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Summary 

Presently, the observed variation in symptoms of Potato leafroll virus (PLRV) infection in potato 

cultivars in South Africa cannot be reconciled with PLRV symptoms obtained 10-15 years ago, 

even if the different interactions between the pathogen and the cultivar are taken into account.  

In an effort to analyze this variation, mutations in the coat protein (CP) gene of South African 

isolates of PLRV were assessed. The CP gene of PLRV isolates from different areas within 

South Africa was amplified by reverse transcription-polymerase chain reaction (RT-PCR), 

cloned and sequenced. Significant sequence variation in the CP gene was found within the 

analyzed South African isolates of PLRV. Phylogenetic analysis revealed two major clades with 

most South African isolates and an Australian and North American isolate grouped together and 

the remainder grouped with isolates from diverse countries worldwide. The deduced amino acid 

sequences from representatives of these two clades indicated differences in CP three-

dimensional structure.  

In an effort to produce recombinant PLRV CP for the production of antibodies specific for South 

African isolates of PLRV for use in enzyme-linked immunosorbent assay (ELISA), the CP gene 

of a South African isolate of PLRV was subcloned into a bacterial expression vector (pET14-b). 

Expression of full length recombinant PLRV CP was attempted in Escherichia coli strains 

BL21(DE3)pLysS, Rosetta-gami B(DE3)pLysS and Rosetta-2(DE3)pLysS. As this was not 

successful, the PLRV CP gene was subcloned in another expression vector (pGEX) for 

expression as an N-terminal fusion protein with glutathione-S-transferase (GST) in E. coli 

strains BL21(DE3)pLysS and Rosetta-2(DE3)pLysS. The recombinant GST-PLRV CP fusion 

protein was purified and used for antibody production in rabbits. Using western blots, the 

effectiveness of antibodies produced to recombinant GST-PLRV CP fusion protein was 

assessed for PLRV recognition. It was found that antibodies to the recombinant GST-PLRV CP 

fusion protein were more effective for the detection of GST than PLRV CP and that production 

of antibodies to the cleaved PLRV CP product would be necessary if antibodies are required for 

ELISA applications.  



   

Opsomming 

Huidiglik kan die waargeneemde simptome van infeksie met aartappelrolbladvirus (Potato 

leafroll virus, PLRV) in aartappelkultivars in Suid-Afrika nie vereenselwig word met PLRV 

simptome wat 10-15 jaar gelede verkry was nie, selfs al word die verskillende interaksies tussen 

die patogeen en kultivar in ag geneem.  

In ‘n poging om hierdie variasie te analiseer, was mutasies in die mantelproteïen (CP) geen van 

Suid-Afrikaanse isolate van PLRV bepaal. Die CP geen van PLRV isolate van verskillende 

areas in Suid-Afrika was ge-amplifiseer met behulp van die tru transkripsie-polimerase ketting 

reaksie (RT-PCR), gekloneer en die nukleotiedvolgorde bepaal. Noemenswaardige nukleotied 

variasie is in die CP gene van die ge-analiseerde Suid-Afrikaanse isolate van PLRV gevind. 

Filogenetiese analises het gedui op twee hoof klades met die meeste van die Suid-Afrikaanse 

isolate wat saam met ‘n Australiese en Noord-Amerikaanse isolaat gegroepeer en die res wat 

met isolate van verskillende lande wêreldwyd gegroepeer. Die afgeleide aminosuurvolgordes 

van verteenwoordigers van bogenoemde twee klades het gedui op verskille in die CP drie-

dimensionele struktuur.  

In ‘n poging om rekombinante PLRV CP te produseer vir die produksie van antiliggame 

spesifiek teen Suid-Afrikaanse isolate van PLRV om in “enzyme-linked immunosorbent assay” 

(ELISA) te gebruik, was die CP geen van ‘n Suid-Afrikaanse isolaat van PLRV gesubkloneer in 

‘n bakteriële ekspressie vektor (pET14-b). Daar was gepoog om vollengte rekombinante PLRV 

CP in die Escherichia coli rasse BL21(DE3)pLysS, Rosetta-gami B(DE3)pLysS en Rosetta-

2(DE3)pLysS te produseer. Aangesien dit nie suksesvol was nie, was die PLRV CP 

gesubkloneer in ‘n ander ekspressie vektor (pGEX) sodat die proteïen as ‘n N-terminale fusie 

proteïen met “glutathione-S-transferase” (GST) in E. coli rasse BL21(DE3)pLysS en Rosetta-

2(DE3)pLysS geproduseer kon word. Die rekombinante GST-PLRV CP fusie proteïen was 

gesuiwer en gebruik vir antiliggaam produksie in konyne. Die effektiwiteit van die antiliggame 

wat teen rekombinante GST-PLRV CP fusie proteïen geproduseer was vir PLRV herkenning is 

deur middel van “western blots” geanaliseer. Dit was gevind dat antiliggame teen die 

rekombinante GST-PLRV CP fusie proteïen meer effektief was vir die herkenning van GST as 

PLRV CP. Gevolglik sal dit nodig wees om antiliggame teen die gesnyde PLRV CP produk te 

maak vir gebruik in ELISA.  
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Chapter 1: Introduction 

Potatoes are one of the world’s most important food crops and are subject to plant virus 

infection which results in serious crop losses (Van den Heuvel et al., 1995; Bustamante and 

Hull, 1998; Haliloglu and Bostan, 2002). Potato leafroll virus (PLRV) is economically the most 

important and destructive virus affecting potato crops (Massalski and Harrison, 1987; Haliloglu 

and Bostan, 2002). Economic losses of potato as a result of PLRV infection are due to the 

reduction in both the quality and yield of potato crops (Kawchuk et al., 1990; Johnson and 

Pappu, 2006). PLRV infection of potatoes causes starch to be retained in the leaves resulting in 

smaller tuber formation (McKay, 1955; Rich, 1983). Furthermore, the quality of potatoes is 

affected due to net necrosis (Johnson and Pappu, 2006).  

Worldwide losses to potato yields by PLRV infection are estimated at 2 x 107 tons of tubers 

annually (De Souza-Dias, 1999b). PLRV infection can result in a reduction of up to 60% in crop 

yield and if the incidence in a seed crop is too high the latter cannot be certified (Shepardson et 

al., 1980). In the Brazilian potato industry, PLRV was identified as a major cause for seed 

potato declassification (De Souza-Dias, 1999b). One of the most challenging and costly aspects 

of production in Brazil is the increasing demand for high-grade seed potatoes (i.e. virus-free 

seed). PLRV infection of plants from certified seed can be as high as 20% during one growing 

season in Brazil (De Souza-Dias, 1999b).  

In the past in Ireland, PLRV was the most serious disease affecting potatoes with the reduction 

in yield never less than 40% of the normal for a variety, with losses for some varieties of potato 

exceeding 90%, practically giving no crop (McKay 1955). The most important crop/virus 

combination in the United States is considered to be potato and PLRV (Kaniewski and Thomas, 

2004). In the Columbia Basin of the northwestern United States, PLRV causes major losses as 

a result of net necrosis which renders potatoes unfit for the fresh market and all except the least 

profitable of processed products (Thomas et al., 1997).  

In South Africa, the potato industry faces a crisis as a result of the serious increase in the 

incidence of PLRV during the past few years (Anon, 2005; Coetsee, 2005). The presence of 

PLRV is nothing new, but it has been increasing steadily over the past few years until the virus 

infestation became very problematic from 2003 onwards (Anon, 2004a). During the 2004 

planting season, PLRV infection was prevalent at levels that have not been seen in South Africa 

before (Anon, 2004b; Coetsee, 2004). During 2005, the occurrence of PLRV reached what was 

viewed by the potato industry to be crisis levels (Coetsee, 2004; Coetsee, 2005). During the 

2005 growing season PLRV infection occurred in regions which were traditionally known for low 

virus infection (Anon, 2005; Coetsee, 2005).  
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The whole South African potato industry is affected by high levels of PLRV infection which 

include the seed potato industry as well as table potato plantings (Anon, 2004b). Successful 

production of certified seed potatoes is especially affected by the presence of PLRV (Anon, 

2004a). There is a serious PLRV infestation in seed and potato plantings in the Sandveld, 

Western Cape, which add to the already destructive effect the virus has on the seed potato 

industry (Anon, 2004a).  

The Sandveld is the greatest producer of seed potatoes in South Africa and also plays a 

significant role in the production of table potatoes (Bonthuys, 2005). Exports from this region 

have grown considerably over the past three years (Bonthuys, 2005). The Sandveld produces 

20 million bags of potatoes of 10 kg each per year, 8 million of this is for the Cape Metropole 

(Bonthuys, 2005). The prevalence of PLRV infection in the Sandveld region placed seed 

production under pressure and according to an article in a local newspaper (Bonthuys, 2005) 

this problem can impair the reputation of local seed production as the producer of quality seed 

potatoes (Bonthuys, 2005). According to the regional director of Potatoes South Africa, the 

situation is serious with financial losses as a result of viruses being in the order of hundreds of 

millions of rands (Bonthuys, 2005).  

The seed certification program of Potatoes South Africa is experiencing problems with the 

detection of PLRV in potatoes in this country. In order for Potatoes South Africa to ensure 

disease free planting material, the organization requires kits for the specific detection of various 

potato diseases. For the detection of PLRV in potato leaves and tubers, Potatoes South Africa 

makes use of European enzyme-linked immunosorbent assay (ELISA) kits. Concerns were 

expressed that these kits may, however, be unable to detect South African isolates of PLRV.  

In a preliminary study performed in this laboratory, it was determined that the coat protein (CP) 

gene of a South African isolate of PLRV had undergone a number of mutations which may 

result in a lack of detection by the European ELISA kits (Matzopoulos, 2005). For this reason, 

the objectives of the present study are to firstly assess the extent to which variation in the CP 

gene of the South African isolates of PLRV occurs, and secondly, to produce recombinant 

PLRV CP from a South African isolate for use as an antigen in antibody production. These 

antibodies would subsequently be used for PLRV detection by ELISA. 

In the first part of this project, the CP gene of 39 PLRV isolates from different potato growing 

areas in South Africa were amplified by reverse transcription-polymerase chain reaction (RT-

PCR). These genes were cloned and sequenced in order to assess the sequence variation of 

PLRV isolates in South Africa and to compare with various PLRV CP nucleotide sequences 

from Europe and other countries. The amino acid sequences of the South African CPs were 

deduced and compared to European and other overseas isolates.  

In the second part of this project, the cloned PLRV CP gene was sub-cloned into suitable 

expression vectors and the expression of the PLRV CP gene was attempted in a variety of E. 
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coli strains. Antibody production against recombinant PLRV CP was attempted and the 

specificity of the antibodies produced was assessed with a view to their potential use in ELISA. 

This approach obviates the necessity to isolate viral particles from plant material for antibody 

production. Antibodies produced in this way can give false positive results in an ELISA due to 

their cross-reaction with plant proteins. The ELISA produced in this way will subsequently be 

supplied to the South African potato industry for routine detection of PLRV in plant material. 

In this thesis a general overview of the pathology and molecular biology of PLRV is given in 

Chapter 2. Furthermore, diagnostic techniques for the detection of viruses are discussed as well 

as conventional and recombinant means of producing antibodies to PLRV. Also in Chapter 2, a 

review is given of bacterial expression systems that were investigated in this study for the 

production of recombinant CPs followed by the literature cited for this section of the thesis. The 

results of the assessment of variation in the CP gene of South African isolates in comparison 

with each other and those from Europe and other countries are presented in Chapter 3. The 

results of the recombinant PLRV CP production for immunization are given in Chapter 4. A final 

conclusion and future perspectives are given in Chapter 5. The Appendixes containing the 

PLRV CP and the vector nucleotide sequences and the PLRV amino acid sequences that were 

determined in this study are listed at the end of the thesis. 
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Chapter 2: Literature review  

2.1 PLRV: pathology and molecular biology 

2.1.1 Virus transmission and spread 

PLRV has a limited host range and is mainly restricted to the Solanaceae which includes all 

potato species (Kawchuk et al., 1990; Taliansky et al., 2003). About 20 solanaceous species 

have been infected experimentally and the virus is a common pathogen of potato (Taliansky et 

al., 2003). The virus occasionally also attacks tomato, but does not affect other crops (Rich, 

1983; Taliansky et al., 2003). Several potato colonizing aphid species are responsible for the 

spread of PLRV from plant to plant (McKay, 1955; Rouzé-Jouan et al., 2001; Taliansky et al., 

2003). The green peach aphid, Myzus persicae Sulzer is the principal and most efficient vector 

(Kassanis, 1952; Fisken, 1959; Van den Heuvel et al., 1995; Rouzé-Jouan et al., 2001; 

Johnson, 2003). Other possible aphid vectors include the buckthorn aphid, the potato aphid and 

the foxglove aphid (Rich, 1983; Robert et al., 2000). In South Africa, M. persicae is also the 

most important primary vector (Laubscher, 2006). 

In the case of PLRV, this virus can only be spread by aphids or it can be transmitted 

experimentally by grafting (Rich, 1983; Johnson, 2003). Other viruses can be spread by fungi, 

insects, nematodes, leafhoppers and mechanically by contact between plants, plant sap or 

humans (Rich, 1983; Johnson, 2003). However, PLRV is not transmitted mechanically via 

inoculation of plant sap (Rich, 1983; Kawchuk et al., 1990; Taliansky et al., 2003). The reason 

for this is that PLRV can multiply in infected plant cells, but it cannot be transported between the 

infected cells (Mayo et al., 2000). This results in the primary infected cells not being able to yield 

an infective centre from which infection can develop (Mayo et al., 2000). 

However, Mayo et al. (2000) showed that it is possible to transmit PLRV mechanically from 

extracts of plants that had been inoculated by viruliferous aphids and then post-inoculated by 

pea enation mosaic virus-2. Other PLRV like Luteoviruses are also mainly dependent on aphid 

vectors to transmit them directly from the phloem tissue of one plant to another (Reavy and 

Mayo, 2002, Taliansky et al., 2003). Aphids in both their larval and adult stages, either the 

winged or non-winged forms, transmit PLRV (Taliansky et al., 2003). Winged aphids are able to 

spread the virus between fields and over long distances while non-winged aphids can spread 

the virus from infected source plants to adjacent plants, primarily within rows (Johnson and 

Pappu, 2006). 

A virus-free aphid acquires virus particles along with phloem sap while feeding on infected 

plants (Van den Heuvel et al., 1995). Phloem sap contains abundant sugars which serve as 
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food for these insects (Raven and Johnson, 2002). The sugars are obtained by the aphids 

thrusting their stylets (piercing mouthparts) into phloem cells of leaves and stems to feed on the 

phloem tissue (Raven and Johnson, 2002). A virus-free aphid must feed on the phloem tissue of 

an infected plant for at least an hour to acquire the virus and the ability of the aphid to cause 

infections increases by increasing the length of infection feeding (Kassanis 1952; Johnson and 

Pappu, 2006; Taliansky et al., 2003). Likewise, for transmission of the virus, a minimum feeding 

time of one hour is required (Kassanis, 1952; Taliansky et al., 2003).  

Before being able to transmit the virus, an incubation period of between 24 and 48 hours in M. 

persicae is required (Rich, 1983; Kassanis, 1952). This is referred to as circulative or persistent 

transmission, because the vector needs to feed for more than a day on the infected plant to 

become infective and retain its infectivity for long periods as the virus circulates in the aphid 

(Kassanis, 1952; Van den Heuvel et al., 1994; Reavy and Mayo, 2002). This contrasts with non-

persistent transmission where a virus does not require an incubation period in the body of the 

insect (Rich, 1983; Reavy and Mayo, 2002). In this type of transmission, virus particles have 

only a transient association with aphid mouthparts and do not circulate within other parts of the 

aphid body (Reavy and Mayo, 2002). Vectors in the non-persistent transmission group lose their 

infectivity in a matter of hours (Kassanis, 1952). 

When aphids have acquired virus particles while feeding on phloem sap from infected hosts 

plants, the virions move from the gut lumen into the haemolymph via the posterior midgut (Fig. 

2.1) (Van den Heuvel et al., 1994; Van Regenmortel et al., 2000; Rouzé-Jouan et al., 2001). 

PLRV traverses the gut membrane by an exocytosis-endocytosis mechanism, presumably 

involving specific recognition between virus particles and aphid components (Rouzé-Jouan et 

al., 2001). These virus particles are retained in an infective form in the haemolymph for the 

lifespan of the aphid (Van den Heuvel et al., 1994). Virus particles may be protected in the 

haemolymph from proteolytic breakdown by associating non-specifically with symbionin, a 

chaperon protein produced by Buchnera endosymbionts (Rouzé-Jouan et al., 2001). When the 

virus particles circulating in the haemolymph reach the accessory salivary glands, they enter 

this gland to arrive in the salivary duct (Van den Heuvel et al. 1994; Johnson, 2003). From the 

salivary duct the virus particles are excreted with the saliva when the aphid feeds (Garret et al., 

1993; Van den Heuvel et al., 1994; Van Regenmortel et al., 2000; Reavy and Mayo, 2002). 
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Fig. 2.1: The movement of transmissible luteovirus particles through an aphid vector. Arrows 
indicate the movement of luteovirus particles after acquisition by an aphid feeding on an infected plant. 
Phloem contents, containing virus particles, pass from the stylet into the alimentary canal. Virus particles 
that are absorbed and not excreted in honeydew, pass into the haemocoel from the midgut in the case of 
PLRV. In the final stage of the process, PLRV particles bind to the cells of the accessory salivary gland, 
pass through those cells and enter the salivary duct. From the salivary duct, the virus particles are 
expelled into the phloem tissue of a new plant during subsequent feeding (Reavy and Mayo, 2002).  

No replication of PLRV particles takes place whilst they are circulating the haemolymph of M. 

persicae (Tamada and Harrison, 1981; Van den Heuvel et al., 1994; Taliansky et al., 2003). If 

no replication of virus particles in the vector takes place it is termed non-propagative 

transmission (Reavy and Mayo, 2002). If the virus replicates in the body of the insect it is 

characterized as propagative (Rich, 1983). Furthermore, PLRV cannot pass through the egg, so 

each progeny aphid has to acquire virus by feeding on an infected plant (Johnson and Pappu, 

2006). For this reason, the PLRV content of aphids is related to the time they spend on the virus 

source plants (Tamada and Harrison, 1981). They found that the virus content of aphids fed on 

virus source plants increased with an increase in acquisition access period and decreased after 

they were removed from virus source plants. However, virus particles did not accumulate 

according to the estimated amount of virus in the plants used. This suggests that the vast 

proportion of virus acquired either passes out of the body in honeydew or is degraded. Only a 

small portion of the PLRV particles ingested seem to reach the haemolymph.  

The efficiency of transmission of PLRV from M. persicae or other aphids to healthy potato plants 

depends on a number of parameters. These include aphid species, clone, morph and instar with 

as much variation between these factors as between aphid species (Rouzé-Jouan et al., 2001; 

Taliansky et al., 2003). For instance, non-winged morphs of M. persicae are found to be more 

efficient vectors of PLRV than the winged morphs (Robert et al., 2000) and younger aphids also 

transmit PLRV most efficiently (Thomas et al., 1997).  
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Furthermore, the virus isolate also plays a role in transmission efficiency (Rouzé-Jouan et al., 

2001). A poorly transmissible isolate of PLRV shows different efficiencies of transmission with 

different clones of M. persicae, indicating that the efficiency of transmission depends upon the 

interaction of properties of the virus particle and of the aphid vector (Reavy and Mayo, 2002). 

These interactions can produce a wide range of effects ranging from highly efficient to no 

transmission (Reavy and Mayo, 2002). Overall, the properties of the virus and the vector and 

the interaction between these two are involved in regulating the transmission process (Rouzé-

Jouan et al., 2001). 

There are also factors that influence the efficiency with which M. persicae acquires PLRV. The 

age of plants plays a role as aphids acquire virus more readily from young plants than from 

older plants enabling aphids to more readily transmit the virus if they have been feeding on 

younger plants (Syller, 1980; Tamada and Harrison, 1981; Robert et al., 2000). This is the case 

even if the PLRV concentration in young and older plants does not differ greatly (Tamada and 

Harrison, 1981). It has been observed early in the growing season that aphids feeding on young 

potato plants with a high virus titre acquire and transmit PLRV more readily than if they were 

feeding on potato plants with low titres (Van den Heuvel et al., 1995) yet, later in the growing 

season, leaves with distinct symptoms were poorer sources for PLRV than those showing faint 

symptoms (Van den Heuvel et al., 1995).   

Older plants could be poorer sources for PLRV because the amount of virus available for 

acquisition had decreased (Syller, 1980; Van den Heavel et al., 1995). The reduced availability 

of virus in older plants might have been the result of PLRV spreading to plant cells that are not 

normally fed on by aphids (Van den Heuvel et al., 1995). On the other hand, Van den Heuvel et 

al. (1995) also found that the number of infected mesophyll cells were too low to describe the 

reduced availability of virus in older plants. In heavily infected plants, PLRV has been found to 

be unevenly distributed in the phloem tissue which suggests that systemic transport of the virus 

in heavily virus-infected vessels is considerably impaired (Van den Heuvel et al., 1995). Aphids 

apparently avoid feeding on these heavily infected plant tissues and as a result, even though 

the disease is well developed in the plants, fewer aphids acquire PLRV (Van den Heuvel et al., 

1995).  

Spread of PLRV is also influenced by factors not directly related to the aphids or virus, but those 

involving the crop and environment (Herrbach, 1992; Robert et al., 2000). Some of these factors 

include the amount of initial virus inoculum in seed crops, agricultural practices in relation to 

seed potato production and effects of environmental factors on aphid population dynamics 

(Robert et al., 2000). The initial level of crop infection plays a central role in the spread of PLRV, 

being aphid-borne (Robert et al., 2000). Secondary spread of PLRV from primary sources 

accounts for a major portion of PLRV infection (Thomas et al., 1997). Primary sources of PLRV 
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inoculum originate in the potato crop from infected seed tubers or by introduction by migratory 

alatae (winged morphs of aphids) (Thomas et al., 1997; Johnson and Pappu, 2006).  

Migratory alatae colonize crops in the spring, known as ‘contamination’ or ‘emigration’ flight, 

usually around the time potato shoots emerge above ground (Robert et al., 2000). Emigration 

flight takes place after hibernation of M. persicae, when alatae fly from their winter hosts to 

potatoes (Hille Ris Lambers, 1955). The species can hibernate as eggs on peach trees or as 

viviparae on various herbaceous plants in mild climates (Hille Ris Lambers, 1955). When alatae 

arrive on potato crops, non-viruliferous aphids can acquire PLRV from infected plants and 

transmit them to further plants, demonstrating the importance of the initial level of crop infection 

(Robert et al., 2000). The degree to which PLRV spreads in potatoes depends on the time and 

extent at which aphids arrive on the crops and on their subsequent activity within crops (Fisken, 

1959). 

After the influx of alatae aphids in the spring, apterous (non-winged morphs) populations build 

up on the plants (Robert et al., 2000). Apterous offspring account for a spread of the virus to the 

remainder of the crop (Thomas et al., 1997). These non-winged morphs have difficulty crossing 

an open space without a foliage bridge, so the virus is spread in expanding concentric areas 

around a primary inoculum, and may be rectangular following the rows of potato plants (Thomas 

et al., 1997). Many aphids reach plants nearest to the central source but few reach maximum 

distances, resulting in short-distance transport of PLRV by aphids borne on already diseased 

plants (Hille Ris Lambers, 1955; Thomas et al., 1997). From apterous populations of aphids, 

winged forms develop and disperse in the summer, called ‘dissemination’ flight (Robert et al., 

2000). 

The secondary spread of PLRV by aphids can be limited by cultivation practices during seed-

potato growing (Hille Ris Lambers, 1955). The practice of lifting seed potatoes early to prevent 

infection has become an important practice (Hille Ris Lambers, 1955). This means that the 

potatoes must be lifted before aphids become too dangerous and even a delay of a few days 

could mean heavy infection with PLRV (Hille Ris Lambers, 1955).  

The environment affects aphid population dynamics and this has an influence on their effectivity 

as vectors for virus spread (Robert et al., 2000). Temperature is particularly important in 

influencing aphid behavior during acquisition and/or inoculation (Robert et al., 2000). 

Temperature may also affect plants as sources and new virus hosts and have an effect on virus 

survival (Robert et al., 2000).  

Climatic conditions affect aphid numbers as winter temperatures limit the survival of vector 

species and determine the date and size of the emigration flight (Gabriel, 1965; Robert et al., 

2000). Outbreaks of PLRV are associated with periods when the winters are milder than usual 

enabling aphids to survive in larger numbers on over wintering hosts (Robert et al., 2000). Cold 

weather decreases the rate of aphid reproduction, while warmer conditions favor aphid 
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multiplication (Fisken, 1959). On the other hand, prolonged high temperature can cause 

reproduction to decline and cease completely (Gabriel, 1965). Optimum development of 

apterous aphid populations occurs within the range 20-25°C and is negatively affected at 30°C 

(Gabriel, 1965). Even when the initial level of virus infection in crops is low, any change in 

climatic conditions and aphid numbers can result in dramatic increases in virus incidence 

(Robert et al., 2000).  

Higher temperature does not only influence the aphid numbers, but also influences the 

acquisition feeding period considerably (Syller, 1987). PLRV acquisition by M. persicae, i.e. the 

time taken to acquire virus (Kassanis, 1952), is increased with higher temperature which in turn 

would increase the proportion of infected potato plants (Syller, 1987). Higher temperature 

reduces the latent period of PLRV in M. persicae, probably by increasing the speed with which 

the virus moves from the gut to the salivary system via the haemolymph (Syller, 1987). 

Therefore, the proportion of viruliferous aphids increases with higher temperature rather than 

the ability of individual aphids to transmit PLRV (Syller, 1987). However, at higher temperatures 

aphids are more active and more often retract their stylets and re-penetrate the phloem than at 

lower temperatures which increase the probability that a plant will become infected (Syller, 

1987).  

Moreover, temperature does not only influence aphid population dynamics and behaviour during 

acquisition and/or feeding, but may also affect plants as virus sources or hosts (Robert et al., 

2000). High temperature at PLRV inoculation seems to increase the proportion of infected 

plants, but not significantly so (Syller, 1987). There is a possibility that higher temperature can 

make potato plants more susceptable to PLRV by lowering the resistance of the plants to 

infection or to virus multiplication or to both (Syller, 1987). Therefore, when taken together it 

becomes that clear that temperature considerably influences the dynamics of the PLRV 

transmission process (Syller, 1987). 

Knowledge of the transmission characteristics of PLRV and its epidemiology is very important 

for the successful use of insecticides in preventing virus spread in the field (Robert et al., 2000). 

Current seasonal spread of PLRV from one plant to another within a crop is entirely by aphids 

so that insect control is one of the most important means of reducing the spread (Johnson and 

Pappu, 2006). An aphid can acquire PLRV after a few minutes of feeding, but the incubation 

period of 24 to 48 hours before the aphid is able to transmit the virus, helps control virus spread 

if there are timely applications of insecticides (Johnson, 2003).  

Managing aphids is one of a combination of means to manage PLRV, others include: planting 

PLRV free seed tubers, isolation from other potato fields, roguing out diseased plants to reduce 

sources of inoculum, eliminating refuse tubers, volunteer potatoes and weeds as well as early 

harvesting or vine killing of seed plots and certified fields (Rich, 1983; Johnson and Pappu, 

2006) and planting virus resistant cultivars (Thomas et al., 1997; Robert et al., 2000). 
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The most important control measure for PLRV is to plant certified seed free from the virus (Rich, 

1983; Johnson, 2003). Planting seed tubers that are free of PLRV is the only practical means of 

reducing the number of chronically infected plants, only seed tubers certified to be free or nearly 

free of PLRV should be used (Johnson and Pappu, 2006). Infected potato tubers used for seed 

are a main source of infection in commercial potato fields, contributing to the spread of PLRV 

(Kawchuck et al., 1990; Johnson and Pappu, 2006).  

When there are infected potato plants in the field, they should be rogued and removed and 

volunteers, which can act as an inoculum reservior, such as weeds and mustards should be 

controlled (Johnson, 2003). Volunteer potatoes represent an important source of PLRV and 

volunteer plants can be destroyed by either rotating fields out of potatoes for one or more years, 

or by treating the potato crop with maleic hydrazide to reduce sprouting of tubers the following 

season (Johnson and Pappu, 2006). Scouting for PLRV infected plants as well as aphid vectors 

should begin early in the season and continue until mid to late season as late season infection 

can still result in tuber symptoms (Johnson and Pappu, 2006).  

2.1.2 Pathogenesis 

The most important symptom of PLRV infection of potatoes is that it reduces yield. PLRV 

infected plants have fewer tubers and these have a smaller size (McKay, 1955). Even though 

the yield of PLRV plants fluctuates with the seasons, it is never that of healthy plants (McKay, 

1955).  

Visual symptoms from potato plants infected with PLRV include leafrolling and stunting, the 

extent depending on the potato cultivar (Taliansky et al., 2003). When these plants are shaken, 

their leaves make a sound similar to the rattling of parchment paper (Johnson, 2003). Tuber 

symptoms of some varieties include phloem net necrosis (net necrosis), which is small brown 

strands of discolored tissue extending throughout the stem end of the tuber after a month in 

storage (Johnson, 2003; Rich, 1983). Certain tubers, especially those that also exhibit net 

necrosis, develop long, spindly sprouts but this symptom is not unique to PLRV infection (Rich, 

1983).  

Potato plants can be infected with PLRV either by virus transmission to a healthy plant or by 

growing from an infected tuber. These differences in PLRV acquisition are distinguished as two 

phases of the disease, namely: a) Primary Leaf Roll and b) Secondary Leaf Roll (McKay, 1955).  

Primary Leaf Roll (also known as current season infection) occurs when virus transmission to a 

healthy plant takes place during the growing season, usually through the agency of insects 

(McKay, 1955; Taliansky et al., 2003). The symptoms are usually not severe unless plants 

become infected early in the season (Taliansky et al., 2003). Early season infection usually 

results in a rolling of the top leaves, which have a purple-reddish appearance (Johnson, 2003; 
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Rich, 1983). The top leaves become erect and their margins turn upward and curl inwards 

toward the midrib, being tough and leathery (McKay, 1955). These symptoms only occur later in 

the growing season in plants that appeared to be healthy (Johnson, 2003). The lower leaves of 

the plant may be normal looking, making these symptoms less obvious (Johnson, 2003).  

The rolled erect leaflets would be confined to the topmost parts of the stems unless infection 

took place before the flowering of the plant, in which case the lower leaflets would also become 

affected. This condition reflects secondary symptoms, but usually does not take place (McKay, 

1955). If the plants become infected after their flowering period or towards maturity, no signs of 

infection occur (McKay, 1955). These plants are by no means free of PLRV, but their tubers will 

give rise to Secondary Leaf Roll plants the following season (McKay, 1955). Plants that become 

infected late in the growing season would also not show any signs of infection (Rich, 1983). 

There would be little if any dwarfing and the infected plant usually remains symptomless (Rich, 

1983).  

Tubers from plants infected during the current season develop net necrosis in storage (Johnson 

and Pappu, 2006; Rich, 1983). This appears as a discoloration of the tissue about a centimeter 

beneath the skin in the form of fine black strands radiating from the stem-end region of the tuber 

to its circumference (Johnson and Pappu, 2006; McKay, 1955). The degree of net necrosis 

depends on the potato cultivar, time of infection, length and temperature of potato storage 

(Johnson and Pappu, 2006). Net necrosis is a variable feature of PLRV because when such 

infected tubers are planted their progeny seldom show signs of net necrosis (McKay, 1955).  

However, once a tuber is infected all its progeny will be diseased. Tubers are usually already 

infected when Primary Leaf Roll symptoms develop because these symptoms become 

noticeable until twenty days after infection, but the virus reaches the tubers within ten to fifteen 

days after infection (McKay, 1955).  

Secondary Leaf Roll develops in plants that are grown from infected tubers (Taliansky et al., 

2003). This is the commonest phase of the disease, which shows the most easily recognized 

symptoms scattered indiscriminately throughout the field (McKay, 1955). The symptoms begin 

to appear when the plants are about a month old, firstly on the lower leaves and gradually 

progressing upward (Johnson, 2003; McKay, 1955). The leaves of the plants, especially the 

lower leaves, are stiff, roll upwards, become leathery in texture and rattle when shaken 

(Johnson, 2003; Johnson and Pappu, 2006). They break easily when crushed and may be 

chlorotic (Taliansky, 2003). Rolled, thickened lower leaflets are the one invariable symptom of 

PLRV that are used to distinguish the disease from other potato maladies where rolling of the 

foliage occurs (McKay, 1955). 

The rolling of foliage in PLRV infected plants is due to the accumulation of starch in the leaves. 

Normally, starch that is manufactured during daylight is converted into sugar at night and carried 

away through the conducting tissues of the petiole and stem. These sugars are either used for 
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growth or reconverted to starch in the growing tuber. However, in leaves of PLRV plants, starch 

manufacture goes on, but the normal translocation process is disrupted. This results in the 

leaflets becoming congested with starch and curving upward (McKay, 1955). 

Seeing that the starch is largely retained in the leaves, it makes sense that tuber formation must 

suffer in Secondary Leaf Roll plants (McKay, 1955). There are less tubers and they are smaller 

which results in a marked yield loss (Rich, 1983). In addition, plants emerging from the infected 

tubers are usually yellow to pale green and may be slightly stunted (Johnson, 2003; Johnson 

and Pappu, 2006). The diseased plants grow slowly and the tubers set close to the main stem 

while the old mother tuber also remains firm until digging time (McKay, 1995). It is these 

chronically infected plants which will provide sources of virus for spread to healthy plants during 

the current growing season (Johnson and Pappu, 2006).  

Due to the economic importance of PLRV, more has been learnt about the infected plants with 

the use of light microscopy and to some extent with the electron microscope (Shepardson et al., 

1980). That enables us to view the pathogenesis of the plant on a smaller scale. Light 

microscopy studies can reveal the characteristic patterns of phloem necrosis in PLRV infected 

potato plants while electron microscopy can reveal the pathological effects induced by the virus 

in the phloem (Shepardson et al., 1980). The focus of these studies of PLRV infected potato 

plants have been mainly on phloem tissue because the virus is mostly confined to phloem cells 

(Johnson and Pappu, 2006; Van Regenmortel et al., 2000). As the virus is mostly confined to 

the phloem, it explains why one of the primary pathological changes in the infected plant is 

necrosis of the phloem causing death and collapse of cells (Shepardson et al., 1980).  

Phloem is a tissue that conducts food materials in vascular plants (plants possessing organized 

tissue to conduct water and nutrients, consisting of xylem and phloem) from regions where it is 

produced to regions where they are needed (Beckett et al., 2000). It consists of parenchyma 

cells, sieve elements and companion cells (Beckett et al., 2000; Raven and Johnson, 2002). 

The parenchyma cells form part of the phloem tissue, these cells are relatively undifferentiated 

with air spaces between them frequently (Beckett et al., 2000). Sieve elements are elongated 

cells that form hollow tubes (sieve tubes), these cells contain little cytoplasm and no nucleus 

(Beckett et al., 2000). Closely associated with sieve elements are companion cells (Beckett et 

al., 2000). The function of companion cells is uncertain, though it appears to regulate the activity 

of the adjacent sieve element (Beckett et al., 2000).  

Phloem tissue, mature sieve elements, companion cells and plasmodesmata between sieve 

elements and companion cells, contain virus-like particles in potato plants infected with PLRV 

as revealed by electron microscopic studies (Shepardson et al., 1980; Van den Heuvel et al., 

1995). Plasmodesmata are fine cytoplasmic strands that connect adjacent plant cells by 

passing through their cell walls (Beckett et al., 2000). According to Shepardson et al. (1980), 

evidence of infection was localized in sieve elements and companion cells. Phloem parenchyma 
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cells would only contain virus particles occasionally and in their vacuoles without showing any 

other cytoplasmic changes (Shepardson et al., 1980).  

Viral antigen occurred the most abundantly in companion cells as found by Van den Heuvel et 

al. (1995), and it was quite unevenly distributed within the leaves examined. The uneven 

distribution of PLRV in phloem tissue suggests that systemic transport of the virus in heavily 

virus-infested vessels is considerably impaired (Van den Heuvel et al., 1995). Van den Heuvel 

et al. (1995), also found that only sieve elements connected to infected companion cells 

contained PLRV antigen.  

Phloem necrosis in infected potato plants appears before the other external symptoms such as 

leafrolling is visible (Shepardson et al., 1980). In Primary Leaf Roll, phloem necrosis appears to 

move only upwards at first, enabling the point of infection to be determined by the lowest level 

of leafrolling (Shepardson et al., 1980). In Secondary Leaf Roll, necrosis is first noted in primary 

phloem strands a few inches above the tuber and then spreads both upwards and downward in 

the plant (Shepardson et al., 1980).  

In sieve elements of the necrotic phloem an abnormally large amount of callose is deposited 

which most probably obstructs phloem transport (Shepardson et al., 1980; Van den Heuvel et 

al., 1995). The amount of excess callose is used as an indicator of PLRV infection after staining 

the tissue with resorcin blue or aniline blue (Shepardson et al., 1980). As the translocation 

process is inhibited from phloem necrosis, plant growth is slowed resulting in dwarfing as seen 

in Secondary Leaf Roll infected plants (Van Regenmortel et al., 2000).  

However, PLRV is not limited exclusively to phloem tissue in infected potato plants, but is also 

found in mesophyll cells neighbouring minor phloem vessels (Van den Heuvel et al., 1995). 

