NOVEL APPLICATION OF NIH CASE DEFINITIONS IN A PAEDIATRIC TUBERCULOSIS CONTACT INVESTIGATION STUDY

Catherine A. Wiseman,¹ MD, Anna M. Mandalakas,¹² MD, H. Lester Kirchner,³ PhD, Robert P. Gie,¹ MD, H. Simon Schaaf,¹ MD, PhD, Elisabetta Walters,¹ MD, and Anneke C. Hesseling,¹ MD, PhD.

Affiliations: ¹Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town; ²Section on Retrovirology and Global Health, Department of Paediatrics, Baylor College of Medicine, Houston Texas and The TB Initiative, Texas Children’s Hospital, Houston, Texas, USA; ³Division of Medicine, Geisinger Clinic, Danville, PA, USA

Corresponding author: C.A. Wiseman

Desmond Tutu TB Centre
Department of Pediatrics and Child Health
Faculty of Medicine and Health Sciences, Stellenbosch University,
PO Box 19063, Tygerberg,
Cape Town, 7505,
South Africa

Alternate corresponding author: A.C Hesseling

Desmond Tutu TB Centre
Department of Pediatrics and Child Health
Faculty of Medicine and Health Sciences, Stellenbosch University,
PO Box 19063, Tygerberg,
Cape Town, 7505,
Word Count: 3062

Abstract: 201 words

Key Words: Tuberculosis, paediatric, diagnosis, case definition, NIH

Running head title: NIH paediatric TB research definition

Summary: We apply and compare recently proposed International Consensus (NIH) with protocol-specified case definitions for paediatric TB and describe the disease spectrum and severity in a community-based prospective cohort diagnostic TB study using household contact tracing.
INTRODUCTION

Tuberculosis (TB) in children reflects a broad spectrum of disease, ranging from asymptomatic infection through disseminated disease. Although a higher proportion of young children develop disseminated forms of TB (miliary TB and TB meningitis), primary childhood TB is typically more benign than adult-type TB. The majority (~75%) of disease is intrathoracic, most commonly isolated mediastinal lymph node, Ghon focus or Ghon complex disease. In mid-childhood, mediastinal lymph node disease predominates; adult-type disease with pleural effusions and cavitation typically emerges during adolescence. The confirmation of TB in children is challenging due to the paucibacillary nature of the disease, challenges in specimen collection and the wide observed disease spectrum. In addition to informing clinical care, the use of standard case definitions is important to enable the adequate comparison of children in clinical research, where the yield of diagnostic tests, response to treatment, and the efficacy of new drugs or regimen and vaccines are evaluated. National Institute of Health (NIH) International Consensus Case Definitions for diagnostic research in childhood TB were proposed in 2012 by an expert panel. These have not yet been applied to contact investigations.

The yield of diagnostic tests may correlate with disease spectrum and severity. For example, the yield of mycobacterial culture is considerably higher in children with extensive intrathoracic compared to limited disease. We recently proposed a novel standard approach to describe the spectrum and severity of TB in children which considers both the extent (containment) of disease and the presence of complications; resulting in a final assignation of “severe” or “nonsevere” disease, applicable to both intrathoracic and extrathoracic TB.

The NIH case definition focuses on young children <10 years of age presenting with symptoms of intrathoracic TB, typically at the hospital or referral level (Table 1), and was thus expected to have limited applicability to active TB surveillance studies such as household contact tracing.
Prior to the publication of the NIH definition, we developed standard case definitions for use in a community-based household contact tracing study. We applied and compared the NIH and the protocol case definitions and describe the TB disease spectrum and severity in our prospective community-based study. We hypothesized that our protocol case definition would better apply to our cohort, with anticipated limited disease spectrum and detected through active surveillance.
STUDY POPULATION AND METHODS

Study design and setting

We analysed data from a prospective community-based household contact tracing study aimed at determining the diagnostic utility of 2 commercial Interferon Gamma Release Assays (IGRAs) for detection of *Mycobacterium tuberculosis* (*M.tb*) infection and disease in HIV-infected and uninfected children. The study was conducted in three impoverished urban communities with high levels of TB and HIV in Cape Town, South Africa, consisting of predominantly South African mixed race and Xhosa African populations. The adult TB case notification rate in Cape Town was 671 per 100,000 and 315 per 100,000 in children aged 0-14 years in 2012 (Personal communication, Judy Caldwell, Cape Town City Health Department).

