GPU Acceleration of Matrix-based Methods in Computational
Electromagnetics

by

Evan Lezar

Dissertation approved for the degree of Doctor of Philosophy in
Engineering at Stellenbosch University

Department of Electrical and Electronic Engineering,
Stellenbosch University,
Private Bag X1, 7602 Matieland, South Africa.

Promoter: Prof. D.B. Davidson
Department of Electrical and Electronic Engineering
Stellenbosch University

March 2011



Declaration

By submitting this dissertation electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent explicitly
otherwise stated), that reproduction and publication thereof by Stellenbosch University will not
infringe any third party rights and that I have not previously in its entirety or in part submitted
it for obtaining any qualification.

Som

Signature: ........... i
E. Lezar

February 23, 2011

Copyright (©) 2011 Stellenbosch University
All rights reserved.



Abstract

This work considers the acceleration of matrix-based computational electromagnetic (CEM)
techniques using graphics processing units (GPUs). These massively parallel processors have
gained much support since late 2006, with software tools such as CUDA and OpenCL greatly
simplifying the process of harnessing the computational power of these devices. As with any
advances in computation, the use of these devices enables the modelling of more complex prob-
lems, which in turn should give rise to better solutions to a number of global challenges faced
at present.

For the purpose of this dissertation, CUDA is used in an investigation of the acceleration
of two methods in CEM that are used to tackle a variety of problems. The first of these is the
Method of Moments (MOM) which is typically used to model radiation and scattering problems,
with the latter begin considered here. For the CUDA acceleration of the MOM presented here,
the assembly and subsequent solution of the matrix equation associated with the method are
considered. This is done for both single and double precision floating point matrices.

For the solution of the matrix equation, general dense linear algebra techniques are used,
which allow for the use of a vast expanse of existing knowledge on the subject. This also means
that implementations developed here along with the results presented are immediately applicable
to the same wide array of applications where these methods are employed.

Both the assembly and solution of the matrix equation implementations presented result in
significant speedups over multi-core CPU implementations, with speedups of up to 300x and
10x, respectively, being measured. The implementations presented also overcome one of the
major limitations in the use of GPUs as accelerators — that of limited memory capacity — with
problems up to 16 times larger than would normally be possible being solved.

The second matrix-based technique considered is the Finite Element Method (FEM), which
allows for the accurate modelling of complex geometric structures including non-uniform dielec-
tric and magnetic properties of materials, and is particularly well suited to handling bounded
structures such as waveguide. In this work the CUDA acceleration of the cutoff and dispersion
analysis of three waveguide configurations is presented. The modelling of these problems using
an open-source software package, FEniCS, is also discussed.

Once again, the problem can be approached from a linear algebra perspective, with the
formulation in this case resulting in a generalised eigenvalue (GEV) problem. For the problems
considered, a total solution speedup of up to 7x is measured for the solution of the generalised
eigenvalue problem, with up to 22x being attained for the solution of the standard eigenvalue
problem that forms part of the GEV problem.

ii



Opsomming

In hierdie werkstuk word die versnelling van matriksmetodes in numeriese elektromagnetika
(NEM) deur die gebruik van grafiese verwerkingseenhede (GVEe) oorweeg. Die gebruik van
hierdie verwerkingseenhede is aansienlik vergemaklik in 2006 deur sagteware pakette soos CUDA
en OpenCL. Hierdie toestelle, soos ander verbeterings in verwerkings vermoé, maak dit moontlik
om meer komplekse probleme op te los. Hierdie stel wetenskaplikes weer in staat om globale
uitdagins beter aan te pak.

In hierdie proefskrif word CUDA gebruik om ondersoek in te stel na die versnelling van twee
metodes in NEM, naamlik die Moment Metode (MOM) en die Eindige Element Metode (EEM).
Die MOM word tipies gebruik om stralings- en weerkaatsingsprobleme op te los. Hier word slegs
na die weerkaatsingsprobleme gekyk. CUDA word gebruik om die opstel van die MOM matriks
en ook die daaropvolgende oplossing van die matriksvergelyking wat met die metode gepaard
gaan te bespoedig.

Algemene digte lineére algebra tegnieke word benut om die matriksvergelykings op te los.
Dit stel die magdom bestaande kennis in die vagebied beskikbaar vir die oplossing, en gee ook
aanleiding daartoe dat enige implementasies wat ontwikkel word en resultate wat verkry word
ook betrekking het tot 'n wye verskeidenheid probleme wat dié lineére algebra metodes gebruik.

Daar is gevind dat beide die opstelling van die matriks en die oplossing van die matriksverge-
lyking aansienlik vinniger is as veelverwerker SVE implementasies. 'n Verselling van tot 300x
en 10x onderkeidelik is gemeet vir die opstel en oplos fases. Die hoeveelheid geheue beskikbaar
tot die GVE is een van die belangrike beperkinge vir die gebruik van GVEe vir groot probleme.
Hierdie beperking word hierin oorkom en probleme wat selfs 16 keer grootter is as die GVE se
beskikbare geheue word geakkommodeer en suksesvol opgelos.

Die Eindige Element Metode word op sy beurd gebruik om komplekse geometrieé as ook nie-
uniforme materiaaleienskappe te modelleer. Die EEM is ook baie geskik om begrensde strukture
soos golfgeleiers te hanteer. Hier word CUDA gebruik of om die afsny- en dispersieanalise van
drie golfleierkonfigurasies te versnel. Die implementasie van hierdie probleme word gedoen deur
'n versameling oopbronkode wat bekend staan as FEniCS, wat ook hierin bespreek word.

Die probleme wat ontstaan in die EEM kan weereens vanaf 'n lineére algebra uitganspunt
benader word. In hierdie geval lei die formulering tot 'n algemene eiewaardeprobleem. Vir die
golfleier probleme wat ondersoek word is gevind dat die algemene eiewaardeprobleem met tot 7x
versnel word. Die standaard eiewaardeprobleem wat 'n stap is in die oplossing van die algemene
eiewaardeprobleem is met tot 22X versnel.

iii



Acknowledgements

I would like to thank the following people, who all played some role in making this research
possible:

Ingrid for everything that she has done for me, especially in the last few months when pressure
was at its highest.

Prof. D.B. Davidson for the guidance through the years.

Renier Marchand for his proofreading, useful comments, and ensuring that this manuscript
was handed in on time.

Mary Lancaster for her proofreading and caramel brownies.

My family for there continued support.

My in-laws for providing me with board and lodging while in Stellenbosch.
Danie Ludick for useful discussions and code samples.

Braam and Delita Otto, Paul van der Merwe, and Josh Swart for their continued friend-
ship and the odd cup of coffee or tea.

André Young for his countless lifts to and from the airport and insightful discussions.

Prof. Albert Groenwold for his willingness to listen and excitement about the results that
really kept me motivated.

Ulrich Jakobus for his discussions on the MOM and LU decomposition implementations.
Willem Burger for his help in debugging many of the implementations.

Heine de Jager for his assistance in the administration of the new GPU-enabled node at the
university’s HPC facility.

Kevin Colville and Sebastian Wyngaard for interesting discussions on HPC in general.

The NRF, CHPC, and EMSS-SA (Pty) Ltd for providing financial support for this re-
search in the form of bursaries, contract employment, or funding for hardware used for
testing.

The CEMAGG group for the great group lunches.
The occupants of E212 for putting up with my tea and coffee habits.

The residents of Farside for providing a little life outside the office.

and to anyone that I have forgotten. Thank you too.

iv



Contents

Declaration i
Abstract ii
Opsomming iii
Acknowledgements iv
Contents A
Nomenclature viii
1 Introduction 1
1.1 Research objectives . . . . . . . . . . L 2

1.2 Contributions . . . . . . . . . . . e 3
1.3 Chapter summary . . . . . . . . . .. 4

2 General purpose GPU computing 6
2.1 An overview of parallel computing . . . . . . ... ... ... ... ... ... .. 6
2.2 History of GPU computing . . . . . . . . . ... 8
2.2.1 History of NVIDIA CUDA . . . .. . .. .. .. . ... ... .. ..., 9

2.2.2 History of the ATI Stream SDK . . . . . .. ... ... ... ... ..., 10

2.3 NVIDIA CUDA . . . . . e e e 11
2.3.1 Programming model . . . . .. . ... L Lo 11

2.3.2 Hardware implementation . . . . . . . .. ... L 0oL 17

2.3.3 Mapping software to hardware . . . . . . . .. ... ... ... ... .. 20

2.3.4 Software ecosystem . . . . . . . . ... 21

2.4 ATI Stream SDK . . . . . . . . . e 23
2.4.1  Hardware . . . . . . . . . e e e 23

2.4.2  Software . . . . . . .. 25

2.5 OpenCL . . . . . . e e e 26
2.5.1 Platformmodel . . . . . . . . .. ... 26

2.5.2  Execution model . . . . .. ... 27

2.5.3 Memory model . . . . ... 28

2.6 Outlook for GPGPU computing . . . . . . . . . . .. .o 28
2.7 Conclusion . . . . . . . . e e e e 29

3 GPU-accelerated dense NLA 30
3.1 Dense numerical linear algebra . . . . . .. .. ... o000 31
3.1.1 Optimised implementations . . . . . . .. ... ... ... ... ... 34

3.2 A note on CUDA-based dense numerical linear algebra implementations . . . . . 36



CONTENTS
3.3 Overcoming GPU memory limitations for dense LU decomposition . . . .. . ..
3.3.1 Left-looking LU decomposition . . . . . . ... ... ... ... .. ....
3.3.2 Adapting for GPU acceleration . . . . ... ... ... ... ........
3.3.3 The MAGMA-panel-based hybrid . . . . . .. .. ... ... ... ....
3.3.4 Implementation analysis . . . . . . . . .. ... L Lo
3.4 Benchmarking . . . . . . . ...
3.4.1 The test platforms . . . . . . . ...
3.4.2 Results . . . . . . e

3.5  Conclusion

4 MOM scattering analysis

4.1 Related work

4.2 Problem overview . . . . . . .. Lo
4.2.1 DMonostatic scattering . . . . .. ... L
4.2.2 The Method of Moments . . . . . ... ... ... ... ... .......

4.3 The implementation of an accelerated MOM solution process . . . . . .. . ...
4.3.1 The development process . . . . . . . . . . . e
4.3.2 The matrix assembly computational process . . . . . . . ... ... .. ..
4.3.3 CPU and CUDA co-development . . . . ... ... ... .. ........
4.3.4 Parallel CPU implementation . . . . .. ... ... .. ... ........
4.3.5 Parallel CUDA implementation . . . . . . .. ... .. ... ........
4.3.6 Implementation of the other phases. . . . . . ... .. ... ... .....

4.4 Verification results . . . . . . . . ..

4.5 Performance results . . . . . . . ..
4.5.1 Runtime contributions . . . . . . .. .. .. L L o
4.5.2 Speedups . . . . ... e
4.5.3 Discussionof results . . . . . . ... L

4.6 Conclusion

5 FEM waveguide
5.1 Related work

analysis

5.2 FEM formulation for cutoff and dispersion analysis . . . . . . ... ... .....
5.2.1 Cutoff analysis . . . . .. . ...
5.2.2 Dispersion analysis . . . . . . . ...
5.2.3 The generalised eigenvalue problem . . . . . . .. .. ... ... ... ...

5.3 Implementation . . . . . . . ... L
5.3.1  FEniCS . . . . oo e
5.3.2 Eigensolver implementations . . . . . .. ... ... 0L

5.4 Verification results . . . . . ... L

5.5  Performance results . . . . . . . ...
5.5.1 Runtime contribution . . . . . . ... ... Lo
5.5.2 Speedup . . . . ... e e e
5.5.3 Discussion of results . . . . . ... ... e

5.6 Conclusion

6 Conclusion and

future work

6.1 Research observations . . . . . . . . . . . e

6.2 Future work

List of References

vi

37
39
40
42
44
45
46
46
56

58
99
60
61
62
66
67
68
68
73
74
80
81
85
85
87
93
95

97

98

98
100
101
102
104
104
113
117
123
123
125
126
128

130
131
131

133



CONTENTS vii

Additional MOM performance results 144

Additional FEM performance results 154



Nomenclature

Notation
il

X]

X)ij
}

~~ —

T

A~ A=

8y

>

Constants
Co ~

™=

Symbols

=

S
3
[

v

€r

f7 fC? fO

—

J

the Frobenius norm

a matrix

the entry at row ¢ and column j of the matrix [X ]
a column vector

the i*" element in the vector {z}

a spatial vector

a spatial vector with unit norm

299792458 m - s~ ! (the speed of light in vacuum)
3.14159265

electric field

incident electric field

scattered electric field

relative permittivity of a medium

frequency, cutoff frequency, operating frequency

the RWG basis function associated with edge the n'" edge
the scalar free-space Green’s function

propagation constant

a boundary that is an electric wall

a boundary that is a magnetic wall

surface current density

wavenumber, cutoff wavenumber, operating wavenumber
propagation vector

the i*® scalar Lagrange finite element basis function

relative permeability of a medium

the i*" curl-conforming Nédélec finite element vector basis function of the first

kind
the gradient operator
the curl operator

the transverse gradient operator

viii



NOMENCLATURE

ix

Vix the transverse curl operator

W, We, Wo angular frequency, angular cutoff frequency, angular operating frequency

Q the domain defined by a waveguide cross-section

Q, the domain defined by the interior of a waveguide

7 the position vector

r, 0, ¢ coordinates in the spherical coordinate system

7, 9, qAS the unit coordinate vectors in the spherical coordinate system

o the real valued shift used to transform a generalised eigenvalue problem to a
standard eigenvalue problem

ORCS the radar cross-section

TEn a transverse electric waveguide mode

TMpn a transverse magnetic waveguide mode

T, Y, 2 coordinates in the Cartesian coordinate system

T, 7, 2 the unit coordinate vectors in the Cartesian coordinate system

Abbreviations and acronyms

ALU arithmetic and logic unit
API application programming interface
BVP boundary-value problem
CEM computational electromagnetics
CPU central processing unit
DP double precision
EFIE electric field integral equation
FDTD finite-difference time-domain
FEM finite element method
FP floating point
FLOP floating point operation
FLOPs floating point operations
FLOPS floating point operations per second
MFLOPS 10% FLOPS
GFLOPS 10° FLOPS
TFLOPS 10'? FLOPS
PFLOPS 10" FLOPS
GB gigabyte (1024 MB)
GB/s gigabyte per second
GEV generalised eigenvalue problem
GPU graphics processing unit
GPUs graphics processing units
GPGPU general purpose GPU
ISA instruction set architecture
MB megabyte (1024 - 1024 bytes)

MB/s megabyte per second



NOMENCLATURE

MIMD
MOM
NLA
00C
PEC
RCS
RWG
SDK
SEV
SIMD
SMP
Sp
SPMD
TE
™

multiple-instruction-multiple-data
method of moments

numerical linear algebra
out-of-core

perfect electrical conductor

radar cross-section
Rao-Wilton-Glission

software development kit
standard eigenvalue problem
single-instruction-multiple-data
symmetric multiprocessor/multiprocessing
single precision
single-program-multiple-data
transverse electric

transverse magnetic

NVIDIA-specific abbreviations

CUDA
GPC
SFU
SIMT
SM

SP

TP
TPC

Compute Unified Device Architecture
graphics processing cluster

special function unit
single-instruction-multiple-threads
symmetric multiprocessor

stream processor

thread processor

thread /texture processing cluster

AMD-specific abbreviations

CD
CU
PE
SC
T-PE

compute device
compute unit
processing element

stream core

thick PE



Chapter 1

Introduction

In the field of computational electromagnetics (CEM), like most scientific or engineering disci-
plines, there is a constant drive for the solution and understanding of more complex problems.
Unfortunately, the solution of these problems comes at an increased cost in terms of computa-
tional as well as storage requirements.

Although the computational power at our immediate disposal has increased dramatically
with time, much of that improved performance has been due to frequency scaling which was
halted just after the start of this century due to power requirements [I]. In its stead, computer
system and architecture designers have made ever increasing use of parallelism to keep the
growth in performance alive. The power of this parallelism is evident in the performance of the
fastest — according to the Top500 list [2] — supercomputers in the world, where the performance
has increased by four orders of magnitude over the past 17 years.

It is clear then at this point that the future, and in fact the present, are both highly parallel.
One of the consequences of the shift to increasing the number of cores or processors in a computer
system, instead of simply scaling the frequency at which they operate, is that software that is
not designed to run in parallel no longer gets any faster for nothing — hence the phrase “The
Free Lunch is Over”, that is the title of [I]. It is then imperative that existing implementations
and techniques be revisited and their feasibility for parallel execution considered.

One of the fields where the move towards massive parallelism is most evident is in the field of
general purpose GPU (GPGPU) computing. Although this discipline has been around in some
form or another since the late 1970s, the release of more powerful hardware as well as a number
of high-level languages over the past 10 years has really seen the field move from strength to
strength. One of the most notable additions, and the one used in this dissertation, is the CUDA
software and hardware architecture released by NVIDIA in November of 2006 [3]. A quick glance
at the CUDA Zone [4] gives an indication of the vast array of applications that now make use
of this acceleration technology.

Although a number of competing architectures exist, CUDA was one of the first to provide
a software environment that was straightforward enough for anybody with a reasonable amount
of general programming knowledge to grasp. Furthermore, a number of accelerated versions
of common routines in linear algebra and signal processing were made available early on and
resulted in out-of-the-box speedups for many applications. It is this software advantage, coupled
with incremental increases in hardware capabilities, that has been the main driving force in the
high adoption rate of CUDA and lead to the point where three of the top five fastest computers
in the world — including the number one — now make use of these accelerators.

In this dissertation two well known matrix-based techniques in the field of computational
electromagnetics are considered, namely the Method of Moments (MOM) for scattering problems
and the Finite Element Method (FEM) for waveguide cutoff and dispersion analysis. More
specifically, the parallelisation and resultant acceleration of these methods using CUDA-capable



CHAPTER 1. INTRODUCTION 2

GPUs is investigated. The fact that both methods are matrix-based allows for the adaptation
and reuse of many of the advancements from GPU-based linear algebra to achieve speedups in
some of the phases of the respective solution processes. This also means that improvements
made here can be directly applied to a wide range of other applications — as long as the same
class of linear algebra routines are used.

For the finite element problems considered, the part of the solution that can be expressed in
terms of linear algebra contributes most significantly to the total computational cost. This is not
always so for the MOM, and as such, the other phases of the solution process are also considered
for acceleration. In this case, there are no libraries available the allow for the rapid develop-
ment of an accelerated implementation, and instead an implementation must be developed from
scratch. This does however allow for a better understanding of the parallel implementation.

It should be noted that although GPUs are an attractive option at present, largely due
to the fact that their prices are kept low by the computer gaming industry, in their current
implementation they still represent a relatively young technology — especially in the field of
general purpose computing. Although there is evidence to the contrary [5] [6], it may be that
these architectures will fade away to give rise to something else. Even if this is the case, there is
a good chance that whatever replaces them will be even more parallel and any knowledge and
experience gained in the porting of existing applications or the development of new code for
GPU execution will prove invaluable.

1.1 Research objectives

Apart from the overarching aim of investigating the use of GPU-based acceleration in the field
of computational electromagnetics, this research sets out to address a number of other points of
interest. It should be noted that only a small sub-set of computational electromagnetic problems
are considered, namely the Method of Moments (MOM) as applied to scattering analysis and
the Finite Element Method (FEM) for the analysis of bounded waveguide structures.

For any GPU-based implementation, a positive result would be a speedup of more than 1x
relative to a CPU implementation of a given method. Although this is the case here, it is not the
only factor considered. A number of comparative benchmarks across multiple platforms allow
for the investigation of the relative performance of GPU and CPU implementations on a single
platform, as well as to the relative strengths of the different machines with and without GPU
acceleration.

This benchmarking strategy allows for two issues to be addressed. The first of these is
whether a GPU-accelerated implementation can enable high-end compute node performance on
more standard systems. Secondly, the viability of GPUs as an upgrade path for existing systems
is considered, allowing for an increase in the useful — and performance-competitive — lifespan of
older systems at the fraction of the cost of a full replacements.

One of the factors limiting the usefulness of GPUs in general purpose computing is the
amount of memory available on such devices. The implementations presented here attempt —
wherever possible — to overcome this limitation. At this point it should be noted that this
research is limited to investigating the performance of single systems each with a single GPU
in use. Since the distributed use-case is not considered here, an implementation that aims to
overcome the memory limitations of a GPU is considered to be successful if it is able to deal with
problem sizes comparable to those that can be accommodated in the primary memory installed
in the system.

A second factor impeding the widespread adoption of GPUs as accelerators is the (perceived)
steepness of the learning curve associated with their programming. Although this may have been
true in the past, where GPUs were bent to the will of a programmer using a number of graphics
programming tricks, the development of compute-specific languages such as CUDA and OpenCL



CHAPTER 1. INTRODUCTION 3

has greatly improved the ease with which these devices can be programmed. The development
of a number of high-level libraries that are widely used has also lowered the barrier to entry and
increased the adoption rate.

The work presented here aims to address this second hurdle in a number of ways. Firstly,
existing, freely available libraries are used. This route offers the most plug-and-play approach to
first-time developers or people wishing to experiment with various implementations. An attempt
is also made to keep much of the discussion and implementations as general as possible so as to
ensure that the results are of interest to a wide range of applications.

An important aspect that is also considered in the work is that of CPU and GPU co-
development. This stems from the realisation that no — or at least very few — GPU-based
implementations exist alone. Generally they are either ported from an existing CPU imple-
mentation, or a CPU implementation is also required for compatibility reasons. The time and
effort involved in developing and maintaining two versions of the same code can be prohibitive,
especially in a commercial setting or any application where requirements and features change
often.

1.2 Contributions

This work represents a number of contributions that result from the consideration of the research
objectives discussed in Section 1.1. When considered in its entirety, an investigation into the
use of GPU-acceleration in computational electromagnetic matrix-based methods is presented.
Apart from addressing the overarching aim of this dissertation, this can be considered a useful
contribution in it own right, as it summarises the work presented in a number of sources dealing
with the GPU acceleration of a single CEM method. That is, either the Finite Element Method
or the Method of Moments.

The GPU acceleration of the CEM methods considered uses a set of typical problems from
each method as the starting point for the implementation as well as the results presented. This
use of simple problems and a tutorial-like approach to many of the implementation discussions
means that this research should be useful to anyone wishing to develop their own GPU-enabled
versions of existing methods.

Since both the MOM and the FEM are matrix-based, they allow for the use of existing
accelerated linear algebra routines such as CUBLAS [7] and MAGMA [§]. In the case of the LU
decomposition, the MAGMA implementation is extended to allow for the solutions of problems
that are larger than can be accommodated by the memory installed on the GPU. This is in
keeping with one of the aims of this research with the accelerated GPU implementation able
to outperform a multi-core platform-optimised CPU implementation even in cases where the
amount of memory required is 16 times greater than the amount available to the GPU. This
memory-resilient LU decomposition is also used as part of the Method of Moments solution
process. The research into the LU decomposition led to a publication in FElectronics Letters [9).

In the case of the Method of Moments, a seminal work in the field — the 1982 paper by
Rao, Wilton, and Glisson [I0] — is considered as a starting point for the discussion of the
GPU acceleration of the MOM solution process. When compared to existing GPU-based MOM
implementations, the work presented here is novel in a number of ways. These include the
implementation of the entire solution process in both native double precision — as supported by
the latest generation of GPUs — as well as the direct application to the formulation and problems
presented in [I0] resulting in the publication of [II] and [I2]. The MOM process presented here
is also implemented in such a way so as to overcome the restrictions on the problem size due to
limited GPU memory.

For the Finite Element Method, the GPU acceleration of another set of canonical problems is
considered. That of cutoff and dispersion analysis of waveguide structures [I3]. The acceleration



CHAPTER 1. INTRODUCTION 4

of these problems is approached from a linear algebra perspective, and focuses on the solution of
the eigenvalue problems that results as part of the FEM solution process. The GPU-accelerated
(using both CUBLAS and MAGMA) ARPACK [I4] implementation that results is to the au-
thor’s knowledge the first to deal with generalised eigenvalue problems, and more specifically
those that results from the FEM analysis of waveguide structures. The work presented is a
continuation of that published in [I5], and although only relatively small dense matrix problems
are considered, the findings lay excellent groundwork for continued research.

Another contribution of both the MOM and the FEM implementations is in addressing the
research objective of CPU and CUDA co-development. In these implementations CPU- and
GPU-accelerated implementations are developed in parallel, with a methodology followed in
each case that allows for the sharing of much of the code — especially in the case of the MOM
implementation — between the two versions. This sharing of code greatly simplifies the addition
of new features and the unavoidable debugging that will be required to implement them correctly.

A final general contribution is a set of comparative benchmarks over three (two in the case of
the FEM results) different systems with different CPU and GPU capabilities. Of these systems,
one is significantly older than the other two with a CPU performance that is lower by at least
a factor two. The results presented show that not only does the addition of a GPU to the older
system improve its achievable performance, but that the improved performance is such that the
old machine is able to compete with the (unaccelerated) newer systems for most of the problems
considered. The exception here is that the most expensive of the new systems still offers better
performance for double precision computation, although it should be added that the cost of the
new system is about 25 times higher than the GPU used to upgrade the slower system. One of
the major contributions of these comparative performance results is that they allow for better
informed upgrade or replacement decisions, which can result not only in a monetary saving, but
also in the reduction of waste.

Although not mentioned in Section 1.1, one of the objectives for the FEM component of this
research is the identification of a suitable open-source software environment to be used for finite
element modelling in CEM. The software chosen, FEniCS, offers a set of powerful tools such as
the ability to describe the finite element formulations in a very high-level language. The FEM
implementations presented here use FEniCS and represent its first application to electromagnetic
waveguide problems. The examples considered here are also to be included as part of the set of
demos available at [I6], thus contributing directly to the open-source community.

1.3 Chapter summary

The main body of work is divided into six chapters, with this chapter constituting the fist and
providing a general overview of the dissertation. A number of points are addressed including a
general motivation, as well as discussing the research aims and contributions of the work.

Chapter 2 provides an introduction to general purpose GPU computing and provides a
history of the field, as well as a comparison of two current technologies, namely CUDA and
OpenCL, of which the former is used for the implementations in this dissertation. The chapter
serves to introduce much of the CUDA-specific terminology used in the rest of the dissertation,
and provides a few simple examples to explain the workings of the architecture.

In Chapter 3 the application of CUDA to acceleration of dense numerical linear algebra
(NLA) is considered. This includes a quick discussion on NLA in general including the BLAS
and LAPACK libraries. As far as the CUDA aspects are concerned, libraries such as CULA
Tools, MAGMA, and CUBLAS are discussed with the latter two subsequently used in the im-
plementation that follows. The implementation sees the mapping of traditional out-of-core LU
decomposition techniques to the CUDA device-host relationship and result in two versions of the
LAPACK-compatible LU decomposition. These are not only faster than multi-core CPU imple-



CHAPTER 1. INTRODUCTION 5

mentations, but are ,in addition, not limited by the amount of memory available on the GPUs
used. The chapter also introduces the benchmark systems used for the performance comparisons
in this dissertation, with performance results for the LU decomposition implementations given.

The LU decomposition presented in Chapter 3 is used as part of the Method of Moments
solution process which is discussed in Chapter 4. Here, the formulation from [10] is adapted for
execution on CUDA GPUs, with a parallel CPU implementation also developed. This allows
for the introduction of the CPU and GPU co-development methods, where much of the code is
shared between the two implementations. This section also sees a large number of comparative
benchmarks obtained for the sample problem considered. Results indicate that the implemen-
tation is resilient in terms of the limited amount of memory available on the CUDA devices
used.

Chapter 5 continues the discussion of CUDA-accelerated matrix-based methods in CEM
with an investigation of the acceleration of the finite element analysis of waveguide structure.
Here, both cutoff and dispersion problems are considered. The CUDA acceleration is achieved
by using the dense NLA routines supplied by CUBLAS and MAGMA to construct a generalised
eigenvalue problem solver that is based on ARPACK. A set of comparative benchmarking results
is also presented. In addition to the accelerated eigensolver, the chapter introduces the FEniCS
software that is used for the implementation of the finite element formulations discussed. General
conclusions and recommendations for future work are presented in Chapter 6, followed by two
appendices, Appendix 6.2 and Appendix 6.2, which provide additional results not included as
part of the MOM and FEM chapters (Chapter 4 and Chapter 5), respectively.



Chapter 2

General purpose GPU computing

General purpose GPU (GPGPU) computing is the use of graphics processing units to perform
computations for which they were not initially designed. Although this practice has been around
for some time, its adoption in a wide variety of fields including scientific computing, computa-
tional finance, and engineering has of late seen a remarkable increase. Much of this is a result of
the very attractive performance promises made by such devices, as well as the improvement in
the increasing ease with which they can be employed to perform arbitrary computational tasks.

This chapter aims to present an overview of GPGPU computing so as to provide a background
for its application to computational electromagnetic problems in later chapters. Discussion starts
with a general overview of parallel computation in Section 2.1, which is followed by the history
of general purpose GPU computing in Section 2.2.

Sections 2.3 through 2.5 address CUDA by NVIDIA, the ATI Stream SDK from AMD, and
OpenCL. Special attention is given to NVIDIA CUDA with much of the discussion going into
great detail, as this is the language of choice for the implementations and results presented in
Chapter 3, Chapter 4, and Chapter 5. Many of the concepts illustrated can, however, be applied
to other technologies with one-to-one correspondences existing in many cases. The chapter is
concluded with a brief discussion on possible future developments in the field of GPU computing.

2.1 An overview of parallel computing

In this section, a brief overview of parallel computing in general is presented. This serves to
provide a basis on which the subsequent sections on GPGPU computing build. Furthermore,
much of the terminology that is used in this chapter and the remainder of the dissertation is
introduced.

When parallel computing is mentioned, one typically envisions rooms filled with a large num-
ber of connected computers with computational capabilities far outstripping a regular desktop
or notebook computer. Twice a year a list is released where the performance of the top 500
of these supercomputers is showcased [2] and there is often much competition for the coveted
top position. The performance — measured in floating-point operations per second (FLOPS)
— of the machines on the list has increased exponentially since its inception in June of 1993,
with the current (November 2010) number 1 system achieving a performance of 2.57 PFLOPS
(thousand trillion floating-point operations per second). This is up from 59.7 GFLOPS (billion
floating-point operations per second) in June of 1993 and represents an improvement of more
than 43000 times over less than 20 years.

Most of the systems in the current Top500 list are built as clusters of thousands of compute
nodes and thus follow the distributed computing model [I7]. In this model each of the nodes
has its own local memory and software running on the system must rely on a message passing
protocol such as MPI [I8] to ensure that each of the nodes has the data it requires. In such

6



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 7

systems each of the compute nodes is typically a fully-fledged multi-core system with a small
number (10-20) of cores. Since each of these cores has access to the memory local to the node,
message passing is not required for communication on a single node [I7]. In this case, the shared
memory parallel model or symmetric multiprocessor (SMP) model can be used, with tools such
as OpenMP [I9] available to realise such implementations.

It should be noted that although supercomputers such as those on the Top500 list have been
making use of multiple processors to achieve performance for some time now, it represents a
relatively recent development in the main-stream computing sector. The first consumer-level
multi-core processors appeared in the early 2000s as a direct results of the increasing power
requirements associated with ramping up the frequency as which the processors operate (which
had been one of the main sources of the performance improvements up to that point) [I]. The
multi-core processor is now ubiquitous in everyday computing and most desktop machines can
be seen as an implementation of the shared memory parallel model. These multi-core nodes
or hosts are examples of multiple-instruction-multiple-data (MIMD) machines, that allows for
multiple separate instructions to operate on different data in parallel [20].

Just as there are different models for the description of parallel computers, whether they be
the distributed or massively parallel processor systems of the Top500 list or a standard desktop
computer, there are a number of models that define the way in which parallelisation can be
achieved. These are bit-level, instruction-level, task, and data parallelism [I7]. The first two
of these are generally closely tied to hardware and are only discussed briefly before addressing
task and data parallelism. Bit-level parallelism is leveraged to increase the performance of a
processor by increasing the word size (the number of bits that can be operated on at a time) of
the processor. This is evident in the increase from 8 bits in early x86 computers to 64 bits in
the current x86-64 architecture. Instruction-level parallelism relies on the fact that any program
executing on a computer consists of a stream of instructions and that many of the instructions
can be reordered and executed in parallel without changing the results of the program.

In contrast to bit-level and instruction-level parallelism, task and data parallelism are more
closely related to the algorithm or application being implemented [I7] and not the underlying
hardware architecture. It should, however, be noted that there do exists architectures (including
the GPUs discussed later in this chapter) that are specifically designed for data-parallel exe-
cution. An application or algorithm exhibits task parallelism (also called function parallelism)
when entirely different calculations are to be performed on the same or different data [I7] and
these tasks can be performed in parallel. A contrived example of this is an application that
needs to compute the sum and the products of lists of numbers. Regardless of whether the
numbers are from different or the same lists, these operations (the sum and the product) are
independent and can be performed concurrently.

Data parallelism involves performing the same (or similar) operations or functions on in-
dividual elements of a large data structure [I7]. This type of parallelism is often achieved by
examining loops present in an implementation and executing independent portions in parallel.
An example would be the addition of the corresponding elements in two arrays, where it is
clear that each of the new data elements to be computed are independent and the operations
can thus be performed in parallel. Note that the data parallel model as discussed in [I7] is a
generalisation of the single-instruction-multiple-data (SIMD) model that forms part of Flynn’s
taxonomy [20], and later evolved into the single-program-multiple-data (SPMD) approach. An
alternative is the MIMD approach — which can be compared to task parallelism in some cases —
already mentioned with reference to general shared-memory and multi-core machines.

Applications usually exhibit both task and data parallelism and often have a number of
different levels at which these parallelisations can be implemented [I7]. That is to say that a
particular algorithm could be implemented as a set of parallel tasks performed per data element
(task parallelism within data parallelism) or as a set of separate tasks which are each data parallel



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 8

(data parallelism within task parallelism). It should be noted that, although task parallelism is
often relatively easy to implement using message passing or a multi-threaded implementation,
the amount of parallelism available is usually modest and does not increase much with the size
of the problem being considered [I7]. Data parallelism on the other hand does grow with the
size of the data set and allows for the utilisation of massively parallel processors such as GPUs.
Although this section aims to provide a relatively complete overview of the parallel computing
landscape, the scope of the field makes this impossible. An additional source of information is
[21], which provides a number of insights including the matching of algorithms to a specific
architecture. A field that has not been mentioned at all in this section is that of grid computing.
This is addressed with specific reference to computational electromagnetic problems in [22].

2.2 History of GPU computing

Any history of GPGPU computing should at least mention the Ikonas system of 1978 [23]. This
system was developed as a programmable raster display system for cockpit instrumentation and
was quite large by today’s standards. Although other such systems have been developed [24] 25],
the rest of the history addresses the use of consumer-level hardware such as the GPUs originally
introduced by NVIDIA in 1999 [26].

Due to the inherently parallel nature of graphics rendering — the processing of geometric,
texture and lighting data to generate a scene for display on a computer monitor by calculating
the required properties of each pixel [27] — and the ever increasing capabilities of GPUs, the
scientific community started investigating their use in general purpose computation shortly
after their introduction. Initial attempts were based on utilising the rendering pipeline of the
GPU directly using OpenGL, which was originally intended for writing 2D and 3D graphics
applications. Although this approach did result in some impressive speedups for the time, the
process was quite complex and this hindered large scale adoption.

As the hardware developed and became more programmable (predominantly for applying
effects in computer visualisations and games), a number of higher level languages were also
developed that greatly simplified the programming process. These include shader languages,
such as Cg (2002), GLSL (2002), and HLSL (2002), whose primary goal was not general GPU
computation, but the description of more complex scenes for use in computer generated imagery.

Later, a number of academic languages were developed that the were specifically targeted
to GPGPU applications. These languages typically considered the GPU as a stream processor
performing some operation (or kernel) on a stream of input data to produce the desired output
data stream. In many cases the same operation is performed on each element of the input
stream. This process of applying the same operation to a number of data elements (usually
in parallel) is referred to as the single-instruction-multiple-data (SIMD) model, as opposed to
the multiple-instruction-multiple-data (MIMD) model typically followed by conventional CPUs.
Two such languages that deserve some mention are BrookGPU (2003) and Sh (2003) which have
each since been developed into commercial offerings. The Sh language and API was released
as PeakStream, soon after which it was purchased by Google with no public development now
taking place. BrookGPU became RapidMind and is now owned by Intel. This seemingly forms
the core of Ct (C for Throughput Computing), intended as a data-parallel programming language
to leverage the power of multi-core processors.

The end of 2006 saw the birth of what can be considered modern general purpose GPU
computing, with both NVIDIA and AMD releasing products that offered previously unheard
of programmability and promises of computational power [3, 28]. The history of what would
become the ATT Stream SDK from AMD and the Compute Unified Device Architecture (CUDA)
from NVIDIA is presented briefly, after which CUDA is considered in some detail in Section 2.3.
A comparative overview of the ATI Stream SDK is presented in Section 2.4.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 9

A comparative performance timeline for the two technologies is given in Figure 2.1, with
data taken from [29] and [30]. As can be seen from the figure, the performance promised by
the devices is one of the primary reasons that there has been so much interest in utilising these
technologies for general purpose computation. It should be pointed out that there are a number
of caveats that should be considered when comparing theoretical peak performance figures such
as these. A comparative study of GPU vs CPU performance is provided in [31], and lists a
number of these.

One of the indications of the coming of age of general purpose GPU computing was the
inclusion of systems using this technology in the twice yearly Top500 list discussed in Section 2.1
[2]. The Tsubame cluster from Tokyo Institute of Technology improved its position to 29" in the
November 2008 list with the inclusion of 170 Tesla S1070 units from NVIDIA. The November
2009 list saw the inclusion in the fifth position of the Tianhe-1 system from National Super
Computer Centre in China which used AMD/ATI GPUs to accelerate computation. Where the
Tsubame system used Tesla units designed for the high-performance computing segment, the
Tianhe-1 used two Radeon 4870 (high-end consumer) devices in each node [2].

The high point in terms of GPU computing and the Top500 list came with the announcement
of the November 2010 results which has 10 of the systems using NVIDIA GPUs for acceleration
with AMD/ATTI devices being used by two systems [2]. The systems using NVIDIA GPUs
include three of the top five systems. The Tianhe-1A system at the National Supercomputing
Center in Tianjin, China occupies the first place, with the Nebulae system, also from China, in
third (down from second in June 2010). The final GPU-enabled system in the top five is the
Tsubame 2.0 from the Tokyo Institute of Technology in fifth position.

2.2.1 History of NVIDIA CUDA

Although a number of NVIDIA GPUs had been used for the purpose of GPGPU computation
with some success up until that point [32] B3], the real birth of NVIDIA’s GPGPU computing

T T T T

NVIDIA GPUs —
2750||{e—e® single precision
@ -e double precision| f&
@ 2500 3=
a ATI GPUs— / ‘s
- 2501 #—# single precision e
5 ¢ - double precision| /
2000 Intel CPUs—
= m—l single precision /
£ 1750/ (= - double precision| . =
£ 2/ &
5 1500 5 i
o
~x °‘/ st
© 1250 4 E
a : / i
g 1000
© £
5 750 -
2 <]
£ o
F 500 S
s
250 S
2

Seop-Ol Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

Figure 2.1: Figure showing the performance timelines of NVIDIA GPUs, ATI (AMD) GPUs, and Intel
CPUs over the past seven years. Theoretical peak performance curves are shown for both single precision
(solid curves) and double precision (dashed curves) and are adapted from [29] and [30].



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 10

effort came at the end of 2006 with the release of their G80 architecture [3]. From a graphics
processing point of view, this new architecture was an answer to the requirements imposed by
the DirectX 10 API — which is to say that all the operations in a graphics pipeline be performed
by unified shaders, and not by separate vertex and pixel shaders as was the case in the past
[27, B4]. Thus instead of the graphics pipeline containing (possibly hundreds [3] of) sequential
pipeline stages, all the required operations are performed by a standardised shader core — hence
the term “unified shader”.

Although the G80 architecture was originally intended for graphics, it was also designed in
such a way as to provide an entry into the GPGPU market that, in 2006, was really still in
its infancy [3]. The hardware formed part of a larger architecture called the Compute Unified
Device Architecture (CUDA), providing a well-defined programming model and software tools
to harness the power of the GPUs for general purpose computation.

Since the first public release of the CUDA toolkit at the beginning of 2007, the API has
developed steadily, providing more functionality and being consistantly updated to accommodate
the capabilities of new iterations of the hardware architecture. These include the addition of
double precision floating-point support in the GT200 architecture [35], as well as a unified
memory model in the Fermi architecture [26].

Although the original G80 architecture was a graphics architecture with the ability to perform
general purpose computation, the interest shown from the high performance computing (HPC)
sector was phenomenal and led to the development of the Tesla range of products specifically
targeted at HPC. These devices are in essences NVIDIA GPU-based devices with no graphics
output capabilities. They also offer more memory than their consumer-level counterparts and
thus allow for the processing of larger computational problems.

2.2.2 History of the ATI Stream SDK

At about the same time that NVIDIA released the G80 architecture and CUDA, AMD/ATI
released CTM (Close To Metal), which gave programmers relatively low-level control over the
graphics processing hardware for general purpose GPU computing [28]. This low-level language
later evolved into the Compute Abstraction Layer (CAL) and became the supporting APT layer
for the high-level ATI Brook+. Their combination was called the ATI Stream SDK [36] - AMD’s
answer to CUDA.

In addition to advances on the software front, hardware from AMD also evolved rapidly.
AMD introduced the first ever GPU device with native double precision support, the FireStream
9710. It was six months before NVIDIA brought the GT200 — their first double precision device
— to market. The next FireSteam device, the FireStream 9250 was the first device to offer more
than 1 TFLOP (one trillion floating-point operations per second) in peak theoretical single
precision performance in a very compact form factor [37].

Soon after the ratification of OpenCL (Open Compute Language) [38] in December 2008,
AMD decided to replace ATI Brook+ with OpenCL as the development language for program-
ming AMD devices [39]. One reason for this change may be the hope that the use of an industry
standard, multi-platform development language will be able to reduce the lead that NVIDIA has
enjoyed in the GPGPU segment. Since multi-core CPUs can also be used as OpenCL compute
devices [40], this also means that AMD can offer a unified heterogeneous computing solution

[39].

Note that, although ATI was originally a separate company, AMD acquired ATI in mid 2006,
only a few months before the release of CTM [28]. Although the ATI brand was retained for
some time, it was replaced by AMD in August of 2010. Thus there exist a number of devices
that — although developed by AMD — have ATI branding, whereas future devices will bear the
AMD moniker. As such AMD and ATI are used interchangeably throughout the rest of this



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 11

chapter. The purchase of ATI seems to have come to fruition, with the release of AMD’s Fusion
platform at the end of 2010 [5]. This platform sees the integration of a GPU — acting as a
parallel floating-point accelerator — and a number of x86 cores onto a single processor.

2.3 NVIDIA CUDA

As already mentioned, changes to the rendering requirements brought about by APIs such as
DirectX 10 lead to new architectures being developed by hardware vendors such as NVIDIA and
ATI. The G80 architecture by NVIDIA saw the implementation of a unified shader design [3].
This design saw the traditional rendering pipeling consisting of various stages being replaced by
a number of identical shading cores. These cores are highly programmable, which allows them
to perform any of the functions that would normally be executed by special-purpose pipeline
stages and include both pixel and vertex shading, previously handled by separate hardware.

This change in architecture also had the advantage that the programmability of the hardware
for performing general purpose computational tasks was greatly improved. The Compute Unified
Device Architecture (CUDA) from NVIDIA is a general purpose parallel computing architecture
and provides a computing model, as well as an instruction set architecture (ISA) to leverage the
power of the underlying parallel hardware [29], a CUDA-capable device such as a GPU. Due to
the multiple market segments in the GPU industry, it is important that such an architecture is
scalable, as it allows for development resources to be shared across an entire line of GPUs. In
addition, this lends itself well to scalable implementations in terms of performance - often quite
difficult to achieve in a traditional parallel programming environment.

2.3.1 Programming model

Before considering the actual hardware associated with a CUDA device, the programming model
is addressed. The reasoning for this is that although future generations of hardware may be
more complex and provide advanced capabilities, their support for the programming model is
guaranteed. Thus if one can develop code for a current generation, this should run on future
hardware with little or no modification.

The CUDA programming model consists of three key abstractions, namely, a hierarchy of
thread groups, shared memories, and barrier synchronisation, all of which are exposed to the
programmer using a series of programming language extensions. The abstractions allow for the
management of fine-grained data parallelism at a thread level, nested within coarse-grained data
parallelism and task parallelism (which have both been discussed in Section 2.1). This forces
the programmer to consider the problem domain and partition it into coarse sub-problems that
can be solved independently (possibly in parallel) with each of these sub-problems also being
decomposed to a thread level. This is similar to the approach followed by stream processing [41]
and since the coarse blocks of work must be independent by definition, their parallel computation
should scale well.

It should be noted that the concept of a thread used here is not the same as a thread in
a classical CPU-based multi-threaded sense (as in the case of OpenMP [19]). A CUDA GPU
thread is a lightweight entity whose context can be switched with zero overhead [27]. This is
made possible by the GigaThread engine by NVIDIA which allows for thousands of threads to
be in flight during execution [3| 26, B5]. Where the term thread is used in this chapter, it refers
to a CUDA thread and not a CPU thread unless otherwise specified.

In order to further the discussion of the CUDA programming model, consider a simple
example of adding the contents of two float arrays. The CPU-based C routines add() is shown
in Listing 2.1 with the array c being calculated as the sum of a and b (for each of the N elements
in the arrays). This is the same example that serves as an introduction to CUDA in [42].



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 12

Listing 2.1: An example for adding two float arrays of length N implemented in C.

void add ( int N, comnst float *a, const float *b, float *c )

{
int i = 0;
for (i = 0; i < N; i++ )
{
clil = alil + bl[il;
}
}

CUDA kernel definition

As with stream processing [43], the basic unit where computation can take place in CUDA is
known as a kernel. In CUDA terms a kernel is a routine, usually written in C, that is executed
on a CUDA-capable device. Listing 2.2 shows the CUDA kernel, add kerne1(), for the example
discussed and shown in Listing 2.1.

Listing 2.2: A simple example of a CUDA kernel for adding two float arrays of length N.

