

Evaluation of Control Strategies for

Reconfigurable Manufacturing Systems

by

Chibaye Mulubika

March 2013

Thesis presented in fulfilment of the requirements for the degree of

Master of Science in Engineering(Mechatronic) in the Faculty of

Engineering at Stellenbosch University

Supervisor: Prof Anton Basson

DECLARATION

By submitting this thesis electronically, I declare that the entirety of the work

contained therein is my own, original work, that I am the sole author thereof (save

to the extent explicitly otherwise stated), that reproduction and publication thereof

by Stellenbosch University will not infringe any third party rights and that I have

not previously in its entirety or in part submitted it for obtaining any qualification.

25
th

 February, 2013

Copyright © 2013 Stellenbosch University

All rights reserved

Stellenbosch University http://scholar.sun.ac.za

i

Abstract

Evaluation of Control Strategies for Reconfigurable Manufacturing Systems

C Mulubika

Department of Mechanical and Mechatronic Engineering

Stellenbosch University

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Mechatronic)

March 2013

The thesis evaluates control strategies for reconfigurable manufacturing systems

by using a welding assembly cell as a case study. The cell consists of a pallet

magazine, conveyor, feeder subsystem (comprising an articulated robot and

singulation unit), welder subsystem (which uses a modular Cartesian robot), and

inspection and removal subsystems. The research focuses on control strategies

that enhance reconfigurability in terms of structure, hardware and software using

agent-based control and the IEC 61499 standard, based on PC control.

Reconfiguration may occur when a new product is introduced, as well as when a

new subsystem is introduced or removed from the production cell.

The overall control architecture is that the subsystems retain no knowledge of the

product, but product information resides in the cell controller, while services

offered by the subsystems are registered with the directory facilitator of the Java

agent platform. The control strategies are implemented on the modular Cartesian

weld robot and the cell controller for assembly cell. A layered architecture with

low-level control and high-level control is used to allow separation of concerns

and rapid changes in both hardware and software components. The low-level

control responds in hard real-time to internal and external events, while the high-

level control handles soft real-time actions involving coordination of control

related issues.

The results showed IEC 61499 function blocks to be better suited to low-level

control application in distributed systems, while agents are more suited for high-

level control. Modularity in software components enhances hardware and

software scalability. Additionally, agents can support online reconfiguration of

reconfigurable machines.

Stellenbosch University http://scholar.sun.ac.za

ii

Abstrak

Evaluering van beheerstrategieë vir Herkonfigureerbare

Vervaardigingstelssels

C Mulubika
Departement van Meganiese en Megatroniese Ingenieurswese

Universiteit van Stellenbosch

Privaat Sak X1, 7602 Matieland, Suid-Afrika

Proefskrif: MScIng (Megatronies)

March 2013

Die tesis evalueer beheerstrategieë vir herkonfigureerbare vervaardigingstelsels

deur gebruik te maak van ’n sweismonteersel as ’n gevallestudie. Die sel bestaan

uit ’n palletmagasyn, vervoerbande, voersubstelsel (bestaande uit ’n

geartikuleerde robot en singulasie-eenheid), sweissubstelsel (wat gebruik maak

van ’n modulêre Cartesiese robot), en inspeksie- en verwyderingsubstelsels. Die

navorsing fokus op beheerstrategieë wat herkonfigureerbaarheid verhoog in terme

van struktuur, hardeware en sagteware met behulp van agent-gebaseerde beheer

en die IEC 61499 standaard, wat gebaseer is op PC-beheer. Herkonfigurasie mag

voorkom wanneer ’n nuwe produk in-gestel word, sowel as wanneeer ’n nuwe

substelsel bygevoeg of verwyder word van die produksiesel.

Die oorhoofse beheerargitektuur is dat die substelsels geen kennis van die produk

hou nie, maar die produkinligting in die selbeheerder geberg, terwyl dienste wat

aangebied word deur die substelsels wat geregistreer is by die gidsfasiliteerder

van die Java agent platform. Die beheerstrategië is geïmplementeer op die

modulere Cartesiese sweisrobot en die selbeheerder vir die monteersel. ’n

Gelaagde argitektuur met ’n lae-vlak beheer en hoë-vlak beheer word gebruik om

skeiding van oorwegings en vinnige veranderinge in beide hardeware en

sagteware komponente toe te laat. Die lae-vlak beheer reageer hard intyds op

interne en eksterne gebeure, terwyl die hoë-vlak beheer sag intyds die

koördinering van beheerverwante kwessies hanteer.

Die resultate het getoon dat IEC 61499 funksie-blokke beter geskik is vir lae-vlak

beheer toepassing in verspreide stelsels, terwyl agente meer geskik is vir hoë-

vlak beheer. Modulariteit in sagteware komponente verhoog hardeware en

sagteware skaleerbaarheid. Boonop kan agente ook aanlyn herkonfigurasie van

herkonfigureerbare masjiene ondersteun.

Stellenbosch University http://scholar.sun.ac.za

iii

DEDICATION

To

My wife Mutinta and my daughter Kabwe who

have endured separation and deprivation for a noble

Cause

May God continue to guide and bless us as we pursue our dreams.

Stellenbosch University http://scholar.sun.ac.za

iv

ACKNOWLEDGEMENTS

I wish to acknowledge the effort of those who made this research process a

success. First and foremost, I would like to thank Professor A.H Basson for his

guidance and support during my research. I would also like to thank him for being

a parent and organizing funding for my research. For your kind words and advice,

God will bless you.

 I would also like to thank all the able technicians from mechanical workshop for

their speedy execution of the tasks. Without you the research would have taken

forever. Maurisha, you are wonderful and I like to thank you a lot for your attitude

and support. I wish you the best in life.

This research was going to be hell without the support of Taren Smith, who

guided me with setting up of Festo equipment, and Coen Pretorius for making

sure that shaft was the right size and selling us equipment to the right

specification.

Ronaldo, I thank you for talking to me when you had the right not to, for giving

your advice when it was needed. I would also like to thank my colleagues, Ruan

for being kind and warm hearted. You made my stay in Stellenbosch enjoyable.

Your encouraging words meant a lot to me. Am sure God will bless you for that.

I would further like to extend my thanks to Evan William to for his support during

the installation of Beckhoff TwinCAT I/O.

To my colleagues, Anro and Karel, memories will last a long time. If I were asked

to choose colleagues again for another research, I would choose you again.

Lastly but not the least, I would like to thank Advanced Manufacturing

Technology Strategy (AMTS) for providing funding for this work, and the CBI

for providing access to their plants.

Therefore, if there be any insufficiency in the quality of this work, the fault lay

squarely on my head and not my supervisor.

Stellenbosch University http://scholar.sun.ac.za

v

TABLE OF CONTENTS

Declaration .. i

Abstract ... i

Abstrak .. ii

Dedication .. iii

Acknowledgements ... iv

Table of Contents ... v

List of Figures .. x

Abbreviations .. xii

1. INTRODUCTION .. 1

1.1 Background ... 1

1.2 Motivation ... 1

1.3 Objective ... 2

2. LITERATURE REVIEW ... 3

2.1 Types of manufacturing systems ... 3

2.1.1 Dedicated manufacturing systems ... 3

2.1.2 Flexible manufacturing systems .. 3

2.1.3 Reconfigurable manufacturing systems ... 4

2.1.4 Holonic manufacturing systems ... 6

2.2 Control architectures in manufacturing systems 7

2.2.1 Centralized control architecture ... 7

2.2.2 Hierarchical and heterarchical control architecture 8

2.2.3 PROSA reference architecture ... 8

2.2.4 ADACOR control architecture .. 10

2.2.5 HCBA control architecture .. 12

2.2.6 Distributed control architecture ... 12

Stellenbosch University http://scholar.sun.ac.za

vi

2.3 Agent based control in manufacturing systems 13

2.3.1 Characteristics of agent based control ... 13

2.3.2 Agents versus objects ... 14

2.3.3 Agent behaviour and interactions in JADE 15

2.3.4 Agent communication .. 16

2.3.5 Directory facilitator .. 17

2.3.6 Application of agents to control of manufacturing systems 18

2.4 IEC 61499 standard in distributed control .. 19

2.4.1 Introduction .. 19

2.4.2 Execution environments for IEC 61499 function blocks 20

2.4.3 Deployment of IEC 61499 standard .. 21

2.5 Evaluation criteria for control strategies ... 21

2.6 Conclusion... 22

3. CASE STUDY .. 23

3.1 Assembly system overview ... 23

3.1.1 Conveyor subsystem .. 24

3.1.2 Pallet magazine station .. 25

3.1.3 Feeder station ... 25

3.1.4 Inspection station ... 25

3.1.5 Removal station ... 26

3.1.6 Welding station .. 26

3.1.7 Part family .. 26

3.2 Design of a modular Cartesian robot .. 27

3.2.1 X-axis hardware selection and configuration 28

3.2.2 Y-axis hardware selection and configuration 29

3.2.3 Z-axis hardware selection and configuration 30

Stellenbosch University http://scholar.sun.ac.za

vii

4. RECONFIGURABLE CONTROL OF MODULAR CARTESIAN ROBOT

 .. 31

4.1 Low-level control strategy for modular Cartesian robot 31

4.1.1 Hardware and software considerations .. 31

4.1.2 Coordination of axes in the LLC layer .. 32

4.1.3 Movement of the X axis ... 32

4.1.4 Movement of Y, Z axes and the weld head 33

4.2 CANOpen configuration ... 33

4.2.1 Process Data Objects (PDOs) assignment 33

4.2.2 PDO selection .. 34

4.2.3 TwinCAT I/O software configuration ... 35

4.3 IEC 61499 control approach ... 35

4.3.1 Design methodology .. 36

4.3.2 Human machine interface layer ... 36

4.3.3 Control layer .. 37

4.3.4 Interface layer .. 38

4.4 Agent based approach ... 40

4.5 Message transmission to the axes ... 41

4.6 Modular Cartesian robot test results ... 42

5. CELL CONTROLLER FOR ASSEMBLY CELL 44

5.1 Cell controller architecture .. 44

5.2 System partitioning ... 45

5.3 Control design and implementation for the assembly cell 46

5.4 Product agents ... 49

5.4.1 Design of the product agent using a sequential behaviour 49

5.4.2 Product agent design based on FSM behaviour 51

Stellenbosch University http://scholar.sun.ac.za

viii

5.4.3 Handling of disturbances by product agents 53

5.4.4 Pallet magazine and conveyor interaction during production 54

5.4.5 Product agent and pallet re-use .. 57

5.4.6 Introduction of a new product .. 58

5.5 Resource agents ... 59

5.5.1 CNP responder selection .. 59

5.5.2 Design of the Resource agent .. 60

5.5.3 TCP/IP server in a resource agent .. 62

5.5.4 CNP based interaction of resource agents 64

5.5.5 Information interchange between resource agents and subsystems . 64

5.5.6 Fail-safe of resource agents ... 65

5.5.7 Introduction of a new resource into the assembly cell 65

5.5.8 Removing a resource from the assembly cell 66

5.6 Order agent .. 66

5.7 Staff Agent .. 67

6. RECONFIGURATION INVESTIGATION ... 69

6.1 Investigation 1: Introduction of a new subsystem in the assembly cell .. 69

6.2 Investigation 2: Introduction of a new product in the assembly cell 70

6.3 Investigation 3: Removing a subsystem from the assembly cell 71

6.4 Investigation 4: Simulating disturbances in the cell when a product agent

using a FSM behaviour is used in production .. 71

7. EVALUATION OF CONTROL STRATEGIES 73

7.1 Scalability of software components .. 73

7.2 Modularity of software components ... 74

7.3 Integrability of software components .. 75

7.4 Customization of software components .. 75

Stellenbosch University http://scholar.sun.ac.za

ix

7.5 Convertibility of software components ... 75

7.6 Diagnosing a system using software components 76

7.7 Overview ... 76

8. CONCLUSIONS AND RECOMMENDATIONS 77

REFERENCES .. 79

APPENDIX A: CELL CONTROLLER FUNCTIONAL ANALYSIS 86

APPENDIX B: MODULAR CARTESIAN ROBOT CIRCUITs 87

B.1 CMMP-AS power connection pin ... 87

B.2 Control circuit ... 87

B.3 Mains supply ... 89

APPENDIX C: MODULAR CARTESIAN ROBOT CONTROL 90

C.1 Function block high level control ... 90

C.2 Modular Cartesian robot functional Analysis ... 91

APPENDIX D: CELL CONTROLLER PORTS AND DATA EXCHANGE

FORMATS .. 93

D.1 Port designation of subsystems ... 93

D.2 Messaging formats for subsystems ... 93

D.3 Agent code for service description and publishing to the DF 94

D.4 Agent code for searching for services ... 95

D.5 Code for creating multiple agents ... 96

D.6 Code for re-launching an agent ... 96

Stellenbosch University http://scholar.sun.ac.za

x

LIST OF FIGURES

Figure 2.1 Centralized control architecture .. 7

Figure 2.2 Formalization of heterarchy and hierarchy using graph theory 8

Figure 2.3 Basic building blocks of a HMS and their relations 9

Figure 2.4 Petri net model of product holon .. 11

Figure 2.5 Basic function block ... 19

Figure 3.1 Weld assembly cell overview ... 23

Figure 3.2 Welding assembly cell layout ... 24

Figure 3.3 Components of a circuit breaker with welded points 26

Figure 3.4 Rear view of modular Cartesian robot ... 27

Figure 3.5 Mechanical structure of modular Cartesian robot 29

Figure 4.1 Layered architecture for control implementation of weld robot 36

Figure 4.2 Composite function block for axis control 37

Figure 4.3 Interface between HLC and LLC using basic function block 38

Figure 4.4 ECC and interfaces for COMM function block 39

Figure 4.5 Algorithm for COMM function block .. 40

Figure 5.1 System partitioning and CNP based interaction of product and

resource agents ... 46

Figure 5.2 Weld assembly system holarchy .. 47

Figure 5.3 SequentialBehaviour class implementation flow in product agent .. 50

Figure 5.4 Transitions of the pallet after offloading .. 52

Figure 5.5 Sequence diagram of interactions for product and resource agents 56

Figure 5.6 Interaction between product agent, PMAgent and ConveyorAgent . 57

Figure 5.7 Resource agent model ... 61

Figure 6.1 Graphical user interface for staff agent ... 70

Figure 6.2 Graphical user interface for order agent .. 71

Figure A.1 Cell controller functional analysis ... 86

Figure B.1 CMMP-AS Three phase power connection pin assignment 87

Figure B.2 Modular Cartesian robot control circuit .. 88

Figure B.3 Power circuit connection ... 89

Figure C.1 Modular Cartesian robot function blocks .. 90

Figure C.2a Modular Cartesian robot functional analysis 91

Stellenbosch University http://scholar.sun.ac.za

file:///C:/Users/Chibaye/Documents/Thesis12162012/Thesis12112012.docx%23_Toc348954882

xi

Figure C.2b Modular Cartesian robot functional analysis 92

Figure D.1 Agent ports ... 93

Stellenbosch University http://scholar.sun.ac.za

xii

ABBREVIATIONS

ACL Agent Communication Language

AMTS Advanced Manufacturing Technology Strategy

CFP Call for Proposal

CNP Contract Net Protocol

DF Directory Facilitator

FB Function block

FMS Flexible Manufacturing System

FSM Finite State Machine

HLC High Level Control

IP Internet Protocol

JADE Java Agent Development Environment

LLC Low Level Control

MAS Multi-Agent System

PC Personal Computer

PLC Programmable Logic Controller

RM Reconfigurable Machines

RMS Reconfigurable Manufacturing Systems

TCP Transmission Control Protocol

Stellenbosch University http://scholar.sun.ac.za

1

1. INTRODUCTION

1.1 Background

This research considers control strategies for reconfigurable manufacturing

systems (RMSs). It is a part of the research activities that have been undertaken to

develop expertise in reconfigurable assembly systems in South Africa under the

“Affordable Automation” theme of the Advanced Manufacturing Technology

strategy (AMTS). AMTS is an initiative of the Department of Science and

Technology aimed at developing technologies related to manufacturing industry.

For this research, the reconfigurable assembly cell for which control strategies are

evaluated is a welding assembly cell used for production of circuit breaker

components. Several students from the research group have worked on different

aspects of the project. Sequeira (2008) developed a conceptual design of the

welding assembly system. The design comprised five major subsystems, i.e. the

pallet magazine, conveyor, feeder, inspection and removal station, and welder.

The pallet magazine concept was designed and developed by Burger (2009), while

Strauss (2009) designed a singulation unit, which is a part of the feeder

subsystem. Kruger (2013) is developing a control system for the feeder

subsystem, while Le Roux (2013) is developing the control system for the

conveyor.

Students from Central University of Technology (CUT) in Bloemfontein

developed a multi-agent control system which interfaces with the cell controller at

the University of Stellenbosch. The CUT controller handles communication with

other information systems in the factory, i.e. scheduling, security and high level

human interfaces. Du Preez (2011), from the Department of Industrial

Engineering at the University of Stellenbosch, developed a simulation procedure

which determines, for a given product mix, an optimal assembly system

configuration. The simulation also predicts the cost of production for a given

product mix.

Work in this thesis evaluates control strategies for a modular Cartesian weld robot

and the cell controller for the whole welding assembly cell. The cell controller

will also interface with the multi-agent system developed by CUT.

1.2 Motivation

This work was motivated by the competition from the global manufacturing

economy in which customers’ and enterprises’ preference for newer products have

led to short product life cycles. The introduction of newer products would

traditionally require changes to manufacturing system set-up, for instance,

introducing new machines, as well as making changes to control programs.

In South Africa the situation is not different. South African companies have been

forced to selectively replace labour for assembly so that manual labour and

automatic operations may be combined and run concurrently in order to meet such

Stellenbosch University http://scholar.sun.ac.za

2

challenges. This selective replacement of manual labour has become increasingly

necessary due to the direct and indirect cost of labour, as well as quality

considerations.

For a manufacturing enterprise with high product variability and changeable

volumes, RMSs offer a potentially attractive option to challenges faced with

change in production capacity and functionality. Production volumes in South

Africa are typically small and also vary substantially throughout the year.

Furthermore, each product change may require a change in the manufacturing

subsystems or adjustments to be made to the control program, especially when

programmable logic controllers (PLCs) are used. Moreover, the time required to

return the production to full capacity after a change in product occurs can be

substantial. There is, therefore, a need for a control strategy which will enhance

reconfiguration and reduce on the ramp up time.

In most industries, control of the manufacturing system is traditionally

centralized. However, distributed control is used in the work presented here. The

choice of distributed control is motivated by the difficulties associated with the

traditional centralized control, for instance, any modification done to a centralized

control will require a shutdown. However, any downtime is unproductive and may

make the product costly, and the company less competitive.

Multi-agent systems and the IEC 61499 standard are some of the control standards

that have been developed to effectively implement distributed control. Multi-agent

systems and the IEC 61499 standard have both been used for holonic

manufacturing systems (HMSs). This motivated the evaluation of the two

standards to see which one would enhance reconfiguration in RMSs.

1.3 Objective

The objective of this research is to evaluate the ability of some distributed control

strategies to enhance reconfiguration in terms of changes in structure, hardware

and software components. Reconfiguration occurs when a new product is

introduced, as well as when a new subsystem is introduced into a production cell.

The objective was approached by, firstly, designing a modular Cartesian weld

robot using the six core characteristics of RMSs and the design principles of

Reconfigurable Machines (RMs), and then implementing agent based control and

IEC 61499 function blocks as alternatives to each other. Each approach is then

evaluated in terms of ease of reconfiguration.

Secondly, a cell controller for the welding assembly cell, consisting of the pallet

magazine subsystem, Bosch Rexroth TS2 Plus conveyor, feeder subsystem,

welding subsystem, inspection and removal subsystem, is developed and tested

using agent based control. All the control approaches are implemented using

Personal Computers (PCs) since available (PLCs) do not support agent based

control or IEC 61499 function blocks.

Stellenbosch University http://scholar.sun.ac.za

3

2. LITERATURE REVIEW

 This section reviews manufacturing systems that have been developed in the past

and the control strategies that have been used on them. It also considers the

application of agents, holons, and IEC 61499 function blocks in distributed

manufacturing systems.

2.1 Types of manufacturing systems

Manufacturing systems have evolved substantially from the time of their first

inception. Stechi and Lagos (2004) highlights the evolution stages as: the

dedicated manufacturing systems (DMS), the cellular manufacturing systems

(CMS) and the flexible manufacturing systems (FMSs). They further make a case

for the development of reconfigurable manufacturing systems (RMSs). The

evolution was driven by various challenges. For instance, in the nineties,

optimality, agility, waste reduction, quality and lean manufacturing were

identified as key drivers and goals for ensuring survival in a globally competitive

market (EIMaraghy, 2006). Similarly, Koren and Shpitalni (2010) identify cost,

functionality, and capacity as the three features differentiating RMS, DMS and

FMS. Each of the system types will be considered in more detail in the following

sections.

2.1.1 Dedicated manufacturing systems

Dedicated manufacturing systems, sometimes called dedicated manufacturing

lines (DML) or transfer lines, can produce a company’s core products or parts at

high volumes on dedicated machines. Koren and Shiptalni (2010) describes DML

as comprising of inexpensive fixed automation and Koren et al (1999) further

describes them as not scalable since they have fixed cycle times and capacity.

These characteristics make them rigid in terms of product variation. Therefore,

they cannot be globally competitive in a situation where product life cycles are

ever changing and new products are frequently introduced.

However, a DMS is cost effective when the demand for a particular product

exceeds the supply so that the DMS can operate at its full capacity (Koren and

Shiptalni, 2010). Nevertheless, a DMS is at a disadvantage if the required

production volumes change significantly or if the product is only produced for a

short time.

2.1.2 Flexible manufacturing systems

FMS is described as “a manufacturing system configuration with fixed hardware

and fixed, but programmable, software to handle changes in work orders,

production schedules, part–programs, and tooling for several types of parts”

(Mehrabi et al, 2000). The manufacturing system can produce a variety of

products with changeable volume and mix on the same system (Koren et al,

1999). Koren et al (1999) further states that FMS hardware consists of expensive

general purpose computer numerically controlled (CNC) machines and other

programmable automations.

Stellenbosch University http://scholar.sun.ac.za

4

A flexible manufacturing system is designed to be flexible. Chryssolouris et al

(2012) states that, flexibility of a manufacturing system is determined by its

sensitivity to change and is evaluated by calculating the expected cost of

accommodating possible changes in the operating environment. The lower the

expected change cost is, the less sensitive the system is to changes in its operating

environment and thus, the system is considered as being more flexible. Based on

this definition, EIMaraghy (2006) identifies ten types of manufacturing flexibility

and these are machine flexibility, material handling flexibility, operation

flexibility, process flexibility, product flexibility, routing flexibility, volume

flexibility, expansion flexibility, control program flexibility and production

flexibility. While these promote better understanding of various types of

flexibility, Chryssolouris et al (2012) observe that high flexibility or low

sensitivity to a change provides a manufacturing system with three principle

advantages, these are:

 Product flexibility enables a manufacturing system to make variety of part

types on the same equipment. In the short term, this means that the system

has the capability of economically producing small lot sizes to adapt to the

changing demand for various products. In the long term, this means that

the system’s equipment can be used across multiple product life cycles,

which increases investment efficiency.

 Capacity flexibility allows a manufacturing system to vary the production

volumes of different products to accommodate changes in the volume

demand, while remaining profitable. It reflects the ability of the

manufacturing system to contract or expand easily. It has been

traditionally seen as being critical for make-to-order systems, but it is also

very important in mass production, especially for high value products such

as automobiles.

