± 0.90 19.12 ± 1.42 19.95 ± 1.28 

Fuji 22.72 ± 0.44 17.41 ± 2.16 18.62 ± 2.10 

Early Red One 18.73 ± 1.93 21.75 ± 1.29 21.70 ± 1.27 

Cripps’ Pink 22.92 ± 0.37 * 21.26 ± 0.65 

* ‘Cripps’ Pink at different inflection points at different stages during fruit development.  Presented in Fig. 5b. 

 

 

Table 7:  Significance values for the change in hue of ‘Royal Gala’, ‘Braeburn’, ‘Fuji’, ‘Early 

Red One’ and ‘Cripps’ Pink’ peel discs punched from fruit harvested at Grabouw and Ceres 

throughout the fruit development in 2008/2009 and irradiated at 550 to 650 µmol m-2 s-1 for 72 

h at different temperatures.  

Pr > F Royal Gala Fuji Braeburn Early Red One Cripps’ Pink 

Fruit development stage (FD) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Area (A) 0.0022 0.0163 0.5435 0.3315 0.0761 

Temperature (T) <0.0001 <0.0001 <0.0001 0.5452 <0.0001 

      FD x A 0.0889 0.5231 0.6259 0.7290 0.3908 

      FD x T 0.1839 0.0801 0.1288 0.4863 0.0001 

      A x T 0.6627 0.9106 0.8851 0.9337 0.1148 

               FD x A x T 0.9119 0.9981 0.9990 0.9499 0.2247 
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Figure 1: Change in the hue angle of ‘Royal Gala’ (RG), ‘Braeburn’ (BB), ‘Fuji’ (FJ), ‘Early Red One’ 

(ERO) and ‘Cripps’ Pink’ (CP) peel discs punched from apples harvested from Grabouw (G) and 

Ceres (C) in (a) 2007/2008 and (b) 2008/2009 following irradiation at 550 to 650 µmol m-2 s-1 for 72 h. 

(c) Change in hue of RG, BB and FJ peel discs compared with their respective strains namely ‘Royal 

Beaut’, ‘Braeburn Frasier’ and ‘Fuji Raku Raku’ in 2007/2008.  Since hue angle decreases with 

increasing redness of peel, a greater change in hue during irradiation indicates a greater increase in 

red colour.  
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(c) ‘Braeburn’     (d) ‘Early Red One’ 
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Figure 2: Change in the hue angle of (a) ‘Royal Gala’, (b) ‘Fuji’ (c) ‘Braeburn’, (d) ‘Early Red One’ and 

(e) ‘Cripps’ Pink’ peel discs at different temperatures.  Discs were punched from fruit harvested three 

weeks prior to commercial harvest in 2007/2008 and irradiated at 550 to 650 µmol m-2 s-1 for 72 h. 

Since hue angle decreases with increasing redness of peel, a greater change in hue during the 72 h 

irradiation indicates a greater increase in red colour (n = 12). 
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(a) ‘Royal Gala’     (b) ‘Fuji’ 
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(c)  ‘Braeburn’     (d) ‘Early Red One’ 
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Figure 3: Change in hue angle of (a) ‘Royal Gala’ (n = 28), (b) ‘Fuji’ (n = 32), (c) ‘Braeburn’ (n =36) 

and (d) ‘Early Red One’ (n = 16) at different temperatures.  Peel discs were punched from fruit 

harvested at regular intervals during 2008/2009 and irradiated at 550 to 650 µmol m-2 s-1 for 72 h. 

Since hue angle decreases with increasing redness of peel, a greater change in hue during the 72 h 

irradiation indicates a greater increase in red colour. 
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Figure 4: Change in hue angle of (a) ‘Royal Gala’, (b) ‘Fuji’, (c) ‘Braeburn’ and (d) ‘Early Red One’ 

peel discs during fruit development in 2008/2009.  Peel discs were irradiated at 550 to 650 µmol m-2 s-

1 for 72 h. Since hue angle decreases with increasing redness of peel, a greater change in hue during 

the 72 h irradiation indicates a greater increase in red colour (n = 24). 
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Figure 5: (a) Change in hue angle of ‘Cripps’ Pink’ peel discs punched from fruit harvested on (1) 21 

November 2008, (2) 16 January 2009, (3) 20 February 2009, (4) 20 March 2009 and (5) 3 April 2009 

at different temperartures.  Discs were irradiated at 550 to 650 µmol m-2 s-1 for 72 h.  (b) The inflection 

point of each date-temperature curve presented in (a). Since hue angle decreases with increasing 

redness of peel, a greater change in hue during the 72 h irradiation indicates a greater increase in red 

colour. 
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PAPER 2: OPTIMUM NIGHT TEMPERATURES FOR RED COLOUR 

DEVELOPMENT IN APPLE FRUIT 

 

 

Abstract 

The aim of this study was to determine the optimum night-time temperatures for anthocyanin 

synthesis in red and bi-coloured apple cultivars grown in South Africa. ‘Royal Gala’ (RG), 

‘Fuji’ (FJ), ‘Braeburn’ (BB), ‘Early Red One’ (ERO) and ‘Cripps’ Pink’ (CP) were sampled at 

regular intervals during fruit development from two production areas, viz. Grabouw and Koue 

Bokkeveld, in the Western Cape. Peel discs were punched from the shaded sides of fruit and 

placed on Peltier temperature plates set to a temperature range from 0 to 20 ºC at 4 ºC 

intervals without light exposure for 48 hours. Following the low temperature treatments, all 

discs were exposed to a photosynthetic photon flux (PPF) of 550 to 650 µmol m-2 s-1 at 23 ºC 

for a further 48 hours where after their change in hue was determined. Except for RG from 

Ceres that appeared to benefit from induction at 4ºC, none of the cultivars responded 

positively to low temperature induction with regard to red colour development. The lack of a 

response was observed throughout fruit development and in fruit from both production areas. 

In fact, in the case of FJ, red colour development seemed to decrease with a decrease of 

inductive temperature. Possible reasons for the failure to observe a stimulating effect of low 

temperature on red colour development are discussed. 

 

Introduction 

South Africa’s apple production areas are considered to be among the warmer production 

areas in the world and this may contribute to fruit not developing sufficient red colour. In 

addition to light, which is considered a prerequisite for the biosynthesis of anthocyanin, the 

major factor that affects anthocyanin synthesis in ripening apples is temperature (Saure, 

1990; Lancaster, 1992).  It has long been known that cool night temperatures increase 

anthocyanin accumulation (Saure, 1990 citing Naumann, 1964). Low temperatures also seem 

to stimulate anthocyanin synthesis in immature fruit. Diener and Naumann (1981) found the 

highest accumulation of anthocyanin in immature fruit at the lowest combination of day and 

night temperatures (2 / 12 ºC vs. 12 / 24 ºC), while the converse was true for mature apples. 
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More recent work by Curry (1997) and Reay (1999) showed that anthocyanin synthesis in 

apple benefits from induction at low temperatures (2 and 4 ºC in the respective studies) 

followed by irradiation at higher temperatures (25 and 20 ºC, respectively). Work done in 

maize showed the same two-step temperature requirement for anthocyanin synthesis with 

induction at low temperature (10 ºC) followed by maximum synthesis in light at mild 

temperature (25 ºC) (Christie et al., 1994).  Low temperatures are also associated with 

anthocyanin synthesis in vegetative tissues in various plants (Steyn et al., 2002). 

 

Differences in the degree of red colour development of the same apple cultivar, but from 

different production areas can possibly be explained by differences in night temperatures 

even when fruit experience the same optimum day-time temperatures (Reay, 1999). Hence, it 

would be advantageous to know the temperature range for optimum induction of anthocyanin 

synthesis in various cultivars, since this may allow more informed decisions with regard to 

cultivar choice in different production areas. This study focused on determining the optimum 

night-time temperatures for anthocyanin synthesis throughout fruit development in red and bi-

coloured apple cultivars grown in South Africa, i.e., Royal Gala, Braeburn, Fuji, Early Red 

One and Cripps’ Pink. Fruit were harvested from two different production areas during the 

2008/2009 season to assess whether growing conditions may influence the temperature 

requirements for anthocyanin synthesis. 

 

Materials and Methods 

Plant material:  

‘Royal Gala’ (RG), ‘Early Red One’ (ERO), ‘Braeburn Braestar’ (BB) ‘Fuji’ (FJ), and ‘Cripps’ 

Pink’ (CP) fruit were obtained from Oakvalley Estate in Grabouw (latitude: 34º 08’ S, 

longitude: 19º 02’ E, altitude: 300 m), and from Vastrap in Ceres (latitude: 33º 14’ S, 

longitude: 19º 14’ E, altitude: 890 m) in the Mediterranean-type climate Western Cape 

Province of South Africa. Average daily minimum and maximum temperatures recorded for 

these regions during the relevant months of the 2008-09 seasons are presented in Table 1. 

Apples were picked at random before 1100 HR from the same orchard row on each of the 

harvest dates (Table 2) from shortly after fruit set until commercial harvest. Apples were 

picked from the inner canopy of trees. Only apples with a green/shaded side were picked. 