__global__ void add_kernel ( int N, const float *pdev_a, const float *pdev_b,
float *pdev_c )
{

int i = threadIdx.x + bockDim.x * blockIdx.x;

if (i < N)
{

pdev_c[i] = pdev_al[i] + pdev_b[i];
}
}

Listing 2.2 illustrates another important point — the programmability of CUDA-capable
devices is provided by a number of C language extensions. This will be discussed in more detail
in Section 2.3.4. For now it is sufficient to note that a CUDA kernel is indicated by the __global__
qualifier and must be of return type void.

Also evident in Listing 2.2 is that no explicit iterations are performed over the data elements
in the arrays. This is due to the fact that the CUDA environment automatically handles the
execution of the same kernel for each data element in the problem domain, with many of the
executions occurring concurrently. The kernel invocation will be discussed in more detail later.

CUDA thread organisation

Before continuing the discussion of this kernel example, the data segmentation options provided
by CUDA need to be discussed. In terms of segmentation, the finest granularity is that of a
single CUDA thread. When a kernel, such as the one given in Listing 2.2, is executed, it is
executed for every thread that has been defined.

Although these threads allow a fine-grained access to data, it is impractical to use them
to individually address the elements in large datasets - especially if the size of the dataset
exceeds the number of available threads. Threads are thus grouped into one-, two- or three-
dimensional blocks, each with identical dimensions, providing a coarser level of control over the
segmentation of the problem space. The blocks are further arranged in a one- or two-dimensional
grid at the highest level. An example of such a partitioning is shown in Figure 2.2. This style of



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 13

blockIdx.y | blockDim.y |
E < >|
/,4\’
_-
// %
= .
_-I X
-~ x o]
4~ . H
-~ IS ko]
X -~ - m
X 2 L
T S <
et 9 i)
x S
1 N N
g B i
3 —— threadIdx.x
\‘1L

i-= blé;kldx.x*blockDim.x + threadIdx.x
j = blockIdx.y*blockDim.y + threadIdx.y
Example: thread (5,4) in block (2,2): (1,3j)=(21,20)

Figure 2.2: Diagram showing the grouping of threads into 8 x 8 blocks in a 5 x 5 grid for computation
on a CUDA device. Also shown is the calculation of the global index ((i,3)) of a thread from local
thread and block information. Note that although the blocks and grid shown are square, this is not a

prerequisite [29].

organisation lends itself particularly well to partitioning one- or two-dimensional data such as
vectors, matrices or images. Furthermore, since the local index (in each dimension) of a thread
within a block, as well size and position of the block in the grid can be accessed at runtime, the
global index of the thread can easily be calculated. This global index could then correspond to
a position of a data element in the input or output stream, for example.

Referring to the simple kernel example presented in Listing 2.2, the use of built-in variables
threadIdx, blockDim, and blockIdx is shown to calculate the global index of a thread to identify
the indices of the array elements that are being operated on by the kernel. These variable are
structures with fields x, y, and z depending on their dimension. The use of these variables to
calculate the global indices for a two-dimensional problem is also illustrated in Figure 2.2. Here,
the global index of a thread in the x direction is calculated as: blockIdx.x*blockDim.x + threadIdx
.x, for example.

Hierarchical CUDA memory model

As with many other processor architectures, CUDA devices have a hierarchical memory model,
with some of the memory types shown in Table 2.1. A number of other characteristics of the
memory types are also shown, including whether or not the memory offers cached access and
whether it is read-only. If we consider as an example the shared memory, it is located on
chip (explained in more detail in Section 2.3.2), offers fast low latency read-write access, and
thus does not need to be cached. In fact, in many algorithms this shared memory is used as
a user managed cache for optimal performance [27]. Furthermore, the shared memory can be
accessed by all the threads in a block allowing for data reuse and communication between these
threads. Due to the fact that the execution order of threads is not known beforehand, it is often
required to make use of synchronisation barriers to ensure that the contents of shared memory
is consistent. This is achieved by making use of a __syncthreads() function which halts execution
for a thread until all threads in a block have reached that point in the code.

Figure 2.3 shows a graphical representation of the CUDA memory hierarchy, showing the
allowed access for each memory types (indicated by the colours of the connecting lines). Also
shown in the figure is an abstracted representation of a host which consists of a multi-core CPU,
connected to the host memory through a hierarchy of cache memory. In the CUDA sense, the



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 14

device Device key
block — read-write per thread
— read-write per block

[shared memory] [shared memory] == read-only per block

PCI-Express bus)

exture memory
canstant memory

J \ J/

Figure 2.3: Graphical representation showing the memory hierarchy associated with a CUDA device.
Red (—) and yellow () pathways represent per-thread read-only memories whereas green (—) and blue
(—) pathways represent read-write memories that are accessible by a single thread or a block of threads,
respectively. Also shown is the host and the communication with the device’s global memory space over
the PCI-Express bus.

host is the system where the device (CUDA GPU) is installed, with its own memory.

As seen in Table 2.1 and Figure 2.3, certain parts of the CUDA device’s memory (specifically
those that reside in global off-chip memory) can be accessed from the host. As part of the
CUDA computational process — to be discussed in more detail shortly — data are trasferred
from host memory over a bus (such as the PCI Express bus) to the required area of global
memory, where they can be accessed by the threads executing on the device [29]. This need
to transfer data before they can be operated on often limits the total performance (including
data transfer overheads) of CUDA devices, especially for problems that only require a small
amount of computation per data-element. The relatively small amount of global device memory
installed, when compared to host memory, can also be a limiting factor for computation on the
device.

The CUDA computational process

At this stage we have discussed the concept of a kernel and the segmentation of data into a grid
of thread blocks. It has also been stated that CUDA automatically executes the kernel for each
thread in the resultant grid. To further illustrate the CUDA computational process, consider
again the kernel of Listing 2.2 used as an example thus far. The inclusion of this simple kernel

Table 2.1: A summary of the type and locality of various CUDA memory areas.

Memory (oII:?c():?fmc(;llilp) Cached Access Locality ﬁgﬁfiﬁ

Register On No R/W  Thread No
Local Off No R/W  Thread No
Shared On No R/W  Block No
Global Off No R/W All Yes

Constant Off Yes R All Yes

Texture off Yes R All Yes




CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 15

in a computation is now addressed and introduces a number of other concepts related to GPU
computing.

In Listing 2.3 all the auxiliary functions required to run the kernel on the GPU are shown.
The first thing to note is that the declaration of the add() function is identical to that of the
CPU-based example given in Listing 2.1. This is intentional, as the two functions are designed
to perform the same calculations and are thus interchangeable.

Listing 2.3: An implementation of the add() routine in Listing 2.1, illustrating the invocation of the
simple kernel presented in Listing 2.2 for GPU computation.

void add ( int N, const float *a, const float *b, float *c )
{

float *pdev_a = 0; float *pdev_b = 0; float *pdev_c = 0;
cudaMalloc ( (voidx#*) &pdev_a, N*sizeof (float) );
cudaMalloc ( (void**) &pdev_b, N*sizeof (float) );

cudaMalloc ( (voidx**) &pdev_c, N*sizeof (float) );

cudaMemcpy ( pdev_a, a, N*sizeof (float), cudaMemcpyHostToDevice );
cudaMemcpy ( pdev_b, b, N*sizeof (float), cudaMemcpyHostToDevice );

int threads_per_block = 64;
int blocks_per_grid = div_to_next ( N, threads_per_block );

dim3 block ( threads_per_block, 1, 1 );
dim3 grid ( blocks_per_grid, 1, 1 );

add_kernel <<< grid, block >>> ( N, pdev_a, pdev_b, pdev_c );
cudaMemcpy ( c, pdev_c, N*sizeof (float), cudaMemcpyDeviceToHost );

cudaFree ( pdev_a ); cudaFree ( pdev_b ); cudaFree ( pdev_c );

Since the CUDA device is an external accelerator to the host and can, in general, not access
the memory of the host directly [29], it is necessary to allocate memory in the device’s global
memory (see Table 2.1). This can be done using the CUDA cudaMalloc() function. Listing 2.3
contains three such calls. Each call allocates the requested number of bytes in the device’s
global memory and modifies a pointer accordingly [29]. Thus, after the calls to cudaMalloc(),
the pointers pdev_a, pdev_b, and pdev_c, each contain the addresses in global GPU memory where
space has been allocated for v single precision floating-point values. Here, the convention of
prefixing pdev_ to pointers to device memory is used. As is the case with the standard C malloc()
function, the memory that has been allocated must be freed once it is no longer needed. This is
done using the cudaFree () function as shown at the end of the listing.

Once the memory has been allocated on the device, the input data (the contents of the
arrays a and b, in this case) must be specified. In order to make it available on the device
the data must reside in GPU memory. In order to copy the data to the device from the host,
the function cudaMemcpy() is used. This is equivalent to the standard C memcpy() routine with
the exception that it requires an additional parameter indicating the direction of the copy that
must be performed. The possible values for this parameter are:

® cudaMemcpyHostToDevice

® cudaMemcpyDeviceToHost



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 16

® cudaMemcpyDeviceToDevice
® cudaMemcpyHostToHost

with the names self-explanatory [44]. Note that in the code sample given in Listing 2.3,
cudaMemcpyHostToDevice is used to copy the input data to the device, whereas cudaMemcpyDeviceToHost
is later used to copy the computed result (stored in pdev_c on the device) back to the host over-
writing the contents of the array c.

The next step in the computational process is to segment the problem domain by dividing
it into a grid of thread blocks. Since the example presented here is linear in nature, this process
is quite simple, and the code to calculate the division is also given in Listing 2.3. In this case,
the number of threads per block (threads per block) is fixed at 64. Using this value and the div_
tonext () routine of Listing 2.4, the number of blocks in the grid (blocks per_grid) is determined.
Note that all the blocks in the grid must be of equal size and that the total number of threads
must be at least equal to the length of the arrays, .

Listing 2.4: A routine to calculate and return the smallest integer value k that satisfies the condition
k*step > N. This routine is used to calculate the number of fixed-size blocks are required in a CUDA
grid for a given N and with step set to the block dimension.

int div_to_next ( int N, int step )

{
if ( N % step )
return N / step;

else

return N / step + 1;

As seen in Listing 2.4, if v is divisible by step (with step equal to threads per block when
called from Listing 2.3), then the return value (and thus blocks per grid) is simply N/threads.
per_block. If this is not the case, blocks per_grid of Listing 2.3 is assigned the return value of
N/threads per block + 1. In the latter case, the last block in the grid will have blocks per grid
*xthreads_per block - N threads that will have no data elements associated with them. For this
reason, it is important to ensure that when the kernel is executed, these threads do not attempt
to access memory locations that are undefined. This is done in Listing 2.2 by checking if i < N
before using i as an index in the array. An alternative is to always ensure that the amount of
device memory allocated is always a multiple of the block size — effectively padding the input
and output data on the device — and has been found to offer some performance improvements
over the unpadded case [45].

With the number of threads and blocks determined and used to initialise the two dim3 (a
struct with three int fields x, y, and z [29]) variables, block and grid, the CUDA kernel add kernel
O of Listing 2.2 can be invoked. This is done in the same way as calling a standard C function,
with the addition of specifying the block and grid configuration by including <<< grid, block >>>
between the function name and the parameter list. This instructs the CUDA runtime library to
launch the kernel for the number of threads defined by the grid. After the kernel execution, the
output data can be transferred to the host as already discussed.

It should be noted that this kernel call is the first point where any code is executed on the
device, with all code preceding and following it executing on the host. To clarify this, the process
described here and corresponding to Listing 2.3 is depicted graphically in Figure 2.4.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 17

CPU (host) GPU (device)

initialise pdev a|
allocate device memory cudamaiioc () pdev b |

[TTTTTTTTITITTIT]
[TTTTTTTTITITTIT]
transfer input data pdev c[TT T[T TTTTTTTT]
alTTTTTITTTITTITITTIT] >[I [ [T ITTITITTTTITTIT]
PITTTTITTTTITTITTITIT] >[I [T ITTITITTTTITTIT]
el I T TTITTTTITITTIT] LITTITTITTITITTITT ]
launch kernel for each thread with a valid index: |y
- o
example: §§§§§§§§§§§§§§§ |Q'
15 elements in arrays =~
4x1 grid of 4x1 blocks (0}
1 idle thread 3
. - [0}

al[T] | TTTT1
b T | TTTT1
- DR - e Vencpy ()
Cleanup cudaFree() :r:::::::::::::::

r

;

transfer output data
[TTITT1T
[TTTT11

r

Figure 2.4: The computational process for calculating the sum of two arrays a and b and storing the
result in a third array c using the CUDA kernel in Listing 2.2. The listing for the process is given in
Listing 2.3.

The example considered here consists of only a single CUDA kernel, and once completed
the calculated results are transferred from the device to the host using the cudaMemcpy function.
This function includes an implicit global barrier that ensures that all threads have completed
executing before commencing with the data transfer. If a more complex problem is being
considered, it may be necessary to call multiple CUDA kernels before transferring the final
results from the device. If this is the case, it is important to use explicit global barriers such
as the cudaThreadSynchronize() routine to ensure that data required for a subsequent kernel has
been calculated [29].

2.3.2 Hardware implementation

To this point we have considered a CUDA-capable device as an abstraction that is compatible
with the programming model discussed. Some aspects of the hardware itself are now covered.
This serves to provide a better understanding not only as to where the power of these devices
come from, but also as to what the inherent limitations of the architecture are.

As already stated, the G80 hardware architecture was introduced by NVIDIA along with
CUDA [3]. This hardware saw a move away from the pipelined design in original GPU imple-
mentations. In its place, a unified shader architecture was developed where a shader was not
restricted to performing one particular kind of operation, either vertex or pixel shading, for
example. Now, each shader was identical to the others and could be programmed to perform
any required operation.

Since the G80, the CUDA architecture has seen two major redesign iterations, with each
new generation of hardware offering many new features and performance improvements over the
previous one. Due to the rapidly evolving nature of the landscape, it will not be long before
the hardware discussed here will once more be out of date. For this reason, the discussion that
follows will be of a general nature so as to (hopefully) be applicable to future hardware versions.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 18

Following this, a quick overview of the current state of the art will be presented at the end of
the section.

Building a massively parallel processor

At the heart of every CUDA device are many identical CUDA cores — also called a thread pro-
cessors (TPs) or streaming processors (SPs). These are the device elements that are responsible
for actually performing calculation and consist of 32bit floating-point and integer ALUs and
some control circuitry — although much of the latter is shared between a number of these cores
[27]. This control logic and and instruction cache shared between the SPs leads to the next
logical grouping to consider — namely the symmetric multiprocessor (SM') [29].

Simplified representations of the SMs of the three architectures considered here are shown
in Figure 2.5. Here, it can be seen that in addition to a fixed number of SPs, an SM also
contains a number of registers and a shared memory space, already mentioned in Section 2.3.1,
that can be accessed by the SPs. Note that, since the shared memory is accessible by all the
SPs in an SM, it can be used to share data between them. Additional components of an SM
include special function units (SPUs) which are used to perform more complex floating-point
operations such as calculating trigonometric functions [29]. It should be noted that each SM
of the GT200 also includes one double precision floating-point unit and although the Fermi
architecture also supports double precision computation, this seems to be achieved by using the
32bit floating-point ALUs from two SPs concurrently.

(G80 SM \ (GT200 SM \ [ GF100 SM .
\ Y 2'g \
i SFU d registers
4 registers SFU_ | registers
g 2 64bit FP 2 " £
‘ d sharel
S ) 8 5
5 c = d memory | 5
2 2 K] 7]
Sp y shared g shared Bl o
i memory = memory £} ) s
£ 2 i (. o
o
| )
9 J J | texture hardware )

Figure 2.5: Simplified representations of the SMs for (from left to right) the G80, GT200, and GF100
architectures. Shown in each figure are the thread processors (TPs), special function units (SFUSs), regis-
ters, shared memory and an instruction cache. The SM for the GT200 adds a single 64bit floating-point
unit. The GF100 SM is more complex with load and store units, as well as a shared memory space that
includes an L1 cache which does not require user management.

In the case of the G80 and GT200, the SMs are grouped together to form a texture (or
thread) processing cluster (TPC) [35, [46] that adds texture sampling hardware, as well as a first
level of texture cache. It should be noted that only texture references (as per Table 2.1) are
cached and this can be used to improve performance of certain algorithms considerably [47]. The
cluster also includes a shared instruction scheduler. For the GF100 architecture, the concept of
a TPC is no longer required, as much of the hardware previously shared between the SMs of a

!'Note that NVIDIA uses the abbreviation SM to refer to a physical (and logical) hardware groping on a
CUDA device. In general parallel computing terms, the abbreviation SMP is used for symmetric multiprocessor
or symmetric multiprocessing, in which case it refers to a more general computing model where a number of
processors have access to a shared memory space.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 19

texture processing cluster (TPC) are now included in the SMs themselves. This includes load
and store units, as well as the texture cache. In addition, the shared memory area includes a
cache for all memory operations. The SMs are still grouped together into graphics processing
clusters (GPCs) which encapsulate all the required hardware for graphics processing [4§].

For all the architectures, these clusters — be it texture processing or graphics processing
clusters — of SMs are used as the building blocks for constructing CUDA-capable devices. In
addition to the clusters, various other components are required - including memory controllers
for accessing the device’s global memory, as well as a second level of cache. In the case of the
G80 and GT200 architectures, this cache is only used for the reads of textures stored in global
memory. For the GF100 architecture, it is used for for all global memory accesses [4§].

In Section 2.3.1, the concept of lightweight GPU-threads whose positions in a global grid are
available at runtime was introduced. This fine-grained, data-parallel software approach is what
is at the core of parallel execution on CUDA hardware [27]. CUDA-capable devices use the
GigaThread Engine to realise the execution of the instructions that comprise a CUDA kernel
over multiple data elements in parallel. The GigaThread Engine enables each SM of a CUDA
device to store the contexts of hundreds of threads in hardware and allows for switching between
these threads with zero overhead [27, 29]. A summary of the capabilities of the three CUDA
architectures discussed is given in Table 2.2.

Table 2.2: Specifications for the three CUDA architectures discussed. Values indicate the maximum
values for each architecture, and as such may differ for implementations targeting different market seg-
ments.

G80 GT200 GF100

computational resources

clusters per device 8 10 4
SMs per cluster 2 3 4
total 16 30 16
TPs per SM 8 8 32
total 128 240 512
SFUs per SM 2 2 4
total 32 60 64
64bit FP units per SM - 1 16
total - 30 256(1)
per SM resources
shared memory 16KB 16KB 64KB®
registers 32KB 64KB  128KB
thread contexts 768 1024 1536
theoretical peak FP performance @ 1GHz®)
GFLOPS 32bit 256 480 1024
64bit - 60 512

(1) Two TPs are used for a single double precision (DP) op-
eration.

@) Configurable as either 48KB shared memory and 16KB L1
cache, or 16KB shared memory and 48KB L1 cache.

()1 multiply-add (MAD) or fused multiply-add (FMA) op-
eration per clock per floating-point (FP) unit — 2 FP oper-

ations per clock per floating-point unit.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 20

2.3.3 Mapping software to hardware

Although the SPMD programming model is a generalisation of a SIMD implementation (as
discussed in Section 2.1 and in [I7]), a CUDA device is not a pure SIMD device [27]. Furthermore,
even though marketing material related to CUDA devices typically list the number of SPs as
the number of processors, an SM is the smallest hardware grouping with an independent front-
end (including a fetch unit and scheduling logic) [46]. Thus, a CUDA device can be seen as a
MIMD array of SIMD cores. This means that although each SP in an SM is executing the same
instruction in a SIMD fashion, different SMs on a device may be executing different instructions.
NVIDIA goes further to state that the execution on an SM is in fact single-instruction-multiple-
threads (SIMT) which differs from SIMD in that it relaxes some of the requirements imposed on
inputs and outputs, as well as branch instructions [27]. This section discusses how the thread-
block programming model discussed in Section 2.3.1 maps to execution on the CUDA hardware
discussed in Section 2.3.2.

Block assignment

When a CUDA kernel is launched, and the grid of thread blocks initialised, the blocks of the
grid are each assigned to an SM on the device [27]. As long as the resource (number of threads,
registers, and shared memory) requirements of each block can be met, multiple blocks can be
assigned to an SM. There is also an upper limit on the number of blocks that can be assigned to
an SM. Blocks that cannot initially be assigned for execution, are kept in a queue until the kernel
execution of another block completes, Furthermore, a block remains assigned to an SM and its
allocated resources (shared memory and registers) remain reserved until execution completes
for the block. This reservation of resources is what allows for the communication between the
threads of a block though shared memory. Of course it follows that, for this same reason, a
block cannot be transferred to another SM once it has been assigned for execution [27, 29].

Thread scheduling and execution

Since scheduling and execution depends heavily on the hardware implementation, it makes sense
to discuss it with reference to a specific CUDA device family [27]. For the discussion that follows,
the GT200 architecture will be used. This is also one of the architectures used to obtain the
results presented in Chapter 3, Chapter 4, and Chapter 5. It should be noted that, although
the exact values used may be device-specific, the concepts can be applied to any of the other
devices discussed.

In order to schedule the threads of a block, they are grouped into warps [29]. In the case of
the GT200 (and G80) the warps are made up of 32 threads. The same instruction is issued to
each of the threads in a warp by the SM and is executed in a SIMT fashion. A single precision
floating-point operation that takes one cycle to complete per thread (such as floating-point
multiplication or addition [29]), will require four cycles to complete for an entire warp. This is
because only eight threads can execute at a time on the available SPs, and is illustrated as a
timing diagram in Figure 2.6 for a block of 64 threads.

Each instruction that is to be executed, as well as fetches from the various memories, have a
latency associated with them [49] [50]. These can range from a few cycles for a simple floating-
point multiplication to hundreds of cycles for more complex operations such as integer division
or fetching an operand from global memory. For many of these cycles, there is no useful com-
putation being done, and the processing hardware of the device is idle. While the threads of a
warp are stalled the GigaThread Engine allows for the scheduling of another warp of threads at
zero-cost. This new warp then continues execution. Having enough warps (or blocks) assigned
to an SM, ensures that there are always threads executing while other warps wait for high la-



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 21

0 same instruction executed for
8 threads of warp 0 per cycle
R . 64 threads
1 10 X1 Block: o warps
2
[%2]
o
Q|3
o - -
5|4 W same instruction executed for
3 8 threads of warp 1 per cycle M
(3] 5 a 0 M
|
7 G2%T)
y

Figure 2.6: A simplified timing diagram illustrating the execution of threads in a warp. Since there are
eight thread processors, the same instruction is issued over four cycles and executed for each of the 32
threads in the warp (assuming a single cycle single precision floating-point instruction). Also shown is a
64 thread block and its division into two warps, with the second warp executing after the first.

tency instructions to complete — effectively hiding the latency of these instructions [27]. This
process is depicted graphically in Figure 2.7 and is similar to the use of out-of-order execution
in a traditional CPU pipeline [I7]. This latency-tolerant design is one of the reasons that there
is so little of the surface area of the device’s processor devoted to cache memory, but also means
that in order to fully utilise the device the datasets being operated on and the number of threads
must be sufficiently large [27].

(1 active warp per SM) [ at least 3 active warps per SM )
0 14 2 3' 0 14 2 3'
8¢9.104115 8¢9.104115
1617 18193 1617 18 19 %=
& 'S < o P L7 4. o
242526271 242526271 H
— 4; — N— e o et
(0] (0]
£ ) £ )
= (= = C
c 8 c o
Ke] S o K] ©
5 o B =] o
8 ° = 8 ©
5 |32 5 |32
= = C
© © >S5
» » =
\ J U J

Figure 2.7: A diagram illustrating how assigning multiple warps for execution on an SM can hide the
latency of long latency operations (including global memory reads). On the left — with only 1 active
warp — the SM is idle while waiting for a long latency operation to complete. On the right, warps are
scheduled ensuring that the SM is not idle during long latency operations.

2.3.4 Software ecosystem

Although the programming model and the hardware implementation of a parallel architecture
such as CUDA are important aspects to consider, perhaps the most important component is
the software that is built around the architecture. The ease of use of this software is often
a significant factor in the adoption rate of the architecture as a whole. In this section we



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 22

consider the software — both from NVIDIA and third-party developers — that is designed for the
CUDA architecture. This includes development tools, as well as libraries that provides specific
functionality.

CUDA runtime and driver APIs

When developing CUDA applications, one makes use of one of two APIs, namely the CUDA
driver API or the CUDA runtime API. These APIs provide functions to handle all the aspects
associated with a CUDA device and include device management, memory management, and
execution control [50]. Examples of calls to the runtime API have already been shown in
Listing 2.3, where the cudaMalloc(), cudaMemcpy(), and cudaFree() routines were used.

In terms of functionality, all the functionality of the runtime API is provided by the driver
API. The latter is a lower level API and the code required tends to be more verbose, but the API
provides some additional functionality [50]. For the examples presented in this dissertation, the
runtime API is used, as it is simpler and thus easier to follow. It should be noted that, although
earlier versions of CUDA required that the driver and runtime APIs be mutually exclusive, with
only one or the other used in an application, this is no longer the case [29].

A diagram representing the CUDA software stack showing the relationship between a CUDA
application and the two APIs discussed, is shown in Figure 2.8. Also shown in Figure 2.8 are
a number of CUDA libraries that are built using the CUDA runtime and driver APIs. These
libraries provide additional functionality, hiding much of the implementation details from the
user application.

(Host
[ CUDA libraries |

CUBLAS E[
L
CUSPARSE _{ Y ]

CUDA applications

CUDA runtime API
. \L ) \L \L )
[ \ \ Y ™
CUDA driver API
(Device ¥ )

Figure 2.8: Schematic representation of the CUDA software stack showing both the driver and runtime
APIs. Also shown are a number of higher level libraries used in this dissertation, as well as the interactions
between the components. Note that only the driver API communicates directly with the device and that
the APIs, libraries and applications reside on the host.

CUDA libraries

Perhaps the most influential factor in the adoption of CUDA over competing technologies was
the early release of accelerated libraries for common computational tasks. Two such libraries are
CUFFT and CUBLAS [7, [51] which are CUDA implementations of the Fast Fourier Transform
[52] and the BLAS [53] set of linear algebra routines, respectively. These libraries allowed
developers to implement GPU-enabled algorithms without having to spend much time getting
to know the new architecture.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 23

Subsequently, NVIDIA has released the CUSPARSE and CURAND [54] [55] libraries, which
provide support for sparse matrices and random number generation, respectively. In addition,
a number of third-party libraries have come to the fore, providing similar functionality to main-
stream CPU-based libraries. One of the most notable ones relevant to the work discussed in this
dissertation are MAGMA [§ and CULATools [56] which implement a subset of the LAPACK
[57] routines. The CUBLAS and MAGMA libraries are discussed further in Chapter 3, where
various aspects of numerical linear algebra on CUDA-based GPUs are considered.

2.4 ATI Stream SDK

Although the CPU-based aspects of the work presented in this dissertation are implemented in
CUDA, it is useful to consider some of the alternatives available. For this reason the technology
offered by AMD is also considered. Note that the discussion presented here does not go into as
much detail as that of Section 2.3, but instead serves to highlight some of the key similarities
and differences between the two technologies.

Many of the differences between the ATI Stream SDK (including OpenCL discussed in
Section 2.5) and NVIDIA CUDA are simply a matter of name — at least as far as this discussion
is concerned. As such, Table 2.3 provides a mapping between terminology from the different
architectures [39] 40, 58]. In the case of the hardware elements, the table does not imply anything
regarding the similarities of the different implementations.

Table 2.3: A list of equivalent terms or functionally equivalent hardware for NVIDIA CUDA and ATI
Stream SDK.

NVIDIA CUDA ATI Stream SDK
thread organisation
thread work-item
block work-group
grid NDRange
warp wavefront
hardware

stream core
(processing element)!

symmetric multiprocessor compute unit
special function unit T-processing element

thread processor

1 Although it is more fair to compare a thread processor
(TP) to a stream core, there are some cases where the
comparison to a processing element (PE) is more apt. In
terms of single precision floating-point arithmetic, for ex-

ample — a TP and a PE can be seen as nearly equivalent.

2.4.1 Hardware

The hardware from AMD follows similar design principles to those of the NVIDIA devices
discussed in Section 2.3.2; in that there are a number of simplified processing cores that share a
certain amount of control and instruction processing hardware. A diagram representing the ATI
equivalent of an symmetric multiprocessor, called a Compute Unit (CU), is shown in Figure 2.9



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 24

[39]. Each CU contains 16 Stream Cores (SCs), as well as a local data store (LDS) that acts as
a shared memory space for communication between the threads running on the CU.

N

(Compute Unit

local

data

store
(LDS)

\ J

Figure 2.9: An ATI Cypress compute unit consisting of 16 stream cores (SCs) and a local data store
(LDS). Since each stream core (shown in Figure 2.10) is more complex than a CUDA TP, the compute
unit is simpler than a CUDA GT200 SM (see Figure 2.5). For example, the compute unit does not
contain separate SFUs, since this functionality is implemented at an SC level.

The SCs are the equivalent of the CUDA stream processor, but an ATI SC is significantly
more complex. Each one comprises five processing elements (PEs) (capable of performing single
precision floating-point or integer operations), as well as a branch prediction unit. One of the
PEs is more advanced, with this T-Processing Element (T-PE) performing some of the functions
of the CUDA special function unit (SFU) [39]. A representation of an ATI SC is shown in
Figure 2.10, where a small register file that is shared between the processing elements can also
be seen. For double precision operations, two or four of the regular PEs are used together,
depending on the operation required [39].

(Stream Core

T-PE branch
prediction

| registers |

\. J

Figure 2.10: An ATTI stream core (SC) showing four processing elements (PEs) and a T-processing
element (T-PE) which performs the same operations as a CUDA SFU. Each PE has access to its own
portion of a shared register file and the SC also contains branch prediction hardware.

With an ideal instruction mix, all the PEs of an SC can be used in parallel, and as such
the AMD marketing material lists the number of PEs as the number of cores [39]. However,
comparing the number of ATI stream cores (and not processing elements) to the number of
CUDA thread processors (TPs) would be more fair.

As is the case with NVIDIA GPUs, an AMD device also contains various texture processing
hardware (including two levels of texture cache), as well as a global device memory, resulting
in a similar hierarchical memory model to the one presented in Table 2.1 and discussed in Sec-
tion 2.3.1 for CUDA devices. Table 2.4 shows some specifications of the ATI Cypress GPU [39],
with the equivalent specifications of the NVIDIA GT200 from Table 2.2, shown for comparison.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 25

2.4.2 Software

For the current implementation of the ATI Stream SDK, OpenCL is used as the high-level
language of choice. In addition, the Compute Abstraction Layer (CAL) [59] can be used to
program the devices at a very low level. OpenCL is similar to the CUDA driver API in terms
of verbosity, and since OpenCL is designed to run on a variety of different architectures and
devices, the routines associated with device management tend to be more complex. A more
complete analysis of OpenCL and its comparison with CUDA is covered in Section 2.5.

As discussed in Section 2.3.4, one of the factors that accelerated the adoption of CUDA was
the presence of libraries such as CUBLAS and CUFFT. Although AMD does provide ACML-
GPU [60], which implements BLAS routines that are accelerated by AMD GPUs, at present
this is limited to matrix-matrix multiplication routines. Since the ratification of OpenCL and
its subsequent adoption as the device programming language of choice by AMD, libraries such
as ViennaCL have come to the fore [61]. ViennaCL provides functionality covered by many of
the BLAS routines, as well as some more advanced linear algebra routines. As OpenCL gains
more acceptance in the development community, it is expected that more third-party libraries
will become available.

Table 2.4: Specifications for an ATT Cypress (RV870) device with the equivalent values (and architecture
components) for an NVIDIA CUDA GT200 shown for comparison.

Cypress GT200

computational resources

CUs per device 20 30 (SMs)
SCs per CU 16 8 (TPs)
total 320 240
PEs per CU 80 -
total 1600 -
T-PEs per CU 160 2 (SFUs)
total 320 60
64bit FP units per CU 16 1

total 320 30

per CU resources

local data store 32KB  16KB  (shared memory)
registers 256KB  64KB
theoretical peak FP performance @ 1GHz®
GFLOPS 32bit 3200 480
64bit 800 60

(1) The T-PEs are included in the count of PEs per CU as they can perform
the same operations.

2) Two or four regular processing elements (PEs — 64 per CU) are used to
perform double precision floating-point (FP) operations.

() multiply-add (MAD) or fused multiply-add (FMA) operation per clock
per floating-point (FP) unit — 2 FP operations per clock per floating-point
unit. Note that Cypress devices tend to be clocked below 1GHz[39].



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 26

2.5 OpenCL

OpenCL is an open standard that aims to provide a means to implement general purpose par-
allel programming across a wide variety of platforms and devices including CPUs, GPUs and
other processors [40]. Thus it could be said that OpenCL aims to be to heterogeneous parallel
computing what the OpenGL standard is for graphics. Furthermore, OpenCL supports both
data-based and task-based parallelism and is implemented as a subset of ISO C99 including cer-
tain parallel programming extensions. It should be noted that the standard has been ratified by
a large number of players in the computing industry, including Apple, Intel, AMD, and NVIDIA
[38].
Since OpenCL is designed to produce portable code that can run across a wide range of
platforms, it can be defined through a series of models to which an OpenCL-compatible device
must adhere [40]. Some of these models will now be discussed, with many of the concepts
having one-to-one mappings to those present in CUDA and discussed in Section 2.3. Some of
the mappings have already been mentioned in Table 2.3, since the latest iteration of the AMD
hardware has been specifically designed for OpenCL compatibility.

Although the OpenCL programming model is not discussed in depth, it should be noted
that it supports the same data parallel approach as discussed for CUDA in Section 2.3.1 and
more generally in Section 2.1. In addition, OpenCL supports a task parallel programming model
which sees parallelism achieved by executing a number of unrelated tasks concurrently instead
of performing the same operation over a number of data elements at the same time [I7, [40].

2.5.1 Platform model

The highest level abstraction in the OpenCL specification is the concept of a platform, which
is depicted graphically in Figure 2.11. An OpenCL platform consists of one or more Compute
Devices (such as NVIDIA or AMD GPUs discussed in Sections 2.3 or 2.4, respectively) connected
to a host [40]. There is no requirement that these Compute Devices be identical — hence the
suitability of OpenCL to heterogeneous computing. A Compute Device further consists of at
least one Compute Unit, which in turn is made up of one or more Processing Elements. Note
that although the host appears separately on the diagram in Figure 2.11, a single core CPU
system can still act as a OpenCL platform with the host and the Compute Device being the
same physical device. The host-device model is identical to the one used in CUDA, where a

~

(Platform
(Compute Device
Compute Unit

\

[ Compute Unit

CD CD

@

\. J

Figure 2.11: The OpenCL platform model showing a host attached to multiple more compute devices
(CDs). Each compute device consists of one or more compute units (CUs) which in turn consists of at
least one processing element (PE). The figure shows three compute devices, one with two compute units
and a total of 32 PEs, and two more identical ones with one compute unit and processing element each.
This is then an example of a heterogeneous system.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 27

CUDA GPU acts as an external accelerator, although in this case, no explicit provision is made
for heterogeneity.

2.5.2 Execution model

Since the platform model previously discussed is similar to that of CUDA devices, it follows
that the execution model will have similarities as well. As is the case in CUDA (see Section 2.3)
and in stream computing [41], 3], the pieces of code that execute on OpenCL devices are called
kernels, with a host program that manages the execution of these kernels [40].

Many of the concepts discussed regarding the CUDA thread organisation model can be
translated to OpenCL, as has already been indicated in Table 2.3. A brief overview of the
OpenCL execution model is now given, with the OpenCL version of Figure 2.2 presented in
Figure 2.12 [40]. Here, the global index space is an ¥-dimensional index space called an NDRange
with the supported values of ¥ being one, two (shown in Figure 2.12), or three. The NDRange thus
contains N integers indicating the size of the index space in each of the ¥ dimensions [40].

work-group index: wy work-group size: Sx

e =
T - e x
N A - 0]
~x 0 A~ [ORe]
=0 =
oc -~ AI‘.E
= = < —
© -I- > os
5 8| -~ O 23
e o =
)
% K © X
i : g2
N o
k= 75} 8
Q ; o 2
5 | work-iteq] TR o 5
O | global'inflex: sx EH:‘ c -
= H S < | ['work-item
7 =< o local index
: te- S
2 s NN
i §

NDRange size: Gy

Figure 2.12: Organisation of OpenCL work-items into an work-groups and an NDRange. Note the
differences in naming when compared to the CUDA case shown in Figure 2.2.

Although this NDRange is roughly equivalent to the CUDA grid, there are some differences.
As mentioned, the NDRange can be one-, two-, or three-dimensional, whereas the CUDA grid is
at present restricted to only two dimensions [29]. A more important difference is that while the
CUDA grid can be seen as an arrangement of CUDA thread blocks, the NDRange specifies the
global indices of the OpenCL work-items themselves [40].

The OpenCL work-items offer the finest level of granularity and are in effect an executing
instance of an OpenCL kernel for each element of the index space (NDRange). Similarly to the
case of a CUDA thread, the global ID (position in the index space) of a work item is known at
runtime and although the same code is executed by each work-item, the data being operated
on, as well as the specific execution pathways (in the case of conditional statements or loops, for
example) may differ [40]. Work-items are organised into work-groups of equal dimension which
provide a more coarse-grained segmentation of the index space, with each work-group being
assigned an ID related to its position in the space. In CUDA, the global position (or ID) of a
thread has to be explicitly calculated using the thread’s local position in a block and the block’s
position in the grid. In OpenCL, a number of routines are provided that return the global and
local ID of a work-item at runtime [40].



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 28

In terms of execution on an OpenCL device such as an NVIDIA or AMD GPU (Section 2.3.2
and Section 2.4.1, respectively), a work-group is assigned to a compute unit. Here, the instruc-
tions for the work-items are executed by the processing elements. Note that since there is no
requirement that there be more than one processing element, it may be that the work-items of
a group, and even the work-groups themselves, are executed sequentially.

2.5.3 Memory model

As is the case with CUDA, OpenCL defines a hierarchical memory model for an OpenCL device,
with work-items having access to four memory regions. These are summarised in Table 2.5, which
can be compared to Table 2.1.

Table 2.5: A summary of the OpenCL memory types showing allowed access, as well as locality. Also
indicated is whether the memory is accessible from the host and what the CUDA equivalent memory is.
The CUDA version of this table is given in Table 2.1.

Accessible CUDA

Memory  Access Locality from host  equivalent

Private =~ R/W  work-item No Register
Local R/W  work-group No Shared!
Global  R/W All Yes Global

Constant R All Yes Constant

I Note that CUDA local memory is reserved per-thread and resides
in global device memory. Thus the equivalent of OpenCL local
memory is CUDA shared memory — although OpenCL does not
require that this be implemented on-chip.

Note that even though the names are similar, CUDA local memory and OpenCL local mem-
ory are not related. OpenCL local memory is the equivalent of CUDA shared memory. There is,
however, no requirement in the OpenCL specification that the former be implemented as fast,
low-latency, on-chip memory, and may simply be mapped to sections of global memory [40].
Some OpenCL devices such as the AMD and CUDA GPUs do implement this local memory as
small areas of fast memory for performance reasons [39] [(8].

2.6 Outlook for GPGPU computing

No discussion on GPU computing would be complete without at least some mention of the future
of the technology. One aspect that can be assumed is that the devices will become more and more
capable — as can already be attested due to their rapid evolution to this point. It is expected
that the performance of these devices will improve for some time. Since this performance
improvement will likely be due to increased levels of parallelism and not frequency scaling, the
power requirement issues that hampered the improvement of conventional CPUs should be less
of a problem, although memory bandwidth limitations will play an ever increasing role.

Perhaps the most important development will be in the programmability of these devices.
This is already evident from the great advances made when comparing CUDA and OpenCL to
earlier options such as using OpenGL or shading languages like Cg to force a GPU to perform
general purpose computation. Particular attention should be paid to OpenCL with its cross-
platform, device-independent approach, which is very attractive to developers as it means it is
not necessary to bet on one particular hardware vendor.



CHAPTER 2. GENERAL PURPOSE GPU COMPUTING 29

OpenCL is also an interesting option when it comes to heterogeneous computing — where a
system used for computation consists of a number of different compute devices — as it allows not
only for operating system- or device-independent development (in theory), but also for multiple
devices with different capabilities to be used at the same time. The importance of heterogeneous
computing is further illustrated by developments such as the Fusion platform by AMD [5], and
the fact that NVIDIA is also including support for x86 CPUs in their CUDA compilers [6].

2.7 Conclusion

In this chapter, a very brief overview of general purpose GPU (GPU) computing has been
presented, with the promise of improved performance at least prompting an investigation into
the use of such techniques in the field of computational electromagnetics. Although the chapter
provided more detail regarding NVIDIA CUDA, it is hoped that the introduction into competing
technologies such as the OpenCL standard — from a software point of view — and the hardware
from AMD gives a better understanding of the landscape. In the end it is the software maturity of
CUDA (with a two year head-start over OpenCL) and the readily-available third-party libraries
that win out for our intended applications.

Although this chapter was brief, there are a number of resources that can be used as a
starting point for getting into GPGPU computing. The websites from both NVIDIA [4] and
AMD [36] offer a number of sample applications, links to tutorials, as well as examples of what is
possible with the various technologies. For NVIDIA CUDA development, both [27] and [42] can
be recommended as good sources for getting started, with the former approaching the problems
from the more general perspective of massively parallel processors.



Chapter 3

GPU-accelerated dense numerical
linear algebra

Many problems in scientific analysis and engineering result in matrix equations that need to be
solved — be it as part of a linear system or an eigenvalue problem. The field of computational
electromagnetics is no different, and although matrix-free methods do exist, techniques such as
the Method of Moments (MOM) and the Finite Element Method (FEM) both involve assembling
a matrix of some sort and using it to find the desired solution to the problem being modelled.

In this chapter, an overview of dense numerical linear algebra (NLA) is presented, with
specific attention given to the libraries that are considered the de-facto standard in this field —
BLAS [53] and LAPACK [57] — and their acceleration using CUDA GPUs. Although much of the
desired functionality is provided by existing libraries (most notably CUBLAS [7] and MAGMA
[8]), these do still have some limitations. One of the limitations addressed here is that imposed by
the amount of memory available on CUDA devices. This limitation results in a restriction on the
sizes of the matrices for which the LU decomposition can be performed. The LU decomposition
specifically, is an important operation in the field of computational electromagnetics as it can
be used as part of the MOM and FEM solution processes. These methods will be discussed in
Chapter 4 and Chapter 5, respectively.

The implementations of a CUDA-based LU decomposition discussed here are the result of
mapping a traditional out-of-core (OOC) implementation presented in [62] to the GPU comput-
ing model. Although results for these implementations have already been presented in [9], this
chapter contains a more in-depth discussion of the implementation details, as well as additional
result sets, which are obtained on three different systems with varying levels of computational
power.

One of the systems considered is relatively old, and as such the measured CPU-only perfor-
mance lags considerably behind current systems. The use of this system in the benchmarking
study allows investigation into the feasibility of using consumer-level GPUs to boost the per-
formance of ageing systems. The results presented indicate that even with only a GT200-based
GPU installed, older systems are able to provide competitive performance when compared to
CPU-only results for more current systems. Furthermore, the relatively low price of a drop-in
GPU upgrade, when compared to a replacement system, makes it an enticing option — especially
when one’s budget is constrained.

The introduction to dense numerical linear algebra is presented in Section 3.1, including a
discussion on the libraries used, and some points relevant to the implementations presented later
in the chapter. This is followed by a short discussion in Section 3.2 on existing GPU-based dense
NLA with an emphasis on the LU decomposition. Following this, the details of the adaptation
of out-of-core methods and their subsequent implementation are presented in Section 3.3.1.
Section 3.4 introduces the systems used for benchmarking the implementations discussed, as

30



CHAPTER 3. GPU-ACCELERATED DENSE NLA 31

well as the methods presented in subsequent chapters. It also shows the results obtained for
four variants — in terms of supported data type and precision — of the two LU decomposition
implementations discussed. The significance of the performance results is addressed and general
comments and conclusions for the chapter are given in Section 3.5.

3.1 Dense numerical linear algebra

Since many problems in science and engineering can be reduced to (or include) linear algebra
operations, a lot of time and effort has gone into implementing these routines on computers.
Two packages that have become synonymous with dense numerical linear algebra are the Basic
Linear Algebra Subprograms (BLAS) [53] — providing a number of basic linear algebra routines,
including vector and matrix multiplication — and the Linear Algebra Package (LAPACK) [57],
in which the BLAS routines are used as the basis for a number of more complex linear algebra
operations such as matrix factorisations and singular value decompositions.

The BLAS routines are divided into three levels and are classified according to the order
of computation required [63]. The level 1 routines implement linear operations on vectors and,
for example, include the inner product of two vectors. The second and third level routines
consist of quadratic and cubic operations, respectively. Level 2 operations include matrix-vector
operations, while level 3 operations of interest are matrix-matrix operations. Table 3.1 gives
a summary of this information, as well as the order of the storage and computational cost
associated with each level.

Table 3.1: A summary of the type and storage and computational cost of the three levels of BLAS

routines.
Level Type Storage Computation
1 vector-vector  O(N) O(N)
2 matrix-vector  O(N?) O(N?)

3  matrix-matrix O(N?) O(N3)

As previously mentioned, LAPACK is a collection of common routines for solving linear
algebra problems. These include a number of matrix factorisations (Cholesky, QR and LU de-
compositions), routines for solving linear systems, as well as eigenvalue calculations and singular
value decompositions for dense or banded matrices [57, 64]. Many of these LAPACK routines
are written in terms of level 3 BLAS routines and as such can take advantage of optimized BLAS
implementations [64].

Most of the BLAS and LAPACK routines support a number of data types for the elements
of the matrices or vectors that they operate on. The data type for which a routine is intended,
is typically indicated by the first letter of the routine name, and is chosen according to the
precision required (single or double precision), as well as whether the routine operates on real
or complex values [57]. A summary of the letters used for each of the four possible cases is given
in Table 3.2.

When discussions are of a general nature and not pertaining to a particular implementation
of a BLAS or LAPACK routine, the type specifier is sometimes replaced by an underscore () as
is the case in [62]. In this dissertation, the type specifier is replaced by a lower-case x with the
rest of the routine name in all-caps. Thus xFuNC will be used in cases where SFUNC, CFUNC, DFUNC,
or ZFUNC can be used interchangeably for this fictional routine.

The functionality of some of the BLAS and LAPACK routines used in the various imple-
mentations of this dissertation are discussed briefly here. Note that although they often have a



CHAPTER 3. GPU-ACCELERATED DENSE NLA 32

Table 3.2: A summary of the prefixes used for BLAS and LAPACK routines depending on the precision
used, as well as whether values are real or complex. Also shown are the number of bytes required for the
storage of data elements of each type.

real complex

single precision 5 ©
gep (4 bytes) (8 bytes)

D Z

double precision ¢y 4 ) (16 bytes)

variety of modes in which they can operate, only the one most relevant to the implementations
will be discussed in detail.