Eligibility and recruitment

HIV-infected and -uninfected children aged 3 months to 15 years with and without documented *M.tb* exposure were recruited between December 2007 and June 2012. Focusing on well children, the study excluded children under 5 kg, with laboratory-documented anemia (Hb < 9g/dL), on antituberculosis therapy, or where consent was not obtained. Infants below 5 kg were excluded due to blood volumes. Children on isoniazid preventive therapy (IPT) were not excluded. Enrolment was deferred if a Mantoux tuberculin skin test (TST) had been placed within 12 weeks, live attenuated vaccination had been given within 6 weeks, or if there was an acute severe respiratory, diarrheal or neurologic illness.

A three-pronged approach was employed, recruiting children via either community TB clinics as household contacts of adult TB cases (who started treatment within preceding 3 months; i.e from...
“TB households”), or from neighbouring households (“community controls”) or from community
paediatric HIV clinics (HIV-infected children with and without documented \( M.tb \) exposure).

All symptomatic adult household members were screened for TB and if diagnosed with TB, that
household was reclassified. Children were investigated at enrolment and follow-up for \( M.tb \)
infection and disease, using standard protocols.\(^{10,11}\)

**Study measures**

Using methods previously described,\(^{12}\) the larger study enrolled 1093 children with median follow-up duration of 15 months.\(^{13}\) Children were seen at baseline (enrolment), months 3, 6, 15, and in the
case of HIV-infected children, 27 months’ follow-up. From the total enrolled, a dataset was compiled
of all potential TB cases, detected at any (scheduled and unscheduled) study visits.

Children were included in analysis of potential TB cases if they were documented as having
Confirmed, Probable or Possible TB (protocol definition), reported by the study team, parent or
healthcare provider (TB clinic or referral hospital), or if there was laboratory evidence of \( M.tb \), at any
time during the study period. Data sources included the study database, clinic, hospital, and routine
labatory surveillance data.

Standard methods were used to define TB symptoms,\(^{11}\) \( M.tb \) contact history, chest radiograph
interpretation\(^{14}\) and bacteriology. TB disease spectrum and severity were described;\(^{5}\) the most
severe manifestation was reported.

HIV testing was completed on all children with unknown or negative status (Abbott Determine HIV-
1/2 rapid test followed by DNA PCR or HIV ELISA depending on whether they were younger or older
than 18 months, respectively, in the case of a positive or indeterminate test). All HIV-infected
children had access to combination anti-retroviral therapy (cART).
TB exposure history was captured using information including the presence of contact with a known adult (> 18 years old) household or other TB source case (person currently receiving TB treatment regardless of sputum smear status or disease type), the level of exposure and the number of TB cases in the household. The level of exposure was reported as a contact score of 1-10 derived from combined data assuming that the level of exposure was a product of proximity, duration and infectivity of exposure.\textsuperscript{12}

Measures of TB infection included the TST and IGRAs. The TST (2 TU PPD RT 23, Statens Serum Institute) was administered intradermally and read using the ballpoint method and callipers at 48-72 hours. TST was completed at all study visits except at month 6, in the case of a previous reported TST adverse event, or TST administered within the preceding 3 months. A positive TST was defined as an induration of \( \geq 10 \) mm in HIV-uninfected and \( \geq 5 \) mm in HIV-infected children. The T-SPOT.TB (Oxford Immunotec, UK)\textsuperscript{15} and the Quantiferon-TB Gold In Tube (QTF-IT, Cellestis, Australia)\textsuperscript{16} were completed at all study visits.\textsuperscript{17} IGRA results were reported at the visit closest to the TB episode as positive (if either QTF or T-SPOT.TB was positive), negative (both tests negative or only 1 available result, which was negative), indeterminate or not done. \textit{M. tb} infection was defined as either a positive TST and/or IGRA.