Mesophyll cells compose the internal tissue of a leaf blade (Beckett et al., 2000). These infected 

cells are always found to be immediately adjacent to companion cells in minor veins protruding 

into the mesophyll tissue (Van den Heuvel et al., 1995). The veins of a plant are made up out of 

the xylem and phloem, so the infected companion cells of the phloem would infect the rest of 

the internal tissue of a leaf (Beckett et al., 2000). Even though the highest concentrations of 

PLRV are detected in phloem cells, viral RNA is also present in almost all cells of infected 

potatoes (Kaniewski and Thomas, 2004).  

Plant viruses would typically, after infection, replicate and spread from the point of infection from 

cell to cell through the plasmodesmata until they reach the phloem (Taliansky et al., 2003). 

Once the virions have entered the host vascular system, the different types of phloem-

associated cells such as phloem parenchyma and companion cells are invaded (Taliansky et 

al., 2003). The virions also penetrate into the sieve elements, move through them from leaf to 

leaf to exit, and infect non-vascular tissues (Taliansky et al., 2003). This is called phloem 

associated long-distance movement of which less is known than short-distance movement (cell-

to-cell movement) (Taliansky et al., 2003). Short-distance movement usually involves one or 
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more virus-encoded movement proteins as well as certain host components (Taliansky et al., 

2003). Long-distance and short-distance movement represents two phases in virus infection.   

Short-distance mesophyll cell-to-cell movement is not observed with PLRV (Taliansky et al., 

2003; Van den Heuvel et al., 1995). PLRV can only spread via long-distance transport, 

therefore their accumulation is limited mainly to the phloem cells (Taliansky et al., 2003). 

Consequently, its spread resembles only one phase of the spread of other plant viruses, namely 

phloem-associated long-distance movement (Taliansky et al., 2003).  

It is in the phloem companion cells where the virus mostly replicates, but mesophyll cells also 

support PLRV replication to a similar extent (Taliansky et al., 2003; Van den Heuvel et al., 

1995). The virus particles associate with various membranes in the companion cells including 

the membranes of mitochondria and chloroplasts as well as the tonoplast (Shepardson et al., 

1980). However, minus-strand RNA has been detected in nearly all cells of infected plants, 

which shows that PLRV also multiplies there (Kaniewski and Thomas, 2004). 

Once PLRV has infected phloem cells, various forms of cell degeneration can be observed. In 

companion cells, an early indication of virally induced cellular disturbance is dilation of 

mitochondrial cristae followed by the appearance of vesicles in the parietal cytoplasm 

(Shepardson et al., 1980). Furthermore, in infected cells the nucleus becomes deficient in 

chromatin and its nucleolus very dense (Shepardson et al., 1980). The cytoplasmic ribosome 

content reduces while mitochondria loose much of their matrix and become swollen to several 

times their normal size (Shepardson et al., 1980). Mitochondrial cristae separate from the 

envelope and clump while the cell membrane and nuclear envelope degenerates and 

completely disappears (Shepardson et al., 1980). In the chloroplasts, starch and lipid globules 

are deposited while chlorophyll content is reduced (Shepardson et al., 1980; Van Regenmortel 

et al., 2000). 

2.1.3 The molecular biology of PLRV 

2.1.3.1 Genomic organization 

Having discussed PLRV transmission as well as the effects that the virus has on plants when 

infecting it, attention is directed to the molecular biology of the virus to understand PLRV in 

greater depth. PLRV, like other plant viruses, are extremely small and cannot be seen without 

the use of an electron microscope (Johnson, 2003; Johnson and Pappu, 2006). PLRV particles 

are thought to have 180 subunits arranged in a T = 3 icosahedron, creating a hexagonal outline 

(Van Regenmortel et al., 2000). The isometric particles are without an envelope and measure 

about 23-25 nm in diameter (Shepardson et al., 1980; Rich, 1983; Garret et al., 1993; Van 

Regenmortel et al., 2000; Taliansky et al., 2003).  
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Generally speaking, viruses can be described as consisting of nucleic acid, DNA or RNA, 

surrounded by a coat protein (Johnson, 2003). Plant viruses may contain any one of the four 

types of genetic material: single-stranded RNA (ssRNA), double-stranded RNA, single-stranded 

DNA or double-stranded DNA (Bustamante and Hull, 1998). The vast majority of plant viruses 

(about 75%) have ssRNA of the (+) or messenger polarity (termed (+) RNA), showing a wide 

variation in capsid morphology (Bustamante and Hull, 1998). In the case of PLRV, particles are 

composed of two proteins, one major (ca. 23 kDa) and one minor (ca. 80 kDa) protein (Van 

Regenmortel et al., 2000; Reavy and Mayo, 2002; Taliansky et al., 2003) and a positive sense 

ssRNA of 5882 nucleotides (Mehrad et al., 1979; Van der Wilk et al., 1989; Bahner et al., 1990; 

Kawchuk et al., 1990; Van Regenmortel et al., 2000; Taliansky et al., 2003).  

The genomes of plant viruses may have different terminal structures such as cap structures or 

genome-linked proteins (virus protein, genome-linked; VPg) at the 5’ end and a poly(A)-tail or 

tRNA-like structure at the 3’ end of their RNA (Bustamante and Hull, 1998). The genome of 

PLRV has neither a 5’-cap nor 3’-terminal poly(A) tract or a 3’ tRNA-like structure, but carries a 

small protein (VPg) at the 5’ end (Martin et al., 1990; Taliansky et al., 2003). At the 3’ end the 

genome of PLRV has an –OH as judged by the ability to readily polyadenylate with E. coli 

polymerase (Martin et al., 1990). The VPg has an estimated size Mr 7000 covalently linked to 

the 5’-end of the genomic RNA (Mayo and Ziegler-Graff, 1996; Van der Wilk, 1997b; Van 

Regenmortel et al., 2000).  

The molecular and structural features of the virion, together with its transmission properties, 

classify PLRV in the family Luteoviridae (Taliansky et al., 2003). The name Luteoviridae is 

derived from Latin “luteus”, which means yellow, since all original members of the group caused 

yellowing symptoms in their hosts (Martin et al., 1990). The family Luteoviridae was created so 

that molecular differences in replication-related gene sequences could be recognized by 

separation at the genus level (Mayo, 2002). Within the family Luteoviridae, there are two main 

genera (Luteovirus and Polerovirus) that differ in certain genome features and type of RNA-

dependent RNA polymerase (RdRp) (Van der Wilk et al., 1997b; Van Regenmortel et al., 2000; 

Taliansky et al., 2003). PLRV is the type species of the genus Polerovirus (derived from potato 

leafroll) (Rouzé-Jouan et al., 2001; Mayo, 2002; Taliansky et al., 2003; Johnson and Pappu, 

2006). The genus Polerovirus consequently contain viruses with genomes similar to those of 

PLRV in that they contain a P0 gene, have an extensive overlap between the P1 and P2 genes, 

and have a 5’-linked VPg (Mayo, 2002). 

The RNA genome of PLRV contains six large open reading frames (ORFs) (ORF0 – ORF5), 

and the coding sequences are separated into two clusters of three genes by an noncoding 

intergenic region of 200 nucleotides (Fig. 2.2) (Bahner et al., 1990; Mayo and Ziegler-Graff, 

1996; Van der Wilk et al., 1997b; Van Regenmortel et al., 2000; Haupt et al., 2005). Common 

sequences are found in these intergenic regions between different luteoviruses that are likely to 
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include subgenomic RNA promoter signals (Martin et al., 1990). The ORF0, 1 and 2 region is 

divergent among luteoviruses while the ORF3, 4 and 5 region is the conserved gene cluster 

(Martin et al., 1990; Ashoud et al., 1998). The apparent illogicality of naming an ORF as zero, is 

for the sake of promoting consistency between the two subgroups of luteoviruses as equivalent 

ORFs have been assigned different numbers in different luteovirus genomes (Mayo and Ziegler-

Graff, 1996). The 5’-block of coding sequence, consisting of three ORFs, overlap extensively 

(Mayo and Ziegler-Graff, 1996). ORF0 overlaps ORF1, while ORF1 overlaps ORF2 by 298 nt 

(Martin et al., 1990; Van Regenmortel et al., 2000). In the 3’-block of coding sequence there is 

also some degree of overlap between the other three ORFs; ORF4 is contained completely 

within ORF3, however ORF5 is positioned directly downstream of and contiguous with ORF3, 

separated by an amber termination codon (Martin et al., 1990; Van Regenmortel et al., 2000; 

Taliansky et al., 2003).  
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Fig. 2.2: Schematic representation of the genomic organization of PLRV. The diagram shows the 
arrangement of the open reading frames in the RNA genome of PLRV (5882 nt). Boxes represent the 
ORFs; solid lines represent untranslated sequences in the RNA and the circle represents the VPg. 
Numbers outside the boxed areas show the Mr values in kDa of the corresponding proteins encoded by 
each ORF (figure composed from Van der Wilk et al., 1989; Martin et al., 1990; Rhode et al., 1994; Van 
der Wilk et al., 1997a; Van der Wilk et al., 1997b; Van Regenmortel et al., 2000). 

The 5’ half of the luteovirus genomes encode the nonstructural genes presumed to be involved 

in virus replication within infected plant cells whereas the structural genes are located in the 3’ 

half of the genome (Martin et al., 1990). PLRV 3’ structural genes include the coat protein (CP) 

ORF, an ORF embedded in the CP gene postulated to be the VPg and the CP readthrough also 

detected on the surface of the virion particle (Martin et al., 1990). These structural genes 

determine the particle morphology, serological cross activity and possibly virus-vector 

interaction (Martin et al., 1990).  

The predicted sizes of the ORF protein products are as follows: ORF0 = 28 kDa, ORF1 = 70 

kDa, ORF2 = 69 kDa, ORF3 = 23 kDa, ORF4 = 17 kDa and ORF5 = 56 kDa (Van der Wilk et 

al., 1989; Martin et al., 1990). In addition to the 200 nt intergenic noncoding region, there is a 5’ 

noncoding region of 71 nt and a 3’ noncoding region of 141 nt (Martin et al., 1990). The non-

coding sequences of PLRV are approximately 6.9% of the sequence (Van der Wilk et al., 1989). 

ORF0, ORF1 and ORF2 are translated from the genomic RNA, while ORF3, ORF4 and ORF5 

are expressed from a subgenomic RNA (sgRNA) (Ashoub et al., 1998; Van Regenmortel et al., 

2000).  
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Within the 5’-located ORFs, ORF0 encodes a potential silencing suppressor protein while ORF 

1 and ORF2 have motifs characteristic of helicases (ORF1) and polymerases (ORF2) to form 

part of the viral replicase complex (Ashoub et al., 1998; Haupt et al., 2005). ORF2 is translated 

by frameshift from ORF1 upstream of the termination of ORF1, therefore the ORF2 product 

shares an amino acid terminus with the product of ORF1 (Ashoub et al., 1998; Van 

Regenmortel et al., 2000). Within the 3’-located gene cluster ORF3 encodes the major capsid 

protein and ORF4, contained within ORF3 in a different frame, encodes a movement protein 

(Haupt et al., 2005). Initiation of ORF4 transcription takes place at an internally located AUG 

codon within the CP gene product of ORF3 (Ashoud et al., 1998). ORF5 is expressed by 

occasional translational readthrough of the amber termination codon to form a minor capsid 

protein (Haupt et al., 2005). The minor capsid protein expressed by ORF3/ORF5 readthrough is 

reported to be the aphid transmission factor (Ashoud et al., 1998). 

In the case where reference is made to the encoded peptides, it would be assigned the same 

number as the ORF encoding them, e.g. P0 encoded by ORF0 (Mayo and Ziegler-Graff, 1996). 

With the exception of the structural proteins, little is known about the functions of the product of 

the ORFs present on the genome of PLRV, mostly the functions are speculative (Van der Wilk 

et al., 1997a; Taliansky et al., 2003). For instance it is still obscure which ORF encodes the 

VPg, and concerning the nonstructural genes only the RdRp (by sequence comparison) and the 

movement protein have been identified (Van der Wilk et al., 1997a). There are also no data on 

post-translational modification of the virus proteins (Van Regenmortel et al., 2000). However, 

the current knowledge of the various ORFs and their products follow as research in this area 

has produced some insights. 

2.1.3.2 ORF0 

ORF0 starts at the first AUG codon (position 70) and terminates with a UGA stop codon at 

position 811 to encode a product of 28 kDa (Van der Wilk et al., 1989). The role of ORF0 has 

not been resolved, but expression of this ORF in transgenic potato plants has been shown to 

induce viral disease-like symptoms (Van der Wilk et al., 1997b). P0 has consequently been 

assigned as being involved in symptom development and as a suppressor of gene silencing 

(Mayo and Ziegler-Graff, 1996; Taliansky et al., 2003). It is also suggested that P0 plays a role 

in host recognition or in viral symptom expression (Van der Wilk et al., 1997a). P0 is only 

expressed in Poleroviruses and not in Luteoviruses, which means that either its function is not 

needed by Luteoviruses or that it is performed by one of the other proteins as an additional 

function (Mayo and Ziegler-Graff, 1996).  

Homology studies revealed little similarity in the amino acid sequences of luteoviral P0 proteins 

so not much can be deduced as to the function of P0 from the amino acid sequences (Van der 

Wilk et al., 1989; Mayo and Ziegler-Graff, 1996). However, the N-terminal regions of P0 are 

markedly hydrophobic and have shown a weak homology with several membrane associated 
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proteins (Mayo and Ziegler-Graff, 1996; Van der Wilk et al., 1997a). Analysis of the amino acid 

sequence of PLRV P0 revealed a putative membrane-binding site between residues 21 and 32 

(Van der Wilk et al., 1997a).  

Comparisons made between the genomic organization of PLRV and other luteoviruses revealed 

that PLRV is very similar to BWYV (Van der Wilk et al., 1997a). When the encoded proteins of 

PLRV and BWYV were compared, it revealed that all the viral proteins share a high homology in 

amino acid sequence except for the ORF0s (Van der Wilk et al., 1997a). Even though P0 of 

both viruses is similar in size and position on the genomes, the primary structures are not 

similar and there is no indication that BWYV P0 is membrane-linked like PLRV P0 (Van der Wilk 

et al., 1997a). From an ecological point of view, PLRV differs from BWYV mainly in its host 

ranges, PLRV being able to infect only a limited number of plant species while BWYV can infect 

many different plant species (Van der Wilk et al., 1997a). It has therefore been suggested that 

P0 plays a role in host recognition since P0 constitutes the main genetic difference between the 

viruses (Van der Wilk et al., 1997a).  

It has also been suggested that P0 funtions as a protease to cleave the 17 kDa product of 

ORF4 to give the 7 kDa functional VPg (Martin et al., 1990). However, nucleic acid 

hybridizations and serological tests have contradicted this proposal for luteoviruses in general 

(Martin et al., 1990). It could be that this posttranslational processing occurs in some 

luteoviruses to give a functional VPg (Martin et al., 1990). Another proposal is that P0 is 

involved in the movement of the virus in conjunction with P4 (Van der Wilk et al., 1997a). The 

precise function of P0 remains unknown and if the protein is indeed involved in determining the 

host range of PLRV, it may act as an early gene making it ephemeral and difficult to detect 

(Mayo and Ziegler-Graff, 1996).  

2.1.3.3 ORF1 

ORF1 overlaps with ORF0 by a start at position 203 in a different reading frame from ORF0 and 

stops at the UGA codon present at position 2120 to encode a protein of 70 kDa (Van der Wilk et 

al., 1989). The ORF1 product P1 contains motifs characteristic of serine-like proteinases and 

has been classified among the poliovirus 3C-like proteases (Mayo and Ziegler-Graff, 1996; Van 

der Wilk et al., 1997a; Van der Wilk et al., 1997b). However, the role of this putative protease in 

the viral infection cycle is still concealed (Van der Wilk et al., 1997a). It has been suggested that 

ORF1 contains the sequence domains of VPg-protease-polymerase (Mayo and Ziegler-Graff, 

1996). This means that ORF1 has proteinase functions and encodes the VPg (Mayo and 

Ziegler-Graff, 1996; Taliansky et al., 2003). VPg seems to be a product of ORF1 (Mayo and 

Ziegler-Graff, 1996) rather than that of ORF4, which results from the cleavage of P4 by P0 as 

previously suggested. Amino acid comparisons revealed that the N-terminal amino acids of VPg 

are located downstream of the putative protease domain and upstream of the polymerase which 

comprises part of ORF2 (Van der Wilk et al., 1997b). The VPg N-terminal amino acid sequence 
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has been mapped to position 400 of the PLRV ORF1 product and its C-terminus approximately 

at residue 465 of the ORF1 product (Van der Wilk et al.,1997b).  

Maturation of the VPg requires proteolytic cleavage at both the N- and C-terminus as it is 

contained in the P1-P2 fusion protein (Van der Wilk et al., 1997b). PLRV VPg is most likely 

released from P1 by proteolytic activity of its putative protease domain (Van der Wilk et al., 

1997b). The VPg N-terminal proteolytic processing site consists of the residues E-S/T as the N-

terminal residue of VPg (S/T) is preceded by a glutamic acid residue (Van der Wilk et al., 

1997b). Based on the size of the protein, there have been attempts to predict the position of the 

C-terminal processing site but a sequence similar to the putative N-terminal processing site 

could not be found in the immediate vicinity of the putative VPg C-terminus (Van der Wilk et al., 

1997b). 

2.1.3.4 ORF2 

ORF2 is proposed to start at position 1540, overlapping ORF1, and to terminate at the UGA 

stop codon at position 3388 to encode a protein of 69 kDa (Van der Wilk et al., 1989). ORF2 

does not encode a separate gene product but is rather expressed as a fusion with the product 

of ORF1 through a -1 translational frameshift to code the putative RdRp (Martin et al., 1990; 

Van der Wilk et al., 1997b; Taliansky et al., 2003). As a frameshift takes place, the stop codon 

at the 3’ end of ORF1 is bypassed (Martin et al., 1990).  

The P2 protein contains the putative RdRp motif near the C terminus: Gly-xxx-Thr-xxx-

Asn(x25_40)Gly-Asp-Asp (Mayo and Ziegler-Graff, 1996; Van der Wilk et al., 1997a). This motif 

has been found in all RNA-dependent polymerases of RNA plant viruses sequenced to date, 

which makes P2 the most likely candidate to represent the PLRV-encoded RdRp (Van der Wilk 

et al., 1989). Furthermore, the predicted amino acid sequence of PLRV P2 shows considerable 

homology with the putative RdRps of other viruses (Van der Wilk et al., 1989). P2, together with 

P1, has been found to be absolutely necessary for replication in another luteovirus (BWYV), 

which give further give evidence for the polymerase activity of P2 (Mayo and Ziegler-Graff, 

1996).  

2.1.3.5 ORF3 

ORF3 is separated from ORF2 by a non-coding region of 197 nucleotides (Van der Wilk et al., 

1989). It spans from position 3588 to 4212 (UAG), hence encoding 208 amino acids to give a 23 

kDa product (Bahner et al., 1990; Kawchuk et al., 1990; Van der Wilk et al., 1989). Only the CP 

gene has been unequivocally assigned to ORF3 present in the 3’-half of the non-coding 

sequence, followed in frame by ORF5 (Bahner et al., 1990; Van der Wilk et al., 1997a; Van 

Regenmortel et al., 2000). P3 was shown to be the PLRV CP largely by immunodetection of a 

fusion protein with antiserum prepared against whole virions of PLRV (Martin et al., 1990; Mayo 

and Ziegler-Graff, 1996). There is considerable homology between the ORF3 of PLRV and 



   20

other luteoviral ORFs that encode their corresponding CPs that confirm the assignment of P3 as 

the CP of PLRV (Van der Wilk et al., 1989). The CP of luteoviruses has been reported to be 

responsible for serological properties and transmission specificity (Kawchuk et al., 1990). The 

strong homology between the luteoviral CPs can explain the serological cross-reactivity 

between the different luteoviruses (Van der Wilk et al., 1989).  

2.1.3.6 ORF4 

ORF4 underlies ORF3 from position 3613 to the UGA codon at position 4081 (Van der Wilk et 

al., 1989). ORF4 encodes a protein of 17 kDa in a different frame from ORF3 (Van der Wilk et 

al., 1989; Martin et al., 1990). It has been shown that translational initiation efficiency at the 

PLRV 17 kDa AUG codon is sevenfold higher than initiation for CP (P3) synthesis (Rhode et al., 

1994).  

Different functions have been assigned to P4 in the literature; P4 can either be the VPg or a 

movement protein. The proposal of P4 as the VPg is based on the similarity in size to the VPg 

isolated from another luteovirus (the PAV serotype of Barley yellow dwarf virus; BYDV-PAV) 

(Martin et al., 1990). Furthermore, the amino acid sequence of PLRV P4 has considerable 

homology with the products of two other luteoviruses, Barley yellow dwarf virus (BYDV) (57%) 

and BWYV (72%) in analogous ORFs (Van der Wilk et al., 1989). The ORFs in BYDV and 

BWYV also underly their respective CP ORFs (Van der Wilk et al., 1989). It has been proposed 

that both of these ORFs code for the respective VPgs (Van der Wilk et al., 1989). However, the 

VPg of PLRV has been estimated to have a molecular mass of 7 kDa whereas ORF4 has a 

coding capacity of 17 kDa (Van der Wilk et al., 1989). The possibility exists that ORF4 encodes 

a VPg-precursor molecule from which the VPg molecule is released at the onset of RNA 

synthesis (Van der Wilk et al., 1989). This method of VPg synthesis has also been suggested 

for another plant virus, cowpea mosaic virus. 

There is more reference in the literature to the probability that ORF4 encodes a movement 

protein. P4 most probably constitutes the viral movement protein since it has been shown to be 

required for long distance movement in poleroviruses and is indispensable for systemic infection 

of plants (Van der Wilk et al., 1997a; Van Regenmortel et al., 2000). Indirect evidence for PLRV 

P4 as the movement protein comes from the observation that its analogue in BYDV-PAV was 

shown by mutational analysis to be a movement protein (Taliansky et al., 2003). Direct evidence 

for the role for PLRV P4 as the movement protein comes from experiments in which two PLRV 

mutants with either an untranslateble or modified P4 were able to replicate and accumulate in 

leaves of potato, but were unable to move into vascular tissues and initiate a systemic infection 

of the plant (Taliansky et al., 2003). This indicates that P4 is strictly required for virus 

movement, however the requirement for the P4 movement protein has been shown to be host-

dependent and that there is a P4-independent mechanism for PLRV movement that operates at 

least in some plants (Taliansky et al., 2003).  
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Furthermore, the biochemical properties of the protein also points to its role as a phloem-

specific movement protein (Mayo and Ziegler-Graff, 1996). The protein has been shown to bind 

single-stranded nucleic acids via its binding domain located in the basic C-proximal part of the 

protein (Rhode et al., 1994; Mayo and Ziegler-Graff, 1996; Van der Wilk et al., 1997a). In 

addition, the acidic N terminus of P4 forms an amphipatic α-helix with the negatively charged 

amino acids located predominantly on one side of the helix (Mayo and Ziegler-Graff, 1996). The 

amphipatic α-helix exhibits the capacity for homodimer formation to mediate protein-protein 

interaction, which could explain the tendency of P4 to dimerize (Mayo and Ziegler-Graff, 1996). 

Indeed, PLRV P4 has been detected in infected and transgenic potato plants mainly as a 

homodimer (Mayo and Ziegler-Graff, 1996). Furthermore, in PLRV infected potato plants P4 

was predominantly associated with membrane-enriched fractions and in vivo the protein has 

been found in a phosphorylated form (Mayo and Ziegler-Graff, 1996). It is these biochemical 

properties which point to the role of the protein as a movement protein together with the striking 

similarities in properties with the best studied movement protein, that of Tobacco mosaic virus 

(TMV) (Taliansky et al., 2003). Nevertheless, the movement protein of TMV is involved in cell-

to-cell movement in the plant vasculature whereas that of P4 is assumed to mediate virus 

movement only between cells within the phloem tissues (Taliansky et al., 2003).  

2.1.3.7 ORF5 

ORF5 is contiguous with the putative CP ORF3, separated only be the amber stop codon of 

ORF3 (Van der Wilk et al., 1989). This ORF is present in the 3’-half of the PLRV genome to 

make part of the structural proteins and is about 1400 nts (Van der Wilk et al., 1997b; Van 

Regenmortel et al., 2000). ORF5 is found in the same translational reading frame as the 

upstream ORF3 (Martin et al., 1990). Expression of ORF5 is a result of suppression of the CP 

termination codon to produce a readthrough product of ORF3 (Martin et al., 1990; Van der Wilk 

et al., 1997a; Van Regenmortel et al., 2000; Reavy and Mayo, 2002). The results of 

readthrough is a protein, termed readthrough protein, that consists of the CP with a carboxy-

terminal extension to give a protein with molecular mass of approximately 80 kDa (Bahner et al., 

1990; Reavy and Mayo, 2002). The predicted size of the PLRV readthrough protein is the sum 

of P3 (23 kDa), a shortened form of P5 (53 kDa), and the 4 kDa encoded by the sequence 

between ORF3 and ORF5, a total of 80 kDa (Bahner et al., 1990; Mayo and Ziegler-Graff, 

1996). Readthrough of amber stop codons to produce a low abundance of high-molecular 

weight proteins have also been reported for other plant viruses (Martin et al., 1990).  

The readthrough product of P5 is also a CP like P3, but only a minor CP as it is only 

occasionally expressed when readthrough of the amber termination codon occurs (Haupt et al., 

2005). This ORF3/ORF5 fusion protein is also assembled into virus particles as a minor 

component together with the main ORF3 component to contribute to the virus particle surface 

properties of PLRV (Bahner et al., 1990). However, the readthrough protein is not essential for 
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virus particle formation (Mayo and Ziegler-Graff, 1996; Reavy and Mayo, 2002). Purified virus 

particles have about 1% to 5% of P5 derived from P3 with a C-terminal extension (Taliansky et 

al., 2003). 

Downstream of the ORF3 termination codon is a succession of proline residues alternating 

mainly with serine or threonine residues (Bahner et al., 1990; Mayo and Ziegler-Graff, 1996). It 

has therefore been suggested that the function of this unusual sequence is to separate the 23 

kDa (encoded by ORF3) domain of the readthrough protein from the 56 kDa (encoded by 

ORF5) domain in the assembly of the capsid (Bahner et al., 1990; Mayo and Ziegler-Graff, 

1996). The 23 kDa domain of the readthrough protein could assemble with other 23 kDa 

polypeptides while the 56 kDa domain would thus protrude from the virus particle (Bahner et al., 

1990). Such protrusions have been detected on PLRV surfaces in favourably stained 

preparations (Bahner et al., 1990). Furthermore, antibodies raised against the readthrough 

protein detected particles in enzyme-linked immunosorbent assay (ELISA) tests indicating that 

the readthrough protein is exposed on the surface of virus particles (Reavy and Mayo, 2002). 

Other luteoviruses also have a succession of proline residues immediately downstream of the 

ORF3 termination codon and express ORF5 in a similar fashion, which means that it may be 

characteristic of luteoviruses (Bahner et al., 1990).  

PLRV readthrough protein may be associated with aphid transmission or virus particle stability 

(Van der Wilk et al., 1997a; Van Regenmortel et al., 2000). It has also been suggested that 

PLRV P5 is involved in virus movement, which could mean that there are different functional 

domains involved in aphid transmission and systemic spread of PLRV (Taliansky et al., 2003).  

Evidence for the role of P5 in virus movement, therefore systemic spread, comes from mutants 

lacking the 3’ parts of the P5 gene that were found to be less infective and to accumulate to a 

lesser extent than unmodified PLRV (Taliansky et al., 2003). Direct evidence for the role of P5 in 

systemic spread has been obtained from experiments using PLRV tagged with green 

fluorescent protein (Taliansky et al., 2003).  

Evidence for the aphid transmission role of the P5 domain in the readthrough protein comes 

from the comparison of amino acid sequences of highly transmissible and poorly aphid 

transmissible isolates of PLRV (Mayo and Ziegler-Graff, 1996). The only amino acid changes 

between the sequences were located in the C-terminal part of the readthrough domain (Bahner 

et al., 1990; Reavy and Mayo, 2002). No consistent amino acid changes have been detected 

that could be responsible for the differences in transmission efficiency (Mayo and Ziegler-Graff, 

1996). However, the P3 CP has also been found to have a region that is important in 

recognition events at different stages of the transmission process (Reavy and Mayo, 2002).  

Furthermore, the N-terminal regions of P5 have considerable sequence conservation among 

luteoviruses whereas the C-terminal region is more diverse among luteoviruses (Mayo and 

Ziegler-Graff, 1996; Reavy and Mayo, 2002). However, in the variable C-terminal region there is 
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a stretch of about 45 amino acids that is similar among PLRV, BWYV and cucurbit aphid-borne 

yellows virus (Mayo and Ziegler-Graff, 1996). This led to the proposal that this region is involved 

in the specificity of vector transmission since the three viruses are transmitted by M. persicae 

(Mayo and Ziegler-Graff, 1996; Reavy and Mayo, 2002).  

As no replication of virus particles take place in M. persicae, virus particles remain intact and the 

determinants of the specificity and efficiency of transmission must be a part of the P3 and/or P5 

sequences on the surface of the particles (Mayo and Ziegler-Graff, 1996). It has been 

suggested that P5 plays a role in the recognition events in the uptake of PLRV particles 

because of its surface location and accessibility for proteolytic cleavage (Mayo and Ziegler-

Graff, 1996). The M. persicae-specific motif in P5 could contribute to the high vector specificity 

required for the movement into the accessory salivary glands (Mayo and Ziegler-Graff, 1996). 

On the other hand, the conserved N-terminal P5 domain could contain signals involved in the 

less selective uptake of PLRV particles at the midgut (Mayo and Ziegler-Graff, 1996).  

It has also been suggested that symbionin, produced by the endosymbiotic bacterium 

(Buchnera sp.) of M. persicae, that protects the virus particles from proteolytic breakdown could 

bind to P5 (Taliansky et al., 2003). However, the binding of symbionin to virus particles or to the 

P5 protein has only been demonstrated in vitro (Taliansky et al., 2003). P5 has been proposed 

to play a role in the interactions between the PLRV particles and receptors in the aphid vector at 

several stages, but the role of P5 is complex and proposed functions full of contradictions 

(Taliansky et al., 2003). Clarity only exists surrounding mutants that lack P5, which are not 

aphid-transmissible (Taliansky et al., 2003).  

2.1.3.8 Replication and expression strategies 

Replication of positive-stranded RNA viruses takes place in the cytoplasm of infected cells in 

close association with membrane surfaces whereas replication of several other types of viruses 

occurs in the nucleus (Carrington et al., 1996; Bustamante and Hull., 1998). For phloem-specific 

luteoviruses, the phloem has to be made use of during replication to ensure aphid 

transmissibility of progeny virus particles (Rhode et al., 1994). Reproduction takes place by 

having the host cell reproduce the virus and can be separated into four overlapping steps: (i) 

uncoating of the virus, (ii) translation of viral RNA, (iii) replication of the genome and (iv) 

encapsidation of progeny genomic strands (Bustamante and Hull, 1998). Uncoating of the virus 

takes place to expose the nucleic acid to the replication processes, translation then follows 

during which the viral RNA serves as a messenger RNA to produce non-structural and structural 

proteins (Bustamante and Hull, 1998). The proteins required for replication (e.g. the RdRps) are 

translated first and those with late functions like the coat protein are translated at a later stage 

(Bustamante and Hull, 1998). Replication of the genome to yield progeny RNA molecules take 

place in two stages, catalysed by a RdRp: (1) synthesis of full-length complementary (negative) 

RNA strand using the positive genomic RNA strand as a template. Initiation of this process 
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requires binding of the polymerase to a recognition site at the 3’ end of the template (Martin et 

al., 1990; Bustamante and Hull, 1998). (2) The second stage in genome replication is synthesis 

of progeny genomic RNA and subgenomic RNAs using the negative-strand RNA as a template 

(Bustamante and Hull, 1998).  

Expression strategies as well as understanding of the genome organization of plants viruses 

have been greatly aided by the development of molecular techniques and the ability to obtain 

nucleotide sequences of complete viral genomes (Bustamante and Hull, 1998). Viruses with a 

small genome size are very dependent on the host eukaryotic protein-synthesising system and 

the viral genomes seem to have evolved to overcome the constraints of the plant host system 

(Bustamante and Hull, 1998). Small genomes are expected to encode a range of virus proteins 

and for luteoviruses almost all types of modulation mechanism are used during the expression 

of the different ORFs (Bustamante and Hull, 1998; Taliansky et al., 2003). This includes the 5.8 

kb genome of PLRV for which most of the diverse modes of expression of ssRNA are used 

(Martin et al., 1990; Mayo and Ziegler-Graff, 1996; Bustamante and Hull, 1998). 

The ways that PLRV use to express its genome are (1) translational frameshift between the 

overlapping ORFs, (2) initiation bypass, (3) readthrough of termination codons, (4) production of 

subgenomic (sg) RNA and (5) proteolysis of primary translation products to produce more than 

one protein from an ORF (Mayo and Ziegler-Graff, 1996; Taliansky et al., 2003).  

Translational, or ribosomal, frameshifting is a strategy frequently employed by various 

organisms to produce more than one protein from overlapping reading frames (Bustamante and 

Hull, 1998; Commandeur et al., 2002). Frameshift may occur in either the +1 (3’ direction) or in 

the -1 direction (5’ direction) but the most common frameshift is in the -1 direction (Mayo and 

Ziegler-Graff, 1996; Bustamante and Hull, 1998; Commandeur et al., 2002). This translational 

mechanism has been studied in detail and has been demonstrated for luteoviruses as well 

(Bustamante and Hull, 1998; Commandeur et al., 2002). Very little is known about +1 

translational frameshifting in plant viruses (Commandeur et al., 2002).  

Translational frameshift occurs between the overlapping ORFs 1 and 2 in PLRV that is required 

for the expression of the complete RdRp (Martin et al., 1990; Mayo and Ziegler-Graff, 1996; 

Bustamante and Hull, 1998). ORF2 is only expressed by a -1 frameshift from ORF1 to produce 

a fusion protein P1 + P2 (Martin et al., 1990; Mayo and Ziegler-Graff, 1996; Bustamante and 

Hull, 1998). A -1 translational frameshift event allows the ribosomes to bypass the stop codon at 

the 3’ end of ORF1, resulting in a fusion protein (Martin et al., 1990).  

The position in which translational frameshifting occurs in PLRV is in the nucleotide overlap of 

PLRV ORF1-ORF2, towards the 5’ end of the overlap (Martin et al., 1990; Rhode et al., 1994). 

Two characteristic genomic areas are responsible for the frameshift event: the frameshift site, 

also known as the slippery sequence or heptanucleotide signal, and a stem-loop or pseudoknot 

structure (Commandeur et al., 2002). For most plant viruses the structural requirement of a 
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stem-loop or pseudoknot structure has been identified (Commandeur et al., 2002). In PLRV the 

signal responsible for efficient frameshift is composed of the slippery sequence (UUUAAAU) 

followed by a sequence that has the potential to adopt either a pseudoknot structure or a simple 

stem-loop structure (Rhode et al., 1994; Mayo and Ziegler-Graff, 1996; Bustamante and Hull, 

1998). Studies on a Polish isolate of PLRV confirmed that the -1 frameshift in the overlap region 

depends on the slippery site and on a downstream positioned pseudoknot (Bustamante and 

Hull, 1998; Commandeur et al, 2002). On the other hand, studies on the frameshift region in a 

German isolate of PLRV indicated the presence of a stable stem-loop structure and a 

pseudoknot structure (Commandeur et al., 2002). If either of these structures is disrupted by 

mutation, protein expression will still take place as both structures enable expression 

(Commandeur et al., 2002).  

In addition, the stem-loop or pseudoknot structure downstream of the heptanucleotide signal is 

a weak RNA structure, which explains the low frameshift efficiency of approximately 1% for 

PLRV (Commandeur et al., 2002). This is low in comparison to frameshift efficiencies of animal 

viruses that range from 25 to 30% (Commandeur et al., 2002). Mutational analysis studies in 

which the stem loop or pseudoknot RNA structure was replaced by a more stable stem loop 

showed a strong increase in frameshift efficiency of up to 15% (Commandeur et al., 2002). The 

stem loop in the ORF2 sequence following the heptanucleotide signal, codes for a cluster of 

basic amino acids (Rhode et al., 1994). These basic amino acids is a domain required for 

nucleic acid binding and may represent the site on the viral replicase for the binding of the 

PLRV RNA template during replication (Rhode et al., 1994).  

Initiation bypass is the result of leaky scanning by ribosomes to translate ORFs downstream of 

the first AUG in the mRNA (Rhode et al., 1994; Mayo and Ziegler-Graff, 1996). This result in 

initiation of protein synthesis at internally located translational start codons and has been 

postulated to operate in the expression of various viral genes (Rhode et al., 1994). In vitro 

translation of PLRV RNA results in the synthesis of two polypeptides that correspond in size to 

ORF0 and ORF1, the first two ORFs (Martin et al., 1990; Mayo and Ziegler-Graff, 1996). This 

indicates that initiation of ORF1 occurs at an internal AUG, 133 nt downstream from the 

initiation site of ORF0, as a result of ribosomes scanning through the 70 nt 5’ end of the RNA 

past the initiation site of ORF0 (Martin et al., 1990). The 28 kDa product (P0) is found 

predominantly while the 70 kDa polypeptide (P1) is in the minor (Martin et al., 1990). 