General matrix-matrix multiplication

Of the level 3 routines, the most important is undoubtedly the set of general matrix-matrix
multiplication routines, SGEMM, DGEMM, CGEMM, and ZGEMM, which perform a general matrix-matrix
multiplication on single precision real, double precision real, single precision complex, and dou-
ble precision complex matrices, respectively [65]. These routines are the building blocks for
many other computational routines, including other level 3 BLAS routines [65]. Due to their
importance, one finds that hardware vendors attempt to optimise the execution of these routines
on their platforms.

The xGEMM routines take three matrices (say [A], [B], and [C]) and two scalars (say o and
B) as inputs and perform the following operation

(€] = a[4][B] +5]C]. (3.1)

Note that other variants (involving the transpose of [A], for example) of (3.1) are also possible
but are not considered here [53].

Triangular system solve

Another important set of BLAS routines — especially in the case of the LU decomposition [8], [62]
— are the triangular matrix solve routines xTRSM. These can be used to perform operations
including the solution of the linear system

L] [x] =a[B], (3:2)

with « a scalar value, and the unknown [X ] and [B] both NxM matrices. The matrix [L]
is a lower triangular N xN matrix with an assumed unit diagonal. As is the case with the
xGEMM routines, xTRSM supports a number of other formats, including the case where [L] is upper
triangular and does not have a unit diagonal [53].

It should be noted that solving (3.2) is equivalent to solving

L] {z} = a{b}, (3.3)

with {1:} and {b} both N-vectors, for M right-hand sides using Gaussian elimination [63]. Since
the computational cost for each right-hand side is O(NN?) [63], the total computational cost for
performing (3.2) is O(N?M).



CHAPTER 3. GPU-ACCELERATED DENSE NLA 33

LU decomposition

The LU decomposition (with partial pivoting) of an N xN matrix [A] computes two matrices
[L] and [U] such that
[P] [A] = [£] [U], (3.4)

with [P] a matrix containing only zeros and ones that applies a series of row interchanges to [A]
[63]. The matrices [L] and [U ] are lower triangular with a unit diagonal and upper triangular,
respectively. The computational cost for the LU decomposition is O(N?3) and, more specifically,
can be performed in 2N3 FLOPs for a real matrix [63).

The LU decomposition is implemented in the xGETRF series of routines in LAPACK. Here, the
row pivots, although represented by matrix pre-multiplication in (3.4), are implemented using a
one-dimensional integer array 1pIv. Each IPIV[i] contains the (1-based) index of the row which
which row i must be exchanged. These row interchanges are implemented by the xLASWP routines,
and take as parameters a pointer to the array 1p1iv, the matrix to which the row pivots must be
applied, and the indices indicating the range of rows that must be pivoted.

A factorisation such as the LU decomposition allows one to avoid explicitly computing the
inverse of a matrix, as would be necessary, for example, when solving a linear system [63]. Using
the LU decomposition, finding an unknown vector {x} by solving the linear system

[A] {=} = {b}, (3.5)

for a given [A] and right hand side {b}, can be performed in two steps. The first is to solve

(L1 {y} = [P] {0} (3.6)

for {y} = [U] {x}, and then solve

U] {z} = {v}, (3.7)

for the desired {a:} Here, [L], [U ], and [P] are obtained by the LU decomposition of [A] as
shown in (3.4). Note that since the computational cost of solving both triangular systems using
Gaussian elimination is O(N?), the total computational complexity of obtaining {x} remains
O(N3).

In addition, the factorisation can be reused and the linear system of (3.5) can be solved for
multiple (M) right-hand sides, as in

4] [x] = [B], (3.8)

1] [Y] = [P][B], (3.9)

with [Y] also NxM and
U] [x] = [¥], (3.10)

respectively. This process is implemented in the LAPACK xGETRS routines, with the triangular
solve steps including calls to the xTRSM routine. Since the factorisation is performed only once,
the solution of the linear system can be performed with a computational complexity of O(N?3 +
N2M).



CHAPTER 3. GPU-ACCELERATED DENSE NLA 34

3.1.1 Optimised implementations

Due to the importance of the BLAS routines, and especially matrix-matrix products in a wide
range of linear algebra problems [65], a number of optimised implementations of the BLAS
library exist. These optimised implementations are typically targeted at specific platforms or
architectures and allow applications developers to achieve high performance on a wide range of
targets with little additional development.

Although libraries targeted at large clusters exist, this work is more concerned with the use
of GPUs in accelerating computational electromagnetic calculations on ordinary workstations,
and, as such, the implementations considered are targeted at these platforms. A number of
libraries that provide the desired functionality are shown in Table 3.3. The table also indicates
which of the libraries are discussed in more detail in the sections that follow.

Table 3.3: A feature matrix for a number of numerical linear algebra libraries. The table indicates
support for CUDA GPUs, whether the library provides BLAS or LAPACK functionality, and if the
library is freely available. Here, a e indicates a yes, and a x indicates a no. The names of the libraries
that are discussed further are shown in bold.

Library Platform BLAS LAPACK Free

ATLAS CPU o . o
ACML cpu® . . .

MKL CPU . . x(2)
CUBLAS CUDA GPU . x .

CULA Tools CUDA GPU X . x (3)
MAGMA CUDA GPU x® . .

1) Implementations of the SGEMM and DGEMM routines are also available
for AMD GPUs in ACML-GPU.

(2) A free trial of the MKL is available for personal use — which does
not include academic research.

(3) A free basic version is available but only includes a limited number
of single precision LAPACK routines.

(4) A number of BLAS routines have been implemented, but have been

subsequently included in implementations of CUBLAS.

A notable exclusion from the discussion is the Intel Math Kernel Library (MKL) which
provides BLAS and LAPACK implementations (amongst others) that are optimised for Intel’s
processors [66]. Although the performance of MKL tends to be quite good, it is not considered
here due to licensing restrictions.

Also not discussed in detail is the CULA Tools library from EM Photonics [56]. This is
a CUDA-based implementation of a large number of LAPACK routines and as such provides
functionality similar to that of MAGMA. In terms of performance, CULA Tools attains an LU
decomposition (xGETRF) performance of around 330 GFLOPS and 140 GFLOPS for single and
double precision, respectively, on a GF100 device, while almost 200 GFLOPS and 70 GFLOPS
(again for single and double precision real matrices, respectively) have been measured on the
older GT200 architecture. These figures compare favourably to a CPU-based MKL implemen-
tation, with performance peaking at around 75 GFLOPS and 20 GFLOPS for the single and
double precision case on a modern 4-core system [67]. As is the case with MKL, CULA Tools
is not free, and although a free, basic version is available, it only provides a limited number of
single precision routines and will not be considered further [56].



CHAPTER 3. GPU-ACCELERATED DENSE NLA 35

ATLAS

One of the most widely used BLAS implementations (that also provides LAPACK functionality)
is the Automatically Tuned Linear Algebra Software (ATLAS) [65]. One of the reasons for its
popularity is that it uses “Automated Empirical Optimisation of Software” to automatically
adjust the BLAS (and LAPACK) implementations to provide similar performance to vendor-
tuned libraries across a wide range of platforms. This involves applying a number of optimisation
techniques, including software pipelining, cache and register blocking, and loop unrolling to a
number of kernel prototypes at compile time and using empirical timings to select the best
implementation for a given platform from a wide range of options [65].

This automatic tuning does away with the need for hand-tuned optimisations, which can
be increasingly difficult to keep up to date in a rapidly evolving hardware landscape. ATLAS
is used in a wide range of software including MATLAB [68] and its GNU alternative, Octave
[69], and is available (precompiled and optimised for a wide range of common platforms) on a
number of popular Linux distributions such as Ubuntu.

ACML

The AMD Core Math Library (ACML) is a set of numerical routines supplied by AMD. Although
these can be used on all modern x86 processors (including those from Intel), they are tuned
specifically for use on AMDG64 platform processors [64]. ACML includes a full set of BLAS
and LAPACK routines, as well as a set of Fast Fourier Transform (FFT) and random number
generation routines.

Many of the BLAS and LAPACK routines in ACML include multi-threaded implementations
that utilise OpenMP to make use of more than one core in a multi-core (or multiprocessor)
machine [64]. Also available is a GPU-accelerated version called ACML-GPU, which uses AMD
GPUs (see Section 2.4) to perform matrix-matrix multiplications [60]. Although ACML is not
open-source, it is available free of charge for personal, academic, and commercial use.

CUBLAS

As discussed in 2.3, an implementation of BLAS that is optimised to run on NVIDIA GPUs (see
Section 2.3.2) is included with CUDA [7]. Although this CUDA BLAS (CUBLAS) library ini-
tially only provided a subset of the BLAS routines, it has subsequently been extended to include
all of them. The level 3 routines, especially, are able to take advantage of the immense compu-
tational power of CUDA GPUs, resulting in a measured performance of around 300 GFLOPS
for the pGEMM routine on a C2050 (a GF100 device) [70]. On the older GT200 architecture, about
75 GFLOPS and 375 GFLOPS have been measured for DGEMM and SGEMM, respectively [71].

Note that the performance for the DGEMM routines does not always carry over to the other
lower level BLAS routines. This is largely due to the data transfer overhead involved when
making use of GPUs. In the case of the level 3 BLAS routines, the data transfer cost is O(N?),
whereas the cost of computation is O(N?3) (see Table 3.1). As such, for large enough problems,
the computational component will dominate. In the case of the level 1 and level 2 routines this
is not so, although in some algorithms it may be able to amortise the cost of the data transfer
over a number of calls to the routines and still obtain a speedup in the application [I5, 47]. This
is demonstrated in the eigenvalue solvers considered as part of Chapter 5.

In Section 3.3, the CUBLAS implementations of the xTRSM and xGEMM routines are used to add
GPU acceleration to a left-looking LU decomposition. In addition, this LU decomposition is
implemented so as to enable the factorisation of much larger matrices than can be accommodated
in GPU memory.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 36

MAGMA

Although still in an early version, the MAGMA (Matrix Algebra on GPU and Multicore Archi-
tectures) project provides promising implementations of many LAPACK routines for execution
on heterogeneous architectures consisting of multicore CPUs and CUDA GPUs [§]. MAGMA
includes the one-sided matrix factorisations (including the LU decomposition discussed in Sec-
tion 3.1) and their associated solvers. In contrast to CULA Tools [56], which provides similar
functionality, MAGMA is freely available under the same licensing conditions as LAPACK.

In addition to a number of LAPACK routines, MAGMA includes MAGMA BLAS (intended
to complement CUBLAS), which provides optimised versions of the xGEMM and xTRSM routines that
were not available as part of CUBLAS at one time. Although the xTRSM routines, for example,
have since been implemented as part of CUBLAS, some of the MAGMA BLAS implementations
still offer performance advantages over CUBLAS [§]. If the current implementation pattern
continues, however, these changes can be expected to themselves be included in subsequent
versions of CUBLAS by NVIDIA.

In terms of performance, the MAGMA library offers exceptional performance compared to
CPU-based implementations and is even able to outperform the commercial offering CULA
Tools [56]. For the LU decomposition on a GF100 device, the double precision real (DGETRF)
performance has been measured at 224 GFLOPS [70] — more than 60% higher than the CULA
Tools implementation on the same device and almost double the performance of MKL on a
48 core system with a similar theoretical peak performance as the NVIDIA device used. For
GT200 devices, 320 GFLOPS and 70 GFLOPS are attainable for single and double precision
real matrices, respectively — compared to 100 GFLOPS and 55 GFLOPS for MKL on an 8-core
CPU [72].

Although the performance of MAGMA is impressive, the current implementation is still
limited by the amount of memory available on the device. As such, a LAPACK-compatible
implementation of the LU decomposition for CUDA devices is presented in Section 3.3.1 and a
discussion on the effects on the problem sizes that can be solved is given in Section 3.3.4. In
some of the other sections of this dissertation, the MAGMA routines are used as is to investigate
the acceleration of various computational electromagnetic techniques.

3.2 A note on CUDA-based dense numerical linear algebra
implementations

The use of linear algebra routines over a wide range of disciplines has generated much research
in their GPU acceleration. This is especially true for matrix-matrix multiplications and three
matrix factorisations — the LU decomposition, Cholesky decomposition, and the QR factorisation
[63] — with some of these implementations pre-dating CUDA by at least a year [73] [74] [75].

Even when we restrict our investigation to more recent CUDA implementations the options
are numerous, these include the CUBLAS library supplied by NVIDIA, the MAGMA library, and
CULA Tools — already discussed in the previous section — as well as others such as the FLAME
Project [76). The majority remain fairly similar in their implementation and calling conventions
to standard BLAS and LAPACK [53] 67]. The FLAME Project, however, attempts to rethink
the development and programming of linear algebra libraries [7]. As such, it presents a means
to express the algorithms used in linear algebra in terms of blocks and provides a set of APIs
to allow written code to closely resemble these algorithms. Although this approach is promising
and has been applied to a wide range of problems on different architectures (including CUDA
GPUs) [, [78, [79, [80} [81], the commitment of the scientific community to standard BLAS and
LAPACK (and their respective optimised implementations discussed in Section 3.1) seems to be
impeding the adoption of the FLAME Project.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 37

One of the primary concerns addressed in this chapter is that of the amount of available
GPU memory limiting the size of the LU decomposition that can be accelerated using a CUDA
device. Positive results for the methods presented here (for the double precision complex case)
are reported in [9]. This work also aims to provide a drop-in replacement for the LAPACK
or MAGMA routines responsible for performing the LU decomposition, thereby allowing these
modified routines to be used with minimal changes to existing application code.

The StarPU runtime system also addresses the concern of limited device memory and thus
overlaps with the methods presented here [82]. It is designed specifically for heterogeneous com-
puting environments and allows for the definition of computational tasks (for example, matrix-
matrix multiplications and solving triangular linear systems) which are offloaded by a scheduler
to various computational devices. Recently, StarPU has been used in conjunction with MAGMA
to target CUDA-based GPUs [82] [83], with results for both the LU decomposition and Cholesky
factorisation showing significant speedups over CPU only multi-core implementations. However,
only real-valued single precision results were presented in the case of the LU decomposition in
[82].
Note that implementations such as the one discussed in [84] also allow for the solution of
very large problems, but are targeted at distributed environments. In [84], results are shown
comparing LU decomposition performance for a BlueGene/P cluster (2048 to 16384 cores), an
Opteron cluster (256 to 4096 cores), and a GPU-based cluster consisting of between 8 and
4096 CUDA devices (C1060s and C2050s) with communication implemented using MPI. This
contrasts sharply with the implementation and results presented here, where the performance
of a single node and a single CUDA device is considered.

A topic of interest that is not discussed here, is the matter of mixed-precision linear system
solvers [63]. With such solvers an attempt is made to perform most of a desired implemen-
tation in a lower precision than is required in the final solution, and to only perform certain
critical sections at full precision. The advantages of this are twofold. Firstly, single precision
computation is typically at least a factor two faster than double precision computation, with
this performance gap even greater for many CUDA GPUs. Secondly, the amount of memory
required in the algorithm can be reduced significantly, which will aid in further overcoming the
restrictions imposed by the amount of device memory available. Such a solver is implemented
as part of MAGMA for the solution of double precision real systems of equations and this solver
exhibits performance comparable to the single precision case [§].

3.3 Overcoming GPU memory limitations for dense LU
decomposition

As discussed in Chapter 2, although GPGPU computing shows much promise in many cases,
there are a number of limitations that need to be addressed. The foremost of these is the
limited memory typically available on these devices. Even in the case of a CUDA GPU installed
in a relatively low-end host, the amount of host memory typically exceeds the GPU memory
by at least a factor of four. Furthermore, even though the high-end Tesla devices have device
memories that can be three or four times as large as a consumer device of the same architecture,
the amount of memory installed in the hosts housing these devices tend to be greater than
regular desktops by about the same margin, resulting in similar memory constraints.

The aim of this section is to present a CUDA-based implementation of the LU decomposition
as provided by the LAPACK xGETRF routines discussed in Section 3.1 that overcome these memory
limitations. It should be noted that, although CUDA-based implementations of the xGETRF
routines exist in the MAGMA library [§], these are limited by the amount of memory available
on the device.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 38

A logical starting point for dealing with the limited memory available on a GPU is traditional
out-of-core (OOC) methods. One such method is presented for the LU decomposition in [62],
where a panel-based left-looking LU decomposition is described. Such a process is used in
parallel and out-of-core implementations such as ScaLAPACK [85], and is discussed further in
Section 3.3.1.

In a typical desktop (or server) computer system, there exists a memory hierarchy with each
tier classified according to speed, cost, and volatility [86]. When we consider memories that do
not form part of the CPU (cache and registers), two types of memory can be identified. The first
is primary or main system memory and the second is secondary storage. Main memory consists
of a high-speed volatile memory that is used for the temporary storage of data and results when
performing a computation, as well as the code that is being run. The secondary storage consists
of non-volatile memory such as magnetic disks or flash-based memory and is used for long term
storage of data.

In a modern computer system such as the ones used here for benchmarking (introduced in
Section 3.4), typical sizes for the main system memory range in the tens of gigabytes (GBs), with
magnetic disks capable of storing hundreds or thousands of gigabytes commonplace. Although
the storage capacity of primary memory is significantly less than that of secondary storage
devices, its performance is much greater — bandwidth of 20 GB/s and upward versus 600 MB /s
in the case of modern magnetic disks. Note that in the case of the latter, measured performance
differs greatly from the theoretical peak, with sustained rates measured at tens of megabytes
per second (MB/s). The relative size and performance of these memories are summarised in
Table 3.4.

Table 3.4: A summary of the storage capacities and bandwidth ranges of typical modern memory
technologies for both the host and device memories.

Capacity Bandwidth
host main memory 16-96 GB 20-50 GB/s
host secondary memory  300-2000 GB  150-600 MB/s
host—device interconnect N/A 4-12 GB/s
device global memory 1-6 GB 100-150 GB/s

Also shown in Table 3.4 are typical capacity and bandwidth ranges for CUDA devices, as well
as the interconnect (the PCI Express bus) between the device and the host. Note that although
CUDA devices have lower memory capacities than the hosts in which they are installed, they
do offer a slight memory bandwidth advantage. This advantage is, however, not as great as
the one exhibited by host main memory over host secondary memory. For the values given in
Table 3.4, for example, the memory bandwidth of a CUDA device’s global memory is 2—7.5x%
higher than for the host’s main memory, whereas the host’s main memory offers 34-340x as
much bandwidth as its secondary memory.

In the case of traditional OOC methods, the primary system memory is too small to meet the
memory requirements of the problem being considered. With the LU decomposition considered
here, for example, the whole matrix (which has a storage requirement of O(N?)) being factored
cannot reside in main system memory. In the panel-based implementation presented in [62], the
matrix is stored in secondary memory and only parts (panels) of the matrix need to be stored
in primary memory and operated on in order to complete the operation. In this way, the main
memory storage requirement for the LU decomposition is reduced to O(N). It should be noted
that in such implementations the input-output cost also needs to be taken into account [8T].



CHAPTER 3. GPU-ACCELERATED DENSE NLA 39

In the CUDA implementation considered here, the algorithms are similar, with the primary
difference being that the role of the main system memory is now fulfilled by the device memory.
The main system memory is then used in the same way that the secondary memory is used in
the traditional out-of-core case. This should not be seen as a GPU-based extension of the OOC
implementation, but instead as a mapping of the OOC approach to GPU computing in order
to overcome memory limitations. What this does mean is that the implementation presented is
still limited by the amount of system memory available, in the same way that traditional OOC
implementations were limited by the amount of secondary storage available.

3.3.1 Left-looking LU decomposition

Although the panel-based left-looking variant of the LU decomposition is discussed in some depth
in [62], the discussion is summarised here as background to the GPU implementation that follows
in Section 3.3. As as starting point, consider an N x N matrix of double precision complex values
[Z] and a desired panel width NB > 0. The matrix is then divided into M panels. The first
M — 1 panels have a width of NB and the last panel has a width of N — (M — 1)NB. Thus
if N is a multiple of N B, the matrix is divided into M panels of width N B. If this is not the
case, the last panel will be made up of the remaining columns of [Z]

The technicalities of the last panel aside (due to N not being a multiple of N B), the process
required to perform the LU decomposition on the matrix [Z] using the panel-based approach
is quite simple. Figure 3.1 shows the configuration of the matrix as it has progressed to an
arbitrary point, with the panels ¢ and k being designated the temporary and active panels,
respectively. In a simple out-of-core implementation, these two panels are the only parts of the
matrix [Z ] that need to reside in main system memory [62], and require storage for 2x N x NB
matrix elements.

Every active panel k£ needs to be updated using all the panels that have already been pro-
cessed - these are all panels of the matrix [Z] to the left of k. For an arbitrary temporary panel
i to the left of k, the following operations are required to update the active panel [62]

[Cok]/ — [Tm‘]il [Cox] , (3.11)
[Clk]/ — [Cu] — [Thi] [COk]/, (3.12)
[Ex] < [Ex] — [Di] [Cox]'- (3.13)

Here, [C’Ok]/, [Clk]/, and [Ek], are the matrices [COk], [Clk], and [Ek] updated in-place as
in (3.11), (3.12), and (3.13), respectively. The matrix [Tp;] represents the NB x NB lower
triangular submatrix on the diagonal of [Z]. Furthermore, (3.12) and (3.13) can be combined

into a single operation as
Cux]’ Cie] [T :
l:Ek:| 15| |p [Cox]’, (3.14)

with the prime superscript once again indicating an in-place update.

Once the update of the active panel k has been completed, by performing the operations
described in (3.11) and (3.14) for each of the panels to the left of the active panel (i < k), the
LU decomposition of [Ek] is calculated. The resultant row pivots then need to be applied to
the submatrix [Pk}, after which the panel to the right of £ becomes the active panel and the
process is repeated.

In terms of implementation, both (3.11) and (3.14) have equivalent BLAS routines that
can be used [53], namely xTRSM and xGEMM, and were introduced in Section 3.1. For the LU
decomposition of the matrix [Ek] and the application of the row pivots, the LAPACK routines
xGETRF and xLASWP ,respectively, are used (see Section 3.1).



CHAPTER 3. GPU-ACCELERATED DENSE NLA 40

temp panel: active panel:
7 k
[To:] [Cox]
£
2
2
z
o
4 [T:] [Cix]
o [D;] | [Pkl [Ex]
l«———  updatedcolumns— 3] | still to update |

Figure 3.1: A diagram showing the state of a matrix that has been partially factorised (adapted from
[62]) as discussed in Listing 3.1. Shown are the temporary and active panels, as well as the submatrices
used in (3.11) to (3.13). The areas of the matrix that are up to date are shown in yellow, with the
columns of the matrix that have yet to be updated shown in blue. The green areas indicate the parts of
the active panel that are involved in the current update step, with the pink submatrix ([P]) showing the
matrix that will be pivoted after the LU decomposition of [Ej] has been calculated.

An overview of the required algorithm is presented in Listing 3.1. It should be noted that
for the algorithm as it is presented here, the matrix is stored in pivoted form, whereas in [62] it
is stored in unpivoted form.

From timing results presented in [62], it is clear that the four BLAS and LAPACK routines
used to perform the updates of (3.11) and (3.14), as well as the LU decompostion of the sub-
matrix [Ek], contribute significantly to the total runtime of obtaining the LU decomposition of
the large matrix [Z] Thus one would expect that their GPU acceleration will go a long way in
improving the overall performance of the decomposition. Other aspects such as the input and
output costs associated with the out-of-core implementation summarised here are not considered
further. More information on these aspects can be found in [62] and [81].

3.3.2 Adapting for GPU acceleration

As mentioned, the primary objective is to accelerate the LU decomposition using CUDA GPUs
(more specifically CUBLAS), while not being limited by the amount of memory installed on
the device, but instead by the amount of main memory in the host. Although libraries such as
MAGMA [§] do provide CUDA-accelerated xGETRF routines for performing the LU decomposition,
the amount of device memory remains a limitation.

In the case of the out-of-core left-looking LU decomposition as discussed in Section 3.3.1,
the secondary memory of the host is used in conjunction with the main system memory to



CHAPTER 3. GPU-ACCELERATED DENSE NLA 41

Listing 3.1: Algorithm for an out-of-core panel-based left-looking LU decomposition (adapted from

[62])-

for each panel k:
1. load panel k into the active panel
2. apply row pivots to the active panel
3. for each panel i to the left of k:
a. load panel i into the temporary panel
b. perform the update in (3.11)
c. perform the update in (3.14)

4. perform the LU decomposition of [Ej]
5. store the active panel overwriting panel k
6. apply the row pivots to [Fi]
( for each panel i to the left of k:
a. load panel i into the temporary panel
b. apply the pivots to the rows of the temporary panel that correspond with
(P]
c. store the temporary panel overwriting i
)

calculate the LU decomposition of a matrix that is too large to fit into main memory alone. In
this section, the implementation is adapted to a CUDA-based LU decomposition, where it is
now the device memory that is limited and the entire matrix is able to reside in main system
memory. The algorithm for the GPU panel-based left-looking LU decomposition is shown in
Listing 3.2, with some notable differences to the out-of-core algorithm of Listing 3.1. The first

Listing 3.2: Algorithm for the panel-based left-looking LU decomposition including GPU acceleration.

allocate device memory for two panels
for each panel k:
1. apply row pivots to the panel k on the host
2. transfer panel k to the GPU active panel
3. for each panel i to the left of k:
a. transfer panel i to the GPU temporary panel
b. perform the update in (3.11) on the device
c. perform the update in (3.14) on the device
4. transfer the GPU active panel to panel k on the host
5. perform the LU decomposition of [Ex] on the host
6. apply the row pivots to [P:] on the host
cleanup device memory

of these is that the loading of the active panel — which now equates to transferring the panel to
the device — and the application of the pivots to the active panel (panel k) have been switched
around. The main purpose of this is to avoid the development of custom CUDA kernels that
perform the required row interchanges which cannot be performed efficiently on current GPUs
[72], although examples of such routines for transposed matrices are available as part of the
MAGMA source code [§] and are discussed in [72], 87]. The row pivots are now applied on the
host before transferring the panel to the device. The next difference is that the updated active
panel is transferred from the device before the LU decomposition of [Ek] is performed on the
host. Lastly, since the entire matrix now resides in host memory, the pivots can be applied to
the matrix [Pk] in one step, and not one panel at a time like in the out-of-core implementation.

Since the submatrices to which the updates of (3.11) and (3.14) must be applied now reside
in device memory, these are performed using the relevant CUBLAS routines. The LU decom-
position of the submatrix [Ek] and the application of the row-pivots, however, are still applied



CHAPTER 3. GPU-ACCELERATED DENSE NLA 42

on the host. This functionality is thus supplied by the LAPACK routines implemented as part
of ACML.

3.3.3 The MAGMA-panel-based hybrid

Although the CUBLAS-based implementation discussed in Section 3.3.2 is able to outperform
a CPU-based implemented by some margin [9], it is slower than the MAGMA implementation
for matrices that can fit into GPU memory. In fact, in [9] it was found that the MAGMA
implementation is about 50% faster on the hardware used for testing.

A possible way to achieve performance comparable to MAGMA is to simply check if the
matrix for which the LU decomposition must be computed is small enough to factor using
MAGMA. If this is the case, then MAGMA is used. If not, then the panel-based implementation
of Section 3.3.2 is used. This will, however, result in a drastic performance drop once MAGMA
can no longer be used and as such, an improved hybrid scheme is devised and discussed here. The
aim of this MAGMA-panel-based hybrid approach is to try to continue to leverage MAGMA’s
performance once the matrix can no longer occupy device memory.

Consider the representation of a matrix in Figure 3.2, which is similar to Figure 3.1 ex-
cept that areas pertaining to the hybrid implementation are also highlighted. The lower-right
square submatrix, labeled as [E MAGM A], represents the largest matrix that can be solved using
MAGMA alone. If the total matrix size is less than the MAGMA limit — the number of rows
or columns of the largest matrix that can be factorised directly using MAGMA — then only
MAGMA is used and a hybrid method is not required. The case where the matrix exceeds this
limit is now discussed further.

Figure 3.2 shows the MAGMA panel labelled as m. This is the first panel for which the
number of remaining columns to the right (including this columns of the panel itself) is less than
or equal to the MAGMA limit. In contrast to the panel-based implementation already discussed,
where the LU decomposition of each [Ek] is performed by the CPU, the MAGMA-panel-based
hybrid implementation uses MAGMA to perform the LU decomposition of the entire submatrix
[EM AGM A] in one step. Thus the CPU-based LU decomposition is only used for factorising
|Ex] if the active panel is to the left of the MAGMA panel (k < m). Since MAGMA has been
found to be faster than the CPU version, especially for large matrices, its use give the hybrid
method a performance boost over the standard panel-based approach.

For active panels to the left of panel m, the algorithm is identical to the standard panel-based
implementation given in Listing 3.2, and requires no further discussion. If, however, this is not
the case (kK > m), the update procedure is adjusted slightly. Such panels need to be updated as
in (3.11) and (3.14), but only for the temporary panels to the left of the MAGMA panel (i < m).
Following this, the LU decomposition of [E MAGM A] is calculated, and the matrix to the left of
m ([PM AGM A]) is pivoted in host memory accordingly. The algorithmic representation of this
hybrid approach is given in Listing 3.3 and will now be discussed in more detail.

It should be noted that while the panel-based implementations discussed in these sections
make use of the left-looking variant of the LU decomposition, the MAGMA implementation
of xGETRF uses the right-looking BLAS level 3 version of the algorithm [8]. This means that
internally, MAGMA also makes use of CUDA-based BLAS xGEMM and xGETRF routines — although
these may not be the CUBLAS implementations.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 43

temp panel: magma panel: active panel:
[ m k
S
=
E [To;] [Cox]
2
a
ﬁ [Th:] [Cix]
o [BrmagMial [Evacmial
(D] [Ek]
l«—— updatedcolumns—______ 3| | still to update |

le—— magmalimit_—____ 5]

Figure 3.2: A diagram showing the state of a matrix that has been partially factorised using the
MAGMA-panel-based hybrid algorithm as given in Listing 3.3. The active and temporary panels (shown)
are the same as for the matrix given in Figure 3.1. The MAGMA panel, as well as the matrix [Easacaral
used in this version of the algorithm are also indicated. As in Figure 3.1, the areas of the matrix that are
up to date are shown in yellow, with the columns of the matrix that have yet to be updated shown in blue.
The green areas indicate the parts of the active panel that are involved in the current update step, with
the pink submatrix ([Pasacaal]) showing the matrix that will be pivoted after the LU decomposition of
[Erracara] (in this case) has been calculated using MAGMA.

Listing 3.3: Algorithm for the MAGMA-panel-based hybrid LU decomposition that uses CUBLAS and
MAGMA routines as a means of GPU acceleration.

allocate GPU memory
for each panel k:
1. apply row pivots to the panel k on the host
2. transfer panel k to the GPU active panel
3. for each panel i to the left of k and m:
a. transfer panel i to the GPU temporary panel
b. perform the update in (3.11) on the device
c. perform the update in (3.14) on the device
4. transfer the GPU active panel to panel k on the host
5. if k is to the left of m:
a. perform the LU decomposition of [Ex] on the host
b. apply the row pivots to [Pk} on the host
perform the LU decomposition of [Eymacma] using MAGMA
D. apply the row pivots to [Pumacma] on the host
E. cleanup GPU memory




CHAPTER 3. GPU-ACCELERATED DENSE NLA 44

3.3.4 Implementation analysis

As already mentioned, the aim of the panel-based CUDA implementations discussed in Sec-
tion 3.3.2 and Section 3.3.3 is to overcome the restrictions imposed by the limited memory
available on CUDA devices. Although it will never be possible to completely overcome these
limitations — as the amount of memory installed will never be infinite — it is hoped that a GPU-
based implementation would at least be able to handle matrices that are able to reside in main
System memory.

For the purpose of this discussion, consider a device with 1 GB of memory installed in a host
with 16 GB of main system memory. The largest full matrices that can be stored for these two
memory sizes and all the BLAS data types (see Table 3.2) are given in Table 3.5. Note that since
the memory required is O(N?), with N the number of rows or columns in the square matrix,
multiplying the amount of memory available by 16 only results in an increase by a factor four
in N. Conversely, to store a matrix with twice as many rows and columns, one would need four

Table 3.5: The size of the largest N x N matrix that can be stored in 1GB and 16GB of memory for
different element types. The element types are indicated using the BLAS convention shown in Table 3.2.
Also shown are the sizes (in bytes) of each element.

S (4 bytes) C (8 bytes) D (8 bytes)  Z (16 bytes)
1 GB 16384x16384 11585x11585 11585x11585  8192x8192
16 GB  65536x65536 46340x46340 46340x46340 32768x32768

times as much memory.

To achieve the stated goal of being able to factor matrices that can fit into system memory
(16 GB) using the panel-based implementations on the GPU (with 1 GB of memory), the size
of the largest matrices that can be solved using the panel-based approaches must at least equal
the size in the 16 GB row of Table 3.5. The maximum matrix sizes that can (in theory) be
handled by the panel-based approaches on devices with 1 GB of memory and a panel width of
256 are given in Table 3.6 for the four different data types considered.

From the table, it is clear that the sizes of the matrices that can be solved using the panel-
based implementations by far exceed the sizes of the matrices that can occupy main system
memory in each case for the panel size chosen. The panel width (NB = 256) was chosen after
some experimentation on the testing hardware used and may require some adjustments for good
performance on other platforms. Using narrower panels will further increase the size of the
matrices that can be solved with the panel-based methods, but will also increase the number

Table 3.6: Summary of the maximum matrix sizes that can be solved using a panel-based approach on
a CUDA GPU with 1 GB of memory and a panel width of NB = 256. Also shown is the amount of
memory required to store the full matrix, the number of panels the matrix would be split into and the
square matrix limits for 16 GB of memory from Table 3.5 (for comparison).

. memory  number of 16 GB
matrix size (1) S
required panels size limit
S 524288x524288 1024 GB 2048 6553665536
C 262144x262144 512 GB 1024 46340x46340
D 262144x262144 512 GB 1024 46340x46340
Z 131072x131072 256 GB 512 32768x32768

@) for the storage of the full matrix.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 45

of panels used, which may affect performance due to increased input-output costs [RI]. Wider
panels, on the other hand, will reduce the size of the problems that can be solved (although
according to Table 3.6 there is still a lot of leeway) and should reduce the input-output costs
[81]. This may have the consequence of reducing the effectiveness of the MAGMA-panel-based
hybrid implementation as the switch to MAGMA is currently made on a panel boundary (see
Section 3.3.3).

When considering a MAGMA-only implementation (or the calculation of the MAGMA limit),
the matrices that can be solved using MAGMA alone have sizes similar to those presented in the
1 GB row in Table 3.5 (assuming 1 GB of device memory) since the entire matrix needs to occupy
device memory. In practice, MAGMA requires some additional work space allocated on the
device [§], and as such the matrices that can be handled are smaller by a few hundred elements
in each dimension. Further, since the MAGMA-panel-based hybrid approach has the same
limitations as the regular panel-based approach, it also serves to extend MAGMA'’s functionality
to matrices that it would not normally be able to factor.

3.4 Benchmarking

In the brief discussion on CUBLAS and MAGMA in Section 3.1.1, the performance characteris-
tics of each have already been mentioned and as such are not discussed further. In this section
performance results for both the CUBLAS panel-based implementation of Section 3.3.2 and the
MAGMA-panel-based hybrid implementation of Section 3.3.3 are presented. These results aim
to illustrate two things, namely that the implementations are successful in overcoming the GPU
memory limitations, and that this can be done while still maintaining a performance advantages
over a CPU-based implementation. A further aim is to show that the MAGMA-panel-based hy-
brid implementation adds to the performance of the standard CUBLAS panel-based approach.

The performance of implementations of all the xGETRF routines is investigated. This is done
for random matrices ranging from 1024 x 1024 to 32768 x32768 in size. These sizes are chosen so
as to exceed the matrix sizes that are able to be accommodated by 1 GB of memory while still
occupying less than 16 GB for double precision complex matrices (see Table 3.5).

For a subset of the test runs, an LU backward error measure is calculated as

ITP] 4] - [L]‘ ]|

Nl

errLy = (3.15)

with the matrices as discussed in Section 3.1 (see specifically (3.4)) and N the size of [A]. This
error measure is the same metric used for verification by MAGMA [8]. The H . H operator indicates
the matrix Frobenius norm and is implemented by a call to the xLaANGE LAPACK routines.

It should be clear from (3.15) that the computation of this error requires that the original
matrix ([A]) be stored. Furthermore, additional storage space is required to compute the matrix
product [L} [U] and as such the error cannot be computed in-core for matrices whose storage
requirements exceed about a third of the installed system memory. For this reason, the errors
for some of the larger matrices are calculated on the test system with more memory installed.

The performance measure used is the number of floating-point operations performed per
second (FLOPS) in the computation of the LU decomposition of the input matrix. For real
valued matrices the number of floating-point operations required for the LU decomposition of
an N x N real matrix is given by [63]

2N
Nfp,real = ? (316)



CHAPTER 3. GPU-ACCELERATED DENSE NLA 46

Since complex multiplications and additions require more floating-point operations, the number
of operations for a complex matrix is given by [§]

8N
Nfp,complex = —& - (3 17)

3

The number of floating-point operations performed per second in the LU decomposition is then
given by

GFLOPS = "2 5 1079, (3.18)

lLu

with ¢1,y the measured wall-clock time in seconds for the LU decomposition (the call to the
xGETRF routine) and ng,. given by either (3.16) or (3.17), depending on the data type of the
matrix. Note that the post-multiplication by 10~ results in the calculated operation rate being
in billions of operations per second (GFLOPS).

It should be pointed out, that in order to allow for a fair comparison between CPU and
GPU-based implementations, timing is performed at the last common point between the vari-
ous implementations. This means that the CUDA timing results include all data transfer and
initialisation costs.

3.4.1 The test platforms

A summary of the three systems used for benchmarking and testing purposes is given in Table 3.7.
These systems offer some variety in terms of computational hardware. The first system is a 5-year
old workstation that was originally used as a computational server for small- and medium-sized
problems. An NVIDIA consumer graphics card, a GeForce GTX 280, was later added for the
purpose of GPU computing research. This card represented a high-end device at the time and
retailed for around $400. The cost of the original system was in the region of $6000.

The second system represents a relatively current mid to high-end consumer-level desktop
system, and although the specifications of the components are similar to those of the first system,
the price was significantly lower. The system was purchased for around $1600 and included a
high-end AMD consumer graphics card ($400 alone). This card was later replaced by an NVIDIA
card, the GeForce GTX 465, which represents a mid-range consumer card with a retail price of
about $300.

The final system is a high-end node in a compute cluster and offers significantly more pro-
cessing power and memory than the first two systems. The approximate purchase price for the
system was $11000 and includes two Tesla M1060 compute devices. As mentioned in Chapter 2,
these Tesla devices are effectively GPUs with more memory and no graphics capabilities. In the
tests conducted, only a single M1060 was used.

All the test systems run a 64 bit installation of Linux, the first two systems run Ubuntu
and the third SUSE. The BLAS and LAPACK functionality for the tests is provided by ACML
(version 4.4.0), which was introduced in Section 3.1. Freely available GNU compilers are used
and include gcc, g++, and gfortran.

3.4.2 Results

This section presents the benchmarking results for the SGETRF, CGETRF, DGETRF, and ZGETRF routines
on the three systems described in Section 3.4.1. Unless otherwise stated, the benchmarks are
conducted on random matrices ranging from 1024x1024 to 3276832768 elements in size. In
each successive benchmarking step, the number of rows and columns of each matrix are increased
by 512.

A figure is included for each test system and data type combination, with four performance
curves shown per figure. These correspond with results obtained using a single core of the CPU



CHAPTER 3. GPU-ACCELERATED DENSE NLA

Table 3.7: Summary of the hardware used for testing

System 1
AMD Opteron 275 GeForce GTX 280
architecture AMD64 GT200
number of cores 4 (2 dual-cores) 240 SPs (30 SMs)
clock speed 2.2 GHz 1.4 GHz
memory 16 GB 1 GB
release year 2005 2008
System 2
AMD Phenom IT X4 945 GeForce GTX 465
architecture AMDG64 GF100
number of cores 4 352 SPs (11 SMs)
clock speed 3.0 GHz 1.22 GHz
memory 16 GB 1 GB
release year 2009 2010
System 3

architecture
number of cores
clock speed
memory
release year

Intel Xeon X5550

8 (2 quad-cores)
2.66 GHz
48 GB
2009

Tesla M1060
GT200
240 SPs (30 SMs)
1.3 GHz
4 GB
2008

47

installed in the host (labelled ACML 1-core and provided as a baseline and not run for all
steps of 512), using all the cores available on the host (ACML 4-core in the case of System 1
and System 3 and ACML 8-core for System 3), using the CUBLAS panel-based approach of
Section 3.3.2 (CUBLAS panel-based), and lastly the MAGMA-panel-based hybrid implemen-
tation (MAGMA-panel hybrid) discussed in Section 3.3.3. Each performance curve shows
the measured performance (in GFLOPS) as a function of the number of rows (and columns) in
the matrix. The theoretical limits for matrices of the specified data type that can occupy 1 GB
of memory (as in Table 3.5) and 4 GB of memory (where applicable) are indicated by vertical
black lines labelled as 1 GB and 4 GB, respectively.



CHAPTER 3. GPU-ACCELERATED DENSE NLA

SGETRF
300 ——r——
280[ == ACML 1-core -
260t .| == ACML 4-core i
240 | == CUBLAS panel-based | |
520 | == MAGMA-panel hybrid ||

200
180
160
140
120
100
80
60
40

Performance [GFLOPS]

20

1024 4096 8192 12288 16384
Matrix Size

20480 24576 28672 32768

48

Figure 3.3: Measured SGETRF performance of System 1 as a function of matrix size for random input
matrices. Also shown is a vertical line indicating the 1 GB size limit for single precision real matrices.
The 4 GB size line is not shown here as it corresponds with a matrix size of 32768 x32768 which is the

limit of the horizontal axis.

300

2800 Y
260f et b A
2400 ool

—— CUBLAS panel-based ||

ACML 1-core |
ACML 4-core

MAGMA-panel hybrid |

2001
180
160
140
120f 5 f |
100 of it

Performance [GFLOPS]

g - - -

*

-y )

L L
1024 4096 8192 12288 16384 20480 24576 28672 32768

Matrix Size

Figure 3.4: Measured SGETRF performance of System 2 as a function of matrix size for random input

matrices. Also shown is a vertical line indicating the 1 GB size limit for single precision real matrices.
The 4 GB size line is not shown here as it corresponds with a matrix size of 32768 x32768 which is the

limit of the horizontal axis.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 49

300 T
280k == ACML 1-core S 0 0 OO S N
260L| = ACML 8-core S AU ONS SO U IO SO
Ha0L| =™ CUBLAS panel-based
20l L — MAGMA-panel hybrid

ZUL IR R A S 5 s [ A S S
180 g B L L S R R R RN R
160
140
120
100

Performance [GFLOPS]

0 L L L
1024 4096

L L L
12288 16384 20480 24576 28672
Matrix Size

L L L L
8192 32768

Figure 3.5: Measured SGETRF performance of System 3 as a function of matrix size for random input
matrices. Also shown is a vertical line indicating the 1 GB size limit for single precision real matrices.

-7.0 71T
CUBLAS panel-based - system 1
MAGMA-panel hybrid - system 1
CUBLAS panel-based - system 2

75l MAGMA-panel hybrid - system 2| |

ACML - system 3
CUBLAS panel-based - system 3
MAGMA-panel hybrid - system 3

TR

log10 of LU backward error

_ R T T T, [N T S M
91%24 4096 8192 12288 16384 20480 24576 28672 32768
Matrix Size

Figure 3.6: log,, of the SGETRF error measure (see (3.15)) as a functions of matrix size for random input
matrices on the three test systems considered. ACML-based CPU results are only shown for System 3.
Also shown is a vertical line indicating the 1 GB size limit for single precision real matrices. The 4 GB
size line is not shown here as it corresponds with a matrix size of 32768 x 32768 which is the limit of the
horizontal axis.



CHAPTER 3. GPU-ACCELERATED DENSE NLA

CGETRF

Performance [GFLOPS]

360
340
320
300
280
260
240

N
N
o

200
180
160
140
120
100
80
60
40
20

1024 4096

ACML 1-core
ACML 4-core

CUBLAS panel-based

~

=

—

8192

12288

16384

20480

Matrix Size

24576

28672

32768

50

Figure 3.7: Measured CGETRF performance of System 1 as a function of matrix size for random input

matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for single precision

complex matrices.

Performance [GFLOPS]

360
340
320
300
280
260
240
220
200
180
160
140
120
100

-y

gls: bl

ACML 1-core
ACML 4-core
CUBLAS panel-based

C AL AU AR

-
oy
I F’

1024 4096

8192

12288

16384

20480

Matrix Size

24576

28672

32768

Figure 3.8: Measured CGETRF performance of System 2 as a function of matrix size for random input

matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for single precision

complex matrices.



CHAPTER 3. GPU-ACCELERATED DENSE NLA

Performance [GFLOPS]

360

340 A
320 i
300f i
280
260f i
240 i
220f i
200 o
180 . . . .
160} i i
140f i
120
100+
80 ) . p .
60
40
20

ACML 1-core 1
ACML 8-core 1
CUBLAS panel-based []

_---------’”’g---------lE-aﬂm
L L L L L L L L

0 L L L
1024 4096

L L L
8192

122

— L L L
16384 20480 24576 28672 32768

Matrix Size

51

Figure 3.9: Measured CGETRF performance of System 3 as a function of matrix size for random input
matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for single precision

complex matrices.

log10 of LU backward error

CUBLAS panel-based - system 1
MAGMA-panel hybrid - system 1
CUBLAS panel-based - system 2
MAGMA-panel hybrid - system 2 ||
ACML - system 3

CUBLAS panel-based - system 3
MAGMA-panel hybrid - system 3

~9%22 4096

8192

12288

16384 20480 24576 28672 32768
Matrix Size

Figure 3.10: log, of the CGETRF error measure (see (3.15)) as a functions of matrix size for random input
matrices on the three test systems considered. ACML-based CPU results are only shown for System
3. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for single precision complex

matrices.



CHAPTER 3. GPU-ACCELERATED DENSE NLA

DGETRF

Performance [GFLOPS]

100 S S 1 S S
o == ACML 1-core
S0P — ACML 4-core
8ol — CUBLAS panel-based ||
S = MAGMA-panel hybrid
] O O 01 [E TN et

L L
1024 4096

8192

12288

L
16384 20480 24576 28672 32768

Matrix Size

52

Figure 3.11: Measured DGETRF performance of System 1 as a function of matrix size for random input
matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for double precision real

matrices.