 Operation flexibility refers to the ability of producing a set of products

with the use of different machines, materials, operations, and sequences of

operations. It results from the flexibility of individual processes and

machines; that of product designs, as well as the flexibility of the structure

of the manufacturing system itself. It provides breakdown tolerance – the

ability to maintain a sufficient production level even when machines break

down or humans are absent (Chryssolouris et al, 2012).

This manufacturing system, though flexible, is said to have a high initial cost and

usually not all of its capabilities are utilized (Mehrabi et al, 2002).

2.1.3 Reconfigurable manufacturing systems

A RMS is designed at the outset for rapid change in structure, in both hardware

and software components, in order to quickly adjust production capacity and

functionality within a part family in response to sudden changes in market or in

regulatory requirements (Koren et al, 1999). Therefore, the objective of RMSs is

to provide capacity and functionality that is needed when needed. Proponents of

this approach believe that it has the potential to offer a cheaper solution in the

long run compared to FMSs, as it can increase the life and utility of a

manufacturing system (Wiendahl et al, 2007).

Stellenbosch University http://scholar.sun.ac.za

5

Additionally, EIMaraghy (2006) mentions reconfigurability as being in line with

the idea of expansion of flexibility. This implies that there are a number of

similarities between reconfigurable systems and flexible systems which may make

it difficult to differentiate between the two systems.

What then is the difference between flexibility and Reconfigurability? Wiendahl

et al (2007) define flexibility as “the tactical ability of an entire production and

logistics area to switch with reasonably little time and effort to new, although

similar, families of components by changing manufacturing processes, material

flows and logistical functions”. Reconfigurability is defined as “the operative

ability of a manufacturing or assembly system to switch with minimal effort and

delay to a particular family of work pieces or subassemblies through the addition

or removal of functional elements” (Wiendahl et al, 2007). From these two

definitions two differences which are also key to differentiating between

reconfigurability and flexibility can be deduced and these are:

 Diversity of work pieces handled: Reconfigurable systems may switch

between different families of products, while flexible systems switch between

similar products.

 Manufacturing system setup change: Reconfigurable systems may add or

remove machine components, while flexible systems change the process or

material flow.

Removing or adding machine components implies changes to both hardware and

software components. Rooker et al (2007) categorize reconfigurations as basic

and dynamic reconfigurations. Basic reconfiguration involves stopping the whole

system in order to reconfigure, while dynamic reconfiguration does not involve

stopping the whole system.

A reconfigurable system must have inherent features or properties such that the

reconfiguration exercise is simplified. Wiendahl et al (2007) refer to these

features as changeability enablers. Koren and Shpitalni (2010) identify

changeability enablers, also known as six core reconfigurable characteristics as:

i. Customization (flexibility limited to part family) of system or machine

flexibility limited to a single product family, thereby obtaining customized

flexibility.

ii. Convertibility (design for functionality changes) being the ability to easily

transform the functionality of existing systems to suit new production

requirements.

iii. Scalability (design for capacity changes) being the ability to easily modify

production capacity by adding or removing manufacturing resources, for

instance machines, and /or changing components of the system.

iv. Modularity (components are modular) being the compartmentalization of

operational functions into units that can be manipulated between alternate

production schemes for optimal arrangement.

Stellenbosch University http://scholar.sun.ac.za

6

v. Integrability (interfaces for rapid integration) being the ability to integrate

new modules rapidly and precisely by a set of mechanical, informational

and control interfaces that facilitate integration and communication.

vi. Diagonisability (design for easy diagnostics) being the ability to

automatically read the current state of the system to detect and diagnose

the root cause of output defects, and quickly correct operational defects.

Bi et al (2008) identify reconfigurable machines (RMs) as the hardware systems

of a RMS at the machine and device level, while the RMS is to be designed by

using reconfigurable hardware and software (Koren et al, 1999). Two

technologies which have been identified by Koren et al (1999) as necessary

enablers for reconfiguration are: firstly, in software, modular, open-architecture

controls that aim at allowing reconfiguration of the controller; secondly, in

machine hardware, modular machine tools aiming at giving the customer more

machine options. For the RMs, modularity, integrability and diagonisability allow

rapid reconfiguration, but do not guarantee modifications in production capacity

and functionality (Koren and Shiptalni, 2010).

Therefore, the core of the RMS paradigm is an approach to reconfiguration based

on system design which encompasses the simultaneous design of open-

architecture reconfigurable controllers and reconfigurable modular machines

(Koren et al, 1999). The ultimate goal of the RMS is therefore to utilize a system

approach in the design of the manufacturing process that allows simultaneous

reconfiguration of the entire system, the machine hardware and control software

(Koren et al, 1999).

2.1.4 Holonic manufacturing systems

Holonic Manufacturing Systems (HMSs) is an approach that combines the best

features of hierarchical and heterarchical organizational structures (Blanc et al,

2006). Blanc et al (2006) further state that the concept can preserve the stability of

a hierarchy, while providing the dynamic flexibility of heterarchies.

What is a holon? Van Brussel et al (1998) states that Koestler proposed the word

holon. It is a combination from the Greek holos, which means whole with the

suffix -on which, as in a proton or neutron, suggests a particle or part

(Valckenaers et al, 1998;Van Brussel et al, 1998). The HMS consortium translated

the concepts that Koestler developed for social organizations and living organisms

into a set of appropriate concepts for manufacturing industries (Van Brussel et al,

1998). The goal is to attain manufacturing stability in the face of disturbances,

adaptability and flexibility in the face of change, and efficient use of available

resources (Valckenaers et al, 1998).

In order to understand and apply the concept of HMS to the manufacturing

setting, the consortium developed a list of definitions. Valckenaers et al

(1998) detail these definitions as:

Stellenbosch University http://scholar.sun.ac.za

7

 Holon: An autonomous and cooperative building block of a manufacturing

system for transforming, transporting, storing and/or validating

information and physical objects. The holon consists of an information

processing part and often a physical processing part. A holon can be part

of another holon.

 Autonomy: The capability of an entity to create and control the execution

of its own plans and/or strategies.

 Cooperation: A process whereby a set of entities develops mutually

acceptable plans and executes these plans.

 Holarchy: A system of holons that can cooperate to achieve a goal or

objective. The Holarchy defines the basic rules for cooperation of the

holons and thereby limits their autonomy.

2.2 Control architectures in manufacturing systems

Centralized, hierarchical and distributed are the three control architectures

identified by Meng et al (2006). These architectures differ in purpose and

function, and are implemented in different manufacturing systems. This section

looks at some of the control architectures used in manufacturing systems and how

they are implemented.

2.2.1 Centralized control architecture

The centralized control architecture is one in which the whole system is controlled

by one central controller carrying out all the automation processes. This control

strategy has a number of shortcomings such as, difficulty of control system

design, lack of flexibility, and a low level of fault tolerance. In order to

reconfigure a centralized or hierarchical control system architecture, the whole

system has to shut down and all data structures of the higher levels must be

updated (Meng et al, 2006). Figure 2.1 gives an illustration of the architecture.

Machine Component

Controller

Figure 2.1 Centralized control architecture (Meng et al, 2006)

Furthermore, it is difficult to add, modify or delete resources. These reasons make

centralized control strategy unsuitable for RMSs (Meng et al, 2006). However,

Almeida et al (2010) state that where a centralised solution can be simply

Stellenbosch University http://scholar.sun.ac.za

8

implemented, maintained and changed, it will surpass a distributed solution in

terms of conventional performance.

2.2.2 Hierarchical and heterarchical control architecture

Hierarchical control involves a command-response structure between high level

and low level entities, while heterarchical control is achieved by allowing a high

level of autonomy and decision making to be available to low level entities

independent of the overall plant operations (Bongaerts et al, 2000).

In discrete manufacturing, developments in the information technology led to the

realization of computer integrated manufacturing systems. With all its merits,

integration resulted in rigid, hierarchical control architectures whose structural

complexity grew rapidly with the size and the scope of the systems. Moreover,

integration resulted also in complex decision problems (Monostori et al, 2006).

All hierarchical control architectures require a fixed structure while the system is

running, and assume a deterministic behaviour of the components (Van Brussel et

al, 1998). Figure 2.2 depicts heteracty and hierachy using graph theory.

A

B

C

A

B

C

A B C

Level 1

Level 2

Level 3

Three-level hierarchy
Heterarchy

(strongly connected graph)

One-level heterarchy

HIERARCHY HETERARCHY

Heterarchical relationship

Master-slave relationship
Decisional entities

Figure 2.2 Formalization of heterarchy and hierarchy using graph theory

(Trentesaux, 2009)

2.2.3 PROSA reference architecture

The name for Product-Resource-Order-Staff architecture (PROSA) refers to the

composing types of holons (Van Brussel et al, 1998). Each of these holons is built

on the basis that it is responsible for one aspect of manufacturing control. This can

be logistics, technological planning, or resource capabilities.

In proposing the types of holons, Van Brussel et al (1998) state that in both the

research community and manufacturing companies, three relatively independent

manufacturing concerns do exist. These are:

 Resource aspects, such as driving the machine at optimal speed and

maximizing its capacity.

Stellenbosch University http://scholar.sun.ac.za

9

 Product and process related technological aspects, such as which

operations need to be performed to achieve a good quality product,

 Logistical concerns about the customer demands and due dates.

From this analysis, Van Brussel et al (1998) conclude that three basic holons exist

in a holonic manufacturing system namely: product holon, order holon and

resource holon. The three basic holons and their interactions in PROSA are shown

in Figure 2.3.

Resource

holon

Order holon Product holon

Process

execution

knowledge

Process

knowledge

Production

knowledge

Figure 2.3 Basic building blocks of a HMS and their relations (Van Brussel et al,

1998)

The three key words used in defining relations between the three basic holons as

shown in Figure 2.3 need explanation. According to Van Brussel et al (1998):

 Process knowledge contains information and methods on how to perform a

certain process on a certain resource. It is knowledge about the capabilities

of the resource, which processes it can perform, the relevant process

parameters, the process quality, possible outcomes of a process, etc.

 Production knowledge represents the information and methods on how to

produce a certain product using certain resources. It is knowledge about

possible sequences of processes to be executed on the resources, data

structures to represent the outcome of the processes, methods to access

information of process plans, etc.

 Process execution knowledge contains the information and methods

regarding the progress of executing processes on resources. It is

knowledge about how to request the starting of processes on the

resources, making reservations on the resources, how to monitor the

progress of execution, how to interrupt a process, the consequence of

interrupting a process, suspending and resuming processes on resources,

etc.

Stellenbosch University http://scholar.sun.ac.za

10

The product holon holds the process and product knowledge to assure the correct

making of the product with sufficient quality. This holon also contains consistent

and up-to-date information on the product life cycle, user requirements, design,

process plans, bill of materials quality assurance procedures etc. Therefore, this

holon contains the “product model” of the product type and not the “product state

model” (Valckenaers et al, 1998). The product holon also acts as an information

server to the other holons in the Holonic Manufacturing System (HMS) (Van

Brussel et al, 1998).

Similarly, a resource holon contains a physical part, namely a production resource

of the manufacturing system, and an information processing part that controls the

resource. It offers production capacity and functionality to the surrounding holons

(Valckenaers et al, 1998). Each physical device of the manufacturing is

incorporated in a resource holon (Blanc et al, 2006).

An order holon represents a task in the manufacturing system. It is responsible for

performing the assigned work correctly and on time. It manages the physical

product being produced, the product state model, and all logistical information

processing related to the job. It also performs tasks traditionally assigned to a

dispatcher, a progress monitor, and a short term scheduler (Valckenaers et al,

1998)

The name ‘staff holon’ is inspired by the difference between line functions in

human organizations. Accordingly, the PROSA architecture allows the staff

holons to assist the basic holons with information such that they can take better

decisions. The basic holons are responsible for taking decisions; the staff holons

are external experts giving advice (Valckenaers et al, 1998). Valckenaers et al

(1998) also suggest that this manner of cooperation avoids the rigidity of

conventional designs.

After comparing PROSA to other architectures, Van Brussel et al (1998)

concluded that PROSA covers all aspects of hierarchical and heterarchical control

architectures by incorporating relevant functions and control algorithms from

centralized and distributed control approaches. Therefore, PROSA can be

regarded as a generalized approach of centralized and distributed control

approaches (Van Brussel et al, 1998).

The other two innovations introduced by PROSA are: decoupling of system

structure from the control algorithm; and the decoupling of logistical aspects from

technical ones. These innovations allow incorporation of more advanced hybrid

control algorithms (Van Brussel et al, 1998). Decoupling is one of the main issues

in the design of complex systems and therefore one of the important characteristic

of PROSA architecture (Van Brussel et al, 1998).

2.2.4 ADACOR control architecture

 Adaptive holonic control architecture (ADACOR) is based on the holonic

manufacturing systems paradigm and in the following main foundations:

Stellenbosch University http://scholar.sun.ac.za

11

decentralized systems, supervisor entities and self-organisation (Lietao and

Restivo, 2006). Like the PROSA architectures, it is built upon a set of

autonomous and cooperative holons. These holons perceive their environment and

responses to changes.

ADACOR architecture defines four manufacturing holon classes. Each holon is a

representation of a manufacturing component that can be either physical resource

or logic entity. Leitao et al (2005b), state that the four holons are: product holon

(PH), task holon (TH), operational holon (OH), and supervisory holon (SH) and

that the product holon, task holon and operational holon respectively represent,

products, production orders and physical resources available in the shop (Leitao et

al., 2005b). The PHs, THs and OHs resemble the product, order and resource

holons defined in PROSA, while the SH is an ADACOR feature (different from

the PROSA staff holon). The SH introduces coordination and global optimization

in decentralized control and is responsible for forming and coordinating groups of

holons (Leitao et al, 2005a).

In order to fully appreciate the semblance, difference and the significance of PH,

TH and OH holons, Leitao et al (2005b) give high level Petri net models of these

holons. Figure 2.4 gives an illustration of the product holon model.

1
1

n1

np1: ready to start

t1: start

t10: end

p2

t2: order a

product

p3 n: production

capacity

t3: elaborates

alternative routing

plans

p4: verifying of

availability of raw

materials or parts

t13p11

p10

t9

t4: all parts

available
t12: requests

missing parts or

raw material

t11: is missing

parts or raw

material

p5
P9: thread

finished

tA: executes

production order

Transition

explosion

t5:

launches

TH

p6: PO is

being

executed

t6: end of

PO

execution

p7 t7: learns

from the

data

provided

p8 t8

Figure 2.4 Petri net model of product holon (Leitao et al, 2005b)

Stellenbosch University http://scholar.sun.ac.za

12

Each PH is a representation of the product to be produced by the factory. When a

new order is placed, it generates a new thread to handle its execution. The order

comprises mainly of the short term process planning, management of the sub-parts

and management of the production order execution (Leitao et al, 2005b). The PH

continues to wait for new orders when it is finished. Moreover, it is able to

simultaneously process several orders and is only limited by the production

capacity n as depicted in Figure 2.4.

The transition tA in Figure 2.4, representing a production order, is exploded to

show the activities that takes place when the PH launches a task holon (TH). Each

available production order launched to produce a product is represented by a task

holon. The behaviour of a TH comprises mainly the order decomposition,

resource allocation planning and execution activities (Leitao et al, 2005b).

2.2.5 HCBA control architecture

Holonic Component-Based Architecture (HCBA) derives its concepts from

component-based development (CBD) and HMS (Chirn and McFarlane, 2000).

CBD is associated with a shift from statement-oriented coding to system building

by plugging components together. The approach of CBD focuses much on

developing reusability and reconfigurability at architecture level rather than

individual software modules (Chirn and McFarlane, 2000). Physical objects of a

manufacturing plant can be categorized into either a resource, performing the

manufacturing operations, or a product which accepts manufacturing treatment

(Chirn and McFarlane, 2000).

The resource component or resource holon is a self-contained system component

which can perform operations on works in progress (WIP), such as fabrication,

assembly, transportation and testing. Therefore, a resource holon contains these

two main parts: a software part in the computing environment for control and

decision making, and a physical part in the physical plant for actual fabricating

(Chirn and McFarlane, 2000).

The product component or product holon also contains a physical part and a

control part. The physical part may include raw material, parts and a pallet or

fixture. A control part may contain routing control, process control, decision

making and production information (Chirn and McFarlane, 2000).

HCBA is inherently distributed in terms of system structure and design

philosophy.

2.2.6 Distributed control architecture

Because of the many difficulties faced with centralized control, one widely used

solution to meet this problem has been distribution of decisional capabilities to

decisional entities. It is important to note that sometimes “distributed” is used to

refer to distribution of resources and not the control.

Stellenbosch University http://scholar.sun.ac.za

13

In the early 1970s, the first kind of control distribution was fully hierarchical and

based on the Computer Integrated Manufacturing (CIM) paradigm (Trentesaux,

2009). However, since the 1990s, distribution of control decisions has been

considered and has been characterized by the need for local reactivity

(Trentesaux, 2009). In this arrangement, negotiation and cooperation between

distributed resources is the main process of interaction apart from coordination

(Marik and Lazanky, 2007).

There are challenges that come with designing distributed control architecture.

Trentesaux (2009) highlighted that the dynamic behaviour of loosely linked

autonomous decisional entities, as found in holonic and multi-agent systems,

makes it hard to predict the behavior of the entire system.

A purely distributed control cannot be found in industry (Meng et al, 2006).

Therefore, hierarchy will still be found in distributed contol. Bongaerts et al

(2000) state that hierarchy in distributed control gives certain advantages. The

three advantages cited are: firstly, a hierarchical centralised element, such as a

scheduler, optimises the performance of the overall system; secondly, the ability

to predict the behaviour of a distributed system particularly with respect to the

progress of individual orders and loading on resources; and finally the ease of

migration effort towards distributed (holonic) systems, as a means of support to a

gradual shift from hierarchical systems to distributed systems (Bongaerts et al,

2000).

2.3 Agent based control in manufacturing systems

After considering the control strategies currently used in industry, Meng et al

(2006) suggest that agent based control is the most natural way to implement

schedule and control for RAS (Reconfigurable Assembly System). Meng et al

(2006) further suggest that “Multi-agent systems are capable of changing the

traditional architecture of manufacturing systems and overcoming the short

comings of centralized and hierarchical architecture” (Meng et al, 2006).

However, Meng et al (2006) do not mention why agents are best suited for this

job. The following sections give a qualitative justification of why agent-oriented

approaches are well suited to engineering complex control systems. The following

sections also give a definition of an agent and explain how their properties can

solve the control problems in manufacturing.

2.3.1 Characteristics of agent based control

There exist a number of definitions for agents. For instance, Monostori et al

(2006) defines agents as a computational system that is situated in a dynamic

environment, and is capable of exhibiting autonomous and intelligent behaviour,

while Jennings and Bussman (2003) define an agent as follows: “An agent is an

encapsulated computer system that is situated in some environment and can act

flexibly and autonomously in that environment to meet its design objectives”.

However, Bellifemine et al (2007), note that all definitions agree that an agent is

essentially a special software component that has autonomy that provides an

Stellenbosch University http://scholar.sun.ac.za

14

interoperable interface to an arbitrary system and/or behaves like a human agent

working for some clients in pursuit of its own agenda.

Key words which elaborate agents are: autonomy, social, reactive and proactive.

Bellifemine et al (2007) explain that agents are:

i. Autonomous because they operate without the direct intervention of

humans or others and have control over their actions and internal states.

ii. Social because they cooperate with humans or other agents in order to

achieve their tasks.

iii. Reactive because they perceive their environment and respond in a timely

fashion to changes that occur in the environment.

iv. Proactive because they do not simply act in response to their environment,

but they are able to exhibit goal-directed behaviour by taking initiative.

 Monostori et al (2006) further highlight that four basic properties of an agent

which are suitable to manufacturing systems control are:

 They are able to make observations about their environment.

 They have their own knowledge and beliefs about their environment.

 They have preferences regarding the state of the environment,

 They initiate and execute actions to change the environment

In manufacturing systems, complexity of a system often takes the form of a

hierarchy. A major component of using agent based computing to solve such a

problem is the decomposition of the problem into various autonomous entities

(Jennings and Bussman, 2003). By decomposing the problem, a complex system

is simplified in two ways and these are: firstly, it gives a natural representation for

complex systems that are invariably distributed, which is typical of reconfigurable

assembly systems; secondly, due to devolution of actions to autonomous entities,

the actions performed by these entities (or agents) can be said to be responsive to

the agents actual state of affairs, rather than some external entities perception of

this state (Jennings, 2000).

Monostori et al (2006) state that, agents are individual problem-solvers with some

capabilities of sensing and acting upon their environment, for deciding their own

course of action, as well as for communicating with other agents. Depending on

the actual problem and available technology at hand, agents can apply various

faculties of problem solving, including searching, reasoning, planning, and

learning (Monostori et al, 2006).

2.3.2 Agents versus objects

Although there are certain similarities between object-oriented and agent-oriented

approaches to software engineering of complex systems, for instance both adhere

to the principle of information hiding and recognize the importance of interactions

(Jennings and Bussman, 2003), there are however fundamental differences

between them and hence one approach is favoured above the other. The following

paragraph outlines some of the differences.

Stellenbosch University http://scholar.sun.ac.za

15

Jennings and Bussman (2003), notes four differences between agents and objects.

 Firstly, objects are generally passive in nature, which means they need to

be sent a message before they are active.

 Secondly, that although objects encapsulate state and behaviour

realization, they do not encapsulate behaviour activation [action choice].

Although any object can invoke any publicly accessible method on any

other object and the corresponding actions are performed, but objects do

not initiate action by their own accord.

 Thirdly, object orientation fails to provide an adequate set of concepts

and mechanisms for modeling complex systems. Recognition of these

facts led to the development of more powerful abstraction mechanisms

such as design patterns, application frameworks, and component-ware.

 Finally, object-oriented approaches provide only minimal support for

specifying and managing organizational relationships (relationships are

defined by static inheritance and hierarchies).

Agents also address autonomy and complexity. They are adaptive to changes and

disruptions, exhibit intelligence and are distributed in nature (Monostori et al,

2006). They also may have an environment that includes other agents. The

community of interacting agents as a whole operates as a multi-agent system

(Monostori et al, 2006).

Bruccoleri (2007) mentions object-oriented modeling techniques as being widely

proposed in scientific literature for the conceptual modeling phase of the control

software development, because of their well-recognized features related to

software modularity, rapid prototyping and re-use. The author, however, raises

two concerns:

 The gap which exists between the object oriented conceptual model or design

of the control software and its actual implementation. Unlike PC-based control

software, PLC based control systems, for instance, do not have object-oriented

features.

 Unconditional need of a simulation environment to test the effective operation

of the new or the reconfigured control software to avoid unwanted effects

(Bruccoleri, 2007).

On the other hand, Bellifimine et al (2007) note that multi-agent applications are

in general quite complex. Every agent is composed of a single execution thread

and all its tasks are modeled and can be implemented as behaviour objects (Meng

et al, 2006). Furthermore, the patterns and outcomes of interactions are inherently

unpredictable and therefore predicting the behaviour of the overall system on its

constituent components is extremely difficult (Jennings, 2000).

2.3.3 Agent behaviour and interactions in JADE

A number of agent platforms exist which provide developers with support for

programming and running agent applications. Examples of such platforms

Stellenbosch University http://scholar.sun.ac.za

16

includes: JADE, FIPA-OS, AGLOBE, MADkit or JACK (Vrba, 2012). Padgham

and Winikoff (2004) classify agent platforms into, firstly, those that are optimized

for agent reasoning and the development of agent plans, goals, etc. and, secondly,

agent platforms that focuses (optimized) on inter-agent communication and

provides means for the transfer of messages between agents. Examples of the

former include PRS, JACK, JADEX, etc., while JADE and Zeus are examples of

the latter. Grasshopper and Aglets are examples of agent platforms that focus on

agent mobility.

