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ABSTRACT 

The quest to understand and optimize human movement performance has advanced 

rapidly in recent years through innovations in movement science and technology. 

Motion capture technologies have become significantly more mobile, powerful and 

unobtrusive, enabling new research opportunities. This has resulted in the continuous 

development of novel quantitative methods for observing and interpreting expert 

performance in professional sports. A contribution is presented towards this ongoing 

endeavor via original methodologies for measurements of cycling kinematics using 

wireless inertial and magnetic measurement systems (IMMSs) and technique analysis 

of expert rugby union goal kicking using stereophotogrammetry. 

Three studies are presented detailing the design and validation of sensor fusion 

algorithms for IMMS tracking of cycling kinematics. The algorithms utilize a 

nonlinear complementary filtering structure together with domain constraints related 

to pendulum and planar motion. Using stereophotogrammetry to validate the tracking 

performance, it is shown that these filter adaptations eliminate typical measurement 

errors caused by continuous and time-varying dynamic accelerations and magnetic 

field disturbances. The first of the IMMS studies illustrated the use of a functional 

calibration technique to estimate the radius of rotation of an IMMS attached to the 

thigh. This technique was shown to reduce IMMS tracking errors per axis to 1°. A 

detailed assessment of the effect of soft tissue artifact on hip angle measurements is 

also given, and estimates of hip kinematics in the sagittal plane were accurate to 

within 1-2°. The following two studies focus on IMMS tracking of crank angles in 

the presence of severe magnetic interference, which precludes the use of traditional 

static pose calibrations. Two magnetometer-free algorithms are presented, one not 

requiring a sensor-to-segment calibration and another utilizing a functional 

calibration technique. Both methods were found to perform with accuracies of 2-3°. 

A novel optical motion capture method for tracking the crank angle was also 

developed using a two-segment definition. 

Three more studies present a novel technique analysis of fifteen professional goal 

kickers using stereophotogrammetry. The first study investigated the distance and 

angulation of the individual steps of the run-up as well as foot positioning relative to 

the tee and found that anthropometry did not play a major role in determining run-up 

Stellenbosch University  https://scholar.sun.ac.za



iii 

 

geometry. The second study assessed phase timing, speed and acceleration during the 

approach and found that this only had a moderate to small association with foot speed 

at ball contact. The third study reports on rotational alignment of the thorax, pelvis 

and feet relative to the tee and target and discusses evidence for a tension arc 

movement strategy in the spine rotation angle. The most important finding in all three 

studies was high inter-individual variability and low intra-individual variability, 

which highlights the nonlinear, athlete-specific dynamics of motor control in sports.  

In short, this work contributes towards understanding and overcoming challenges to 

cycling analysis using IMMSs. The tracking algorithms are resistant to errors caused 

by magnetic interference, centripetal accelerations and sensor-to-segment calibration. 

Similarly, the technique analysis of rugby goal kicking contributes towards evidence-

based coaching by providing novel methodologies and data for understanding 

performance. 
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OPSOMMING 

Die strewe om menslike bewegingsprestasie te verstaan en te optimeer het in die 

onlangse tyd snelle vooruitgang beleef met vernuwende bewegingswetenskap en -

tegnologie. Bewegingvasleggingstegnologie is deesdae beduidend sterker, meer 

mobiel en onopvallend, wat nuwe navorsingsgeleenthede skep. Dít lei tot die 

voortgesette ontwikkeling van nuwe kwantitatiewe metodes om die prestasie van 

beroepsportlui waar te neem en te vertolk. Hierdie navorsing lewer ’n bydrae tot dié 

deurlopende pogings in die vorm van oorspronklike metodologieë vir die meting van 

fietsrykinematika met behulp van draadlose traagheids- en magnetiese metingstelsels 

(TMMS’e), sowel as tegniekontleding van doelskoppe deur beroepsrugbyspelers met 

behulp van stereofotogrammetrie. 

Die drie studies wat hier aangebied word, toon die besonderhede van die ontwerp en 

bekragtiging van sensorfusie-algoritmes vir die TMMS-nasporing van 

fietsrykinematika. Die algoritmes maak gebruik van ’n nieliniêre aanvullende 

filterstruktuur, tesame met domeinbeperkings vir slinger- en vlakbewegings. Met 

behulp van stereofotogrammetrie om die nasporingsprestasie te bekragtig, word daar 

aangetoon dat hierdie filteraanpassings tipiese metingsfoute uitskakel wat gewoonlik 

uit deurlopende en tydwisselende dinamiese versnellings en versteurings in die 

magnetiese veld spruit. Die eerste van die TMMS-studies illustreer die gebruik van ’n 

funksionele kalibreertegniek om die draai-omtrek te skat van ’n TMMS wat aan die 

bobeen vasgemaak is. Daar word bewys dat hierdie tegniek TMMS-nasporingsfoute 

per as tot 1° verminder. Hierdie studie bied ook ’n voerige beoordeling van die 

sagteweefselartefak by heuphoekmetings, en kon heupkinematika op die sagittale 

vlak akkuraat tot op 1-2° na skat. Die volgende twee studies konsentreer op TMMS-

nasporing van draaihoeke in die teenwoordigheid van erge magnetiese inmenging, 

wat die gebruik van tradisionele statiese houdingskalibrering onmoontlik maak. Twee 

magnetometer-vrye algoritmes is ontwikkel – een sonder ’n sensor-tot-segment-

kalibrering en een wat van ’n funksionele kalibreertegniek gebruik maak. Albei 

metodes het akkurate resultate tot op 2-3° na opgelewer. Daarbenewens is ’n 

vernuwende optiese bewegingvasleggingsmetode ontwikkel vir die nasporing van die 

draaihoek met behulp van ’n tweesegment-definisie. 
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Drie verdere studies bied ’n voerige tegniekontleding van 15 beroepsdoelskoppers 

met behulp van stereofotogrammetrie. In die eerste studie word die afstand en hoek 

van die individuele treë in die aanloop sowel as die voetplasing in verhouding tot die 

skopring ondersoek, en word daar bevind dat antropometrie geen beduidende rol in 

die bepaling van aanloopgeometrie gespeel het nie. Die tweede studie beoordeel 

fasetydsberekening, snelheid en versnelling in die aanloop, en dui op slegs ’n matige 

tot swak verband met voetsnelheid by balkontak. Die derde studie doen verslag oor 

die draairigting van die toraks, pelvis en voete in verhouding tot die skopring en 

teiken, en bespreek die bewyse vir ’n spanningsboog-bewegingstrategie in die 

draaihoek van die ruggraat. Die belangrikste bevinding in ál drie studies is hoë inter-

individuele veranderlikheid en lae intra-individuele veranderlikheid, wat die 

nieliniêre, atleetspesifieke dinamika van motoriese beheer in sport beklemtoon.  

Die metodes wat vir hierdie studie ontwikkel is, dra by tot die verstaan en 

oorkomming van die uitdagings van fietsryanalise deur middel van TMMS’e. Die 

nasporingsalgoritmes wat ontwikkel is tydens die studie is immuun teen foute 

veroorsaak deur magnetiesesteuring, sentripitaleversnelling en sensor-tot-segment 

kalibrasie. Die tegniekontleding van rugbydoelskoppe in hierdie studie bied ook ’n 

magdom nuwe kennis oor bewegingspatrone by beroepspelers en lê die grondslag vir 

bewysgegronde afrigting en oefening..  
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 Introduction 

 Quantitative Analysis of Human Movement 

Human movement results from muscular forces acting on the skeletal system in order 

for the body to overcome gravity and navigate the environment. Through cognitive 

processes, these muscular forces are controlled by the nervous system and fueled by 

the cardiopulmonary system (Figure 1). The phenomenon of human movement is so 

ubiquitous that its complexity is not often appreciated. Besides the numerous intricate 

interactions between (amongst others) the musculoskeletal, neurological and 

cardiopulmonary systems, mobility is also influenced by a wide array of 

environmental, sociological and psychological factors [1, 2]. Therefore, 

understanding the underlying mechanisms characterizing both healthy and impaired 

movement for different physical tasks, contexts and populations is a massive 

undertaking requiring on-going trans-disciplinary research.  

 

Figure 1: Sensorimotor control, energetics and cognition all play an important role in human 

movement function 

This study falls within this broad framework, but its scope is restricted to the analysis 

of musculoskeletal biomechanics at the functional system level (as opposed to 

molecular, cellular or tissue biomechanics). More specifically, the work focuses on 

(Image: http://eliteathletedaily.com) 
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short-term kinematic analyses of specific skeletal segments and joints during sports, 

which involve measurements with a high temporal-spatial resolution on the scale of 

single degrees of rotation, millimeters of displacement and milliseconds. The work is 

thus differentiated from longer-term macro-level studies involving daily activity 

monitoring using GPS or pedometers, and also does not include any data on forces 

(kinetics) or muscle activity (electromyography) during movement. To further 

contextualize this study, the following section gives an overview of the modern 

applications, historical development and current challenges within this specific area 

of quantitative human movement analysis.  

 Modern applications  

Human movement analysis is relevant to a broad range of applications (Figure 2). 

Firstly, the growing body of knowledge about human movement is being utilized 

increasingly for evidence-based clinical healthcare interventions in order to improve 

quality of life. Pre- and post-intervention movement analysis is helpful for guiding 

surgical decisions and assessing outcomes, for example in arthroplasty patients with 

osteoarthritis [3] or single-event-multiple-level surgery on children with cerebral 

palsy [4]. Similarly, in the allied health professions it is used to track rehabilitation 

progress for patients with impaired physical mobility due to chronic disease, aging 

and trauma [5]. Measurements of human movement have also been used to determine 

risk factors and biomarkers for preventative and diagnostic screening, as well as for 

the development of biomedical devices [2]. Overall, since physical mobility is 

necessary for people to maintain employability and independence in their daily lives, 

quantitative human movement analysis is playing an important role in improving 

livelihoods and reducing the global burden of immobility on healthcare systems. 

 

Quantifying human movement is also valuable in applications where it is important to 

simulate or identify it (Figure 2). For instance, real-world simulations of human 

movement are desirable in the field of robotics where humanoid robots are designed 

to ambulate as naturally as possible [6]. Realistic digital reconstructions of humanoid 

models have also become crucial in the creation of visual entertainment products such 

as movies and games. Animated characters can be made to mimic the idiosyncratic 

movements of famous celebrities (e.g. specific athletes) or of the user interacting with 

a product (e.g. visual-perceptual interfaces in gaming consoles) based on motion 

tracking and analysis [7]. Similarly, computer vision techniques continue to be 

developed for smart surveillance systems that can detect human movement, recognize 
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individuals by their characteristic movement patterns and classify their behaviors 

from video footage [8]. Therefore, quantitative human movement analysis has played 

an important role in the development of humanoid robotics, virtual reality and 

biometric security systems. 

 

                

Figure 2: Overlapping application areas for quantitative human movement analysis  

Most relevantly for this study, human movement analysis is playing an increasingly 

important role in optimizing human performance. One application area is in the field 

of occupational ergonomics, where quantitative movement analysis is used to inform 

the regulations for enhancing safety and productivity in the workplace [9]. Moreover, 

worldwide there is a growing awareness in society as well as governments about the 

importance of promoting health and wellness through exercise and recreational 

activities [10, 11]. Insights from quantitative movement analysis are being applied to 

personal training regimes, coaching methodologies, sportswear and sports equipment 

design in order to improve general health as well as elite performance [12]. This is 

particularly prevalent in professional sports where high performance athletes seek to 

gain a competitive edge through movement optimizations [13].  

 Historical development 

Over the centuries, the evolution of quantitative human movement analysis has been 

driven by accelerating developments in science and technology. The earliest recorded 

accounts of movement analysis go back as far as the fourth and fifth century BC, 

where Aristotle and his Greek contemporaries postulated methods of describing 

human and animal movements that were difficult to discern with the naked eye [14]. 
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However, another two millennia would pass before the fields of anatomy and 

mathematics developed sufficiently to describe human movement quantitatively.  

During the renaissance and enlightenment periods in Europe (14th-18th centuries), the 

likes of Da Vinci, Vesalius (the “Father of Anatomy”) and Borelli (the “Father of 

Biomechanics”) produced pioneering works on the anatomy [15] and locomotion [16] 

of the human body respectively (Figure 3). Meanwhile, mathematicians such as 

Cardan, Descartes, Newton and Euler were developing the analytical tools required to 

quantitatively describe human motion [17]. It was at this stage that the combined 

knowledge of Newton’s laws of motion (mechanics) and functional anatomy gave 

rise to the field of quantitative biomechanics. However, it would be another 100 years 

before technologies became available for actually taking any biomechanical 

measurements. 

 

 

 

 

           
 

 
Figure 3: A broad historical overview of the eras in which the tools required for movement analysis 

developed 

The development of sensor technologies such as photography and chronography 

during the Industrial Revolution (19th century) enabled French and German 
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[18]. Progressive advancements in chronophotography and the theoretical analysis of 

walking mechanics culminated in the first three-dimensional gait analysis conducted 
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analysis laboratory in 1945 in Berkeley, USA. However, despite tremendous progress 
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in the understanding of walking biomechanics during subsequent years, work was 

hindered by the need to perform manual calculations to derive biomechanical 

outcomes from the data – a feat which required hundreds of man hours per subject 

analysis. 

The arrival of the digital era in the second half of the 20th century finally provided 

the computing power and data storage capacity to perform automated quantitative 

movement analyses quickly, reliably and on a large scale. This lead to a proliferation 

of human movement laboratories and the emergence of the first commercial motion 

capture systems by the 1980’s [19]. At this stage, camera-based systems were already 

established as the gold-standard approach, although other systems based on magnetic 

and acoustic sensors were also developed. Within a few years, the first standardized 

protocols were made available for performing routine gait analysis for clinical 

decision-making, and by the turn of the century the general consensus was that 

quantitative gait analysis was coming of age [20]. However, most other movements 

remained largely unexplored and test conditions were still somewhat cumbersome 

due to the size and wired nature of the available equipment. 

The new millennium has brought with it the era of mobile technology, which has 

expanded the scope of human motion analysis exponentially [21]. There have been 

several key drivers. Firstly, micro-manufacturing has drastically reduced the size and 

cost of inertial sensors, making them much more portable and unobtrusive to place 

them on test subjects [1]. Almost all movement analysis sensors are now compact 

self-contained units with on-board data storage, processing power, battery power and 

Wi-Fi transmission capabilities. This is enabling previously unfeasible experiments 

and the seamless integration of hardware and software platforms. Sensor technologies 

can now measure more aspects of human movement in far more situations and in far 

greater detail than ever before. As detailed earlier in Chapter 1.1.1, this technological 

revolution in the 21st century is finally helping human movement analysis to migrate 

outside of the laboratory and outside of the classical bounds of gait analysis into other 

movement contexts such as sports [22].  

 Challenges related to sports analysis  

In comparison to gait analysis, which has been researched and developed for over 

half a century, three-dimensional quantitative movement analysis in sports has only 

become widespread in the last two decades. Due the complexity and dynamism of 

sports movements, several challenges need to be addressed to accomplish valid and 
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unobtrusive methods for data collection in the natural sporting environment, and 

effective interpretive frameworks for analysis of movement technique (Figure 4).  

 

       

 
 
Figure 4: The range of challenges in collecting and analyzing movement data for sports performance 

optimization  

Reaching the goal of non-invasive field testing is dependent upon the development of 

portable, non-invasive sensing capabilities. In the case of some sports this remains 

unfeasible due to basic technological barriers. For example, three-dimensional motion 

analysis for some water sports is not currently feasible [23]. Even for sports where 

data collection is feasible, mobile body-mounted instruments are often not 

sufficiently robust to operate accurately and reliably when subjected to vigorous 

motion, excessive sweat, physical impacts or other undesirable environmental factors 

[24]. For these reasons, quantitative analysis is still often conducted in controlled 

laboratory conditions to ensure the accuracy of measurements, although this can 

significantly reduce the ecological validity of research findings [25]. Therefore, in 

order to advance the field of quantitative movement analysis for sports, novel 

technologies and data collection methods are still required for improving the 

feasibility, accuracy and validity of experiments in harsh sporting environments. 

A second challenge in sports analysis is the development of appropriate analytical 

frameworks for interpreting specific sports movements. Without a way of 

quantitatively describing and understanding the underlying mechanisms related to 

performance, it remains unclear how to utilize measurement data. Despite numerous 
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studies of well-funded sports such as golf and soccer, many smaller sports remain 

largely under-researched in terms of comprehensive technique analysis using gold-

standard three-dimensional motion capture systems. Technique analysis is the process 

of determining the correlation between technique variables and performance variables 

[26]. Performance variables are directly related to the achievement of the desired 

outcome (e.g. more club head speed increases golf shot distance), whereas technique 

variables are descriptors of how the performance variable was achieved (e.g. larger 

range of pelvic rotation increased club head speed). The first step in technique 

analysis is to develop a temporal framework for breaking down the movement into 

appropriate time phases using well-defined, reliable movement events. Technique 

variables (e.g. joint angles) are then typically assessed using amplitude analysis at a 

specific event or during a specific phase, and correlated to performance variables 

using statistical methods. This provides an initial basic understanding of which 

technique variables are important. 

One example of such a framework is kinematic sequencing, which relates to the 

proximal-to-distal summation of segmental speed during kicking, throwing and 

hitting movements [27]. Kinematic sequences can be optimized for maximum distal 

speed at the point of contact or release, thus ensuring maximal projectile distance 

(which usually affects performance). The kinematic sequence framework has been 

successfully applied to golf, where it has been shown that elite golf swings are all 

characterized by a specific kinematic sequence despite notable differences in 

movement technique [28]. This highlights the high level of motor abundance in the 

body (multiple kinematic pathways to the same outcome), and necessitates a 

differentiation between technique and performance when analyzing sports 

movements [29]. As stated above, this kind of foundational analysis is still required 

in many sports in order to provide a platform for more advanced analysis. 

Advanced analyses focus on understanding the motor control strategies developed by 

the brain in order to optimize sports technique and how these strategies are affected 

by intrinsic and extrinsic factors. The key phenomenon in this regard is movement 

variability, the nature of which has sparked considerable academic debate in the 

wider field of motor control [30]. In the past, inter-subject variability was considered 

to be indicative of sub-optimal movement patterns that need to be corrected through 

rigid coaching interventions towards a single optimal technique. This perspective is 

changing as researchers and coaches embrace the idea that optimal technique is not 

constrained to a single motor control strategy but rather is dependent on a number of 
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subject-specific factors [31]. Moreover, intra-subject variability has been traditionally 

interpreted as undesirable noise in the motor control system, causing athletes to strive 

for perfect repeatability through large training volumes. However, recent studies have 

suggested that intra-subject variability may have a functional purpose such as 

reducing injury risk or helping the motor control system adapt to disturbances [32, 

29]. Therefore, beyond achieving accurate measurements, perhaps the most 

significant challenge in sports analysis using quantitative movement data is attaining 

a helpful understanding of movement variability and how to address it in coaching. 

 Modern Human Motion Capture Systems 

Quantitative human movement analysis is performed using motion capture systems. 

Current technologies for motion capture typically involve a signal source and markers 

attached to the body (Figure 5). There are also some emerging image processing 

technologies which detect virtual landmarks on the body from camera footage 

(markerless systems [33, 18]), as well as proprioceptive sensing technologies such as 

e-textiles [34, 35] that can quantify movement without a signal source (sourceless). 

These emerging technologies fall outside the scope of this thesis and the text will 

henceforth focus only on source-based marker systems.  

                   

                                        

       

              

            
Figure 5: The four broad categories of motion capture systems, two current and two emerging, based 

on the location of the sensor technology used  
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(usually the ground). The signal is usually generated by the system, for example 

infrared light, but it may also be a naturally occurring signal such as gravity. There 

are two basic types of source-based marker systems, depending on the location of the 

sensors receiving the signal: outside-in tracking systems and inside-out tracking 

systems (Figure 5). Outside-in systems employ sensors outside of the movement 

space to track a signal coming from inside the movement space i.e. from the body. In 

contrast, inside-out systems use sensors fixed to the body to track an external signal 

source. Note that sourceless systems are thus characterized as inside-in (the ‘signal’ is 

thus the movement itself) and markerless systems are outside-in as the signal is 

natural light reflected off the body.  

The major advantage of modern source-based marker systems over 2D video analysis 

is that they track movement in three dimensions of space. Body segments are 

typically modeled as rigid inter-connected skeletal bones. Describing the three-

dimensional kinematics of a rigid body segment requires knowledge of two Cartesian 

coordinate systems (frames): a technical frame attached to the segment and a global 

reference frame attached to the external environment and considered stationary. 

Therefore, the advantages and disadvantages of different source-based marker 

systems are determined by the nature of the transmitter signal and how well it 

propagates between the technical frame and the global frame under different 

conditions. This is illustrated in the following two subsections which elaborate on the 

advantages and disadvantages of the dominant motion capture technologies. 

 Optical motion capture systems 

The current gold-standard motion capture technology for kinematic analysis is 

stereophotogrammetry. Stereophotogrammetry systems have a classical outside-in 

architecture with markers on the body either reflecting or emitting an artificially 

generated light signal (often infra-red) back to an array of ground-fixed cameras. 

Triangulation techniques are then used to estimate the coordinates of individual 

markers on an object within a virtual motion capture volume; the physical area in 

which markers are visible to at least two cameras (Figure 6a). This is determined by 

the number and configuration of the cameras used, the position (origin) and 

orientation (axis directions) of which are determined by a calibration procedure 

relative to a ground-fixed reference frame. A minimum of three markers attached to 

the same rigid body segment is then required for tracking the angulation of that 

segment’s technical frame (Figure 6b). 
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Optical motion capture measurements have a high resolution in space (sub-millimeter 

accuracy) and time (sampling rates of over 500 Hz), making them ideal for recording 

highly dynamic sports movements. However, these systems have two important 

disadvantages: small measurement volumes and marker occlusions. Firstly, optical 

systems typically have small volumes because the camera hardware required (and 

thus the cost) scales linearly with volume size. Typical configurations which are still 

affordable to academic institutions include 6-10 cameras, although larger 

configurations with dozens of cameras are available. A typical 8-camera 

configuration enables a maximum volume of approximately 8m x 4m x 2m (length x 

breadth x height). This is ideal for earth-stationary movements such as a golf swing, 

jumping or standing balance tasks but problematic for translational activities such as 

road cycling - unless done using a stationary trainer, which may compromise test 

validity.  

 

 

            

 
(a)                   (b) 

Figure 6: The range of challenges in collecting and analyzing movement data for optimizing sports 

performance 
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obstructions caused by the test participant’s body, which can complicate testing in 

some movement contexts. 

 Inertial and magnetic motion capture systems 

The main competing motion capture technology used for quantitative human 

movement analysis is inertial and magnetic measurement systems (IMMSs). In 

contrast to optical motion capture systems, IMMSs work on the principle of inside-

out tracking [36]. The IMMS is a body sensor which tracks two naturally occurring 

signals external to the body: the gravitational and magnetic fields of the earth. These 

two field vectors are ubiquitous signal sources that can be used to define an inertial 

north-east-up reference frame with an essentially unlimited capture volume. Each 

body segment is mounted with an individual IMMS, the axes of which constitute the 

segment technical frame, such that a body-network of IMMSs can be used to track a 

multi-segment body relative to the same inertial reference frame. Therefore, whereas 

optical systems track the technical frame within the reference frame, each IMMS 

tracks the reference frame within the technical frame (Figure 7). 

 

 

 

 

 

 

(a)        (b)          (c) 

 

Figure 7: Inertial and magnetic measurement systems in the sensor frame by sensing the global (a) 

vertical and (b) magnetic north directions, allowing it to reconstruct (c) the reference frame in the 

sensor technical frame 

An IMMS contains triaxial accelerometers and magnetometers which are capable of 

tracking the vertical axis (Figure 7a) and magnetic north axis (Figure 7b) of the 

inertial reference frame respectively [37]. The third east-pointing axis is then 

calculated from the other two (Figure 7c). While usually stable over time, 
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accelerometer tracking of the gravitational vector is compromised by high-frequency 

noise during vigorous motion due to the presence of indistinguishable dynamic 

acceleration artifacts in the measured signal. Similarly, magnetometer tracking of the 

heading vector is compromised if the local magnetic field is distorted by nearby 

ferromagnetic materials (e.g. steel objects) or electromagnetic fields (e.g. mobile 

phones).  

To compensate for these errors, IMMSs also contain triaxial gyroscopes which track 

the angular velocity of the technical frame. This signal can be numerically integrated 

to track the angular rotation of the technical frame (once detected using vector 

observation). Gyroscope tracking demonstrates high fidelity during short-term rapid 

motions but is prone to boundless drift error over time due to the accumulation of 

non-white noise during integration [38]. Therefore, in essence, an IMMS tracks its 

own movement in the inertial frame simultaneously using two different tracking 

methods (vector observations and gyroscope integration). These two methods have 

complementary error characteristics in the frequency domain which can be exploited 

using sensor fusion techniques (mathematical optimization algorithms) to produce a 

single optimal estimate of IMMS [39]. However, IMMS sensor fusion algorithms 

typically fail after a minute or two in the presence of dynamic accelerations or 

magnetic interferences which are continuous and time-varying, as they are thus 

unable to correct gyroscope drift errors. In some cases, additional information from 

auxiliary sensors or prior knowledge of the system dynamics (domain constraints) 

can be exploited in the sensor fusion scheme to compensate for prolonged corruption 

of the IMMS reference vectors [38]. 

IMMSs also have several notable advantages over optical systems. They are easier to 

use, less costly, have an essentially unlimited motion capture volume (i.e. truly 

mobile) and are immune to the occlusion problems suffered by optical systems, 

allowing them to be used under clothes and in cluttered test environments. However, 

one of the major disadvantages of IMMSs is that they are inherently three-degrees-of-

freedom orientation trackers that do not sense the absolute position of the technical 

frame in the reference frame [38]. Relative linear displacements of the technical 

frame can be estimated by double-integration of the (gravity-corrected) accelerometer 

signal, although this is only reliable for a few seconds at a time due to exponential 

drift errors. Nevertheless, domain constraints - related to prior knowledge of user 

anthropometry (segment dimensions) and joint constraints - have been exploited in 
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proprietary algorithms to enable accurate tracking of translation (e.g. step lengths, 

total distance travelled) during ambulation with a body network of IMMSs [40].  

 Biomechanical modeling 

Quantitative human movement analysis usually requires that segment motion be 

expressed relative to intuitive anatomical planes of motion as stipulated by a given 

convention (e.g. the conventions of the International Society for Biomechanics [41, 

42]). These anatomical planes of motion of a given segment are defined by an 

internal coordinate system (the anatomical frame) attached to the underlying skeletal 

bones [43]. Therefore, the anatomical frame is not directly observable by optical or 

IMMS motion capture systems, which instead track the movement of skin-mounted 

technical frames that do not provide information about segment morphology. 

Biomechanical modeling involves the estimation of the body’s anatomical frames 

using one of two numerical techniques: direct kinematics and inverse kinematics. 

Inverse kinematics involves fitting a scaled model of the articulated human body to 

the measured combined technical frame data using optimization methods such as 

weighted-least-squares minimization [44]. In contrast, direct kinematics approaches 

estimate each anatomical frame separately by assuming a direct relationship between 

the technical frame and anatomical frame attached to the same segments [43]. This 

thesis does not cover inverse kinematics techniques, and will henceforth focus only 

on direct kinematics techniques for biomechanical modeling. 