TB symptoms and signs were classified at the time of the TB episode (Table 1).\textsuperscript{7,11,13,18,19}

Bacteriological data included specimen type, number of specimens sent, number of positive specimens, result of direct smear microscopy for acid-fast-bacilli (AFB), liquid mycobacterial culture (mycobacterial growth indicator tubes; MGIT, Becton Dickinson, Sparks, MD, USA),\textsuperscript{20-28} histology, speciation and drug susceptibility test (DST) pattern using the Genotype\textsuperscript{R} MTBDRplus line probe assay (Hain Lifescience, Nehren, Germany).\textsuperscript{29} Gastric aspirates were collected in all children younger than 5 years\textsuperscript{13} and expectorated sputum samples in all older children at baseline and at subsequent
scheduled or unscheduled study visits where clinically indicated (e.g. new TB symptoms, new reported TB contact, or previous reported abnormality). \(^{13}\) Samples were collected, transported and processed following standard guidelines and standard cross-contamination prevention measures were taken. \(^{30}\) PCR identification of *M.tuberculosis* on any culture-positive specimen defined bacteriological confirmation, while caseating necrosis/granulomas with or without positive microscopy for AFB on cytology or histology specimens defined histological confirmation.

Radiological data included all available chest radiograph (CXR) reports. Antero-posterior and lateral CXR were done at all initial visits and at subsequent study visits as clinically indicated. CXRs were reviewed by two experienced independent blinded reviewers using a standard classification. \(^{14}\) Where discrepancies arose, a third blinded, independent reviewer was used. Reviewers reported CXRs as being “Certain TB,” “Uncertain TB”, “Not TB” or “Normal”. A final radiological classification was assigned as either “Compatible with TB,” “Abnormal but not compatible with TB” or “Normal”.

In the case of an abnormal CXR deemed not to be compatible with TB, an alternative clinical diagnosis, where possible, was assigned.

TB disease definitions

The NIH consensus definition \(^{7}\) and protocol case definition were used (Table 1). The NIH case definition classified disease as Confirmed, Probable, Possible, Unlikely or Not TB. \(^{7}\) Protocol-specified case definitions assigned these same case definitions as a function of bacteriological confirmation, well-defined symptoms/signs, TB-compatible CXR, and TB exposure (Table 1). Tests of infection were purposefully excluded since they were the index test under evaluation in the study.

TB episodes were classified as “prevalent” (detected within 6 weeks of enrolment) or “incident” (detected after 6 weeks’ enrolment).
All protocols were approved by the Health Research Ethics Committee, Stellenbosch University, and the institutional review boards of Case Western Reserve University, USA, Baylor College of Medicine, USA and the Charite Institute, Berlin, Germany and local health authorities. All well children with *M.tb* contact or positive TST who were HIV-infected or below 5 years of age were referred for IPT, as per local and international guidelines. All cases of suspected TB were referred for treatment.

**Data management and analysis**

Agreement between diagnostic approaches was measured using the Kappa statistic with 95% confidence intervals (CI). All cases with a potential TB diagnosis in our cohort were included in analysis, regardless of age. Odds ratios (OR), calculated with Chi-squared or Fisher’s exact tests, were used to compare disease severity in HIV-infected vs. uninfected children and in different age and TB exposure groups. The TB disease spectrum was described. TB incidence rates were calculated by age, HIV and TB exposure status. Data was analysed using STATA/SE version 12.0 (StataCorp LP, Texas, USA).
RESULTS

Of 1093 children enrolled, 169 were HIV-infected and 924 were HIV-uninfected; 671 (61%) were enrolled from TB households, 242 (22%) from neighbouring households, 180 (16%) children from community HIV clinics, of whom 163 were HIV-infected and 17 were uninfected siblings. Of the remaining 6 HIV-infected children, 5 were recruited from TB households and 1 from a neighbouring household.