The developer who wants to implement an agent-specific task should define one

or more behaviours (Meng et al, 2006). In JADE, a behaviour represents a task

that an agent can carry out and is implemented as an object of a class that extends

jade.core.behaviour.Behaviour. In order to make an agent execute the task

implemented by a behaviour object, the object must be added to the agent by

means of the addBehaviour() method of the agent class (Bellifemine et al, 2007).

For the JADE platform, three basic types of behaviours exist namely: ‘One-Shot’,

‘Cyclic’, and ‘Generic’ behaviour. Bellifemine et al (2007) explain that: ‘One-

Shot’ behaviours are designed to complete in one execution phase and their

action() method is executed only once; ‘Cyclic’ behaviours are designed to never

complete and their action() method executes the same operations each time they

are called; ‘Generic’ behaviours embed a status trigger, execute different

operations depending on the status value, and complete when a given condition is

met.

Furthermore, Bellifemine et al (2007) state that JADE also provides the possibility

of composing behaviours together to create complex behaviours. The complex

behaviours found in JADE are ParallelBehaviour, SequentialBehaviour and

FSMBehaviours (Finite State Machine Behaviour).

Agents need to interact in order to achieve their intended objective. During their

interactions, coordination protocols are used in order to reach common decisions.

The Foundation for Intelligent Physical Agents (FIPA), an IEEE computer society

standards organisation that promotes agent-based technology and interoperability

of its standards with other technologies (FIPA, 2012), specifies standard

interaction protocols which can be used as standard templates to build agent

conversation. These protocols are: FIPA-Request, FIPA-query, FIPA-Request-

When, and FIPA-Contract-Net (Meng et al, 2006). The FIPA website gives more

details on the interaction protocols. The formulation of FIPA was inspired by the

need for interaction between agents and led to the development of standards for

agent development and communication.

2.3.4 Agent communication

Agents are fundamentally a form of distributed code processes and thus comply

with the classic notion of distributed computing model comprising of two parts:

components and connectors. Components are consumers, producers and mediators

of communication messages exchanged via connectors (Bellifemine et al, 2007).

Stellenbosch University http://scholar.sun.ac.za

17

The most expressive model of an agent and its knowledge about the surrounding

environment is the BDI model. Monostori et al (2006) state that the model

assumes the agent has both certain and uncertain knowledge (Belief represented

by B), regarding the state of its environment and also that states to be achieved are

expressed in terms of goals, while states preferred in the long-term are represented

by desires (D). Decisions concerning the future events have motivations and pre-

arrangements in the past; these are expressed by the so called intentions (I) that

represent the commitments of the agent made previously.

It is on the BDI model that the theoretical basis for agent communication

language (ACL) is based. ACL was developed by FIPA based on the speech act

theory (Monostori et al, 2006). Speech act theory views human natural language

as actions, such as requests, suggestions, commitments and replies. It uses the

term performative to identify the intended meaning of utterances, for instance

verbs like request, promise, tell, etc. The first ACL was the Knowledge Query

and Manipulate Language (KQML) that included many performatives, assertives

and directives which agents use for telling facts, asking queries, subscribing to

services and/or finding other agents (Monostori et al, 2006).

Effective communication between agents requires consensual knowledge.

Consensual means that the whole community of agents has a common

understanding both on the content and form of the expressed knowledge. This

requires an explicit specification of the conceptual structures of a given domain

called ontology. Ontologies can also facilitate machine processing, automated

reasoning, as well as the interoperability of different agents (Monostori et al,

2006).

FIPA, despite having its own “language” called FIPA Semantic Language (SL)

and three other subsets, does not prescribe a particular “language” to be used

along with the communicative acts specified in the standard. The three subsets of

FIPA SL (SL0, SL1 and SL2) differ in terms of which operators are supported. A

FIPA-SL content expression may be used as the content of an ACL message

(Bellifemine et al, 2007).

2.3.5 Directory facilitator

The directory facilitator (DF) is a specialized agent in the JADE platform which

provides a “yellow pages” service to other agents within the platform. Agents can

register (publish) services, deregister, modify and search for (discover) services in

the “yellow pages” at any time during their lifetime (Bellifemine et al, 2007).

In accordance with FIPA agent management specification, every FIPA-complaint

platform, like JADE, should host a default DF agent. Furthermore, Bellifemine et

al (2007) state that other DF agents can be deployed if needed, and together with

the default DF agent, can be federated to provide a single distributed yellow pages

catalogue.

Stellenbosch University http://scholar.sun.ac.za

18

Since the DF is an agent, it is possible to interact with any other agent by

exchanging ACL messages. JADE provides the jade.domain.DFService class with

which it is possible to publish and search for services using a variety of method

calls (Bellifemine et al, 2007). For instance, in order to publish services, agents

must provide the DF with the service type, service name, the languages and

ontologies needed to use the service and a collection of service-specific properties

in the form of key-value pairs, and the DFAgentDescription, ServiceDescription

and Property classes found in jade.domain.FIPAAgentManagement package

represent these abstractions (Bellifemine et al, 2007).

In order to search for a service, an agent must provide the DF with a template

description. The result of the search is a list of descriptions matching the provided

template. A description matches the template if all the fields specified in the

template are present in the description with the same values (Bellifemine et al,

2007).

2.3.6 Application of agents to control of manufacturing systems

There are a number of applications of agents in the control of manufacturing

systems. Few are applied in real industrial environments while the majority, are

proof-of-concept and trials established in laboratory conditions. For instance, shop

floor components including two assembly robots, automatic warehouse, and a

transport system are controlled by agents organized according to CoBASA

architecture (Candido and Barata, 2007).

 Brennan and Fletcher (2002) describe a distributed intelligent control system that

is inherently adaptable and dynamically reconfigurable based on object-oriented

and agent-oriented methods. Meng et al (2006) describe the development of

agents for reconfigurable assembly system (RAS) using JADE agents. Vrba et al

(2011) give a detailed analysis of research efforts towards realisation of an

industrially accepted agent based control architecture. They also show how

Rockwell Automation worked to integrate agents with PLC legacy control

architectures by devising an holonic agent architecture comprising a low-level

control, to process real-time data from sensors and actuators and a high-level

control embodied by the software agent. Bussman and Child (2007) used agent

technology to design a production system to meet rapidly changing operations in a

factory plant of DaimlerChrysler used for production of cylinder heads.

Almeida et al (2010) state that common areas for the application of MAS in

manufacturing operations include: when a real-time control of high-volume and

discrete manufacturing operations are needed; when monitoring and control of

physically highly distributed systems is needed; also when there is a necessity of

information sharing and collaborative decision making between local autonomous

units. Other areas of application are in transportation and material handling

systems, production management of frequently disrupted operations, coordination

of organisations with conflicting goals and frequently reconfigured environments

(Almeida et al, 2010). When agent based control is the solution, they bring

Stellenbosch University http://scholar.sun.ac.za

19

robustness, flexibility, reconfigurability, redeployability and interoperability

(Almeida et al, 2010).

However, there are challenges that agent based control systems face. Almeida et

al (2010) highlight the challenges as security of agent execution and

communication, complexity of the system, low level of scalability due to

limitation in computational processing capabilities, and human-machine

integration. Similarly, Wooldridge and Jennings (1999) highlight pitfalls in using

agents based solutions as: assuming that an agent application solution for one

testbed would solve all related problems, that agents can solve it all without use of

other technologies, such as object-oriented technology, forgetting that agents are

multithreaded and fail to plan for such things as synchronisation, mutual exclusion

for shared resources and deadlocks.

2.4 IEC 61499 standard in distributed control

2.4.1 Introduction

The IEC 61499 standard was proposed by the International Electrotechnical

Commission to design distributed control applications as well as the

corresponding execution environments (Khalgui et al, 2011). The standard defines

function blocks (FBs) as the main function encapsulation. In the IEC 61499

standard there is no global data and indirect data access is available. This implies

that a FB can be developed and tested independently from the control devices and

from the application they are used in (Lepuschitz et al, 2011). Lepuschitz et al

(2011) state that this greatly increases reusability and further eases reconfiguration

as the impact of changing or replacing a FB can directly be derived from the

elements it is connected to.

A function block is an event-triggered software component composed of an

interface and an implementation, such that the interface contains inputs and

outputs of both data and events, and interacts with the environment using the

same. Figure 2.5 shows a basic function block with the BOOL data type assigned

to data input and output.

Figure 2.5 Basic function block

Stellenbosch University http://scholar.sun.ac.za

20

Each function block contains an algorithm and an execution control chart (ECC).

By using both data and events, algorithms are executed when triggered by event

inputs, by reading from data inputs and producing new data outputs.

The IEC 61131-3 standard currently used in PLCs is a predecessor to IEC 61499

standard. There are some drawbacks in the IEC 61131-3 standard which

necessitated the introduction of the IEC 61499 standard. Rooker et al (2007) list

some of the major drawbacks found in IEC 61131-3 standard which have been

addressed in IEC 61499 standard as: the non-deterministic switching points in

time (due to the cyclic execution policy), lack of fine granularity (i.e.

reconfiguration at task level), jitter effect (i.e. task reconfiguration affecting other

tasks) and the possibility of inconsistent states (which may lead to deadlocks).

Lepuschitz et al (2011) also state that at the time of developing the IEC 61499

standard, the focus was much on HMS research; hence adaptability and

reconfigurability were the main focus. However, dynamic reconfiguration is

beyond the scope of this standard. For dynamic and real-time constrained

reconfiguration, this interface is not sufficient, and an improved infrastructure is

needed (Lepuschitz et al., 2011).

2.4.2 Execution environments for IEC 61499 function blocks

There are a number of execution environments for IEC 61499 function blocks.

Hall et al (2007) list execution environments as: the function block run-time

(FBRT) developed by James H. Christensen; the distributed controller operating

system (DCOS), a fully functional distributed real-time operating system,

developed by the University of Calgary; and Archimedes execution environment.

The first implemented IEC 61499 execution environment is the FBRT (Holobloc,

2012). It is implemented in Java and the IEC 61499 elements are presented as

Java classes. DCOS provides services for integrated network management and

location of transparent distributed services, while Archimedes’ execution

environment, which has two implementations: one designed for Linux and coded

in C++, and the other implemented in Java targeting an enhanced Java virtual

machine (Hall et al, 2007).

Additionally, there are a number of toolsets for function block design. The

function block development kit (FBDK) is the most often used as it is the oldest

and free for educational use (Black and Vyatkin, 2009). Black and Vyatkin (2009)

also notes that commercial tool support is beginning to emerge and the example

sited is the new version of ISaGRAF industrial design software which supports

IEC 61499 function blocks.

For the FBs to become executable on a variety of hardware, hardware vendors

must provide support for the standard. Currently, platforms which execute FBs are

those which execute standard Java byte code. Therefore, FBRT can be used on

such platforms. Examples of hardware where FBRT can run include desktop

computers and PCs (Black and Vyatkin, 2009).

Stellenbosch University http://scholar.sun.ac.za

21

2.4.3 Deployment of IEC 61499 standard

Hussain and Georg (2007) in their work identify three factors that have to be

considered before deploying the IEC 61499 standard. These are:

 Resource constraints: a distributed real-time application can be constrained

by memory, utilization factors and network usage.

 Allocation constraints: the system architecture can impose the following

constraints: residence; restricting deployment of software components on a

subset of available hardware; co-residence i.e. forcing that certain

components are to be placed on the same processing node; and exclusion,

which is the opposite of co-residence and inhibits co-existence of software

components.

 Time constraints: this is the most important constraint and is usually stated

in terms of deadlines in the case of periodic tasks, or in terms of end-to-

end response times for event-driven tasks.

For its implementation in industry, the IEC 61499 standard will have to overcome

a number of challenges. Hall et al (2007) identify scalability, maintainability,

predictability and extensability as some of the challenges. They argue that the

focus of most reasearch has been on developing basic control programs with small

number of devices, while a typical industrial application has a higher number of

devices to be controlled. While the research community’s primary focus is on how

to develop and validate the initial control, Hall et al (2007) argue that maintaining

the control system over the life of the system is a much larger challenge.

Similarly, Hall et al (2007) highlight diagnostics for both the control devices and

user’s process as another corncern. “ The challenge for IEC 61499 function blocks

is the need to display both the execution sequence and data flow, since unlike

scanned systems each FB’s execution is controlled by event system” (Hall et al,

2007).

While IEC 61499 function blocks may enable faster typical response time over

traditional scan-based IEC 61131-3 systems, Hall et al (2007) state that to predict

the worst case response time may be a difficult task. Similarly, the need to extend

an already existing control automation system also requires that the new process

or control engineer understand the programs before modifying them. Therefore,

“much effort is needed in the development of tools for debugging, operation, and

maitenance of these [IEC 61499] systems” (Hall et al, 2007).

2.5 Evaluation criteria for control strategies

The core of the RMS paradigm is an approach to reconfiguration based on system

design, combined with the simultaneous design of open-architecture

reconfigurable controllers, having reconfigurable modular machine modules

designed by synthesis of motion modules (Koren et al, 1999). Therefore, the

ultimate goal of the RMS is the utilization of a system approach in the design of

the manufacturing process that allows simultaneous reconfiguration of the entire

system, machine hardware and control software (Koren and Shiptalni, 2010;

Koren et al, 1999). Reconfiguration in structure, hardware and software are

therefore some of the key areas for RMS.

Stellenbosch University http://scholar.sun.ac.za

22

Substantial research has been conducted in RMSs, for instance reconfiguration at

structural level has been investigated by Koren and Shiptalni (2010). They looked

at a number of possible reconfigurations for a given RMS. In hardware, Bi et al

(2008) identified RM as the hardware systems at machine or device level.

Furthermore, machine modules in RMS should have defined interfaces in:

mechanical (e.g connectors, fasterners), power (hydraulics, pneumatics,

electricity) and informational or control (control network) (Koren and Shiptalni,

2010; Bi et al, 2008; Koren et al, 1999). Additionally, technologies in hardware

and software have been identified as reconfiguration enablers both at structural

and hardware levels. In hardware, modular machine tools aiming at giving the

customer more machine options, while in software, modular and open-architecture

controls that aim at allowing reconfiguration of the controller (Koren et al, 1999).

For modularity to be supported in software, the control system must be based on

the principles of an open architecture. IEEE defines open architecture as: “an

open system providing capabilities that enable properly implemented applications

to run on a wide variety of platforms from multiple vendors, inter-operate with

other system applications, and present a consistent style of interaction with the

user” (Pritschochw et al, 2001; Pritschow et al, 1993). Therefore, the overall

emphasis in software is to enhance reconfiguration.

In this research therefore, evaluation of the control stategies at the HLC layer is

based on establishing the properties of each control strategy to enhance the six

core charactersistics of RMS. The six core characteristics are: customisation

(flexibility limited to parts), integrability (interfaces for rapid integration),

convertibility (design for functionality changes), modularity (components are

modular), diagonisability (design for easy diagnostics) and scalability (design for

capacity changes.

2.6 Conclusion

Agent based control has dominated research in the development of reconfigurable

manufacturing systems, including areas such as production planning, resource

allocation, distributed material-routing control etc. Other control strategies, such

as the IEC 61499 standard, can still be applied depending on a given context, but

the agent based approach to control of manufacturing systems appears to be more

advantageous. Advantages include the decomposition of a complex control

problem into small distributed autonomous entities capable of making their own

decisions, while collaborating with others to meet certain goals. Agent based

control has been used predominantly as a high-level control (HLC) layer, while

IEC 61499 function blocks have been used as low-level control (LLC) layer.

Stellenbosch University http://scholar.sun.ac.za

23

3. CASE STUDY

The assembly system considered in the research work is a welding assembly cell.

The concept was first developed by Sequeira (2008) for fixture-based

reconfigurable spot welding. This section looks at the welding assembly system

with its subsystems and particular attention is given to the design of a modular

Cartesian robot. Section 3.1 describes the subsystems that make up the assembly

cell and the part family considered for research, while Section 3.2 details the

mechanical design of the modular Cartesian robot. Except for the cell controller

and Cartesian robot, the assembly cell was developed by other researchers

(Kruger, 2013; Le Roux, 2013). The development of the cell controller and the

controller for the Cartesian robot are described in Chapters 5 and 4, respectively.

3.1 Assembly system overview

The welding assembly cell constructed at Stellenbosch University consists of six

workstations i.e.: a pallet magazine, a Bosch Rexroth TS2 Plus conveyor, a

feeder, a welder, an inspection station, and a removal station. Each subsystem

takes a specific role in order to produce a circuit breaker and is organized around

the conveyor as shown in Figure 3.1 and Figure 3.2.

Figure 3.1 Weld assembly cell overview

The conveyor layout consists of a central round robin main loop with modular in-

feed and out-feed conveyor units. The in-feed and out-feed from the conveyor

units form outlets to subsystems. The outlets are used to convey a pallet with a

fixture to the subsystem used in the production of the circuit breakers.

Furthermore, each workstation is assigned a number which the conveyor uses to

identify the station. These station numbers are used during communication when

the product agent in the cell controller carries out its tasks. The tasks carried out

Stellenbosch University http://scholar.sun.ac.za

24

by the 6 degrees of freedom (DOF) robot are dual: it is used as the feeder station

and is also used as the removal station.

Welder

Station

Feeder/

Removal

station

Pallet

with

fixture

1

2

3

4 5

Inspection

station

Pallet

magazine

station

Figure 3.2 Welding assembly cell layout

Figure 3.2 shows the layout of the assembly cell with workstations for each

subsystem around the conveyor. The pallet with a fixture, when offloaded from

the pallet magazine, moves as indicated by the arrows in the figure to complete a

production cycle. The following sections gives details of what happens at each

station and control related issues.

3.1.1 Conveyor subsystem

The role of the conveyor is to take a pallet with a fixture to the workstations when

requested. The request can come from the cell controller as discussed in Chapter 5

or direct from the operator. In order to manage traffic and diagnose errors, the

conveyor has an RFID system with a number of sensors connected to an AS-i

network using a PROFIBUS cable for communication.

Stellenbosch University http://scholar.sun.ac.za

25

By using the in-feed and out-feed conveyor units, shown in Figure 3.2, the

conveyor can transport a pallet with a fixture to every station when commanded.

Furthermore, the dimensions of the pallets used for different products are the

same; therefore, no reconfiguration on the conveyor is needed when a new

product is launched. However, when the workstations are changed around the

conveyor, the cell controller has to be reconfigured accordingly to ensure

consistency in messages and understanding between cell controller and the

conveyor.

Messages sent between the conveyor and the cell controller has a pattern for the

two systems to understand each other. Appendix D.2 gives the message format

used between the conveyor and the cell controller.

3.1.2 Pallet magazine station

The pallet magazine station stores pallets, each with a fixture, needed for

production. It has three magazines to store the pallets for different products. In

order to offload or load a pallet, a command can be issued by the cell controller

and the pallet is offloaded and loaded accordingly.

The pallet magazine controller is linked to the cell controller through the TCP/IP

connection. Additionally, the pallet magazine and the conveyor exchange

messages in order to synchronize the offload and loading of the pallet. The

messages exchanged affect the cell controller control program and are addressed

in Chapter 5.

3.1.3 Feeder station

The pallet with a fixture, unloaded from the pallet magazine, is placed on the

conveyor and transported to the feeder station. At the feeder station, which

comprises a 6 DOF robot, a singulation unit and part magazine, the circuit breaker

components are placed on the fixture. For the robot to place parts on the fixture, it

needs the pick-up coordinates for each part, as well as the coordinates of where to

place the part on the fixture. Part coordinates are given by the singulation unit,

while fixture coordinates are given by the cell controller. The singulation unit uses

a vision system to detect a part and the coordinates. A typical command from the

cell controller would request for a part and give coordinates of where to place the

part on a fixture.

3.1.4 Inspection station

The inspection station plays two roles during the production cycle. Firstly, the

fixture is inspected for the presence of parts and, secondly, to check for defects

and proper welding of the parts. In both cases, the inspection station informs the

cell controller of the test results, thus allowing the cell controller to decide on the

appropriate action. Through the same messages used to inform the cell controller,

the numbers of finished products are counted. The inspection station uses a vision

system to detect parts.

Stellenbosch University http://scholar.sun.ac.za

26

3.1.5 Removal station

The role of the removal station is to remove welded parts from the fixture.

Removing a welded part is done by the 6 DOF robot (Figure 3.2). These welded

parts can be removed for either rework or for packaging as a finished product. The

cell controller is responsible for instructing the 6 DOF robot to remove the

product and, after successfully removing the product, the robot in turn informs the

cell controller to take the pallet with a fixture for either re-use in the production or

to storage in the pallet magazine.

3.1.6 Welding station

At the welder station, the components are simulated to be welded together on five

points as shown in Figure 3.3. The work envelope for the weld station is 480 x

380 x 280 mm. Products to be welded at this station vary considerably, but fall

within the work envelope. Therefore, parameters such as the clamping force, weld

current and weld positions have to be given each time there is a product change.

This requirement affects how the control program is implemented and is tackled

in Chapter 4.

3.1.7 Part family

There are a number of circuit breakers that can be produced at the weld station.

One of the product families considered here is the Q-frame. The Q-frames differ

in the sizes of their pigtails, among other things. For instance, the sizes of the two

pigtails, shown in Figure 3.3, range from 10 mm to 60 mm long. Their diameters

range between 2.5 mm and 4 mm, while the sizes of the moving contact and arc

runner are 27 x 8 x 12 mm and 42.6 x 9.8 x 18.4 mm respectively.

These part variations have to be accommodated at each workstation. Therefore, at

the design of the weld assembly cell, each station takes care of the variations.

Figure 3.3 Components of a circuit breaker with welded points

Stellenbosch University http://scholar.sun.ac.za

27

3.2 Design of a modular Cartesian robot

The modular Cartesian robot was designed on the principles of reconfigurable

machines (RMs), that is, modular structure and software components. The

challenges to developing RMs, as cited by Bi et al (2008), are: developing one

that takes into consideration the requirements of changes and uncertainties for a

specific part family, and to have a control program that is not dedicated to a

specific product. Figure 3.4 shows a rear view the modular Cartesian robot

developed in this research.

Figure 3.4 Rear view of modular Cartesian robot

Stellenbosch University http://scholar.sun.ac.za

28

There are many robots in industry that can be used for spot welding, for instance

articulated robots, spherical robots, SCARA robots, cylindrical robots and

Cartesian robots, classified according to their geometry. In this research, the

choice of the weld robot was dependent on the following things: work envelope,

geometry, use of different hardware and software vendor technologies and most

importantly, facilitation of the use of IEC 61499 function blocks and agent based

control in the control of the robot. Since the weld robot’s required work envelope

is rectangular and funding for a set of Festo linear drives was available, a

Cartesian layout was chosen for the weld robot. Further, the inherent modularity

when using Festo linear drives gives the potential of reconfiguration, that is not

present with other robot geometries, and provides the opportunity to divide the

controller into modules too.

In order to design the hardware and control program for the modular Cartesian

robot, a functional analysis was done as shown in Appendix C.2. The axes of the

modular Cartesian robot were designed using EGC belt drive axes from Festo

(FESTO, 2012a). Details of each axis design are explained in the following

sections.