Performance [GFLOPS]

100

60

50

90 i
1] S

2ok

Y A N

ACML 1-core
ACML 4-core

CUBLAS panel-based | |

L L L
1024 409

6

I
8

192

12288

16384 2048
Matrix Size

0 24576 28672 32768

Figure 3.12: Measured DGETRF performance of System 2 as a function of matrix size for random input
matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for double precision real

matrices.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 53

100 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
== ACML 1-core
80 — CUBLAS panel'based e R T T

70

60

50

40

Performance [GFLOPS]

30

20

L L L L Il L L L L Il L
10024 4096 8192 12288 16384 20480 24576 28672
Matrix Size

i A R N EEEEEE R L LR RN

L
32768

Figure 3.13: Measured DGETRF performance of System 3 as a function of matrix size for random input
matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for double precision real
matrices.

-16.0 S S ——— -
Sii i 1| | o=@ CUBLAS panel-based - system 1
oo )] | o=@ MAGMA-panel hybrid - system 1
—16.5F v -l CUBLAS panel-based - system 2 |7
BB MAGMA-panel hybrid - system 2
== ACML - system 3
=—— CUBLAS panel-based - system 3 ||

S0 | == MAGMA-panel hybrid - system 3

—17.0F -ttt ]

-18.0

log10 of LU backward error
A
]
Ul

-18.5

— L L L L L L L L L L L L L L L L L L L L L L L L L L L L L
191 24 4096 8192 12288 16384 20480 24576 28672 32768
Matrix Size

Figure 3.14: log,, of the DGETRF error measure (see (3.15)) as a functions of matrix size for random input
matrices on the three test systems considered. ACML-based CPU results are only shown for System 3
and results for System 1 and System 2 are only computed to 24576x24576 elements due to memory
limitations of the hosts. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for double
precision real matrices.



CHAPTER 3. GPU-ACCELERATED DENSE NLA

ZGETRF

100

QO -ievvieiondovi

O AT

by [1] SRS P SRR N TR

Performance [GFLOPS]

== ACML 1-core
= ACML 4-core 1
—— CUBLAS panel-based ||
= MAGMA-panel hybrid

1024 4096 8192 12288 16384 20480 24576 28672 32768
Matrix Size

54

Figure 3.15: Measured ZGETRF performance of System 1 as a function of matrix size for random input
matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for double precision
complex matrices. Note that results are only shown for matrices up to 31744x31744 elements in size

since the system ran out of memory beyond this point.

100

90

80

70

60

50

40

Performance [GFLOPS]

30

ACML 1-core
ACML 4-core 1
CUBLAS panel-based | |
MAGMA-panel hybrid

10024 4096 8192

12288 16384 20480 24576 28672 32768

Matrix Size

Figure 3.16: Measured ZGETRF performance of System 2 as a function of matrix size for random input

matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for double precision
complex matrices. Note that results are only shown for matrices up to 31744x31744 elements in size
since the system ran out of memory beyond this point.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 55

100

QO+t 0 S U0 LS S S Ot e R

[<]0] SECIRETORRPRE R S I Lo Loodeloililooliiltooloins 4

== ACML 1l-core
= ACML 8-core
—— CUBLAS panel-based ||
=  MAGMA-panel hybrid

Performance [GFLOPS]

1024 4096 8192 12288 16384 20480 24576 28672 32768
Matrix Size

Figure 3.17: Measured ZGETRF performance of System 3 as a function of matrix size for random input
matrices. Also shown are vertical lines indicating the 1 GB and 4 GB size limits for double precision
complex matrices.

-16.0

-16.5

|
—
~
o

CUBLAS panel-based - system 1
MAGMA-panel hybrid - system 1]
CUBLAS panel-based - system 2
MAGMA-panel hybrid - system 2

o i | == ACML - system 3 1

—17.5f b

—18.0f

log10 of LU backward error

CUBLAS panel-based - system 3
MAGMA-panel hybrid - system 3| |

—18.5 i

o Y-« S S N A
g 5
_19 L L L L L L L L L L L L \q L L L L L L L L L L L L L L L
1%24 4096 8192 12288 16384 20480 24576 28672 32768
Matrix Size

Figure 3.18: log,, of the ZGETRF error measure (see (3.15)) as a functions of matrix size for random input
matrices on the three test systems considered. ACML-based CPU results are only shown for System 3
and results for System 1 and System 2 are only computed to 1638416384 (28672x28672 for System
3) elements due to memory limitations of the hosts. Also shown are vertical lines indicating the 1 GB
and 4 GB size limits for double precision complex matrices.



CHAPTER 3. GPU-ACCELERATED DENSE NLA 56

A discussion of the results

A number of interesting points are illustrated by the performance results presented here. When
considering the CPU-based ACML results alone, it is clear that there have been a number of
advances made in terms of processor architectures over the past five years. This is illustrated by
the more than doubling in performance when comparing the results (single and quad-core) from
System 1 and System 2. This improvement cannot be attributed to clock speed alone, since this
would only account for less than 40% improvement. The multi-core ACML implementation also
offers a clear advantage over the single core one — even in the case of the Intel architecture of
System 3.

In terms of GPU-based performance, the results follow a similar trend to previously pub-
lished ones (see for example, the MAGMA documentation [§]) with GPU-based implementations
outperforming ACML for most of the cases considered. The exceptions here are for the double
precision results obtained on System 3 — where the peak GPU performance is at best able to
equal the performance of the eight-core ACML implementation. This can be attributed to the
relatively poor double precision performance (when compared to single precision performance)
of the GT200-based M1060 used, since there is only one double precision floating-point unit per
SM (see Section 2.3.2). This is no longer the case with the latest GF100-based devices such as
the Tesla C2050, as is clearly demonstrated in [70].

One use case highlighted by the results that lends itself well to the server environment
(for which System 3 is designed), is its use as a shared resource in larger system with mixed
computational requirements, such as a computational cluster at a department of a university. In
this case it is entirely possible to run two single-core jobs, each utilising one of the installed GPUs,
and possibly attaining performance comparable to that of all eight cores while a number of other
jobs are also utilising the remaining CPU resources. This hypothetical situation is obviously
also affected by the availability of other resources such as memory and bus bandwidth.

The panel-based implementation of Section 3.3.2 is able to outperform multi-core ACML on
System 1 and System 2. On all systems, the panel-based implementation is further outperformed
by MAGMA, as is expected since the amount of communication between the host and the
device is drastically reduced. The MAGMA-panel-based hybrid implementation of Section 3.3.3
achieves its goal of improving the performance of the panel-based implementation once the
amount of memory available on the device has been exceeded. As the matrices get larger, and the
percentage of the matrix that can be accommodated in device memory decreases, the advantage
of the hybrid implementation over the standard panel-based implementation is reduced.

In the case of System 1, the results presented show that with the addition of a relatively cheap
consumer graphics card, performance comparable to more up-to-date systems can be achieved.
For the GTX 280 used in System 1, this is especially true for single precision floating-point
performance, where the MAGMA-only results for this system are significantly faster than the
ACML (CPU-based) results for the more modern System 2 and System 3. In the case of double
precision computation, the GPU-enabled routines are able to at least equal the ACML results
for System 2. As already discussed with regards to the GPU-based performance of System 3, the
use of a GF100 device (such as the GTX 465 used in System 2) should result in much improved
double precision performance, as is illustrated by the DGETRF and ZGETRF results for System 2.

3.5 Conclusion

In this chapter, an introduction to dense numerical linear algebra has been presented. The
BLAS and LAPACK libraries, as well as their use in performing matrix operations such as
matrix-matrix products and LU decompositions were discussed, with CUDA-based libraries —
CUBLAS and MAGMA — implementing the desired functionality introduced. The use of these



CHAPTER 3. GPU-ACCELERATED DENSE NLA 57

libraries in the realisation of two panel-based LU decomposition implementations (adapted from
a traditional out-of-core implementation) was presented, allowing the methods to be limited
by the amount of system memory installed instead of the amount of memory available on the
device.

Using these implementations, a comparison of CUDA GPU-based performance and CPU-
based performance using the ACML library was conducted on three different systems used for
testing. In all cases, the GPU-based performance results are significantly higher than single-core
ACML results. In the case of single precision (SGETRF and CGETRF) results, the GPU implemen-
tations were between 2x and 12x faster than the multi-core results obtained on the respective
systems. Even when double precision (DGETRF and ZzGETRF) results are considered, the CUDA
implementations were faster than the multi-core implementations on two of the three systems,
with only the high-end eight-core server system being able to best the performance of the CUDA
GT200 device used.

As expected for the two panel-based implementations considered, the MAGMA-panel-based
hybrid implementation performs significantly better than the standard CUBLAS-based imple-
mentation especially for problem sizes where the matrix can occupy device memory (and only
MAGMA is used) as the amount of data transferred between the host and the device is greatly
reduced. It should be noted that the hybrid method continues to provide a performance advan-
tage over the CUBLAS implementation once the matrix can no longer occupy device memory
in its entirety.

As stated at the start of the chapter, one of the aims in the benchmarking of GPU-based
linear algebra routines on the three systems considered is to ascertain whether a GPU can be
used as a drop-in upgrade to extend the usefulness of ageing computing hardware. For the
LU decomposition considered here, this is the case, and the older system is able to at least
match the performance of the others in most of the variants considered. Considering that the
GT200 architecture employed on the card used for these tests has itself been superseded by
the GF100 architecture (as discussed in Section 2.3.2), a second GPU upgrade should further
improve performance.

One of the shortcomings in the current implementation is that it makes use of a fixed panel
size for all matrix sizes. As illustrated in [82], the optimal panel size for block-based algorithms is
dependent on problem size. Although this can be extended to the panel-based implementations
considered here, this issue has not been addressed at present. Another factor to consider is the
overlapping of CPU and GPU computation in the panel-based approach to allow for a better
utilisation of all the computational resources installed in the system.

The work presented here, provides simple CUDA-based implementations of the LU decom-
position that are directly compatible with LAPACK. These provide a quick fix to developers
wishing to add GPU capabilities to existing code, with the added benefit of performance im-
provements. That said, the implementations are not necessarily optimal — as illustrated by the
difference in performance between the two implementations discussed — and the use of an oper-
ation scheduler and runtime such as StarPU [82] — recently used in combination with MAGMA
[83] — should be considered. This further has the advantage of supporting multiple CUDA devices
in a single host (as was the case for one of the testing systems). This would provide additional
upgrade options for existing systems. The older system used here, for example, supports up to
two CUDA devices even though only one is currently installed.



Chapter 4

MOM scattering analysis

The Method of Moments (MOM) or boundary element method (BEM) is a widely used technique
in computational electromagnetics. Its ability to handle infinite domains exactly is one of its
strengths and makes it ideal for modelling radiation and scattering problems[88],89]. The method
also does not require that free-space be discretised, greatly improving the modelling efficiency
of such problems when compared to other full wave methods such as the Finite Difference Time
Domain method (FDTD) or the Finite Element Method (FEM) []8].

Like the FEM, the MOM is a matrix-based method and the solution of a typical radiation
or scattering problem results in a dense linear system which must be solved [88]. Due to its
dense nature, methods such as those discussed in Chapter 3 can be used to implement the
desired routines, and more importantly, provide GPU acceleration using CUDA. In this chapter
a discussion on the GPU acceleration of the parts of the MOM solution process not related to
solving the linear system is presented, although this is included for the purpose of performance
analysis. This accelerated implementation is then applied to the computation of the radar cross
section of a simple scatterer.

Since the focus of this work is not on the actual formulation of the Method of Moments,
it starts with an existing formulation and documents the process of developing both CPU-
and GPU-based implementations of the formulation, with the latter utilising CUDA. For this
purpose, the seminal paper presented by Rao, Wilton, and Glisson [10] is used as a starting point.
That work saw the discussion of the use of triangular patches and basis functions — named the
Rao-Wilton-Glisson (RWG) basis functions — defined on pairs of patches in the discretisation
and subsequent solution of vector surface current densities on arbitrarily shaped scatterers. The
selection of [I0] as a starting point is further justified by the use of the methods and the RWG
basis functions in subsequent publications such as [00] and [9I] as well as their implementation
in commercial software packages such as FEKO [92].

The relatively simple framework of [I0] also allows for a number of other issues to be ad-
dressed without spending too much time lost in the details of the formulation. Most notable
of these is the introduction of a co-development method used here, where much of the detailed
implementation sections are shared between the CPU and CUDA versions. This allows for the
development tools — such as debuggers and profilers — of both targets to be leveraged in order
to obtain a stable, accurate implementation. Furthermore, once the framework is in place, the
addition of new functionality that is targeted at both platforms is almost trivial and as such
the framework plays an important role in the development and maintenance process. This is
especially true if it is applied to larger more complex development problems.

Although prior works on the acceleration of the Method of Moments — specifically the as-
sembly of the matrices used in the solution process — do exist and are discussed in Section 4.1,
this work is one of the first to utilise the double precision hardware support of the GT200 and
later CUDA hardware for performing the matrix assembly in double precision. Furthermore,

58



CHAPTER 4. MOM SCATTERING ANALYSIS 59

the implementation presented here is of such a nature that the amount of GPU memory avail-
able on the CUDA devices used does not limit the size of the problems that can be addressed.
When this is combined with the MAGMA-panel-based hybrid LU decomposition introduced in
Chapter 3, the result is a CUDA-accelerated Method of Moments solution process that offers
speedups over the entire range of problem sizes considered. These problem sizes exceed the lim-
itations imposed by the device memory for 1 GB and 4 GB devices for both single and double
precision computations (see Section 3.3.4).

As already shown in the previous chapter, one of the aims of this work is to investigate the
feasibility of low-cost GPU upgrades of older systems as an alternative to system replacement.
For this reason, the relative performance of the three systems introduced in Section 3.4.1 is once
again considered. The comparative benchmarks presented indicate that — as is the case for the
LU decompositions of Chapter 3 — the oldest system using GPU acceleration is able to best the
multi-core CPU-only performance of at least one, if not both, of the newer systems for all the
problems considered.

This chapter commences by discussing a number of previous works concerning the GPU
acceleration of the Method of Moments in Section 4.1. The sample problem considerd, as well as
an overview of the Method of Moments solution process are presented in Section 4.2. To this end,
the formulations of [I0] are touched upon, with specific attention paid to the matrix assembly.
The co-development process and details pertaining to both the CUDA and multi-core CPU
implementations of the MOM are given in Section 4.3, with verification and performance results
presented in Section 4.4 and Section 4.5, respectively. Section 4.5 also includes a discussion on
the implications of the performance results, with the general conclusions of the chapter presented
in Section 4.6.

4.1 Related work

Although a number of prior works that make use of GPUs in the acceleration of the Method of
Moments exist, the work presented here has many novel aspects. Some of the earliest sources can
be found in [90] and [91]], where the solution of electromagnetic scattering problems — specifically
the radar cross section (both monostatic and bi-static in the case of [91] and only bi-static in
[90]) — using the electric field integral equation (EFIE) formulation of the MOM is considered.
Although both works use the same Rao-Wilton-Glisson basis functions applied to triangular
patches with a conjugate gradient method used to solve the resultant linear system, they do not
employ CUDA for the implementation of the GPU accelerated portions of the code and instead
rely on Brook and the OpenGL Shading Language, respectively.

One of the first examples of the application of CUDA to the Method of Moments is in [89],
where the method is applied to the solution of boundary value problems associated with the
Helmholtz equation in acoustics and electromagnetics. Scattering problems are, however, not
considered. The hardware used in [89] is based on the G80 architecture discussed in Section 2.3.2
and as such does not support native double precision computation. For this reason the double-
single approach of [93] is followed, where two single precision values are used in an attempt to
improve the precision of the implementation. The matrix assembly routine also forms part of
an iterative solution process, where the matrix elements are calculated on the fly for use in a
matrix-vector product.

In [04], mention is also made of a CUDA-based EFIE solver in the analysis of a two-
dimensional transverse-magnetic (TM) cylinder, however, not much detail is given regarding
the implementation or the exact formulation used. Here, a conjugate gradient method is also
used as part of the solution process.

In [05], [06], and [97], direct LU decomposition-based solvers are applied to the linear sys-
tem associated with the Method of Moments. Although the authors of [95] are the only ones



CHAPTER 4. MOM SCATTERING ANALYSIS 60

that specifically address double precision computation, they do so by considering only the ac-
celeration of the complex double precision LU decomposition (which is discussed in detail in
Chapter 3). This is then included as part of the solution process of the MOM analysis of a
simple one-dimensional wire antenna. Both [06] and [97] consider the matrix assembly and LU
decomposition phases in their publications, with [07] using MAGMA to provide the required
accelerated LU decomposition routines.

As just mentioned, the work in [07] uses MAGMA to perform the LU decomposition required
as part of the solution process and also considers the construction of the impedance matrix, but
the study is restricted to single precision floating-point computations by the hardware used.
In addition to this, roof-top functions are applied to the problems involving microstrip patch
antennas and thus the calculations reduce to the computation of quasi-one-dimensional integrals
[98]. It should be noted that the authors of both [05] and [97] have also shown results for the
GPU acceleration of the finite difference time domain (FDTD) technique in [99] and [100],
respectively, although only the latter uses CUDA.

Although the work of [96] also presents a detailed discussion of the CUDA acceleration of the
Method of Moments as applied to electromagnetics scattering problems, these are restricted to
the analysis of two-dimensional TM problems in single precision using pulse basis functions. In
this case the use of single precision is not due to the hardware used as the GT200-based device
used does support double precision. The implementation of the LU decomposition is dealt with
at a very low level, with the authors opting to implement their own algorithm for subsequent
GPU acceleration. No comparative results with existing — even CPU-based — methods are
provided.

The work presented here is the evolution of other research on the topic, most notably [11]
and [9] where the matrix assembly and LU decomposition phases of the Method of Moments are
considered separately. The discussion of the methods and results of the latter have already been
dealt with in Chapter 3, with the implementation and extension of the functionality supplied by
CUBLAS and MAGMA. In both cases, the double precision performance of the respective phases
are considered, with an overview of their combination, as well as a more detailed discussion on
the implementation details of the matrix assembly phase given in [I2]. This chapter then sees
an extension of the methods presented in these publications in order to realise its aims.

As a final point, it should be noted that although algorithmic acceleration methods for the
Method of Moments, such as the multi-level fast multi-pole method (MLFMM) exist, these are
not applicable to all practical problems and a standard MOM implementation is often required
[88]. These methods are not considered further here, although their CUDA acceleration has
shown much promise [101].

4.2 Problem overview

This section aims to lay the groundwork for the discussion of the multi-core CPU and CUDA
implementations discussed in Section 4.3. To this end, the sample problem considered is pre-
sented, and an overview of the Method of Moments discussed. For the latter, the seminal 1982
paper by Rao, Wilton, and Glisson [I0] forms the basis of the discussion.

Although the sample problem and the theoretical framework used are each relatively simple,
they are well suited to this particular chapter as they allow for the focus to be directed at the
implementation details, instead of complicating matters with the intricacies of the mathematical
formulations. The sample problem further illustrates the application of the CUDA-based LU
decomposition of Chapter 3 — where only random input data was considered — to the matrices
associated with the Method of Moments solution process.



CHAPTER 4. MOM SCATTERING ANALYSIS 61

4.2.1 Monostatic scattering

In order to develop the discussion regarding the acceleration of the Method of Moments using
NVIDIA CUDA GPUs, a simple problem is considered — that is the monostatic scattering of a
square PEC plate. Such a plate, measuring one wavelength on each side and located in the zy-
plane, is shown in Figure 4.1. Also shown is an electric field with an arbitrary linear polarisation
with propagation vector k. The same configuration (with k= —k%) is used in [10] and as such
allows for the verification of the computed results.

Figure 4.1: A diagram showing an incident plane wave (E;pn(7) = (Eq¢f; + Ew;%)ejg'?) with arbitrary
linear polarisation and propagation vector (E =k 2+ kg + k2= kl%) The definitions of the angles
(blue arcs) used in the calculation of the radar cross section of an object located at the orlgln and the
square PEC plate (grey) considered in this chapter are also shown. Note the unit vectors k 92, and QSZ,
that define the incident field terms of the spherical coordinate system.

One quantity of interest in scattering problems such as these, is the radar cross-section (RCS)
of the object. Its calculation involves determining the ratio of scattered power density to the
incident power density at a given frequency, and gives an indication of how visible an ob ject is
to radar from a specific angle [8], I02]. It can also be defined in terms of the incident (Ejpe)
and scattered (Ej) electric fields as [102]

Es(05, 6s)|?
oros(0s, ¢s) = lim g2 1Ee0n &)l :
B—oo | Eine (0, i) [
with R = || the distance to the observation point and (6;, ¢;) and (6, ¢s) defining the angle of
incidence and angle of observation, respectively. The incident field — assuming harmonic time
dependence at a single frequency (f) — has a position dependent phase and is given by [10]

(4.1)

Eine() = (Eg; + Eyi)e?™™, (4.2)

with & the propagation vector of the field as shown in Figure 4.1. This propagation vector is
simply the propagation constant (k) at the frequency of the incident field multiplied by a unit



CHAPTER 4. MOM SCATTERING ANALYSIS 62

vector in the direction of propagation and is defined as

k= E(sin 0; cos ¢; 2 + sin 6; sin ¢;§ + cos ;%)

2 4.3
— ch (sin 0; cos ;& + sin 0; sin ¢;§ + cos 6;2). (4.3)
0

The vector along which the scattered field is evaluated can similarly be defined as
7= R(sin 05 cos ¢sT + sin O sin g5y + cos O52). (4.4)

In the case of the monostatic RCS (as is considered here), the direction of propagation of the
incident field and the direction in which the scattered field is measured (or calculated) is the
same (0; = 05 and ¢; = ¢5) [102], with such a calculation or measurement usually performed
over a range of incident/measurement angles.

4.2.2 The Method of Moments

Scattering problems such as the one described in Section 4.2.1 can be solved numerically using
the electric field integral equation (EFIE) formulation of the Method of Moments [103]. A
simplified block diagram of the MOM solution process is given in Figure 4.2. As seen in the
figure, the Method of Moments consists of five main steps

o Initialisation

e Calculation of the impedance matrix
e Calculation of the excitation vector
e Solving for the unknown current

e Post processing

with each of the steps offering its own challenges and potential for improving performance when
considering GPU acceleration. It should be noted that not all the steps in the solution process
contribute equally to the total time required to obtain a solution — as will be demonstrated in
Section 4.5 — and as such their relative importance in terms of GPU acceleration is also affected.
In many cases, the assembly of the impedance matrix as well as solving for the unknown current
contribute most significantly to the computational requirement and are thus the primary focus
of this investigation.

The block diagram also illustrates that some parts of the Method of Moments process are
independent of the angle of incidence for a given frequency of the electric field. This gives an
indication as to where data can be reused to improve the computational efficiency of the solution.
Consider, for example, the calculation of the impedance matrix. This matrix is independent of
incident angle, and thus if the RCS is being calculated over a range of angles, it is only necessary
to assemble it once. Furthermore, if a technique such as the LU decomposition (see Section 3.1)
is used to solve the resultant linear system, the factorisation can be reused for each of the angles
of incidence. This is discussed further in subsequent sections.

The phases of the MOM process, and specifically their GPU acceleration using CUDA, are
now discussed. Some phases, such as the matrix assembly phases, are discussed in more detail
than others. A number of texts are available providing more information on all the phases. These
include a good overview of the method in [88] and more details pertaining to implementation in

88, M03].



CHAPTER 4. MOM SCATTERING ANALYSIS

= ( initialise
L,,'; load or generate mesh

I

pre-process
calculate geometric properties
eg. edge lengths

[ input: frequency

input: incident field

voltage induced by incident field

solve the linear system for {I}
[LUNI} = [PV}

assemble impedance matrix
calculate the elements of [Z)

)

LU decomposition

factor the impedance matrix
(P][Z] = [L][U]

new frequency

calculate properties of interest
eg. scattered field
radar cross section
current density

same frequency
new angle of incidence

63

done

Figure 4.2: A block diagram showing the steps involved in obtaining the Method of Moments solution
for a typical scattering problem. The steps in the left column are not dependent on the incident field
and only need to be performed again if the frequency of the incident field changes. The steps in the
right-hand column are dependent both on frequency and the angle of incidence of the applied electric
field. The initialisation step shown bordered in red at the top left of the figure does not form part of the
timed process for obtaining the results of Section 4.5.

Matrix assembly

As an introduction to the matrix assembly process, the basis functions introduced in [I0] and
discussed in a number of sources including [88] 103] are reviewed. To this end, consider the
diagram in Figure 4.3 that depicts two adjacent triangles in a triangulation (mesh) of a dielec-
tric surface and the n'" edge that is shared by them. In the MOM solution process such a
triangulation is typically obtained as part of the initialisation step (shown in Figure 4.2) and
can either be created from scratch using some definition of the surface to be meshed, or in more
complex cases loaded from a mesh generated by external CAD software.

~
// \\\
- So
- ~
-~ SN
e IS N
~ N — ~.
<—)// Pn o Pr— 5
S O) P
~ © -
~ -
~a (0] -
S TE | Ty
S n n -
~o P
~ -
~L-

Figure 4.3: A diagram of a free edge in a surface mesh as well as the designation of the positive and
negative triangles. Also shown are the vectors used in the definition of the basis function associated with
the edge.

Choose one of the triangles associated with the n'" edge as the positive triangle, and denote
it as 7). The other triangle is the negative triangle T);. The basis function associated with the
ntt edge, f,(7), at any point 7 in space is then given by [I0]

fe={ b, FinTs (4.5)

0, otherwise.



CHAPTER 4. MOM SCATTERING ANALYSIS 64

Here, [,, is the length of the n'" edge, and A;} and A are the areas of the positive and negative
triangles associated with the edge, respectively. The vector 7 is the position where the basis
function is to be evaluated and the pif () vectors are calculated as the difference between 7 and
their associated nodes opposite edge n, with orientations as indicated in Figure 4.3. This basis
function then represents a unit current density flowing across the edge, and is only non-zero if
7 falls in the face of one of the triangles that share the edge.

With the basis functions defined, the vector current density on the surface of the mesh can
be discretised and approximated by the weighted sum of the basis functions of all the triangles
on the surface as follows [10]

N
T = Infuli), (4.6)
n=1

where N is the number of degrees of freedom (DOFs). The number of DOFs is equal to the
number of non-boundary edges in the surface triangulation of the geometry in the case considered
here. Solving for the unknown coefficients I, is the goal of the MOM solutions phases highlighted
in grey in Figure 4.2.

For the scattering problem considered, these unknown coefficients are dependent on the
incident electric field, Einc of (4.2), and the geometry of the problem. Thus the problem of
finding the unknown current coefficients can be written as [10] [103]

(2] {1} ={V}, (4.7)

where {I } is an N-vector containing the unknown coefficients I,, of (4.6), {V} is a voltage
excitation vector dependent on the incident electric field, and [Z] is an impedance matrix — the
assembly of which will now be discussed. The solution of this linear system and the assembly
of the excitation vector will be considered briefly in subsequent sections.

Although more detailed derivations for the expressions of the matrix elements is presented
in [I0], only the key points are summarised here. In summary, the matrix element equations are
obtained by applying a Galerkin testing procedure to an equation of the time harmonic electric
field in terms of a scalar electric (®(7)) and magnetic vector potential (A(7)). The required
boundary conditions — such as tangential electric field continuity on a PEC surface [I04] — are
also applied. Since the technicalities of this derivation are not the focus of this research, many
of the expressions from [I0] are used verbatim.

Using the basis function definitions of (4.5), the entries (Z,,) of the impedance matrix [Z]
in (4.7) can be calculated. In the classic RWG formulation, this entry is approximated as the
combination of the magnetic vector potentials as well as the electric scalar potentials at the
centres of the triangles associated with the m'™ edge as a result of the current density associated
with the n'" edge [10], expressed mathematically as

Zmn = lm [];d (A;tm ) /Sjn + A?m ’ /3;1) B ((I)ﬁm B (I);m) : (4.8)

As such, it is required to integrate over both triangles associated with edge n. The integrands

have the form N
— e—]k‘an 77—‘“

A =1 F)—————dT+, 4.9
and ot
1 I, e Ikl =7

¢t —F—— L aT* 4.10

mn :F47Tjwe = An | - (4.10)

for the magnetic vector potentials and electric scalar potentials, respectively. The vectors FS,Z—L

are the position of the centre of the positive and negative triangles of edge m and the integrals
are a result of a two-point approximation applied to the integration over these triangles [10].



CHAPTER 4. MOM SCATTERING ANALYSIS 65

Note that part of the integrands in (4.9) and (4.10) are

+ e_jk|7:$rLi_ﬁ
Go(m ™) = TEoA (4.11)
m

and have the form of the free-space scalar Green’s function [I04]. Furthermore, since the influ-
ence of all the edges on each other must be considered, the computational and memory demands
of calculating the N x N impedance matrix [Z] are O(N?).

Assembling the excitation vector

As discussed in the preceding section, where the expression for the elements of the impedance
matrix was introduced, each matrix elements can be defined in terms of the RWG basis functions
defined for an edge in the surface mesh, certain geometric properties of this edge, and the free-
space scalar Green’s function of (4.11). A similar expression for the elements of the excitations
vector {V} can be obtained, where in [I0] the entry associated with the m'" edge is given as

b (= .
Vi = 5 (B i+ B i) - (4.12)
Here, [,,, is once again the length of the edge, and the vectors g and g, are from the basis
function definition in (4.5). The electric field vectors Ef are defined in terms of the centres of
the triangles of the m' edge (75F) — as is the case in (4.9) and (4.10) — and the incident electric
field of (4.2) as

Ef: = Eipe(F5F)

" A (4.13)
_ gk
= (Fgb; + E¢<;5i)e m,
It should be noted that the expression for (4.12) is also a result of a two-point approximation
to the integral over the triangles associated with edge m, after applying the Galerkin testing
procedure. Since the computation must be performed once for each DOF, the storage and
computational requirements of the excitation vector assembly are both O(N).

Solution of the linear system

As already mentioned, the Method of Moments reduces to solving the linear system of (4.7) for
the vector of unknown current coefficients {1} [103]. Furthermore it follows from (4.8) that [Z]
is, and by extension {I } is also, complex. Such a linear system can be solved using the complex
valued LU decomposition, as described in Section 3.1 with (3.4) — for [Z] instead of [A] — given
here for clarity

[P|[Z] =[L] [U]. (4.14)

Furthermore, since the impedance matrix is independent of the angle of incidence, the factori-
sation in (4.14) can be reused for multiple incident fields of the same frequency.

The LU decomposition and a number of CUDA-based GPU accelerated implementations
were discussed in some detail in Chapter 3 and as such are not discussed further, although the
implementations are used to obtain the results presented in Section 4.4 and Section 4.5. The
unknown current coefficients can be found from the factorisation of the impedance matrix —
using the CGETRF and ZGETRF routines — and the calculated voltage excitation vector.



CHAPTER 4. MOM SCATTERING ANALYSIS 66

Calculating the RCS

Since the radar cross section is dependent on both the incident and scattered fields as in (4.1),
the first step in its calculation is to determine ES(F) for a given incident field Einc. This can be
done by substituting the current density discretisation of (4.6) into the electric field radiation
integral [I04]. This integral can then be evaluated using the calculated basis function coefficients
{1} mo2).

Another approach discussed in both [I02] and [I03] ,and used here, is the equivalent dipole
model. Here, each RWG basis function — associated with the n'" edge and triangle pair — is
replaced by an infinitesimal dipole with a dipole moment m,, given by

My = lnIn(7, — 7_’?_)’ (4.15)

where [, is the length of edge n, and I, is the calculated current coefficient (element of {I})
associated with the edge. The vectors 7° are the coordinates of the centres of triangle TiF.
After defining

1 1
Cp=— |14 —|, 4.16
7"62! [ + jk‘T’d:| ( )
and oL
N, = Ta M) (4.17)
;

the radiated (scattered) electric field for the given dipole is calculated as

. . i . .

EX(7y) = A <(Mn — M) [‘7 + Cn} + 2MnCn> e Ihra, (4.18)
47 Td

with 7; the vector from the dipole centre to the point where the electric field is to be calculated

and g = || is the magnitude of this vector. In order to take the translation of the dipole into

account, the substitution

T e
4= S+, (419)

is made, giving an expression for the contribution to the scattered electric field by the n'" edge at
the point 7 in space. The other variables and constants in above equations are the wavenumber
of the incident field k£, and the wave-impedance of free-space n.

The total scattered electric field at a point 7 is then obtained from the superposition of the
contributions from the various DOF's and is calculated as

N
Ey(7) = EXP), (4.20)
n=1

where the substitution of (4.19) has been made into (4.18). The calculated scattered field of
(4.20) can now be substituted into (4.1), where, in practice, R is simply chosen far enough away
from the PEC surface.

It should be noted that although the dipole approximation does not make any far-field
assumptions, it does not perform well when the measurement distance r4 is of a similar order as
the length of the mesh, or when the edge length is large compared to a wavelength [102] [103].

4.3 The implementation of an accelerated MOM solution
process
For the panel-based and MAGMA-panel-based hybrid implementations of Chapter 3, a largely

off-the-shelf approach was used. This was supported by the popularity and subsequent availabil-
ity of CUDA-accelerated linear algebra routines such as the matrix-matrix multiplication and



CHAPTER 4. MOM SCATTERING ANALYSIS 67

the triangular system solve (all supplied by NVIDIA in CUBLAS [7]). The prolific nature of
these routines result in a lot of attention from the GPU programming community — including
NVIDIA themselves.

In the case of the matrix assembly and other phases of the methods of moments, this approach
is not possible and the development of more of the low-level GPU code is necessary. Although
there are other similar implementations, as discussed in Section 4.1, each of these deviate from
the desired functionality in some way and thus cannot be used as is. This does, however, allow
us to address another important issue in the development of GPU accelerated code — that of
GPU and CPU-based co-development.

Thus the development of a CUDA-accelerated MOM routine that implements the RWG
formulation of [I0] is the focus of this section. Furthermore, the interdependence and co-
development of CPU- and GPU-based code is considered throughout the discussion of this
implementation. Since the matrix assembly phase is the most costly it will be considered in the
most detail and used to guide the discussion of the more general aspects of the implemetation.
The other phases of the MOM solution process, with the exception of the LU decomposition
already discussed in Chapter 3, will also be touched upon.

4.3.1 The development process

In many cases today, GPU acceleration is added to an existing implementation of some algorithm
or routine. Even if this is not the case, it is often easier to implement a CPU version of a
desired code first and then move on to a GPU-based implementation as this serves to provide
reference values which greatly aid in debugging, as well as providing a CPU implementation for
performance comparisons, even if they are somewhat crude.

The approach followed here is to start with a Python implementation of the method as
outlined in [I0] and discussed in Section 4.2.2, and build both a more optimised CPU implemen-
tation as well as a CUDA-based GPU implementation from there. Python was chosen because
it has has a number of strengths making it an ideal language for rapidly developing a proto-
type code. Even though experience shows that the absolute performance of the Python code
is significantly lower than that of a compiled implementation such as FORTRAN or C/C++,
it still allows for an analysis of the relative time required by the various phases in the solution
process. One of the great advantages of Python is its ability to be combined with native C/C++
or FORTRAN libraries using modules such as Ctypes [I05]. This makes it particularly suited
to benchmarking and allows for an implementation to be ported to CPU-based C or CUDA in
sections, greatly simplifying the development process.

Although one methodology to follow would be to start with a Python implementation and
develop separate CPU- and GPU-based implementations of the MOM matrix assembly, this is
not the approach followed here. The aim instead is to maximise the code shared between the
CPU- and GPU-based versions. The reasoning behind this is that both implementations will be
developed and debugged simultaneously, greatly reducing the amount of time required to obtain
a working, stable implementation in each case. This is an important point to consider in large
software projects, where not only is initial development complex, but maintenance and feature
extensions are commonplace.

Since CUDA is provided as a set of C language extensions (see Section 2.3), C seems a logical
choice for the co-development of the CPU- and GPU-based implementations. C does however
lack operator overloading which, while not strictly necessary, does improve the ease with which
the implementations can be developed. As such, C++ is chosen as the language of choice,
although features such as templates and object orientation are not used extensively, and thus
the source code presented in the subsequent sections will more closely resemble C than C++.



CHAPTER 4. MOM SCATTERING ANALYSIS 68

4.3.2 The matrix assembly computational process

The block diagram in Figure 4.4 serves to provide a better understanding of the computational
process associated with the matrix assembly phase. It also ties the equations from [I0] presented
in Section 4.2.2 to specific conceptual blocks and better illustrates how they are related. The
process is also shown as a simplified algorithm in Listing 4.1. In both cases it is shown to contain
a number of integrations ((4.9) and (4.10)), which are implemented as simplex quadrature rules
[T06]. More complex integration schemes such as those presented in [I07] or [I08] can also be
used. With these, measures are included to cancel the singularity associated with the free-space
scalar Green’s functions in (4.11) when its denominator approaches zero. These singularity
cancellation schemes are not considered here. Evident in the figure and the listing is that all
the computations required to calculate a single matrix element (z[m,nl= Z,,,, in (4.8)) can be
grouped into a single computational unit or kernel ,which includes the evaluation of the integrals
in (4.9) and (4.10). It should be noted that each call to the kernel is responsible for calculating
a single matrix element and that the same calculations (algorithm) are used for each matrix
element.

CPU shared CUDA
| -
| ;(computahonal kernel ) | (" CUDA kernel wrapper
T ((calculate_z_mn ( )k ™ for each valid CUDA thread
| : =z | (m, n)
I for each triangle pair: I [ Z[m,n] a
W ({zm) (merh| =
| | ®
| [T,; : T,ﬂ [Tm— 3 Tn—j |
LS ] ] daL
________________________ L calculate potentials)i I |
calculate Z matrix() : : calculate Z matrix( ))_
I \ J ||| determine block and grid size || _
! ! :
, integrate || call the CUDA kernel 2
| [fﬁ%GOde} |
g\ J!

Figure 4.4: A block diagram showing the computational process of the Method of Moment matrix
assembly phase for both the CPU and CUDA implementations. The separate calculate Z matrix(hs well
as the shared calculate_Z mn(implementations are discussed in subsequent sections.

In [I0], matrix assembly by faces, as opposed to edges, is suggested, as this allows for the
reuse of computed integrals, which improves performance. The face-based approach is not
considered here due to the communication that would be required between the GPU threads,
making the implementation more complex but not impossible. For the problem considered here,
the face-based implementation was found to be about four times faster than the edge-based
variant when considering a single-core CPU implementation. In the edge-based implementation
there is no relationship between the matrix elements and thus no synchronisation needs to be
performed between the kernels. This makes it a data-parallel task for which GPUs are extremely
well suited [27].

4.3.3 CPU and CUDA co-development

The aim is to implement as much of the computational part of the MOM matrix assembly
(discussed in Section 4.3.2) as code that can be shared between both the CPU and the CUDA
versions. Thus, referring to Figure 4.4, the routine calculate Zmn() — responsible for calculating
the matrix element as in (4.8) — is used as a common entry point into the computational kernel.



CHAPTER 4. MOM SCATTERING ANALYSIS 69

Listing 4.1: An algorithm showing the basic outline of the computational process for calculating the
Method of Moments impedance matrix, with element Z,,,, calculated as in (4.8).

for each edge m:
for each edge n:
( COMPUTATIONAL KERNEL ( m, n ) (4.8) )
the positive triangle of edge m
1. the positive triangle of edge n
add the compute potential contributions:
( integrate (4.9) )
( integrate (4.10) )
2. the negative triangle of edge n
add the compute potential contributions:
( integrate (4.9) )
( integrate (4.10) )
the negative triangle of edge m
1. the positive triangle of edge n
add the compute potential contributions:
( integrate (4.9) )
( integrate (4.10) )
2. the negative triangle of edge n
add the compute potential contributions:
( integrate (4.9) )
( integrate (4.10) )

In addition, any routines, such as quadrature integration routines, that are called by this function
must also be shared between the CPU and the CUDA implementations.

It should be noted that although the implementation of calculate Zmn() is common to the
two target devices, the code for calculating the full matrix (calculate Zmatrix() in Figure 4.4)
will not be the same. This is mainly due to the different implementations of the two outer loops
(over m and n) in Listing 4.1 and will be discussed in more detail shortly.

In addition to the implementations of the outer loops that differ, there may be other device-
specific code that cannot be shared between the two architectures. This includes type definitions
— such as complex and vector data types — and operators defined on those types. As such, each
target (CPU and CUDA) has its own header file containing compatible definitions. This file
arrangement is depicted in Figure 4.5, with the two device specific header files (cuda defines
.h and cpu defines.h) shown. Also shown in the figure is a header file containing the shared
computational code (computational kernel.h), a file containing the common definitions (common
_defines.h), as well as the two source files containing the implementations of the individual
calculate_Z matrix() routines.

To better illustrate this, consider a code skeleton of the file computational kernel.h shown in
Listing 4.2. This skeleton shows the definition of a single function calculate zmn() that has a
return type of double_complex, a double precision complex value. Note that the only file included
iS common_defines.h and as such all code shown is device agnostic. Since this is only intended
as a code skeleton, with more of the implementation details to follow, most of the function
parameters as well as the function contents have been replaced by ellipsis dots. Note that this
and subsequent code for this chapter shows only the double precision implementations. The
single precision implementations are, however, very similar and in most cases only require that
all occurrences of double be replaced with float.

Also not shown in Listing 4.2, are a number of other routines called from within calculate_
zmn(). Some of these will be discussed in due course. Note that the calculate zmn () function
definition also includes, in addition to the return type, DEVICE PREFIX which is a macro defined
in both cuda_defines.h and cpu_defines.h. In the case of the latter it is simply an empty macro
whereas in the CUDA case it is used to add the __device__ qualifier to all definitions of functions



CHAPTER 4. MOM SCATTERING ANALYSIS 70

CPU shared code CUDA

[ common_defines.h ] cuda defines.h ] —
2
©
3
[}
=
o

mom_solver cuda.cu
________________________ ®
°
j=J
Python g
8‘.
libmom_solver_ cpu.so libmom_solver_ cuda.so S

Figure 4.5: A diagram representing the organisation of the files used in the co-development process.
The file names of the files for the implementation as discussed here are shown in the upper part of the
diagram. The files that are specific to the CPU implementation are in blue rounded rectangles on the
left of the image, with the CUDA files on the right in green. The files containing shared code — including
the common interface (mom_solver_interface.hare shown in the centre in yellow. Compiler information
(g++ or nvec) as well as the names of the shared libraries is given in the lower part. Note that the file
mom_solver_interface.ls shown extending into the application domain, as this is the interface that is
used when the generated libraries are included in external programs such as a Python benchmarking
framework using Ctypes.

Listing 4.2: Code skeleton for computational kernel.h

#ifndef COMPUTATIONAL_KERNEL_H
#define COMPUTATIONAL_KERNEL_H
// include the common definitions
#include "common_defines.h"

// The computational kernel to calculate Z[m,n]
DEVICE_PREFIX double_complex calculate_Z_mn ( int m, int n, ... )
{

double_complex Z_mn;

return Z_mn;

}

#endif // #ifndef COMPUTATIONAL_KERNEL_H

that must execute on the CUDA device [29]. This _device__ qualifier is similar to the __global_
qualifier used with the CUDA kernels shown in Section 2.3, and is required for all routines called
from a CUDA kernel.

The complex_double type used in Listing 4.2 and Listing 4.9 to signify a complex double
precision floating-point value, is implementation dependent and, as such, is defined in both the
cpu_defines.h and cuda_defines.h header files. The relevant parts of cpu_defines.h and cuda_defines
.h are shown in Listing 4.3 and Listing 4.4, respectively. Most notable of these are the definitions
of the DEVICE_PREFIX macro as blank in cpu defines.h and as __device__ in cuda_defines.h, and the
definition of the double_complex type.

For the CUDA implementation of Listing 4.4, the complex value functionality is provided
using the CUDA header file cuComplex.h, whereas the CPU implementation uses complex.h and
cmath.h. It should be noted that the CPU header file of Listing 4.3 also contains a type definition
for a double3 type, used to represent a three-dimensional real vector in double precision, as a



CHAPTER 4. MOM SCATTERING ANALYSIS 71

Listing 4.3: Code skeleton showing some of the CPU definitions in cpu_defines.h

#ifndef CPU_DEFINES_H
#define CPU_DEFINES_H

#define DEVICE_PREFIX

#include <cmath.h>
#include <complex.h>

typedef std::complex<double> double_complex;

inline double_complex make_double_complex ( double r, double i )

{
return double_complex ( r, i );

}

struct double3
{
double x, y, z;

}
typedef struct double3 double3;

inline double3 make_double3 ( double x, double y, double z )
{

double3 v = {x, y, z}

return v;

}

#endif

Listing 4.4: Code skeleton showing some of the CUDA definitions in cuda_defines.h

#ifndef CUDA_DEFINES_H
#define CUDA_DEFINES_H

#define DEVICE_PREFIX __device__
#include <cuComplex.h>

typedef cuDoubleComplex double_complex;

__inline__ __device__ double_complex make_double_complex ( double r, double i )
{
return make_cuDoubleComplex ( r, i );
}
#endif

struct. This type is not defined in cuda_defines.h as this is one of the built-in vector types in
CUDA [29]. A function included in CUDA that needs to be implemented for the CPU version
(as shown in Listing 4.3) is make_double3(), which returns a double3 variable initialised using the
three double parameters passed.

In order to improve the readability of the code, operators are defined for the types used.
Since these operators are not dependent on the specific implementation, they are included in
the shared header file common_defines.h (as seen in Figure 4.5). A code skeleton for this file is given



CHAPTER 4. MOM SCATTERING ANALYSIS 72

in Listing 4.5, showing an addition operator for two double precision 3-vectors of type double3.
Since this operator is used in both the CPU and CUDA implementation, and called from the
computational kernel, the DEVICE PREFIX macro is required. This operator calls the make double3()
routine that has either been defined as part of the built-in CUDA vector types, or implemented
for the CPU version in cpu defines.h. Listing 4.5 also shows the definition of a double precision
complex 3-vector type double_complex3 which is used in the representation of the electric field and
magnetic vector potential.

