
Unsupervised Feature Learning for Speech
Using Correspondence and Siamese

Networks

Petri-Johan Last

Report submitted in partial fulfilment of the requirements of the
module

Project (E) 874 for the degree Master’s in Engineering in the
Department of Electrical and Electronic Engineering at

Stellenbosch University.

Supervisor: Dr H. Kamper and Prof. H.A. Engelbrecht

March 2020

Acknowledgements

Eerstens wil ek dankie sê aan my ma. Sonder mamma se opofferinge en motivering sou

nie ek of Jolanie wees waar ons vandag is nie. Aan my studieleiers, Herman en Herman,

baie dankie vir die (amper) weeklikse terugvoersessies. Aan Prof. Engelbrecht, dankie

vir die laaste paar jaar se studieleiding. Ons het deur ’n hele paar meestersonderwerpe

gegaan, maar ek is bly hierdie laaste een het darem gewerk. Aan Dr Kamper, dankie dat

jy my onder jou vlerk ingeneem het hierdie laaste jaar, anders het ek en Prof. Engelbrecht

heel moontlik nog ’n onderwerp sit en uit dink vir volgende jaar. Aan G-J van Custos,

dankie vir speler nommer drie wees op die studieleidingspan en die ondersteuning deur die

jaar. Dan aan Lize-Marié, my verloofde, my alles. Dankie dat ek by jou kon kla oor my

studieleiers. Dankie dat jy saam met my opgewonde was wanneer dinge gewerk het en my

ondersteun het wanneer dinge nie gewerk het nie.

i

Stellenbosch University https://scholar.sun.ac.za

Plagiaatverklaring / Plagiarism Declaration

1

2

3

4

5

Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele

eiendom van ander persone asof dit jou eie werk is.

Plagiarism is the use of ideas, material and other intellectual property of another’s work

and to present it as my own.

Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit ‘n vorm van

diefstal is.

I agree that plagiarism is a punishable offence because it constitutes theft.

Ek verstaan ook dat direkte vertalings plagiaat is.

I also understand that direct translations are plagiarism.

Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die

internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks

sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.

Accordingly all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without

quotation marks (even when the source is cited) is plagiarism.

Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my

eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik

ingehandig het vir bepunting in hierdie module/werkstuk of ‘n ander module/werkstuk

nie.

I declare that the work contained in this assignment, except where otherwise stated, is

my original work and that I have not previously (in its entirety or in part) submitted it for

grading in this module/assignment or another module/assignment.

Voorletters en van / Initials and surname

P Last March 2020
Datum / Date

U NlVERSlTElT· STELL EN BOSCH· UNlVE RSlTY
jou kennisvennoot • your knowledge partner

Copyright © 2020 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Abstract

English

In automatic speech recognition systems, speaker characteristics, such as gender, pitch,

and talking speed, can affect the performance of the system. Humans, however, are

able to understand what is being said, regardless of these speaker characteristics. There

are therefore features in speech that make up word identities, regardless of the speaker

characteristics. Being able to learn such features from speech would be beneficial to

downstream speech processing tasks.

In this thesis, we perform three experiments. Throughout all three experiments,

networks are trained on unlabelled speech data so that their applicability in a zero resource

environment can be evaluated. Terms are automatically discovered using an unsupervised

term discovery system, and the training procedure as a whole is unsupervised. The networks

learn frame-level acoustic features, which are then evaluated using a word discrimination

task that also measures speaker independence.

In the first experiment, we perform a comparison between the correspondence au-

toencoder (CAE) and Triamese networks. We show that, under the described training

conditions, features produced by the CAE outperform those produced by the Triamese

network.

In the second experiment, we investigate the effect speaker conditioning has on fea-

tures produced by the CAE. A speaker matrix is constructed with randomised speaker

representations for each speaker in the training set. By using access to the speaker labels,

a speaker embedding is extracted from this matrix and concatenated to the input of the

decoder half of the network. These embeddings are fully trainable, which gives the network

more parameters to manipulate and, in theory, make the encoder half of the network less

prone to keep speaker-specific information. We show that speaker conditioning produces

mixed results, as it worsens performance on one dataset while increasing performance on

another.

In the final experiment, we develop a novel CAE-Triamese hybrid network, the CTri-

amese network. By applying the contrastive loss of the Triamese network to the middle

layer of the CAE, the intermediate representations of the CAE face an extra constraint.

We show that this network produces features that outperform features produced by both

the CAE and Triamese networks on the evaluation task. We also show that, unlike the

CAE, the CTriamese network produces features that score higher on the evaluation task

when speaker conditioning is introduced.

iii

Stellenbosch University https://scholar.sun.ac.za

Abstract iv

Afrikaans

In outomatiese spraakherkenningstelsels kan sprekerkenmerke, soos geslag, toonhoogte en

geselssnelheid, die werking van die stelsel bëınvloed. Mense kan egter verstaan wat gesê

word, ongeag hierdie sprekerkenmerke. Daar is dus kenmerke in spraak wat woordidentiteite

bëınvloed, wat onafhanklik van die sprekerkenmerke is. Om sulke eienskappe uit spraak te

leer kan voordelig wees vir spraakverwerkingstake.

In hierdie tesis voer ons drie eksperimente uit. In al drie eksperimente word netwerke

opgelei op ongemerkde spraakdata, sodat die toepaslikheid daarvan in ’n nulhulpbronom-

gewing beoordeel kan word. Terme word outomaties ontdek deur ’n termontdekkingstelsel

sonder toesig, en die opleidingsprosedure as geheel het geen toesig nie. Die netwerke

leer akoestiese kenmerke op raamvlak, wat dan geëvalueer word met behulp van ’n

woorddiskriminasie-taak wat ook die sprekersonafhanklikheid meet.

In die eerste eksperiment voer ons ’n vergelyking uit tussen die korrespondensie outo-

enkodeerder (KOE) en Triamese netwerke. Ons toon aan dat kenmerke wat deur die

KOE vervaardig is, beter vaar in die evalueringstaak as die wat deur die Triamese netwerk

vervaardig is, onder die bogenoemde opleidingsomstandighede.

In die tweede eksperiment ondersoek ons die effek wat sprekerkondisionering het op

die kenmerke wat deur die KOE vervaardig word. ’n Sprekermatriks word saamgestel met

lukrake sprekervoorstellings vir elke spreker in die opleidingstel. Deur toegang tot die

spreker identiteite te gebruik, word ’n sprekervoorstelling uit hierdie matriks onttrek en

gekoppel aan die ingang van die dekodeerderhelfte van die KOE. Hierdie voorstellings kan

deur die netwerk aangepas word, wat die netwerk meer parameters gee om te manipuleer

en, in teorie, die kodeerderhelfte van die netwerk minder geneig maak om sprekerspesifieke

inligting te hou. Ons toon aan dat sprekerskondisionering gemengde resultate lewer,

aangesien dit die prestasie op een datastel vererger en die prestasie op ’n ander verhoog.

In die laaste eksperiment ontwikkel ons ’n nuwe KOE-Triamese basternetwerk, die

KTriamese netwerk. Deur die kontrasverlies van die Triamese netwerk op die middelste laag

van die KOE toe te pas, het die intermediêre voorstellings van die KOE ’n ekstra beperking.

Ons toon aan dat hierdie netwerk kenmerke lewer wat beter vaar in die evalueringstaak as

kenmerke wat deur die KOE en Triamese netwerke vervaardig word. Ons toon ook aan

dat die KTriamese-netwerk, anders as die KOE, kenmerke produseer wat beter vaar in die

evalueringstaak wanneer sprekerkondisionering toegepas word.

Stellenbosch University https://scholar.sun.ac.za

Contents

Abstract iii

List of Figures viii

List of Tables x

Nomenclature xi

1. Introduction 2

1.1. Motivation . 3

1.2. Background . 4

1.3. Literature synopsis . 4

1.3.1. Autoencoders . 4

1.3.2. The correspondence auto-encoder 5

1.3.3. The Siamese network . 5

1.3.4. The Triamese network . 5

1.4. Objectives . 5

1.4.1. Comparing the CAE and Triamese networks 6

1.4.2. Improving the CAE with speaker conditioning 6

1.4.3. Build a CAE-Triamese hybrid network 6

1.5. Contributions . 6

1.6. Overview of this work . 7

2. Literature review 9

2.1. Zero resource environments . 9

2.2. Mel-frequency cepstral coefficients . 10

2.3. Dynamic time warping . 10

2.3.1. Segmental dynamic time warping 11

2.4. Unsupervised term discovery . 11

2.5. Evaluation . 12

2.5.1. Precision and recall . 12

2.5.2. The same-different task . 14

2.5.3. The ABX task . 15

2.6. Neural networks . 16

2.6.1. Optimisation . 16

v

Stellenbosch University https://scholar.sun.ac.za

Contents vi

2.7. Activation functions . 19

2.7.1. Linear function . 19

2.7.2. Rectified linear unit . 20

2.8. The Siamese network . 21

2.9. The Triamese network . 23

2.10. The correspondence autoencoder . 24

2.11. Chapter summary . 24

3. Datasets 26

3.1. The Buckeye corpus of conversational English 26

3.1.1. Training, validation and test sets 26

3.2. The NCHLT speech corpus of South African languages 27

3.2.1. Training and test sets . 27

3.3. Data processing . 28

3.3.1. Extract MFCCs with CMVN, deltas and delta-deltas 28

3.3.2. Unsupervised term discovery (UTD) 28

3.3.3. Voice activity detection . 29

3.3.4. Word pair alignment . 29

3.4. Chapter summary . 29

4. A comparison of the correspondence autoencoder and the Triamese network 30

4.1. The networks . 30

4.1.1. The correspondence autoencoder (CAE) 30

4.1.2. The Triamese network . 31

4.1.3. Network comparison . 32

4.2. Experiments . 33

4.2.1. Purpose of experiment . 33

4.2.2. Datasets . 33

4.2.3. Unsupervised term discovery . 34

4.2.4. Evaluation metric . 34

4.2.5. Experimental setup . 35

4.2.6. Results . 36

4.3. Chapter summary and conclusions . 37

5. Introducing speaker information into the CAE 39

5.1. Hypothesis . 39

5.1.1. Adding speaker information . 39

5.2. Experiments . 40

5.2.1. Experimental setup . 40

5.2.2. Results . 41

Stellenbosch University https://scholar.sun.ac.za

Contents vii

5.3. Chapter summary and conclusions . 42

6. The Correspondence Triamese Network 43

6.1. CAE and Triamese . 43

6.2. Hypothesis . 44

6.3. The correspondence Triamese network (CTriamese) 44

6.4. Speaker information . 45

6.5. Experiments . 46

6.5.1. Experimental setup . 46

6.5.2. Training procedure . 47

6.5.3. Results . 47

6.6. Chapter summary and conclusions . 49

7. Summary and conclusion 50

7.1. Comparison of the CAE and Triamese networks 50

7.2. Speaker conditioning in the CAE . 51

7.3. The CTriamese network . 51

7.4. Contributions . 51

7.5. Future work . 52

Bibliography 53

A. Network implementations in Python 57

A.1. CAE . 57

A.2. Triamese . 58

A.3. CAE with speaker conditioning . 59

A.4. CTriamese with speaker conditioning . 61

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1. Example of MFCCs from two terms aligned using DTW [1]. Frames from

one term that are similar to the other term are mapped to each other. . . . 11

2.2. Examples of precision-recall curves from [2]. 14

2.3. A linear activation function. 19

2.4. A ReLU activation function. 20

2.5. A leaky ReLU activation function. 21

2.6. A randomised leaky ReLU activation function. The different values of a

are randomised for each unit. 22

2.7. A Siamese network. The two subnetworks are identical and share weights.

An embedding is extracted from each input and compared. Depending on

whether or not the embeddings are representing the same type of input, a

distance function is minimised or maximised. 22

2.8. A Triamese network. The three subnetworks are identical and share weights.

An embedding is extracted from each input. The loss function attempts to

minimise the distance between two inputs while simultaneously maximising

the distance to the third input. 23

2.9. The CAE is trained using word pairs consisting of similar words spoken by

a variety of speakers [1]. The network consists of two halves: an encoder

and a decoder. Feature embeddings are extracted from the middle layer. . 24

4.1. The correspondence autoencoder (CAE) is trained to reconstruct one acous-

tic frame in a discovered word from another [1]. 31

4.2. The Triamese network is trained so that the embeddings ea and eb of the

same type are more similar by a margin m than embeddings ea and e′ of

different types. 32

5.1. Speaker information is introduced to the CAE by manner of an n × m

matrix that is trained alongside with the network. 40

6.1. A CAE next to a Triamese network. As shown by the dotted box, a single

branch of a Triamese network is identical to the encoding half of a CAE. . 44

6.2. The final network architecture of the CTriamese network. Each branch

of the Triamese network can be extended to a full CAE network, thus

employing the constraints of both networks on the embedding layer. 45

viii

Stellenbosch University https://scholar.sun.ac.za

List of Figures ix

6.3. The final network architecture of the CTriamese network. Each branch

of the Triamese network can be extended to a full CAE network, thus

employing the constraints of both networks on the embedding layer. 46

Stellenbosch University https://scholar.sun.ac.za

List of Tables

3.1. Speaker distribution in the Buckeye subsets. 27

3.2. Speaker distribution in the Xitsonga subsets. 28

4.1. Results from the evaluation task show that, when trained on UTD terms,

features produced by the CAE outperforms those produced by the Triamese

network. The Triamese network also failed to outperform the baseline

MFCCs on the English test set, possibly due to being sensitive to the

selection of training pairs. 36

4.2. Results from the evaluation task show that, when trained on ground truth

terms, features produced by the CAE outperforms those produced by the

Triamese network. Using an Adam optimiser instead of stochastic gradient

descent worsened the performance of the Triamese network. 37

5.1. Each network is trained using discovered terms. The network is then used as

a feature extractor, and the features are evaluated using the same-different

task. 41

5.2. Each network is trained using ground truth terms. The network is then used

as a feature extractor, and the features are evaluated using the same-different

task. 41

6.1. Results from the evaluation task with each network trained on UTD terms.

For both AP and PRB a higher value is better. 48

6.2. Results from the evaluation task with each network trained on ground truth

terms. For both AP and PRB a higher value is better. 48

x

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Variables and functions

f Frequency.

P Precision.

R Recall.

W Set of words.

w Single word.

τ Threshold parameter.

P (τ) Precision with respect to threshold τ .

R(τ) Recall with respect to threshold τ .

θ Parameter vector of a neural network.

θ Specific parameter in a neural network.

G Sum of squared gradients.

g Gradient of a parameter.

RMS Root Mean Squared Error.

mt Decaying average of past gradients.

vt Decaying average of past squared gradients.

β Decay rate.

e Embedding Vector.