The modular Cartesian robot has three degrees of freedom, which were sufficient

for this research. However, a fourth axis (rotation about the vertical axis) can be

added later, if required. Further, only point-to-point movement of the weld robot

was required. Closed-loop control of each axis of the robot is provided by the

servomotors’ drives. By using Festo configuration tool (FCT) provided by Festo,

parameters can be adjusted to meet the requirements for a given control. The

“profile position control” option in FCT was used. To determine when a

commanded motion has been completed, the motor drives were set up to give a

digital signal when the “remaining distance” parameter was lower than a

threshold value. Coordination and movement of axes is explained in Chapter 4.

Repetition accuracy of the drives is ± 0.08 mm (FESTO, 2012) and was sufficient

for reconfiguration investigation purposes.

3.2.1 X-axis hardware selection and configuration

The X axis is made of two EGC-80-500-TB-KF-OH-GV belt slides arranged in

parallel whose size and length are 80 mm and 500 mm respectively. The two EGC

belt slides are then coupled by a connecting shaft to synchronize the motion of the

two slides (consider Figure 3.5).

Selection of the EGC belt slides was motivated by the cost considerations, loading

forces, bending moments, work envelope, accuracy, repeatability and

serviceability of the slide. The axis is designed to carry the Y and Z axes plus the

weld head. It is mechanically linked to the Y axis by two metal pads screwed on

the two parallel oriented X axis slides (consider Figure 3.4). Mechanical

interfaces give the structure modularity needed during reconfiguration and it is

also a crucial requirement for RMS (Koren and Shiptalni, 2010).

Stellenbosch University http://scholar.sun.ac.za

29

Figure 3.5 Mechanical structure of modular Cartesian robot

The X axis, with two parallel EGC slides coupled by a shaft, is driven by a

CMMP-AS motor controller connected to an EMMS-AS-100-S-RM motor. The

controller is powered by a 24V DC power supply and wired as shown in

Appendix B.2. The motor controller has a number of control interface options,

such as: digital I/O, Cable Area Network open protocol (CANOpen), DriveBus,

RS-485, synchronization and analogue input. Not all the control interfaces have

been used and Chapter 4 gives the control selection criteria for the control

interface used. Connection to the mains supply is as shown in Appendix B.1.

When the robot is not powered, the slides move freely, since the X axis motor has

no brakes but are only engaged during operation.

To allow homing before operation or after reconfiguration, a proximity sensor is

installed on one slide of the axis. The sensor is normally open. However, when

closed, it sends a signal to the motor controller thus indicating a successfully

homing.

3.2.2 Y-axis hardware selection and configuration

The Y axis is made from an EGC-80-400-TB-KF-OH-GK belt slide and an EGC-

80-400-FA-GK guide axis. Their sizes and lengths are 80 mm and 400 mm

respectively. Since the Y axis carries the Z axis and the weld head, one slide could

not balance the mass of the weld head and inertial forces during motion and the Z

Stellenbosch University http://scholar.sun.ac.za

30

axis mass (see Figure 3.5). Therefore, EGC-80-400-FA-GK is used for balancing

the structure and the Y axis.

With the structure connected as aforementioned, the EMMS-AS-70-M-RM three

phase motor is then used to drive the Y-axis. Homing is done using a normally

open proximity sensor during, after and before operation of the axis.

3.2.3 Z-axis hardware selection and configuration

The Z axis is an EGC-70-300-TB-KF-OH-GV belt slide with size and length

70 mm and 300 mm respectively. Unlike the other two axes, the motor for the Z

axis has brakes to hold the weld head in position. The CMMP-AS is the controller

used to control the controller, while an EMMS-AS-70-S-RMB motor with 11 kW

braking power drives the axis.

Stellenbosch University http://scholar.sun.ac.za

31

4. RECONFIGURABLE CONTROL OF MODULAR CARTESIAN

ROBOT

This section expounds on the control strategies applied on the modular Cartesian

robot. The control strategies include the use of agents and IEC 61499 function

blocks. They are applied on the modular Cartesian weld robot at high-level

control (HLC) as alternatives to each other, while a Visual C# program is used as

a low level control (LLC) layer. The CANOpen protocol DS 402 is also used.

The two control strategies that were compared have two different architectural

philosophies. The IEC 61499 standard is an event-driven architecture, while each

agent runs in its own thread, thus agents require much computing resources. This

translates into a set of hardware requirements. For instance, it is not possible to

run the IEC 61499 standard on a Programmable Logic Controller (PLC), which is

mostly used in industry, because an event-driven PLC is not yet on the market.

Similarly, to run agents on a PLC is also not possible. Therefore, control of the

robot involved the use of a Personal Computer (PC) as a standard platform for the

comparison of the control strategies as they can all run on this platform.

In implementing the control for the Cartesian robot, a layered architecture was

utilized (Xuemei, 2009). Two layers, namely low-level control (LLC) and high-

level control (HLC), were used to allow the separation of concerns. The LLC was

used for real-time data acquisition and the HLC for negotiation and coordination.

By separating the layers, the influence of each layer is distinguished and makes

trouble shooting easier since the sphere of influence is clearly defined.

Furthermore, the approach makes the software modular and easier to reconfigure

if there are any changes to be made to any of the control layers. The two layers in

the modular Cartesian robot are linked by a port number as assigned in Appendix

D.1

4.1 Low-level control strategy for modular Cartesian robot

4.1.1 Hardware and software considerations

The LLC is a Visual C# program with a TCP/IP server accepting connections

from the HLC, parsing messages and using the Eagle data acquisition unit as an

interface to the CMMP-AS motor controllers. The Visual C# program further

reads digital inputs from the CMMP-AS motor controllers and also writes digital

outputs to the motor controllers via an Eagle data acquisition unit.

There are various data acquisition units which can be used for this purpose. In this

set up, however, the choice of the Eagle data acquisition unit was motivated by

cost considerations and the use of digital input and output to activate the CMMP-

AS drives. The unit can be easily connected or disconnected to a computer with

universal serial bus port.

The Eagle data acquisition unit has eight digital inputs and eight digital outputs

and is then connected to the computer using the Universal Serial Bus (USB-2)

port. In order to communicate with the Eagle data acquisition unit, the Visual C#

Stellenbosch University http://scholar.sun.ac.za

32

program references a dynamic link library DLL. The DLL is supplied by the

suppliers of Eagle data acquisition unit. An Application Programming Interface

(API) is then instantiated in the Visual C# program making available all the

functions available to the LLC program. The functions that read from or write to

the data acquisition unit, requires the serial number of the unit and a port. To

address a port, hexadecimal format is used. For instance to write to the port, the

snippet of the code would be:

static EDREApi eagleCard =new EDREApi ();

static int wPort = 0; //

static int lembaDAQCard = 0;

int value = 0;

int val = 0x71;// 0111 0001

value = value | val;

eagleCard.SerialNumber = 1000009424;

lembaDAQCard = eagleCard.DIOWrite(wPort, value);

4.1.2 Coordination of axes in the LLC layer

Coordination of the three axes of the modular Cartesian robot is achieved in the

LLC layer using Visual C# programme. In order for the LLC layer to effectively

achieve coordination of the axes, the HLC layer must pass messages in a

consistent manner to the LLC layer. Extensible markup language (XML) is used

to pass messages to LLC layer because of the consistent manner in which

messages are presented. Additionally, the LLC layer also utilizes some

capabilities of servo drives in order to coordinate motion of the robot using digital

input and output control interface.

In the servo drives, weld coordinates of the product are saved in the position set

table of each axis. The weld coordinates can be changed when a new product is

introduced by using a Festo configuration tool (FCT). The FCT is software

supplied by Festo used to configure drives using RS 232 cable.

The coordinates once saved to the drives can be used for welding when the digital

input is activated. Activation of the path is achieved by a rising edge of digital

input command from HLC layer. Once in operation, the weld movement uses

point-to-point motion.

4.1.3 Movement of the X axis

The C# programme activates the digital input to the servo drive after receiving the

command from the HLC layer. At the rising edge of the digital input from the

Eagle relay board, the command responsible for enabling the reading from the

position set table using is activated.

The servo drive traces the path in the position set table and for each position

reached, gives a digital output to the C# programme. The C# programme in turn

sends a message to the Y-axis. Similarly, when the Y axis completes movement,

sends signal back to the X axis.

Stellenbosch University http://scholar.sun.ac.za

33

4.1.4 Movement of Y, Z axes and the weld head

When the Y axis moves to a position as assigned in the position set table, it delays

for 3 s at each position. The time delay can be changed by the programmer. This

delay, however, allows the movement of Z axis carrying the weld head to a weld

point to do their task.

In a similar manner, Z axis sends a signal to the weld head in order to weld. The

weld action demonstrated by in the modular Cartesian robot use compressed air.

When a signal is received from the Z axis, the 5/2 valve is actuated to open the

valve. The whole weld cycle of the weld robot is carried out in twenty seconds.

4.2 CANOpen configuration

The CANOpen protocol is used with both the agent and the IEC 61499 standard,

and was chosen to enable the passing of values to the motor controllers during

operation. In this approach, it is assumed that the subsystem should not store the

product information, but will receive details from the cell controller. Product

information will be in the form of coordinates of weld points, speed of operation,

etc.

To support the CANOpen protocol on Festo motor controllers, the following items

were incorporated from Beckhoff: FC5101 CANOpen master PC interface card

with 32kbytes of NOVRAM, ZB5100 CAN 4-core cable fixed laying

(2 x 2x 0.25 mm
2
), four 9-pin D-sub connectors integrated with 120 Ω termination

resistors and TwinCAT I/O software. The FC5101 PCI card with 32kbytes of

NOVRAM from Beckhoff is used as a master while the CMMP-AS motor

controllers from Festo are the slaves.

Each motor controller was set to the CANOpen DS 402 protocol using Festo

Configuration Tool (FCT). DS 402 is the only CANOpen protocol available in

CMMP-AS motor controllers. Using FCT, each axis is assigned a node number

and baud rate. In this application, a baud rate of 500kBits/s is used and is

sufficient for the application data requirements. The node numbers assigned to X,

Y and Z axis are: one, two, and three respectively. Since the X axis carries the

other two axes, it is assigned node number one so that it has the priority of

receiving the command on the CAN bus. However, for the operation to take place,

the product information, as operation parameters, must be passed to the robot

using process data objects.

4.2.1 Process Data Objects (PDOs) assignment

The CANOpen protocol provides a simple and standardized possibility to access

the parameters of the motor controller. In order to achieve this, a unique number

(index and sub-index) is assigned to each parameter. As a rule, the motor

controller is parameterized and also controlled via Service Data Objects (SDO).

For the fast exchange of process data (e.g. target position), it is possible to use

Process Data Objects (PDOs). Each message sent on the CAN bus will then have

to contain a type of address which is used to determine the bus participant for

Stellenbosch University http://scholar.sun.ac.za

34

which the message is meant. For this reason, CANOpen protocol is suitable for

the fast exchange of data during welding operations.

Festo CMMP-AS motor controllers have four transmit PDOs (TxPDOs) and four

receive PDOs (RxPDOs) (FESTO, 2012b). The difference between the two types

of PDOs is: TxPDO sends PDO when an event occurs, while RxPDO evaluates

PDOs when a certain event occurs from the controller and host side respectively.

Each PDO has a CANOpen bus identifier (COBId), an index and sub-index to

which they must be mapped. FESTO (2012b) gives details of the two types of

PDOs used in the modular Cartesian robot design.

The default COBId numbers that come with motor controllers are identical

(FESTO, 2012b). However, if the three motor controllers are on the same CAN

bus; conflicts in communication may arise rendering communication impossible.

To avoid this situation, the first two COBIds for each axis were assigned in

hexadecimal format as follows:

 X axis has 181h and 281h for the first two TxPDOs while the first two

RxPDOs have 201h and 301h.

 Y axis has 182h and 282h for the first TxPDOs while the first two

RxPDOs have 202h and 302h.

 Z axis has 183h and 283h for the first two TxPDOs while the first two

RxPDOs were assigned 203h and 303h.

To deactivate the default COBIds for Y and Z axes, the 31
st
 bit was deleted and

then new COBIds assigned. For instance, to delete a default 181h COBId and

replace it with 183h, use C0000181 and to activate, write a new COBId as

40000183 (all in hexadecimal format). The other method that could have been

used is the use of electronic data sheet (EDS) files supplied by Festo. This,

however, was not the best route because not all PDOs are used in the project.

Hence the need to select the PDOs needed for the project.

4.2.2 PDO selection

The control program for the modular Cartesian robot, among other requirements,

needs to pass data objects from the robot controller to the motor controller during

operation. This passing of data objects is done through selected process data

objects (PDOs) as needed in the program, and depending on an application, the

PDOs can be selected from the Festo manual.

In order to select the appropriate PDOs, the guide was based on the size of the

PDO, whether that PDO is a read or write type and whether it is defined and

supported by Festo. PDOs which were selected for the application requirements

were: mode of operation, mode of operation display, target velocity, target

position, actual position, actual velocity, control word and status word.

In CANOpen, the entire regulation of the motor controller is achieved through

two objects: the host can regulate the motor controller through a control word,

Stellenbosch University http://scholar.sun.ac.za

35

while the status of the motor controller is read back in the status word. Similarly,

for the robot to operate, it has to be “instructed” in what mode to operate. The

Festo manual provides a mode of operation (with object number 6060h) to

command the controller to a given motion profile and these profiles include

homing, position profile, etc. When the command is successfully sent, the

feedback is given by modes of operation display (6061h). The sizes of the two

PDOs can are given in FESTO (2012b).

After homing the axes, each weld coordinate in the form (X, Y, Z), must be

supplied by the robot controller to all the three motor controllers on the bus in

order to carry out an operation. Target position (607Ah) and actual position are the

PDOs used to give the coordinate positions and the position arrived at

respectively. The speed with which the axis must run is provided by target speed,

while the parameter, actual speed, gives feedback to the controller.

4.2.3 TwinCAT I/O software configuration

TwinCAT I/O is a software environment from Beckhoff Company. It was used to

set up variables that were then linked to CANOpen PDOs through mapping. The

mapped PDOs can then be accessed in the HLC software. Another benefit of

using TwinCAT I/O software is that it is a PC based software environment,

therefore, it suits the requirement for the underlying framework in the evaluation

of control strategies. Furthermore, the two vendors (Festo and Beckhoff) can be

integrated through CANOpen protocol support in TwinCAT I/O.

Accessing and hence communication to the variables from the HLC was made

possible by using TcJavaToAds.jar file and the DLL (adsToJava.dll) supplied by

Beckhoff. The TcJavaToAds.jar file has a set of predefined methods to interface

with the variables created in TwinCAT I/O. Accessing the jar file in Eclipse IDE

was done by adding the TcJavaToAds.jar library to Eclipse IDE and importing

classes from this file into the program. With the CANOpen as the LLC layer, the

IEC 61499 function blocks and agents were built on top of this layer.

4.3 IEC 61499 control approach

In this approach, function blocks are used as a high-level control (HLC) with the

Visual C# program as low-level control (LLC). Each motor controller for each

axis as explained in Section 3.2 is modeled in a frame-device of function block

and the control architecture modeled within resources. Hence, three frame-devices

were used to control the three axes at HLC. The design tool used in the

development of function blocks (FBs) is the function block development kit

(FBDK). The choice of the FBDK was motivated by the fact that it is free and

mostly used in developing IEC 61499 function blocks.

The IEC 61499 standard has two types of resources, the panel and embedded

resources. A panel resource was used in this control approach in order to display

activities running in the background to the operator for diagnostic purposes unlike

the embedded resources. IEC 61499 function blocks (FBs) further defines three

classes of function blocks namely: basic FBs, composite FBs and service interface

Stellenbosch University http://scholar.sun.ac.za

36

FBs. A FB is a building block that encapsulates a behaviour. Like a state machine,

the FB has an execution control chart (ECC) which defines the reaction of a FB to

an event. The reaction can consist of an algorithm within the FB taking data

inputs with events and internal variables and giving output data and events. In an

IEC 61499 architecture, the function performed by the system is specified as an

application, which may reside in a single device or be distributed over several

devices (Vyatkin, 2007).

4.3.1 Design methodology

FBs are object-oriented software elements. Therefore, as in other object-oriented

software development, a model-view-controller (MVC) was used. In the MVC

pattern, the system to be controlled is first visualized and simulated, then the

control is tested, and later the model is substituted by interfaces to the real plant

(Hirsh et al., 2007). In this work, MVC methodology is used as a framework for

implementing object-oriented principles by using IEC 61499 FB types as classes

which are normally used in a typical MVC implementation. Figure 4.1 shows a

layered architecture, with the five layers, used in the development of the control

program for the modular Cartesian weld robot.

Human Machine interface (HMI) Layer

Control layer

Interface layer

Low-level control layer

Diagnostic layer

Figure 4.1 Layered architecture for control implementation of weld robot

The mechanism layer was implemented in Visual C# as the LLC layer and also as

TwinCAT I/O as an alternative to Visual C#. Other layers are discussed in the

following sections.

4.3.2 Human machine interface layer

The human machine layer provides a means for which manual operation of the

weld robot is possible. The layer provides button and text fields which the

operator can use. The layer is also used for diagnostic function blocks used to

display error which would have otherwise happened.

Stellenbosch University http://scholar.sun.ac.za

37

In this layer, functionally similar elements for the X, Y and Z axes were identified

from FBDK as: frame-devices and panel resources. These elements provide views

where the user can interact with the program, unlike the remote-devices which do

not have human machine interfaces. The frame-devices were used to model the

system for each axis.

4.3.3 Control layer

In this control layer, message error checking is done to ensure consistent

messages are passed between the cell controller and the HLC layer, and between

the LLC layer and the HLC layer. Furthermore, message passing between

resources is performed by layer, as well as message between the FB networks and

other parts of the controller. Furthermore, the layer can be used for expanding the

control programme when more axes are needed.

In the control layer, function blocks were embedded within panel resources and an

application was formed using basic FBs, composite FBs and service interface

FBs. For instance, to pass messages within an application, publish and subscriber

service interface FBs from the net library of the IEC 61499 standard were used.

Server and client FBs from the net library were also used to pass messages

between the HLC to the cell controller. Interconnections of FBs were then

combined in a composite function block. An example of a function block network

in a composite FB is shown in Appendix C.1.

The function block responsible for the control of each axis was also developed.

Figure 4.2 shows some of the FBs used in the control of the axis.

Figure 4.2 Composite function block for axis control

Stellenbosch University http://scholar.sun.ac.za

38

The nTask FB is responsible for commanding the axis to action. When the axis

needs to home, the command is sent through the nTask FB. The home is encoded

into XML format in the XML-ENCODER FB and then sent to the interface layer

through the COMM FB. The XML encoding is used by the LLC layer to

differentiate between which axes for which the command is intended.

To command all the three axes at once, publish and subscriber FBs are used. The

publish FBs sends to all the axes, while subscriber FBs receives a message from

the publish FBs. The two FBs can be found in the IEC 61499 standard library. To

send a command from the operator to the axes, the HMI layer provides FBs

through which a command is passed to the drives.

4.3.4 Interface layer

This layer is used for communication between the LLC layer and the HLC layer.

Its primary purpose is to provide TCP/IP socket connection between the two

layers and also handling of decoding of messages sent between them.

The layer is composed of the IEC 61499 function block shown and links with the

LLC layer implemented as a Visual C# program. Figure 4.3 shows the function

block used to interface HLC layer with the LLC layer.

LLC Visual C# program

HLC IEC 61499 Function

blocks

X axis Y axis Z axis

DEVICE 1 DEVICE 2 DEVICE 3

Figure 4.3 Interface between HLC and LLC using basic function block

FBs encode their messages using ANS.1 encoding. Therefore, the encoding must

be understood by the LLC. However, this is not the case. Additionally, at the

HLC, WSTRING format is used by service interface FBs of the net library to pass

data to other FBs in the network of FBs. It is therefore imperative that the FB

interfacing the LLC and the HLC, has its data input and output for receiving and

Stellenbosch University http://scholar.sun.ac.za

39

sending messages respectively in WSTRING format regardless of the

aforementioned conflicts.

To solve the conflicts, an algorithm was developed and placed in the execution

control chart (ECC) to determine how the function block will be executed when

an event occurs. The algorithm in ECC is placed in the REQ state. Consider

Figure 4.4

Figure 4.4 ECC and interfaces for COMM function block

For the function block to execute the algorithm effectively, it is assigned a port

number, used by both the LLC and HLC, and host name as shown in Figure 4.4.

When an event occurs, the REQ state executes the algorithm as shown in the

transitions of the ECC.

Additionally, since FBs are Java compliant, they allow importing Java classes into

the function block. For the algorithm developed in the COMM function block to

interface HLC and LLC, Java.io.IOException and Java.net.* classes were

imported and used to implement the algorithm. To get data from the WSTRING

into the algorithm, the dot (.) value function was used. Dot value is a function

block based method used to get data assigned to the FB for use in the algorithm.

Figure 4.5 illustrate the algorithm used in the COMM FB.

Stellenbosch University http://scholar.sun.ac.za

40

Start

No action

taken

Extract host name and

port

exit

Receive byte

in UTF-8

format from

server and

send

Close

socket

Get the input

bytes in UTF-8

format and

send to server

Get IP address

using host name

and create

socket object.

Event occured

YES

Is socket object

connected

Sucessful

NO

Indicate

Status

NO

NO

YES

Get WSTRING

with host name

and port.

YES

Figure 4.5 Algorithm for COMM function block

4.4 Agent based approach

In the agent based approach, the agent communicates with the LLC and the cell

controller at a HLC layer. The LLC is a visual C# TCP/IP server program and the

cell controller agents run as TCP/IP server program. Therefore, it is required that

the HLC layer be a client to both LLC and the cell controller. To achieve this

objective, a CWelderAgent agent was developed for the modular Cartesian robot

with two ports; one port for connecting to the C# server program LLC and the

other, also a client port, to connect to the WelderAgent residing in the cell

controller (see Appendix D.1 for port assignment). Detailed design of the

WelderAgent residing in the cell controller is given in Chapter 5.

In order to create two client connections in one agent, two OneShotBehaviour

classes were used as inner classes of an agent. To invoke a behaviour without

using the reset() method, the OneShotBehaviour class is extended and a

constructor made. In this way, the behaviour is only invoked when a message is

Stellenbosch University http://scholar.sun.ac.za

41

passed to it, unlike using a cyclic behaviour where there is no control when it

starts to run. Furthermore, if the block() method were to be used, with the cyclic

behaviour, the whole agent would go to “sleep”.

The constructors for the two extended OneShotBehaviour classes takes a string

passed to it by the message received from the LLC server and a HLC server as

ToInternalServer(String) and FromExternalServer(String) respectively. Then the

Java socket communication in blocking mode is implemented in the action()

method of each OneShotBehaviour. The action() and done() methods are the two

abstract methods to be implemented for a class extending the behaviour class. The

action() method defines the operations to be performed by the behaviour, while

the done() method returns a boolean value indicating the state of the behaviour.

To initiate communication with the LLC server, the operator clicks on the button

of the GUI, passing the message to the LLC server. The response from the LLC

server is then passed to the behaviour within the action() to the constructor

serving the HLC server.