There were 111 potential TB disease episodes documented in 109 children, of whom 23 (21%) were HIV-infected. 62 (56%) were prevalent and 49 (44%) incident cases. There was known TB exposure in 82 (74%) episodes. The median \( M.\text{tb} \) contact score at enrolment in the 109 children was 5 (0-10). Of prevalent cases eligible for IPT according to programme criteria, only 5/40 (12.5%) children were on IPT at the time of TB diagnosis; whilst 5 of 18 (28%) of incident cases had received IPT at diagnosis. A further 6 (33%) were referred but either failed to attend the clinic or defaulted therapy. 16/22 (72%) children with a potential TB episode had documented TB exposure but were not referred for IPT based on programme criteria (HIV-uninfected and older than 5 years of age). Of HIV-infected children, 83% were on cART at the time of TB diagnosis.

Based on NIH case definitions,\(^7\) there were 8 episodes of confirmed (Table 3), 12 of probable, 17 of possible, 3 of unlikely and 2 of not TB disease. Applying protocol-defined case definitions, there were 23 episodes of confirmed (Table 3), 36 of probable, 27 of possible, 0 of unlikely and 21 of not TB. Of the 111 potential TB disease episodes, 69 were unclassifiable (4 due to insufficient data and 65 due to lack of symptoms), of whom 18 (26%) had no documented TB exposure, using the NIH definition. Four TB episodes were unclassifiable using the protocol case definition due to insufficient data; \( 2 \) (50%) who had no documented TB exposure. Agreement between the NIH and protocol-defined approach was 0.30 (95% CI: 0.23; 0.38).
Using the protocol case definition and excluding the episodes classified as “not TB,” and “unlikely TB,” there were 62 episodes (72%) of nonsevere and 24 episodes (28%) of severe disease. Of those with severe disease, all had intrathoracic disease, 2 (6%) had cavities/adult-type disease, 4 (13%) had expansile pneumonia; and 1 (4%) had disseminated disease (miliary TB) [Table 4]. HIV-infected children were more likely to have severe disease than HIV-uninfected children (OR: 3.87; 95% CI 1.26; 11.81, p=0.0056) Children with a documented TB source case were less likely to have severe disease than those without known exposure (21% vs. 44%; OR: 0.34, 95%CI: 0.12; 1.01, p=0.025). When stratifying by TB exposure and HIV status, proportions with severe disease remained unchanged, making it challenging to elucidate whether HIV infection or the lack of documented TB exposure determined TB disease severity. The proportion of children with severe disease was similar in children below 2 years of age vs. older children (27% vs. 22%; OR: 0.93, 95%CI: 0.29; 2.71, p=0.88). 9 of the 24 children with severe disease were eligible for IPT based on programme criteria; only 3 of these had received IPT. Children with known TB exposure at enrolment were more likely to have prevalent TB (OR: 1.48, 95%CI: 0.55; 3.96, p=0.38) than those without exposure.

TB incidence rates (per 1000 patient years) were 109/1000 and 76/1000 in HIV-infected versus uninfected children; 106/1000 and 76/1000 in children under versus over two years; 111/1000 and 53/1000 in children under versus over five years old, and 86/1000 and 74/1000 in those with versus without known M.tb exposure.
This is the first published application of the NIH diagnostic definition for intrathoracic childhood TB, published in 2012.\textsuperscript{7} In our community-based diagnostic study, we found that almost two-thirds of children could not be classified using this definition, despite the presence of severe disease in almost a third. In contrast, almost all children could be classified using the protocol case definition, which did not rely on the presence of presenting symptoms.

