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ABSTRACT 

 

The HIV epidemic has been largely controlled by antiretroviral treatment (ART) which 

improves neurodevelopmental outcomes. Nevertheless, many HIV-infected (HIV+) 

children on long-term treatment may have HIV-related brain injury, ongoing cognitive 

impairment and treatment-related neurological complications.  

Magnetic resonance imaging (MRI) and in particular diffusion tensor imaging (DTI) are 

sensitive tools in assessing the integrity of white matter (WM) microstructure in HIV. 

The pictorial review describes common causes of HIV-related cerebral WM disease 

as well as the role of neuro-imaging in managing these patients. 

In the following chapters the characteristics of WM signal abnormalities on MRI and 

DTI (using DTI derived measures - fractional anisotropy (FA), mean (MD), axial (AD) 

and radial diffusion (RD)) in children with HIV, recruited as part of the Children with 

HIV early antiretroviral (CHER) trial and who started ART within the first year of life, 

are described. In the CHER trial, infants were randomized to early limited or deferred 

continuous ART. 

 

Methods: 

Structural MRI scans of children at mean age 39.1 months were reviewed and 

correlated with clinical and neurodevelopmental data, virological markers and time on 

ART.   

 

DTI was acquired in a similar cohort (which included several children in the first study 

and control subjects) at mean age of 64.7 months. Voxel-based group comparisons 

were performed to determine regions where FA and MD differed between HIV+ and 

uninfected children. Associations of DTI parameters with timing of ART initiation and 

correlations of DTI parameters in abnormal WM with directed neurodevelopmental 

tests were examined. 
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Results: 

MRI scans of 44 children were reviewed at mean age of 39.1 months: 10 on deferred 

and 34 on early CHER treatment arms, commencing ART at mean age of 18.5 and 8 

weeks respectively. Multiple high signal intensity lesions on T2 /FLAIR were 

documented in 22 patients (50%), predominantly in frontal (91%) and parietal (82%) 

WM. There were no differences in neurodevelopmental scores in children with and 

without WM signal abnormalities. Neither lesion load nor distribution showed 

significant correlation with neurodevelopmental scores or neurological examination. 

There was a trend for association of WM signal abnormalities and longer time on ART 

(p=0.13) and nadir CD4% (p=0.08). 

39 HIV+ children (15 male) and 13 controls (5 male) were imaged (using DTI) at mean 

age of 64.7 months. 2 Clusters with decreased FA and 7 clusters with increased MD 

were identified in the HIV+ group with symmetrical distribution predominantly due to 

increased RD, suggestive of decreased myelination. Children on early interrupted ART 

had lower FA compared to those receiving continuous treatment. The only 

neurodevelopmental domain with a trend of difference between the HIV+ children and 

controls (p=0.08), was personal social quotient which correlated to improved 

myelination of the forceps minor in the control group. As a combined group there was 

a negative correlation between visual perception and RD in the right superior 

longitudinal fasciculus and left inferior longitudinal fasciculus which may be related to 

these tracts, part of the visual perception pathway, are at a crucial state of 

development at age 5.  

 

Conclusion: 

Half of children at mean age of 39.1 months, referred with HIV-related brain disease 

had WM signal abnormalities on T2/FLAIR structural MRI.  HIV+ children at 5 years 

have WM abnormalities measured by FA, despite early ART, confirming that early ART 

does not fully protect the WM either from peripartum or in utero infection. In contrast 

to adults, the corticospinal tracts are predominantly involved rather than the corpus 

callosum. Continuous early ART, however limits the extent of WM damage.  
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Even directed neurodevelopmental tests will underestimate the degree of 

microstructural WM damage detected by DTI. The visual perception deficit detected in 

the HIV study population should be further examined as it persists in longitudinal follow 

up of these patients at age 7. 
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ABSTRAK 

 

Die MIV-epidemie is tans grootliks onder beheer deur effektiewe anti-retrovirale 

terapie (ART) en selfs wanneer dit onderbreek word, verbeter die neuro-

ontwikkelingsuitkomste. Dit het daartoe gelei dat baie kinders met die siekte op 

langtermynbehandeling grootword, met gevolglike hoër risiko om MIV-verwante 

breinbesering, voortgesette kognitiewe inkorting en behandelingsverwante 

neurologiese komplikasies te ontwikkel. 

Magnetiese resonansie beelding (MRI) en veral diffusie tensor beeldvorming (DTI) is 

effektiewe metodes om die integritiet van witstof-mikrostruktuur in MIV te assesseer. 

 

Die eerste hoofstuk beskryf algemene oorsake van MIV-verwante serebrale witstof-

siekte asook die rol van neuro-beelding in die behandeling van hierdie pasiënte. 

 

In die volgende hoofstukke word die eienskappe van witstof sein abnormaliteite op 

MRI en DTI (met behulp van DTI afgeleide maatstawwe - fraksionele anisotropie (FA), 

gemiddelde (MD), aksiale (AD) en radiale diffusie (RD)) in kinders met MIV, en wat 

met ART in die eerste jaar van die lewe begin het, beskryf. 

 

Metodes: 

Strukturele MRI skanderings van kinders op gemiddelde ouderdom van 39,1 maande 

is hersien en gekorreleer met kliniese en neuro-ontwikkelingsdata, virologiese 

merkers en durasie van ART. 

DTI is in 'n soortgelyke kohort (wat verskeie kinders in die eerste studie en kontroles 

insluit) op die gemiddelde ouderdom van 64,7 maande, verwerf. Voxel-gebaseerde 

groep vergelykings is uitgevoer om streke te bepaal waar FA en MD verskil tussen 

MIV + en onbesmette kinders. Assosiasies van DTI parameters met begin tydperk van 

ART en korrelasies van DTI parameters in abnormale witstof met direkte neuro-

ontwikkelingsuitkomste was ondersoek. 
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Resultate: 

MRI-skanderings van 44 kinders, gemiddelde ouderdom van 39,1 maande is 

geevalueer: 10 was op uitgestelde en 34 op vroeë CHER-behandelingsarms. ART is 

begin op gemiddelde ouderdomme van 18,5 en 8 weke onderskeidelik. Veelvuldige 

hoë sein intensiteit letsels op T2 / FLAIR is gedokumenteer in 22 pasiënte (50%), 

hoofsaaklik in frontale (91%) en parietale (82%) witstof. Geen verskille in neuro-

ontwikkeling van kinders met en sonder witstof-seinafwykings is gevind nie. Geen 

letsellading of verspreiding het beduidende korrelasie met neuro-ontwikkelingstellings 

of neurologiese ondersoeke getoon nie. Daar was 'n tendens vir die assosiasie van 

witstof sein abnormaliteite en langer tyd op ART (p=0.13) en CD4% (p=0.08). 

 

39 MIV+ kinders (15 manlik) en 13 kontroles (5 manlik) is op die gemiddelde ouderdom 

van 64,7 gebeeld met DTI. 2 gegroepeerde areas met verlaagde FA en 7 met 

verhoogde MD is in die MIV + -groep geïdentifiseer (oorwegende simmetriese 

verspreiding) as gevolg van verhoogde RD, wat dui op verminderde mielinisasie. 

Kinders met vroeë onderbreekte ART het laer FA vergeleke met diegene wat 

deurlopende behandeling ontvang het. Die enigste neuro-ontwikkelingsdomein met 'n 

tendens van verskil tussen die MIV + -kinders en kontroles (p = 0.08) was persoonlike 

sosiale kwotiënt wat verband hou met verbeterde mielinisasie van die forceps-minor 

in die kontrolegroep. As 'n gekombineerde groep was daar 'n negatiewe korrelasie 

tussen visuele persepsie en RD in die regter superior longitudinale fasciculus en linker 

inferior longitudinale fasciculus wat verband hou met die feit dat hierdie gebiede, wat 

deel vorm van die visuele waarnemingsbane, in 'n kritieke toestand van ontwikkeling 

is op die ouderdom van 5 jaar. 

 

Gevolgtrekking: 

Die helfte van kinders wat verwys is met MIV-verwante brein siekte, op 'n gemiddelde 

ouderdom van 39,1 maande, het witstof sein abnormaliteite op T2 / FLAIR strukturele 

MRI. MIV+ kinders op 5 jarige ouderdom het witstof-abnormaliteite, gemeet aan FA, 

ten spyte van vroeë ART, wat bevestig dat vroeë ART nie die witstof ten volle beskerm 

teen peripartum of in utero-infeksie met MIV nie. In teenstelling met volwassenes, is 
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die kortikospinale bane hoofsaaklik aangetas, eerder as die corpus callosum. 

Deurlopende vroeë ART beperk egter die omvang van witstof-skade. 

 

Selfs gerigte neuro-ontwikkelingstoetse sal die mate van mikrostrukturele witstof-

skade wat deur DTI bespeur kan word, onderskat. Die visuele persepsie tekort wat in 

die MIV-studiepopulasie waargeneem is, moet verder ondersoek word aangesien dit 

voortduur in longitudinale opvolg van hierdie pasiënte op die ouderdom van 7 jaar. 
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Chapter 1:  Introduction 
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8.1 Central nervous system HIV in children 

 

Untreated childhood HIV infection causes high mortality and rapid disease 

progression. If left untreated more than a third of infected infants die during infancy 

and about half by 2 years of age. 1,2,3 The disease may have a variety of neurological 

complications and HIV infection should be suspected in children presenting with 

unexplained neurological manifestations and growth failure, posing a difficult clinical 

problem. 4 

 

With the recent improvements in HIV treatment, the disease has become chronic. The 

mean survival time of HIV-infected children is now 9-10 years, which is more than 4 

times the mean age of such children who died in 1990. Yet, the prevalence of HIV 

encephalopathy has not decreased despite use of combination anti-retroviral therapy 

(ART). Rather, it is expected that as patients live longer, the prevalence of CNS 

manifestations will actually increase. 5  Since the experience of treatment of HIV-1 

infections in adults cannot be easily translated to children, paediatric clinical trials are 

needed to answer questions specific to the unique characteristics of children. 6  

Treatment options are complicated by long term toxicity of antiretroviral drugs, 

adherence issues as well as limited resources in our environment. 

 

HIV- related encephalopathy is an important problem in vertically HIV-infected (HIV+) 

children. Infected infants may manifest early with catastrophic encephalopathy, loss 

of brain growth, motor abnormalities, and cognitive dysfunction. 7  

 

Neuropathology studies in children with AIDS typically reports atrophy with the most 

striking histopathological features that of inflammation, neuronal loss, demyelination 

and perivascular basal ganglia calcifications. 6 Initial entry of the virus into the central 

nervous system occurs very early in paediatric HIV infection, however the mechanisms 

are not yet entirely understood. The virus is primarily found in microglia and brain 

derived macrophages, not in neurons. The infected microglia may enhance the 

migration of immune-activated macrophages across the blood-brain-barrier and 

macrophage products such as cytokines, are highly likely to be neurotoxic. Circulating 

tumour necrosis factor has been found to be elevated in encephalopathic children 

suggesting a toxic effect on central myelin. The damage to neurons are there for 
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indirect, with several of the cytokines promoting apoptosis, the presumed mechanism 

of damage to neurons. Furthermore, components of the virus itself are thought to be 

neurotoxic. The susceptibility of astrocytes to infection may also be greater in children 

than in adults, and they harbour latent infection. 7   

 

Since the inception of this study, a number of trials have been completed in South 

Africa and abroad. 8–10 The Children with HIV early antiretroviral (CHER) trial 11 showed 

that early time limited ART in young infants is better than deferred ART over an 

extended period. HIVE was more common in the deferred treatment group, suggesting 

that early ART initiation could be neuroprotective.   

 

The coverage of children with ARV stood at only 28% in 2011, which made it crucial 

to promote the early diagnosis and treatment in young infants, rather than only limiting 

interventions to prevent mother to child transmission. 

 

Review of the literature 

 

8.2   What is known from imaging the brain in adults with HIV 

 

HIV is associated with central nervous system (CNS) changes that may affect cerebral 

blood flow, metabolism, structure, and diffusion.  A variety of available neuroimaging 

techniques have been employed to gain a better understanding of the underlying 

neurological processes involved in disease progression, and while useful information 

has been gained, some of these techniques were not practical or effective to assess 

the latter. 12 

 

Each neuroimaging technique offers unique insight into the neural mechanisms 

underlying HIV, as well as a potential means of monitoring disease progression and 

treatment response. The results of published studies on MR Imaging suggest that 

neurological dysfunction and symptoms as well as neuroimaging findings can improve 

with ART. Treatment should be initiated before irreversible CNS damage occurs. 13   
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SPECT (single-photon emission computed tomography) provides a measure of 

cerebral blood flow, and early studies in adult HIV patients found hypoperfusion in 

frontoparietal regions correlating with dementia, 14 which abated with treatment. 15  

 

PET (positron emission tomography) utilizes radioactive tracers to quantify neural 

changes related to cerebral glucose metabolism or blood flow. In a study by Pascal et 

al. an adult HIV patient group had asymmetry in glucose utilization compared to 

controls, most prominent in the pre-frontal and pre-motor regions. 16 

 

Volumetric analysis of MRI found a correlation between declining cognitive function 

and volume loss in specific brain structures including the basal ganglia and caudate 

nucleus in adult HIV patients compared to controls. 17,18 These studies however, are 

very labour intensive. 

 

MRS (magnetic resonance spectroscopy) is a non-invasive way of analysing 

metabolite concentrations in targeted sites in the brain.  Many studies have 

demonstrated abnormal metabolite concentrations and ratios in adult patients with 

HIV, but more importantly in patients without visible lesions on MRI. Abnormalities 

were most prominent in the white matter of the frontal lobes, basal ganglia and 

thalamus. 19,20 

 

fMRI (functional MRI) collects anatomical and functional scans reflecting alterations in 

blood oxygenation level dependant (BOLD) contrast, which can link a cognitive task 

performed in the magnet to brain activity over time. Chang et al. demonstrated that 

adult HIV patients had greater frontal and parietal activation during complex attention 

tasks. 21  Even before symptomatic cognitive decline patients with HIV may exert 

greater than normal effort to perform the same tasks. 22 A positive correlation was also 

found between activation during attention tasks and metabolites in the frontal lobes 

and basal ganglia. 23  

 

pMRI (perfusion MRI) measures the rate of blood flow through capillaries. During the 

scan, data are recorded at specific sites resulting in information about the relative 

cerebral blood flow (rCBF), cerebral blood volume (CBV) or the mean transit time from 

one point in the brain to another.  Chang et al. found that patients with early HIV 
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cognitive motor complex had significant decline in rCBF in the lateral frontal lobes and 

the medial parietal lobes, with increases in rCBF in the posterior parietal white matter 

compared to controls. 24 In a study by Hall et al. there was an increase in CBV and 

CBF in the centrum semiovale of adult HIV+ patients with more advanced disease 

suggesting a relationship with changes in perfusion and atrophy/demyelination. 12  

 

DTI (diffusion tensor imaging) is derived from a set of diffusion gradients to measure 

the anisotropic diffusion of water molecules (see discussion later). DTI provides 

information about the integrity of white matter tracts and has been very helpful in the 

studying of diseases caused by demyelination. DTI is extensively used in brain 

imaging of HIV+ adults. The first studies already demonstrated decrease in anisotropic 

diffusion in the frontal subcortical white matter and genu of the corpus callosum 

despite normal appearing white matter on structural MRI compared to controls. 25  

More specific findings of increased mean diffusivity and radial diffusion in HIV+ 

patients indicate that demyelination might be the main pathophysiological result of HIV 

associated white matter damage. 26  

 

The most common neuropathological feature of HIV-1 infection remains diffuse white 

matter pallor, especially in advanced HIV disease, 27 with MRI being the most sensitive 

in detecting early changes not yet evident on CT. 

 

AIDS dementia complex is one of the most common causes of HIV-associated 

morbidity in adults, with early symptoms often subtle and overlooked, delaying 

appropriate treatment.  Two histopathological patterns have been described in AIDS 

dementia complex: HIV encephalitis - representing active infection of the brain and 

meninges with neuropathological studies demonstrating accumulation of 

multinucleated giant cells, inflammatory reactions and often focal necrosis 28, and HIV 

leukoencephalopathy (more diffuse white matter involvement with defined clinical 

criteria), which can be distinguished radiologically.13 HIV encephalitis present as 

patchy areas of T2 high signal, whereas HIV encephalopathy has a butterfly-like 

appearance, more diffuse increased T2 signal intensity of the white matter. Cerebral 

atrophy however remains the most common finding in AIDS dementia complex.  
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Focal brain lesions seen in adults prior to ART were predominantly toxoplasma 

encephalitis and primary CNS lymphoma which demonstrated a dramatic decline in 

the post ART era most likely as a direct result of immune reconstitution. 29 

 

 

8.3   Brain imaging in HIV+ children 

 

MRI has become the preferred modality for neuroimaging in the HIV+ child, being able 

to detect subtle white matter signal abnormalities and vascular complications. The use 

of more sophisticated techniques is now the subject of further research. 

 

In the pre- and early ART era neuroimaging findings of vertically-infected HIV+ children 

were described as cerebral atrophy, symmetrical calcifications of the basal ganglia or 

periventricular white matter, as well as focal white matter lesions on CT and MRI, 

which in turn have an association with advanced immune and clinical staging. 30–33  

 

Over time, distinct patterns of CNS involvement, different from those in adults, are 

being recognized. 34 The atrophy pattern encountered in children with HIV is specific: 

a central atrophy, primarily affecting the subcortical white matter and basal ganglia 

regions. 7 

 

Opportunistic infections and brain tumours are rarely reported in children compared to 

adults. 5  HIV-1 involves almost exclusively the CNS in children, sparing the peripheral 

nervous system. 33  Vascular complications in children are associated with end-stage 

HIV disease with aneurysms and ischemic infarctions as the most common reported 

lesions. 35  

 

As with adults, MRS studies have shown increased myo-inositol (a glial cell marker) 

and decreased N-acetyl aspartate (a marker of neuron density and integrity) in the 

white matter of children with encephalopathy 36, and more specifically that HIV+ 

children do not demonstrate a normal age related increase in NAA in the frontal white 

matter and hippocampus. 37 These findings underline the significant developmental 

impact of early HIV infection. 
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DTI has now become a very popular imaging method to assess white matter damage 

in vertically infected HIV children, demonstrating clear differences between HIV-

infected and control groups. Lower functional anisotropy (FA) and higher mean 

diffusion (MD) in specific white matter tracts, particularly in the corpus callosum have 

been reported. 38–41 These studies included wide age ranges over developmental 

phases during which there is significant physiologic increase in both white matter 

volume and FA . 