In order to add behaviours to the agent, the setup () method of the agent class was

used. The method is intended to include agent initializations, while the actual

tasks are coded within behaviours. Typical operations that an agent performs in

the setup() method include: registering services the agent provides to the DF,

starting initial behaviours, showing a graphical user interface (GUI), and

connection to a database. The two behaviours are added to the agent as:

addBehaviour (new ToInternalServer (message));

addBehaviour(new FromExternalServer(message));

4.5 Message transmission to the axes

In order to actuate the three axes of the modular Cartesian robot, messages

received from the cell controller through the ToInternalServer(message)

behaviour must be passed to the LLC layer for execution. One-to-many mapping

of the agent was adopted to pass messages to the three axes of the robot. The one-

to-many mapping is used when one agent is used to control similar hardware

components. This mapping has the advantage of reducing the number of messages

that would have been passaged among agents since one agent manages all the

three messages used for control and communication. Moreover, the asynchronous

nature of agent communication and non-deterministic operation of agents can be a

concern during operation.

The messages received from the cell control are in an extensible markup language

(XML) format. Each node of the XML message is parsed by the LLC and the

intended axis is assigned the message. The feedback from the drives is received

by the ToInternalServer(message) behaviour and passed to the

FromExternalServer(message) behaviour for the cell controller to act on.

Stellenbosch University http://scholar.sun.ac.za

42

4.6 Modular Cartesian robot test results

Hardware reconfiguration tests where not conducted on the weld robot since

CANOpen interface could not yield desired results. Tests carried out on the weld

robot included aspects of the software elements of both IEC 61499 and agent

based control to enhance reconfiguration of the assembly cell as whole.

Both IEC 61499 function blocks and JADE agents were found to be feasible

technologies to implement the HLC for modular Cartesian robot. Since the axes of

the robot were not required to be coordinated while moving, the demand on the

HLC was quite moderate. Therefore, the focus of each approach was on their

ability to support reconfiguration.

As discussed in Section 2.5, an open architecture is an important consideration for

controllers. Both FBDK and JADE are open systems that are based on Java, thus

meeting the open architecture requirement. However, it is an advantage from an

interoperability and maintenance perspective if the HLC software is either IEC

61499 or FIPA compliant. Furthermore, the control strategies were investigated to

establish if they exhibited the six core characteristics of RMSs.

IEC 61499 function blocks were found to be inherently modular. Furthermore, the

IEC 61499 standard make no provision for global variables and therefore makes

them superior to agents. Moreover, the design of a control device is more

standardized in the IEC 61499 standard since the functionality of the different

FBs, resources and devices are already specified

Communication is a central concern in integrability. In this respect, IEC 61499

function blocks suffered a setback when used as a HLC since the ASN.1 encoding

it uses for string communication over Ethernet is not widely used by other high

level languages. When used to connect to the cell controller or LLC, compatible

encodings have to be used and therefore custom FBs had to be created.

Two phases of diagnosability were considered: firstly during development

(including major reconfiguration that requires changes to the control software),

and secondly during operation. With regards to the development phase, it was

found to be very difficult to diagnose FB networks since FBDK's (and other

available IEC 61499 platforms) debugging tools are rudimentary. To get debug

output from a FB network, one has to include print statements in the algorithm or

use another network of human machine interface FBs. Moreover, being an event

driven architecture, the flow of events within the FB network is fast and difficult

to visualize. On the other hand, agent platforms are much more mature and have

good debugging tools.

Convertibility for RMSs was found to be more of a concern for hardware than

software. Both FBDK and JADE allow for easy conversion of the HLC and the

main concerns were found to be in terms of diagnosability, as described above.

Stellenbosch University http://scholar.sun.ac.za

43

An IEC 61499 implementation is easily scalable since it is modular. A FB can be

re-used by assigning a unique name to each instance of the FB. This was used in

the design of the three axes.

Furthermore, not many advanced features of the agent based control were used in

the modular Cartesian robot. Therefore, the six properties of RMS for agents were

not deemed conclusive for agents and a bigger platform (cell controller) was used.

Chapter 5 explain most of the features of the JADE platform used to control the

assembly cell bearing in mind the six core characteristics of RMSs.

Stellenbosch University http://scholar.sun.ac.za

44

5. CELL CONTROLLER FOR ASSEMBLY CELL

This chapter explains how the cell controller is designed to perform its tasks using

agent based control strategy. The JADE framework and Eclipse IDE are used to

design the agents which reside in the cell controller. The agents are then able to

interact with the subsystems using TCP/IP connections. By interacting with the

Directory Facilitator (DF), a product agent can carry out its production objectives.

The details of the agents and their interactions are explained and the agents used

in the control strategy are expounded in the following sections. Appendix A gives

a functional analysis for the cell controller.

5.1 Cell controller architecture

The overall control strategy in designing the cell controller is based on two

decisions: firstly, the product information will reside in the cell controller. This

implies that a subsystem’s control program is not tailored to a single product; new

product introduction only affects the cell controller. By localizing software

reconfiguration to one central point, both fault detection and diagnostics efforts

are concentrated to one point thereby reducing time to trouble shoot and

reconfigure. Secondly, during production execution, cell controller only needs to

know the services offered by the subsystems in order to use them. This implies

that the subsystems have to register their services to the Directory Facilitator (DF)

agent of JADE platform. This also includes newly introduced subsystems.

The JADE agent platform was chosen to develop the cell controller because of

various considerations including: maintenance, popularity, accessibility, evolution

and it is fully distributed in nature. Furthermore, JADE is fully implemented in

Java which is platform independent. Therefore, the system can be distributed

across different machines with different operating systems. Additionally, from

1998 when JADE was developed by Telecom Italia (formerly CSELT) it has been

updated from time to time and the latest version, JADE 4.2, was released in June

2012. It also complies with the FIPA standard and therefore the agent

communication language (ACL) is FIPA complaint. The primary features of FIPA

ACL, as used in this setup, offer an opportunity to use different content languages

and manage conversations through predefined interaction protocols.

The Semantic Language (SL) used in the cell controller is Codec. The choice was

motivated by the fact that it is human-readable, which is helpful when debugging

and testing an application. It can also be adapted when there is a need for agents,

produced on different platforms by different developers, to communicate.

The ontology used for communication between agents is the

JADEManagementOntology. This ontology eases the message exchange between

agents since any newly introduced agent will have to use an already existing

ontology, thus saving much effort to develop a new ontology if the cell controller

were to be reconfigured and new agents introduced.

Stellenbosch University http://scholar.sun.ac.za

45

With the cell controller set up in this manner, the strategy provides flexibility to

the manufacturing system control. The control program has control of which

machines it engages during production. Similarly, when more capacity is needed,

the control program can engage more machines with similar services to produce

the required product using the CNP as explained in Section 5.5.4.

To implement this control strategy, the cell controller design is based on the

PROSA reference architecture. The choice of PROSA was motivated by the fact

that it simplifies the design of the Multi-agent System (MAS) since the analysis

step of all the roles of agents and their interaction has been largely completed. The

other advantage which the PROSA reference architecture offers is that it

decouples the cell controller control logic from the physical machines and

therefore simplifies the distribution of control and resources. Decoupling control

logic from hardware also considerably simplifies reconfiguration of the structure,

hardware and software. Furthermore, Valckenaers et al (2011) state that reference

architectures do not provide final solutions, but only a common basis from which

to start. They further state that the aim of reference architectures is to be generic

and widely applicable thereby leaving design and implementation to be done by

the developer. Therefore, PROSA leaves detailed implementation to the

application developer.

5.2 System partitioning

In a typical industrial setup, the structure of the hardware used for production is

such that they are interconnected and the weld assembly cell is no exception. In

order to use agent technology for the control of the hardware, agents are mapped

to hardware which they control; and the best mapping would be based on a

specific application. Ticky et al (2006) identified guidelines for the mapping of

agent controls to their respective hardware and these are: one-to-one mapping,

where one agent is responsible for one component, such as one agent controlling a

component; one-to-many mapping, where one agent is controlling a set of

equipment components; and many-to-one mapping, where more than one agent is

operating a single equipment component.

In the partitioning of the weld assembly cell, one-to-one mapping was adopted.

Ticky et al (2006) state that this mapping is very flexible since new components

can be easily added to the system, together with the agents associated with them.

Similarly, the mapping eases system development and debugging since the

number of different agent types is lowered compared to many-to-one mapping.

The one-to-many mapping, though efficient when several naturally related

hardware components are grouped together, is only used in the control of the

modular Cartesian robot, because it reduces the number of messages passed

between agents. In the weld assembly cell, however, one agent mapped to all the

systems can be a point of failure and also a bottle neck. The mapping can also

reduce the robustness when one agent is controlling two different sections of a

cell.

Stellenbosch University http://scholar.sun.ac.za

46

5.3 Control design and implementation for the assembly cell

With the assembly cell partitioned as described in the preceding paragraph, the

agents can interact using the contract net protocol (CNP) with the DF as the link

for the agents in question (consider Figure 5.1).

Service A

.

;

Service N

TCP/IP

server

ContractNet

Responder

Process 1

Directory Facilitator

“Yellow Pages”

Process 2

Process 3

Process 4

Process 5

Subsystem 1 Subsystem 2

Subsystem 3

Resource

Agent 1

Resource

Agent 2

ContractNetInitiator

Publishes

services

CFP

Searches for

services for

Process 1Finds service and

respective local

name of Resource

Agent
Product Agent

PROPOSE

Platform A

Resource

Agents

Accept_proposal

Inform_done

Platform B
Platform C

Platform D

Figure 5.1 System partitioning and CNP based interaction of product and

resource agents

Stellenbosch University http://scholar.sun.ac.za

47

In order to implement the control program, all the workstations explained in

Section 3.1 are treated as holons, while resource agents represented in PROSA are

treated as decision making entities for the holons. By using one-to-one mapping,

each resource agent is mapped to a holon. Furthermore, all agents in PROSA

reside in one agent platform (AP). In JADE terminology, an AP consists of

machines, operating systems, FIPA agent management components, agents and

any additional software (Bellifemine et al., 2007). However, the specific internal

design of an AP is left to developers when more components are added.

With the assembly cell setup as explained in the preceding sections, two layers

with different concerns are formed, namely execution and control layers. Each

layer has a sphere of influence and to limit the sphere of influence for each layer,

a Holarchy was formulated as shown in Figure 5.2. TCP/IP protocol is then used

to connect the control and execution layers.

Execution

Layer
Conveyor

Holon

Pallet Magazine

Holon Feeder

Holon

Welder

Holon

Inspection

Holon

Removal

Holon

Control

Layer

Resource agent layer

Product agent layer

Order agent layer

Staff agent layer

Prod1 Prod2 Prod3

TCP/IP connection

Conveyor Pallet Magazine FeederWelder Inspection Removal

Cell Controller

Order

Loosely connected execution holons

Figure 5.2 Weld assembly system holarchy

In the execution layer, holons execute commands received from the control layer

and give their status during and after execution, while the control layer controls

and makes decisions on behalf of the execution layer depending on their status.

Each holon in the execution layer is assigned a port through which it can listen for

commands as well as indicate its status. Appendix D.1 gives the port numbers

assigned to each holon. By using the TCP/IP protocol, each resource agent in the

control layer is linked to a holon and exchange messages accordingly. The TCP/IP

Stellenbosch University http://scholar.sun.ac.za

48

protocol was selected as it is easy to use and fits well for a Windows 7 PC used to

host the cell controller. The other advantage is that TCP/IP protocol can be used

on wireless communication with the right hardware interfaces when the need

arises. Moreover, wireless communication can also aid structural reconfigurations.

The six resource agents in the control layer have to publish services on behalf of

their respective holons once they start running in the control layer. The services

published by resource agents into the DF include:

 Unloading of the fixture from the pallet magazine to transport system

 Transportation of the fixture to different workstations.

 Loading of different parts on the fixture.

 Welding of the product on the fixture.

 Inspection of the welded product.

 Removing of welded part from the fixture.

 Storage of pallet in the pallet magazine.

To publish the agent name and its services in the DF, the DFAgentDescription,

and ServiceDescription classes are used in the setup() method of the agent class.

The service type is then added using setType () method. Appendix D.3 gives the

code used for publishing services to the DF. The aforementioned services are

provided by; PMAgent representing the pallet magazine, ConveyorAgent

representing the conveyor, FeederAgent representing the feeder subsystem,

WelderAgent representing the modular Cartesian robot, InspectionAgent

representing the Inspection subsystem and RemovalAgent representing removal

subsystem. The pallet magazine holon and conveyor holon in the execution layer

are loosely connected since the pallet magazine has to get a confirmation message

from the conveyor each time a pallet is offloaded or loaded in order for the two

subsystems to synchronize.

The product agents represented by Prod1, Prod2 and Prod3 in Figure 5.2, interact

with resource agents by exchanging agent communication language (ACL)

messages using the FIPA contract net protocol (CNP). With a CNP, in a call for

proposal (CFP) message, the product agent can request for a service and the time

to respond to a request. The setReplyDate() method was used to ascertain the time

the response is expected.

The ability to set the time for an agent to reply, while at the same time searching

for a service from the DF, using a CFP message, gives great benefit to the setup.

The set time can be used in the evaluation of bids in CNP, while searching for a

service allows using multiple agents matching a search description to be used at

the same time. Furthermore, redundancy can be introduced when needed since the

CNP provides for multiple agents to bid for a CFP message. For instance, when a

new subsystem is introduced, a CFP message from a product agent is sent to all

resource agents with a service needed at that particular time provided they have

registered with the DF and their description matches that of the search template.

Similarly, different product types can be produced concurrently on the same

Stellenbosch University http://scholar.sun.ac.za

49

production facilities using different product agents. This is because only the

service is required and the resource agent providing a service can take orders as

long as they are in the message queue and the subsystem does not breakdown.

Section 5.5.4 explains this aspect in more detail.

5.4 Product agents

The product agents are a model of the actual product. They have knowledge of the

procedure and processes involved in order to have the product made. For the

product agents to have access to the services offered in the production process,

they have to search for the services needed from the DF and can then interact with

the resources using CNP. This process enables the agent to optimize a service

characterized by the task through searching and discovering the appropriate

service.

Product agents were implemented in two different approaches using the complex

behaviours. In some industrial situations, products are simple and only need a few

simple steps to make. Typically, they may need just a sequence of production

stations with simple diagnostics. This sort of production set-up is modeled here

using a SequentialBehaviour. Alternatively, complex products involving a larger

number of workstations, and therefore more detailed diagnostics are modeled

using the FSMBehaviour. Each product has a way of handling disturbances in the

cell as explained in Section 5.4.3.

5.4.1 Design of the product agent using a sequential behaviour

The SequentialBehaviour class implements composite behaviour which schedules

its children using a sequential policy. The behaviour starts with the first child,

then moves to the next child and terminates when the last child is completed. This

kind of implementation meets the basic design requirement of a product agent

since in a typical discrete production setup a product is produced in a sequential

manner. Additionally, using one agent to execute all the processes reduces

computing resources since each agent runs in its own thread (Bellifemine et al,

2007). Furthermore, exchanging many messages before a task is done may lead to

trading robustness for complexity (Ticky et al, 2006). Therefore, by using the

sequential scheduling policy of the SequentialBehaviour class, each operation in

the production line can be executed sequentially.

During production in the weld assembly cell, for instance, the sequence of

operation requires unloading the pallet with fixture from the pallet magazine,

placing parts on the fixture, welding and inspection of the product and

subsequently removing the welded parts from the fixture. Each step in the

production cycle requires the subsystem to inform the product agent whether it

has successfully accomplished its task or the task was a failure. The information

from the subsystem is sent to the product agent as an ACL message.

After receiving a message from the subsystem, the product agent makes a decision

whether to continue production (i.e. when the task is successful) or inform the

Stellenbosch University http://scholar.sun.ac.za

50

order agent (i.e. when the task has failed). Figure 5.3 shows a

SequentialBehaviour class implementation in a product agent.

START

Search for resource

agents and their

services

All resource agents

needed present

Exit

Initiate contract net

protocol based on

service required

Proposal accepted

Exit

Notify

Order

agent

Operation executed

Exit

YES

Notify

Order

agent

Notify

Order

agent

NO

YES

Last production

unit

NO

YES

NO

Figure 5.3 SequentialBehaviour class implementation flow in product agent

In implementing the SequentialBehaviour class in a product agent, the class is

instantiated as an inner class of the extended agent class as:

public class pProcess extends SequentialBehaviour{

public pProcess(Agent a){

super(a);

// code for searching from the Directory Facilitator agent

addSubBehaviour(new contractNetInitiator(a,msg){

 });

// code for searching from the Directory Facilitator agent

addSubBehaviour(new contractNetInitiator(a,msg1){

 });

 }

 }

The sub-behaviours represent each production process and run one after the other

until the agent terminates as shown in Figure 5.3. There is however a loose

connection between the pallet magazine and the conveyor as shown in the

Stellenbosch University http://scholar.sun.ac.za

51

Holarchy (see Figure 5.2). When offloading the pallet and fixture from the pallet

magazine, the conveyor receives a hardware interface message from the pallet

magazine and sends one back again to confirm the operation was successful.

Messages exchanged in this pattern enable synchronization of activities between

the two subsystems. Details of message formats and impact on subsystem control

are given by Le Roux (2013). This arrangement, however, has an influence on the

product agent design since the agent has to ensure, through successful passing of

messages, that the pallet with the fixture is present in the production cell. Section

5.4.4 gives details on the implementation in the product agent.

5.4.2 Product agent design based on FSM behaviour

The product agent design based on FSM behaviour utilized the architecture of the

FSMBehaviour to mitigate unforeseen disturbances which might occur during

production. The FSMBehaviour has a number of methods to use in order to

achieve this goal. The behaviour also provides states to be registered for

implementation.

In order to register a state, the FSM behaviour provides the registerState()

method. The method accepts two arguments: a String defining the name of the

state that is being registered and a Behaviour that will be executed in that state

(Bellifemine et al, 2007). Further, the FSMBehaviour class provides two other

methods for registering states and their transition during execution. The

registerTransition() method accepts three arguments: two Strings defining the

source state and the destination state of the transition and an integer value

defining the label marking the transition. The other method,

registerDefaultTransition() method, allows the definition of a default transition

between two states. This method is not marked with any label and is only

followed if and only if all other transitions from the same state are not followed

(Bellifemine et al, 2007).

Both the registerTransition() and registerDefaultTransition() methods have an

overloaded version which takes a further String[] parameter. The String[]

parameter indicates a set of finite state machine states that must be reset when the

registered transitions are followed.

To define which state will start first and which one will be the exit state in the

execution process, FSMBehaviour class provides the registerFirstState() and

registerLastState() methods respectively. While there can only be one state from

where to start, a number of termination states can be defined.

Before a product agent design based on the FSM behaviour is implemented,

normal transitions and anticipated disturbances which might cause unwanted

transitions must be established. From the assembly cell view point, the normal

transitions are: pallet magazine to feeder, feeder to inspection, inspection to

welder, welder to inspection and finally to removal after which the pallet is loaded

back to the pallet magazine.

Stellenbosch University http://scholar.sun.ac.za

52

The conveyor facilitates these transitions and is therefore the main link to all

stations.

Having identified the normal transitions and the default transitions, the running

and reactions of the product agent during production is then coded in the agent.

Figure 5.4 illustrates possible transitions of pallets after being offloaded from the

pallet magazine as explained in Section 5.4.4.

Feeder

Conveyor

Inspection

Welder

Insepection

Conveyor

Conveyor

Removal

2

4

5

6

Conveyor

7

8

1

3

Figure 5.4 Transitions of the pallet after offloading

A normal transition would take the numbered route. This is when the product

agent does not encounter any problems. However, for the states to be reused, they

need to be reset. JADE provides a reset() method to achieve this. The resetting

action is shown for every state the product agent uses.

The production setup in the assembly cell is sequential. Therefore, if at the feeder

station there happens to be a problem, the best the product agent can do is to take

the pallet round through the round robin of the conveyor so that the fault can be

fixed. This route is shown is Figure 5.4. However, if the conveyor has a problem,

the whole setup fails to run since all other activities depend on the transport

system.

Stellenbosch University http://scholar.sun.ac.za

53

Since all the states are re-used by the product agent, when defining the transitions,

the registerTransitions() method with four parameters is used as shown.

FSMBehaviour fsm=new FSMBehaviour(An agent){

public int onEnd(){

reset();

myAgent.addBehaviour(this);

}

 };

fsm.registerState(new Conveyor(“ConveryorAgent”, “CC_MOVING,2,1,3”),

STATE_B);

// Other states are put here including the starting and exit states

fsm.registerState(new Inspection(“InspectionAgent”, “INSPECT,2;”),

STATE_B);

fsm.registerTransitions(STATE_B, STATE_C, 1, new String[]{STATE_B,STATE_

C});

addBehaviour(fsm);

When the last state is executed, the behaviour which was added is removed from

the pool of behaviours to be executed. In order to add again the same behaviour to

the pool, when instantiating the FSMBehaviour, the onEnd() method is used. In

this method, the behaviour is reset() and then added to the pool of behaviours as

shown in the above snippet of code.

5.4.3 Handling of disturbances by product agents

Disturbances to production systems, such as machine breakdown, are a common

feature of any manufacturing system. However, how these disturbances are

handled, to some extent, guarantees survivability and competiveness of any

manufacturing enterprise.

In one approach of the product agent design, a sequential behaviour was used.

This complex behaviour schedules its children in a sequential manner. However,

it cannot guarantee successful handling of disturbances. For instance, when a

subsystem refuses a request to bid for a contract, the product agent continues with

the sequence. Therefore, a behaviour must be monitoring the product agent in case

disturbances occur. Other cases where disturbances may arise during production

include when a new subsystem is introduced during production (since a product

agent searches for services before execution begins) and also when the need arises

to establish an alternative route when a subsystem fails during production. In

these circumstances, the system must remain robust and resilient. The sequential

behaviour, however, does not have the mechanisms to handle disturbances and

must be therefore implemented independent of the sequential behaviour.

However, JADE provides a FSMBehaviour class, which is here exploited to meet

this challenge. The FSMBehaviour class, which implements the composite

Stellenbosch University http://scholar.sun.ac.za

54

behaviour, schedules its children according to finite state machines (FSM) where

each state corresponds to the FSM behaviour children. Like a sequential

behaviour, the FSMBehaviour keeps a pointer to the current child until the child

finishes when the done() method of the current child returns true. Furthermore, on

the basis of the returned value, the FSMBehaviour checks its transition table in the

form of integer labels as created by the developer. This enables selection of a new

child to fire next time the new action() method of the new child is executed.

FSMBehaviour class provides an integer label as a means of setting transitions

between children in the FSM behaviour. During execution, when a child is

completed, the return value for that child’s onEnd() method is taken as an exit

value and is then matched against the labels of all the transitions exiting from the

current child state. The first transition whose label matches the exit value is

followed and its destination state becomes the new current child (Bellifemine et

al, 2007). Using this FSMBehaviour, a more robust product agent was developed.

5.4.4 Pallet magazine and conveyor interaction during production

Offloading or loading a pallet with a fixture from the pallet magazine to the

conveyor is of paramount importance. The success or failure of this activity

during production largely determines the success of other production processes.

Failing to offload a pallet means no production and failing to load means the

production line runs without stopping, if it has already started, and therefore new

orders which need different pallets are affected. This problem is compounded by

the fact that the two subsystems (the pallet magazine and conveyor) are loosely

connected by the hardware interface messages which must always be exchanged

for offloading or unloading of a pallet to take place. Activities taking place at the

conveyor station and the pallet magazine differ, but hardware interface messages

enable the two subsystems to synchronize their activities during offloading or load

of the pallet.

To tackle this problem, the ParallelBehaviour class is used. ParallelBehaviour

invokes a current child and moves the pointer forward to the next sub-behaviour

regardless of whether the former was completed or not. To ensure all operations in

the ParallelBehaviour class are complete, the parallel behaviour provides a

termination policy. The termination policy must be satisfied before termination

can occur. Two termination policies are present in ParallelBehaviour class, i.e.