γ Margin Paremeter.

s Speaker.

xi

Stellenbosch University https://scholar.sun.ac.za

Nomenclature 1

Acronyms and abbreviations

AP Average Precision

ASR Automatic Speech Recognition

CAE Correspondence Auto-encoder

CTriamese Correspondence Triamese

DCT Discrete Cosine Transform

DTW Dynamic Time Warping

MFCC Mel-Frequency Cepstral Coefficient

PLP Predictive Linear Prediction

PRB Precision-Recall Breakeven

SDTW Segmental Dynamic Time Warping

SGD Stochastic Gradient Descent

ReLU Rectified Linear Unit

RReLU Random Rectified Linear Unit

UTD Unsupervised Term Discovery

VAD Voice Activity Detection

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Not all languages in the world are written [3]. In some cases, collecting labelled speech

data for these languages can be nearly impossible. We refer to these languages for which

resources are scarce or non-existent as zero resource languages. However, just because these

languages are not written does not mean they are seldomly used. Various Chinese and

Arabic variations have no written form but are spoken by millions of people [4]. A language

does not have to be unwritten for it to be classified as a zero resource language, and being

zero resource does not mean it is nearly extinct. Zero resource simply means no labelled

speech resources are available. However, our most advanced methods of developing speech

technologies, such as automatic speech recognition, rely on large quantities of labelled data.

We refer to this method of training that requires labelled data as supervised learning [5].

The requirement of labelled training data presents a problem for zero resource languages

and for the people who speak them. The lack of labelled training data means that large

populations of the world cannot benefit from the technologies we develop. Researchers have

therefore also started to develop methods of developing speech technologies without labelled

data, and we refer to it as unsupervised learning [5]. Supervised learning methods generally

far outperform their unsupervised counterparts [6], but in zero resource environments,

supervised learning is not an option.

Zero resource speech processing has piqued the interest of a variety of fields. The field

of cognitive science has an interest in modelling infant speech acquisition [7]. Children can

acquire speech long before they learn to write, and they learn to speak by constant exposure

to spoken language, other social and visual cues, and interaction in their environments.

From the child’s perspective, they are operating in a zero resource environment. Similarly,

if a computer is tasked to learn a language in an unknown environment, it should be

equipped to operate in a zero resource environment. Linguists require tools that can work

with zero resource languages if they mean to study the language [8]. In the Zero Resource

Speech Challenge [9], researchers around the world every year attempt to solve a specific

task in the more significant problem of language acquisition for machines.

The use of neural networks has seen great success in the handling of these tasks [10],

and it is these neural networks that we will be focusing on in this thesis. Specifically, we

compare two neural networks that have seen success in the area of unsupervised speech

processing, specifically for feature extraction. We attempt to improve upon one of these

2

Stellenbosch University https://scholar.sun.ac.za

1.1. Motivation 3

models by using our access to speaker identities during training. We also present a novel

hybrid network that merges these two approaches and show that the resulting features

score higher on a word discrimination task that also measures speaker independence.

1.1. Motivation

Speech can sound significantly different depending on the speaker. Women tend to have

higher pitch compared to men, and individuals talk at different speeds at different times.

All of these characteristics are reflected in the speech data itself. The same word spoken by

two different people can appear vastly different when looking at the data alone. However,

humans are able to understand what is being said, regardless of the speaker. This task is

not quite as simple in the field of speech processing. Given a spoken word, we want to

classify this word by its type, regardless of the speaker. We have to extract information

from these words that maintains the identity of the word while disregarding information

such as the speaker of the word. This feature extraction task is fundamental to other

downstream speech processing tasks, such as query by example search or automatic speech

recognition [11–14].

The work presented in this thesis builds upon previous work conducted by Kamper et

al. in the development of the correspondence autoencoder (CAE) [6]. They developed the

CAE to act as a generic feature extractor. The goal is to extract features from speech data

that keep meaningful linguistic contrasts that make up the word identity while disregarding

speaker-specific features, like the speaker’s pitch, gender, and speech tempo. The purpose

of this work is to build upon their work and improve the performance of downstream

speech processing tasks in zero resource environments as a whole. We investigate whether

speaker conditioning during training can improve the features produced by the CAE.

While several networks are developed every year, researchers use different evaluation

techniques on different datasets, making a fair comparison between networks that perform

similar tasks difficult or even impossible. We compare the CAE with another promising

network: the Triamese network [15]. The Triamese network, like the CAE, was also

developed for speaker-independent feature extraction. However, to our knowledge, these

networks have never been compared using the same evaluation technique on the same

data.

Lastly, we investigate whether or not these networks have aspects that are comple-

mentary to one another. The CAE and Triamese networks propose different methods of

feature extraction, and both have seen success with their methods. However, the fact that

the methods are different can be beneficial, as this means that both networks are possibly

doing something the other network is not. If these networks can be combined to work

together in some way and produce features that outperform the features produced by the

individual networks, we can show that the networks are indeed complementary.

Stellenbosch University https://scholar.sun.ac.za

1.2. Background 4

1.2. Background

The following is a list of concepts that are necessary to understand the rest of this chapter.

We explain each of these concepts more thoroughly in Chapter 2.

• Mel-frequency cepstral coefficients (MFCCs) refer to a specific set of features

extracted from audio files. MFCCs have proven to be very useful in speech processing,

and many researchers use it as the base input they use to train their neural networks.

• The ABX task is an evaluation task in which an input (X) is presented and classified

as either belonging to a group A or B. From the results, an error rate is calculated

which is used as a performance metric.

• The same-different task is an evaluation task in which a distance is calculated

between all pairs in a set. Pairs which are closer than some specified threshold

are classified as belonging to the same set. From the classifications, two metrics

are produced: precision (how many classifications were correct) and recall (what

fraction of actual correct classifications were considered). By varying the threshold,

a precision-recall curve is produced. The area under this curve, called the average

precision (AP), is used as a performance metric.

• Autoencoders refer to a specific type of neural network that attempts to replicate

its input at the output. These have various applications, including the denoising of

data or finding alternative representations of data (such as compression or feature

extraction).

• Unsupervised term discovery (UTD) refers to a system in which repeated utter-

ances are automatically detected and labelled in a large body of unlabelled speech

data. A UTD system is valuable in an unsupervised setting as it labels otherwise

unlabelled speech data, allowing us to make use of supervised machine learning

techniques.

1.3. Literature synopsis

1.3.1. Autoencoders

Autoencoders [5] are neural networks that are trained to replicate their input at their

output. Autoencoders consist of two halves: an encoder and a decoder. There is a hidden

layer in the middle which connects the encoder and the decoder. By varying the size of

this hidden layer and other training conditions, autoencoders can be trained to perform

a variety of tasks, such as compression [16], denoising input [5] and finding alternative

Stellenbosch University https://scholar.sun.ac.za

1.4. Objectives 5

feature representations of data [17]. Once an autoencoder is trained, the encoder and

decoder halves can be split and used independently.

1.3.2. The correspondence auto-encoder

Kamper et al. [6] proposed the correspondence auto-encoder, which uses weak top-down

supervision in the form of word pairs discovered by an unsupervised term discovery system.

By using pairs of similar words spoken by different speakers as an input-output pair, the

CAE learns feature representations in a middle bottleneck layer. Since the speakers of

the word pair differ but the word identity is the same, the network disregards speaker

information so that the output target can be reconstructed as closely as possible. Kamper

et al. [6] showed that speech features produced by the CAE nearly match those produced

by a supervised neural network.

1.3.3. The Siamese network

A Siamese network [18] consists of two identical subnetworks which share weights. The

network is trained on pairs of inputs, which can be labelled positive or negative. A positive

input pair represents two inputs of the same type, while a negative input pair consists of

inputs of different types. Each subnetwork extracts a feature set from each input, and then,

depending on the label of the pair, the loss function attempts to minimise or maximise

a distance function. These networks have seen a wide variety of applications, including

signature verification [18] and speech processing [15].

1.3.4. The Triamese network

Zeghidour et al. [15] proposed the Triamese network, which is a derivative of the Siamese

network. The Triamese network is trained on word triplets, where two of the words are

the same word spoken by different speakers, and the third word is a different word spoken

by one of the other two speakers. This network compares the features extracted from the

words during training and adjusts itself so that the features of the two identical words

are more similar and the features of the third word are less similar. Zeghidour et al. [15]

found that the Triamese network performs better than the baseline mel filterbanks spectral

coefficients on an ABX discrimination task.

1.4. Objectives

The objectives of the thesis is three-fold:

• We conduct a fair comparison between the CAE and Triamese networks, where

we train both networks on the same datasets and evaluate them using the same

Stellenbosch University https://scholar.sun.ac.za

1.5. Contributions 6

same-different evaluation task.

• We want to improve upon the CAE by using speaker conditioning during training.

• We build a novel hybrid network that combines aspects of both the CAE and

Triamese networks and evaluate how it performs in comparison to the other two

networks on the same-different evaluation task.

1.4.1. Comparing the CAE and Triamese networks

There are multiple methods researchers use to evaluate the performance of speech features

[2, 19]. There are also multiple datasets available which researchers use to train their

datasets on. Our goal is to select a single evaluation method and use it to evaluate the

quality of the features produced by both networks when both networks are trained using

the same training data. For the datasets, we choose the Buckeye corpus of conversational

English [20] and the Xitsonga language from the NCHLT dataset [21]. These are large

datasets with multiple speakers, with word labels for each dataset. For the evaluation

task, we use the same-different task [2], a word discrimination task that also measures

speaker independence.

1.4.2. Improving the CAE with speaker conditioning

Speaker identities are much easier to obtain than word labels. It simply requires that the

speech data be categorised according to speaker, something that can be done when the

data is recorded. We want to use this information during training to reduce the speaker

dependence of the features produced by the CAE.

1.4.3. Build a CAE-Triamese hybrid network

The CAE and Triamese networks differ in how the embedding features are constrained

during training. The Triamese network uses a contrastive loss function directly on

the feature embeddings, which makes embeddings of the same type more similar and

embeddings of different types less similar. The CAE uses a reconstructive loss, where the

feature embedding from one speaker is reconstructed into another speaker by passing it

through a decoder. We want to use this difference to our advantage and produce a network

that utilises both to produce features that are less speaker dependent.

1.5. Contributions

By building upon Kamper et al. [6] and Zeghidour et al.’s [15] work on the CAE and

Triamese network respectively this thesis makes the following contributions to the field of

Stellenbosch University https://scholar.sun.ac.za

1.6. Overview of this work 7

unsupervised speech feature extraction:

• For the first time, to the best of our knowledge, the CAE and the Triamese network

are compared on the same dataset using the same evaluation technique. We show

that, under the same conditions, features produced by the CAE outperforms features

produced by the Triamese network.

• We introduce speaker data to the CAE by learning speaker representations during

training and use these representations in the decoding half of the CAE so that the

encoding half, which acts as the feature extractor, can be more speaker agnostic.

However, tests showed that speaker conditioning slightly hinders the performance of

the CAE instead.

• We propose a novel neural network that combines aspects of both the CAE and the

Triamese networks, called the correspondence Triamese (CTriamese) network. We

evaluate the features produced by the CTriamese network using the same evaluation

techniques and find it outperforms the CAE and Triamese networks on all datasets

used in the evaluation. We also use the speaker conditioning proposed for the CAE

on the CTriamese network and find that it leads to minor improvements.

The work in this thesis has also been submitted as an article to the IEEE Signal

Processing Letters.

1.6. Overview of this work

The rest of the thesis is structured as follows.

In Chapter 2 we look at relevant literature in the field. Concepts that are necessary to

understand the rest of the thesis, like mel-frequency cepstral coefficients, are explained

here. We also look at work presented by others in the field, such as variations on the CAE,

the use of Siamese networks and other neural network based approaches.

Chapter 3 describes the datasets we use to train our systems. It describes the contents

of the Buckeye corpus and the NCHLT Xitsonga dataset. We describe how we use an

unsupervised term discovery task and MFCCs to extract pairs from a large body of speech

data. By using this approach to set up our data we ensure that our process as a whole is

unsupervised and allows us to use techniques that are usually supervised in the training of

our models. We also explain how we organise our data into training, validation and test

sets to ensure a fair evaluation environment.

Chapters 4 to 6 contain the bulk of our contribution.

In Chapter 4 we compare the performance of the CAE with that of the Triamese

network on a word discrimination task that also measures speaker independence. We show

that the CAE outperforms the Triamese network on all datasets considered here.

Stellenbosch University https://scholar.sun.ac.za

1.6. Overview of this work 8

In Chapter 5 we describe our hypothesis of using speaker conditioning during the

training of the CAE to improve the speaker independence of the features it produces. The

results show that speaker conditioning hindered the performance of the features instead.

In Chapter 6 we introduce the correspondence Triamese network. This is a novel

hybrid network created by combining the CAE and Triamese networks. We evaluate the

CTriamese network on the same data as the other two networks and show that it manages

to outperform both using the same evaluation technique.

Finally, in Chapter 7, we conclude the thesis. We give a summary of our main findings

and we make some recommendations for future work.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature review

We start this chapter by explaining some relevant concepts that are crucial to the rest

of the thesis. We give a brief overview of the definition of zero resource environments,

as the main focus of our research relates to them. Next, we describe unsupervised term

discovery, which allows us to turn an otherwise unsupervised environment into a supervised

environment. We also explain what dynamic time warping is and how it is used to make

two inputs comparable that would otherwise not be comparable. We describe what mel-

frequency cepstral coefficients are and how they are extracted. After this, we review some

evaluation tasks that are often used in the evaluation of speech features in zero resource

environments, namely the same-different task and the ABX task. After that, we give a

brief overview of neural networks, optimisers, and often used activation functions. Finally,

we give an overview of the neural networks that are relevant to this thesis, namely the

Siamese network, the Triamese network, and the correspondence autoencoder.

2.1. Zero resource environments

The term “zero resource environment” [22] refers to a problem space in which annotated

data is not available. In speech processing, we use this term to refer to languages for

which annotated speech is scarce or impossible to come by. Very few languages in the

world have proper scientific or technological coverage. This lack of coverage causes a vast

technological divide between the languages that are covered and the languages that are

not. There are also thousands of languages which are hardly documented at all, leaving

these languages at risk of going extinct within the next few hundred years [23]. A large

portion of the world’s everyday speech stems from languages that are mostly unwritten [8],

making actual documentation of the languages difficult or impossible. Linguists need

technologies that can help them navigate these zero resource environments if they were to

stand any chance of preserving some of these languages.

Apart from linguists, cognitive scientists are interested in modelling language acquisition

in humans [7]. Infants can acquire full mastery of a language with access only to raw

language data (spoken by the people around them), social cues, and interaction in their

environments.

9

Stellenbosch University https://scholar.sun.ac.za

2.2. Mel-frequency cepstral coefficients 10

The Zero Resource Speech Challenge (ZRSC) [9] tasks researchers around the world

with a series of challenges in an attempt to answer a specific research question: how can

a system autonomously acquire language? The challenge limits researchers to resources

that would be available to a language learning infant. The ZRSC is split into two tracks.

Track one is unsupervised subword modelling. In this track, researchers try to discover

alternate representations of sounds that emphasise linguistically relevant features, while

de-emphasising the irrelevant features. Track two is spoken term discovery. In this track,

researchers try to automatically discover word-like phrases in a continuous stream of

speech.

Progress in the field of zero resource speech research can have far-reaching implications

in a variety of connected fields.