This is most likely explained by the emphasis in the NIH approach on diagnosing TB in symptomatic children, not typically seen in contact investigation studies, where the majority of diseased children are expected to have limited disease and thus more limited symptomatology. The NIH approach would thus have limited applicability to paediatric TB studies using active surveillance, e.g. TB contact investigation, and vaccine trials.\textsuperscript{33} We propose the use of our protocol definition as more relevant to contact investigation studies.

There was, understandably, poor agreement between the case definitions. Despite the fact that the protocol case definition did not consider tests of TB infection, almost all children were classifiable using well quantified \textit{M.\textit{tb}} exposure as a proxy for tests of infection. Well quantified exposure was previously shown to correlate well with tests of infection and suggested as a possible replacement for tests of infection in resource-poor settings to guide targeted IPT delivery.\textsuperscript{12} A major difference resulting from the use of the NIH and protocol case definitions lies in the number of confirmed cases detected (Table 3). Using the protocol definition, there were almost threefold the number of confirmed cases than with the NIH definition. Only 8 of these 23 cases (with at least bacteriological confirmation) had “well-defined symptoms”\textsuperscript{18}, although most had symptoms of more acute duration with or without abnormal CXR. We agree that all 23 children may not have had overt disease, however, all were treated as TB by the program. Recent well-documented \textit{M.\textit{tb}} exposure with isolated bacteriological confirmation may be described as “acute TB infection” as supported by natural history studies, where positive mycobacterial cultures were obtained in children with
normal chest radiographs and a positive TST or history of *M. tb* exposure.\(^4\) We appreciate that whilst the clinical relevance in children with bacteriological confirmation without well-defined TB symptoms remains unknown and an area of ongoing discussion, it is not imprudent to regard such cases with high suspicion due to the risk of dissemination in very young or HIV-infected children, given that laboratory contamination can be excluded. Management should be on a case-by-case basis until consensus is reached.

The site of TB disease seen in our cohort was almost exclusively intrathoracic, but with a wide observed disease spectrum and severity, ranging from uncomplicated intrathoracic lymph node disease to uncontrolled intrathoracic disease with complications (lymph node or other) [Table 4]. Despite this being a predominantly (62%) asymptomatic (i.e. no “well-defined” symptoms\(^18\)) cohort of children recruited through active surveillance, 28% of children had severe intrathoracic disease. HIV-infected children had the highest proportion of severe disease (48%), followed by children without documented TB source exposure (44%). Possible explanations for the unexpectedly high rate of severe disease are the high HIV prevalence and the high proportion of young children in our study (Table 2), both risk factors for severe disease.\(^2,3,34,35\) HIV infection is associated with a higher incidence of severe intrathoracic disease including cavities\(^34\) although not more disseminated disease.\(^34\) HIV-infected children recently started on cART may however be prone to more severe disease manifestations including TB Immune Reconstitution Inflammatory Syndrome (IRIS).\(^36\) High TB incidence rates have been reported in HIV-infected children\(^37,38\) despite the availability of IPT and improved immunological function on cART,\(^39\) consistent with our findings.

Diagnostic and treatment delay in adults\(^40\) may also have led to delayed presentation of children resulting in disease progression, especially in children without known TB exposure, where TB may not have been readily suspected in the absence of a known source case.\(^41\) Lastly, poor IPT uptake may be reflected in the high TB rates seen here in HIV-infected and —uninfected under-five year olds, despite IPT recommendations. Although IPT would not have prevented the majority of our TB cases,
which were diagnosed within 6 weeks of enrolment, IPT at the time of source case identification by
the program could have prevented a substantial proportion of disease in child contacts. Active
contact tracing and routine IPT delivery in these communities was documented as limited with no
structured IPT adherence support offered by the TB program.\textsuperscript{42,43} We have subsequently supported
the implementation of structured IPT delivery tools to improve uptake and adherence.\textsuperscript{44}
The current NIH case definition for paediatric intrathoracic TB has limited applicability to household contact studies where, as shown in this study from a high-TB burden setting, a surprisingly wide spectrum of TB disease was observed in HIV-infected and uninfected children. Further work is needed to develop paediatric TB case definitions to ensure that the wide spectrum of relevant paediatric TB observed in clinical research is captured, including in contact investigation studies.
ACKNOWLEDGEMENTS

The authors declare that they have no conflicts of interest. This work was supported by the National Institute of Allergy and Infectious Disease at the National Institutes of Health (R01A076199).