WHEN_ALL and WHEN_ANY. WHEN_ALL termination policy ensures all

operations in all the parallel behaviours are completed for the ParallelBehaviour

class to terminate, while WHEN_ANY termination policy ensures termination

when any of the behaviours completes. To ensure all the communication between

the PMAgent and ConveyorAgent is completed, WHEN_ALL termination policy

was used.

If a pallet is needed during production, the product agent requests a pallet from

the pallet magazine by initiating a CNP driven conversation with the PMAgent. At

the same, a CNP driven conversation between the conveyor (through the

Stellenbosch University http://scholar.sun.ac.za

55

ConveyorAgent) and the product agent must start. This simultaneous invoking of

subsystems is done with a ParallelBehaviour. During the same period, the two

subsystems must interchange hardware interface messages. The hardware

message interchange happens when both the subsystem and the product agent

each accept the proposal to offload a pallet and to transport a pallet by the pallet

magazine and the conveyor respectively as commanded by the product agent.

At the point of sending interface messages, the pallet magazine sends the first

message to the PMAgent. The PMAgent forwards the interface message received

through its port to the ConveyorAgent using ACL message and the conveyor,

upon receiving the message, sends it back again. This interchange of hardware

interface messages between the conveyor and the pallet magazine also applies

when the pallet is being loaded in the pallet magazine.

For a product agent based on SequentialBehaviour, for instance, the sub-

behaviours in the agent with CNP, responsible for the PMAgent and

ConveyorAgent were run in a dedicated thread to ensure other process within the

behaviour do not interfere. By using a dedicated thread, the sub-behaviours within

the agent can continue to run until they satisfy the termination policy. The snippet

of the code thus implemented is shown below.

public class pProcess extends SequentialBehaviour{

public pProcess(Agent a){

super(a);

ParallelBehaviour a=new ParallelBehaviour(a,ParallelBehaviour.WHEN_ALL);

// code for searching from the Directory Facilitator agent

a.addSubBehaviour(new contractNetInitiator(a,msg){

 });

// code for searching from the Directory Facilitator agent

a.addSubBehaviour(new contractNetInitiator(a,msg1){

 });

addSubBehaviour(tbf.wrap(a));

 }

 }

Above tbf is an instance of ThreadedFactoryBehaviour class.

During the execution of the product agent, each production process, including

offloading a pallet, in the agent is characterized by the search for a service. This

approach is necessary to ensure that the service required is always present before

a process commences. It further affords the product agent time to decide which of

the available services it can pick from at a point in time. If however the service

needed at a particular time during production is not present, the product agent

informs the staff agent so that an appropriate action is taken. Appendix D.4 gives

the code used to search for services by the agent and their respective behavior and

the message sent to the staff agent if the resource agent is not found.

Stellenbosch University http://scholar.sun.ac.za

56

The interactions between the product agent and the resource agents can be

depicted as shown in the Figure 5.5.

Product

Agent

Pallet

Magazine

Agent

Removal

Agent

Inspection

Agent

Welder

Agent

Feeder

Agent

Conveyor

Agent

A B C D E F

Request service

Done

Request service

Request service

Request service

Request service

Request service

Request service

Request service

Request service

Request service

Done

Done

Done

Done

Done

Done

Done

Done

Done

Figure 5.5 Sequence diagram of interactions for product and resource agents

JADE platform provides a developer with tools to monitor activities within the

platform. To monitor ACL messages that are exchanged between agents during

Stellenbosch University http://scholar.sun.ac.za

57

offloading and loading a pallet, the sniffer agent was used. Figure 5.6 shows the

interaction between the PMAgent, ConveyorAgent and the product agent as shown

by the sniffer agent of the JADE platform during offloading of the pallet. Here the

ParallelBehaviour is used in the product agent to facilitate interaction between the

conveyor and the pallet magazine.

Figure 5.6 Interaction between product agent, PMAgent and ConveyorAgent

5.4.5 Product agent and pallet re-use

Pallets designed for use in the weld assembly cell are meant to be re-usable. In

order for product agents to re-use them after a production cycle, a mechanism to

successfully handle the situation is needed. Instances where re-using a pallet may

be required is when there are insufficient pallets or the capacity of the

transportation system is limited. In this scenario, the pallet with a fixture will have

to be re-used until all the production requirements are met.

Unlike in a product agent implemented in a SequentialBehaviour, where all the

production processes are handled by the product agent within the behaviour, the

pallet is here assigned to an agent with the capabilities of responding to requests.

Essentially, the pallet agent will carry out all the activities during offloading and

loading a pallet as explained in Section 5.4.4. Therefore, it must communicate

with the product agents using ACL messages. Through these messages, the pallet

agent can indicate its status at any time when requested.

Stellenbosch University http://scholar.sun.ac.za

58

To request a pallet, the product agent sends an ACL message to the pallet agent.

For product agents implemented in a SequentialBehaviour, the ACL message is

sent by one of the sub-behaviours in the SequentialBehaviour, while for product

agents using the FSMBehaviour, the state registered with the registerFirstState()

method has a behaviour that requests for the pallet.

5.4.6 Introduction of a new product

There are instances when a new product has to be introduced into the system. This

is necessitated by the frequently changing products needed by customers.

Therefore, the need to introduce new products becomes inevitable.

The introduction of a new product impacts the assembly cell in different ways.

This could be a change of control program, the addition of more subsystems or

even reconfiguring the whole assembly cell. How the transition is managed makes

a system worth investing in. In this work, introduction of a new product is

assumed to be accompanied by either the introduction of more subsystems or

reconfiguration of the entire structure with the same or new subsystems.

Based on the PROSA definition of a product agent and the product agent

requirements, as explained in Section 2.2.3, firstly, the product agent should have

production knowledge and the process knowledge. All the production knowledge

and the process knowledge should be embedded in the software agent before it is

launched. Secondly, the software agent must be able to search the DF for the

service it requires when needed, and must interact with other agents using CNP.

Therefore, the new product agent must be implemented with a

ContractNetInitiator class and be capable of searching services from the DF at

every moment of engagement with the resource agents.

The choice of the CNP for interaction with other agents, i.e. the resource agents, is

to provide the product agent with capabilities to decide which resources it can

engage if they are many of the same type. Furthermore, during production, if there

are faults at the subsystem level, the agent can make a decision accordingly using

its programmed evaluation method. The product agent can then be implemented

as explained in either Section 5.4.1 or Section 5.4.2.

In order for the new product agent to engage with the resource agents, the product

agent must first search for that particular resource from the DF. This enables the

new product agent to engage the resource agent it needs. Furthermore, when the

structure of the assembly cell is reconfigured, there is no need to change the

control program since it can engage any subsystem by searching for the service

the product agent needs. Moreover, the ontology used is common to all agents in

the assembly cell i.e. JADEManagementOntology.

The product agent to be used by the new product can then be added to the cell

controller by the staff agent. Addition of the agent to the cell can either be done

online or when the system is shutdown. During production, the order agent can

Stellenbosch University http://scholar.sun.ac.za

59

send ACL messages instructing it to start production when needed. The ACL

message must also be understood by both the product agent and the order agent.

The messages to be exchanged during production must be established before

launching the agent.

5.5 Resource agents

Resource agents are an abstraction of the actual subsystems residing on a different

platform from that of the subsystem (consider Figure 5.1). The resource agents

are representatives of the subsystems in the cell controller and they also publish

their services in the “Yellow Pages” of the DF on behalf of their respective

subsystems using code in Appendix D.3. This enables product agents to search for

these services and use them during production. Furthermore, resource agents have

to respond to product agents’ requests using contract net protocol (CNP). The

product agents are the initiators, while the resource agents are the responders and

therefore use the contract net responder class for their implementation.

5.5.1 CNP responder selection

There are two types of contract net responder classes in JADE i.e:

SSContractNetResponder and ContractNetResponder. The SSContractNetRespon

der is a single session contract net responder class and therefore carries out a

protocol-driven conversation by the ACL message and subsenquently terminates

when the session ends. The ContractNetResponder class on the other hand, after

receiving a message with a predefined MessageTemplate parameter in its

constructor, carries out the conversation and then goes back to wait for a new

initiation message. For this reason the resource agents are implemented on the

cyclic version of contract net responder class of JADE to ensure the resource

agents are always present when needed since they do not terminate after

executing a single message.

The other advantage for using the cyclic version of contract net responder is that

the resource agents are required to handle as many messages from the product

agents as the message queue can allow during production time. The messages are

executed on first come first serve basis until all messages are served.

Each subsystem represented by a resource agent has its own form of semantic to

communicate its status with the respective agent. This semantic is understood by

both the subsystem and the agent. Appendix D.2 gives the semantics and meaning

of each string for each subsystem. At any particular time, the state of the

subsystem is known by the resource agent through the messages sent to it by the

subsystem.

Furthermore, communication between the subsystem and the agent must always

be present for resource agents to perform their duties. The TCP/IP protocol is

used to connect the resource agent and the subsystem through an assigned port.

The resource agent uses a TCP/IP server, while the subsystem uses a TCP/IP

Stellenbosch University http://scholar.sun.ac.za

60

client. Therefore, subsystems must log into the server before the resource agents

are used.

5.5.2 Design of the Resource agent

The resource agent has two behaviours running during the agent life time. The

first behaviour is responsible for accepting connection from the subsystem and

also exchanging of messages using TCP/IP protocol, while the other behaviour is

responsible for CNP driven conversation engagement. Since agents are

cooperative rather than pre-emptive i.e.: one behaviour completes its task before

another one starts. In order to overcome this hurdle, since the two behaviours

must be running independent of each other, one of the two CyclicBehaviour

classes used is run in a dedicated thread, while the other is run as a normal

behaviour. The behaviour for the TCP/IP connection is run in a dedicated thread,

while agent peer-to-peer communication using CNP, is run in a normal behaviour.

This is to avoid one behaviour running all the time to the exclusion of the other.

The CyclicBehaviour running in a dedicated thread uses the

ThreadedBehaviourFactory class of JADE and is instantiated as:

ThreadedBehaviourFactory tbf=new ThreadedBehaviourFactory();

The CyclicBehaviour is then run as:

Behaviour b= new CyclicBehaviour(this){

public void action(){

}

 };

The behaviour object thus created is then wrapped in a wrapper class as:

addBehaviour(tbf.wrap(b));

In this way, the activities going on in one thread does not affect the other

behaviour in the agent.

Information received from the TCP/IP sockets and the message queue of the agent

is freely shared between the behaviours using a DataStore in order for the agent to

carry out a given task. In JADE, Datastore is a behaviour whose function is that

of storing data within the agent so that behaviours can share stored data.

Combining the behaviour running a contract net responder class and the

CyclicBehaviour running a TCP/IP server in one agent has the advantages to the

overall architecture of the cell controller. Firstly, this approach reduces the

number of ACL messages that could have otherwise been sent between the two

agents. Secondly, since each agent runs in its own thread (Bellifemine et al,

2007), there is a considerable reduction in the processing load which the PC is to

handle.

Stellenbosch University http://scholar.sun.ac.za

61

The behaviour responsible for peer-to-peer communication of the agent uses a

one-to-many ContractNetResponder class. This enables the agent to receive Call-

for-proposal (CFP) messages from product agents. Figure 5.7 illustrates the

resource agent architecture implemented here.

One-to-many

Contract net

Responder

TCP/IP server

Figure 5.7 Resource agent model

In order to handle CNP driven conversations, resource agents implement two

callback methods of the multi-session ContractNetResponder class. In the two

callback methods, the control logic is implemented since JADE allows the

developer to do so. The two callback methods are: handleCfp(ACLMessage cfp)

and handleAcceptProposal(ACLMessage cfp, ACLMessage propose, ACLMessag

e accept) and by using communicative acts, such as PROPOSE when the system

is ready, REFUSE when the subsystem has a fault and INFORM when informing

the product agent the status of the subsystem, the agent is able to pass relevant

information to the product agent. This information is very important for

diagnosing the subsystems as well as making a decision by the product agent.

In order for the ContractNetResponder class to receive protocol-driven messages

from the product agent, a MessageTemplate is used to select messages from the

message queue. The message template is declared as:

MessageTemplate template=MessageTemplate.and(MessageTemplate.MatchProt

ocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET),

MessageTemplate.MatchPerformative(ACLMessage.CFP));

With the MessageTemplate created in this way, the behaviour responsible for

receiving messages is added to the agent as:

 addBehaviour(new ContractNetResponder(this, template){

// Callback methods to execute.

 }):

Stellenbosch University http://scholar.sun.ac.za

62

The callback methods used to implement resource agent control logic, gives the

programmer freedom to redefine them by customizing them with logic that relates

to application domain (Bellifemine et al., 2007). In this application, the

handleCfp(ACLMessage cfp) is invoked when a CFP message is received from the

product agent. The CFP message is evaluated using the content of the message

proposed. After evaluation, using the same message, a reply is created using

createReply() method. The reply thus created will either propose or refuse

depending on the status of the subsystem or the content of the CFP message. The

status of the subsystem is communicated to the product agent using the

setContent() method when the resource agent responds to the CFP message. The

snippet of code is shown as:

ACLMessage propose=cfp.createReply();

propose.setPerformative(ACLMessage.PROPOSE);

propose.setContent(“data to send to the product agent”);

return propose;

In the handleAcceptProposal(ACLMessage cfp, ACLMessage propose,

ACLMessage accept) method, the resource agent after proposing in the

handleCfp(ACLMessage cfp) method, accepts the proposal from the product agent

and sends the command for execution to the subsystem through the TCP/IP

connection. The sending of data through TCP/IP is achieved by passing received

data to the Datastore where the behaviour running the TCP/IP server collects the

data and sends it to the subsystem. Furthermore, the resource agent waits for

feedback from the subsystem after which it sends back the response to the product

agent using the INFORM performative act, as demonstrated in the following

snippet of code.

String data=accept.getContent().toString();

Received_msg_info.add(data);

ACLMessage inform=accept.createReply();

boolean result=false;

while(!result){

if(!RESULT.isEmpty()){

String status=RESULT.poll();

DATA=status;

inform.setContent(status);

result=true;

}

}

return inform;

5.5.3 TCP/IP server in a resource agent

Resource agents must be able to communicate with the order and the product

agents, as well as the subsystems which they represent in the control layer (see

Figure 5.2). Communication between agents residing in the control layer is a peer-

Stellenbosch University http://scholar.sun.ac.za

63

to-peer communication in which agents exchange ACL messages. However, in

order for the resource agent to communicate with the respective holon, a TCP/IP

server was adopted. Moreover, resource agents do not share the same platform

with their holons. Therefore, through the TCP/IP connection, holons in the

execution layer can log into the cell controller using their customized semantic

messages as shown in Appendix D.2. With this setup, a resource agent can

actively communicate with product agents, order agents and the subsystems.

The other option for implementing resource agent communication with

subsystems would be the use of the remote monitoring agent (RMA) and

federating all the DFs from different platforms. However, this method falls short

of our test requirement since the platforms managed by the RMA must be FIPA

compliant (Bellifemine et al, 2007). In this case study, however, the

implementation of the subsystems’ control does not necessarily need to be FIPA

compliant.

The TCP/IP server depicted in Figure 5.7 for a resource agent model, uses the

Java new I/O (Java NIO) package to implement the TCP/IP protocol. The Java

NIO application programming interfaces (APIs) introduced in Java v1.4, provides

new features and improved performance in the areas of buffer management,

scalable network, file I/O, character-set support, and regular expression matching

(Oracle, 2012). Unlike the Java IO package, Java NIO uses buffers to read and

write to a socket channel. In addition, Java NIO is non-blocking. Non-blocking

mode enables a thread to request data from a channel and only gets what is

currently available, rather than be blocked until data is available as is the case

with the Java IO blocking mode. Therefore, in non-blocking mode, a single thread

can manage multiple channels of input and output. This aspect of Java NIO makes

it possible for a resource agent with one-to-many mapping to control subsystems

offering the same service; thereby introducing redundancy in the system when

needed. Similarly, selectors can be used in Java NIO in managing the socket

channels.

To implement Java NIO in the resource agent, the ServerSocketChannel and

SocketChannel classes are created as fields of a mysockets inner class in the

resource agent. The mysockets inner class is then declared as an object of a Vector

field of the resource agent class. In this way, as many socket channels objects as

needed can be instantiated in the server. The socket channel objects were then

instantiated in the setup() method of the resource agent. Therefore, during the

running of the agent, all the connections are accepted and binding to the

respective ports is done. This further implies that the resource agent must be

running before any subsystem can log into the server.

When a resource agent receives a message through the TCP/IP server socket, it

passes the message to the contract net responder class running within the agent for

the agent to make decisions. This is achieved through the use of a global variable

shared in the agent by the behaviour running the contract net responder class and

Stellenbosch University http://scholar.sun.ac.za

64

the CyclicBehaviour running the server. Depending on the message type, the

global variable is assigned a message and the same message is used by the

contract net responder to make a decision.

When the contract net responder class finally wins a bid, based on the message

received from the subsystem, the message is passed to the subsystem. To pass the

message to the subsystem, the contract net responder class uses a Java Queue to

pass the message. The server periodically checks whether a message is in the

Queue and, when present, writes to the port connecting the subsystem.

5.5.4 CNP based interaction of resource agents

The contract net protocol (CNP) is the basis on which the resource and product

agents interact. All the agents in the control layer begin to run when the cell

controller is running. Resource agents, in particular, begin by publishing their

services to the Directory facilitator (DF) at the same time the TCP/IP server

begins running in the agent. Each subsystem can then log into the server when

ready. The subsystems can either log in at the same time or in sequence. The

logging in of one subsystem does not affect the other subsystems since each agent

has its own TCP/IP server. However, when a subsystem logs in, the staff agent is

sent an ACL message. This message enables the staff agent to give appropriate

expert information to the order agent when information is needed.

When all the subsystems have logged in to their respective resource agents, the

order agent can then take orders from the scheduler through the assigned port.

Assigning a port to the order agent implies that the order agent conforms to the

model on which the resource agent is built (consider Figure 5.7). The order agent

therefore has a TCP/IP server running within the agent. Additionally, the order

agent can also take orders from the operator through the graphical user interface

(GUI).

5.5.5 Information interchange between resource agents and

subsystems

Each subsystem has its own set of parameters that have to be sent to it for it to

effectively carry out the task at hand. These parameters can also be used to

optimize each operation undertaken. The parameters for each subsystem are

explained here.

The modular Cartesian robot needs the coordinate positions for weld points,

speed, weld current and time to weld. Instructions from the product agent to weld

should therefore pass these parameters to the subsystem. The instruction is passed

to the subsystem through an accept proposal message during resource agent and

product agent CNP based interaction when the resource agent wins the bid on

behalf of the subsystem.

On the feeder subsystem, comprising of the 6 DOF robot and singulation unit, the

parameters are different. The 6 DOF robot has to pick and place the circuit

breaker components onto the fixture. The singulation unit uses a camera vision in

Stellenbosch University http://scholar.sun.ac.za

65

order to identify a part and consequently gives the coordinates to the robot. The

robot, upon receiving the coordinates, positions itself to pick that part. Therefore,

the resource agent only passes, from the product agent to the subsystem,

coordinates for placing the part on the fixture and the part types. The instruction

to the subsystem includes: part number, X, Y, and Z coordinates and the pick-up

angle. From this information the robot then finds the position where to pick that

particular part and places it on the fixture.

The conveyor on the other hand needs to know the station where to take the pallet

with the fixture. It does not need to distinguish between fixtures since the pallets

and fixture have standard dimensions. Therefore, the parameters that need to be

passed are the station number (shown in Figure 3.2) to take the pallet. The other

parameter needed by the conveyor is the job number. The job number is used to

differentiate between jobs that are running in the cell. Appendix D.2 gives the

format of sending these parameters to each subsystem.

5.5.6 Fail-safe of resource agents

Since resource agents play a critical role in the control of the subsystems, in that

they are representatives of the actual subsystems, it is important to take care of the

misfortune of them failing during operation. This will enable their respective

subsystems to react accordingly.

Therefore, there must be a mechanism to inform both the cell controller and the

subsystem. As implemented here, if a resource agent fails, that resource agent

takes advantage of the agent architecture to inform the subsystem and the staff

agent. The architecture of the agent class is such that just before the agent

terminates, it invokes the takeDown() method to perform clean-up operations,

such as removing the agent subscription from the DF. It is in the takeDown()

method where the code for sending a reset message to the subsystem using

TCP/IP protocol is placed, as well as an ACL message to the staff agent when the

agent terminates abruptly during operation. The message sent to the staff agent

enables the staff agent to re-launch the agent again after eight seconds. For the

affected subsystem to log in again, they also wait for a minimum of eight seconds

after receiving a reset message before they can log in again. Details of the re-

launching a failed resource agent are explained in Section 5.7.

5.5.7 Introduction of a new resource into the assembly cell

Introducing a new subsystem into the weld assembly cell may be done to increase

the capacity of the cell and/or introduce more functionality into the cell. However,

this task comes with challenges for which are specifically provided for in RMSs.

The procedure provided here for introducing new subsystems into the cell

controller, matches with those suggested by Konrad et al (2012) as being key

factors for a successful ramp-up. The key factors being: easy gathering of operator

knowledge; flexible context-mapping of static and dynamic data, and extensibility

and reusability. On the premise of the aforementioned ramp-up factors, the

Stellenbosch University http://scholar.sun.ac.za

66

introduction of a new subsystem into the cell controller is expounded in the

following paragraphs.

The new subsystem to be introduced in the cell must have a representative

resource agent in the cell controller. That resource agent for the new subsystem to

be introduced must have an assigned TCP/IP port number through which the

subsystem can login to the cell controller. Additionally, the resource agent must

be able to publish its services to the DF and must have a Behaviour implemented

with a one-to-many ContractNetResponder class according to the model in Figure

5.7. The subsystem and the agent must also have a messaging scheme between

them which is understood by both parties. When the product agent begins its CNP

driven messages with the resource agent, the bidding terms must be understood by

both parties.

Furthermore, the service description to be used in registering the services to the

DF must have already been classified for the category of the subsystems to be

introduced. The service description must also be understood by the product agents

which will be using the service. With all these parameters set, the staff agent can

then launch the resource agent for the new subsystem.

This process reduces much effort which could have otherwise been spent in

introducing a new subsystem into the cell, since the impact of introducing the new

resource is restricted to the cell controller. Additionally, when a new resource

agent is introduced, the new services offered by the new subsystem will only have

to be known to the new products.

5.5.8 Removing a resource from the assembly cell

Removing a subsystem from the assembly is a part of reconfiguration activities.

How the process is handled is as important as introducing a new subsystem into

the assembly cell.

When a subsystem is removed from the assembly, the control program is affected

in the following ways: firstly, the product agents which utilize that resource must

be updated; and secondly, the resource agent which connects with the subsystem

can be taken down from the cell controller if need arises. These are the only

factors which affect the cell controller.

After the subsystem has been removed and the product agents updated, the

product agent will only search for the service it needs from the DF before it

engages resources. Even if the resource agent is still registered with the DF,

during CNP driven conversation between the resource agent and the product

agent, the resource agent will refuse the bid since no subsystem has logged into its

server as illustrated in Figure 5.1 and explained in Section 5.5.3 and Section 5.5.4

5.6 Order agent

The order agent has a user interface to interact with the user and can also use a

port through which it can receive orders from other systems. Other systems

Stellenbosch University http://scholar.sun.ac.za

67

include the scheduler, which in our case is developed by the CUT. The scheduler

gives an order to the order agent for execution and awaits a response when the

products have been made. The order placed describes what type of product and

the quantity that is required. Only the product type needs to be specified since all

the processes required to produce that product are already captured in the product

agent.