2.2. Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients [24] (MFCCs) have been one of the best generic features

for speech for a long time and is generally the baseline against which new features are

measured. Networks also frequently use MFCCs as their input features and then further

improve upon the MFCCs by producing features from it. MFCCs are produced by

windowing a signal into 20-40 ms time frames. The power spectrum of each time frame is

then calculated. Using the mel scale, these power spectrums are summed together in bins,

which produces mel filterbanks. These bins get wider as the frequencies increase. This

step is motivated by the workings of the human ear, as it is more difficult for the human

ear to distinguish between frequencies as the frequencies increase. Mel filterbanks are also

sometimes used instead of MFCCs. The discrete cosine transform (DCT) of the logarithms

of the filterbank energies are then computed. The use of the logarithm is also motivated

by the human ear, as to increase the perceived loudness of a sound, the energy has to

be increased exponentially. The mel filterbanks overlap, making the filterbank energies

correlated. The DCT decorrelates these energies, and the resulting coefficients are what

make up the MFCCs.

2.3. Dynamic time warping

Dynamic time warping (DTW) is a dynamic programming technique in which two linear

sequences are compared and aligned by warping the time axis of one of the sequences.

DTW has seen many applications in audio, video and graphics data. People tend to speak

at varying speeds at different times, and the same utterance can vary depending on how

fast or slow it was spoken. By applying DTW to two utterances of the same word, the

DTW-aligned pair becomes comparable. The words are separated into small time windows

called frames, and DTW aligns these frames so that the same segment of speech in one

Stellenbosch University https://scholar.sun.ac.za

2.4. Unsupervised term discovery 11

DTW

termb

terma

Figure 2.1: Example of MFCCs from two terms aligned using DTW [1]. Frames from
one term that are similar to the other term are mapped to each other.

word aligns with the same segment in the other. Given two sequences of length n and m,

and some distance function d, the DTW alignment algorithm is as follows:

1. Create an n×m matrix, G, with a value of 0 at index (0, 0) and a value of infinity

along the rest of the 0-indexed axes.

2. Calculate the value at index (1, 1) as d(1, 1) (the distance between each sequence at

index 1).

3. For each other index, (i, j), the value is calculated by G(i, j) = min(G(i, j−1), G(i−
1, j), G(i− 1, j − 1)) + d(i, j). Keep track of each index that contributed to the next

(the result of min(G(i, j − 1), G(i− 1, j), G(i− 1, j − 1))).

4. Starting at index (n,m), work back, selecting each index that was kept track of in

step 3. This produces a minimum distance path between the two sequences, with

the indexes of the path being the aligned indexes of the two sequences.

The input frames can also be MFCCs. Figure 2.1 shows the alignment of two MFCC

frames from the same word type.

2.3.1. Segmental dynamic time warping

Segmental dynamic time warping (SDTW) differs from regular DTW. Where regular DTW

aligns two entire sequences, SDTW compares and aligns subsections of the sequences, and

instead tries to find an optimal alignment among these subsections.

2.4. Unsupervised term discovery

The training of supervised systems relies on large quantities of annotated data. Speech

focused systems, like automatic speech recognition, require large datasets of annotated

Stellenbosch University https://scholar.sun.ac.za

2.5. Evaluation 12

speech. In zero resource environments, these annotated datasets could be difficult or

impossible to come by. Collecting unlabelled data, on the other hand, is far easier, as

all that is required is a speaker and a recording setup. We need to train unsupervised

systems if we want to operate in a zero resource environment.

Unsupervised term discovery (UTD), sometimes referred to as lexical discovery or

spoken term discovery, refers to the discovery of repeated words or phrases in speech

without the help of any speech labels or pronunciation dictionaries. Using a UTD system,

similar sections can be grouped and labelled under the same label. A UTD system allows

us to use otherwise supervised techniques in an unsupervised capacity. Park and Glass [25]

proposed an unsupervised pattern discovery system. They show that lexical entities can be

extracted directly from unannotated speech audio. Using SDTW, they find all acoustically

similar audio segments in a speech corpus, which they then cluster together. They show

that these clusters correspond to relevant words and phrases in the audio from which they

are extracted. However, the exhaustive SDTW search is inefficient and does not scale well

for practical use. Jansen and Van Durme [26] showed that using randomised algorithms,

they can increase the efficiency with which spoken terms are discovered. Kamper et al. [27]

devised a full-coverage system that segments and clusters conversational speech audio. In

a full-coverage system, word boundaries and lexical categories are predicted for the entire

input [28]. Theirs is the first attempt at an evaluation of a full-coverage zero resource

system on multi-speaker large-vocabulary data.

2.5. Evaluation

Evaluation tasks are used to measure how effectively a task was performed. In the case of

speaker-independent feature extraction, we use it to measure how effectively the feature

extractor managed to disregard speaker-specific information while maintaining features

that make up the word identity. In this section we first look at precision and recall, two

metrics used in the evaluation of retrieval tasks. After that, we look at two tasks that are

often used to evaluate the performance of speech features, namely the same-different task

and the ABX task.

2.5.1. Precision and recall

In the context of information retrieval, precision and recall are two measures that describe

the success of an information retrieval task [29]. Given a set of items, S, and an imperfect

task with the purpose of retrieving a subset of these items that match a certain criteria.

Within S, there are a subset of items, Srelevant, that exactly match the criteria specified.

However, since the retrieval task is not perfect, a subset Sretrieved is retrieved instead.

Given these subsets, we define two measures with which we measure the success of the

Stellenbosch University https://scholar.sun.ac.za

2.5. Evaluation 13

retrieval task: precision and recall.

Precision

Precision measures how accurate the retrieval task was in retrieving relevant items. Given a

set of retrieved items, the precision of the task is defined to be the fraction of the retrieved

items that match the fetching criteria. Precision (P) is calculated by the following equation:

P =
|Srelevant| ∩ |Sretrieved|

|Sretrieved|
, (2.1)

where |S| is the number of elements in a set S.

Recall

Recall measures how successful the task was in retrieving relevant items. Given the set of

all possible items, there are a number of relevant items in that set that exactly matches the

retrieval criteria. Recall measures the fraction of these relevant items that are successfully

retrieved. Recall (R) is calculated by the following equation:

R =
|Srelevant| ∩ |Sretrieved|

|Srelevant|
. (2.2)

Precision-recall curve

A retrieval task can have perfect precision but imperfect recall and vice versa. If exactly

one item is retrieved that matches the retrieval criteria, the precision will be 1. However,

if there are 100 relevant items in the set, the recall will be 0.01. Similarly, if 100 items are

retrieved, but there is only 1 relevant item in the set, the recall will be 1 but the precision

will be 0.01. Given a retrieval task f(τ) that can be tuned via some parameter τ , τ can

be varied and the precision and recall of the task measured at each value. Plotting the

precision against the recall for each value produces a precision-recall curve. An example of

such a curve is illustrated in Figure 2.2.

There are two characteristics of this precision-recall curve that are of relevance: the

precision-recall breakeven (PRB) and the average precision (AP). The PRB is the value at

which the precision and recall are equal. In a perfect retrieval task, this value would be 1.

The AP is the area under the precision-recall curve, which can be used as a performance

measure of either the retrieval task or the feature set being searched (a good feature set

would score a higher AP on the same retrieval task than a bad feature set).

Stellenbosch University https://scholar.sun.ac.za

2.5. Evaluation 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

DTW Distance

p(
D

TW
 D

is
ta

nc
e)

SWSP
SWDP
DWSP
DWDP

Figure 1: DTW distance distributions for the four word pair
categories {Ck} for normalized MFCCs.

We expect that |C1| � |C2| � |C3| � |C4| since we will
have far fewer instances of the same word spoken by the same
speaker as opposed to instances of different words spoken by
different speakers.

We measure similarity between word pairs using the mini-
mum DTW alignment costDTW (wi, wj) between wi and wj .
DTW was originally applied in early speech recognizers to nor-
malize for temporal variations between an observed vector time
series and a stored template for tasks such as isolated word
recognition. As mentioned earlier, a number of recent studies
have successfully adapted the DTW algorithm to discover re-
peated segments in a speech utterance. Therefore, we expect
that improvements realized across different sets of acoustic fea-
tures in the context of this evaluation will necessarily benefit
DTW-based speech pattern discovery.

Computing DTW requires we specify a distance metric be-
tween constituent frames in the word examples. For this evalua-
tion we consider (1) Euclidean distance, (2) cosine distance, and
(3) symmetric KL-Divergence. Euclidean and cosine distance
are appropriate for directly comparing frames of raw acous-
tic data, whereas the symmetric KL-Divergence is meaning-
ful when assessing similarity between probability distributions
such as those produced by multi-layer perceptron-based pho-
netic acoustic models.

Figure 1 shows the kernel density estimates of the distribu-
tion of DTW distances using the cosine metric for each of the
four sets of word pairs {Ck} as described above. The results
are shown for standard 39-dimensional MFCCs from English
words extracted from the Switchboard corpus. As expected, un-
der DTW (·, ·) instances of the same word uttered by the same
speaker (SWSP) are more similar to one another than instances
of different words uttered by the same speaker (DWSP).We also
note that the SWDP distribution falls between the SWSP and
two DW distributions; the closer it is to SWSP the more speaker
independent the representation. The ideal acoustic representa-
tion for ASR tasks is one for which the SWSP and SWDP dis-
tributions coincide and are well-separated from both the DWSP
and DWDP curves.1

1These criteria can be easily adapted for other tasks such as speaker
identification, where maximal separation between SWSP and SWDP
would be desirable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on
 (P

S
W

)

Recall (Various)

SWSP MFCC
SWDP MFCC
SW MFCC
SWSP Post
SWDP Post
SW Post

Figure 2: Precision vs. recall for normalized MFCCs and 200-
hour English posteriorgrams.

We would like to simultaneously assess the degree of
speaker independence and word discriminability of a repre-
sentation using the information contained in the distributions
shown in Figure 1. One possibility would be statistical mea-
sures of distributional separation, but early experiments indi-
cated that the skewness in the distributional forms can lead to
instability across feature sets. However, given that our target
task is spoken term discovery, it is more appropriate to consider
an evaluation in the context of information retrieval (IR), where
the goal is to retrieve same word pairs from different word pair
impostors. In particular, for a word pair (wi, wj), i �= j, and
some threshold τ , we declare that wi and wj correspond to the
same word if DTW (wi, wj) ≤ τ . As we sweep the threshold
τ we can sample a standard precision-recall curve, which we
characterize using two criteria:

1. Precision-Recall Breakeven (PRB): The precision/recall at
the operating point where the two quantities are equal.

2. Average Precision (AP): The area under the precision-
recall curve, characterizing the average performance of the
IR system across all operating points.

We can further split the same word IR task into subcases for
SWSP and SWDP retrieval, allowing us to characterize the level
of speaker dependence of a representation. To proceed, we first
define

Nk(τ) := |{(wi, wj) ∈ Ck : DTW (wi, wj) ≤ τ}|

as the number of word pairs in Ck for which the DTW distance
between segments is small enough so as to be declared as the
same word. We can then define various precision and recall
quantities involved in PRB and AP as follows:

PSW (τ) =
N1(τ)

P4
k=1 Nk(τ)

, RSW (τ) =
N1(τ) + N2(τ)

|C1| + |C2|

RSWSP (τ) =
N1(τ)

|C1|
, RSWDP (τ) =

N2(τ)

|C2|

Here, PSW and RSW are the precision and recall of retrieving
same words regardless of speaker; RSWSP and RSWDP are
the recall for same and different speaker subcases, respectively.

822

Figure 2.2: Examples of precision-recall curves from [2].

2.5.2. The same-different task

Carlin et al. [2] proposed the same-different task as an evaluation task to be used in zero

resource settings. The purpose of the same-different task is to indicate how well a set of

features might perform in a downstream task that requires speaker-independence and a

high level of word discrimination. Given a set of words W , we define four sets of word

pairs (wi, wj) ∈ W ×W, i 6= j:

• C1: Same word, same speaker (SWSP)

• C2: Same word, different speakers (SWDP)

• C3: Different words, same speaker (DWSP)

• C4: Different words, different speakers (DWDP)

For a threshold τ , a word pair is considered as belonging to the same word if

fdistance(wi, wj) ≤ τ , where fdistance is a distance function that measures the similar-

ity of the two words. In the case of the same-different task, Carlin et al. selected fdistance

to be the minimum DTW alignment cost between the word pair. DTW alignment requires

a distance metric to be specified. Carlin et al. [2] found the cosine distance produces the

best results. By varying the threshold τ , a precision-recall curve is produced. From this

curve, we derive the PRB and the AP. Given the task that wants to classify two words as

Stellenbosch University https://scholar.sun.ac.za

2.5. Evaluation 15

belonging to the same word identity regardless of speaker, we define

Nk(τ) := |{(wi, wj) ∈ Ck : DTW (wi, wj) ≤ τ}| (2.3)

to be the number of word pairs in Ck that are considered to be the same word by the

DTW alignment cost. The precision and recall at a given threshold τ can then be defined

as

P (τ) =
N1(τ)

Σ4
k=1Nk(τ)

(2.4)

and

R(τ) =
N1(τ) +N2(τ)

|C1|+ |C2|
(2.5)

respectively. The AP is the metric used to measure the performance of a feature set.

This evaluation task can be used to compare feature extractors. By extracting a set of

features from a test set, the AP of that feature set can be calculated. This value can

then be compared with the AP of another feature set extracted from the same test set.

The extractor that produces the better performing features can be classified as the better

extractor, as Carlin et al. [2] showed that a higher AP leads to better performance in

downstream speech processing tasks.

2.5.3. The ABX task

Munson and Gardner [30] developed the ABX task as a method to minimise the variability

in auditory testing. In their original experiment, a subject is presented with three sounds.

The first two sounds, A and B, represent two similar but different signals. The third sound,

X, corresponds to either sound A or sound B. The subject is then tasked to select which

sound X matches closest. From the results, an error rate can be produced. This error rate

measures the performance of the subject. In speech processing, ABX tasks can be used to

evaluate speech representations. Schatz et al. [19] proposed the minimal-pair ABX task as

an extension to Carlin et al.’s same-different task [2] to evaluate speech representations in

a zero resource setting. Given three words wa, wb and wx, we compute the DTW distances,

as in [2], DTW (wa, wx) and DTW (wb, wx). The sign of DTW (wa, wx)−DTW (wb, wx) is

then used to classify wx as belonging to B or A if the sign is positive or negative and from

this, an error rate can be determined. Given two feature extractors, the extractor which

produces features that score a lower error rate on the ABX task can be classified as the

better extractor.

Stellenbosch University https://scholar.sun.ac.za

2.6. Neural networks 16

2.6. Neural networks

Neural networks are a subsection of machine learning. McCulloch and Pitts [31] modelled

neurons in the human brain as a linear threshold gate. By stimulating the modelled neuron

through a number of inputs, the neuron would be switched on if the combined inputs

surpassed some threshold. This neuron could then be connected to other neurons, with

each connection having a weighted value that stimulates the next neuron if the previous

neuron is turned on. In doing so, a neural network is created. The McCulloch-Pitts neuron

was a very simplistic representation of the neuron, as it could only produce binary output.

In modern neural networks, the neurons (usually referred to as units) are defined by their

activation functions. Various activation functions are discussed later in this chapter.

The term deep learning refers to a special subset of neural networks in which multiple

neural network layers are connected to one another. This allows the networks to model

complicated behaviours that a regular single-layer neural network could not.

The weights between each unit are referred to as the network parameters. These

parameters are adjusted by training the network. Training refers to the process in which

example data is fed to the network. By comparing the output of the network to the

expected output of the example data, the network parameters can be updated to minimise

the discrepancy between the predicted output and the wanted output. There are many

methods of training a neural network, some of which are discussed in the next section of

this chapter.