 

 

8.4   What are diffusion weighted imaging and diffusion tensor imaging?  

 

Diffusion is a physical process that involves the movement of molecules along random 

paths, colliding and moving past each other - so called Brownian motion. The distance 

and extent to which water molecules move per unit time in tissues is affected by 

physical properties such as viscosity and temperature as well as the presence of 

cellular structures (i.e. membranes or myelin sheaths) which provide barriers to free 

movement. Diffusion in such circumstances is said to be restricted. 42  

 

If diffusion is the same in all directions it is termed isotropic (free diffusion). 

 

In tissues that have a highly organised structure, diffusion may be more restricted 

along one direction than another. For example, in myelinated white matter fibres 

diffusion across the fibre is much more restricted than along the fibre. In such 

circumstances diffusion it is called anisotropic.  

 

A defining characteristic of neuronal tissue is the fibrillar structure, consisting of tightly 

packed and aligned axons, surrounded by glial cells. The result is increased 

movement of water in the direction of the fibres and hindrance perpendicular to them. 

The distribution of diffusion is further influenced by the fact that neuronal tissues and 

specifically white matter tracts run in various orientations. 43  
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Experimental evidence suggests that the biggest contributor to anisotropic diffusion in 

white matter is not the myelin sheaths but rather the cell membrane. The degree of 

myelination further modulates anisotropy. 43  

 

MRI technique of DWI  

 

DWI was introduced in the mid 1980’s, and provided a novel contrast mechanism for 

MRI, and a non-invasive method of measuring the mobility of water molecules in 

various tissues. 42,44 

The typical diffusion time used in DWI is around 50ms, and the average distance of 

movement of water molecules in the brain is around 10µm. It is this movement that is 

measurable by MRI. 

Diffusion weighting can be applied to almost any MRI pulse sequence by adding two 

gradient pulses. The first labels the initial position of the water molecules by 

introducing a phase shift that is dependent on the strength of the gradient. The second 

“reads” the final position of the molecules after they have had time to diffuse. Before 

the application of the second gradient, a RF (radio frequency) pulse of 180º is applied 

to reverse the phase shift induced by the first gradient. All spins remaining in the same 

location along the gradient axis during the 2 pulses will return to their initial state 

resulting in a measured MRI signal.  

 

DG = diffusion sensitizing gradients.    (MRIquestions.com) 
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If the molecules changed position by diffusion the MRI signal is not refocused properly 

by the second gradient and image intensity is reduced. The resultant image shows low 

signal intensity in regions where diffusion along the applied diffusion gradient is high, 

for example in CSF. 42,43 

The degree of diffusion sensitivity or weighting is expressed as a b-value, where larger 

b-values are related to greater degree of diffusion sensitivity in a sequence. (b~q2×∆, 

where q=gradient strength of the MRI and ∆=diffusion time interval). The direction of 

the diffusion gradients can be changed so that diffusion of water can be measured 

along different directions within the brain. 

The interpretation of DWI is made easier by an image that reflects only diffusion, called 

the ADC map (apparent diffusion coefficient) derived from signal intensities of images 

acquired with different b-values (diffusion sensitivity). ADC imaging is based on a 3D 

isotropic diffusion model (spherical voxel; diffusion equal in all directions), not taking 

into account the orientation of axonal bundles and the anisotropic nature of diffusion 

encountered in white matter (cigar shaped voxel; diffusion dominant in one 

direction). 42,43  

  

DWI trace                                       ADC map 

 

To characterise diffusion within a white matter tract, at least 6 gradient directions must 

be applied. A mathematical calculation of the 6 diffusion direction coefficients results 

in a diffusion tensor rather than a single coefficient. This tensor is a 3x3 matrix which 

fully describes the sum of diffusion in 3D space, and is usually ellipsoid. 
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The mathematical nature of the data makes it possible to be analysed in 3 different 

ways, providing information on microstructure and architecture for each voxel imaged: 

the mean diffusivity, the main direction of diffusion and the degree of anisotropy. 

 

Mean diffusivity (MD, also called the trace) describes the overall mean-squared 

displacement of molecules and the presence of obstacles to diffusion, in other words 

the degree of water diffusion within an imaging voxel. It has a similar appearance to 

an ADC map, derived from 3 diffusion gradients. 

 

The main direction of diffusion is derived by computing eigenvectors and eigenvalues 

from the tensor. Eigenvectors are orthogonal to each other, each with a value 

describing the properties of the tensor. The eigenvector with the largest value is the 

main direction of diffusion. If the eigenvectors differ significantly, diffusion is called 

anisotropic. 43  

 

Representation of the diffusion as an ellipsoid with three unit eigenvectors 

(MRIquestions.com) 

 

Fractional anisotropy (FA) is used to describe the shape of diffusion by using a scalar 

value derived by comparing each eigenvalue with the mean of all the eigenvalues 

within the voxel. The FA is a simple and robust method, it reflects the degree of 

anisotropic diffusion:  so will be high (close to the value 1) in regions of highly 

organised tissues i.e. corpus callosum, and low in regions where the predominant 

diffusion is not specifically orientated and close to zero (value 0) in free fluids i.e. CSF. 

45 It is viewed as a FA map, demonstrating high intensity in regions of the brain with 
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anisotropic diffusion and low intensity in those regions with isotropic diffusion, making 

it an excellent map delineating white matter tracts. 42–44  

 

   

Fractional anisotropy map, grayscale display of FA values across the image. Brighter 

areas are more anisotropic than darker areas. (MRIquestions.com) 

 

The most practical way of viewing diffusion tensor data, is colour coding the data 

according to the principal direction of diffusion. The accepted coding system allocates 

red, to diffusion along inferior-superior (x) axis, blue, to diffusion along the transverse 

(y) axis, and green, to diffusion along the posterior-anterior (z) axis. The intensity of 

the colour is proportional to the FA, producing the well-known images of DTI. 43  

 

8.5   Previous work using DTI in adults with HIV 

 

DWI has been used to great advantage in the adult population.   

 

In HIV+ patients, apparent diffusion coefficient ratios obtained by diffusion-weighted 

imaging are significantly greater in lesions due to Toxoplasma encephalitis than in 

primary CNS lymphoma, providing a tool for distinguishing the two entities. 46  

 

Multiple studies in adults have demonstrated distinct differences in the HIV population 

compared to controls.     

 

The diffusion constant (ADC) and anisotropy (FA) values in the subcortical white 

matter, corpus callosum and internal capsule in HIV+ adults are useful for detecting 
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abnormalities despite normal appearing white matter on conventional MR images and 

non-specific neurological examination. 27,47,48 Patients with the highest diffusion 

constant elevations and largest anisotropy decreases had the most advanced HIV 

disease. 25,27,49  

 

Significant increase in ADC in HIV patients, primarily in the frontal white matter has 

been correlated positively with a glial marker myo-inositol (MI) and negatively with 

performance, which suggests that increased diffusion may reflect glial activation or 

inflammation, in turn contributing to cognitive deficits in these patients. 50 

 

Furthermore, diffusion abnormalities have been identified in the splenium of the corpus 

callosum in HIV+ patients and these alterations were associated with dementia 

severity and motor speed losses. 51  Similar findings of loss of function within specific 

cognitive domains and DTI measures in subcortical regions of the brain have been 

reported, confirming that DTI is a sensitive tool for correlating neuroanatomic 

pathologic features with specific cognitive functions in patients with HIV infection. 47,52 

Most of these studies used a ‘priori’ ROI (region of interest) analysis. 

 

Subsequent studies, using a ‘voxelwise’, and in selected studies ‘whole-brain’, 

analysis have shown a more widespread white matter damage 26,52–55 and variable 

changes in DTI (conflicting FA values, both increased and decreased) 52, which may 

reflect both direct loss of axonal integrity (indicated by an increased MD and drop in 

FA) and a loss of complexity (indicated by a rise in FA) to the underlying axonal matrix 

(loss of crossing and other nonparallel fibres). 

 

CNS injury is evident in patients with HIV despite effective antiretroviral treatment, 52,55 

however a recent study suggested that initiating ART could lead to a reduction in 

neuroinflammation and therefore improvement in DTI measures 56, more specifically 

improvement in the mean diffusivity, in the corpus callosum and centrum semiovale.  

 

It is very important to note that other factors may also influence the integrity and 

stability of white matter tracts in the adult population, most notably age and co-infection 

which both demonstrated an association with decreased FA and increased 
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diffusivity. 55 DTI measures have also shown significant correlation to duration of HIV 

infection 57,58, again an important factor in adults. 

 

 

8.6   DTI in children 

 

DWI has proven to be a sensitive supplemental sequence to routine cranial MR 

imaging in children, improving lesion detection and characterisation. 59 DWI has been 

demonstrated to be highly sensitive in identifying acute ischemic infarction when all 

other forms of neuroimaging are negative, with greatest lesion detection within a week 

of onset of symptoms. DWI has also been reported as being very effective in 

evaluating myelination. Water diffusion parallels the known course of brain maturation: 

as ADC decreases, FA increases. The importance of this is that apparent anisotropy 

precedes the signal on T1 or T2 weighted MR images routinely used to assess 

myelination. 59–61 In dysmyelinating and demyelinating conditions, DWI provides 

information that is not yet apparent on the T1 or T2 sequences, which may be used to 

prognosticate and study the evolution of these disorders as well as provide additional 

criteria to further classify undefined white matter disorders. 59,62 

 

DWI is also a highly sensitive tool for the evaluation of meningoencephalitic lesions 

with restricted diffusion, and is more sensitive than T2 and FLAIR sequences. 59,63,64  

 

DTI studies in children have demonstrated its utility to assess the microstructural 

development and myelination of white matter. 60,65,66   DTI has been used in a wide 

variety of other neurodevelopmental research in the paediatric population:  childhood 

psychiatric disorders, traumatic brain injury, delineation of brain tumours pre-

operatively and differentiation between low and high grade tumours, autism and 

metabolic diseases. 67–71 

 

Although DTI has also become an accepted and robust tool for assessing HIV- 

associated white matter disorders, there are only few studies of DTI in the paediatric 

HIV+ population, specifically looking at FA and correlation with clinical, laboratory and 

treatment parameters. 
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The broad aim of this study is to correlate neurodevelopmental scoring with the 

extent of white matter disease represented by FA values derived from DTI. 

Specific objectives: 

-To describe general pathological conditions manifesting as white matter 

abnormalities of the brain in perinatal HIV infection. 

-To determine the incidence of white matter abnormalities in perinatal HIV infection. 

-To compare DWI and ADC with T2 and FLAIR sequences in children with HIV with 

regards to presence and distribution of white matter changes. 

-To determine geographical distribution of white matter signal abnormalities. 

-To correlate white matter lesion load and distribution with clinical groups 

(encephalopathy, neurodevelopmental delay, focal neurology) and developmental 

profile. 

- To determine the extent and nature of white matter abnormalities using the DTI-

derived metrics (FA and MD) and to examine the ameliorating effects of ART. 
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Chapter 2:  Spectrum of white matter diseases in HIV 
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Rationale for the inclusion of published work 
 
 
The manuscript included in this chapter gives an overview of the MRI features of 

common white matter disease entities encountered in the HIV- infected paediatric 

population in the form of a pictorial review. 

 

Baseline MRI imaging of the brain is currently not standard practice in our institution, 

for either perinatally infected or newly diagnosed HIV infection in children. 

 

Children are referred for neuroimaging when they present with focal neurology as a 

result of opportunistic infections, tumours or for confirmation of clinically suspected 

HIV encephalopathy that does not fully comply with WHO criteria. 

 

The baseline structural MRI studies are often normal; however non-specific white 

matter lesions are frequently encountered. This article discusses the differential 

diagnosis of white matter disease according to: clinical presentation, MRI imaging 

features, distinct characteristics and associated immunological parameters typically 

found in the separate disease entities. 

 

It also sheds light on the differences in CNS involvement between HIV+ adults and 

children and discusses specific MRI parameters that can be utilized for monitoring 

patients. 

 

This chapter sets the scene for the remainder of the thesis and informs on the general 

difficulty that the diagnostic radiologist faces as part of the primary HIV care team. 
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Introduction: 

 

Cerebral white matter involvement is a common radiological finding in HIV infection 

and its causes have overlapping appearances, ranging from diffuse widespread 

involvement to focal lesions. Varied pathophysiology exists, broadly grouped into 

primary effects of HIV, opportunistic infection, vascular disease and neoplasms. White 

matter changes in children may also exhibit specific differences in comparison to HIV-

infected adults.  

 

HIV-related white matter damage includes demyelination and axonal injury with 

dysfunction. Myelin injury is postulated to induce disruption of the brain blood barrier 

which is essential for HIV-1 entrance to the brain. HIV-infection also adversely 

influences cerebral re-myelination, a process which requires proliferation, migration 

and survival of oligodendrocyte progenitor cells 72.   

 

There is a need to find ways to improve early diagnosis of HIV, especially related to 

the field of neuroimaging 73. Previously, conventional neuroimaging played a vital role 

in the diagnosis of pediatric HIV patients by identification of HIV-related cerebral 

atrophy, vasculopathy, opportunistic infections and tumors. It also played an important 

role by excluding alternative causes of CNS symptomatology as well the monitoring of 

progression / evolution of brain lesions and response to therapy 12,73–76. 

 

With the advent of advanced imaging techniques, it has become apparent that 

structural imaging of the brain in HIV-infected patients often underestimates the extent 

of the underlying pathology.  Structural brain imaging has limited value in 

asymptomatic HIV+ patients 77,78  due to poor diagnostic yield, 78,79 yet others feel 

strongly that all newly diagnosed HIV+  patients should undergo baseline imaging  and 

that there should be a  low threshold  to image patients with minimal neurological 

symptoms as they may have significant CNS disease 35,80.  

 

The aim of this review is to give a concise summary of common causes of HIV-related 

cerebral white matter disease in children and to provide guidance to radiologists faced 
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with the diagnostic dilemma of nonspecific cerebral white matter lesions in HIV+ 

children. 

 

 
Spectrum of HIV related white matter disease: 

 

1. HIV Encephalopathy (HIVE):  

 

HIVE is a broad clinical term and comprises deterioration of cognitive functions that 

are associated with white matter disease and cerebral atrophy. The WHO defines 

HIVE as at least one of the following, progressing over at least two months in the 

absence of another illness: failure to attain, or loss of, developmental milestones or 

loss of intellectual ability; OR progressive impaired brain growth demonstrated by 

stagnation of head circumference; OR acquired symmetric motor deficit accompanied 

by two or more of the following: paresis, pathological reflexes, ataxia and gait 

disturbances 81. HIVE can furthermore be classified  into: 1) progressive 

encephalopathy which is characterized by a step wise deterioration of mental status 

associated with severe immunodeficiency, pathologically characterized by diffuse loss 

of myelin in the deep WM, scattered multinucleated giant cells and microglia but 

scarce or absent inflammatory reaction and 2) static encephalopathy characterized by  

less severe cognitive dysfunction but inability to  maintain age related developmental 

milestones 75.  

 

HIV encephalitis (meningoencephalitis), as opposed to encephalopathy, represents 

active infection of the brain and meninges and is characterized by acute symptoms 

such as headache, neck stiffness, confusion and seizures. Neuropathological studies 

demonstrate accumulation of multinucleated giant cells, inflammatory reactions and 

often focal necrosis 28.  

 

The hallmark of HIV infection in infants and children is early cerebral involvement; 

especially when the virus was acquired perinatally 7,82. HIV can cross the blood brain 

barrier (BBB) either during primary infection or at a later stage. Haematogenous 

neuroinvasion via  perivascular pathways is also described, 82 explaining why the 

largest concentration can be found in the central periventricular WM as well as in the 
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basal ganglia 83–85. Viral latency may delay onset of CNS symptoms in adults. In 

contrast, the developing brain is more vulnerable to early CNS involvement 76,86,87. 

 

Imaging: This will mirror the known pathologic findings, with bilateral symmetrical 

hyperintense T2 and FLAIR signal change of the periventricular WM. Typically there 

is no mass effect or contrast enhancement. If associated with cerebral atrophy, can 

indicate advanced disease.  

 

Figure 2.1 

A three-year-old HIV+ girl with unknown ART status, presented with right sided focal seizures. Axial 

FLAIR MRI demonstrates severe central atrophy with extensive symmetrical hyperintense signal 

change of the periventricular white matter, typical of HIVE 

 

 

 

The diagnosis can be difficult to make in cases which are complicated by opportunistic 

infections. Caution is advised when interpreting WM changes in children under the 

age of 18 months as myelination of the centrum semi ovale and peritrigonal WM (which 
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may be delayed even beyond 2 years) is incomplete and may easily be confused with 

pathological WM changes 75,88,89.  

 

Figure 2.2 

A 2-year-old HIV+ girl on ART presented with neurodevelopmental delay. Axial FLAIR image (TR/TE 

8000/109 IR 2340) demonstrates bilateral, symmetrical peritrigonal, linear hyperintensities (white 

arrow), in keeping with white matter high signal associated with normal perivascular spaces. 

 

 

 

Alternative diagnoses to consider would be HIV related WM abnormalities, progressive 

multifocal leukoencephalopathy (PML) and lymphoma. These disease entities have a 

distinct clinical presentation, with the latter 2 usually only seen in advanced HIV 

disease with CD4 counts below 100 cells/mm3.  

 

2. White matter hyperintensities (WMH) in HIV-infected children:  

 

WMH have been reported in healthy HIV-uninfected children and adolescents. In 

adults, there is an association with cerebrovascular disease and normal aging whilst 
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in children the pathogenesis is not well understood and may be multifactorial 90.  The 

significance of WMH in healthy children remains unclear. Some authors consider 

WMH in children above the age of 1.5 years as abnormal, whilst others report a 

prevalence of WMH as high as 31% in healthy children and adolescents 91,92,93. The 

significance as an incidental finding in HIV+ children also requires further clarification.  

 

Imaging: WMH on MRI in HIV-infected children tend to be well described and  most 

often located  in the subcortical and deep WM 32,89,94. Predilection for the frontoparietal 

lobes was found in one study 89 whilst more recent studies report no specific lobar 

predominance 95. The lesions vary from pin point foci to larger confluent WM lesions.   

 

Figure 2.3 

A one-1-year-nine-month-old HIV+ boy on ART presented clinically with brisk reflexes and increased 

tone in the lower limbs but normal milestones.  

(a) Axial FLAIR imaging at the level of the lateral ventricle bodies   

(b) and over the convexities demonstrates bilateral, asymmetric focal and confluent 

hyperintensities of the periventricular and subcortical WM. Clinical criteria for HIVE were not 

met and thus the MRI findings were in keeping with HIV-associated WMH 

a.                                                            b.  

     

In a study by Cohen et al. comparing cerebral injury in perinatally HIV infected children 

with controls, WMH were also demonstrated in 18% of controls. This should be 

considered when reporting WM lesions in the HIV+ paediatric population95. 
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3. Acute disseminated encephalomyelitis (ADEM):  

 

ADEM is a monophasic demyelinating disorder of the CNS associated with various 

viral infections such as HIV, influenza virus, Ebstein Barr virus (EBV), Herpes simplex 

virus (HSV) and cytomegalovirus 88,96–99. It is extremely rare in perinatal HIV infection. 