Fruit were placed in a cooler bag for transport to our laboratory. Twelve apples were 
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harvested on each date for every area cultivar combination. One disc (15 mm in diameter, 5 

mm thick) was punched from the green, shaded side of each apple upon arrival at our 

laboratory on the same day of harvest. Discs were randomly placed on the 12 peltier plates (5 

cm x 6.5 cm) of a Celtec, constructed according to the design of Burke and Mahan (1993), 

with a H2O-moistend filter paper between the discs and the plate. Each area cultivar 

combination was represented by one disc per plate. Hue angles of discs were measured 

before and 96 h after being placed on the Celtec. Discs were covered with thin (0.5 mm) 

100% crystal clear polyethylene wrap (Glad Wrap™, Glad products, Glad South Africa, 

Randburg, South Africa) that was fastened over the peltier plates. A few holes were made in 

the plastic with a toothpick to prevent the build-up of CO2 and, possibly, ethylene and to 

reduce condensation of water on the inside of the plastic.  

 

Temperature treatments:  

The Celtec was placed in a growth cabinet set at 12 ºC with 2 overhead lamps (400W High 

Pres Sodium; SON-T; Osram Mgbh, Munich, Germany) providing irradiance of 550 to 650 

µmol m-2 s-1 photosynthetic photon flux (PPF) measured with a quantum meter (LI-189; Li-

Cor, Lincoln, Nebraska, USA) at disc level. Set temperatures of 0 ºC, 4 ºC, 8 ºC, 12 ºC, 16 ºC 

and 20 ºC were randomly assigned to the 12 plates of the Celtec for 48 h in the dark, after 

which the overhead lamps were switched on and the temperature of all plates kept at 23 ºC 

for a further 48 h. Disc temperature was measured (Raynger MX4, Raytek Corporation, Santa 

Cruz, USA) to ensure that the required temperatures were obtained. 

 

Colour measurement:  

Disc hue angle was measured with a chromameter (NR-3000; Nippon Denshoku, Tokyo, 

Japan) before and again 96 h after placement on the Celtec. Hue angle (0º = red-purple, 90º 

= yellow, 180º = blue-green and 270º = blue) is the most relevant measurement to express 

the differences in colour development in this study (McGuire, 1992). 

 

Maturity indexing:  

Firmness (by means of a penetrometer using an 8 mm plunger) and starch breakdown (by 

brushing iodine on a freshly cut apple half to stain the internal starch and therefore indicating 

the level of unconverted sugar) of apples were assessed at maturity. 
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Statistical Analysis.  

The data were analyzed with the General Linear Models (GLM) procedures of Statistica 

version 9 (Statsoft Inc., Tulsa, Oklahoma), and this data analysis software was also used to fit 

nonlinear curves to data in order to calculate the inflexion point for each temperature curve 

according to the equation Y = a0(a1 + a2
��– 0.5�� 2). 

 

Results 

The interaction between area, stage of fruit development and temperature for change in hue 

was not significant for any of the cultivars (Table 3).  RG showed an interaction between 

production area and temperature (Figure 1a) with RG from the Grabouw area showing no 

difference in ability to develop colour over the temperature range, whereas peel discs from 

Ceres developed redder colour at 4 ºC than at other temperatures. The other cultivars did not 

show an interaction between production area and temperature (Table 3).   

 

Only ERO showed an interaction between the stage of fruit development and temperature 

(Figure 1b). ERO harvested on 30 January 2009 developed redder colour at 20 ºC than at 4 

ºC and 16 ºC. Redder colour developed at 0 ºC than at 16 ºC and at 8 ºC and 12 ºC than at 4 

ºC and 16 ºC. ERO harvested on 13 March 2009 developed redder colour at 16 ºC than at 

other temperatures. ERO harvested on 12 December 2008 showed no difference in ability to 

develop colour over the temperature range. 

 

FJ, BB and ERO showed an interaction between the stage of fruit development and 

production area (Table 3; Fig. 2a, b and c). No interaction between the fruit development 

stage and production area occurred for RG and CP.  ERO harvested from Ceres on 12 

December 2008 and 30 January 2009 developed redder colour than when harvested on13 

March 2009. ERO from Grabouw harvested on 30 January 2009 and 13 March 2009 

developed redder colour than when harvested on 12 December 2008.  ERO harvested on 12 

December 2008 coloured the same over the entire temperature range.  FJ harvested from 

Ceres on 30 January, 6 February and 13 March 2009 developed redder colour than when 

harvested on 12 and 19 December 2008. FJ harvested from Grabouw on 30 January and 6 

February 2009 developed redder colour than when harvested on 12 December 2008 and 13 
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March 2009. Redder colour developed on 19 December 2008 than on 13 March 2009. BB 

harvested from Grabouw on 12 December 2008 developed less red colour than on other 

harvesting dates. BB from Ceres harvested on 6 February 2009 developed redder colour than 

fruit harvested on 12 December 2008, 19 December 2008 and 13 March 2009. Fruit 

harvested on 30 January 2009 developed redder colour than fruit harvested on 12 and 19 

December 2008.  

 

RG peel discs from fruit harvested on 19 December 2008 developed redder colour than discs 

of fruit harvested on 12 December 2008, 30 January 2009 and 6 February 2009 (Table 4). 

Peel discs from fruit harvested on 12 December 2008 and 30 January 2009 developed redder 

colour than discs of fruit harvested on 6 February 2009. CP harvested on 19 December 2008 

and 10 April 2009 developed redder colour than when harvested on 6 February and 13 March 

2009 (Figure 2d). FJ, BB and CP peel discs developed a comparable level of red colour over 

the entire temperature range (Figure 3a, b and c).   

 

Discussion  

A favorable effect of low temperatures on anthocyanin accumulation is generally noted in field 

observations, as has been reported in different fruit (Steyn et al., 2009) including apple 

(Creasy, 1968; Uota, 1952) and pear (Steyn et al., 2004). Uota (1952) found that a higher 

percentage of red surface colour correlated with low average night temperatures. Apparently 

a few nights with temperatures in the range 2 to 5 ºC followed by warm sunny days promotes 

red colour development (Jackson, 2003). Tan (1980) found that whole ‘Red Spy’ apples 

receiving a 6 ºC pre-treatment, either in light or darkness, followed by 25 ºC in light 

accumulated much more anthocyanin than apples kept at 25 ºC during the pre-treatment. 

However, Gurnsey and Lawes (1999) noted that cool night temperatures only need to be 

below 18 ºC from a few weeks before harvest to enhance apple fruit colour. 

 

Two periods of anthocyanin production have been identified during fruit growth in apple. The 

first, smaller peak occurs during cell division (Lancaster, 1992) shortly after fruit set (<2 cm 

fruit diameter). The second, larger peak in anthocyanin synthesis occurs during ripening 

(Macheix et al., 1990; Saure, 1990). However, the daily change in hue of apples and pears 

strongly correlates with average daily temperature as was seen with ‘Cripps’ Pink’ apples 
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(Paper 3) and ‘Rosemarie’ pears (Steyn et al. 2004). Hue decreased with the onset of a cold 

front and increased again during warmer periods. Thus it appears as if the general pattern of 

colour development might be linked to relatively lower temperatures during early fruit 

development and decreasing night temperatures during fruit maturity. The data reported here 

does not indicate an increased sensitivity to temperature during early and late fruit 

development.   

 

Inconsistent results were found for red colour development in response to temperature, stage 

of fruit development and production area. The ability of RG to accumulate anthocyanin did not 

seem to relate to the stage of fruit development. FJ peaked in red colour development 

between the end of January and beginning of February, where after the accumulation of 

anthocyanin in FJ from Grabouw, but not Ceres, decreased considerably. BB from Ceres 

showed a similar trend as FJ from Grabouw, while BB from Grabouw showed a similar trend 

as FJ from Ceres. The effect of fruit development stage on the colour response of ERO from 

Ceres and Grabouw resulted in a shared accumulation peak by the end of January. In 

contrast, CP reached an absolute lowest anthocyanin accumulation potential at the beginning 

of February where after it increased.  

 

Curry (1997), also using apple peel discs placed on a Celtec, found that pre-cooling at low 

temperature increased anthocyanin accumulation in ‘Red Chief Delicious’ and ‘Fuji’. The 

amount of anthocyanin in discs pre-cooled at 2 ºC was almost double compared to discs kept 

at 22 ºC. The optimum day temperature for anthocyanin synthesis was not affected by the 

induction at low temperature. Reay (1999) reported that a temperature combination of 4 ºC 

followed by 20 ºC was the most effective at inducing accumulation of anthocyanin in whole, 

detached ‘Granny Smith’ apples. In our study, only RG from Ceres appeared to have 

benefited from pre-cooling at 4 ºC. None of the other cultivars showed induction at low 

temperature. In fact, in contrast to Curry (1997), red colour development in FJ seemingly 

decreased with a decrease in induction temperature. 

 

We were faced with several practical obstacles when working with low temperatures on the 

Celtec and these may explain the inconsistent results obtained. The adhesion of the sticky 

tape used to fasten the clear polyethylene wrap over the peltier plates was poor at the lower 



 57 

temperatures. This may have resulted in dehydration of some samples, although no apparent 

dehydration was observed. Condensation was high at low temperatures despite the few holes 

made in the polyethylene wrap, thereby decreasing irradiance that the discs might have 

received. 