2.6.1. Optimisation

Neural networks are trained via a loss function (also called a cost function). When training

a neural network, the goal is to minimise this loss function, as the minimum (specifically

the global minimum, as there can be many local minima) should be the point at which

the network implements the desired behaviour. Optimisers are algorithms that update the

weight parameters of the network in order to minimise the network’s loss function.

Gradient descent

Gradient descent is an iterative optimisation algorithm used to find the minimum of a

function. Neural networks are usually initialised by having all of the weights set to random

values that are close to zero. Weights are then updated iteratively by calculating the

partial derivative of the loss function with respect to weight:

θτ+1 = θτ − α
∂`

∂θ
, (2.6)

where θ is the weight vector of the network, α is the learning rate and ` is the loss function.

The learning rate affects how aggressively the function is minimised. A higher learning

Stellenbosch University https://scholar.sun.ac.za

2.6. Neural networks 17

rate can converge quicker, but can also cause the function to never converge at all as the

minimum will always be overshot. As mentioned before, a minimum is not necessarily the

global minimum of the function. Gradient descent does not account for multiple minima

and reaching the global minimum is dependent on how the weights were initialised, or it

might even be impossible.

Batch gradient descent

Batch gradient descent [5] calculates gradients for the entire training set before adjusting

the network weights by the average of the calculated gradients. This leads to a relatively

smooth training curve, but a very large number of calculations has to be performed to

take even a single training step, which can be infeasible for very large datasets.

Stochastic gradient descent

Stochastic gradient descent [5] (SGD) is a variation of gradient descent. Stochastic refers

to the fact that it only uses a single example at a time. By using only a single example at

a time, the gradient does not have to be calculated using the entire training set, thereby

greatly reducing training time and allowing convergence even when the training set is very

large. However, since the weights are updated very frequently, the cost function fluctuates

a lot, which can lead the descent to a sub-optimal local minimum.

Mini-batch gradient descent

Mini-batch gradient descent is a combination of batch gradient descent and SGD. Instead

of considering the entire dataset or just a single training sample during a training step,

a subset of the training set is used. This leads to less frequent weight updates, causing

the cost function to fluctuate less than it would have with SGD. The smaller batch size

also means that weight updates will be more frequent than it would have been with batch

gradient descent, leading to faster convergence.

AdaGrad

AdaGrad [32], or the adaptive gradient algorithm, is an optimisation algorithm proposed

by Duchi et al. The term adaptive refers to the fact that the optimiser has a per-parameter

learning rate that changes based on the parameters. This means each weight in the network

has an individual learning rate, which is adjusted as the network reaches a minimum. Each

parameter is updated as follows:

θj,t+1 = θj,t −
η√
Gj,j,t

gj,t, (2.7)

Stellenbosch University https://scholar.sun.ac.za

2.6. Neural networks 18

where η is the base learning rate, gj,t is the current gradient of the parameter and Gj,j,t is

the sum of squared gradients over the training period. Because of the division by
√
Gj,j,t

in Equation 2.7, the learning rate for each parameter will decrease as training progresses,

depending on the size of the gradients for that parameter.

ADADELTA

The ADADELTA [33] optimiser is an extension of the AdaGrad optimiser. The AdaGrad

optimiser is very aggressive in its learning rate attenuation. Learning rates are reduced

proportionally to the sum of their respective gradients throughout the entire training

period. ADADELTA mitigates this by using a rolling window period for learning rate

attenuation. Optimisations are done so that the entire rolling window of gradients do not

have to be stored and updated. The final update function is as follows:

θt+1 = θt + ∆θt, (2.8)

where

∆θt = −RMS(∆θt−1)

RMS(gt)
· gt. (2.9)

RMS is the root mean squared error, and, as with AdaGrad, gt is the current gradient

vector of the parameters. We omit j as the parameter identifier for brevity.

Adam

Adam [34], or Adaptive Moment Estimation, stores a decaying average of past squared

gradients just like Adadelta, but Adam also stores a decaying average of past gradients.

The decaying average of past gradients (mt) and the decaying average of past squared

gradients (vt) are calculated as follows:

mt = β1mt−1 + (1− β1)gt (2.10)

vt = β2vt−1 + (1− β2)g2t (2.11)

β1 and β2 are the decay rates of their respective property. The decaying averages are

initialised to zero at the start of training, leading to initial updates that are biased towards

zero. In order to correct biases in the early training steps of the network, a bias corrected

version of these parameters are calculated using the results of Equations 2.10 and 2.11:

m̂t =
mt

1− βt1
(2.12)

v̂t =
vt

1− βt2
(2.13)

Stellenbosch University https://scholar.sun.ac.za

2.7. Activation functions 19

−1.0 −0.5 0.0 0.5 1.0
Input

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t

Figure 2.3: A linear activation function.

The final update rule for Adam is then

θt+1 = θt −
η√
v̂t + ε

m̂t, (2.14)

where ε is a very small value, generally 10−8, which prevents division by zero.

2.7. Activation functions

Activation functions determine the output of a unit in a neural network given an input.

There are several activation functions that all serve different purposes.

2.7.1. Linear function

A linear activation function provides an output that is directly proportional to its input.

A normal linear equation defines a linear activation:

f(x) = cx, (2.15)

where c the gradient. Output units often use linear activations. In deep neural networks, if

every layer were to use a linear activation function, it would defeat the purpose of having

layers, as the end layer would end up being a linear scaling of the input, which could be

achieved by a single layer.

Stellenbosch University https://scholar.sun.ac.za

2.7. Activation functions 20

−1.0 −0.5 0.0 0.5 1.0
Input

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t

Figure 2.4: A ReLU activation function.

2.7.2. Rectified linear unit

The rectified linear unit [35] (ReLU) is one of the most popular activation function used

in neural networks. The following equation defines a ReLU activation:

f(x) =

{
x if x ≥ 0

0 if x < 0
. (2.16)

While it looks like a linear function at first, it is not. The unit is switched off for any

x ≤ 0. This makes ReLU activations usable in deep neural networks ReLU activations are

generally less computationally expensive, as no calculations have to be performed for a

unit that is turned off. One issue with the ReLU activation function is that units can be

permanently switched off. When this happens, the units will no longer respond to future

inputs. Other variations of the ReLU function have been proposed to circumvent this

issue.

Leaky ReLU

The following equation defines the leaky ReLU [36] (LReLU) activation function:

f(x) =

{
x if x ≥ 0

ax if x < 0
, (2.17)

where a is usually around 0.01. It is very similar to the normal ReLU function, but LReLU

has a very small gradient for negative values of x. This allows the network to recover if a

Stellenbosch University https://scholar.sun.ac.za

2.8. The Siamese network 21

−1.0 −0.5 0.0 0.5 1.0
Input

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t

Figure 2.5: A leaky ReLU activation function.

unit is switched off.

Randomised Leaky ReLU

The randomised leaky ReLU (RReLU) is a variation of the RReLU that randomises the

gradient for values less than zero. The following equation defines the LReLU activation

function:

f(xji) =

{
xji if xji ≥ 0

ajixji if xji < 0
, (2.18)

where ai is sampled from a uniform distribution between 0 and 1. Xu et al. [37] showed

that the LReLU and RReLU perform better than the normal ReLU in classification tasks.

2.8. The Siamese network

Bromley et al. initially introduced the Siamese network [18] for signature verification. The

network consists of two identical subnetworks with shared weights. The network is trained

using pairs of inputs, where an input pair is classified as either positive or negative. A

positive (or AA) input pair consists of two inputs which represent the same type of input

(for example, two images that both represent a bowl). In contrast, a negative (or AB)

input pair represents different types of input (such as one image depicting a bowl and the

other a cup). During training, together with the input pair, the network is fed whether or

Stellenbosch University https://scholar.sun.ac.za

2.8. The Siamese network 22

−1.0 −0.5 0.0 0.5 1.0
Input

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t

a = 0.05

a = 0.01

a = 0.03

Figure 2.6: A randomised leaky ReLU activation function. The different values of a are
randomised for each unit.

not the current pair is positive or negative.

Each subnetwork produces an result from its respective input, which we refer to as

an embedding. Some distance function then measures how similar the two embeddings

are, and depending on whether the input pair is positive or negative, the loss function

attempts to minimise or maximise the distance function. An example of a Siamese network

is depicted in Figure 2.7.

Thiollière et al. [38] trained a Siamese network on aligned frames from word pairs

discovered through a spoken term discovery system. They found that the resulting feature

extractor produced features that scored well on the minimal-pair ABX task [19].

Zeghidour et al. [15] evaluated the Siamese network’s ability to disentangle speaker

xa

ea

xb

eb

fdistance

Figure 2.7: A Siamese network. The two subnetworks are identical and share weights.
An embedding is extracted from each input and compared. Depending on whether or not
the embeddings are representing the same type of input, a distance function is minimised
or maximised.

Stellenbosch University https://scholar.sun.ac.za

2.9. The Triamese network 23

xa

ea

xb

eb

x′

e′

`triplet

Figure 2.8: A Triamese network. The three subnetworks are identical and share weights.
An embedding is extracted from each input. The loss function attempts to minimise the
distance between two inputs while simultaneously maximising the distance to the third
input.

and phonetic information in speech. The similarity of an embedding pair was measured by

their cosine, and the pairwise loss function they proposed was

`γ(ea, eb, y) =

{
−cos(ea, eb) if y = 1

max(0, cos(ea, eb)− γ) if y = 0
, (2.19)

where γ is a margin hyperparameter that determines the minimum distance between the

different word types. They used the Siamese network as the basis for their Triamese

network.

2.9. The Triamese network

Zeghidour et al. [15] proposed the Triamese network. The Triamese network, which is a

variation of the Siamese network, consists of three identical subnetworks, all with shared

weights. A depiction of the network is illustrated in Figure 2.8.

The network uses AAB triplets, instead of the AA and AB pairs of the Siamese network,

as input. Each subnetwork produces an embedding from its respective input, which is then

fed to the network’s loss function. Zeghidour et al. proposed the following loss function:

`γ(ea, eb, e
′) = max(0, γ − cos(ea, eb) + cos(ea, e

′), (2.20)

where γ is a margin hyperparameter. Given three inputs (wa,wb,w
′), we would like

the network to minimise the distance between embeddings ea and eb and maximise the

distance between ea and e′. Since wa and wb are phonetically similar, the loss function

would try to emphasise the similarities between ea and eb so that they are always more

similar than ea and e′ by some margin γ. Zeghidour et al. attempted to use the Triamese

network to disentangle both speaker and phonetic information in a single network by

extracting two embeddings from each input and then applying two loss functions, but it

Stellenbosch University https://scholar.sun.ac.za

2.10. The correspondence autoencoder 24

DTW

termb

terma

xa

xb

e

Figure 2.9: The CAE is trained using word pairs consisting of similar words spoken by a
variety of speakers [1]. The network consists of two halves: an encoder and a decoder.
Feature embeddings are extracted from the middle layer.

did not produce significantly better results.

2.10. The correspondence autoencoder

In [6], Kamper et al. proposed the correspondence autoencoder (CAE), an autoencoder-

like network which, instead of using the same input as the output target, is trained on

input-output pairs of similar words spoken by a variety of speakers. The network can be

thought of consisting of two parts: an encoder and a decoder. In the middle, where the

encoder and decoder connects, is an embedding layer from which features are extracted.

Since the network requires weak top-down supervision in the form of word pairs, Kamper

et al. paired the network with a UTD system so that it can operate in a zero resource

environment. The network is trained on a frame-by-frame basis, so in order to make each

frame in the input-output pair comparable, the two terms are DTW aligned. They found

that the features produced by the network came close to matching the performance of a

supervised network. An illustration of the network can be found in Figure 2.9.

Renshaw et al. [39] showed that the CAE could produce better features by first

training the network in a supervised environment on a high-resource language, followed by

unsupervised language adaptation to a zero resource language.

2.11. Chapter summary

In this chapter, several topics that are relevant to the rest of this thesis were discussed. We

gave an overview of zero resource environments and discussed how the lack of annotated

data in such environments present problems to conventional machine learning methods.

We discussed how UTD systems can be used to annotate raw data, and, in doing so, allow

otherwise unannotated data to be used by supervised learning methods. We gave an

Stellenbosch University https://scholar.sun.ac.za

2.11. Chapter summary 25

overview of dynamic time warping and showed how mel-frequency cepstral coefficients

can be derived. After discussing precision and recall, two measures often used to evaluate

the performance of retrieval tasks, we gave an overview of two of the evaluation tasks

often used to evaluate speech features: the same-different task and the ABX task. After a

brief summary of neural networks, we discussed some often used optimisers and activation

functions. Finally, we gave an overview of the Siamese, Triamese and correspondence

autoencoders, as these networks form the basis for the rest of the thesis.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Datasets

In this chapter, we give an overview of the datasets each model is trained and evaluated

on. Firstly, we give an overview of the Buckeye corpus and the NCHLT dataset. After

this, we explain how the datasets are split into their respective training, validation and

test sets. We also give an overview of how these datasets are processed so that we can use

them for training our neural networks.

3.1. The Buckeye corpus of conversational English

The Buckeye corpus of conversational English [20] consists of the recordings of forty

long-time Caucasian residents from Columbus, Ohio — twenty male, twenty female; twenty

young, twenty old — during an interview. Each speaker was interviewed for about one

hour. The interviews were conducted in a quiet room, and the acoustic signals are clear of

noise. Each interview has been transcribed. The word labels, together with the timestamps

of where they occur in the file, have been saved in word label files. Each phone has also

been labelled and stored in a file together with its timestamp. In total, about 300 000

words were collected. This is the English dataset we will use to develop our models.

The large size of the dataset allows us to comfortably split it into subsets for training,

validation and testing. The labelled data also allows us to test each network on actual

words. The variety in speakers serves our purpose of validating how well each network

extracts speaker-independent features from speech data.

3.1.1. Training, validation and test sets

The English dataset is divided into four subsets:

• a training set consisting of 12021 discovered terms spoken by 12 speakers,

• a training set consisting of 5106 ground truth terms spoken by 12 speakers,

• a validation set consisting of 2733 ground truth terms spoken by 8 speakers,

• and a test set consisting of 4052 ground truth terms spoken by 12 speakers.

26

Stellenbosch University https://scholar.sun.ac.za

3.2. The NCHLT speech corpus of South African languages 27

Table 3.1: Speaker distribution in the Buckeye subsets.

Subset Speaker list

Training s02, s03, s04, s05, s06, s08, s10, s11, s12, s13, s16, s38
Validation s17, s18, s19, s22, s34, s37, s39, s40
Test s01, s20, s23, s24, s25, s26, s27, s29, s30, s31, s32, s33

Since our goal is to evaluate the speaker independence of the features produced by each

network, the training, test and validation sets were chosen to have no overlap in speaker

identities. The speaker identities in each set are displayed in Table 3.1. The identities are

represented as “sXX”, where XX is a numerical value. The ground truth terms are terms

that correspond to actual words, instead of discovered words. A training set of these is

included so that the performance loss of training on discovered terms can be measured.

The speaker sets are the same as those used by Kamper et al. in [27]. There are 32

speakers used in total. Kamper et al. had a fourth set, but that set was not used. Each

subset of speakers was randomly assigned, under the condition that each subset should

have an equal number of old males, young males, old females and young females.