Most viral RNAs are expressed in a monocistronic fashion with ribosomes scanning the RNA 

from the 5’ end until the first AUG is expressed which make the use of two initiation sites in the 

same RNA unusual (Martin et al., 1990). However, in the case where ribosomes use two 

initiation sites, such as for PLRV, the 5’ AUG has a suboptimal sequence context to initiate 

translation at the AUG further downstream (Martin et al., 1990). Only a portion of the ribosomes 
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initiate translation at the first AUG, while others continue to initiate translation at the AUG further 

downstream (Martin et al., 1990).  

Readthrough of leaky termination is a well-known translation mechanism in plant RNA viruses 

(Bahner et al., 1990; Commandeur et al., 2002). Readthrough occurs when a stop codon is 

suppressed by binding a suppressor tRNA, thereby permitting some of the ribosomes to read 

through into a downstream cistron as a result (Mayo and Ziegler-Graff, 1996; Bustamante and 

Hull, 1998). The process requires at least two elements: first a suppressor tRNA and secondly, 

the nucleotide context surrounding the termination codon and in particular the two downstream 

codons appear important for readthrough (Bustamante and Hull, 1998). The result of 

readthrough is a lesser proportion of a second functional fusion protein that includes the 

translation product of the next in-frame ORF (Mayo and Ziegler-Graff, 1996; Bustamante and 

Hull, 1998).  

Readthrough of termination in PLRV occurs when suppression of the amber stop codon 

separating the PLRV CP gene (ORF3) and the in-frame ORF5 take place (Commandeur et al., 

2002). The nucleotide sequence around the termination codon of ORF3 resemble those around 

several other virus RNA termination codons that are misread by naturally occurring suppressor 

tRNAs to generate readthrough proteins (Bahner et al., 1990). The sequence context 

surrounding the leaky stop codon is identical for all luteoviruses: AAAUAGGUAGAC 

(termination codon in bold type) (Martin et al., 1990; Mayo and Ziegler-Graff, 1996). ORF5 

seems to be expressed only as an ORF3 + ORF5 fusion protein by translational readthrough of 

ORF3 UAG termination codon as no polypeptide corresponding the primary translation product 

of ORF6 has been detected (Van der Wilk et al., 1989; Bahner et al., 1990; Mayo and Ziegler-

Graff, 1996).  

PLRV UAG suppression occurs at an efficiency of 1% in vivo, which is low compared to TMV 

(Commandeur et al., 2002). This suggests that more information is necessary for the efficient 

readthrough event (Commandeur et al., 2002). In addition, suppression is mediated by a rare, 

naturally occurring tRNA and it is present only in minor amounts in uninfected plants (Bahner et 

al., 1990; Rhode et al., 1994).  

Transcription of sgRNA from genomic RNA (gRNA) is one of the ways RNA viruses use to 

express internally located genes (Commandeur et al., 2002). This process is similar to mRNA 

transcription from a DNA template and also requires a promoter sequence located on the 

genomic minus strand (Commandeur et al., 2002). For the formation of sgRNA, a (-) RNA stand 

is firstly synthesised by the RdRp from the gRNA (Bustamante and Hull, 1998). During the 

formation of the (-) RNA strand one of two things can happen: either premature termination 

could lead to the formation of (-) RNA stands of subgenomic length or alternatively the (-) RNA 

strands can be of genomic length (Bustamante and Hull, 1998). Consequently either 

subgenomic length (-) RNA strands or genomic length (-) RNA strands can serve as templates 
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to generate the subgenomic (+) RNA (Bustamante and Hull, 1998). The latter mechanism 

seems to be favoured, which means that the subgenomic (+) RNA could be synthesised via 

internal initiation in (-) RNA strands of genomic length (Bustamante and Hull, 1998). 

Subgenomic RNA is not able to replicate autonomously as the sequence contained in the 3’ end 

required for the production of complementary subgenomic RNA chains is insufficient for 

replication (Bustamante and Hull, 1998).  

For PLRV, there are two sgRNAs: sgRNA1 with a size of ~2.3 kb has been characterized as the 

mRNA for the 3’ clustered ORFs (ORF3, ORF3/5 and ORF4) and the discovery of a second 0.8 

kb sgRNA2, which increased the complexity of luteoviral genomes significantly (Ashoub et al., 

1998). The first nine nucleotides in the 5’-terminal non-translated leader sequence of sgRNA1 

are identical to the respective 5’-terminal sequence of the gRNA, but those of sgRNA2 are 

different (Mayo and Ziegler-Graff, 1996; Taliansky et al., 2003). Leader sequences have effects 

on translation of the RNAs in vitro, but are not translational enhancers and the non-translated 

sequence has no effect on translation (Taliansky et al., 2003). The leader sequences of 

sgRNA1 are 212 nucleotides long and the 5’ end are located 12 nucleotides upstream of the 

termination codon of ORF2 (Mayo and Ziegler-Graff, 1996). The 5’ end of the sgRNA for a 

German PLRV isolate has been mapped to 40 nucleotides upstream of the ORF3 AUG codon 

(Mayo and Ziegler-Graff, 1996).  

PLRV sgRNA1 allows only the expression of ORFs 3-5 while the three 5’ ORFs 0-2 are 

expressed from gRNA (Mayo and Ziegler-Graff, 1996; Taliansky et al., 2003). ORF3 is the 5’ 

most gene of sgRNA1 with the sequence context GUU/GAAUGA surrounding the AUG initiation 

codon, similar in the luteoviruses PLRV, BYDV-PAV and BWYV (Martin et al., 1990). ORF4, 

present inside sgRNA1, is proposed to be expressed from the sgRNA by a proportion of 

ribosomes scanning past the ORF3 AUG initiation codon to initiate translation at the 

downstream ORF4 AUG initiation codon (Martin et al., 1990; Taliansky et al., 2003). ORF4 

initiation therefore happens in a fashion similar to the initiation bypass of ORF0 and ORF1. The 

ratio between P3 and P4 produced by translation of sgRNA1 has been reported to be either c. 

1:1 or c. 1:7 (Taliansky et al., 2003).  

PLRV sgRNA2 is mapped to the 3’-end of the genome in positions 5190-5987 and may code for 

two additional viral proteins of 7.1 kDa (ORF6) and 14 kDa (ORF7) respectively (Ashoub et al., 

1998). In vivo experiments demonstrated that sgRNA2 functions as a bicistronic mRNA with 

high expression of ORF6 and low translational efficiency for synthesis of ORF7 (Ashoub et al., 

1998). Both of these ORFs are present in many PLRV isolates sequenced so far (PLRV-

Scotland, PLRV-Netherlands, PLRV-Australia, PLRV-Canada and PLRV-Germany) with the 

single exception that ORF6 protein is truncated in PLRV-Australia due to conversion of a UGG 

codon for tryptophan to a UAG amber stop codon at position 5263-5265 (Ashoub et al., 1998). 

PLRV ORF7 corresponds to the C-terminus of the readthrough protein P5 and displays nucleic 
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acid binding activity that makes it a good candidate for participating in luteoviral transcription 

regulation, possibly at late stages during the viral life cycle (Ashoub et al., 1998).  

Proteolysis of primary translation products might take place in PLRV as a protease consensus 

sequence has been found in P1 encoded proteins (Mayo and Ziegler-Graff, 1996). However, 

there is no direct evidence for proteolysis of luteovirus proteins (Mayo and Ziegler-Graff, 1996). 

Even so, proteolytic processing is implied for PLRV because the VPg (suggested as part of P1) 

does not correspond to the translational product of an ORF (Mayo and Ziegler-Graff, 1996). By 

comparison to other viruses, it is predicted that the processing is by a virus-encoded protease to 

give the VPg (Mayo and Ziegler-Graff, 1996). More recently, a truncated protein representing 

the C-terminus of ORF1 (P1-C25) could be detected in PLRV-infected plants and it might be a 

product of protease activity (Commandeur et al., 2002).  

Taken together, a large number of canonical and noncanonical strategies are involved in the 

expression of PLRV genes (Commandeur et al., 2002). Luteoviruses present among the best 

examples of the versatility of expression strategies and the economy in use of coding 

sequences in small RNA genomes (Taliansky et al., 2003). It is believed that luteoviruses are 

still a “translational gold mine” where new insights in plant viral gene expression will soon be 

unearthed (Commandeur et al., 2002).  

2.1.3.9 Characterization of virus coat protein 

In studying the variation of PLRV, the CP product of ORF3 is mostly used to identify various 

isolates of PLRV. Other ORFs can also be used, but for the purpose of this study the variation in 

PLRV CP is of main importance. ORF3 makes part of the structural genes which determine the 

particle morphology, serological cross reactivity and possibly virus-vector interactions (Martin et 

al., 1990). ORF3 therefore is part of the genes that are primarily responsible for the traditional 

taxonomy of classifying viruses into different groups (Martin et al., 1990). For this reason, more 

detail is given below on the structure and function of the PLRV CP on a biochemical level.  

Little is also known about the specific properties and biologically active domains of the 

luteovirus particle (Lee et al., 2005). The virion structure of PLRV has not been resolved and 

there are no crystallographic data available for luteovirus CPs, but the general shape of the 

particles (consisting of 180 subunits assembled according to T = 3 quasi-symmetry) is known 

according to X-ray diffraction and molecular mass analysis (Terradot et al., 2001; Lee et al., 

2005). A variable but minor number of the of the 180 subunits are readthrough subunits 

incorporated into the virion via their CP moiety, protruding from the surface of the virion even 

though virions can be assembled from the CP alone (Lee et al., 2005).  

The structures of other icosahedral plant viruses have been resolved by X-ray crystallography to 

reveal the general architecture of their CPs (Terradot et al., 2001). For those icosahedral plant 

viruses the CP is based on two domains: the N-terminal arginine rich domain (R-domain) found 
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in the inner part of the capsid and the shell domain (S-domain) which forms the core of the 

capsid (Terradot et al., 2001; Lee et al., 2005). As no crystallographic data of PLRV CP is 

available, attempts have been made to predict the secondary structure from analysis of amino 

acid sequences (Taliansky et al., 2003). Based on the known structures and structural 

sequences of these distantly related icosahedral RNA viruses the CP of PLRV can also be 

divided into an R- and S-domain (Lee et al., 2005).  

Luteovirus CPs also have highly basic N-terminal amino acids like the CPs of plant viruses with 

isometric particles in 58 to 69 amino acids of the N-terminal region (Mayo and Ziegler-Graff, 

1996). In this region there is between 19 and 21 arginine or lysine residues separated by 

relatively nonpolar residues such as glycine and asparagine with no acidic residues (Mayo and 

Ziegler-Graff, 1996). This very arginine-rich sequence near the N-terminus contributes to the 

positive charge of P3 (Mayo et al., 1989). According to Mayo et al. (1989) the charge of PLRV 

P3 is +24 when calculated as the difference between the total number of lysine and arginine 

residues and the total number of aspartic and glutamic acid residues. P3 has a marked positive 

charge considering that the charge of P1 equals +3, P2 +5, P4 0 and P5 -15 when calculated in 

the same manner as for P3 (Mayo et al., 1989).  

The basic R-domain at the amino terminus is believed to be involved in protein-RNA interaction 

and in capsid assembly (Kawchuk et al., 1989; Terradot et al., 2001). This basic region, being at 

the inside of intact particles, forms a close association with the virus RNA; presumably the basic 

residues neutralize the negative charge on the virus RNA (Torrance, 1992; Mayo and Ziegler-

Graff, 1996). Furthermore, the highly basic sequences near the N-termini resemble nuclear 

localization signals and it is predicted that a stretch of 27 amino acids rich in arginine close to 

the N-terminus could be the nuclear localization signal (Mayo and Ziegler-Graff, 1996; 

Mukherjee et al., 2003). Haupt et al. (2005) have shown that the PLRV CP region 17Pro-Arg-

Arg-Arg-Arg-Arg-Gln-Ser-Leu-Arg-Arg-Arg-Ala-Asn-Arg31 operates as a nucleolar localization 

signal. The nuclear localization signal is probably responsible for transport of the virus particle 

through the nuclear pore but unlike other luteoviruses that accumulate in the nuclei of infected 

cells, nuclear localization of intact PLRV particles has not been demonstrated conclusively 

(Mukherjee et al., 2003).  

Furthermore, the nuclear localization signal is not exposed on the surface of the virus particle to 

facilitate its transport to the nucleus, but is probably located on the inside of the intact particle 

which means that the role for this signal in nuclear localization of intact virus particles remains to 

be confirmed (Mukherjee et al., 2003). Thus, the R-domain of PLRV CP is involved in different 

virus functions as the RNA-binding domain and the nuclear localization signal, and these 

regions might overlap and compete with each other to modulate the involvement of the CP in 

different virus functions (Haupt et al., 2005).  
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The S-domain which forms the virus shell is a wedge-shaped, eight-stranded antiparallel β-

barrel often referred to as a jelly roll configuration (Fig. 2.3) (Torrance, 1992; Lee et al., 2005). 

Two β-sheets are formed by the eight strands with four strands in each sheet (Terradot et al., 

2001). These eight β-strands are labeled B to I and it is to the N-terminal side of β-sheet B that 

the highly basic R-domain is found (Torrance, 1992; Mayo and Ziegler-Graff, 1996). From the 

formation of two β-sheets, the nomenclature of the strands of the jelly roll is designed as BIDG 

and CHEF (Terradot et al., 2001). In addition, two α-helices are observed; one connecting 

strands C and D and another one located between strands E and F (Terradot et al., 2001). In a 

study by Terradot et al. (2001) on a low-transmissible isolate of PLRV (PLRV-14.2), the S-

domain have been assumed to span from Thr60 to the remaining 149 C-terminal residues. The 

59 N-terminal residues which form the R-domain contained more than 33% arginines (Terradot 

et al., 2001). It is the R-domain-arm-S-domain modules that make up each one of the 180 

subunits of the PLRV particle (Torrance, 1992).  

 

Fig. 2.3: Illustration of the jelly roll scaffold as found for PLRV CP. The jelly roll scaffold is that of 
subunit A of RYMV CP which illustrates the jelly roll structure that is also found in PLRV CP. 
Nomenclature BIDG and CHEF is for the β-strands (Terradot et al., 2001).  

The S-domain three-dimensional structure is highly conserved among plant viruses as three-

dimensional biological structures are generally better conserved than primary protein 

sequences (Terradot et al., 2001; Lee et al., 2005). From secondary structure predictions, it has 

been confirmed that the majority of amino acid changes fall under the structurally variable 

regions, but that the α-helix and β-sheet are more structurally conserved (Mukherjee et al., 

2003). Mukherjee et al. (2003) found that from a secondary structure prediction of an Indian 

PLRV isolate, out of 207 amino acids, 6.7% has propensity towards an α-helix, 33.9% will form 

a β-sheet while the rest will adopt loop conformations.  

For the case of poleroviruses, the CP amino acid sequences are strongly conserved but they 

differ from those of other viruses in the “Luteovirus supergroup” which consist in genus 

Sobemovirus, family Tombusviridae and family Luteoviridae (Terradot et al., 2001). However, 

significant alignments have been obtained which suggests that secondary structural elements 
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are remarkably similar between virus CPs which has been analyzed despite the observed 

variation in amino acid sequences (Terradot et al., 2001). Members of different virus families 

share a similar 3D scaffold of eight β-strands (Terradot et al., 2001).  

The prediction of the structure of PLRV CP as a basic N-terminal region followed by patches of 

β-sheet was made shortly after the publication of sequences and this model have been 

supported from subsequent predictions based on more refined software packages (Taliansky et 

al., 2003). Recently a model was constructed for PLRV CP from the known crystal structure of 

Rice yellow mottle virus (RYMV) by Terradot et al. (2001) (Taliansky et al., 2003). This is by far 

the most sophisticated of PLRV CP models and have been made following the observation of a 

weak (17% identity, 33% similarity), but significant resemblance between the CP sequences 

(Taliansky et al., 2003). Even though such a model cannot be compared to a 3D crystal 

structure it can give useful insight into the structural shape of the CP up to residue level 

(Terradot et al., 2001). These models are less accurate at the atomic level but it helps to 

understand virus properties (Terradot et al., 2001).  

The sequence identity of PLRV CP obtained with that of the RYMV template was lower than 

what is usually considered suitable for reliable model building but comparison of the model with 

immunological and site-directed mutagenesis data previously reported for PLRV or related 

viruses has shown that the model was accurate (Terradot et al., 2001). For the identification of 

structure-function relationships between PLRV CP and RYMV, pairwise comparisons of 

sequences such as BLAST and FAST were not used as the chance of detecting relationships 

become increasingly small when the sequence identity is below 30% (Terradot et al., 2001). In 

the search of shared characteristics in sets of related sequences, Terradot et al. (2001) used 

the hidden Markov model as this method can predict significant alignments of protein 

sequences with identity as low as 15% and below (Terradot et al., 2001). With the hidden 

Markov model, the CP of RYMV was identified as a structure model (Terradot et al., 2001).  

From the PLRV CP model by Terradot et al. (2001) it has been found that the surface of the 

trimer displays an interesting patch of acidic residues, found at the center of the trimer. It has 

been suggested that Trp171 is located at the center of the trimer, involved in viral encapsidation 

and a stabilizing effect between the subunits (Terradot et al., 2001). On the other hand, the 

acidic patch is made of residues Glu109, Glu170, Glu176, Asp173 and Asp177 on the model (Terradot 

et al., 2001). Fig. 2.4 illustrates the surface properties of PLRV-14.2 (a low transmissible isolate 

of PLRV for which the model was constructed) colored according to the properties of amino acid 

residues (Terradot et al., 2001).  

Lee et al. (2005) confirmed the PLRV CP model by Terradot et al. (2001) in their study of the 

acidic domains, with only a few changes in the region that includes strands E and F. These 

changes would not have a large effect on the predicted structure of the acidic patch within a 

subunit or the interactions of the acidic patch at the center of the CP trimer (Lee et al., 2005). 
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Previous reports place the acidic patch domain as amino acids in loops C and D and G and H. 

According to Lee et al. (2005) two acidic domains separated by 55 amino acids are formed as 

βD and βG are split into two domains which results in the acidic patch residues to be partially 

contained in loops and partially in β sheets (Lee et al., 2005). These domains are predicted to 

be adjacent surface features on the virion (Lee et al., 2005).  

 

Fig. 2.4: Surface study of PLRV capsid. Surface of the trimeric CP structure is colored according to 
residue properties: neutral and hydrophobic (Ala, Val, Leu, Ile, Pro, Met, Phe, and Trp) in orange, neutral 
and polar (Gly, Ser, Thr, Cys, Asn, Gln, and Tyr) in green, acidic (Asp and Glu) in magenta and basic 
(Arg, His, and Lys) in blue. A white circle indicates the patch of acidic residues at the center of the trimeric 
assembly (Terradot et al., 2001).  

The acidic patch is possibly involved in the retention of parts of P5 on the surface of virus 

particles or it could be involved in the switch of the N-terminal sequence of the CP (a major 

epitope) from the inside of the particle to the outside, this change is postulated to be linked with 

particle disassembly (Taliansky et al., 2003). This region could also be involved in important 

recognition events at different stages of the transmission process (Taliansky et al., 2003).  

In a study by Lee et al. (2005) on the acidic domains of PLRV and the surrounding regions, it 

was found that alanine substitutions of certain amino acids disrupted the ability of the coat 

protein to assemble stable particles and the ability of the viral RNA to move systemically in four 

plant species. They were able to identify amino acids in these regions that are critical to virion 

assembly and stability, host-dependent systemic infection and aphid transmission (Lee et al., 

2005). The amino acids critical for virion assembly are located within a depression at the center 

of the coat protein trimer (residues Glu  and Asp170 177) while those amino acids that affect plant 

infection and/or aphid transmission are predicted to be located around the perimeter of the 

depression (residues Glu , Asp109 173 and Glu176) (Lee et al., 2005). It became apparent from their 

study that it is the conserved downstream domain of the acidic patch that is more likely to be the 

biological active region involved in CP subunit interactions, plant-virus interactions and aphid-

virus recognition (Lee et al., 2005).  

The aligned sequences of viral CPs have not only been used for secondary structure 

predictions but also for the prediction of regions of the coat protein that are on the outside of the 

particles (Reavy and Mayo, 2002). Torrance (1992) used a secondary structure model based on 
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the multiple sequence alignment of CPs with known secondary structure to interpret the location 

of epitopes in PLRV particles (Mayo and Ziegler-Graff, 1996). When reactions of antibodies to 

each of a set of overlapping peptides representing the entire protein sequence was made, 

Torrance (1992) found that most of the epitopes did not correlate well with antigenic areas 

predicted by computer algorithms (Torrance, 1992; Mayo and Ziegler-Graff, 1996). 

Twelve continuous epitopes were identified; epitopes 1-3 were on the R- or arm-domains while 

epitopes 4-12 were mapped to different regions of the S-domain (Torrance, 1992). Epitopes 3, 

5, 10 and 12 corresponded to areas of antigenicity predicted by computer algorithm, whereas 

epitopes 1, 2, 6, 7, 8 and 11 have net negative values (Torrance, 1992). Therefore, only four of 

twelve epitopes correlated well with predictions of antigenicity (Torrance, 1992). It was notable 

that epitope 3 (amino acid residues 50-60) contained some of the Arg residues in the Arg-repeat 

region 45-51, and interspersed Arg residues between amino acids 55-66.  

Generally, the N-terminal region is thought to be internal while the C-terminal region is likely to 

be on the exterior of the particle (Reavy and Mayo, 2002). However, a major epitope (epitope 1, 

amino acid residues 1-7) was located at the N-terminus which indicates that even though the N-

terminus is hydrophobic, it is exposed at the surface of the particles (Torrance, 1992). It is 

suggested that the N-terminal amino acids of PLRV CP are exposed when particles swell 

because of changes in pH or ionic conditions (Mayo and Ziegler-Graff, 1996). Torrance (1992) 

concluded from ELISA experiments that epitope 1 is not very abundant nor readily accessible, 

or both.  

There are also epitopes in PLRV which are highly conserved but are found in the particle 

interior, believed to be involved in RNA protein interactions that are necessary for particle 

assembly or stability (Martin et al., 1990). These epitopes will only react with antisera when 

virus particles are denatured for instance in carbonate buffer (Martin et al., 1990). Disrupted 

virus particles enable serological relationships to be detected between species within a genus 

(Van Regenmortel et al., 2000). Extensive cross-reactivity is observed when denatured viruses 

are used as antigen which suggests that the most variable region of the polerovirus capsid is 

exposed in intact virions (Kawchuk et al., 1989; Van Regenmortel et al., 2000).  

Three surface-exposed domains have been identified on the virion structure of PLRV (Reavy 

and Mayo, 2002; Lee et al., 2005). Epitopes 4 (amino acid residues 72-75), 5 (amino acid 

residues 83-89) and 10 (amino acid residues 172-178) may be located on the surface of the 

virus particle (Torrance, 1992). Epitope 4 and 5 could be part of or close to the loop connecting 

the β-strands B and C (Torrance, 1992; Terradot et al., 2001). On the other hand, epitope 10 

can be assigned to the loop connecting β-strands G and H (Torrance, 1992; Terradot et al., 

2001). Continuous epitopes (epitopes composed of short linear fragments of amino acid 

residues contiguous in the primary amino acid sequence) can be found on surface-located N-

terminal or C-terminal portions of the sequence, or on the loops and turns connecting the β-
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strands of the core regions (β-barrels) of the protein shell as is the case for epitopes 4, 5 and 10 

(Torrance, 1992). Epitopes 5 and 10 are particularly antigenic as they are located on loops 

known to be important antigenic sites in structurally related viruses (Terradot et al., 2001; Lee et 

al., 2005).  

Furthermore, epitopes are regions of sequence that are intrinsically mobile and are therefore 

candidates for surface regions that contribute to biological properties (Taliansky et al., 2003). 

The loop connecting β-strands G and H which contains epitope 10 is situated at the outer 

surface which makes it easily accessible (Terradot et al., 2001). Partially contained in epitope 

10 and extending a few residues towards the N-termius is one domain of the acidic patch region 

(Lee et al., 2005). It has been suggested by Terradot et al. (2001) that this region is important 

for molecular recognition and that it could confer specific properties to each genus and/or 

species within Luteoviridae.  

Other studies with monoclonal antibodies (MAbs) specific for certain PLRV isolates have also 

been conducted to locate various epitopes on the particle surface. One by Van den Heuvel et al. 

(1990) found that there are a minimum number of nine different but overlapping epitopes on a 

Wageningen isolate of PLRV. These epitopes were located with only ten MAbs which were 

attributed to the fact that various states of the CP were analyzed (Van den Heuvel et al., 1990). 

The panel of MAbs could be split into three groups: (1) a group directed against discontinuous 

epitopes present on a subunit of the capsid which is not degraded under alkaline conditions, (2) 

another group which did not detect degraded virus particles and are directed to discontinuous 

epitopes formed by the quaternary protein structure or by a CP-subunit configuration sensitive 

to alkaline degradation, (3) a group directed to a continuous epitope exposed on the surface of 

the virus CP subunit which is not accessible when the virus is intact (Van den Heuvel et al., 

1990).  

Another study with MAbs by Massalski and Harrison (1987) for a British isolate of PLRV found 

five epitopes on the surface of PLRV particles. Of the ten MAbs that were used by Massalski 

and Harrison (1987), four did not react with disrupted virus particles, suggesting that those 

antibodies are specific for epitopes dependent on quaternary structure. Two of the five epitopes 

located by Massalski and Harrison (1987) were missing in poorly aphid-transmissible isolates of 

PLRV, which were also apparently dependent on quaternary structure. Of the 30 British isolates 

of PLRV tested, the predominant impression was one of great antigenic uniformity (Massalski 

and Harrison, 1987). These results extend those of previous work which showed that PLRV 

isolates from potatoes in different countries are strongly related (Massalski and Harrison, 1987).  
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2.1.4 Assessment of PLRV variation  

2.1.4.1 Constraints on sequence variation 

In addition to MAbs, amino acid sequences of PLRV CPs also show that poleroviruses are 

strongly conserved (Terradot et al., 2001). Furthermore, sequence data also suggest that PLRV 

is poorly variable at the genetic level (Guyader et al., 2004). PLRV isolates collected around the 

world between 1983 and 2000 differ little in sequence from each other with the identity over all 

open reading frames being 94-98% (Guyader et al., 2004). The CP of luteoviruses is the most 

highly conserved viral gene unlike that of most other virus groups (Martin et al., 1990). In a 

study by Mukherjee et al. (2003) the nucleotide- and deduced amino acid sequences of the CP 

of various PLRV isolates showed 97-99% similarity with an Indian isolate of PLRV at both the 

nucleotide and amino acid sequence level. Faccioli et al. (1995) found the sequence of a cloned 

PLRV CP gene to have 96-98% homology to five other PLRV isolates, which supports the idea 

that the CP gene is a relatively conserved sequence within the PLRV genome. Likewise, 

comparisons among isolates obtained in Peru showed that there was little variation in ORF3 

with no greater variation when these were compared with published sequences (Haliloglu and 

Bostan, 2002; Taliansky et al., 2003).  

As ORF3 contains a second embedded ORF (ORF4), this may have caused an evolutionary 

constraint to slow down luteovirus CP-sequence divergence relative to other viruses (Martin et 

al., 1990). Overlapping reading frames not only maximize the genetic information in smaller 

genomes, but they constrain the variability of these concurrent genes (Guyader and Ducray, 

2002). However, for PLRV, regions where two ORFs overlap do not tend to be less variable 

than non-overlapping ones (Guyader and Ducray, 2002).  

The lack of sequence variation in PLRV and its genetic stability could be an indication of 

evolutionary stasis (Guyader and Ducray, 2002). This evolutionary stasis appears to be unique 

for PLRV as other members of the family Luteoviridae do not share this nature (Guyader and 

Ducray, 2002). For instance, other species like those belonging to the beet polerovirus complex 

and BYDV-PAV are known to be more variable (Guyader and Ducray, 2002). However, since 

only five complete PLRV sequences are available in the international databases, there are not 

sufficient information to draw firm conclusions (Guyader and Ducray, 2002). Either PLRV only 

recently diverged from an ancestral virus by for example acquiring an ability to infect potato, or it 

has been subject to very strong selection constraints (Taliansky et al., 2003; Guyader et al., 

2004).  

One of the selection constraints on PLRV variation could be that imposed by its genetic 

structure as 31% of the genome consists of overlapping coding regions with differential 

selection applying to ORF products (Guyader and Ducray, 2002). This could result in a poor 

intrinsic variability of the PLRV genome (Guyader et al., 2004). In addition, the evolution of 
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luteoviruses involves a trichotomy – the virus, the plant and the aphid vector (Martin et al., 

1990). It is for this reason that other constraints on PLRV variation could be both the host plant 

and the aphid vector, acting on the whole genome (Guyader and Ducray, 2002). The genetic 

homogeneity of PLRV may be related to the genetic homogeneity of both the host plant and the 

aphid vector seeing that the range of PLRV plant hosts and aphid vectors is restricted (Guyader 

and Ducray, 2002). Accordingly, Guyader et al. (2004) hypothesized that transmission by 

aphids and/or multiplication in the hosts plants are key factors structuring virus populations. In 

general, diversity in viruses is constrained by requirements of transmission and host defenses 

(Power, 2000).  

For the transmission of luteoviruses, a high degree of specificity is required, with each luteovirus 

being transmitted efficiently by only one or a few aphid species (Martin et al., 1990). This is 

likely a major factor in the evolution of these viruses as recent studies of insect-transmitted plant 

viruses demonstrate highly conserved molecular motifs in viral genomes that regulate the 

specificity of insect transmission (Martin et al., 1990; Power, 2000). For PLRV, M. persicae is 

the main vector considered to be the most efficient aphid in PLRV transmission (Guyader and 

Ducray, 2002). As a result, insect transmission probably constitutes a severe genetic bottleneck 

which may lower both the number of transmitted viruses and their genetic variability through 

selection by aphids (Guyader et al., 2004).  

Insect transmission has a strong selection pressure also on the antigenic conservation of PLRV 

particle proteins, implying a strong selection pressure on P3 and P5 (Massalski and Harrison, 

1987). This is because viral particle proteins have a crucial function in transmission of 

luteoviruses by their vectors, which is supported by the considerable amount of antigenic 

uniformity found among PLRV isolates (Massalski and Harrison, 1987). For example, Massalski 

and Harrison (1987) found that the only examples in their study on the antigenic variation of 

PLRV were isolates characterized by poor aphid transmissibility or aphid non-transmissibility 

(Massalski and Harrison, 1987). In addition, Guyader et al. (2004) found evidence that vector 

transmission limits PLRV population diversity in the CP coding region through a mechanism of 

stabilizing (purifying) selection. Generally, there is a pattern of highly conserved motifs that are 

responsible for insect transmissibility that suggest that the requirements of vector transmission 

exert significant selection pressure to limit the diversity of CP sequences (Power, 2000).  

A high degree of specificity is required between the virus and vector even for viruses that are 

simply carried on the mouthparts of vectors and appear to have the least specific relations with 

their vectors (Power, 2000). Thus, variation is constrained by the need to retain specific 

interactions with the aphid vector so much the more for PLRV, which circulates through the 

aphid vector (Power, 2000). As insect transmission mode is such a consistent evolutionary 

feature and constraint on the variability of different viruses, it can be used to assign viruses to 

different genera (Power, 2000). Furthermore, most viruses are able to take advantage of only a 
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relatively narrow set of vectors that adds to the degree of specificity required for transmission 

(Power, 2000). Moreover, plant hosts are immobile so most plant viruses are dependent on 

insect vectors for transmission that indicate the significant need to retain requirements for vector 

compatibility (Power, 2000).  

On the other hand, the level of variation in plant viruses is dependent on virus-host interactions 

(Roossinck, 2003). For three plant viruses it has been reported that population diversity is 

conditioned by host-virus interactions and is positively correlated to their host range (Guyader et 

al., 2004). Host plants could constrain plant virus evolution as viral RNAs and proteins must 

interact with host cell components to allow translation, genome replication and both cell-to-cell 

and long distance movement of virus particles (Guyader et al., 2004).  

Furthermore, there is a correlation between mutation frequency and virus host range that 

suggests diverse populations constitute an advantage for RNA plant viruses (Roossinck, 2003). 

In natural settings plants are rarely found in monoculture as seen in agricultural settings, which 

means that insect feeding is likely to transmit a virus to a variety of plant hosts (Roossinck, 

2003). Consequently, for the survival of a plant virus in natural settings, host adaptability is 

essential (Roossinck, 2003). For PLRV most isolates originated from a single plant species, the 

potato, and together with the narrow genetic base of potatoes in cultivation may restrict PLRV 

variation (Guyader and Ducray, 2002; Taliansky et al., 2003). Other poleroviruses, like the beet 

polerovirus complex and BYDV-PAV, need to infect alternative hosts to complete their 

epidemiological cycle (Guyader and Ducray, 2002). PLRV is subject to strong constraints within 

host plants which slow down the process of adaptation to new hosts as diversity is hardly found 

in the course of infection of different host plant species (Guyader et al., 2004).  

Virus distribution is constrained more by the specificity of virus-vector interaction than by the 

specificity of virus-host-plant interactions as expansion of the host range of insect vectors has 

been shown to increase the host range of the viruses that these vectors transmit (Power, 2000). 

Vector-borne plant viruses demonstrate a greater specificity with their vectors than with their 

hosts as revealed in a quantitative comparison of specificity in virus-host and virus-vector 

relationships among these viruses (Power, 2000).  

The host range of the virus is largely determined by the host range of the vector, which 

suggests that viruses can adapt to new hosts quite readily (Power, 2000). The selection 

imposed by a requirement for efficient vectors may be more severe than that imposed by host 

plant defenses as suggested by the consistency of transmission mode within a virus genus and 

the generally greater specificity of vector interactions compared to host interactions (Power, 

2000). It is not clear why it should be significantly more difficult for a virus to increase its range 

of efficient vectors than to increase its host range, this question should be addressed in future 

research (Power, 2000).  
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Thus, the separation of a virus in a different host with a different vector can allow for 

independent evolution as effectively as geographical separation (Marin et al., 1990). If a virus is 

introduced into a new host that is not a preferred host of its vector, it must be able to multiply in 

that host and be vectored by an aphid that feeds on that host before it can establish and evolve 

independently (Martin et al., 1990). If the new host is perennial, the virus can evolve over 

considerable time within the host before it needs to become transmissible by a second aphid 

(Martin et al., 1990). On the other hand, in annual hosts the time for evolution within a single 

host plant is limited because luteoviruses are not seed-transmitted (Martin et al., 1990). In the 

case of PLRV, the host plant cellular environment is a key parameter constraining virus 

population diversity as it was shown that by forcing the virus to explore a new cellular 

environment, the genome is allowed to vary more (Guyader et al., 2004). PLRV is consequently 

an interesting model to study the nature and the influence of selective constraints on virus 

evolution (Guyader and Ducray, 2002).  

2.1.4.2 Diversification of PLRV isolates 

Despite the low variability of PLRV at the sequence level, there is diversity in the biological 

properties of the virus (Guyader and Ducray, 2002). Several isolates of PLRV can be 

distinguished by differences in either the severity of symptoms induced in potato or in their ease 

of transmission by the aphid, M. persicae (Massalski and Harrison, 1987). The transmissibility 

by aphid vectors range from low to high levels, according to both the isolate and aphid clone 

used to transmit the virus (Guyader and Ducray, 2002). In addition, some PLRV isolates differ in 

their ability to infect some plant species, for instance a certain PLRV isolate can infect tomato 

plants while typical potato isolates have no effects on the plants (Guyader and Ducray, 2002). 

On the other hand, this PLRV isolate causes only weak or no symptoms on potato plants 

(Guyader and Ducray, 2002).  

An example of a PLRV isolate which is differentially transmitted by various clones of aphids is 

PLRV-14.2 (Terradot et al., 2001). This isolate is not transmitted efficiently due to inefficient 

interaction of the capsid with the gut membrane of the insect (Terradot et al., 2001). There are 

several changes at specific positions of the CP and readthrough protein amino acid sequences 

of PLRV-14.2 which could be involved in its poor transmissibility (Terradot et al., 2001). PLRV 

isolates 15 and V are also known to be poorly aphid transmissible (Jolly and Mayo, 1994). 

These particles are different from transmissible isolates of PLRV in that their particles lack an 

epitope present in transmissible isolates of PLRV (Massalski and Harrison, 1987; Jolly and 

Mayo, 1994). In a comparison of the amino acid sequences of transmissible and poorly aphid 

transmissible isolates, most differences were in the C-terminal half of the readthrough protein 

(Jolly and Mayo, 1994). Two sites in the C-terminal half of the readthrough protein has been 

located at which changes could have resulted in the loss of an epitope and in a diminished 

efficiency of transmission (Jolly and Mayo, 1994). However, in a study on Dutch transmissible 
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and Dutch poorly aphid transmissible PLRV isolates, transmissibility was shown to correlate 

with the presence of a conformation-insensitive epitope in the CP (Jolly and Mayo, 1994). 

These results suggest that a part of the coat protein and a part of the readthrough protein are 

involved in transmission (Jolly and Mayo, 1994).  

However, even though there is variation in the pathogenicity and transmissibility by M. persicae, 

PLRV isolates seem in general to be antigenically very similar (Tamada et al., 1984; Massalski 

and Harrison, 1987). For example, a polyclonal antiserum to a Japanese isolate of PLRV 

reacted with PLRV isolates from several other countries (Massalski and Harrison, 1987). 

Furthermore, when British PLRV isolates differing in virulence or aphid transmissibility was 

compared using a polyclonal antiserum to the British stock isolate of PLRV, no differences could 

be detected (Massalski and Harrison, 1987). However, it could be that the antigenic differences 

between the isolates differing in aphid transmissibility are too subtle to be detected in tests with 

polyclonal antisera (Massalski and Harrison, 1987).  