Listing 4.5: Code skeleton showing some of the common definitions in common_defines.h

#ifndef COMMON_DEFINES_H
#define COMMON_DEFINES_H

struct double_complex3
{
double_complex x, y, Z;
}
typedef struct double_complex3 double_complex3;

DEVICE_PREFIX __inline__ double3 operator+( double3 v, double3 u )
{
return make_double3 ( v.x + u.x, v.y + u.y, v.z + u.z );
}
#endif

In addition to the header files discussed so far, Figure 4.5 shows two files, mom_solver_cpu.
cpp and mom_solver_cuda.cu for the CPU and CUDA implementations, respectively, and a header
file, mom_solver_interface.h, where the common interface for these implementations is defined.
An example of a routine that is declared in mom_solver_interface.h, shown in Listing 4.6, is the
calculate_ Zmatrix() routine.

Listing 4.6: A snippet from the mom_solver_interface.hfile showing the declaration of the
calculate Zmatrix(Xunction as part of the shared interface for the CPU and CUDA implementations

in mom_solver_interface.h

extern "C"
int calculate_Z_matrix ( int, doublex*, int, ... );

The calculate Z matrix() function in mom solver_interface.h is declared as an external C routine
using the extern "c" keyword. This prevents the mangling of the function names by the C++
compiler and is required to link the library built from the code with a benchmarking framework
implemented in Python using Ctypes [I05]. Another important point is that all of the parameters
of calculate_Zmatrix(), and the other routines declared in mom_solver_interface.h, are of standard
C types, with the details of the implementations such as complex valued types hidden from a
program that links to the generated libraries.

The simplified source code of Listing 4.7 and Listing 4.8 shows the inclusion of the interface
declaration, as well as the subsequent definition of the calculate_Zmatrix() routines for the CPU
and CUDA implementations, respectively. The parts of the two files shown are identical except
for the inclusion of the CPU- and CUDA-specific definitions (#include "cpu defines.h" and #
include "cuda defines.h"), which are included before the computational kernel header file in each
case.



CHAPTER 4. MOM SCATTERING ANALYSIS 73

Listing 4.7: A code skeleton showing the definition of the CPU implementation of the
calculate_Zmatrix() routine in mom solver cpu.cpp Note that cpudefines.h is included before

computational kernel.h

#include "mom_solver_interface.h"
#include "cpu_defines.h"
#include "computational_kernel.h"

int calculate_Z_matrix ( int N, doublex Z, int LDZ, ... )
{

}

Listing 4.8: A code skeleton showing the definition of the CUDA implementation of the
calculate_Zmatrix() routine in mom_solver_cuda.cu Note that cuda_defines.h is included before

computational kernel.h

#include "mom_solver_interface.h"
#include "cuda_defines.h"
#include "computational_kernel.h"

int calculate_Z_matrix ( int N, doublex* Z, int LDZ, ... )
{

}

As indicated in Figure 4.5, g++ and nvcc are used to compile the CPU and CUDA imple-
mentations, respectively. Using these compilers, two shared libraries, 1ibmom_solver_cpu.so and
libmom_solver_cuda.so, are created and these can be linked to by other applications. During the
Python development and benchmarking process used here, these libraries are accessed from
Python using Ctypes [105].

4.3.4 Parallel CPU implementation

Before continuing the discussion on the computational kernel and the CUDA specifics of the
implementation, the multi-core CPU version is discussed briefly. It should be noted that this
is specific to the CPU-based implementation, and in no way affects the shared computational
kernel. This also serves to complete the CPU side of the organisation of files represented in
Figure 4.5.

As already discussed, for the edge-based formulation considered here, the calls to the com-
putational kernel routine calculate Zmn() are independent of each other and thus require no
communication. This makes this process an ideal target for acceleration using multi-threaded
methods such as OpenMP [19]. In terms of implementation, OpenMP has an advantage over a
message passing implementation such as OpenMPI [18], in that much of the parallelisation can
be automatically performed by the compiler. This does, however, restrict the parallel imple-
mentation to single shared memory or multi-core machines, as opposed to clusters of networked
computers. Since this study is restricted to implementations on single machines, OpenMP is a
logical choice for a simple paralellisation scheme.

The simplest way to obtain a parallel implementation using OpenMP is to specify which loops
can be run in parallel. This is done using #pragma omp compiler directives, with the parallelisation
of the loops shown in Listing 4.9. Here, two #pragma omp directives are visible, the first of which
(#pragma omp parallel default(shared)private(n,m)) is used to indicate a block of code targeted



CHAPTER 4. MOM SCATTERING ANALYSIS 74

for parallel execution, as well as specifying which variables are private to the CPU threads —
m and n — and that all other variables declared up until this point are to be shared between
the threads by default (default(shared)). This makes sense in this case, since most of the other
variables are constants or pointers to data that can be safely accessed by all threads as there
are no dependencies between them.

Listing 4.9: Code to calculate the matrix Z using the shared computational kernel calculate Z_mn(ns
part of a parallel CPU implementation. The computational kernel is called from parallelised nested loops
to calculate the matrix Z. The matrix is stored in column-major order with a leading dimension LDZ.

#include <omp.h>

int calculate_Z_matrix ( int N, doublex Z, int LDZ, ... )
{

int m, n;

double_complex* dcZ = (double_complex*) Z;
#pragma omp parallel default(shared) private(n,m)

#pragma omp for schedule(runtime)

for (n = 0; n < N; ++n )
{
for (m = 0; m < N; ++m )
{
dcZ[n*LDZ + m] = calculate_Z_mn ( m, n, ... );
}
}
}
return O;
}

The second OpenMP directive, #pragma omp for schedule(runtime), informs the compiler that
the outer loop over n is to be parallelised. The work allocation between threads is decided at
runtime (schedule(runtime)), depending on the value of the OMP_SCHEDULE environment variable
[19]. Another environment variable, oMP_NUM_THREADS, controls how many threads are launched for
the particular section. Similarly to the CUDA driver, OpenMP handles the launching of these
threads and this process is transparent to the user.

The routine thus contains the two parallelised nested loops over n and m, the index of the
impedance matrix column and row, respectively. Each loop iteration sees a call to the calculate
Zmn() routine of Listing 4.2 for each of the N*N combinations. Note that although the routine
shown receives a a double pointer to the matrix to assemble, this is cast to a complex double
precision pointer (double_complex*) for address calculation purposes. Some parameters, such as
those containing geometric information, have been omitted.

4.3.5 Parallel CUDA implementation

In the preceding two sections, the shared computational kernel and some details of the parallel
CPU implementation using OpenMP were introduced. In this section, specifics pertaining to
the CUDA implementation are addressed.



CHAPTER 4. MOM SCATTERING ANALYSIS 75

Problem domain segmentation

As discussed in Section 2.3, one of the first steps in the development of a GPU program, or
parallel program in general, often is to give some thought to the segmentation of the problem
domain. As mentioned in the same section, one of the strengths of CUDA is its ability to handle
a large number of lightweight threads and that each of these threads can be identified uniquely.
Thus they could be used to perform a calculation on a separate data element. Furthermore,
these threads can be grouped into one-, two-, or three-dimensional blocks, with the blocks
then arranged in a one- or two-dimensional grid (see Section 2.3) [29]. A similar approach is
followed for the parallel CPU implementation in Section 4.3.4, although there the threading is
not explicitly defined.

Since the assembly of the impedance matrix, which is a two-dimensional structure with each
data element a matrix entry, is being considered, it is intuitive to make use of two-dimensional
blocks and a two-dimensional grid. This is illustrated graphically in Figure 4.6, with a 5 x 5
grid of 8 x 8 blocks shown. The darker grey areas on the right and the bottom of the grid
indicate portions of blocks that do not correspond with matrix entries. This is as a result of the
matrix not being a multiple of the block size, which must be the same for all blocks, although
not necessarily the same in each dimension [29].

blockIdx.y | blockDim.y |
[ l
//:‘_/
>
3
: =
X E d
. A 0
bl ~ “
] S <
H Ie) 2
~
o —
o Q
i threadIdx.x -
Q
s 8
m = blockIdx.x*blockDim.x + threadIdx.x
n = blockIdx.y*blockDim.y + threadIdx.y

Example: thread (5,4) in block (2,2): (m,n)=(21,20)

Figure 4.6: A diagram depicting the arrangement of threads into a two-dimensional grid of two-dimen-
sional blocks and the use of this arrangement in the subdivision of an N x N matrix. Also shown are the
built-in CUDA variables specifying the dimensions and indices of the blocks and threads and their use in
determining the row (m) and column (n) index of an element in the matrix. The thread corresponding to
matrix element (21,20) is highlighted in blue. The parts of the CUDA grid that do not correspond with
matrix elements are shaded in grey.

Using this grid of thread blocks — with the two-dimensional global index of each thread
corresponding to a row and column index of the impedance matrix [Z] — CUDA can launch a
large number of kernels. Each of these kernels then executes for a thread in the grid, and is
used to calculate the matrix element at the position in the matrix defined by the index of that
thread. Thus the global indices of the threads, excluding the areas that fall outside the matrix
dimensions, can be seen as equivalent to the loop variables m and n introduced in Listing 4.1 and
shown for the CPU implementation in Listing 4.9.



CHAPTER 4. MOM SCATTERING ANALYSIS 76

CUDA implementation details

The CUDA variant of Listing 4.9 is given in Listing 4.10, and serves both to introduce the CUDA
specifics of the implementation, as well as to illustrate the differences between the CUDA- and
the CPU-based implementations. Note that these differences only occur in these two listings and
in the cpu_defines.h and cuda_defines.h files shown in Section 4.3.3. The contents of computational
_kernel.h remain unchanged, so as to realise the aims of this co-developed implementation.

Listing 4.10: A code snippet showing an initial CUDA implementation of the calculate Z matrix()
routine. The computational kernel is wrapped in a CUDA kernel which is shown in Listing 4.12.

Listing 4.12

int calculate_Z_matrix ( int N, doublex* Z, int LDZ, ... )
{

double_complex* pdev_Z = 0;
cudaMalloc ( (void**)&pdev_Z, N*xLDZ*sizeof (double_complex) );

int threads_per_block = 8;
int blocks_per_grid = div_to_next ( N, threads_per_block ); Listing 2.4

dim3 block ( threads_per_block, threads_per_block, 1 );
dim3 grid ( blocks_per_grid, blocks_per_grid, 1 );

cuda_matrix_fill_kernel_wrapper <<< grid, block >>> ( N, pdev_Z, LDZ, 0, O,
)

cudaMemcpy ( Z, pdev_Z, N*LDZ*sizeof (double_complex), cudaMemcpyDeviceToHost )

>

cudaFree ( pdev_Z );
return O;

Listing 4.10 contains all the required steps to perform the calculation of the impedance
matrix on a CUDA device. This routine follows the same computational process as the simple
examples presented as part of the introduction to CUDA in Section 2.3 and include memory
allocation, grid and block set-up, kernel invocation, transfer of the results, and freeing of the
allocated memory. The kernel called in Listing 4.10 iS cuda_matrix_fill kernel_wrapper (), and will
be discussed shortly.

Note that the routine name as well as the parameter list for all the implementations of
calculate Zmatrix(), including both the parallel CPU (Listing 4.9) and CUDA (Listing 4.10)
versions, are identical. This is so that they can be used interchangeably as part of a higher-level
implementation of the Method of Moments.

Memory limited CUDA implementation

One of the aims for this implementation is to overcome the restrictions on problem size due
to the limited memory available on CUDA devices. To do this, an approach similar to that of
[01] is followed. This involves splitting the impedance matrix into blocks that are small enough
to fit into GPU memory, and handling these separately. Since the concept of a block is also
included in CUDA, these matrix divisions are referred to as super-blocks. Furthermore, these
square super-blocks are chosen so that their size (number of rows or columns) is a multiple of



CHAPTER 4. MOM SCATTERING ANALYSIS 7

the CUDA block size. In Figure 4.7, the use of a 16x16 super-block is shown for the matrix
depicted graphically in Figure 4.6.

superblock size

n_offfset g

Example:@(m,n)=(21,20)

Global:

thread (5,4) in block (2,2):
m= 2*8 + 5

n = 2*8 + 4

m offfset

In superblock (1,1):
thread (5,4) in block (0,0):

(sb r,sb c)=(1,1)
m offset=sb r*superblock_size
n offset=sb c*superblock size

m = m offset + 0*8 + 5
n = n offset + 0*8 + 4

num superblocks*superblock size

Figure 4.7: Figure showing the N x N matrix of Figure 4.6 split into a 3x3 grid of 16x16 super-blocks.
Each super-block consists of 4 (2x2) CUDA blocks. The thread with global index (21,20) highlighted in
Figure 4.6 is also shown along with an example of the calculation of its global index when super-blocks
are used. In the figure, sb_rand sb_care the row and column index of a super-block in the grid. As in
Figure 4.6, the parts of the CUDA grid that fall outside the matrix boundaries are shaded grey, while
the parts of the super-blocks that fall outside the original CUDA grid are filled in red.

The program and data flow between the device and the host for the assembly of the MOM
impedance matrix is shown in Figure 4.8. At this point it should be mentioned that since the
individual matrix elements are independent, it follows that the super-blocks themselves are also
independent. It is then possible, in theory, to assemble multiple super-blocks simultaneously on
multiple CUDA devices, although this is not considered further.

The incorporation of the super-block matrix assembly into the calculate_Zmatrix() routine
in Listing 4.10 is straightforward. A code snippet of the modifications required is shown in
Listing 4.11. The function get_superblock size() checks the amount of available memory on
the CUDA device and returns the number of rows of a square matrix that can be allocated
successfully, while ensuring that this is also a multiple of the CUDA blocks size. If the available
memory can accommodate the entire matrix, then the standard matrix assembly of Listing 4.10
is used. If this is not the case, then the matrix is assembled super-block by super-block by the
routine calculate Z matrix_superblock() whose source code is not shown.



CHAPTER 4. MOM SCATTERING ANALYSIS

host device

pre-allocated | ]
geometric data [ |

allocate super-block

:

T
]
]
]
]
]
cudaMalloc(): pdev Z
! _
repeat for each super-block !
for sb r = 0,1,... |
for sb_ ¢ = 0,1,...1
cudaThreadSynchronize(‘: global synchonization barrier
call kernel | (
cuda_matrix fill kernel wrapper, > [ | 8
<%< grid, block >>>() ! [ [l 3
' i for each thread with a valid (m,n) &
| H Bl calculate_z _mn() Bg
| i *'calculate_z_mn() 88
| i \~. calculate_Z mn() Q%
b ~N
. lculate Z ]
transfer computed super-block from device i N B calculate 2 mn() =
2 sb_c cudaMemcpy () | L etc. .. Bcalculate z mn() | @
i
]
" H
4 i
]
]
]
]
i | |
' [ |
1 F-=-=-=-=----
]
cleanup cudaFree ()|
i
]
]
]

78

Figure 4.8: A diagram representing the program and data flow between the host and a CUDA device

in the assembly of the system matrix using the super-block implementation. Note that the geometric

data required for the calculation has been allocated and transferred as part of the pre-processing step

shown in Figure 4.2 with only the super-block pdev_zallocated and freed here. Note the loop over the

super-blocks to assemble the matrix Z on the host by rows of super-blocks, as seen in the data transfer

step. The figure also shows a global synchronisation barrier in the form of a cudaThreadSynchronize ()

call before the CUDA kernel is called.

Listing 4.11: Modifications to calculate Z matrix()of Listing 4.10 to allow for matrix assembly using

super-blocks.

int calculate_Z_matrix ( int N, doublex Z, int LDZ, ... )
{
int superblock_size = get_superblock_size ();
// check to see if the matrix will fit in GPU memory
if ( N > superblock_size )
{
// allocate device memory
double_complex* pdev_Z = 0;
cudaMalloc ( (void**)&pdev_Z, superblock_size*superblock_size*sizeof (
double_complex) );
// fill the matrix using super-blocks
calculate_Z_matrix_superblock (N, Z, LDZ, pdev_Z, superblock_size,
// free the device memory
cudaFree ( pdev_Z );
}
else
// perform the computation as in Listing 4.10
return O;

}




CHAPTER 4. MOM SCATTERING ANALYSIS 79

The CUDA kernel

Both the standard CUDA and super-block implementations of calculate Z matrix() contain calls
to a CUDA kernel cuda matrix £ill kernel wrapper(). This routine acts as a wrapper for the device
function ,calculate Zmn() of Listing 4.2, and also serves to provide the same functionality of the
double-loop implementation in the CPU case (Listing 4.9). The code for the CUDA kernel is
given in Listing 4.12, where, as is the case for the other code samples used in this discussion,
the parameters pertaining to constants and geometric data have been omitted.

The parameters that are given are the size of the full matrix (v), a pointer to where the
matrix is to be constructed in global device memory (pdev_z), the leading dimension of this
matrix (Lbz), and lastly row and column offsets (m-offset and n_offset) that are only applicable
for the super-block implementation, and can be treated as zero if the standard assembly is being
considered. In the case of the super-block variant, the device pointer pdev_z does not represent
device memory allocated for the entire matrix, and the leading dimension of the device matrix
is not equal to that of the matrix on the host. The leading dimension, offsets, and the current
thread index are all used to calculate the linear position, in column-major order, of the matrix
element in the array pdev_z.

Listing 4.12: Code to wrap the computational kernel calculate Zmn(hs a CUDA kernel implemented
in mom_solver_cuda.cuNote that the edge lengths are stored in global device memory and are passed as a
parameter (not shown) const float* pdev_edge lengths

__global__ void cuda_matrix_fill_kernel_wrapper ( int N, double_complex* pdev_Z,
int LDZ, int m_offset, int n_offset, ... )
{
int m = blockIdx.x*blockDim.x + threadIdx.x + m_offset;
int n = blockIdx.y*blockDim.y + threadIdx.y + n_offset;

__shared__ double 1_m[8];
__shared__ double 1_n[8];

if ( threadIdx.y == 0 & m < N )
l_m[threadIdx.x] = pdev_edge_lengths[m];
if ( threadIdx.x == 0 && n < N )

l_n[threadIdx.y] = pdev_edge_lengths[n];
__syncthreads () ;

if ( (m <N ) & (n <N))
{
pdev_Z[(n-n_offset)*LDZ + (m-m_offset)] = calculate_Z_mn ( m, n, 1_m[
threadIdx.x], l_n[threadIdx.yl, ...);

Calling this CUDA kernel from the calculate Z matrix() routines, instructs the CUDA runtime
to launch a kernel instance for each of the threads in the grid of thread blocks defined by grid and
block. As discussed in Section 2.3, all the threads of a block are able to access the fast on-chip
shared memory and this allows for communication between the threads. Although there is no
dependence between the matrix elements and thus no communication is required between the
threads of a block, Listing 4.12 does show the use of shared memory, as well as synchronisation
between the threads.

The purpose of the use of shared memory in Listing 4.12 is not inter-thread communication,
but instead to reduce the number of accesses to high-latency global memory by storing common



CHAPTER 4. MOM SCATTERING ANALYSIS 80

geometric data (in this case the length edges m and n) in shared memory. Since each of the threads
requires the lengths of two edges (see (4.5), (4.8), (4.9), and (4.10)) this would normally involve
2¥blockDim.x*blockDim.y reads from the global memory array pdev_edge lengths. With the use of
the shared memory variables 1m and 1.0 — both declared using the __shared.. CUDA qualifier
[29] — the number of reads is reduced to blockDim.x + blockDim.y and is possible since m and n are
constant over the rows (x-dimension) and columns (y-dimension) of a block, respectively.

Note that only the threads of the first row and column of the block actually read the data
from global memory and the thread with local index (0,0) reads two values. The __syncthreads()
barrier is included to ensure that shared memory values stored in the arrays 1.m and 1_.n have been
read successfully from global memory before commencing computation for the block. Although
it is also possible to extend this to include other geometric data used in the computation of
the matrix elements (such as the centres of the elements and the element areas), this is not
considered at present.

4.3.6 Implementation of the other phases

In closing the discussion on the implementation of the accelerated MOM solution process, con-
sider once again the block diagram of Figure 4.2 that illustrates the various phases. As already
mentioned, the initialisation phase — which is responsible for constructing or loading the mesh
used in the computation — is not considered here. The parts of the block diagram that are
considered here are shown as part of an algorithm to calculate the RCS of a square plate in
Listing 4.13. The calculate Zmatrix() routine that has been discussed in some detail is shown
in step 2 and the other steps in the algorithm are now addressed. Again, geometric data and
constants have been omitted in most cases and replaced with ellipsis dots.

Listing 4.13: Pseudo-code representation of the computational process (derived from Figure 4.4) for
calculating the mono-static RCS of a square plate.

1. pre_process ( ... );

2. Z + calculate_Z_matrix ( N, ... );
3. LU, IPIV « LU_decomposition ( N, Z, ... );

4. for each incident angle theta in list_of_angles:

a. V « calculate_V_vector ( N, theta, E_inc, ... );
b. | « solve_l_vector ( N, LU, IPIV, V, ...);
c. E.s « calculate_E_s ( N, |, theta, ;
5. RCS « post_process ( E_.s, E_.inc, list_of_angles )
6. cleanup ( ... );

The implementation of the remaining phases also follow the co-development framework
as pointed out in Section 4.3.3. As such, they consist of computational implementations in
computational kernel.h, as well as entry functions and wrappers in either mom_solver_cpu.cpp or
mom_solver_cuda.cu for each of the implementations.

Certain geometric properties of the mesh are required as part of the computational process.
These include the length of the edges in the mesh, and centres of the triangles in the mesh.
Although it is possible to calculate these on the fly this does lead to a lot of redundant cal-
culations. Recall, for example, that all the matrix elements in the same column or row of the
matrix are associated with the same edge and thus have an equal corresponding length. If the
edges lengths are calculated each time they are required, the number of computations will be
N?. However, it should be clear that, since there are only N edges, only N such computations
are required. A similar argument can be followed for the other geometric properties.



CHAPTER 4. MOM SCATTERING ANALYSIS 81

The pre_process() call of Listing 4.13 thus takes the geometric data from the initialisation
phase (not shown here) and generates and stores any additional properties that are required
as part of the computational process. In the case of the edge lengths, these take the form of
double precision floating-point arrays that can be indexed using the edge number. In the case
of the CUDA implementation, the arrays for the additional data are allocated in global device
memory and pre_process() includes the allocation and transfer of all geometric data required in
the computations.

In the CPU implementation, memory only needs to be allocated for the additional data and
filled with calculated values. In both cases, a list of allocated pointers is maintained and the call
to cleanup() in Listing 4.13 is responsible for the implementation-specific freeing of this memory.
As such, the geometric data remains allocated — either on the host or on the device — for the
duration of the RCS calculation. This allows for the calculated values to be reused for repeated
calls to routines such as calculate Zmatrix() and calculate V.vector(). In the CUDA case, this
serves to reduce the amount of data that has to be transferred to the device before computation
can commence.

For the LU decomposition and the solution of the current coefficients (solve I_vector()),
neither mom_solver_cpu.cpp NOI' mom_solver_cuda.cu have a Corresponding routine in computational_
kernel.h. Instead, the functionality is provided by either a call to the CPU-based LAPACK
routines, provided by the multi-core version of ACML, or a library containing the implementation
of the MAGMA-panel-based LU decomposition as discussed in Section 3.3.3. In the case of
the solution for the current coefficients, the zGETRS and CGETRS routines used have no MAGMA
implementations at this time and are thus only performed by calls to the relevanl ACML routines
8, 6.

The implementation procedures for the calculation of the excitation vector and the scattered
field are almost identical to that of the matrix assembly. Here, routines calculate Vv.m() and
calculate Em(), that return a double_complex value and a double_complex3 value, respectively, are
implemented in computational kernel.h. These routines provide the computational kernels for
computing each of the excitation vector elements as in (4.12), and the contributions to the
scattered field for each edge as in (4.20). In the case of the latter, these contributions are
stored in a temporary array of type double_complex3 and summed once all the elements have been
computed.

The routines calculate_V_vector() and calculate E_s() are implemented in both mom_solver_cpu
.cpp and mom_solver_cuda.cu, and provide the compatible entry points into either the CPU or
CUDA implementation. As is the case with the matrix assembly, the CPU implementation
of calculate_V_vector() is parallelised using the #pragma omp parallel and #pragma omp for compiler
directives for OpenMP. Since the expression for the scattered field in (4.20) contains summation,
a simple OpenMP for loop is not sufficient and an OpenMP reduction operation is used [19].

The CUDA implementation consists of the respective entry function (calculate V_vector()

or calculateEs()), along with the CUDA kernels that wrap the computational kernels and
allow them to be called by each thread. Since the structures being assembled are vectors, one-
dimensional CUDA grids are used. For the present CUDA implementation, the summation of
the temporary array of scattered field values is performed on the host, also making use of an
OpenMP reduction. Once the total scattered field has been obtained, it is a straightforward
process to obtain the scalar RCS of (4.1).

4.4 Verification results

Before continuing a discussion on the performance results of the methods implemented, the
matter of verification is addressed. Since much of the formulation is taken from [I0], it follows
that the results presented therein are used as the first step for comparison.



CHAPTER 4. MOM SCATTERING ANALYSIS 82

One of the problems in [I0] — and already introduced in Section 4.2.1 — is that of a square
PEC plate in the zy-plane, measuring one wavelength on each side. An example mesh for such
a plate is shown in Figure 4.9. Note that the direction of incidence of the electric field, k= -z,
is normal to the surface of the plate and is parallel to the negative z-axis. As such, 6 and ¢
(as defined in Figure 4.1) are both zero. The incident electric field, Einc, is also shown, and is
defined as [10]

Eine = Egf + Ey0, (4.21)

with Ey = 0 in this case. The two cut-lines ,AA" and BB’, are the same as those presented
in [I0], with the z-component of the surface current density — normalized with respect to the
incident field — calculated along these cut lines. Figure 4.9 also shows a quiver plot of the
calculated surface current density, with the distribution similar to [I03].

y=A A"
N . n : NG S
N SN NN
o ~ SN
< = NG
e ~ o
) a ~ YR
. e QBN ,
B S e | B
R Ve ~ N
NS TN
- AN Nt
- O AN TN
e S .
Y -::: <= \:’::
AN IO N SN
N\
x A" ® > T=A
Einc:E99

Figure 4.9: A figure showing the 1\ square plate (in the zy-plane) used as a sample problem. The
mesh (with 199 degrees of freedom) used to obtain the verification results, the cut-lines AA’ and BB’,
and the normally-incident electric field (E'mc) as defined in [I0] are also shown. The surface current
density calculated using the implementation discussed is included as a quiver plot and the black squares
(M) along the cut-lines indicate the points where the current is measured to produce Figure 4.10 and

Figure 4.11.

Figure 4.10 shows the calculated current results as a function of displacement from the edge
of the plate for the two cut-lines when using single precision floating-point computation and the
mesh shown in Figure 4.9. Results from [10], as well as results computed using FEKO [92] are
given for comparison. The CPU and CUDA results calculated here are indistinguishable from
each other and agree well with the reference results.

The double precision equivalent of Figure 4.10 is shown in Figure 4.11. The same reference
results from [I0] and [02] have been included. As is the case for the single precision results,
the CPU and CUDA results are indistinguishable, and agree well with the reference curves.
Since the outputs from all the test systems (introduced in Section 3.4.1) were found to be
indistinguishable, only one set of current density verification results — those of System 1 — have
been presented.

The final verification step is performed by calculating the normalised monostatic RCS of the
square plate of Figure 4.9, for the incident field polarisation as shown, but with the incident
angle 0; ranging from 0 to 90 degrees in steps of one degree. The method used to perform the
calculation has been discussed in Section 4.2.2.



CHAPTER 4. MOM SCATTERING ANALYSIS 83

7 T T
— RWGAA' H H CPUAA'
o -- RWGBB' V V CPUBB' B
_ -+ FEKOAA' @ @ CUDA AA! :
g | FEKOBB' A A CUDA BB'

Normalised current density magnitude (|Jx|/|Hinc|)

%.O 0.2 0.4 0.6 0.8 1.0
Normalised distance along plate (x/\lambda, y/\lambda)

Figure 4.10: A recreation of Figure 6 from [I0] showing the normalised magnitude of the z-component
of the surface current density (calculated in single precision) along the two cut lines (and for the mesh)
as shown in Figure 4.9. Results from CPU and CUDA implementations discussed here are given, with
results read off the figure in [I0] as well as results computed using FEKO [92] on a different 1A x 1\ mesh
provided for comparison. The CPU and CUDA results are identical and agree well with the reference
results.

; ‘ :
— RWGAA' W H CPUAA
| -- RWGBB' V V¥ CPUBB s
‘ --- FEKOAA' @ @ CUDA AA' :
------ FEKOBB' A A CUDA BB'

Normalised current density magnitude (]Jx|/|Hinc|)

%.0 0.2 0.4 0.6 0.8 1.0
Normalised distance along plate (x/\lambda, y/A\lambda)

Figure 4.11: A recreation of Figure 6 from [I0] showing the normalised magnitude of the z-component
of the surface current density (calculated in double precision) along the two cut lines (and for the
mesh) as shown in Figure 4.9. Results from CPU and CUDA implementations discussed here are given,
with results read off the figure in [I0] as well as results computed using FEKO [92] on a different 1A x 1A
mesh provided for comparison. The CPU and CUDA results are identical.

Figure 4.12 and Figure 4.13 show the normalised RCS computed for the mesh of Figure 4.9



CHAPTER 4. MOM SCATTERING ANALYSIS 84

on all the test systems for single and double precision calculations, respectively. Also shown are
the RCS results computed using FEKO. Note that the FEKO mesh and the mesh in Figure 4.9
are not the same, with the FEKO mesh being non-uniform and consisting of more degrees of
freedom (261 instead of 199), accounting for the differences. As with the current calculations,
the CPU and CUDA results for all the systems are indistinguishable and agree well with the
FEKO results.

LOP | ==  FEKO (261 DOFS)

.. |e e system1CPU e e system 1 CUDA
|4 a system 2 CPU Y v system 2 CUDA ||
0.8+ i\-i---|m m system 3 CPU ¢ & system 3 CUDA H

Normalised RCS
©
Ul
T

o
>
T

0.2 i b b

(T R

0.00 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Incident angle

Figure 4.12: The computed normalised radar cross section of a 1\ square PEC plate as a function of
the angle 6 (¢ = 0) calculated in single precision using the mesh shown in Figure 4.9. Results are
shown for both the CPU and CUDA implementations for the three test systems considered, with FEKO
results being included as a reference. The results calculated on the three systems are indistinguishable.

LOP i ii| == FEKO (261 DOFS)
L e e system 1 CPU e o system 1 CUDA
" |a a system2CPU v v system 2 CUDA ||
.|m m system 3 CPU ¢ & system 3 CUDA |

Normalised RCS
o
Ul
T

o©
iN
T

0.2F

0.1}

O'00 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Incident angle

Figure 4.13: The computed normalised radar cross section of a 1\ square PEC plate as a function of
the angle 6 (¢ = 0) calculated in double precision using the mesh shown in Figure 4.9. Results are
shown for both the CPU and CUDA implementations for the three test systems considered, with FEKO
results being included as a reference. The results calculated on the three systems are indistinguishable.



CHAPTER 4. MOM SCATTERING ANALYSIS 85

4.5 Performance results

The performance results presented in this section are comprised of two parts. The first is a timing
analysis of the various phases of the MOM process and the effect of their GPU-acceleration. The
second set shows the speedups achieved through GPU acceleration. As was the case with the
LU decomposition implementations discussed in Chapter 3, three test systems are used for the
studies conducted here. In all cases, only the multi-core results using all the available cores
in a system are presented as the CPU results. It should be noted that, in some cases, only
the graphs for System 1 are presented in this chapter, with the equivalent charts for the other
systems included as part of Appendix 6.2.

As for the LU decomposition performance results of Section 3.4.2, each of the curves shown
give an indication of the problem size that equates to 1 GB and 4 GB, where applicable, of
memory usage in terms of the size of the impedance matrix [Z] This gives an indication of
when the memory capacities of the CUDA devices used will be exceeded and shows whether or
not the methods implemented are resilient with respect to limited memory resources.

4.5.1 Runtime contributions

In order to determine the importance of the acceleration of each of the phases of the MOM
solution process, consider the graph depicted in Figure 4.14. This graph show the percentage
contribution to the total runtime for the different phases for single precision CPU-based compu-
tation of the RCS (such as in Figure 4.12). It should be noted that, although all the other phases
of the process, such as excitation vector calculation and post-processing — but not initialisation —
are included (and grouped together), only the matrix assembly phase, LU decomposition phase,
and back-substitution phase (to obtain the current coefficients) are explicitly labelled in the fig-
ure, since they contribute most significantly to the total runtime. Figure 4.14 also clearly shows
that the dominant phase for the multi-core CPU-based computation of the RCS of the square
plate is the assembly of the impedance matrix [Z] It should be pointed out that although the
phase of actually solving for the current coefficients contributes 8% of the computational time,
this step is performed about 90 times — once for every angular step in the calculation of the
monostatic RCS.

If only the matrix assembly phase is replaced by a CUDA implementation, the new distribu-
tion of computational time is given by Figure 4.15. Here, the contribution of the assembly phase
is negligible, with even the other phases of the solution process not labelled explicitly contribut-
ing more significantly to the total runtime for smaller problems. This indicates that CUDA is
able to provide a significant speedup to the matrix assembly phase, which is in agreement with
previously published works as discussed in Section 4.1. With this acceleration, the LU decompo-
sition phase is now the dominant phase of the solution process, with its contribution increasing
as the size of the problem increases. Since the computational cost of the LU decomposition is
O(N3) and that of the solution of the currents and the matrix assembly phases are O(N?), large
enough problems of this type are expected to show a total dominance of the solution time by
the LU decomposition.

The distribution for the complete CUDA-based implementation is given in Figure 4.16. This
includes the CUDA acceleration of the matrix assembly, the LU decomposition, the excitation
vector assembly, and post-processing phases. Finding the unknown currents by back-substitution
is now the phase that now contributes most significantly to the total runtime, with a contribution
in excess of 70%. The primary reason for its exclusion for CUDA-acceleration is the lack of a
suitable routine as part of the MAGMA library at present. It should also be noted that in the
case of an RCS calculation, the contribution of this phase is multiplied by the number of angular
data points that are to be considered and as such the importance of the phase is heavily problem
dependent.



CHAPTER 4. MOM SCATTERING ANALYSIS 86

100 T T T T T T [T T T T T T T T T [ Solve forcurrent

oo s e s s goefficients ({13::8%

Percentage of runtime [%]

1%24 4096 8192 2288 16384 20480

Degrees of Freedom

24576 28672 32240

Figure 4.14: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.12. This figure shows the results for single precision calculations using
the CPU-based implementation for System 1. The three phases that contribute most significantly to
the total execution time are labelled, with the other phases (excluding initialisation) grouped together
and just visible in the upper left corner of the plot. Also shown are vertical lines corresponding to 1 GB

and 4 GB storage requirements (in terms of only the impedance matrix) for single precision complex
values.

Percentage of runtime [%]

1%24 4096 8192 2288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 4.15: A graph showing the relative distribution of the execution times of the phases of the
MOM computational process as a function of problem size (degrees of freedom) when calculating an RCS
curve such as is shown in Figure 4.12. This figure shows the results for single precision calculations
on System 1 when only the matrix assembly phase is implemented in CUDA. The two phases that
contribute most significantly to the total execution time are labelled, with the CUDA matrix assembly
contribution shown at the bottom of the graph, and the other phases (excluding initialisation) grouped
together and visible in the upper left corner of the plot. Also shown are vertical lines corresponding

to 1 GB and 4 GB storage requirements (in terms of only the impedance matrix) for single precision
complex values.



CHAPTER 4. MOM SCATTERING ANALYSIS 87

Percentage of runtime [%]

1%24 4096 8192 2288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 4.16: A graph showing the relative distribution of the execution times of the phases of the
MOM computational process as a function of problem size (degrees of freedom) when calculating an RCS
curve such as is shown in Figure 4.12. This figure shows the results for single precision calculations on
System 1 for the CUDA implementation. The two phases that contribute most significantly to the total
execution time are labelled, with the matrix assembly contribution shown at the bottom of the graph
and other phases (excluding initialisation) grouped together and visible in the upper left corner of the
plot. Also shown are vertical lines corresponding to 1 GB and 4 GB storage requirements (in terms of
only the impedance matrix) for single precision complex values. The phase to solve for the unknown
current coefficients is not implemented in CUDA.

4.5.2 Speedups

With the investigation into the runtime contributions of the various phases in the MOM process
in Section 4.5.1, it has already been indicated that the some of the phases of the MOM solution
process have been successfully accelerated using CUDA. In this section the measured speedups
for the three systems introduced in Section 3.4.1 are investigated for both single and double
precision computation. The results shown are for the calculation of the RCS (as in Figure 4.12
and Figure 4.13) of the one wavelength square plate considered.

Single precision

The speedup results for the single precision complex case run on System 1 is given in Figure 4.17,
with four speedup curves shown. The first of these are the speedup of the Method of Moments
assembly phase, and the speedup of the LU decomposition phase, with the remaining curves
showing two variants of the total solution speedup. The curve labelled total solution speedup,
plotted in solid black, is the speedup for the solution when all the solution phases are accelerated
using CUDA, and corresponds to the runtime distribution in Figure 4.16. The last curve is
the solution speedup if only the matrix assembly phase is accelerated, as is represented by
the runtime distribution plot of Figure 4.15. Here, it is clear that, although the assembly
is accelerated by almost 300x, if the other phases are not also considered, the total system
speedup decreases rapidly, with the attainable speedup limited by the runtime contribution of
the other phases. The total solution speedup is measured at between 8x and 10x for most of
the problem sizes considered. It should be noted that if only one incident angle is considered for
the calculation — an effective speedup of the current coefficient solution phase of around 90x —
the peak total solution speedup is expected to be about 50x.

The speedup results for System 2 are similar to those of System 1 and are given in Figure 4.18.



CHAPTER 4. MOM SCATTERING ANALYSIS 88

Here, the speedup for the matrix assembly phase is close to 300x. Furthermore, since the LU
decomposition phase speedup is also similar to that of System 1, the total speedup obtained
remains between 8x to 10x for the larger problems. The runtime distribution curves for this
system are included in Appendix 6.2.

Figure 4.19 shows the single precision speedup results for System 3. Since the CPU-based
performance of this system (as illustrated by the LU decomposition results of Section 3.4) is
significantly higher than the other two systems, while the GPU offers similar performance, the
measured speedups are not expected to be as high as for the other systems. This is indeed the
case, with Figure 4.19 showing matrix assembly and LU decomposition speedups of around 40x
and 2x, respectively. This translates to a total solution speedup of 4x to 5x times. As is the
case for the System 2 results, the runtime distribution curves for System 3 are provided as part
of Appendix 6.2.

300

® matrix assembly [*]

: ® LU decomposition
Lofiiiii e e total (only [*¥] in CUDA)
301 AR RS E i~ = total solution speedup

Speedup
T

L L L L L L L L L L L L L L L L Il L L L L L L L L L L Il L
1%24 4096 8192 12288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 4.17: Measured speedups of the CUDA implementation over the CPU implementation on Sys-
tem 1 in single precision as a function of the problem size (number of degrees of freedom). The
phase-only speedups for the matrix assembly (o) and LU decomposition (M) are shown along with the
total system speedup (—) and the system speedup if only the matrix assembly is accelerated using CUDA
(#). A logarithmic scale is used on the vertical axis for better comparison and vertical lines representing
impedance matrix sizes corresponding to 1 GB and 4 GB storage requirements in single precision are

also given.



CHAPTER 4. MOM SCATTERING ANALYSIS 89

| ® m LU decomposition
.| ¢ ¢ total (only [*] in CUDA)
| = total solution speedup |

Speedup

)
L b )]

1%24 4096 8192 12288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 4.18: Measured speedups of the CUDA implementation over the CPU implementation on Sys-
tem 2 in single precision as a function of the problem size (number of degrees of freedom). The
phase-only speedups for the matrix assembly (o) and LU decomposition (M) are shown along with the
total system speedup (—) and the system speedup if only the matrix assembly is accelerated using CUDA
(#). A logarithmic scale is used on the vertical axis for better comparison and vertical lines representing
impedance matrix sizes corresponding to 1 GB and 4 GB storage requirements in single precision are
also given.

300 matrix assembly [*] 1
- LU decomposition .

: total (only [*] in CUDA)
100} - total solution speedup 1
o 4
30 i

Speedup
T

d L L L L L L L L L 'T' L L L L L L L Il L L L L L L L L L L Il L
1024 4096 8192 12288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 4.19: Measured speedups of the CUDA implementation over the CPU implementation on Sys-
tem 3 in single precision as a function of the problem size (number of degrees of freedom). The
phase-only speedups for the matrix assembly (o) and LU decomposition (l) are shown along with the
total system speedup (—) and the system speedup if only the matrix assembly is accelerated using CUDA
(#). A logarithmic scale is used on the vertical axis for better comparison and vertical lines representing
impedance matrix sizes corresponding to 1 GB and 4 GB storage requirements in single precision are
also given.



CHAPTER 4. MOM SCATTERING ANALYSIS 90

As stated, one of the contributions of this research is the investigation of the use of GPUs in
the extension of the usefulness (measured in terms of performance) of an older system such as
System 1. To this end, the CPU and CUDA results for the various systems in single precision are
summarised in Figure 4.20, where the performance of the various implementations are compared
to the CPU results for System 1. Here, it can be seen that although the CPU results for System
2 and System 3 indicate that they are about 1.5x and 6x faster, respectively, all the CUDA
results outperform the baseline by at least 8x. Thus, the addition of a GPU allows System 1
to perform better than the other systems used in the comparison. This performance advantage
is removed, however, if GPU acceleration is used in each of the other systems.

10— T——— T T T T T T T T T T — T
- - system 1 CPU e o system 1 CUDA

. 7|Y v system2CPU ® ®m system 2 CUDA
Ao a system 3 CPU ¢ ¢ system 3 CUDA

Speedup

1 S e e

L L L L L L L L
1024 4096 8192 12288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 4.20: Total solution speedup relative to the System 1 CPU results as a function of the problems
size for for the various other CPU and CUDA implementations in single precision. The CPU speedups
for System 2 (¥) and System 3 (A) as well as the CUDA speedups for System 1 (o), System 2 (H),
and System 3 (#) are shown.



CHAPTER 4. MOM SCATTERING ANALYSIS 91

Double precision

The speedup results presented in the previous section for the single precision case are repeated
here for double precision calculations, with much of the discussion also applicable. The results
for System 1, System 2, and System 3 are shown in Figure 4.21, Figure 4.22, and Figure 4.23,
respectively.

System 1 and System 2 shown similar results for the speedup of the matrix assembly phase,
with a speedup of about 45x measured in each case. For the LU decomposition phase, however,
the speedup in the case of System 1 is between 2x and 3x compared to a speedup of less than
2x for System 2. This is due to the difference in speedups when comparing the CPUs and GPUs
of the two systems and is evident in the zGETRF results of Section 3.4.2. For the ZGETRF routines
— as also used here — the CPU speedup of System 2 over System 1 is about 4x, whereas System
2’s GPU results are only about 50% faster than those of System 1. The total solution speedup
for both systems is more than 3x over most of the range of problem sizes.

Although the CUDA matrix assembly for System 3 is around 10x faster than the multi-core
CPU implementation running on 8 cores (as shown in the System 3 CUDA speedup curve of
Figure 4.23), the total solution speedup decreases from about 3x for problems of around 1000
degrees of freedom to just more than unity for the largest problem considered (31621 DOFs).
This mediocre performance is a result of the high CPU-based LU decomposition performance, as
shown in Section 3.4.2, along with the poor double precision performance compared to the single
precision performance of the GT200 device used (see Figure 3.9 and Figure 4.19 specifically).

100

matrix assembly [*]
LU decomposition

total (only [*] in CUDA)| |
total solution speedup [

Il Il Il L \3 Il L Il Il L Il \3 L L Il Il L L \ \’\ \ V\ Il Il \7
01?624 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 4.21: Measured speedups of the CUDA implementation over the CPU implementation on Sys-
tem 1 in double precision as a function of the problem size (number of degrees of freedom). The
phase-only speedups for the matrix assembly (o) and LU decomposition (l) are shown along with the
total system speedup (—) and the system speedup if only the matrix assembly is accelerated using CUDA
(#). A logarithmic scale is used on the vertical axis for better comparison and vertical lines representing
impedance matrix sizes corresponding to 1 GB and 4 GB storage requirements in double precision are
also given.



CHAPTER 4. MOM SCATTERING ANALYSIS 92

100

matrix assembly [*]
LU decomposition
total (only [*] in CUDA)
total solution speedup

Il L Il L L L L L L L L L L L L Il L L L L L L L Il L L
01%24 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 4.22: Measured speedups of the CUDA implementation over the CPU implementation on Sys-
tem 2 in double precision as a function of the problem size (number of degrees of freedom). The
phase-only speedups for the matrix assembly (o) and LU decomposition (M) are shown along with the
total system speedup (—) and the system speedup if only the matrix assembly is accelerated using CUDA
(#). A logarithmic scale is used on the vertical axis for better comparison and vertical lines representing
impedance matrix sizes corresponding to 1 GB and 4 GB storage requirements in double precision are
also given.

100 — T T
: : matrix assembly [*]

LU decomposition
total (only [*] in CUDA)
total solution speedup

Il L Il L L L L L L L L L L L L Il L L L L L L L Il L L
013024 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 4.23: Measured speedups of the CUDA implementation over the CPU implementation on Sys-
tem 3 in double precision as a function of the problem size (number of degrees of freedom). The
phase-only speedups for the matrix assembly (o) and LU decomposition (M) are shown along with the
total system speedup (—) and the system speedup if only the matrix assembly is accelerated using CUDA
(#). A logarithmic scale is used on the vertical axis for better comparison and vertical lines representing
impedance matrix sizes corresponding to 1 GB and 4 GB storage requirements in double precision are
also given.



CHAPTER 4. MOM SCATTERING ANALYSIS 93

Figure 4.24 shows the double precision equivalent to Figure 4.20, where the aim is to ascertain
the performance of the CPU and CUDA implementations of the three systems relative to the
CPU results of System 1 (indicated by the baseline at 1x). In this case, the CUDA-accelerated
implementation on System 1 is not able to outperform the CPU-based implementation on System
3. It does, however, reduce the performance gap from about 5x to about 1.7x. The CUDA
results of System 1 do perform better than the CPU-only results of System 2 by at least 50% for
the range of problem sizes considered. Furthermore, although the CPU-only results of System
3 offer more than double the performance of those of System 2, the addition of a CUDA GPU
allows System 2 to outperform System 3.

30 T T T T T T T T T T T T | | T T T T T T T T T T T T T T
Dol - - system 1 CPU e e system 1 CUDA
Fopseeeeo L v W system 2 CPU m ® system 2 CUDA [
AAMsah - ||A a system 3 CPU ¢ ¢ system 3 CUDA

B i Sl | S R by

TV A—— e«

Speedup

-V

SEEE LN S

Rt s SEEL EEEL S Bt Al it i bt

1024 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 4.24: Total solution speedup relative to the System 1 CPU results as a function of the problems
size for for the various other CPU and CUDA implementations in double precision. The CPU speedups
for System 2 (¥) and System 3 (A) as well as the CUDA speedups for System 1 (o), System 2 (H),
and System 3 (#) are shown.