In older children and adults, it typically presents with a monophasic, multifocal CNS 

disorder during seroconversion when the immune system is still competent. HIV-

related immune dysfunction may also result in more aggressive and atypical 

presentations of ADEM such as tumefactive lesions, corpus callosum demyelination 

and recurrent and relapsing disease.  Information regarding the patient’s immune 

status is therefore important 100. 

 

Imaging: WM lesions seen in ADEM are multifocal, asymmetric, ill-defined T2 and 

FLAIR hyperintensities.  Subcortical WM is nearly always involved with lesions also 

seen in central WM, basal ganglia, brainstem and spinal cord. Nodular, diffuse or 

incomplete peripheral enhancement post contrast is common 88,97,100,101.  ADEM may 

also present as large tumefactive lesions with surrounding vasogenic oedema and 

mass effect. 99,102  

 

Figure 2.4  

A six-year-old HIV+ boy, not on ART, presented with a new right CVA with the arm more affected than 

the leg  

(a) Axial FLAIR MRI demonstrates a large hyperintense lesion in the left putamen and thalamus 

with bridging of the posterior limb internal capsule, as well as smaller subcortical lesions 

involving the left occipito-temporal region 

(b) Axial Gadolinium enhanced T1W MRI demonstrates incomplete ring and nodular peripheral 

enhancement of the lesions, typical of ADEM. There was also involvement of the proximal 

cervical cord (not shown here) 
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a.                  b. 

 

 

4. Progressive multifocal leukoencephalopathy (PML):  

 

PML is a progressive nervous system disorder of demyelination almost exclusively 

seen in immunocompromised patients caused by the John Cunningham virus (JCV). 

In contrast to HIV which primarily infects astrocytes and microglia, JVC predominantly 

infects and damages oligodendrocytes, causing further demyelination 72.   

 

A wide ranging clinical presentation is seen, ranging from cognitive dysfunction, visual 

loss, gait and speech disorders to limb weakness and cranial nerve palsies, mostly 

described in adults. PML is rare in the pediatric population as the seroprevalence of 

JC virus rises according to age from 16% in children to 34 % in adults by ages 21-50. 

In a study by Schwenk et al. in 2014 there were only 19 published reports of PML in 

HIV+ children. The rarity of PML in children was thought to be due to most patients 

demising before manifestation of the disease. the incidence was expected to rise with 

HIV becoming a chronic disease – but this has not materialized 103,104. 
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Imaging: As opposed to HIVE, PML affects the subcortical white matter (subcortical 

u-fiber involvement can cause sharp contrast with overlying cortex) in an asymmetrical 

distribution with predominate involvement of the occipital, parietal and frontal W/M 105. 

Lesions are single, multifocal or become confluent as disease progresses. They are 

hyperintense on T2 and FLAIR and usually do not cause mass effect or show 

enhancement. PML may involve the corpus callosum, basal ganglia, cerebellar 

peduncles and cerebellum. In the immune reconstitution inflammatory syndrome, 

usually seen within weeks of starting ART, the lesions may have a more aggressive 

appearance with irregular peripheral enhancement and mass effect 103–105.  

 

Figure 2.5 

Schematic summary and comparison of the predominant white matter lesions seen in pediatric HIV 

 

 
  

5. HIV-associated cerebral vasculopathy and infarction: 

 

HIV-associated cerebral vasculopathy predominantly affects the medium sized 

cerebral vessels causing disease manifestations that include aneurysmal dilatation (in 

particular fusiform aneurysms reported to be much more common in the pediatric than 

adult HIV population), 106 arterial stenosis complicated by ischemic infarction and 

secondary moya-moya syndrome 107,108.  
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Figure 2.6 

An HIV+ nine-year-old boy on ART presented with severe headache and neck stiffness  

(a) T2 and  

(b) T1W coronal MRI demonstrate signal change in the right frontal WM, large chronic infarcts 

involving the right basal ganglia with associated atrophy and an acute intraventricular 

hemorrhage 

(c) Axial T2W MRI demonstrates the HIV vasculopathy with complete occlusion of the right internal 

carotid and proximal MCA with multiple small collaterals consistent with moya-moya disease. 

 

        

a.                                          b.                                        c. 

 

Secondary infarctions due to opportunistic infections such as TB, VZV and Herpes 

virus represent the other end of the spectrum. The incidence of cerebrovascular 

disease increases with disease severity and predominately occurs in children with 

perinatally acquired HIV 35,106. Most children are asymptomatic in the early stages of 

disease, which justifies the importance of vascular imaging with MRI 35,80. 

 

6. Infective lesions and edema:  

 

WM changes related to viral infections can be either due to direct viral infection of the 

CNS with resultant encephalitis or secondary inflammatory or autoimmune response 

to the virus such as ADEM and vasculitis (discussed above) 88. Focal infective lesions 

such as TB and toxoplasmosis also manifest as T2 and FLAIR WM hyperintensity due 

to surrounding vasogenic oedema.  
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HSV:  

MRI reveals asymmetric T2 and FLAIR hyperintensity of the cortex and WM with 

frontoparietal lobe extension distinct from the typical medial temporal lobe involvement 

seen in adults. Leptomeningeal and gyral enhancement as well as petechial and 

confluent hemorrhage may be observed 88.  

 

CMV: 

CMV is common in patients with very low CD4 counts due to reactivation of a latent 

infection. Imaging findings of central nervous system (CNS) involvement with CMV are 

often non-specific and may even be normal. 109,110 

T2 and FLAIR periventricular WMH are seen with periventricular enhancement 

indicating acute ependymitis and ventriculitis 75,88,105,111.  

 

Figure 2.7 

An 11-month-old HIV+ girl, on ART with undetectable HIV viral load, presents with left arm and leg 

weakness. She had a very high cytomegalovirus viral load at birth. Axial and coronal T2-weighted 

images (TR/TE 5720/80) demonstrate  

(a) bilateral, asymmetrical white matter hyperintensity, slightly more prominent posterior parietal 

(open arrow).  

(b) Associated subependymal heterotopic grey matter (solid white arrow) bilateral at the lateral 

ventricles as well as right temporal-parietal and perisylvian polymycrogyria (solid black arrow) 

in (a) and (b) are typical findings in congenital CMV. Other typical imaging findings include 

coarse, peri-ventricular and basal ganglia calcifications, peri-ventricular cysts and atrophy (not 

shown here). White matter abnormalities are asymmetric, may be focal, patchy or confluent 

and can have a predominant frontal, parietal or posterior involvement, however this child was 

not myelinated enough for this to be assessed. 
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a.                                                             b. 

 

 

TB: 

 

The incidence of TB has reached epidemic proportions in Sub Saharan Africa due to 

the heavy HIV burden. Brain injury in TB meningitis (TBM) is a consequence of an 

immune-mediated vasculopathy causing infarctions. HIV-related immune dysfunction 

may prevent the production of thick basal meningeal exudates that result in cerebral 

parenchymal infarction and non-communicating hydrocephalus.  

 

On imaging this manifests as fewer infarctions in the basal ganglia, decreased and 

more focal, asymmetric patterns of meningeal enhancement with more pronounced 

atrophy rather than hydrocephalus. (Figure 2.8)  WMH is seen as a result of 

parenchymal oedema due to focal meningoencephalitis, granulomas or 

infarction 112,113. (Figures 2.9 and 2.10) 
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Figure 2.8 

Schematic representation of CNS TB in HIV 

 

 

 

 

Figure 2.9 

A twenty-two-month-old HIV+ girl, known with TB, presented with acute onset left hemiplegia. CT (not 

shown here) demonstrated acute hemorrhage in the right putamen  

(a) Axial DWI demonstrates restricted diffusion in the head of the left caudate nucleus and globus 

pallidus (solid arrow) indicating an acute haemorrhagic infarction. 

(b) FLAIR MRI demonstrate periventricular WM hyperintense signal change and central atrophy in 

keeping with HIVE. Hypointense foci in the right putamen correspond to hemorrhage, and in 

addition the hyperintense foci in the head of the right caudate nucleus, right globus pallidus and 

right thalamus (arrow heads), are in keeping with infarcts, secondary to inflammatory vasculitis 

as a result of TB meningitis. 

(c) Axial post gadolinium T1W MRI demonstrates multiple enhancing lesions (open arrows) 

representing TB granulomas on a background of marked cerebral atrophy. 
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a.                                          b.                                         c. 

 

Figure 2.10 

A six-year-old HIV+ boy on ART with TBM.  

(a) Axial T2-weighted image (TR/TE 4280/104) demonstrates multiple lesions in the right medial 

temporal lobe with T2 hypointense signal (open arrow), peripheral oedema (solid arrow).  

      (b) T1-weighted post-gadolinium image (TR/TE 739/14) demonstrates intense rim 

           enhancement of these lesions (solid black arrows), representing TB 

           granulomas. 

 

     

a.                                                               b. 
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Toxoplasmosis: 

 

There has been a dramatic decline in the incidence of toxoplasmosis in the post-ART 

era 114. Infection in infants and young children is considered to be congenital in most 

cases, and in older children as the result of reactivation of latent infection, usually with 

CD4 counts below 50 cells/mm3  105,115.  

 

Imaging: Disease is most commonly located in the basal ganglia, thalamus and at 

cortex/peripheral WM junction. On MRI focal lesions which are usually hyper to mixed 

intensity on T2 surrounded by hyperintense vasogenic oedema with nodular or ring-

enhancement and occasionally peripheral hemorrhage are observed. The target sign 

consisting of a small eccentric nodule adjacent to an enhancing ring, has been 

described as highly suggestive of Toxoplasmosis but is insensitive and seen in less 

than 30% of cases 105.  Differential diagnosis includes lymphoma and TB, and repeat 

imaging after  2 weeks of toxoplasmosis treatment  can be a useful method of 

confirming the diagnosis 75,105. A positive response to therapy is judged by the 

regression in size of all lesions.  

 

7. Tumors: 

 

Primary CNS tumors occur less commonly in children compared to adults and when 

observed are usually associated with low CD4 counts and advanced disease. High 

grade B-cell lymphoma is the most common CNS malignancy related to HIV and is 

often associated with Epstein-Barr virus infection 75,116. In adults, toxoplasmosis is one 

of the main differential diagnoses to consider.  

 

Figure 2.11 

Schematic representation of the differences in imaging features of toxoplasmosis vs. lymphoma. 

Toxoplasmosis typically affects the basal ganglia and peripheral subcortical white matter (shaded area 

representing ring enhancement with surrounding oedema). Lymphoma is commonly seen 

subependymal and in the periventricular white matter (shaded area). Spectroscopy may confirm a 

raised choline in lymphoma (not shown here). 

Stellenbosch University https://scholar.sun.ac.za



 

33 

 

 

 

Imaging: MRI shows diffuse or focal ring enhancing mass lesions, predominantly 

periventricular (as opposed to more peripheral location of toxoplasmosis) 117 but also 

involves the basal ganglia and corpus callosum (CC). It can be very difficult to 

differentiate from toxoplasmosis, however lymphoma is much more common in the 

pediatric population and is more likely when lesions involve the corpus callosum 75,116.   

 

Additional imaging findings related to HIV: 

Atrophy 

Central atrophy is predominant as the result of initial concentration of the HIV antigen 

within the basal ganglia, manifesting as enlarged lateral ventricles. The degree of 

atrophy is directly related to severity of disease and usually correlates with poorer 

neurocognitive performance. Cortical atrophy is seen later in the disease 7,33,73.   

Cerebral atrophy has become an infrequent finding in virally suppressed children, 

which complicates early detection of white matter volume loss  on conventional MR 

imaging 73,76,78. 
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Corpus Callosum thinning  

In adults corpus callosum (CC) volume is affected by peripheral WM loss with 

significant thinning of predominantly the anterior portion 118–120.  Atrophy of the CC 

correlates with decreased CD4 levels. In a study by Andronikou in children, the length 

and motor segment of the CC emerged as possible surrogate biomarkers of HIV 

related CNS atrophy/disease 76.   

 

Figure 2.12 

A 3-year-old HIV+ girl on ART, presents with HIV-encephalopathy. Sagittal T1-weighted image (TR/TE 

700/8.3) demonstrates atrophy of the corpus callosum. The genu of the corpus callosum (white arrow) 

in this patient measured 6.3 mm. The degree of thinning of the corpus callosum corresponds with the 

degree of cerebral volume loss and can act as a surrogate marker of cerebral atrophy.  

 

 

 

Calcification 

Bilateral, symmetric basal ganglia calcification, traditionally deemed an indicator of 

congenital HIV, is now thought to rather represent a calcific vasculopathy based on 

neuropathology findings and the occurrence of progression on serial imaging. These 

calcifications are not commonly seen before 10 months of age 33,83,85. BG calcifications 

and generalized atrophy are less frequently encountered in the post ART era 78.  
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Figure 2.13  

A 2-year-old HIV+ girl on ART presented with meningitis. Axial uncontrasted CT scan of the brain 

demonstrates bilateral punctate calcifications (open arrow) in the basal ganglia due to HIV-associated 

calcific vasculopathy. Calcifications are usually bilateral symmetrical. 

 

 

 

 

 

Imaging advances and objective imaging measures of disease: 

 

CC thickness 

 

Thickness of the CC correlates well with WM cerebral  volume in pediatric HIV infected 

patients 121 and a simple caliper measurement of different segments of the CC is easy 

to perform in clinical practice.  The use of the prefrontal CC thickness (genu) is advised 

due to the early development and stability of the genu over age. A median prefrontal 

CC segment thickness measurement of 9 mm (interquartile range 7.4 -10.3 mm) is 

considered normal for African patients and for European children the thickness is 

similar at 9.1 mm 121.  
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The length and the motor segment of the CC can also be used as surrogate 

biomarkers of CNS disease severity preceding HIVE 76. In a study of 33 children with 

HIV related brain disease, the length of the CC correlated with microcephaly and the 

motor segment with neurodevelopmental score (general quotient on the Griffiths 

mental Development scales) 76. These linear measurements are easy to perform and 

may assist with early diagnosis and monitoring of HIV related CNS progression.  

 

Volumetric analysis of MRI 

 

High resolution T1-weighted sequences such as MPRAGE have been found useful in 

quantitative volumetric analysis of specific structures or brain regions (white and grey 

matter). In HIV-infected adults such studies showed correlation of grey matter volume 

with neurocognitive and clinical outcome measures.  Similar findings were reported in 

perinatally HIV infected adolescents in studies which measured regional and total grey 

matter volume 122,123.  

 

Semi and fully automated techniques have been developed for, segmenting the brain, 

based on voxel signal-intensity properties of tissues, but these remain labour intensive 

and a level of expertise is needed for post processing 122.  A study comparing 

automated volumetric output software packages indicated that visual inspection of the 

segmented output with manual correction remains critical to ensure validity of results, 

regardless of the software used. Freesurfer (http://surfer.nmr.mgh.harvard.edu/) and 

Individual Brain Atlases using Statistical Parametric Mapping (IBASPM) 

(http://www.mathworld.com/) are examples of widely used and published software 

packages that are freely available and run on a wide variety of hard and software 

platforms 120,124. 
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Imaging in practice: 

 

Computed tomography (CT) of the brain is more accessible than MRI but it is not 

sensitive enough to pick up early changes in HIV-related disease. CT contributes to 

the radiation burden in children and should be reserved for the assessment of acute 

neurological events such as CNS infection and vascular/ ischemic pathology. MRI is 

therefore, the principle modality used in imaging the brain in HIV. Standard structural 

scans may be normal in the presence of early WM pathology but remain valuable in 

evaluating brain volume and excluding alternative pathologies. The role of the 

radiologist in diagnosis and management of pediatric patients with HIV-related brain 

disease are: 

 

 To diagnose HIVE and distinguish from other causes of WMH. 

 To diagnose opportunistic infections and tumors associated with HIV. 

 To establish baseline brain volume and white matter macro structural integrity.  

 To alert the clinician of children at risk for progressive neurocognitive decline 

based on specialized MRI techniques.  

 To monitor disease progression and the effects of ART as HIV has now become 

a chronic illness.  

 

 

Figure 2.14 

Flow diagram: guidance to diagnosis of commonly encountered white matter disease on MRI in HIV-

infected children. 

CMV (cytomegalo virus), PML (progressive multifocal leukoencephalopathy), ADEM (acute 

disseminating encephalomyelitis), TB (tuberculosis) 
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At the outset detailed clinical history including neurodevelopment, immunological 

parameters such as CD4 count and viral load should be taken into context when 

reporting as imaging findings usually relate to stage and severity of disease. 

 

A CD4 count of < 350 mm3 is immunological grounds for diagnosing advanced HIV 

disease with severe disease seen at CD4 count < 200 mm3 in children 5 years and 

older.   

 

Standard practice should include the assessment of volume using validated simple 

methods such as corpus callosum thickness and advising on the implication of finding 

atrophy. 

 

Conclusion: 

 

Cerebral white matter abnormality is a common radiologic finding in HIV infection, the 

cause of which can range from diffuse widespread involvement to focal lesions. The 

etiology is varied, with specific differences in pathology when compared to HIV 

infected adults. Radiologists are an integral part of the team in the diagnosis of HIV-

related brain disease and it is therefore essential to have a working knowledge of 

relevant disease entities that might be encountered and the imaging features that can 

distinguish the multiple causes of white matter abnormalities on MRI. 
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Chapter 3:  HIV related white matter disease on structural MRI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stellenbosch University https://scholar.sun.ac.za



 

41 

 

Rationale for inclusion of published work 

 

This article was based on the pilot study data for the project which had several baseline 

objectives. 

 

The children in the cohort of this study were aged 2 years and were followed 

longitudinally to age 5 years. 

 

Objectives: 

- Determine the frequency of white matter abnormalities that was seen in children 

with a spectrum of HIV related brain disease. 

- To compare DWI and ADC with T2 and FLAIR sequences in children with HIV with 

regards to presence and distribution of white matter changes. 

- To determine geographical distribution of white matter signal abnormalities: frontal, 

deep, peritrigonal, brainstem, corpus callosum and cerebellum on T2 and FLAIR. 

- To correlate white matter lesion load and distribution with brain atrophy. 