Although there are mainly differences in the biological properties of PLRV, with very few 

differences at the sequence level, PLRV can be resolved into different groups (Taliansky et al., 

2003). The 5’ ORFs show marked diversity between luteoviruses and relationships with different 

viruses of other groups (Martin et al., 1990). In an assessment of the distribution variability 

along the genome of PLRV, it was found that the most variable sites concentrated in ORF1 

(including the overlapping regions with ORF0 and ORF2), the 3’ third of ORF2, the central non-

coding region, the 5’ overlapping regions between ORF3 and ORF4 and in ORF5 (Guyader and 

Ducray, 2002). However, the 5’-proximal five to 20 residues of viral genomes are generally 

strongly conserved within a virus groups, presumably because these are important for initiation 

of translation and/or replication (Keese et al., 1990).  

The region of ORF0 and the 5’ part of ORF1 resolve PLRV isolates into three groups (Taliansky 

et al., 2003; Guyader et al., 2004). Such a study in comparisons among 19 PLRV isolates in the 

region of ORF0 and the 5’ part of ORF1 resolved them into one group of exclusively Australian 

isolates, one containing Peruvian and European isolates and a third group containing isolates 

from diverse countries and continents such as Australia, Cuba and Europe (Guyader and 

Ducray, 2002; Taliansky et al., 2003). No geographical correlation was found with sequence 

variation (Guyader and Ducray, 2002; Taliansky et al., 2003). Comparison of nucleotide 

diversity in each group showed that isolates in the exclusively Australian group were more 

diverse than those in either of the other two groups (Guyader and Ducray, 2002). In nearly all 

ORFs of PLRV the Australian isolate is the most divergent particularly in ORF1, but in ORF0 a 

Peruvian isolate was more divergent (Guyader and Ducray, 2002). It is the 600 nucleotide 

region (residues 935 to 1557) in the polymerase-coding region (ORF1) that shows marked 

diversity in the Australian PLRV isolate compared to the rest of the PLRV isolates (Keese et al., 
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1990). This region has 22% sequence variation whereas the CP gene (ORF3) is the most 

conserved coding region (Keese et al., 1990).  

Martin et al. (1990) also found that sequence variation confined to ORF1 resolved an Australian 

PLRV isolate as the one with the most divergent genome when compared to three isolates from 

other countries. However, Martin et al. (1990) established that the ORF0 sequences are 

markedly conserved among the different PLRV isolates, but poorly conserved when compared 

to the equivalent ORF of BWYV, a closely related luteovirus (Martin et al., 1990). In their study, 

the four isolates compared were from widespread geographical locations; the Netherlands, 

Scotland, Australia and Canada (Martin et al., 1990). These sequences were found to be 

closely related with more than 93% sequence homology, excluding a possible extensive 5’ 

terminal sequence difference in the Scottish isolate (Martin et al., 1990). In addition, within the 

Australian isolate it was found that there was little sequence heterogeneity, since multiple 

independent clones for 95% of the genome revealed less than 10 nucleotide residue differences 

(Martin et al., 1990).  

The diversification of Australian PLRV isolates has been found in a number of studies. 

Sequence comparison of the CP gene of an Italian isolate with five other PLRV isolates in a 

study by Faccioli et al. (1995) revealed a close similarity to three European and a Canadian 

isolate and a more distant relationship with an Australian one. The PLRV CP nucleotide 

sequences of the Italian isolate showed homology of up to 98% with those of European isolates 

(from Scotland, Germany and the Netherlands) and the isolate from Canada (Faccioli et al., 

1995). The Australian isolate had a significantly higher degree of variability (3.7%). However, 

not all of the differences at the nucleotide level of CP genes resulted in an amino acid change 

due to the degenerate character of the genetic code (Faccioli et al., 1995). For instance in the 

Australian isolate there were as many as 23 nucleotide shifts, but only seven amino acids were 

modified as a result (Faccioli et al., 1995). These results corroborate findings by Martin et al. 

(1990) who revealed 98-99% homology in the ORF3 region of several European PLRV isolates 

and a somewhat lower degree of similarity (96-97%) between these isolates and an Australian 

one (Faccioli et al., 1995; Mukherjee et al., 2003).  

Similarly, comparisons of complete sequences of PLRV isolates originating from Canada, 

Scotland, the Netherlands, Poland and Australia showed that four of these isolates shared 

about 98% of their residues whereas the Australian isolate was more divergent showing an 

overall identity of 93% with the other isolates as found by Guyader et al. (2004). Keese et al. 

(1990) also found that an Australian isolate of PLRV is more divergent from complete genome 

sequences of Canadian, Scottish and Dutch isolates of PLRV. Canadian, Dutch and Scottish 

PLRV sequences differed in pairwise comparisons by about 2% whereas each of these three 

isolates differed from the Australian isolate by 6.6 to 6.8% (Keese et al., 1990). The results of 

Keese et al. (1990) therefore strengthens the argument of Guyader et al. (2004) that PLRV 
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isolates from Canada, Scotland and the Netherlands share about 98% of the residues and that 

the Australian PLRV isolate is the most divergent with an overall identity of about 93% with 

other isolates (Guyader and Ducray, 2002).  

Other than the Australian isolate, an isolate from the United States is also more diverse than 

sequences from other countries. De Souza-Dias et al. (1999b) compared Brazilian PLRV 

sequences with isolates from the United States, Canada, Poland, Australia, Scotland and the 

Netherlands. In these isolates, the most variable regions of the PLRV genome were compared, 

which constitute 21.6% of the genome (De Souza-Dias et al., 1999b). It was found that at the 

nucleotide level the United States and Australian isolates display the least amount of 

relatedness when compared to the other PLRVs (De Souza-Dias et al., 1999b). Three Brazilian 

isolates were the most closely related with approximately 99% homology in the variable region 

sequences, these were approximately 97% homologous to PLRVs from Europe and Canada 

(De Souza-Dias et al., 1999b). On the other hand, the Brazilian isolates showed only 95% 

homology to the isolates from the United States and Australia (De Souza-Dias et al., 1999b).  

The most common variations were transitions attributed to replication errors, i.e., C to U (44.6%) 

and A to G (30%) (De Souza-Dias et al., 1999b). Most of these changes (approximately 63%) 

did not result in changes at the amino acid level (De Souza-Dias et al., 1999b). From the 

nucleotide variations that did cause amino acid changes, 34 of the 51 amino acid variations 

were unique mutations (De Souza-Dias et al., 1999b). However, many of the amino acid 

variations probably have no or little effect on function because one nonpolar amino acid would 

for instance be exchanged for another (De Souza-Dias et al., 1999b). Therefore, the PLRVs 

isolated in Brazil were more closely related to PLRVs from Europe (the Netherlands, Poland and 

Scotland) and Canada than to isolates from either Australia or the United States (De Souza-

Dias et al., 1999b).  

Mukherjee et al. (2003) compared an Indian isolate of PLRV with PLRV isolates from UK, 

Canada and Australia to find a somewhat distant relationship with the Australian isolate. The 

highest sequence similarity was found with isolates from UK and Canada (99%) and the least 

with the Australian isolate (97%). Only two nucleotide shifts were observed among Indian 

isolates of PLRV in comparison with the Canadian and UK isolates but in comparison with an 

Australian isolate, a total of eighteen nucleotide shifts were noticed (Mukherjee et al., 2003). 

The Indian isolate is consequently closer to the European and Canadian isolates than to the 

Australian isolate probably due to the introduction of PLRV infected potatoes from Europe in 

India (Mukherjee et al., 2003). On the other hand, some of the nucleotide changes may be 

because of the natural variability (Mukherjee et al., 2003).  

A phylogenetic study by Haliloglu and Bostan (2002) found that an Australian isolate was very 

distinct from other isolates in the phylogenetic relationship. Seventeen PLRV CP nucleotide 

sequences of published GenBank PLRV isolates were used to analyze the phylogenetic 
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relationships (Haliloglu and Bostan, 2002). The phylogenetic tree based on the nucleotide 

sequences showed two major clusters originating from a common branch in the phylogram 

(Haliloglu and Bostan, 2002). The first cluster includes isolates from the Netherlands, USA and 

Poland with isolates from Korea, Scotland and Canada in a sub-group in the second cluster 

(Haliloglu and Bostan, 2002). The Australian isolate was found to be very distinct and were sub-

grouped in the second cluster (Haliloglu and Bostan, 2002).  

Finally, in a comparative study by Jolly and Mayo (1994) of P3 and P5 amino acid sequences 

from Scottish isolates, it was found that these sequences were as divergent from each other 

(ca. 1%) as they are from overseas isolates, except for one from Australia. (Jolly and Mayo, 

1994; Guyader and Ducray, 2002; Haliloglu and Bostan, 2002). The P3 and P5 sequences 

among isolates obtained in Scotland were 96 to 99% identical, whereas the number of amino 

acid differences with a reference Scottish isolate was 24 with Dutch PLRV, 24 with Canadian 

and 17 with American PLRV but 31 with Australian PLRV (Jolly and Mayo, 1994; Mayo and 

Ziegler-Graff, 1996). Amino acid changes in P3 or P5 of Australian isolates might influence its 

structure as Massalski and Harrison (1987) found from a study that included two MAbs, which 

might detect similar epitopes, that those epitopes were lacking in some Australian isolates of 

PLRV.  

The reason for the differences in Australian isolates of PLRV compared with those from other 

countries and continents are not clear (Keese et al., 1990). It may be the result of the 

geographical or evolutionary isolation of Australian isolates from those in the northern 

hemisphere (Keese et al., 1990; Guyader and Ducray, 2002). Furthermore, the physical 

isolation and unique environmental selection pressures in Australia could contribute to its 

divergence (Faccioli et al., 1995). Isolates of PLRV presumably all spread in potato material 

derived from the Andean region of South America (Taliansky et al., 2003). Consequently, an 

examination of the genomic diversity of PLRV isolates in the Andean highlands may shed light 

on the evolution of this virus (Keese et al., 1990).  

2.1.4.3 Evolutionary events of PLRV 

PLRV can evolve not only in response to unique environmental selection pressures as could be 

the case for isolates in Australia, but also due to the high mutation rate of viruses. A common 

property of plant RNA viruses is their high mutation rate due to their error-prone RNA 

polymerase that usually range between 10-3 and 10-5 misincorporation per nucleotide copied 

(Power, 2000; Guyader et al., 2004). The high mutation rate of viruses results in their 

remarkable genetic diversity both within and between species (Power, 2000). Other than high 

mutation rates, RNA viruses can exchange genetic material through recombination and 

reassortment mechanisms (Power, 2000; Guyader et al., 2004). This allows both the elimination 

of deleterious mutations and the creation or spread of beneficial combinations of changes 

(Guyader and Ducray, 2002).  
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Alignment results of complete sequences suggest that major events such as deletion e.g. in the 

ORF1 of isolate Noir, mutation at a stop codon e.g. a single substitution which abolished the 

consensus ORF0 stop codon of isolate 14.2 and intraspecific homologous recombination events 

e.g. an intraspecific recombination event in the ORF0 in isolate Au16, have occurred in the 

evolutionary history of PLRV (Guyader and Ducray, 2002; Guyader et al., 2004). This suggests 

that PLRV has reached an equilibrium although it seems to be able to readily adapt when 

subjected to environmental changes (Guyader et al., 2004).  

2.2 Diagnostic techniques for the detection of viruses in 
potatoes 

With the increase in the use of molecular techniques in recent years, many methods can be 

used for laboratory diagnosis of potato viruses and specifically PLRV, but currently mainly 

ELISA and RT-PCR are used (Klerks et al., 2001; Bystricka et al., 2005).  

ELISA was introduced in the late 1970s and greatly facilitated the detection of plant viruses 

(Robert et al., 2000). This was possible after the development of a method of purifying milligram 

quantities of particles of luteoviruses and subsequent preparation of luteovirus antisera suitable 

for use in ELISA (Tamada et al., 1984). ELISA allows specific, sensitive and quick detection of 

most potato viruses and is suitable for large-scale routine testing as required for certification 

(Robert et al., 2000). PLRV is readily detected by ELISA in leaves of infected plants (Spiegel 

and Martin, 1993).  

One of the disadvantages of ELISA is that the direct double-antibody sandwich (DAS) form is 

sensitive to differences in the antigenic specificity of isolates, and in some conditions it can fail 

to detect antigenic variants that are detected by other kinds of serological tests (Tamada et al., 

1984). However, very little variation in the antigenic specificity of isolates of PLRV was found, 

indicating that the problems encountered with DAS-ELISA detection of other viruses are not a 

problem in the detection of PLRV. Torrance (1992) found that as long as polyclonal antisera 

which recognized a number of antigenic determinants, were used in DAS-ELISA, the virus could 

be readily detected using this method.  

Another disadvantage of ELISA is that it can only be reliably performed on sprouted tubers, for 

ELISA is not able to detect low-level positive samples in dormant tubers (Spiegel and Martin, 

1993; Robert et al., 2000; Mumford et al., 2004). Hence, most potato certification programs rely 

on winter “grow-out” tests to ascertain the virus status of seed lots (Spiegel and Martin, 1993). 

This causes a delay in the length of time required to complete testing (i.e. 6 to 8 weeks) 

(Mumford et al., 2004).  

Detection of viruses in dormant tubers was not possible until the 1990’s with the introduction of 

RT-PCR (Singh et al., 2004). RT-PCR assays were developed for PLRV, Potato virus S and 
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Potato virus X (Singh et al., 2004). Sensitive RT-PCR assays for PLRV were developed with 

primers that bind to areas in ORF4 (Singh et al., 2000). With the development of RT-PCR, 

PLRV could be detected in dormant tubers, thus reducing the time for completion of the 

diagnostic test, which was not possible with ELISA (Klerks et al., 2001).  

RT-PCR is generally 102 to 105 times more sensitive than ELISA and this sensitivity is of 

particular importance when viruses occur in low concentrations such as in dormant tubers with 

concentrations too low for detection by ELISA (Spiegel and Martin, 1993; Dietzgen, 2002; 

Mumford et al., 2004). The potential power and sensitivity of RT-PCR is due to the exponential 

amplification of small amounts of specific target DNA sequences in vitro (Dietzgen, 2002). For 

this reason RT-PCR is the method of choice for applications such as diagnosis of plant viruses 

present at levels below the detection limit of ELISA (Dietzgen, 2002). Specific RT-PCR tests 

have been developed for the most economically important plant viruses (Dietzgen, 2002). 

There are many variations and applications of RT-PCR to attest to its enormous versatility 

(Dietzgen, 2002). For instance, detection can be made more sensitive and more specific by 

using immune-capture PCR in which virus particles are bound to a plate coated with a specific 

antibody and the RNA is extracted from the bound virus and subjected to RT-PCR (Mayo and 

Ziegler-Graff, 1996). This method is also effective for detecting PLRV (Mayo and Ziegler-Graff, 

1996). Immune-capture PCR appears to the method of choice when specific antisera are 

available and the highest sensitivity is required (104 to 106 times more sensitive than ELISA) in 

applications such as certification of virus-free planting material (Dietzgen, 2002).  

With the use of a combination of several primer pairs in the same RT-PCR reaction (multiplex 

PCR, or multiplex RT-PCR) more than one virus can be detected simultaneously in the same 

specimen (Dietzgen, 2002; Singh et al., 2004). This technique saves time and reagents and 

each PCR product has a unique size by design, so it can be differentiated from the others by gel 

electrophoresis (Dietzgen, 2002). Currently, more rapid and more sensitive detection techniques 

(e.g. real-time PCR) are being developed with molecular beacon probes to simultaneous amplify 

and detect amplicons in a sealed tube (Klerks et al., 2001; Dietzgen, 2002). In 2004, Mumford 

et al. developed a direct tuber testing method based upon real-time PCR for the detection of 

potato viruses (e.g. PLRV) that allows extremely sensitive detection and overcomes many of the 

problems associated with conventional PCR, in particular the need for post-PCR analysis. 

Further advances in this method are underway (Mumford et al., 2004).  

However, even though RT-PCR can detect one or a few (multiplex RT-PCR) pathogens in one 

reaction, this method is too costly and not suitable for routine detection (Klerks et al., 2001; 

Bystricka et al., 2005). The high sensitivity of RT-PCR requires special care in setting up and 

analyzing RT-PCR reactions to avoid contamination (Dietzgen, 2002). This is a disadvantage as 

significant investment of skilled operators, expensive equipment and expensive reagents may 

make RT-PCR technology cost-prohibitive in some countries or in some regions of a country 
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(Singh et al., 2004). Another disadvantage of RT-PCR technology as a diagnostic tool for PLRV 

detection is the difficulty associated with the visualization method. The DNA fragments 

produced during RT-PCR are most commonly visualized in the research laboratory with gel 

electrophoresis followed by staining with ethidium bromide (Dietzgen, 2002). However, when 

testing many samples in a diagnostic laboratory it is quite laborious, expensive and time-

consuming and does not easily lend itself to automation (Dietzgen, 2002; Mukherjee et al., 

2003).  

In conclusion, although RT-PCR technology has the potential for sensitive detection of potato 

viruses, it is labour intensive when many samples have to be processed and therefore has not 

yet been applied for large-scale, routine testing (Robert et al., 2000). Real-time PCR 

developments are underway, but cost versus benefit aspects need to be better defined for seed 

potato certification in relation to RT-PCR and ELISA (Klerks et al., 2001). Although ELISA is not 

as sensitive as RT-PCR, its sensitivity is still acceptable, it is cost effective and therefore 

presently the method of choice for routine PLRV detection. Currently, for large scale testing of 

potato seed tubers ELISA is the most cost effective. In cases where the ELISA results are 

ambiguous, sample results could be verified with the more expensive and labour intensive RT-

PCR based techniques.  

2.3 Production of antibodies using conventional methods 
Crucial for successful ELISA development is the production of antibodies that have high 

specificity and avidity. The conventional method to produce antibodies to PLRV is to purify 

PLRV from potato plants for immunization. There are, however, many disadvantages and 

complications associated with this approach to antibody production.  

As PLRV is confined to the phloem and is present in very low amounts, purification is difficult 

and virus yield extremely low (Faccioli et al., 1995; Johnson and Pappu, 2006). Furthermore, 

the PLRV purification procedure is time-consuming and complex (Faccioli et al., 1995; 

Mukherjee et al., 2003). When antiserum is prepared for use in ELISA, a major limitation is that 

antisera with relatively high titres to virus particles without measurable titres to other plant 

materials are desirable (Tamada and Harrison, 1980). In spite of this, ELISA is used for regular 

control of viral contamination of potatoes in propagating programs due to its specificity and 

sensitivity (Joerdens-Roettger, 1987). This method is routinely used all over the world in seed 

potato production schemes (Joerdens-Roettger, 1987). However, because of the problems 

associated with antibody production to PLRV, i.e. antibody production to co-isolated plant 

material, other means of producing antisera suitable for ELISA have been investigated by 

workers from around the world.  
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2.4 Production of antibodies to recombinant viral CPs  
The widespread use of PCR and the increasing number of available viral sequences has 

enabled many laboratories to amplify and clone viral genes into expression vectors, purify the 

recombinant proteins and produce antibodies (Vaira et al., 1996). It is especially the cloning and 

sequencing of viral CP genes that gave the opportunity to utilize molecular biology methods as 

an alternative approach to obtaining viral CP antigens for antiserum production (Nikolaeva et 

al., 1995; Ling et al., 2000).  

When virus particles are used for immunization, antibodies are elicited against the antigenic 

determinants of the viral CPs (Hélias et al., 2003). Recombinant CPs produced in bacterial cells 

are therefore suitable alternatives to the use of purified virus for antiserum production for 

detection purposes (Hélias et al., 2003). The expression of viral CPs in prokaryotic systems 

followed by purification for polyclonal antiserum production for use in western blots and different 

types of ELISA, has been reported for a number of different plant viruses (Jelkmann and Keim-

Konrad, 1997).  

This use of recombinant CPs as an alternative for viral antigens in the production of diagnostic 

antibodies is often sought for plant viruses that are present in the host in low concentration and 

that are difficult to culture in host plants and to purify (Korimbocus et al., 2002; Abou-Jawdah et 

al., 2004). For example, closteroviruses are also phloem limited with an overall low titer in 

infected plants like PLRV, making it difficult to purify sufficient quantities for production of high 

quality antibodies (Hourani and Abou-Jawdah, 2003). Preparations of one such closterovirus, 

Citrus tristeza virus (CTV), are still contaminated with host components even with the best 

methods to produce CTV preparations resulting in polyclonal antisera that are unsatisfactory for 

the accurate diagnosis of CTV (Nikolaeva et al., 1995). Recombinant DNA technology allowed 

the successful production of specific antibodies to several closteroviruses enabling these 

problems to be overcome (Hourani and Abou-Jawdah, 2003).  

Recombinant DNA technology used for production of the immunogen was also used for 

polyclonal antiserum production to Grapevine leafroll associated closterovirus-3 (GLRaV-3) 

(Ling et al., 2000). Yields of purified closteroviruses are generally low and it is complicated to 

produce true-to-type polyclonal antisera because mixed infections of different types of 

grapevine leafroll associated closteroviruses in a field collected sample are common, and most 

of these viruses cannot be separated biologically (Ling et al., 2000). Thus, molecular cloning 

obviated virus purification (Ling et al., 2000).  

Recombinant DNA technology was also sought as an alternative for antigen preparation for 

antiserum production in the case of Prune dwarf virus (PDV) (Abou-Jawdah et al., 2004). These 

viral particles are labile and extraction and purification in sufficient quantities with high purity are 

especially difficult (Abou-Jawdah et al., 2004). This technique was also sought to reduce 
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problems that may arise from mixed infections of plant tissues from which the virus is purified 

(Abou-Jawdah et al., 2004). 

For tuberose mild mosaic virus, it has been shown that antiserum can be prepared by 

immunizing the viral coat protein expressed in bacteria (Chen et al., 2002). The bacterially 

expressed protein was preserved in an antigenically indistinguishable form from the native viral 

CP, although some antibodies were formed against the amino acid sequences originating from 

the expression vector (Chen et al., 2002).  

For the production of antibodies to viruses using recombinant viral CPs formed in bacteria, 

various strategies have been used. Recombinant viral CPs were either produced on their own, 

as fusion or with a 6 histidine-tag attached to it, as summarized in Table 1. Not all of the 

antibodies produced against these recombinant viral CPs could be used successfully for the 

various applications as listed in Table 1. 

Table 1 a, b, c. Literature summary of various approaches for the production of antibodies to 
recombinant viral CPs. All of the recombinant viral CPs were used for the production of antibodies and 
applied in either DAS-ELISA, indirect-ELISA and/or western blot. Some of the antibodies formed to 
recombinant viral CPs were effective for the detection of native viruses in the above mentioned 
applications, others were not.  

Table 1 a. The production of antibodies to free recombinant viral CPs. 

Free recombinant viral CPs 

Virus name Expected size of 
expressed protein Application Reference 

Potato virus A 
(PVA) 

32 kDa Double-antibody sandwich (DAS) enzyme-
linked immunosorbent assay (ELISA) (coating 
with antibody): not effective for detection of 
PVA. 
Indirect-ELISA (coating with antigen): effective 
for detection of PVA. 
Western-blot: effective for detection of PVA. 

Čeřovská 
et al. 
(2002) 

Table 1 b. The production of antibodies to 6 histidine-tagged recombinant viral CPs. 

6 Histidine-tagged recombinant viral CPs 
Virus name Expected size of 

expressed protein Application Reference 

Strawberry mild yellow 
edge associated 
potexvirus (SMYEAV) 

26 kDa DAS-ELISA: effective for detection of 
SMYEAV.  

Kaden-
Kreuziger et 
al. (1995) 

Prune dwarf virus 
(PDV) 

25-30 kDa DAS-ELISA: effective for detection of 
PDV.  
Indirect-ELISA: effective for detection of 
PDV.  
Western-blot: effective for detection of 
PDV. 

Abou-Jawdah 
et al. (2004) 

Cucurbit yellow 
stunting disorder virus 
(CYSDV)  

28.5 kDa DAS-ELISA: medium effectivity for 
detection of CYSDV.  
Indirect-ELISA: effective for detection of 
CYSDV.  

Hourani and 
Abou-Jawdah 
(2003) 

Grapevine rupestris 
stem pitting associated 
virus (GRSPaV) 

28 kDa DAS-ELISA: not effective for detection 
of GRSPaV.  
Indirect-ELISA: not effective for 
detection of GRSPaV.  
Western-blot: effective for detection of 
GRSPaV. 

Minafra et al. 
(2000) 
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Apple stem pitting 
virus (ASPV)  

44 kDa DAS-ELISA: not effective for detection 
of ASPV.  
Indirect-ELISA: medium effectivity for 
detection of ASPV. 

Jelkmann 
and Keim-
Konrad 
(1997) 

Faba bean nectrotic 
yellow virus (FBNYV)  

45 kDa DAS-ELISA: not effective for detection 
of FBNYV.  
Western-blot: effective for detection of 
FBNYV. 

Kumari et al. 
(2001) 

Table 1 c. The production of antibodies to fusion protein recombinant viral CPs. 

Fusion protein recombinant viral CPs 

Virus name Fusion protein 
Expected size 
of expressed 

protein 
Application Reference 

Tomato spotted 
wilt tospovirus 
(TSWV) 

GST at N-terminal 
of CP. 

55 kDa DAS-ELISA: effective for 
detection of TSWV.  
Indirect-ELISA: effective for 
detection of TSWV. 
Western-blot: effective for 
detection of TSWV. 

Vaira et al. 
(1996) 

Grapevine leafroll 
associated 
closterovirus-3 
(GLRaV-3)  

β-galactosidase at 
C-terminal of CP. 

43 kDa DAS-ELISA: effective for 
detection of GLRaV-3.  
Western-blot: effective for 
detection of GLRaV-3.  

Ling et al. 
(2000) 

Citrus tristeza 
virus (CTV)  

Fragment of 
maltose-binding 
protein (MBP) at 
N-terminal of CP. 

67 kDa Indirect-ELISA: effective for 
detection of CTV. 
Western-blot: effective for 
detection of CTV. 

Nikolaeva 
et al. 
(1995) 

Rupestris stem 
pitting associated 
virus (RSPaV)  

MBP at N-terminal 
of CP. 

71 kDa DAS-ELISA: not effective 
for detection of RSPaV. 
Indirect-ELISA: effective for 
detection of RSPaV. 
Western-blot: effective for 
detection of RSPaV. 

Meng et al. 
(2003) 

SMYEAV GST at N-terminal 
of CP. 

53 kDa DAS-ELISA: not effective 
for detection of SMYEAV. 

Kaden-
Kreuziger 
et al. 
(1995) 

 

Long term storage of recombinant DNAs for the use of recombinant proteins as a pure and 

stable source of antigen, is easier than storage of viable virus isolates (Vaira et al., 1996; Abou-

Jawdah et al., 2004). Recombinant clones can be preserved in expression vectors and stored 

indefinitely at -80°C and reactivated when needed (Kumari et al., 2001). In contrast to the 

conventional method of antigen preparation (virion purification following virus propagation in a 

greenhouse), which can easily take 2 or more months, recombinant viral CPs can be purified in 

an average of 3 days and is thus far more economical (Kumari et al., 2001; Čeřovská et al., 

2002; Čeřovská et al., 2003). One liter of bacterial culture fluid typically yields an amount 

sufficient for a repeated immunization of laboratory animals for antisera preparation (Kumari et 

al., 2001; Čeřovská et al., 2002; Čeřovská et al., 2003). Thus, in comparison with virus 

purification, recombinant DNA technology is by far superior in many respects.  
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2.4.1 Protein expression using the bacterial system 

2.4.1.1 The pET expression system 

The bacteriophage T7 RNA polymerase-based pET expression system (plasmid for expression 

by T7 RNA polymerase) is one of the most powerful and widely used expression systems 

(Studier and Moffatt, 1986; Rosenberg et al., 1987; Pan and Malcolm, 2000). The plasmid 

vector has been developed for cloning and expression of target DNAs under control of a T7 

promoter (Studier et al., 1990).  

Bacteriophage T7 RNA polymerase is highly selective for its own promoters, which does not 

occur naturally in E. coli (Studier and Moffatt, 1986; Studier et al., 1990). The conserved 

sequence required to make an active promoter for T7 RNA polymerase is long enough that it is 

unlikely to occur by chance in any DNA unrelated to T7 DNA (Studier and Moffatt, 1986). 

Furthermore, this enzyme is very active and elongates chains about five times faster than E. coli 

RNA polymerase does (Studier et al., 1990). T7 RNA polymerase also terminates transcription 

less frequently (Tabor, 1990). The result of the selectivity and activity of T7 RNA polymerase is 

that the enzyme is able to produce complete transcripts from almost any DNA that is linked to a 

T7 promoter (Studier and Moffatt, 1986).  

Only small amounts of T7 RNA polymerase are needed to generate very large amounts of RNA 

from DNA that is linked to a T7 promoter (Studier and Moffatt, 1986). T7 RNA polymerase 

seems to interfere with transcription by E. coli RNA polymerase and in favourable 

circumstances essentially all of the resources of the cell can become concentrated on the 

production of an individual protein (Studier and Moffatt, 1986). As a result this protein can 

accumulate rapidly to reach 50% or more of the total cell protein (Studier and Moffatt, 1986). 

However, the polymerase is so active that even a small basal level of expression in the 

uninduced cell can prevent relatively toxic target genes from being established and even 

innocuous proteins can cause the cell to stop growing and dividing as the level of transcription 

of target DNA becomes so high (Studier, 1991). For this reason bacteriophage T7 lysozyme, 

which inhibits T7 RNA polymerase, has been used to reduce leaky expression (Studier, 1991; 

Kelly et al., 1995).  

Bacteriophage T7 lysozyme is a natural, selective inhibitor of T7 RNA polymerase by binding to 

it, a feed-back mechanism that ensures a controlled burst of transcription during T7 infection 

(Studier, 1991). This protein can be supplied in low level by a pLysS plasmid, which is 

compatible with the pET vectors for expressing genes from a T7 promoter (Studier, 1991). 

These low levels of T7 lysozyme are sufficient to stabilize many target plasmids and yet allow 

high levels of target proteins to be produced upon production of T7 RNA polymerase (Studier, 

1991). (It is important to note that T4 lysozyme and vertebrate lysozymes are glycoside 

hydrolases that cleave glycosidic bonds between N-acetyl muraminic acid and the fourth carbon 
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of N-acetylglucosamine in peptidoglycans in the cell wall of bacteria but that T7 lysozyme 

cleaves peptide bonds to cleave the lipoprotein from these peptidoglycans). In addition, the 

presence of T7 lysozyme has the advantage of facilitating the lysis of cells in preparing extracts 

for purification of target gene products as this protein also cuts a peptide bond in the 

peptidoglycan layer in the cell wall of E. coli (Inouye et al., 1973; Studier, 1991). However, the 

accumulation of T7 lysozyme does not prevent growth of E. coli cells, apparently because the 

lysozyme cannot penetrate the inner membrane to reach its substrate in the peptidoglycan layer 

(Moffatt and Studier, 1987). The enzyme only facilitates the preparation of cell extracts for 

purification of target proteins when cells are treated to disrupt their membranes (Studier, 1991).  

2.4.1.2 Rare codons in protein expression 

As PLRV CPs have an N-terminal arginine rich domain, expression of the viral CP can be 

problematic since the codons for arginine are rare in E. coli. The occurrence of codons in genes 

that are used infrequently in E. coli (so-called rare codons) can be one of the reasons for a lack 

of expression in recombinant protein expression systems (Schendel, 1998). Within E. coli and 

other species there is a strong positive correlation between the frequency of amino acids 

encoded in its genes and the amount of their respective tRNAs (Ikemura, 1981). For this reason 

a bias exists among the 61 amino acid codons for the production of most mRNA molecules in E. 

coli (Kane, 1995; Novy et al., 2001). Codons that occur in highly expressed genes are called 

major codons and those that occur in genes expressed at a low level are called minor or rare 

codons (Kane, 1995). Rare codons appear to cause problems mostly in the translation of 

proteins (Kane, 1995). One of the negative effects on translation could be by causing ribosomes 

to pause, which in effect can uncouple transcription from translation, leading to premature 

termination of the message (Schendel, 1998). Even if transcription would proceed normally after 

pausing, the mRNA 3’ to the stalled ribosomes can be exposed to degradation by host 

ribonucleases, reducing its stability (Schendel, 1998). During the overexpression of 

heterologous target genes in E. coli, insufficient tRNA pools can also lead to premature 

translation termination, translational frameshifting and amino acid misincorporation (Novy et al., 

2001). 

Arginine codons account for four of the top six rare codons (Kane, 1995). In particular, the 

arginine codons AGA and AGG, the product of the dnaY gene, are the least used codons in E. 

coli (Chen and Inouye, 1990). In E. coli mRNA these rare arginine codons (AGA and AGG) 

occur at a frequency of ~0.21% and 0.14%, respectively (Kane, 1995). These codons were the 

first rare codons demonstrated to have a detrimental effect on protein expression (Kane, 1995). 

Clusters of AGA/AGG codons can reduce the quantity and quality of the synthesized protein 

and if there is an excess of these codons, even without clusters, it could create translational 

problems (Kane, 1995).  
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The magnitude of the effect of these rare aginine codons depends not only upon their number 

but also their position within the mRNA (Kane, 1995). It has been found that clusters of two to 

five AGG codons have a greater effect on decreasing protein expression as the number of AGG 

codons increased (Kane, 1995). Furthermore, effects on protein expression decrease as the 

AGG clusters approach the carboxyl terminus (Kane, 1995). Chen and Inouye (1990) found that 

the negative effect of AGG codons on gene expression was dependent upon the distance 

between the site of the AGG codons and the initiation codon. As the distance between the 

initiation codon and the AGG codons increased, protein production increased almost linearly 

(Chen and Inouye, 1990). Gonzalez de Valdivia and Isaksson (2004) reported that consecutive 

AGA or AGG codons near the 5’ end of the message give significantly lowered gene expression 

and if these codon sequences are further down in the gene there is no apparent effect on gene 

expression. A codon combination of AGA AGG at an early position or a consecutive row of AGG 

codons downstream in a gene can give a negative effect on gene expression (Gonzalez de 

Valdivia and Isaksson, 2004). Even a single AGG codon, if located in the early coding region, is 

enough to give a negative effect on gene expression (Gonzalez de Valdivia and Isaksson, 

2004).   

Brinkmann et al. (1989) found that supplementation with tRNA Arg
AGA/AGG by cotransfection with 

the dnaY gene, which supplies this minor tRNA, results in high-level production of proteins that 

are not readily expressed in E. coli. The dnaY gene has been inserted into compatible plasmids 

pRARE and pRARE2 by Novagen to supply the tRNA that recognizes AGA/AGG codons for use 

in recombinant protein production (Novy et al., 2001). Rosetta-gami B(DE3)pLysS strains 

contain the pRARE plasmid while Rosetta-2(DE3)pLysS strains contain the pRARE2 plasmid 

(Anon, 2006).  

2.4.1.3 The pGEX expression system 

For the expression of genes in E. coli using recombinant DNA technology, it was thought that a 

strong promoter and a start codon at the beginning of the gene would be sufficient for good 

expression (Riggs and La Vallie, 1994). However, the requirements for good expression are 

often more complicated (Riggs and La Vallie, 1994). For one, the level of expression is affected 

by codon preferences and may be affected by the coding sequence in other ways that are not 

yet well understood (Riggs and La Vallie, 1994). Problems with expression at the beginning of 

the gene can be solved by a variety of ways and the quickest is by introducing the cloned gene 

into an expression vector 3’ to a carrier sequence coding for the amino terminus of a highly 

expressed protein (carrier protein) (Riggs and La Vallie, 1994). The carrier sequence can be 

from an E. coli gene or any gene that is strongly expressed in E. coli (Riggs and La Vallie, 

1994). This sequence provides the necessary signals for good expression resulting in a fusion 

protein that contains an N-terminal region encoded by the carrier (Riggs and La Vallie, 1994). 
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The carrier sequence can code for an entire protein such as glutathione-S-transferase (GST) 

(Riggs and La Vallie, 1994).  

The GST gene fusion system is one of the more extensively used systems for the expression 

and purification of recombinant proteins in E. coli (Saluta and Bell, 1998). Foreign polypeptides 

are expressed as fusion proteins linked to the C-terminus of GST using pGEX vectors (Smith 

and Corcoran, 1994). The pGEX vectors are designed so that foreign polypeptides can be 

expressed in E. coli in a form that allows them to be purified rapidly under nondenaturing 

conditions (Smith and Corcoran, 1994). The GST gene used to generate the pGEX vectors was 

originally cloned from the parasitic helminth, Schistosoma japonicum and the GST protein is a 

common 26 kDa cytoplasmic protein of eukaryotes (Smith and Corcoran, 1994).  

The main advantage of this system is that most fusion proteins remain soluble and stable even 

at high levels of expression (Smith and Corcoran, 1994; Smith, 2000; Terpe, 2003). 

Furthermore, purification can be performed under non-denaturing conditions by affinity 

chromatography (Smith and Corcoran, 1994; Smith, 2000). Affinity chromoatography with 

immobilized glutathione for the purification of fusion proteins from crude lysate is used because 

of the affinity of the GST moiety for glutathione (Smith and Corcoran, 1994; Terpe, 2003). 

Thereafter, the bound fusion proteins can be eluted with free reduced glutathione at neutral pH 

(Smith and Corcoran, 1994; Terpe, 2003).  