3.2. The NCHLT speech corpus of South African

languages

The NCHLT speech corpus of South African Languages contains speech from all eleven

official languages of South Africa, with approximately 200 speakers per language [21]. The

NCHLT project is an expansion of the African Speech Technologies (AST) and Lwazi

projects. The corpus was created to develop large-vocabulary speech recognition systems,

such as voice search or indexing. We will only be using the Xitsonga language from this

dataset, and it will be treated as a zero resource environment. During training, no access

to word labels will be used. The Xitsonga set consists of 200 speakers: 95 men and 105

women. There are 142 hours of speech in total. As with the Buckeye corpus, the large

dataset, access to word labels for testing, and the large variety of speakers makes it perfect

for training each network to produce features that are speaker-independent, as well as

measuring how well the features produced by each network performs on an evaluation

task.

3.2.1. Training and test sets

We divide the Xitsonga dataset into two subsets:

• a training set consisting of 11705 discovered terms,

Stellenbosch University https://scholar.sun.ac.za

3.3. Data processing 28

Table 3.2: Speaker distribution in the Xitsonga subsets.

Subset Speaker list

Training and test 001m, 102f, 103f, 104f, 126f, 127f, 128m, 129f, 130m, 131f,
132m, 133f, 134m, 135m, 136f, 138m, 139f, 140f, 141m, 142m,
143m, 144m, 145m, 146f

• and a test set consisting of 6384 ground truth terms.

There is no validation subset for this dataset. The purpose of this dataset is to evaluate

the performance of the produced features in a completely unsupervised manner, so we will

not be able to fine tune the networks on this dataset at all. The purpose of this dataset is

to evaluate features produced for a fixed set of speakers and, as such, the training and

test sets consist of the same speaker identities. The speaker list is shown in Table 3.2.

3.3. Data processing

The following section describes how the datasets are processed so that they can be used in

the training of the neural networks. The processing steps used were developed by Kamper

et al. in [27].

3.3.1. Extract MFCCs with CMVN, deltas and delta-deltas

First we extract the MFCCs from the sound files. MFCCs are an excellent start for

any system trained on speech data. If we were not worried about correlation in inputs

influencing our data, we would use filter-banks instead. We also use cepstral mean and

variance normalisation to normalise our data, as normalisation has been shown to improve

the performance on a wide variety of neural networks. Cepstral mean and variance

normalisation is applied on each utterance discovered by the UTD. It should be noted that

utterance length can have an effect on the normalised features. Lastly, we append the first

and second order derivatives of the MFCCs (deltas and delta-deltas) to the MFCCs, which

has been shown to improve the performance of neural networks when included during

training. This results in a 39-dimensional feature vector.

3.3.2. Unsupervised term discovery (UTD)

Next we employ the unsupervised term discovery (UTD) system proposed by Jansen and

Van Durme [26] to discover repeated terms in the sound files1. From this, we also create a

1The UTD system was not actually used to generate the terms here. Instead, pre-discovered terms was
made available and those terms were used. However, these terms were discovered using said UTD system,
but not by the author himself.

Stellenbosch University https://scholar.sun.ac.za

3.4. Chapter summary 29

list of word pairs. For both datasets, all possible terms discovered by the UTD is used.

3.3.3. Voice activity detection

Voice activity detection (VAD) is used to determine which parts of a sound file contains

speech, as during natural conversation there can be short or long periods of silence in

between actual spoken words. These silences add no value to our system, so we use a VAD

system to remove these silences from each word pair, leaving only the sections in each pair

that contain speech.

For the purposes of evaluating the features produced by each network an actual VAD

system was not used. Instead, oracle speech regions obtained by force aligning the terms

were used. An actual VAD system would introduce uncertainty into the experiment and

not contribute anything to what we are actually trying to evaluate, which is the features

each network produces. However, in a true zero resource environment a VAD systtem

would be required.

3.3.4. Word pair alignment

Finally, in order to have comparable frames in the word pairs, we use dynamic time

warping (DTW) alignment. The word pairs share a word identity, although not necessarily

a speaker. For the CAE and Siamese networks, these are positive (AA) word pairs. By

using DTW alignment, the word pair frames are re-indexed so that similar frames in each

word correspond to one another. This is essential since the same word can be spoken

at different speeds, which misaligns the comparable frames in each word. The networks

are trained frame-by-frame and comparing different frames to one another could be very

detrimental.

3.4. Chapter summary

In this chapter, the datasets used in the experiments in this thesis were described. We

discussed the contents of the datasets and why they were chosen for these experiments.

Finally, we described how these datasets were processed so that they could be used in the

training of the neural networks.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

A comparison of the correspondence

autoencoder and the Triamese network

In this chapter we describe an experiment in which we compare the performance of speech

features produced by the CAE and Triamese networks using the same-different evaluation

task [2], which is a word discrimination task that also measures speaker independence.

Firstly, we give an overview of each network, followed by a discussion of some differences and

similarities between the networks. Following this, we state the purpose of the experiment

and what we aim to learn from the experiment. We briefly describe how each dataset

is partitioned in order to perform the experiment. We give a short description of the

evaluation metric used to evaluate the speech features. In the experimental setup we

describe the specifics of each network, such as the architecture, hyperparameters, loss

functions and optimisers. We explain how each network is trained and evaluated. Finally,

we present the results of our experiment and discuss its implications. We conclude the

chapter with a short summary of the experiment and our findings.

4.1. The networks

In this section we give an overview of the correspondence autoencoder and the Triamese

network. A detailed literature study was given on these networks in Chapter 2. Here

we focus on the workings of these networks, instead of their origin or the results of their

respective experiments. Firstly, we examine the CAE, followed by an examination of the

Triamese network. We then compare the two networks.

4.1.1. The correspondence autoencoder (CAE)

The correspondence autoencoder [6], as described in Section 2.10, is an autoencoder-like

neural network. Unlike general autoencoders, the network is not trained by having the

network reconstruct the input at the output. Instead, the network is trained using weak

top-down supervision in the form of word pairs that share the same word identity, although

they do not necessarily share the same speaker. Each word pair is aligned using dynamic

programming and the network is trained frame by frame. The CAE consists of two halves:

30

Stellenbosch University https://scholar.sun.ac.za

4.1. The networks 31

DTW

termb

terma

xa

xb

e

Figure 4.1: The correspondence autoencoder (CAE) is trained to reconstruct one acoustic
frame in a discovered word from another [1].

an encoder and a decoder. During training, the encoder receives one of the word instances,

xa as input. The encoder transforms the provided input into an embedding e. The

decoder then takes this embedding and attempts to transform it into the second word

instance, xb. The loss function requires that the network minimise the distance between

the target output and the decoded embedding. Due to the word pairs not necessarily

sharing a speaker, the network learns to maintain features that contribute to the core

word identity, while disregarding features that are speaker-specific, like tone of voice.

Once trained, the encoder can be separated from the rest of the network and functions

as a generic feature extractor. The features extracted in this manner have proven to be

less speaker-dependent than generic MFCCs and shows promise in improving the general

performance of downstream tasks such as query by example search and indexing. The

network is illustrated in Figure 4.1.

4.1.2. The Triamese network

The Triamese network [15], as described in Section 2.9, is an adaptation of the Siamese

neural network [18]. The Siamese network consists of two branches of identical subnetworks

with shared weights. The network is trained on AA (positive) or AB (negative) input pairs,

with the network being told whether the current pair on which it is training is positive or

negative. In the context of speech processing, a positive input pair would consist of two

words of the same type, but not the same speakers. A negative pair would be words of

different types, but from the same speaker. Each subnetwork produces an embedding from

its corresponding input and a distance function is applied to measure the similarity of the

two embeddings. A loss function then minimises the distance between positive embedding

pairs and maximises the distance between negative embedding pairs. This kind of loss

function is called a contrastive loss function. Features that contribute to speaker identity

is de-emphasised by negative pairs sharing a speaker, while features maintaining word

Stellenbosch University https://scholar.sun.ac.za

4.1. The networks 32

xa

ea

xb

eb

x′

e′

`triplet

Figure 4.2: The Triamese network is trained so that the embeddings ea and eb of the
same type are more similar by a margin m than embeddings ea and e′ of different types.

identity is emphasised by the positive word pairs.

The Triamese network, on the other hand, consists of three branches of identical

subnetworks with shared weights. The network is trained on AAB triplets, which we

represent as (xa,xb,x
′). xa and xb form a positive AA pair, and xa and x′ form a negative

AB pair. In the context of speech processing, xa and xb would share a word identity

but not necessarily a speaker identity. xa and x′ would not share a word identity, but

would most likely share a speaker identity. Each subnetwork produces an embedding from

its respective input. A distance function calculates the distances between the positive

and negative pairs respectively. These distances are then passed to a contrastive loss

function which simultaneously minimises the distance between the positive embedding pair,

while maximising the distance between the negative embedding pair. As in the Siamese

network, the positive pair encourages the network to maintain features that contribute

to word identity, while the negative pair discourages features that contribute to speaker

identity. In the Triamese network the positive and negative embedding pairs are handled

simultaneously, whereas in the Siamese network they are handled separately. The Triamese

network is illustrated in Figure 4.2.

4.1.3. Network comparison

Both the CAE and the Triamese networks were developed for the purpose of speaker-

independent feature extraction. Both networks are also trained on frames of word pairs,

where each frame shares a word identity but not necessarily a speaker identity. In the case

of the Triamese network, there is a third frame as well, since the Triamese network uses a

contrastive loss function which requires a negative example. While the Triamese network

compares both inputs directly on the embedding level (by computing the distance between

the produced feature embeddings), the CAE first decodes the feature embedding and

attempts to construct the second input from the features extracted from the first input.

Ignoring the negative negative input subnetwork of the Triamese network, the Triamese

network can be seen as two encoders trying to produce the same feature embedding from

Stellenbosch University https://scholar.sun.ac.za

4.2. Experiments 33

similar inputs, whereas the CAE is an encoder trying to produce a feature embedding that

is generic enough so that a decoder can construct an output that is similar to the input.

4.2. Experiments

In this section we describe the process through we which we compared the CAE and

Triamese networks. Firstly, we describe the purpose of this experiment and what we aim

to learn from its results. We then describe the experimental setup: the datasets used,

the hyperparameters chosen for each network, the training procedure and the evaluation

metric used. Next we present the results from the experiment, discussing the outcomes and

possible reasons for the results. Finally we summarise our findings and draw conclusions

based on the outcomes.

4.2.1. Purpose of experiment

The purpose of this experiment is to perform a fair comparison of the CAE and Triamese

networks. Both are promising networks in the field of speaker-independent feature extrac-

tion, yet these networks have never been compared by training them on the same datasets

and evaluating them using the same evaluation metric. We aim to evaluate each network’s

capability of training a generic feature extractor in an unsupervised environment. Each

network will be trained on words produced by an unsupervised term discovery system. The

features should disregard speaker-specific information, such as gender and tone of voice,

while maintaining linguistically meaningful contrasts that contribute to word identity. We

would also like to know how each network is affected by the fact that it is operating in an

unsupervised environment. To establish this, we also evaluate each network on ground

truth terms. These are terms that correspond to actual words, not words discovered by

the UTD system. This should give a fair indication as to how each network is affected by

the use of UTD terms.

4.2.2. Datasets

We use the datasets as outlined in Chapter 3, which we briefly summarise here.

The Buckeye corpus of conversational English

We use the English dataset, the Buckeye corpus of conversational English [20], as our

development dataset. The dataset is split into three subsets: a training set, a validation set,

and a test set, with no speaker identity overlap in any of the sets. Each model is trained

using the training set and feature performance as training progresses is tracked using the

validation set. If performance on the validation set is not satisfactory, hyperparameters

Stellenbosch University https://scholar.sun.ac.za

4.2. Experiments 34

and network variables are tweaked and the model is trained again1. Once performance on

the validation set is satisfactory, the model is tested a single time on the test set.

The NCHLT speech corpus of South African languages

We use the Xitsonga dataset from the NCHLT speech corpus of the South African languages

as our zero-resource environment. The dataset is split into two subsets: a training set,

and a test set. This dataset represents a zero resource environment. Because of this, there

is no validation set, and no fine-tuning will be performed on this dataset, as it would not

be possible in a truly zero resource environment. A model will be trained on this dataset

for a fixed number of epochs. The feature performance will be evaluated only once.

4.2.3. Unsupervised term discovery

For the unsupervised tests, word pairs are produced from each dataset using the UTD

system proposed by [26]. From the UTD system we produce word pairs which we align

using DTW alignment. However, the Triamese network requires triplets as input. An

aligned word pair satisfies two of the three inputs in the Triamese input triplet, so only

a third (negative) example is necessary to form a complete triplet. For each word pair

produced by the UTD system, we randomly sample a third word from the same dataset

the satisfies the following conditions:

• It must not share a predicted word identity with the word pair.

• It must share a speaker identity with the first word in the word pair.

This third word most likely contains a different number of frames than the DTW-aligned

word pair. Where the word pair could be DTW-aligned because they share a word identity,

this third word cannot. Instead, a nearest neighbour scaling is performed on the frame

indices to have the start and end frames of the third word align with that of the original

word pair.

4.2.4. Evaluation metric

To evaluate the performance of the features produced by each network we use the same-

different task [2] as described in Section 2.5.1. The same-different task is a word discrimi-

nation task that also measures speaker independence and was specifically developed to

evaluate speech features in a zero resource setting.

1A holdout approach is used instead of cross validation, simply because the current state of the code
runs the evaluation task as three separate background processes, which makes training and evaluation
automation difficult.

Stellenbosch University https://scholar.sun.ac.za

4.2. Experiments 35

4.2.5. Experimental setup

In this section we describe the specifics of each network architecture. We also describe the

training and evaluation procedure for each network.

Correspondence autoencoder

For the CAE, we use the network setup that [6] found to be optimal. The network uses a

39-unit input layer. Following this are six 100-unit densely connected hidden layers, each

using a ReLU activation. Concluding the encoder half of the network is a 39-unit densely

connected layer, also using a ReLU activation. This is the layer from which the embeddings

are extracted. We maintain the same dimensionality as the input so that we can compare

the performance of the extracted features with that of the MFCCs that we use to train

the network. The decoder half of the network mirrors the encoder half. Following the

39-unit embedding layer are another six 100-unit densely connected hidden layers, each

using a ReLU activation. Finally, the output layer is a 39-unit densely connected layer

with linear activation. The network is trained using an Adadelta [33] optimiser with a

learning rate of 0.001 and a mean squared error loss function. A code implementation of

the network can be found in Appendix A.1.

Triamese network

All three subnetworks in the Triamese network are identical and share weights. Each

subnetwork starts with a 39-unit input layer, followed by six 100-unit densely connected

hidden layers with ReLU activations. The final embedding layer is a 39-unit densely

connected layer with a ReLU activation. Zeghidour et al. [15] used RReLU activation

functions, but noted that it performed the same as the regular ReLU activation function.

We use the loss function proposed by Zeghidour et al. [15] which we showed in Equation

2.20. We list it here for convenience:

`γ(ea, eb, e
′) = max(0, γ − cos(ea, eb) + cos(ea, e

′)), (4.1)

For the margin parameter γ we use a value of 0.15, which Zeghidour et al. [15] found to be

optimal. Finally, the network is trained using stochastic gradient descent with a learning

rate of 0.01 and a decay of 10−6. We also train the network using an Adam optimiser with

a learning rate of 0.001. A code implementation of the network and the loss function can

be found in Appendix A.2.