 

Overhead lamps were switched on simultaneously with the commencement of the 23 ºC day 

cycle of the experiment. Discs at the lower inductive temperatures would take more time to 

reach 23 ºC than discs that received higher inductive temperatures. Environmental stresses 

such as low temperatures lower the photosynthetic rate at a given irradiance, thereby 

increasing the degree to which absorbed light is excessive. Chlorophyllous tissues that 

receive more light energy than can be used for photochemistry, undergo a decrease in 

quantum efficiency of photosynthesis, better known as photoinhibition (Adams et al., 2008; 

Long et al., 1994). Under severe conditions, chloroplasts generate ROS, which may have a 

destructive effect on cellular components including chlorophyll (Alscher et al., 1997). 

Photobleaching of discs was observed on a few occasions. However, photobleaching of 

chlorophyll would not necessarily decrease the ability of apple skin to synthesize anthocyanin 

(personal communication, WJ Steyn). 

 

We considered that the inconsistent results could be due to the use of peel discs instead of 

whole fruit. Most researchers have used whole, detached apples to study temperature effects 

on colour development (Creasy, 1968; Diener and Naumann, 1981; Faragher, 1983; Kevany 

et al., 2003; Marais et al., 2001; Reay, 1999; Reay and Lancaster, 2001; Tan, 1980).  

However, Curry (1997) utilized peel discs for his comprehensive study on the effect of 

temperature on red colour development in apple, to all appearances, with great success (also 

see Paper 1). 

 

Conclusion 

None of the low temperature pre-treatments, with the possible exception of 4 ºC in RG from 

Ceres, increased red colour development at any stage during fruit development in red and bi-

coloured apple cultivars. Thus no effective inductive temperature range for optimum colour 

development could be confirmed or established for any of the cultivars evaluated. We suggest 
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that the experiment is repeated with whole apples to rule out the possibility that the lack of a 

temperature response may relate to the use of peel discs on peltier temperature plates. 
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Table 1: Temperatures recorded by the Eikenhof weather station in Grabouw (latitude: 34º 13’ S, longitude: 19º 05’ E, 

altitude 365 m) and the Paardekloof weather station in Ceres (latitude: 33º 26’ S, longitude: 19º 26’ E, altitude 878 m) during 

the 2008/2009 production season. 

Area 2008 / 2009 Production season (ºC) 

 October November December January February March April 

 Day Night Day Night Day Night Day Night Day Night Day Night Day Night 

Grabouw 

Average 21.1 10.4 22.1 11.8 25.6 14.0 25.3 14.6 27.6 15.8 27.0 14.1 24.6 12.9 

Highest 30.3 14.6 31.2 14.3 35.7 18.1 30.9 17.2 33.2 18.5 36.8 23.4 35.2 16.2 

Lowest 13.6 4.5 14.3 8.2 18.3 8.5 19.7 12.0 19.1 12.3 16.5 9.4 16.0 10.0 

Ceres 

Average 20.2 7.3 22.1 9.5 25.4 12.3 24.1 10.4 26.3 13.2 26.8 * 22.92 9.4 

Highest 27.5 14.0 30.5 16.5 34.0 17.5 29.5 17.0 32.5 20.0 27.0 * 32.0 16.5 

Lowest 9.5 0.0 12.5 4.5 16.5 2.5 19.5 6.5 20.0 9.0 26.5 * 11.5 4.00 

* Data missing
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Table 2: Harvesting dates of apple cultivars during the 2008/2009 season. 

Harvest date Cultivar 

 Royal Gala Fuji Braeburn Early Red 

One 

Cripps’ Pink 

12-Dec-08 X X X X  

19-Dec-08 X X X  X 

30-Jan-09 X X X X  

6-Feb-09 X X X  X 

13-Mar-09  X X X X 

10-Apr-09     X 

 

 

Table 3: Significance values for the change in hue of ‘Royal Gala’, ‘Braeburn’, ‘Fuji’, ‘Early 

Red One’ and ‘Cripps’ Pink’ peel discs punched from fruit harvested at Grabouw and Ceres 

throughout the fruit development in 2008/2009 and irradiated at 550 to 650 µmol m-2 s-1 for 48 

h at 23 ºC following a 48 h cold treatment at different temperatures. 

Pr > F Royal Gala Fuji Braeburn Early Red One Cripps’ Pink 

Fruit development stage (FD) <0.0001 <0.0001 <0.0001 0.0162 0.0011

Area (A) <0.0001 0.6969 0.5758 0.0361 0.2169

Temperature (T) 0.1339 0.0625 0.4426 0.4944 0.1246

      FD x A 0.2802 <0.0001 0.0391 0.0050 0.1735

      FD x T 0.4360 0.0639 0.3880 0.0047 0.1647

      A x T 0.0134 0.3406 0.7156 0.2388 0.5973

               FD x A x T 0.1043 0.7148 0.4572 0.4921 0.7782
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Table 4: Change in hue angle of ‘Royal Gala’ peel discs punched from fruit harvested four times 

during fruit development stages in 2008/2009.  Dics were irradiated at 550 to 650 µmol m-2 s-1 for 48 h 

at 23 ºC following a 48 h cold treatment.  Since hue angle decreases with increasing redness of peel, 

a greater change in hue during the 48 h irradiation indicates a greater increase in red colour (n = 24). 

Harvest date Change in hue angle 

12-Dec-08 22.47 ± 2.65  b 

19-Dec-08 29.37 ± 3.25  a 

30-Jan-09 19.93 ± 2.11  b 

6-Feb-09 13.88 ± 1.99  c 
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(a) ‘Royal Gala’ 

p(area x temperature) = 0.0134

[Ceres]  R2 = 0.6367

[Grabouw ]  R2 = 0.9309
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(b) ‘Early Red One’ 
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Figure 1: Change in hue angle of (a) ‘Royal Gala’ (n = 8) and (b) ‘Early Red One’ (n = 4) peel discs 

harvested from Ceres and Grabouw during 2008/2009 and irradiated at 550 to 650 �mol m-2 s-1 for 48 

h at 23 ºC following a 48 h cold treatment at different temperatures.  The significant temperature*area 

and temperature*stage of fruit development interactions are presented for ‘Royal Gala’ and ‘Early Red 

One’, respectively.  Since hue angle decreases with increasing redness of peel, a greater change in 

hue during the 48 h irradiation indicates a greater increase in red colour. 



 64 

(a) ‘Fuji’      (b) ‘Braeburn’ 
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(c) ‘Early Red One’    (d) ‘Cripps’ Pink’ 
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Figure 2: Change in hue angle of (a) ‘Fuji’, (b) ‘Braeburn’, (c) ‘Early Red One’ and (d) ‘Cripps’ Pink’ 

peel discs harvested from Ceres and Grabouw during 2008/2009 and irradiated at 550 to 650 �mol m-2 

s-1 for 48 h at 23 ºC following a 48 h cold treatment at different temperatures.  The temperature*area 

interactions are presented except for ‘Cripps’ Pink’ for which the interaction was not significant.  Since 

hue angle decreases with increasing redness of peel, a greater change in hue during the 48 h 

irradiation indicates a greater increase in red colour (n = 12 with exception of CP where n = 24). 
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(c) ‘Cripps’ Pink’ 
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Figure 3: Change in hue angle of (a) ‘Fuji’, (b) ‘Braeburn’ and (c) ‘Cripps’ Pink’ peel discs harvested 

during 2008/2009 and irradiated at 550 to 650 µmol m-2 s-1 for 48 h following a 48 h cold treatment at 

different temperatures. Since hue angle decreases with increasing redness of peel, a greater change 

in hue during the 48 h irradiation indicates a greater increase in red colour (n = 20). 
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PAPER 3: THE ROLE OF ANTHOCYANIN ACCUMULATION DURING EARLY 

APPLE FRUIT DEVELOPMENT. 

 

 

Abstract 

‘Cripps’ Pink’ apples were used to investigate three hypothesis based on the premise that 

anthocyanins in immature apple fruit protect apple peel from photoinhibition and 

photooxidative damage during conditions of increased light stress. Firstly we wanted to 

establish whether anthocyanins accumulate fast enough to provide photoprotection during 

sudden cold snaps. The rate of colour change was measured in respons to a passing cold 

front. The average hue angle of ‘Cripps’ Pink’ apples decreased from 80 to 47º between on 16 

March 2009 and 20 March 2009, the duration of the cold front, and increased again with 

increasing daily temperature. The rate at which the anthocyanin light screen is deployed 

appears to be sufficient to provide photoprotection during a cold snap. We also considered 

that protection of fruit peel against photoinhibition during cold snaps lowers the risk of 

subsequent high light and high temperature- induced damage to fruit peel when temperatures 

increase again after the cold snap. We found that apple peel incurred significantly more 

photoinhibition at low (16 ºC) compared to mild (24 to 32 ºC) and high (40 ºC) temperatures 

under high irradiace. The recovery rate was temperature-dependent, being the slowest at low 

temperatures and increasing with temperature. Unfortunately, we could not prove that 

photoinhibition incurred during cold snaps predisposes fruit peel to photothermal damage 

when temperatures increase again after the cold snap. Lastly we hypothesized that the 

sensitivity of fruit peel to photoinhibition increases during fruit development. The response of 

‘Cripps’ Pink’ apple peel photochemistry (Fv/Fm, φPSII, qP and qNP) to a range of temperatures 

(16, 24, 32 and 40 oC) and irradiance levels (140, 470 and 1400 �mol m-2 s-1 photosynthetic 

photon flux (PPF)) was assessed during the 2008/2009 season. The photoapparatus in 

‘Cripps Pink’ peel appears to be particularly sensitive to light stress at low temperature (16 ºC) 

throughout the season with significant photoinhibition occurring even at a moderate 

temperature of 24 ºC. The sensitivity of the fruit peel to photoinhibition increased throughout 

the season at lower irradiance levels, but remained the same at higher irradiance. 
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Introduction 

The red color of apple fruit is caused by the accumulation of anthocyanins, mostly in the outer 

layers of the skin (Lancaster et al., 1994). Two periods of anthocyanin production have been 

identified during fruit growth in apple. The first, smaller peak occurs during cell division 

(Lancaster, 1992) shortly after fruitset (<2 cm fruit diameter). Even some non-red apple 

cultivars that are typically yellow or green at maturity produce anthocyanins at this stage, e.g. 