- To correlate white matter lesion load and distribution with neurodevelopmental 

status, and laboratory finings such as CD4 count and viral load. 
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INTRODUCTION 

 
HIV-encephalopathy is an AIDS defining event, 5 which in its most severe form, 

presents with developmental delay and motor dysfunction 125. However, with ART, 

manifestations are likely to be subtle and have not yet been well described in children 

receiving early ART. It is critical to identify a good marker of HIV-related manifestations 

in the central nervous system (CNS) 126 as early treatment can slow deterioration and 

partially improve manifestations 7.  HIV-encephalopathy demonstrates white matter 

signal abnormality (WMSA), mainly hyperintensity on magnetic resonance imaging 

(MRI) 111. In adults treated with ART, resolution of WMSA mirrors clinical improvement 

13,127. The imaging findings in children with HIV-encephalopathy show basal ganglia 

calcification and atrophy. One limited study (21 children) antedating the availability of 

ART, demonstrated deep white matter hyperintensity sparing the subcortical U-fibers 

in a third of children 32. Our aim was to determine the prevalence, distribution and 

characteristics of WMSA on T2 /FLAIR (fluid attenuated inversion recovery) 

sequences in a larger number of children initiating ART from an early age, but with 

suspected HIV-related neurological disease. We also sought to correlate WMSA with 

developmental scores, clinical presentation and laboratory studies. 

 

METHODS 

 

We conducted a prospective study over 2.5-years (August 2007 to April 2010) at 

Tygerberg Children’s Hospital, Cape Town, South Africa on HIV-infected children 

referred for neuroimaging by their infectious diseases clinicians because of suspicion 

of HIV-related neurological disease (either poor head growth, long tract signs or 

neurodevelopmental delay).  

 

The Children with HIV Early Antiretroviral (CHER) trial 2,11  took place in the same 

hospital and contributed all of the children referred for MRI. The CHER trial was a 

randomized two-center study in which HIV-infected infants between 6 and 12 weeks 

of age and CD4 ≥ 25% were randomized to one of three strategies: ART deferred until 

indicated, early limited ART for 40 weeks or early limited ART for 96 weeks. 

Continuous ART was initiated in the deferred arm or in the early limited ART arms 

after interruption if the CD4 percentage declined below 20% (25% for ART deferred in 
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the first year of life). Other criteria for continuous ART were Centers for Disease 

Control (CDC) stage C or protocol-defined severe CDC stage B disease. The latter 

included bronchiectasis and severe lymphoid interstitial pneumonitis, nephropathy and 

cardiomegaly. Additional criteria were failure to thrive not meeting CDC stage C, 

severe oral candidiasis, recurrent pneumonia and any condition considered severe 

enough for ART (with approval of the study team). A small group with CD4 ≤ 25% at 

baseline were recruited in parallel and also received early continuous ART on the 

recommendation of the study’s data safety monitoring board. First-line ART was 

lopinavir-ritonavir, lamivudine and zidovudine. The majority of mothers had 

participated in the prevention of mother to child transmission program, which included 

zidovudine antenatally from 32 weeks and single dose nevirapine at delivery. Mothers 

with CD4 count below 250 cells per mm3 received ART antenatally.  New-born infant 

received a single dose of nevirapine at birth and zidovudine for 7 days. 

 

Children were in regular follow-up 2,11 with clinical assessments monthly, including 

neurological examination and head growth monitoring using CDC growth charts 

(< 3 years) and World Health Organization (WHO) percentile charts (> 3 years).  Poor 

head growth was defined as downward crossing of at least 2 major centiles on CDC 

charts and 1 centile line on WHO charts. Neurodevelopmental screening assessment 

was performed every 6 months, and as part of a site-specific neurodevelopmental sub-

study, the Griffiths mental development scales (GMDS) 128 were performed at 12, 18, 

30 and 42 months. GMDS quotients were obtained from raw scores or age 

equivalents, using the United Kingdom Norms with a mean of 100 and standard 

deviation of 15 128,129,130. Significant developmental delay was defined as more than 

2 standard deviations below the mean (developmental quotient below 70).  

 

Patients were excluded if evidence of current or previous opportunistic CNS infection; 

CNS neoplasm; neurological disease caused by factors other than HIV; previous 

anoxic insults; persistent metabolic derangement or inadequate MRI scans (omitted 

sequences) were present. Post-gadolinium-enhancing lesions such as focal, ring or 

solid enhancement, enhancement of the dura, meninges or cranial nerves, were 

excluded from the study. Baseline and clinical data were obtained from participants’ 

medical records. Viral Loads (VL) > 750 000 copies/mL were assigned as 750 001 and 
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those < 400 copies/mL as 399. Mean VL at baseline from the CHER trial was 

calculated, and VL closest to scan was categorized as < or > 400 copies/mL. 

 

Scans were performed under general anaesthesia (standard practice at our institution 

for paediatric patients) on a Siemens Magnetom Symphony 1.5T. Sequences: Axial 

T2 spin echo (SE), Axial FLAIR, Sagittal T1 SE, Sagittal T2 turbo spin echo (TSE), 

diffusion weighted imaging (DWI), post gadolinium Axial T1 with a slice thickness of 

5mm. A paediatric neuroradiologist, blinded to clinical findings at time of referral, 

performed the MRI readings. Any non-enhancing WMSA was recorded according to 

anatomical regions of the brain and topographic white matter fibre involvement. 

Predefined criteria were used to describe the WMSA as pinpoint lesions, measurable 

lesions < 1cm, measurable lesions > 1cm or ‘larger’ confluent lesions difficult to 

measure. The maximum diameter of the largest measurable lesion in each patient was 

determined on axial FLAIR sequences, using visual inspection to determine the slice. 

DWI and apparent diffusion co-efficient (ADC) map was used to determine any 

diffusion abnormality relating to the lesions. ‘Lesion load’ was arbitrarily determined by 

calculating the number of regions involved (divided into 17 zones: frontal, temporal, 

occipital, parietal left and right, corpus callosum, midbrain, pons, medulla, cerebellar 

hemispheres, cerebellar vermis, caudate, lentiform nucleus, thalamus irrespective of 

the size and number of the lesions.  

 

Quantitative cytomegalovirus (CMV) polymerase chain reaction (PCR) was performed 

on stored plasma samples of all CHER subjects at screening in a separate sub-study 

using the RocheCOBAS AmpliPrep/COBAS TaqMan CMV Test (Roche Molecular 

Diagnostics, Branchburg, New Jersey). CMV values ≥150 copies/ml were considered 

positive for exploring a potential relationship with WMSA.  

 

For statistical analysis, one-way analysis of variance (ANOVA) was conducted to 

compare continuous measurements between groups with and without WMSA.  The 

Chi-square test was used to compare categorical variables (e.g. gender) between the 

two groups. Spearman correlations were used to test for relationships between 

developmental scores and ‘lesion load’ and also WMSA distribution.  Two-way ANOVA 

was conducted to produce results corrected for gender. 
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Ethics approval, N07/09/208, for the study was obtained from Stellenbosch University. 

 

RESULTS 

 

Forty-four HIV-infected children (22 boys) were studied. Age ranged from 8 to 54 

months (mean 31.9 and SD 9.9 months).  Average time between referral request and 

MRI scan was 2.2 months (SD 1.6 months).  There were no exclusions due to poor 

image quality (motion artefact). MRI demonstrated WMSA on T2/FLAIR in 22 children, 

50% of the sample. Demographic, immunologic and virological data are shown in 

Table 3.1, which also shows comparisons in those with and without WMSA. 

 

Prevalence and distribution of WMSA: 

 

Sixteen children out of 22 (73%) with WMSA had a combination of lesions 

(representative scan in Figure 3.1a). Three children had only pinpoint lesions (Figure 

3.1b), one had only measureable lesions <1cm and two children had confluent lesions. 

Lesion size ranged from 5 to 12mm, with an average of 7.2mm.  In twelve children, 

the lesions were T1 iso-intense, three had T1 hypo-intense lesions and seven had 

combinations of lesion intensity.  None of the lesions demonstrated enhancement. 

Predominantly frontal (20; 91%) (Figure 3.1c) and parietal (17; 77%) distribution was 

noted in subcortical and deep white matter (Figure 3.1d). Table 3.2 summarizes 

WMSA distribution. Other areas of involvement included the peritrigonal regions in 

seven children (32 %), involving both right and left sides (unilateral in one child), left 

cerebellar hemisphere in one child (5%) and left lentiform nucleus in one child (5%). 

Twelve of 22 (54%) had WSMA in 4 or more zones. The maximum number of zones 

in a single child was 7.  

 

Developmental score: 

 

Assessments were performed at a mean age of 30 (range 11 - 48) months. Mean 

scores fell into the low average category with a mean general quotient (GQ) of 81.7 

(range 67 – 101). The mean locomotor sub-quotient was 83 (range 50 – 116). The 

mean language sub-quotient was 79.7 (range from 57 – 118). These mean scores are 

around 1 standard deviation lower than previously described in HIV-uninfected 
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children at 21 months of age, from this community who had means of 95, 99.7 and 

93.2 respectively for GQ, locomotor and language 131. The time between GMDS and 

MRI ranged from 3.7 months before to 3.4 months after the scan. There was no 

difference between the groups (with and without WMSA) for time between scan and 

GMDS (p=0.87) or mean age at GMDS assessment (p=0.46). 

 

Correlating developmental scores with lesion load and distribution of WMSA: 

 

There were no differences in developmental scores in those with and without WMSA 

(see Table 3.1). Lesion load also showed no correlation with developmental quotients 

(lesion load vs. GQ, p=0.99; lesion load vs. locomotor, p=0.80 and lesion load vs. 

language, p=0.50). However, the child with the most sites involved (n=7) also had the 

lowest overall GQ (67) and locomotor sub-quotient (50), both significantly delayed, 

with a language sub-quotient of 82, which is below average. This child, with a baseline 

CD4 of 13.4% and viral load above 750 000 copies/mL at 9.4 weeks of age received 

continuous ART.  There were more boys in the group with WMSA (14 vs. 8), but no 

differences were found between the groups when controlling for gender on GMDS 

outcomes (2-way ANOVA results not shown). 

 

Clinical indications, laboratory tests and WMSA: 

 

For those with WMSA, significantly fewer (36%) had declining head growth as an 

indication for neuroimaging referral versus 64% without WMSA (p=0.01). There was 

no difference in the frequency of developmental delay, increased muscle tone or 

pathological tendon reflexes as a reason for referral between the children with or 

without WMSA. 

 

There was no difference in baseline CD4 and viral load pre-ART, or CD4 and viral load 

closest to MRI scan between the groups. Those with the lowest CD4% nadir showed 

a trend to more WMSA (p=0.08), which diminished when controlling for gender (p=0.28 

from 2-way ANOVA). We also noted a trend for CMV positivity and WMSA (p=0.055). 

  

Antiretroviral Therapy: 
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Ten children in the deferred ART arm were referred for MRI. They had initiated ART 

at a median age 18.5 weeks due to immunological and/or clinical decline, and received 

ART for a median 114 weeks prior to the MRI. Three in this arm had WMSA. 2,11
 Thirty-

four children were in the early limited ART arms. They commenced early ART at a 

median age of 8 weeks and received ART for a median of 98 weeks.  Of these, 

2 children had not yet interrupted, 5 were in the ART interruption phase at time of 

neuroimaging and 17 had already restarted ART after a period of interruption. Ten 

children received early continuous ART. Seven with baseline CD4 ≥ 25% had already 

developed significant HIV-related disease (3 with failure to thrive and four with site-

determined HIV-related brain disease). The remaining 3 had a CD4% below 25% at 

baseline. 

 

One child had changed to second line ART (didanosine, abacavir and nevirapine) for 

6 months at 17 months of age (2 years before neuroimaging) and then changed back 

to first line therapy; abacavir was added at 38 months of age (1 year before 

neuroimaging), due to virological failure.  

 

For those with a baseline CD4% ≥ 25% and initially randomized to early limited ART, 

there was a trend to more WMSA in those not interrupting ART compared to those 

who interrupted ART (p=0.129, Fisher’s Exact 2 tail test). 

 

There was also a trend for more WMSA with longer time on ART (in weeks) with mean 

(standard deviation) 115.6 (43.7) (p=0.13 or p=0.20 after controlling for gender). There 

was no statistical difference when controlling for age and time on ART between the 

two groups. Of the 26 children randomized to early limited ART, 12 had WMSA and 

14 did not. 

 

DISCUSSION 

 

Imaging findings in children with HIV in the pre- and post-ART eras include atrophy 5,29, 

calcification 30 and more recently, WMSA 31. We have described, for the first time, the 

distribution and characteristics of WMSA in children who received early ART in 

infancy. Fifty percent of those referred for MRI because of concern of HIV-related brain 

disease, had WMSA on T2/FLAIR MRI. Lesions occurred most commonly in 
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superficial and deep white matter and predominantly in the frontal and parietal lobes. 

Most importantly, WMSA was present in children with early limited, early continuous 

and deferred ART. There was no correlation between the distribution of WMSA or the 

lesion load with immunological or developmental scores. 

 

There was a surprising association between WMSA and normal head growth (p=0.01), 

rather than acquired microcephaly. However, there was no association with either 

developmental delay, or increased tone and tendon reflexes. These observations 

require further investigation in a larger cohort. A possible explanation may be that early 

ART is neuroprotective and that imaging findings in these children represent arrested 

brain disease but with ongoing inflammation or low-level viral replication. 

Unfortunately, head circumference-for- age Z-scores, which may have increased our 

ability to interpret this finding, were not documented over time. 

 

The lack of correlation of WMSA and GMDS scores is possibly due to early 

identification of suspected HIV-related brain disease by performing the GMDS 

regularly in all children. Some GMDS scores were in the normal range, as other criteria 

for neurological compromise were met (poor head growth and acquired symmetric 

motor deficits). It may also be that the GMDS has insufficient sensitivity to assess the 

subtler effects corresponding to WMSA based on T2/FLAIR and the children were too 

young for more detailed neuropsychological assessments to assess specific domains 

of functioning. Stability of the GMDS over time is also not clear in South African 

children, since it was standardized in the United Kingdom 128,129 with varying reports 

of performance on the GMDS in South Africa 131,132. We did not collect data on 

socioeconomic status, but these children are all from similar background low-

socioeconomic communities. 

 
There was a trend towards presence of WMSA and time on ART, with longer time on 

treatment associated with increased WMSA (p=0.13). The association is of unclear 

significance (power= 34%), and requires further study in larger groups, as WMSA 

could either represent more severe disease or cumulative ART toxicity, specifically as 

all guidelines recommend early continuous ART in all HIV infected infants 133. Also, a 

trend towards more WMSA in those who, although randomized to early limited ART 

remained on continuous ART, suggests more severe HIV disease.  No children were 
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on efavirenz, which may be neurotoxic in adults 134.  There was also no correlation 

between WMSA and different treatment arms on the CHER trial; however, this is a 

relatively small descriptive study of clinical referrals, and conclusions cannot be drawn 

from these small numbers. 

 

There was no correlation between WMSA and viral loads, CD4 counts or CD4% 

closest to the time of scan. However, the time between the scans and these 

parameters ranged from 0 – 12 months, because it was not part of the research design 

to obtain these at the time of scan. There was a trend showing a negative association 

with nadir CD4%. In adults, nadir CD4 levels correspond to episodes of severely 

impaired immune function, which place the brain at greatest risk of HIV 

involvement 135. The WMSA in our patients may represent damage from HIV during 

exposure to high viral loads prior to ART, or other pathogens may have accessed the 

brain. Focal white matter lesions without enhancement or mass effect have increased 

in HIV-infected children between 1991 and 1998, aetiologies including viral 

encephalitis, focal HIV-encephalopathy and progressive multifocal 

leukoencephalopathy (PML) 29. The latter was a problem in the pre-ART era resulting 

in WMSA, possibly due to delayed initiation of ART and using medications with lower 

CNS penetration. Differential diagnoses to consider with WMSA include maternal 

recreational drug exposure, intrauterine CNS infections such as toxoplasmosis, CMV 

and cerebral malformations with cortical dysplasia 7. Infants co-infected with CMV and 

HIV, have a higher rate of progression to symptomatic stages of AIDS as well as higher 

incidence of encephalopathy 7,111. Although we showed a possible link between CMV 

at 6 weeks of age, data were missing for 6 children with and 3 without WMSA. Also, 

we could not distinguish congenital from acquired CMV infection. The lack of control 

subjects is a limitation of our study; however WMSA in children above 1.5 years of age 

is abnormal 92. 

 

Changes occurring in the CNS in the earlier stages of HIV-1 infection remain poorly 

understood and the evidence is conflicting. Progressive encephalopathy can be 

associated with normal imaging studies, 5 and there may even be abnormalities on CT 

scan in asymptomatic children. 
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HIV leukoencephalopathy, visualized as WMSA on MRI, is a triad of diffuse myelin 

loss, astroglial proliferation, and infiltration by mono and multinucleated 

macrophages 13,136. The myelin pallor is diffuse, involves deep white matter and 

spares superficial (subcortical) white matter and corpus callosum 136, in contrast to 

PML which tends to involve subcortical and periventricular white matter, corpus 

callosum, internal and external capsules and the myelinated fibres of the deep grey 

nuclei 104,137. Our imaging findings suggest that superficial white matter is not spared 

as WMSA involving the subcortical white matter was noted in many children in our 

series. It may be difficult to distinguish from other causes of WMSA such as 

prenatal/perinatal injury 7, especially in the peritrigonal area, which is susceptible to 

global hypoxic insults and is also a terminal zone of maturation 138. However, only 7 

(16%) of our patients showed pathological asymmetrical WMSA in the peritrigonal 

region, with birth asphyxia having been excluded in our study.  

 

Documenting WMSA is important in the clinical management of HIV-infected adults as 

it provides supporting evidence for HIV-1 associated cognitive motor complex 127, 

correlates with clinical improvement following ART and suggests that disease 

regression in patients with AIDS dementia complex on ART can be characterized and 

monitored by MRI 13. Currently, neurodevelopmental testing is performed routinely in 

HIV-infected children to assess cognitive function and effectiveness of ART in the 

CNS. By the time cognitive deficits are detected however, significant brain injury may 

already have occurred 139 as shown in the Paediatric Randomized Early versus 

Deferred Initiation in Cambodia and Thailand (PREDICT) trial. Here children between 

1 and 12 years of age were randomized to early or deferred ART, performed worse 

than HIV-uninfected control children on intelligence quotient, Beery Visual Motor 

Integration, Binet memory and Child Behavioural Checklist 10. 

 

The utility of detecting WMSA in children requires prospective study. Qualitative MRI 

analysis of early white matter changes in HIV-encephalopathy can be difficult 127. 

Alternative quantitative imaging (e.g. MRI spectroscopy and relaxometry) can detect 

encephalopathy, disease progression or improvement on treatment 79. DTI (Diffusion 

Tensor Imaging) provides quantitative information on the integrity of white matter tracts 

and correlates with cognitive impairment in adults 53. In children, this offers new 

challenges relating to immaturity of myelination, which may affect measurable 
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fractional anisotropy and because these studies are time consuming. Our limited MRI 

resources at the time curtailed our capacity to perform these advanced sequences but 

they are included in our continuing work. 