As the GST protein is also antigenic, it can be disadvantageous for the production of antigens to 

the fusion protein (Yahalom and Chamovitz, 2002). This can be side-stepped by cleaving the 

GST moiety from the fusion protein with site-specific proteases (Smith and Corcoran, 1994; 

Yahalom and Chamovitz, 2002). The pGEX-6P-1, 2 and 3 vectors (Amersham) include a 

peptide sequence that is optimally cleaved by the human rhinovirus 3C protease (Smith, 2000). 

The PreScission protease (Amersham) contains the human rhinovirus 3C protease including the 

GST-tag so that both the GST carrier and the protease can be removed after proteolysis by 

affinity chromatography on glutathione-agarose (Smith, 2000; Terpe, 2003).  

Uses of the GST fusion proteins produced from pGEX vectors include antigens for 

immunological or vaccination studies or as a way of providing functionally active enzymes for 

biochemical or structural studies (Terpe, 2003; Smith, 2000).  
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Summary. Presently, the observed variation in symptoms of Potato leafroll virus (PLRV) 

infection in potato cultivars of South Africa cannot be reconciled with PLRV symptoms obtained 

10-15 years ago, even if the different interactions between the pathogen and the cultivar are 

taken into account. In an effort to analyze this variation, the mutation patterns in the coat protein 

gene of South African isolates of PLRV were assessed. The coat protein gene of PLRV isolates 

from different areas within South Africa was amplified by reverse transcription polymerase chain 

reaction (RT-PCR), cloned and sequenced. Significant sequence variation in the coat protein 

genes was found within the analyzed South African isolates of PLRV. Phylogenetic analysis 

revealed two major clades with most South African isolates and an Australian and North 

American isolate grouped together and the remainder grouped with isolates from diverse 

countries worldwide. The deduced amino acid sequences from representatives of these two 

clades indicated differences in coat protein three-dimensional structure.  
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Introduction 

PLRV is one of a number of viral pathogens that can impact on seed potato (Solanum 

tuberosum L.) stocks and is considered a major cause for seed potato declassification (De 

Souza-Dias et al., 1999a; De Souza-Dias et al., 1999b). PLRV is the type species of the genus 

Polerovirus, belonging to the family Luteoviridae (Van Regenmortel et al., 2000). The virus is 

approximately 25 to 30 nm in diameter with an icosahedral shape. The genome of PLRV 

consists of a single stranded messenger-sense RNA-molecule, of 5882 nucleotides, containing 

six open reading frames (ORFs) (Mehrad et al., 1979; Van der Wilk et al., 1989; Bahner et al., 

1990; Kawchuk et al., 1990; Van Regenmortel et al., 2000; Taliansky et al., 2003). The coding 

sequences of the ORFs are separated into two clusters of three genes by a noncoding 

intergenic region of 200 nucleotides (Bahner et al., 1990; Mayo and Ziegler-Graff, 1996; Van 

der Wilk et al., 1997; Van Regenmortel et al., 2000; Haupt et al., 2005). The 5’ half of the 

luteovirus genome encodes the nonstructural genes (ORF0, ORF1 and ORF2) presumed to be 

involved in virus replication within infected plant cells whereas the structural genes are located 

in the 3’ half of the genome (Martin et al., 1990). PLRV 3’ structural genes include the ORF 

encoding the coat protein (CP) (ORF3), an ORF embedded in the CP gene postulated to be the 

VPg (virus protein, genome-linked) (ORF4) and the CP readthrough also detected on the 

surface of the virion particle (ORF5) (Martin et al., 1990). 

In previous examinations of the sequence variation found in PLRV, Keese et al. (1990) found 

that the complete genome of an Australian PLRV isolate differed more (93% similar) from those 

of Canadian, Scottish and Dutch isolates than they differed among each other (98% similar). In 

a study by Faccioli et al. (1995) sequence comparisons of the CP gene of an Italian isolate with 

those of five other PLRV isolates revealed a close similarity (up to 98%) to three European 

(from Scotland, Germany and the Netherlands) and a Canadian isolate, and a greater 

nucleotide sequence diversity between the Italian and an Australian isolate. Guyader and 

Ducray (2002) compared the complete genomic sequences of seven isolates collected 

worldwide with five sequences available in GenBank. Thereafter a restricted polymorphic region 

of the genome within the ORF0 was analyzed phylogenetically and allowed the detection of 

three groups of isolates. A first group encompassed three European isolates with a Peruvian 

isolate. The second group contained exclusively Australian isolates, whereas the third group 

contained isolates originating from diverse countries and continents. Guyader and Ducray 

(2002) speculated that the reasons for this diversification could have been the geographical 

isolation of Australia, since tuber exchanges were presumably reduced with the other 

continents.  

Haliloglu and Bostan (2002) compared the nucleotide sequences of 17 PLRV CP genes and 

also found that they grouped in two major clusters in a phylogenetic tree. The first cluster 

included isolates from the Netherlands, USA and Poland. In the second cluster one sub-group 
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contained isolates from Korea, Scotland and Canada while a second sub-group contained an 

Australian isolate. Mukherjee et al. (2003), in a comparison of the PLRV CP nucleotide 

sequences of an Indian isolate with those collected worldwide, found that an Austalian CP 

nucleotide sequence showed the least identity (identities of 97%) whereas the highest 

nucleotide sequence similarity was found with isolates from UK and Canada (identities of 99%). 

Furthermore, five completely sequenced PLRV isolates originating from Canada, Scotland, the 

Netherlands, Poland and Australia were compared by Guyader et al. (2004) who found that four 

isolates shared about 98% of their residues whereas the Australian isolate was more divergent 

showing an overall identity of 93% with other isolates.  

All of the studies of PLRV isolate variation, whether based on whole genome sequences, ORF0 

sequences or CP gene sequences reveal that the Australian isolates showed significant 

divergence from all other isolates of PLRV analysed to date.  

To assess the variation of PLRV in South Africa the CP genes of 39 PLRV isolates from all 

potato growing areas in South Africa were amplified by RT-PCR, cloned and sequenced. 

Nucleotide sequences obtained of regions throughout South Africa were subsequently aligned 

with PLRV CP nucleotide sequences of overseas isolates and analyzed phylogenetically. Alpha-

helix and beta-sheet structures of translated amino acid sequences of one overseas and one 

South African isolate were predicted and compared. The effect of altered amino acid sequence 

on the antigenicity of their respective proteins was assessed. 

Materials and methods 

PLRV infected leaf sources 

Potato leaves infected with PLRV were collected from various potato growing regions in South 

Africa by officials of Potatoes South Africa, the organization representing South African 

commercial potato farmers, these are listed in Table 1. 

Sample preparation 

Leaf samples were stored at – 80°C until used. Infected plant material (0.1 g) was ground with a 

mortar and pestle in 2 ml grinding buffer [15 mM Na2CO3; 35 mM NaHCO3; 2% PVP40; 0.2% 

bovine serum albumin (BSA); 0.05% Tween 20; 1% (w/v) sodium meta bisulphide; pH 9.6] to a 

homogenous solution. Homogenized solution (4 µl) was added to 25 µl GES-buffer (0.1 M 

glycine-NaOH, pH 9.0; 50 mM NaCl; 1 mM EDTA, pH 8.0; 5% (v/v) Triton X-100) and boiled for 

10 min at 95°C. The solution was placed on ice for 5 min before RT-PCR.  
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Table 1. CP nucleotide sequences of South African PLRV isolates established in this study. The 
sequences from a single leaf sample were designated by the name of the sample (e.g. Sand1) followed 
by a hyphen to indicate the sequence number (e.g. Sand1-1). The following abbreviations are used for 
isolates: WC = Western Cape, FS = Free State, EC = Eastern Cape. These sequences are yet to be 
submitted to GenBank.  

Sample name and sequence 
number Area of origin 

CC5-1 Wittenberg Vallei, WC, SA  
CC5-2 Wittenberg Vallei, WC, SA  
CC5-3 Wittenberg Vallei, WC, SA  
CC6-6; CC6-8 Koue Bokkeveld, Ceres, WC, SA 
CC6-7 Koue Bokkeveld, Ceres, WC, SA  
DD020-1 Modderrivier, Douglas, NC, SA  
DD020-2 Modderrivier, Douglas, NC, SA  
DD020-3 Modderrivier, Douglas, NC, SA  
NN3-1; NN3-3 KwaZulu-Natal, SA  
NN3-2 KwaZulu-Natal, SA  
NN334-6; NN334-8 KwaZulu-Natal, SA  
NN334-7 KwaZulu-Natal, SA  
PP0-6; PP0-7 Bethlehem, OFS, SA  
PP003-11 Reitz, FS, SA  
PP003-13 Reitz, FS, SA  
SandA-1 Sandveld, WC, SA  
SandA-3 Sandveld, WC, SA  
SandB-1 Sandveld, WC, SA  
SandB-2 Sandveld, WC, SA  
SandB-3 Sandveld, WC, SA  
SandF-1 Sandveld, WC, SA  
SandF-2 Sandveld, WC, SA  
SandF-3  Sandveld, WC, SA  
SandH-7 Sandveld, WC, SA  
SandH-10 Sandveld, WC, SA  
Sand1-1; Sand1-2 Sandveld, WC, SA  
Sand2-1 Sandveld, WC, SA  
Sand2-2 Sandveld, WC, SA  
Sand2-3 Sandveld, WC, SA  
TT-11 Bethal, Mpumalanga, SA  
TT-12 Bethal, Mpumalanga, SA  
TT026-14; TT026-15; TT026-16 Middelburg, Mpumalanga, SA  
WW154-19; WW154-21 Christiana, FS, SA  
WW154-20 Christiana, FS, SA  
Z25-14 Cradock, EC, SA  
Z25-15 Cradock, EC, SA  
Z26-23 Cradock, EC, SA  
Z26-24 Cradock, EC, SA  
Z26-25 Cradock, EC, SA  
 

RT-PCR amplification of the PLRV coat protein gene 

The cDNA of the full PLRV CP gene of each leaf sample was amplified using primers that were 

designed to bind to the 20 nucleotide bases on the 5’ and 3’ ends of the CP genes based on 

PLRV CP nucleotide sequences deposited in the GenBankTM data base 

(http://www.ncbi.nlm.nih.gov/Genbank) (see Table 2). Primers were designed using the 

computer software package, Primer Designer Version 2.0. Suitable additional bases were 

added to enable subcloning with either Nco1 and BamH1, Nco1 and Nde1, Nco1 and Xho1 or 

http://www.ncbi.nlm.nih.gov/Genbank


   63

EcoR1 and Xho1. The sequence of the forward primer was either 5´-

GCACGCCATGGGTACGGTCGTGGTTAAAGG-3´ (Nco1-cut site underlined) or 5´-

GAATTCAGATGGGTACGGTCGTGGTTAAAGG-3´ (EcoR1-cut site underlined) and that of the 

reverse primer either 5´-GCGGATCCCTATTTGGGGTTCTGCAAAGC-3´ (BamH1-cut site 

underlined), 5´-CTGCTGCCATATGCTATTTGGGGTTCTGCAAAGC-3´ (Nde1-cut site 

underlined) or 5´-CTCGAGCTATTTGGGGTTCTGCAAAGC-3´ (Xho1-cut site underlined). All 

primers were synthesized by the DNA Synthesis Laboratory, Department of Molecular & Cell 

Biology, University of Cape Town, South Africa.  

Sample solutions (2 µl) were subjected to first strand cDNA synthesis in a standard 25 μl 

reaction mixture consisting of 2.5 μl 10x PCR Buffer (Southern Cross Biotechnology), 5 mM 

DTT, 1.5 mM MgCl2, 0.5 µM forward primer, 0.5 µM reverse primer, 200 μM dNTPs, 0.25 µl 

Super-Therm Polymerase (5 U/µl, Southern Cross Biotechnology) and 0.125 µl M-MLV 

SuperScriptTM III Reverse Transcriptase (200 U/µl, Invitrogen). 

Subsequently amplifications were performed using the Hybaid Px2 Thermal Cycler programmed 

as follows: reverse transcription at 48°C for 30 min, followed by 35 cycles of PCR amplification 

at 94°C for 30 sec, 64°C for 45 sec, and 72°C for 1 minute, final extension was done at 72°C for 

7 min. Samples were kept at 15°C until use.  

RT-PCR product confirmation and purification 

RT-PCR product formation was confirmed by agarose gel electrophoresis. The RT-PCR 

products were separated on an agarose gel (1% w/v), in 1x TAE electrophoresis buffer (0.48% 

w/v Tris-base; 0.11% glacial acetic acid; 0.5 M EDTA, pH 8.0, Maniatis et al., 1982). 

Electrophoresis was performed at 110 V for 45 min. Gels were soaked in deionized water 

containing 1 µg/ml ethidium bromide for 20 min and stained DNA was visualized using an UV 

transilluminator. PCR products were excised from the gel and the DNA purified using a Wizard® 

SV Gel and PCR Clean-Up System kit (Promega) according to manufacturer’s instructions.  

Cloning of RT-PCR products 

The purified RT-PCR products were cloned into pGEM-T Easy vectors using a pGEM-T Easy 

Vector Systems kit according to manufacturer’s instructions (Promega). The RT-PCR products 

were ligated into the pGEM-T Easy vector in a 1:1 molar ratio as follows; 5 μl 2x rapid ligation 

buffer, 1 μl pGEM-T Easy Vector (50 ng), 3 μl RT-PCR product (1:1 molar ratio), 1 μl T4 DNA 

Ligase for a total volume of 10 μl. For each ligation reaction Luria-Bertani (LB) (10 g Bacto-

tryptone, 5 g Bacto-yeast extract, 5 g NaCl, 1 L deinonized water, pH 7.0) plates (15 g agar/L of 

LB medium) with 100 μg/ml ampicillin, 160 μl IPTG (0.1 M) / 100 mL LB medium and 80 μl X-

Gal (50 mg/mL, 100 mg 5-bromo-4-chloro-3-indolyl-B-D-galactoside, 2 ml N,N’-dimethyl-

formamide, 2 ml dH2O) / 100 mL LB medium were prepared. The plasmids were transformed 

into Escherichia coli strain JM109 (Promega) by mixing 2 μl of each ligation reaction with high 



   64

efficiency competent cells and placed on ice for 20 min, heat shocked for 50 sec at 42°C and 

returned to ice for 2 min. LB medium (950 μl) was added to each tube, which was incubated at 

37°C for 1.5 h with shaking at 200 rpm. The content of each ligation reaction was transferred to 

an Eppendorf tube and centrifuged at 10 000 x g for 2 min, and 700 μl of the cleared LB 

medium removed. The pellet was resuspended in the remaining LB medium and plated out in 

duplicate onto the LB/ampicillin/IPTG/X-Gal plates and incubated overnight at 37°C. A 

successful transformant was identified as a white colony.  

White colonies were subjected to direct PCR using T7 and SP6 promoter primers flanking the 

insert, and a toothpick scrape of the colonies as template DNA. Colony scrapings were 

subjected to PCR in a standard 10 μl reaction mixture consisting of 1 μl 10x PCR Buffer 

(Southern Cross Biotechnology), 1.5 mM MgCl2, 0.1 µl Super-Therm DNA polymerase (5 U/µl, 

Southern Cross Biotechnology), 20 pmol/μl forward T7 primer, 20 pmol/μl reverse SP6 primer, 

200 mM dNTPs and deionized water to a final volume of 10 μl. Subsequently amplifications 

were performed using the Hybaid Px2 Thermal Cycler programmed as follows: 1 cycle of PCR 

amplification at 94°C for 5 min followed by 25 cycles of 94°C for 30 sec, 55°C for 30 sec and 

72°C for 30 sec, final extension was done at 72°C for 7 min. Samples were kept at 15°C until 

used. The products were electrophoresed on a 1% agarose gel as previously described to 

identify which colonies contained insert DNA. For each leaf sample, three colonies which 

contained insert DNA were purified using a Plasmix Miniprep kit (Talent) according to the 

manufacturer’s instructions. 

Sequencing PCR 

Inserts of three cloned plasmids of each of the South African PLRV isolates were sequenced by 

cycle sequencing using the T7 and SP6 primers. The T7 and SP6 primers were synthesized by 

the DNA Synthesis Laboratory, Department of Molecular & Cell Biology, University of Cape 

Town, South Africa. Sequencing reactions consisted of 4 µl Terminator mix (BigDye® Terminator 

v3.1 Cycle Sequencing Kit, Applied Biosystems), 3 µl T7 or SP6 pGEM Primer (3.3 pmol/µl) and 

approximately 300 ng plasmid DNA in a final volume of 10 µl for each sequencing reaction. 

PCR amplifications for sequencing was performed using the Hybaid Px2 Thermal Cycler 

programmed as follows; 35 cycles of 96°C for 10 sec, 52°C for 30 sec and 60°C for 4 min 

followed by 1 cycle of 60°C for 10 min. Samples were stored at 4°C until analyzed. The PCR 

products were analyzed with an ABI PRISM® 373 DNA sequencer by the University of 

Stellenbosch Core DNA Cycle Sequencing Facility.  

Nucleotide sequence analysis 

Electropherograms were edited in Chromas v1.45 (Technelysium Pty., Tewantin, Australia). The 

PLRV CP nucleotide sequences of South African PLRV isolates were aligned with other PLRV 

CP nucleotide sequences and an outgroup sequence, the CP of Sweet potato leaf speckling 
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virus (SPLSV), obtained from the GenBankTM data base (Table 2) using the computer program 

Bioedit v7.0.1 (Hall, 1999) and the alignment function of Clustal X v1.8 (Thompson et al., 1997). 

Further alignment refinements were done by eye. 

Phylogenetic analysis 

Phylogenetic analysis was performed using the parsimony option in PAUP 4.0b10 (Swofford, 

2002) and all substitutions were weighted equally. All missing or gap characters were treated as 

missing data. A heuristic search with 1000 replicates was used to find shortest trees using TBR 

branch swapping, holding ten trees with MulTrees on. Clade support was calculated with 1000 

bootstrap replicates using TBR branch swapping and Multrees off. Bootstrap values above 75% 

were considered as well supported, and bootstrap values between 60 and 75% as weakly 

supported. No deductions were made where clade support was below 60%. Sequence 

divergence within phylogenetic clades was established using PAUP.  

Amino acid sequence analysis and three dimensional protein structure prediction 

The influence of the PLRV CP nucleotide sequence variation on subsequent amino acid 

sequences was investigated by deducing the amino acid sequences using Bioedit. To view the 

relevance of certain amino acid substitutions on the three-dimensional structure of CPs, graphs 

of the alpha-helix and beta-sheet content of one South African (Sand2-2) and one European 

(Neth31) PLRV CP deduced amino acid sequence were drawn using the computer program 

Prograph, Windows ’95 version (Hofman, 1990). Antigenicity plots of these two sequences were 

drawn using the same computer program Prograph, Windows ’95 version (Hofman, 1990).  
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Table 2. CP nucleotide sequences of PLRV isolates from GenBank. Code names for some of the 
GenBank sequences are according to Guyader and Ducray (2002). SPLSV was used as the outgroup.  

Sample name Area of origin GenBank Accession number/ 
Reference 

SPLSV Peru DQ655700 
Rood Roodeplaat, Gauteng, SA AF022782 
NALR7 North America M89926 
Aus Australia D13953 
NethV The Netherlands X77321 
Neth31 The Netherlands X77326 
NethV4 The Netherlands X77325 
Neth11 The Netherlands X77322 
Neth30 The Netherlands X77324 
Pak Pakistan AY307123 
OP Spain AF453389 
SKorRB South Korea U74377 
NethWa The Netherlands Y07496 
Cuba Cuba S77421 
India India AF539791 
Italy Italy Faccioli et al. (1995)  
14.2 France AF453394 
FrPT France AY007727 
Fr1 France AF453391 
Zim13 Zimbabwe AF453388 
Egp Egypt AY138970 
Pol Poland X74789 
SKor777 South Korea U73777 
Can Canada D13954 
SKor South Korea AF296280 
Neth15 The Netherlands X77323 
Sco Scotland D00530 
CIP01 Peru AF453392 
Ger Germany X13906 
Noir France AF453390 
Chi China AY079210 
Cu87 Cuba AF453393 
FrCU87 France AF271215 
 

Results and discussion 

RT-PCR amplification of the PLRV coat protein gene 

The CP gene of PLRV contained in the plant samples was readily amplified (Fig. 1) following the 

sample preparation technique described in the methods section and by using the optimized RT-

PCR to give a 650 bp product.  

Cloning and sequencing of RT-PCR products 

Successful cloning could be confirmed using the confirmatory PCR to identify the colonies of 

positive clones (results not shown). Sequence analysis of all of the cloned RT-PCR products 

confirmed that the RT-PCR product was the PLRV CP gene, and these sequences are shown in 

addendum A of this thesis. 
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Fig. 1. RT-PCR products of the PLRV CP. Lane 1: 100 bp DNA ladder (Promega); lane 2-3: RT-PCR 
products of the PLRV CP (± 650 bp), isolate CC6. Bottom arrow indicates primer dimers as a result of the 
RT-PCR.  

Nucleotide sequence and phylogenetic analysis 

The nucleotide sequences were aligned (see addendum A of this thesis), but a few gaps had to 

be introduced into the outgroup sequence. The length of the aligned matrix was 631. 

In the parsimony analysis, the last four characters were excluded from the analysis as they were 

only present in the outgroup. The analysis revealed that the number of parsimony informative 

characters was 67 and the number of parsimony uninformative characters was 152. The tree 

statistics of the parsimony analysis gave a consistency index value (CI) of 0.798 and a retention 

index value (RI) of 0.914. The shortest tree length was 317, and the number of trees that were 

retained was 271. One of the shortest trees retrieved is shown in Fig. 2. The trees generated by 

this analysis were used to generate a strict consensus tree that is shown in Fig. 3. The 

bootstrap values generated by the bootstrap analysis were plotted onto the strict consensus 

tree (Fig. 3). 

The parsimony analysis retrieved two major clades of which one was strongly supported. One 

clade contained all of the overseas isolates with the exception of one Australian and one North 

American isolate. Five South African isolates were also retrieved in this clade. Branch lengths in 

this clade were short in the majority of cases. The second clade contained the remaining South 

African isolates and one Australian and one North American isolate. In the second clade, 

branch lengths were longer in most cases. 
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Fig. 2. One of the shortest trees of the parsimony analysis of the PLRV CP nucleotide sequence 
data. Branch lengths are shown above branches.  



   69

 

Fig. 3. The strict consensus tree of the parsimony analysis of the PLRV CP nucleotide sequence 
data. Bootstrap values are shown above branches.  
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Sequence divergence was assessed over all PLRV nucleotide sequences and within both 

clades. The maximum sequence divergence over all PLRV nucleotide sequences was 5.344%. 

Within clade 1, the highest sequence divergence was 3.030% whilst in clade 2, the highest 

sequence divergence was 3.668%. Although divergence within the two clades as calculated 

from the sequence divergence does not appear to be very different, divergence in clade 1 

between most isolates is much lower than between isolates in clade 2. This is evident from the 

single tree presented in Fig. 3 in which it can be seen that branch lengths in clade 1 are much 

shorter in the majority of cases than branch lengths in clade 2. 

Within clade 1, the South African isolates group in a single subclade (shown as subclade 1.1 in 

Fig. 3). A number of other strongly supported subclades are also retrieved in clade 1, but cannot 

be grouped geographically, i.e. some members of a subclade come from areas that are 

separated by vast distances. Clade 2 can be further subdivided into five subclades, three of 

which are weakly supported and two of which is strongly supported, with the Roodeplaat isolate 

appearing in a basal position. 

Members of subclade 2.1 belong to South African isolates collected from KwaZulu-Natal. 

Subclade 2.2 contains South African isolates that have been collected in the Sandveld region 

and KwaZulu-Natal. Subclade 2.3 contains South African isolates only that have been collected 

in the Sandveld region, KwaZulu-Natal, Free State, Mpumalanga, Western Cape and the 

Eastern Cape. Subclade 2.4 contains South African isolates that were collected in the Sandveld 

region sister to isolates from the GenBank database that have been collected in North America 

and Australia. Subclade 2.5 contains isolates from the Sandveld region, Free State, Eastern 

Cape and Northern Cape.  

In two instances, isolates from different areas have identical CP nucleotide sequences. 

Examples are: Sand2-3 and SandB-1 (subclade 2.2); SandB-3, NN334-6, PP003-13, TT026-14, 

WW154-19, CC5-2, CC6-6, TT11 and Z25-15 (subclade 2.3). Therefore, many leaf samples 

were found to be infected with the same viral isolate. 

In most instances in clade 2, isolates from the same leaf sample fall in the same subclade. 

Examples of this include NN3-1 and NN3-2 (subclade 2.1); Sand2-1, Sand2-2 and Sand2-3 

(subclade 2.2); SandB-2 and SandB-3 (subclade 2.3); PP003-11 and PP003-13 (subclade 2.3); 

WW154-19 and WW154-20 (subclade 2.3); CC5-1, CC5-2 and CC5-3 (subclade 2.3); CC6-6 

and CC6-7 (subclade 2.3); TT-11 and TT-12 (subclade 2.3); SandA-1 and SandA-3 (subclade 

2.4); SandF-1, SandF-2 and SandF-3 (subclade 2.5) as well as DD020-1, DD020-2 and DD020-

3 (subclade 2.5). Therefore, each of the leaf samples from which these isolates were isolated 

contained two or three very similar isolates.  
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In other instances isolates from the same leaf sample fall into different subclades. There are 

isolates from the same leaf sample in clade 2 that fall into different subclades. Examples of this 

include: NN334-7 (subclade 2.2) and NN334-6 (subclade 2.3); SandB-1 (subclade 2.2) and 

SandB-2, SandB-3 (subclade 2.3) as well as Z25-15 (subclade 2.3) and Z25-14 (subclade 2.5). 

Therefore, these leaf samples contained two or three more diverse isolates.  

Amino acid sequence analysis and three dimensional protein structure prediction 

Translation of one South African (Sand2-2) and one European (Neth31) PLRV CP nucleotide 

sequence revealed that there was also variation in the amino acid sequences of these two 

PLRV CPs. These amino acid sequences show 97.1% homology. Three of the amino acid 

substitutions are conservative, found in amino acid positions 7 (Arg/Lys), 18 (Arg/Lys) and 80 

(Met/Val) (see addendum B of this thesis). Non-conservative amino acid substitutions are found 

in amino acid positions 2 (Ser/Gly), 153 (Thr/Ile) and 192 (Thr/Pro) (see addendum B of this 

thesis).  

From Fig. 4 it can be seen that the alpha-helix and beta-sheet content of the South African 

PLRV CP differs from that of the European PLRV CP. There is a reduced alpha-helixes and 

beta-sheet frequency in the South African PLRV CP in comparison with the European PLRV 

CP. The reduction in alpha-helixes and beta-sheets frequency can be attributed to the proline 

substitution in position 192. 

The hydrophilicity plots (Fig. 5) of the South African and European isolates showed minor 

changes in the C-terminal region of the CP as a result of the proline substitution in position 192 

whereas the N-terminal regions were found to be identical. This is the result of a proline 

substitution in the South African isolate, which falls within a potential antigenic region of the CP 

(hydrophilicity value greater than zero).  
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Fig. 4: (a). Alpha-helix content of amino acid residues 181-208 from Sand2-2 in comparison with 
Neth31. The alpha-helix curves were drawn for the amino acid region 181-208 from one South African 
PLRV CP (Sand2-2) to compare with the same amino acid region from one European PLRV CP (Neth31) 
(b). Beta-sheet content of amino acid residues 181-208 from Sand2-2 in comparison with Neth31. 
The beta-sheet curves were drawn for the amino acid region 181-208 from one South African PLRV CP 
(Sand2-2) to compare with the same amino acid region from one European PLRV CP (Neth31). 
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Fig. 5: (a). Hydrophilicity plot of a South African PLRV CP deduced amino acid sequence (Sand2-
2). Amino acid 192 has a hydrophilicity value of 0.49. (b). Hydrophilicity plot of a European PLRV CP 
deduced amino acid sequence (Neth31). Amino acid 192 has a hydrophilicity value of 0.43. The 
complete deduced amino acid sequence of the South African or European PLRV CP was used to 
generate the graph using the computer program Prograph (Hofman, 1990). Hydrophilicity values of the 
deduced amino acids were used as an indication of their antigenicity, values above zero indicate potential 
antigenic regions in the protein.  
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Conclusions 

In this study, it was found that there is significant sequence variation in the CP genes of South 

African PLRV isolates. In the interpretation of the variation found in South African PLRV CP 

nucleotide sequences it is, however, important to take into consideration that the reverse 

transcriptase and Taq polymerase used in the RT-PCR can also introduce sequence errors. 

Smaller variation between isolates may therefore be the result of such RT-PCR errors and not 

as a result of true PLRV CP mutations. However, the larger the sequence differences are, the 

less likely it is that they are the result of RT-PCR errors. Thus sequence variation between the 

subclades of clade 2 may therefore be ascribed to real differences between isolates. 

Furthermore, the fact that the same isolates occurred in different geographic regions in South 

Africa can largely be ascribed to the movement of tubers from one area to another. Larger 

variation between isolates in single leaf samples, which was found in a limited number of leaf 

samples, indicates multiple infections and also occurs in South African potato stocks. To our 

knowledge this has not been reported elsewhere in the world. This has the potential of 

increasing the chances for formation of recombinants, which poses as additional threat for new 

strain evolution. A careful inspection of the CP nucleotide sequences of South African isolates 

did not reveal any recombination of strains at present. 

The phylogenetic analysis showed that a limited number of South African PLRV isolates 

grouped with isolates from Europe and other countries in one major phylogenetic clade. The 

rest of the South African isolates were found to group with isolates from North America and 

Australia, but many of these isolates occupied more intermediate positions between these major 

groupings in a second major clade. Keese et al. (1990), Faccioli et al. (1995), Haliloglu and 

Bostan (2002), Guyader and Ducray (2002), Mukherjee et al. (2003) and Guyader et al. (2004) 

all found that the Australian PLRV isolates had diverged significantly from PLRV isolates found 

elsewhere in the world. The intermediate position of the isolates identified in this study in South 

Africa and their diversity indicates that the isolates in the second clade may have evolved 

independently, and that the Australian isolates may have originated here in South Africa. In this 

regard, the Roodeplaat isolate is of interest, as it was sequenced in 1997, and therefore 

represents a viral isolate that was present in South Africa ten years ago. Its basal position 

indicates that present virus isolates may have diverged from it subsequently.   

It appears that the South African PLRV isolates have diverged to a larger degree in comparison 

to those found elsewhere. Guyader and Ducray (2002) found limited variation in European 

isolates in ORF0 whereas Australian isolates were quite divergent. Furthermore, Guyader et al. 

(2004) concluded that the limited variation in European PLRV isolates indicated genetic stability 

and slow evolution of these isolates (many of which are included in clade 1 in this study). In 

contrast this analysis reveals that the isolates in clade 2 are evolving at a faster rate and have 

diversified to a greater extent than the isolates in clade 1. Guyader et al. (2004) concluded that 
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the faster PLRV mutation rate in isolates in Australia may be the result of unique environmental 

selection pressures. However, it may also be due to the inherent high mutation rate of viruses. A 

common property of plant RNA viruses is their high mutation rate due to their error-prone RNA 

polymerase which lacks proofreading functions resulting in between 10-3 and 10-5 

misincorporations per nucleotide copied (Power, 2000; Guyader et al., 2004). Or stated 

differently, because of the error-prone RNA polymerase, mutations are introduced at a rate 

close to one substitution per genome per replication cycle (Guyader and Ducray, 2002). Thus 

the South African and Australian isolates could show a faster rate of mutation due to more than 

one crop cycle per year (a common practice in South Africa) versus one crop cycle in Europe 

and other countries. 

Additionally, the greater isolate variation in South Africa may be the result of more aphid hosts 

in South Africa in which PLRV can develop (Dr Ben Pieterse, Potatoes South Africa, personal 

communication). PLRV can also infect and multiply in different plant hosts in South Africa, for 

example in a variety of indigenous Solanum species as well as cultivated peppers and chillies. 

Therefore the vector-host selection pressure is potentially released in South Africa because of 

different carriers. The lack of selective intermediary (aphid) hosts together with different plant 

hosts may therefore result in unique South African mutations.  

South Africa has been isolated in terms of the influx of potatoes as new imports of potatoes 

have been closely regulated and only limited mother stocks were imported in the past 20 years. 

The South African viral isolates in clade 1 may possibly have entered the country in this way 

through recent imports. However, the variation in clade 2 as well as the intermediate position of 

South African isolates supports that these isolates evolved through mutation in South Africa, 

and that these isolates were not recently imported. The isolation of South Africa as a reason for 

unique divergence of PLRV is in line with the geographical isolation of Australia that might have 

influenced the divergence of Australian PLRV isolates from the rest of the PLRV isolates from 

other countries (Mukherjee et al., 2003, Guyader et al., 2004). 

Variation occurred not only in the nucleotide sequences of the various PLRV isolates but also in 

the deduced amino acid sequences. Non-conservative as well as conservative substitutions 

were found in the South African CPs. The non-conservative proline substitution in amino acid 

position 192 of Sand2-2 CP, shared by most of the South African CPs, was found to influence 

its alpha-helix and beta-sheet content. According to a prediction by Mayo and Ziegler-Graff 

(1996), amino acid 192 falls in a potential beta-sheet structure right next to a region probably 

exposed on the surface of the virus particle and five amino acids from a region thought to be, or 

to contribute, to epitopes. Since proline is known to disrupt beta-sheets its substitution in South 

African PLRV CPs could have a significant influence on the three-dimensional structure of this 

epitope. This proline substitution is also found in PLRV CP amino acid sequences found in 
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South Korea (Skor777), Canada (Can), North America (NALR7) and Australia (Aus). However, 

the influence that this may have on the antigenicity of the protein as a whole is not known, as 

this region is closer to the C-terminal region of the CP, whilst it is known that the N-terminal 

region is the most important antigenic region of the CP (Prof M.H.V. van Regenmortel, 

Strasbourg, personal communication). The outcome of continued unique mutations in the South 

African PLRV CP nucleotide sequences and subsequently the amino acid sequences would be 

an increasing lack of detection of South African PLRV isolates by European ELISA kits. The 

results therefore indicate a need to develop highly specific ELISA kits aimed at detecting South 

African isolates of PLRV in potato leaves and tubers.  

The identification of diversified and different PLRV isolates in South Africa indicates there is an 

ongoing threat that PLRV isolates with altered and also more severe pathogenicity may evolve. 

Thus, the sequencing of CP genes of South African PLRV isolates on an ongoing basis is 

important to monitor the evolution of PLRV in this country. Additionally, the introduction of new 

PLRV isolates via newly imported potato material into South Africa, holds a threat to the South 

African potato industry as new PLRV introductions could form new and more pathogenic 

recombinants with the already unique PLRV isolates present in South Africa. 
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Chapter 4: 

The production of recombinant potato leafroll virus 
coat protein in Escherichia coli 
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South Africa. 

Summary. The coat protein (CP) gene of a South African isolate of potato leafroll virus (PLRV) 

was amplified by reverse transcription–polymerase chain reaction (RT-PCR). The amplicon was 

cloned in pGEM-T Easy, sequenced and subcloned into a bacterial expression vector (pET14-b) 

with various restriction enzyme combinations. Expression of full length recombinant PLRV CP 

was attempted in Escherichia coli strains BL21(DE3)pLysS, Rosetta-gami B(DE3)pLysS and 

Rosetta-2(DE3)pLysS. As this was not successful, the PLRV CP gene was subcloned in 

another expression vector (pGEX) for expression as an N-terminal fusion protein with 

glutathione-S-transferase (GST) in E. coli strains BL21(DE3)pLysS and Rosetta-2(DE3)pLysS. 

The recombinant GST-PLRV CP fusion protein was purified with affinity chromatography 

yielding recombinant GST-PLRV CP fusion protein and used for antibody production in rabbits. 

Cleavage of the recombinant GST-PLRV CP fusion protein was successful, but the cleaved 

PLRV CP could not be purified and hence used for immunization. The effectiveness of 

antibodies produced to recombinant GST-PLRV CP fusion protein for PLRV CP recognition was 

assessed in western blots with these antibodies as well as commercial antibodies against PLRV 

CP and GST. It was found that antibodies to the recombinant GST-PLRV CP fusion protein 

were more effective for the detection of GST than PLRV CP and that production of antibodies to 

the cleaved PLRV CP product would be necessary if antibodies with a higher titre against native 

PLRV CP are required.  
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Introduction 

PLRV can be purified from infected potato (Solanum tuberosum L.) with yields of 0.4-0.6 mg/kg 

foliage (Rohwani and Stace-Smith, 1979) although it is technically difficult. This low yield is due 

to the fact that the virus is phloem limited. For antibody production a relatively large amount of 

the virus is required for immunization (approximately 3 mg – 4 mg, Tamada and Harrison, 

1980). Consequently, these procedures are time-consuming and expensive. Furthermore, 

during virus purification, plant proteins are often co-isolated and when this material is used for 

immunization, antibodies against contaminating plant proteins are also elicited. This results in 

antisera that have the potential of also detecting plant proteins in potato material over and 

above PLRV. Such antisera can give false positive results in ELISA which would then result in 

inconsistent and unreliable results.  