Golden Delicious (Saure, 1990) and Granny Smith (Lancaster et al., 2000). The anthocyanins 

that accumulate during this stage are lost during fruit growth. The second, larger peak in 

anthocyanin synthesis takes place during ripening (Macheix et al., 1990; Saure, 1990). Little 

is known about anthocyanin accumulation during early fruit growth in apple due to its 

economical non-significance and only speculated biological significance. 

 

Hatier and Gould (2009) reviewed the potential functions of anthocyanins in plants, viz. 

defense against herbivory and pathogen attack, attracting frugivores for seed dispersal and 

insect vectors for flower pollination, as well as protection against osmotic stress, UV-B 

radiation, photoinhibition and photooxidation (either through shielding of visible light or 

quenching of reactive oxygen species (ROS)). These functions are not necessarily all 

applicable to apple fruit. Steyn (2009) argued that anthocyanins in fruit may serve to attract 

seed dispersers, signal fruit quality, and protect fruit against seed predators, and 

photoinhibition and oxidative damage caused by high levels of visible light. Lancaster (1992) 

suggested that high levels of flavonoids and anthocyanins in apple fruitlets filter out UV light 

during cell division and thereby prevent nuclear aberration. However, Solovchenko and 

Schmitz-Eiberger (2003) found that anthocyanins in ‘Braeburn’ apple had no additional effect 

in UV-B protection over and above other phenolic compounds present in the skin. 

 

Anthocyanin synthesis in plants generally coincides with periods of high excitation pressure 

and increased potential for photo-oxidative damage (Steyn et al., 2002). The same appear to 

be true for apple fruit (Steyn et al., 2009). Anthocyanins in ripening apples are induced at low 

temperatures (<10 ºC) (Curry, 1997; Reay, 1999; Saure, 1990) and synthesis takes place 

under irradiation at mild temperatures (20 ºC to 27 ºC) (Curry 1997; Reay, 1999; Paper 1). 

Immature apples of at least some cultivars seem to accumulate anthocyanins at lower 

temperatures than mature fruit. According to Faragher (1983), the optimum temperatures for 
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anthocyanin accumulation in immature and mature ‘Jonathan’ apples under continuous 

irradiation are 12 ºC and 16 ºC to 24 ºC, respectively. Optimum temperatures for color 

development in ‘Cripps’ Pink’ increased from 5 ºC to 22 ºC during fruit development (Paper 1). 

Daily changes in the hue of ‘Rosemarie’ pears strongly correlated with average daily 

temperature (Steyn et al., 2004). Hue decreased with onset of a cold front by up to 6o per day 

and increased during warmer periods with up to 5o per day. 

  

Chlorophyllous tissues that receive more light energy than can be used in photochemistry 

undergo a decrease in quantum efficiency of photosynthesis, better known as photoinhibition 

(Adams et al., 2008; Long et al., 1994). When photoinhibited, chloroplasts generate ROS that, 

when in superabundance, may potentially destroy thylakoid membranes, damage DNA and 

denaturate proteins associated with photosynthetic electron transport (Alscher et al., 1997). 

ROS production increases in response to stresses such as low temperature (Prassad et al., 

1994; Prassad, 1996) and have been implicated in photoinhibition (Hull et al., 1997) and 

cellular damage (Wise, 1995).  

 

Chlorophyll bleaching in red zones of apple fruit containing anthocyanins was much lower 

than in green zones and protection increased with pigment concentration (Merzlyak and 

Chivkunova, 2000). Cheng and Ma (2004) reported that anthocyanin accumulation coincided 

with the upregulation of the xanthophyll cycle and ascorbate-glutathione cycle after exposure 

of shaded apple peel to full sunlight. The higher photoprotective capacity of sun-exposed peel 

of red ‘Anjou’ pear compared with green ‘Anjou’ is mainly attributable to its higher anthocyanin 

concentration and, to a lesser extent, to a larger xanthophylls cycle pool size and higher 

activity of some antioxidant enzymes (Li et al., 2008). 

 

Our premise in this paper is that anthocyanins in immature apple fruit protect apple peel from 

photoinhibition and photooxidative damage during conditions of increased light stress. Three 

hypotheses were based on this premise. The first hypothesis was that anthocyanins 

accumulate fast enough to provide photoprotection during sudden cold snaps. Secondly, we 

considered that protection of fruit peel against photoinhibition during cold snaps lowers the 

risk of subsequent high light and high temperature induced damage to fruit peel when 

temperatures increase again after the cold snap. Lastly, we hypothesized that the sensitivity 
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of fruit peel to photoinhibition increases during fruit development, thereby explaining why 

anthocyanins apparently accumulate at lower temperatures in immature apples.  

 

Materials and Method 

Plant material. 

All experiments were conducted, or fruit for experiments obtained, from a North-South planted 

‘Cripps’ Pink’ apple orchard at Welgevallen experimental farm in the Mediterranean-type 

climate Stellenbosch region (Lat: 33º 58’ S; Long: 18º 50’ E) of the Western Cape province, 

South Africa. 

 

Experiment 1: Rate of colour change in response to temperature. 

One sun-exposed fruit was tagged on the Eastern side on each of 28 trees in a single orchard 

row. A cold front passed over the Western Cape from 17 to 20 March 2009. Hue 

measurements were taken three times daily (0700 HR, 1300 HR, and 1900 HR) from 16 March 

until 22 March 2009 at the reddest position on the fruit using a chromameter (NR-3000, 

Nippon Denshoku, Tokyo, Japan). Hue angles relevant to this experiment ranged between 30 

º (red) and 100 º (yellow-green). A hue angle of 15 º indicates that less green light is reflected 

than red light and the tissue will appear red to the human eye. Climatic data were obtained 

from a weather station ±4 km from the trial site. 

 

Experiment 2: Response of apple peel photochemistry to temperature and light. 

The response of ‘Cripps’ Pink’ apple peel photochemistry to a range of temperatures in 

combination with varying light intensities was assessed during the 2008/2009 season. This 

experiment was repeated four times during fruit development at 60, 100, 130 and 159 days 

after full bloom (dafb). Commercial harvest was expected at 175 dafb. Fruit were sampled at 

random from the same row, one fruit per tree, before 0730 HR. The fruit were brought to our 

laboratory, dark adapted for 30 min at 20 ºC and transferred to growth chambers set at 16, 

24, 32 or 40 oC for 30 min before onset of measurement in order for the fruit peel to reach the 

desired temperature. Fv/Fm (maximum quantum yield of fluorescence), actual PSII efficiency 

(φPSII), photochemical quenching (qP) and non-photochemical quenching (qNP) were 

measured with a pulse modulated fluorimeter (FMS2, Hansatech Instruments Ltd., Norfolk, 

England) within the growth chambers. Measurements were taken at increasing actinic 
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irradiance (140, 470 and 1400 �mol m-2 s-1PPF) on a 2-cm thick disc that was cut from the 

sun-exposed side of fruit just prior to measurement. The order in which replicates of the 

treatments were measured was randomized. Calculations of Fv/Fm, φPSII, qP and qNP were 

done according to Van Kooten and Snel (1990) and Maxwell and Johnson (2000). Additional 

measurements included average fruit size for each experimental repeat and anthocyanin and 

plastid pigment concentrations. 

 

Pigment analysis: Anthocyanin analysis was done by weighing 0.2 g freeze dried sample in a 

centrifuge tube and adding 5 ml cold solvent consisting of methanol and 3 mol·L-1 HCl (95:5 

by volume) to the sample. The solution was stirred at 4 ºC for 1 h, followed by centrifugation 

at 10,000 gn for 10 min at 4 ºC. The supernatant was poured into a glass vial, closed and kept 

in the fridge. The pellet was resuspended in 5 ml cold solvent and vortexed for a few seconds. 

It was then again centrifuged for 10 min at 10,000 gn at 4 ºC. The second supernatant was 

added to the first and mixed well. The extract was filtered through 0.45 �m syringe filter into a 

glass vial. Absorbance of the supernatant was measured at 530 nm and 630 nm (UV-visible 

spectrophotometer Cary 50Bio, Varian Ltd, Walton-on-Thames, UK). Due to the presence of 

chlorophyll, the absorption at 530 nm is corrected by the equation: A530 – 0.24 x A653 (Murray 

and Hackett, 1991). 