 

Figure 8: Tracking of internal anatomical coordinate systems requires technical frame measurements 

as well as knowledge of the relationship between the technical and anatomical frames. 
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Direct kinematics methods estimate the anatomical frame based on its alignment to 

the measured technical frame on the same segment (Figure 8). This relationship can 

be expressed as a coordinate system transformation, usually determined a priori using 

calibration techniques and assumed to be time-invariant (under the rigid body 

assumption). Therefore, in addition to the uncertainty of motion capture 

measurements of the technical frame, biomechanical modeling of the body introduces 

two additional sources of error: anatomical frame calibration errors [45] and soft 

tissue artifact [46]. Calibration error occurs when the relative alignment between a 

technical and anatomical frame is estimated incorrectly. Since the axes of anatomical 

frames are often joint rotation axes, calibration errors can be thought of as 

misalignment between the estimated anatomical and true anatomical axes. On the 

other hand, soft tissue artifacts are dynamic changes in the alignment of the technical 

frame and the anatomical frame due to displacement of the skin-mounted markers 

relative to the underlying bone. 

Anatomical frame calibrations can be performed in different ways. Optical motion 

capture systems locate anatomical axes using either skeletal landmarks or controlled 

functional movements. Markers placed on bony landmarks can be used to estimate 

joint axes (e.g. the line between two markers on the femoral epicondyles 

approximates the knee axis) as well as joint centers (e.g. the mid-point between two 

femoral epicondyle markers approximates the knee joint center). Functional 

techniques are controlled movements which make joint axes and centers observable 

relative to the technical frame when joint constraints are taken into account. 

Functional calibration methods are also applicable to IMMS systems, but anatomical 

landmark position methods are not feasible with IMMSs since IMMSs cannot 

measure absolute position. Another method which has been traditionally used for 

IMMS motion capture is static pose calibrations, in which the position and orientation 

of anatomical frames is simply assumed for a prescribed body pose e.g. a static T-

pose. 

One of the most common biomechanical modeling outcomes for human movement 

analysis is joint angles. Joint angles represent the relative alignment of two body 

segments connected by a shared skeletal joint. This can be expressed mathematically 

as the orientation of the one segment’s anatomical frame within the anatomical frame 

of the second segment [43]. The relationship between two frames in space can be 

fully described by a minimum of six scalar values. For example, position 𝑝 of the 

Stellenbosch University  https://scholar.sun.ac.za



15 

 

tibial anatomical frame A1 relative to a femoral anatomical frame A2 can be 

described as using a combination of the relative linear and angular position: 

 𝑝𝐴2→𝐴1    =  [𝑡𝑥 𝑡𝑦 𝑡𝑧 𝑟𝑥 𝑟𝑦 𝑟𝑧]    (1) 

Here the three-dimensional vector 𝑡 represents translation of the tibial frame origin 

within the femoral frame axis and three-dimensional vector 𝑟 represents angular 

rotations between the frames in a prescribed Euler rotation sequence. This type of 

Euler format can be used in this case for quantifying knee joint angles in the three 

anatomical planes at a specific point in time. This is the common-place 

parameterization used in clinical settings as Euler angles are geometrically intuitive 

to interpret. However, to avoid the well-known gimbal-lock phenomenon1 associated 

with Euler angle notation, the relative angulation 𝑟 between frames is often described 

in software algorithms using one of two alternative mathematical parameterizations: 

rotation matrices or unit quaternions.  

The rotation matrix 𝑅 is a conceptually intuitive notation in that it describes the 

orientation of one frame’s axes (X-Y-Z) as base vectors within a second x-y-z frame:   

𝑅𝑇→𝐺    =  [

𝑋𝑥 𝑌𝑥 𝑍𝑥

𝑋𝑦 𝑌𝑦 𝑍𝑦

𝑋𝑧 𝑌𝑧 𝑍𝑧

]       (2) 

It is also unique in that the transpose merely represents the orientation of the second 

frame’s axes (X-Y-Z) as base vectors within the first frame (x-y-z). 

𝑅𝑇→𝐺
𝑇 =  𝑅𝐺→𝑇          (3)  

Besides skeletal joint angles, rotation matrices can be used throughout in motion 

capture systems to describe movement of the anatomical and technical frames within 

the global reference frame, the transformation between technical and anatomical 

frames and even the alignment between two different global frames when comparing 

data from two different motion capture systems. Rotation matrices and their 

transposes also allow for easy transformations and rotations of vectors and point 

coordinates between different frames through simple matrix multiplication. However, 

                                                 

1 Originally coined to describe rotational alignment of two rings in a mechanical gimbal, the phrase “gimbal lock” also refers 

to related mathematical singularities which occur when describing rotations near multiples of 90° using Euler angle notation. 
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rotation matrices are not particularly efficient or numerically stable when subjected to 

highly iterative calculations because of their relatively large size (9 elements) and 

associated difficulties in enforcing the internal constraints of orthogonality and unity.  

Due to the numerical challenges associated with rotation matrices, the most widely 

used notation for describing the orientation of frames is the unit quaternion, a four-

element vector which is mathematically interchangeable with a rotation matrix by a 

given function 𝑓𝑅→𝑞: 

𝑞𝑇→𝑅    =  𝑓𝑅→𝑞(𝑅𝑇→𝑅) =  [𝑞1 𝑞2 𝑞3 𝑞4]    (4)  

As with rotation matrices, quaternions enable transformations and rotations between 

coordinate systems. However, quaternion mathematics differs somewhat and is 

typically seen as less intuitive to interpret. Nevertheless, quaternions are immune to 

gimbal lock, more efficient than rotation matrices and very simple to normalize. 

 Overview of Study 

 Motivation 

This study forms part of efforts to develop technical capacity for quantitative human 

movement analysis within the department’s biomedical engineering research group. 

As discussed in Section 1.1.1, movement analysis is utilized in a wide variety of 

healthcare, industrial and recreational applications. Innovation in these types of 

applications requires some level of engineering expertise to be realized. Moreover, 

advancements in motion capture technologies within the last decade suggest that the 

field will continue to grow in significance in years to come (Section 1.1.2). The 

knowledge gained from this thesis will also prove valuable in a number of future 

research projects within the research group involving computational modeling of 

musculoskeletal biomechanics, design of biomedical devices for telemedicine and the 

development of bio-mechatronic devices such as prosthetics. The biomedical research 

group also aims to use the capabilities gained from this study to collaborate more 

extensively with other research groups in disciplines such as Robotics, Physiology, 

Orthopedics, Physiotherapy and Sports Science. 

In comparison to gait analysis, sports analysis poses additional technical challenges 

when collecting and analyzing motion capture data (Section 1.1.3). Therefore, high 

performance sports analysis was chosen as the topic for this thesis to develop 

technical expertise in the research group in the two leading motion capture 
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technologies: optical and IMMS systems (Section 1.2). Two sports movements were 

chosen as case studies of IMMS and optical motion capture applications: road cycling 

and rugby union goal kicking respectively (Figure 9). These two sports play an 

important role in the health and wellness of in South Africa, and are also very well 

suited as demonstrators for skills in motion capture and human movement analysis.  

 

      

 
Figure 9: Broad work scope and key features of sporting movements chosen as case studies for this 

project 

Road cycling is an ideal case study for mobile IMMS technologies as field-testing for 

cycling requires outdoor tracking over large distances, which is not possible with 

optical systems. The ultimate goal in this regard is to be able to measure 

biomechanical outcomes for the whole body during field-testing on the road. This 

kind of information would enable real-time feedback applications for dynamic 

bicycle fitting services or ecologically valid research into ways of enhancing 

performance or preventing injury. However, to the author’s knowledge this feat has 

not yet been achieved as these measurements are not all feasible. Nonetheless, the 

cycling motion is a closed loop mechanical system with a number of domain 

constraints which could be incorporated into novel sensor fusions schemes to 

improve IMMS tracking accuracy. The development and validation of such 

mathematical algorithms for wireless IMMSs - attached to the cyclist or bicycle - 

form the bulk of the design work for this thesis.  

In contrast to cycling, rugby union goal kicking is a complex movement that is poorly 

understood scientifically, providing an opportunity to apply technique analysis to it 

for the first time using gold-standard optical motion capture methods. Therefore, the 

major part of the experimental analysis component for this thesis is covered by the 

work on rugby goal kicking. These studies also form part of a larger research project 

in collaboration with the national goal kicking coach which aims to develop scientific 

Road cycling

• IMMS motion capture

• Design and validation work

• Addressing data collection challenges

Rugby goalkicking

• Optical motion capture

• Experimental focus

• Addressing data analysis challenges

(Image top left: http://blog.bgindy.com) (Image top left: http://www.gilbertrugbyblog.com) 
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coaching methods for youth. The envisaged end result is the development of a 

country-wide goal kicking program for coaches, which would make a considerable 

impact on the sport nationally. 

 Problem statement and objectives 

An important goal in road cycling science is comprehensive in-field analysis of 

cyclist biomechanics. A few recent studies have investigated the use of wireless 

IMMSs for real-time outdoor analysis of individual cycling parameters [47-51]. Even 

so, a number of challenges remain to the feasibility of measuring full-body cycling 

kinematics on the road with IMMSs. The first challenge is that the cycling movement 

is sustained over long periods of time and exhibits large and continuous centripetal 

accelerations. This compromises IMMS tracking of the gravity reference vector and 

ultimately leads to drift errors using standard IMMS sensor fusion algorithms. The 

author could find only one published IMMS algorithm addressing this problem in 

which a gyroscope reset method was used to track knee joint angles with no drift 

[49]. However, the study in [49] was limited in a few important aspects: it was 

conducted with two-dimensional sensors and not three-dimensional sensors, 

accelerometers were not used for gravity sensing and the results excluded hip joint 

angles. Hip angles require tracking of the pelvis segment, which is subject to notable 

soft tissue artifacts when moving between different postures and hip flexion angles 

[52]. Since typical anatomical frame definitions involve standing calibrations, hip 

angle measurements during cycling can be significantly affected. Therefore, the first 

aim of the study was to  

A1. Develop and validate an IMMS sensor fusion algorithm for analyzing hip 

joint angles during cycling which contains compensation for centripetal 

accelerations and investigates the effect of soft tissue artifacts in 

calibration. 

The second challenge for IMMS tracking of cycling is continuous and time-varying 

magnetic interference near the pedals. Previous work has shown that this magnetic 

interference can be caused by ferromagnetic components present in many bicycles, 

which induces errors in IMMSs tracking of the heading reference vector during 

dynamic motion [47-48]. Moreover, magnetic disturbances can corrupt IMMS 

tracking during static calibration methods that estimate the sensor-to-segment frame 

alignment required to measure crank arm angles [40]. The crank angle is an important 

outcome in the analysis of a range of cycling biomechanics outcomes relating to 
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pedaling efficiency [53], bicycle fitting [54], muscle activation patterns [55] and joint 

angle kinematics [56] and kinetics [57]. However, one problem with measuring crank 

angles with IMMSs is that wired IMMSs cannot be used due to cable entanglement. 

Therefore, this measurement approach has only recently been made feasible with the 

use of wireless IMMSs. Again, only one study was found in the literature which used 

wireless IMMSs for measuring crank angles [58]. However, this study only measured 

the crank angle using gyroscope integration, which is only valid for 30 seconds or 

less. They also did not present a state-of-the-art sensor-to-segment frame method and 

instead manually fixed the IMMS to the crank arm, which can be unreliable. 

Therefore, the second aim of the study was to: 

A2. Develop and validate an IMMS sensor fusion algorithm for measuring 

crank angles during cycling which contains compensation for magnetic 

interference and performs automatic sensor-to-segment frame alignment 

In terms of rugby union goal kicking, a survey of the literature on three-dimensional 

motion capture studies of elite performance revealed a paucity of available research. 

Moreover, findings from experiments involving other kicking motions such as in-step 

soccer kicking and rugby league punting have limited applicability to rugby union 

goal kicking due to differences in ball geometry, placement and flight trajectory. 

Therefore, seminal three-dimensional motion capture studies of professional goal 

kicking biomechanics, and the relationship between technique and performance 

variables, are required to fill this gap in knowledge. Furthermore, the level of inter- 

and intra-subject variability is not known or understood for this population and such 

data would be an important reference for future studies. In particular, coaches may be 

interested in aspects of kicking technique which are easy to adjust through training 

interventions, such as movement patterns during the approach to the ball. Therefore, 

the final aim was to: 

A3. Perform a technique and variability analysis of elite rugby union goal 

kicking using optical motion capture technology 

 Summary of thesis articles and co-author contributions 

This thesis is submitted as a compilation of six articles either already accepted or 

submitted for publication in academic journals. These are evenly split between the 

two case study sports (cycling and rugby union) in two sections. The first section in 

the main body of the thesis contains three articles which cover the design work 
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conducted for cycling analysis using wireless IMMSs. All three of these articles were 

submitted to the IEEE Sensors Journal (impact factor: 1.85).  

Paper 1 [59] in Section 2 addresses the first aim of the thesis (A1 in Section 1.3.2). It 

details the development of the Pendulum Filter, a nonlinear complementary filter for 

IMMS tracking during cycling. The Pendulum filter contains a novel algorithm for 

estimating and eradicating centripetal accelerations in order to improve tracking of an 

IMMS mounted on the thigh during pedaling. A validation of the Pendulum Filter and 

a proprietary IMMS sensor fusion algorithm using optical motion capture is 

presented, and give an analysis of the influence of soft tissue artifacts due to different 

anatomical frame calibration poses.  

Nature of contribution Extent of contribution (%) 

Conceptualization, data collection, analysis, writing 100% 

 

The following co-authors have contributed to Paper 1: 

Name email address Nature of 

contribution 

Extent of 

contribution (%) 

Prof C Scheffer NA (deceased) Supervision NA 

Dr JH Muller cobusmul@sun.ac.za Supervision NA 

 

Paper 2 [60] in Section 3 addresses the second aim of the thesis (A2 in Section 

1.3.2). This article presents a nonlinear complementary filter (the CRANK Filter) that 

enables the measurement of crank angles during cycling using a wireless IMMS. It 

also gives details on a novel method of benchmarking IMMS crank angle 

measurements against an optical motion capture system. This study exploits the 

kinematic constraints of a crank arm’s planar motion to enable magnetometer-free 

crank arm tracking in conditions of severe magnetic disturbances and without the 

need for a sensor-to-segment calibration.  

Nature of contribution Extent of contribution (%) 

Conceptualization, data collection, analysis, writing 100% 

 

The following co-authors have contributed to Paper 2: 
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Name email address Nature of 

contribution 

Extent of 

contribution (%) 

Prof C Scheffer NA (deceased) Supervision NA 

Dr JH Muller cobusmul@sun.ac.za Supervision NA 

 

Paper 3 (SUBMITTED) in Section 4 addresses the second aim of the thesis (A2 in 

Section 1.3.2). This study advances the work from Paper 2 by developing functional 

calibration methods for obtaining the sensor-to-segment transformation of the crank 

arm IMMS. This approach also exploits additional kinematic constraints in the 

pedaling motion within a nonlinear complementary filter framework to track crank 

angle profiles. This study also presents an improved benchmarking method using 

stereophotogrammetry compared to the method in Paper 2.  

Nature of contribution Extent of contribution (%) 

Conceptualization, data collection, analysis, writing 100% 

 

The following co-authors have contributed to Paper 3: 

Name email address Nature of 

contribution 

Extent of 

contribution (%) 

Prof C Scheffer NA (deceased) Supervision NA 

Dr JH Muller cobusmul@sun.ac.za Supervision NA 

 

The next three articles in the second section cover the experimental work done for the 

rugby goal kicking analysis using an optical motion capture system. All three studies 

involve analysis of the same data set of 15 expert rugby union goal kickers and each 

addresses the third aim of the study using different techniques and variables (A3 in 

Chapter 1.3.2). Also common to each study is the novel breakdown of the rugby 

union goal kick which was developed as part of the technique analysis. These studies 

were submitted to the UK Journal of Sports Science (impact factor 2:25).  

Paper 4 [61] in Section 5 presents a study of the step angulation, step distances and 

foot positioning relative to the tee amongst professional rugby union goal kickers. 

The article reports the variability between kickers in the group as well as individual 

kicker variability between trials, and examines correlations between the technique 

variables as well between technique variables and anthropometric measures.  

Nature of contribution Extent of contribution (%) 

Conceptualization, data collection, analysis, writing 100% 
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The following co-authors have contributed to Paper 4: 

Name email address Nature of 

contribution 

Extent of 

contribution (%) 

Dr van den Heever dawie@sun.ac.za Supervision NA 

 

In Paper 5 (SUBMITTED) in Section 6, the results of an analysis of phase timing 

and body speed and acceleration during the approach to the ball are presented. In this 

study we describe the inter-individual and intra-individual variability of the approach 

variables and correlate them to a key performance variable: foot speed at ball contact.  

Nature of contribution Extent of contribution (%) 

Conceptualization, data collection, analysis, writing 100% 

 

The following co-authors have contributed to Paper 5: 

Name email address Nature of 

contribution 

Extent of 

contribution (%) 

Dr JH Muller cobusmul@sun.ac.za Supervision NA 

Dr van den Heever dawie@sun.ac.za Supervision NA 

 

Paper 6 (SUBMITTED) in Section 7 contains an analysis of the rotational alignment 

to tee and target of the thorax, pelvis and feet. Along with the usual description of 

group and individual variability, it investigates the effect of the approach angle on 

these variables, as well as the relationships between them at different points in the 

kick. There is also analysis of the relative rotation of the thorax and pelvis (lumbar 

spine angle) in relation to theories involving the stretch-shortening cycle of muscles.  

Nature of contribution Extent of contribution (%) 

Conceptualization, data collection, analysis, writing 100% 

 

The following co-authors have contributed to Paper 6: 

Name email address Nature of 

contribution 

Extent of 

contribution (%) 

Dr JH Muller cobusmul@sun.ac.za Supervision NA 

Dr van den Heever dawie@sun.ac.za Supervision NA 
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 Paper 1: A Novel Complementary Filter for Tracking Hip Angles during 

Cycling using Wireless Inertial Sensors and Dynamic Acceleration 

Estimation 

Abstract: As wireless motion sensors become more compact and robust, new 

opportunities emerge to develop wearable measurement technologies for in-field 

sports analysis. This paper presents a nonlinear complementary filter for tracking 3-

D hip joint angles during cycling using inertial and magnetic measurement systems 

(IMMSs). The filter utilizes a novel method of dynamic acceleration compensation in 

the sensor frame based on the assumption of pendulum motion of the thigh around the 

hip joint center. A dynamic calibration is proposed in which the center of rotation of 

the thigh IMMS can be estimated during a functional hip movement in standing. 

Validation results from a gold-standard optical system showed that the filter IMMS 

tracking is drift-free with mean absolute errors of less than 3° for all IMMS axes 

combined at low, medium, and high pedaling speeds. Hip angles were also validated 

using the Vicon biomechanical model for standing and sitting calibration poses as 

well as true and normalized soft tissue artifact (STA). The best mean absolute errors 

for the sagittal, frontal, and transverse planes were 0.8°, 6.7°, and 2.2°, respectively. 

Variability due to calibrations and STA ranged from 1.4° to 8.1°. This demonstrates 

the high accuracies possible for IMMS tracking using algorithms designed for 

specific sports despite larger errors due to modeling. 

Citation:  

J. Cockcroft, J. H. Muller and C. Scheffer, "A novel complementary filter for tracking 

hip angles during cycling using wireless inertial sensors and dynamic acceleration 

estimation,” IEEE Sensors J., vol. 14, no. 8, pp. 2864 – 2871, Aug. 2014.  

 Introduction  

In the past, sports science research has been conducted using laboratory-based 

measurement technologies. Inevitably, the ecological validity of findings in these 

controlled environments has been debated [1]–[3]. However, the development of 

compact wearable sensors is now enabling in-field biomechanical analysis for a 

growing number of sports [4], [5]. An example of this is inertial and magnetic 

measurement systems (IMMSs), small wireless sensor units containing orthogonal 

triads of accelerometers, gyroscopes and magnetometers [6]. IMMSs have the key 
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advantage of tracking their own orientation proprioceptively without the external 

infrastructure required by other motion capture systems [7], [8]. This enables outdoor 

tracking of three-dimensional body segment orientation and multi-segment outputs 

such as joint angles using biomechanical modeling techniques [9]. However, despite 

utilization in a number of human movement applications such as pedestrian tracking 

[10], clinical gait analysis [11], activity monitoring [12] and rehabilitation [13], the 

full-scale adoption of IMMSs in sports science is hindered by a lack of accuracy in 

joint angle estimation.  

IMMS joint angle estimation is a two-step process: tracking the IMMSs attached to 

the body and then transforming IMMS orientations to an anatomical coordinate frame 

(ACF) defined for each segment. Therefore, the two primary sources of error in 

IMMS joint angle estimation are misalignment of IMMSs in relation to their segment 

ACFs, and error in IMMS tracking. IMMSs are unable to directly measure ACF 

orientation, necessitating calibrations in which the IMMS-to-segment orientation is 

estimated from a static pose with known ACF orientations [9]. Although further 

dynamic calibrations can then be implemented for correcting knee joint axis 

misalignment, a weakness of IMMS joint angle estimation is that the orientation of 

the pelvis is unknown during calibration, directly affecting the reliability of hip joint 

output. Moreover, variable and transient misalignment can occur due to the well-

known effects of soft tissue artifact (STA).  

A variety of algorithms exist for IMMS tracking, all of which ‘blend’ two 

measurements of the IMMS orientation. The first type of measurement is gyroscope 

tracking, using strapdown integration methods, which provides excellent high 

frequency motion registration. However, it suffers from well-known drift and 

quantization errors and requires external initialization due to a lack of absolute 

measurements [14]. In the second method, accelerometers and magnetometers track 

orientation by sensing Earth’s gravitational and magnetic fields, respectively, using 

static frame vector-matching techniques. Conversely, this provides absolute 

measurements with good accuracy at low frequencies but high levels of noise during 

rapid motion or magnetic interferences [15]. Therefore, all IMMSs utilize some form 

of mathematical sensor fusion to exploit these complementary measurement features.  

Crassidis et al. [16] provide a comprehensive survey of research developments in the 

area of orientation tracking algorithms. The traditional ‘workhorse’ for optimal 

IMMS sensor fusion is the extended Kalman filter (EKF) which has performed well 
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in many applications. However, the EKF has known limitations, most significantly its 

basis upon a linearization of the system. Efforts to overcome this have led to the 

development of more sophisticated statistical optimization methods such as unscented 

Kalman and particle filters. Secondly, the large covariance matrices of an EKF make 

it notoriously difficult to tune [17]. From early years this drove the utilization of 

simpler deterministic complementary filters that require the tuning of only one or two 

scalar gains [18]. More recently, more robust non-linear complementary filters have 

been developed for UAV tracking [19] that have shown comparable performance to 

the EKF. Non-linear observers have the desirable feature of being asymptotically 

stable, i.e. converging from any initial condition [20].  

Other developments in IMMS tracking have focused on the incorporation of prior 

knowledge about the system [14]. For example, non-holomic constraints such as zero 

lateral velocity have also been successfully implemented in ground vehicle tracking 

[21], [22]. In pedestrian tracking using foot-mounted IMMSs, updates for zero 

velocity, zero-attitude and zero-integrated heading rate during strategic points in a 

movement have also yielded improvements to tracking accuracy [10]. In multi-IMMS 

body-networks, holonomic constraints on the degrees of freedom in an anatomical 

joint of the body model can reduce orientation errors [23]. Without aiding sensors 

such as Global Positioning Systems (GPS), a crucial aspect of IMMS tracking is 

compensation for dynamic accelerations which otherwise corrupt gravity estimates 

and cause drift errors. While basic methods employ time-averaging in the sensor 

coordinate frame [24], this is susceptible to bias errors due to centripetal accelerations 

[25]. To the authors’ best knowledge there is only one published method for 

centripetal acceleration compensation in the sensor frame, which is only relevant to 

UAV flight with a wind-speed sensor [26]. The majority of published methods are 

based on the assumption of zero-mean accelerations in the global frame [27], [28], 

although researchers have commented on the scarcity of details for these methods in 

scientific literature [29].  

One sport which stands to benefit from IMMS technology is road cycling, where 

outdoor measurements could better inform efforts to improve biomechanical 

efficiency and minimize injury risk. However, there are also challenges. The 

movement is sustained over long periods of time and exhibits large and continuous 

centripetal accelerations, both of which lead to drift errors. The margins for 

improvement in body position are also small, requiring high accuracy. The feasibility 

of testing cycling using IMMSs has already been demonstrated with a proprietary 
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tracking algorithm [30], [31]. The authors could find only one published algorithm 

designed for cycling in which a gyroscope reset method was used to track joint 

kinematics with no drift [32]. However, the study in [32] was limited. It was 

conducted with two-dimensional sensors, accelerometers were not used for 

inclination sensing and the results excluded hip angles. The aim of this study was to 

develop a method for measuring hip angles in cycling which combines the 

measurement capabilities of IMMSs with the power and simplicity of non-linear 

complementary filtering.  

 Methods  

 Experiments  

One subject was tested pedaling on a competition standard road bicycle attached to a 

stationary trainer in an indoor laboratory. The subject was instructed to cycle for three 

consecutive 5-minute periods at a self-selected slow (measured cadence ≈ 45 rpm), 

medium (≈ 65 rpm) and fast (≈ 85 rpm) pedaling speed respectively. Pelvis and thigh 

segment kinematics were measured using wireless IMMSs developed by Xsens 

(MTw Development Kit, B.V. Technologies, Enschede, Netherlands). The pelvis 

IMMS was attached to the sacrum and the left and right thigh IMMSs were fixed on 

the distal third on the line between the greater trochanter and the lateral epicondyle of 

the knee. To limit magnetic interference, the testing was conducted in a magnetically 

clean location according to recommendations proposed by Veeger et al. [33].  

To validate the IMMS filter results, the orientation of each IMMS was also tracked 

using a gold-standard optical motion capture system (Vicon MX, Oxford Metrics 

Group, Oxford). Three passive-reflective markers were attached to a rigid L-shaped 

plastic cluster which was tightly taped to the casing of each IMMS. The cluster 

markers were then used to reconstruct the IMMS orientation in the Vicon laboratory 

frame according to the method proposed by Veeger et al. [33]. Pelvis and thigh 

segment markers were also placed on the subject according to the instructions for the 

standard Vicon Plug-in Gait biomechanical model. The hip joint angle output from 

the model was used as a ground-truth reference to validate the hip angles calculated 

using the IMMSs. Model calibrations for both systems were performed using a static 

T-pose. During the three speed trials the data from the IMMSs and Vicon were 

collected synchronously at 75 Hz with a trigger signal using the coaxial cables, ports 

and settings prescribed in the Xsens documentation.  
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 Filter design  

This study involved the adaptation of a passive complementary filter (PCF) from the 

class of deterministic non-linear observers proposed by Mahoney [20]. The output 

from the PCF is an estimate of the IMMS orientation q with respect to a north-east-up 

global frame, represented by the quaternion parameterization in Hamilton notation 

with  

𝑞̂ = [𝑠̂ 𝒗̂]     (5) 

 

where 𝑠 is the scalar component, 𝒗 is a three-element vector and the accent symbol 𝑞̂ 

represents an estimate of the true quantity 𝑞. The filter receives three-dimensional 

measurement inputs from a gyroscope, accelerometer and magnetometer designated 

𝑦𝐺, 𝑦𝐴 and 𝑦𝑀 respectively. The sensor models for each were:  

𝑦𝐺(𝑡) = 𝜔𝑆(𝑡) + 𝑏𝑆(𝑡)                               (6) 

 

𝑦𝐴(𝑡) = 𝑎𝑆(𝑡) − 𝑔𝑆(𝑡)                               (7) 

 

𝑦𝑀(𝑡) = 𝑚𝑆(𝑡) + 𝑑𝑆(𝑡)                               (8) 

 

Here 𝜔𝑆, 𝑎𝑆, 𝑔𝑆 and 𝑚𝑆 are three-dimensional vectors angular velocity, dynamic 

and gravitational accelerations and magnetic field intensity respectively. The 

gyroscope signal contains a bias 𝑏𝑆 and the magnetometer signal contains magnetic 

field disturbances 𝑑𝑆. All terms are expressed in the sensor frame, designated by 

superscript S The relationship between q and ω is governed by the following 

differential equation for rigid body kinematics:  

𝑞̂̇ =
1

2
𝑞 ⊗ 𝑝(𝜔̂)     (9) 

 

The symbol ⊗ in (9) refers to a quaternion multiplication and the pure quaternion 

form of 𝜔 is 𝑝(𝜔) = [0 𝜔 ]. The filter thus needs to estimate 𝜔 from (6) and use it 

to integrate (9) to track 𝑞 from an initial condition 𝑞0. This is done by compensating 

for 𝑏𝑆 in (6) using (7-8). The basic structure of the PCF is given below. Details can 

be found in [20].  