 

CONCLUSION 

 

Our results demonstrate that half of the children referred for suspected HIV-related 

neurological problems have WMSA on T2/FLAIR, involving mainly the frontal and 

parietal lobes, superficially and in the deep white matter. The lesion load and 

distribution did not correlate with the developmental scores or viral load. We suspect 

that WMSA can occur early and that initiating ART by 7 to 8 weeks of life may already 

be too late to prevent HIV from entering the CNS. 
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TABLE 3.1: Comparison between children with and without WMSA  

 WMSA  

present 

(n=22) 

WMSA absent 

(n=22) 

p-

value 

Effect 

size*** 

Male gender (%) 14 (64%) 8 (36%) 0.07* Cramer’s 

V=0.27 

Mean age at MRI (months) 

 

32.8(9.4) 30.9(10.4) 0.53^ 0.20 

Baseline mean(SD) 

     CD4 absolute count (cells/mm3) 

 

1756 (778.2) 

 

1859 (984) 

 

0.70^ 

 

0.12 

     CD4%  

 

32.0 (11.9) 35.6 (9.6) 0.27^ 0.34 

     Viral load (copies/mL) 

 

591931(261119) 571449(234191) 0.79^ 0.08 

Time on ART before MRI (wks) mean(SD) 

 

Mean age of ART initiation (weeks) 

 

115.6 (43.7) 

 

10 

94.4 (46.4) 

 

13.6 

0.13^* 0.48 

Arms on CHER trial: 

Baseline CD4 ≥ 25%: 

   ART-Def 

   Early ART until W40 

   Early ART until W96  

   Early continuous ART ≈ 

 

 

3 

7 

4 

5 

 

 

7 

7 

6 

2 

 

 

0.4 

 

Baseline CD4 <25%: 

  Continuous ART 

 

Viral load closest to MRI (%) 

<400 HIV RNA copies/mL  

>400 HIV RNA copies/mL  

Time between Viral Load and MRI (days) Mean 

(median) 

 

 

3 

 

 

48%  

55%  

88.5 (56.5) 

 

0 

 

 

52%  

45%  

83.3 (50) 

 

NS 

 

 

0.86 

 

0.59** 

 

 

 

Cramer’s 

V=0.05 

 

0.04 

CD4 count closest to MRI scan 

     Absolute count (cells/mm3)   

     CD4%  

Time between CD4 and MRI (wks) Mean 

(median) 

 

1490 (819.6) 

34.2 (8.1) 

35.1 (18.5) 

 

1441 (432.2) 

33.8 (9.2) 

25.5(17.5) 

 

0.81 

0.88 

0.53** 

 

0.08 

0.05 

0.18 
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Nadir CD4 closest to MRI 

    CD4 count (cells/mm3) 

    CD4% 

Mean time between scan and nadir CD4 (wks) 

 

 

1184.3 (680.5) 

18.9 (6.5) 

89.0 (54.4) 

 

1048.6 (487.5) 

22.4 (6.5) 

68.6 (43.2) 

 

0.45 

0.08 

0.18 

 

0.23 

0.55 

0.43 

CMV DNA positive at baseline§ 

CMV DNA negative at baseline 

 

Reason for MRI request: n (%) 

      Developmental delay 

      Poor head growth 

      Increased muscle tone 

      Pathological reflexes 

 

 6 (75%) 

10 (37%) 

 

 

19 (51%) 

10 (36%) 

5 (42%) 

14 (48%) 

2 (25%) 

17 (63%) 

 

 

18 (49%) 

18 (64%) 

7 (58%) 

15 (52%) 

0.055 

 

 

 

0.68 

0.01* 

0.50 

0.75 

 

 

 

Cramer’s 

V=0.06 

0.38 

0.10 

0.05 

Griffiths Mental Development Scales: 

    Age at assessment mean (SD) in months 

    Time between scan and GMDS in months 

    General Quotient 

    Locomotor sub-quotient 

    Language sub-quotient  

 

 

31.0 (8.5) 

3.4 (3.0) 

83.2 (7.4) 

81.5 (11.9) 

79.8 (8.9) 

 

29.0 (9.3) 

3.2 (4.2) 

80.3 (15.4) 

84.4 (15.1) 

79.5 (13.1) 

 

 

0.46 

0.87 

0.44 

0.49 

0.94 

 

 

0.23 

0.05 

0.25 

0.22 

0.03 

 

WMSA: white matter signal abnormalities, MRI: magnetic resonance imaging 

CHER: children with HIV early antiretroviral therapy  

ART: combination antiretroviral therapy 

ART-Def: ART deferred therapy 

CMV: cytomegalovirus  

^ F-test degrees of freedom 1,42 

*   Significant p-value 

** Mann Whitney U-test 

*** Cohen’s D unless otherwise specified 

§ CMV ≥150 copies/ml; no CMV data for 6 with WMSA and 3 without WMSA 

≈ Received continuous ART although randomized to early limited ART. 
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WMSA: white matter signal abnormalities 

 

 

 

Figure 3.1a:  

Axial FLAIR MRI: pin-point WMSA (black arrows) in addition to larger measurable 

lesions (white arrow) of various shapes and sizes all less than 1cm in both of the 

superior frontal lobes.  

 

Figure 3.1b:  

Axial FLAIR MRI: multiple bilateral pin point WMSA, involving predominantly 

subcortical (white arrows) and to a lesser degree deep white matter in the superior 

frontal lobes. 

 

Figure 3.1c: 

Axial FLAIR MRI: Two right frontal sub-centimetre focal lesions.  

 

Figure 3.1d: 

FLAIR MRI:  Bilateral parietal WMSA, on the right larger than 1cm (white arrow) and 

on the left less than 1cm (black arrow) extending from the subcortical to the deep white 

matter.  

TABLE 3.2: Distribution of WMSA in children with HIV related brain disease (N=22) by 

number of patients with at least one lesion in the listed location (note that some patients 

had more than one site involved) 

Location Cumulative 

number of 

patients 

Right Left 

Superficial Deep Superficial Deep 

Frontal 20 (91%) 18 (82%) 5 (23%) 17 (77%) 7 (32%) 

Parietal 17 (77%) 11 (50%) 9 (41%) 12 (55%) 8 (36%) 

Temporal 1 (5%) 1 (5%) 0  1 (5%) 0 

Occipital 3 (14 %) 3 (14 %) 0 1 (5%) 0 
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FLAIR: fluid attenuation inversion recovery 

MRI: magnetic resonance imaging 

WMSA: white matter signal abnormalities 
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Chapter 4:  White matter disease in HIV defined by DTI 
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Rationale for inclusion of published work 
 

This article forms the basis of the second part of my study with the following hypothesis 

and aim: 

Hypothesis  

 

DTI (diffusion tensor imaging) in children with HIV will demonstrate altered diffusion 

(MD) and decreased Fractional Anisotropy (FA) values in white matter as well as 

poorer white matter integrity when starting ART after 12 weeks of age. 

Aim 

 

To determine the spatial distribution and nature of white matter abnormalities at age 5 

years in a cohort of HIV+ children beginning ART well within the first year of life. An 

additional aim was to explore associations of timing of ART initiation and DTI-derived 

parameters (FA, AD, RD), to interrogate potential protection of early ART on WM 

microstructure. 

This article is one of few studying a cohort of patients with early HIV diagnosis and 

initiation of ART well before 1 year of age. The ART treatment regimens were well 

documented and varied little. The children were in regular follow up with 

comprehensive clinical and laboratory data available. 
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Barbara Laughton: clinical input as well as editing 5%  
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Muhammad Saleh: technical support and data processing 15% 

Ernesta Meintjes: data post processing and editing 8% 
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2. No other authors contributed besides those specified above, and 
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Declaration with signature in possession of candidate and supervisor. 

 

 

 
 

Stellenbosch University https://scholar.sun.ac.za



 

61 

 

 
 
 
 
 

Stellenbosch University https://scholar.sun.ac.za



 

62 

 

Introduction: 

 

White matter (WM) structural abnormalities can be assessed using quantitative 

parameters determined from Diffusion tensor MRI 52.  Fractional anisotropy (FA) 

provides information about the microstructural integrity of highly oriented 

microstructures, but is not specific to the type of injury. Mean diffusivity (MD) is a 

measure of average molecular motion independent of any tissue directionality.  

 

Loss of axonal integrity decreases FA and increases MD, however increased FA may 

also indicate loss of complexity in the underlying axonal matrix due to loss of crossing 

and other nonparallel fibres. Increased radial diffusivity (RD), a marker of excessive 

axonal packing density and/or poor myelination 42, and decreased axial diffusivity 

(AD), an index of axonal damage, occur in HIV-associated WM injury. 26,74,140  FA in 

the frontal subcortical WM, corpus callosum (CC) and internal capsule are abnormal 

in HIV-infected (HIV+) adults. 25,27,53 Those with the most advanced HIV disease have 

the highest diffusion constant elevations and largest anisotropy reductions, specifically 

in the CC and frontal WM. 25  Most early studies used a priori ROI analyses. 

Subsequently, more widespread WM damage has been shown using voxelwise and 

whole-brain analyses.26,52–55 Animal neuro-AIDS models also show WM damage - 

macaques show reduced FA in the CC genu 141 and mice have reduced FA (mainly 

due to increased RD) and increased MD in the CC. 142 

 

Few studies have used DTI to examine HIV-associated alterations in WM in children. 

Lower FA, higher MD and RD in the CC and higher MD in the superior longitudinal 

fasciculus have been demonstrated in ART-naïve children (8-12 yrs.) compared to 

age-matched controls 38, while ART failure was associated with decreased FA in the 

left superior and right posterior corona radiata and decreased AD in the left inferior 

cerebellar peduncle in 50 children on first line ART (6-15 yrs.). 39  Regional and whole 

brain decreases in FA, and increased MD and RD, compared to controls, have been 

reported in HIV+ children and adolescents (6-20 years) 41,143 irrespective of treatment 

status. Regional alterations were related to past disease severity, measured by nadir 

CD4% and peak viral loads. 41 ART-naïve children (6-11 yrs.) showed reduced myelin 

compared to children on ART (6-16 yrs.), but were also younger. These studies did 

not document ART history. 
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Adolescents stable on ART (n=15, 13-17 yrs., mean age at ART initiation 9.5 yrs.) had 

lower FA in the CC, superior and posterior corona radiata, frontal and parietal WM, 

pre-and post-central gyrus and superior longitudinal fasciculus (mainly due to 

increased RD) than controls (n=26). 144  

 

Despite consistent evidence of HIV-related WM alterations, studies have included 

wide age ranges over developmental phases when both WM volume and FA increase 

significantly. 65,145,146 Few studies have controlled adequately for age or ART 

regimens. To date, no DTI studies have been performed in younger children, and none 

in children receiving standardised early ART (within the first year of life). 

 

The aim of the present study was to determine the spatial distribution and nature of 

WM abnormalities at age 5 years in a cohort of HIV+ children beginning ART well 

within the first year of life. An additional aim was to explore associations of timing of 

ART initiation and DTI-derived parameters (FA, AD, RD), to interrogate potential 

protection of early ART on WM microstructure. 

 

We hypothesized poorer WM integrity when starting ART after 12 weeks of age. 

 

Methods:  

 

Subjects  

 

We present data for fifty-two of 62 children enrolled in a neurodevelopmental sub study 

of the Children with HIV Early Antiretroviral (CHER) trial 2,11 in Cape Town, South 

Africa. The group comprised HIV+ children on ART and age-matched controls from a 

parallel vaccine study, with informed consent from parents or caregivers. 147 

 

Exclusions were:  six with mixed ancestry, one HIV+ child whose structural dataset 

was motion corrupted, one control child with incidental periventricular 

leukoencephalopathy and two HIV+ children with data inter-slice instabilities. 

 

The CHER trial was a two-centre study in which HIV+ infants between 6 and 12 weeks 

of age and CD4 ≥25% were randomized to one of three treatment strategies: ART-
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Deferred (ART-Def) until indicated; early limited ART for 40 weeks (ART-40W); or 

early limited ART for 96 weeks (ART-96W).  Infants with a CD4% < 25% were enrolled 

into a separate group (part B), initially to be randomised into ART-40W and ART-96W, 

but then retained on early continuous ART. The entire cohort comprised 451 HIV-

infected infants below 12 weeks of age. Four hundred and eleven infants had baseline 

CD4 ≥ 25%, of whom 377 were reported in the main trial. 11  

 

Continuous ART was initiated in ART-Def when the CD4 declined below 25% in the 

first year of life and 20% thereafter or for Centres for Disease Control severe stage B 

or C disease. These criteria also applied to restarting ART in ART-40W and ART-96W. 

Since some children in ART-Def began ART early, we stratified children into those 

starting ART after (Late ART) or before 12 weeks (Early ART), irrespective of 

treatment arm. Also, as some in ART-40W and ART-96W arms met endpoint during 

primary therapy, the early ART group was sub-divided into those with or without 

treatment interruption. 

 

First-line ART was lopinavir-ritonavir, lamivudine and zidovudine. Most mothers 

participated in the prevention of mother to child transmission program, which included 

zidovudine antenatally from 32 weeks and single dose nevirapine at delivery. Mothers 

with CD4 count below 250 cells per mm3 received ART antenatally.  New-born infants 

received a single dose of nevirapine at birth and zidovudine for 7 days. 

 

Children were in regular follow-up with three-monthly clinical assessments. 

 

Baseline laboratory and clinical data at enrolment and within 6 months of MRI scan, 

including CD4, CD8 parameters and viral load (VL) were obtained from participant 

medical records and the CHER database. VL >750 000 copies/mL were assigned as 

750 001 and those <400 copies/mL as 399 (viral suppression). 

Ethics approval for the study was obtained from ethics boards of all institutions 

involved. 
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MRI Data Acquisition 

 

The children enrolled in the neurodevelopmental sub study were imaged on a 3T MRI 

using structural T1 imaging followed by 2 DTI acquisitions with opposite phase 

encoding directions using a twice-refocused spin echo sequence. 148 The 3D echo 

EPI-navigated 149 multiecho MPRAGE 150 (MEMPR) sequence was acquired in a 

sagittal orientation with the following parameters: FOV 224×224 mm, 144 slices, TR 

2530 ms, TE 1.53/3.19/4.86/6.53 ms, TI 1160 ms, flip angle 7°, voxel size 1.3×1.0×1.0 

mm3. DWI was performed in 30 directions with b-value 1000 s/mm2, voxel size 2×2×2 

mm3, TR/TE 9500/86 ms, and 4 volumes with b = 0 s/mm2.   

 

Data analysis:  

 

Pre-processing 

 

Diffusion weighted volumes with signal dropout or motion corrupted slices were 

removed,151 and diffusion encoding scheme adjusted, with a constraint that the same 

volumes be removed in both DTI acquisitions. Co-registration and susceptibility 

correction were performed.152,153 Briefly, co-registration of individual volumes to the 

first unweighted image was performed using linear affine (12 degrees of freedom) 

transformation (FLIRT) in FSL (Oxford Centre for Functional Magnetic Resonance 

Imaging of the Brain, Oxford, UK). Subsequently, these images were imported to 

MATLAB (Mathworks, Natick, MA) for susceptibility correction and outlier rejection. 153 

Outliers of each acquisition were examined by first calculating z-scores based on 25 

and 75 percentile limits; data points above 3 standard deviations beyond the mean 

were discarded. The two acquisitions were combined into a single corrected image; 

FA, MD and eigenvalue (e1, e2, and e3) images were generated. The first eigenvalue 

(e1) was AD; the remaining two were used to compute RD (e23 = [e2 + e3]/2).  

 

Co-registration 

  

The FA images were first co-registered to corresponding structural images to achieve 

intra-subject alignment. Structural images of all subjects were then co-registered to a 

‘most representative’ control image, then subsequently co-registered to the National 
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Institutes of Health paediatric MRI Data repository T1-template image for children 

aged 4.5 – 8.5 years with isotropic resolution 1.0 × 1.0 × 1.0 mm3 using linear (FLIRT) 

and non-linear (FNIRT) co-registration algorithms in FSL. 154 FA images were warped 

using the same transforms for inter-subject alignment. The same transforms were 

applied to MD, AD and RD images. A WM binary mask was generated for each subject 

by applying a FA threshold of 0.2. Individual masks were multiplied to generate a final 

binary image representing WM regions where FA ≥ 0.2 in all subjects. The binary 

image was multiplied with the co-registered FA and MD images of each subject to 

localise statistical analyses, explained below, to the same WM regions.  

 

Statistical analysis 

 

Voxel-based group comparisons were performed in FSL to determine regions where 

FA and MD differed significantly between HIV+ and control children, and between 

HIV+ children starting ART late or early, and those with and without interruption. To 

account for multiple comparisons when determining significant clusters, 

AFNI’s AlphaSim command was used with overall significance level α = 0.05 and 

individual voxel-wise significance level p = 0.01.  FWHM values ranged between 3.8-

5.2 mm across the masked thresholded WM masks and we performed 5000 Monte 

Carlo simulations. 155  Clusters of at least 258mm3 were significant at these levels. 

 

Locations of clusters showing group differences were identified using the Harvard-

Oxford cortical and subcortical and John Hopkins University WM tractography atlases 

provided in FSL and an MRI atlas of human WM anatomy. 156,157 For each cluster, 

average FA and MD, and corresponding AD and RD values, were extracted.  

 

Categorical variables were summarised using frequency and percentage frequency 

distributions overall and by group. Continuous measurements were summarised using 

means and standard deviation. Variables were compared between the groups using 

ANOVA and Chi-square tests. 
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Results: 

 

After exclusions, we present data for 13 healthy controls (mean age 5.7 ± 0.5 yrs., 

5 male) and 39 HIV+ children (5.4 ± 0.3 yrs., 15 male). Demographic and clinical data 

of HIV+ children are presented in table 4.1.  

Ten children receiving early ART fulfilled criteria for continuous ART. Sixteen children 

interrupted after primary therapy, and 3 had not re-started ART by the time of MRI 

scan. Parents of one child randomized to ART-96W initially withheld ART without 

knowledge of the investigators. This child was included in the late treatment group. 

Four children started ART under part B, 2 were interrupted and 2 were on continuous 

ART. 

The cumulative period on ART was longest for those receiving early continuous ART.  

 

Eighty-seven percent (n=34) had VL suppression (< 400 copies/ml).  Of the 13% (n=5) 

unsuppressed at MRI, four were in the late ART group (with VL = 3 590, 5 980, 8870 

and >750 000 HIV RNA copies/ml) and one in the early ART interrupted group (VL = 

204 000 HIV RNA copies/ml). 

 

Imaging: 

 

On the T1W MR sequences structural abnormalities were identified in three HIV+ 

children: mild cerebellar atrophy, mild generalised atrophy, pineal multilobed cyst and 

none in controls. 