Training

We train each network using the training set from the Buckeye corpus. Each network was

trained frame by frame using pairs discovered via an unsupervised term discovery system.

Stellenbosch University https://scholar.sun.ac.za

4.2. Experiments 36

Table 4.1: Results from the evaluation task show that, when trained on UTD terms,
features produced by the CAE outperforms those produced by the Triamese network.
The Triamese network also failed to outperform the baseline MFCCs on the English test
set, possibly due to being sensitive to the selection of training pairs.

English validation English test Xitsonga
Model AP PRB AP PRB AP PRB

MFCC 0.368 0.392 0.359 0.400 0.281 0.344
CAE 0.474 0.477 0.460 0.485 0.574 0.561
Triamese 0.382 0.414 0.348 0.387 0.459 0.483

Each network was trained 20 epochs at a time, and we evaluated each network using the

validation set between each training session. We also saved the model after each training

session, so that as soon as performance began to decline, we could use the previous model

as our feature extractor. The CAE was trained for 180 epochs in total, while the Triamese

network was trained for 140 epochs in total.

For our unsupervised test, no fine-tuning of a network was allowed. We noted the final

number of epochs used to produce the best model for each network on the Buckeye corpus

and trained each network on the Xitsonga dataset for the same number of epochs.

Evaluation

Once training was complete, we used a feature extractor from each network. For the CAE

it would be the encoding half of the network. For the Triamese network it would be a

single branch of the network. We used each feature extractor to produce features from the

test sets of the respective datasets. The average precision of each feature set was then

calculated.

4.2.6. Results

Table 4.1 shows the average precision of each model on each dataset when trained on

terms discoverd by the UTD system. We include the performance of the MFCCs from

each dataset as a baseline.

The CAE outperformed the baseline MFCCs and the Triamese network on each dataset.

The Triamese network, on the other hand, failed to outperform the baseline MFCCs on

the English test set. Riad et al. [40] found that Siamese networks could be rather sensitive

to the input pairs they are trained on. It stands to reason that the Triamese network, as a

derivative of the Siamese network, also inherits this property.

Not shown in the table is the fact that the Triamese network tended to be prone to

overfitting. The average precision of features produced by the network once it was trained

Stellenbosch University https://scholar.sun.ac.za

4.3. Chapter summary and conclusions 37

Table 4.2: Results from the evaluation task show that, when trained on ground truth
terms, features produced by the CAE outperforms those produced by the Triamese
network. Using an Adam optimiser instead of stochastic gradient descent worsened the
performance of the Triamese network.

English validation English test
Model AP PRB AP PRB

MFCC 0.368 0.392 0.359 0.400
CAE 0.519 0.513 0.455 0.474
Triamese (SGD) 0.463 0.471 0.388 0.419
Triamese (Adam) 0.431 0.452 N/A N/A

past its optimal operating point declined sharply, whereas the CAE was very resistant to

overfitting.

Table 4.2 shows the average precision of each model on each dataset when trained on

the ground truth terms. This table does not contain a column for the Xitsonga dataset,

since that dataset was only used to evaluate the performance of features produced in a

completely unsupervised scenario. MFCCs are once again included as a baseline. The

Triamese network was also trained and evaluated using the Adam optimiser instead of

stochastic gradient descent, just to see how the difference in optimiser affected the outcome.

The CAE still outperformed the Triamese network on the ground truth terms. However,

we see a large increase in performance for the Triamese network when trained on ground

truth terms instead of the UTD terms. This leads us to believe that the Triamese network

is somewhat more sensitive to noisy data. The use of the Adam optimiser instead of

stochastic gradient descent on the Triamese network degraded performance slightly on the

evaluation set, so we decided to not run it on the test set.

4.3. Chapter summary and conclusions

We compared the performance of speech features produced by the CAE and Triamese

networks using an evaluation task that measures word discrimination and speaker indepen-

dence. Features produced by the CAE outperformed features produced by the Triamese

network when trained on discovered terms across both the English and Xitsonga datasets.

The Triamese network performed slightly worse than standard MFCCs on the English

test set, but, as noted by [40], Siamese networks (and possibly their derivitives) can be

very sensitive to the pairs on which they are trained. This notion is further confirmed by

the fact that the Triamese network performed significantly better when trained on terms

that correspond to actual words. The UTD system introduces some degree of noise to the

data, since the discovered terms are not guaranteed to be perfect. We can also conclude

that the CAE tends to be somewhat more robust than the Triamese network, as it was

Stellenbosch University https://scholar.sun.ac.za

4.3. Chapter summary and conclusions 38

less prone to overfit during training and did not see as large a jump in performance when

trained on ground truth terms.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Introducing speaker information into

the CAE

In this chapter we investigate whether speaker-conditioning can improve the features

produced by the CAE. Firstly, we describe our hypothesis. Next, we explain the method

by which we are going to introduce speaker-conditioning to the CAE. After the model

description, we describe the experimental environment and discuss the results of the

experiment.

5.1. Hypothesis

As mentioned before, the CAE consists of two halves: an encoder and a decoder. However,

once trained, only the encoder is used as a generic feature extractor. What this means

is that we are free to modify the decoder in whatever way during training, as it will not

affect how we use the encoder once training is complete. This raises a question: what can

we do to the decoder to improve the quality of the features produced by the encoder? The

CAE is trained using weak top-down supervision provided by discovered word pairs. We

know the following about the word pairs: that they correspond to the same word identity

(at least according to the word discovery task), and we know the speaker identity of each

word pair. During training, the network tries to transform the speaker of a word from

the input speaker to the output speaker. If we can help the network during this decoding

process, the encoder might have more freedom to focus on maintaining the word identity,

rather than maintaining speaker features that are common to both speakers. Thus, if we

can augment the decoder’s knowledge about the speaker it is trying to replicate, we may

improve the speaker-independence of the features produced by the encoder.

5.1.1. Adding speaker information

Since we only have a speaker identity to work with, we are going to investigate the

possibility of using this identity to learn a speaker representation of each speaker during

the training of the network. This is similar to what Zeghidour et al. did in [15]. However,

the focus of their experiment was to see if speaker and phonetic information could be

39

Stellenbosch University https://scholar.sun.ac.za

5.2. Experiments 40

DTW

termb

terma

xa

xb

e

xs

Figure 5.1: Speaker information is introduced to the CAE by manner of an n×m matrix
that is trained alongside with the network.

disentangled using a single network. Their network also produced a generic speaker

representation extractor, rather than learning individual speaker representations for each

speaker in the dataset. The purpose of our experiment is to learn a speaker representation

that can augment the decoder task during training. To represent our speaker information,

we add an n×m matrix to the network, where n is equal to the number of speakers in our

dataset and m is the dimensionality of our speaker representation. During training, we

pair the identity of the output speaker together with the input-output pair. The network

selects a representation from the matrix based on the speaker identity and concatenates it

to the first hidden layer following the embedding layer. This provides the decoder with

m extra units which it can use to approximate the output target more closely. Initially,

these matrix values would be randomised. However, as the network encounters the same

speaker time and again, these values should approximate a different set of values for each

speaker. The resulting network is depicted in Figure 5.1.

5.2. Experiments

In this section, we describe the experimental setup used to determine the effectiveness of

the proposed method.

5.2.1. Experimental setup

As before, the network is developed using the Buckeye corpus. A final unsupervised test

is performed using the Xitsonga language from NCHLT dataset. The training set of

the Buckeye corpus contains 13 speakers, making n = 13. For m, we chose a value of

100. The rest of the CAE uses the same setup as the experiment in Section 4, which

we restate here for convenience. The network has an input layer of 39-units, followed by

six 100-unit densely connected hidden layers using ReLU activation. Following this is

Stellenbosch University https://scholar.sun.ac.za

5.2. Experiments 41

Table 5.1: Each network is trained using discovered terms. The network is then used as
a feature extractor, and the features are evaluated using the same-different task.

English validation English test Xitsonga
Model AP PRB AP PRB AP PRB

MFCC 0.368 0.392 0.359 0.400 0.281 0.344
CAE 0.474 0.477 0.460 0.485 0.574 0.561
CAE w/ speaker 0.472 0.475 0.464 0.464 0.610 0.595

Table 5.2: Each network is trained using ground truth terms. The network is then used
as a feature extractor, and the features are evaluated using the same-different task.

English validation English test
Model AP PRB AP PRB

MFCC 0.368 0.392 0.359 0.400
CAE 0.519 0.513 0.455 0.474
CAE w/ speaker 0.462 0.478 0.445 0.469

a 39-unit embedding layer, also with ReLU activation. The decoder section starts with

a 100-unit densely connected layer to which we concatenate the speaker representation.

Following the concatenated layer is five 100-unit densely connected layers, each with ReLU

activation and a final 39-unit output layer with linear activation. The network is trained

using a mean squared error loss using an Adadelta [33] optimiser with a learning rate of

0.001. The features produced by the network is evaluated using the same-different task to

calculate an average precision. A code implementation of the network can be found in

Appendix A.3.

5.2.2. Results

The results of the experiment are shown in Table 5.1.

Adding speaker conditioning to the CAE did not yield significant results when the

network is trained on discovered words. Features from the speaker-conditioned CAE

performed slightly better than the regular CAE on the English test set, but this improve-

ment is negligible and is possibly due to the random weight initialisation of the network.

However, in our unsupervised environment, features from the speaker-conditioned CAE

did manage to achieve a higher AP than their non-speaker-conditioned counterparts.

The results for the evaluations using ground truth terms are shown in Table 5.2.

The additional speaker conditioning worsened the performance of the CAE on both the

validation and the test sets. Since the Xitsonga dataset is only used for unsupervised

Stellenbosch University https://scholar.sun.ac.za

5.3. Chapter summary and conclusions 42

testing, we could not train the network on that dataset in a supervised capacity.

5.3. Chapter summary and conclusions

In this chapter, we conducted an experiment to see whether or not speaker conditioning

could be used to improve the features extracted by the CAE. Speaker representations were

trained along with the network and fed back into the decoder half of the CAE. In most cases,

speaker conditioning did not improve the features extracted by the CAE. Average precision

remained roughly the same on all datasets. However, on the unsupervised Xitsonga set,

the speaker-conditioned features did manage to outperform their non-speaker-conditioned

counterparts. We conclude that there is still potential for speaker-conditioning to improve

the features extracted by a network, but further experiments would have to be conducted.

Future work should explore concatenating the speaker representations at different layers.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

The Correspondence Triamese Network

In this chapter we introduce the correspondence Triamese (CTriamese) network. First

we give a brief overview of the CAE and Triamese networks, after which we discuss how

these networks can be complementary to one another. Next we describe our hypothesis,

followed by a detailed network architecture. After describing the model architecture, we

describe the implementation details and give an overview of the experimental environment.

Finally, we show that features produced by the CTriamese network outperform features

from both the CAE and the Triamese networks in the same-different task. We also show

that, unlike the CAE, the CTriamese network consistently benefits from the inclusion of

speaker conditioning.

6.1. CAE and Triamese

We did a thorough comparison of the CAE and Triamese networks in Chapter 4 using

the same-different evaluation task. Both networks are trained using word pairs, where

the words share a word identity but do not necessarily share a speaker identity. Both

networks also extract an embedding from a given input, but where the Triamese network

compares that extracted embedding with another embedding, the CAE attempts to decode

the embedding to the output word of the input-output pair. The networks are also

fundamentally different in their loss functions. The Triamese network’s contrastive loss

function prevents the network from simply zeroing all the feature embeddings. Zeroing the

embeddings would minimise the distance between the two similar embeddings. However,

it would also minimise the distance between the differing embeddings, which needs to be

maximised instead. The CAE’s loss function only compares the feature embedding with

the intended output once it has been decoded.

When we compare a single branch of the Triamese network with the CAE, we can

see that these networks are identical up until the embedding layer. We illustrate this in

Figure 6.1.

43

Stellenbosch University https://scholar.sun.ac.za

6.2. Hypothesis 44

xa

ea

xb

eb

x′

e′

`triplet

xa

xb

e

Figure 6.1: A CAE next to a Triamese network. As shown by the dotted box, a single
branch of a Triamese network is identical to the encoding half of a CAE.

6.2. Hypothesis

Since a branch of the Triamese network is already half of a CAE, we hypothesise that

each branch of the Triamese network can be expanded to a full CAE. We call this new

hybrid network the correspondence Triamese (CTriamese) network. Doing so would cause

two loss functions to constrain the feature embedding simultaneously: the contrastive loss

from the Triamese network, and the loss function from the CAE (which is applied after it

decodes the feature embedding again). The combined constraints could theoretically lead

to an improved feature extractor.

6.3. The correspondence Triamese network (CTriamese)

In this section we describe the network architecture of the CTriamese network. As with

the Triamese network, the CTriamese network consists of three branches. As with the

CAE, each branch consists of two halves: an encoder and a decoder. In the middle of each

branch, between the encoder and decoder, is our embedding layer. As with the Triamese

network, this is the layer where we apply the triplet loss of the Triamese network. The

normal Triamese network is trained on triplets of the form (xa,xb,x
′), where xa and xb

represent words of the same identity (with possibly different speakers), and x′ represents

a word of a different identity, but it shares a speaker identity with xa. Since our input

structure is the same, we can use the same input structure as the Triamese network.

However, each branch is also a complete CAE, so each branch will need an output target

that is the same word identity as its corresponding input, spoken by any speaker. For

the first two branches of the CTriamese network, we already have a word in the Triamese

input that satisfies these conditions: input xa can use xb as an output and xb can use

xa as an output. However, this leaves x′, which we will now refer to as x′a, without a

Stellenbosch University https://scholar.sun.ac.za

6.4. Speaker information 45

xa

ea

xb

eb

x′
a

e′
a

xb

`triplet

xa x′
b

Figure 6.2: The final network architecture of the CTriamese network. Each branch of the
Triamese network can be extended to a full CAE network, thus employing the constraints
of both networks on the embedding layer.

corresponding output. For our fourth word, x′b we randomly sample a word from our

dataset that matches the word identity of x′a. We then DTW align it with x′a so that the

input and output frames are comparable. The final network architecture is depicted in

Figure 6.2.

The loss functions of each network stay the same. The entire network uses a summation

of these loss functions, making the final loss function:

`(xa,xb,x
′
a,x

′
b) = `cae(xa,xb) + `cae(xb,xa) + `cae(x

′
a,x

′
b)

+ `triplet(xa,xb,x
′
a) (6.1)

where `cae and `triplet represent the losses of the CAE and Triamese networks respectively.