𝑞𝑒 =  𝑞̂ ⊗ 𝑞𝑆𝐹 =  [𝑠𝑒 𝒗𝑒]              (10) 

 

𝜔𝑒 =  2𝑠𝑒𝒗𝑒              (11) 

 

𝑏̂̇  =  −𝐾𝐼𝜔𝑒     (12) 
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𝜔̂ =  𝑦𝐺 − 𝑏̂ + 𝐾𝑃𝜔𝑒    (13) 

 

Figure 10 gives a summary of the adapted PCF, hereafter named the Pendulum Filter 

since it is based on the assumption of pendulum motion for the thigh IMMS. The PCF 

estimates 𝜔̂ according to equations (9-13). The filter performs online bias correction 

in (12) using an integrator and incorporates a feedback 𝜔𝑒: the error between the last 

estimate 𝑞̂ error and the orientation 𝑞𝑆𝐹 reconstructed with the accelerometer and 

magnetometer. The Factored Quaternion Algorithm (FQA) was chosen to calculate 

𝑞𝑆𝐹   for this study as, unlike other methods, it decouples the effects of magnetic 

interference from the inclination angles [34]. The dynamic acceleration compensation 

method in Figure 10 is described next in Chapter 2.2.3.  

The filter gain 𝐾𝐼 was set at a value twenty times smaller than the proportional gain 

𝐾𝑃, which was optimized for the slow, medium and fast trials individually. The 

optimization was conducted by running the filter through a 1D grid search of 𝐾𝑃 

between the extreme values of 0 (gyroscope tracking only) and 5 (effectively FQA 

only). The optimum gain value was chosen as the value resulting in the lowest 

combined minimum mean absolute error (CMAE) for all three axes. Thigh IMMS 

tracking and gain optimization was implemented for both the Pendulum Filter as well 

as the basic PCF without dynamic acceleration compensation (DAC), to allow for 

comparison, while only the PCF filter was used for the pelvis IMMS. 

 

Figure 10: Block diagram of the Pendulum Filter with DAC 
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 Dynamic acceleration compensation  

One of the limitations of Mahoney's PCF in [20] is that it assumes that the dynamic 

acceleration in the sensor frame is both weak (𝑎𝑆  ≪ 𝑔𝑆) and zero-mean. However, 

neither assumption holds for cycling where leg segments experience significant 

centripetal accelerations. In this study, the centripetal accelerations were sinusoidal 

with peaks of approximately 0.2g, 0.6g and 1g for the slow, medium and fast 

pedaling speeds respectively. Separate tests showed that during sprinting cadences, 

𝑎𝑆 could exceed 3g. Without DAC, 𝑎𝑆 in (7) acts as noise which severely corrupts the 

accelerometer's estimate of gravity in (7). Figure 11 illustrates how the Pendulum 

Filter compensates for dynamic accelerations in the accelerometer signal in order to 

produce a better gravity estimate 𝑔̂𝑆. 

 

Figure 11: The (a) errors in gravity tracking without DAC and (b) the calibration hip movement 

(sagittal plane view) 

As illustrated in Figure 11a, the uncompensated accelerometer estimate of −𝑔̂𝑆 (used 

as the vertical direction of the IMMS reference frame) causes an IMMS inclination 

error 𝜃𝑎 in 𝑞𝑆𝐹 proportional to the magnitude and direction of 𝑎𝑆.  Estimation of 𝑎𝑆 

using a DAC method is thus highly desirable for improving orientation estimates. By 

including a priori information, namely the assumption of pendulum motion for the 

thigh segment, the acceleration of the thigh IMMS can be expressed in terms of the 

acceleration of the center-of-rotation (CoR) 𝑎𝑂 and the radial and tangential 

accelerations 𝑎𝑟 and 𝑎𝑡 as in (14). By assuming that  𝑎𝑂
𝑆 is negligible for the pelvis 

during cycling, (14) can be rewritten in terms of the angular velocity of the thigh and 

the CoR of the IMMS 𝑟𝑆 as in (15). 

𝑎𝑆(𝑡) =  𝑎𝑂
𝑆(𝑡) + 𝑎𝑟

𝑆(𝑡) + 𝑎𝑡
𝑆(𝑡)     (14) 
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           =
d𝜔𝑆

dt
× 𝑟𝑆 + 𝜔𝑆 × (𝜔𝑆 × 𝑟𝑆)     (15) 

 

Since the estimate 𝜔̂𝑆 can be obtained from the PCF all that is required to make an 

estimate for 𝑎𝑆 is an estimate of 𝑟̂𝑆: 

𝑎̂𝑆 =  
d𝜔̂𝑆

dt
×  𝑟̂𝑆 + 𝜔̂𝑆 × (𝜔̂𝑆 × 𝑟̂𝑆)     (16) 

 

The vector  𝑟̂𝑆 was estimated in this study using a simple calibration procedure in 

which the subject, after standing still for 3 seconds in a single leg standing position, 

performed a repeated hip joint excursion for 5 seconds (see Figure 11b).  

The key to the calibration is that it is also possible to track 𝑎𝑆 by rearranging (16) 

into the form of (13). It is then possible to estimate the gravity vector 𝑔𝑆 in (17) using 

(18). 

𝑎𝑐𝑎𝑙
𝑆   = 𝑦𝐴 + 𝑔̂𝑆     (17) 

 

𝑝(𝑔̂𝑆) =  𝑞̂ ⊗ 𝑝(𝑔̂𝑆) ⊗ 𝑞̂∗      (18) 

 

Here, 𝑞̂∗ is a conjugated quaternion. Since the accelerometer signal 𝑦𝐴 and the gravity 

vector in the global frame 𝑔𝐺   in (17) are known, all that is needed to calculate 𝑟̂𝑆 in 

(16) is the orientation 𝑞̂ of the sensor during the movement in (18). Due to the short 

duration of the calibration, 𝑞̂  can be estimated with sufficient accuracy by solving (9) 

using the orientation at standstill 𝑞0 (calculated using FQA) and substituting 𝑦𝐺 for 

𝜔. Thus, using gyroscope integration 𝑎𝑐𝑎𝑙
𝑆 was tracked in (17-18) and used to solve 

for 𝑟̂𝑆 in (16). Furthermore, due to sensor noise a least squares algorithm was 

employed to optimize 𝑟̂𝑆. In this study, a global grid search was employed to find the 

three elements of 𝑟̂𝑆, and a MAE cost function 𝐸 was chosen to be minimized as in 

(19). 

𝐸 = ∑ ‖𝑎𝑐𝑎𝑙
𝑆(𝑡) − 𝑎̂𝑆(𝑡)‖𝑡

      (19) 

 

It should be noted that 𝑎𝑅
𝑆 is highly corrupted by high frequency noise due to the 

numerical differentiation of 𝜔𝑆 in (14). Various filtering methods were attempted to 

attenuate the noise, and eventually a low-pass filter with a cut-off frequency of 15 Hz 

was chosen to smooth 𝑎𝑅
𝑆.  
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 Data analysis  

The optimum gain values for the PCF and Pendulum Filters are given in Table 1. As 

expected, the optimal filter gain values decrease with increasing dynamic 

acceleration. It is clear from the higher Pendulum Filter gains that the Pendulum 

Filter weights 𝑞𝑆𝐹 more heavily and is thus more resilient to dynamic accelerations. 

Table 1: Optimal filter gains 

Filter Slow Medium Fast 

Passive 0.2 0.17 0.14 

Pendulum 0.5 0.4 0.3 

 

To compare Vicon measurements of 𝑞̂ with the IMMS results it was necessary to 

align the reference frames for the two systems. The quaternion 𝑞𝐿→𝐼, representing the 

transformation between the laboratory and the IMMS frames, was obtained after a 

five minute stationary period using the average orientation output of the Xsens 

Kalman filter over one minute (assuming zero-mean static error) as in (20). 

𝑞𝐿→𝐼 =  𝑞∗
𝑐𝑙𝑢𝑠𝑡𝑒𝑟

⊗ 𝑞𝑘𝑎𝑙𝑚𝑎𝑛      (20) 

 

The Vicon marker trajectories were high pass filtered using the Vicon Woltring filter 

routine with an MSE setting of 20. Hip joint angles were defined, according to the 

Plug-in-Gait model conventions, as the orientation of the anatomical coordinate 

frame (ACF) of the distal femur relative to the ACF of the pelvis. Unlike in optical 

motion capture where the ACFs are defined by markers placed on anatomical 

landmarks, IMMS are unable to directly measure in the ACFs. IMMS-to-segment 

orientation 𝑞𝑆→𝐵 was calculated during a static pose calibration from 𝑞𝑆 and an ACF 

orientation 𝑞𝐵 as in (21). 

𝑞𝑆→𝐵 =  𝑞∗
𝑆

⊗ 𝑞𝐵     (21) 

 

Rather than assume the calibration values for 𝑞𝐵, both the pelvis and thigh segments 

𝑞𝑆→𝐵 values  were calculated using the Vicon Plug-in-Gait ACF orientations during 

two static trials: one standing in a T-pose position and the other sitting upright on the 

bike. The hip joint angles were then calculated using (22): 

𝑞𝐵 =  𝑞𝑆 ⊗ 𝑞∗
𝐵→𝑆

     (22) 
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Furthermore, hip joint angles were also calculated using the Vicon marker trajectories 

and the Plug-in-Gait model in two ways. The first was the standard method of using 

the markers placed on the skin. The second involved the virtual reconstruction of the 

skin marker positions based on their relationship to the Vicon coordinate system 

attached to the segment IMMS. This allows for a more direct comparison between the 

filter tracking results by ensuring that the STA is the same for both systems. Hip joint 

angles were calculated in Euler angles for intuitive interpretation.  

 Results 

 IMMS orientation tracking  

The accuracy of the PCF, Pendulum Filter and Xsens filter, defined as the combined 

MAE for all three axes (CMAE), is presented in Figure 12 for the slow, medium and 

fast trials.  

 

(a)                                                           (b) 

Figure 12: Comparison of filter performances at different pedaling speeds for the (a) pelvis and (b) 

thigh IMMSs 

It should be noted that the Pendulum Filter is only applicable to the thigh IMMS 

since the pelvis IMMS does not fulfill the assumption of pendulum motion. It can be 

seen from Figure 12a that the PCF performed very well in all three speed conditions 

for the pelvis IMMS, with CMAEs of 2.8°, 2.7° and 2.5° for slow, medium and fast 

pedaling. The Xsens filter performed within the MTw accuracy specifications with 

CMAEs of 2.7°, 2.6° and 1.9°. Figure 12b shows the average of the left and right 

thigh IMMS CMAEs. The PCF performed relatively well during slow pedaling 

(CMAE = 4.3°), with the errors then more than doubling for medium pedaling speed 
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(CMAE = 9.4°) and then more than doubling again for the fast trial (CMAE = 19.8°). 

The Pendulum Filter in Figure 12b, on the other hand, notably outperformed the PCF 

with CMAEs of 2.1°, 2.6° and 2.6° for the three trials respectively. This was only 

marginally higher than the Xsens filter, which produced CMAEs of 2.1°, 2.1° and 

1.8° for slow, medium and fast pedaling. This equates to an average MAE < 1° for 

the three individual IMMS axes, which is very low and approaching the accuracy 

thresholds of both the IMMSs and Vicon validation method due to white noise.  

 Hip joint angle tracking  

Since the Pendulum Filter accuracy was consistent across a range of dynamics, the 

effect of pedaling rate on hip joint angle accuracy was assumed negligible. Therefore, 

for the sake of brevity, the hip joint angles for the sagittal, frontal and transverse 

planes are only reported here for the fast pedaling trial (worst STA scenario). The hip 

angles were calculated with and without skin marker STA for the Vicon model, and 

using the sitting and standing segment calibrations for the IMMSs. Figure 13 shows 

hip joint angle curves for a representative pedal revolution chosen in the last minute 

of the trial. This allows for a visual illustration of the various factors affecting the 

accuracy of the results.  

The difference between the IMMS results (shown in grey in Figure 13), which are 

calculated using the same sensor orientations, is predominantly influenced by the 

differences in STA during sitting and standing calibrations. This is attested by the 

constant offset between the curves. The dissimilarity between the two Vicon results 

(shown in black in Figure 13), on the other hand, is a result of the different STA 

effects local to the IMMS sensor (No STA condition) and the Vicon skin markers 

(STA condition). As would be expected, these manifest in more variable curve 

deformations due to differences in STA local to the IMMS and skin markers. 

Interestingly, the effects of skin marker STA are more pronounced near the bottom of 

the pedal stroke (minimum hip flexion), likely due to muscle contractions and 

movement of the ilio-tibial band when the leg is near full extension. Besides the 

effect of calibration pose on IMMS results and that of STA on the Vicon results, 

comparisons can also be made between Vicon and IMMS hip angle outputs. Quite 

clearly, the sitting calibration is more accurate (similar to the Vicon outputs) in 

comparison to the standing calibration, as evidenced by the solid grey curve being 

closer to the black curves.  
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(b)                                            

                       
(b)                                                                              

                   

(c) 

Figure 13: Representative hip (a) sagittal plane flexion (b) frontal plane abduction and (c) transverse 

plane rotation angles (internal rotations positive) for a crank cycle 
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Intuitively, the No STA curve shapes are also more similar to the IMMS shapes than 

the STA curves as they share a common STA locality on the IMMS. Nevertheless, a 

true comparison of the Vicon and IMMS systems would be between the IMMS 

standing and Vicon STA data. In addition to the comparison of Vicon and IMMS 

data, it is also of interest to investigate the effects of errors on the three different 

planes of motion of the hip. The dominant hip motion during cycling is flexion in the 

sagittal plane, demonstrated by the large hip flexion range of motion (>40°). 

Interestingly, however, hip flexion shows the least variation due to calibration pose 

amongst the three planes, which can be seen by the similarities in shape. Differences 

in absolute values, in contrast, are not clear from Figure 13 due to axis scaling. To 

provide more detail on shape and absolute errors, Table 2 and Table 3 give the 

squared correlation coefficients and MAEs between all four conditions.  

Table 2: Hip angle squared correlation coefficients 

 
VICON IMMS 

No STA STA Sit Stand 

SAGITTAL PLANE (r2) 

Vicon No STA  0.9832 0.9981 0.9980 

Vicon STA   0.9875 0.9873 

IMMS Sit    1.0000 

IMMS Stand     

FRONTAL PLANE (r2) 

Vicon No STA  0.9168 0.6054 0.6315 

Vicon STA   0.7203 0.7287 

IMMS Sit    0.9710 

IMMS Stand     

TRANSVERSE PLANE (r2) 

Vicon No STA  0.9539 0.9542 0.9605 

Vicon STA   0.9703 0.9724 

IMMS Sit    0.9984 

IMMS Stand     
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Table 3: Hip angle MAEs  

 
VICON IMMS 

No STA STA Sit Stand 

SAGITTAL PLANE (deg) 

Vicon No STA  2.1 2.2 0.8 

Vicon STA   3.6 2.4 

IMMS Sit    1.4 

IMMS Stand     

FRONTAL PLANE (deg) 

Vicon No STA  1.2 6.9 10.5 

Vicon STA   8.0 11.6 

IMMS Sit    3.6 

IMMS Stand     

TRANSVERSE PLANE (deg) 

Vicon No STA  2.9 2.2 9.9 

Vicon STA   4.7 11.3 

IMMS Sit    8.1 

IMMS Stand     

 

The r2 and MAE values in Table 2 and Table 3 can be used to compare the proportion 

of the errors due to STA on the Vicon results alone (top left block for each plane), to 

IMMSs calibrations alone (bottom left block), to STA between the systems (top to 

bottom of four top right blocks) and calibration between the systems (left to right). 

The analysis confirms that the IMMS hip flexion tracking was especially accurate 

compared to the Vicon STA results (all r2 > 0.98 and MAE < 4°). As expected, the 

frontal and transverse plane tracking was less accurate than for the sagittal plane. 

CMAEs for both planes were over 10° for standing IMMS. However, both also 

showed improved MAEs when STA was made common and a sitting calibration was 

used. These improvements were cumulative, resulting in a reduction in both the 

frontal (MAE = 6.9°) and transverse (MAE = 2.2°) planes. Interestingly, while all 

transverse plane curve shapes were very similar (r2 > 0.95), correlations were only 

moderate in the frontal plane between systems (0.6 - 0.73). Nevertheless, intra-system 

comparisons for the Vicon (r2 ≈ 0.91) and IMMS (r2 ≈ 0.97) and small inter-system 

differences suggest that the lower inter-system values are due to factors other than 
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STA or calibration. These factors remain unclear, but may be related to non-linear 

effects introduced by the Vicon Plug-in-Gait model's definition of the femur. Unlike 

the IMMS system, Vicon femur orientation is tracked using hip centers estimated 

from the pelvis skin marker positions. Another plausible reason is that the frontal 

plane hip range of motion is relatively small compared to errors between systems.  

 Discussion  

This study successfully implemented the two key features required for tracking three-

dimensional hip joint angles during cycling using IMMSs: IMMS tracking using 

complementary filtering and IMMS-to-segment calibrations using an optical motion 

capture system. Overall the results confirm a significant improvement in IMMS 

tracking using a novel adaptation to the PCF. The results also serve to validate the 

wireless MTw IMMS from Xsens, which performed within specifications. 

Furthermore, the study reports good accuracy in hip angle tracking compared to a 

gold-standard optical system. The analysis investigated the intra- and inter-system 

differences in hip angle outputs for all three anatomical joint planes of motion due to 

STA and calibration poses. One key finding was that the intra-system variability due 

to STA and calibration was in the same order of magnitude as the inter-system 

variability. 

The IMMS tracking results highlight the influence of movement dynamics on filter 

performance when there is no DAC. Predictably, due to the low intensity of pelvis 

movement during cycling, the PCF performed very well for this segment at all speeds 

as well as for the thigh in the low pedaling speed trial. However, the medium and fast 

speeds violate the PCF's 'weak acceleration' assumption for the thigh IMMSs leading 

to large tracking errors. The Pendulum Filter tracking errors, on the other hand, were 

low and independent of pedaling dynamics. This demonstrates the efficacy of the 

CoR estimates from the dynamic calibration and the robustness of the DAC method. 

Moreover, with performance comparable to the advanced Xsens Extended Kalman 

filter, the Pendulum Filter supports claims that CFs can be implemented as 

successfully as EKFs [26].  

Despite good IMMS tracking accuracy, the hip angle results demonstrate that the 

impact of segment calibration and STA on joint kinematics accuracy can be almost an 

order of magnitude larger than IMMS tracking errors. As is the case with most 

motion capture applications, the sagittal plane results were the most robust to changes 
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in calibration and STA, with negligible differences between systems. The errors in 

the other two planes, however, were both over 10° for the standing calibration pose, 

which is significant, although the curves display very similar shapes. The reduction in 

error using the sitting calibration pose suggests that the sensor to segment relationship 

changed between sitting and standing. This suggests, intuitively, that large STA 

errors may be introduced when the calibration pose is different to the movement pose 

- this is another noteworthy emphasis of the study. While the true effect of STA 

cannot be known either for Vicon or IMMS tracking without another gold-standard 

measurement (such as fluoroscopy), the results indicate that the STA for the two 

different systems was not significantly different in terms of CMAE. However, the 

shape of the graphs for the Vicon skin markers was different to the STA compensated 

Vicon outputs. This suggests that the sensor-to-segment orientation changed 

dynamically during the pendulum motion, changing the shape while still possibly 

maintaining a low MAE. This may affect the accuracy of analysis using variables 

such as range of motion. 

The main contribution made by this study is that it describes a novel DAC method 

which is performed in the sensor frame, in contrast to the usual inertial frame 

approaches. The system utilizes a simple complementary filter structure which 

demonstrates that more complex Kalman filtering is not always necessary to achieve 

good results. The novel calibration method for finding the CoR is also an addition to 

other methods used to estimate joint centers in the upper limbs [36]–[38]. Clearly, the 

CoR for the thigh segment can add valuable information about segment inclination 

which might be exploited in any filtering algorithm and perhaps for other human 

movements besides cycling, such as walking and running. However, the Pendulum 

Filter works best when the hip joint center acceleration 𝑎𝑂
𝑆(𝑡) in equation 10 is 

either negligible or known. In movements where the pelvis translates and 𝑎𝑂
𝑆(𝑡) is 

not negligible it can still be estimated and compensated for if the pelvic orientation is 

accurately measured and gravity is removed.  The CoR can also be estimated using a 

quick and simple dynamic calibration protocol that does not require any other 

instrumentation, making it suitable to implement in most testing conditions. The 

study also presents hip angle tracking for cycling using IMMS, which is currently 

sparse in the literature. The challenge of IMMS sensor-to-segment calibration is also 

highlighted, especially for the pelvis. 

Nevertheless, the study has several limitations. Firstly, the IMMSs used were of a 

high quality, meaning that the sensor outputs are corrupted with less measurement 
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noise and thus subject to less drift error than genuine low-cost IMMSs. However, 

informal gyroscope integration tests revealed that drift error for the Xsens IMMSs is 

still large after more than 30 seconds. Even so, work with less expensive IMMSs 

would necessitate retuning of the filter gains and may result in different levels of 

accuracy. Secondly, further testing should be conducted with more subjects, on 

different bicycles and at higher speeds (> 100 rmp) to determine the sensitivity of the 

tracking accuracy to different levels of STA, movement and magnetic interference 

due to ferrous components. Furthermore, since the testing was performed indoors to 

facilitate the Vicon validation, the testing conditions excluded bicycle dynamics on 

the road. Further work thus needs to be done to understand the effects of 

accelerations due to a moving bicycle, which would require outdoor testing. 

There is a clear need for developing innovative IMMS segment calibration methods 

which take the pose of the movement into account in order to reduce STA as well as 

modeling errors. The inherent limitations of static calibrations in which the segment 

pose is assumed could perhaps be overcome by the use of aiding technologies such as 

portable cameras, which could be used to provide segment poses on site similarly to 

the use of the Vicon in this study. It may also be beneficial to explore the 

optimization of IMMS placement to reduce both STA and accelerations due the CoR 

length. 

 Conclusion 

This study presents a non-linear complementary filter with a novel DAC method 

applicable to tracking the orientation of an IMMS attached to the thigh during 

cycling. This method is based upon the assumption of pendulum motion for the thigh 

segment and was shown to drastically improve IMMS tracking for the same filter, 

especially with increasing pedaling cadences. Furthermore, while the DAC method is 

implemented in the sensor frame, it has very similar performance to the proprietary 

and industry-leading Xsens DAC method implemented in the inertial frame. The 

tracking of IMMSs on the pelvis and thigh of a cyclist allows for the calculation of 

useful biomechanical variables such as hip joint angles. Validation results proved that 

the IMMS hip joint outputs were highly accurate in the sagittal plane, and moderately 

so in the frontal and transverse planes. Factors affecting these errors were discussed; 

specifically the calibration methods used to align IMMSs to body segments and the 

inevitable STA. Nevertheless, it is shown that the hip joint angle accuracy in the 
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sagittal and transverse planes is sufficient to be used for biomechanical studies. 

Future work will expand the Pendulum Filter to a full lower body model.   
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 Paper 2: A Complementary Filter for Tracking Bicycle Crank Angles using 

Inertial Sensors, Kinematic Constraints, and Vertical Acceleration Updates 

Abstract: In-field tracking of crank angles is important for analyzing outdoor 

cycling biomechanics, but current encoder-based methods are expensive and time-

consuming. Inertial and magnetic measurement systems (IMMSs) have the potential 

for minimally-invasive crank angle tracking, although errors due to magnetic 

interference and static calibration hinder performance. This paper presents a 

nonlinear complimentary filter, called the Constrained Rotational Acceleration and 

Kinematics (CRANK) filter, which estimates crank angles without magnetometer 

measurements or a static calibration for the crank arm IMMS. The CRANK filter 

removes drift errors by exploiting constraints on the kinematics of the crank arm 

relative to the bicycle frame. Three five minute cycling tests were conducted using 

stereophotogrammetry and two IMMSs; a slow (approximately 80 rpm) and medium 

(90 rpm) cadence test on a level surface and a fast cadence test (100 rpm) with the 

bicycle inclined at 20° to the ground. A novel two-segment methodology for 

collecting ground truth data with an optical motion capture system is presented. We 

also provide analysis of CRANK filter performance for simulated outdoor dynamics 

(lateral tilt and roll). The CRANK filter achieved absolute errors (AEs) of 0.9 ± 0.6°, 

1.7 ± 1.4° and 1.8 ± 1.2° for the slow, medium and fast tests, outperforming a 

commercial Kalman filter which produced AEs of approximately 10°. Under 

simulated outdoor conditions the CRANK filter was only slightly less accurate (AEs ≈ 

3°). The CRANK filter is shown to be accurate, drift-free, easy to implement and 

robust against magnetic disturbances, sensor positioning, bicycle inclination and 

bicycle frame dynamics. 

Citation: 

J. Cockcroft, J. H. Muller and C. Scheffer, "A complementary filter for tracking 

bicycle crank angles using inertial sensors, kinematic constraints and vertical 

acceleration updates," IEEE Sensors J. , vol. 15, no. 8, pp. 4218 - 4225, 2015 

 Introduction  

An important aim in sports technology innovation is accurate in-field monitoring of 

athlete performance [1]. This is being achieved through the design of compact, non-

invasive portable systems capable of providing the desired outcomes [2], [3]. These 
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systems typically contain miniaturized hardware such as inertial sensors which can be 

attached to athletes in their competitive environment or integrated with their sporting 

equipment [4]. One application of this type of system is in the field of cycling 

biomechanics [5], where a number of studies have investigated the use of wireless 

inertial sensor systems for real-time outdoor analysis of key outcomes [6]–[11]. 

Nonetheless, comprehensive in-field analysis of cycling biomechanics using inertial 

sensors has not yet been achieved. One important variable in cycling biomechanics is 

the angular position of the crank arm with respect to the bicycle frame. The crank 

angle is used when analyzing a range of biomechanical outcomes such as pedaling 

efficiency [12], bicycle fitting [13], muscle activation patterns [14] and joint angle 

kinematics [15] and kinetics [16]. Nevertheless, current methods of crank angle 

tracking have several disadvantages.  