Upon requesting for a product by the customer, the order agent establishes from

the command received, whether the products are of the same type or not. If the

product type is of the same kind, the order agent creates an instance of the product

agent for each product ordered. The code used to create an instance of the product

is shown in Appendix D.5. The order agent also provides the flexibility of

removing an order from the queue. After completing the task, the product agent is

removed from the cell controller. Removing an agent from cell controller is

implemented using the doDelete() method provided by the JADE.

However, if the products are of different types, the order agent sends ACL

messages to the respective product agents in order to commence production.

Through the same message, the order agent indicates whether the pallet with

fixture should be stored or kept available for a new order. When the orders have

finished, the order agent will accordingly command the product agent to store the

pallet with fixture. This arrangement allows multiple products of different kinds

to run concurrently using the same production facilities. This is one of the

advantages of an RMS. It must be noted here that handling of the traffic is taken

care of by the transportation system.

5.7 Staff Agent

The staff agents assist the three primary agents in performing their duties. This

responsibility qualifies them to have sufficient information to make better

decisions (Valckenaers et al., 1998). In the cell controller, the staff agent has two

tasks to perform and these are: launching all the agents and monitoring all the

resource agents. The launching of agents includes the process of adding a new

subsystem into the cell.

Further, if any of the resource agents which have been launched “dies”, the staff

agent re-launches it after eight seconds. This is to ensure a fault tolerant cell

controller which is able to handle disturbances and maintain production.

To re-launch the resource agent which abruptly terminates, the TickerBehaviour

class of the jade.core.Behaviour.behaviour package is used. The TickerBehaviour

class has the action() and done() methods pre-implemented to execute the

onTick() abstract method repetitively after waiting for a given period. The period

is specified in the constructor. The behaviour only stops when it is explicitly

removed or its stop() method is called. In the staff agent, the TickerBehaviour

class is implemented as an extended class as shown:

private class CreateAgent extends TickerBehaviour {

Stellenbosch University http://scholar.sun.ac.za

68

public CreateAgent(Agent a, String name,String Type){

super(a,8000);

String AgentName=name;

String AgentType=Type;

}

public void onTick(){

// code to execute

stop();

}

}

When any resource agent “dies”, it closes its TCP/IP server channel, as explained

in Section 5.5.6, and sends a message to the staff agent indicating that it is no

longer running. The ACL message is received and “read” by the staff agent. The

same message is used to invoke the CreateAgent inner class, after eight seconds,

and the agent is re-launched. The eight seconds is chosen arbitrarily and therefore

can be changed to meet a designer’s specific need. However, in the same eight

seconds, the system should be able to deregister the failed agent from the DF. In

this way, continuity of production is ensured.

In order to re-launch the failed resource agent, the FIPA request protocol is used

in the staff agent to request the agent management service (AMS) to create the

agent in question. The FIPA request protocol is used within the TickerBehaviour

explained in the preceding paragraphs. The AchieveREInitiator class is used in the

FIPA request protocol and two callback methods, namely handleInform(ACLMess

age inform) and handleFailure(ACLMessage failure) are used to get feedback on

the success or failure of the request respectively. When the failure message is

received, the staff agent informs the order agent not to take any orders. The code

used for re-launching a failed agent is given in Appendix D.6.

Stellenbosch University http://scholar.sun.ac.za

69

6. RECONFIGURATION INVESTIGATION

Reconfiguration investigations were carried out on the cell controller to evaluate

the reconfigurability of the cell controller, based on the six core characteristics of

RMSs (discussed in Section 2.5). Where possible, the available hardware in the

cell was used for the investigation, while simulated resources were used where

physical reconfigurations were not possible. Since the cell subsystems only

interface with the cell controller through exchanging messages, a simulation of a

subsystem could be performed by a computer program that reads the cell

controller’s messages and then returns appropriate replies.

Reconfiguration investigations could not be performed on the modular Cartesian

robot since the CANOpen interface could not be established within the available

time.

All reconfiguration investigations for the cell controller were done on a Dell

laptop with the following specifications:

 Processor: Intel® core ™, i7-2670 QM with clock speed of 2.20GHz

 Installed RAM of 4.0 GB.

 Operating system: Windows 7, 64 bit

 The IP address is 146.232.144.70

The other PCs used in the investigations are: a Windows XP desktop which hosts

the modular Cartesian robot control programs with IP address 146.232.145.145,

the conveyor controller was hosted on a Toshiba laptop with Linux operating

system and IP address 146.232.146.194, and the feeder station was hosted on a

Dell laptop with IP address 146. 232.144.72.

6.1 Investigation 1: Introduction of a new subsystem in the assembly cell

The assembly cell was set up with subsystems arranged as shown in Figure 3.1.

Once the cell controller, hosted on the Dell laptop with IP address

146.232.144.070 started running, all the subsystems logged into their resource

agents, i.e. the conveyor to the ConveyorAgent, the pallet magazine to PMAgent,

the feeder subsystem (with a 6 DOF robot and a singulation unit) to FeederAgent,

and the welder (modular Cartesian robot) to WelderAgent.

A new resource agent (Section 5.5) to connect the new subsystem was developed

and port number 9000 with IP address 146.232.145.21 were assigned. The new

subsystem was simulated for station number four shown in Figure 3.2 and the

control program used for the new subsystem was an adaptation of the agent-based

control developed for the modular Cartesian robot. Using the graphical user

interface (GUI) of the staff agent in Figure 6.1, whose local name in the cell

controller is CellControllerAgent, the agent class, the agent name and the package

where the control program is saved, were passed to the CellControllerAgent.

Stellenbosch University http://scholar.sun.ac.za

70

Figure 6.1 Graphical user interface for staff agent

By clicking the “Launch Agent” button, the new resource agent was added to the

cell controller and the new resource then logged into this new resource agent.

The above procedure successfully simulated adding a new subsystem to the cell.

The procedure also demonstrated that subsystems can be introduced in the

production cell without shutting down the assembly cell.

6.2 Investigation 2: Introduction of a new product in the assembly cell

The introduction of a new product was simulated by a product which implements

the SequentialBehaviour class. The product agent moves the pallet from the pallet

magazine station to the feeder station via the newly introduced subsystem, without

using the services of the weld station, and stores the pallet back into the pallet

magazine before conducting this investigation. The weld station was removed

from the assembly cell as explained in investigation 3. The cell controller was

started and all the subsystems logged into their respective resource agents. The

new subsystem was launched as explained in investigation 1.

The ACL messages to be passed between the order agent, whose local name in the

cell controller is WorkOrderAgent, and the new product agent were established

and programmed.

The new product agent was then launched in the cell controller using the staff

agent with GUI as shown in Figure 6.1. To commence production of the new

product, the WorkOrderAgent (through its GUI) was used. The quantity of

products to be produced, the product type and the name of the product are the

parameters that were passed to the order agent to invoke the new product agent to

start production. The GUI for passing parameters of the new product agent to the

order agent is shown in Figure 6.2

Stellenbosch University http://scholar.sun.ac.za

71

Figure 6.2 Graphical user interface for order agent

This procedure demonstrated the steps required to introduce a new product in the

assembly cell. The procedure also demonstrated that the introduction of a new

product can be done online.

6.3 Investigation 3: Removing a subsystem from the assembly cell

The assembly cell was set up with subsystems arranged as shown in Figure 3.1. In

this investigation, the subsystem to be removed from the cell was the modular

Cartesian robot which interacts with the WelderAgent.

With the cell controller running and the subsystems logged into their respective

resource agents, test runs of a normal production cycle with the weld robot in the

cell were conducted using a product agent designed using a SequentialBehaviour.

Then the modular Cartesian robot was disconnected from the WelderAgent in the

cell controller when the cell controller was still running.

Since the staff agent re-launches a failed agent after eight seconds, as explained in

Section 5.7, the WelderAgent remained in the cell controller, but refused to take a

bid during CNP driven conversations.

The WelderAgent could resume its services at any time if an operational

subsystem logged into it.

This procedure completed the steps required to remove a subsystem from the

assembly cell. It demonstrated that the system could continue functions even

when a subsystem is removed from the assembly cell.

6.4 Investigation 4: Simulating disturbances in the cell when a product

agent using a FSM behaviour is used in production

This investigation did not involve the actual conveyor, but a simulation program

was developed to mimic disturbances that would potentially arise as a result of

mishaps during production. The disturbances that were simulated are when the

conveyor does not respond to commands, and when the conveyor generates a fault

condition after taking an order from the product agent.

Stellenbosch University http://scholar.sun.ac.za

72

The LLC and HLC for the modular Cartesian robot (Section 4.4), with some

changes, were used to represent the conveyor holon. The TickerBehaviour class,

with a constructor that has a String parameter, replaced the OneShotBehaviour

connecting the cell controller with the subsystem. The constructor for the

TickerBehaviour requires the time interval to tick. This time interval is generated

randomly in the agent’s constructor, and passed to the parent class constructor. In

this way, the time of response is uncertain for each operation.

To generate a fault condition or an error, the message received from the LLC

through the String parameter in the constructor is overwritten and assigned an

error message when the response time randomly generated is either ten seconds or

thirty seconds.

In the onTick() method of the TickerBehaviour class, which is called after the time

interval set in the constructor, the LLC message or error message is sent to the cell

controller using a socket object. Then the stop() method is called to stop the

TickerBehaviour.

A few tests using the simulated conveyor with randomly generated errors were

conducted and the product agent implemented in a FSM behavior correctly

handled the errors.

Stellenbosch University http://scholar.sun.ac.za

73

7. EVALUATION OF CONTROL STRATEGIES

Using the experience gain in implementing the controllers for the modular

Cartesian robot and the cell controller, as well as the investigations described in

Section 6, IEC 61499 function blocks were compared to agent based control as

alternative strategies.

When comparing the control strategies, it should be noted that both control

approaches were implemented using Personal Computers (PCs) since available

Programmable Logic Controllers (PLCs) do not support agent based control or

IEC 61499 function blocks. However, there are some differences between the two

strategies that would help in choosing the strategy for a given application. JADE

agents use an asynchronous messaging scheme, while IEC 61499 function blocks

are event driven and use socket connections. These differences have been taken

into account in the evaluations.

Evaluation of the two control strategies was based on the six core characteristics

of RMSs (discussed in Section 2.5). For each characteristic, the two strategies are

evaluated in terms of each one’s ability to enhance reconfiguration in terms of

hardware and software components.

7.1 Scalability of software components

The two control strategies both allow scalability of software components since

they are software objects. In IEC 61499 function blocks, one function block can

be instantiated multiple times by renaming that function block, while in agents, an

agent code can be re-instantiated too. Examples of the applications are: when a

product agent has to produce multiple products of the same type, the order agent

creates multiple instances of the same product agent code; also in the IEC 61499

function blocks, when a function block representing an axis for the modular

Cartesian was created for one axis, the same function block was reused for the

other axes.

Furthermore, for MAS, there are two areas of scalability that can be exploited.

These are hardware and software scalability as identified by Ticky et al (2006).

Hardware scalability is where a system has to allow seamless utilisation of new

computation units and networks that increase performance, robustness or

capabilities of the system, while software scalability affords the possibility of

adding and removing agents from the system at both design stage and run time.

In investigation 2, when a new subsystem was introduced to add capacity or

functionality to the welding assembly cell, the agent offered a seamless utilisation

by having an agent representing the subsytem integrated using the TCP/IP

connection. However, there are limitations to software scalability for the

Windows 7 platform. Since agents run in their own threads, the more they

increase, the more computing resourses they need causing the CPU to increase its

activity.

Stellenbosch University http://scholar.sun.ac.za

74

Before running agents on the Dell laptop with only background programs running,

the CPU usage was at zero percent. When the cell controller agents where run, the

CPU usage shot to twenty-five percent when monitored using the Windows Task

Manager performance window. Such high CPU utilisation for the modest number

of agents in the work presented here, demostrates that computer hardware

limitations should be considered in practical implementations. Therefore, at the

design stage, the maximum number of agents the system would need, if

established, would give an estimation of the hardware and processing power

needed to run an agent-based application. From the investigation, CPU usage

demonstrated a linear relationship to the number of agents used on the PC.

Despite both IEC 61499 function blocks and agents being on par in terms of

scalability, agents have an upper hand since they can be scaled up or down during

runtime. This property of being able to be scaled up or down at runtime makes

them suitable for applications were “objects” can be easily added or removed in a

RMS.

7.2 Modularity of software components

IEC 61499 function blocks are modular. The standard is superior in this regard

since the function blocks (FBs) do not have global variables nor indirect data

access. Moreover, modeling of a control device is made easier since the

functionalities of different FBs, for instance resources, devices, etc., are already

specified. If the developer wants to develop a specific algorithm for a function

block, the standard gives such possibilities. For example, in the experimental

setup, a basic FB was developed for communication between the IEC 61499

control application in the HLC and the Visual C# program in the LLC.

Agents can be modularized to meet a specific control requirement. By partitioning

the whole system which has to be controlled, and then mapping each partition to

respective agents, the control problem can be made into manageable control

modules which are simplified to control.

The three mappings can then be used namely: one-to-one, in which an agent

controls a particular device or system as was used with resource agents in the cell

controller in Figure 5.1 to control subsystems; one-to-many mapping, in which

one agent is controlling a number of devices (this mapping was used in the control

of modular Cartesian robot); and finally, the many-to-one mapping, in which

multiple agents are controlling a single device.

The one-to-one mapping was used to modularize the assembly cell and such

modules could be used when redundancy is needed in the assembly cell.

Furthermore, interaction protocols such as the CNP, used by modularized resource

agents, easies communication between modules.

Therefore, although IEC 61499 function blocks are more modular than agents,

interaction protocols used by agents simplify the implementation of control in

Stellenbosch University http://scholar.sun.ac.za

75

which two or more modular components have to coordinate with each other.

Modularity in software components also enhances scalability.

7.3 Integrability of software components

At the HLC layer, IEC 61499 function blocks suffer a setback. During the

communication process, FBs encode their messages in ANS.1 encoding which

may not be understood by the HLC layer. This scenario means that nearly every

software component which needs to integrate with FBs will need to cater for the

encoding. However, when used to integrate with other IEC 61499 function blocks

or other IEC 61499 compliant platforms, the encoding is not a problem.

Moreover, the library of the standard provides FBs for communication and

interfacing with other IEC 61499 function blocks. Therefore, when FBs are used

for control at HLC layer with other layers which are non-ANS.1 encoding

compliant, message encoding can cause a potential problem during software

integration and during communication.

On the other hand, agents are mostly used at HLC layer and can communicate

with other layers without message encoding barriers. Since agents are more

adapted to this layer, integrating with other HLC layers is not a problem.

Therefore, agents are more integrable at HLC layer than IEC 61499 function

blocks. The IEC 61499 function blocks should be used at LLC for which they are

best suited with their ANS.1 encoding. Moreover, they are event-driven with fast

response time which is vital at the LLC layer.

7.4 Customization of software components

In IEC 61499 function blocks, algorithms can be developed for each FB. This

aspect of a FB having its own algorithm makes customization of IEC 61499

function blocks relatively easier when the program is only needed for a specific

application.

On the other hand, agents already have standard interaction protocols which allow

developers to add their own logic in callback methods. Additionally, the exchange

of messages between agents implementing a protocol-driven conversation is left

to the interaction protocol. This was fully exploited in developing product and

resource agents.

Therefore, IEC 61499 function blocks are more customizable than agents since

the flow of events between FBs can also be customized unlike in agents where

interaction protocols are already fixed.

7.5 Convertibility of software components

IEC 61499 function blocks are categorized and so are the interaction protocols in

JADE agents. To develop an application, the choice of the IEC 61499 function

blocks category to be used in application or the interaction protocol in agents is

dictated by the control program to be implemented. In both control strategies,

converting a software component to meet a new task for which it was not meant is

Stellenbosch University http://scholar.sun.ac.za

76

difficult. However, with agent interaction protocols, developers can add logic to

be implemented in the callback methods. This also includes the use of

registerXXX() methods (e.g registerResultNotification() used in FIPA request) in

which a developer can add a behaviour to be included in the execution of an

interaction protocol.

Therefore, both IEC 61499 function blocks and agents are on par in terms of

convertability. To convert a control program used in an RMS that has been used

for one application would require considerable time and effort.

7.6 Diagnosing a system using software components

It is difficult to diagnose a FB network in FBDK. For instance, in order to

determine whether an event is triggering a FB and outputs are coming out, one

needs to use other human machine interface (HMI) FBs, which might be time

consuming. Furthermore, it is more difficult if a control program developed by a

different developer has to be scaled up by a new developer who had not designed

it.

On the other hand, agents have predefined classes and methods which, when

implemented, help tracing where the problem might arise. In the experimental

setup, a resource agent gets its information from the subsystems to make

decisions. This aspect of agents being able to get data from the equipment they

control to make decisions makes them suitable for the task.

Therefore, agents are more diagnosable than IEC 61499 function blocks.

7.7 Overview

From the investigations carried out in this research, the six core characteristics of

RMSs demonstrated relationships among themselves: convertibility,

customization and scalability were found to be influenced by the integrability,

modularity and diagnosability of the components involved. For example, when

modules are scalable due to their modularity and integrability, customization is

achievable.

In terms of modularity and, thereby scalability, both IEC 61499 function blocks

and agents are inherently modular, thereby facilitating easy scaling. However,

agents’ ability to be added or removed during run time (due to the architecture of

the platform), can be a significant advantage. However, IEC 61499 function

blocks have more clearly defined interfaces, which makes them inherently better

in terms of integrablility.

Stellenbosch University http://scholar.sun.ac.za

77

8. CONCLUSIONS AND RECOMMENDATIONS

The thesis sought to evaluate control strategies that enhance reconfiguration in a

reconfigurable manufacturing system. Control strategies are many and varied.

However, in this research, the focus was on the use of JADE agents and FBDK’s

implementation of the IEC 61499 standard at high-level control layer. There is

currently no commercially available PLC on which agent based control or IEC

61499 function blocks can run. Therefore, all the control strategies were

implemented on a personal computer.

The reconfigurable manufacturing system for which the control strategies were

applied is a welding assembly cell. The cell is intended to handle products with

high variability and changeable volumes. It comprises a conveyor, a pallet

magazine, a feeder subsystem with a 6 DOF robot and a singulation unit, a

modular Cartesian weld robot, and inspection and removal stations. The IEC

61499 standard is only applied in the control of the modular Cartesian robot at

HLC layer and its properties were evaluated in line with the six properties of

RMSs (Koren and Shiptalni, 2010; Koren et al, 1999). JADE agents are applied to

both the modular Cartesian robot and the cell controller.

It can be concluded that agents are more suited for control at HLC layer than IEC

61499 function blocks. IEC 61499 function blocks should be applied on the LLC

layer because the architecture does not support dynamic reconfiguration (which is

a crucial requirement to avoid downtime) and the ASN.1 encoding is suitable to

that layer. The HLC layer has to negotiate and coordinate with other systems,

which is more complex to implement in FBs. Since an IEC 61499 FB does not

have provision for storage of events, it is difficult to be used at HLC for

negotiation and decision making.

Modularity in software components makes software reconfiguration easy for both

IEC 61499 function blocks and JADE agents. The modularity also aids in

structural, software and hardware reconfiguration, since each software module has

a specified component to control. In the IEC 61499 standard, the separation of

events and data makes it more modular than the JADE agents.

When considering scalability, the same modularity in software can enhance

addition and removal of subsystems from the cell. From the agent control

perspective, by partitioning the system and then mapping agents to devices, agents

simplify hardware scalability to the system. Moreover, agents are more scalable

during runtime than FBs, since agents can appear and disappear without stopping

the controller. The ability to disappear and re-appear without affecting the

controller finds greater application during reconfiguration of the assembly cell

since addition and removal or modifications to the cell can be done when the cell

is running.

Furthermore, interaction protocols in agents make the implementation of complex

control systems manageable since communication between agents using an

Stellenbosch University http://scholar.sun.ac.za

78

interaction protocol is already established. It is also possible with agents to

implement a plug and produce system as suggested by Arai et al (2001).

From experience gained, the following recommendations for further work are

made:

 Research should be conducted in combining the IEC 61499 standard and

agents in one unit, since they are all implemented in Java.

 It should be assessed whether an ontology specifically developed for a

manufacturing set up would aid reconfiguration with different vendor

hardware components.

 More tests should be conducted on the use of multiple pallets using the

FSM behaviours on the conveyor since the tests which were conducted on

the FSM behaviour were mostly simulated.

 Research should be conducted for failure modes and effects analysis to

prove reliability of the two control strategies.

Stellenbosch University http://scholar.sun.ac.za

79

REFERENCES

Almeida, F., Terra, B., Dias, P. and Goncalves, G., 2010. 'Adoption Issues of

Multi-Agent Systems in Manufacturing Industry'. IEEE Computer Society,

Volume 48, pp. 238-244.

Arai, T., Aiyama, Y., Sugi, M. and Ota, J., 2001. 'Holonic Assembly System with

Plug and Produce'. Computers in Industry, Volume 46, pp. 289-299.

Bellifemine, F., Caire, G. and Greenwood, D., 2007. Developing Multi-agent

Systems with JADE. West Sussex: John Wiley and Sons Limited.

Bi, Z. M., Lang, S. Y. T., Verner, M. and Orban, P., 2008. 'Development of

Reconfigurable Machines'. International Journal of Advanced Manufacturing

Technology, Volume 39, pp. 1227-1251.

Black, G. and Vyatkin, V., 2009. 'Intelligent Component-Based Automation of

Baggage Handling Systems With IEC 61499'. IEEE Transactions on Automation

Science and Engineering, Volume 7, No. 2, pp. 337-351.

Blanc, P., Demongodin, I. and Castagna, P., 2006. 'A Holonic Approach for

Manufacturing Control: An Industrial Application'. Information Control Problems

in Manufacturing-INCOM 2006, pp. 389-394.

Bongaerts, L., Monostori, L., McFarlane, D. and Kadar, B., 2000. 'Hierarchy in

Distributed Shop Floor Control'. Computers in Industry, Volume 43, pp. 123-137.

Brennan, R. and Fletcher, M., 2002. 'An Agent-Based approach to

Reconfiguration'. IEEE transaction on Robotics and Automation, Volume 18, No.

4, pp. 444-451.

Bruccoleri, M., 2007. 'Reconfigurable Control of Robotised Manufacturing Cells'.

Robotics and Computer- Integrated Manufacturing, Volume 23, No. 1, pp. 94-

106.

Stellenbosch University http://scholar.sun.ac.za

80

Burger, J., 2009. 'Reconfigurable Conveyor System and Pallet Magazine', BEng

Final Year Project, Department of Mechanical and Mechatronic Engineering:

University of Stellenbosch.

Bussmann, S. and Child, K., 2007. 'Self-organisation in Manufacturing

Operations'. Communications of ACM, Volume 50, No. 12, pp. 74-79.

Candido, G. and Barata, J., 2007. 'A Multiagent Control System for Shop Floor

Assembly'. Proceedings of the 3
rd

 International Conference on Industrial

Applications of Holonic and Multi-agent Systems, HoloMAS 2007, pp. 293-302.

Chirn, J. L. and McFarlane, D., 2000. 'A Holonic Component-Based Approach to

Reconfigurable Manufacturing Control Architecture'. 11
th

 International Workshop

Database Expert Systems Application, pp. 219-223.