 

Chlorophyll and carotenoid analyses were done by weighing 0.2 g dry sample in a centrifuge 

tube and adding 4 ml cold solvent (80% acetone) to the sample. The solution was stirred at 4 

ºC for 24 h, followed by centrifugation at 10,000 gn for 15 min at 4 ºC. The supernatant was 

decanted into a glass vial, closed and kept in the fridge. The pellet was resuspended in 4 ml 

cold solvent and vortexed for a few seconds. It was then again centrifuged for 15 min at 

10,000 gn at 4 ºC. The second supernatant was added to the first and mixed well. The extract 

was filtered through 0.45 �m syringe filter into a glass vial. Absorbance of the supernatant 

was measured at 470 nm, 645 nm and 662 nm and chlorophyll and carotenoid concentrations 

determined according to Lichtenthaler (1982). 

 

Experiment 3: Predisposal of apple peel to heat damage by prior low temperature stress.  

This experiment was conducted during the 2007/2008 season. Shaded green ‘Cripp’s Pink’ 

apples were randomly picked from the inside of the tree canopy from the same row before 
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0730 HR on 17 January 2008. Fruit were randomly assigned to three treatments (LOW-16, 

MILD-28 and Control) with seven replications of two fruit each and dark adapted at 20 ºC for 

30 min. Hereafter, Fv/Fm was measured with a pulse modulated fluorimeter (FMS2, 

Hansatech Instruments Ltd., Norfolk, England) on the greenest sides of the fruit. Fruit for the 

low (LOW-16) and mild temperature treatments (MILD-28) were placed in growth chambers 

for 3 h set at 16 ºC and 28 ºC, respectively. Growth chambers were fitted with 2 overhead 

lamps (400 W; SON-T; Osram Mgbh, Munich, Germany) producing a constant PPF of 600 to 

700 �mol m-2 s-1 (quantum meter LI-189; Li-Cor, Lincoln, Nebraska, USA) at the level of the 

fruit. Control fruit were also placed in the growth chamber set at 16 ºC, but were shaded from 

light by means of cardboard covers. After these pre-treatments, apples were again dark 

adapted and FV/FM measured. Apples from all three treatments were subsequently subjected 

to high temperature (37.5 ± 1.5 ºC) and high PPF (900 to 1350 �mol m-2 s-1) for 2 h, followed 

by dark adaptation and measurement of FV/FM. 

 

On 26 February 2008, 48 ‘Cripps’ Pink’ apples were picked and dark adapted as described 

above. A peel disc (15 mm in diameter, 5 mm thick) was punched from the greenest side of 

each apple. Discs were randomly assigned to treatments, i.e. LOW-10 (10 ºC), MILD-25 (25 

ºC) and CONTROL (10 ºC and kept dark), with three replicates of four discs per treatment. 

Discs were placed on the 12 independently controlled peltier plates (5 cm x 6.5 cm) of a 

CELTEC constructed according to the design of Burke and Mahan (1993), with a H2O-

moistend filter paper between the discs and the plate. The CELTEC was placed in a growth 

chamber with 2 overhead lamps (400 W) producing a PPF of 700 to 800 �mol m-2 s-1at fruit 

level. Temperature plates, containing the discs, were covered with thin (0.5 mm) 100% crystal 

clear polyethylene wrap (Glad Wrap™, Glad South Africa, Randburg, South Africa). A few 

holes were made in the plastic with a toothpick to prevent the build-up of CO2 and, possibly, 

ethylene and to reduce condensation of water on the inside of the plastic. After 3 h, discs 

were removed from the CELTEC and placed in petri dishes containing water. FV/FM 

measurements were done after 30 min dark adaptation and again after 22 h recovery at 20 ºC 

in the dark. All the peel discs were subsequently transferred back to the CELTEC and 

subjected to a stress treatment of 45 ºC for 2 h at PPF of 700 to 800 �mol m-2 s-1. FV/FM 

measurements were taken after dark adaption and again after 12 h recovery.  
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Statistical Analysis.  

The data were analyzed with the General Linear Models (GLM) procedures of SAS Enterprise 

Guide 3.0. (SAS Institute, 2004, Cary, N.C, U.S.A). Orthogonal contrasts were fitted where 

appropriate. 

 

Results 

Experiment 1: The rate of color change in response to low temperature. 

After the maximum temperature reached 36 ºC on 15 March, temperatures decreased 

considerably (av. Max. and min. temperature 24.5 ºC and 10.5 ºC, respectively) from 16 to 20 

March in response to a cold front on 16 March (Fig. 1). Radiation levels were high over most 

of the measurement period, except for 16 March, which was an overcast day. The average 

hue angle of ‘Cripps’ Pink’ apples decreased from 80 to 47º between 0700 HR on 16 March 

and 1900 HR on 20 March, the duration of the cold front. The fastest decrease in hue (0.65º h-

1) was measured on 18 March which was a clear, cool day (max. temperature = 24 ºC), 

following a cold night (min. temperature = 7.6 ºC). Hue angle started to increase again on 21 

March (max. temperature 33 ºC) and increased markedly between 0800 HR and 1900 HR on 

22 March (0.39º h-1) when the daily temperature reached 28 ºC. 

 

Experiment 2: Effect of temperature and light on apple peel photochemistry.  

Fruit size increased linearly from 33 mm to 56 mm between 60 and 159 dafb. ‘Cripps’ Pink’ 

apple peel did not contain anthocyanins prior to 159 dafb and even at 159 dafb, the level of 

anthocyanins was still too low to be of statistical significance (Table1). Chlorophyll and 

carotenoid concentrations showed a quadratic decrease from 60 dafb until 159 dafb. At 60 

dafb chlorophyll and carotenoid concentrations were higher than at 100, 130 and 159 dafb. At 

100 dabf, chlorophyll and carotenoid concentrations were higher than at 130 and 159 daf. 

Although the chlorophyll:carotenoid ratio did not differ significantly at the different fruit 

development stages, the ratio did decrease linearly during fruit development. 

 

No interaction was found between temperature and dafb for any of the fluorescence 

parameters. Fv/Fm of ‘Cripps’ Pink’ apples did not differ significantly at the onset of the 

experiment at all four stages of fruit development (Table 2). Actual photochemical efficiency 

(φPSII) decreased linearly with a decrease in temperature from 40 to 16 ºC. However, φPSII  was 
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repressed to similar low levels at 16 and 24 ºC at 1400 µmol m-2 s-1. There was no difference 

in φPSII  between 40 and 32 ºC at 140 and 1400 µmol m-2 s-1. φPSII showed a gradual, albeit 

insignificant (p = 0.0543), increase with dafb at 1400 µmol m-2 s-1. However, at 140 and 470 

�mol m-2 s-1, φPSII  showed a quadratic response to dafb, first decreasing from 60 to 130 dafb 

and then increasing again to 159 dafb. φPSII at 140 µmol m-2 s-1 was significantly lower at 130 

dafb compared to 60 and 100 dafb, with the latter also differing significantly. At 470 µmol m-2 

s-1, φPSII was significantly lower at 130 compared to 60 dafb. 

 

qP decreased linearly with temperature at all three light levels and also decreased linearly 

with dafb at 140 �mol m-2 s-1. No differences between stages of fruit development were 

apparent at the higher light levels (Table 3).  At 140 and 470 �mol m-2 s-1, qP was higher at 40 

ºC and 32 ºC compared to 24 ºC and 16 ºC while at 1400 �mol m-2 s-1, qP was higher at 40 ºC 

than at 24 ºC and 16 ºC and higher at 32 ºC than at 16 ºC. qP was higher at 24 ºC than at 16 

ºC at all three light levels.  At 140 �mol m-2 s-1, qP was lower at 130 and 159 than at 60 and 

100 dafb. 

  

qNP decreased linearly with increasing temperature at 140 �mol m-2 s-1 and 470 �mol m-2 s-1 

while no differences between temperatures were observed at 1400 �mol m-2 s-1 (Table 4).  At 

140 �mol m-2 s-1, qNP was higher at 16 ºC and 24 ºC compared to 32 ºC and 40 ºC. At 470 

�mol m-2 s-1, qNP was lower at 32 ºC than 16 ºC and also lower at 40 ºC than at 16 ºC and 24 

ºC. At 140 �mol m-2 s-1, qNP was lower at 60 dafb than at later development stages. At 470 

�mol m-2 s-1 qNP was lower at 60 dafb than at 159 dafb while at 1400 �mol m-2 s-1, qNP was 

lower at 130 dafb than at the other development stages. 

 

Experiment 3: Predisposal of ‘Cripps Pink’ apple peel to heat damage by prior low 

temperature stress. 

The initial maximum quantum efficiency (Fv/Fm) of the fruit used for this experiment did not 

differ significantly at the onset of the experiment (Table 5). Fv/Fm decreased considerably after 

MILD-28 (0.471) and LOW-16 pre-treatment (0.398) whereas the control fruit remained at 

0.840. Heat stress decreased Fv/Fm of all three treatments. Fv/Fm of MILD-28 (0.284) and 

LOW-16 (0.288) did not differ significantly, but were lower than the control (0.447). 
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The experiment was subsequently repeated making use of fruit peel discs. Fv/Fm of peel discs 

did not differ significantly at the onset of the experiment (Table 6). LOW-10 treatment 

significantly decreased Fv/Fm (0.040) compared to MILD-25 (0.112) whereas control discs 

were not affected by the pretreatment. Fv/Fm of LOW-10 and MILD-25 increased during the 24 

h recovery period to 0.075 and 0.197 respectively, but still differed significantly in the same 

order as after the pretreatment. Heat stress had a severe effect on Fv/Fm, to such an extent 

that none of the treatments differed significantly.  Fv/Fm did not increase markedly during the 

12 h recovery period. 