Previous studies conducted in controlled laboratory environments relied on 

ergometers or instrumented bicycles fitted with encoders or potentiometers to track 

the crank angle, see [17], [18]. However, despite accurate crank angle outputs, 

ergometers reduce the ecological validity of the testing and encoders require costly, 

time-consuming and cumbersome modifications to the bicycle which are undesirable 

when testing subjects in succession or with expensive bicycles. Optical motion 

capture systems have also been employed to estimate the crank angle using reflective 

markers attached to the bicycle [19]. The realism of testing is improved with this 

method, although it presents other barriers to in-field use. Firstly, cameras are 

typically required to be stationary, making it unfeasible for tracking a bicycle on the 

road. Secondly, the proximity of the cyclist to the crank arm can compromise marker 

tracking due to camera occlusions. Lastly, since the state of the art is to only place 

markers on the crank arm, there is also an absence in the literature of a rigorous 

method for defining and capturing the crank angle relative to a bicycle frame 

orientation. Nevertheless, optical systems are highly accurate and thus useful for 

benchmarking the accuracy of new in-field methods. Therefore, one aim of this study 

was to present a thorough method of acquiring reliable ground truth estimates of 

crank angles using stereophotogrammetry.  

Besides encoder- and camera-based approaches, inertial and magnetic measurement 

systems (IMMSs) - containing accelerometers, gyroscopes and magnetometers - have 

the potential of in-field crank angle tracking [20]. IMMSs are ideal for many sporting 

analysis applications due to their small size, low cost and proprioceptive motion 

sensing capabilities [21], [22]. However, one of the primary disadvantages of 
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orientation tracking using an IMMS is that the vector observations used to solve for 

the sensor orientation are subject to interference which leads to drift errors [23]. The 

inclination reference vector, an estimate of the gravity vector extracted from 

accelerometer measurements and used to determine roll and pitch angles, is easily 

corrupted by the occurrence of indistinguishable dynamic acceleration. Similarly, 

magnetic field measurements from the magnetometer are usually used as the heading 

reference vector, which is unreliable within a non-homogenous magnetic field. These 

disadvantages are relevant to the tracking of the crank arm orientation as cycling 

involves relatively large and persistent dynamic accelerations and variable magnetic 

interference due to ferromagnetic materials [6], [7]. Moreover, this compromises the 

ability of static calibration methods to provide the sensor-to-body rotations required 

to track the crank arm coordinate system (frame) using measurements in the sensor 

frame [24]. In efforts to overcome reference vector interference and drift error, 

researchers have proposed methods exploiting domain constraints [20], including 

updates for zero velocity, zero-attitude and zero-integrated heading rate at appropriate 

points in time [25] and various kinematic constraints [26]–[28].  

In line with this approach, this study proposes a novel IMMS method of tracking the 

crank angle which does not use gravity and magnetic field reference vectors for the 

crank arm IMMS, and which does not require a sensor-to-segment calibration for the 

crank arm. Instead, this method is based on two algorithms developed to exploit 

domain constraints between the bicycle frame and the crank arm: a Vertical 

Acceleration Update (VAU) algorithm and a Kinematic Constraint Rotation (KCR) 

algorithm. The VAU assumes that the sum of the gravitational and radial acceleration 

vectors measured by a crank arm sensor would reach a maximum or minimum when 

the crank arm position is vertical i.e. aligned with gravity. The KCR, on the other 

hand, applies a simple hinge joint constraint to the crank arm rotation – effectively 

assuming that the crank arm has the same roll and yaw angle as the bicycle frame. In 

addition, both these domain constraints apply directly to the crank arm body frame 

and not the sensor frame, foregoing the need for static calibrations of the crank arm. 

The VAU and kinematic constraint were implemented within the nonlinear passive 

complementary filter (PCF) proposed by Mahony [29]. The PCF is simpler than the 

Kalman filter (KF), requires the tuning of only two scalar gains, is capable of online 

compensation for gyroscope bias and has shown comparable performance to the KF 

[30].  
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The aim of this study was to test the hypothesis that the VAU and KCR can be 

successfully employed to accurately estimate bicycle crank angles. This was done by 

conducting cycling experiments in a motion analysis laboratory whilst simultaneously 

tracking the crank angle with IMMSs and an optical motion capture system to 

provide ground truth data. A modified PCF, called the Constrained Rotational 

Acceleration and Kinematics (CRANK) filter, was developed to estimate the crank 

angle using the VAU and KCR, and its performance was compared to that of a 

commercial KF and the standard PCF which both use the traditional gravity and 

magnetic field estimates and static calibrations. The CRANK filter was also tested 

under simulated outdoor conditions (tilt and roll of the bicycle frame). The second 

aim was to propose a two-segment (crank and frame) method of defining and 

capturing the crank angle using optical motion capture systems.   

 Methods 

 Data collection 

One subject was tested pedaling on a standard mid-range mountain bike attached to a 

stationary trainer in an indoor laboratory. The subject pedaled at a self-selected slow 

(cadence ≈78 rpm), medium (≈88 rpm) and fast (≈97 rpm) rotation speed for three 

consecutive 5-minute periods respectively. For the slow and medium cadence tests, 

the bicycle was positioned level with the laboratory floor (zero bicycle frame 

inclination angle), whereas the bicycle setup was changed for the fast test by securing 

the front wheel at a raised height such that the inclination of the bicycle was 20°. Two 

wireless IMMSs (MTw Development Kit, Xsens, B.V. Technologies, Enschede, 

Netherlands) were used to track the crank angle. The IMMSs were rigidly attached to 

the bicycle: one on the seat post and the other on the right surface of the left crank 

arm (the crank IMMS could not be placed on the lateral side of the crank arm due to 

foot obstructions). The crank angle was also estimated using a gold-standard 

optoelectronic motion analysis system (Vicon MX T-series, Vicon Motion Systems 

Ltd, U.K.) and reflective markers attached to the bicycle. The crank arm IMMS could 

not be tracked directly using markers as it had to be attached to the inside surface of 

the crank arm and markers would therefore not have been visible to the cameras. The 

IMMS and stereophotogrammetry data was collected synchronously at 120Hz.  
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 Crank angle definition 

In the absence of a formal mathematical definition in the literature, the crank angle 

was defined in this study using the relative orientation between two right-handed 

frames: one representing a bicycle body frame F and the other representing a crank 

arm body frame 𝐶 (Figure 14). The axis XF was chosen as the forward direction of the 

bike i.e. parallel to the line joining both wheel centers. Note that XF does not 

necessarily lie parallel to the top bar or the ground if the wheels are not grounded (as 

with a stationary trainer). The perpendicular axis ZF was defined as lying in the plane 

containing the longitudinal axes of the seat tube and XF. Therefore, the crank arm C 

rotates in the XZF plane about the third orthogonal axis YF. YC is also perpendicular 

to the XZF plane and the YZC plane was defined as the plane containing YC and the 

longitudinal axis of the crank arm. The third crank axis XC is defined, trivially, as the 

third orthogonal direction. 

 

Figure 14: Side view showing crank angle as defined by the bicycle frame and crank arm axes. 

In this study, the orientation of a rigid segment’s body frame (B) relative to a global 

frame (G) is expressed in quaternion format according to the Hamiltonian convention 

in (23): 

𝑞𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝐵→𝐺 = [𝑠 𝒗]    (23) 

 

where 𝑠 is a scalar and 𝒗 is a three-element vector. The relative orientation 𝑞𝐶𝐹
𝐵→𝐵

 

between the body (B) frames F and 𝐶 in Figure 14 is thus calculated using (24). 

𝑞𝐶𝐹
𝐵→𝐵 =  𝑞∗

𝐶
𝐵→𝐺 ⊗ 𝑞𝐹

𝐵→𝐺      (24) 
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Here, the superscript ∗ implies a conjugated quaternion and ⊗ represents a 

quaternion multiplication. This can be used to calculate the Euler angles as in (25): 

𝑓𝑄→𝐸(𝑞𝐶𝐹
𝐵→𝐵) = [𝐴𝑍

 𝐴𝑋
 𝐴𝑌

 ]     (25) 

 

where 𝑓𝑄→𝐸 is a standard function converting quaternions into Euler angles using a 3-

1-2 rotation sequence. In this study, 𝐴𝑍
  and 𝐴𝑋

  were assumed to be mechanically 

constrained to zero and 𝐴𝑌
  was considered as the crank angle. Therefore, crank angle 

tracking relies on accurate tracking of 𝑞𝐹
𝐵→𝐺 and 𝑞𝐶

𝐵→𝐺 . 

 Reference data from stereophotogrammetry 

To track the crank angle using an optical motion capture system, the positions of 

reflective markers attached to the bicycle were measured with respect to a global 

laboratory frame L (Figure 15). The crank orientation 𝑞𝐶
𝐵→𝐿, was tracked using a 

pedal marker 𝑀𝑝𝑒𝑑𝑎𝑙
  and a marker placed on the left and right centers of rotation of 

the crank hub (𝑀𝑟𝑖𝑔ℎ𝑡
  and 𝑀𝑙𝑒𝑓𝑡

 ). The line from 𝑀𝑟𝑖𝑔ℎ𝑡
  and 𝑀𝑙𝑒𝑓𝑡

  defined the 

primary axis 𝑌𝐶
 , and the secondary axis 𝑍𝐶

  was defined as perpendicular to 𝑌𝐶
  in the 

plane formed by a marker attached to the end of the pedal shaft 𝑀𝑝𝑒𝑑𝑎𝑙
 , 𝑀𝑟𝑖𝑔ℎ𝑡

  and 

𝑀𝑙𝑒𝑓𝑡
 . Due to mechanical constraints of planar crank arm motion relative to the 

bicycle frame, the lateral axis 𝑌𝐹
  was taken to be parallel to 𝑌𝐶

  - and was thus also 

taken as the primary axis of 𝑞𝐹
𝐵→𝐿, running from 𝑀𝑟𝑖𝑔ℎ𝑡

  to 𝑀𝑙𝑒𝑓𝑡
 . The perpendicular 

axis 𝑋𝐹
  was defined using the vector running from 𝑀𝑏𝑎𝑐𝑘

  to 𝑀𝑓𝑟𝑜𝑛𝑡
 . 𝑀𝑏𝑎𝑐𝑘

  and 

𝑀𝑓𝑟𝑜𝑛𝑡
  were placed on the end of rear and front wheel skewers to represent the height 

of the wheel center.  

It was found that 𝑀𝑟𝑖𝑔ℎ𝑡
𝐶  and 𝑀𝑙𝑒𝑓𝑡

𝐶  were not clearly visible to the cameras during 

pedaling due to occlusions by the body. To overcome this problem, an additional 

marker 𝑀𝑡𝑜𝑝
𝐵  was attached to the bicycle frame (see Figure 15a). Assuming constant 

relative positions for markers attached to a rigid body, the position of 𝑀𝑟𝑖𝑔ℎ𝑡
  and 

𝑀𝑙𝑒𝑓𝑡
  could be reconstructed during the dynamic tests using 𝑀𝑡𝑜𝑝

 , 𝑀𝑓𝑟𝑜𝑛𝑡
  and 𝑀𝑏𝑎𝑐𝑘

  

and standard static calibration techniques (refer to Section 3.2.8 of the methodology 

for details). The reconstruction of 𝑀𝑟𝑖𝑔ℎ𝑡
  and 𝑀𝑙𝑒𝑓𝑡

  for the crank arm orientation 

estimate is based upon the assumption that these markers are attached to the axis of 

rotation of the crank hub and therefore in effect rigidly attached to both the bicycle 

frame and the crank arm. 
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Figure 15: Marker placements used to track the bicycle and crank arm coordinate systems during 

stereophotogrammetry testing.  

 PCF structure 

A nonlinear passive complementary filter (PCF) was used to track the orientation of 

the bicycle frame relative to an inertial north-east-up frame I [29]. The sensor inputs 

to the PCF were the three-dimensional measurements from the IMMS gyroscope, 

accelerometer and magnetometer; designated 𝑦𝐺
𝐹, 𝑦𝐴

𝐹 and 𝑦𝑀
𝐹  respectively. The sensor 

models used were:  

𝑦𝐺
𝐹(𝑡) = 𝜔𝐹

𝑆(𝑡) + 𝑏𝐹
𝑆(𝑡)    (26) 

 

𝑦𝐴
𝐹(𝑡) = −𝑔𝐹

𝑆(𝑡) + 𝑎𝐹
𝑆(𝑡)    (27) 

 

𝑦𝑀
𝐹 (𝑡) = 𝑚𝐹

𝑆(𝑡) + 𝑑𝐹
𝑆(𝑡)    (28) 

 

The superscript S refers to quantities expressed in the IMMS sensor frame and 𝑡 is a 

discrete point in time at which measurements were taken. The first terms represent 

parameters of interest for the IMMS attached to the bicycle frame F; 𝜔𝐹
𝑆 represents 

the angular velocity, 𝑔𝐹
𝑆 the gravitational component of acceleration and 𝑚𝐹

𝑆 the local 

magnetic field intensity. The second terms represent noise; 𝑎𝐹
𝑆 is the dynamic 

acceleration, 𝑏𝐹
𝑆 is the gyroscope bias and 𝑑𝐹

𝑆 is the disturbances to the local magnetic 

field intensity. As shown in Figure 16, the output of the PCF is the bicycle frame 

orientation 𝑞̂𝐵
𝐵→𝐼 – where the accent symbol ^ represents an estimated quantity. This is 
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obtained by rotating the orientation estimate 𝑞̂𝐹
𝑆→𝐼 using a static sensor-to-body frame 

calibration quaternion 𝑞̂𝐵
𝑆→𝐵 (see Chapter 3.2.8 for details). 

 

Figure 16: The PCF tracks the bicycle sensor frame orientation 𝑞̂𝐹
𝑆→𝐼and then rotates it to obtain 

bicycle body frame orientation 𝑞̂𝐹
𝐵→𝐼

 

The PCF tracks 𝑞𝐹
𝑆→𝐼 by estimating and integrating 𝜔𝐹

𝑆 (Figure 16). This is done using 

the differential equation in (29) for rigid body kinematics relating 𝑞𝐹
𝑆→𝐼 to 𝜔𝐹

𝑆:  

𝑞̇𝐹
𝑆→𝐼(𝑡) =

1

2
𝑞𝐹

𝑆→𝐼(𝑡 − 1) ⊗ 𝑝(𝜔𝐹
𝑆(𝑡))    (29) 

 

where 𝑝(𝜔𝐹
𝑆) = [0 𝜔𝐹

𝑆  ]. It thus follows that 

𝑞𝐹
𝑆→𝐼(𝑡) = 𝑞𝐹

𝑆→𝐼(𝑡 − 1) + 𝑇𝑞̇𝐹
𝑆→𝐼(𝑡)    (30) 

 

where T is the time between samples. The estimation of 𝜔𝐹
𝑆 is achieved in the PCF by 

filtering noise from the gyroscope signal 𝑦𝐺
𝐹 in a correction step. The gyroscope error 

correction is implemented using an error feedback loop containing measurement error 

𝜔̂𝐹,𝑒
𝑆  as in (31) and (32). 

𝜔̂𝐹
𝑆(𝑡) =  𝑦𝐺

𝐹(𝑡) − 𝑏̂𝐹
𝑆(𝑡 − 1) + 𝐾𝑃𝜔̂𝐹,𝑒

𝑆 (t)    (31)  

 

𝑏̂̇𝐹
𝑆(𝑡)  =  𝑏̂𝐹

𝑆(𝑡) + 𝐾𝐼𝜔̂𝐹,𝑒
𝑆 (t)    (32) 

 

In (31), a proportional gain 𝐾𝑃
  is used as well as compensation for gyroscope bias 𝑏𝐹

𝑆. 

The gyroscope bias was updated in (32) by integrating measurement error 𝜔̂𝐹,𝑒
𝑆  using 
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integral feedback gain 𝐾𝐼
 . To calculate the error term 𝜔̂𝐹,𝑒

𝑆 , an error quaternion 𝑞̂𝑒
  is 

calculated using an orientation estimate 𝑞̂𝐹,𝑎𝑢𝑥
𝑆→𝐼 , obtained from auxiliary sensors:  

𝑞̂𝑒
 (𝑡)     =  𝑞̂𝐹

𝑆→𝐼(𝑡) ⊗ 𝑞̂𝐹,𝑎𝑢𝑥
𝑆→𝐼 (𝑡)             (33) 

 

The PCF converts the components of the error quaternion in (33) into an angular 

velocity feedback error 𝜔̂𝐹,𝑒
𝑆   using (34). 

𝜔̂𝐹,𝑒
𝑆 (𝑡) =  2𝑠𝑒(𝑡)𝒗𝑒(𝑡)     (34) 

 

In this study, the Factored Quaternion Algorithm (FQA) was used to estimate 𝑞̂𝐹,𝑎𝑢𝑥
𝑆→𝐼

 
 

in (33) using 𝑦𝐴
𝐹 and 𝑦𝑀

𝐹  [31]. In Figure 16, this is shown as 𝑞̂𝐹,𝐹𝑄𝐴
𝑆→𝐼 . 

 CRANK filter structure 

The CRANK filter in Figure 17 is a modification of the PCF in Figure 16. It is 

designed to estimate the crank arm orientation 𝑞̂𝐶
𝐵→𝐼 directly, without magnetometer 

measurements as an input or a sensor-to-body frame rotation step at the end. Instead 

of the FQA, the CRANK filter uses a novel Vertical Acceleration Update (VAU) 

algorithm to provide the auxiliary estimate in (33). See Chapter 3.2.6 for details on 

the VAU. Similarly, the gyroscope signal 𝑦𝐺
𝐶  is transformed from the crank sensor 

frame to the crank body frame using a Kinematic Constraint Rotation (KCR) 

algorithm (see Chapter 3.2.7 for details). Therefore, the estimate 𝑞̂𝐶,𝑉𝐴𝑈
𝐵→𝐼  of crank arm 

orientation is used to calculate the feedback error term 𝜔̂𝐶,𝑒
𝐵 . This is used to correct 

the rotated gyroscope signal 𝜔̂𝐶,𝐾𝐶𝑅
𝐵 . 

The filter gain KI was set at a value twenty times smaller than the proportional gain 

KP for both the PCF and the CRANK filter. Tuning of KP was performed for the 

filters using a grid search from 0 to 5 at a resolution of 0.1. The optimal KP was the 

value which minimized errors with reference to ground truth data. For the crank arm 

tracking, this produced KP values of 0.1 and 3.4 for the PCF and CRANK filter 

respectively. A value of 0.6 was obtained for optimal bicycle frame tracking. Crank 

arm tracking was implemented for the CRANK filter, the PCF and the Xsens KF, to 

allow for comparison. Only the PCF and Xsens KF were used for the bicycle frame 

tracking as the VAU and KCR do not apply. 
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Figure 17: The CRANK filter uses the KCR and VAU algorithms to track the crank arm orientation 

without a magnetometer or rotations  

 The VAU algorithm for the CRANK filter 

The VAU algorithm in Figure 17 operates on the magnitude of the crank IMMS 

acceleration smoothed with a 4th order low-pass Butterworth filter (cut-off frequency 

10Hz). As shown in Figure 18, this acceleration consists of two dominant vector 

components: centripetal and gravitational acceleration. 

 

Figure 18: Direction of primary acceleration components measured by the crank IMMS at various 

crank angles (as viewed from the side).  
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The direction of the centripetal acceleration is constant in the sensor frame, while the 

gravity vector direction is variable in the sensor frame. Therefore, the magnitude of 

the accelerometer signal is sinusoidal in nature, peaking when the centripetal 

acceleration is vertical and reaching a minimum when the centripetal acceleration 

points down (Figure 19).  

 

Figure 19: The maxima and minima of the acceleration magnitude of the crank arm IMMS correspond 

to known crank angles. 

The VAU algorithm assumes that crank angle AY in (25) is equal to (180-XY)° when 

these two acceleration components are positively aligned and XY° when in opposite 

directions: 

𝐴̂𝑌,𝑚𝑎𝑥  =  180 + 𝑋̂𝑌
     (35)  

 

𝐴̂𝑌,𝑚𝑖𝑛   = 𝑋̂𝑌
     (36)  

 

where the 𝑋̂𝑌
  is the bicycle frame inclination angle from 

𝑓𝑄→𝐸(𝑞̂𝐹
𝐵→𝐼) = [𝑋̂𝑍

 𝑋̂𝑋
 𝑋̂𝑌

 ]     (37) 

 

Values for 𝐴̂𝑚𝑎𝑥 and 𝐴̂𝑚𝑖𝑛 are substituted into (38) to calculate the crank arm 

orientation relative to the bicycle frame, and then into (39) to obtain 𝑞̂𝐶,𝑉𝐴𝑈
𝐵→𝐼  (Figure 

17).  

Stellenbosch University  https://scholar.sun.ac.za



62 

 

𝑞̂𝐶𝐹
𝐵→𝐵    =  𝑓𝐸→𝑄([0 0 𝐴̂𝑌])     (38)  

 

𝑞̂𝐶,𝑉𝐴𝑈
𝐵→𝐼 = 𝑞̂𝐹

𝐵→𝐼 ⊗ 𝑞̂𝐶𝐹
𝐵→𝐵     (39)  

 

The zero values in (38) enforce the kinematic constraint in the crank arm motion. It is 

important to note that the VAU algorithm only estimates 𝑞̂𝐶,𝑉𝐴𝑈
𝐵→𝐼  at the maxima and 

minima in Figure 19. At all other points in time, 𝜔̂𝐶,𝑒
𝐵  is set equal to zero i.e. the 

CRANK filter implements gyroscope integration. 

 The KCR algorithm for the CRANK filter 

As shown in Figure 17, the KCR algorithm receives input 𝜔̂𝐹
𝑆

 using 𝑞̂𝐹
𝑆→𝐵 (see Section 

3.2.8 on how this was calculated) and first estimates the angular velocity of the 

bicycle body frame as in (40): 

𝜔̂𝐹
𝐵  = [𝜔̂𝐹,𝑋

𝐵 𝜔̂𝐹,𝑌
𝐵 𝜔̂𝐹,𝑍

𝐵 ]     (40) 

 

 Similarly to (40), the angular velocity of crank arm body frame this can be written as: 

𝜔𝐶
𝐵  = [𝜔𝐶,𝑋

𝐵 𝜔𝐶,𝑌
𝐵 𝜔𝐶,𝑍

𝐵 ]     (41)  

 

However, unlike 𝜔̂𝐹
𝐵, 𝜔𝐶

𝐵 in (41) could not be estimated from the gyroscope signal 𝑦𝐺
𝐶 

without a calibration quaternion 𝑞𝐶
𝑆→𝐵. Instead, the KCR algorithm output 𝜔̂𝐶,𝐾𝐶𝑅

𝐵  is 

an approximation of 𝜔𝐶,𝑌
𝐵  – the only component of 𝜔𝐶

𝐵 which influences the crank 

angle - obtained by exploiting several kinematic constraints between 𝜔̂𝐹
𝐵 and 𝜔̂𝐶

𝐵. 

Firstly, the kinematic constraints of the system imply that there is zero relative 

angular velocity between the bicycle and crank arm body frames about the X- and Z-

axes. Therefore, the crank vector magnitude ‖[𝜔̂𝐶,𝑋
𝐵 𝜔̂𝐶,𝑍

𝐵 ]‖ can be taken as equal to 

the bicycle vector magnitude ‖[𝜔̂𝐹,𝑋
𝐵 𝜔̂𝐹,𝑍

𝐵 ]‖. Secondly, since the Y-axis is shared 

(Figure 14), we know that the angular velocity vector [𝜔̂𝐹,𝑋
𝐵 0 𝜔̂𝐹,𝑍

𝐵 ] is 

perpendicular to the crank rotation rate 𝜔𝐶,𝑌
𝐵 . Lastly, since the crank arm IMMS is 

rigidly attached to the crank body frame, the magnitude of the gyroscope signal ‖𝑦𝐺
𝐶‖ 

can be used to estimate the magnitude of ‖𝜔𝐶
𝐵‖. Combining the above three 

inferences leads to: 

‖𝑦𝐺
𝐶‖  ≈ ‖𝜔𝐶,𝑋

𝐵 𝜔𝐶,𝑌
𝐵 𝜔𝐶,𝑍

𝐵 ‖       
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           ≈  √‖𝜔̂𝐶,𝑌
𝐵 ‖

2
+ ‖[𝜔̂𝐶,𝑋

𝐵 𝜔̂𝐶,𝑍
𝐵 ]‖

2
     

  

           ≈  √‖𝜔̂𝐶,𝑌
𝐵 ‖

2
+ ‖[𝜔̂𝐹,𝑋

𝐵 𝜔̂𝐹,𝑍
𝐵 ]‖

2
     (42) 

 

Solving for 𝜔̂𝐶,𝑌
𝐵  in (42) yields  

𝜔̂𝐶,𝑌
𝐵   = √(‖𝑦𝐺

𝐶‖)2 − ‖[𝜔̂𝐹,𝑋
𝐵 0 𝜔̂𝐹,𝑍

𝐵 ]‖
2
     (43)  

 

The KCR algorithm estimates an effective angular velocity 𝜔̂𝐶,𝐾𝐶𝑅
𝐵  for the crank arm 

body frame (Figure 17) as in (44), which ensures that the crank angle rotation rate 

𝜔̂𝐶,𝑌
𝐵  is preserved for integration in (29) and (30) while assuming that the other two 

unknown components are zero. 

𝜔̂𝐶,𝐾𝐶𝑅
𝐵  = [0 𝜔̂𝐶,𝑌

𝐵 0]     (44) 

 

This enables the integration of the gyroscope in the crank body frame to track the 

crank angle without the need for a static calibration. The VAU assumption of 

negligible 𝜔̂𝐶,𝑋
𝐵  and 𝜔̂𝐶,𝑍

𝐵  does not affect the crank angle estimate, and is corrected by 

the kinematic constraints implemented. 

 Static calibrations  

Static calibrations were required for tracking the bicycle body frame 𝑞̂𝐹
𝐵→𝐼 (see Figure 

16), since the orientation of the bicycle frame sensor relative to the frame 𝑞̂𝐹
𝑆→𝐵

 was 

not known a priori. Therefore, the bicycle was positioned in an upright position on 

the laboratory floor and held in place by the stationary trainer for the static test. Data 

was captured and processed through the PCF in order to obtain 𝑞̂𝐹
𝑆→𝐵

 and then 𝑞̂𝐹
𝑆→𝐵

 

was calculated using the ground truth orientation 𝑞𝐹
𝐵→𝐿 (to allow dynamic 

comparisons to ground truth) as in (45): 

𝑞̂𝐹
𝑆→𝐵 = 𝑞𝐹

𝐵→𝐿
 

∗
⊗ 𝑞𝐹

𝑆→𝐼     (45)  

 

The performance of the PCF was compared to Xsens KF for the tracking of the 

bicycle frame, and therefore the 𝑞𝐶
𝑆→𝐼

 output from each filter was used to calculate a 

unique calibration value as well. Similarly, the results of the CRANK filter were 

compared to the performance of the Xsens onboard KF and the PCF which use direct 

heading and inclination referencing from the gravitational and magnetic fields. 
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Therefore, these filters required a static calibration for tracking the crank body frame. 

This required calculation of  

𝑞̂𝐶
𝑆→𝐵 = 𝑞𝐶

𝐵→𝐿
 

∗
⊗ 𝑞𝐶

𝑆→𝐼     (46)  

 

using an estimate of the static sensor orientation 𝑞𝐶
𝑆→𝐼

 from the Xsens and PCF filters, 

and the ground truth value of the crank arm quaternion 𝑞𝐶
𝐵→𝐿 from the camera system.  

 Data analysis 

Analysis of filter performance was conducted using mean absolute error (AE). AE 

was calculated for each filter relative to the ground truth data provided by the camera 

system. The mean AE (MAE) and standard deviation in AE (SDAE) over the five 

minute trial were used to quantify filter performance.  