 

Two clusters were identified in the right corticospinal tract (CST) where FA was lower 

in HIV+ children than controls (mean FA ± standard deviation: 0.42 ± 0.03 versus 0.46 

± 0.03; and 0.43 ± 0.04 versus 0.49 ± 0.04). Differences in FA were attributable to 

increased RD (p<0.01, table 4.2. Left-sided similar clusters were also seen, but did 

not survive cluster size correction. 
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Seven clusters showed higher MD at p<0.01, in infected children than controls, the 

largest being 7503 mm3 which included several tracts. Both AD and RD contributed to 

the increased MD (table 4.3). 

 

Comparison of FA between children starting ART before and after 12 weeks of age: 

 

Children starting ART later did not demonstrate poorer white matter integrity as 

measured by FA. Rather, one cluster was identified in the brainstem in the left CST 

where FA was lower in early compared to late ART initiation. When comparing early 

continuous and early interrupted ART individually against late ART, we found lower 

FA only in the early interrupted ART group, suggesting that interruption is harmful to 

WM. No regions showed FA differences between early continuous and late ART. The 

reduced FA in the children on early interrupted ART was attributable to increased RD 

and AD. 

 

The FA cluster values (FA and RD) for the child with VL > 750 000 HIV RNA copies/ml 

at scan were below the average values for the remaining group but not the lowest 

overall. 

 

No significant difference in FA values was noted between the other 4 unsuppressed 

children and the remaining group. 

 

Discussion:  

 

We demonstrated WM areas with significantly reduced FA in HIV+ children initiating 

ART at a median age of 4 months compared to uninfected controls. 

 

No frontal or parietal white matter predilection for abnormal findings: 

 

Our findings confirm the presence of FA abnormalities found in HIV+ adults and 

adolescents but differ in volume and distribution. Young children on early ART had 

very few regions with abnormal FA. The predilection for frontal lobe involvement 

described in adults 47,49,51 was not seen. We previously reported multi-focal WM signal 

abnormalities on standard T2W MRI sequences in frontal (91%) and parietal WM 
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(82%) of HIV+ children at mean age 31.9 months. 89 Twenty of these children are also 

included in the present study. Ten had WM signal abnormality on FLAIR.  

Unfortunately, a limitation in the present study was an absence of FLAIR, thus an 

inability to assess interval WM signal change. However, absence of frontal and parietal 

involvement on FA does suggest interval improvement on ART.  

 

Although clusters showing left-sided FA differences did not survive cluster size 

correction, FA reductions were bilateral in the CST. The MD differences were more 

widely distributed and included the inferior longitudinal fasciculus (bilateral), CST, 

inferior fronto-occipital fasciculus, forceps minor and uncinate fasciculus.  

 

As frontal WM myelination continues into adulthood, children demonstrate inherently 

lower frontal FA values than adults. 66  To exclude frontal predominance of WM 

abnormality being maturational 60 we determined areas of significant FA difference 

between HIV+ and age-matched controls from the same ethnic group, using voxelwise 

group comparisons, noting the small sample size of the control group as a limitation. 

The predominant contribution to decreased FA was RD, while the increased MD was 

due to both RD and AD, indicating both reduced myelin and loss of axonal integrity.158  

Age difference between the HIV+ and control group was only a few months, not 

considered clinically significant. Our study has a much narrower age range than 

previous studies, facilitating improved comparison to controls representing the age-

related normal developing brain.  

 

Children’s age and ART relevance: 

 

The higher FA values in those beginning ART after 12 weeks was surprising as we 

expected this in those beginning ART before 12 weeks. However, the difference was 

attributable to ART interruption, possibly negating the benefits of early ART, rather 

than neurotoxicity due to longer ART exposure. 159  

 

The timing of interruption may be important with reference to WM maturation. There 

are 3 phases of maturation observed by FA: rapid change in first 3-6 months, slower 

change until 24 months and relative stability thereafter. Most WM tracts are formed at 

birth then increase in size together with FA over 24 months. 160 Deep WM structures 
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such as the CC and internal capsule have high FA at birth which rapidly rises. In 

contrast, frontal WM has low FA, increasing to intermediate values around 24 months.  

In neonates, the CST is present within the brainstem but size and signal intensity on 

MRI are much lower than in the older brain. 62 Autopsy studies however, show that the 

CST and the superior cerebellar peduncles mature early. 161  ART was interrupted at 

40 weeks (around 10 months of age) which may have coincided with a critical stage 

of CST maturation.  

 

Notably, we found no CC involvement in HIV+ children. HIV-associated FA 

abnormalities in the CC are reported in adults and in children. 25,27,38,53 In contrast, our 

children started ART early compared to other studies. Of interest, CC volume and 

thickness were similar to controls in a study by Andronikou et al. which included the 

20 HIV+ children previously reported.89,121 The CC genu demonstrates a variable 

growth spurt at 2 months of age, followed by similar growth in the splenium by 4-

6 months, with myelination being visible on T1W MRI from 4-6 months. 162 Our data 

support early ART being neuroprotective for the CC. 

 

That no FA differences were noted between the late and early continuous groups may 

have been a ‘survivor effect’. Eight children in ART-Def died in the first year of life and 

were not studied. Also, those on early continuous rather than early limited ART, were 

more severely affected by HIV, having already reached a trial endpoint during primary 

ART, thus ineligible for interruption.  All participants on continuous therapy had 

suppressed VL at the time of scan. Also, those from Part B had baseline CD4 below 

25% and therefore had more advanced HIV.  Nevertheless, the early interrupted 

treatment group children had the most WM damage, suggesting that WM is more 

vulnerable at this time.   

 

This cohort of children is enrolled in a longitudinal neuroimaging study that includes 

DTI at age 7 and 9, which will provide vital information on the continuous effect of ART.  

Our data strongly suggests that WM damage, although not prevented by early ART, 

can be ameliorated or reversed, possibly through reduced neuroinflammation. 56   
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Conclusions: 

 

HIV+ children at 5 years of age have WM fibre abnormalities measured by FA despite 

early ART, suggesting that early ART does not fully protect the WM either from 

peripartum or in utero infection. In contrast to adults, the CSTs rather than the CC, are 

predominantly, possibly due to the timing of myelination/development and the 

relationship with timing of institution of early ART. Continuous ART can limit WM 

damage.  
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Table 4.1: Sample characteristics of HIV infected children  

 

 Late ART (>12 

weeks) 

Early ART 

(<12 weeks) 

interrupted 

Early ART 

(<12 weeks)  

not interrupted 

p 

N 13 16 10  

Gender 4M/9F 5M/11F 6M/4F 0.30 

Age at scan (yrs.) 5.3 (0.30) 5.4 (0.24) 5.6 (0.43) 0.20 

Age ART started (weeks) 36 (17) 8 (2) 8 (2) <0.01 

Time on ART (weeks) 241 (22) 203 (59) 285 (22) <0.01 

Time interrupted (weeks)* n/a 85 (90) n/a  

Clinical measures at baseline 

CD4 count 2064 (711) 1969 (1118) 1720 (978) 0.57 

CD4% 37 (7) 35 (10) 30 (13) 0.21 

CD8 1751 (1109) 1460 (675) 1978 (945) 0.34 

VL>750 000 %, (n) 69 (9) 56 (9) 40 (4) 0.37 

400<VL<750 000 %, (n) 31 (4) 44 (7) 60 (6) 

Clinical measures within 6 months of scan 

CD4 count 1027 (392) 1110 (460) 1289 (592) 0.58 

CD4% 37 (8) 34 (7) 36 (10) 0.49 

CD8 count 902 (450) 1083 (544) 1087 (625) 0.57 

 VL>750 000 %, (n) 8 (1) 0 0 0.14 

400<VL< 750 000 %, (n) 23 (3) 6 (1) 0 

Suppressed VL %, (n) 69 (9) 94 (15) 100 (10) 

 

NA = applicable, VL = viral load 

Values: mean (SD) 

*calculated up to time of scan in 3 children who had not restarted ART. 
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Table 4.2: Clusters where FA was lower in HIV+ children compared to controls 

 

Cluster 

Location 

 

Size 

mm3 

Co-

ordinates 

AD 

 

RD 

 

HIV+ Control p HIV+ Control p 

CST 

Right internal 

capsule 

CST 

Right parietal 

lobe 

 

 

 

365 

 

 

294 

 

 

 

 

27, -23, -1 

 

 

19, -24, 42 

 

1.18 

(0.03) 

 

1.18 

(0.06) 

 

1.20 

(0.03) 

 

1.22 

 (0.07) 

 

0.10 

 

 

0.08 

 

0.60 

(0.10) 

 

0.60 

(0.04) 

 

0.56 

(0.02) 

 

0.56 

(0.03) 

 

<0.001 

 

 

<0.001 

Values: mean (SD)  
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Table 4.3: Clusters where HIV+ children had significantly greater MD compared to 

controls  

Cluster Location  

 

Size 

mm3 

Co-

ordinates 

AD 

 

RD 

 

Control HIV+ p Control HIV+ p 

ILF/SLF 

Right temporal 

 

Left putamen 

 

 

7503 

 

6916 

 

32,0, -24 

 

-29,-26,-2 

 

1.19 

(0.03) 

1.20 

(0.03) 

 

1.23 

(0.03) 

1.25 

(0.03) 

 

0.001 

 

0.001 

 

0.62 

(0.02) 

0.59 

(0.02) 

 

0.65 

(0.03) 

0.62 

(0.03) 

 

<0.001 

 

<0.001 

CST 

Right brainstem 

 

 

916 

 

21,-15,-9 

 

1.25 

(0.04) 

 

1.29 

(0.03) 

 

0.01 

 

0.58 

(0.02) 

 

0.63 

(0.02) 

 

<0.001 

IFOF 

Left temporal 

 

 

555 

 

-37,-10,-17 

 

1.19 

(0.05) 

 

1.25 

(0.04) 

 

0.003 

 

0.66 

(0.02) 

 

0.70 

(0.04) 

 

<0.001 

Forceps minor 

Left frontal 

 

Left frontal 

 

336 

 

266 

 

-19,43,14 

 

-17,42,-1 

 

1.20 

(0.06) 

1.22 

(0.06) 

 

1.24 

(0.06) 

1.26 

(0.06) 

 

0.04 

 

0.05 

 

0.63 

(0.03) 

0.62 

(0.03) 

 

0.67 

(0.05) 

0.65 

(0.05) 

 

0.0030 

 

0.0040 

UF 

Right frontal 

 

 

330 

 

15,38,-12 

 

1.19 

(0.05) 

 

1.25 

(0.06) 

 

0.003 

 

0.64 

(0.03) 

 

0.67 

(0.04) 

 

0.0046 

 

Values: mean (Standard Deviation).   

ILF /SLF (inferior/superior longitudinal fasciculus), IFOF (inferior fronto-occipital fasciculus), UF 
(uncinate fasciculus) 
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Chapter 5: DTI and Neurodevelopmental changes in HIV 
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Rationale for inclusion of unpublished work 

 

This article brings into context the relationship of white matter damage with 

developmental changes encountered in the HIV population. 

 

The observation continues in the same group of children, which was reported on in the 

preceding article and now concentrates on the developmental impact of HIV. 

 

In this unique population, the children were on ART from a very early age and were 

followed up regularly with intervention when needed. This may account for the 

differences in outcomes in this study when compared to similar studies reported in 

literature. 

 

This article has been submitted for publication, currently awaiting review, 

Journal: AIDS research and therapy, BIOMED central. 
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Introduction:  

 

It is well established that perinatally acquired HIV infection negatively impacts 

cognitive functioning. 163 The principal domains affected vary with limited data from 

countries where HIV is prevalent. A recent meta-analysis of 22 studies (37% from sub-

Saharan countries) on vertically infected children aged 6 to 18 years, found that the 

main cognitive domains affected by HIV are working memory, processing speed and 

executive functioning. 164 

 

Studies show that commencing combination antiretroviral therapy (ART) before 6 

months in perinatally HIV-infected (HIV+) infants improves neurodevelopmental and 

clinical outcomes. 165,166,167,168 Concerns that ART might cause neurotoxicity and that 

adherence may wane, led to planned treatment interruption studies, which showed 

safety and no effect on short term neurocognition. 169,170 The clear advantage of early 

time-limited over deferred-continuous therapy for clinical outcomes was demonstrated 

in the Children with HIV Early Antiretroviral (CHER) trial. 11  Recently, Laughton et al. 

reported neurodevelopmental outcomes over 5 years in a CHER sub-study.  

Neurodevelopmental outcomes were similar between the treatment arms (delayed 

continuous ART or early ART with interruption at 40 or 96 weeks) and uninfected 

controls. The only exception was visual perception, measured on the Beery Visual 

Perception subtest, where all HIV+ arms performed significantly worse.  This deficit 

was neither detectable on the Beery visual motor integration test (Beery-VMI) 171 nor 

the Griffiths Mental Development Scales (GMDS). 172  

 

Neuroimaging is instrumental in describing HIV effects on brain macro- and 

microstructure. 82 Specifically, diffusion tensor imaging (DTI) can be used to examine 

the nature of white matter (WM) damage through quantitative parameters such as 

fractional anisotropy (FA) and mean diffusivity (MD). 38,40,41,143,173 Loss of axonal 

integrity decreases FA and increases MD, however, increased FA may also indicate 

diminished complexity of the axonal matrix due to loss of crossing fibres.52 We 

previously published a DTI study on HIV+ children (mean age 5.7 years) from the 

cohort studied by Laughton et al., and demonstrated WM abnormalities of the 

projectional fibres of the corticospinal tracts (CST) and also association fibres of the 

superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior 

Stellenbosch University https://scholar.sun.ac.za



 

79 

 

frontal occipital fasciculus (IFOF) and uncinate fasciculus (UF). Children on continuous 

ART from within the first year of life had less WM damage than those randomised to 

treatment interruption. This was an important finding when considering that Laughton 

et al. showed that neurodevelopmental outcome at 5 years was not adversely affected 

by planned treatment interruption. 172,174  

 

The aim of the current study was to examine associations of FA and MD values in 

regions shown to be significantly different between HIV+ children and controls in the 

aforementioned DTI study 174, with directed neurodevelopmental scores. The latter 

were identified as those tests related to the expected function of involved WM tracts, 

for example CST and motor development, as opposed to the full battery of 

neurodevelopmental tests. We hypothesised that WM measures in regions showing 

HIV-related alterations would be associated with lower neurodevelopmental scores in 

specific domains related to the functionality of the affected WM tracts.  

 

The study group is uniquely homogeneous in that all the children began ART before 

18 months, are from the same socioeconomic background and have a narrow age 

range. 



Materials and methods: 

 

Subjects: 

 

56 Xhosa children enrolled in a neurodevelopmental sub study of the CHER trial 2,11 

in Cape Town, South Africa underwent magnetic resonance imaging (MRI) of the brain 

at 5 years of age. The group comprised HIV+ children who commenced ART early 

(N=42) and age-matched, HIV-uninfected controls (N=14) from a parallel vaccine 

study, with informed consent from parents or caregivers. 147  

 

Inclusion criteria for the neurodevelopmental sub-study were birth weight > 2000g, 

normal neurological examination at a clinical visit near three months of age and no 

central nervous system problems or dysmorphic syndromes. 
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The CHER trial: 

The CHER trial (the source of our patient population) was a two-centre study in which 

HIV+ infants between 6 and 12 weeks of age with CD4 ≥25% were randomized to one 

of three treatment strategies: ART deferred (ART-Def) until indicated; early limited 

ART for 40 weeks (ART-40W); or early limited ART for 96 weeks (ART-96W).  

Continuous ART was initiated in ART-Def when the CD4 declined below 25% in the 

first year of life and 20% thereafter or for Centres for Disease Control severe stage B 

or C disease. The same criteria applied to restarting ART in ART-40W and ART-96W. 

Infants with a CD4% < 25% were enrolled into a separate group (part B), initially to be 

randomised into ART-40W and ART-96W, but then retained on early continuous ART. 

The entire cohort comprised 451 HIV+ infants below 12 weeks of age, of which 115 

were enrolled in Cape Town. 11  

First-line ART was lopinavir-ritonavir, lamivudine and zidovudine; only one child was 

on second line therapy comprising Didanosine, Abacavir with Nevirapine. Most 

mothers participated in the prevention of mother to child transmission program, which 

included zidovudine antenatally from 32 weeks and for infants a single dose nevirapine 

at delivery and zidovudine for 7 days.  

 

Neurodevelopmental assessments: 

 

The GMDS extended revised version (2-8 years) was performed at 5 years of age. 129 

The GMDS assesses neurodevelopment on the subscales: locomotor, personal-

social, hearing and language, eye and hand co-ordination, performance (visuospatial 

skills including speed and precision) and practical reasoning. A global GMDS score is 

also obtained. Standardized translations into IsiXhosa and Afrikaans were used. One 

of two pediatricians conducted the assessments, assisted by a GMDS-trained 

translator. We converted raw scores into age equivalents using standardized norms 

and calculated a quotient as a percentage of each child’s chronological age, using the 

United Kingdom norms with a mean of 100 and standard deviation of 15.129,128 

Significant developmental delay was regarded as quotients below 70. The Beery-

Buktenica tests of visual-motor integration (Beery-VMI), visual perception and motor 

coordination (6th edition) were also administered (Table 5.1). 175 Standard scores 

were calculated from raw scores using USA norms. While these developmental tests 
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are not standardised for South African children, they are often used and considered 

culturally fair and reliable.129,130,132,131 

Baseline laboratory and clinical data at enrolment and within 6 months of MRI scan, 

including CD4, CD8 parameters and viral load (VL) were obtained from the CHER 

database. VL >750 000 copies/mL were assigned as 750 001 and those <400 

copies/mL as 399 (viral suppression). 

Ethical approval for the study was obtained from ethics boards of all institutions 

involved. 

 

MRI Data Acquisition: 

 

The children were imaged on a 3T Siemens Allegra MRI (Erlangen, Germany), without 

sedation while watching an age-appropriate feature film, using structural T1 imaging 

followed by 2 DTI acquisitions with opposite phase encoding directions using a twice-

refocused spin echo sequence. 148 The 3D echo planar imaging (EPI) navigated 149 

multiecho MPRAGE 150 (MEMPR) sequence was acquired in a sagittal orientation with 

the following parameters: FOV 224×224 mm, 144 slices, TR 2530 ms, TE 

1.53/3.19/4.86/6.53 ms, TI 1160 ms, flip angle 7°, voxel size 1.3×1.0×1.0 mm3. DTI 

was performed in 30 directions with b-value 1000 s/mm2, voxel size 2×2×2 mm3, 

TR/TE 9500/86 ms, and 4 volumes with b = 0 s/mm2.   

 

MRIs of children with motion corruption, showing incidental brain abnormalities, 

interslice instabilities or with an interval of over a year from the GMDS were excluded. 