 

Discussion 

The rate of color change in response to low temperature. 

Changes in the hue angle of ‘Cripps’ Pink’ apples during a cold front were recorded in order to 

assess the rate at which anthocyanin photoprotection can be deployed. According to Iglesias 

(1999), a linear relationship exists between anthocyanin concentration in apple peel and hue 

angles ranging from 120º to 35º. Hence, a change in hue angle over this range is evident of a 

corresponding change in anthocyanin level. Not many studies have been done on the rate of 

anthocyanin accumulation in response to a decrease in temperature. Steyn et al. (2009) 

reported that the hue angle of ‘Cripps Pink’ apples decreased by �9.75º.day-1 on the second 

day of a cold front and hue angle decreased by 27º over the four days that the cold snap 

lasted. The fastest decrease in hue angle in this study also occurred on the second day of the 

cold snap with a 33º decrease in hue angle over the four day duration of the cold front. The 

rapidity of the hue angle decrease suggests that anthocyanin photoprotection may be 

employed before the photo-apparatus incurs any significant photodamage under conditions of 

high excitation pressure. Hence, anthocyanin accumulation may provide effective short-term 

photoprotection under conditions when other photoprotective measures are less effective or 

may take too long to deploy.  

 

Environmental stresses such as low temperatures lower the photosynthetic rate at a given 

irradiance, thereby increasing the degree to which absorbed light is excessive. This increases 

the need for energy dissipation through, amongst others, de-epoxidation of violaxanthin to 

zeaxanthin as part of the xanthophyll cycle (Demmig-Adams and Adams, 1996) and the up 
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regulation of nonenzymatic radical scavengers (i.e. glutathione, ascorbic acid and cartenoids) 

and antioxidant enzymes (i.e. superoxide dismutase (SOD), catalase (CAT), peroxidase 

(POD), ascorbate peroxidase (APX) and glutathione reductase (GR)) (Almeselmani et al., 

2006). However, many of these protective measures are rate-limited by temperature. 

 

In summer, zeaxanthin levels gradually increase in response to increased excitation levels to 

reach a peak at midday (Demmig-Adams and Adams, 1996). Arvidsson et al. (1997) found 

that temperature has a strong influence on both the rate and degree of maximal de-

epoxidation in non-acclimated spinach leaves with only 50% conversion of violaxanthin 

detected at 4 °C, whereas at 25 °C and 37 °C the degree of conversion was 70% and 80%, 

respectively. The maximum rate of de-epoxidation in leaves of Malva parviflore L. and 

Gossypium hirsutum L. (cotton) showed a strong decrease with decreased temperature 

(Bilger and Björkman, 1991). Q10 measured around 15 ºC was in the range 2.1 to 2.6 in Malva 

leaves whereas it was as high as 4.6 in cotton leaves that developed at a daytime 

temperature of 30 ºC. Latowski et al. (2003) found that a decrease in temperature also 

resulted in a decrease in zeaxanthin production in leaves of Lemma trisulca L. The activity of 

SOD, CAT, APX and GR increased over a 3 day exposure of rice leaves to chilling treatment 

at 5 ºC followed by a 5 day recovery period to reach a maximum between 2 (GR) to 6 (APX, 

CAT and SOD) days after the onset of the chilling treatment (Kuk et al., 2003). Ma and Cheng 

(2004) reported that upon the sudden exposure of shaded apple peel to full sunlight, it took 

antioxidant enzymes, xanthophyll cycle carotenoids and soluble antioxidants ten days to 

reach the same levels as in sun-exposed fruits. The authors mentioned that red color 

increased concomitant with the increase in other protective measures, but unfortunately did 

not measure the rate or level of anthocyanin accumulation. 

 

Plants acclimatize to the longer term stresses associated with seasonal changes in climate 

with longer term adaptations such as an increase in xanthophyll capacity and the persistence 

of high zeaxanthin levels throughout the day (Demmig-Adams and Adams, 1996; Katahata et 

al., 2005). These longer term adaptations may not be suitable for the transient cold snaps 

experienced during summer. Anthocyanins are rapidly degraded when favorable conditions 

for photosynthesis ensue after the passing of a cold front (Fig. 1; Steyn et al., 2004). Hence, 

the accumulation of anthocyanins in response to cold snaps does not have a lasting effect on 
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photosynthesis upon the return to warmer conditions. The prolonged presence of high levels 

of anthocyanins may negatively affect carbon assimilation (Creelman and Mullet, 1997; 

Jeanette et al., 2000; Steyn, 2002). 

 

Effect of temperature and light on apple peel photochemistry.  

The intrinsic (maximum) efficiency of PSII in dark-adapted fruit peel, remained at the same 

high level (> 0.76), indicative of healthy tissue (Maxwell and Johnson, 2000; Rosenqvist and 

Van Kooten, 2003), throughout fruit development. The photoapparatus in ‘Cripps Pink’ peel 

appears to be particularly sensitive to light stress at low temperature (16 ºC) throughout the 

season with significant photoinhibition occurring even at a moderate temperature of 24 ºC. 

The composition and biochemistry of fruit photosynthesis differs considerably from that of 

leaves (Blanke and Lenz, 1989).  Steyn et al. (2009) suggested that the higher 

photosensitivity of fruit peel to high light and mild-to-low temperatures may relate to these 

differences. Steyn et al. (2009) further suggested that the apparent photosensitivity of fruit 

peel to low temperatures may also be an adaptation of sun-exposed fruit peel to the above 

ambient temperatures that fruit peel is exposed to due to radiant heating.  

 

φPSII of ‘Cripps’ Pink’ apple peel at 140 �mol m-2 s-1 decreased during fruit development, but 

increased again at 159 dafb (Table 2). At 470 �mol m-2 s-1, φPSII were stable throughout fruit 

development with only a slight quadratic effect due to 60 dafb and 130 dafb differing 

statistically (p =0.044). φPSII showed no response to stage of fruit development at 1400 �mol 

m-2 s-1 indicating that the apple peel is equally sensitive to high light conditions throughout fruit 

development. qP indicates the approximate oxidation of PSII and is the quenching of 

fluorescence caused by the potential for photochemistry, i.e., open PSII reaction centers 

(Rosenqvist and Van Kooten, 2003). qP typically decreases with increasing illumination as 

more plastoquinone (QA) of PSII becomes reduced. qP decreases due to closure of reaction 

centers resulting from saturation of photosynthesis by light (Maxwell and Johnson, 2000). 

Saturation occurs much faster at lower temperatures resulting in PSII receiving much more 

light that can be used in photochemistry as was also evident in this trial. However, except at 

140 �mol m-2 s-1 where qP showed a linear decrease over fruit development, the reductive 

state of PSII where not apparently affected by the stage of fruit development. Non-

photochemical quenching (qNP) relates to non-radiative dissipation of excitation energy as 
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heat through various mechanisms in the antenna and reaction center. (Rosenqvist and Van 

Kooten, 2003). qNP increased linearly with a decrease in temperature (Table 5) and also 

increased linearly during the fruit development at 140 �mol m-2 s-1 and 470 �mol m-2 s-1, but 

not at 1400 �mol m-2 s-1. Thus in this study it was found that at high irradiance, temperature 

and the stage of fruit development had no effect on the level of qNP.  

 

Our data do not support the hypothesis that the sensitivity of sun-exposed apple peel to 

photoinhibition increases during fruit development. This is in agreement with the results of Li 

et al. (2008) for sun-exposed ‘Anjou’ pear peel.  However, the shaded sides of ‘Anjou’ pear 

became more sensitive to light stress during fruit development. Thus it appears that sun-

exposed apple and pear peel adapts to high PPF and that photoprotection is maintained 

throughout fruit development. The innate ability of apple peel to accumulate anthocyanin 

increases during fruit development (Curry, 1997; Paper 1). In ‘Cripps’ Pink’, the optimum 

temperature for anthocyanin synthesis also increases during fruit development (Paper 1) as 

was also previously reported for ‘Jonathan’ apples (Faragher, 1983). Considering the 

sensitivity of apple peel to photoinhibition at low temperature and the stimulating effect of low 

temperature on anthocyanin synthesis, it could be considered that observed patterns of 

anthocyanin accumulation closely follows and reflects changes in the sensitivity of apple peel 

during fruit development.  However, this does not seem to be the case. 

 

Predisposal of ‘Cripp’s Pink’ peel to heat damage by prior low temperature stress. 