We also tested filter performance under simulated environmental noise due to typical 

movements of the bicycle frame in outdoor conditions. We assumed negligible yaw 

rates (slow changes in direction and no slippage of the wheels), since normal outdoor 

cycling does not comprise sustained sharp turns. We assumed a sinusoidal pitch rate 

(continuous inclination changes every ten pedal strokes), and fast lateral tilt about the 

X-axis of the bicycle body frame (Figure 14). Lateral tilt was assumed to be 

sinusoidal in nature with a frequency driven by the pedaling cadence. We simulated 

two tilt conditions: a sinusoidal angular velocity about the frame X-axis equivalent to 

a 20° lateral tilt (representing a seated position) and another equivalent to a 40° lateral 

tilt (pedaling in a standing position) over the crank cycle. Moreover, random noise 

was added to each sinusoid equal to 5% of the amplitude. This represented additional 

vibrations due to an irregular road surface. We also modeled the resultant 

accelerations from the bicycle frame angular velocity using a simple inverted 

pendulum model. The pendulum lengths for the bicycle frame and crank arm sensors 

were approximated as 1m and 0.3m (estimated height above the ground in upright 

position). The noisy sinusoid representing each simulated outdoor situation was 

added to the angular velocity measurement of the bicycle frame gyroscope. This was 

done by rotating the body frame sinusoid into the sensor frame. Similarly, the same 

sinusoid signal was rotated and added to the crank arm sensor gyroscope. 

 Results 

The MAEs in bicycle frame estimates for the Xsens KF and the PCF were in the 

order of 1° or less, and SDAEs were in the order of 0.5° (Table 4).  
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Table 4: Mean absolute errors in bicycle frame tracking 

 

Xsens KF AE [deg]  

(mean (SD)) 

PCF AE [deg]  

(mean (SD)) 

Cadence Roll Pitch Yaw Roll Pitch Yaw 

Slow 0.6 (0.2) 0.4 (0.1) 0.9 (0.3) 0.6 (0.1) 0.5 (0.2) 1.1 (0.4) 

Medium 0.7 (0.4) 0.8 (0.3) 1.0 (0.5) 0.6 (0.3) 0.9 (0.2) 0.9 (0.5) 

Fast (inclined) 0.8 (0.3) 0.6 (0.3) 0.8 (0.5) 0.7 (0.4) 0.7 (0.2) 1.0 (0.6) 

 

For the crank arm tracking, the CRANK filter produced similar errors (approximately 

1°), but the KF and PCF performance was notably degraded (Table 5). 

Table 5: Mean absolute errors in crank frame tracking 

 
Xsens KF AE [deg] 

(mean (SD)) 

PCF AE [deg] 

(mean (SD)) 

CRANK AE [deg] 

(mean (SD)) 

Cadence Roll Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw 

Slow 6.1 (3.2) 9.9 (6.3) 9.0 (7.1) 7.1 (3.4) 9.9 (8.7) 9.5 (6.9) 0.3 (0.1) 0.5 (0.2) 0.76 (0.3) 

Medium 9.8 (4.4) 9.3 (9.9) 11.5 (8.5) 10.7 (4.5) 12.8 (11.0) 11.6 (8.1) 0.4 (0.3) 0.9 (0.2) 0.8 (0.2) 

Fast (inclined) 10.2 (5.9) 9.8 (9.1) 13.1 (8.5) 13.4 (5.5) 12.1 (11.1) 13.2 (8.2) 0.5 (0.3) 0.7 (0.2) 0.9 (0.4) 

 

The CRANK filter produced markedly lower AEs in crank arm angles relative to the 

bicycle frame than the Xsens KF and PCF for all tests (Figure 20). The CRANK filter 

AEs in the crank angle (relative pitch angle) were 0.9 ± 0.6°, 1.7 ± 1.4° and 1.8 ± 1.2° 

for the Slow, Medium and Fast tests respectively. The Xsens KF produced MAEs and 

SDAEs of approximately 10° and 5° respectively. The PCF was even more 

inaccurate, ranging between 10-15° in MAE with SDAEs of up to 10°. CRANK filter 

AEs for the other two relative angles between the bicycle frame and crank arm – roll 

angle 𝐴𝑋 and yaw angle 𝐴𝑍 in (3) – were below 0.5° for all tests, while those using 

the Xsens KF and PCF were markedly higher (MAEs between 5-15°, SDAEs 

between 5-10°).  
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Figure 20: Crank angle tracking performance for the CRANK filter during testing compared to the 

Xsens KF and PCF. Bar graphs represent the MAE, error bars represent the SDAE. 

CRANK filter performance for simulated motion of the bicycle frame (see Section 

3.2.9 under Methods for details) was only slightly less accurate than under controlled 

laboratory conditions (Figure 21). With the simulated environmental noise, the AEs 

increased slightly to 1.6 ± 1.2°, 1.9 ± 1.3° and 2.4 ± 1.8° for 20° pitch and lateral tilt 

and to 2.6 ± 1.9°, 2.8 ± 1.7° and 3.6 ± 2.7° for 40° pitch and tilt.  

 

Figure 21:  Performance of the CRANK filter under ideal conditions and with simulated bicycle frame 

motion. 
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 Discussion 

This study presents a novel complementary filter for tracking the crank angle using 

two IMMSs. The proposed CRANK filter achieved MAEs of less than 2° in ideal 

laboratory conditions and below 3° under simulated motion of the bicycle frame. This 

suggests that the CRANK filter is able to operate in outdoor conditions, although this 

should be verified with future field tests. The CRANK filter is robust; its accuracy 

was not degraded by the inclination of the bicycle, and it does not require a 

magnetometer for the crank sensor, making it resistant to magnetic interference. It is 

also easy to use since it does not require the sensors to be attached at specific 

positions or orientations relative to the bicycle. Furthermore, it can be implemented 

relatively quickly as it does not involve complicated Kalman filtering or calibration 

methods which are time-consuming and prone to error.  

According to the authors’ knowledge only one other study, by Kitawaki and Oka 

[32], has attempted to estimate bicycle crank angles using wireless inertial sensors. 

They report errors of 0.339 ± 0.115° for their system, which is very low. However, 

their study limited their tests to only 25 seconds and the crank angle appears to have 

been tracked using basic integration of the gyroscope signal. This method can 

therefore not track the crank angle for periods longer than a few seconds due to 

gyroscope drift error, as Kitawaki and Oka [32] offer no filtering method for 

removing the gyroscope bias using vector observations. Their methodology also 

relies on precise alignment of the axes of crank sensor with the crank arm, which may 

be time-consuming and difficult. Furthermore, their collection of ground truth data 

using an optical motion capture system did not include bicycle frame orientation and 

used only two markers for the crank arm tracking. The main advantages of the 

present study with respect to the approach proposed by Kitawaki and Oka [32] are 

that it presents a more thorough ground truth data collection method, incorporates a 

filtering algorithm which provides drift-free estimates of crank angle over extended 

periods of time and does not require alignment of the crank sensor with the crank 

segment. 

The CRANK filter outperformed the Xsens KF and the PCF, both of which made use 

of classical IMMS vector observations and required a static calibration procedure. 

The Xsens KF is known to operate with less than 1° error in magnetically undisturbed 

environments. However, ferrous metal components in the bicycle resulted in a 

severely corrupted heading reference vector during the calibration and during 
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pedaling. This produced both offset and drift errors in the orientation output of the 

KF (and PCF). The CRANK filter makes no use of the magnetometer in the crank 

IMMS and was thus unaffected by the magnetic disturbances. It should be noted that 

the error in crank angle estimates is the combination of several errors for a two-

segment model: frame IMMS tracking error (PCF errors), frame calibration error, 

crank IMMS tracking (errors in the KCR and VAU algorithms) and crank sensor-to-

body calibrations (for crank angle tracking using the Xsens KF and PCF). Errors in 

the frame IMMS tracking were shown to contribute very little to crank angle error for 

both the PCF and KF, although kinematic constraints were violated with these filters 

and it is likely that magnetic disturbances during the static calibrations contributed 

largely to these errors. In contrast, the near zero relative roll and yaw errors for the 

CRANK filter demonstrate the effectiveness of the VAU kinematic constraints.  

The main limitation of the CRANK filter is that it requires sustained forward 

pedaling. The VAU does not work at low cadences as it requires centripetal 

accelerations to work. Also, the KCR algorithm operates on scalar values and thus 

cannot distinguish between forward and backward pedaling. The CRANK filter also 

relies on a relatively fast sampling rate. For example, a sampling rate of 120 Hz 

implies that the resolution of the sensor data is 3° of crank rotation per sample at a 

slow cadence of 60 rpm. Therefore, at faster pedaling rates, the VAU could be 

inaccurate by several degrees for a single observation. Nevertheless, the CRANK 

filter produced errors below 3° even at a cadence of 100 rpm – suggesting that time-

resolution errors average out closer to zero over time. 

 Conclusion 

This study presents a novel method of accurately estimating the angle of a bicycle 

crank arm with IMMS over an extended period of time without needing a 

magnetometer or a static calibration procedure. This approach highlights the 

possibility of overcoming inertial and magnetic interference using innovative domain 

constraints instead of vector observations. Simulation results indicate that the 

CRANK filter is robust against even large movements of the bicycle frame. 
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 Paper 3: Accurate Bicycle Crank Angle Tracking using Wireless Inertial and 

Magnetic Measurement Systems and Two Novel Functional Calibrations   

Abstract: An important outcome when analyzing cycling biomechanics is the crank 

angle. Minimally invasive technologies such as wireless inertial and magnetic 

measurement systems (IMMSs) have the potential to measure crank angles quickly 

and affordably – even outdoors. However, magnetic field disturbances around the 

crank arm and large centripetal accelerations during pedaling introduce calibration 

and tracking errors. This study presents a novel passive complementary filter 

designed to track the crank angle using sensor data from two IMMSs; one attached to 

the bicycle frame and the other to the crank arm. The filter includes dynamic 

acceleration compensation (DAC) and a heading constraint (HC) algorithm which 

allows for tracking of the crank arm IMMS heading without magnetometer data. We 

also propose two functional methods of sensor-to-body frame alignment which are 

based on kinematic constraints and do not require magnetometer measurements. We 

validated the filter during three five-minute tests at a self-selected slow, medium and 

fast cadence using an optical motion capture system. The filter produced low and 

consistent absolute errors (AEs) of 1.3 ± 0.9° or less in all three tests for both frame 

alignment methods. In contrast, large and variable AEs were found (11.6 ± 7.6°, 

14.2 ± 10.7° and 14.0 ± 10.2° respectively) with the DAC and HC algorithms 

disabled and using a relative pose calibration that relies on magnetometer data. This 

filter is simple and cost-effective to implement, and its performance demonstrates that 

it is robust against typical errors caused by continuous dynamic motion and time-

varying magnetic interference near the crank. 

Submitted: IEEE Sensors J. Journal (10 December 2014) 

 Introduction 

Inertial sensor technology has advanced considerably in accuracy and portability over 

the past two decades [1]. This has resulted in a prolific expansion of their usage for 

human analytics in fields such as healthcare and sports [2, 3]. In particular, wireless 

inertial and magnetic measurement systems (IMMSs) have introduced opportunities 

to perform non-invasive human motion analysis in novel environments. However, 

variability in movement task dynamics and local magnetic field conditions often 

present context-specific challenges to accurate IMMS tracking [4]. Tracking a 

moving IMMS requires knowledge of the alignment between two coordinate systems 
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(frames): a frame representing the measurement axes (the sensor frame) and another 

representing the reference (inertial) frame [5]. Estimating sensor-to-inertial frame 

alignment typically involves solving Wahba’s problem with vector matching 

techniques [6, 7]. The solution is then combined with strapdown integration of the 

gyroscope data in a sensor fusion scheme to filter out measurement errors [8]. IMMS 

vector matching relies on measurements of the gravitational and magnetic field 

vectors by accelerometers and magnetometers respectively. This means that dynamic 

accelerations and disturbances to the local magnetic field are a source of error – 

especially in applications involving sustained rigorous motion or exposure to variable 

magnetic interference [9, 10]. Therefore, methods of compensating for these 

disturbances are often developed using additional domain constraints which apply to 

the specific application [5]. 

Besides sensor-to-inertial frame alignment, a second source of error in IMMS 

tracking is estimation of the alignment between the sensor frame and the frame in 

which body motion is analyzed (body frame). For instance, in the field of gait 

analysis, measurements in the sensor frame attached to a bone segment are 

transformed to the anatomical body frame representing segment morphology [11, 12]. 

As a result, reliable IMMS tracking also depends upon accurately determining the 

static alignment between the sensor frame and desired body frame. There are three 

primary methods of performing sensor-to-body frame alignment: manual, relative 

pose and functional methods. Manual alignment, the most basic approach, involves 

precise placement of the sensor frame on the tracking object in order to produce a 

predetermined alignment to the body frame. This can be both time-consuming and 

subject to significant human error, especially when dealing with complex body 

geometries with uneven contact surfaces. Relative pose methods involve a stationary 

body frame pose in which the simultaneous sensor-to-inertial and body-to-inertial 

frame alignments are assumed known [13]. Static pose calibrations thus suffer both 

from orientation estimation errors for the sensor and incorrect positioning of the body 

in the inertial frame. Functional methods exploit constraints to the kinematics of the 

body frame (such as planar motion) during a dynamic calibration movement while the 

same motion is measured in the sensor frame [14]. Dynamic methods fail if the 

kinematic constraints assumed for the system are violated, or if sensor measurements 

are inaccurate. Therefore, similarly to sensor-to-inertial tracking, accurate sensor-to-

body frame alignment techniques are often context-specific and remain actively 

researched in a number of fields. 
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The aim of this study was to develop a method of tracking bicycle crank angles 

accurately using wireless IMMSs. The crank angle is an important variable in studies 

investigating cycling performance, and simple portable measurement systems such as 

IMMSs are desirable for in-field data collection. However, disturbances to the 

magnetic field near the bicycle crank arm are commonplace, rendering the 

measurements from a magnetometer on the crank arm unreliable for vector matching 

techniques [15, 16]. Since these disturbances are permanent and yet variable during 

crank motion, they cannot be removed using normal magnetic mapping techniques 

[9] and thus hinder dynamic sensor-to-inertial alignment tracking. Furthermore, since 

the interference cannot be removed temporarily for a static pose calibration, this also 

degrades estimation of sensor-to-body frame alignment. The study objective was thus 

to develop a method of performing the sensor-to-inertial and sensor-to-body frame 

alignments for the crank arm without magnetometer measurements. We accomplished 

this by exploiting a kinematic constraint between the crank arm body frame and the 

body frame of the bicycle in a nonlinear complementary filter structure. This novel 

method also includes a dynamic acceleration compensation (DAC) method for 

improving gravity estimates, and was successfully validated using an optical motion 

capture system. 

 Methods 

 Data collection 

An experiment was conducted with a subject riding a road bicycle indoors on a 

stationary trainer positioned on a level floor. The subject was tested cycling at three 

self-selected cadences: slow (≈80 rpm), medium (≈90 rpm) and fast (≈100 rpm). Each 

test lasted for a period of five minutes. In order to track the crank angle, one wireless 

IMMS (MTw Development Kit, Xsens, B.V. Technologies, Enschede, Netherlands) 

was rigidly attached to the seat post of the bicycle frame and another on the right-

facing surface of the left crank arm (the crank IMMS cannot be placed on the outside 

lateral surface of the crank arm due to foot obstructions). For validation purposes, the 

crank angle was measured simultaneously using an optoelectronic motion analysis 

system (Vicon MX T-series, Vicon Motion Systems Ltd, UK) and reflective markers 

were placed on the frame and crank arm according to the protocol described in [17]. 

Markers could not be placed on the crank IMMS as it was on the inside of the crank 

arm which made the markers invisible to the cameras. Data was collected 

synchronously at 120 Hz for both systems. 
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 Crank angle tracking 

In this study we describe the orientation of any generic frame CS1 relative to another 

generic frame CS2 using the Hamiltonian quaternion notation in (47): 

𝑞CS2→CS1 = [𝑠 𝒗]    (47) 

 

where 𝑠 is a scalar and 𝒗 is a three-dimensional vector. This allows for the 

transformation of a three-dimensional vector 𝑥 
𝐶𝑆2 expressed in CS2 to CS1 by  

𝑝(𝑥 
𝐶𝑆1) = 𝑞CS2→CS1 ⊗ 𝑝(𝑥 

𝐶𝑆2) ⊗ 𝑞∗CS2→CS1
                  (48) 

 

The symbol ⊗ represents a quaternion multiplication, the superscript ∗ denotes a 

conjugated quaternion and 𝑝(𝑥 
𝐶𝑆2) = [0 𝑝(𝑥 

𝐶𝑆2)]. The bicycle crank angle at any 

time 𝑡 was defined as the orientation of a chosen body frame (B) for the crank arm 

(C) relative to one for the bicycle frame (F): 

𝑞𝐶𝐹
𝐵→𝐵(𝑡) = 𝑞∗

𝐶
𝐼→𝐵(𝑡) ⊗ 𝑞𝐹

𝐼→𝐵 (𝑡)    (49) 

 

where I is the inertial reference frame. The relevant crank angle AY, expressed in 

Euler angles, is shown in Figure 22 and can be calculated from 𝑞𝐶𝐹
𝐵→𝐵 in (49) using 

𝑓𝑄→𝐸(𝑞𝐶𝐹
𝐵→𝐵) = [𝐴𝑍

 𝐴𝑋
 𝐴𝑌

 ]     (50) 

 

where 𝑓𝑄→𝐸 is a standard conversion from Hamiltonian quaternions to Euler angles 

using a ZXY rotation sequence. Therefore, any bicycle crank angle measurement 

method requires tracking of 𝑞𝐹
𝐼→𝐵 and 𝑞𝐶

𝐼→𝐵 to calculate 𝑞𝐶𝐹
𝐵→𝐵.   

Figure 22 also shows the Vicon marker positions used to define the axes of the body 

frames required for ground truth data. The bicycle and crank arm body frames were 

defined with a common primary axis Y 
I (coming out of the page) about which the 

crank arm rotates relative to the bicycle frame. The secondary axis XF
I  was defined 

using the line joining the two wheel centers, while the secondary axis ZC
I  was defined 

using the line joining the pedal marker and the crank hub marker [17].  

We estimated the crank angle using measurements from the IMMS attached to the 

bicycle frame and the IMMS attached to the crank arm. Each IMMS produces sensor 

measurements from a three-dimensional gyroscope, accelerometer and magnetometer. 

These were designated 𝑦𝐺, 𝑦𝐴 and 𝑦𝑀 respectively, and modeled as:  
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𝑦𝐺(𝑡) = 𝜔𝑆(𝑡) + 𝑏𝑆(𝑡)    (51) 

 

𝑦𝐴(𝑡) = −𝑔𝑆(𝑡) +  𝑎𝑆(𝑡)    (52) 

 

𝑦𝑀(𝑡) = 𝑚𝑆(𝑡) + 𝑑𝑆(𝑡)    (53) 

 

where 𝜔𝑆 is the angular velocity of the IMMS in the sensor frame, 𝑔𝑆 is the 

gravitational acceleration and 𝑚𝑆 is the magnetic field intensity. Environmental noise 

components 𝑏𝑆, 𝑎𝑆 and 𝑑𝑆 represent the gyroscope bias, dynamic acceleration of the 

IMMS and the local magnetic field disturbances respectively. The superscript S 

indicates quantities expressed in the IMMS sensor frame. 

 

Figure 22: Body frame definition for crank angle tracking. Marker placement is shown for data 

collection using an optical motion capture system 

 Functional sensor-to-segment frame calibration 

To express any measured or estimated quantities in the desired body frame, it is 

necessary to obtain the coordinate system transformation 𝑞𝐹
𝑆→𝐵. For example, this 

enables the transformation in (54): 

𝑞 
𝐼→𝐵(𝑡) = 𝑞 

𝐼→𝑆(𝑡) ⊗ 𝑞 
𝑆→𝐵

 

∗
     (54) 

 

Note that 𝑞𝐹
𝑆→𝐵 is not time-dependent as the sensor and body frames were both rigidly 

attached to the crank arm. A functional frame alignment procedure (Dynamic_FA) 
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was developed in order to estimate sensor-to-segment transformations  𝑞𝐶
𝑆→𝐵 and 

 𝑞𝐹
𝑆→𝐵 for the crank arm and bicycle frame IMMSs respectively (Figure 23).  

The first functional calibration involved steady rotation of the crank arm (by hand 

with subject off the bicycle) for five revolutions while the bicycle frame was held 

stationary (Figure 23a). The dynamic acceleration components measured by the crank 

arm IMMS during this movement can be interpreted using the principles of angular 

kinematics. Relative to the crank hub center the crank IMMS rotates with angular 

velocity 𝜔𝐶
 . This induces a radial acceleration 𝑎𝑟

  which has a constant direction in 

the sensor frame along the radius of rotation 𝑟𝐶
 . Changes in 𝜔𝐶

 also lead to tangential 

acceleration of the IMMS 𝑎𝑡. Since the crank IMMS measures accelerations relative 

to the inertial frame, it also senses the linear acceleration of the crank hub 𝑎𝐿. The 

second calibration involved repeated lateral tilting of the bicycle frame (from side to 

side) while otherwise stationary (Figure 23b). Similarly, the IMMS attached to the 

bicycle frame experiences linear, radial and tangential accelerations as it rotates at 

angular velocity 𝜔𝐹
 about radius 𝑟𝐹

 from the floor.  

The functional calibration movements in Figure 23 both involve rotation about a 

single body frame axis. By keeping the bicycle frame stationary, the angular velocity 

vector 𝜔𝐶
  in Figure 23a can be measured with the crank IMMS gyroscope and used 

to define the leading YC axis for the crank body frame in the sensor frame. Similarly, 

the XF axis of the bicycle frame can be estimated using the bicycle IMMS gyroscope 

signal in Figure 23b. The secondary axes of the bicycle and crank body frames – YF 

and XC - were defined as perpendicular to the radii of rotation 𝑟𝐹
 and 𝑟𝐶 respectively. 

This is based on the assumption that during the calibration 𝑟𝐹 lies in the XZ-plane of 

the bicycle body frame and 𝑟𝐶 lies in the YZ-plane of the crank arm body frame (refer 

to Figure 22 and Figure 23). Trivially, the third axis for each body frame is defined as 

perpendicular to the other two. Therefore, it was possible to calculate the body frame 

relative to the sensor frame for both IMMSs using the well-known TRIAD method 

[18]. This ensures that the secondary axes are perpendicular to the primary axes even 

though 𝑟𝐹
 and 𝑟𝐶 are not. 
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Figure 23: Functional calibration movements with a single body axis rotation for (a) the crank arm 

IMMS and (b) the bicycle frame IMMS showing radii of IMMS rotation and components of 

acceleration. 

 Radius of rotation estimation  

This section provides detail on the estimation of radii of rotation 𝑟𝐹
 and 𝑟𝐶 which are 

required for the functional calibration method described in Chapter 4.2.3. Referring to 
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(52) and Figure 22, the dynamic acceleration of the bicycle and crank IMMSs can be 

defined as in (55): 

𝑎 
𝑆(𝑡) =  𝑎𝑜

𝑆(𝑡) + 𝑎𝑟
𝑆(𝑡) + 𝑎𝑡

𝑆(𝑡)     (55) 

 

where 𝑎𝑜
𝑆 is the acceleration of the crank hub center due to translation and rotation 

of the bicycle frame relative to the ground, 𝑎𝑟
𝑆 is the radial acceleration due to crank 

angular velocity and 𝑎𝑡
𝑆 is the tangential component due to angular acceleration of 

the crank. The functional calibrations in Figure 22 were designed in such a way that 

the linear acceleration 𝑎𝑜
𝑆 is negligible. Therefore, the dynamic acceleration of the 

IMMSs could be approximated as purely rotational acceleration: 

 𝑎𝑟𝑜𝑡
𝑆 (𝑡)   ≈ 𝑎𝑟

𝑆(𝑡) + 𝑎𝑡
𝑆(𝑡) 

 

            = 
d𝜔𝑆(𝑡)

dt
× 𝑟𝑆 + 𝜔𝑆(t) × (𝜔𝑆(t) × 𝑟𝑆)     (56) 

 

where the symbol × designated a cross-product multiplication. Therefore, it can be 

seen that solving for 𝑟𝑆 in (56) requires a priori knowledge of  𝑎 𝑟𝑜𝑡
𝑆  and 𝜔𝑆. 

Assuming negligible gyroscope bias values (only for this calibration), an estimate of 

𝜔𝑆 can be obtained from the IMMS gyroscope signal 𝑦𝐺 in (51). Similarly, an 

estimate of 𝑎𝑟𝑜𝑡
𝑆  can be obtained using the accelerometer measurement and an 

estimate of the gravitational acceleration vector by rearranging (52): 

𝑎̂𝑔
𝑆(𝑡) = y𝐴

 (𝑡) + 𝑔̂𝑆(𝑡)    (57) 

 

The gravity estimate was first obtained for each IMMS while stationary immediately 

preceding the functional calibration. This is a trivial case of (57) where the dynamic 

acceleration is considered to be zero. During the calibration movement, the gravity 

vector in (57) was tracked using gyroscope integration: 

𝑔̂𝑆(𝑡) = 𝑔̂𝑆(𝑡 − 1) + 𝑔̂𝑆(𝑡 − 1) × 𝑦𝐺(𝑡)    (58) 

 

The period between the start time 𝑡1 and end time 𝑡2 of the calibrations was chosen to 

be five seconds, which was considered too short to induce notable gyroscope drift in 

(58). We solved for 𝑟𝑆 by minimizing the mean error between 𝑎̂𝑟𝑜𝑡
𝑆

𝑡1→𝑡2
 in (56) and 

𝑎̂𝑔
𝑆

 𝑡1→𝑡2

 in (57) using a grid-search.  
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 PCF with DAC for tracking the bicycle frame 

Tracking of the bicycle frame sensor orientation 𝑞𝐹
𝐼→𝑆 was performed using the 

passive complementary filter (PCF) described by Mahoney et al. [19]. In summary, 

the PCF receives the IMMS sensor signals as inputs and then estimates the IMMS 

angular velocity 𝜔𝐹
𝑆

 (Figure 24). This is then integrated to track orientation according 

to the following differential equation describing rigid body kinematics: 

𝑞̂̇𝐹
𝐼→𝑆(𝑡) =

1

2
𝑞̂𝐹

𝐼→𝑆 ⊗ 𝑝(𝜔̂𝐹
𝑆)    (59) 

 

The accent symbol ^ represents an estimated quantity and the single dot accent a time 

derivative. The estimate 𝜔̂𝐹
𝑆 is obtained by filtering out errors from the gyroscope 

signal 𝑦𝐹
𝑆 in a correction step. The correction step involves an error feedback loop in 

which 𝑞̂𝐹
𝐼→𝑆 is compared to the PCF output from the previous time step. The Factored 

Quaternion Algorithm (FQA) was used to obtain an auxiliary estimate of the IMMS 

orientation 𝑞̂𝐹,𝐹𝑄𝐴
𝐼→𝑆  using a gravity estimate and magnetometer measurements [18]. 