We would like to thank the Desmond Tutu TB Centre Paediatric TB team, as well as the study communities, participants, their parents and the local health authorities for their contribution to this study. Funding for this study was received from the NIH, the German Research Foundation (DFG), the Norwegian Programme for Development, Research and Education (NUFU) and the Thrasher Research Foundation.
REFERENCES


Table 1. Definition and comparison between NIH and protocol case definitions for pediatric tuberculosis

<table>
<thead>
<tr>
<th>Disease categories</th>
<th>NIH Case definition</th>
<th>Protocol Case definition</th>
<th>Key differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed TB</td>
<td>≥1 symptom/sign ≥1 symptom/sign and a TB-compatible CXR</td>
<td>Bacteriological or histological confirmation of M. tb, either 1. alone, (with/without TB exposure/alternative (non-TB) CXR diagnosis), or with 2. either a TB-compatible CXR, or 3. well-defined symptoms/signs</td>
<td>Bacteriological confirmation alone considered and symptoms not mandatory in protocol case definition. Additional symptoms and signs considered in the protocol case definition.</td>
</tr>
<tr>
<td></td>
<td>together with microbiological confirmation of Mycobacterium tuberculosis (M. tb)</td>
<td>Bacteriological confirmation alone considered and symptoms not mandatory in protocol case definition. Additional symptoms and signs considered in the protocol case definition.</td>
<td></td>
</tr>
<tr>
<td>Probable TB</td>
<td>≥1 symptom/sign and a TB-compatible CXR and: 1. either a positive treatment response, or 2. documented exposure to M. tb, or 3. immunological evidence of M. tb infection</td>
<td>1. Nonspecific histology with 1.1. a TB-compatible CXR, or 1.2. symptoms/signs, or 2. A TB-compatible CXR with 2.1. symptoms/signs, or 2.2. TB exposure</td>
<td>Symptoms/signs not mandatory in protocol definition; tests of infection and treatment response not considered in protocol case definition. Additional symptoms and signs considered in the protocol case definition.</td>
</tr>
<tr>
<td>Possible TB</td>
<td>≥1 symptom/sign and either 1. a positive treatment response or documented exposure to M. tb or immunological evidence of M. tb infection</td>
<td>Either of the following: 1. nonspecific histology, or 2. a TB-compatible CXR, or 3. symptoms/signs with or without TB exposure</td>
<td>Symptoms/signs not mandatory in protocol definition; TB-compatible CXR alone is defined as possible TB in protocol</td>
</tr>
<tr>
<td>Unlikely TB</td>
<td>≥1 symptom/sign but not fitting any of above definitions, but with no alternative established diagnosis</td>
<td>Abnormal, TB-incompatible CXR with no alternative radiological or clinical diagnosis, with or without TB exposure</td>
<td>Symptoms/signs not mandatory in protocol case definition, otherwise similar. Additional symptoms and signs considered in the protocol case definition.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Not TB</td>
<td>≥1 symptom/sign, not fitting any of the above definitions, and with an established alternative diagnosis</td>
<td>Abnormal, TB-incompatible CXR with an alternative radiological or clinical diagnosis, with or without TB exposure</td>
<td>Symptoms/signs not mandatory in protocol definition, otherwise similar</td>
</tr>
</tbody>
</table>

\[1\] Histological confirmation implies Ziel Nielsen Stain (Zn) positive with granulomatous inflammation and/or caseating necrosis