High levels of visible light combined with low temperatures have been implicated in the 

photooxidative destruction of chlorophyll (Henry et al., 1987). Steyn et al. (2009) recently 

showed that the severity of photoinhibition in ‘Forelle’ pear peel under high visible light 

increases with a decrease in temperature from 40 to 16 ºC. Photoinhibition occurs when fruit 

peel receives more light energy than can be used in photochemistry (Adams et al., 2008; 

Long et al., 1994). Under severe conditions, chloroplasts generate ROS with its destructive 

effect on cellular components (Alscher et al, 1997). Felicetti and Schrader (2008) 

characterized a type of sunburn caused by photooxidative damage induced by visible light at 

temperatures below 31 ºC. Considering the above, it is reasonable to suppose that young 

fruitlets, exposed to high irradiance and relative cool conditions in the early phase of 

development, may experience chronic photoinhibition and photooxidative damage that may 
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predispose the fruit to photooxidative sunburn later in the season under high temperatures 

and high light conditions. In agreement with previous research on leaves and fruit (Steyn et 

al., 2009), we found that apple peel incurred significantly more photoinhibition at low (16 ºC) 

compared to mild (24 to 32 ºC) and high (40 ºC) temperatures when irradiated with high light 

levels. Greer et al. (1986) reported photoinhibition to be the net difference between rate of 

damage and repair to reactions associated with photosystem II. The recovery rate is 

temperature dependent, being the slowest at low temperatures and increasing with 

temperature. Unfortunately, we could not prove that protection of fruit peel against 

photoinhibition during cold snaps lowers the risk of subsequent high light and high 

temperature-induced damage to fruit peel. This was because of the severe effect of the high 

temperature treatment on the photo apparatus that nullified earlier treatment differences. We 

suggest that these trials are repeated earlier during fruit development and making use of 

whole fruit and less severe high temperature stress. 

 

Conclusion 

It is evident that photoapparatus in ‘Cripp’s Pink’ peel remains sensitive to light stress at lower 

temperatures throughout the season. The rapidity at which apple peel increase and decrease 

in red color in response to changes in temperature, suggests that anthocyanins may be used 

to modulate light levels according to short term, transient changes in excitation pressure 

(Pietrini and Massacci, 1998). Fruit peel increased in sensitivity to photoinhibition during fruit 

development at low, but not at high irradiance.  Hence, it is not possible to link the increase in 

the optimum temperature and extent of anthocyanin synthesis in ‘Cripps’ Pink’ (Paper 1) and 

‘Jonathan’ (Faragher, 1983) peel with an increase in sensitivity to light stress during fruit 

growth.   

 

Although this study once more demonstrated the significant photodamage experienced at low 

temperatures versus mild and high temperatures, we could not prove that protection of fruit 

peel against photoinhibition during cold snaps lowers the risk of subsequent photothermal 

damage when temperatures increase again after the cold snap. Since the lack of results was 

due to the severity of the stress treatments, the experiment should be repeated with further 

fine tuning of experimental procedure and application at an earlier stage of fruit development 

before the hypothesis can be rejected. 
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Table 1: Anthocyanin, chlorophyll and carotenoid concentrations in sun-exposed ‘Cripps’ 

Pink’ apple peel during the 2008/2009 season. Means, separated by LSD (5%), are averages 

of 5 fruit. 

Stage of fruit development Fruit diameter Carotenoid Chlorophyll Chl:Car Anthocyanin 

(Dafb) (mm) �g g-1 �g g-1  �g g-1 

60   33 a Z 16.3 a 78.1 a    4.9 ns    0.0 ns 

100 43 b 10.7 b 45.8 b 4.3  0.0  

130 45 b   7.2 c 27.5 c 4.0  0.0  

159 56 c   6.1 c 19.9 c 3.3  8.0  

Pr > F 0.0002 0.0003 <0.0001 0.1928 0.4382 

        Linear <0.0001 <0.0001 <0.0001 0.0416 0.2150 

        Quadratic 0.8623 0.0474 0.0054 0.8952 0.3449 

ns Non-significant 
Z   Means followed by the same letter within the same column do not differ significantly at P � 0.05 
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Table 2: Effect of fruit age and temperature on the maximum quantum yield of PSII (Fv/Fm) 

and actual PSII efficiency (φPSII) at 140, 470 and 1400 �mol m-2 s-1 of sun-exposed ‘Cripps’ 

Pink’ apple peel at four stages of fruit development during the 2008/2009 season. Means, 

separated by LSD (5%), are averages of 12 fruit. 

Treatment Fv/Fm φPSII 

  140 470 1400 

Temperature (ºC )     

16     0.783  ns   0.308 c Z 0.208 d 0.081 b 

24 0.797 0.385 b 0.298 c 0.104 b 

32 0.782 0.524 a 0.386 b 0.134 a 

40 0.780 0.557 a 0.437 a 0.154 a 

Date (dafb)     

60     0.797  ns 0.518 a 0.351 a     0.105 ns 

100 0.792 0.449 b   0.335 ab 0.114  

130 0.760 0.389 c 0.304 b 0.122  

159 0.793   0.413 bc   0.337 ab 0.135  

Pr > F     

Temperature (T) 0.8787 <0.0001 <0.0001 <0.0001 

     T   Linear 0.7112 <0.0001 <0.0001 <0.0001 

     T   Quadratic 0.6585 0.1792 0.1919 0.8093 

Date (D) 0.1609 <0.0001 0.0444 0.1490 

     D   Linear 0.4441 <0.0001 0.1287 0.0543 

     D   Quadratic 0.1867 0.0009 0.0385 0.5119 

T * D 0.8806 0.1443 0.5009 0.5647 
ns Non-significant 
Z   Means followed by the same letter within the same column do not differ significantly at P � 0.0
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Table 3: Effect of fruit age and temperature on photochemical quenching, which is the 

proportion of PSII ‘open’ reaction centers (qP), at 140, 470 and 1400 �mol m-2 s-1 of sun-

exposed ‘Cripps’ Pink’ apple peel at four stages of fruit development during the 2008/2009 

season. Means, separated by LSD (5%), are averages of 12 fruit. 

Treatment qP 

 140 470 1400 

Temperature ( ºC )    

16   0.531 c Z 0.399 c 0.191 c 

24 0.678 b 0.547 b 0.257 b 

32 0.802 a 0.654 a   0.312 ab 

40 0.853 a 0.714 a 0.361 a 

Date (dafb)    

60 0.773 a    0.598 ns    0.263 ns 

100 0.742 a 0.590 0.285 

130 0.657 b 0.538 0.267 

159 0.673 b 0.572 0.306 

Pr > F    

Temperature (T) <0.0001 <0.0001 <0.0001 

     T   Linear <0.0001 <0.0001 <0.0001 

     T   Quadratic 0.0648 0.0843 0.8401 

Date (D) 0.0010 0.2621 0.4383 

     D   Linear 0.0002 0.1151 0.3763 

     D   Quadratic 0.1065 0.1675 0.4079 

T * D 0.1292 0.4627 0.6709 
ns Non-significant 
Z Means followed by the same letter within the same column do not differ significantly at P � 0.05
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Table 4: Effect of fruit age and temperature on non-photochemical quenching (qNP) at 140, 

470 and 1400 �mol m-2 s-1 of sun-exposed ‘Cripps’ Pink’ apple peel at four stages of fruit 

development during the 2008/2009 season. Means, separated by LSD (5%), are averages of 

12 fruit. 

Treatment qNP 

 140 470 1400 

Temperature (ºC)    

16   0.767 a Z 0.831 a    0.905 ns 

24 0.767 a   0.807 ab 0.908 

32 0.668 b   0.768 bc 0.905 

40 0.653 b 0.730 c 0.902 

Date (dafb)    

60 0.610 b 0.760 b 0.912 a 

100 0.739 a   0.789 ab 0.916 a 

130 0.768 a   0.790 ab 0.886 b 

159 0.761 a 0.811 a 0.912 a 

Pr > F    

Temperature (T) <0.0001 <0.0001 0.9501 

     T   Linear <0.0001 <0.0001 0.7350 

     T   Quadratic 0.4900 0.4741 0.7009 

Date (D) <0.0001 0.0428 0.0118 

     D   Linear <0.0001 0.0102 0.4738 

     D   Quadratic 0.0007 0.5266 0.1597 

T * D 0.0866 0.7715 0.2163 

ns Non-significant 
Z Means followed by the same letter within the same column do not differ significantly at P � 0.05
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Table 5: Effect of subjecting ‘Cripps’ Pink’ apples picked on 17 January 2008 to a mild- (28 

ºC) or low (16 ºC) temperature pre-treatment, followed by a heat stress treatment (37 ºC) on 

the maximal quantum efficiency of PSII photochemistry (Fv/Fm). T0 = Fv/Fm before treatment, 

T1 = Fv/Fm after 3 h exposure to low or mild temperature, T2 = Fv/Fm after 3 h high temperature 

treatment. Means were separated by LSD (5%).  (n = 14) 

Treatment  T0 

 

 T1 

 

% Reduction in 
Fv/Fm from T0 to 

T1  

 T2 

 

% Reduction in 
Fv/Fm from T0 to 

T2 

Control  

(16 ºC) 

 

0.852 ns 

 

  0.840 a Z 

 

1.5 a 

 

0.447 a 

 

47.5 a 

Mild  

(28 ºC + PPFD X)  

 

0.843 

 

0.471 b 

 

44.0 b 

 

 

0.284 b 

 

66.3 b 

Low  

(16 ºC + PPFD) 

 

0.853 

 

0.398 c 

 

53.2 c 

 

0.288 b 

 