The DAC step substitutes the radius of rotation and the gyroscope signal into (52) to 

estimate the dynamic acceleration, which can be used to estimate the gravity vector 

by manipulating (52). The FQA estimate is then used to estimate an angular velocity 

error 𝜔̂ 𝑒
𝑆
: 

𝑞̂𝑒(𝑡) =  𝑞̂𝐹
𝐼→𝑆(𝑡 − 1) ⊗ 𝑞̂𝐹,𝐹𝑄𝐴

𝐼→𝑆 (𝑡) =  [𝑠𝑒(𝑡) 𝒗𝑒(𝑡)]                       (60) 

 

𝜔̂𝑒(𝑡) =  2𝑠𝑒(𝑡)𝒗𝑒(𝑡)              (61) 

 

The angular velocity error from (61) is used for proportional and integral gain 

feedback correction in order to estimate 𝜔̂𝐹
𝑆 using  

𝜔̂𝐹
𝑆(𝑡) =  𝑦𝐹

𝑆(𝑡) − 𝑏̂(𝑡) + 𝐾𝑃𝜔̂𝑒(𝑡)    (62) 

 

The online bias update is provided by integrating 𝜔̂ 𝑒
𝑆
: 

𝑏̂̇(𝑡)  =  −𝐾𝐼𝜔̂𝑒(𝑡)    (63)  

 

Lastly, the PCF’s IMMS orientation estimate was rotated into the body frame using 

an estimate of the sensor-to-body frame alignment 𝑞̂𝐹
𝑆→𝐵 as in (54).  
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Figure 24: The PCF filter tracks the orientation of the bicycle frame sensor by correcting and then 

integrating the gyroscope signal. A rotation step is then used to transform this to the bicycle body 

frame. 

 PCF with DAC for tracking the crank arm  

Due to magnetic disturbances caused by the pedals and bicycle drive train, the PCF in 

Figure 24 was adapted to track the crank arm body frame orientation 𝑞𝐶
𝐼→𝐵 without 

measurements from the crank arm IMMS magnetometer. This adapted PCF performs 

the sensor-to-body frame rotation before the error function and correction steps, and 

thus directly estimates the body frame angular velocity and orientation (Figure 25). 

Instead of using the crank IMMS magnetometer measurement and FQA (as with the 

PCF in Figure 24), a heading constraint (HC) algorithm was developed to provide an 

auxiliary measurement  𝑞̂𝐶,𝐻𝐶
𝐼→𝐵  of the crank body frame orientation. The HC exploits 

the mechanical constraints of the crank arm body frame relative to the bicycle body 

frame so that the heading of the crank body frame can be inferred from the bicycle 

body frame heading (calculated using the bicycle frame IMMS magnetometer). 

The HC is implemented using rotation matrix notation, giving bicycle body frame 

axes in the inertial frame as in (64): 

 𝑅𝐹
𝐼→𝐵 = 𝑓𝑞→𝑅(𝑞𝐹

𝐼→𝐵) 

 

            = [𝑋𝐹
𝐼  𝑌𝐹

𝐼 𝑍𝐹
𝐼 ]  

 

            = [𝑋𝐹
𝐵 𝑌𝐹

𝐵 𝑍𝐹
𝐵]𝑇     (64) 
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where symbol 𝑅 
 represents a direction cosine matrix and 𝑓𝑄→𝑅 is a standard function 

converting Hamiltonian quaternions to rotation matrices. Similarly, the crank arm 

body frame axes which the HC estimates are given in (65): 

𝑅𝐶
𝐼→𝐵 = [𝑋𝐶

𝐵 𝑌𝐶
𝐵 𝑍𝐶

𝐵]𝑇      (65) 

 

The HC step exploits the fact that the crank arm axis of rotation (𝑌𝐶
𝐼) is defined as 

coincident with the lateral axis of the bicycle body frame (𝑌𝐹
𝐼), implying that the 

plane XZF is parallel to plane XZC. Therefore, the bicycle heading vector 𝑋𝐹
𝐵 also lies 

in the plane XZC– perpendicular to the rotation axis (refer to Figure 22). 

 

Figure 25: The PCF_HC filter which tracks the crank arm without magnetometer measurements or 

disturbances due to dynamic acceleration. A DAC step is performed in the sensor frame followed by a 

rotation to the body frame. Heading information is then inferred from the bicycle frame orientation 

before the standard PCF filtration. 

This allows the perpendicular 𝑌𝐶
𝐵 to be calculated using 𝑍𝐶

𝐵 and 𝑋𝐹
𝐵: 

𝑌𝐶
𝐵 = 𝑍𝐶

𝐵 × 𝑋𝐹
𝐵          (66) 

 

where 𝑋𝐹
𝐵 was obtained from (64) using the PCF’s bicycle body frame estimate. 𝑍𝐶

𝐵 

was estimated as in (67) from the normalized DAC gravity estimate and the crank 

arm frame alignment: 

𝑍𝐶
𝐵 =  𝑔𝐶

𝑆/‖𝑔𝐶
𝑆‖.𝑅𝐶

𝑆→𝐵𝑇
     (67) 

 

Finally, the crank arm heading was found trivially using (68): 

𝑋𝐶
𝐵 = 𝑌𝐶

𝐵 × 𝑍𝐶
𝐵        (68) 
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 Alternative IMMS sensor-to-body calibrations 

We compared the functional calibration technique Dynamic_FA (described in 

Chapter 4.2.3) to two other methods of sensor-to-body frame alignment. The first was 

a standard static pose method (Static_FA) in which the bicycle and crank arm body 

frames were manually positioned at known orientations. The second was a novel 

mixed calibration method (Mixed_FA), which is a combination of the Static_FA and 

Dynamic_FA methods. For the Static_FA method, the bicycle frame alignment 

𝑞̂𝐹,𝑠𝑡𝑎𝑡𝑖𝑐
𝑆→𝐵  was obtained by taking IMMS measurements while holding the bicycle 

frame in a stationary upright position. The PCF was used to estimate orientation 

measurement 𝑞̂𝐹,𝑠𝑡𝑎𝑡𝑖𝑐
𝐼→𝑆  and the assumed bicycle frame orientation was 𝑞̂𝐹,𝑠𝑡𝑎𝑡𝑖𝑐

𝐼→𝐵 =

[1 0 0 0]. Manipulation of (54) allows: 

𝑞̂𝐹,𝑠𝑡𝑎𝑡𝑖𝑐
𝑆→𝐵 (𝑡) = 𝑞̂𝐹,𝑠𝑡𝑎𝑡𝑖𝑐

𝐼→𝐵

 

∗
⊗ 𝑞̂𝐹,𝑠𝑡𝑎𝑡𝑖𝑐

𝐼→𝑆 (𝑡)     (69) 

 

Similarly, the crank arm frame alignment 𝑞̂𝐶,𝑠𝑡𝑎𝑡𝑖𝑐
𝑆→𝐵  was estimated by manually 

positioning the crank arm at a zero crank angle for the Static_FA recording. 

Therefore, the orientation of the crank body frame 𝑞̂𝐶,𝑠𝑡𝑎𝑡𝑖𝑐
𝐼→𝐵 = [1 0 0 0] was used in 

(69) together with 𝑞̂𝐶,𝑠𝑡𝑎𝑡𝑖𝑐
𝐼→𝑆 . Note that for Static_FA the IMMS orientation 𝑞̂𝐶,𝑠𝑡𝑎𝑡𝑖𝑐

𝐼→𝑆  

was estimated by the PCF in Figure 24 (which includes a magnetometer) and not by 

the filter in Figure 25. The Mixed_FA was developed to estimate the sensor-to-

segment alignment of the crank arm IMMS without a magnetometer and without 

solving for the radius of rotation necessary for Dynamic_FA. Instead, Mixed_FA 

solves the alignment problem using Davenport’s Q-method [20], a vector matching 

technique which determines the relative orientation of two frames using two or more 

vectors observable in both frames: 

𝑞𝐶
𝐶𝑆1→𝐶𝑆2 =  𝑓𝑄_𝑀𝐸𝑇𝐻𝑂𝐷(𝑣1

𝐶𝑆1, 𝑣2
𝐶𝑆1, 𝑣1

𝐶𝑆2, 𝑣2
𝐶𝑆2)                    (70) 

 

The two vectors observable in both frames were the crank arm angular velocity and 

the gravity vector, such that  

𝑞̂𝐶,𝑚𝑖𝑥𝑒𝑑
𝑆→𝐵 =  𝑓𝑄_𝑀𝐸𝑇𝐻𝑂𝐷(𝑔̂𝐶

𝑆, 𝜔̂𝐶
𝑆 , 𝑔̂𝐶

𝐵, 𝜔̂𝐶
𝐵)     (71) 

 

For Mixed_FA, the gravity vector was measured in the sensor frame using the 

accelerometer during the stationary Static_FA trial.  

𝑔̂𝐶
𝑆 =  −𝑦𝐴,𝑠𝑡𝑎𝑡𝑖𝑐

𝐶      (72)  

 

Stellenbosch University  https://scholar.sun.ac.za



85 

 

It was also rotated into the body frame during a static pose using the known gravity 

vector in the inertial frame and the assumed crank arm orientation as in (73): 

𝑝(𝑔̂𝐶,𝑠𝑡𝑎𝑡𝑖𝑐
𝐵 ) =  𝑞̂𝐶,𝑠𝑡𝑎𝑡𝑖𝑐

𝐼→𝐵 ∗
⊗ 𝑝([0 0 − 𝑔̂ 

𝐼]) ⊗ 𝑞̂𝐶,𝑠𝑡𝑎𝑡𝑖𝑐
𝐼→𝐵                    (73) 

 

The angular velocity vectors in (71) were obtained from the Dynamic_FA trial 

described in Figure 23a. The angular velocity in the sensor frame was estimated using 

the crank arm gyroscope measurement i.e. 𝜔̂𝐶
𝑆 = 𝑦𝐺,𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝐶 . The planar motion 

between the crank arm and bicycle body frames implies that all of the angular 

velocity measured by the crank arm IMMS occurs about the crank arm Y-axis i.e. 𝜔̂𝐶
𝐵 

= [0 ||𝑦𝐺,𝑑𝑦𝑛𝑎𝑚𝑖𝑐
𝐶 || 0].  

 Outcomes and data analysis 

To compare the accuracy of the different frame alignment methods, we tracked the 

crank angle during the three trials using the PCF and PCF_HC filters (Figure 24 and 

Figure 25) with frame alignments Static_FA, Mixed_FA and Dynamic_FA. 

Furthermore, to assess the influence of the DAC and HC algorithms, we also assessed 

crank angle errors obtained without them by tracking both body frames using the PCF 

in Figure 24 with DAC disabled (the dynamic acceleration estimate assumed to be 

zero). We also assessed the effectiveness of the DAC by analyzing crank angle errors 

for the PCF and PCF_HC with and without the DAC step at different filter gain 

values (different weighting of the gravity estimate). We analyzed the performance of 

each of these filter configurations using the mean absolute error (AE) calculated from 

the ground truth data provided by the optical motion capture system. The mean AE 

(MAE) and standard deviation in AE (SDAE) for each trial were then calculated.  

Tuning of the proportional filter gain 𝐾𝑃 for each filter configuration was done using 

reference data recorded by the optical motion capture system for a separate cycling 

trial. An automated grid search through the 𝐾𝑃 values from 0 to 5 was performed to 

find the gain which produced the lowest MAE. As a result, the proportional feedback 

gain KP was set to a value of 1 for the PCF in Figure 24 when tracking the bicycle 

body frame, as noise terms 𝑎𝐹
𝑆 in (52) and 𝑑𝐶

𝑆 in (53) were low and the FQA estimate 

could be weighted fairly heavily. As mentioned above, the PCF filter was also used to 

track the crank arm for comparison to the PCF_HC: here the magnetic interference 

and dynamic accelerations were much higher, resulting in a lower tuned KP value of 

0.5. In contrast, due to the heading constraint and dynamic acceleration compensation 

of the PCF_HC reducing errors in gravity and heading estimates, the performance of 
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this filter was far less sensitive to the KP value. A higher KP value of 1.5 was obtained 

for the PCF_HC. The integral feedback gain 𝐾𝐼 was set in all filter implementations 

to a value of 0.01𝐾𝑃. 

 Results 

The Static_FA method produced appreciably higher errors in crank angle estimates 

compared to Mixed_FA and Dynamic_FA for all cadences (Figure 26).  

 

Figure 26: Errors in crank angle estimates for the PCF and PCF_HC using different frame alignment 

methods in comparison to Vicon reference measurements. Bar values indicate the average of the 

absolute errors and error bars designate the standard deviation in absolute error. 

When tracking both body frames using the bicycle frame PCF, Static_FA produced 

large errors (MAE > 10°) and significant variability in error (SDAE ≈ 10°). MAEs 

and SDAEs decreased appreciably for Static_FA using the PCF_HC. Much lower 

errors were found using Mixed_FA and Dynamic_FA with the PCF_HC. MAEs were 

very similar and negligibly affected by cadence. The MAEs for Mixed_FA were 

1.2 ± 0.9°, 1.2 ± 0.9° and 1.3 ± 0.9° for the slow, medium and fast tests respectively. 

The Dynamic_FA results were 1.1 ± 0.6°, 1.1 ± 0.7° and 1.2 ± 0.7° for the three tests 

respectively.  

Figure 27 demonstrates the difference in PCF_HC performance (using Dynamic_FA) 

at different gain values with and without DAC. In both cases, for gain values lower 
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than 0.5 and approaching zero the effectiveness of the feedback correction is reduced 

and MAEs increased rapidly due to integration drift. However, the performance of the 

PCF_HC was largely insensitive to filter gain values from 0.5 to 5 with DAC 

enabled, whereas MAEs increased sharply with the gain value without the DAC. 

Moreover, performance did not deteriorate with faster pedaling when using the DAC, 

whereas errors increased with high cadences when DAC was disabled. This 

demonstrates that the DAC was effective in removing accelerations due to crank arm 

rotation.  

 

Figure 27: Absolute errors in crank angle estimates using PCF_HC with Dynamic_FA at different 

filter gain values.  

An analysis of the magnetic field intensity measured by the bicycle frame IMMS and 

crank arm IMMS revealed that there were significant magnetic disturbances near the 

crank arm that were not present near the bicycle frame IMMS (Figure 28). The mean 

and SD of the magnetic field intensity was not significantly affected by cadence, but 

the variability in the crank magnetometer data indicates that it was affected by the 

crank angle. The average magnetic field intensity around the bicycle frame IMMS 

was 7-9% above normal (a value of one), and the SD was 1.1%. The crank arm 

IMMS field intensity was much larger, with a 41±18% deviation from normal. As 

expected, disturbances due to dynamic acceleration were also much higher for the 

crank arm and increased with cadence. However, DAC removed the majority of the 

disturbances from the crank IMMS accelerometer measurements (Figure 28). 
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Figure 28: Comparison of magnetometer measurements and acceleration measurements (with and 

without DAC) for the IMMSs. Data normalized to a value of 1 for the undisturbed magnetic and 

gravitational fields respectively. Bar values give the mean value for each test and error bars indicate 

the SD.  

 Discussion 

In this study we present a nonlinear passive complementary filter (PCF_HC) for 

tracking the bicycle crank angle using two wireless IMMSs attached to the crank arm 

and bicycle frame. The PCF_HC is robust against commonly-found disturbances to 

the magnetic and gravitational field vectors measured by the crank arm IMMS. To 

solve the problem of magnetic field interferences, we propose two magnetometer-free 

sensor-to-body calibration methods and a heading constraint algorithm, which exploit 

the planar motion of the crank arm relative to the bicycle frame. The PCF_HC also 

incorporates a dynamic acceleration compensation method to improve estimates of 

the gravity vector during rigorous pedaling. Validation tests for the PCF_HC were 

conducted with an optical motion capture system at three pedaling speeds. The results 

show that the PCF_HC performed with absolute errors of 1.3 ± 0.9° or better at all 

cadences using both Mixed_FA and Dynamic_FA despite continuous and variable 

magnetic and gravitational field disturbances. This was superior to crank angle 

tracking using the magnetometer data, which produced mean absolute errors greater 

than 10°. These findings demonstrate that the heading constraint and proposed frame 

alignment techniques can be used successfully to track bicycle crank angles despite 

magnetic interferences which can cause magnetometer-based methods to fail. 
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While there has been a recent increase in inertial sensor applications for cycling 

analysis [21-24], the authors are aware of only two studies focusing on crank angle 

tracking [25, 17]. In the first study, Kitawaki and Oka measured bicycle crank angles 

using wireless inertial sensors [25]. They report lower MAE values than this study 

(0.339 ± 0.115°), but only used gyroscope integration limited to a short 25 second 

test. They present no filtering method for gyroscope bias estimation or drift error 

minimization using measurement updates from auxiliary sensors e.g. inclination 

updates using an accelerometer. Their protocol also requires a manual alignment of 

the axes of crank sensor with the crank arm body frame, which can lengthen the 

testing time and may suffer from sensor positioning errors. Our study allows for 

arbitrary placement of the sensors on the bicycle, and can operate drift-free over an 

extended period using measurement updates. The MAEs in this study were similar to 

those reported in the second study using the so-called CRANK filter [17]. However, 

the PCF_HC overcomes a limitation of the CRANK filter in that it requires dynamic 

accelerations to work, and can thus only compensate for gyroscope drift error during 

normal forward pedaling. The PCF_HC filter performs acceleration updates using the 

gravity vector (it eliminates dynamic accelerations), meaning that it operates drift-

free even when the crank arm is stationary or when pedaling backwards.  

The Static_FA results for the PCF and PCF_HC (Figure 26) illustrate the typical error 

effects due to dynamic accelerations and magnetic interference.  The reduced error 

variability for the PCF_HC shows that the heading constraint improved the stability 

of the PCF filter by removing significant noise introduced by the magnetometer 

measurements. On the other hand, mean errors were still appreciably higher for the 

PCF_HC using Static_FA than with Mixed_FA and Dynamic_FA. This can be 

explained by the fact that Static_FA uses the magnetometer in the crank arm IMMS 

to obtain the sensor heading, whereas as the other two frame alignments do not. 

Unlike the well-known Static_FA method, the Mixed_FA method is unaffected by 

magnetic field disturbances. However, these two methods are still both susceptible to 

human error when the crank arm is positioned at a prescribed crank angle during the 

static pose. Therefore, Dynamic_FA may be preferable in terms of reducing both 

human error and time spent on a static calibration procedure.  

As shown in Figure 27 and Figure 28, the DAC method was particularly effective at 

removing dynamic accelerations from the crank arm IMMS. This allows for a wide 

range of filter gains to produce similar performance. The DAC effectively removes 

high frequency errors in gravity estimation related to the pedaling frequency i.e. with 

Stellenbosch University  https://scholar.sun.ac.za



90 

 

DAC the auxiliary measurement system can track the faster changes in crank angle. 

This allows the filter to have a higher cross-over frequency between the gyroscope 

integration system and the auxiliary measurement system. The increased gain reduces 

the settling time required for orientation and bias estimation, especially if the filter 

needs to re-initialize for some reason during active pedaling. Without DAC, the 

optimal gain region is very narrow and the minimum error is higher. Figure 28 

illustrates the extent of environmental disturbances which are possible with a bicycle. 

It is quite possible that some bicycles may have much lower or higher magnetic 

interference levels near the crank arm. This variability makes it essential that crank 

angle tracking methods are not susceptible to magnetic field disturbances. Although 

we used two bicycle IMMS magnetometers for heading observations, the HC 

algorithm ensures that interference in these measurements does not affect crank angle 

accuracy significantly because the effect is duplicated for both body segments to 

preserve the constraint. The accelerometer signal analysis illustrates the increasing 

disturbances of dynamic accelerations on gravity estimation. It should be noted that 

the standard deviation in measured acceleration – roughly 0.6g for the fast cadence 

trial – equates to approximately one quarter of the range of acceleration i.e. 2.4g. This 

implies that the dynamic acceleration is larger than the gravitational acceleration 

during fast pedaling. 

We have made three contributions towards eventual field testing of cycling using 

IMMSs. Firstly, we have developed two simple, magnetometer-free methods of 

performing sensor-to-body frame alignment. Secondly, we have presented a method 

of tracking the heading of the crank arm IMMS using the bicycle frame 

magnetometer using the HC algorithm. Lastly, we have developed a method of 

estimating the radius of rotation for both body frames and compensating for the 

rotational accelerations. Nevertheless, future work is required to determine the 

accuracy of the PCF_HC (especially the DAC) during very long periods of cycling as 

well as under outdoor conditions. While the results of this study are only directly 

applicable to indoor use, the methodology proposed is quicker, easier and more cost-

effective to implement in a laboratory setting than other approaches such as optical 

motion capture. It can thus already be used for indoor applications as an alternative.  

 Conclusion 

This study validated two sensor-to-body frame alignment methods for tracking the 

angular crank arm position using wireless IMMSs. Unlike standard static pose 
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calibrations, these methods are unaffected by the common magnetic field 

disturbances commonly found near bicycle pedals. A nonlinear complementary filter 

is also presented which implements novel heading constraint and dynamic 

acceleration compensation algorithms that enables highly accurate crank angle 

tracking, improve filter responsiveness and are resistance to magnetic field 

interferences.  
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 Paper 4: A Descriptive Study of Step Alignment and Foot Positioning 

Relative to the Tee by Professional Rugby Union Goal Kickers  

Abstract: This study describes foot positioning during the final two steps of the 

approach to the ball amongst professional rugby goal kickers. An optical motion 

capture system was used to test 15 goal kickers performing 10 goal kicks. The 

distance and direction of each step, as well as individual foot contact positions 

relative to the tee, were measured. The intra- and inter-subject variability was 

calculated as well as the correlation (Pearson) between the measurements and 

participant anthropometrics. Inter-subject variability for the final foot position was 

lowest (placed 0.03 ± 0.07 m behind and 0.33 ± 0.03 m lateral to the tee) and highest 

for the penultimate step distance (0.666 ± 0.149 m), performed at an angle of 36.1 ± 

8.5° external to the final step. The final step length was 1.523 ± 0.124 m, executed at 

an external angle of 35.5 ± 7.4° to the target line. The intra-subject variability was 

very low; distances and angles for the 10 kicks varied per participant by 1.6–3.1 cm 

and 0.7–1.6°, respectively. The results show that even though the participants had 

variability in their run-up to the tee, final foot position next to the tee was very 

similar and consistent. Furthermore, the inter- and intra-subject variability could not 

be attributed to differences in anthropometry. These findings may be useful as 

normative reference data for coaching, although further work is required to 

understand the role of other factors such as approach speed and body alignment. 

Citation: 

J. Cockcroft, D. van den Heever, “ A descriptive study of step alignment and foot 

positioning relative to the tee by professional rugby union goal kickers ,” J. Sports 

Sci., “In-press”, 2015 

 Introduction 

The majority of points in a game of rugby union are scored by goal kickers. 

Consequently, accurate and reliable goal kicking is a crucial skill in the sport and 

goal kickers spend several hours during a training session refining their goal kicking 

technique [1]. A goal kick is a complex series of motions involving an angled 

approach to the ball, planting of the support foot beside the ball and a sequential 

transfer of momentum from the pelvis to the foot segment of the kicking leg [1-3]. 
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Elite rugby union goal kickers can achieve success rates of over 80% in a season 

(www.goalkickers.co.za), despite diversity in their goal kick execution.  

The understanding of these different movement strategies has been restricted by a 

lack of research on optimal goal kicking biomechanics up to date [1, 4-6]. It is thus 

probable that further scientific analysis of goal kicking technique will yield 

improvements to goal kicking success rates through better coaching and training 

methods. Only a few studies of rugby union goal kicking have been conducted, with 

most focusing on factors influencing foot and ball velocity. Baktash et al. [1] 

investigated the effect of different instep foot positions on resultant ball velocity in 

goal kicking. Four different foot positions relative to the kicking tee were marked and 

the three university male kickers each performed three good trials of each condition. 

The results suggested no significant differences in velocities across the different 

conditions within each participant. Padulo et al. [6] investigated the relationship 

between four different run-up types to the goal–kick, kinematic variables and the 

average ball velocity. The participants in the study were six senior athletes playing at 

national level. The study reports significant differences in run time and ball velocity 

for the different run-ups with a longer run-up resulting in higher ball velocities.  

Zhang et al. [5], using a novel velocity decomposition method, examined the 

contributions of individual body segments to the final foot velocity during rugby goal 

kicking. Seven male university kickers participated in the study. The results showed 

that knee flexion/extension made the biggest contribution to final foot velocity, 

followed by hip flexion, pelvis velocity and pelvis rotation. A proximal-to-distal 

sequential motion pattern of body segments were consistently observed, indicating 

the important role of interaction between adjacent segments during the rugby goal 

kicking movement. Bezodis et al. [4] studied the contribution of the non-kicking-side 

arm during a rugby goal kick. Five experienced male kickers performed trials with an 

accuracy requirement. They found greater angular momentum in the non-kicking-side 

arm for skilled kickers. They also showed that the center of mass of the kicking leg 

was closer to the stance ankle in the mediolateral direction for accurate kickers. In a 

study by Ball et al. [7] four elite rugby league goal kickers (the goal kick is similar to 

rugby union goal kick) performed between five and 15 goal kicks on their usual 

training ground from 40 m in front of the goalposts. Body lean, body alignment to the 

target and center of mass (CM) velocity at ball contact was investigated. The results 

showed that all players leaned away from the ball, body alignment angles were non-
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zero (indicating that the kickers were not square to the target at ball contact) and they 

moved their CM towards the target.  

However, the groups tested in these studies were very small (three to seven 

participants), and covered varying levels of skill. There is thus a need for larger 

studies analyzing goal kicking technique in an elite population.  

Many more biomechanical studies have been conducted on kicking movements 

similar to rugby union goal kicking [1]. According to Lees et al. [8], the nature of the 

approach to the ball appears to be important in soccer instep kicking. An important 

factor in maximal kicking is the length of the last stride. A longer last stride has been 

reported for longer kicks in soccer [9, 10]. Furthermore, Ball [11] also reports on the 

importance of the last stride in punt kicking in Australian Rules football. Other 

important factors include the position of the support foot relative to the ball and the 

support leg kinematics during the punt kick [11, 12]. Notably, the placement of the 

support foot has received little attention in research even though it is believed to be 

important to the outcome of the kick [8]. Overall, it is generally believed that elite 

athletes display less mechanical variability and greater temporal proximity of these 

kicking movement components compared to less skilled players [3]. It is therefore 

important to understand the influence and interdependence of the step lengths and 

foot positions relative to the tee in rugby goal kicking, as well as the intra- and inter-

participant variability of these outcomes within different age-groups and skill levels. 

Moreover, since step length is highly correlated with leg length in normal walking, 

group variability in step lengths and foot positioning during the approach to the ball 

in goal kicking may be influenced by body dimensions [13]. Therefore, it would be 

helpful to understand how the inter-participant variability in factors such as 

anthropometrics influences variability in measurement outcomes. 

This study presents a description of foot position relative to the tee in the approach to 

the ball by elite rugby goal kickers. The aim was to capture baseline data from a 

skilled player population in order to improve biomechanical knowledge of this 

movement. We also wanted to investigate the relationship between participant body 

size and the step and foot position parameters. In particular, the objectives were to 

describe: 

a) The average distance and angle of the final two steps and associated foot 

positions relative to the tee, as well as the inter-participant variability 
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b) The average intra-participant variability (inconsistency) for the step and foot 

position parameters, as well as the inter-participant variability in 

inconsistency 

 

c) The correlation between participant anthropometry (height and leg length) and 

the inter- and intra-participant variability in step and foot position parameters 

This was achieved by measuring the foot positions of professional rugby union goal 

kickers during a battery of consecutive kicks using an advanced three-dimensional 

motion capture system.  

 Methods 

 Participants 

The study was conducted at the motion analysis laboratory at the University of 

Stellenbosch and included fifteen professional rugby union goal kickers. At the time 

of the study each participant was competing at either national or international level 

and gave informed consent for the testing. Ethical approval for the research was 

obtained from the Human Research Ethics Committee of Stellenbosch University. 

The participant population had an average age of 26.4 years (range: 20-32), average 

height of 1.79 m (1.72 – 1.91) and average weight of 87 kg (82.4 – 93.3).  