  

Statistical analysis: 

 

DTI data were previously analysed in FSL (Oxford Centre for Functional Magnetic 

Resonance Imaging of the Brain, Oxford, UK). 174 Locations of clusters showing group 

differences were identified using the Harvard-Oxford cortical and subcortical and John 

Hopkins University WM tractography atlases provided in FSL and an MRI atlas of 

human WM anatomy. 156,176 For each cluster, average FA and MD, and corresponding 

AD and RD values, were extracted.  
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Categorical variables were summarised using frequency and percentage frequency 

distributions overall and by group. Continuous measurements were summarised using 

means and standard deviation. Variables were compared between the groups using 

Chi-square tests and ANOVA. 

 

Specific functionality of the WM tracts with clusters of abnormal FA and MD in the 

HIV+ group compared to controls 174 were identified. We used a directed approach to 

select neurodevelopmental tests that would closely match this functionality for 

correlation to minimize the effect of multiple comparisons (no specific adjustments for 

multiple comparisons were made). 

 

Spearman correlation was used to test for relationships between directed 

developmental scores and FA and MD values in affected regions. Correlations were 

performed as a combined group (HIV+ and controls) as well as controls and HIV+ 

groups separately. 

 

Results:  

 

Seven of 56 children assessed were excluded: one HIV+ child whose structural image 

was motion corrupted, one control child with incidental periventricular 

leukoencephalopathy, two HIV+ children with data interslice instabilities, 2 control 

children in whom GMDS at age 5 were not performed, 1 HIV+ child with a period of 

more than 1 year and 2 months between the Griffiths analysis and the MRI scan.  We 

therefore present data for 38 HIV+ children (mean ± sd = 5.4 ± 0.3 years; 14 boys) 

and 11 healthy controls (mean ± sd = 5.6 ± 0.5 years; 4 boys, 9 HIV exposed). 

(Table 5.1) 

 

The HIV+ and control groups did not differ for demographic variables (all p’s > 0.1); or 

on the interval between scan and Griffiths, which was 123.8 days on average. The 

groups also did not differ on any of the Beery Buktenica Scales (all p’s > 0.2) or the 

GMDS (all p’s > 0.5), except for Personal Social Quotients that tended to be lower in 

HIV+ children. Table 5.2 describes the GMDS and Beery Buktenica scales. 
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Correlation of FA and MD with WM-directed neurodevelopmental tests: 

 

Previously, we found lower FA in CST, and higher MD in ILF, SLF, CST, IFOF, forceps 

minor and UF, in HIV+ children than controls. (Figure 4.1, 4.2) 174  

 

Table 5.3 describes the clusters and neurodevelopmental tests selected for 

correlation. Overall, the Beery visual perception was negatively correlated with RD in 

the right temporal SLF (r = -0.31, p = 0.03) and left putamen region of the ILF (r =  

-0.29, p = 0.05). In the left forceps minor, higher AD was related to increases in 

Practical Reasoning scores (r = 0.32, p = 0.03,), while RD in the same region showed 

a strong negative correlation with Personal-Social scores in the controls only (r = -

0.62, p = 0.05). In the HIV+ group, negative correlations were found between 

Performance subscale scores and RD in the right UF (r = -0.32, p = 0.05), and between 

Beery Motor Coordination and AD in the brainstem in the CST (r = -0.33, p = 0.05). No 

other significant associations were found between WM measures in affected regions 

and neurodevelopmental scores (all p’s > 0.1). (See figure 4.3a-f). 

 

Discussion: 

 

In this study, we aimed specifically to examine the potential role of HIV-related WM 

alterations on neurodevelopmental outcomes, by examining correlations of WM 

measures with scores on functional domains where affected tracts play a critical role. 

When comparing neurodevelopmental performance between HIV+ and uninfected 

groups, only the Personal-Social Quotient showed a trend of being lower in HIV+ 

children. However, this finding does not appear to be attributable to observed WM 

deficits, as WM measures from clusters in neither the IFOF nor the forceps minor 

showed association with Personal-Social scores. Only among controls, did we find 

association of increased RD in the left forceps minor with poorer Personal-Social 

Scores. Overall, increased RD in the SLF and ILF was associated with poorer 

performance on Beery visual perception, and decreased AD in forceps minor with 

poorer Practical Reasoning.  In HIV+ children, increased RD in the right UF was 

associated with lower Performance scores, and increased AD in the brainstem region 

of the CST with poorer Beery motor coordination.  
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In view of the increases in RD and AD observed in HIV+ children in these regions the 

associations point to impairment in visual perception, motor coordination and 

performance (which essentially tests visuospatial skills), all of which have been 

described in HIV+ children. 177 

 

In contrast to most previous studies that demonstrated clear differences between HIV+ 

and uninfected children on various functional domains, 95,178,179 children in our study 

performed similarly at this age on all administered tests. Even in the larger group from 

the CHER neurodevelopmental sub-study, only visual perception deficits were 

detected in the HIV+ children at age 5 years.172  Our findings support those of a recent 

meta-analysis which concluded that both general intellectual functioning and motor 

coordination are less impaired in HIV+ children than previously believed. 164 Various 

factors may explain the different study outcomes, including differences in 

methodologies, study populations and treatment regimens. The sample studied here 

comprised children of similar age and socio-economic background with a very well 

documented treatment history. All had commenced treatment by 18 months and 

achieved viral suppression by 49 months (median age at first viral suppression was 

10 months). In view of the homogeneity and early treatment of these children, it is 

perhaps not surprising that their neurodevelopmental scores were minimally impaired 

compared to controls. Alternatively, it is possible that the battery of tests selected are 

not sensitive enough to detect the subtle impairments evident at this age. 

 

It is known that WM integrity is correlated with cognitive performance in a fibre specific 

manner. 180 For example, in stroke patients, the degree of CST injury, defined by DTI, 

correlates with motor impairment. 57,181–183 The SLF plays an important role in higher 

brain functions particularly language, 184,185 spatial awareness and symmetric 

processing. 186 The ILF is involved in visual memory 187,188 and the UF in the formation 

and retrieval of memories.180,189 Studies in patients with multiple sclerosis also found 

a relationship between working memory performance and fibres of the SLF and 

IFOF. 190 The negative correlation found here between visual perception and RD in 

the SLF and ILF, provides additional evidence that these tracts have a role in 

interpreting visual information. Although in our small sub-sample, we did not detect 

group differences on Beery Visual Perception test, this domain did show HIV-related 

deficits in the larger sample assessed in the CHER neurodevelopmental sub-study. 
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172 Notably, the control group in our sub-sample comprised largely HIV-exposed 

uninfected children (HEU), who may also be affected by perinatal HIV and ART 

exposure and explain our failure to detect developmental differences on this domain.   

Visual perception, encompassing the appreciation of an object’s qualities and its 

location in space, is dependent on the processing of visual information in the inferior 

temporal and posterior parietal cortices, respectively. 191 If perception is incorrect or 

altered in any way, problems with reading, spelling, handwriting, mathematics and 

comprehension can occur.  

 

Ventral (occipitotemporal) and dorsal (occipitoparietal) visual pathways exist which are 

functionally specialized. Dorsal stream functions are related to spatial processing and 

control of visually guided actions and ventral stream functions to perceptual 

identification. 191,192 The most important WM trajectories of the ventral stream are the 

ILF and the IFOF 192 also described as intrahemispheric visual association WM tracts, 

as well as the UF. 193 It is striking that all three of these tracts demonstrated 

abnormalities in our HIV+ children.  

 

The ventral visual stream is almost adult-like at 5-7 years of age, with DTI metrics 

demonstrating a rapid increase in FA and decrease in MD in the ILF between ages 5 

– 7 years, 192 placing the children in our study at a critical age in maturation of WM 

tracts for visual perception. HIV-associated WM damage, described as being 

predominantly altered myelination, 174 may well account for the abnormalities in visual 

perception identified by Laughton et al., although not clearly demonstrated in the Beery 

Visual perception test in this group.  

 

Increased AD in the left forceps minor was associated with improved practical 

reasoning for the group as a whole. This would imply that HIV+ children may have 

better practical reasoning skills, even though we failed to detect a group difference for 

this domain in the current sample and the larger CHER sub study. The Practical 

Reasoning subscale assesses earliest arithmetic comprehension and the ability to 

solve very basic practical problems. The forceps minor connects the lateral and medial 

surfaces of the frontal lobes and crosses the midline via the genu of the corpus 

callosum. It is an interhemispheric sensory and auditory connection pathway involved 

in emotional functions and behavioural control. 194,195 It may play an important role in 

Stellenbosch University https://scholar.sun.ac.za



 

86 

 

mathematical skills as indicated in a study where children with increased mathematical 

ability demonstrated higher FA in WM tracts, particularly the forceps minor and major 

tracts connecting the frontal lobes with basal ganglia and parietal regions. 196 In our 

study however, we did not demonstrate higher FA but rather increased MD in the 

forceps minor. This apparent contradiction thus remains unexplained.  

 

The only domain where controls tended to score higher than the HIV+ group was the 

Personal Social subscale.  The strong negative correlation between RD in left forceps 

minor and Personal Social Quotient among controls suggest that increased 

myelination (characterised by RD reductions) in this tract may relate to improved 

personal and social development. HIV-related white matter alterations in this region 

may be responsible for the fact that this relation is not evident in HIV+ children.   

 

Among HIV+ children, increased RD in the right frontal UF is associated with lower 

scores on the Performance subscale, which assesses visuospatial skills, speed and 

precision.  The functionality of the UF is still under debate but several studies suggest 

at least the following: it is a long-range association fibre connecting the frontal and 

temporal lobes, (the amygdala in the temporal lobe with the orbitofrontal cortex) and 

is involved in various types of memory, language and social-emotional processing. 197 

The domain of working memory was identified as being affected by HIV in the meta-

analysis by Phillips and colleagues. 164 It could be that this component of visuospatial 

processing leads to impaired performance only in the children with the highest RD’s, 

who were from the HIV+ group. Unfortunately working memory was not assessed as 

a separate domain in our study. 

 

Increased AD in the brainstem region of the CST is associated with poorer Beery motor 

coordination test scores in the HIV+ children. Three clusters with abnormal FA and 

MD in the CST compared to controls were found in the HIV+ group, however no 

performance differences were found in either the GMDS motor function or the Beery 

motor coordination. Locomotor deficits were present in this group at a younger age 172 

therefore these findings may suggest that conventional neurodevelopmental 

assessments at this age are not sensitive enough to detect persistent deficits. 

 

Stellenbosch University https://scholar.sun.ac.za



 

87 

 

Notably, the WM deficits in the UF and brainstem region of the CST (regions that 

demonstrate association with performance measures in the HIV+ group only) were not 

evident when the children in the current study were re-assessed at 7 years198, 

indicating that these deficits may represent a developmental delay that resolves at 

later ages. In contrast, WM alterations in the ILF and forceps minor persist at age 7 

years, suggesting that effects on visual perception may be more long-term or even 

permanent.  

 

Limitations of this study are the small sample size of controls and the large number of 

HEU children (9 out of 11) in this group. The secondary effects of HIV and ART 

exposure in the HEU controls may have influenced neurodevelopmental scores and 

decreased our ability to detect neurodevelopmental differences between the two 

groups. However, in a study by Boivin et al. maternal triple antiretroviral exposure both 

ante- and post-partum did not result in developmental risks for the HIV- exposed and 

uninfected children through age 60 months compared to unexposed, uninfected 

children 199. On the other hand, the study group is uniquely homogenous for age, 

timing of ART and socioeconomic background.  

 

Conclusion: 

 

Although the detrimental effect of HIV on WM is ameliorated by early ART, regional 

WM alterations on DTI MRI remain and show association at age 5 years with specific 

functional domains, including visual perception, performance and motor coordination. 

In view of the visual perception deficit reported in these children at this age, the effect 

of HIV on the visual perception pathway should be further examined in a larger study 

group. Our findings suggest that brain imaging is more sensitive for subtle alterations 

from HIV and/or ART than standard neurodevelopmental tests. Alternatively, more 

sensitive neurodevelopmental tests should be developed. 
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Table 5.1: Demographics and neurodevelopmental scores of the HIV+ group and 
controls 
 

 HIV+ Controls p 

N 38 11 *  

Gender (M/F) 14/24 (37%/63%) 4/7 (36%/64%) 0.97 (2) 

Age at Griffiths (months) 
range 

60.9 (1.3)  
58.0 – 64.5 
 

63.3 (4.8) 
59.5 – 71.0 

0.12 

Age at scan (months) 
                 range 

64.7 (3.5) 
58.8 – 74.4 

67.7 (5.5) 
61.2 – 74.4 

0.11 

Time between Griffiths and scan (days)  
                                                               range 

119.2 (104.3) 
0 – 386 
 

128.3 (131.8)  
21- 392 

0.81 

Age starting ART (weeks)  
range 

18 (16.8) 
7.0 – 75.7 
 

NA  

Cumulative Time on ART (weeks) 234 (50.8) 
 

NA  

CD4   
Baseline 
Nadir 
At scan 

 
1965.4 (939.8) 
703.2 (391.6) 
1132.7 (480.7) 

NA  

CD4%   
Baseline 
Nadir 
At scan 

 
34.5 (10) 
20.4 (6.5) 
35.2 (8.2) 

NA  

CD8  
Baseline 
Nadir 
At scan 

 
1693.3 (899.3) 
575.4 (329.1) 
1025.7 (536.9) 

NA  

Griffiths Q scores 
Locomotor 
Personal Social 
Language 
Eye Hand Coordination 
Performance 
Practical Reasoning 
General 
 

 
96.1 (16.2) 
90.8 (9.4) 
75.4 (10.7) 
85.4 (9.0) 
75.4 (10.5) 
76.7 (8.6) 
83.5 (6.5) 

 
93.0 (11.9) 
96.4 (9.0) 
77.7 (10.7) 
84.3 (12.2) 
78.0 (19.5) 
75.2 (11.4) 
84.1 (8.3) 

 
0.57 
0.08 
0.53 
0.74 
0.57 
0.65 
0.81 

Beery-Buktenica 
Visual Motor Integration 
Visual Perception 
Motor Co-ordination 
 

 
91 (9.1) 
76.7 (14.7) 
94.8 (8.3) 

 
87.4 (7.2) 
83.1 (13.7) 
93.2 (10.4) 

 
0.23 
0.22 
0.59 

Values: mean (Standard Deviation) unless otherwise stated. 
* 9 HIV exposed and uninfected, 2 unexposed 
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Table 5.2: Description of abilities assessed with the GMDS and Beery-Buktenica test 

 

Griffiths Mental Development Scales 
 

Subscale Description of abilities assessed 

Locomotor 
 

Balance and stability – jumping over hurdles, balancing on one leg, skipping and running. 

Personal-Social 
 

Self-care including dressing, washing, tying shoe laces and being able to provide full 
name and address. 

Hearing and 
Language 

Receptive and expressive language is assessed.  
Naming objects and describing their use.  
Children are required to freely talk about a large/busy picture where vocabulary, 
sentence structure, pronouns and descriptive words are assessed. 
Auditory short-term recall with repetition. 
Naming colors, similarities opposites and descriptive. 

Eye and Hand 
Co-ordination  
 

Free Drawing of a person and a house. Copying geometric shapes. 
Writing name and copying letters.  
Cutting and folding paper and threading beads. 
 

Performance Visuo-spatial skills including speed and precision. 
Completing form boards and block patterns which are timed. 
 

Practical 
Reasoning 
 

Closest to arithmetical reasoning: counting blocks, knowing days of the week, high/low, 
long/short, heavy/light, middle and concept of speed. Short-term memory of items 
shown.  
Arranging sequences of cards to tell a story.  
 

General Griffiths 
Quotient: 
 

Average of the 6 subtests above. 
 

Beery-Buktenica test of Visual Motor Integration: 
 

Beery VMI 
 

Child is required to copy various geometric forms and draw them below the example 
figure. 

Beery Motor Co-
ordination 
 

Draw the same geometric forms by joining dots and keeping within the guidelines. Draw 
as many as can within a time limit. 
 

Beery Visual 
Perception 
 

Identify shape out of a few that matches the example. Do as many as can within a time 
limit. 
 

 

 
 
 
 
Table 5.3: WM tracts in which clusters showing FA reductions and MD increases in HIV+ 
children compared to controls are located, the function of the implicated tracts and 
neurodevelopmental tests that assess said function.  
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Tract Tract function 200 Griffiths Mental 
Development  
Subscale used 
 

Beery-Buktenica Test of 
Visual Motor Integration 

Corticospinal Tract Descending projection fibres connecting 
motor area to the spinal cord. Arise from 
motor cortex of pre- and postcentral gyrus. 
 

Locomotor  Beery Motor Co-ordination  

Superior 
Longitudinal  
Fasciculus 

Association fibres – unite different cortical 
areas within the same hemisphere. 
Bidirectional bundles connecting the 
frontal lobe to the parietal, temporal and 
occipital lobes.  
Function: integration of auditory and 
speech nuclei, spatial awareness and 
symmetric processing.  
Interruption decreases the ability to repeat 
spoken language and can also cause 
unilateral neglect. 
 

Hearing and 
Language  
Eye and Hand 
Coordination  
Performance 
 

Beery –VMI 
Beery – Visual Perception 

Inferior 
Longitudinal  
Fasciculus 

Connects the cortices of the anterior 
temporal and posterior occipital lobe and 
joins the inferior aspect of the SLF.  
Function: visual emotion and visual 
memory. 
Interruption may result in unilateral visual 
neglect, visual amnesia, hallucinations, 
and visual hypo emotionality.  
 

Eye and Hand 
Coordination 
Performance 
Practical Reasoning 
 

Beery – VMI 
Beery- Visual Perception 

Inferior Fronto 
Occipital 
Fasciculus 

Connects the ipsilateral frontal and 
occipital, posterior parietal and temporal 
lobes.  
Function: integration of auditory and visual 
association cortices with the prefrontal 
cortex. 
 

Personal-Social 
Language  
Practical Reasoning 

Beery – VMI 
Beery- Visual Perception 

Forceps Minor The forceps minor is the anterior part of 
the corpus callosum, it connects the 
homologous regions of the anterior frontal 
lobes between two hemispheres. Among 
the regions included are the front polar 
cortex which has been shown to be 
important for cognitive behavioural control, 
decision making, and attention control. 
 

Personal-Social 
Language 
Performance  
Practical Reasoning 

 

Uncinate 
Fasciculus 
 

Connects the orbital and inferior frontal 
gyri rectus to the anterior temporal lobe. It 
has the longest period of development in 
terms of FA and is the only WM tract that 
continues to develop beyond 30 yrs.  
Part of the limbic system.  
Integrity of the tract has been related to 
proficiency in auditory-verbal memory and 
declarative memory.  
 