6.4. Speaker information

While the addition of speaker information did not yield significant improvements for

the CAE in Chapter 5, it did show promise by improving the results on the Xitsonga

dataset. Therefore, in this section, we implement speaker conditioning for the CTriamese

network. Each branch of the CTriamese network is a fully functional CAE network. We

can introduce speaker conditioning to each branch, just as we did for the CAE in Chapter

5, in the form of an n×m matrix. Since there are a fixed number of speakers that each

CAE subnetwork will see, each CAE does not need its own speaker matrix. Instead, we

will use a single speaker matrix that is shared amongst all three CAE subnetworks. We

Stellenbosch University https://scholar.sun.ac.za

6.5. Experiments 46

xa

ea

xb

eb

x′
a

e′
a

xb

`triplet

xa x′
b

sasb s′b

Figure 6.3: The final network architecture of the CTriamese network. Each branch of the
Triamese network can be extended to a full CAE network, thus employing the constraints
of both networks on the embedding layer.

will have to adjust the inputs we pass to the network during training so that the network

can select a speaker embedding for each CAE subnetwork. For each output, we provide its

corresponding speaker identity, so for the three outputs (xb,xa,x
′
b), we provide speaker

identities (sb, sa, s
′
b). The speaker identities are used to select an embedding from the

speaker matrix. The speaker embedding is then concatenated to the first hidden layer

after the embedding layer of its corresponding CAE, giving the decoder m extra units

per speaker to manipulate in order to reconstruct its target output. These units will be

randomised at first but should converge to a specific speaker representation as training

progresses. The resulting network with speaker information is presented in Figure 6.3.

6.5. Experiments

In this section, we explain our experimental setup, including the datasets used, the specific

hidden layer setup of the model we are training, and the hyperparameters we choose. We

explain our testing procedure, and we present the results of our experiment.

6.5.1. Experimental setup

The CAE branches

The three CAE branches of the CTriamese network are identical and they all share the

same set of weights. Each branch starts with a 39-unit input layer, followed by six 100-unit

Stellenbosch University https://scholar.sun.ac.za

6.5. Experiments 47

densely connected layers with ReLU activations. In the middle of the branch is the

embedding layer, which is a 39-unit densely connected layer, also with ReLU activation.

We keep the dimensionality 39 so that the features produced are comparable with the

MFCCs we are training on. This concludes the encoder half of the CAE branch. The

decoder half consists of a further six 100-unit densely connected hidden layers, each with

ReLU activation. Finally, the output layer is a 39-unit densely connected layer with linear

activation. Each CAE branch is trained using a mean squared error loss.

The Triamese triplet loss

We apply the contrastive triplet loss from the Triamese network to the embedding layers

of the CAE branches. Our loss function remains the one proposed by Zeghidour et al. [15],

which we showed in Equation 2.20. Here it is again for convenience:

`γ(ea, eb, e
′
a) = max(0, γ − cos(ea, eb) + cos(ea, e

′
a)). (6.2)

Our margin parameter γ remains 0.15. The Triamese part is trained using an Adadelta [33]

optimiser with a learning rate of 0.001.

Code implementation

A code implementation of the entire CTriamese network, with speaker conditioning, can

be found in Appendix A.4.

6.5.2. Training procedure

The network is trained using the training set from the Buckeye corpus. We train the

network 20 epochs at a time so that we can evaluate the features it produces after every

step. The current model is saved after every training step. As soon as feature performance

starts to decline, the previous model is reloaded and used as our feature extractor. We

extract features from our test set and evaluate them using the same-different task. For our

unsupervised test, no fine-tuning on epochs is allowed. We train the network in one shot

for the same number of epochs that produced the best features on the English dataset.

We do this for discovered and ground truth terms.

6.5.3. Results

The results for the CTriamese trained on discovered terms are shown in Tabel 6.1.

The features produced by the CTriamese network managed to score a higher average

precision than the features produced by both the CAE and the Triamese networks on the

same datasets. While the improvements over the standard CAE are marginal, they are

consistent. Since the CTriamese network shares characteristics with the Triamese network,

Stellenbosch University https://scholar.sun.ac.za

6.5. Experiments 48

Table 6.1: Results from the evaluation task with each network trained on UTD terms.
For both AP and PRB a higher value is better.

English validation English test Xitsonga
Model AP PRB AP PRB AP PRB

MFCC 0.368 0.392 0.359 0.400 0.281 0.344
CAE 0.474 0.477 0.460 0.485 0.574 0.561
Triamese 0.382 0.414 0.348 0.387 0.459 0.483
CTriamese 0.493 0.490 0.464 0.482 0.575 0.564
CTriamese w/ speaker 0.504 0.502 0.472 0.492 0.607 0.589

Table 6.2: Results from the evaluation task with each network trained on ground truth
terms. For both AP and PRB a higher value is better.

English validation English test
Model AP PRB AP PRB

MFCC 0.368 0.392 0.359 0.400
CAE 0.519 0.513 0.455 0.474
Triamese 0.463 0.471 0.388 0.419
CTriamese 0.519 0.514 0.491 0.498
CTriamese /w speaker 0.530 0.523 0.508 0.509

the performance of the network can likely be further improved by using a proper sampling

method for its training pairs, as proposed by [40]. Additional speaker conditioning further

improved the performance of the features produced by the CTriamese network. The gains

are once again small but consistent, showcasing that speaker conditioning may still be able

to have an impact on the system. These results prove our hypothesis that the CAE and

Triamese networks are indeed complementary and that applying a triplet loss function on

intermediary representations can improve the performance of the CAE.

The results for the CTriamese trained on ground truth terms are shown in Table 6.2.

The CTriamese features also perform slightly better when trained on ground truth terms,

much the same as the CAE, but no major improvements as was seen with the Triamese

network. The CTriamese still manages to produces features that score higher on the

evaluation task than the CAE when trained on ground truth terms. The additional speaker

conditioning also still provides a small but consistent boost to the AP of the extracted

features.

Stellenbosch University https://scholar.sun.ac.za

6.6. Chapter summary and conclusions 49

6.6. Chapter summary and conclusions

In this chapter, we showed how the CAE and Triamese networks could be combined to

produce a hybrid network that can extract speaker-independent features from audio data

that performs better than those produced by the other networks on the same-different task.

We also showed that additional speaker conditioning slightly improves the performance of

the features produced by the CTriamese network. Much like the CAE, the CTriamese-

produced features also perform better when trained on ground truth terms, but it does

not see improvements like those produced by the Triamese network did. This could be

due to the dominance of the CAE in the loss function. Future work should include an

experiment where weights are added to the loss functions to measure how it impacts the

performance of the network.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Summary and conclusion

In this thesis, we compared the CAE and Triamese networks. We investigated the possibility

of using speaker conditioning as a means to improve the speaker-independence of features

produced by the CAE. Finally, we showed how the CAE and Triamese networks could

be combined to produce a new network, which we called the CTriamese network. In this

chapter, we summarise our findings, give an overview of our main contributions, and

discuss what future work could entail.

7.1. Comparison of the CAE and Triamese networks

We trained both the CAE and the Triamese network using the Buckey corpus of conver-

sational English and the Xitsonga language from the NCHLT dataset. Both networks

were trained frame by frame on terms produced by an unsupervised term discovery system

proposed by [26]. Then, using each network as a feature extractor, we evaluated the feature

set each network produced using the same-different task: a word discrimination task that

also measures speaker-independence. We showed that, under these conditions, the CAE

produced features that scored a higher average precision than the features produced by

the Triamese network on both the English and the Xitsonga datasets (0.460 vs 0.348 and

0.574 vs 0.459 respectively). The Xitsonga dataset represented a completely unsupervised

scenario on which no fine-tuning was performed.

We also evaluated each network on ground truth terms — terms that correspond to

actual words - rather than discovered terms. We found the Triamese network produced

significantly better features when trained on ground truth terms, leading us to believe that

the Triamese network could be sensitive to the data on which it is trained. This corresponds

with the work done by Riad et al. [40], in which they found that the performance of

Siamese networks can be affected by the selection of training pairs. We believe this holds

for derivatives of the Siamese network, like the Triamese network, but a comparison of

Triamese networks trained on various selected training pairs would have to be performed.

50

Stellenbosch University https://scholar.sun.ac.za

7.2. Speaker conditioning in the CAE 51

7.2. Speaker conditioning in the CAE

The CAE network was modified to learn representations of each speaker in the training

data during training. These representations were then fed back into the decoder half of the

CAE. The hypothesis is that the extra information would allow the decoder to reconstruct

the output word better, and in turn, allow the encoder to focus less on features that

represent speaker information and focus more on features that represent word identity.

The speaker conditioning did not affect the CAE in a consistent capacity. In the evaluation

on the English and Xitsonga test sets, speaker conditioning did provide a minor increase

in average precision (0.464 vs 0.460 and 0.610 vs 0.574 respectively), but when trained on

ground truth terms the CAE performed better without the speaker information (0.455 vs

0.445). This leads us to believe that speaker conditioning can still be used to better the

features produced by a network.

7.3. The CTriamese network

We developed a novel CAE-Triamese hybrid network called the CTriamese network. The

network applies the triplet loss of the Triamese network to the intermediary representations

of the CAE. We evaluated the network on the same English and Xitsonga datasets as

the CAE and Triamese networks using the same same-different evaluation task. Using

this hybrid network, we showed that the combined constraints of the CAE and Triamese

networks lead to better features than the individual CAE and Triamese networks could

produce. We also applied speaker conditioning to this network and found that it produced

small but consistent gains in the average precision of the features extracted by the network.

7.4. Contributions

Our main contributions in this thesis were as follows:

• To our knowledge, this is the first time that the CAE and Triamese networks were

compared when trained on the same data using the same evaluation task.

• We investigated the possibility of using speaker conditioning in the CAE as a means

to produce features that are less speaker-dependent.

• We proposed a novel CAE-Triamese hybrid network by applying a triplet loss to the

intermediary representations of the CAE. To our knowledge, this is the first time

that network performance has been increased in this manner.

Stellenbosch University https://scholar.sun.ac.za

7.5. Future work 52

7.5. Future work

Future work involving comparisons between the CAE and Triamese networks should

consider using one of the sampling techniques proposed by [40], as training pair selection

can affect the performance of the Triamese network. While the two networks were measured

on equal ground here, the performance of the Triamese network might change once the

pairs are sampled by one of the proposed techniques. It might also be worth exploring

the impact that a different triplet loss could have on the performance of the Triamese

and CTriamese networks. One loss to consider is the semihard online triplet loss [41].

The CTriamese network showed that speaker conditioning can affect the performance of

features produced by the network. It is worth investigating if the decoder of the CAE could

be restructured to make better use of the learned speaker representations. Work extending

the CTriamese network should consider adding weights to the combined CTriamese loss

function. Equation 6.1 can be adjusted to weigh each part of the CTriamese network’s

loss function differently:

`(xa,xb,x
′
a,x

′
b) = α1`cae(xa,xb) + α2`cae(xb,xa) + α3`cae(x

′
a,x

′
b)

+ α4`triplet(xa,xb,x
′
a), (7.1)

where α is a weight parameter. By weighting the loss function in favour of the CAE or

the triplet loss, the performance of the network could be adjusted.

Another consideration could be to train the networks on features other than MFCCs.

Perceptual linear prediction [42] (PLP) is a feature extraction approach that can be

considered to produce baseline features other than MFCCs.

Each network should also be evaluated using a variety of different optimisers, as the

choice of optimiser can greatly affect the performance of each network.

An alternative to the CTriamese network would be to train the Triamese and CAE

networks separately, and then produce features by having the MFCCs be processed first by

one network and then the other. A comparison between this approach and the CTriamese

network should be made.

Another experiment that can be considered is to train a network with a reduced speaker

set and gradually increase the number of speakers in the training set as training progresses,

mimicking the training environment of infants.

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] R. Menon, H. Kamper, E. Van Der Westhuizen, J. Quinn, and T. Niesler, “Feature

exploration for almost zero-resource ASR-free keyword spotting using a multilingual

bottleneck extractor and correspondence autoencoders,” in Proc. Interspeech, 2019.

[2] M. A. Carlin, S. Thomas, A. Jansen, and H. Hermansky, “Rapid evaluation of speech

representations for spoken term discovery,” in Proc. Interspeech, 2011.

[3] P. K. Austin and J. Sallabank, The Cambridge Handbook of Endangered Languages,

ser. Cambridge Handbooks in Language and Linguistics. Cambridge: Cambridge

University Press, 2011.

[4] D. M. Eberhard, G. F. Simons, and C. D. Fennig, Ethnologue: Languages of the

World, 22nd ed. Dallas: SIL International, 2019.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[6] H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsupervised neural network

based feature extraction using weak top-down constraints,” in Proc. ICASSP, 2015.

[7] E. Dupoux, “Cognitive science in the era of artificial intelligence: A roadmap for

reverse-engineering the infant language-learner,” Cognition, vol. 173, pp. 43–59, 2018.

[8] G. Adda, S. Stüker, M. Adda-Decker, O. Ambouroue, L. Besacier, D. Blachon,

H. Bonneau-Maynard, P. Godard, F. Hamlaoui, D. Idiatov, G. N. Kouarata, L. Lamel,

E.-M. Makasso, A. Rialland, M. Velde, F. Yvon, and S. Zerbian, “Breaking the

unwritten language barrier: The BULB project,” Procedia Computer Science, vol. 81,

pp. 8–14, 2016.

[9] M. Versteegh, R. Thiollière, T. Schatz, X.-N. Cao Kam, X. Anguera, A. Jansen, and

E. Dupoux, “The Zero Resource Speech Challenge 2015,” in Proc. Interspeech, 2015.

[10] M. Versteegh, X. Anguera, A. Jansen, and E. Dupoux, “The Zero Resource Speech

Challenge 2015: Proposed approaches and results,” Procedia Computer Science,

vol. 81, pp. 67 – 72, 2016.

[11] K. L. Levin, A. Jansen, and B. Van Durme, “Segmental acoustic indexing for zero

resource keyword search,” in Proc. ICASSP, 2015.

53

Stellenbosch University https://scholar.sun.ac.za

Bibliography 54

[12] Y. Zhang and J. R. Glass, “Unsupervised spoken keyword spotting via segmental

DTW on Gaussian posteriorgrams,” in Proc. ASRU, 2009.

[13] S. Settle, K. Levin, H. Kamper, and K. Livescu, “Query-by-example search with

discriminative neural acoustic word embeddings,” in Proc. Interspeech, 2017.

[14] Y.-H. Wang, H.-y. Lee, and L.-s. Lee, “Segmental audio word2vec: Representing

utterances as sequences of vectors with applications in spoken term detection,” in

Proc. ICASSP, 2018.

[15] N. Zeghidour, G. Synnaeve, N. Usunier, and E. Dupoux, “Joint learning of speaker

and phonetic similarities with siamese networks,” in Proc. Interspeech, 2016.

[16] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression with

compressive autoencoders,” arXiv preprint arXiv:1703.00395, 2017.

[17] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising

criterion,” Journal of Machine Learning Research, vol. 11, pp. 3371–3408, 2010.

[18] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification

using a ‘Siamese’ time delay neural network,” in Proc. NIPS, 1993.

[19] T. Schatz, V. Peddinti, F. Bach, A. Jansen, H. Hermansky, and E. Dupoux, “Eval-

uating speech features with the minimal-pair ABX task: Analysis of the classical

MFC/PLP pipeline,” in Proc. Interspeech, 2013.

[20] M. A. Pitt, K. Johnson, E. Hume, S. Kiesling, and W. Raymond, “The Buckeye corpus

of conversational speech: Labeling conventions and a test of transcriber reliability,”

Speech Communication, vol. 54, no. 1, pp. 89–95, 2005.

[21] N. J. De Vries, M. H. Davel, J. Badenhorst, W. D. Basson, F. De Wet, E. Barnard,

and A. De Waal, “A smartphone-based ASR data collection tool for under-resourced

languages,” Speech Communication, vol. 56, pp. 119–131, 2014.