\[2\] Area of ongoing clinical debate/discussion

\[3\] Symptoms/signs include any or more than one of the following

**Cough:** persistent, non-remitting cough for more than 2 weeks, not responding to a course of antibiotics

**Weight loss/ failure to thrive:** unexplained weight loss of >5% vs. the highest recorded weight /clear deviation from previous growth trajectory ±documented crossing of centile lines in preceding 3 months± weight for age z-score of ≤-2 with no previous/recent growth trajectory information, not responding to nutritional rehabilitation/cART
Persistent unexplained fever: subjectively reported by guardian and a temperature of >38 degrees Celsius for more than one week objectively recorded at least once.

Persistent, unexplained reduced playfulness or activity: perceived and reported by the parent or caregiver.

Protocol defined symptoms and signs are any of the above as well as or any of the following, in isolation:

Neck nodes/visible neck swelling: defined as noticed by the parent/caregiver in the preceding month

Night sweats: reported by caregiver of a drenching nature, requiring a change of clothing.

Convulsions, lethargy or a decreased level of consciousness: defined as reported by the caregiver in the preceding two weeks

Zn- with granulomatous inflammation and/or caseating necrosis
Table 2. Characteristics of children enrolled in a community-based diagnostic study (N=1093 children) at enrolment and at the time of diagnosis of a potential disease episode (N=109)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total cohort (N =1093)</th>
<th>Children with potential TB (N=109)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at enrolment (months: median, range)</td>
<td>61 (3-190)</td>
<td>39 (5-184)</td>
</tr>
<tr>
<td>Age at TB episode</td>
<td>N/A</td>
<td>41 (5-188)</td>
</tr>
<tr>
<td>Under 2 years of age [N (%)]</td>
<td>197 (18)</td>
<td>26 (23)</td>
</tr>
<tr>
<td>Under 5 years age [N (%)]</td>
<td>534 (49)</td>
<td>74 (67)</td>
</tr>
<tr>
<td>HIV-infected [N (%)]</td>
<td>169 (15)</td>
<td>23 (21)</td>
</tr>
<tr>
<td>Median CD4 count at enrolment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute (range), % (range)</td>
<td>1400 (35-4200), 28.5 (3-47)</td>
<td>1450 (35-3700), 27 (3-44)</td>
</tr>
<tr>
<td>Median CD4 count at TB episode:</td>
<td>N/A</td>
<td>1232 (35-2601), 27 (3-47)</td>
</tr>
<tr>
<td>Follow-up - HIV-infected children</td>
<td>15 (0-29)</td>
<td>15 (3-28)</td>
</tr>
<tr>
<td>(months: median, range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up HIV-uninfected children</td>
<td>15 (0-21)</td>
<td>15 (0-21)</td>
</tr>
<tr>
<td>(months: median, range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity: Mixed race [N (%)]</td>
<td>717 (66)</td>
<td>73 (67)</td>
</tr>
<tr>
<td>Ethnicity: Xhosa [N (%)]</td>
<td>365 (33)</td>
<td>35 (32)</td>
</tr>
<tr>
<td>Ethnicity: Other [N (%)]</td>
<td>11 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Community A [N (%)]</td>
<td>355 (32)</td>
<td>28 (26)</td>
</tr>
<tr>
<td>Community B [N (%)]</td>
<td>359 (33)</td>
<td>45 (41)</td>
</tr>
<tr>
<td>Community C [N (%)]</td>
<td>379 (35)</td>
<td>36 (33)</td>
</tr>
<tr>
<td>Recruited from TB household [N]</td>
<td>671 (61)</td>
<td>76 (70)</td>
</tr>
<tr>
<td>(%)</td>
<td>Recruited from neighbouring household [N (%)]</td>
<td>242 (22)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>(%)</td>
<td>Recruited from community HIV clinic [N (%)]</td>
<td>180 (16)</td>
</tr>
</tbody>
</table>
Table 3. Comparison of diagnostic features in children with confirmed tuberculosis as classified by the NIH and protocol case definitions