 Data collection 

Each participant performed ten consecutive goal kicks in the laboratory using their 

own kicking tee and a single pre-selected premier league Gilbert rugby ball. Due to 

the hard rubber flooring in the laboratory, participants performed the test kicks 

wearing running shoes. Participants were instructed to perform a complete goal kick 

(run-up and kick at self-selected speed and intensity) towards a target defined by two 

strips of tape simulating distant goal posts on the wall behind a steel framed net 

(Figure 29). Participants were instructed that the target was a mid-range 

(submaximal) distance away. The laboratory’s 8-camera Vicon MX system was used 

to create a capture volume (L x W x H approximately 4m x 4m x 2m) covering the 

run-up area of the kicker, and the kicking tee was placed in the same predefined 

position to ensure that the non-kicking support leg (SL) foot landed on a Bertec force-

plate imbedded in the floor. Data from these two systems was captured 

synchronously in the Vicon Nexus software (version 1.8.4) at 200 Hz and 1000 Hz 

respectively. The Vicon cameras were calibrated dynamically using the standard 
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dynamic 5-point wand waving procedure, and the force plate output was set to zero 

before the start of every test. Besides masking the cameras from environmental 

sources of infra-red reflection, it was also necessary to cover any reflective materials 

in the participant’s shoes and clothing with tape to prevent false marker detections.    

Standard passive-reflective Vicon markers (14 mm diameter) were placed on the left 

and right shoe points corresponding to the heel (heel marker) and end of the second 

metatarsal (toe marker). A marker was also placed at the back of the tee to mark its 

position. Each participant performed their own stretch and warm up routine before 

the marker placement. This was then followed by 5-10 practice kicks in order to 

acclimatize to the markers, the different floor surface and running shoes. The ten 

kicks were then recorded from 2s before the start of the run-up (determined by a 

verbal cue given by the participant) until 2s seconds after ball strike. After marker 

reconstruction and labeling, the Vicon Nexus Woltring filter algorithm (MSE value of 

20 mm) was used to remove high frequency measurement noise from the foot marker 

trajectories. The foot marker trajectories were then exported to Matlab (version 

8.2.0.701, R2013b) for analysis.  

 

Figure 29: Schematic of test set up showing Vicon cameras positions relative to ball, net and target. 
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 Data analysis 

Data analysis consisted of two parts: a step analysis (Figure 30a) and a foot position 

analysis (Figure 30b). The step analysis focused on the final two steps in the 

approach to the ball. The penultimate step is from the SL to the kicking leg (KL) i.e. 

from a foot contact point on the SL (S1) to one on the KL (K1). This was named the 

‘ghost step’ because of the typical drifting motion carried out by players executing it. 

The final step, between K1 and the SL foot contact (S2), was called the ‘power step’ 

because it is typically performed at a high intensity. The ghost step length was 

defined as the horizontal distance between the SL toe marker at time of S1 and the 

KL toe marker position at the time of K1. Similarly, the length of the power step was 

defined as the horizontal distance from the KL toe marker at K1 to the SL heel 

marker at the time of S2. Since the step length is a scalar value, the angular direction 

of each step was also analyzed to provide insight into the direction of approach 

during each step. The power step angle was defined as the external angle between the 

power step and the line between tee and target. The ghost step angle was taken as the 

external angle between the power step and ghost step. . 

 

(a)                                                              (b) 

Figure 30: A top view illustration (for a right-foot place-kick) of (a) the angle and distance of the ghost 

and power steps (b) the angle and distance to the tee of the S1 and S2 foot positions and the lateral and 

forward position of the SL foot at S2. 

Stellenbosch University  https://scholar.sun.ac.za



100 

 

The ghost step and power step measurements both include the variability of two foot 

contact positions. Therefore, the second part of the analysis focused on the individual 

variability in foot positions at S1, S2 and K1 relative to the fixed position of tee (see 

Figure 30b). The distance to the tee and angle to the tee relative to the target line were 

calculated for the S1 and K1 toe marker positions. In contrast, the position of the SL 

heel marker was analyzed by taking the lateral distance (perpendicular distance from 

target line) and the forward distance (along the target line direction) relative to the tee 

marker. The kicking events (S1, K1 and S2) were detected automatically using a 

customized Matlab algorithm. S2 was detected when the vertical force of the force 

plate exceeded a minimum threshold of 30 N. Due to the higher sampling rate of the 

force plate, the algorithm chose the nearest Vicon camera sample as S2. The S1 event 

was defined as the peak acceleration corresponding to the lifting of the SL foot off of 

the ground at the beginning of the ghost step. This was chosen instead of the moment 

of foot contact as some players with a two-step run-up begin the approach to the ball 

with the SL foot on the ground.  The K1 event was defined as the moment of peak 

acceleration after S1 corresponding to the foot contact on the ground. The 

anthropometric measurements included were participant height, kicking leg length 

and support leg length which were performed by a qualified physiotherapist.    

For the group analysis, the mean and standard deviation (SD) of each parameter was 

calculated for the participants’ ten kicks. The mean for a player’s ten kicks was taken 

to be representative of the participant, and these means were then averaged to obtain a 

group mean and group SD for each parameter (Representative Data). The group mean 

for the Representative Data is thus the baseline average norm and the group SD of the 

Representative Data was taken to be the inter-participant variability of the norms. 

Secondly, the intra-participant SD for the ten kicks was taken as the intra-participant 

variability for the ten kicks (Inconsistency Data). Therefore, the group mean of the 

Inconsistency Data represents the baseline norm, and the group SD represents the 

inter-participant variability in inconsistency. Lastly, in order to assess the 

interdependence of the parameters and the effects of different body sizes, 

relationships between basic participant anthropometric measurements and the step 

and foot  position parameters were examined using the Pearson correlation function 

for linear relationships. A 95% confidence limit was set with an alpha level of P = 

0.05 for significance.  
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 Results 

The results for the Representative Data and Inconsistency Data analysis are given in 

Table 6. On average, the ghost step length was slightly less than half the length of the 

power step (44%). It was also more variable than the power step, especially as a 

percentage of its length (22.4% vs. 8.1%). In terms of foot position, the S1 distance to 

the tee was naturally the longest at 2.365 m. The S1 position also contained the 

highest dimensional variability (0.206 m), although this was even lower than the 

power step length variability as a percentage of length (8.7%). The least variable foot 

position between participants, proportional to length, was the K1 position (5.8%) with 

a length of 1.756 ± 0.101 m.  

Table 6: Group means and SDs of representative data and the associated inconsistency 

 REPRESENTATIVE DATA INCONSISTENCY DATA 

Group mean Group SD Group mean Group SD 

Distances [m] 

     Ghost step 0.666 0.149 0.023 0.008 

     Power step 1.523 0.124 0.026 0.008 

     S1 to tee 2.365 0.206 0.031 0.010 

     K1 to tee 1.756 0.101 0.020 0.005 

     S2 lateral  0.330 0.031 0.016 0.004 

     S2 forward -0.031 0.074 0.018 0.005 

Angles [deg] 

     Ghost step 36.1 8.5 1.6 0.5 

     Power step 35.5 7.4 1.0 0.4 

     S1 to tee 50.9 5.3 0.7 0.4 

     K1 to tee 43.6 6.2 0.7 0.4 

 

The lowest dimensional inter-participant variability in the Inconsistency Data was for 

the S2 lateral distance to the tee. The SL foot was placed approximately 33 cm to the 

side of the ball with 3cm of variability, while the S1 forward distance variability was 

more than double this (7.4 cm). The negative 3 cm forward plant distance indicates 

that on average the heel was placed slightly behind the back of the tee. The angular 

measurements again show the ghost step to be the most variable (8.5°), although 

angular variability was consistent as this was only slightly more than the minimum 

angular variability of 5.3° which was found for the S1 foot position. The power step 
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angle was almost identical to the ghost step angle and, as would be expected, slightly 

smaller than the K1 angle since all players placed the SL foot lateral to the ball at S2. 

The participants employed a K1 foot position approximately diagonal to the tee 

(43.6°) with a moderate variability of 6.2°. The S1 angle was slightly larger than the 

K1 angle, which corroborates the positive ghost angle. 

  

Figure 31: View from above of foot placements relative to the tee at S1, K1 and S2. The distributions 

are approximated by thick dashed lines illustrating the nature of foot placement variability. 

In terms of the inconsistency data, the most consistent parameters were the S2 lateral 

and forward distances which varied by approximately 1-2 cm for the participants’ 10 

kicks. Of the longer distances, the K1 foot position was the most consistent (1.5 – 2.5 

cm) and S1 was the most inconsistent (2-4 cm). The intra-participant variability in the 

angular measurements was slightly higher for the step parameters than the foot 
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positions relative to the tee, although by less than 1°. The distribution patterns of the 

foot positions are shown in Figure 31. 

The S2 plant foot position was slightly more variable in the target direction compared 

to the lateral direction. The K1 toe positions were also significantly less variable in 

the direction of power step and more spread out perpendicular to the power step. It 

should be noted, therefore, that the variability in K1 foot position (SD 0.101 m) is 

largely due to the variability of the power step angle. The S1 position, on the other 

hand, approximates a more random circular distribution. While its variability 

perpendicular to the run-up is similar in size to the K1 position, the parallel 

variability is significantly larger than that of the K1 position – this explains the larger 

S1 distance inter-participant variability in Table 6. The average S1 position is also 

lateral to the average K1 position, which correlates with the positive ghost angle. 

Table 7 shows the correlation coefficients for the participant anthropometric 

measurements and the different run-up parameters defined. It is evident that 

participant height is not a significant factor in determining step lengths or foot 

positions relative to the tee. None of the relationships between height and the 

biomechanical parameters showed any statistical significance. The strongest 

correlation between anthropometric measurements and biomechanical parameters 

were between leg length and S1 distance with a correlation of 0.55 for both legs. 

Table 7: Correlation between participant anthropometric measurements and mean kick parameters   

 

Ghost 

step 

distance 

Power 

step 

distance 

S1 

distance 

K1 

distance 

S2 

lateral 

distance 

S2 

forward 

distance 

Ghost 

step 

angle 

Power 

step 

angle 

S1 

angle 

K1 

angle 

Height -0.22 0.26 0.40 0.05 0.43 -0.06 -0.02 0.16 0.21 0.08 

KL length -0.22 0.42 0.55* 0.13 0.48 -0.22 -0.08 0.29 0.38 0.28 

SL length -0.25 0.42 0.55* 0.11 0.45 -0.23 -0.10 0.31 0.39 0.30 

 
(* indicates a P value < 0.05) 

 

Table 8 shows the correlation coefficients for the participant anthropometric 

measurements and the standard deviations in the kick parameters for their 10 kicks. 

Again there was no clear correlation between the data with only the S1 distance 
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variability showing moderate correlation with the kicking leg length of -0.54 (P < 

0.05).  

Table 8: Correlation between participant anthropometric measurements and standard deviations of kick 

parameters   

 

Ghost 

step 

distance 

Power 

step 

distance 

S1 

distance 

K1 

distance 

S2 

lateral 

distance 

S2 

forward 

distance 

Ghost 

step 

angle 

Power 

step 

angle 

S1 

angle 

K1 

angle 

Height -0.29 -0.30 -0.47 -0.17 0.00 0.04 0.37 -0.19 -0.21 -0.32 

KL length -0.09 -0.23 -0.54* -0.21 -0.03 0.04 0.32 -0.12 -0.11 -0.21 

SL length -0.09 -0.22 -0.50 -0.16 -0.06 0.00 0.31 -0.13 -0.10 -0.21 

 
(* indicates a P value < 0.05) 

 Discussion 

This study presents the first description of foot positioning during the approach to the 

ball amongst professional rugby-union goal kickers measured using a gold-standard 

three-dimensional motion capture system. The analysis focused on three key foot 

positions relative to the kicking tee which define the final two steps in the approach 

to the ball. The parameters included both the distance and direction of the steps and 

foot positions relative to the tee, as well as the intra-participant variability for 10 

kicks. The results show that inter-participant variability was considerably higher than 

intra-participant variability for all parameters. Intra-participant variability was also 

consistent for the group, suggesting that while there may be appreciable differences 

in how successful goal kickers approach the ball these differences do not markedly 

affect the consistency of execution. We also found that the penultimate step direction 

varied considerably relative to the final step direction, and that the group variability 

decreased notably for each successive foot position during the run-up. This suggests 

that foot positioning next to the tee may be the most important foot position during 

the run-up, and perhaps also that sufficient emphasis on penultimate step technique 

may be lacking. Lastly, we found no significant correlation between the height and 

leg length of players and foot positioning, which would caution against the use of 

anthropometrics as a major basis of coaching run-up distance and angles. This study 

provides valuable and novel reference data and analyses for coaches and sport 

scientists interested in professional goal kicking technique. The breakdown of events 
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and step phases proposed in the analysis framework could also provide a useful 

starting point for future research aimed at improving coaching and training methods.  

This study’s finding of a 1.523 m (SD 0.124 m) mean power step length is very 

similar to that of Stoner and Ben-Sira [9], who report a last step length of 1.5m for 

medium range kicking in soccer. Lees et al. [8] suggest in a review of the 

biomechanics of kicking in soccer that the length of the last step is important in 

maximal kicking. Stoner and Ben-Sira [9] also found that professional soccer players 

executed a longer last step (1.69 m) when performing a long-range kick. Similarly, 

Ball [11] investigated the biomechanics of distance kicking in Australian rules 

football and found longer kick distances to be associated with larger last step 

distances. He reports last step distances in the region of 1.74 m for maximal punt 

kicking, which is understandably higher than those for the sub-maximal kicking tests 

in this study. It should also be noted that the slightly shorter step lengths could have 

been reported in this study due to the toe-to-heel calculation method used to measure 

the power step.    

Similarly to the foot position analysis presented in this study, Baktash et al. [1] 

investigated the effects of different instep foot positions on ball velocity in goal 

kicking, but found no significant difference between positions. However, ball 

position relative to the support foot has been indicated as an important variable in 

soccer kicking, together with approach angle and last stride [2, 11, 14-16]. The 

findings of this study support this assertion, as it was found that players ensured 

highly repeatable placement of the SL foot at S2. Even with the variability in power 

step between participants the foot plant distances to the tee were consistent, 

especially in the lateral direction. Lateral distances for foot position at S2 were more 

consistent at a mean of 33 cm to the side of the ball with a group SD of 3 cm, 

compared to the forward target direction with a mean of -3 cm (heel placed behind 

the tee) with a group SD of 7 cm. This is in close agreement with McLean et al. [17], 

who report mean foot to ball distances for soccer drive kicking of 37.3 cm to the side 

and 8.1 cm behind the ball. However, they measured the distances from the center of 

the ball to a position on the foot a third of the distance from the heel to the toe. Scurr 

and Hall [18], investigating the effects of approach angle on penalty kick kinematics 

with recreational soccer players, found foot placements of 32.7 cm to the side and 9.7 

cm behind the ball. They measured the distances from the center of the ball to the 

lateral aspect of the fifth metatarsal. This suggests that while the lateral plant distance 

is very similar in soccer, rugby goal kickers typically plant the foot closer to the 
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target relative to the tee. This may be due to the differences in direction of the ball 

spin which soccer players seek to impart to the ball compared to rugby goal kicking.  

Descriptions and possible explanations of variability formed a key component of this 

study. The intra-participant variability (kicker inconsistency) was very low on 

average as well as consistent for the group, suggesting that professional rugby union 

goal kickers tend to reach similar high levels of repeatability from training. This 

means that the inconsistency results from this study (< 3 cm distance, < 2° direction) 

might be used as a basic guideline of the required consistency for skilled goal kicking 

when training young kickers. In contrast, inter-participant variability in the approach 

was notable. This suggests that the measurements from this study cannot be used 

directly as a guide for determining step lengths or step angles.  However, the results 

may be useful as a normative reference data. Notably, it was found that participant 

anthropometry in general did not have a major influence on the inter-participant 

variability of distance parameters – although leg length and S1 distance showed 

moderate correlation. This differentiates goal kicking from movements such as 

walking, where step length generally increases proportionally with leg length [13]. It 

may be that the observed inter-participant variability was due to other factors such as 

approach speed. For instance, shorter players may execute a proportionally more 

aggressive power step in order to achieve similar kicking distances to taller players. 

They may also adopt a longer and faster run-up for this reason, increasing ghost step 

length accordingly. Participant anthropometry also did not correlate significantly with 

the inconsistency data. This may indicate that similar levels of motor control can be 

expected from kickers of different heights. 

Both the intra- and inter-participant variability results show that control of foot 

position increases as players approach the ball. In terms of intra-participant 

variability, the S2 foot positions were remarkably consistent (almost twice so 

compared to the S1 position) and the second most consistent was the K1 position. 

Moreover, the S1 and K1 angles were twice as repeatable as the step angles. This 

suggests that the kickers were controlling the S2 and K1 positions relative to the tee 

by adjusting the step lengths and angles – rather than the other way around. This may 

also be due to the fact that kickers typically fix their gaze on the ball and tee during 

the run-up, rather than focusing on the S2 position. The inter-participant variability 

displays a similar trend to the intra-participant variability in that it decreases in the 

approach to the ball. It appears that participants adjusted their K1 and S1 foot 

positions in order to optimize S2 foot placement and perhaps other aspects of their 

Stellenbosch University  https://scholar.sun.ac.za



107 

 

technique (speed and body alignment, for example) rather than converging on optimal 

step distances. This can be inferred from Figure 31 where S2 foot positions next to 

the tee were very similar despite greater variability at the preceding foot positions (S1 

and K1). The higher inter-participant variability in S1 and K1 positions relative to the 

tee appears to be largely due to variability in step angles – although there was also 

variability in the step lengths, which is not directly affected by step angles. In fact, 

working backwards from S2, the inter-participant variability in S1 position can be 

seen as cumulative, containing the variability of both the ghost and power step 

lengths and angles. It is not immediately clear why the ghost step was taken in a 

different direction to the power step, or why it was so inconsistent, amongst the 

participants. This may have to do with inter-participant variability in the alignment of 

the pelvis and upper body to the target during the run-up. The variability in step 

length, however, could rather be due to variability in other linear parameters such as 

run-up momentum, speed and acceleration.  

The limitations of this study relate mainly to factors affecting the ecological validity 

of testing. Due to the fact that data was collected in a laboratory setting, the rubber 

floor surface presented different footing conditions to the grass playing surface used 

in rugby games. This in turn required the use of different shoes (running shoes) 

compared to the boots typically used by the players when competing. While this 

should not have significantly affected step lengths and foot positioning, it may have 

altered the frictional forces during foot contact. To reduce this effect, players were 

allows multiple practice kicks until they felt comfortable in the new conditions. 

Another limitation was that the players were not able to kick towards their usual 

target (upright poles) in the laboratory and the distance and success of each kick 

could thus not be determined. We aimed to simulate the target appearance on the 

laboratory wall, and instructed the participant to perform a long distance (but 

submaximal) kick. The practice kicks were also important for familiarization with the 

target. On the other hand, it should be noted that this familiarization with the target 

may have affected the intra-participant variability of the results since players do not 

typically execute multiple kicks from the same field position in a game. However, 

changes in goal kicking technique are not necessarily necessary or desirable for 

different target distances and angles. Nevertheless, randomization of the target 

conditions may provide insight into the effect of this on variability. Lastly, further 

work is needed to understand the changes in the measured outcomes due to pressure 

and fatigue, as these were not considered for this study. 
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These findings constitute a valuable contribution to the understanding of the inter- 

and intra-participant variability in run-up geometry amongst professional rugby union 

goal kickers. Greater standard deviations for measured parameters are indicative of 

less consistent movement patterns, a trait associated with less skilled kickers [4, 19]. 

It would therefore be interesting to see how the intra-participant and inter-participant 

variability of unskilled players compares to those of the elite participants reported in 

this study, as well as how these groups respond to different coaching interventions 

aimed at reducing variability. Future research should thus include similar analysis 

conducted on young and unskilled adult populations. It is also necessary to document 

other related biomechanical aspects, such as body alignment relative to the target and 

approach speed, during the approach to the ball. 
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 Paper 5: Approach Speed, Acceleration and Deceleration Amongst 

Professional Rugby Goal Kickers: Does It Influence Foot Speed at Ball 

Contact?  

Abstract: Despite its prominence within rugby union, goal kicking in this sporting 

code remains under-researched. In particular, there is a lack of reference data for 

professional goal kicking biomechanics and uncertainty about the determinants of 

performance. The aim of this study was to provide novel data on approach speed 

amongst highly skilled kickers and to investigate whether approach speed is 

correlated to foot speed at ball impact. We recorded 10 kicks by fifteen professional 

rugby union goal kickers using an optical motion capture system. We analyzed 

approach speed, timing and acceleration during three movement phases: kicking leg 

loading, flight and support leg loading. One major finding was that despite notable 

variability in the approach kinematics – relative standard deviations (RSDs) were 10-

30% - the group demonstrated relatively similar maximum foot speeds (RSD of 6%). 

Similarly, intra-participant variability was noticeably lower for maximum foot speed 

(2%) than for approach kinematics (5-18%). We also found that foot speeds were 

moderately correlated with approach speed, but not with deceleration before ball 

strike as previously reported. Conversely, decelerations during support leg loading 

may be a source of instability. These findings provide a basis for future research, and 

the novel dataset may be useful for developing evidence-based coaching methods. 

Submitted: UK J. Sports Sci. (27 May 2015) 

 Introduction 

Approximately half of all points in rugby union games are scored through goal 

kicking [1]. The average goal kick success rate in international matches is 

approximately 70%, with top-ranked kickers converting close to 90% of goal kick 

attempts [1]. Therefore, skilled goal kickers are critical to the success of rugby union 

teams. However, due to a lack of data describing professional goal kicking 

biomechanics, the relationship between technique and performance in rugby union is 

not clearly understood. Moreover, studies of kicking in other sports [2, 3] may have 

limited applicability to rugby goal kicking due its unique ball geometry, ground 

placement, imparted spin and flight trajectory. Therefore, more research is required in 

order to develop evidence-based teaching and training methods. 
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All kicking performance is essentially determined by the foot-ball interaction during 

contact [4]. This is a brief and complex phenomenon influenced primarily by kicking 

biomechanics, ball properties and footwear design. Given specific ball and footwear 

conditions, optimal goal kicking technique ultimately moves the kicking foot along 

the correct trajectory at impact (to ensure accuracy) with enough momentum transfer 

to the ball (in order for it to reach the target). In rugby union goal kicking, where the 

ball sometimes needs to travel well over 50m, it is thus important that a kicker 

generates adequate foot speed at ball strike. However, foot speed at impact has not 

yet been reported for a group of professional rugby union goal kickers. It thus 

remains unclear how foot speeds in this population compare to amateur rugby-union 

kickers as well as kickers in other sports. Further investigations are also warranted in 

order to determine the mechanisms used to generate foot speed during this kicking 

movement – and how consistently these mechanisms can be executed by individual 

kickers [5]. 

Kickers typically generate foot speed by transferring angular momentum to the 

kicking foot in a proximal-to-distal kinematic sequence [6], a common strategy for 

generating high distal-segment speed in throwing, hitting and kicking movements [7]. 

Proximal-to-distal sequencing has also been observed in a study of rugby goal 

kicking, which found that knee flexion-extension plays a dominant role in generating 

foot speed [8]. However, the authors could not find any studies examining the 

influence of the run-up on the kinematic sequence. Higher approach speeds may 

contribute additional momentum at the beginning of the kinematic sequence, thereby 

increasing foot speed. On the other hand, excessive approach speed may result in 

reduced movement coordination. This suggests that there may be an ideal approach 

speed that optimizes the trade-off between kick distance and accuracy [6, 9], although 

this is not known for rugby union goal kicking.  

Changes in speed may also be an important aspect of goal kicking technique. One 

soccer study found that a large deceleration of the center of mass just before ball 

strike may also assist in transferring momentum to the kicking foot [10]. This is 

consistent with the concept of momentum transfer in kinematic sequences. However, 

excessive deceleration during the non-kicking leg loading phase may lead to large 

forces which destabilize the center of mass, possibly reducing motor control and 

increasing the risk of injury [11]. Therefore, a description of the timing and 

magnitude of speed changes during the approach amongst professional kickers may 

provide useful information for both researchers and coaches. 
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In light of the aforementioned gaps in the literature, the purpose of this study was to 

report on foot speed and run-up kinematics amongst professional rugby union goal 

kickers, as well as the relationship between the two. Specifically, we aimed to use 

gold-standard optical motion capture technology to provide novel reference values 

for: 

a) foot speed, approach speed, timing and acceleration at key points in the run-up 

 

b) inter- and intra-participant variability 

 

c) the correlations between foot speed, approach speed, acceleration and 

deceleration 

 Methods 

Fifteen male professional rugby union goal kickers participated in the study (height: 

1.79 m (1.72 – 1.91), age: 26.4 years (range: 20 – 32), and weight: 87 kg (82.4 – 

93.3). All participants gave informed consent before testing. Ethical approval for the 

study was obtained from the institution’s research committee.  

Data was collected in an indoor laboratory using a three-dimensional optoelectronic 

motion capture system (Vicon MX T-series, Vicon Ltd, Vicon UK). Participants wore 

running shoes instead of rugby boots due to the hard flooring of the laboratory. One 

passive-reflective pelvic marker (14 mm diameter) was placed on the sacrum. 

Another two markers were placed on the non-kicking leg shoe at the midpoint of the 

heel (heel marker) and above the second metatarsal (toe marker). Four markers were 

placed on the kicking leg shoe: a heel marker, a toe marker, an ankle marker (placed 

on the lateral malleolus) and a lateral marker placed mid-way along the length and 

height of the shoe (reference marker). The additional ankle and reference markers on 

the kicking foot were required to track the kicking foot toe marker during the kick as 

it was not clearly visible in the Vicon cameras near impact with the ball. During a 

Vicon static calibration trial, the measured position of the toe marker relative to a 

coordinate system defined by the measured heel, ankle and technical marker was 

determined. Then, in the dynamic kicking trials the heel, ankle and reference markers 

were used to estimate the toe marker position, overcoming camera occlusions. Lastly, 

two markers – one placed on the left and right side of the ball so that the midpoint 

approximated the ball center – were used to determine the moment of impact with the 

ball.  
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Each participant participated in the testing using their own kicking tee but all tests 

were conducted with the same ball. Participants kicked the ball into a steel-framed net 

placed towards a target on the laboratory wall (Figure 32). A designated position for 

the kicking tee was used to ensure repeatability of the target direction relative to the 

Vicon coordinate system. Participants were allowed 5-10 practice kicks after marker 

placement to become accustomed to the testing environment, after which ten 

consecutive goal kicks were captured. To avoid minimal and maximal effort 

extremes, players were instructed to perform a mid-range kick assuming a 40 m 

distance to the target. The Vicon cameras were calibrated using the conventional 5-

point wand waving procedure and marker data was captured at 200 Hz. 

 

Figure 32: Schematic of test set up showing Vicon cameras positions relative to ball, net and target. 

Marker trajectories were reconstructed and labeled using standard pipeline operations 

in the commercial Vicon Nexus software (version 1.8.4).  Trajectory smoothing was 

performed for the body markers using a 4th-order zero-phase Butterworth filter. The 

ball markers were not smoothed, in order to avoid errors near impact due to 

smoothing. In this study we analyzed the last two steps during the approach to the 
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ball until foot contact with the ball. The movement was broken down into four phases 

(ghost, launch, flight and support) using five movement events (Figure 33a).  