Language 
Performance  
Practical Reasoning 

 

   

Key to abbreviations:  
R: right, L: left, CST: corticospinal tract, SLF: superior longitudinal fasciculus, ILF: inferior longitudinal fasciculus, 
IFOF: inferior fronto occipital fasciculus, UF; uncinate fasciculus. 
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Figure 4.1: Represent the two clusters in the right corticospinal tract, where FA was 
lower in HIV+ children when compared to controls. (1 = right internal capsule, 2 = right 
parietal lobe)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 4.2: Represent the seven clusters with higher MD in HIV+ children compared 
to controls. (1 = right SLF, 2 = left ILF, 3 = right CST, 4 = left IFOF, 5 = left forceps 
minor, 6 = right UF, 7 = left forceps minor)  
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Figures 4.3a-f: Correlations of FA and MD with WM-directed neurodevelopmental 
tests.  
 
4.3a and b: Increased RD in the (a) right temporal SLF and (b) left putamen region of 
the ILF were associated with poorer performance on Beery visual perception found in 
patients and controls.  
 
a. 

 
 
 
 
b. 
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4.3c: Higher AD in the left forceps minor was related to better practical reasoning found 
in patients and controls. 
 
 
 

 
 

 
4.3d: In controls only, there is a relationship between decreased RD in the left forceps 
minor and better personal-social performance.  
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4.3e: In HIV+ children only, a negative correlation was found between performance 
and RD in the right UF 

 

 
 

 
4.3f: In HIV+ children only, a negative correlation was found between Beery Motor 
Coordination and AD in the brainstem in the CST  
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CONCLUSION 

 

The HIV epidemic has largely been controlled by ART in much of the developed world; 

however, the same cannot be said of sub-Saharan Africa (SSA), which carries the 

main HIV disease burden. South Africa alone has 4.5 million people on treatment - 

more than any other country in the world. 201 There are a large number of children 

growing up with HIV- disease who are on long-term treatment, placing them at higher 

risk to develop HIV related brain injury, cognitive impairment and treatment related 

neurological complications. Although ART has markedly reduced the incidence of HIV 

encephalopathy, milder forms of HIV-Associated Neurological Dysfunction (HAND) 

remain prevalent even in those children with low or undetectable HIV viral loads.    

 

Neuroimaging findings in pediatric HIV such as atrophy, basal ganglia calcifications 

and white matter (WM) T2 hyperintensities have now been  well described 94 however 

the more important microstructural cerebral abnormalities  are predominantly identified 

on specialized MRI techniques such as diffusion tensor imaging (DTI). 174  

 

In this study, multiple high signal intensity WM lesions were documented on T2 /FLAIR 

MRI in 50% of HIV-infected patients at age 2 with a predominant frontal and parietal 

distribution. These patients started ART before 20 weeks of age. No differences in 

neurodevelopmental scores were found when comparing children with and without 

WMSA. Neither lesion load nor distribution showed significant correlation with 

neurodevelopmental scores or neurological examination. There was a trend for 

association of WMSA and longer time on ART, which initially raised the possibility that 

WMSA may be related to neurotoxicity of ART.  

DTI at age 5 of HIV-infected children and a group of controls demonstrated decreased 

FA and increased MD in the HIV-infected group in several clusters of WM with 

symmetrical distribution, predominantly as a result of decreased myelination. Children 

in the early interrupted ART group, had lower FA compared to those receiving 

continuous treatment which disputed the ART neurotoxicity argument. The only 

neurodevelopmental domain with a trend of difference between the HIV+ children and 

controls was personal social quotient which correlated to improved myelination of the 

forceps minor in the control group. In addition, as a combined group there was a 
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negative correlation between visual perception and RD in the right superior 

longitudinal fasciculus and left inferior longitudinal fasciculus which may be related to 

the fact that these tracts, forming part of the visual perception pathway, are at a crucial 

state of development at age 5. HIV-associated WM damage may well account for the 

abnormalities in visual perception – which was identified in HIV-infected children in the 

study by Laughton et al., but was not clearly demonstrated in the Beery Visual 

perception test in the HIV-infected children and controls of our group.  

 

DTI has become a popular method of studying the microstructure of WM and in 

particular the early changes observed in HIV. From the very first studies which made 

use of region of interest (ROI) analysis of fractional anisotropy (FA) in the brain of 

HIV-infected individuals it became clear that conventional MRI underestimates the 

degree of WM pathology 54,55,202.   

 

ROI methods are dependent on the investigator’s choice of region, but using these 

methods it has emerged that frontoparietal WM and the CC were regions particularly 

affected in adults 25,49,55. Generally, there is decreased FA and increased MD which, 

to a variable degree, has been correlated with clinical and neurocognitive outcomes. 

Subsequent studies have utilized voxel-wise and whole brain FA analysis and more 

widespread WM damage has been reported 26,52,54,55,203. 

DTI studies in children show similar regional WM changes as adults with lower FA and 

higher MD and RD in affected white matter compared to normal controls. Diverse 

groups of children with regards to age, socioeconomic background, treatment history 

and mode of infection were studied with consistent evidence of WM alterations despite 

early ART in a large number of these children 38,41,144,174. DTI can therefore be utilized 

to quantify the degree of WM damage very early on in the disease. 

 

DTI can be performed on conventional MRI scanners with the most common DWI 

approach being the pulsed-gradient spin-echo (PGSE) sequence with a single shot 

echo-planar imaging read out. A minimum of 6 non-collinear encoding directions are 

required to measure a full diffusion tensor 44,140. Post processing may be complicated 

by subject motion and magnetic field inhomogeneities and should be corrected before 

calculating any subsequent quantitative diffusion maps. Pre and post process 

packages exist but these require experience for analysis. All these factors contribute 
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to the current inaccessibility of this specific MRI technique in everyday radiological 

practice 140,204. 

 

Description in literature of the requirements and expertise needed to post process and 

interpret imaging such as DTI, fMRI and MRS are daunting with few radiologist signing 

up to equip themselves 122. Very few radiological institutions in SSA have the backup 

and support of MR physicists who have a crucial role in establishing protocols and 

assist with these tasks. This is on the background that SSA bears 70 percent of the 

global HIV disease burden but only has 3 percent of the world’s health workers and 

less than one percent of global health spending 205,206.  In resource limited countries 

problems of basic HIV care such as stock outs of ARV medication, lack of close 

monitoring of immunological parameters i.e. CD4 and VL and caregivers stopping 

medication are the reality and primary priority of HIV care 11.  For the near future DTI 

will be an important research tool only.  

 

Until DTI and post processing is incorporated in standard imaging protocols, ROI 

measurement of FA may be utilized to assess microstructure of WM using a standard 

of reference for the clinical interpretation of pediatric DTI images 62.  

Suggested ROI’s include the CC, frontoparietal WM and within the corticospinal tracts. 

Imaging research will continue to examine the immediate and long-term effects of HIV 

on the pediatric brain and will guide management and ARV treatment regimes.  

Successful treatment has lessened the severity of HIV related cognitive dysfunction 

and complications to such an extent that the imaging focus has shifted from structural 

to functional studies. 

At the coalface however, few patients will have access to this technology and the 

radiologists working in this environment will still be integral to the team in diagnosis of 

HIV related brain disease.  

 

In this study we clearly demonstrated that DTI offers insight into WM injury that occurs 

when clinical and developmental tests are relatively normal. This injury may relate to 

the age of myelination or development of WM structures in the brain but is not shown 

to be affected by treatment regimen as long as these are initiated early. Long-term 

effects of HIV on neurodevelopment forms part of on-going research that is done on 

this group of children who have now been followed up to 11 years of age. 
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The specific domains in which ongoing deficits have been reported such as visio-

spatial would be of particular interest to study in the future.  
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clinical and laboratory indicators of disease severity in children with HIV-

related brain disease. Childs Nerv Syst. 2014 Sep;30(9):1549-57. doi: 

      10.1007/s00381-014-2434-3. Epub 2014 May 23. PubMed PMID: 

24853332. 

 

2. Ackermann C, Andronikou S, Laughton B, Kidd M, Dobbels E, Innes S, van 

Toorn R, Cotton M. White matter signal abnormalities in children with 

suspected HIV-related neurologic disease on early combination 

antiretroviral therapy. 

      Pediatr Infect Dis J. 2014 Aug;33(8):e207-12. doi: 10.1097/ 

INF.0000000000000288.  

      PubMed PMID: 24595047; PubMed Central PMCID: PMC4153800. 

 

3. Andronikou S, Ackermann C, Laughton B, Cotton M, Tomazos N, 

Spottiswoode B, Mauff K, Pettifor JM. Corpus callosum thickness on mid-

sagittal MRI as a marker of brain volume: a pilot study in children with HIV-

related brain disease and controls. Pediatr Radiol. 2015 Jul;45(7):1016-25. 

doi: 10.1007/s00247-014-3255-y. 

      Epub 2015 Jan 27. PubMed PMID: 25620244. 

 

4. Ackermann C, Andronikou S, Saleh MG, Laughton B, Alhamud AA, van der 

Kouwe A, Kidd M, Cotton MF, Meintjes EM. Early Antiretroviral Therapy in 

HIV-Infected Children Is Associated with Diffuse White Matter Structural 

Abnormality and Corpus Callosum Sparing. AJNR Am J Neuroradiol. 2016 

Dec;37(12):2363-2369.  

Epub 2016 Aug 18. PubMed PMID: 27538904; PubMed Central PMCID: 

PMC5161701. 
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related cerebral white matter disease in children. Pediatr Radiol. 2018 Nov 

29. doi: 10.1007/s00247-018-4310-x. [Epub ahead of print] PubMed PMID: 

30498850. 

 

Presentation of parts of or entire study at meetings: 
 
 

1. Poster presentation at the 19th Annual Meeting of the Organization for Human 

Brain Mapping, Seattle 2013: FA as marker for White Matter Abnormalities in 

Children with HIV on ART. 
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Brain Mapping, Seattle 2013: Effects of Motion Corrupted Volumes on DTI 

Findings between HIV-infected and Healthy Children. 

3. Poster presentation at ESPR – 37th postgraduate course and 51st Annual 

Meeting of the European Society of Paediatric Radiology, Amsterdam 2014: 

FA as a marker for White Matter Abnormalities in Children with HIV on early 

ART. 

4. Oral presentation Annual Academic day – Stellenbosch University 2014: 

Quantifiable Imaging Abnormalities of White Matter using FA in HIV infected 

children compared to controls. 

5. Oral presentation JN and WLS Jacobsen Lecture SORSA Durban 2017: 

Quantifiable Imaging abnormalities of white matter using FA in HIV infected 

children compared to controls. 

6. Oral presentation Marie Grobelaar memorial lecture, Annual Academic day – 

Stellenbosch University 2018: Quantifiable Imaging abnormalities of white 

matter using FA in HIV infected children compared to controls. 

7. Oral presentation 5th African Society of Radiology (ASR) and 54th Egyptian 

Society of Radiology conference, Cairo January 2019: Diffusion tensor 

imaging in paediatric HIV. 
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Appendix A  
Summary of other imaging studies on the CHER cohort  

 
Neuroimaging of Early Treated Perinatally Infected Children from 5 Years to 
Adolescence in Cape Town, South Africa  
André van der Kouwe1, Mark Cotton2, Marcin Jankiewicz3, Martha Holmes3, Barbara Laughton2, 
Ernesta Meintjes3 1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 
Massachusetts General Hospital, Charlestown, MA, USA, 2Family Center for Research with Ubuntu, 
Department of Pediatrics and Child Health, Tygerberg Children’s Hospital and Faculty of Health 
Sciences, Stellenbosch University, Stellenbosch, South Africa, 3Medical Imaging Research Unit, 
Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, 
University of Cape Town, Cape Town, South Africa  

Background:  
HIV and TB are the leading causes of natural death in South Africa1. HIV treatment 
and prevention are currently financed primarily (approximately 76%) by the South 
African (SA) Government while 21% is funded by PEPFAR2. HIV treatment 
constitutes most of the investment by PEPFAR of more than $5 billion in South 
Africa since 20043. When PEPFAR started, prevention of mother-to-child 
transmission (PMTCT) of HIV was still experimental. In 2006, the first infants were 
recruited to the Children with HIV Early antiRetroviral (CHER) study in Soweto and 
Cape Town. This study aimed to determine whether early limited antiretroviral 
treatment (ART), soon after primary infection, would be more effective in preventing 
disease progression than the standard treatment at the time of deferring ART until 
clinical criteria were met (initially CD4% < 20%). The SA National Department of 
Health (SANDH; with PEPFAR support) supplied first and second line ARVs. First 
line ART included zidovudine and lamivudine (supplied by GlaxoSmithKline) and 
lopinavir-ritonavir (supplied by SANDH). After a year it was observed that early ART 
reduced the risk of death by 75% compared with deferred ART and the independent 
Data Safety Monitoring Board recommended that deferment be discontinued. 
Subsequently it became the standard of care to start ART immediately4. The impact 
of deferring or interrupting ART on neurodevelopment was also of interest. It was 
observed that early ART improved outcomes in a neurodevelopmental sub-study of 
the Cape Town cohort5. Most of the infant participants co-enrolled on a linked 
vaccine study that included controls6. In 2011, when the Cape Town children 
reached 5 years of age, we studied them for the first time with magnetic resonance 
neuroimaging (MRI) at the Cape Universities Brain Imaging Centre (CUBIC), since 
renamed the Cape Universities Body Imaging Centre. This collaborative work 
between Stellenbosch University (SUN), the University of Cape Town (UCT) and the 
Massachusetts General Hospital (MGH), was supported by the Global Brain 
Disorders Program of the NIH Fogarty International Center (FIC), the NIMH and the 
NICHD and enabled us to continue to study the children after the CHER study 
ended. Our projects investigate the longitudinal effects of HIV exposure and/or 
infection, and ART, on the developing brain, from childhood through adolescence. 
The FIC program requires capacity building in the low- to middle-income partner 
country and we developed new MRI techniques together, especially for imaging 
children.  
Methods:  
We initially enrolled 114 children from the Cape Town cohort of the CHER study and 
linked vaccine study. Of these, 77 were HIV infected (42 female, 35 male), 18 were 
exposed but uninfected (9 female, 9 male), and 19 were unexposed (7 female, 12 
male). Participants were assessed clinically at regular intervals. Neuroimaging and 
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cognitive testing were done at 5, 7, 9 and 11 years. Imaging was performed on a 3 T 
Siemens Allegra MRI scanner until 9 years and then on a 3 T Siemens Skyra 
scanner. The research-dedicated 3 T scanner is unique in Sub-Saharan Africa. The 
scanning protocol included T1-weighted structural scans, diffusion and functional 
imaging, and spectroscopy. These techniques provide information about possible 
differences or disruptions in brain structure, white matter connectivity, functional 
brain networks, and brain metabolism, respectively.  
Results:  
Early ART appears to be protective against most of the damaging effects of HIV on 
the brain. HIV encephalopathy was more common in ART-deferred children5. Poor 
immune health at infancy (gauged by CD4/CD8) predicted reduced NAA and choline 
in the basal ganglia at 5 years7. Choline levels in basal ganglia and frontal gray 
matter continued to differentiate infected and uninfected children at 11 years8. The 9 
year old children exhibited lower NAA and glutamate in basal ganglia than 
unexposed control children. Interestingly HIV exposed but uninfected (HEU) children 
also exhibited these differences. Creatine and choline were also lower in HEU 
children than control children9.  
White matter signal abnormalities were observed earlier in some infected children in 
clinical T2 images10. Despite early ART, white matter damage (gauged by fractional 
anisotropy) was observed at 5 years primarily in the corticospinal tracts11. This 
damage persisted at 7 years and new damage appeared12. We continue to see white 
matter differences at 9 years in infected children13. Reduced long range and 
increased short range connectivity was observed in infected children at 7 years using 
functional connectivity. Poor immune health at infancy correlated with these 
differences14. In an fMRI study of hearing in the same children, group differences 
(infected vs. controls) in auditory cortex activation were observed on the left side in 
response to pure audible tones.  
Brain morphometric differences were observed at all ages. Infected children had 
larger nuclei accumbens and putamens bilaterally, and smaller corpora callosa at 5 
years15. Infected children exhibited larger volume reductions in caudate, putamen 
and globus pallidus over the range of 5 to 11 years16. Although damage was ongoing 
despite early ART and viral suppression at infancy, early ART reduced this damage. 
At 7 years, infected children exhibit reduced cortical gyrification and cortical 
thickness bilaterally in medial occipital cortex17.  
In associated studies, at 11 months of age, children who received early ART did 
substantially better on Griffiths Mental Development Scales locomotor and general 
scores than children on deferred ART. Children on early ART did as well as 
uninfected children except on the locomotor score5. Locomotor deficits appeared to 
resolve at 5 years, however visual perceptual deficits were noted in all HIV treatment 
groups18. Even with relatively early ART, cognitive deficits are evident in infected 
children at school age, suggesting that immediate ART and additional interventions 
during infancy/childhood may be helpful19. We observed that cortical thickness was 
associated with neuropsychological outcomes in HIV infected and uninfected 
children at 5 years. Our analyses of cognitive performance and its relationship to 
neuroimaging are ongoing.  
In technical work, these projects contributed to the development of “volumetric 
navigators” (vNavs) for real-time tracking and motion correction during high 
resolution anatomical MRI, necessary to scan children who tend to move in the 
scanner20,21. These methods are currently used in two large multi-center brain 
imaging studies viz. the Human Connectome Project (HCP) aging and development 
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studies22 and the Adolescent Brain Cognitive Development (ABCD) study23. Our 
projects also gave rise to double-echo vNavs for real-time motion and magnetic field 
correction in spectroscopy, a project originally assigned to a UCT student20,24. Motion 
and shim correction were added to several specialized scan types, including MEGA-
SPECIAL for measuring GABA25, CEST for measuring glycogen26, and diffusion 
imaging27. A UCT student also developed external hardware for motion tracking in 
MRI28.  
Conclusion:  
While perinatal ART and HIV exposure has a long-term impact on brain 
development, early ART with possible later interruption is highly effective at 
suppressing the virus, and clearly neuroprotective. PMTCT therapy is now extremely 
effective, giving rise to a new population of exposed, uninfected children. We have 
recruited a new cohort of neonates to evaluate the effects of early ART and HIV 
exposure without infection on the developing brain. None of the infected mothers 
enrolled on the study gave birth to infected infants. We will also follow the CHER 
children and controls through adolescence. The children in this study were born into 
a world in which PEPFAR had just begun, and they grew up alongside PEPFAR 
support. The first of these children will reach the age of 15 in 2020, two years after 
the 15th anniversary of the inception of PEPFAR. Their world would have been very 
different and their lives and those of many of their peers most likely curtailed if it 
were not for the generosity and success of PEPFAR.  
Acknowledgments:  
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