For the production of antibodies to viruses, recombinant CPs formed in bacteria has been used 

by various workers in the field. These recombinant CPs were either expressed on their own 

(Čeřovská et al., 2002), as fusion proteins (Kaden-Kreuziger et al., 1995; Nikolaeva et al., 1995; 

Vaira et al., 1996; Ling et al., 2000; Meng et al., 2003) or with 6 histidine-tag attached (Kaden-

Kreuziger et al., 1995; Jelkmann and Keim-Konrad, 1997; Minafra et al., 2000; Kumari et al., 

2001; Hourani and Abou-Jawdah, 2003; Abou-Jawdah et al., 2004). In most instances where a 

fusion protein or 6-histidine tag was used, it was attached at the N-terminal region of the 

recombinant protein (Kaden-Kreuziger et al., 1995; Nikolaeva et al., 1995; Vaira et al., 1996; 

Minafra et al., 2000; Kumari et al., 2001; Hourani and Abou-Jawdah, 2003; Meng et al., 2003; 

Abou-Jawdah et al., 2004), but instances where the fusion protein or 6-hisitidine tag was 

attached at the C-terminal of the recombinant protein were also used (Jelkmann and Keim-

Konrad, 1997; Ling et al., 2000). Recombinant viral CP expression for antibody production is 

summarized in Table 1. Not all of the antibodies produced against these recombinant viral CPs 

could be used successfully for various applications as listed in Table 1. 

Table 1 a, b, c. Literature summary of various approaches for the production of antibodies to 
recombinant viral CPs. All of the recombinant viral CPs were used for the production of antibodies and 
applied in either DAS-ELISA, indirect-ELISA and/or western blot. Some of the antibodies formed to 
recombinant viral CPs were effective for the detection of native viruses in the above mentioned 
applications, others were not.  

Table 1 a. The production of antibodies to free recombinant viral CPs. 

Free recombinant viral CPs 

Virus name Expected size of 
expressed protein Application Reference 

Potato virus A 
(PVA) 

32 kDa Double-antibody sandwich (DAS) 
enzyme-linked immunosorbent assay 
(ELISA) (coating with antibody): not 
effective for detection of PVA. 
Indirect-ELISA (coating with antigen): 
effective for detection of PVA. 
Western-blot: effective for detection of 
PVA. 

Čeřovská et al. 
(2002) 
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Table 1 b. The production of antibodies to 6 histidine-tagged recombinant viral CPs. 

6 Histidine-tagged recombinant viral CPs 
Virus name Expected size of 

expressed protein Application Reference 

Strawberry mild yellow 
edge associated 
potexvirus (SMYEAV) 

26 kDa DAS-ELISA: effective for detection 
of SMYEAV.  

Kaden-
Kreuziger et al. 
(1995) 

Prune dwarf virus 
(PDV) 

25-30 kDa DAS-ELISA: effective for detection 
of PDV.  
Indirect-ELISA: effective for 
detection of PDV.  
Western-blot: effective for detection 
of PDV. 

Abou-Jawdah 
et al. (2004) 

Cucurbit yellow 
stunting disorder virus 
(CYSDV)  

28.5 kDa DAS-ELISA: medium effectivity for 
detection of CYSDV.  
Indirect-ELISA: effective for 
detection of CYSDV.  

Hourani and 
Abou-Jawdah 
(2003) 

Grapevine rupestris 
stem pitting associated 
virus (GRSPaV) 

28 kDa DAS-ELISA: not effective for 
detection of GRSPaV.  
Indirect-ELISA: not effective for 
detection of GRSPaV.  
Western-blot: effective for detection 
of GRSPaV. 

Minafra et al. 
(2000) 

Apple stem pitting 
virus (ASPV)  

44 kDa DAS-ELISA: not effective for 
detection of ASPV.  
Indirect-ELISA: medium effectivity 
for detection of ASPV. 

Jelkmann and 
Keim-Konrad 
(1997) 

Faba bean nectrotic 
yellow virus (FBNYV)  

45 kDa DAS-ELISA: not effective for 
detection of FBNYV.  
Western-blot: effective for detection 
of FBNYV. 

Kumari et al. 
(2001) 

Table 1 c. The production of antibodies to fusion protein recombinant viral CPs. 

Fusion protein recombinant viral CPs 
Virus name Fusion protein Expected size of 

expressed protein Application Reference 

Tomato spotted 
wilt tospovirus 
(TSWV) 

GST at N-
terminal of CP. 

55 kDa DAS-ELISA: effective for 
detection of TSWV.  
Indirect-ELISA: effective 
for detection of TSWV. 
Western-blot: effective for 
detection of TSWV. 

Vaira et al. 
(1996) 

Grapevine 
leafroll 
associated 
closterovirus-3 
(GLRaV-3)  

β-galactosidase 
at C-terminal of 
CP. 

43 kDa DAS-ELISA: effective for 
detection of GLRaV-3.  
Western-blot: effective for 
detection of GLRaV-3.  

Ling et al. 
(2000) 

Citrus tristeza 
virus (CTV)  

Fragment of 
maltose-binding 
protein (MBP) at 
N-terminal of CP. 

67 kDa Indirect-ELISA: effective 
for detection of CTV. 
Western-blot: effective for 
detection of CTV. 

Nikolaeva et 
al. (1995) 

Rupestris stem 
pitting 
associated virus 
(RSPaV)  

MBP at N-
terminal of CP. 

71 kDa DAS-ELISA: not effective 
for detection of RSPaV. 
Indirect-ELISA: effective 
for detection of RSPaV. 
Western-blot: effective for 
detection of RSPaV. 

Meng et al. 
(2003) 

SMYEAV GST at N-
terminal of CP. 

53 kDa DAS-ELISA: not effective 
for detection of SMYEAV. 

Kaden-
Kreuziger et 
al. (1995) 
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For the production of recombinant proteins in E. coli, the pET expression system (Novagen) is 

an efficient protein expression system that has been used successfully in numerous 

applications (Kelly et al., 1995). The pET system uses the bacteriophage T7 promoter in hosts 

bearing the T7 RNA polymerase gene (λDE3 lysogen) to direct the expression of target genes 

(Anon, 1994). Hosts carrying the pLysS plasmid encode T7 lysozyme, a natural inhibitor of T7 

RNA polymerase, and this reduces its ability to transcribe target genes in uninduced cells. 

Furthermore, the pLysS plasmid helps with the purification of proteins from the host as it 

produces T7 lysozyme that assists in the disruption of the cell wall of E. coli (Studier et al., 

1990). The E. coli BL21 strain is the standard expression host for pET constructs (Anon, 1994). 

If rare codons are present in the protein to be expressed, there are various other strains that 

can be considered for expression of the protein without altering the expression construct. These 

strains supplement the production of tRNAs for rare codons and include E. coli strains Rosetta-2 

and Rosetta-gami B. Rosetta-2 host strains are BL21 derivatives designed to enhance the 

expression of eukaryotic proteins that contain codons rarely used in E. coli (Anon, 2006a). 

Rosetta-gami B strains combine the key features of BL21 and Rosetta strains to enhance both 

the expression of eukaryotic proteins and the formation of target protein disulphide bonds in the 

bacterial cytoplasm (Anon, 2006b). By supplying these rare tRNAs, the Rosetta strains enable 

the translation of proteins, which would otherwise be limited by the codon usage of E. coli 

(Anon, 2006a).  

In the case of abundant rare codons close to the N-terminus of the protein to be expressed, a 

fusion could be added to the N-terminus. This can be done with the pET expression system or 

the GST gene fusion system. The GST gene fusion system makes use of N-terminal 

Schistosoma japonicum GST (26 kDa) fusions for expression of fusion proteins in E. coli (Anon, 

2002) resulting in the protein of interest to be closer to the carboxyl terminus, which in turn 

results in less hindered translation and thereby improved expression (Chen and Inouye, 1990). 

GST fusion proteins can be purified from bacterial lysates by affinity chromatography using 

immobilized glutathione (Anon, 2002).  

In this study, the PLRV CP gene from a South African isolate of PLRV was amplified and cloned 

into pGEM-T Easy after which it was subcloned into the expression vector pET14-b with various 

restriction enzyme combinations to test their efficiency. Expression of full length recombinant 

PLRV CP using this construct was attempted in E. coli strains BL21(DE3)pLysS, Rosetta-gami 

B(DE3)pLysS and Rosetta-2(DE3)pLysS. Subsequently, the PLRV CP gene was subcloned in 

the expression vector pGEX and used to express the PLRV CP as a fusion protein with GST in 

E. coli strains BL21(DE3)pLysS and Rosetta-2(DE3)pLysS. Purified recombinant GST-PLRV 

CP fusion protein was used for antibody production in rabbits. Commercial antibodies to PLRV 

CP and GST as well as those produced against recombinant GST-PLRV CP fusion protein were 

subsequently used in western blots analyses to assess the effectiveness of PLRV CP 
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recognition by the antibodies to the recombinant GST-PLRV CP fusion protein and their 

potential use in ELISA.  

Materials and methods 

Amplification and cloning of the PLRV CP gene into pGEM-T Easy 

Primers for the amplification of the PLRV CP gene were designed using the computer software 

package, Primer Designer Version 2.0. Suitable additional bases were added to enable 

subcloning with Nco1 and Nde1. The sequence of the forward primer was 5´-

GCACGCCATGGGTACGGTCGTGGTTAAAGG-3´ (Nco1-cut site underlined) and that of the 

reverse primer, 5´-CTGCTGCCATATGCTATTTGGGGTTCTGCAAAGC-3´ (Nde1-cut site 

underlined). All primers were synthesized by the DNA Synthesis Laboratory, Department of 

Molecular & Cell Biology, University of Cape Town, South Africa. RT-PCR was performed on 

PLRV contaminated potato leaves from the Sandveld region (Sand-B) as described (see 

chapter 3 of this thesis). The RT-PCR product of the PLRV CP gene was cloned into pGEM-T 

Easy (Promega) and transformed into E. coli JM109 cells as described (see chapter 3 of this 

thesis). Subsequently, this PLRV CP construct was sequenced as described (see chapter 3 of 

this thesis).  

Nco1 and Nde1 subcloning into pET14-b 

The PLRV CP clone that was used for subcloning into pET14-b was SandB-3 (see addendum A 

of this thesis). The PLRV CP gene was digested from the recombinant PLRV CP pGEM-T Easy 

construct using Nco1 and Nde1 (Roche) at their restriction enzyme cut sites that were added at 

the 5’ ends of the forward and reverse primer, respectively. Subsequently, the PLRV CP gene 

was subcloned into the Nco1 and Nde1 site of pET14-b (Novagen). The ligation reaction for 

subcloning was performed as described above. Before transformation of the PLRV CP pET14-b 

construct into the respective expression strains, the construct was transformed into non-

expression host E. coli strain JM109 (Promega) as described (see chapter 3 of this thesis) and 

purified as described above.  

Nco1 and Xho1 subcloning into pET14-b 

Before the restriction enzymes Nco1 and Xho1 was used for sub-cloning, a new set of primers 

was used with these restriction enzyme cut sites to amplify the PLRV CP by PCR from the 

pGEM-T Easy plasmid used for the Nco1 and Nde1 restriction enzyme digestion. The additional 

bases of the Nde1 reverse primer were altered to enable subcloning with Xho1. The sequence 

of the forward primer (for Nco1 subcloning) was the same as above and that of the reverse 

primer 5´-CTCGAGCTATTTGGGGTTCTGCAAAGC-3´ (Xho1-cut site underlined). The PCR 

reaction that was used for the different primer sets was a standard 10 μl reaction mixture 

consisting of 1 μl 10x PCR Buffer (Southern Cross Biotechnology), 1.5 mM MgCl2, 0.1 µl TaqTM 
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DNA polymerase (5 U/µl, Southern Cross Biotechnology), 1 pmol/μl forward primer, 1 pmol/μl 

reverse primer, 0.2 mM dNTPs, approximately 85 ng plasmid DNA (the pGEM-T Easy plasmid 

used for the Nco1 and Nde1 restriction enzyme digestion) and deionized water to a final volume 

of 10 μl. Subsequently amplifications were performed using the Hybaid Px2 Thermal Cycler 

programmed as follows: 1 cycle of PCR amplification at 94°C for 5 min followed by 25 cycles of 

94°C for 30 sec, 55°C for 30 sec and 72°C for 30 sec, final extension was done at 72°C for 7 

min. Samples were kept at 15°C until used.  

PCR product formation was confirmed by agarose gel electrophoresis. The PCR products were 

separated on an agarose gel (1% w/v), in 1x TAE electrophoresis buffer (0.48% w/v Tris-base; 

0.11% glacial acetic acid; 0.5 M EDTA, pH 8.0). Electrophoresis was performed at 110 V for 1 h. 

Gels were soaked in deionized water containing 1 µg/ml ethidium bromide for 20 min and 

stained DNA was visualized using an UV transilluminator. PCR products were excised from the 

gel and the DNA purified using a Wizard® SV Gel and PCR Clean-Up System kit (Promega) 

according to manufacturer’s instructions. Subsequently, the PLRV CP gene with Nco1 and 

Xho1 cut sites was cloned into pGEM-T Easy (Promega) and sequenced as described (see 

chapter 3 of this thesis). Thereafter, the PLRV CP gene was digested from the recombinant 

pGEM-T Easy plasmid using Nco1 and Xho1 (New England Biolabs) at the restriction enzyme 

cut sites that were added at the 5’ ends of the forward and reverse primer, respectively.  

Subsequently, the PLRV CP gene was subcloned into the Nco1 and Xho1 site of pET14-b 

(Novagen). The ligation reaction for subcloning was performed as described above. Before 

transformation of the PLRV CP pET14-b construct into the respective expression strains, the 

construct was transformed into non-expression host E. coli strain JM109 (Promega) as 

described (see chapter 3 of this thesis) and purified as described above.  

EcoR1 and Xho1 subcloning into pGEX-6P-2 

Before the restriction enzymes EcoR1 and Xho1 were used for sub-cloning, a new set of 

primers was used with these restriction enzyme cut sites to amplify the PLRV CP by PCR from 

the pGEM-T Easy plasmid used for the Nco1 and Nde1 restriction enzyme digestion. The 

additional bases of the Nco1 forward primer were altered to enable subcloning with EcoR1. For 

the EcoR1 forward primer (5’-GAATTCAGATGGGTACGGTCGTGGTTAAAGG-3´, EcoR1-cut 

site underlined) two additional bases were added for the PLRV CP (shown in bold) to be 

expressed in frame with GST. The corresponding amino acid encoded by these nucleotides 

(CAG) is glycine that has a side-chain that would not interfere with protein production. The 

sequence of the reverse primer (for Xho1 subcloning) was the same as above. The PCR 

reaction that was used for the different primer sets as well as insert preparation was as 

described above.  
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The PLRV CP gene with EcoR1 and Xho1 cut sites was cloned into pGEM-T Easy (Promega) 

and sequenced as described (see chapter 3 of this thesis). Thereafter, the PLRV CP gene was 

digested from the recombinant pGEM-T Easy plasmid using EcoR1 and Xho1 (New England 

Biolabs) at their restriction enzyme cut sites that were added at the 5’ ends of the forward and 

reverse primer, respectively. 

The PLRV CP gene was then subcloned into the EcoR1 and Xho1 site of pGEX-6P-2 

(Amersham) downstream of the sequence encoding GST. The ligation reaction for subcloning 

was performed as described above. Before transformation of the PLRV CP pGEX-6P-2 

construct into the respective expression strains, the construct was transformed into non-

expression host E. coli strain JM109 (Promega) as described (see chapter 3 of this thesis). 

White colonies containing the PLRV CP pGEX-6P-2 constructs were subjected to direct PCR as 

described (see chapter 3 of this thesis) using pGEX promoter primers flanking the gene (forward 

primer: 5’-GGG CTG GCA AGC CAC GTT TGG TG-3’; reverse primer: 5’-CCG GGA GCT GCA 

TGT GTC AGA GG-3’) and a toothpick scrape of the colonies as template DNA. The pGEX 

forward and reverse primers were synthesized by the DNA Synthesis Laboratory, Department of 

Molecular & Cell Biology, University of Cape Town, South Africa. The PLRV CP pGEX-6P-2 

constructs were purified from E. coli strain JM109 using a Plasmix Miniprep kit (Talent) 

according to manufacturer’s instructions.  

Sequencing analysis of the PLRV CP pET14-b and PLRV CP pGEX-6P-2 constructs 

The PLRV CP pET14-b construct was sequenced using T7 forward primer as described see 

chapter 3 of this thesis) in order to confirm that the PLRV CP sequence was correctly cloned for 

expression (see addendum C of this thesis). Sequence chromatograms were edited in Chromas 

v1.45 (Technelysium Pty., Tewantin, Australia).  

The PLRV CP pGEX-6P-2 was sequenced using the pGEX forward and reverse primers as 

described (see chapter 3 of this thesis) in order to confirm that the PLRV CP sequence was 

correctly cloned for expression (see addendum D of this thesis). Sequence chromatograms 

were edited in Chromas v1.45 (Technelysium Pty., Tewantin, Australia). 

Expression of PLRV CP in the pET14-b system in E. coli strain BL21(DE3)pLysS 

The PLRV CP pET14-b construct containing the Nco1 and Xho1 restriction enzyme cut sites 

was transformed into E. coli BL21(DE3)pLysS (Novagen) cells. Transformation of the 

expression hosts and inoculation of colonies was performed as described (see chapter 3 of this 

thesis), however approximately 200 ng of the PLRV CP pET14-b construct and 50 μl of 

competent cell suspension were used. The LB plates were supplemented with the appropriate 

antibiotics for the E. coli strain BL21(DE3)pLysS in the required concentrations (50 μg/ml 

ampicillin and 34 μg/ml chloramphenicol) and multiple colonies were inoculated per LB medium 

supplemented with 1% glucose and the specific antibiotics for the strain (see above). Overnight 
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cultures of transformed BL21(DE3)pLysS strain was inoculated to a dilution of x 50 into TB 

medium (12 g/L tryptone, 24 g/L yeast extract, 0.0004% glycerol, in 0.01 M potassium 

phosphate buffer) containing 1% glucose with 50 μg/ml ampicillin and 34 μg/ml 

chloramphenicol. The cultures were grown for approximately 3 to 4 h to an OD600 of 0.6. 

Expression of the E. coli strain BL21(DE3)pLYSs with PLRV CP pET14-b construct was induced 

by the addition of IPTG to 0.4 mM. The induced cells were grown for a further 4 h at 37°C. Cells 

were harvested for protein purification by placing the induction mixture on ice for approximately 

5 min followed by centrifugation at 10,000 x g for 5 min and the cell pellets resuspended in a 

tenth of the original cell culture volume TEN-50 buffer (20 mM Tris, pH 8; 1 mM EDTA, pH 8; 0.2 

mM DTT, 0.1% Triton X100, 50 mM NaCl; 10% glycerol) and stored at -80°C. One ml aliquots 

were taken at different growth points during the induction, their OD600 values noted and stored 

as described above.  

Protein profiles of bacterial fractions were compared by separation on sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli, 1970). Aliquots of the cell samples 

were taken according to their OD600 values so that the amount of cells for the different growth 

points was approximately the same. For the release of the proteins from the cell interior, the 

different time point samples that were stored at -80°C were transferred to 37°C to thaw. After 

thawing, the samples were again frozen at -80°C. This freeze-thaw cycle was repeated three 

times to break open the cells under the influence of T7 lysozyme encoded by the pLysS plasmid, 

which further improves lysis of the E. coli cells. For shearing the DNA and reducing the viscosity 

of the cell lysate, the samples were pushed through a G25 syringe-needle approximately three 

times. This process made the samples less viscous and easier to handle for SDS-PAGE 

analysis. An aliquot of each sample to be analyzed was mixed with an equal volume of 

treatment buffer (0.125 M Tris-Cl, 4% (w/v) SDS, 20% (v/v) glycerol, 10% (v/v) 2-mercapto-

ethanol, pH 6.8) and 0.2 volumes of bromophenol blue (0.1% (w/v) in a 1.5 mM NaOH solution), 

and incubated on a 90°C hotplate for 10 min. 

Electrophoresis was carried out at 20 mA in a resolving gel (dimensions: 8.4 cm x 10.4 cm x 1.5 

mm) [12 or 14% (depending on requirements) T, 2.7% Cbis, 0.1% SDS, 0.375 M Tris-HCl, pH 

8.8], using a Omeg Scientific Vertical Gel Electrophoresis Unit. Ten-well stacking gels 

(dimensions: 10.4 cm x 1 cm x 1.5 mm) (4.5% T, 2.7% Cbis, 0.125 M Tris-HCl, 1% SDS, pH 6.8) 

and a single tank buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3) were used in this 

system. RainbowTM coloured protein molecular weight markers (Amersham) were treated in the 

same manner as bacterial fractions for use as protein standards (14.3-220 kDa). Protein bands 

were visualized after staining of the resolving gel [1 hour in 0.025% (w/v) Coomassie Blue R-

250, 40% (v/v) methanol at 37°C], followed by destaining [1 hour in Destain 1, 50% (v/v) 

methanol, 10% (v/v) acetic acid at 37°C] and overnight in Destain 2 [7% (v/v) acetic acid, 5% 

(v/v) methanol] at room temperature. The relative molecular mass (Mr) of protein bands of 

interest was calculated by comparison of the relative mobilities (Rf-values) with those of the 
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protein standards that were electrophoresed on the same gel, plotted on a calibration curve (Rf-

values vs log Mr). The Rf-value of a particular band was obtained by division of its mobility (mm 

from top of resolving gel) by the corresponding mobility of the dye front.  

Expression of PLRV CP in the pET14-b system in E. coli strain Rosetta-gamiB (DE3)pLysS 

The PLRV CP pET14-b construct containing the Nco1 and Xho1 restriction enzyme cut sites 

was transformed into E. coli Rosetta-gami B(DE3)pLysS (Novagen). Transformation of the 

expression hosts and inoculation of colonies was performed as described (see chapter 3 of this 

thesis), however approximately 50 ng of plasmid and 9 μl of competent cell suspension was 

used. The LB content of the transformation was not centrifuged before plating out. Furthermore, 

the LB plates were supplemented with the appropriate antibiotics for the E. coli Rosetta-gami 

B(DE3)pLysS strain in the required concentrations (50 μg/ml ampicillin, 15 μg/ml kanamycin, 

12.5 μg/ml tetracycline and 34 μg/ml chloramphenicol) and multiple colonies were inoculated 

per LB medium supplemented with 1% glucose and the specific antibiotics for the strain (see 

above). Overnight cultures of the respective strains were inoculated to a dilution of x 50 into TB 

medium (12 g/L tryptone, 24 g/L yeast extract, 0.0004% glycerol, 0.01 M potassium phosphate 

buffer) containing 1% glucose with 50 μg/ml ampicillin, 15 μg/ml kanamycin, 12.5 μg/ml 

tetracycline and 34 μg/ml chloramphenicol. The cultures were grown for approximately 5 h to an 

OD600 of 0.6. Expression of the strain with the PLRV CP pET14-b construct was induced by the 

addition of IPTG to 0.4 mM. The induced cells were grown for a further 4 h at 37°C. Cells were 

harvested and stored as described above.  

Preparation of the bacterial samples for SDS-PAGE and SDS-PAGE analysis was performed as 

described above. 

Expression of PLRV CP in the pET14-b system in E. coli strain Rosetta-2(DE3)pLysS 

The PLRV CP pET14-b construct containing the Nco1 and Xho1 restriction enzyme cut sites 

was transformed into E. coli Rosetta-2(DE3)pLysS (Novagen). Transformation of the expression 

hosts was performed as described above for expression of E. coli strain Rosetta-gami 

B(DE3)pLysS. The LB plates were supplemented with the appropriate antibiotics for the E. coli 

strain Rosetta-2(DE3)pLysS in the required concentrations (50 μg/ml ampicillin and 34 μg/ml 

chloramphenicol) and multiple colonies were inoculated per LB medium supplemented with 1% 

glucose and the specific antibiotics for the strain (see above). Overnight cultures of the 

respective strains were inoculated to a dilution of x 50 into TB medium (12 g/L tryptone, 24 g/L 

yeast extract, 0.0004% glycerol, 0.01 M potassium phosphate buffer) containing 1% glucose 

with 50 μg/ml ampicillin and 34 μg/ml chloramphenicol (BL21(DE3)pLysS. The cultures were 

grown for approximately 3 to 4 h to an OD600 of 0.6. Expression of the E. coli strain Rosetta-

2(DE3)pLysS with the PLRV CP pET14-b construct was induced by the addition of IPTG to 0.4 
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mM. The induced cells were grown for a further 4 h at 37°C. Cells were harvested for protein 

purification and stored as described above. 

Preparation of the bacterial samples for SDS-PAGE and SDS-PAGE analysis was performed as 

described above. 

For cell lysates where the SDS-PAGE analysis indicated positive induction, the proteins were 

further purified. Four hours after induction of the cell culture containing the PLRV CP pET14-b 

construct, ammonium sulphate precipitation of the induced recombinant protein was performed 

as follows; the cell culture was resuspended in a tenth of the original cell culture volume of TEN-

50 buffer and was taken through three cycles of freeze-thawing as described for the preparation 

of SDS-PAGE analysis samples. Subsequently, to 18 ml of the cell lysate, 12 ml of saturated 

ammonium sulphate was added to achieve 40 % ammonium sulphate saturation and 

precipitation. The sample was incubated for 2 h at 4°C and centrifuged for 20 min at 27,200 x g. 

To 29 ml of the supernatant a further 5.8 ml saturated ammonium sulphate was added to 

achieve 50 % ammonium sulphate precipitation. The sample was incubated for 2 h at 4°C and 

centrifuged for 20 min at 27,200 x g. The pellet was redissolved in 3 ml TEN-50 buffer and a 

further 2.5 ml of saturated ammonium sulphate was added to 2.5 ml of the redissolved pellet 

and incubated for 2 h at 4°C for a second 50% ammonium sulphate precipitation. The mixture 

was centrifuged for 20 min at 27,200 x g and the remaining pellet was redissolved in 1 ml TEN-

50 buffer. Aliquots were taken from each fraction during the precipitation, (40% precipitation 

pellet (pellet resuspended in 1 ml TEN-50 buffer), 40% precipitation supernatant (1 ml of the 

supernatant was stored), first 50% precipitation pellet (500 μl of the TEN-50 resuspended pellet 

was stored), first 50% precipitation supernatant (1 ml of the aliquot was stored), second 50% 

precipitation pellet (pellet resuspended in 1 ml TEN-50 buffer), second 50% precipitation 

supernatant (1 ml aliquot stored) and dialyzed at 4°C overnight against two changes of TEN-50 

buffer (without glycerol and Triton-X100). These samples were subsequently used for SDS-

PAGE analysis.  

Expression of PLRV CP in the pGEX-6P-2 system in E. coli strain BL21(DE3)pLysS and 

Rosetta-2(DE3)pLysS 

The PLRV CP pGEX-6P-2 construct was transformed into E. coli BL21(DE3)pLysS (Novagen) 

and Rosetta-2(DE3)pLysS (Novagen) cells. Transformation of the expression hosts was 

performed as described above for expression of E. coli strain Rosetta-gami B(DE3)pLysS. The 

LB plates were supplemented with the appropriate antibiotics for the E. coli strains 

BL21(DE3)pLysS and Rosetta-2(DE3)pLysS in the required concentrations (100 μg/ml 

ampicillin and 34 μg/ml chloramphenicol) and multiple colonies were inoculated per LB medium 

supplemented with 1% glucose and the specific antibiotics for the strains (see above). 

Overnight cultures of the respective strains were inoculated to a dilution of x 50 into TB medium 

(12 g/L tryptone, 24 g/L yeast extract, 0.0004% glycerol, 0.01 M potassium phosphate buffer) 
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containing 1% glucose with 100 μg/ml ampicillin and 34 μg/ml chloramphenicol. The cultures 

were grown for approximately 3 to 4 h to an OD600 of 1.0. Expression of the strains with the 

PLRV CP pGEX-6P-2 construct was induced by the addition of IPTG to 0.1 mM. The induced 

cells were grown for a further 4 h at 37°C. Cells were harvested for protein purification and 

stored as described above.  

Preparation of the bacterial samples for SDS-PAGE and SDS-PAGE analysis was performed as 

described above. 

Column purification 

For purification of cell cultures containing the PLRV CP pGEX-6P-2 constructs GST•BindTM 

Resin (Novagen) was used. The pellet of the induced cells, resuspended in TEN-50 buffer and 

stored at – 80°C, was treated with cycles of freezing and thawing as described above for the 

SDS-PAGE samples. Thereafter, the samples were also treated with a syringe as described for 

the SDS-PAGE samples, however, because of the volume of the sample a 1.8 x 40 mm 

Luerlock needle, 18 G, 21G, 23G and 25G needles were used in order of the greatest syringe 

size to the least to ease the syringe treatment. The syringe treated sample was centrifuged at 

16,000 x g for 20 min at 4°C and the pellet discarded so that only the soluble phase was used 

for further purification (it was established that the recombinant fusion protein was largely 

expressed in the soluble fraction). The soluble phase of the cell lysate was pulse sonicated 

briefly (four repeats of 10 sec each) in a Beckman Sonicator Model W-225R Cell Disrupter and 

centrifuged again at 16,000 x g for 20 min at 4°C. The supernatant was further purified through 

a non-pyrogenic, low protein binding Millipore 0.45 μM filter unit and subsequently used for 

column purification.  

Before applying the cell lysate to the column, the GST•BindTM Resin (10 ml column volume) was 

washed with three column volumes of sterile distilled water (column flow performed under 

gravity force) and equilibrated with three column volumes ice cold PBS (0.15 M, pH 7.2). 

Thereafter, approximately two column volumes of the cleared and filtered cell lysate was applied 

to the GST•BindTM Resin and the flowthrough collected. The cell lysate flowthrough was 

reapplied to the column and the flowthrough collected to reapply it a third time to the column. 

The column was washed with nine column volumes of a PBS buffer with a higher NaCl 

concentration and pH as well as added Triton X-100 to decrease non-specific binding to the 

column (300 mM NaCl, pH 8, 1% Triton X-100). GST-fusion proteins that bound to the column 

were eluted with ten 2 ml volumes (representing a fifth of the column volume) of reduced 

glutathione (50 mM Tris pH 8.0, 10 mM reduced glutathione). Fractions (2 ml) were collected in 

Eppendorf tubes (2 x 1 ml) and stored at -80°C. The column was washed with three column 

volumes of cleansing buffer 1 (0.1 M borate buffer, pH 8.5 containing 0.5 M NaCl) and three 

column volumes of cleansing buffer 2 (0.1 M acetate buffer, pH 4.5 containing 0.5 M NaCl). For 

storage the column was washed with a half column volume of 20% ethanol and stored at 4°C. 
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Fractions of each purification step were collected and stored at –80°C in Eppendorf tubes for 

SDS-PAGE analysis. Five μl of each fraction was electrophoresed with SDS-PAGE as 

described above for confirmation of purification. 

Antibody production 

The purified recombinant GST-PLRV CP fusion protein was dialyzed at 4°C against deionized 

water for 4 h. Thereafter, the dialysis tubes were placed in 0.1 x PBS for dialysis overnight at 

4°C. The mixture was subsequently concentrated to a seventh of the original volume on a 

Speedvac Savant rotary evaporator and the protein concentration determined using the 

Bradford method (Bradford, 1976) that was modified for use in microtitre plates. A standard 

solution of BSA (fraction V, 2 mg/ml in 0.1 x PBS) was used to prepare a standard dilution 

series. Each standard was pipetted in duplicate into a microtitre plate and 250 μl of Bradford 

reagent [0.01% (w/v) Coomassie Brilliant Blue G-250, 4.7% (w/v) ethanol, 8.5% (w/v) 

phosphoric acid] was added and incubated for 2 min at room temperature. The plate was placed 

into a Titertek Multiscan spectrophotometer and the absorbances were read at 620 nm. BSA 

standards were used to set up a standard curve to calculate concentrations of samples of 

unknown protein concentration. Alternatively, the protein concentration of some of the samples 

was determined using a BCA protein assay (Pierce) according to the manufacturer’s instructions 

after overnight dialysis of the respective samples against two changes of PBS to remove the 

glutathione.   

Antibodies were raised to expressed GST/PLRV-CP fusion protein according to Bellstedt et al. 

(1987) with the use of naked bacteria. Briefly, for immunisation purposes the recombinant PLRV 

CP was firstly adsorbed to naked bacteria. A standard 2 mg/ml suspention of naked bacteria 

was prepared in sterile water for use in the adsorption to the antigenic recombinant PLRV CP. 

Protein, 120 μg, was added to 250 μl of naked bacteria solution and homogenized with a loosely 

fitting Teflon plunger. The mixture was subsequently dried by rotaty evaporation on a Speedvac 

Savant and resuspended in PBS to the desired final concentration (40 μg of recombinant GST-

PLRV CP fusion protein adsorbed to 200 μg naked bacteria/0.5 ml PBS). Rabbits were 

immunised with this amount of recombinant PLRV CP adsorbed to naked bacteria on days 0, 3, 

8, 14, 17, 21, 28, 31, 35, 84, 87 and 90. Test bleeds of 2 ml were drawn on days 0, 21 and 28 

and larger bleeds (20 ml) on days 42 and 97.  

Protease cleavage 

In order to cleave GST from the GST-PLRV CP fusion protein, the GST-PLRV CP fusion protein 

was bound and washed on the GST•BindTM Resin as described previously. The bed volume in 

this case was 2 ml and the bacterial lysate applied to the column was approximately twelve bed 

volumes. The column was washed with ten bed volumes of PreScission cleavage buffer (50 mM 

Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5) and equilibrated at 4°C for 30 min. 
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PreScission Protease enzyme (Amersham) (20 units of enzyme) was added per mg fusion 

protein that was bound per ml of resin and incubated on a rotor at low speed overnight at 4°C. 

Samples were eluted with 20 bed volumes of PreScission cleavage buffer that were collected in 

either 1, 2 or 4 ml fractions. Samples were concentrated to a eighth of their original volume by 

rotary evaporation on a Speedvac Savant. These samples were analysed on a SDS-PAGE gel 

as described previously and approximately 1 μg samples were loaded onto the gel, in the cases 

where the protein concentration of the fractions was too low, a maximum amount of 20 μl was 

loaded on the gel.  

Western blot 

Prior to western blotting, all samples were subjected to 14% SDS-PAGE, as described before. 

Separated protein was subsequently transferred electrophoretically (16-20 h at 120 mA) to a 

nitrocellulose membrane (0.45 μm, Schleicher and Schuel) in a buffer consisting of 0.05 M Tris, 

0.2 M glycine and 20% (v/v) methanol (pH 8.3). The western blot analysis was performed in a 

multi-step procedure, all steps were carried out under constant agitation and the antibody 

incubating steps was carried out at 37°C. Firstly, the unoccupied area of the nitrocellulose 

membrane was blocked with casein buffer (154 mM NaCl, 0. 5% (w/v) casein, 10 mM Tris-Cl, 

0.02% thiomersal, pH 7.6) for 20 min. This was followed by incubation with the desired dilution 

(in casein buffer) of the primary antibody (either anti-PLRV (Neogen), 1/200, 1/500 or produced 

anti-recombinant fusion protein, 1/1000) for 1 h. Excess antibody was removed by three washes 

of 5 min each in PBS-Tween (0.15 M PBS, pH 7.2, supplemented with 0.1% (v/v) Tween-20). 

The membrane was subsequently incubated with goat anti-rabbit antibodies (Sigma, diluted 

1/500 in casein buffer) for 1 h. After repetition of the washing step, the membrane was 

incubated with rabbit peroxidase-anti-peroxidase complex (Sigma,) for 1 h and washed again. 

Specific protein bands were visualized as black/blue precipitates by addition of substrate 

solution (4-chloro-1-naphtol (18 mg) dissolved in cold methanol (6 ml) which was added to 30 ml 

PBS (pH 7.2) containing 9 μl of a 34% H2O2 solution). The substrate reaction was terminated 

after 30 min at room temperature by washing the membrane three times with distilled water. 

Due to the light-sensitivity of substrate reaction products, membranes were blotted dry and 

stored wrapped in aluminium foil.  

In a separate western blot prepared as described above up to the blocking step, the membrane 

was incubated with a 1/100 dilution of goat anti-GST antibodies (Amersham) in filtered casein 

buffer. A PBS-Tween buffer was used for wash steps as above. The membrane was incubated 

in bovine anti-goat IgG-HRP (Santa Cruz Biotechnology) (1/10 000 dilution in filtered casein 

buffer). After SuperSignal West Pico Chemiluminescent Substrate (Pierce) addition according to 

the manufacturer’s instructions, the wetted blot was exposed to standard autoradiographic film 

for 30 sec.  
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Results 

Amplification and cloning of the PLRV CP gene into pGEM-T Easy 

As described in chapter 3 of this thesis, the CP gene of PLRV contained in the plant samples 

was readily amplified following the sample preparation technique and using the optimized RT-

PCR. Successful cloning could be confirmed using the confirmatory PCR as described (see 

chapter 3 of this thesis). Sequence analysis confirmed that the RT-PCR product was the PLRV 

CP gene (627 bp) (results not shown). 

Nco1 and Nde1 subcloning into pET14-b 

When the Nco1 and Nde1 digested products of the PLRV CP pGEM-T Easy construct were 

used for subcloning, colonies with PLRV CP pET14-b constructs were not obtained. It was 

found after repeated attempts of digestions with the restriction enzymes Nco1 and Nde1 that 

Nde1 may not have digested the pGEM-T Easy and pET14-b plasmids completely (Fig. 1 and 

Fig. 2).  
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Fig. 1. Nco1 and Nde1 restriction enzyme digests of PLRV CP pGEM-T Easy construct and pET14-
b plasmid. Lane 1: undigested PLRV CP pGEM-T Easy construct; lane 2-7: restriction enzyme digests of 
the PLRV CP pGEM-T Easy construct; lane 8: no sample; lane 9: pET14-b plasmid undigested; lane 10-
14: restriction enzyme digests of the pET14-b plasmid; lane 15: no sample; lane 16: 1 kb DNA ladder 
(New England Biolabs).  