[22] J. Glass, “Towards unsupervised speech processing,” in Proc. ISSPA, 2012.

[23] D. Crystal, Language Death, ser. Canto Refresh Your Series. Cambridge University

Press, 2002.

[24] S. Davis and P. Mermelstein, “Comparison of parametric representations for mono-

syllabic word recognition in continuously spoken sentences,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 357–366, 1980.

Stellenbosch University https://scholar.sun.ac.za

Bibliography 55

[25] A. S. Park and J. R. Glass, “Unsupervised pattern discovery in speech,” IEEE

Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1, pp. 186–197,

2008.

[26] A. Jansen and B. Van Durme, “Efficient spoken term discovery using randomized

algorithms,” in Proc. ASRU, 2011.

[27] H. Kamper, A. Jansen, and S. Goldwater, “A segmental framework for fully-

unsupervised large-vocabulary speech recognition,” Computer Speech & Language, pp.

154–174, 2017.

[28] M. Sun and H. Van hamme, “Joint training of non-negative tucker decomposition

and discrete density hidden markov models,” Computer Speech & Language, vol. 27,

pp. 969–988, 2013.

[29] K. M. Ting, Precision and Recall. Boston, MA: Springer US, 2010, pp. 781–781.

[30] W. A. Munson and M. B. Gardner, “Standardizing auditory tests,” The Journal of

the Acoustical Society of America, vol. 22, no. 5, pp. 675–675, 1950.

[31] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[32] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning

and stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp.

2121–2159, 2011.

[33] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” arXiv preprint

arXiv:1212.5701, 2012.

[34] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. ICLR,

2014.

[35] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann

machines,” in Proc. ICML, 2010.

[36] A. L. Maas, “Rectifier nonlinearities improve neural network acoustic models,” in

Proc. ICML, 2013.

[37] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations

in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[38] R. Thiollière, E. Dunbar, G. Synnaeve, M. Versteegh, and E. Dupoux, “A hybrid

dynamic time warping-deep neural network architecture for unsupervised acoustic

modeling,” in Proc. Interspeech, 2015.

Stellenbosch University https://scholar.sun.ac.za

Bibliography 56

[39] D. Renshaw, H. Kamper, A. Jansen, and S. J. Goldwater, “A comparison of neural

network methods for unsupervised representation learning on the Zero Resource

Speech Challenge,” in Proc. Interspeech, 2015.

[40] R. Riad, C. Dancette, J. Karadayi, N. Zeghidour, T. Schatz, and E. Dupoux, “Sam-

pling strategies in siamese networks for unsupervised speech representation learning,”

in Proc. Interspeech, 2018.

[41] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face

recognition and clustering,” in Proc. CVPR, 2015.

[42] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,” The Journal

of the Acoustical Society of America, vol. 87, 1998.

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Network implementations in Python

This appendix illustrates how each network was implemented in code using Python.

A.1. CAE

1 from tensorflow import keras

2 from tensorflow.keras.models import Model, Sequential

3

4 def build_cae(n_visible, n_hiddens, n_embedding):

5 """

6 Builds a correspondence autoencoder.

7 Args:

8 n_visible: The input and output dimensions of the network.

9 n_hiddens: List of hidden layer dimensions.

10 n_embedding: Dimensionality of the feature embedding.

11

12 Returns:

13 cae: Keras model ready to be compiled.

14 seq_encode: Encoder half of the network, to be used as

15 feature extractor after training.

16 """

17 input_layer = keras.layers.Input(shape=(n_visible,))

18

19 seq_encode = Sequential()

20 for i, n_hidden in enumerate(n_hiddens):

21 seq_encode.add(keras.layers.Dense(n_hidden,

22 activation=keras.activations.relu))

23 seq_encode.add(keras.layers.Dense(n_embedding,

24 activation=keras.activations.relu))

25

26 embedding = seq_encode(input_layer)

57

Stellenbosch University https://scholar.sun.ac.za

A.2. Triamese 58

27

28 seq_decode = Sequential()

29 for i, n_hidden in enumerate(reversed(n_hiddens)):

30 seq_decode.add(keras.layers.Dense(n_hidden,

31 activation=keras.activations.relu))

32 seq_decode.add(keras.layers.Dense(n_visible,

33 activation=keras.activations.linear))

34

35 output_layer = seq_decode(embedding)

36

37 cae = keras.models.Model(inputs=[input_layer],

38 outputs=[output_layer])

39

40 return cae, seq_encode

A.2. Triamese

1 from tensorflow import keras

2 from tensorflow.keras.models import Model, Sequential

3

4 def build_triamese(n_visible, n_hiddens, n_embedding):

5 """

6 Builds a Triamese network.

7 Args:

8 n_visible: The input and output dimensions of the network.

9 n_hiddens: List of hidden layer dimensions.

10 n_embedding: Dimensionality of the feature embedding.

11

12 Returns:

13 triamese: Keras model ready to be compiled.

14 seq_encode: One branch of the network, to be used as

15 feature extractor after training.

16 """

17 input_1 = keras.layers.Input(shape=(n_visible,))

18 input_2 = keras.layers.Input(shape=(n_visible,))

19 input_3 = keras.layers.Input(shape=(n_visible,))

20

Stellenbosch University https://scholar.sun.ac.za

A.3. CAE with speaker conditioning 59

21 seq_encode = Sequential()

22 for i, n_hidden in enumerate(n_hiddens):

23 seq_encode.add(keras.layers.Dense(n_hidden,

24 activation=keras.activations.relu))

25 seq_encode.add(keras.layers.Dense(39,

26 activation=keras.activations.relu))

27

28 embedding_1 = seq_encode(input_1)

29 embedding_2 = seq_encode(input_2)

30 embedding_3 = seq_encode(input_3)

31

32 d1 = keras.layers.dot([embedding_1, embedding_2],

33 axes=-1, normalize=True)

34 d2 = keras.layers.dot([embedding_1, embedding_3],

35 axes=-1, normalize=True)

36

37 output_layer = keras.layers.Concatenate()([d1, d2])

38

39 triamese = keras.models.Model(inputs=[input_1, input_2, input_3],

40 outputs=[output_layer])

41

42 return triamese, seq_encode

43

44 def margin_triplet_loss(margin):

45 def loss_func(y_true, y_pred):

46 d1 = y_pred[0][0]

47 d2 = y_pred[0][1]

48

49 loss = keras.backend.maximum(margin - d1 + d2,

50 0.0)

51 return loss

52 return loss_func

A.3. CAE with speaker conditioning

1 from tensorflow import keras

2 from tensorflow.keras.models import Model, Sequential

Stellenbosch University https://scholar.sun.ac.za

A.3. CAE with speaker conditioning 60

3

4 def build_cae_speaker(n_visible, n_hiddens, n_embedding, n_speakers):

5 """

6 Builds a correspondence autoencoder with speaker conditioning.

7 Args:

8 n_visible: The input and output dimensions of the network.

9 n_hiddens: List of hidden layer dimensions.

10 n_embedding: Dimensionality of the feature embedding.

11 n_speakers: Number of speakers in the training set.

12

13 Returns:

14 cae_with_speaker: Keras model ready to be compiled.

15 seq_encode: Encoder half of the network, to be used as

16 feature extractor after training.

17 """

18 input_layer = keras.layers.Input(shape=(n_visible,))

19 speaker_input_layer = keras.layers.Input(shape=(1,),

20 dtype='int32')

21 speaker_weights = np.random.rand(n_speakers, 100)

22

23 speaker_embeddings = keras.layers.Embedding(

24 input_length=1, input_dim=n_speakers, output_dim=100,

25 trainable=True, weights=[embedding_weights])

26 speaker_embedding = keras.layers.Flatten()(

27 speaker_embeddings(speaker_input_layer))

28

29 seq_encode = Sequential()

30 for i, n_hidden in enumerate(n_hiddens):

31 seq_encode.add(keras.layers.Dense(n_hidden,

32 activation=keras.activations.relu))

33 seq_encode.add(keras.layers.Dense(n_embedding,

34 activation=keras.activations.relu))

35

36 embedding = seq_encode(input_layer)

37

38 seq_speaker = Sequential()

39 seq_speaker.add(keras.layers.Dense(reversed(n_hiddens)[0],

40 activation=keras.activations.relu))

41 first_layer = seq_speaker(embedding)

Stellenbosch University https://scholar.sun.ac.za

A.4. CTriamese with speaker conditioning 61

42 embedding_with_speaker = keras.layers.concatenate(

43 [embedding, speaker_embedding])

44

45 seq_decode = Sequential()

46 for i, n_hidden in enumerate(reversed(n_hiddens)):

47 if i != 0:

48 seq_decode.add(keras.layers.Dense(n_hidden,

49 activation=keras.activations.relu))

50 seq_decode.add(keras.layers.Dense(n_visible,

51 activation=keras.activations.linear))

52

53 output_layer = seq_decode(embedding_with_speaker)

54

55 cae_with_speaker = keras.models.Model(inputs=[input_layer],

56 outputs=[output_layer])

57

58 return cae_with_speaker, seq_encode

A.4. CTriamese with speaker conditioning

1 from tensorflow import keras

2 from tensorflow.keras.models import Model, Sequential

3

4 def build_ctriamese_with_speaker(n_visible, n_hiddens, n_embedding, n_speakers):

5 """

6 Builds a correspondence autoencoder with speaker conditioning.

7 Args:

8 n_visible: The input and output dimensions of the network.

9 n_hiddens: List of hidden layer dimensions.

10 n_embedding: Dimensionality of the feature embedding.

11 n_speakers: Number of speakers in the training set.

12

13 Returns:

14 ctriamese_with_speaker: Keras model ready to be compiled.

15 seq_encode: Encoder half of the network, to be used as

16 feature extractor after training.

17 """

Stellenbosch University https://scholar.sun.ac.za

A.4. CTriamese with speaker conditioning 62

18 input_1 = keras.layers.Input(shape=(n_visible,))

19 input_2 = keras.layers.Input(shape=(n_visible,))

20 input_3 = keras.layers.Input(shape=(n_visible,))

21 speaker_input_1 = keras.layers.Input(shape=(1,), dtype='int32')

22 speaker_input_2 = keras.layers.Input(shape=(1,), dtype='int32')

23 speaker_input_3 = keras.layers.Input(shape=(1,), dtype='int32')

24 speaker_weights = np.random.rand(n_speakers, 100)

25

26 speaker_embeddings = keras.layers.Embedding(

27 input_length=1, input_dim=n_speakers, output_dim=100,

28 trainable=True, weights=[embedding_weights])

29

30 speaker_embedding_1 = keras.layers.Flatten()(

31 speaker_embeddings(speaker_input_1))

32 speaker_embedding_2 = keras.layers.Flatten()(

33 speaker_embeddings(speaker_input_2))

34 speaker_embedding_3 = keras.layers.Flatten()(

35 speaker_embeddings(speaker_input_3))

36

37 seq_encode = Sequential()

38 for i, n_hidden in enumerate(n_hiddens):

39 seq_encode.add(keras.layers.Dense(n_hidden,

40 activation=keras.activations.relu))

41 seq_encode.add(keras.layers.Dense(n_embedding,

42 activation=keras.activations.relu))

43

44 embedding_1 = seq_encode(input_1)

45 embedding_2 = seq_encode(input_2)

46 embedding_3 = seq_encode(input_3)

47

48 seq_speaker = Sequential()

49 seq_speaker.add(keras.layers.Dense(reversed(n_hiddens)[0],

50 activation=keras.activations.relu))

51 first_layer_1 = seq_speaker(embedding_1)

52 first_layer_2 = seq_speaker(embedding_2)

53 first_layer_3 = seq_speaker(embedding_3)

54 embedding_with_speaker_1 = keras.layers.concatenate(

55 [first_layer_1, speaker_embedding_1])

56 embedding_with_speaker_2 = keras.layers.concatenate(

Stellenbosch University https://scholar.sun.ac.za

A.4. CTriamese with speaker conditioning 63

57 [first_layer_2, speaker_embedding_2])

58 embedding_with_speaker_3 = keras.layers.concatenate(

59 [first_layer_3, speaker_embedding_3])

60

61 seq_decode = Sequential()

62 for i, n_hidden in enumerate(reversed(n_hiddens)):

63 if i != 0:

64 seq_decode.add(keras.layers.Dense(n_hidden,

65 activation=keras.activations.relu))

66 seq_decode.add(keras.layers.Dense(n_visible,

67 activation=keras.activations.linear))

68

69 output_1 = seq_decode(embedding_with_speaker_1)

70 output_2 = seq_decode(embedding_with_speaker_2)

71 output_3 = seq_decode(embedding_with_speaker_3)

72

73 d1 = keras.layers.dot([embedding_1, embedding_2],

74 axes=-1, normalize=True)

75 d2 = keras.layers.dot([embedding_1, embedding_3],

76 axes=-1, normalize=True)

77

78 output_layer = keras.layers.Concatenate()([d1, d2])

79

80 ctriamese_with_speaker = keras.models.Model(

81 inputs=[input_1, input_2, input_3,

82 speaker_input_1, speaker_input_2, speaker_input_3],

83 outputs=[output_layer, output_1, output_2, output_3])

84

85 return ctriamese_with_speaker, seq_encode

Stellenbosch University https://scholar.sun.ac.za

	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Background
	Literature synopsis
	Autoencoders
	The correspondence auto-encoder
	The Siamese network
	The Triamese network

	Objectives
	Comparing the CAE and Triamese networks
	Improving the CAE with speaker conditioning
	Build a CAE-Triamese hybrid network

	Contributions
	Overview of this work

	Literature review
	Zero resource environments
	Mel-frequency cepstral coefficients
	Dynamic time warping
	Segmental dynamic time warping

	Unsupervised term discovery
	Evaluation
	Precision and recall
	The same-different task
	The ABX task

	Neural networks
	Optimisation

	Activation functions
	Linear function
	Rectified linear unit

	The Siamese network
	The Triamese network
	The correspondence autoencoder
	Chapter summary

	Datasets
	The Buckeye corpus of conversational English
	Training, validation and test sets

	The NCHLT speech corpus of South African languages
	Training and test sets

	Data processing
	Extract MFCCs with CMVN, deltas and delta-deltas
	Unsupervised term discovery (UTD)
	Voice activity detection
	Word pair alignment

	Chapter summary

	A comparison of the correspondence autoencoder and the Triamese network
	The networks
	The correspondence autoencoder (CAE)
	The Triamese network
	Network comparison

	Experiments
	Purpose of experiment
	Datasets
	Unsupervised term discovery
	Evaluation metric
	Experimental setup
	Results

	Chapter summary and conclusions

	Introducing speaker information into the CAE
	Hypothesis
	Adding speaker information

	Experiments
	Experimental setup
	Results

	Chapter summary and conclusions

	The Correspondence Triamese Network
	CAE and Triamese
	Hypothesis
	The correspondence Triamese network (CTriamese)
	Speaker information
	Experiments
	Experimental setup
	Training procedure
	Results

	Chapter summary and conclusions

	Summary and conclusion
	Comparison of the CAE and Triamese networks
	Speaker conditioning in the CAE
	The CTriamese network
	Contributions
	Future work

	Bibliography
	Network implementations in Python
	CAE
	Triamese
	CAE with speaker conditioning
	CTriamese with speaker conditioning