4.5.3 Discussion of results

Before discussing the implications of the results presented thus far, the question of the perfor-
mance improvement of the multi-core CPU implementation — used to obtain the CPU results —
is addressed. Consider Figure 4.25, which shows the speedup of the single precision multi-core
implementation (using OpenMP) over the same implementation running on a single core (of
System 2). The same square plate RCS problem as for the performance results already pre-
sented is used, although the problem sizes considered are not as large. The multi-core speedups
for the LU decomposition (implemented in ACML), and matrix assembly phases are presented,
along with the total solution speedup. In all cases, the speedup is between 3x and 4x times,
indicating that the OpenMP-based multi-core CPU implementation scales well with the number
of processes.

The equivalent double precision results are shown in Figure 4.26, and follow much the same
trend as the single precision results of Figure 4.25. The measured multi-core CPU speedups
for both individual phases, as well as the total solution speedup are above 3x. These results
indicate that the OpenMP implementation presented in Section 4.3.4 is relatively efficient.



94

CHAPTER 4. MOM SCATTERING ANALYSIS

6F ® e matrix assembly [*]
sl ;J|® ® LU decomposition
- — total solution speedup
B g~ 0= =@ =~ = W= == Q= = - TS S
4’ d .____. -~ ====H
[ “._‘_-I‘—""'" . I
Y SENE
%3 .(,l - -
E S
g |’
=3 1
n 1
1
2 1
1
.
1
ba 4096 8192 12288 16384 20480 23056

Degrees of Freedom

Figure 4.25: Measured speedups of the multi-core CPU implementation over a single core run on
System 2 in single precision as a function of the problem size (number of degrees of freedom). The
phase-only speedups for the matrix assembly (o) and LU decomposition (l) are shown along with the
total solution speedup (—). A logarithmic scale is used on the vertical axis and vertical lines representing
impedance matrix sizes corresponding to 1 GB and 4 GB storage requirements in single precision are

also given.

T T T T | | T T
6 o “l® e matrix assembly [*]
T OO O B i i . |m = LU decomposition |
| — total solution speedup

i e O

A

o
L I R
L L L L . L L L L L L o L L L L L
]64 4096 8192 12288 16384 20480 23056

Degrees of Freedom

Figure 4.26: Measured speedups of the multi-core CPU implementation over a single core run on
System 2 in double precision as a function of the problem size (number of degrees of freedom). The
phase-only speedups for the matrix assembly (o) and LU decomposition (M) are shown along with the
total solution speedup (—). A logarithmic scale is used on the vertical axis and vertical lines representing
impedance matrix sizes corresponding to 1 GB and 4 GB storage requirements in double precision are

also given.



CHAPTER 4. MOM SCATTERING ANALYSIS 95

When the matrix assembly phase is considered alone, the CUDA implementation consistently
outperforms the multi-core CPU implementation. Here speedups of up to 300x are measured in
single precision. Even for System 3, a speedup of around 40x is measured. For the double pre-
cision case, the speedups are not as high, with 40-50x and 10x being measured for the first two
systems and System 3, respectively. It should be added that these speedups are maintained even
when the amount of memory available on the CUDA devices (measured in terms of impedance
matrix storage size) has been exceeded. This indicates that the super-block CUDA implemen-
tation of Section 4.3.5 does not limit performance. The high performance of this particular
phase of the solution process can be attributed to the limited communication required between
the threads resulting in a highly parallel computational task, for which the CUDA GPUs are
well suited. This argument also holds for the multi-core CPU implementation of the matrix
assembly.

Since the performance of one of the other contributing phases, the LU decomposition, is
discussed in detail in Section 3.4, this is not repeated here. It suffices to say that the speedups
obtained for this phase are significantly lower than those of the matrix fill. However, even
though the runtime contribution of this phase is increasing with problems size (since it is O(N?)
in computational cost compared to O(N?) for the other phases), the total solution speedups
have been measured as more than unity (break-even) for the range of problem sizes considered,
with peak speedups of 12x and 5x obtained for single and double precision, respectively (both
for System 2).

4.6 Conclusion

This chapter discussed the implementation and performance benchmarking of a complete MOM
solution process for solving simple scattering problems. This has been successfully applied to
the problem of computing the monostatic RCS of a square PEC plate. Although a number of
prior works that tackle similar problems exist, this particular solution offers a number of novel
additions.

One of these is the inclusion of native double precision support for the entire MOM solution
process which extends the works in [89] and [05], where double precision is also used. In the
former this is implemented as double-single precision computation [93] and not native double
precision and applied to general Helmholtz problems such as acoustics. In [95], CUDA accel-
eration (in native double precision) is only applied to the LU decomposition phase for wire
problems. Double precision results for the matrix assembly phase have been presented in [I1],
with this work an extension of that research. Here, the other phases of the solution process, as
well as a multi-core CPU-based implementation are included, and this accounts for the difference
in speedup results.

Staying on the topic of precision, this chapter presents both double and single precision
results for a wide range of problem sizes benchmarked on three difference systems, each with its
own strengths and weaknesses. This allows for a better understanding of the relative performance
between the precisions. It it is clear that, in the GPU case, it is not as simple as a factor two
improvement for single precision over double precision. This is the general consensus for CPU-
based implementations and is indicated by the CPU results of Section 3.4.2. This comparative
study further allows for the investigation of the extension of usability of older machines through
GPU upgrades for a type of problem other than the LU decomposition discussed at length in
Chapter 3. The results indicate that, at least for single precision, a comparatively cheap GPU
upgrade to System 1 allows for performance that is at worst comparable to the newer systems
considered. For double precision, the GPU-accelerated System 1 is able to outperform only
System 2’s CPU results and not those of System 3. The addition of a GPU or a Tesla 20-series
compute card — built using the GF100 architecture and promising improved double precision



CHAPTER 4. MOM SCATTERING ANALYSIS 96

performance — may be able to further close the gap.

One of the primary aims of the panel-based LU decomposition, discussed in Chapter 3, is
dealing with the limited amount of memory available on CUDA devices (especially the consumer-
level devices used in System 1 and System 2). This has also been considered in this chapter, with
the implementation of the super-block method (adapted from [91]]) in the CUDA implementation
of the matrix assembly phase. From the performance results presented in Section 4.5, it is clear
that no degradation in the performance of the matrix assembly phase occurs if the impedance
matrix size exceeds the available device memory. For the problem sizes considered, the memory
required exceeds the available memory by a considerable factor for both single and double
precision computation (up to eight and 16 times, respectively).

Much of the discussion in this chapter was related to the concurrent development of both a
multi-core CPU and CUDA implementation of the solution process considered. Although one
could argue that this could result in implementations that are non-optimal in either case, this
is of secondary concern. The simple framework presented allows for the rapid development of
stable, accurate implementations. Furthermore, since much of the code is shared its maintenance
and extension — to support alternate formulations or integration schemes, for example — are both
greatly simplified. The rapid development process also allows for the identification of critical
routines (such as the LU decomposition and linear system solve in this case) whose acceleration
is imperative to obtain improved total solution performance.

Once aspect that has not been addressed in this chapter is the use of multiple CUDA devices
or the concurrent use of GPU and CPU computation. Due to the data-parallel nature of the
computations and the framework implemented here, specifically the super-block based matrix
assembly implementation, distributing the matrix assembly between multiple similar CUDA
devices installed in the same host should not pose too much of a problem. If the aim is to
obtain an implementation that makes full use of all the CPU and GPU resources available in
a system, load-balancing issues could lead to sub-par performance. In this case, the use of a
scheduling system such as StarPU [82] (discussed briefly pertaining to the LU decomposition in
Chapter 3) would prove useful. This would be further helped by the fact that the independence
of the entries in the impedance matrix, for example, make the process of specifying parallel
computational tasks trivial.



Chapter 5

FEM waveguide analysis

One of the first applications of the Finite Element Method (FEM) to the field of electromagnetics,
was its use in the analysis of hollow waveguide problems by Silvester in 1969 [I09]. Since
then, many more publications on the topic, including a number of books, have been produced
[TT0, [TTT, (T2} [113].

This chapter considers the application of the Finite Element Method to waveguide analysis
and more specifically waveguide problems that require the solution of eigenvalue problems. These
cutoff and dispersion problems have been considered in a number of other publications such as
[88, 1T, I13]. This chapter does not aim to provide an in-depth analysis of the formulation
aspects of the FEM as applied to these problems, instead focussing on some of the details of the
implementation.

With regards to the implementation, one of the contributions of this chapter is a discussion
on the use of FEniCS in the analysis of electromagnetic waveguide problems. FEniCS is a
collection of software for the automated modelling and solution of differential equations using
the Finite Element Method [I6]. Although it has been applied to electromagnetic problems
(such as eddy current problems in [I14]), this work represents the first time that it has been
applied to waveguide analysis, and specifically waveguide eigenproblems.

The second implementation aspect considered relates to the solution of the eigensystems that
result when applying the FEM to the analysis of waveguide cutoff or dispersion problems. As in
Chapter 3 and Chapter 4, the use of CUDA in accelerating the solution process is considered. To
this end, a standard eigenvalue problem solver that finds a small number of extreme eigenvalues
(largest magnitude, for example) and their associated eigenvectors for dense matrices is imple-
mented using ARPACK [I4]. The conversion of generalised eigenvalue problems to standard
eigenvalue problems is also considered. CUDA-accelerated implementations are presented and
the relative performance of the CUDA and CPU implementations are considered for two of the
systems introduced in Section 3.4.1.

It should be noted that, although the CUDA implementations of Chapter 3 and Chapter 4
both succeed (with varying levels of success) to overcome the inherent memory limitations
associated with using CUDA devices, this is not considered here. Furthermore, the eigensolver
implementation is aimed at general dense matrices even though finite element matrices are sparse
and can be symmetric [88]. The switch to dense matrices is touched upon again at the end of
this chapter, with the use of non-symmetric (general) matrix routines being motivated by the
fact that this should make the implementation more widely applicable. This also allows for the
reuse of the LU decomposition routines from Chapter 3.

As a start to the discussion, a summary of relevant proir research is presented in Section 5.1.
This is followed by a brief discussion on the finite element formulation for the problems consid-
ered in Section 5.2, where the assembly of the various matrices required is discussed and the
generalised eigenvalue problems addressed. Section 5.3 then presents the actual implementation

97



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 98

details, with the use of FEniCS discussed in-depth for the three example problems considered.
The implementation of the generalised eigensolver — both the CPU and CUDA versions — is also
addressed.

In terms of results, Section 5.4 shows the FEniCS and eigensolver implementations applied
to three different waveguide examples. In each case, the computed results are compared to
either analytical values, or results taken from other sources. This is followed by an analysis
of the performance of the ARPACK-based standard eigenproblem solver and the generalised
eigenproblem solver, of which it forms a part, in Section 5.5. Conclusions and future directions
for the research are discussed in Section 5.6.

5.1 Related work

When considering the finite element analysis of waveguide structures, a multitude of publications
exist on the topic. Most notable — and used for much of the formulations presented here, as
well as reference results — are [I11]], [I13], and [I15], with the theoretical behaviour of the guides
discussed in [I3]. The FEM and its application to electromagnetic problems is also addressed
in [88], [I1I0], [I16], [II7], and [118].

The FEniCS Project, used here to implement the FEM formulations, represents a collection
of free software designed to aid in the automation of computational mathematical modelling
[16]. Traditionally, the development of the FEniCS set of packages has been driven from an
applied mathematics point of view, with many users showing applications in computational
fluid dynamics or structural mechanics. The use of FEniCS in electromagnetic modelling is
limited, with examples such as [I14] showing its use in eddy current simulations. This work
represents the first, to the knowledge of the author, application of FEniCS to electromagnetic
waveguide eigenanalysis.

For the CUDA acceleration of eigenvalue problems, a number of examples exist, including
[119] and [120]. The former is limited to the solution of the standard eigenvalue problem for dense
tri-diagonal symmetric matrices. The latter also only considers the standard eigenvalue problem,
again for symmetric matrices using the Lanczos algorithm [63]. CUDA has been applied to other
computational electromagnetic finite element problems in [I2I], where the acceleration of the
Discontinuous Galerkin Finite Element Method is considered for the solution of driven, time-
domain finite element problems. This contrasts with the implementation considered here, where
the FEM is used in the frequency domain to solve resonance problems for bounded structures.

The eigensolver implementation presented here is the continuation of the research presented
in [I5], where the CUDA acceleration of the k-step Arnoldi factorisation [I122] was considered.
This factorisation forms the basis of methods such as the Implicitly Restarted Arnoldi Method,
which can be seen as a generalisation of the Lanczos method to non-symmetric matrices and is
used in the (non-symmetric) eigensolvers of ARPACK [I4]. Although [I5] also only considers
the standard eigenvalue problem, this work extendeds it to the generalised eigenvalue problem,
by making use of the shift-invert procedure, as suggested in the ARPACK literature [I4]. The
current implementation of this shift-invert process (discussed in Section 5.3.2) makes use of
LAPACK routines and thus allows for the use of the MAGMA library — as in Chapter 3 and
Chapter 4 — to provide CUDA acceleration, with an optimised CPU implementation being
provided by ACML.

5.2 FEM formulation for cutoff and dispersion analysis

In this section, the formulation of two related waveguide analysis problems are briefly considered,
namely cutoff and dispersion analysis. As a starting point, consider the representation of an
arbitrary waveguide shown in Figure 5.1.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 99

Figure 5.1: A long waveguide with an arbitrary cross-section aligned with the z-axis. Shown is the
interior domain of the waveguide €, surrounded by a PEC surface modelled as an electric wall I',. The
relative permittivity and permeability in the guide are €, and p,. These are not necessarily constant over
the guide cross-section.

In the full wave analysis of such guides, it is required to solve the vector Helmholtz equation
[111] 1T15], along with the relevant boundary conditions. The time-independent versions of these
are given by

1 . .

Vx—VxE-klE=0 inQ,, (5.1)
fir

AxE=0 onl,, (5.2)

AXVXxE=0 onl,, (5.3)

where €, is the domain represented by the interior of the waveguide, and I'e and I';,, are electric
and magnetic walls, respectively. The parameters p, and €, are the relative permeability and
permittivity, respectively, of the medium inside the guide and may be position dependent. The
operating wavenumber k, is related to the operating frequency (f,) as [104]

27 f,
==

ko (5.4)
with ¢y the speed of light in free space.

It should be noted that, this boundary value problem can also be written in terms of the
magnetic field [I1I]. Due to the similarity of the formulations, many of the discussions that
follow are applicable to both cases and the magnetic field formulation is not considered further.

If the guide of Figure 5.1 is sufficiently long with the z-axis chosen parallel to the central
axis as shown, the z-dependence of the electric field can be assumed to be of the form e™7*, with

¥ =a+jpb, (5.5)
a complex propagation constant [I3] 113]. Using this assumed form and splitting the electric
field into transverse (E;) and axial (£E,) components, the electric field of (5.1) is then given by

E(m,y, z) = [Et(x,y) + 2E,(z,y)]e 7, (5.6)

with x and y the Cartesian coordinates in the cross-sectional plane of the waveguide, and z
the coordinate along the length of the guide. This z-dependence of the electric field permits
the solution of the boundary value problem (BVP) defined by (5.1), (5.2), and (5.3). The two-
dimensional domain €2 represents the cross-section of the waveguide in the xy-plane, as opposed
to the interior volume of the guide €2,,.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 100

Using the definition of the electric field in (5.6), the continuous functional corresponding to
the BVP can be written as [T11} [TT3] [1T5]

. 1 ., S Lo
F(E)= /Q ;(vt x Ey) - (Vi x E;) — ke, E; - E;

1 - .
+ ;(vth +9Ey) - (ViE. +vEy) — kle, B E.dQ, (5.7)

with 9 9
Vt = %JS + %y, (5.8)

the transverse del operator. Note that the integration is over the two-dimensional cross-sectional
domain, and not the interior volume €2,,.

5.2.1 Cutoff analysis

One of the simplest cases to consider, and often a starting point when testing a new finite element
implementation, is waveguide cutoff analysis. When a waveguide is operating at cutoff, the
electric field is uniform along the z-axis, which corresponds with v = 0 in (5.6) [I3]. Substituting
~v =0 into (5.7) yields the following functional

S 1 S _ LS
F.(E) = /Q /7<vt x Ey) - (Vi x Ey) — ke, E; - E;

1
- M—(vth) (ViE,) — k*e,E.E.dQ. (5.9)

Here, the symbol for the operating wavenumber k, has been replaced with k., indicating that the
quantity of interest is now the cutoff wavenumber (the subscript c is also used for the functional
itself). This wavenumber, in addition to the field distribution at cutoff, are the quantities of
interest in of problems of this kind.

Using two-dimensional curl-conforming vector basis functions (]\7@), such as the basis func-
tions from the Nédélec function space of the first kind [123], for the discretisation of the transverse
field, and scalar basis functions (L;) for the axial components [I11] [I13], the discretised field
components (indicated by the prime) of (5.6) are given by [I11], T13]

Ny

E{=> (e)ilN;, (5.10)
=1
Np

E.=> (ez)iLi. (5.11)
=1

Here, (e4); and (e, ); are the coefficients of the i*" vector and scalar basis functions, respectively,
while Ny and Ny, are the total number of each type of basis function used in the discretisation.
The letters N and L are chosen for the basis function names as a reminder that the basis
functions come from a Nédélec function space and a Lagrange polynomial space, respectively.

Substituting the discretised field equations of (5.10) and (5.11) into the functional (5.9) and
applying a minimisation procedure, results in the following matrix equation

C R [ A

(8] {e} = k21 {e}. (5.13)

or simply



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 101

The matrix equations of (5.12) and (5.13) are in the form of generalized eigenvalue problems,
with the square of the cutoff wavenumber the unknown eigenvalue. The sub-matrices S,, and
Too (With oo = tt or oo = zz) represent the stiffness and mass matrices common in finite
element literature [88] [I11]. The subscripts ¢t and zz indicate transverse and axial components,
respectively, and the entries of the matrices of (5.12) are defined as [111] [113]

1 - -
(Stt)ij = / ;(Vt X Nz) . (Vt X Nj)dﬂ, (5.14)
Q Hr
(T;Et)ij = / GTNZ' . deQ, (515)
Q
1
(8.0 = [ - (ViLi) - (ViL)ao, (5.16)
Q Hr
(Tzz)ij = / ETLiLde, (517)
Q

with fQ -dS2 representing integration over the cross-section of the waveguide.

In (5.12), the possible cutoff wavenumbers k., are the square roots of the eigenvalues of
the system, and the elements of the corresponding eigenvectors are the coefficient of the basis
functions as in (5.10) and (5.11). As such, the solution of the eigensystem not only allows for
the computation of the cutoff wavenumbers, but also for the visualisation of the fields associated
with the modes by substituting the elements of the computed eigenvector into (5.10) and (5.11).
It should be noted that transverse electric (T'E) modes will have zeros as coefficients for the
scalar basis functions ({e.} = 0), whereas transverse magnetic (I'M) modes will have {e;} = 0,
although this condition only holds at cutoff [13].

5.2.2 Dispersion analysis

In the case of cutoff analysis discussed in Section 5.2.1, the aim is to obtain the value of the cutoff
wavenumber k2 = k2 for a given propagation constant v, namely v = 0. For most waveguide
design applications, however, k, is specified and the propagation constant is calculated from the
resultant eigensystem [I11], I13]. This calculation can be simplified somewhat by making the
following substitution into the original functional of (5.7) [113]

iy =~Er, (5.18)
which results in the modified functional
. 1 . . L
FAE) = | (Ve Buo) - (Vi x Big) ~ Ko By - By
Q Mr

1 . o
_ [(Vth + By) - (VB + By.) — K26, B.E. | dQ. (5.19)

T

Using the same field discretisation as for cutoff analysis discussed in Section 5.2.1 (given in
(5.10) and (5.11)), the matrix equation associated with the solution of the BVP presented at
the start of this chapter is given by

A O feg| . 2 |Bu B [e
o= s B 620

[A] {e} = 7" [B] {e}, (5.21)

or



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 102

with

[Au] = [Su] — k2 [Tu] , (5.22)
[B..] = [S..] — k2 [T..] . (5.23)

This is also in the form of a generalised eigenvalue problem. In this case, however, the eigenvalues
correspond with the square of the complex propagation constant (7).

The matrices [Stt], [Ttt], [Szz], and [T ZZ] are those defined in Section 5.2.1 with entries
given by (5.14), (5.15), (5.16), and (5.17) respectively. The entries of the other sub-matrices,
By, By, and B, are given by

1 - =

(Bu)ij = /Q - W, (5.24)
1 -

(Btz)ij = Q;Ni'VthdQ, (5.25)
1 .

(Bat)ij = Qu—vtMi-deQ. (5.26)

For lossless waveguides, the square of the imaginary part of the propagation constant (/32 in
(5.5)) can be shown to be less than a real value (%) dependent on the operating wavenumber
as well as the relative permittivity and permeabilities of the medium in the guide [IT5]. The
expression for 62 is [I15]

0* = k;gﬂr,maxfr,max7 (527)

where k, is the operating wavenumber of (5.4) and (i mer and €, mqqe are, respectively, the
maximum relative permeability and permittivity in the guide cross-section. The relation between
6% and B2 is given by

B2 < 6* (5.28)

Note that from (5.5) and (5.28), it follows that if « = 0 — as is the case for propagating
modes in a lossless guide — then the relationship between 6% and 2 is given by

v = (jB)?
= (5.29)
> —62,

There is thus a lower bound (—6?) on the eigenvalue of (5.20).

5.2.3 The generalised eigenvalue problem

As shown in Section 5.2.1 and Section 5.2.2; both cutoff and dispersion problems can be expressed
as generalised eigenvalue problems of the form

(4] {z} = A[B) {x}. (5.30)

The eigenvectors {m} are the coefficients of the basis functions used to discretise the electric field
within the waveguide, and the eigenvalues A are related to the associated cutoff wavenumbers or
propagation constants, depending on the problem being considered. Furthermore, the solution of
this eigensystem can contribute a considerable amount to the total computational time required
to solve the problem. As mentioned in the previous sections, the matrices [A] and [B] are
real valued in the case of lossless media, with the theory behind the solution of such systems
discussed in much detail in [63] and [124].



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 103

For dense matrices, the LAPACK xGGEV routines can be used to solve (5.30). Since these
routines calculate all the eigenpairs of the system, they are not very well suited to the solution
of waveguide cutoff and propagation problems, where only a few of the eigenvalues are typically
of interest. For this reason, iterative methods such as the Lanczos or Arnoldi methods (both
Krylov-subspace methods) [63, 124] that converge to subset of the eigenpairs by the repeated
application of matrix-vector products are often used.

A number of software packages exist that provide iterative eigensolver functionality, with
a summary provided in [I25] and [I26]. The ARPACK software package, which is mentioned
in both studies and based on the Implicitly Restarted Arnoldi Method [127], is used here. Al-
though this is now considered legacy software [I25], the relatively simple reverse-communication
interface and its use in applications such as MATLAB and Octave, make it a popular choice
with a large user-base.

It should be noted that although ARPACK provides routines to solve the generalised eigen-
value problem of (5.30), this is done by transforming the problem to a standard eigenvalue

problem [14]
[C]{a} = v iz}, (5:31)

with the new eigenvalue, v, dependant on the transformation used and the associated eigenvec-

tors unchanged. If the matrix [B] in (5.30) is non-singular, for example, then [C] = [B]_l [A]

1
andy—)\.

The more general method is to use a shift-invert process [I4], where a real-valued scalar shift
(o) is used to convert the generalised eigenvalue problem of (5.30) to a standard one as

[A—oB] " [B] {z} = v{x},

(5.32)
[C] {z} =v{x}.
In this case, the eigenvalue of the new eigensystem is related to the original by [14]
1
A=—+o. (5.33)
v
Rearranging (5.33) yields
1
= 5.34
YT (5.34)

and as such, eigenvalues of the original system () close to the shift (o) will have the largest
magnitude allowing iterative methods to converge to them rapidly [II5]. The choice of o is
usually not clear cut, although in some cases the problem being considered gives some insight
into a valid choice. Take the dispersion curve analysis as an example, where there exists a bound
for the propagation constant that is calculated as the eigenvalue [IT5]. It can be shown that
choosing a shift of o = —62 (see (5.29) and Section 5.2.2) is equivalent to the scaling procedure
discussed in [I15].

Although the shifted eigensystem of (5.32) appears to require the solution of a matrix system,
this is not necessarily the case. When the Arnoldi process implemented by ARPACK requests
a matrix-vector multiplication by [C] (using the reverse-communication interface), this can be
performed in parts. Thus the matrix-vector product

{y} = [C]{=}, (5.35)
with {x} supplied by ARPACK, can be replaced by

fw) = €] {a}. (5.30)

{y} = [A—oB] ' {w} (5.37)



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 104

with the final solution step begin performed by an iterative process such as GMRES [63], or
making use of a pre-computed direct factorisation of [A — O'B] as is the case in this chapter.

As mentioned, ARPACK does support the shift-invert process, with either multiplication
by the matrix [B] or [C] being requested at each step of the iterative process. However, for
matrices that are not positive semi-definite, as is the case here [I15], it is required to construct
the matrix [C] explicitly and use the ARPACK functionality for solving the standard eigenvalue
problem [I4]. In this case, only multiplications by [C] are required and the resultant eigenvalues
must be adjusted according to (5.33) as a post-processing step.

5.3 Implementation

With the basics of the formulation aspects of non-driven waveguide analysis using the Finite
Element Method discussed in Section 5.2, this section presents some details pertaining to the
implementation of the formulations discussed. This is done in two parts. The first of these
is an introduction to FEniCS [I6], which is used to realise the assembly of the matrices men-
tioned in Section 5.2. The second part of the implementation covers the use of ARPACK in
conjunction with BLAS, LAPACK, CUDA, and MAGMA in the implementation of a dense
eigenvalue solver framework that not only offers performance improvements over the LAPACK
xGGEV implementation, but allows for GPU acceleration.

5.3.1 FEniCS

The FEniCS Project is a set of software tools that allows for the rapid implementation of
the expressions associated with the finite element analysis of problems from a wide array of
disciplines. The main interface of the software system is DOLFIN, which provides both a C++
and Python front-end. The use of the Python front-end in modelling waveguide problems is
considered here. DOLFIN provides built-in support for a number of finite element families,
including the curl-conforming Nédélec (of the first and second kind [123] 128]) and Lagrange
finite elements spaces, used in vector and scalar formulations, respectively [110].

As an introduction to the modelling of such problems using FEniCS, consider Listing 5.1,
which shows a snippet from the FEniCS code for the waveguide cutoff problem. The listing
shows the definition of both the vector (Nédélec) and nodal function spaces, and their use in the
formation of a combined finite element space for the definition of the basis functions as discussed
in Section 5.2. The variables N_i and L_i (N_j and L_j), are implementations of the basis functions
N; and L; (Nj and L;) used to define the matrix elements in (5.14), (5.16), (5.15), and (5.17).
Here, the variables vector_order and nodal_order are used to specify the order of the Nédélec and
Lagrange functions spaces, respectively, and mesh represents the DOLFIN mesh, which will be
discussed when the example problems are considered in more detail.

The sample in Listing 5.1 clearly illustrates the high-level code that can be used to define
the elements of the matrices s and T. This allows for an almost one-to-one mapping from the
mathematical expressions given in the previous section to the Python code presented here, and
facilitates the rapid development and testing of new formulations. The variables e_r and u_r
represent the relative permittivity and permeability of the medium within the waveguide and
may be simple floating-point values or more complex expressions. These will be discussed further
in the subsequent sections.

The code for implementing the dispersion curve problems is similar to that of Listing 5.1,
with the same function spaces and basis functions being used (as is also evident from Section 5.2).
The construction of the matrices using the expressions from (5.22), (5.23), (5.24), (5.26), and
(5.25) in DOLFIN are given in Listing 5.2.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 105

Listing 5.1: The FEniCS DOLFIN Python code to assemble the matrices of (5.12). Shown are the
initialisation of the function spaces and the vector and scalar basis functions themselves using DOLFIN
classes. The variables vector_order and nodal_order specify the polinomial order of the Nédélec and
Lagrange function spaces used respectively. Variables with names ending in _ij in this case represent
forms, a FEniCS concept that can be rougly translated as an expression defining the elements of a finite
element matrix. The variables e_r and u_r represent the relative permittivity and permeability for the
calculation of the matrix element and mesh the mesh used in the spatial discretisation are all example

specific.

vector_space = FunctionSpace ( mesh, "Nedelec 1st kind H(curl)", vector_order )
nodal_space = FunctionSpace ( mesh, "Lagrange", nodal_order )
combined_space = vector_space * nodal_space

(N_i, L_i) = TestFunctions ( combined_space )

(N_j, L_j) = TrialFunctions ( combined_space )

s_tt_ij = 1.0/u_r * dot ( curl_t(N_i), curl_t(N_j) )

t_tt_ij = e_r * dot ( N_i, N_j )

s_zz_ij = 1.0/u_r * dot ( grad(L_i), grad(L_j) )

t_zz_ij = e_r * L_i * L_j

s_ij = ( s_tt_ij + s_zz_ij ) * dx

t_ij = ( t_tt_ij + t_zz_ij ) * dx

S = assemble ( s_ij )

—
]

assemble ( t_ij )

Besides the components already discussed with reference to Listing 5.1, Listing 5.2 contains
a variable x_o_squared, which is an instance of the defined OperatingWavenumberSquared class — an
extension of the DOLFIN Expression class as shown. This expression is used to specify kg, as
in (5.19), (5.22), and (5.23), when calculating the propagation constant for a given operating
frequency f,. The motivation for using this Expression, and not simply a floating-point value, is
that DOLFIN caches the forms for matrix assembly. Using a floating-point variable, however,
would require the forms to be recalculated for each frequency step when calculating dispersion
curves over a frequency range.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 106

Listing 5.2: The FEniCS DOLFIN Python code required to extend the cutoff formulation of Listing 5.1
to the problem of dispersion analysis for a specified operating frequency f_o. Note that the test and trial
(basis) functions from Listing 5.1 are used here, as are the forms s_tt_ij, t_tt_ij, s_zz_ij, and t_zz_ij.

class OperatingWavenumberSquared ( Expression ):
""" an extension of a DOLFIN Expression to allow for the inclusion of the
cutoff wavenumber squared in the forms for the matrices [A] and [B] """

def eval ( self, values, x ):
""" evaluate return the operating wavenumber squared
values [0] = self.__k_o_squared

def set_frequency ( self, f ):
""" set the operating wavenumber squared
self.__k_o_squared = 2x*pi*f/cO

nomnn

mwun

# create a variable to store the operating wavenumber

k_o_squared = OperatingWavenumberSquared ()

k_o_squared.set_frequency ( f_o )

# define the matrix entry components (using the basis functions from Listing 5.1

b_tt_ij 1.0/u_r * dot ( N_i, N_j )

b_tz_ij 1.0/u_r * dot ( N_i, grad ( L_j ) )

b_zt_ij = 1.0/u_r * dot ( grad ( L_i ), N_j )

# define the matrix entries (using s_tt_ij, t_tt_ij, s_zz_ij, and t_zz_ij from
Listing [5.1 with *dx resulting in integration over the domain of the mesh when

assemble () is called
a_ij = ( s_tt_ij - k_o_squared * t_tt_ij ) * dx
b_ij = ( s_zz_ij - k_o_squared * t_zz_ij + b_tt_ij + b_tz_ij + b_zt_ij ) * dx
# assemble the matrices
A = assemble ( a_ij )
B = assemble ( b_ij )




CHAPTER 5. FEM WAVEGUIDE ANALYSIS 107

Hollow rectangular waveguide

The first of the sample problems considered is a hollow waveguide with a rectangular cross-
section, as depicted in Figure 5.2. The width ¢ = 1.0m and height b = 0.5m of the guide as
indicated. Since the guide is hollow, the relative permittivity and permeability of Listing 5.1

jv Q0
€r
iy

[l
—
o>

I a I

Figure 5.2: A diagram showing the cross section and dimensions of a hollow rectangular waveguide. The
PEC boundary of the cross-sectional domain 2 is indicated by I'., with the values for both the relative
permittivity (e,) and permeability (u,) unity over the whole domain. For the problem considered here
a =1.0m and b = 0.5m.

and Listing 5.2 are both unity.

This structure has the advantage that analytical solution for both the cutoff and propagation
problems are known [I3], with the propagation constant (72) and cutoff wavenumber (k2) of
Section 5.2 given by

7?2 = k2 — k2, (5.38)

- (1) ()" 520

a

and

respectively. Here, k, is the operating wavenumber as discussed with reference to Listing 5.2,
and m and n represent the indices of the T'E,,,, and T'M,,,, waveguide modes. Valid values for
m and n are any non-negative integers, with at least one of them non-zero in the case of the T'E
modes, and neither m nor n zero for the T'M modes.

Although Listing 5.1 and Listing 5.2 discuss the assembly of relevant system matrices, no
mention has been made the boundary conditions associated with the PEC wall surrounding
the guide cross-section. This, along with the remaining implementation details, are addressed
in Listing 5.3. The first of the details shown is the creation of the mesh variable, used in the
initialisation of the function spaces in Listing 5.1, as an instance of a DOLFIN Rectangle. A plot
of the mesh generated using the DOLFIN Rectangle class is shown in Figure 5.3. The relative
permittivity and permeability (e_r and u_r) are also initialised to unity.

Listing 5.3 also shows the application of the Dirichlet boundary condition — as in (5.2) — to the
assembled matrices. This boundary condition, electric_wall, is created as instance of a DOLFIN
DirichletBC that is initialised using the combined functions space from Listing 5.1, a zero-valued
Expression, and an instance of a DOLFIN subDomain that is equivalent to the boundary of the
mesh used. The app1y() method called for each of the assembled matrices uses this information
to apply the boundary condition to the assembled matrices for the degrees of freedom that
correspond with the sub-domain defined by PEcwall. Once the matrices have been assembled
and the boundary conditions applied, the relevant eigenvalue problem (see Section 5.2) can be
solved.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 108

Figure 5.3: The mesh used for the solution of both the hollow and half-filled rectangular waveguide
problems. This mesh is generated using the DOLFIN code mesh = Rectangle ( 0, 0, 1.0, 0.5, 8, 4 )
as in Listing 5.3. The thick solid outer line represents the electric wall (the PECWall class) on which the
Dirichlet boundary condition of (5.2) is applied.

Listing 5.3: The extension of the FEniCS DOLFIN cutoff and dispersion implementations in Listing 5.1
and Listing 5.2 to the case of the 1.0m x 0.5m hollow rectangular waveguide shown in Figure 5.2. The
problem specific implementation details are the initialisation of the mesh as a DOLFIN Rectangle, the
setting of the permittivity and permeability (both to unity), and the implementation of the Dirichlet
boundary condition associated with an electric wall using the DOLFIN DirichletBC class and a sub-do-
main PECWall corresponding with the walls of the waveguide cross-section.

# the mesh used for the rectangular hollow guides

a=1.0

b =10.5

# create a rectangular mesh with origin (0,0) extending to (a,b) with 8 edges
along the long side and 4 elements along the short side

mesh = Rectangle ( 0, 0, a, b, 8, 4 )

# specify the permittivity and permeability

e.r = 1.0

ur = 1.0

# assemble the matrices
as in Listing 5.1 and Listing 5.2

# define the subdomain on which the boundary condition must be applied
class PECWall ( SubDomain ):
def inside(self, x, on_boundary):
return on_boundary;

# create the boundary condition using the combined function space, a zero
Expression and the PECWall sub-domain

electric_wall = DirichletBC ( combined_space, Expression ( ("0.0", "0.0", "0.0")

) , PECWall() )

# apply the boundary condition to the assembled matrices:

# for the cutoff problem: Listing 5.1

electric_wall.apply ( S )

electric_wall.apply ( T )

# for the propagation problem: Listing 5.2

electric_wall.apply ( A )

electric_wall.apply ( B )

# solve the eigensystems (A, B) or (S, T)




CHAPTER 5. FEM WAVEGUIDE ANALYSIS 109

Half-filled rectangular waveguide

The second example problem considered is that of a rectangular waveguide which is partially
filled with a dielectric material (e, > 1). This lowers the cutoff frequency of the dominant mode,
when compared to a hollow guide of the same dimensions, and is often employed in impedance
matching or phase-shift waveguide components [I3]. An example of such a waveguide, with its
lower half filled with an €, = 4 dielectric material, is shown in Figure 5.4. The dimensions of
the guide are the same as for the hollow rectangular case, that is ¢ = 1.0m and b = 0.5m. This

L'e e =1 Q
. =1
b
€ =4
d i
| |
[ a [

Figure 5.4: A diagram showing the cross section and dimensions of a half-loaded rectangular waveguide.
The lower half of the guide is filled with an €, = 4 dielectric material. For the problem considered here
a=1.0m, b =0.5m, and d = 0.25m.

example is also used in [IT1], and allows for a comparison of results.

Due to the similarities in structure between the half-filled and hollow guides, much of the
code of Listing 5.3 can be reused. Listing 5.4 shows the additional code required for the definition
of the dielectric structure. This is done through the extension of the DOLFIN Expression class,
overriding the eval () method. Note that the parameter x is passed to this method by DOLFIN as
part of the matrix assembly process, and is an array of the coordinates at which the expression
must be evaluated (x[0]= z and x[1]1= y). The values parameters is an array in which the
desired value of the expression is to be stored.

The class HalfFilledDielectric provides an eval() method that evaluates as

o (.y) = 4 if y <0.25, (5.40)
A B if y > 0.25, '

and properly defines the dielectric shown in Figure 5.4. The e_r variable is then defined as an
instance of this class and is used in the subsequent matrix element definitions (see Listing 5.1
and Listing 5.2). Note that the mesh and PEC boundary conditions (mesh and electric_wall)
from Listing 5.3, and depicted in Figure 5.3, are reused as indicated.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 110

Listing 5.4: The extension of the FEniCS DOLFIN cutoff and dispersion implementations in Listing 5.1
and Listing 5.2 to the case of the 1.0m x 0.5m half-filled rectangular waveguide shown in Figure 5.4. The
same mesh and boundary conditions as the hollow rectangular guide (implemented in Listing 5.3) are
used. In this case the relative permittivity is defined as an extension of the DOLFIN Expression class
with the desired behaviour implemented by overriding the eval() method.

# use the same mesh as the hollow rectangular guides
as in Listing 5.3

# Extend the expression class to define the permittivity
class HalfFilledDielectric ( Expression ):
def eval ( self, values, x ):
if ( x[1] < 0.25 ):
values [0] = 4.0
else:
values [0]

]
e
o

# create an instance of the permittivity class and set permeability to unity
e_r = HalfFilledDielectric ()

u_r = 1.0

# these are then used in the forms of Listing 5.1 and Listing 5.2

# assemble the matrices
as in Listing 5.1 and Listing 5.2

# define the boundary conditions and apply
as in Listing 5.3

# solve the eigensystems (A, B) or (S, T)




CHAPTER 5. FEM WAVEGUIDE ANALYSIS 111

Shielded microstrip line

The final sample problem is that of a shielded microstrip transmission line, and, although it is
not always shielded, represents a widely used structure in microwave design [I3]. The primary
component of such a structure is a thin conducting strip of width w on a dielectric substrate
with thickness d. Both are placed above a ground plane as shown in Figure 5.5, where the strip
thickness t has been exaggerated. Also shown in the figure, is the shielding of the structure by
a PEC box of dimensions a x b, and a vertical symmetry line in the centre of the figure. The
latter is modelled as a magnetic wall, and reduces the size of the computational domain, but
only allows for even modes to be computed [113].

T
€r = 1 |
. ! Q0
|
|
Fe | rm
) 1
|
|
|
I W |
t | I ! b
|
|
8.875 I
= |
d €r .
Hr = :
|
|
Y 1 _y_

I a I

Figure 5.5: A diagram showing the cross section and dimensions of a shielded microstrip line with
the thickness of the line exaggerated for effect. The microstrip is etched on a dielectric material with
a relative permittivity of ¢, = 8.875. The plane of symmetry is indicated by a dashed line (I',,) and is
modelled as a magnetic wall in order to reduce the size of the computational domain. The dimensions
used here are; ¢ = 12.7mm, b = 12.7mm, d = 1.27mm, w = 1.27mm, and ¢ = 0.127mm.

The FEniCS code for the implementation of the shielded microstrip example is given in
Listing 5.5, with the definition of the boundary subdomain (similar to PECwall in Listing 5.3)
given in Listing 5.6. For this example, the mesh is loaded from a file, shielded_microstrip_mesh
.xml, which was generated in Gmsh [129] and converted to a DOLFIN mesh using a supplied
DOLFIN utility. The mesh itself is shown in Figure 5.6, where the electric and magnetic walls (in
heavy solid black and dashed red lines, respectively) are also indicated. Only half the structure
shown in Figure 5.5 is meshed, with the triangulation of the dielectric (e, = 8.75) layer and that
of the free space (€, = 1) shown in different colours.

Apart from the differences in the mesh, the dielectric definition, and the boundary sub-
domain, which returns true if the requested point x falls on one of the thick black lines of
Figure 5.6 (as shown in Listing 5.6), the implementation for the shielded microstrip is identical
to that of the other problems considered. This allows for the reuse of much of the code when
performing the computations.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 112

Figure 5.6: A mesh generated by Gmsh [129] and used for the computation of the dispersion curves for
a shielded microstrip line. Only the right half the computational domain is meshed with the magnetic
wall through the centre of the original domain indicated by a dashed red line and the PEC (electric wall)
boundaries are shown in heavy black with the finite thickness strip not meshed.

Listing 5.5: The extension of the FEniCS DOLFIN dispersion implementation in Listing 5.2 to the
case of shielded microstrip, as shown in Figure 5.5. In this case, the mesh is loaded from a file,
shielded_microstrip_mesh.xml, and the Dirichlet boundary sub-domain is given in Listing 5.6. The
relative permittivity is defined in a similar manner to that of the half-filled guide of Listing 5.4.

# load the mesh as shown in Figure 5.6
mesh = Mesh ( "shielded_microstrip_mesh.xml" )
# Extend the expression class to define the permittivity
class Dielectric ( Expression ):
def eval ( self, values, x ):
# x 1is the position in milimetres
if x[1] <= 1.27:
values [0] = 8.875
else:
values [0] = 1.0;

# create an instance of the permittivity class and set permeability to unity
e_r = Dielectric ()

u_r = 1.0

# these are then used in the forms of Listing 5.1 and Listing 5.2

# assemble the matrices
as in Listing 5.1 and Listing 5.2

# define the boundary sub-domain
see Listing 5.6

# create the boundary condition using the combined function space, a zero
Expression and the ShieldedMicrostripPECWall sub-domain
electric_wall = DirichletBC ( combined_space, Expression ( ("0.0", "0.0", "0.0")
) , ShieldedMicrostripPECWall() )
# apply the boundary condition to the assembled matrices:
# for the propagation problem as in Listing 5.3

# solve the eigensystems (A, B)




CHAPTER 5. FEM WAVEGUIDE ANALYSIS 113

Listing 5.6: PEC boundary sub-domain for the shielded microstrip example. DOLFIN_EPS is a DOLFIN
constant that indicates machine precision.

class ShieldedMicrostripPECWall (SubDomain) :
def inside(self, x, on_boundary):

if on_boundary:
if x[0] >= DOLFIN_EPS:

return True
if x[1] <= DOLFIN_EPS:

return True
if ( x[1] >= (1.27 - DOLFIN_EPS) and x[1] <= ( 1.397 + DOLFIN_EPS ) ):

return True
if x[1] >= ( 12.7 - DOLFIN_EPS ):

return True

return False

5.3.2 Eigensolver implementations

As discussed in Section 5.2, the problems considered here take the form of generalised eigenvalue
problems. Furthermore, the solution of these systems involves transforming the generalised
eigenvalue problem to a standard one using the shift-invert process summarised in Section 5.2.3.
This standard eigenvalue problem is then solved using ARPACK [I4].

In this section, some of the implementation details of this ARPACK-based standard eigen-
value problem solver are presented. This solver is then incorporated into a framework that
allows for the solution of the generalised eigenvalue problem using CPU-based routines such as
those supplied by ACML, as well as a CUDA-accelerated implementation that makes use of both
CUBLAS and MAGMA. These linear algebra libraries are discussed in more detail in Chapter 3,
and limit the current implementation to use with dense matrices.

An overview of the implementations of the eigenvalue solvers is presented as a block diagram
in Figure 5.7. Both the CPU and CUDA implementations result in shared libraries, libgev_
solver cpu.so and libgev_solver_cuda.so, allowing them to be included in the FEniCS solution
process in Python using tools such as Ctypes [I05]. Furthermore, since both the CPU and
CUDA implementations share a common interface (gev_solver_interface.h in Figure 5.7), these
libraries can be used interchangeably.

The code defining the common interface for the implementations is given in Listing 5.7. The
interface declares three routines, arpack_ssev_(), sgemv_wrapper_(), and dense_gev(). The latter is
the entry point into the generalised eigenvalue problem solver and takes as input the size of the
(square) matrices N, the two single precision real matrices A and B that define the eigensystem
as well as their leading dimension LDMAT. The parameters NEV and shift pass the number of
requested eigenvalues and the shift (o in (5.32)) to be used.

The calculated single precision complex eigenvalues, and their corresponding real eigenvec-
tors, are returned in the arrays pointed to by the parameters eigenvalues and eigenvectors. The
final two parameters timing data and int_data are used to obtain information on the computa-
tional process, such as the timing of individual steps, and are thus only used for debugging. Of
the other routines mentioned, arpack ssev_(), is simply the declaration of the entry point into
the ARPACK driver.

The final routine shown, sgemv_wrapper_(), is a wrapper for the implementation-specific matrix-



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 114

CPU shared code CUDA
I N | .
|| gev_solver_ interface.h (|| %
i\ )i (Finclude . :
' ( N\ ' @
arpack_sev.£90 gev_solver_cuda.cu %
sgemv wrapper () \ J sgemv wrapper () 8
— — — — S5
_________________________ '_ _'_________________________
! FEniCS ! 3
! implementation ! =
I P I g
CcC nvcc =4

Figure 5.7: A block diagram showing the relationship of the CPU and CUDA implementations of a

libgev_solver_cpu.so libgev_solver_cuda.so

generalised eigenvalue problem (GEV) solver. The two implementations share a common interface and
an ARPACK driver for the solution of the standard eigenvalue problem (implemented in arpack_sev.£99.
This shared driver makes use of matrix-vector wrapper routines (sgemv_wrapper_() supplied by each of
the implementations. The CPU and CUDA versions are compiled with either gcc or nvec (the NVIDIA
C Compiler [29]) into shared libraries — libgev_solver_cpu.sand libgev_solver_cuda.ssespectively — and
included as part of the FEniCS solution process in Python using Ctypes.