Evidence that double restriction enzyme digestion of the PLRV CP pGEM-T Easy construct was 

not complete is shown in Fig. 1 (lanes 2-7). When the pET14-b plasmid was digested with Nco1 

only, it was found that the pET14-b plasmid was fully digested to yield a single cleaved plasmid 

band (Fig. 2, lane 4, 5). When the pET14-b plasmid was digested with Nde1 only it was found 

that the pET14-b plasmid was not completely digested, which appears to be the result of 

incomplete cleavage by the Nde1 restriction enzyme (Fig. 2, lane 6, 7). 
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For this reason, an approach in which the restriction enzymes Nco1 and Xho1 were used for 

cleaving the PLRV CP gene from the PLRV CP pGEM-T Easy construct, was followed. 
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Fig. 2. Nco1 and Nde1 restriction enzyme digests of PLRV CP pGEM-T Easy construct and pET14-
b plasmid. Lane 1: 1 kb DNA ladder (New England Biolabs); lane 2: pET14-b plasmid undigested; lane 3: 
no sample; lane 4-5: Nco1 restriction enzyme digest of pET14-b plasmid; lane 6-7: Nde1 restriction 
enzyme digest of pET14-b plasmid. 

Nco1 and Xho1 subcloning into pET14-b 

Digestion of the PLRV CP pGEM-T Easy construct and the pET14-b plasmid with Nco1 and 

Xho1 was successful as is shown in Fig. 3. Sequencing revealed that the PLRV CP gene was 

successfully cloned into the expression plasmid (pET14-b) using these restriction enzymes. 
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Fig. 3. Nco1 and Xho1 restriction enzyme digests of PLRV CP pGEM-T Easy construct and pET14-
b plasmid. Lane 1: 1 kb DNA ladder (New England Biolabs); lane 2-6: Nco1 and Xho1 restriction enzyme 
digests of pET14-b plasmid; lane 7: pET14-b plasmid undigested; lane 8: HyperLadder IV (Bioline); lane 
9-13: Nco1 and Xho1 restriction enzyme digests of the PLRV CP pGEM-T Easy construct; lane 14: PLRV 
CP pGEM-T Easy construct undigested; lane 15: Xho1 restriction enzyme digest of PLRV CP pGEM-T 
Easy construct; lane 16: Nco1 restriction enzyme digest of PLRV CP pGEM-T Easy construct. 
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EcoR1 and Xho1 subcloning into pGEX-6P-2 

The CP containing insert could be cleaved from pGEM-T Easy with the restriction enzymes 

EcoR1 and Xho1 as shown in Fig. 4. Sequencing revealed that the PLRV CP gene was 

successfully cloned into the expression plasmid (pGEX-6P-2) using these restriction enzymes. 
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Fig. 4. EcoR1 and Xho1 restriction enzyme digests of PLRV CP pGEM-T Easy construct and pGEX-
6P-2 plasmid. Lane 1: pGEX-6P-2 plasmid undigested; lane 2: 1 kb DNA ladder (New England Biolabs); 
lane 3-7: EcoR1 and Xho1 restriction enzyme digests of pGEX-6P-2 plasmid; lane 8: EcoR1 restriction 
enzyme digest of pGEX-6P-2 plasmid; lane 9: Xho1 restriction enzyme digest of pGEX-6P-2 plasmid; 
lane 10: 100 bp DNA ladder (Promega); lane 11-15: EcoR1 and Xho1 restriction enzyme digests of the 
PLRV CP pGEM-T Easy construct; lane 16: EcoR1 restriction enzyme digest of PLRV CP pGEM-T Easy 
construct; lane 17: Xho1 restriction enzyme digest of PLRV CP pGEM-T Easy construct; lane 18: PLRV 
CP pGEM-T Easy construct undigested.  

Sequencing analysis of the PLRV CP pET14-b and PLRV CP pGEX-6P-2 constructs 

Sequence analysis of both of these PLRV CP constructs was performed to confirm correct 

cloning with a view to ensuring that the PLRV CP could be expressed successfully. Each of the 

sequences of these PLRV CP constructs revealed the unaltered ribosome binding site, 
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restriction enzyme cut sites used for their cloning, both primers, the ATG start site and the 

PLRV CP gene in correct orientation and the stop site (see addendum C and D of this thesis). 

Expression of PLRV CP in the pET14-b system in E. coli strain BL21(DE3)pLysS 

The PLRV CP pET14-b construct was successfully transformed into the E. coli strain 

BL21(DE3)pLysS as shown by antibiotic selection. The absence of protein bands at 23 kDa 

when the transformants were induced (lanes 1-4) in comparison to negative controls (lane 6) 

gave evidence that no recombinant proteins were produced (Fig. 5). The weak presence of a 

band at 23 kDa in lanes 2 and 3 was not interpreted as indicative of protein expression but was 

attributed to the loading of higher relative amounts of total proteins in these lanes. 
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Fig. 5. Profiles of protein expression of PLRV CP in the pET14-b system in E. coli strain 
BL21(DE3)pLysS using reducing SDS-PAGE (14%). Lane 1: BL21 before induction (0 h); lane 2: BL21 
4 h after induction; lane 3: BL21 10 h after induction; lane 4: BL21 12 h after induction; lane 5: Rainbow 
molecular protein marker (Amersham); lane 6: E. coli strain Rosetta-gami B(DE3)pLysS with PLRV CP 
pET14-b construct, 12 h cell growth without induction (negative control). (BL21 = E. coli strain 
BL21(DE3)pLysS with PLRV CP pET14-b construct) 

Expression of PLRV CP in the pET14-b system in E. coli strain Rosetta-gami B(DE3)pLysS 

Expression of the PLRV CP pET14-b construct in the E. coli strain Rosetta-gami B(DE3)pLysS 

resulted in the production of two proteins (Fig. 6). Neither of these proteins had the expected 

size of PLRV CP (23 kDa). The molecular weights of the two unknown expressed proteins as 

shown in Fig. 6, lane 6 (indicated by arrows), were determined with a standard curve. The size 

of the one protein was 15.6 kDa (indicated by lower arrow) and that of the other protein was 

20.9 kDa (indicated by upper arrow). In an attempt to increase expression of the these proteins 

the conditions for expression were altered (the concentration for IPTG induction was increased 

from 0.4 mM to 1.0 mM, more than one colony was inoculated for the overnight culture instead 

of one and 1% glucose was added to the LB plates and overnight culture growth medium).  
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Fig. 6. Profiles of protein expression of PLRV CP in the pET14-b system in E. coli strain Rosetta-
gami B(DE3)pLysS using reducing SDS-PAGE (14%). Lane 1: Rosetta-gami before induction (0 h); 
lane 2: Rosetta-gami 4 h after induction; lane 3: Rosetta-gami 6 h after induction; lane 4: Rosetta-gami 8 
h after induction; lane 5: Rosetta-gami 10 h after induction; lane 6: Rosetta-gami 12 h after induction; lane 
7: Rainbow molecular protein marker (Amersham). Arrows indicate the two recombinant proteins that 
might have been formed as a result of induction. (Rosetta-gami = E. coli strain Rosetta-gami 
B(DE3)pLysS with PLRV CP pET14-b construct) 

Despite of these changes made in the conditions of expression, the amounts of the two induced 

proteins was not increased (Fig. 7). However, when the conditions of expression were altered, 

apparently only the recombinant protein of approximately 15.6 kDa was produced (Fig. 7, lanes 

3, 6, 7, 8).  
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Fig. 7. Profiles of protein expression of PLRV CP in the pET14-b system in E. coli strain Rosetta-
gami B(DE3)pLysS with altered expression conditions using reducing SDS-PAGE (14%). Lane 1: 
Rosetta-gami before induction (0 h); lane 2: Rainbow molecular protein marker (Amersham); lane 3: 
Rosetta-gami 8 h after induction; lane 4: Rosetta-gami 12 h cell growth without induction (negative 
control); lane 5: positive control 4 h after induction; lane 6: Rosetta-gami 6 h after induction; lane 7: 
Rosetta-gami 4 h after induction; lane 8: Rosetta-gami 2 h after induction. Arrow indicates the 
recombinant protein that might have been formed as a result of induction by IPTG. (Rosetta-gami = E. coli 
strain Rosetta-gami B(DE3)pLysS with PLRV CP pET14-b construct; positive control = E. coli strain 
Rosetta-gami B(DE3)pLysS with PLRV CP pET14-b construct containing a 65 kDa expressible protein) 

Expression of PLRV CP in the pET14-b system in E. coli strain Rosetta-2(DE3)pLysS 

The results of the expression of the PLRV CP pET14-b construct in Rosetta-2(DE3)pLysS are 

shown in Fig. 8. Induction was shown to be time dependent with an increase in recombinant 

protein up to 4 h (lanes 1, 3, 7 and 9) in comparison to uninduced negative controls taken at the 

same time points (lanes 2, 4, 6 and 8). Expression of the PLRV CP pET14-b construct in the E. 

coli strain Rosetta-2(DE3)pLysS resulted in the production of one protein (Fig. 8, lane 3, 7 and 

9) of approximately 15.6 kDa. The second protein (20.9 kDa) that was expressed when the 

PLRV CP pET14-b construct was expressed in Rosetta-gami B(DE3)pLysS (in Fig. 6 but not in 

Fig. 7), was not expressed in this bacterial strain.  

To ensure that the expressed protein shown in Fig. 8, lanes 3, 7 and 9 was not an expression 

artifact, the expression was repeated (Fig. 9, lanes 1, 4 and 8) with an additional negative 

control: the E. coli strain Rosetta-2(DE3)pLysS that was not transformed with either the pET14-

b plasmid alone or the PLRV CP pET14-b construct (negative control A) (Fig. 9, lanes 2, 5 and 

9). Negative control B, an E. coli strain Rosetta-2(DE3)pLysS that was transformed with the 

PLRV CP pET14-b construct (with PLRV CP gene) but not induced was also included (Fig. 9, 

lanes 3, 6 and 10).  
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Fig. 8. Profiles of protein expression of PLRV CP in the pET-14b system in E. coli strain Rosetta-
2(DE3)pLysS using reducing SDS-PAGE (14%). Lane 1: Rosetta-2, 1 h after induction, lane 2: 
Negative control 1 h cell growth ; lane 3: Rosetta-2, 3 h after induction; lane 4: Negative control 3 h cell 
growth; lane 5: Rainbow molecular protein marker (Amersham); lane 6: Rosetta-2 before induction (0 h); 
lane 7: Rosetta-2, 4 h after induction; lane 8: Negative control 4 h cell growth; lane 9: Rosetta-2, 2 h after 
induction; lane 10: Negative control 2 h cell growth. (Rosetta-2 = E. coli strain Rosetta-2(DE3)pLysS with 
PLRV CP pET14-b construct; Negative control = E. coli strain Rosetta-2(DE3)pLysS with PLRV CP 
pET14-b construct, cell growth without induction).  
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Fig. 9. Profiles of protein expression of PLRV CP in the pET-14b system in E. coli strain Rosetta-
2(DE3)pLysS with additional negative controls using reducing SDS-PAGE (14%). Lane 1: Rosetta-2 
before induction (0 h); lane 2: Negative control A before induction (0 h); lane 3: Negative control B, 0 h 
cell growth; lane 4: Rosetta-2, 2 h after induction; lane 5: Negative control A, 2 h after induction; lane 6: 
Negative control B, 2 h cell growth; lane 7: Rainbow molecular protein marker (Amersham); lane 8: 
Rosetta-2, 4h after induction; lane 9: Negative control A, 4 h after induction; lane 10: Negative control B, 4 
h cell growth. (Rosetta-2 = E. coli strain Rosetta-2(DE3)pLysS with PLRV CP pET14-b construct; 
Negative control A = E. coli strain Rosetta-2(DE3)pLysS without PLRV CP pET14-b construct; Negative 
control B = E. coli strain Rosetta-2(DE3)pLysS with PLRV CP pET14-b construct, cell growth without 
induction). 
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A protein was present in the induced cell cultures with the PLRV CP pET14-b construct (Fig. 9). 

This protein was not found in the induced but untransformed E. coli strain Rosetta-2(DE3)pLysS 

negative control nor in the uninduced transformed control. In this induction only one potential 

recombinant protein was produced and not two as was the case with the expression shown in 

Figs. 7 and 8. The protein that was formed was in the size order of 15.6 kDa and is smaller than 

the predicted size of PLRV CP (23 kDa). Therefore, the protein that is induced is indeed a 

product of transformation. Subsequently, attempts were made to purify the induced protein by 

means of ammonium sulphate precipitation.  

Induction of the E. coli strain Rosetta-2(DE3)pLysS with the PLRV CP gene in pET14-b was 

repeated and the protein was purified from the 4 h after induction cell culture. The recombinant 

protein could not be purified to complete homogeneity, but in comparison with the 

unprecipitated fraction, the precipitated fraction shown in Fig. 10, lane 7 and 9, contains a 

greater concentration of the recombinant protein. Furthermore, the second 50% precipitation 

shown in lane 9, Fig. 10 resulted in an additional enrichment of the recombinant protein in 

comparison with the precipitated fraction shown in lane 7, Fig. 10. 
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Fig. 10. Protein profiles of ammonium sulphate precipitation of the recombinant protein formed by 
E. coli strain Rosetta-2(DE3)pLysS with the PLRV CP gene in pET14-b using reducing SDS-PAGE 
(14%). Lane 1: Rosetta-2, 4 h after induction; lane 2: Rosetta-2, 4 h after induction, soluble phase of cell 
lysate; lane 3: Rosetta-2, 4 h after induction, insoluble phase of cell lysate; lane 4: Rainbow molecular 
protein marker (Amersham); lane 5: Ammonium sulphate precipitation (40%), pellet; lane 6: Ammonium 
sulphate precipitation (40%), supernatant; lane 7: Ammonium sulphate precipitation (50%), pellet; lane 8: 
Ammonium sulphate precipitation (50%), supernatant; lane 9: Ammonium sulphate second 50% 
precipitation, pellet; lane 10: Ammonium sulphate second 50% precipitation, supernatant. (Rosetta-2 = E. 
coli strain Rosetta-2(DE3)pLysS with PLRV CP pET14-b construct). The fraction of lane 1 was used for 
ammonium sulphate precipitation.  

In order to test whether the induced, recombinant 15.6 kDa protein (Fig. 10, lane 7, 9) was 

PLRV CP, investigations into the identity of this protein were conducted with a western blot 
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using commercial anti-PLRV antibodies, which is shown in Fig. 11. All of the bands detected in 

the western blot were of low intensity and can in all likelihood be ascribed to non-specific 

binding. Commercial antibodies against PLRV do not bind with the protein of molecular weight 

15.6 kDa indicating that the induced protein is not likely to be PLRV CP and is thus possibly an 

artifact. However, the western blot indicated that the antibodies to PLRV CP bound weakly to a 

protein contained in the sample shown in lane 4 of a molecular weight of approximately 23 kDa 

which would be in agreement with the expected size of PLRV CP. If the faint band in the size 

order of 23 kDa (Fig 11, lane 3) does indicate a low level of PLRV CP production, this level of 

expression would be too low for efficient protein isolation, purification and immunization.  

 

(a) 1 2 3 4 5     (b) 1 2 3 4 5  

     

Fig. 11. (a) Western-blot and (b) protein profiles using reducing SDS-PAGE (14%) of recombinant 
protein purified by ammonium sulphate precipitation. Commercial anti-PLRV antibodies were used 
for the detection of proteins. For (a) and (b): lane 1: Rainbow molecular protein marker (Amersham); lane 
2: Rosetta-2, 4 h after induction; lane 3: Rosetta-2, 4 h after induction (sample x10 diluted); lane 4: 
Ammonium sulphate second 50% precipitation, pellet; lane 5: Ammonium sulphate second 50% 
precipitation, pellet (sample x10 diluted). (Rosetta-2 = E. coli strain Rosetta-2(DE3)pLysS with PLRV CP 
pET14-b construct). The weak bands seen in (a) could be ascribed to non-specific binding due to the size 
differences of the detected proteins.  

From these results it was concluded that expression of PLRV CP using the pET14-b system 

with the present PLRV CP constructs was not successful, and even if the expression was 

performed in strains that supplement the AGA/AGG rare codons underrepresented in E. coli 

strains, it was still unsuccessful. For this reason, the expression of PLRV CP as a fusion protein 

in the pGEX-6P-2 system was subsequently attempted. 

Expression of PLRV CP in the pGEX-6P-2 system in E. coli strain BL21(DE3)pLysS and 

Rosetta-2(DE3)pLysS 

For comparative purposes, but also to circumvent potential shortages in rare codons, the PLRV 

CP pGEX-6P-2 construct was transformed into E. coli strains BL21(DE3)pLysS and Rosetta2-
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(DE3) pLysS to determine the efficiency of expression. Transformation of the PLRV CP pGEX-

6P-2 construct into E. coli strains Rosetta-2(DE3)pLysS and BL21(DE3)pLysS was successful 

as shown by antibiotic selection.  
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Fig. 12. Profiles of protein expression of PLRV CP in the pET-14b system in E. coli strain 
BL21(DE3)pLysS and Rosetta-2(DE3)pLysS with the PLRV CP gene in pGEX-6P-2 using reducing 
SDS-PAGE (12%). Lane 1: BL21-GEX before induction (0 h); lane 2: BL21-GEXins before induction (0 h); 
lane 3: Ros2-GEXins before induction (0 h); lane 4: Rainbow molecular protein marker (Amersham); lane 
5: Positive control BL21-GEX 4 h after induction; lane 6: BL21-GEXins 4 h after induction; lane 7: Ros2-
GEXins 4 h after induction; lane 8: no sample; lane 9: Ros2-GEXins 4 h after induction, soluble fraction; 
lane 10: Ros2-GEXins 4 h after induction, insoluble fraction. Arrow indicates the produced recombinant 
PLRV CP-GST fusion protein. (BL21-GEX = E. coli strain BL21(DE3)pLysS with pGEX-6P-2 plasmid 
without insert; BL21-GEXins = E. coli strain BL21(DE3)pLysS with PLRV CP pGEX-6P-2 construct; Ros2-
GEXins = E. coli strain Rosetta-2(DE3)pLysS with PLRV CP pGEX-6P-2 construct) 

Expression of the recombinant PLRV CP fusion protein was successful. The control clone that 

expresses GST (Fig 12, lane 5) shows that a protein of 26 kDa is expressed which conforms to 

the size of GST. The size of the PLRV CP is 23 kDa, therefore the calculated size of the fusion 

protein is 49 kDa. However, the molecular weight of the PLRV CP fusion protein was slightly 

smaller (approximately 40 kDa, Fig 12, lane 6, 7, 9, 10). Expression of the protein encoded by 

the PLRV CP pGEX-6P-2 construct in E. coli strain Rosetta-2(DE3)pLysS was found to be 

stronger than expression of the protein encoded by the same PLRV CP pGEX-6P-2 construct in 

E. coli strain BL21(DE3)pLysS. Furthermore, the soluble fraction of induction in Rosetta-

2(DE3)pLysS containing the PLRV CP pGEX-6P-2 construct resulted in a higher yield of 

recombinant fusion protein than the yield of the complete fraction of induction of the same PLRV 

CP pGEX-6P-2 construct in E. coli strain BL21(DE3)pLysS (Fig. 12, lane 6, 9).  

To establish which growth point after induction produces the most protein, the induction was 

repeated and samples were taken at different growth points after induction (Fig. 13).  
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Fig. 13. Protein profiles of time course expression of the PLRV CP gene in pGEX-6P-2 by E. coli 
strain Rosetta-2(DE3)pLysS using reducing SDS-PAGE (12%). Lane 1: Ros2-GEXins before induction 
(0 h); lane 2: Ros-GEXins 1 h after induction; lane 3: Ros2-GEXins 2 h after induction; lane 4: Ros2-
GEXins 3 h after induction; lane 5: Ros2-GEXins 4 h after induction; lane 6: Rainbow molecular protein 
marker (Amersham); lane 7: Ros-GEXins 4 h after induction, soluble phase; lane 8: Ros-GEXins 4 h after 
induction, insoluble phase; lane 9: Ros2-GEX 4 h after induction (postive control); lane 10: Ros2-GEXins 
4 h cell growth without induction (negative control). Arrow indicates the produced recombinant PLRV CP-
GST fusion protein. (Ros2-GEXins = E. coli strain Rosetta-2(DE3)pLysS with PLRV CP pGEX-6P-2 
construct; Ros2-GEX = E. coli strain Rosetta-2(DE3)pLysS with pGEX-6P-2 plasmid without insert). 

The greatest amount of recombinant protein was formed at 3 h after induction (Fig. 13, lane 4), 

but this does not necessarily mean that the greatest amount of soluble phase proteins were 

formed at 3 h. Furthermore, the sample in lane 4 might have been overloaded as the cellular 

proteins are also in a higher concentration than the cellular proteins in the other fractions. Fig. 

13, lane 7 shows that the greatest amount of protein that was formed is found in the soluble 

phase. The 4 h after induction culture was used for purification of PLRV CP-GST fusion protein. 

Column purification 

Results from the first trial of purification of the PLRV CP-GST fusion protein using the GST bind 

resin column, revealed that purification was not optimized because there were several impurities 

in the eluates (results not shown). In the repeat experiment the eluates were re-purified on the 

column using a PBS-wash buffer with a 2 x higher NaCl concentration and pH as well as added 

Triton X-100 to decrease non-specific binding to the column. After analysis of the samples on a 

SDS-PAGE gel, a Bradford protein determination was performed on the samples and the 

protein content was less than that expected from the visual amount on the gel. According to the 

Bradford results of three samples the protein content was 27 μg/ml, 20 μg/ml and not enough to 

be detected, respectively. Therefore, the percentage basic amino acid composition of BSA used 

for the standard curve was compared with that of the recombinant fusion protein and it was 

found to be the same. Reasons for the low Bradford detection of the protein samples in 

comparison with the clear view on the SDS-PAGE gel could be that the basic amino acids of the 

14.3 kDa 
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30 kDa 
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recombinant PLRV CP in the fusion protein were buried in the GST fusion protein. With another 

protein determination method (the BCA protein assay) the protein content was determined (after 

the glutathione was removed with dialysis). The method confirmed that the amount of protein in 

the samples was low. The reason for this low yield of protein could be two-fold: Firstly, the 

starting material for this purification consisted of the previous eluates and not the cell lysate or, 

secondly, it could have been as a result of the high viscosity of the cell lysate resulting in non-

specific binding to the column. The proteins were subsequently used for only the first round of 

immunization. For the next repeat experiment the induced cell mixture was again used for 

purification and the cell lysate was briefly sonicated and filtered. This resulted in the purification 

of a greater amount of homogenous recombinant fusion protein (Fig. 14 (b), lane 1 to 8). The 

fusion protein eluted from fraction four to ten (Fig. 14 (b), lane 1-3, 5-8). However, some of the 

fractions were not pure enough for immunization and had to be further purified (Fig. 14, lane 1-

3, 5). A Bradford protein determination was performed on the samples shown in Fig. 14 (b), lane 

6, 7, and 8, in these samples the protein fractions were pure enough for immunization. The total 

yield of recombinant protein was 2044 μg. 

Antibody production 

In an attempt to produce antibodies to native PLRV, the purified recombinant fusion protein was 

used for immunization. Antibody production was successful as determined by a western blot of 

day 0, 28 and 97 antiserum (results not shown). The titre of the day 97 antiserum was very high 

and a dilution of 1/1000 was used to detect the recombinant antigen. The recombinant fusion 

protein and GST, produced by Rosetta-2(DE3)pLysS with a pGEX-6P-2 plasmid, could be 

detected by these antibodies (results not shown).  

Protease cleavage 

In an attempt to produce antibodies to native PLRV, the GST was cleaved from the recombinant 

fusion protein using PreScission protease for purification of recombinant PLRV CP (Fig. 15).  

Cleavage of the recombinant fusion protein was successful, but the cleaved PLRV CP remained 

on the column and did not elute in the expected fractions as shown in Fig. 15. The cleaved 

PLRV CP only eluted with glutathione when the GST also eluted and was therefore 

contaminated with GST (Fig. 16, lane 8). A standard curve revealed that the size of the bigger 

band in Fig. 16, lane 8 (top arrow) is 26.1 kDa, which agrees with that of GST (26 kDa). The 

smaller band below the cleaved GST (Fig. 16, lane 8, lower arrow), which could be PLRV CP 

(23 kDa), has a molecular mass of 25.2 kDa.  
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Fig. 14. Protein profiles of GST column purification of recombinant PLRV CP-GST fusion protein 
affinity purified on GST column using reducing SDS-PAGE (12%). (a) Lane 1: Ros2-GEXins 4 h after 
induction, soluble phase cell lysate; lane 2: Ros2-GEXins 4 h after induction, soluble phase cell lysate 
after 0.45 μM filtering; lane 3: Rainbow molecular protein marker (Amersham); lane 4: Ros2-GEXins 4 h 
after induction, soluble phase cell lysate after 0.45 μM filtering and once passed through the column; lane 
5: first wash step eluate; lane 6: second wash step eluate; lane 7: third wash step eluate; lane 8: first 2 ml 
glutathione elution; lane 9: second 2 ml glutathione elution; lane 10: third 2 ml glutathione elution. (b) 
Lane 1: fourth 2 ml glutathione elution; lane 2: fifth 2 ml glutathione elution; lane 3: sixth 2 ml glutathione 
elution; lane 4: Rainbow molecular protein marker (Amersham); lane 5: seventh 2 ml glutathione elution; 
lane 6: eight 2 ml glutathione elution; lane 7: ninth 2 ml glutathione elution; lane 8: tenth 2 ml glutathione 
elution; lane 9: eluate of column wash buffer 1; lane 10: eluate of column wash buffer 2. (Ros2-GEXins = 
E. coli strain Rosetta-2(DE3)pLysS with PLRV CP pGEX-6P-2 construct; wash = column wash with PBS 
buffer).  
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Fig. 15. Protein profiles of the cleavage of recombinant PLRV CP-GST fusion with PreScission 
protease using reducing SDS-PAGE (14%). The eluate of the column was collected in one or two ml 
fractions. Lane 3: Rainbow molecular protein marker (Amersham); lane 4: purified recombinant fusion 
protein (uncleaved); Eluation without glutathione: lane 10; Fraction 3 (1 ml); lane 6: Fraction 4 (1 ml); lane 
7: Fraction 5 (1 ml); lane 9: Fraction 6 (1 ml); lane 1: Fraction 7 (1 ml); lane 5: Fraction 8 (1 ml); lane 2: 
Fraction 26 (2 ml sample); after glutathione elution: lane 8: Fraction 3 (2 ml). Approximately 1 µg of each 
sample was loaded onto the gel, except for the glutathione eluted protein in lane 8 where 10 µl of the 
fraction was loaded onto the gel. Arrows indicate the two proteins formed as a result of protease cleavage 
of PLRV CP-GST fusion protein.  

Western blot 

The purified PLRV CP fusion protein was used for immunization. This was done to test whether 

antibody formation against fusion protein would induce high levels of antibodies that would 

recognize the CP, which in turn could be used to detect native PLRV. Additionally, an attempt 

was made to cleave the GST from the PLRV CP fusion protein in order to produce antibodies to 

the cleaved PLRV CP which in turn would recognize native PLRV. Western blots were 

performed with antibodies to PLRV, recombinant fusion protein and GST to establish whether 

cleavage of the recombinant GST-PLRV CP fusion protein was successful and whether the 

recombinant PLRV CP was similar in conformation to the native PLRV CP (Fig. 16-18). The 

results of the western blot analysis performed using the anti-PLRV antibodies are shown in Fig. 

16. This blot was performed with the same antibodies prepared against native PLRV, which 

could not detect the protein that was produced using the pET14-b system (Fig. 11).  

This western blot showed that the commercial anti-PLRV antibodies detected a protein with a 

size of 24.8 kDa (Fig. 16, lane 1, which is approximately the size of PLRV CP of 23 kDa) and a 

protein with a size of 36.5 kDa (Fig. 16, lane 3, which is approximately the size of the fusion 

protein of 49 kDa) confirming that these antibodies detected the cleaved PLRV CP and the 

GST-PLRV CP fusion protein. From these results it can be deduced that commercial antibodies 

against PLRV bound weakly to both the GST-PLRV CP fusion protein and the cleaved PLRV 

CP portion of the fusion protein. 
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Fig. 16. (a) Western-blot and (b) protein profiles using reducing SDS-PAGE (14%) of protease 
cleavage of recombinant fusion protein by anti-PLRV antibodies. Anti-PLRV antibodies were used 
for the detection of proteins (the same antibodies as those used for the western blot presented in Fig. 12). 
For (a) and (b): lane 1: glutathione elution fraction; lane 2: cleaved recombinant fusion protein eluate 
fraction from GST column (approximately 1 µg); lane 3: purified recombinant fusion protein (uncleaved, 
approximately 1 µg); lane 4: Rainbow molecular protein marker (Amersham). Samples used are the same 
as those used for electrophoresis presented in Fig. 15. Arrow indicates the band detected by anti-PLRV 
antibodies of an approximate size of 24.8 kDa (approximately the size of PLRV CP, 23 kDa).   

The results of the western blot analysis performed using the anti-recombinant fusion protein 

antibodies produced in the present study are shown in Fig. 17. 

This western blot showed that the anti-GST-PLRV CP antibodies detected two proteins (Fig. 17, 

lane 2), one with a size of 23.0 kDa (which is the size of PLRV CP) and another with a size of 

26.6 kDa (which is approximately the size of GST of 26 kDa). The anti-GST-PLRV CP 

antibodies also detected a protein with a size of 40 kDa (Fig. 17, lane 4, which is approximately 

the size of GST fusion protein of 49 kDa). Taken together, these results confirm that the 

antibodies detected the cleaved GST and the GST-PLRV CP fusion protein strongly. PLRV CP 

was apparently also detected weakly (Fig. 17, lane 2) although other bands were also detected 

indicating some non-specific binding. From these results it can be deduced that antibodies 

produced against the GST-PLRV CP fusion protein bound strongly to the GST protein and 

poorly to the PLRV CP portion of the fusion protein.  

The results of the western blot analysis performed using commercial anti-GST antibodies are 

shown in Fig. 18. This western blot showed that the commercial anti-GST antibodies detected a 

protein with a size of 27 kDa (which is approximately the size of GST of 26 kDa) and a protein 

with a size of 37.6 kDa (which is approximately the size of GST fusion protein of 49 kDa) 

confirming that these antibodies detected the cleaved GST (Fig. 18, lane 2) and the GST-PLRV 

CP fusion protein (Fig. 18, lane 4). Other bands were also detected indicating some non-

specific binding. From these results it can be deduced that antibodies produced against the 
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GST protein strongly react with the recombinant fusion protein and the cleaved GST, but not 

with the cleaved PLRV CP.  

 

(a) 1 2 3 4    (b) 1 2 3 4  
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Fig. 17. (a) Western-blot and (b) protein profiles using reducing SDS-PAGE (14%) of protease 
cleavage of recombinant fusion protein by anti-recombinant fusion protein antibodies. For (a) and 
(b): lane 1: Rainbow molecular protein marker (Amersham); lane 2: glutathione elution fraction; lane 3: 
cleaved recombinant fusion protein eluate fraction from GST column (approximately 1 µg); lane 4: purified 
recombinant fusion protein (uncleaved, approximately 1 µg). Arrows indicate the bands detected by anti-
recombinant fusion protein antibodies approximately the size of 23.0 kDa (bottom arrow) and 26.6 kDa 
(top arrow). 
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Fig. 18. (a) Western-blot and (b) protein profiles using reducing SDS-PAGE (14%) of protease 
cleavage of recombinant fusion protein by anti-GST antibodies. For (a) and (b): lane 1: Rainbow 
molecular protein marker (Amersham); lane 2: glutathione elution fraction; lane 3: cleaved recombinant 
fusion protein eluate fraction from GST column (approximately 0.1 µg); lane 4: purified recombinant GST-
PLRV CP fusion protein (uncleaved, approximately 0.1 µg). 
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Conclusions 

The PLRV CP gene was successfully amplified with primers that were designed to recognize 

the 5’ and 3’ ends of the gene. These primers were extended to include suitable restriction sites 

for subcloning into expression vectors. As the Nde1 restriction enzyme resulted in poor 

cleavage. Only the restriction enzyme combination of Nco1 and Xho1 could be used for 

subcloning into the pET14-b plasmid. Additionally, the PLRV CP was subcloned into the pGEX 

plasmid using EcoR1 and Xho1. Successful subcloning of full length PLRV CP into both 

plasmids could be confirmed by sequencing. The cloning and expression of recombinant PLRV 

CP has also been successfully performed by other authors (López et al., 1994; Treder and 

Lewosz, 2001). 

Expression of recombinant PLRV CP encoded by the PLRV CP pET14-b construct in E. coli 

strain BL21(DE3)pLysS was not successful. Other authors also found the expression of 

recombinant PLRV CP to be problematic (López et al., 1994) and they deduced that the reason 

for this poor expression was the presence of arginine codons in the N-terminal region of PLRV 

CP which are rarely used in E. coli. Sequence analysis (see addendum C of this thesis) 

revealed that a total of 11 arginine residues encoded by codons that are rarely used in E. coli 

are found within the first 60 codons on the N-terminal side of PLRV CP. For this reason, 

expression of recombinant PLRV CP was attempted in the E. coli strain Rosetta-gami 

B(DE3)pLysS strain as it supplies tRNAs for the codons AGA (Arg), AGG (Arg), AUA (Ile), CUA 

(Leu), CCC (Pro) and GGA (Gly) on a compatible chloroamphenicol-resistant plasmid, pRARE. 

However, even though two recombinant proteins were produced, neither was of the correct size. 

Another strain, the E. coli strain Rosetta-2(DE3)pLysS, that supplies an additional tRNA for the 

rare codon for arginine (E. coli strain Rosetta-2(DE3)pLysS contains a compatible 

chloroamphenicol-resistant plasmid, pRARE2, coding for the codons AGA (Arg), AGG (Arg), 

CGG (Arg), AUA (Ile), CUA (Leu), CCC (Pro) and GGA (Gly)), and is easier to cultivate, was 

also used, but in this strain only the smaller protein was produced. It was established that the 

protein was indeed a result of induction of the PLRV CP pET14-b construct and not an 

endogenous protein. The induced protein could be purified with ammonium sulphate 

precipitation to near homogeneity. However, it was concluded that this protein was not full 

length PLRV CP as antibodies against native PLRV could not detect it. Thus, in spite of this 

choice of strains we were unable to produce full length recombinant PLRV CP. It could be that 

the recombinant protein that was formed is a truncated form of PLRV CP that never assumes its 

correct conformation. Even though the N-terminal region of the protein would have been 

formed, and this region is antigenically the most important (Prof M.H.V. van Regenmortel, 

Strasbourg, personal communication; chapter 3 of this thesis), it could be that the truncated 

protein folds very differently in comparison to the full length PLRV CP and antibodies against 

native PLRV CP therefore did not recognize it. 
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To overcome this problem, expression was attempted in the pGEX expression system. For this 

purpose, the PLRV CP sequence was cloned 3’ to the GST gene in the pGEX plasmid. When 

expressed, this would result in a fusion protein in which GST was on the N-terminal side relative 

to the PLRV CP. López et al. (1994) cloned the PLRV CP gene to the 3’ end of the β-

galactosidase gene to give a fusion construct. Expression of this construct resulted in the 

production of a β-galactosidase PLRV CP fusion protein. The reason given for the success of 

this expression was that the fusion solves the codon usage problem because it moves the 

arginine rich region closer to the carboxy terminus of the fusion protein, as a result of which 

translation could be less hindered at the sensitive initiation site by the rare codons (Chen and 

Inouye, 1990). By increasing the distance between the initiation codon and the arginine codons 

the production of recombinant protein can be increased almost linearly up to eight fold (Chen 

and Inouye, 1990). Therefore, it is not only the presence of the rare codons but also the position 

of the codons in an mRNA that determines the effectiveness of expression of recombinant 

proteins with rare codons in E. coli. Possibly for this reason, our approach for the production of 

the recombinant GST-PLRV CP fusion protein in E. coli strains BL21(DE3)pLysS and Rosetta-

2(DE3)pLysS was therefore also successful. However, expression in Rosetta-2(DE3)pLysS was 

stronger, which shows that not only the addition of an N-terminal fusion protein but also the 

addition of tRNAs for rare codons in the expression strain improves expression. An apparent 

anomaly was that the recombinant GST-PLRV CP fusion protein had an apparent molecular 

weight of 40 kDa whilst the theoretical molecular weight was 49 kDa. López et al. (1994), found 

that the recombinant β-galactosidase PLRV CP fusion protein had an apparent molecular 

weight of 116 kDa as opposed to a theoretical molecular weight of 139 kDa. A possible 

explanation for this phenomenon could be that SDS-PAGE gels do not show the proteins 

according to their estimated size (Rubinson et al., 1997). In this case, the recombinant fusion 

protein migrated faster than expected, whereas Rubinson et al. (1997) found that their 

recombinant GVA CP migrated slower than the size deduced from the nucleotide sequences. 