<table>
<thead>
<tr>
<th>Confirmed TB based on the NIH definition (N=8)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriological confirmation and symptoms</td>
<td>2 (25.0)</td>
</tr>
<tr>
<td>Bacteriological confirmation, symptoms and a lobar pneumonia on CXR</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>Bacteriological confirmation, symptoms and documented TB exposure</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td>Bacteriological confirmation, symptoms, TB exposure together with interstitial pneumonia on CXR</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>Bacteriological confirmation, symptoms, TB exposure and a TB-compatible CXR</td>
<td>1 (12.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confirmed TB based on the protocol definition (N=23)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriological confirmation alone</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Bacteriological confirmation (MDR <em>M. tb</em>) with multiple palpable cervical lymph nodes (1.5 cm diameter)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Bacteriological confirmation with interstitial pneumonia on CXR</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Bacteriological confirmation with, lobar pneumonia and acute respiratory symptoms</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Bacteriological confirmation and TB exposure (“acute infection”)</td>
<td>6 (26)</td>
</tr>
<tr>
<td>Bacteriological confirmation, TB exposure and an interstitial pneumonia on CXR</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Bacteriological confirmation, TB exposure, lobar pneumonia on CXR and acute respiratory symptoms</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Bacteriological confirmation, TB exposure and a TB-compatible CXR</td>
<td>3 (13)</td>
</tr>
<tr>
<td>Bacteriological confirmation and well-defined symptoms</td>
<td>2 (9)</td>
</tr>
<tr>
<td>Bacteriological confirmation, well-defined symptoms and interstitial pneumonia on CXR</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Bacteriological confirmation, well-defined symptoms and documented TB</td>
<td>3 (13)</td>
</tr>
</tbody>
</table>
exposure

Bacteriological confirmation, well-defined symptoms, documented TB exposure and interstitial pneumonia on CXR

Bacteriological confirmation, well-defined symptoms, documented TB exposure and a TB-compatible CXR
Table 4. Tuberculosis disease spectrum observed in children with confirmed, probable and possible tuberculosis based on the protocol case definition (N=86)

<table>
<thead>
<tr>
<th>Intrathoracic tuberculosis</th>
<th>N (% of N=86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Isolated uncomplicated intrathoracic lymph node disease</td>
<td>28 (32)</td>
</tr>
<tr>
<td>- Controlled, uncomplicated intrathoracic (parenchymal) disease (n=29) and 3 with additional uncomplicated intrathoracic lymph node disease</td>
<td>32 (37)</td>
</tr>
<tr>
<td>- Pleural effusion with uncomplicated intrathoracic lymph node disease</td>
<td>1 (1)</td>
</tr>
<tr>
<td>- Complicated intrathoracic lymph node disease (8 in isolation); 2 had additional controlled uncomplicated intrathoracic (parenchymal) disease</td>
<td>10 (12)</td>
</tr>
<tr>
<td>- Uncontrolled uncomplicated intrathoracic (parenchymal) disease, of which 2 had additional uncomplicated intrathoracic lymph node disease</td>
<td>7 (8)</td>
</tr>
<tr>
<td>- Disseminated disease (miliary TB) with bilateral small pleural effusions and uncomplicated intrathoracic lymph node disease</td>
<td>1 (1)</td>
</tr>
<tr>
<td>- Uncontrolled complicated intrathoracic disease (complications were mostly lymph node related)</td>
<td>7 (8)</td>
</tr>
</tbody>
</table>

| Extrathoracic tuberculosis                                                                  |               |
| - Controlled uncomplicated cervical adenitis                                                 | 1 (1)         |

Note: Entities listed show where there was overlap between more than one disease entity. Disease extent (controlled vs. uncontrolled) and the presence of complications are described using a standard approach used to describe disease spectrum and severity.11