Listing 5.7: A header file gev_solver_interface.ldefining the common interface for the CPU- and CU-
DA-based generalised eigenvalue solver implementations of Figure 5.7.

#ifndef GEV_INTERFACE_H
#define GEV_INTERFACE_H

// define a macro for external functions depending on the compiler
#ifdef __cplusplus
#define EXT extern "C"
#else
#define EXT extern
#endif

// declaration of the ARPACK entry routine

EXT

void arpack_ssev_ ( int* N, void* DATA, int* NEV, int* NCV, float* eigenvalues,
float* eigenvectors, float* residuals, char* which );

// declaration of the SGEMV wrapper that must be visible to the ARPACK driver

EXT

void sgemv_wrapper_ ( int* N, voidx** DATA, float* x, float* y );

// declaration for the routine to solve the generalised eigenvalue problem

EXT

int dense_gev ( int N, float* A, float* B, int LDMAT, int NEV, float shift,
float* eigenvalues, float* eigenvectors, double* timing_data, int* int_data

)

#endif // #ifndef GEV_INTERFACE_H

vector routines that are required by the ARPACK implementation. Recall from Section 5.2.3
that the ARPACK process requires the repeated calculation of a matrix-vector product as in
(5.35). The parameter N of the sgemv_wrapper_() routine is a pointer to the size of the matrix [C] ,
with the pointers x and y representing {:L’} and {y} of (5.35), respectively. The final parameter,
DATA, is a pointer to (a pointer to) an implementation-specific data structure that contains the
information required to perform the matrix-vector product on the intended architecture, and
includes the matrix [C’] A pointer to this data structure is also passed to the ARPACK driver



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 115

routine arpack_ssev_(). The exact nature of these data structures are discussed with reference to
the specific implementations in two of the following sections.

Although the implementations differ slightly in each case, the computational process of the
CPU and CUDA versions of the generalised eigensolvers discussed here are the same, with the
steps given in Listing 5.8. Here, step 1 and step 3, are implemented in the target-specific files,
gec_solver_cpu.c and gec_solver_cuda.cu, with the ARPACK driver implemented in arpack_sev.£90.
The latter is adapted from the sndrvi.f example file supplied as part of the ARPACK source
code. Modifications include rewriting the implementation as a SUBROUTINE with a parameter list
as shown in Listing 5.7. This driver routine then calls the implementation-specific sgemv_wrapper
O routines (step 2.a), which are also implemented in gec_solver_cpu.c and gec_solver_cuda.cu for
the CPU and CUDA versions, respectively.

Listing 5.8: The computational process for solving the generalised eigenvalue problem using the standard
eigenvalue problem ARPACK driver.

1. transform the generalised eigensystem to the standard one as in (5.32)
2. call the ARPACK driver routine
a. repeatedly call the matrix—vector product provided by sgemv_wrapper_()
3. transform the calculated eigenvalues to those of the original system as in
(5.34)

For the transformation to the standard eigenvalue problem (step 1 in Listing 5.8), a shift
funtion is implemented and LAPACK routines are used for the inversion step. Since the shift
operation represents a large number of independent operations, OpenMP is used to parallelise
the loops over the matrix elements. This is done in a similar way to that already discussed in
Chapter 4. For the invert procedure, accelerated LAPACK implementations are used. That
is to say, ACML is used for the CPU implementation, while MAGMA is used for the CUDA
version. Specifically, the SGETRF and SGETRS routines are used.

The matrix-vector product wrapper

As discussed, the ARPACK driver makes use of a wrapper routine to perform the required
matrix-vector products. Furthermore, from Listing 5.7, it follows that these routine adhere to
the same interface. This serves to hide the implementation-specific details from the ARPACK
driver, and allows for the CPU and CUDA versions to be used interchangeably.

The CPU implementation of the wrapper routine, sgemv_wrapper_(), is shown in Listing 5.9.
Also shown in the listing is the definition of the data structure used to facilitate the passing of
relevant pointers and other matrix information to the ARPACK driver routine and the matrix-
vector wrapper. Note that for the CPU implementation of Listing 5.9, the standard BLAS sceMv
routine, as implemented by ACML, is used. In this case, the parameter DATA consists of a pointer
to the matrix ¢ in host memory, as well as the leading dimension of this matrix, LbdcC.

Since the CUDA version of the matrix-vector product wrapper has to take the movement of
data between host and device memory into account, the implementation of the sgemv_wrapper_()
routine is slightly more complex than that of Listing 5.9, with the source code for the routine
shown in Listing 5.10. The parameter list of the two implementations is, however, identical. In
the case of the CUDA implementation, a CUBLAS routine is used to perform the matrix-vector
product. It should be noted, that although the vectors x and y are transferred to and from the
device, respectively, there is no need to transfer the matrix to the device for each multiplication
operation. As already mentioned, this is only done once, since the matrix remains constant
throughout the eigensystem solution process.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 116

Listing 5.9: The source code for the CPU implementation of the sgemv_wrapper_(Youtine as called from
the ARPACK driver. Also shown is the casting of the void#* pointer DATA to the data_structtype to allow
access to the data needed by the routine.

struct data_struct {
float* C;
int LDC;
};
typedef struct data_struct data_struct;

void sgemv_wrapper_ ( int* N, voidx** DATA, float* x, float* y )
{

data_struct* pDATA = (data_structx*) DATA;

float* C = pDATA->C; int LDC = pDATA->LDC;

float f_one = 1.0f; float f_zero = 0.0f; int i_one = 1;

sgemv_ ( "N", N, N, &f_one, C, &LDC, x, &i_one, &f_zero, y, &i_omne, 1 );

Listing 5.10: The source code for the CUDA implementation of the sgemv_wrapper_(xoutine as called
from the ARPACK driver. Also shown is the casting of the void** pointer DATA to the data_structtype to
allow access to the data needed by the routine. This data structure includes information on pre-allocated
device pointers for the storage of the vectors x and y as well as the matrix information passed in the CPU
implementation (although the matrix information here is related to a matrix in device memory and not
host memory).

struct data_struct {
float* pdev_C; float* pdev_x; float* pdev_y;
int LDC;

};

typedef struct data_struct data_struct;

void sgemv_wrapper_ ( int* N, void** DATA, float* x, float* y )
{

data_struct*x pDATA = (data_struct*)DATA;

float* pdev_C = pDATA->pdev_C; int LDC = pDATA->LDC;

float* pdev_x = pDATA->pdev_x; float* pdev_y = pDATA->pdev_y;

cudaMemcpy ( (void*)pdev_x, (void*)x, (*N)#*sizeof (float),
cudaMemcpyHostToDevice );

cublasSgemv ( °N’, *N, *N, 1.0, pdev_C, LDC, pdev_x, 1, 0.0, pdev_y, 1 );

cudaMemcpy ( (void*)y, (voidx*)pdev_y, (*N)*sizeof (float),
cudaMemcpyDeviceToHost ) ;

Another difference between the CPU and CUDA implementations, is the definition of the data
_struct structure. The CUDA implementation shows two additional pointers, pdev_x and pdev_y,
which are pointers to arrays in device memory. These blocks of device memory are pre-allocated
specifically to store the input and output vectors (x and y, respectively). This pre-allocation
and storage of the pointers is an attempt to reduce the overhead involved in computing the
matrix-vector product, as it is not necessary to allocate and free device memory for the vectors
for each multiplication. The naming of the fields of the data structure also indicates that the
matrix used in the multiplication is stored in device memory.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 117

5.4 Verification results

As for the Method of Moment results presented in Section 4.4 and Section 4.5, the results pre-
sented in this chapter have two objectives. These are, the verification of the implementations
by comparison to analytical or previously published results, and the analysis of the performance
of the implementations discussed here. The former is considered in this section, and addressed
the FEniCS implementation discussed in Section 5.3.1, as well as the CPU and CUDA imple-
mentations of the generalised eigensolver based on ARPACK of Section 5.3.2. The performance
benefits of the CUDA-based implementation are considered in Section 5.5.

In the verification of the implementations presented here, the three structures introduced in
Section 5.3.1 are considered. As mentioned, the same mesh — shown in Figure 5.3 — is used for
both the hollow and half-filled rectangular guides, while the shielded microstrip problem uses the
mesh as shown in Figure 5.6. The order of the vector and nodal functions spaces (vector_order
and nodal_order in Listing 5.1) are taken as 2 and 3 respectively. This equates to 549 DOFs in
the case of the hollow rectangular and half-filled waveguides, and 3082 DOFs for the shielded
microstrip line.

In the case of the hollow and half-filled rectangular guides, both the cutoff and dispersion
analysis is performed, with the visualisation of the modes (and cutoff wavenumbers) for the T'Ey
and T'M71 modes considered in each case. The propagation curves for these modes and the modes
that occur between them are also presented and compared to either analytical results, in the
case of the hollow rectangular waveguide, or to previously published results for the half-filled
guide.

For the shielded microstrip problem, only the dispersion analysis is considered and compared
to results presented in [I13]. In all cases, the results obtained using both the CPU and CUDA
implementations of the generalised eigensolver discussed in Section 5.3.2 are compared to each
other.

Hollow rectangular waveguide

Since the vector Helmholtz equation of (5.1) can be solved analytically for the hollow rectangular
waveguide, it is often used as a starting point for the verification and validation of new finite
element implementations. It is also covered in a number of electromagnetic texts, both from a
computational and analytical point of view [I3], 88, 1111 [1T3].

Figure 5.8 shows two of the computed cutoff modes for the hollow rectangular waveguide
with dimensions 1.0m x 0.5m. As mentioned, and should be evident from the images, the modes
considered are the T'F1g and T'M71 modes that represent the lowest frequency transverse electric
and transverse magnetic modes, respectively. Since the T'E19 mode consists of both an z- and
y-component, it is displayed as a quiver plot. Here the colour is mapped to the normalised —
with respect to the calculated maximum — magnitude of the field vector Et(x, y). For the T' M1,
mode at cutoff (y = 0), only the z-component of the electric field (E,(x,y)) in the guide is
non-zero [I3]. As such, E, can be plotted as a contour surface, with the colour indicating the
magnitude of the vector — again normalised with respect to the maximum.

The figures indicate that there is no visually discernible difference between the CPU and
CUDA eigenvalue results. This is further supported by a comparison of the computed eigenvalues
to each other and to analytical results presented in Table 5.1. Here, the relative error for the
two modes is at least O(10~%) for the two modes shown.

The dispersion results for the first five modes of the hollow rectangular waveguide are shown
in Figure 5.9, where the normalised propagation constant squared (|Z—|22) is plotted as a function
of operating frequency. Note that, in the case of the propagating modes shown, the propagation
constant is imaginary with v = j8. From (5.38), it follows that at cutoff (k. = ko), the



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 118

=)

> > > > > > > » » b
> > > > > > > » » b

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

normalised electric field magnitude normalised electric field magnitude
(a) CPU: TE1o mode (b) CPU: T M1, mode

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
normalised electric field magnitude normalised electric field magnitude
(¢) CUDA: TE1o mode (d) CUDA: T'M11 mode

Figure 5.8: Computed results for the normalised T F1¢ (z and y-components) and T'M1; (z-component)
cutoff modes plotted on the cross-section of the hollow rectangular guide of Figure 5.2 for the FEniCS
implementation of Listing 5.3 using both CPU (top row) and CUDA (bottom row) eigensolvers.

propagation constant is zero, and thus the cutoff frequencies can be read off the plot as the
intersection of the respective curves with the f,-axis.

Note that since (5.38) and (5.39) hold for both TE and T'M modes, it follows that a number
of these modes will have the same cutoff frequency and propagation constant if their indices
(mn) are the same. This is the case for the T'E1; and T'M; curves shown. Furthermore, since

Table 5.1: Comparison of the computed and analytical cutoff wavenumbers squared for the T'E1g and
T M7; modes of a hollow rectangular guide considered here. Shown are the calculated cutoff wavenumbers
squared as well as the calculated absolute relative errors between the calculated and expected value for
both the CPU and CUDA eigensolvers.

mode name TElO TM11
analytical [m~?] 1.072 5.072
CPU [m™?] 0.86950307  49.35956955

relative error 1.0175%x107°  2.3400x 104

CUDA [m_2] 9.86937523 49.35956573
relative error 2.3220x107° 2.3392x10*




CHAPTER 5. FEM WAVEGUIDE ANALYSIS 119

1.0
TEyy

0B &,'nﬂ
= ' l
5 _—
§ : : ‘n
g (000 SRR T b ‘ ............................................. i
o : : y.
s : d‘
% ﬂ : TEy, TEy
%0.4“ ................ d ........................................................... B
g ; )3 :
° :
© : 4 : :
g 02F L ’u IS S ORI I . 1
S : : : :
> Y : : :

: l" TE,,, TM,

A

0 ] i i r i
100 150 200 250 300 350 400

Operating frequency: f, [MHz]

Figure 5.9: Comparison of calculated and analytical and computed (using both the CPU and CUDA
eigensolvers) normalised propagation constants (corresponding to the imaginary part of v in (5.5)) for
first five modes of a 1.0m x 0.5m hollow rectangular waveguide as in Figure 5.2. The curves are labelled
to show their relevant modes and the CPU and CUDA eigensolver results are indistinguishable.

a = 2b for the guide considered here, the T'Ey; and T Ey modes are also degenerate [88].

Half-filled rectangular waveguide

The results for the half-filled rectangular guide follow the same approach as those of the hollow
guide just discussed. The visualisation of the first TF and T'M modes — obtained using both
the CPU and CUDA eigensolver — are shown in Figure 5.10, where there is once again good
agreement between the result of the two implementations. The effect of the dielectric in the
lower half of the guide is clearly evident, with the electric field of the dominant T'E mode now
concentrated into the upper half of the guide.

In this case, no analytical results are presented and as such, only the computed eigenvalues
and the relative differences between the CPU and CUDA eigensolver results are given in Ta-
ble 5.2. The measured differences are O(107%), which is close to the attainable numeric accuracy
of the single precision floating-point computation used [130].

Although analytical results are not presented in Table 5.2, the dispersion results of Fig-
ure 5.11 show good agreement with the results from [IT1] for the two modes shown in Figure 5.10.
The other two modes computed are also close to the reference results, although in this case there
are some frequency points where they do deviate slightly. This may be as a result of an error

Table 5.2: Comparison of the computed cutoff wavenumbers squared for the T'Fyo and T'M;1 modes of
the half-filled rectangular guide considered here. Shown are the calculated cutoff wavenumbers squared
and the absolute relative difference (taking the CPU values as the reference) between the CPU and CUDA
results.

mode name TF1o TMi1

CPU [m~ 2 5.04175949  17.01956558
CUDA [m 2] 5.04171276  17.01948929
relative difference 9.2687x10~6 4.4827x10~6




CHAPTER 5. FEM WAVEGUIDE ANALYSIS 120

—
_—t
————
————
—

- =~ b
LI

A4 A A 4
T
A
1
i
1
f
1
i
¥
i
1
i
.
!
) !
VY oy vV v

S Y Y W U B R B e
«~ ~ % XNXNMA M A A A A A Aoy oy oy
~ v % % %k 4 4 4 4 ¢ 4+
NN N LI
S N LI R R
PO W S| A 4 4
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
normalised electric field magnitude normalised electric field magnitude
(a) CPU: dominant TE mode (b) CPU: dominant T'M mode
SEEESER RN RN SEEREN
v Ao
1 v \ / 1« L
N | L
o - > b
[ IR U NN S Y S S W WY N S P A2 e i
d <~~~ XXM A M A A A A A g 0 5 5 5 b
d < v~ v ¥ 2 2k 1 4 4 4 ¢ 4+ .}
NN L LR §
N U W ) LI R R
U S S W | A A 4 4
| I |
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
normalised electric field magnitude normalised electric field magnitude
(c) CUDA: dominant TE mode (d) CUDA: dominant T'M mode

Figure 5.10: Computed results for the normalised dominant TE (z and y-components) and dominant
TM (z-component) cutoff modes plotted on the cross-section of the half-filled rectangular guide of Fig-
ure 5.4 for the FEniCS implementation of Listing 5.4 using both CPU (top row) and CUDA (bottom
row) eigensolvers. The edge of the dielectric is shown as a horizontal dashed line in each of the figures.

in reading the data off the figure in [I11]. As is the intention of the half-filled design [I3], the
propagations curves of Figure 5.11 show that the cutoff frequency of the dominant mode has
been decreased by about 45 MHz. As was the case for the hollow rectangular guide, both the
CPU and CUDA propagation curves are shown in Figure 5.11. These are indistinguishable from
each other.

Shielded microstrip line

Since the shielded microstrip line consists of two conductors, it supports a dominant transverse
electromagnetic (T"EM) mode that has no axial component of the electric or magnetic field [13].
Such a mode has a cutoff wavenumber of zero, and thus propagates for all frequencies [111] [113].
The cutoff analysis of this structure is not considered here, with only the dispersion problem
considered. As is the case with the previous two examples, the cutoff wavenumbers for the higher
order modes (which are hybrid TE-T'M modes [I3]) can be determined from the propagation
curves from the intersection of a curve with the f,-axis, corresponding to a propagation constant
of zero.

The normalized propagation constant as a function of the operating frequency is shown in



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 121

3.5

(= - N N w
(=} ul o ul o

Normalised propagation constant: |y|* /k2

o
)

i l 1 1 1
0'900 150 200 250 300 350
Operating frequency: f, [MHz]

Figure 5.11: The normalised propagation curves as a function of frequency for the first four modes
of the half-filled rectangular guide shown in Figure 5.4. The black squares show results for the same
structure from [IT1] as reference results. The CPU and CUDA results are plotted on the same figure
and are indistinguishable and both show good agreement with the reference results, especially for the
dominant mode. The dominant TE and T'M modes for which the cutoff results are given in Figure 5.10
and Table 5.2 are labelled as such.

Figure 5.12, with reference values from [I13] also given. The computed results for both the
CPU and CUDA eigensolvers (plotted over each other), used with the FEniCS implementation
of Listing 5.5, agree well with the reference results.

It should be noted that the complex modes shown in [I13], corresponding to conjugate-pair
eigenvalues of the eigensystem in (5.32) are not visible in Figure 5.12. This is due to the fact
that only the first four modes are considered here, whereas the complex modes are associated
with modes six and seven in [I13].

the timing results for the dispersion analysis of the shielded microstrip line are considered.
That is the computational time required for the production of the results for the graph given in
Figure 5.12.

Table 5.3 shows a summary of the timing and speedup results corresponding to the dispersion
curve of Figure 5.12. This serves as an introduction to Section 5.5, where the performance
results of the CPU- and CUDA-based implementations of the eigenvalue solver are presented.
The FEniCS implementation of Listing 5.5 is used, with vector_order = 2 and nodal_order = 3,
resulting in 3082 degrees of freedom. The eigenvalue computation of Section 5.3.2 is performed
in single precision, with four eigenvalues requested.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 122

Normalised propagation constant: ||* /k?

B i !
QLO 11 12 13 14 15 16 17 18 19 20
Operating frequency: f, [GHz]

Figure 5.12: The normalised propagation curves as a function of frequency for the first four modes of
the shielded microstrip line shown in Figure 5.5. The black squares show results for the same structure
from [I13] as reference results. The CPU and CUDA results are plotted on the same figure and are
indistinguishable and both show good agreement with the reference results.

Table 5.3: Summary of timing and speedup results for the CPU and CUDA eigensolvers of Section 5.3.2
as applied to the dispersion analysis of the shielded microstrip. The results are shown for System 1 and
System 2 (introduced in Section 3.4.1), with the time required for the FEniCS part of the implementation
(Listing 5.5) as well as the eigensolver discussed in Section 5.3.2 given. The time measurements are in
seconds and represent the combined time required for the evaluation of 11 frequency points between 10
and 20 GHz (including) in each case. The percentage contribution of each part of the solution to the
total solution time is also shown.

FEniCS [s] Eigensolver [s] Total [s]

Systom 1 CPU 22 (8%) 253 (92%) 275
CUDA 22 (43%) 29 (57%) 51

CUDA speedup 8.7% 5.4%
System 2 CPU 10 (9%) 98 (91%) 108
CUDA 10 (30%) 23 (70%) 33

CUDA speedup 4.3 3.3x

System 1 CUDA
VS 3.4X% 2.1%

System 2 CPU




CHAPTER 5. FEM WAVEGUIDE ANALYSIS 123

5.5 Performance results

From the results in Table 5.3, it is clear that the solution of the eigenvalue problem is by far the
most costly part of the dispersion analysis process. This is expected to be the case for the cutoff
mode computations as well. The relative performance of the CPU and CUDA implementations
of the eigensolver presented in Section 5.3.2 are now considered.

The performance results presented here show runtime contribution or speedup as a function
of problem size for the eigenproblem solution phase of Section 5.3.2. The hollow rectangular
waveguide cutoff problem — as implemented in Listing 5.3 — is considered with the problem size
varied by changing the density of the mesh of Figure 5.3 in conjunction with the order of the
functions spaces used. Note that for these results, only the calculation of the first seven TE
modes is considered, and thus only vector_order of Listing 5.1 is changed. The performance
results are shown for only System 1 and System 2 from Section 3.4.1, with the performance of
System 3 not considered. The results are also limited to single precision calculations.

5.5.1 Runtime contribution

The results of Table 5.3 indicate that solving the generalised eigenvalue problem contributes most
significantly to the total solution time for the dispersion (and by extension cutoff) problems.
In this section, the contributions of the individual steps in the process (see Listing 5.8) are
considered.

Figure 5.13 shows the runtime contributions, as a percentage of the total runtime, of the
steps of the generalised eigensolver for the CPU implementation run on System 1. Here, it is
evident that the shift-invert process contributes most significantly to the total eigensolver time,
while the computation of the matrix vector product accounts for almost all of the ARPACK
standard eigenvalue solution time. The results for System 2 are similar and are included in
Appendix 6.2.

In the case of the CUDA implementation (again for System 1), the contributions of each
of the phases are given in Figure 5.14. Here the shift-invert operation is also the dominant
component of the total runtime. In this case, the contributions of the different parts of the
shift-invert phase — the back-substitution step (implemented as a call to the MAGMA magma_
sgetrs_gpu() routine), and the combined shift and LU decomposition step (implemented as a call
to the MAGMA magma sgetrf_gpu() routine) — are indicated by a dashed line and shows that the
back-substitution step is most costly.

For the ARPACK standard eigenproblem solver phase, comparing Figure 5.13 to Figure 5.14
indicates that some speedup has been achieved. Furthermore, the change in contribution of the
matrix-vector product, and the fact that the ARPACK driver is identical for both the CPU
and CUDA versions, indicates that this speedup is due to the acceleration of the matrix vector
product. As is the case for the CPU plot of Figure 5.13, the equivalent figure for System 2 is
included in Appendix 6.2.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 124

100

9O R R B B - 7

gob i S S

Percentage of runtime [%]

10024 2048 3072 4096 5120 6144 7168 8192

Degrees of Freedom

9216 10224

Figure 5.13: A graph showing the relative distribution of the execution times of the phases of the
generalised eigensolver (discussed in Section 5.3.2) as a function of problem size. This figure shows the
results of single precision calculations using the CPU implementation of the solver on System 1. The
two phases that contribute most significantly to the total execution time are labelled (including their
percentage contribution for the largest problem considered) with the other phases grouped together but
not visible due to their negligible contribution. The contribution of the matrix-vector product (as part
of the ARPACK solver step) is also shown as a solid black line.

100 ‘ T ‘ T T T

80

70

QO e

back-s

ubstituti

on:

Percentage of runtime [%]

- -
- -
3 = il RPN

1%24 2048 3072

4096 5120 6144 7168 8192
Degrees of Freedom

9216 10224

Figure 5.14: A graph showing the relative distribution of the execution times of the phases of the
generalised eigensolver (discussed in Section 5.3.2) as a function of problem size. This figure shows the
results of single precision calculations using the CUDA implementation of the solver on System 1.
The contribution of the individual parts of the shift-invert process are divided by a dashed line and
labelled accordingly with the contribution of the matrix-vector product (as part of the ARPACK solver
step at the bottom of the graph) shown as a solid black line. In the case of the CUDA implementation
considered here, there is some additional overhead that is not included in the individual timings an is
just visible as a green section at the top left of the figure.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 125

5.5.2 Speedup

Although Figure 5.13 and Figure 5.14 indicate that the ARPACK standard eigenvalue solver step
of the solution process has been accelerated by using CUDA, they do not readily allow for the
calculation of the attained speedups. The measured speedups of the CUDA implementation over
the CPU implementation for System 1 are given in Figure 5.15. This figure shows a measured
speedup of up to 22x for the ARPACK solution of the standard eigenvalue problem when using
CUDA. When the shift-invert step is considered alone, the measured speedup when using the
CUDA-accelerated MAGMA routines is a maximum of 6 x. The CPU results are obtained using
multi-core ACML routines. The combination of speedups results in a total measured speedup
of almost 7x for the solution of the generalised eigenproblem resulting from the FEM cutoff
analysis of the hollow rectangular waveguide.

24 ‘ ‘ ‘
e o ARPACK solver 1 1 1 : 1
m ®m shift-invert AN Y LT
20r| —  total speedup |t T
‘ ‘ ‘ ¢ ‘ : o

Il L Il L L L L L
10024 2048 3072 4096 5120 6144 7168 8192 9216 10224
Degrees of Freedom

Figure 5.15: Measured speedups of the CUDA implementation over the CPU implementation on Sys-
tem 1 as a function of problem size. The speedups for the ARPACK solver step (o) and shift-invert step
(M) are shown along with the total solution speedup (—).

For System 2, the measured CUDA speedups — as shown in Figure 5.16 — are less than those
attained in the case of System 1 (Figure 5.15). This can be attributed to an increase in processor
performance over System 1 (also seen in the results of Chapter 3 and Chapter 4) in conjunction
with similar single precision performance for the two CUDA devices.

Although the speedups are lower than those of System 1, Figure 5.16 still shows measured
speedups of around 2x and 7x for the shift-invert and ARPACK solver steps, respectively. This
translates to a total speedup of just more than 2x. It should be noted that the difference in
total speedups for the two systems is comparable to the differences observed in Table 5.3 for a
similar number of degrees of freedom.

Figure 5.17 provides a direct comparison of the total solution speedup results for the two
systems considered here. As is the case for the Method of Moments in Section 4.5, the CPU
results of System 1 are taken as the baseline and indicated on the graph by a unity speedup.
Figure 5.17 shows that the CPU implementation on System 2 is about 2.5x faster than the
System 1 CPU implementation, whereas both CUDA implementations attain a speedup of 6-7x
relative to the System 1 CPU results. It should also be noted that the CUDA implementation
on System 1 is more than 2x faster than the CPU implementation on System 2.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 126

10 T T T
: : : : : ® e ARPACK solver
El o e meshift-invert
sl ‘ ‘ L . | — total speedup ||
s g T e @
: : '.‘, l./, :~~. : : :\\.___:..
6 A e R R I
=3 : L oP
T st SRS SR
7] @ ®
L% . @
4+ 'I e
r
3f g
! . . . . . . . .
? ' S - - - -y B - -E - -1
I 7 Rt e i S B
1 :

L L Il L L Il L L
1%24 2048 3072 4096 5120 6144 7168 8192 9216 10224
Degrees of Freedom

Figure 5.16: Measured speedups of the CUDA implementation over the CPU implementation on Sys-
tem 2 as a function of problem size. The speedups for the ARPACK solver step (e) and shift-invert step
(M) are shown along with the total solution speedup (—).

10

‘ | == system1CPU e e system 1 CUDA
] T a A system 2 CPU m o m system 2 CUDA ]

Speedup

*m—“k Bl N ey i G Gl T

L L Il L L Il L L
1%24 2048 3072 4096 5120 6144 7168 8192 9216 10224
Degrees of Freedom

Figure 5.17: Total eigensolver speedup relative to the System 1 CPU results as a function of problems
size. The CPU speedups for System 2 (A) as well as the CUDA speedups for System 1 (e) and System
2 (m).

5.5.3 Discussion of results

The results shown in this section clearly show the advantage of the CUDA implementation over
the CPU-based version of the generalised eigensolver implemented. Although not considered
in detail, the timing results for the dispersion analysis of the shielded microstrip presented at
the start of this section indicate that the amount of time required for the FEniCS portion of
the solution process — assembling the finite element matrices — is far less than that required to
obtain the solution to the resultant eigenproblems.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 127

In terms of the use of an iterative eigensolver, of which ARPACK is an example, consider
Figure 5.18 which shows the measured speedup of the CPU implementation of Section 5.3.2
over the LAPACK routine sGGev. This routine computes the eigenvalues of the generalised
eigenproblem of (5.30) using a direct dense method and is implemented in ACML. The speedups
are shown for both the systems considered. In both cases, the ARPACK implementation greatly
outperform the LAPACK routine.

1100

® @ system1l
1000}

H ® system 2

900

600

Speedup

500

400

200

100

I I I I I I I I
1%24 2048 3072 4096 5120 6144 7168 8192 9216 10224
Degrees of Freedom

Figure 5.18: Total eigensolver speedups relative to a dense LAPACK eigensolver as a function of
problems size. The CPU speedups for System 1 (e) and System 2 (M) are shown relative to a LAPACK
implementation (using ACML) on each of the systems.

The large performance difference between the two versions is influenced by a number of fac-
tors. Firstly, an investigation of the CPU utilisation during the computation seems to indicate
that the ACML implementation of SGGEV is not using multiple cores. Then, the LAPACK routine
calculates all the eigenvalues and eigenvectors of the system, while the ARPACK-based imple-
mentation only calculates a small fixed number. This also explains why the speedup increases
as the number of DOFs increase.

For both the CPU and CUDA implementation, the most costly part of solving the generalised
eigenvalue problem is applying the shift-invert process to transform it to a standard eigenvalue
problem as in (5.32). This is due to the fact that this process is O(N?3), where N is the number
of degrees of freedom, in terms of the computational cost. This quickly outweighs the O(N?)
matrix-vector product shown to dominate the computational requirements of the ARPACK
standard eigenproblem solver.

When considering the CUDA implementation specifically, the back-substitution is the most
costly step, contributing about 70% of the total runtime for the largest problem considered
(see Figure 5.14). Although both this routine (sGeTRs) and the LU decomposition (SGETRF) are
implemented for CUDA devices in MAGMA, the back-substitution does not offer the same
performance improvement as the LU decomposition. An investigation of the MAGMA source
code indicates that, for the present MAGMA implementation, the right-hand side vectors are
transferred from the device, the row pivots from the LU decomposition are applied in host
memory, and the pivoted matrix returned to the device, before applying the two triangular
system solves. This additional data transfer greatly affects the performance of the routine.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 128

As is the case for single precision computation in the LU decomposition (Section 3.4.2) and
the Method of Moments (Section 4.5.2), the CUDA implementation on System 1 is able to best
the CPU implementation on System 2 by a considerable margin. The CUDA results on System
2 show similar performance benefits. Although the System 3 results are not shown, it is clear
that the CUDA implementation for System 1 and System 2 will at least narrow the performance
advantage that the CPU results of System 3 would exhibit.

5.6 Conclusion

In this chapter two implementation aspects of the FEM analysis of waveguide structures have
been discussed. The first of these is the use of FEniCS — an open-source software collection
for the solution of partial differential equations — in the modelling and analysis of the cutoff
and dispersion characteristics of these structures. A quick comparison of the equations in the
problem formulations and the FEniCS code samples given, show that the process of going from
formulation to implementation is greatly simplified when using high-level tools such as DOLFIN,
which is included as part of FEniCS.

The ease with which this can be achieved allows for the rapid development and testing of new
formulations. In addition, the object orientated approach followed by DOLFIN allows for the
reuse of a large percentage of the code. This is demonstrated in the implementations presented,
where only the problem specifics — such as material properties and boundary conditions — need
to be redefined in each case. Although not discussed explicitly, DOLFIN also improves the ease
with which results can be post-processed and visualised, with the results shown indicating that
the solutions are of a high quality.

The second contribution of this chapter was the introduction of a CUDA-accelerated solver
for generalised eigenvalue problems. In keeping with the co-development strategy of Chap-
ter 4, both a CPU and CUDA framework were developed. The CUDA implementation shows a
marked improvement, in terms of performance, over the CPU implementation, which in turn is
significantly faster than using a dense direct generalised eigensolver as is supplied by LAPACK.
Furthermore, the results also show that the use of a realtively cheap CUDA device in System
1 — the oldest system used for testing — allows for better performance than a multi-core imple-
mentation on a more current system. This is in agreement with the results of both Chapter 3
and Chapter 4.

In contrast to the results presented in Chapter 3 and Chapter 4, the results presented here
are limited to single precision computation on System 1 and System 2, with the performance of
System 3 not considered for administrative reasons. Although the limitation to single precision
is an aspect that requires attention — and will be the focus of continued research — the availability
of double precision implementations for all the CUBLAS and MAGMA routines used, means
that this addition should be straightforward. Since the shift-invert step was found to be the
dominant contributor to the eigenproblem solution time, performance results similar to those of
Chapter 3 are expected.

As with most research, there are a number of of aspects to the work presented here that
still require attention. The most important of these is the extension of the methods to support
sparse matrices. In terms of the ARPACK-based standard eigenproblem solver, there should
be no problem in this regard, as already demonstrated for the Lanczos process in [120]. Much
research as gone into the CUDA acceleration of sparse matrix-vector products with notable
contributions in [I3I] and [I32]. The importance of sparse-matrix vector operations is also
indicated by the recent release of the CUSPARSE library as part of version 3.2 of the CUDA
toolkit [54], allowing for a high-level library-based approach to be used. Since the performance
of these sparse methods are typically lower than the dense variants [I31], it is expected that the
speedups for the ARPACK standard eigenvalue phase will decrease if they are used.



CHAPTER 5. FEM WAVEGUIDE ANALYSIS 129

The extension of the generalised eigenvalue problem to a sparse implementation poses more
of a problem — especially for the matrices considered here. Since the matrices here are not
positive semi-definite, the shifted matrix of (5.32) is explicitly constructed, with the suggestion
that a direct sparse factorisation of the shifted matrix be computed and used in the matrix-vector
product [I4]. Although a number of CPU libraries such as SuperLU [I33] exist that provide this
functionality, there are no CUDA options that are mature and stable enough. Mention should
be made of CUSP [134] and the work in [I35], where CUDA acceleration is added to an existing
sparse-matrix factorisation library with some success.

These sparse direct factorisations also often exhibit a large amount of fill-in, dramatically
decreasing the advantage (in terms of memory requirements) of sparse matrices over dense
matrices. The effect of fill-in can, however, be reduced by applying matrix bandwidth reduction
and reordering techniques such as discussed in [I36] and [137].

If the direct factorisation route is not followed, one option is to use an iterative solver such
as GMRES [63] as part of the matrix-vector multiplication step in the ARPACK process. The
use of such solvers for driven electromagnetic problems using the finite elment method has been
demonstrated in [I38]. In the case of the eigenvalue problems considered here, the matrix-vector
product, and thus the solution of the linear system, would have to be applied a large number
of times. This, and the typically large condition number of the finite element matrices for high
order basis functions and fine meshes [I16] 139, 140], means that the number of iterations for
the convergence of the iterative solver will typically increase dramatically with an increase in
problem size [IT6] 141]. This has been confirmed by initial testing.

The limit placed on solveable problem size by the amount of available GPU memory —
as is addressed for the CUDA implementations of Chapter 3 and Chapter 4 — has not been
addressed here. For the standard eigenvalue problem solver step, the use of sparse matrices will
dramatically increase the size of the problems that can be addressed. It should be noted that,
due to the O(N?) computational and data storage requirements of the matrix-vector product,
and the imbalance between the computational capability of CUDA devices and the bandwidth
of the host-device link, an implementation that requires the matrix [C] to be transferred to the
device multiple times is expected to show a significant decrease in performance.

Despite the limitations of the eigensolver implemented here, the results in this chapter pro-
vide further evidence of the usefulness of CUDA acceleration in the field of computational
electromagnetics, with the CUDA implementation out-performing the CPU implementation on
both of the test systems used. Furthermore, the indication is also that the addition of a GPU
to an existing system can be considered as a viable upgrade path to extend its usefulness. In
terms of modelling, the use of FEniCS in the realisation of the formulations as presented has a
large advantage in terms of ease of use over self-implemented codes. This is especially true if
the primary focus of an implementation is the investigation of the effect of various formulation
options.



Chapter 6

Conclusion and future work

Although this dissertation has covered quite a wide variety of topics, it can be stated that the
overarching goal of investigating the use of GPU acceleration in matrix-based CEM methods has
been achieved. It should be noted that even though the term investigation does not necessarily
have to imply tangible results, a number of notable contributions have been made.

The first of these is the successful implementation of two CUDA-based LU decompositions,
the panel-based and MAGMA-panel-based hybrid implementations of Chapter 3. These not
only provide significant speedup in all but the double precision results of the fastest (and most
expensive) CPU system, but do so while overcoming the restrictions placed on the problem size
by the amount of memory available on a device. These results — although in a condensed form
— have already been published in [9].

In the case of the Method of Moments, the CUDA-based LU decomposition was used as
part of the solution process, with the acceleration of the other phases also considered. Here
the matrix assembly phase was found to also contribute significantly to the total runtime of the
solver. Due to the inherently data-parallel nature of the computations in this phase, speedups of
up to 45x and 300x for double and single precision implementations, repectively, over multi-core
CPU implementations were attained when only considering the matrix assembly phase.

The MOM matrix assembly implementation presented in Chapter 4 is also resilient with
respect to the amount of memory available. This, when combined with the MAGMA-panel-
based hybrid LU decomposition, allows for an accelerated solution process that was shown to
solve problems that require up to 16 times as much memory as is available on the CUDA device.
This is done while still achieving a total solution speedup. Early results for these accelerated
processes have been published in [I1] and [I2].

Although the finite element implementation and results show the most scope for future
research and improvements, a number of meaningful contributions are presented in Chapter 5.
The first of these is the implementation of a GPU-accelerated iterative generalised eigenvalue
problem solver. This solver is built around a CUBLAS-enhanced ARPACK implementation of a
standard eigenvalue solver that represents the continuation of the work in [I5]. At present this
solver is limited to use with dense matrices.

In addition to the eigensolver implementation, that shows a total measured speedup of
between 2x and 7x for the two systems considered, Chapter 5 also investigates the application
of FEniCS to the modelling of finite element waveguide problems [16]. It is found that the high-
level descriptive language provided greatly simplifies the implementation of new finite element
formulations. The examples used to generate the results of Chapter 5 will also be included as
demo scripts in the FEniCS code repository.

130



CHAPTER 6. CONCLUSION AND FUTURE WORK 131

6.1 Research observations

Apart from the specific contributions already mentioned, a number of observations can be made
pertaining to the research and some of the objectives discussed in Section 1.1.

Although the speedups measured indicate success (according to the criteria of a speedup
of more than 1x, mentioned in Section 1.1), the comparative performance data also provides
valuable insights in themselves. The results, for example, show that the 5 year old System 1 is
able to perform competitively in most of the test cases with the addition of a relatively cheap
CUDA GPU. This illustrates the feasibility of, or at very least the need for further investigation
into, the use of GPUs as upgrades for existing systems to improve their computational usefulness.

One caveat, is that performance gains will only be attained for software that is implemented
to take advantage of this massively parallel hardware and problems that are sufficiently parallel.
However, as motivated in Chapter 1, there is a definite trend towards parallelisation and as such,
the re-evaluation and extension of existing software to make use of parallel computing hardware
should be a top priority.

In the MOM and FEM implementation sections of Chapter 4 and Chapter 5, the sharing of
code between CPU and CUDA implementations was considered with varying levels of complex-
ity. Chapter 4, specifically, showed how it is possible to implement a complex code for parallel
execution on both a multi-core CPU using OpenMP and a CUDA device. Although this im-
plementation may be superseded by compilers such as [6], or even properly designed OpenCL
implementations, the exercise of developing such a parallel code is invaluable in designing sys-
tems that target vastly different platforms while being extensible and easy to maintain. This
experience will also prove useful when developing code for other targets, such as OpenCL.

6.2 Future work

Since each of the results chapters provide a detailed discussion on possible future avenues of
research specific to their results, the recommendations given here are kept relatively general
in nature. These then serve to guide longer term research objectives, with the chapter-specific
recommendations typically representing short-term project ideas.

The research and results presented here are limited to single multi-core machines making
use of a single GPU. Although this is a perfectly valid everyday use-case, one of the factors
that should receive further attention is the use of multiple GPUs installed in a single host to
further improve performance. For many of the algorithms considered here, such as the MOM
matrix assembly, and the matrix-vector product that is performed as part of the ARPACK
standard eigensolver process, the additional complexity required is minimal and thus such an
implementation should results in an almost linear speedup in the number of devices used. As
with all parallel implementations, however, this is subject to a number of constraints, including
that the problems being considered be sufficiently large.

In the case of more complex operations such as the LU decomposition, the use of a runtime
environment such as StarPU [82] should be considered. As discussed in Chapter 3, StarPU
in particular has already demonstrated very promising results using both multiple GPUs and
multi-core CPUs to achieve significant speedups in the various matrix factorisations including
the LU decomposition.

The appearance of libraries and tools such as MAGMA [8] and StarPU are commonplace
in a field that is as rapidly evolving as GPU-computing. Given a few more months to a year,
the feature set of each of these may have already been extended to such a point so as to
provide all the desired functionality out-the-box. That said, a wait-and-see approach is not
recommended, if only for the experience that is picked up while struggling with a particularly
difficult implementation.



CHAPTER 6. CONCLUSION AND FUTURE WORK 132

While on the topic of the LU decomposition and MAGMA, one of the sets of routines iden-
tified in both the MOM and FEM solution process as contributing significantly to the total
computational time are the LAPACK xGETRS routines. Although the single precision real imple-
mentation is accelerated in MAGMA [§], there still appears to be much room for improvement.
The issue of direct sparse factorisations for use in generalised eigensolvers dealing with sparse
matrices also needs urgent attention.

A final question that can be raised is the relative performance, for the problems considered
here and in general, of CUDA and OpenCL. This can then be extended to the comparative
performance of AMD and NVIDIA GPUs and which of these presents a better value option. One
of the most attractive factors of OpenCL is its cross-platform nature, which will be much more
of an advantage once platforms such as Fusion by AMD [5] become commonplace. As briefly
discussed in Chapter 2, the OpenCL specification also includes support for a heterogeneous
programming model which allows for the use of multiple compute devices. If implemented
correctly, this would results in functionality similar to that exhibited by StarPU for multi-core
and multi-GPU systems.



List of References

Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in software.
Dr. Dobb’s Journal, vol. 30, no. 3, March 2005.

Available at: http://www.gotw.ca/publications/concurrency-ddj.htm (Cited on
pages 1 and 7.)

Meuer, H., Strohmaier, E., Dongarra, J. and Simon, H.: Top 500 Supercomputer Sites.
2010.
Available at: www.top500.org (Cited on pages 1, 6, and 9.)

NVIDIA Corporation: NVIDIA GeForce 8800 GPU architecture overview. Technical Brief
TB-02787-001_v01, November 2006. (Cited on pages 1, 8, 10, 11, and 17.)

NVIDIA Corporation: CUDA Zone — The resource for CUDA developers. 2010.
Available at: http://www.nvidia.com/cuda (Cited on pages 1 and 29.)

Advanced Micro Devices: AMD Fusion™ Family of APUs: Enabling a Superior, Immersive
PC Experience. Tech. Rep. 48423B, March 2010. (Cited on pages 2, 11, 29, and 132.)

The Portland Group: PGI to Develop Compiler Based on NVIDIA CUDA C Architecture
for x86 Platforms. 2010.

Available at: http://www.pgroup.com/about/news.htm#42 (Cited on pages 2, 29,
and 131.)

NVIDIA Corporation: CUDA CUBLAS Library. User guide PG-05326-032_V01, August
2010. (Cited on pages 3, 22, 30, 35, and 67.)

Tomov, S., Nath, R., Du, P. and Dongarra, J.: MAGMA Library. User guide version 0.2,
November 2009.

Available at: http://icl.cs.utk.edu/magma/ (Cited on pages 3, 23, 30, 32, 36, 37, 40,
41, 42, 45, 46, 56, 81, 131, and 132.)

Lezar, E. and Davidson, D.: GPU-based LU Decomposition for Large Method of Moments
Problems. FElectronics Letters, vol. 46, no. 17, pp. 1194-1196, 19 August 2010.

Available at: http://link.aip.org/link/?ELL/46/1194/1 (Cited on pages 3, 30, 37,
42, 60, and 130.)

Rao, S., Wilton, D. and Glisson, A.: Electromagnetic scattering by surfaces of arbitrary
shape. IEEFE Transactions on Antennas and Propagation, vol. 30, no. 3, pp. 409418, 1982.
(Cited on pages 3, 5, 58, 59, 60, 61, 63, 64, 65, 67, 68, 81, 82, and 83.)

Lezar, E. and Davidson, D.: GPU Acceleration of Method of Moments Matrix Assembly
using Rao-Wilton-Glisson Basis Functions, vol. 1, pp. 56—60. Proceedings of the 2010 In-

ternational Conference on Electronics and Information Engineering (ICEIE 2010), Kyoto,
Japan, August 2010. (Cited on pages 3, 60, 95, and 130.)

133


http://www.gotw.ca/publications/concurrency-ddj.htm
www.top500.org
http://www.nvidia.com/cuda
http://www.pgroup.com/about/news.htm#42
http://icl.cs.utk.edu/magma/
http://link.aip.org/link/?ELL/46/1194/1

LIST OF REFERENCES 134

[12]

[13]

[14]

[19]

[20]

[21]

Lezar, E. and Davidson, D.: GPU-Accelerated Method of Moments by Example: Mono-
static Scattering. Antennas and Propagation Magazine, IEEE, December 2010. In press.
(Cited on pages 3, 60, and 130.)

Pozar, D.M.: Microwave Engineering. 3rd edn. John Wiley & Sons, Inc., 2005. (Cited on
pages 3, 98, 99, 100, 101, 107, 109, 111, 117, and 120.)

Lehoucq, R., Sorensen, D. and Yang, C.: ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. Siam, 1998. (Cited on
pages 4, 97, 98, 103, 104, 113, and 129.)

Lezar, E. and Davidson, D.: GPU-based Arnoldi factorisation for accelerating finite ele-
ment eigenanalysis. Proceedings of the 11th International Conference on Electromagnetics
in Advanced Applications - ICEAA’09, Torino, Italy, September 2009. (Cited on pages 4,
35, 98, and 130.)