Martin et al. (1990) noted that a purified viral protein migrated to an observed size smaller than 

would be expected, which was attributed to anomalous running of the polypeptide in the gel due 

to its conformation (there was a proline-rich tract in the protein) or to posttranslational 

modification or degradation during virus purification. Therefore, native viral proteins and 

recombinant viral proteins can migrate to positions that are not expected. For the recombinant 

PLRV CP or recombinant GST-PLRV CP fusion protein, the proteins might migrate faster as a 

result of the charge contribution of the numerous arginines. Mayo et al. (1989) reported that the 

net charge of PLRV CP was +24 calculated from the difference between the total number of 

lysine and argininine residues and the total number of aspartic and glutamic acid residues. This 

feature is shared with other luteovirus CPs as well as those of other unrelated viruses (Mayo et 

al., 1989).  
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Improved release of the recombinant GST-PLRV CP fusion protein from the cell lysate into the 

soluble phase was achieved by sonification, followed by centrifugation and filtration. For the 

purification of the recombinant fusion protein a standard GST-binding resin was used and this 

was only successful when the composition of the PBS wash buffer was altered. An attempt was 

made to cleave the GST from the recombinant fusion protein to purify PLRV CP. Although 

cleavage of the fusion protein was successful, separation of the GST protein from the PLRV CP 

was not successful as the cleaved PLRV CP eluted together with the GST after release with 

glutathione.  

In western blots in which antibodies were used against PLRV, the recombinant GST-PLRV CP 

fusion protein and GST respectively, it was found that antibodies made against the fusion 

protein were found to detect the PLRV CP poorly. This is in contrast to the production of 

antibodies to a fusion protein of GST and TSWV CP (Vaira et al., 1996) which detected the 

native TSWV CP successfully, and could then be used in ELISA. Meng et al. (2003) produced 

the CP of RSPaV fused to the N-terminus of MBP and there antibodies could detect native 

RSPaV accurately in all tissues tested. However, use of these antibodies in a double antibody 

sandwich (DAS)-ELISA (coating with antibody) was not successful and only an indirect ELISA 

was effective (coating with antigen). Čeřovská et al. (2002) produced antibodies to PVA without 

a fusion and these were effective for the detection of PVA CP. These antibodies were, however, 

not suitable for use in a DAS-ELISA, but were effective in the indirect-ELISA. The CP of CTV 

fused to the N-terminal fragment of MBP to produce antibodies that were effective for the 

detection of CTV infected tissue in a western blot (Nikolaeva et al. 1995). Antibodies produced 

to 96% of the CP of GLRaV fused at the C-terminal portion of β-galactosidase were effective for 

the production of antibodies that could detect the native virus but gave a stronger reaction with 

the recombinant viral CP-β-galactosidase fusion protein (Ling et al., 2000). However, even 

though this work shows that PLRV CP can be successfully produced as a fusion protein with 

GST, we found that our antibodies to recombinant GST-PLRV CP fusion protein were not 

effective in detecting the native virus in a DAS ELISA (results not shown). GST may be more 

immunogenic than PLRV CP, which may result in poorer antibody responses to the PLRV CP 

portion of the recombinant GST-PLRV CP fusion protein. For this reason, antibody production 

should only be considered against purified PLRV CP. Thus, in future work, purification of the 

cleaved PLRV CP prior to the production of antibodies against PLRV CP, will be essential. 
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Chapter 5: Future prospectives 

In this study diversified and different PLRV isolates in South Africa were identified, which 

indicates that there is an ongoing threat that PLRV isolates with altered and also more severe 

pathogenicity may evolve. Thus, the sequencing of CP genes of South African PLRV isolates on 

an ongoing basis is important to monitor the evolution of PLRV in this country. Furthermore, the 

introduction of new PLRV isolates into South Africa via newly imported potato material should 

be limited as new PLRV introductions could form new and more pathogenic recombinants with 

the already unique isolates present in South Africa. If this were to happen, the severity of PLRV 

infection in potatoes in South Africa might increase.  

For the production of recombinant PLRV CP we have shown that this is only possible when the 

PLRV CP gene is expressed as a fusion protein with GST. Furthermore, the production of 

recombinant GST-PLRV CP fusion protein is greater in E. coli strains that supplement rare 

codons. However, for the production of antibodies to PLRV CP, the recombinant GST-PLRV CP 

was not effective. The results obtained indicate that the cleaved recombinant PLRV CP might 

be effective for the production of antibodies that recognize native PLRV CP. As the cleavage of 

the recombinant GST-PLRV CP fusion protein was successful, but not the subsequent 

purification, the purification of the cleaved GST from PLRV CP should be further optimized. The 

purified cleaved PLRV CP can then be used for the production of antibodies that would detect 

PLRV in ELISAs.  

Other than producing antibodies for the detection of PLRV to the purified cleaved PLRV CP, 

antibodies could also be produced to antigenic regions of PLRV CP. Two very immunogenic 

regions found at the N-terminus of PLRV CP were identified in this study. These regions are 

more important antigenically than other regions of PLRV CP since they are situated in the N-

terminal immunogenically important region of viral CPs. Peptides corresponding to these 

regions could be synthetically produced and these used for the immunization of rabbits to 

produce of anti-peptide antibodies. The use of this method would circumvent many problems 

that are associated with the production of recombinant proteins in E. coli as have been found in 

this study as well as the labour intensive process of cloning and subcloning. These anti-peptide 

antibodies could then be used for an effective diagnostic assay for PLRV.  
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Addendum A  

Alignment of the sequenced South African PLRV CP nucleotide sequences with PLRV CP 

isolates from GenBank. Alignment of the nucleotide sequences was performed but a few gaps 

had to be introduced into the outgroup sequence (SPLSV). The length of the aligned matrix is 

631. 

                   10        20        30        40        50        60        70              
        
Rood      ATGAGTACGGTCGTGGTTAGAGGAAATGTCAATGGTGGTATACAACAACCAAAGAGGCGAAGAAGGCAAT  

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ...G...............A...................G..............................  
NN3-2     ...G...............A...................G..............................  
Sand2-1   ...G...............A..................GG..............................  
Sand2-2   ...G...............A...................G..............................  
NN334-7   ...G...............A...................G..............................  
Sand2-3   ...G...............A...................G..............................  
SandB-2   ...G...............A...................G......G.....T.................  
SandB-3   ...G...............A...................G..............................  
PP003-11  ----...............A...................G..............................  
WW154-20  ...G...............A...................G..............................  
CC5-1     ...G...............A...................G..............................  
CC5-3     ...G...............A...................G..............................  
CC6-7     ...G...............A...................G..............................  
TT-12     ...G...............A...................G..............................  
NALR7     ...................A...................G............GA................  
Aus       ...................A...................GC...........GA................  
Sand1-1   ...G...............A...................G............GA................  
SandA-1   ...G...............A...................G............GA................  
SandA-3   ...G...............A...................G............GA................  
SandF-1   ...G...............A...................G.............A................  
SandF-2   ...G...............A...................G.............A................  
SandF-3   ...G...............A...................G.............A................  
PP0-6     ...G...............A...................G............GA................  
Z25-14    ...G...............A...................G............GA................  
DD020-1   ...G...T...........A...................G............GA................  
DD020-2   ...G...............A...................G............GA................  
DD020-3   ...G...............A...................G............GA................  
NethV     .......................................G.T..........GA................  
Neth31    .......................................G............GA................  
NethV4    .......................................G............GA................  
Neth11    ...................A...................G..........G.GA................  
Neth30    ...................A...................G............GA................  
Pak       ...................A...................G............GA................  
OP        ...................A...................G............GA................  
SKorRB    ...................A...................G............GA................  
NethWa    ...................A...............C...G............GA................  
Cuba      ...................A...................G.G..........GA................  
India     ...................A...................G.........A..GA................  
Italy     ...................A...................G.........A..GA................  
14.2      ...................A...................GC...C.......GA................  
FrPT      ...................A...................GC...C.......GA................  
Fr1       ...................AG..................G............GA................  
Zim13     ...................AG..................G............GA................  
Egp       ...................A...................G............GA................  
Pol       ...................A...................G............GA................  
SKor777   ...................A...................G........T...GA................  
Can       ...................A...................G............GA................  
SKor      .........C.........A...................G............GA................  
Neth15    ...................A...................G..........T.GA.T..............  
Sco       ...................A...................G............GA.T..............  
SandH-7   ...G...............A...................G.......G....GA................  
SandH-10  ...G...............A...................G............GA................  
Z26-23    ...G...............A...................G............GA................  
Z26-24    ...G...............A...................G............GA................  
Z26-25    ...G...............A...................G......G.....GA................  
CIP01     ...................A...................G............G.................  
Ger       ...................A...................G............G.................  
Noir      ...................A...................G............GA................  
Chi       ...................C...................G............GA................  
Cu87      ...................A...................GC...........GA...............C  
FrCU87    ...................A.A.C...............G.......C....GA...............C  
SPSLV     .....................AA------......CTC.CGT---....---GC.CA.........AG.A  
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                   80        90       100       110       120       130       140         
        
Rood      CCCTTCGAAGGCGCGCTAACAGAGTGCAGCCAGTGGTTATGGTCACGGCCCCTGGGCAACCCAGGCGCCG  

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ......................................................................  
NN3-2     ......................................................................  
Sand2-1   ......................................................................  
Sand2-2   ......................................................................  
NN334-7   ......................................................................  
Sand2-3   ......................................................................  
SandB-2   ............................................................T.........  
SandB-3   ......................................................................  
PP003-11  ......................................................................  
WW154-20  ......................................................................  
CC5-1     ......................................................................  
CC5-3     ......................................................................  
CC6-7     ......................................................................  
TT-12     ......................................................................  
NALR7     .....GCC.................A............................................  
Aus       .......C.................A............................................  
Sand1-1   .......C.................A............................................  
SandA-1   .......C.................A............................................  
SandA-3   .......C.................A............................................  
SandF-1   .......C.................A............................................  
SandF-2   .......C.................A............................................  
SandF-3   .......C.................A............................................  
PP0-6     .......C.................A............................................  
Z25-14    .......C.................A............................................  
DD020-1   .......C.................T............................................  
DD020-2   .......C.................T............................................  
DD020-3   .......C.................T............................................  
NethV     .......C.................C............................................  
Neth31    .......C.................C............................................  
NethV4    .......C.................C............................................  
Neth11    .......C.................T............................................  
Neth30    .......C.................T............................................  
Pak       .......C.................T............................................  
OP        .......C.................T.................................T..........  
SKorRB    .......C.................T............................................  
NethWa    .......C.................T............................................  
Cuba      .......C.................T............................................  
India     .......C.................T............................................  
Italy     .......C.................T............................................  
14.2      .......C.................T............................................  
FrPT      .......C.................T............................................  
Fr1       .......C.......T........CT............................................  
Zim13     .......C.......T.........T............................................  
Egp       .......C.................T.....G...................................T..  
Pol       .......C.................T.....G...................................T..  
SKor777   .......C.................T............................................  
Can       .......C.................T............................................  
SKor      .......C.................T..............................G.............  
Neth15    .......C.................T............................................  
Sco       .......C.................T............................................  
SandH-7   .......C.................T............................................  
SandH-10  .......C.................T............................................  
Z26-23    .......C.................T.........................................T..  
Z26-24    .......C.................T.........................................T..  
Z26-25    .......C.................T.........................................T..  
CIP01     .......T......T..........T.........................................T..  
Ger       .......C.................T........................T...................  
Noir      .......C.................T............................................  
Chi       .......C.A...............T.....................A......................  
Cu87      .......C.................T............................................  
FrCU87    .......C.................T............................................  
SPSLV     A..---AG......T...CA....GT............G.......A......C..A.CA..G..G....  
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                  150       160       170       180       190       200       210       
        
Rood      AAGACGCAGAAGAGGAGGCAATCGCCGCTCAAGAAGAACTGGAGTTCCCCGAGGACGAGGCTCAAGCGAG  

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ......................................................................  
NN3-2     ......................................................................  
Sand2-1   ......................................................................  
Sand2-2   ......................................................................  
NN334-7   ......................................................................  
Sand2-3   ......................................................................  
SandB-2   ......................................................................  
SandB-3   ......................................................................  
PP003-11  ......................................................................  
WW154-20  ......................................................................  
CC5-1     .G....................................................................  
CC5-3     ......................................................................  
CC6-7     ............G.........................................................  
TT-12     ......................................................................  
NALR7     ...................................A..................................  
Aus       ......T..............C................................................  
Sand1-1   ......................................................................  
SandA-1   ...G..................................................................  
SandA-3   ......................................................................  
SandF-1   ......................................................................  
SandF-2   ......................................................................  
SandF-3   .....................................G................................  
PP0-6     ......................................................................  
Z25-14    .........G............................................................  
DD020-1   ......................................................................  
DD020-2   ......................................................................  
DD020-3   ......................................................................  
NethV     ......................................................................  
Neth31    ......................................................................  
NethV4    ......................................................................  
Neth11    ......................................................................  
Neth30    ......................................................................  
Pak       ......................................................................  
OP        ......................................................................  
SKorRB    ......................................................................  
NethWa    ......................................................................  
Cuba      ......................................................................  
India     ......................................................................  
Italy     ......................................................................  
14.2      ......................................................................  
FrPT      ......................................................................  
Fr1       ......................................................................  
Zim13     ......................................................................  
Egp       ......................................................................  
Pol       ......................................................................  
SKor777   ......................................................................  
Can       ......................................................................  
SKor      ......................................................................  
Neth15    ......................................................................  
Sco       ......................................................................  
SandH-7   ......................................................................  
SandH-10  ......................................................................  
Z26-23    ......................................................................  
Z26-24    ......................................................................  
Z26-25    ......................................................................  
CIP01     ......T...............................................................  
Ger       ......T...............................................................  
Noir      ......T...............................................................  
Chi       ......T...............................................................  
Cu87      ......T...............................................................  
FrCU87    ......T...............................T...............................  
SPSLV     .C....TC.....C....TGG.A.AACAA.TC..C..G...C.C.....G........A..AT.C..C.A  
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                  220       230       240       250       260       270       280       
        
Rood      ACATTCGTGTTTACAAAGGACAACCTCGTGGGCAATTCCCAAGGAAGTTTCACCTTCGGGCCGAGTCTAT  

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ......................................................................  
NN3-2     ......................................................................  
Sand2-1   ......................................................................  
Sand2-2   ......................................................................  
NN334-7   ...............G......................................................  
Sand2-3   ...................G..................................................  
SandB-2   ......................................................................  
SandB-3   ......................................................................  
PP003-11  ......................................................................  
WW154-20  ......................................................................  
CC5-1     ......................................................................  
CC5-3     .........................C............................................  
CC6-7     ......................................................................  
TT-12     ......................................................................  
NALR7     ...................................C..................................  
Aus       ...................................C..................................  
Sand1-1   ...................................C..................................  
SandA-1   ...................................C..................................  
SandA-3   ...................................C..................................  
SandF-1   ...................................C..................................  
SandF-2   ...................................C..................................  
SandF-3   ...................................C..................................  
PP0-6     ...................................C..................................  
Z25-14    ...C...............................C..................................  
DD020-1   ...................................C..................................  
DD020-2   ...................................C..................................  
DD020-3   ...................................C..................................  
NethV     ...........................A.......C..................................  
Neth31    ...........................A.......C..................................  
NethV4    ...........................A.......C..................................  
Neth11    ...........................A.......C..................................  
Neth30    ...........................A.......C..................................  
Pak       ...........................A.......C..................................  
OP        ...........................A.......C..................................  
SKorRB    ...........................A.......C..................................  
NethWa    ...........................A.......C..................................  
Cuba      ...................................C..................................  
India     ...................................C..................................  
Italy     ...........................A.......C..................................  
14.2      ...........................A.......C..................................  
FrPT      ...........................A.......C..................................  
Fr1       ...........................A.......C..................................  
Zim13     ...........................A.......C..................................  
Egp       ...........................A.......C..................................  
Pol       ...........................A.......C..................................  
SKor777   ..................................GC..................................  
Can       ...................................C..................................  
SKor      ...................................CA.................................  
Neth15    ...................................CA.................................  
Sco       ...................................CA.................................  
SandH-7   ...........................A.......C..................................  
SandH-10  ...........................A.......C..................................  
Z26-23    ...........................A.......C...............G..................  
Z26-24    ...........................A.......C..................................  
Z26-25    ...........................A.......C..................................  
CIP01     ...........................A.......C..................................  
Ger       ...........................A.......C..................................  
Noir      ...........................A.......C..................................  
Chi       ...........................A.......C..................................  
Cu87      ...........................A.......C..................................  
FrCU87    ...........................A.......C..........................A.......  
SPSLV     ..T.....A..CT..............AA.....G.G..AC......................TC...T.  
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                  290       300       310       320       330       340       350       
        
Rood      CAGACTGTCCGGCATTCAAGGATGGAATACTCAAGGCCTACCATGAGTATAAGATCACAAGCATCTTACT  

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ...................A.........................................T........  
NN3-2     ...................A.........................................T........  
Sand2-1   .............................................................T........  
Sand2-2   .............................................................T........  
NN334-7   .............................................................T........  
Sand2-3   .............................................................T........  
SandB-2   .............................................................T........  
SandB-3   .............................................................T........  
PP003-11  .............................................................T........  
WW154-20  .............................................................T........  
CC5-1     .............................................................T........  
CC5-3     .............................................................T........  
CC6-7     .............................................................T........  
TT-12     ..................................................G..........T........  
NALR7     .............................................................T........  
Aus       .............................................................T........  
Sand1-1   .............................................................T........  
SandA-1   .............................................................T........  
SandA-3   ...T.........................................................T........  
SandF-1   ..........................................................G..T........  
SandF-2   ..........................................................G..T........  
SandF-3   ..........................................................G..T........  
PP0-6     ..........................................................G..T........  
Z25-14    ......................C...................................G..T........  
DD020-1   ..........................................................G..T........  
DD020-2   ..........................................................G..T........  
DD020-3   ..........................................................G..T........  
NethV     ......................................................................  
Neth31    .............................................................T........  
NethV4    .............................................................T........  
Neth11    ......................................................................  
Neth30    ......................................................................  
Pak       ......................................................................  
OP        ......................................................................  
SKorRB    ......................................................................  
NethWa    ......................................................................  
Cuba      ......................................................................  
India     ......................................................................  
Italy     .....................................................................C  
14.2      ......................................................................  
FrPT      ......................................................................  
Fr1       ......................................................................  
Zim13     ......................................................................  
Egp       ......................................................................  
Pol       ......................................................................  
SKor777   ......................................................................  
Can       ......................................................................  
SKor      ......................C...............................................  
Neth15    ......................................................................  
Sco       ......................................................................  
SandH-7   ......................................................................  
SandH-10  ......................................................................  
Z26-23    ......................................................................  
Z26-24    ......................................................................  
Z26-25    ......................................................................  
CIP01     ......................................................................  
Ger       .............T........................................................  
Noir      ......................................................................  
Chi       ......................................................................  
Cu87      ......................................................................  
FrCU87    ......................................................................  
SPSLV     ....G..CGA.C.T...G.A.G....G............T....................A.........  
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                  360       370       380       390       400       410       420       
        
Rood      TCAGTTCGTCAGCGAGGCCTCTTCCACCTCCTCCGGTTCCATCGCTTATGAGTTGGACCCCCATTGCAAA  

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ......................................................................  
NN3-2     ......................................................................  
Sand2-1   ..................................................G...................  
Sand2-2   ......................................................................  
NN334-7   ......................................................................  
Sand2-3   ......................................................................  
SandB-2   ..................................................................T...  
SandB-3   ..................................................................T...  
PP003-11  ..................................................................T...  
WW154-20  ..................................................................T...  
CC5-1     ..................................................................T...  
CC5-3     ..................T...............................................T...  
CC6-7     ..................................................................T...  
TT-12     ..................................................................T...  
NALR7     ...............................G....C.................................  
Aus       ...............................G....C.................................  
Sand1-1   ...............................G....C.................................  
SandA-1   ...............................G....C.................................  
SandA-3   ...............................G....C.................................  
SandF-1   ....................................C..............A..................  
SandF-2   ....................................C..............A..................  
SandF-3   ....................................C..............A..................  
PP0-6     ....................................C..............A..................  
Z25-14    ....................................C..............A..................  
DD020-1   ........................T...........C..............A..................  
DD020-2   ....................................C..............A..................  
DD020-3   ....................................C..............A..................  
NethV     .................................T................................T...  
Neth31    .................................T....................................  
NethV4    .................................T....................................  
Neth11    ......................................................................  
Neth30    ......................................................................  
Pak       ......................................................................  
OP        ......................................................................  
SKorRB    ......................................................................  
NethWa    ......................................................................  
Cuba      ...................................A..................................  
India     ......................................................................  
Italy     .....................C................................................  
14.2      ......................................................................  
FrPT      ......................................................................  
Fr1       ......................................................................  
Zim13     ......................................................................  
Egp       ......................................................................  
Pol       ......................................................................  
SKor777   ......................................................................  
Can       ......................................................................  
SKor      ......................................................................  
Neth15    ......................................................................  
Sco       ......................................................................  
SandH-7   ......................................................................  
SandH-10  ......................................................................  
Z26-23    ......................................................................  
Z26-24    ......................................................................  
Z26-25    ......................................................................  
CIP01     ......................................................................  
Ger       ....................................C.................................  
Noir      ....................................C.................................  
Chi       ....................................C.................................  
Cu87      ....................................C.................................  
FrCU87    ....................................C.................................  
SPSLV     ........................A..G...AG......T...T.......AC.............T...  
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                  430       440       450       460       470       480       490       
        
Rood      ATATCATCCCTCCAGTCCTACGTCAACAAGTTCCAAATTACGAAGGGCGGCGCTAAAACCTATCAAGCGC  

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ......................................................................  
NN3-2     ......................................................................  
Sand2-1   ......................................................................  
Sand2-2   ......................................................................  
NN334-7   ..................C...................................................  
Sand2-3   ..........................................G......................G....  
SandB-2   .............................A........C..T............................  
SandB-3   .............................A........C..T............................  
PP003-11  .............................A........C..T............................  
WW154-20  .............................A........C..T............................  
CC5-1     .............................A........C..T............................  
CC5-3     .............................A........C..T............................  
CC6-7     .............................A........C..T............................  
TT-12     .............................A........C..T............................  
NALR7     ......................................................................  
Aus       ......................................................................  
Sand1-1   ......................................................................  
SandA-1   ......................................................................  
SandA-3   ......................................................................  
SandF-1   ...C.....................................A..............G.............  
SandF-2   .........................................A..............G.............  
SandF-3   .........................................A..............G.............  
PP0-6     .........................................A..............G.............  
Z25-14    .........................................A..............G.............  
DD020-1   .........................................A..............G.............  
DD020-2   .........................................A..............G.............  
DD020-3   .........................................A..............G.............  
NethV     .....................................................C.....T..........  
Neth31    .....................................C...............C.....T..........  
NethV4    .....................................................C.....T..........  
Neth11    G....................................................C.....T..........  
Neth30    G....................................................C.....T..........  
Pak       G....................................................C.....T..........  
OP        G..........................................G.........C.....T..........  
SKorRB    G....................................................C.....T..........  
NethWa    G..........................C...........C.TC..........C.....T..........  
Cuba      G............................A.......................C.....T..........  
India     G....................................................C.....T..........  
Italy     G....................................................C.....T..........  
14.2      G....................................................C....TT..........  
FrPT      G....................................................C..G.TT..........  
Fr1       G....................................................C.....T..........  
Zim13     G....................................................C.....T..........  
Egp       G....................................................C.....T..........  
Pol       G....................................................C.....T..........  
SKor777   G....................................................C.....T..........  
Can       G....................................................C.....T..........  
SKor      G....................................................C.....T..........  
Neth15    G....................................................C.....T..........  
Sco       G....................................................C.....T..........  
SandH-7   G....................................................C.....T..........  
SandH-10  G....................................................C.....T..........  
Z26-23    G....................................................C.....T..........  
Z26-24    G.............................................A......C.....T..........  
Z26-25    G....................................................C.....T..........  
CIP01     G....................................................C.....T..........  
Ger       G....................................................C.....T..........  
Noir      G....................................................C.....T..........  
Chi       G.G........T.........................................C.....T..........  
Cu87      G....................................................C.....T..........  
FrCU87    G....................................................C.....T..........  
SPSLV     ............TCC...AC.............TC.G.......A.....T..G.GGT.G.TCACC...A  
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                  500       510       520       530       540       550       560       
        
Rood      GGATGATAAACGGGGTAGAATGGCACGATTCGTCTGAGGATCAGTGCCGGATTCTGTGGAAAGGAAATGG  

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ......................................................................  
NN3-2     ......................................................................  
Sand2-1   ....................................................A.................  
Sand2-2   ....................................................A.................  
NN334-7   ....................................................A.................  
Sand2-3   ....................................................A.................  
SandB-2   ................G...................................A.................  
SandB-3   ................G...................................A.................  
PP003-11  ................G...................................A.................  
WW154-20  ................G...................................A.................  
CC5-1     ................G...................................A.................  
CC5-3     ................G...................................A.................  
CC6-7     ................G...................................A.................  
TT-12     ................G...................................A.................  
NALR7     ....................................................A.................  
Aus       ..................................A.................A.................  
Sand1-1   ....................................................A.................  
SandA-1   ....................................................A.................  
SandA-3   ....................................................A.................  
SandF-1   ....................................................A...........T.....  
SandF-2   ....................................................A...........T.....  
SandF-3   ....................................................A...........T.....  
PP0-6     ....................................................A...........T.....  
Z25-14    ....................................................A...........T.....  
DD020-1   ................................................................T.....  
DD020-2   ................................................................T.....  
DD020-3   ................................................................T.....  
NethV     ...............................T....................A........G........  
Neth31    ...............................T....................A........G........  
NethV4    ...............................T.................A..A........G........  
Neth11    ...............................T....................A........G........  
Neth30    ...............................T....................A........G........  
Pak       ...............................T....................A........G........  
OP        ............................C..T....................A........G........  
SKorRB    ................G..............T....................A........G........  
NethWa    ...............................T....................A.................  
Cuba      ...............................T....................A........G........  
India     ...............................T....................A........G........  
Italy     ...............................T....................A........G...C....  
14.2      ...............................T....................A........G........  
FrPT      ...............................T....................A........G........  
Fr1       ...............................T....................A........G........  
Zim13     ...............................T....................A........G........  
Egp       ..........T....................T....................A.................  
Pol       ..........T....................T....................A.................  
SKor777   ...............................C....................A........G........  
Can       ...............................T....................A........G........  
SKor      A.........T....................T..............T.....A........G........  
Neth15    ...............................T....................A........G........  
Sco       ...............................T....................A........G........  
SandH-7   ..........T....................T....................A........G........  
SandH-10  ...............................T....................A........G........  
Z26-23    ...............................T....................A........G........  
Z26-24    ...............................T....................A........G........  
Z26-25    ...............................T....................A........G........  
CIP01     ...............................T....................A........G........  
Ger       ...............................T....................A........G........  
Noir      ...............................T....................A........G........  
Chi       ...............................T....................A........G........  
Cu87      ...............................T....................A.................  
FrCU87    ...............................T....................A.................  
SPSLV     .......C......C.G..............T.................A.......AC..G..C..C..  



   121

                  570       580       590       600       610       620       630       
        
Rood      AAAATCTTCAGATCCCGCAGGATCCTTCAGAGTCACCATCAGGGTGGCTTTGCAGAACCCCAGATAG     

  ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

NN3-1     ..............................................A...............A....     
NN3-2     ..............................................................A....     
Sand2-1   ...........................T........T.....A...................A....     
Sand2-2   ...........................T........T.....A...................A....     
NN334-7   ...........................T........T.....A...A...............A...A     
Sand2-3   ...........................T........T.....A...................A....     
SandB-2   ............C..............T..............A...................A....     
SandB-3   ............C..............T..............A...................A....     
PP003-11  ..........T.C..............T..............A...................A....     
WW154-20  .........G..C..............T..............A...................A....     
CC5-1     ............C..............T..............A...A...............A....     
CC5-3     ............C..............T..............A...................A....     
CC6-7     ............C..............T..............A...................A....     
TT-12     ............C..............T..............A...................A....     
NALR7     ............C...........T..T..............A......C....A.......A....     
Aus       ...........................T........T.....A...........A.......A....     
Sand1-1   ............C..............T.............AA...................A....     
SandA-1   ............C..............T.............AA...................A....     
SandA-3   ............C..............T.............AA...................A....     
SandF-1   ............C..............T..............A...................A....     
SandF-2   ............C..............T..............A...................A....     
SandF-3   ............C..............T..............A...................A....     
PP0-6     ............C..............T..............A...................A....     
Z25-14    ............C..............T..............A...................A....     
DD020-1   ...........................T..............A...................A....     
DD020-2   ..............T............T..............A...................A....     
DD020-3   ...........................T..............A...................A....     
NethV     .......C.....A........................................A.......A....     
Neth31    .............A........................................A.......A....     
NethV4    .............A........................................A.......A....     
Neth11    .............A........................................A.......A....     
Neth30    .............A........................................A.......A....     
Pak       .............A........................................A.......A....     
OP        .............A........................................A.......A....     
SKorRB    ......C......A........................................A.......A....     
NethWa    .............A........................................A.......A....     
Cuba      .............A........................................A.......A....     
India     .............A........................................A.......A....     
Italy     .............G...........................A...A........A.......A....     
14.2      .............A.........................T..............A.......A....     
FrPT      .............A.........................T...T....C.....A.......A....     
Fr1       .............A........................................A.......A....     
Zim13     .............A........................................A.......A....     
Egp       .............A........................................A.......A....     
Pol       .............A........................................A.......A....     
SKor777   ......................................................A.......A....     
Can       ......................................................A.......A....     
SKor      .............A........................................A.......A....     
Neth15    .............T...........................A............A.......A....     
Sco       .............T...........................A...A........A.......A....     
SandH-7   .............A................................................A....     
SandH-10  .............A................................................A....     
Z26-23    .............A................................................A....     
Z26-24    .............A................................................A....     
Z26-25    .............A................................................A....     
CIP01     .............A........................................A.......A....     
Ger       .............A........................................A.......A....     
Noir      .............A........................................A.......A....     
Chi       .............A.........................T..............A..----------     
Cu87      ......C.....CA........................................A.......A....     
FrCU87    ......C.....CA........................................A.......A....     
SPSLV     CGGCAA.---..CAT...C.........C..........A.C......C..C.......-..A....GTAG 
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Addendum B 

Alignment of the deduced PLRV CP amino acid sequences of one European (Neth 31) and one 

South African (Sand2-2) PLRV CP nucleotide sequence. These amino acid sequences show 

97.1% homology. Amino acid substitutions are shown in bold underlined. Three of the amino 

acid substitutions are conservative, found in amino acid positions 7 (Arg/Lys), 18 (Arg/Lys) and 

80 (Met/Val) and three of the amino acid substitutions are non-conservative found in amino acid 

positions 2 (Ser/Gly), 153 (Thr/Ile) and 192 (Thr/Pro).  

 

                  10        20        30        40        50        60        70              
         ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Neth31   MSTVVVRGNVNGGVQQPRRRRRQSLRRRANRVQPVVMVTAPGQPRRRRRRRGGNRRSRRTGVPRGRGSSE  
Sand2-2  MGTVVVKGNVNGGVQQPKRRRRQSLRRRANRVQPVVMVTAPGQPRRRRRRRGGNRRSRRTGVPRGRGSSE  
 
                  80        90       100       110       120       130       140         
       |
Neth31   TFVFTKDNL

  ....|.... ....|....|....|....|....|....|....|....|....|....|....|....| 
MGNSQGSFTFGPSLSDCPAFKDGILKAYHEYKITSILLQFVSEASSTSSGSIAYELDPHCK  

Sand2-2  TFVFTKDNLVGNSQGSFTFGPSLSDCPAFKDGILKAYHEYKITSILLQFVSEASSTSSGSIAYELDPHCK  
 
                 150       160       170       180       190       200            
       . .
Neth31   ISSLQSYVNKFQ

  ....|....|.. .|....|....|....|....|....|....|....|. ..|....|....|.... 
TTKGGAKTYQARMINGVEWHDSSEDQCRILWKGNGKSSDTAGSFRVTIRVALQNPK*  

Sand2-2  ISSLQSYVNKFQITKGGAKTYQARMINGVEWHDSSEDQCRILWKGNGKSSDPAGSFRVTIRVALQNPK*  
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Addendum C 

Sequence results (with T7 forward primer) of the pET14b vector with PLRV CP gene insert to 

show the ribosome binding site, Nco1 restriction enzyme cut site, start codon, PLRV CP gene 

insert, stop codon and the Xho1 restriction enzyme cut site. Rare arginine codons (AGA, AGG, 

CGG) are highlighted in yellow.  

Landmarks of pET14-b vector with PLRV CP gene insert  

Ribosome binding site (rbs) (underlined)   8-12 

Nco1 restriction enzyme cut site (underlined)  18-23 

ATG start codon (bold)     20-22 

TAG stop codon (bold)     644-646 

Xho1 restriction enzyme cut site (underlined)  647-652 

 

         10        20        30        40        50        60        70        80        90                  
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

CCATGGCTTTAGAAGGAGATATA GTACGGTCGTGGTTAAAGGAAATGTCAATGGTGGTGTACAACAACCAAAGAGGCGAAGAAGGCAATC  
 rbs    Nco1 

 
 
        100       110       120       130       140       150       160       170       180         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
CCTTCGAAGGCGCGCTAACAGAGTGCAGCCAGTGGTTATGGTCACGGCCCCTGGGCAACCCAGGCGCCGAAGACGCAGAAGAGGAGGCAA  
 
 
        190       200       210       220       230       240       250       260       270         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
TCGCCGCTCAAGAAGAACTGGAGTTCCCCGAGGACGAGGCTCAAGCGAGACATTCGTGTTTACAAAGGACAACCTCGTGGGCAATTCCCA  
 
 
        280       290       300       310       320       330       340       350       360         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
AGGAAGTTTCACCTTCGGGCCGAGTCTATCAGACTGTCCGGCATTCAAGGATGGAATACTCAAGGCCTACCATGAGTATAAGATCACAAG  
 
 
        370       380       390       400       410       420       430       440       450         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
TATCTTACTTCAGTTCGTCAGCGAGGCCTCTTCCACCTCCTCCGGTTCCATCGCTTATGAGTTGGACCCCCATTGTAAAATATCATCCCT  
 
 
        460       470       480       490       500       510       520       530       540         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
CCAGTCCTACGTCAACAAATTCCAAATCACTAAGGGCGGCGCTAAAACCTATCAAGCGCGGATGATAAACGGGGTGGAATGGCACGATTC  
 
 
        550       560       570       580       590       600       610       620       630         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
GTCTGAGGATCAGTGCCGGATACTGTGGAAAGGAAATGGAAAATCTTCAGACCCCGCAGGATCCTTTAGAGTCACCATCAGAGTGGCTTT  
 
 
        640       650        
....|....|....|....|....|.... 
GCAGAACCCCAAATAGCTCGAGGATCCGG  

 Xho1 
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Addendum D 

Sequence results (with pGEX-5’ reverse primer, confirmed by the pGEX-3’ forward primer) of 

the pGEX-6P-2 vector with PLRV CP gene insert to show the PreScission Protease cleavage 

site, EcoR1 restriction enzyme cut site, the two additional bases (AG) added for the PLRV CP 

gene insert to be expressed in frame with GST, start codon, PLRV CP gene insert, stop codon 

and the Xho1 restriction enzyme cut site. Rare arginine codons (AGA, AGG, CGG) are 

highlighted in yellow.  

Landmarks of pGEX-6P-2 vector with PLRV CP gene insert  

PreScission Protease cleavage site (underlined)  1-24 

EcoR1 restriction enzyme cut site (underlined)  38-43 

Two additional bases (AG) (bold italics)  44-45 

ATG start codon (bold)     46-48 

TAG stop codon (bold)     670-672 

Xho1 restriction enzyme cut site (underlined)  673-678 

 
         10        20        30        40        50        60        70        80        90                  
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
CTGGAAGTTCTGTTCCAGGGGCCCCTGGGATCCCCAGGAATTCAGATGGGTACGGTCGTGGTTAAAGGAAATGTCAATGGTGGTGTACAA  

PreScission Protease  EcoR1 
 
 
        100       110       120       130       140       150       160       170       180         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
CAACCAAAGAGGCGAAGAAGGCAATCCCTTCGAAGGCGCGCTAACAGAGTGCAGCCAGTGGTTATGGTCACGGCCCCTGGGCAACCCAGG  
 
 
        190       200       210       220       230       240       250       260       270         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
CGCCGAAGACGCAGAAGAGGAGGCAATCGCCGCTCAAGAAGAACTGGAGTTCCCCGAGGACGAGGCTCAAGCGAGACATTCGTGTTTACA  
 
 
        280       290       300       310       320       330       340       350       360         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
AAGGACAACCTCGTGGGCAATTCCCAAGGAAGTTTCACCTTCGGGCCGAGTCTATCAGACTGTCCGGCATTCAAGGATGGAATACTCAAG  
 
 
        370       380       390       400       410       420       430       440       450         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
GCCTACCATGAGTATAAGATCACAAGTATCTTACTTCAGTTCGTCAGCGAGGCCTCTTCCACCTCCTCCGGTTCCATCGCTTATGAGTTG  
 
 
        460       470       480       490       500       510       520       530       540         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
GACCCCCATTGTAAAATATCATCCCTCCAGTCCTACGTCAACAAATTCCAAATCACTAAGGGCGGCGCTAAAACCTATCAAGCGCGGATG  
 
 
        550       560       570       580       590       600       610       620       630         
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
ATAAACGGGGTGGAATGGCACGATTCGTCTGAGGATCAGTGCCGGATACTGTGGAAAGGAAATGGAAAATCTTCAGACCCCGCAGGATCC  
 
 
        640       650       660       670       680           
....|....|....|....|....|....|....|....|....|....|....| 
TTTAGAGTCACCATCAGAGTGGCTTTGCAGAACCCCAAATAGCTCGAGCGGCCGC  
 Xho1 
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