Chryssolouris, G., Georgoulias, K. and Michalos, G., 2012. 'Production Systems

Flexibility: Theory and Practice'. 14
th

 IFAC Symposium on Information and

Control Problems in Manufacturing, pp 23-25.

EIMaraghy, H. A., 2006. 'Flexible and Reconfigurable Manufacturing Systems

Paradigms'. International Journal of Flexible Manufacturing Systems, Volume 17,

pp. 261-276.

FESTO, 2012a. FESTO. [Online]

Available at: http://www.festo.com

[Accessed September 2012].

FESTO, 2012b. 'Festo CMMP-AS Documentation Manual'.

FIPA, 2012. FIPA. [Online]

Available at: http://www.fipa.org

[Accessed 12 July 2012].

Stellenbosch University http://scholar.sun.ac.za

81

Hall, H., Straton, R. and Zoitl, A., 2007. 'Challenges to Industry Adoption of the

IEC 61499 Standard on Event-Based Function Blocks'. 5
th

 IEEE International

Conference on Industrial Informatics, Volume 2, pp. 823-828.

Hirsh, M., Gerber, C., Hanisch, H.-M. and Vyatkin, V., 2007. 'Design and

Implementation of Heterogeneous Distributed Controllers According to the IEC

61499 Standard-A Case Study'. 5
th

 IEEE International Conference on Industrial

Informatics, Volume 2, pp. 829-834.

Holobloc, I., 2012. Holobloc. [Online]

Available at: http://www.holobloc.com

[Accessed 17 July 2011].

Hussain, T. and Georg, F., 2007. 'Deployment of IEC 61499 Compliant

Distributed Control Applications. IEEE, pp. 502-505.

JADE, 2012. Java Agent Development Environment. [Online]

Available at: http://jade.tilab.com

[Accessed 22 May 2012].

Jennings, N., 2000. 'On Agent-Based Software Engineering'. Artificial

Intellingence, Volume 117, No. 2, pp. 277-296.

Jennings, N. and Bussman, S., 2003. 'Agent-Based Control Systems:Why Are

They Suited to Engineering Complex Systems?'. Volume 23, No. 3, pp. 61-73.

Khalgui, M., Mosbahi, O., Li, Z. and Hanisch, H., 2011. 'Reconfiguration of

Distributed Embedded-Control Systems'. IEEE/ASME Transactions on

Mechatronics, Volume 16, No. 4, pp. 684-694.

Konrad, K., Hoffmeister, M., Zapp, M., Verl, A. and Buss, J., 2012. 'Enabling

Fast Ramp-Up of Assembly Lines through Context-Mapping of implicit Operator

Knowledge and Machine-Derived Data'. IFIP, International Federation for

Information Processing, Volume 371, pp. 163-174.

Stellenbosch University http://scholar.sun.ac.za

82

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G. and Van

Brussel, H., 1999. 'Recongurable Manufacturing Systems'. Annals of the CIRP,

Volume 48, No. 2, pp. 527-540.

Koren, Y. and Shiptalni, M., 2010. 'Design of Reconfigurable Manufacturing

Systems'. Journal Of Manufacturing Systems, Volume 26, pp. 130-141.

Kotak, D., Wu, S., Fleetwood, M. and Tamoto, H., 2003. 'Agent-based Holonic

Design and Operations Environment for Distributed Manufacturing'. Computers

in Industry, Volume 52, pp. 95-108.

Kruger, K., 2013. 'Control of Feeder Subsystems in Reconfigurable

Manufacturing Systems', MScEng Thesis, Department of Mechanical and

Mechatronic Engineering: University of Stellenbosch.

Le Roux, A., 2013. 'Transportation Systems in Reconfigurable Manufacturing

Systems', MScEng Thesis, Department of Mechanical and Mechatronic

Engineering: University of Stellenbosch.

Leitao, P., Colombo, A. W. and Restivo, F., 2005b. Formal Specification of

ADACOR Holonic Control System: Cordination Models. Seville, Spain, 44th

IEEE Conference on Decision and Control, and European Control Conference, pp.

2137-2142.

Leitao, P., Colombo, W. and Restivo, J., 2005a. 'ADACOR: A Collaborative

Production Automation and Control Architecture'. IEEE Intelligent Systems,

Volume 20, No. 1, pp. 58-66.

Leitao, P. and Restivo, F., 2006. 'ADACOR-A Holonic Architecture for Agile and

Adaptive Manufacturing Control'. Computers in Industry, Volume 57, pp. 121-

130.

Lepuschitz, W., Zoilt, A., Vallee, M. and Merdan, M., 2011. 'Toward Self-

Reconfiguration of Manufacturing Systems Using Automation Agents'. IEEE

Stellenbosch University http://scholar.sun.ac.za

83

Transactions on Systems, Man, and Cybernetics-Part C:Applications and

Reviews, Volume 41, No. 1, pp. 52-68.

Marik, M. and Lazanky, J., 2007. 'Industrial Applications of Agent Techologies'.

Control Engineering Practice, Volume 15, pp. 1364-1380.

Mehrabi, M., Ulsoy, A. and Koren, Y., 2000. 'Reconfigurable Manufactruirng and

their Enabling Technologies'. International Journal of Manufacturing Technology

and Management, Volume 1, pp. 113-130.

Mehrabi, M., Ulsoy, A., Koren, Y. and Heytler, P., 2002. 'Trends and Perspectives

in Flexible and Reconfigurable Manufacturing Systems'. Journal of Intelligent

Manufacturing, Volume 13, pp. 135-456.

Meng, F., Tan, D. and Wang, Y., 2006. 'Development of Agent for Reconfigurable

Assembly System with JADE'. Proceedings of the 6
th

 World Congress on

Intelligent Control and Automation, Dalian, China, pp. 7915-7919.

Monostori, L., Vancza, J. and Kumara, S. R. T., 2006. 'Agent-Based Systems for

Manufacturing'. Annals of the CIRP, Volume 55, No. 2, pp. 697-720.

Oracle, 2012. Oracle. [Online]

Available at: docs.oracle.com

[Accessed 4 November 2012].

Padgham, L. and Winikoff, M., 2004. 'Developing Intelligent Agent Systems: A

Practicle Guide'. Sussex: John Wiley and Sons.

Pritschochw, G.,Altintas, Y., Jovane, F., Koren, Y., Mitsuishi, M., Takata, S., Van

Brussel, H., Manfred, W. and Yamazaki, K., 2001. 'Open Controller Architecture:

Past Present and Future'. CIRP Annals-Manufacturing Technology, Volume 50,

No. 2, pp. 463-470.

Stellenbosch University http://scholar.sun.ac.za

84

Pritschow, G., Daniel, C., Junguhans, G. and Sperling, W., 1993. 'Open System

Controllers: A Challenge for the Future of the Machine Tool Industry'. Annals of

the CIRP, Volume 42, No. 1, pp. 449-452.

Rooker, M N.,Sunder, C., Strasser, T., Hummer, O. and Ebenhofer, G., 2007.

'Zero Downtime Reconfiguration of Distributed Automated Systems'. Procceding

of 3
rd

 International Conference on Industrial Application of holoniv and Multi-

agent system, HOLOMAS 2007, pp. 326-337.

Sequeira, M., 2008. 'Conceptual Design of Fixture-Based Reconfigurable Spot

Welding System', MScEng Thesis, Department of Mechanical and Mechatronic

Engineering: University of Stellenbosch.

Setchi, R. M. and Lagos, N., 2004. 'Reconfigurability and Reconfigurable

Manufacturing Systems: State-of-the Art Review',. 2
nd

 IEEE Conference on

Industrial Informatics, INDIN '04, pp. 529-535.

Shen, W., 2002. 'Distributed Manufacturing Scheduling Using Intelligent Agents'.

IEEE Intelligent Systems, Volume 17, No. 1, pp. 88-94.

Strauss, R., 2009. 'Development of a Reconfigurable Parts Feeder for

Automation', BEng Final Year Project, Department of Mechanical and

Mechatronic Engineering: University of Stellenbosch.

Ticky, P., Marik, V., Vrba, P., Macurek, F., Slechta, P., Straton, J R., Mautrana, P

F. and Hall, H K., 2006. 'Deployment of Agent Technologies in Industrial

Applications'. IEEE Workshop on Distributed Intelligent Systems: Collective

Intelligence and its applications, pp. 243-250.

Trentesaux, D., 2009. 'Distributed Control of Production System'. Engineering

Applications of Artificial Intelligence, Volume 22, pp. 971-978.

Stellenbosch University http://scholar.sun.ac.za

85

Valckenaers, P., Van Brussel, H., Wyns, J., Bongaerts, L. and Peeters., 1998.

'Designing Holonic Manufacturing Systems'. Robotics and Computer-Integrated

Manufacturing, Volume 14, pp. 455-464.

Valckenaers, P., Van Belle, J. and Ali, O., 2011. 'PROSA and Delegate MAS for

Open-Air Engineering Processes'. Leuven, Belgium, 2011 IEEE 16
th

 Conference

on Emerging Technologies and Factory Automation (ETFA).

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, P., 1998.

'Reference Architecture for Holonic Manufacturing Systems: PROSA'. Computers

in Industry, Volume 37, pp. 255-274.

Vrba, P., 2012. 'Past, Present and Future of Distributed Intelligent Control in

Industrial Applications'. Bucarest, INCOM 12.

Vrba, P., Ticky, P., Marik, V., Hall, H K., Straton, J R., Maturana, P F. and

Kadera, P., 2011. 'Rockwell Automation's Holonic and Multiagent Control

Systems Compendium'. IEEE Transactions on Systems, Man,and Cybernetics,

Volume 41, No. 1, pp. 14-30.

Vyatkin, V., 2007. 'IEC 61499 Function blocks for Embedded and Distributed

Control Systems Design'. New Zealand: O3 neida.

Wiendahl, P. H., EIMaraghy, H A., Nyhuis, P., Zah, M F., Wiendahl, H H.,

Duffie, N. and Brieke, M., 2007. 'Changeable Manufacturing-Classification,

Design and Operation'. Annals of the CIRP, Volume 56, No. 2, pp. 783-809.

Wooldridge, M. and Jennings N, R., 1999. 'Software Engineering with Agents:

Pitfalls and Pratfalls'. IEEE Internet Computing, Volume 3, No. 3, pp. 20-27.

Xuemei, H., 2009. 'Intelligent and Reconfigurable Control of Automatic

Production Line by Applying IEC 61499 Function Blocks and Software Agents'.

IEEE International Conference on Mechatronics and Automation, pp. 1481-1486.

Stellenbosch University http://scholar.sun.ac.za

86

APPENDIX A: CELL CONTROLLER FUNCTIONAL ANALYSIS

Re/configure
Cell controller

star-up

Cell controller

launches

agents

Subsystems

logs into

respective

resource

agents

Order agent

takes orders

Resource

agents

publishes

services to the

DF

Manual

operation of

subsystems

Scheduler

requests order

agent to

produce

Re-use

pallet

Product agent

offload pallet

from pallet

magazine

Request pallet

from Loader

agent

YES

NO

Product agent

requests

conveyor to

take pallet to

feeder

OR

Product agent

requests

feeder to

place parts on

fixture

Successful? YES

Conveyor

informs

product agent

NO

Successful?

Requests

inspection

agent to

inspect

presence of

parts

YES

NO

Product agent

requests

welder agent

to weld parts

All parts

present?
YES

NO

Product agent

takes an

alternative

route

Successful?

Requests

inspection

agent to

inspect welded

parts

YES

NO

Successful?

Requests

removal agent

to remove

welded parts

YES

NO

Send ACL

message to

respective

product agent

Successful?

Request loader

agent to load

pallet

YES

NO

Any product

agent needs

pallet?

Load pallet in

pallet

magazine

NO

YES

Multiple

products?

NO

Launch

product agents
YES

Request for

pallet

Operator

places an

order

5.0

Product

agents awaits

instruction

1.0 2.0 3.0 4.0

6.0

8.0 9.0

10.0 11.0

12.0 13.0

14.0

15.0 16.0 17.0

18.019.0

20.0
21.0

22.0
23.0 24.0 25.0

26.0

28.0

29.0 30.0 31.0

32.0 33.0 34.0

Figure A.1 Cell controller functional analysis

Stellenbosch University http://scholar.sun.ac.za

87

APPENDIX B: MODULAR CARTESIAN ROBOT CIRCUITS

B.1 CMMP-AS power connection pin

Figure B.1 CMMP-AS Three phase power connection pin assignment (FESTO,

2012b)

B.2 Control circuit

The control circuit shows wiring for the three axes. NC pins to the relay board

indicate signal input from the servo drives used as feedback to coordinate motion

of the three axes. NO from the relay board is used for input to the drives from the

control programme.

Stellenbosch University http://scholar.sun.ac.za

88

L1

E

240V/12V DC

(-)(+)

E
a

g
le

 R
e

la
y
 B

o
a

rd
E

a
g

le
 D

a
ta

 A
c
q

u
is

itio
n

 u
n

it

(+
)

2
4

V
 D

C

(c
o

m
) N
O

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
O

N
O

N
O

N
O

N
O

N
O

10V DC/5V DC

voltage divider

F
in

d
e

r re
la

y

Y

F
in

d
e

r re
la

y

Z

X
 a

x
is

 m
o

to
r c

o
n

tro
lle

r
Y

 a
x
is

 m
o

to
r c

o
n

tro
lle

r
Z

 a
x
is

 m
o

to
r c

o
n

tro
lle

r

W
E

L
D

H
E

A
D

U
S

B
 p

o
rt

D/O

D
/I

N
C

N
C

N
O

N
O

A
N

A
L

O
G

 O
U

T
P

U
T

NC-Normally Closed

NO-Normally Open

D/O-Digital output

D/I -Digital Input

EN-Enable

Figure B.2 Modular Cartesian robot control circuit

Stellenbosch University http://scholar.sun.ac.za

89

B.3 Mains supply

L1 L2 L3 E

M

Z axis motor

controller

Y axis motor

controller

M

X axis motor

controller

M

(+) (-)

240V/ 24V DC

PE

Figure B.3 Power circuit connection

Stellenbosch University http://scholar.sun.ac.za

90

APPENDIX C: MODULAR CARTESIAN ROBOT CONTROL

C.1 Function block high level control

Figure C.1 Modular Cartesian robot function blocks

Stellenbosch University http://scholar.sun.ac.za

91

C.2 Modular Cartesian robot functional Analysis

Re/start-up Notify ready
Wait for

instruction

Shutdown

Reply to

enquiry

Confirm pallet

ready

Notify not

ready

Obtain weld

instructions

Perform

welding

Notify

Operation

complete

Move to

safe

position

Is electrode re-

dress due?

Notify error

Notify not

ready

Move to dress

position

OR

Re/start-up

Input power to X-Y-Z

motor controllers

and proximity

sensors

Confirm pallet

ready

Move Z-axis

initial to home

position

Move Y-axis

from initial to

home position

Move X-axis

from initial to

home position

Move X-Y-Z to

home positions

Move X-Y-Z to

home positions

Set up

communication

parameters

Re/configure

robot

Move X-Y-Z axis to

home positions

1.0 2.0 3.0 4.0 5.0

6.0

7.0

8.0

9.0

10.0

11.0 12.0 13.0 14.0

15.0

16.0

17.0

Ref 2.0 2.1 2.2 Ref 3.0

Ref 3.0 3.1 3.2 3.3 Ref 4.0

NOGO

GO

Obtain weld

Instructions

Obtain X-axis

coordinates and

speed

Obtain Y-axis

coordinates and

Speed

Obtain Z-axis

coordinates and

speed

Ref 11.0

Perform

welding

11.1 11.2 11.3 Ref 12.0

Figure C. 2a Modular Cartesian robot functional analysis

Stellenbosch University http://scholar.sun.ac.za

92

Perform

welding

Move Z-axis to

safe height
AND

Move X-axis to

weld position

Move Y-axis to

weld position

Move Z-axis to

weld position
Spot weld

Move weld to

next position

Move to safe

position

GO

NOGO

12.1

12.2

12.3 12.4

Ref 13.0

Figure C.2b Modular Cartesian robot functional analysis

Stellenbosch University http://scholar.sun.ac.za

93

APPENDIX D: CELL CONTROLLER PORTS AND DATA EXCHANGE

FORMATS

D.1 Port designation of subsystems

Port assigned to each Agent after a colon [:]

Cell Controller

Pallet

MagazineAgent

:8000

ConveyorAgent

:8010

InspectionAgent

:8040

FeederAgent

:8020

RemovalAgent

:8050

Low Level

control

:8500

WelderAgent

:8030

OrderAgent

:8060

NewResourceAgent

:9000

Figure D.1 Agent ports

D.2 Messaging formats for subsystems

The general messaging format between the cell controller and the conveyor is:

“Descriptor, Job ID, from which station, to which station;”.

An example of a typical command to move a pallet from the pallet station to the

feeder station is CC_MOVING, 4, 1, 2. Note that the semicolon is part of the

command. The CC_MOVING is the descriptor, 4 is the Job ID, 1 is the station

from where the pallet is taken from i.e. the pallet station, while 2 is the feeder

station (where to take the pallet). The station numbers correspond with Figure 3.2

Stellenbosch University http://scholar.sun.ac.za

94

where each station is assigned a number as can be shown in the example as

follows:

 pallet magazine is assigned one ,

 feeder station is assigned two

 inspection station is assigned

 removal station is assigned number two and

 welder station is assigned number five.

The commands are grouped into execution, diagnostics and startup/ shutdown. For

instance, conveyor messages may start with CC_XXXX and for execution,

HW_INTERFACE. All resource agents in cell controller understand the meaning

of their respective subsystem semantics.

The welder also has a similar messaging scheme. For instance, in order to weld,

when the modular Cartesian robot is in digital I/O configuration, the command

“WELD, 1;” will trigger the whole wedding process. The “WELD” is an

instruction, while the number one is the product type. The drives searches for the

product type from the position set table and executes the command.

The feeder station uses the XML messaging format as:

<?xml version= “1.0” encoding= “UTF-16”?>

<CELLCONTROLLER><FEEDER><COMMAND>LOAD</COMMAND>

<PRODUCT>1</PRODUCT><NUMBOFTASKS>4</NUMBOFTASKS>

<TASK1>1</TASK1><X1>105.85</X1><Y1>150.6</Y1><Z1>27.77</Z1>

<A1>0.0</A1><TASK2>2</TASK2>……<TASK3>3</TASK3>…..

</FEEDER></CELLCONTROLLER>

All the coordinate positions are passed to the feeder for a particular product in this

manner. Each task from the XML string has X, Y, Z and the angle denoted by A1

where 1 corresponds to the task number.

The pallet magazine has a messaging scheme with parameters that indicate the

pallet type and where it must be offloaded. To offload a pallet, a command is of

format “CM_UNLOADING, 0, 2;” and loading a pallet is of the format

“CM_LOADING, 0, 2;”

D.3 Agent code for service description and publishing to the DF
DFAgentDescription dfd = new DFAgentDescription();

dfd.setName(getAID());

ServiceDescription sd = new ServiceDescription();

sd.setType("Descrition of service type");

sd.setName(getLocalName() + "local name of the

agent");

dfd.addServices(sd);

try {

 DFService.register(this, dfd);

Stellenbosch University http://scholar.sun.ac.za

95

} catch (FIPAException fe) {

 fe.printStackTrace();

}

D.4 Agent code for searching for services
DFAgentDescription template = new DFAgentDescription();

ServiceDescription sd = new ServiceDescription();

sd.setType(AgentType_to_search);

template.addServices(sd);

SearchConstraints sc = new SearchConstraints();

long maxDepth = 5;

long maxResults = 5;

sc.setMaxDepth(maxDepth);

sc.setMaxResults(maxResults);

try {

DFAgentDescription[] result = DFService.search(myAgent,

template, sc);

 ResourceAgents.clear();

for (int i = 0; i < result.length; ++i) {

 ResourceAgents.addElement(result[i].getName().getL

ocalName().toString());

 System.out.println(ResourceAgents.elementAt(i));

 }

} catch (FIPAException fe) {

 fe.printStackTrace();

 }

if (!ResourceAgents.isEmpty()) {

 System.out.println(ResourceAgents.elementsAt(0)+”:

Found”);

}else {

System.out.println("Agent with service :" +

AgentType_to_search + ": was found");

ACLMessage sfd = new ACLMessage(ACLMessage.INFORM);

sfd.addReceiver(new AID("CellControllerAgent",

AID.ISLOCALNAME));

sfd.setContent(“AgentType_to_create”);

this.send(sfd);

}

ACLMessage msg = new ACLMessage(ACLMessage.CFP);

msg.setContent(Ready_msg);

Iterator<String> it = ResourceAgents.iterator();

while (it.hasNext()) {

String ResourceAgent = (String) it.next();

msg.addReceiver(new AID(ResourceAgent,

AID.ISLOCALNAME));

Stellenbosch University http://scholar.sun.ac.za

96

ResourceAgents.removeElement(it);

}

msg.setProtocol(FIPANames.InteractionProtocol.FIPA_CONT

RACT_NET);

D.5 Code for creating multiple agents
for (int j = 0; j < numberOfOrders; j++) {

CreateAgent ca = new CreateAgent();

ca.setAgentName(agentName + j);

ca.setClassName(agentType);

ca.setContainer(new

ContainerID(AgentContainer.MAIN_CONTAINER_NAME, null));

Action actExpr = new Action(getAMS(), ca);

ACLMessage request = new

ACLMessage(ACLMessage.REQUEST);

request.addReceiver(getAMS());

request.setLanguage(slCodec.getName());

request.setOntology(JADEManagementOntology.NAME);

request.setProtocol(FIPANames.InteractionProtocol.FIPA_

REQUEST);

try {

 getContentManager().fillContent(request, actExpr);

System.out.println("Request sent");

addBehaviour(new AchieveREInitiator(myAgent, request) {

private static final long serialVersionUID = 1L;

protected void handleInform(ACLMessage inform) {

System.out.println("Agent successfully created");

}

protected void handleFailure(ACLMessage failure){

System.out.println("Error creating agent.");

}

});

} catch (Exception e) {

e.printStackTrace();

}

}

D.6 Code for re-launching an agent
CreateAgent ca = new CreateAgent();

ca.setAgentName(agentName);

ca.setClassName(agentType);

ca.setContainer(new

ContainerID(AgentContainer.MAIN_CONTAINER_NAME, null));

Action actExpr = new Action(getAMS(), ca);

ACLMessage request = new

ACLMessage(ACLMessage.REQUEST);

request.addReceiver(getAMS());

Stellenbosch University http://scholar.sun.ac.za

97

request.setOntology(JADEManagementOntology.NAME);

request.setLanguage(FIPANames.ContentLanguage.FIPA_SL);

request.setProtocol(FIPANames.InteractionProtocol.FIPA_

REQUEST);

try {

 getContentManager().fillContent(request, actExpr);

 System.out.println("Request sent");

 addBehaviour(new AchieveREInitiator(myAgent,

request) {

 private static final long serialVersionUID = 1L;

 protected void handleInform(ACLMessage

inform) {

 System.out.println("Agent successfully created");

 }

 protected void handleFailure(ACLMessage failure) {

 System.out.println("Error creating agent.");

 ACLMessage msg=new ACLMessage(ACLMessage.INFORM);

msg.addReceiver(new AID("WorkOrderAgent",AID.ISLOCAL

NAME));

 msg.setContent(agentName);

 msg.setOntology(JADEManagementOntology.NAME);

 myAgent.send(msg);

 }

});

} catch (Exception e) {

 e.printStackTrace();

}

stop();

}

Stellenbosch University http://scholar.sun.ac.za