66.2 b 

Pr > F 0.4719 <0.0001 <0.0001 0.0074 0.0081 

X  PPFD = 600 to 700 �mol m-2 s-1 
Z   Means followed by the same letter within the same column do not differ significantly at P � 0.05 
ns Non-significant 
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Table 6: Effect of subjecting ‘Cripps’ Pink’ peel discs from apples picked on 26 February 2008 

to a mild- (25 ºC) or low temperature (10 ºC) pre-treatment, followed by a heat stress 

treatment (45 ºC) on the maximal quantum efficiency of PSII photochemistry (Fv/Fm). T0 = 

Fv/Fm before treatment, T1 = Fv/Fm after 3 h exposure to low or mild temperature, R1 = Fv/Fm 

after 22 h recovery, T2 = Fv/Fm after 2 h high temperature (45 ± 1.5 ºC), R2 = Fv/Fm after 12 h 

recovery. Means were separated by LSD (5%).  (n = 16) 

Treatment T0 T1 R1 % Reduction in 
Fv/Fm from T0 

to T1 

T2 R2 % Reduction in 
Fv/Fm from T0 to 

T2 

Control  

(25 ºC)  

 

   0.837 
ns 

 

  0.829 a Z 

 

0.820 a 

 

   2.8 a Y 

 

0.050 ns 

 

0.049 ns 

 

   94.2 ns Y 

Mild  

(25 ºC + PPFD X)  

 

0.857  

 

0.112 b 

 

0.197 b 

 

76.9 b 

 

0.029  

 

0.063  

 

92.6  

Low  

(10 ºC + PPFD) 

 

0.836  

 

0.040 c 

 

0.075 c 

 

91.0 c 

 

0.054  

 

0.056  

 

93.2  

Pr > F 0.1217 <0.0001 <0.0001 <0.0001 0.3018 0.7417 0.7609 

X  PPFD was measured to be at 600 to 700 �mol m-2 s-1 

Y Reduction is determined in relation to Fv/Fm pre-treatment and Fv/Fm post recovery 
Z   Means followed by the same letter within the same column do not differ significantly at P � 0.05 
ns Non-significant 
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Figure 1: Change in hue angle of ‘Cripps’ Pink’ apples in relation to (a) air temperature and 

(b) radiation levels experienced between 15 to 22 March 2009. Hue angle measurements 

commenced on 16 March 2009. Hue angle decreases with increasing redness. Therefore, a 

negative change in hue on this graph indicates an improvement in red color (n = 28). 
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GENERAL DISCUSSION AND CONCLUSION 

 

The profitability of red and bi-coloured apples is dependent on the extent of red colour 

development before harvest. Red and bi-coloured apples require a certain minimum extent of 

red surface colour in order to qualify as Class one fruit. Fruit with less than the specified 

extent of red colour are downgraded and have to be sold in lower price markets or send for 

processing.  It goes without saying that improving red colour development of red and bi-

coloured apple cultivars and thereby increasing the proportion of the crop suitable for sale in 

more lucrative markets, is a primary objective in the production of these cultivars. 

Furthermore, it is well known that many apple cultivars, even some non-red ones, may 

develop a distinct red blush at times during fruit development. The significance of red colour 

development in immature fruit is not well understood. Temperature, apart from light, is the 

most limiting environmental factor for optimum red colour development (Lancaster, 1992; 

Saure, 1990). This is especially the case in the warm production areas of South Africa. Since 

different cultivars may have different temperature optima for anthocyanin synthesis (Curry, 

1997), not all may be equally suited for all production areas. Knowing the optimum 

temperatures for red colour development in the various cultivars can provide a good indication 

of where these cultivars can be grown. Hence, the primary aim of our study was to determine 

the optimum day and night temperatures for red colour development in the five major red and 

bi-coloured cultivars grown in South Africa. We also considered the possible significance of 

early colour development in immature fruits.  

 

In general, red colour in the cultivars evaluated developed maximally at a day-time 

temperature of 17 ºC to 25 ºC. However, it should be kept in mind that fruit surface 

temperatures in the orchard are generally higher than ambient air temperatures in the orchard 

(Schrader et al., 2003). Hence, the optimum daytime air temperatures for maximal red colour 

development would be lower than those reported in our study. Seasonal differences in 

optimum daytime temperatures for colour development was observed (Paper 1,Table 4), 

which implies that  it may be difficult to make recommendations regarding areas that would 

not be suitable for the production of specific cultivars. It also suggests that growing conditions 

may affect the potential for anthocyanin synthesis. The optimum temperature for red colour 
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development in the various cultivars remained constant throughout fruit development, but 

increased during fruit development in CP during the 2008/2009 season as has been found for 

‘Jonathan’ (Faragher, 1983). As expected from previous studies (Curry, 1997; Faragher, 

1983; Reay, 1999; Saure, 1990), the extent of red colour development increased during fruit 

development. Finally, our data indicate that redder strains of bi-coloured cultivars do not 

appear to owe their enhanced pigmentation to higher temperature optima for anthocyanin 

synthesis. Although the temperature range established for optimal colour development seems 

to be in agreement with previous studies (Bakhshi and Arakawa, 2006; Curry, 1997; 

Faragher, 1983), we recommend the validation of our results including fruit from more than 

one orchard per production area. The effect of soil nutrient status, tree factors and cultural 

practices followed in the different orchards, and which may affect anthocyanin synthesis 

(Gurnsey and Lawes, 1999; Saure, 1990), could be assessed making use of the Celtec. 

These factors may explain differences in red colour development observed between cultivars, 

orchards, production areas and seasons. 

 

It is been shown that maximal anthocyanin synthesis requires induction at low temperature 

(Curry, 1997; Christie, 1994).  Hence, one could say that the daily minimum temperatures 

during the harvest period would be more decisive in determining red colour at harvest than 

the daily maximum temperatures. Unfortunately, no optimum inductive night temperature or 

temperature range for optimum colour development could be confirmed (vide Curry, 1997) or 

established for any of the cultivars evaluated. If we focus only on the results of RG from 

Ceres, it would appear that red colour development in RG may benefit from induction at 4 ºC.  

However, it is not scientifically and ethically correct to ignore the largely inconclusive results 

obtained for the other cultivars and for RG from Grabouw.  

 

Curry (1997) also made use of apple peel discs on temperature controlled peltier plates to 

study the effect of inductive temperatures on anthocyanin synthesis. His results were much 

more conclusive and indicated that ‘Fuji’ and ‘Red Delicious’ peel discs accumulated 

considerably more anthocyanin if pre-treated at low temperature. Curry’s experiment differed 

from our own in the larger dimensions of his peltier plates (7.5 cm x 7.2 cm) and in that he 

replicated peel discs on a single plate per temperature. Although not true replication, the use 

of a single plate with more discs of each cultivar per plate should have resulted in a smaller 
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variance. Curry did not make holes in the plastic film covering the samples, which we did in 

order to prevent condensation and the possible accumulation of ethylene at the risk of 

dehydration of samples. We did not observe any dehydration. The illumination source in our 

experiment was at shorter distance from the samples and provided considerably higher 

irradiance at the fruit surface. Hence, our irradiance levels would be more comparable to 

irradiation experienced under field condition. Since our day-temperature experiments gave 

satisfactory results, it is difficult to find reasons for the failure of the night-temperature 

experiment. We suggest that our technique for evaluating night temperatures is revised, 

maybe making use of whole apples instead of peel discs, before repeating the experiments. 

 

In order to explain the role of anthocyanin synthesis during early fruit development, we argued 

that anthocyanins in immature apple fruit protect the peel from photoinhibition and 

photooxidative damage during conditions of increased light stress. Environmental stresses, 

such as low temperatures, lower the photosynthetic rate at a given irradiance, thereby 

increasing the degree to which absorbed light is excessive and increases the need for energy 

dissipation (Demmig-Adams and Adams, 1996). The rapidity by which the hue angle 

decreases in response to a sudden cold snap appears to be sufficient to provide 

photoprotection before the photo-apparatus incurs any significant photodamage under 

conditions of high excitation pressure. It remains to be determined whether the rapid 

accumulation of anthocyanin really is sufficient to avoid photoinhibition and subsequent 

photodamage in immature fruit. High temperature together with high irradiance can cause 

different types of sunburn (Felicetti and Schrader, 2008) depending on the photoprotective 

capacity of the fruit peel (Li et al., 2008). Unfortunately, we could not test the hypothesis that 

that protection of fruit peel against photoinhibition during cold snaps lowers the risk of 

subsequent high light and high temperature-induced damage to fruit peel. The severe effect 

of the high temperature treatment on the photo-apparatus nullified earlier treatment 

differences at low and mild temperature. We suggest that these trials are repeated at an 

earlier stage of fruit development, making use of whole fruit and less severe high temperature 

stress. 

 

We found that apple peel incurred significantly more photoinhibition at low (16 ºC) compared 

to mild (24 to 32 ºC) and high (40 ºC) temperatures under high irradiance. The recovery rate 
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is temperature dependent, being the slowest after exposure to low temperature and 

increasing with an increase in the temperature that peel was exposed to.  

 

Fruit peel increased in sensitivity to photoinhibition during fruit development at low, but not at 

high irradiance. Hence, we could not relate an increase in optimum temperature and the 

extent of anthocyanin synthesis during fruit development, as reported in previous studies 

(Farager, 1983), to an increase in sensitivity to light stress during fruit growth. Since the 

optimum temperature for red colour development in CP increased during fruit development, 

the lack of an increase in sensitivity of CP peel to light stres during fruit development is at 

odds with this idea. 
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