The FEniCS Project. 2010.
Available at: www.fenicsproject.org (Cited on pages 4, 97, 98, 104, and 130.)

Culler, D., Singh, J. and Gupta, A.: Parallel Computer Architecture: A Hardware/Soft-
ware Approach. Morgan Kaufmann Publishers, Inc, San Francisco, CA, 1999. (Cited on
pages 6, 7, 8, 20, 21, and 26.)

Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay,
V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L.
and Woodall, T.S.: Open MPI: Goals, concept, and design of a next generation MPI
implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting, pp.
97-104. Budapest, Hungary, September 2004. (Cited on pages 6 and 73.)

OpenMP Architecture Review Board: OpenMP Application Program Interface. Program-
mer’s reference Version 3.0, May 2008.

Available at: http://www.openmp.org/mp-documents/spec30.pdf (Cited on pages 7,
11, 73, 74, and 81.)

Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Transactions on
Computers, vol. C-21, no. 9, pp. 948-960, September 1972.
Available at: 10.1109/TC.1972.5009071 (Cited on page 7.)

Asanovic, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K., Patterson,
D., Plishker, W., Shalf, J., Williams, S. et al.: The Landscape of Parallel Computing
Research: A View from Berkeley. Tech. Rep. UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, 2006. (Cited on page 8.)

Tarricone, L. and Esposito, A.: Grid Computing for Electromagnetics. Artech House,
Norwood, MA, 2004. (Cited on page 8.)

England, J.: A system for interactive modeling of physical curved surface objects. In:
Proceedings of the 5th annual conference on Computer graphics and interactive techniques,
pp. 336-340. ACM New York, NY, USA, 1978. (Cited on page 8.)

Potmesil, M. and Hoffert, E.: The pixel machine: a parallel image computer. ACM
SIGGRAPH Computer Graphics, vol. 23, no. 3, pp. 69-78, 1989. (Cited on page 8.)

Rhoades, J., Turk, G., Bell, A., Neumann, U. and Varshney, A.: Real-time procedural
textures. In: Proceedings of the 1992 symposium on Interactive 8D graphics, pp. 95-100.
ACM New York, NY, USA, 1992. (Cited on page 8.)


www.fenicsproject.org
http://www.openmp.org/mp-documents/spec30.pdf
10.1109/TC.1972.5009071

LIST OF REFERENCES 135

[26]

[27]

[28]

[29]

[30]

[32]

[33]

[34]

[35]

[36]

[37]

NVIDIA Corporation: NVIDIA’s Next Generation CUDA™ Compute Architecture:
Fermi™. Whitepaper 1.1, 2009. (Cited on pages 8, 10, and 11.)

Kirk, D.B. and Hwu, W.W.: Programming Massively Parallel Processors - A Hands-on
Approach. Morgan Kaufmann, Burlington, 2010. (Cited on pages 8, 10, 11, 13, 18, 19, 20,
21, 29, and 68.)

Advanced Micro Devices: AMD Close to Metal™Technology Unleashes the Power of
Stream Computing. 2006.

Available at: http://amd.com/us/press-releases/Pages/Press_Release_114147.
aspx (Cited on pages 8 and 10.)

NVIDIA Corporation: NVIDIA CUDA™. NVIDIA CUDA C Programming Guide Version
3.2, Santa Clara, CA, October 2010. (Cited on pages 9, 11, 13, 14, 15, 16, 17, 18, 19, 20,
22,27, 70, 71, 75, 80, and 114.)

Chu, M.M.: GPU Computing: Past, Present and Future with ATI Stream Technology,
March 2009.

Available at: http://developer.amd.com/gpu_assets/
GPUComputing-PastPresentandFuturewithATIStreamTechnology.pdf (Cited on
page 9.)

Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N.,
Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R. and Dubey, P.: Debunking
the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu.
SIGARCH Comput. Archit. News, vol. 38, pp. 451-460, June 2010. ISSN 0163-5964.
Available at: http://doi.acm.org/10.1145/1816038.1816021 (Cited on page 9.)

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E. and
Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum, vol. 26, no. 1, pp. 80-113, 2007. (Cited on page 9.)

GPGPU: General-Purpose Computation Using Graphics Hardware. 2008.
Available at: http://www.gpgpu.org/ (Cited on page 9.)

Owens, J., Houston, M., Luebke, D., Green, S., Stone, J. and Phillips, J.: GPU Computing.
Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, 2008. ISSN 0018-9219. (Cited on
page 10.)

NVIDIA Corporation: NVIDIA GeForce GTX 200 GPU Architectural Overview. Techni-
cal Brief TB-04044-001_v01, May 2008. (Cited on pages 10, 11, and 18.)

Advanced Micro Devices: ATI Stream SDK v2.2 with OpenCL 1.1 Support. 2010.
Available at: http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
(Cited on pages 10 and 29.)

Advanced Micro Devices: A Brief History of General Purpose (GPGPU) Computing.
2010.

Available at: http://amd.com/us/products/technologies/stream-technology/
opencl/Pages/gpgpu-history.aspx (Cited on page 10.)

Khronos Group: OpenCL. 2009.
Available at: http://www.khronos.org/opencl/ (Cited on pages 10 and 26.)


http://amd.com/us/press-releases/Pages/Press_Release_114147.aspx
http://amd.com/us/press-releases/Pages/Press_Release_114147.aspx
http://developer.amd.com/gpu_assets/GPU Computing - Past Present and Future with ATI Stream Technology.pdf
http://developer.amd.com/gpu_assets/GPU Computing - Past Present and Future with ATI Stream Technology.pdf
http://doi.acm.org/10.1145/1816038.1816021
http://www.gpgpu.org/
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
http://amd.com/us/products/technologies/stream-technology/opencl/Pages/gpgpu-history.aspx
http://amd.com/us/products/technologies/stream-technology/opencl/Pages/gpgpu-history.aspx
http://www.khronos.org/opencl/

LIST OF REFERENCES 136

[39]

[40]

[50]

[51]

[52]

[53]

Advanced Mirco Devices: ATI Stream Computing: OpenCL™. Programming Guide 1.05,
August 2010. (Cited on pages 10, 23, 24, 25, and 28.)

Khronos OpenCL Working Group: The OpenCL. Specification 1.1, September 2010.
Available at: http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf (Cited
on pages 10, 23, 26, 27, and 28.)

Kapasi, U., Rixner, S., Dally, W., Khailany, B., Ahn, J., Mattson, P. and Owens, J.:
Programmable stream processors. Computer, pp. 54-62, 2003. (Cited on pages 11 and 27.)

Sanders, J. and Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison Wesley, Upper Saddle River, NJ, 2010. (Cited on pages 11
and 29.)

Rixner, S.: Stream processor architecture. Kluwer Academic Pub, 2001. (Cited on pages 12
and 27.)

NVIDIA Corporation: NVIDIA CUDA. Reference manual, August 2010. (Cited on
page 16.)

Barrachina, S., Castillo, M., Igual, F., Mayo, R., Quintana-Orti, E. and Quintana-Orti,
G.: Exploiting the capabilities of modern GPUs for dense matrix computations. Tech.
Rep., Technical Report ICC 01-11-2008, Universidad Jaime I (Spain), 2008. (Cited on
page 16.)

Kanter, D.: NVIDIA’s GT200: Inside a Parallel Processor. September 2008.
Available at: http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242
(Cited on pages 18 and 20.)

Fujimoto, N.: Faster matrix-vector multiplication on GeForce 8800GTX. In: Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pp. 1-8.
2008. ISBN 1530-2075. (Cited on pages 18 and 35.)

NVIDIA Corporation: NVIDIA GF100: World’s Fastest GPU Delivering Great Gaming
Performance with True Geometric Realism. Whitepaper 1.5. (Cited on page 19.)

Wong, H., Papadopoulou, M., Sadooghi-Alvandi, M. and Moshovos, A.: Demystifying
GPU microarchitecture through microbenchmarking. In: Performance Analysis of Systems
& Software (ISPASS), 2010 IEEE International Symposium on, pp. 235-246. IEEE, March
2010. (Cited on page 20.)

NVIDIA Corporation: NVIDIA CUDA™: CUDA C Best Practices Guide. Tech. Rep. 3.2,
August 2010. (Cited on pages 20 and 22.)

NVIDIA Corporation: CUDA CUFFT Library. Tech. Rep. PG-05327-032_V01, August
2010. (Cited on page 22.)

Ziemer, R. and Tranter, W.: Principles of communications: systems, modulation, and
notse. Wiley, 2002. ISBN 9780471392538.
Available at: http://books.google.com/books?id=6ROfAQAATIAAJ (Cited on page 22.)

Lawson, C.L., Hanson, R.J., Kincaid, D.R. and Krogh, F.T.: Basic linear algebra subpro-
grams for fortran usage. ACM Trans. Math. Softw., vol. 5, no. 3, pp. 308-323, 1979. ISSN
0098-3500. (Cited on pages 22, 30, 31, 32, 36, and 39.)


http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242
http://books.google.com/books?id=6R0fAQAAIAAJ

LIST OF REFERENCES 137

[54]

[55]

[56]

[57]

[64]

[65]

NVIDIA Corporation: CUDA CUSPARSE Library. Tech. Rep. PG-05329-032_V01, Au-
gust 2010. (Cited on pages 23 and 128.)

NVIDIA Corporation: CUDA CURAND Library. Tech. Rep. PG-05328-032_V01, August
2010. (Cited on page 23.)

EM Photonics, Inc: CULA Programmer’s Guide. User guide Release 2.1, August 31 2009.
Available at: http://www.culatools.com/files/docs/2.1/CULAReferenceManual_2.
1.pdf (Cited on pages 23, 34, and 36.)

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz,
J., Greenbaum, A., Hammarling, S., McKenney, A. and Sorensen, D.: LAPACK Users’
Guide. 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
ISBN 0-89871-447-8 (paperback). (Cited on pages 23, 30, 31, and 36.)

NVIDIA Corporation: OpenCL Programming Guide for the CUDA Architecture. Tech.
Rep., August 2010. (Cited on pages 23 and 28.)

Advanced Mirco Devices: ATI Stream Computing: Compute Abstraction Layer (CAL).
Programming Guide rev2.01, March 2010. (Cited on page 25.)

Advanced Micro Devices: AMD Core Math Library for Graphic Processors: User Guide
for Version 1.1. Tech. Rep. 31208, July 2010. (Cited on pages 25 and 35.)

Institute for Microelectronics, TU Wien: Viennacl. 2010.
Available at: http://viennacl.sourceforge.net/index.html (Cited on page 25.)

Dongarra, J., Hammarling, S. and Walker, D.W.: Key Concepts for Parallel Out-of-Core
LU Factorization. Computers and Mathematics with Applications, vol. 35, no. 7, pp. 13-31,
1998. (Cited on pages 30, 31, 32, 38, 39, 40, and 41.)

Golub, G.H. and van Loan, C.F.. Matriz Computations. 3rd edn. The John Hopkins
University Press, Baltimore, 1996. (Cited on pages 31, 32, 33, 36, 37, 45, 98, 102, 103,
104, and 129.)

Advanced Micro Devices: AMD Core Math Library (ACML). User Guide Version 4.4.0,
2010. (Cited on pages 31, 35, and 81.)

Whaley, R. and Petitet, A.: Minimizing development and maintenance costs in supporting
persistently optimized BLAS. Software: Practice and FEzxperience, vol. 35, no. 2, pp. 101-
121, 2005. ISSN 1097-024X. (Cited on pages 32, 34, and 35.)

Intel: Intel® Math Kernel Library. User’s Guide 314774-009US, March 2009.
Available at: http://www.intel.com/software/products/ (Cited on page 34.)

EM Photonics: CULA Tools - Performance. 2010.
Available at: http://www.culatools.com/features/performance/ (Cited on page 34.)

MathWorks: MATLAB - The Language Of Technical Computing. 2010.
Available at: http://www.mathworks.com/products/matlab/ (Cited on page 35.)

Eaton, J.W.: GNU Octave Manual. Network Theory Limited, 2002. ISBN 0-9541617-2-6.
(Cited on page 35.)


http://www.culatools.com/files/docs/2.1/CULAReferenceManual_2.1.pdf
http://www.culatools.com/files/docs/2.1/CULAReferenceManual_2.1.pdf
http://viennacl.sourceforge.net/index.html
http://www.intel.com/software/products/
http://www.culatools.com/features/performance/
http://www.mathworks.com/products/matlab/

LIST OF REFERENCES 138

[70]

[71]

[74]

[75]

[79]

Nath, R., Tomov, S. and Dongarra, J.: An Improved MAGMA GEMM for Fermi GPUs.
LAPACK Working Note 227 UT-CS-10-655, September 15 2010.

Available at: http://www.netlib.org/lapack/lawnspdf/lawn227.pdf (Cited on
pages 35, 36, and 56.)

Li, Y., Dongarra, J. and Tomov, S.: A Note on Auto-tuning GEMM for GPUs. Lapack
Working Note 212 UT-CS-09-635, January 12 2009.

Available at: http://www.netlib.org/lapack/lawnspdf/lawn212.pdf (Cited on
page 35.)

Tomov, S., Nath, R., Ltaief, H. and Dongarra, J.: Dense linear algebra solvers for multicore
with GPU accelerators. Tech. Rep., Innovative Computing Laboratory, University of
Tennessee, 2009. (Cited on pages 36 and 41.)

Galoppo, N., Govindaraju, N., Henson, M. and Manocha, D.: LU-GPU: Efficient algo-
rithms for solving dense linear systems on graphics hardware. In: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, p. 3. IEEE Computer Society, 2005. ISBN
1595930612. (Cited on page 36.)

Hall, J.D., Carr, N.A. and Hart, J.C.: Cache and bandwidth aware matrix multiplication
on the gpu. Tech Report UTUCDCS-R-2003-2328, University of Illinois, Department of
Computer Science, March 2003.

Available at: http://graphics.cs.uiuc.edu/~jch/papers/gpumatrixmul.pdf (Cited
on page 36.)

Fatahalian, K., Sugerman, J. and Hanrahan, P.: Understanding the efficiency of gpu al-
gorithms for matrix-matrix multiplication. In: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardware, HWWS ’04, pp. 133-137. ACM, New
York, NY, USA, 2004. ISBN 3-905673-15-0.

Available at: http://doi.acm.org/10.1145/1058129.1058148 (Cited on page 36.)

Zee, F.G.V.: libflame The Complete Reference. 4556, draft edn. 2010. (Cited on page 36.)

Castillo, M., Chan, E., Igual, F., Quintana-Orti, E., Quintana-Orti, G., van de Geijn,
R. and Van Zee, F.: Making programming synonymous with programming for linear
algebra libraries. FLAME Working Note #31 TR-08-20, The University of Texas at Austin,
Department of Computer Sciences, May 9 2008.

Available at: http://www.cs.utexas.edu/users/flame/pubs/flawn3l.pdf (Cited on
page 36.)

Fogué, M., Igual, F.D., Quintana-Orti, E. and van de Geijn, R.: Retargeting PLAPACK
to Clusters with Hardware Accelerators. FLAME Working Note #42 Technical Report
TR-10-06, The University of Texas at Austin, Department of Computer Sciences, February
11 2010.
Available at: http://www.cs.utexas.edu/users/flame/pubs/FLAWN42.pdf (Cited on
page 36.)

Igual, F.D., Quintana-Orti, G. and van de Geijn, R.: Level-3 BLAS on a GPU: Picking
the Low Hanging Fruit. FLAME Working Note #37 Technical Report DICC 2009-04-01,
Universidad Jaume I, Depto. de Ingenieria y Ciencia de Computadores, May 27 2009.
Available at: http://www.cs.utexas.edu/users/flame/pubs/FLAWN37.pdf (Cited on
page 36.)


http://www.netlib.org/lapack/lawnspdf/lawn227.pdf
http://www.netlib.org/lapack/lawnspdf/lawn212.pdf
http://graphics.cs.uiuc.edu/~jch/papers/gpumatrixmul.pdf
http://doi.acm.org/10.1145/1058129.1058148
http://www.cs.utexas.edu/users/flame/pubs/flawn31.pdf
http://www.cs.utexas.edu/users/flame/pubs/FLAWN42.pdf
http://www.cs.utexas.edu/users/flame/pubs/FLAWN37.pdf

LIST OF REFERENCES 139

[80]

[81]

[83]

[36]

[87]

[88]

Marqués, M., Quintana-Orti, G., Quintana-Orti, E.S. and van de Geijn., R.: Solving Large
Dense Matrix Problems on Multi-Core Processors and GPUs. FLAME Working Note #36
Technical Report ICC 01-01-2009, Universidad Jaume I, Depto. de Ingenieria y Ciencia
de Computadores., January 7 2009.

Available at: http://www.cs.utexas.edu/users/flame/pubs/FLAWN36.pdf (Cited on
page 36.)

Joffrain, T., Quintana-Orti{, E. and van de Geijn, R.: Rapid development of high-
performance out-of-core solvers. In: Dongarra, J., Madsen, K. and Wasniewski, J. (eds.),
Applied Parallel Computing, vol. 3732 of Lecture Notes in Computer Science, pp. 413-422.
Springer Berlin / Heidelberg, 2006.

Available at: http://dx.doi.org/10.1007/11558958_49 (Cited on pages 36, 38, 40,
and 45.)

Augonnet, C., Thibault, S. and Namyst, R.: StarPU: a Runtime System for Scheduling
Tasks over Accelerator-Based Multicore Machines. Technical Report 7240, INRIA, March
2010.

Available at: http://hal.archives-ouvertes.fr/inria-00467677 (Cited on pages 37,
57, 96, and 131.)

Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S. and Tomov,
S.: Faster, Cheaper, Better a Hybridization Methodology to Develop Linear Algebra Soft-
ware for GPUs. Lapack Working Note 230 UT-CS-10-658, September 15 2010.

Available at: http://www.netlib.org/lapack/lawnspdf/lawn230.pdf (Cited on
pages 37 and 57.)

Pennycook, S., Hammond, S., Mudalige, G. and Jarvis, S.: Performance Analysis of a
Hybrid MPI/CUDA Implementation of the NAS-LU Benchmark. In: Ist International
Workshop on Performance Modeling, Benchmarking and Simulation of High Performance
Computing Systems (PMBS 10) held in conjunction with IEEE/ACM Supercomputing
2010 (SC’10). New Orleans, LA, USA, 2010.

Available at: http://eprints.dcs.warwick.ac.uk/110/1/uw22-9-2010-2.0.pdf
(Cited on page 37.)

Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra,
J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R.C.:
ScalLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1997. ISBN 0-89871-397-8 (paperback). (Cited on page 38.)

Silberschatz, A., Galvin, P., Gagne, G. and Silberschatz, A.: Operating System Concepts.
Seventh edn. John Wiley & Sons, Inc., Hoboken, NJ 07030, 2005. ISBN 0-471-69466-5.
(Cited on page 38.)

Volkov, V. and Demmel, J.: LU, QR and Cholesky factorizations using vector capabilities
of GPUs. LAPACK Working Note 202 UCB/EECS-2008-49, May 2008 2008. (Cited on
page 41.)

Davidson, D.B.: Computational Electromagnetics for RF and Microwave Engineers. 2nd
edn. Cambridge University Press, Cambridge, 2011. (Cited on pages 58, 60, 61, 62, 63,
97, 98, 101, 117, and 119.)

Takahashi, T. and Hamada, T.. GPU-accelerated boundary element method for
Helmholtz’ equation in three dimensions. International Journal for Numerical Methods in
Engineering, vol. 80, pp. 1295-1321, 2009. (Cited on pages 58, 59, and 95.)


http://www.cs.utexas.edu/users/flame/pubs/FLAWN36.pdf
http://dx.doi.org/10.1007/11558958_49
http://hal.archives-ouvertes.fr/inria-00467677
http://www.netlib.org/lapack/lawnspdf/lawn230.pdf
http://eprints.dcs.warwick.ac.uk/110/1/uw22-9-2010-2.0.pdf

LIST OF REFERENCES 140

[90]

[91]

[92]

[93]

[101]

[102]

[103]

Chen, R., Xu, K. and Ding, J.: Acceleration of MoM Solver for Scattering Using Graphics
Processing Units (GPUs). In:  Wireless Technology Conference. Oriental Institute of
Technology, Taipei, 2008. (Cited on pages 58 and 59.)

Peng, S. and Nie, Z.: Acceleration of the Method of Moments Calculations by Using
Graphics Processing Units. IEEFE Transactions on Antennas and Propagation, vol. 56,
no. 7, pp. 2130-2133, 2008. (Cited on pages 58, 59, 76, and 96.)

EM Software & Systems-S.A. (Pty) Ltd: FEKO. 2010.
Available at: www.feko.info (Cited on pages 58, 82, and 83.)

Bailey, D.H.: DSFUN: A Double-Single Floating Point Computation Package. March
2005.

Available at: http://crd.1lbl.gov/~dhbailey/mpdist/dsfun90.tar.gz (Cited on
pages 59 and 95.)

Killian, T., Faircloth, D. and Rao, S.: Acceleration of TM cylinder EFIE with CUDA. In:
Antennas and Propagation Society International Symposium, 2009. APSURSI '09. IEEFE,
pp. 1 —4. 2009. ISSN 1522-3965. (Cited on page 59.)

Inman, M.J., Elsherbeni, A.Z. and Reddy, C.J.: CUDA Based GPU Solvers For Method of
Moment Simulations. 26th Annual Review of Progress in Applied Computational Elctro-
magnetics - ACES2010, Tampere, Finland, April 2010. (Cited on pages 59, 60, and 95.)

Virk, B.: Implementing Method of Moments on o GPGPU using NVIDIA CUDA. Masters
Thesis, Georgia Institute of Technology, Atlanta, GA, May 2010.

Available at: http://smartech.gatech.edu/handle/1853/33980 (Cited on pages 59
and 60.)

De Donno, D., Esposito, A., Monti, G. and Tarricone, L.: Parallel efficient method of
moments exploiting graphics processing units. Microwave and Optical Technology Letters,
vol. 52, no. 11, pp. 2568-2572, August 2010. ISSN 1098-2760. (Cited on pages 59 and 60.)

Tarricone, L., Mongiardo, M. and Cervelli, F.: A Quasi-One-Dimensional Integration Tech-
nique for the Analysis of Planar Microstrip Circuits via MPIE/MoM. IEEE Transactions
on Microwave Theory and Techniques, vol. 49, no. 3, p. 517, 2001. (Cited on page 60.)

Inman, M. and Elsherbeni, A.: Programming video cards for computational electromag-
netics applications. Antennas and Propagation Magazine, IEEE, vol. 47, no. 6, pp. 71 —78,
2005. ISSN 1045-9243. (Cited on page 60.)

De Donno, D., Esposito, A. and L. Tarricone, L.C.: Introduction to GPU computing and
CUDA programming: a case study on FDTD. IEEFE Antennas and Propagation Magazine,
vol. 53, no. 3, June 2010. In press. (Cited on page 60.)

Gumerov, N. and Duraiswami, R.: Fast multipole methods on graphics processors. Journal
of Computational Physics, vol. 227, no. 18, pp. 8290-8313, 2008. ISSN 0021-9991. (Cited
on page 60.)

Jenn, D.C.: Radar and Laser Cross Section Engineering. 2nd edn. American Institute
of Aeronautics and Astronautics, Inc., Reston, Verginia, 2005. (Cited on pages 61, 62,
and 66.)

Makarov, S.N.: Antenna and EM Modeling with MATLAB. John Wiley & Sons, Inc., New
York, 2002. (Cited on pages 62, 63, 64, 65, 66, and 82.)


www.feko.info
http://crd.lbl.gov/~dhbailey/mpdist/dsfun90.tar.gz
http://smartech.gatech.edu/handle/1853/33980

LIST OF REFERENCES 141

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Smith, G.S.: An Introduction to Classical Electromagnetic Radiation. Cambridge Univer-
sity Press, 1997. (Cited on pages 64, 65, 66, and 99.)

Kloss, G.: Automatic C Library Wrapping—ctypes from the Trenches. The Python Papers,
vol. 3, no. 3, p. 5, 2008. (Cited on pages 67, 72, 73, and 113.)

Dunavant, D.A.: High degree efficient symmetrical gaussian quadrature formulas for the
triangle. International Journal for Numerical Methods in Engineering, vol. 21, pp. 1129—
1148, 1985. (Cited on page 68.)

Khayat, M. and Wilton, D.: Numerical evaluation of singular and near-singular potential
integrals. Antennas and Propagation, IEEE Transactions on, vol. 53, no. 10, pp. 3180-
3190, 2005. ISSN 0018-926X. (Cited on page 68.)

Khayat, M., Wilton, D. and Fink, P.: An improved transformation and optimized sampling
scheme for the numerical evaluation of singular and near-singular potentials. Antennas and
Wireless Propagation Letters, IEEE, vol. 7, pp. 377-380, 2008. ISSN 1536-1225. (Cited
on page 68.)

Silvester, P.P.: Finite-element solution of homogeneous waveguide problems. Alta Fre-
quenza, vol. 38, pp. 313-317, 1969. (Cited on page 97.)

Silvester, P.P. and Ferrari, R.L.: Finite elements for electrical engineers. 3rd edn. Cam-
bridge University Press, 1996. (Cited on pages 97, 98, and 104.)

Jin, J.: The Finite Element Method in Electromagnetics. 2nd edn. John Wiley & Sons,
Inc., 2002. (Cited on pages 97, 98, 99, 100, 101, 109, 117, 119, 120, and 121.)

Volakis, J.L., Chatterjee, A. and Kempel, L.C.: Finite Element Method Electromagnetics:
Antennas, Microwave Circuits, and Scattering Applications. IEEE Press, 1998. (Cited on
page 97.)

Pelosi, G., Coccioli, R. and Selleri, S.: Quick Finite Elements for Electromagnetic Wawves.
Artech House, 1998. ISBN 0890068488. (Cited on pages 97, 98, 99, 100, 101, 111, 117,
120, 121, and 122.)

Henrotte, F., Heumann, H., Lange, E. and Hameyer, K.: Upwind 3-D Vector Potential
Formulation for Electromagnetic Braking Simulations. IEEE Transactions on Magnetics,
vol. 46, no. 8, pp. 2835-2838, August 2010. (Cited on pages 97 and 98.)

Lee, J.-F., Sun, D.-K. and Cendes, Z.J.: Full-wave analysis of dielectric waveguides using
tangential vector finite elements. IEEE Trans. Microwave Theory Tech., vol. 39, no. 8,
pp. 1262-1271, August 1991. (Cited on pages 98, 99, 100, 102, 103, and 104.)

Salazar-Palma, M., Sarkar, T.K., Garéia-Castillo, L.-E., Roy, T. and Djordjevi¢, A.: Iter-
ative and Self-Adaptive Finite-Elements in Electromagnetic Modeling. Artech House Inc.,
1998. (Cited on pages 98 and 129.)

Bossavit, A.: Computational Electromagnetics: Variational Formulations, Complementar-
ity, Edge Elements. Academic Press, 1998. (Cited on page 98.)

Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press,
Oxford, UK, 2003. (Cited on page 98.)



LIST OF REFERENCES 142

[119]

[120]

[121]

[122]

[123]

124]

[125]

[126]

[127)

[128]

[129]

[130]

Volkov, V. and Demmel, J.: Using GPUs to Accelerate the Bisection Algorithm for Finding
Eigenvalues of Symmetric Tridiagonal Matrices. Technical Report UCB/EECS-2007-179,
Electrical Engineering and Computer Sciences, University of California at Berkley, 2007.
Available at: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-179.
html (Cited on page 98.)

Gamillscheg, R.: An Implementation of a Lanczoz Eigenvalue-Solver in CUDA, January
20009.

Available  at: http://www.uni-graz.at/~haasegu/Lectures/GPU_CUDA/WS09/
CUDAlanczos.pdf (Cited on pages 98 and 128.)

Goedel, N., Warburton, T. and Clemens, M.: GPU accelerated discontinuous Galerkin
FEM for electromagnetic radio frequency problems. In: Antennas and Propagation Society
International Symposium, 2009. APSURSI’09. IEEFE, pp. 1-4. IEEE, 2009. ISSN 1522-
3965. (Cited on page 98.)

Dongarra, J.J., Duff, I.S., Sorensen, D.C. and van der Vorst, H.A.: Numerical Linear
Algebra on High-Performance Computers. 2nd edn. Society for Industrial Mathematics,
1987. ISBN 0898714281. (Cited on page 98.)

Nédélec, J.C.: Mixed finite elements in ®3. Numerische Mathematik, vol. 35, pp. 315-341,
1980. (Cited on pages 100 and 104.)

Saad, Y.: Numerical Methods for Large Figenvalue Problems. 2nd edn. Manchester Uni-
versity Press, Manchester, UK, 2011.

Available at: http://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf (Cited on
pages 102 and 103.)

Hernandez, V., Roman, J., Tomas, A. and Vidal, V.: A survery of software for sparse
eigenvalue problems. SLEPc Technical Report STR-6, Universidad Politécnica de Valencia,
February 2009.

Available at: http://www.grycap.upv.es/slepc (Cited on page 103.)

Lehoucq, R. and Scott, J.: An Evaluation of Software for Computing Eigenvalues of
Sparse Nonsymmetric Matrices. Technical Report CRPC-TR96712, Center for Research
on Parallel Computation, Rice University, January 1996. (Cited on page 103.)

Sorensen, D.: Implicitly Restarted Arnold/Lanczos Methods for Large Scale Eigenvalue
Calculations. Tutorial, Department of Computational and Applied Mathematics, Rice
University, October 1995.

Available at: http://www.caam.rice.edu/software/ARPACK/DOCS/tutorial.ps.gz
(Cited on page 103.)

Nédélec, J.C.: A new family of mixed finite elements in R3. Numerische Mathematik,
vol. 50, pp. 57-81, 1986. (Cited on page 104.)

Geuzaine, C. and Remacle, J.: Gmsh: A 3-D finite element mesh generator with built-in
pre-and post-processing facilities. International Journal for Numerical Methods in FEn-
gineering, vol. 79, no. 11, pp. 1309-1331, 2009. ISSN 1097-0207. (Cited on pages 111
and 112.)

Goldberg, D.: What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys (CSUR), vol. 23, pp. 548, 1991. (Cited on page 119.)


http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-179.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-179.html
http://www.uni-graz.at/~haasegu/Lectures/GPU_CUDA/WS09/CUDAlanczos.pdf
http://www.uni-graz.at/~haasegu/Lectures/GPU_CUDA/WS09/CUDAlanczos.pdf
http://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf
http://www.grycap.upv.es/slepc
http://www.caam.rice.edu/software/ARPACK/DOCS/tutorial.ps.gz

LIST OF REFERENCES 143

[131]

[132]

133

[134]

135

[136]

[137]

138

139]

[140]

[141]

Bell, N. and Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. NVIDIA
Technical Report NVR-2008-004, NVIDIA Corporation, December 2008. (Cited on
page 128.)

Dehnavi, M., Fernandez, D. and Giannacopoulos, D.: Finite-Element Sparse Matrix Vector
Multiplication on Graphic Processing Units. Magnetics, IEEE Transactions on, vol. 46,
no. 8, pp. 2982-2985, 2010. ISSN 0018-9464. (Cited on page 128.)

Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S. and Liu, J.W.H.: A supernodal
approach to sparse partial pivoting. SIAM J. Matriz Analysis and Applications, vol. 20,
no. 3, pp. 720-755, 1999. (Cited on page 129.)

Bell, N. and Garland, M.: Cusp : Generic parallel algorithms for sparse matrix and graph
computations. 2010.
Available at: code.google.com/p/cusp-library (Cited on page 129.)

Christen, M., Schenk, O. and Burkhart, H.: General-purpose sparse matrix building blocks
using the NVIDIA CUDA technology platform. In: First Workshop on General Purpose
Processing on Graphics Processing Units. Boston, MA, October 2007. (Cited on page 129.)

Esposito, A., Catalano, M.S.F., Malucelli, F. and Tarricone, L.: A new matrix bandwidth
reduction algorithm. Operations Research Letters, vol. 23, no. 3-5, pp. 99 — 107, 1998.
ISSN 0167-6377.

Available at: http://www.sciencedirect.com/science/article/B6V8M-3VY0016-4/2/
25£186c3954b8eb0cc3216613d32f6ae (Cited on page 129.)

Liu, W. and Sherman, A.: Comparative Analysis of the Cuthill-McKee and the Reverse
Cuthill-McKee Ordering Algorithms for Sparse Matrices. SIAM Journal on Numerical
Analysis, vol. 13, no. 2, pp. 198-213, 1976. ISSN 0036-1429. (Cited on page 129.)

Dziekonski, A., Lamecki, A. and Mrozowski, M.: On Fast Iterative Solvers with GPU Ac-
celeration for Finite Elements in Electromagnetics. In: The 10th International Workshop
on Finite Elements for Microwave Engineerin. Mill Falls, NH, USA, October 12-13 2010.
(Cited on page 129.)

Ainsworth, M. and Coyle, J.: Conditioning of hierarchic p-version Nédélec elements on
meshes of curvilinear quadrilaterals and hexahedra. SIAM Journal on Numerical Analysis,
vol. 41, no. 2, pp. 731-750, 2003. (Cited on page 129.)

Stupfel, B.: A study of the condition number of various finite element matrices involved in
the numerical solution of Maxwell’s equations. Antennas and Propagation, IEEE Trans-
actions on, vol. 52, no. 11, pp. 3048-3059, 2004. ISSN 0018-926X. (Cited on page 129.)

Sun, D.-K., Lee, J.-F. and Cendes, Z.: Construction of nearly orthogonal Nédélec bases
for rapid convergence with multilevel preconditioned solvers. SIAM Journal on Scientific
Computing, vol. 23, no. 4, pp. 10531076, 2001. (Cited on page 129.)


code.google.com/p/cusp-library
http://www.sciencedirect.com/science/article/B6V8M-3VY0016-4/2/25f186c3954b8eb0cc3216613d32f6ae
http://www.sciencedirect.com/science/article/B6V8M-3VY0016-4/2/25f186c3954b8eb0cc3216613d32f6ae

Additional MOM performance
results

This appendix contains a number of additional plots pertaining to method of moments perfor-
mance results presented in Section 4.5.

System 1 double precision

Percentage of runtime [%]

10024 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 1: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.13. This figure shows the results for double precision calculations using
the CPU-based implementation for System 1. The three phases that contribute most significantly to the
total execution time are labelled (including their percentage contribution to the total solution time for
the largest problem considered) with the other phases (excluding initialisation) grouped together and just
visible in the upper left corner of the plot. Also shown are vertical lines corresponding to 1GB and 4GB
storage requirements (in terms of only the impedance matrix) for double precision complex values.

144



ADDITIONAL MOM PERFORMANCE RESULTS 145

Percentage of runtime [%]

1%24 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 2: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS
curve such as is shown in Figure 4.13. This figure shows the results for double precision calculations on
System 1 when only the matrix assembly phase is implemented in CUDA. The two phases that contribute
most significantly to the total execution time are labelled (including their percentage contribution to the
total solution time for the largest problem considered) with the CUDA matrix assembly contribution
shown at the bottom of the graph (as is the case for the CPU assembly phase in Figure 4.14) and
other phases (excluding initialisation) grouped together and visible in the upper left corner of the plot.
Also shown are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of only the
impedance matrix) for double precision complex values.

Percentage of runtime [%]

1%24 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 3: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.13. This figure shows the results for double precision calculations on
System 1 for the CUDA implementation. The two phases that contribute most significantly to the total
execution time are labelled (including their percentage contribution to the total solution time for the
largest problem considered) with the matrix assembly contribution shown at the bottom of the graph
and other phases (excluding initialisation) grouped together and visible in the upper left corner of the
plot. Also shown are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of
only the impedance matrix) for double precision complex values. The phase to solve for the unknown
current coefficients is not implemented in CUDA.



ADDITIONAL MOM PERFORMANCE RESULTS 146
System 2 single precision

100

T 5 5
oefficients {1}:

Percentage of runtime [%]

1%24 4096 8192 2288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 4: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.12. This figure shows the results for single precision calculations using
the CPU-based implementation for System 2. The three phases that contribute most significantly to
the total execution time are labelled (including their percentage contribution to the total solution time
for the largest problem considered) with the other phases (excluding initialisation) grouped together and
just visible in the upper left corner of the plot. Also shown are vertical lines corresponding to 1GB and
4GB storage requirements (in terms of only the impedance matrix) for single precision complex values.

System 2 double precision



ADDITIONAL MOM PERFORMANCE RESULTS 147

fficients {1}: 34%

Percentage of runtime [%]

10024 4096 8192 12288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 5: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.12. This figure shows the results for single precision calculations on System
2 when only the matrix assembly phase is implemented in CUDA. The two phases that contribute most
significantly to the total execution time are labelled (including their percentage contribution to the total
solution time for the largest problem considered) with the CUDA matrix assembly contribution shown
at the bottom of the graph (as is the case for the CPU assembly phase in Figure 4.14) and other phases
(excluding initialisation) grouped together and visible in the upper left corner of the plot. Also shown
are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of only the impedance
matrix) for single precision complex values.

100’—3—-‘#1‘1111111111111111111111111

B 1 S| St G s (S A A [ S A T M A B

ive forcurrent
ients {I}: 64%

Percentage of runtime [%]

1%24 4096 8192 2288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 6: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.12. This figure shows the results for single precision calculations on
System 2 for the CUDA implementation. The two phases that contribute most significantly to the total
execution time are labelled (including their percentage contribution to the total solution time for the
largest problem considered) with the matrix assembly contribution shown at the bottom of the graph
and other phases (excluding initialisation) grouped together and visible in the upper left corner of the
plot. Also shown are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of
only the impedance matrix) for single precision complex values. The phase to solve for the unknown
current coefficients is not implemented in CUDA.



ADDITIONAL MOM PERFORMANCE RESULTS 148

100

Percentage of runtime [%]

1%24 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 7: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.13. This figure shows the results for double precision calculations using
the CPU-based implementation for System 2. The three phases that contribute most significantly to the
total execution time are labelled (including their percentage contribution to the total solution time for
the largest problem considered) with the other phases (excluding initialisation) grouped together and just
visible in the upper left corner of the plot. Also shown are vertical lines corresponding to 1GB and 4GB
storage requirements (in terms of only the impedance matrix) for double precision complex values.

Percentage of runtime [%]

1%24 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 8: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS
curve such as is shown in Figure 4.13. This figure shows the results for double precision calculations on
System 2 when only the matrix assembly phase is implemented in CUDA. The two phases that contribute
most significantly to the total execution time are labelled (including their percentage contribution to the
total solution time for the largest problem considered) with the CUDA matrix assembly contribution
shown at the bottom of the graph (as is the case for the CPU assembly phase in Figure 1) and other
phases (excluding initialisation) grouped together and visible in the upper left corner of the plot. Also
shown are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of only the
impedance matrix) for double precision complex values.



ADDITIONAL MOM PERFORMANCE RESULTS 149

Percentage of runtime [%]

1%24 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 9: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.13. This figure shows the results for double precision calculations on
System 2 for the CUDA implementation. The two phases that contribute most significantly to the total
execution time are labelled (including their percentage contribution to the total solution time for the
largest problem considered) with the matrix assembly contribution shown at the bottom of the graph
and other phases (excluding initialisation) grouped together and visible in the upper left corner of the
plot. Also shown are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of
only the impedance matrix) for double precision complex values. The phase to solve for the unknown
current coefficients is not implemented in CUDA.



ADDITIONAL MOM PERFORMANCE RESULTS 150
System 3 single precision

100

" solve forcurrent
oefficients {1}: 9%

Percentage of runtime [%]

1%24 4096 8192 2288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 10: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.12. This figure shows the results for single precision calculations using
the CPU-based implementation for System 3. The three phases that contribute most significantly to
the total execution time are labelled (including their percentage contribution to the total solution time
for the largest problem considered) with the other phases (excluding initialisation) grouped together and
just visible in the upper left corner of the plot. Also shown are vertical lines corresponding to 1GB and
4GB storage requirements (in terms of only the impedance matrix) for single precision complex values.

System 3 double precision



ADDITIONAL MOM PERFORMANCE RESULTS 151

100

Percentage of runtime [%]

10024 4096 8192 2288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 11: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.12. This figure shows the results for single precision calculations on System
3 when only the matrix assembly phase is implemented in CUDA. The two phases that contribute most
significantly to the total execution time are labelled (including their percentage contribution to the total
solution time for the largest problem considered) with the CUDA matrix assembly contribution shown
at the bottom of the graph (as is the case for the CPU assembly phase in Figure 4.14) and other phases
(excluding initialisation) grouped together and visible in the upper left corner of the plot. Also shown
are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of only the impedance
matrix) for single precision complex values.

Percentage of runtime [%]

1%24 4096 8192 2288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 12: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.12. This figure shows the results for single precision calculations on
System 3 for the CUDA implementation. The two phases that contribute most significantly to the total
execution time are labelled (including their percentage contribution to the total solution time for the
largest problem considered) with the matrix assembly contribution shown at the bottom of the graph
and other phases (excluding initialisation) grouped together and visible in the upper left corner of the
plot. Also shown are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of
only the impedance matrix) for single precision complex values. The phase to solve for the unknown
current coefficients is not implemented in CUDA.



ADDITIONAL MOM PERFORMANCE RESULTS 152

100

_ coefficients {1}: 11%

Percentage of runtime [%]

1%24 4096 8192 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 13: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.13. This figure shows the results for double precision calculations using
the CPU-based implementation for System 3. The three phases that contribute most significantly to the
total execution time are labelled (including their percentage contribution to the total solution time for
the largest problem considered) with the other phases (excluding initialisation) grouped together and just
visible in the upper left corner of the plot. Also shown are vertical lines corresponding to 1GB and 4GB
storage requirements (in terms of only the impedance matrix) for double precision complex values.

100

90 ¥

of- -
60[

S50 i 0

40}

Percentage of runtime [%]

30p
20

10

1%24 4096 8192 12288 16384 20480 24576 28672 32240
Degrees of Freedom

Figure 14: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS
curve such as is shown in Figure 4.13. This figure shows the results for double precision calculations on
System 3 when only the matrix assembly phase is implemented in CUDA. The two phases that contribute
most significantly to the total execution time are labelled (including their percentage contribution to the
total solution time for the largest problem considered) with the CUDA matrix assembly contribution
shown at the bottom of the graph (as is the case for the CPU assembly phase in Figure 1) and other
phases (excluding initialisation) grouped together and visible in the upper left corner of the plot. Also
shown are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of only the
impedance matrix) for double precision complex values.



ADDITIONAL MOM PERFORMANCE RESULTS 153

Percentage of runtime [%]

1%24 4096 12288 16384 20480 24576 28672 31621
Degrees of Freedom

Figure 15: A graph showing the relative distribution of the execution times of the phases of the MOM
computational process as a function of problem size (degrees of freedom) when calculating an RCS curve
such as is shown in Figure 4.13. This figure shows the results for double precision calculations on
System 3 for the CUDA implementation. The two phases that contribute most significantly to the total
execution time are labelled (including their percentage contribution to the total solution time for the
largest problem considered) with the matrix assembly contribution shown at the bottom of the graph
and other phases (excluding initialisation) grouped together and visible in the upper left corner of the
plot. Also shown are vertical lines corresponding to 1GB and 4GB storage requirements (in terms of
only the impedance matrix) for double precision complex values. The phase to solve for the unknown
current coefficients is not implemented in CUDA.



Additional FEM performance results

This appendix contains additional plots pertaining to finite element method performance results
presented in Section 5.5.

System 2 single precision

100

1] Se—

8O-+

60

~ shift-invert: 85%

Percentage of runtime [%]

1%24 2048 3072 4096 5120 6144 7168 8192 9216 10224
Degrees of Freedom

Figure 16: A graph showing the relative distribution of the execution times of the phases of the gen-
eralised eigensolver (discussed in Section 5.3.2) as a function of problem size. This figure shows the
results of single precision calculations using the CPU implementation of the solver on system 2. The
two phases that contribute most significantly to the total execution time are labelled (including their
percentage contribution for largest problem considered) with the other phases grouped together but not
visible due to their negligible contribution. The contribution of the matrix-vector product (as part of the
ARPACK solver step) is also shown as a solid black line.

154



ADDITIONAL FEM PERFORMANCE RESULTS 155

100 g

1] Se—
I E—

70| SR

Back-substitution:

shift-invert: 94%

Percentage of runtime [%]

: shift and LU decomposition

10024 2048 3072 4096 5120 6144 7168
Degrees of Freedom

8192 9216 10224

Figure 17: A graph showing the relative distribution of the execution times of the phases of the gener-
alised eigensolver (discussed in Section 5.3.2) as a function of problem size. This figure shows the results
of single precision calculations using the CUDA implementation of the solver on system 2. The con-
tribution of the individual parts of the shift-invert process are divided by a dashed line and labelled
accordingly with the contribution of the matrix-vector product (as part of the ARPACK solver step at
the bottom of the graph) shown as a solid black line.



	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Contents
	Nomenclature
	Introduction
	Research objectives
	Contributions
	Chapter summary

	General purpose GPU computing
	An overview of parallel computing
	History of GPU computing
	History of NVIDIA CUDA
	History of the ATI Stream SDK

	NVIDIA CUDA
	Programming model
	Hardware implementation
	Mapping software to hardware
	Software ecosystem

	ATI Stream SDK
	Hardware
	Software

	OpenCL
	Platform model
	Execution model
	Memory model

	Outlook for GPGPU computing
	Conclusion

	GPU-accelerated dense NLA
	Dense numerical linear algebra
	Optimised implementations

	A note on CUDA-based dense numerical linear algebra implementations
	Overcoming GPU memory limitations for dense LU decomposition
	Left-looking LU decomposition
	Adapting for GPU acceleration
	The MAGMA-panel-based hybrid
	Implementation analysis

	Benchmarking
	The test platforms
	Results

	Conclusion

	MOM scattering analysis
	Related work
	Problem overview
	Monostatic scattering
	The Method of Moments

	The implementation of an accelerated MOM solution process
	The development process
	The matrix assembly computational process
	CPU and CUDA co-development
	Parallel CPU implementation
	Parallel CUDA implementation
	Implementation of the other phases

	Verification results
	Performance results
	Runtime contributions
	Speedups
	Discussion of results

	Conclusion

	FEM waveguide analysis
	Related work
	FEM formulation for cutoff and dispersion analysis
	Cutoff analysis
	Dispersion analysis
	The generalised eigenvalue problem

	Implementation
	FEniCS
	Eigensolver implementations

	Verification results
	Performance results
	Runtime contribution
	Speedup
	Discussion of results

	Conclusion

	Conclusion and future work
	Research observations
	Future work

	List of References
	Additional MOM performance results
	Additional FEM performance results