Two events were defined in relation to the support leg foot (S1 and S2) and three in 

relation to the kicking leg foot (K1, K2 and K3). S1 and K2 designate events where 

the foot loses contact with the ground and K1, S2 and K3 represent moments of initial 

foot contact with the ground or ball (Figure 33a). We designated the loading phase of 

the kicking leg before ball strike (K1 to K2) the ‘launch’ phase. This is followed by 

the flight phase (both feet in the air) which starts at K2 and ends with the support foot 

landing next to the tee (S2). Lastly, we designated a portion of the support leg loading 

phase – from initial contact (S2) until the kicking foot makes contact with the ball 

(K3) – as the support phase. We also assessed the time between when the non-kicking 

foot comes off the ground (S1) during the penultimate approach step to K1 (named 

ghost phase time). A negative ghost time indicates the presence of double support 

(walking) in the penultimate step, whereas positive ghost times indicate that the 

player was running during the penultimate step. A custom algorithm developed in 

Matlab (Release 2012b, The Mathworks, Inc.) was used to detect the time of the kick 

events from the ball, heel and toe marker kinematics (Figure 33b).  

We defined the approach speed using the horizontal velocity of the pelvis sacral 

marker, and calculated this at S1, K1, K2, S2 and K3 for each trial. We also analyzed 

the time period of the movement phases (ghost, launch, flight and support phases) in 

each trial, as well as the average phase acceleration (change in approach speed 

divided by phase time). The kicking foot speed was estimated using the speed of the 

kicking foot toe marker (scalar value). In the analysis of group and participant 

variability for these outcomes, we calculated both the absolute and the relative 

variability. The relative inter-participant variability was defined as the proportion of 

the group standard deviation (SD) relative to the group mean (expressed as a 

percentage). The absolute intra-participant variability (player inconsistency) was 

calculated using the SD of each participant’s ten trials. The relative intra-participant 

variability was expressed as the percentage of the participant SDs relative to the 

participant mean values. 

Lastly, we investigated the correlations between foot speed, approach speed at K2, 

support phase deceleration and launch phase approach acceleration using the Pearson 

coefficient. We assessed the statistical significance of these correlations using p-

values and a 95% confidence interval. 
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Figure 33: A top view illustration of different foot positions relative to the tee during a right-footed 

goal kick that were used to define (a) the events S1 through to K3 that divide the kick into time phases 

and (b) the foot and pelvic markers used to define foot speed and toe speed. Note that the instantaneous 

foot speed near impact was calculated using the toe marker. Due to toe marker occlusions caused by 

the ball, the toe marker was virtually reconstructed from the marker cluster consisting of the heel, 

ankle and lateral foot markers. 

 Results 

The cohort demonstrated a distinctive pattern of acceleration and deceleration during 

the three approach phases analyzed (launch, flight and support) despite appreciable 

variability in timing and speed (Figure 34). Launch typically began just before the 

support leg left the ground, resulting in a near-zero ghost phase time for the group, 

and its duration was almost twice that of flight and support. We observed a notable 

acceleration during launch, with approach speeds increasing from 2-3 m.s-1 to a peak 

of 3-4 m.s-1. During flight, participants decelerated in almost equal magnitude and 

lost approximately half the speed gained during launch by S2. This was followed by a 

much larger deceleration during the support phase which reduced approach speeds to 

1-2 m.s-1 at ball impact.  
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Despite this typical approach speed profile, there was notable group variability in the 

measured outcomes (Table 1). In terms of approach speed, absolute inter-participant 

variability was similar throughout, ranging from 0.33-0.41 m.s-1. In contrast, relative 

standard deviations (RSDs) for inter-participant variability were as high as 27.2% at 

the moment of ball contact (K3) and as low as 9.2% at the end of flight (S2). 

Similarly, support phase deceleration was more than twice as variable as flight phase 

deceleration in absolute terms, whereas flight phase deceleration was considerably 

more variable in relative terms. In contrast, both the relative and absolute measures of 

phase time variability decreased with each successive phase. It should be noted that 

the large variability in ghost times reflects the fact that some participants are walking 

during this phase (K1 precedes S1) and others are running (S1 precedes K1). This is 

also reflected in that K1 approach speeds were generally higher when K1 occurred 

after S1 (Figure 34). Note that this correlation is no longer observed after launch. 

 

Figure 34: Individual and group approach speed over time at key points in the kick. The support leg 

foot off event (S1) was chosen as the zero point in time, such that participants having a walking ghost 

step i.e. an initial kicking leg foot contact (K1) before S1, are reflected as beginning at a negative point 

in time. The subsequent distributions of individual speeds at K2, S2 and K3 are relative to S1 and thus 

express the cumulative variability of the preceding phases. 

Analysis of the intra-participant variability revealed more consistent speed and timing 

and less consistent acceleration and deceleration (Table 9). The K1, K2 and S2 

approach speeds varied per participants by approximately 2-3% RSD for their ten 

kicks. However, approach speed RSDs increased during the support phase to around 
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10 ± 4% for K3. Phase time variability per participant was slightly higher on average 

(4-6%), however this decreased with each successive phase similarly to the intra-

participant variability results. The acceleration and deceleration were the least 

consistent per participant (8-19%). Also mirroring the inter-participant variability 

results, intra-participant variability in acceleration and deceleration was largest during 

flight in relative terms and largest during the support phase in absolute terms.  

Table 9: Analysis of approach speed, phase time, phase acceleration and foot speed. Intra-participant 

variability was defined using the standard deviation of each participant’s 10 kicks. Relative inter-

participant variability refers to the ratio between group SD and group mean, whereas relative intra-

participant variability refers to the ratio between participant SD and participant mean (expressed in %). 

Note that relative variability is not applicable to ghost phase time since the mean is close to zero. 

Measurement 

outcome 

Group 

distribution  

[mean (SD)] 

Relative inter-

participant 

variability 

[RSD %] 

Intra-participant 

variability 

[mean (SD)] 

Relative intra- 

participant 

variability 

[mean (SD) of RSD 

%] 

Approach speed (m.s-1) 

K1 2.53 (0.41)  16.2 0.07 (0.02)  2.8 (0.9) 

K2 3.59 (0.33)  9.2 0.08 (0.02)  2.2 (0.5) 

S2 3.08 (0.32)  10.4 0.1 (0.03)  3.2 (1.0) 

K3 1.36 (0.37)  27.2 0.14 (0.06)  10.2 (4.0) 

Approach phase time (s) 

Ghost phase  -0.016 (0.040) - 0.013 (0.006)  - 

Launch phase  0.210 (0.038)   18.1 0.012 (0.005)  5.8 (2.5)  

Flight phase  0.118 (0.019)   16.1 0.007 (0.002)  5.9 (1.7)  

Support phase  0.128 (0.015)   11.7 0.005 (0.002)   4.0 (1.8)  

Approach phase accelerations (m.s-2) 

Launch phase  5.16 (0.89)   17.2 0.43 (0.27)   8.1 (4.6)  

Flight phase  -4.3 (1.3)   30.2 0.76 (0.3)   18.7 (7.3)  

Support phase  -13.53 (2.91)   21.5 1.47 (0.54)   10.3 (2.9)  

Foot speed (m.s-1) 

Peak  21.32 (1.27) 6.0 0.43 (0.18) 2.0 (0.9) 

K3 16.52 (1.56)  9.4 0.94 (0.48)   5.8 (3.2) 

 

A comparison of peak foot speed and foot speed at ball strike revealed a 20% loss of 

foot speed for the group just before impact (Table 10). Foot speed at impact also 
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showed a marked increase in inter- and intra-participant variability, whereas peak 

foot speed contained the lowest group and participant variability in the study.  

Table 10: Pearson’s correlation (r) between foot speed, approach speed, acceleration and deceleration 

as an explanation of variance 

 Max foot speed K3 foot speed 
K2 approach 

speed 

Support 

deceleration 

K3 foot speed 0.28* - - - 

K2 approach speed  0.44* 0.19* - - 

Support deceleration 0.01 -0.27* -0.32* - 

Launch acceleration -0.01 -0.16 0.41* -0.17 

* Significant (p < 0.05) 

The analysis of variance revealed three significant medium-sized (r > 0.3) 

correlations in the data. Firstly, larger maximum foot speeds were mildly associated 

with faster approach speeds at the beginning of launch. Launch acceleration was also 

positively correlated with approach speed. Thirdly, increased support phase 

deceleration was moderately associated with decreased approach speed. Perhaps most 

notably, maximum foot speed had practically no correlation with support phase 

deceleration or launch phase acceleration. 

 Discussion 

This study presents novel reference data for approach speeds, timing and acceleration 

amongst professional rugby union goal kickers obtained using optical motion capture. 

The results show that despite notable inter-participant variability in approach 

kinematics (RSDs of 10-30%), the group demonstrated a consistent pattern of 

acceleration and deceleration during the approach to the ball that resulted in relatively 

consistent maximum foot speeds (6%). Similarly, intra-participant variability was 

relatively low for maximum foot speed (2%), despite much higher inconsistencies in 

timing (5%), approach speed at contact (10%) and deceleration (10-18%). It was 

observed that approach speed was more tightly controlled in the early stages of the 

run-up, giving way to increasing temporal control closer to ball strike. This is 

reflected in the relatively large variability shown for the flight and support phase 

decelerations. Variability in speed loss during the flight phase suggests that the 

coiling action in preparation for the strike action may be less controlled than the rest 

of the kick. We also found that support phase deceleration had a negligible 
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correlation with kicking foot speed. This suggests that loading of the support leg 

before ball strike may be a source of instability rather than used as strategy for 

improving momentum transfer during the kinematic sequence. In contrast, we did 

find a moderate positive correlation between peak approach speed at K2 and foot 

speed. In summary, the data suggests that both the generation and dynamic control of 

foot speed is largely insensitive to approach strategy used, although a faster run-up 

may assist in improving foot speed in some cases. These findings provide a basis for 

future research in this sporting code and may be useful for the development of 

evidence-based coaching methods. 

Foot speeds at ball contact in this study (16.52 ± 1.56 m.s-1) were very similar to 

those found by Zang et al. [8], who tested seven skilled university-level goal kickers 

using a three-dimensional motion capture system (16.8 ± 1.6 m.s-1). However, this is 

markedly lower than the results reported for elite rugby league kickers by Ball [12] 

using high-speed video analysis (21.2 ± 1.7 m.s-1) and by Ball, Talbert and Taylor 

[13] using three-dimensional motion capture (21 ± 1 m.s-1). Nonetheless, their 

findings are almost identical to this study’s results for peak foot speed before contact 

(21.32 ± 1.27 m.s-1), which occurred approximately 10-20 ms before ball contact. 

They also report foot speed just before ball contact rather than at foot contact, 

supposedly to avoid filtration effects near high frequency impacts. However, upon 

inspection the authors were unable to find any notable effect on foot speed results due 

to smoothing of the toe marker trajectories. This phenomenon of foot speed 

deceleration before contact is also noted by Lees et al. [14] in a review of soccer 

kicking studies. Another hypothesis is that the kickers extend their knee into a locked 

position before impact in order to increase the effective mass of the kicking leg [4]. It 

may also be that the knee joint and associated musculature is approaching a passive 

mechanical limit for rotation speed at this point (the kicking leg is almost straight), or 

that this is an active strategy for avoiding injury [6].  

Ball et al. [13] is the only study we found that reports on approach speeds. They 

found that approach speed at kicking foot off (K2) was 3 ± 0.8 m.s-1, which is slower 

and more variable than the cohort in this study (3.59 ± 0.33 m.s-1). This may be 

simply due to the small sample size in their study (N=4). They provide no 

information about the approach speed at contact of the kicking leg (K1) or non-

kicking leg (S2), but they do report that the center of mass was moving at 

2.6 ± 0.4 m.s-1 at impact (K3). In contrast, we found that the pelvis was moving more 

slowly at this point (1.36 ± 0.37 m.s-1) which is an important finding as it suggests 
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that a large proportion of the center of mass velocity at impact is due to movement of 

the kicking leg (rather than the pelvis). Nevertheless, the fact that the pelvis speed is 

non-zero supports the contention of Ball et al. [13] that elite kickers remain moving 

through the ball at contact rather than employing a stationary ‘snap kick’ technique. 

Another notable finding from this study is that group variability in approach speed 

converged during the launch phase (K1 to K2) but diverged during the support phase 

(S2 to K3). This suggests that kickers regulate leg drive during the acceleration phase 

to normalize their approach speed, perhaps in relation to the number of prior steps 

taken. In contrast, approach speeds diverge during the deceleration phase. This 

suggests that kickers are not regulating pelvis speed before contact to a normative 

value, although the reasons for this are not clear.  

We could only find one rugby union study reporting on phase timing during goal 

kicking. Sinclair et al. [15] assessed the support phase time (0.13 ± 0.01 s), which is 

almost identical to the results presented here (0.128 ± 0.015 s). Soccer kicking 

researchers [16] also report similar times for the support phase (0.12 ± 0.008 s), 

suggesting that this may be normative across some sporting codes. However, the 

authors could find no analysis of ghost, launch or flight phase timing in the literature 

even though this has a significant bearing on approach dynamics and overall kicking 

technique. The ghost time parameter may be useful in categorizing different run-up 

styles, as a positive ghost time implies a running penultimate step and a negative time 

implies that the kicker is still walking at this point (feet are both grounded at K1). 

Furthermore, launch phase times could be helpful in understanding the acceleration 

phase and how different kickers generate power for the instep. One important finding 

of the timing analysis was that the group variability in phase times decreased towards 

ball strike. This implies that the observed divergence in approach speed during 

deceleration was due to variability in forces and not time. Furthermore, it suggests 

that kickers are more similar in terms of rhythm and timing but less so in terms of 

force control and support leg stability during the support phase. 

The analysis in this study of acceleration and deceleration magnitudes and variability 

during the different phases is a novel contribution to the literature. Notably, intra- and 

inter-participant variability for flight phase deceleration was the largest of all 

variables. Since the approach speed vector is largely perpendicular to gravity, this 

phenomenon is more likely to be due to the counteractive movement of the kicking 

leg and opposite arm in the coiling action during flight. We also found a large 

deceleration during the support phase, more than twice the magnitude of the 

Stellenbosch University  https://scholar.sun.ac.za



122 

 

acceleration in the launch phase. The deceleration is in agreement with the principle 

of kinematic sequencing wherein distal summation of speed is facilitated by proximal 

segment decelerations [7]. Potthast et al. [10] investigated support phase dynamics in 

soccer kicking, finding that increased deceleration of the center of mass before ball 

strike was correlated with increased foot speed. This phenomenon was also observed 

in rugby punt kicking by Ball [11] using an analysis of ground reaction forces on the 

support foot. He states: “(ground reaction forces) were related to kick performance. A 

larger peak vertical and braking force was related to larger foot speeds indicating 

stronger bracing might exist about which the kick leg can swing, or more momentum 

gets transferred to the kick leg” (p. 458). This study’s findings are in direct opposition 

to this, as foot speed was negligibly correlated to support phase deceleration. It 

should be noted that this study provides a clearer analysis of momentum transfer in 

terms of the kinematic sequence than Potthast et al. [10], since the center of mass also 

reflects distal segment motion (e.g. leg swing) whereas we assessed pelvic marker 

movement which reflects the motion of the proximal segment in the kinematic 

sequence. Similarly, the analysis by Ball [11] is also not directly relatable to loss of 

momentum at the pelvis because the effect of ground reaction forces depends on 

support leg biomechanics.  

No studies could be found assessing the intra-participant variability of the outcomes 

for this study for any population. Nonetheless, these reference values for the 

consistency of execution amongst skilled kickers may assist coaches seeking to assess 

the repeatability of technique. Interestingly, peak foot speed was reproduced more 

consistently by the participants than all other variables (2 ± 0.9%). The approach 

speeds of this cohort were next best, varying by 2-4% during each participant’s 

battery of kicks – except for at ball strike where this rose to around 10%. Phase time 

consistency was slightly lower (4-6%), although in contrast this improved moderately 

towards ball strike. The least repeatable variables were the acceleration and 

deceleration results. This suggests that players are able to produce very repeatable 

foot speeds despite considerable variability in approach dynamics. These findings 

highlight the fact that inconsistent kicking distances may not be explained by 

variability in foot speed. However, this data may provide insight into the movement 

strategies and real-time compensations made by kickers during the approach to 

maintain control of foot speed. 

This study was limited primarily by issues related to ecological validity. The indoor 

floor and stud-free footwear conditions differed from an on-field environment and 
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may have affected ground reaction forces. However, participants were given ample 

opportunity to familiarize themselves with the testing conditions (through practice-

kicks) prior to data collection and the effect may be negligible. The consecutive and 

identical nature of the kicks during testing is also different to a game scenario and 

may have reduced intra-participant variability. However, it is likely that players 

execute the same run-up regardless of ball position on the field. We did not simulate 

physical fatigue during the protocol, and it is unclear how the physiological state of 

kickers affects kicking performance. It is also not known whether the laboratory 

conditions affected the psychological preparation of the kickers compared to an in-

game scenario. These factors warrant further investigation in field-test studies. Lastly, 

we chose to instruct players to kick a mid-range distance (40m) rather than a maximal 

distance kick. This may influence insights into this populations as well as 

comparisons with studies investigating maximal effort trials. On the other hand, we 

are of the view that data from maximum effort trials would also not be directly 

applicable when coaching goal kickers. 
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 Paper 6: Rotational Alignment to Tee and Target of the Thorax, Pelvis and 

Feet during Expert Rugby Union Goal Kicking 

Abstract: Goal kicking is the most common means of scoring points in professional 

rugby union. To understand this complex motor task and improve coaching, 

researchers have investigated goal kicking biomechanics using gold-standard motion 

capture systems. However, there are no reports on the rotation profiles of body 

segments in the horizontal plane which is an important aspect of technique. We tested 

15 professional goal kickers using an optical motion capture system and analyzed the 

angular alignment of the thorax, pelvis and foot segments to the tee and target. We 

found high inter-individual variability in approach angles and segment orientations 

(group SDs: 5-15°), although intra-individual variability was low (subject SDs: 1-

4°). However, we did observe characteristic patterns of retraction and protraction in 

the pelvis, thorax and spine angle that support the notion of a ‘tension-arc’ movement 

strategy. The angulation of these segments at ball contact was correlated to the 

approach angle, but ranges of motion were not. The support foot was notably rotated 

external to the approach line at ball contact, whereas the kicking foot was notably 

rotated external to the target line. These findings support coaching cues in the 

literature regarding upper body movement, but contradict those relating to foot 

alignment. 

Submitted: UK J. Sports Sci. (20 August 2015) 

 Introduction 

In the past two decades, motion capture technologies have begun to play an important 

role in the quest to understand and optimize athletic performance [1]. Modern motion 

capture methods such as stereophotogrammetry enable estimation of musculoskeletal 

biomechanics in three-dimensional and at high temporal and spatial resolutions [2], 

allowing comprehensive and detailed technique analyses for sports [3]. These 

measurement capabilities have already facilitated a deeper understanding of the 

biomechanical determinants of performance in global sports such as golf [4] and 

soccer [5]. They also provide an objective means of assessing intra- and inter-

individual variability in expert technique, which has become a topic of debate within 

the field of motor learning and motor control during recent years [6-8]. However, 

technique and performance variability in many sporting codes remain under-
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researched using three-dimensional motion capture. In these cases, more quantitative 

movement studies are needed to develop scientific knowledge that can inform 

evidence-based coaching practise. 

One important and complex motor task that is not well documented in the literature is 

rugby union goal kicking [9]. Goal kickers usually score the majority of points 

registered during a professional match and thus often play a pivotal role in the 

outcome of games and competitions [10]. Due to the difficulty of reliably executing 

this particular motor task under physical and psychological pressure, elite goal 

kickers – who have success rates above 80% - often attract lucrative player contracts. 

However, current knowledge regarding expert goal kicking technique is largely based 

on insights from qualitative analyses and anecdotal sources [11]. In contrast, there is 

very little gold-standard motion capture research of highly skilled kickers analysing 

technique, identifying key performance indicators or examining the effects of 

targeted interventions. This lack of objective data on expert performance limits the 

ability of coaches to apply scientific principles in their efforts to accelerate skill 

acquisition and maintain performance levels.  

A limited number of motion capture studies have researched goal kicking in small 

groups of amateur goal kickers. It has been established that, like other ‘ballistic’ 

sports involving throwing, striking or kicking, goal kicking involves a proximal-to-

distal kinematic sequence in the kicking leg and the pelvis which requires 

counteractive rotation of the trunk and opposite-side arm to maintain core stability 

[12, 13]. One of the key performance indicators of this action is foot speed just before 

ball contact, which is associated with kick distance [14, 15]. However, there are no 

reports on the angulation of the kicking foot at ball contact – which is also likely to 

affect kick direction and momentum transfer to the ball. Similarly, while studies have 

also found that the distance of the support leg foot from the tee before ball contact 

may be an important factor affecting performance [16, 17], none have reported on the 

orientation of the support foot relative to the target line. Moreover, despite 

descriptions of hip, knee and ankle joint angles during goal kicking [18, 19], no 

studies have investigated the angular alignment of the individual pelvic and thoracic 

segments during the approach to the ball and whether this is affected by the overall 

run-up angle.  

It is likely that the rotational alignments of the thorax, pelvis and feet relative to the 

target line are important interdependent factors affecting goal kicking biomechanics. 
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The articulated nature of the musculoskeletal system implies that differences in 

support foot orientation during placement next to the tee would also reflect in 

changes to the proximal body segment kinematics and kinetics. Similarly, the 

angulation of the kicking foot at ball contact is dependent upon the movement of 

proximal segments in the horizontal plane. Therefore, it may be that thoracic and 

pelvic kinematics play an important role in correctly positioning the kicking foot at 

ball contact. It should also be noted that rotational alignment of these segments is 

influenced by the angle of approach to the ball during the run-up. Larger angles of 

approach might be expected to increase the average rotation of the body segments 

during the run-up, although this has not been established. All in all, it remains unclear 

how the motor strategies employed by skilled goal kickers differ in relation to these 

rotational alignment variables, and how these variables influence each other.  

Therefore, to fill the aforementioned gap in the literature, the first aim of this study 

was to describe the rotational alignment of the thorax, pelvis and feet relative to the 

target line and approach line during professional goal-kicking. The second aim was to 

investigate the correlations between these body alignment angles in order to answer 

the following questions: Do elite kickers with a smaller approach angle: 

a) position their support foot next to the tee more parallel to the target at contact?  

  

b) position their kicking foot more parallel to the target at contact?  

 

c) undergo a smaller range of pelvic and thoracic rotation?  

 Methods 

 Participants 

Fifteen rugby union place-kickers (age: 26.4 years (range: 20-32), height: 1.79 m 

(1.72 – 1.91) and weight: 87 kg (82.4 – 93.3), were tested for the study. At the time of 

data collection, all participants were competing at a professional level. The 

participants gave informed consent before testing and approval for the research was 

obtained from the institutional committee for human research ethics.  

 Instrumentation and setup 

We recorded the goal kicking technique of the participants in a motion analysis 

laboratory using an 8-camera optoelectronic motion capture system (Vicon MX T-

series, Vicon Ltd, Vicon UK). Marker trajectories were captured at a sampling rate of 
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200Hz along with kinetic data from a floor-level force-plate (FP9060 model, Bertec 

Corp.) at 1000 Hz. The Vicon cameras were calibrated in Vicon Nexus software 

(version 1.8.4) using a standard 5-point wand waving routine, and the force plate 

output was set to zero before the start of every test.  

The kicking tee was placed in the same position for each trial such that the support 

leg foot landed on the force plate. Four passive-reflective markers (14 mm diameter) 

were placed on the tee (front, back, left and right) and another three markers were 

placed on the ball: on the top point and on the left and right such that the midpoint of 

these two markers approximated the center of the ball. We also placed markers on  

the participant (on the thorax, pelvis and foot segments) according to the standard 

Vicon Plug-in Gait (PiG) protocol by a trained clinician with five years of experience 

working in clinical gait analysis.  

The anatomical coordinate system of the thorax was defined using markers placed on 

four bony landmarks: the spinous process of the 7th cervical vertebra (C7), the 

xiphoid process of the sternum (STRN), the spinous process of the 10th thoracic 

vertebra (T10) and the supra-sternal notch (CLAV). The primary axis (Z) defined as 

the vector running from the midpoint of STRN and T10 to the midpoint of CLAV and 

C7. The secondary axis (X), points forwards with respect to the body from the 

midpoint of C7 and T10 to the midpoint of CLAV and STRN. The Y axis is 

computed using the Z and X axes and points to the left. The origin of the thorax is 

defined as half a marker diameter back from the CLAV marker along the X axis. The 

Z axis is perpendicular to the transverse plane.  

Four markers were used to define the anatomical coordinate system of the pelvis. 

These were placed on the crest of the right anterior iliac spine (RASI) , left anterior 

iliac spine (LASI), right posterior iliac spine (RPSI) and left posterior iliac spine 

(LPSI). The primary Y axis of the pelvis is defined by the vector running from the 

LASI marker to the RASI marker. The secondary X axis runs from the midpoint of 

RPSI and LPSI to the midpoint of RASI and LASI. The Z axis is computed as being 

perpendicular to the transverse plane containing the X and Y axes. 

The anatomical coordinate systems of the feet were defined using a heel marker 

placed on the shoe at the midpoint of the calcaneus, a toe marker placed on the shoe 

above the second metatarsal head, an lateral ankle marker placed on the lateral 

malleolus and a medial ankle marker placed on the medial malleolus. To avoid 
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occlusions of the toe marker typically experienced near the time of ball contact, we 

also placed a non-anatomical marker on the kicking foot shoe that could be used as a 

reference marker (together with the heel marker and mid-point of the ankle markers) 

to reconstruct the toe marker during the dynamic kicking trials. 

 Data collection and preprocessing 

The participants executed ten consecutive goal kicks using their own kicking tee but 

used the same standard rugby ball (Gilbert, Grays of Camridge (International) Ltd) 

provided for all the tests. Participants wore running shoes instead of rugby boots due 

to the hard flooring of the laboratory. Each participant was instructed to aim their 

kicks towards a target on the far wall. A steel framed net placed between the kicking 

tee and the target was used to restrict the flight of the ball after impact (Figure 35).  

 

Figure 35: Schematic of test set up showing Vicon cameras positions relative to ball, net and target 

The target on the wall was positioned such that the line from the tee to the target was 

parallel to the one axis of the laboratory coordinate system. Each participant 

performed their own warm up routines before testing. This was followed by 5-10 

practice trials after marker placement to become accustomed to the testing 
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environment. Ten kicking trials were then recorded – recordings were started 2 s 

before the beginning of the run-up (after a verbal cue given by the participant) until 2 

s after ball strike.  

Reconstruction and labeling of the body marker trajectories was carried out in the 

Vicon Nexus software using the standard functions provided. Gap filling and 

smoothing was performed using the Nexus Woltring filter algorithm (MSE value of 

20 mm). The Vicon PiG model was used to calculate segmental kinematics for the 

thorax, pelvis and foot segments using marker data. These angles were smoothed 

using a zero-phase, fourth-order low-pass Butterworth filter with a cut-off frequency 

of 15 Hz. 

 Data analysis 

The analysis considered the final two steps of the run-up up until kicking foot contact 

with the ball (Figure 36a). We divided the kick into three phases in time (launch, 

flight and strike) using four events: kicking foot contact (KFC), kicking foot off 

(KFO), support foot contact (SFC) and ball contact (BC). The launch phase starts at 

KFC and ends at KFO – during which the kicking leg in in contact with the ground 

and the player ‘launches’ into the powerful in-step motion towards the tee. The 

launch phase is followed by a flight phase from KFO to SFC in which neither foot 

has contact with the ground. At SFC the support foot is planted beside the tee, 

initiating the strike phase in which the player’s kicking leg undergoes vigorous hip 

and knee extension until BC. The trajectories of the markers placed on the ball and 

feet we exported together with the force plate data to a custom Matlab script (Release 

2012b, The Mathworks, Inc.) which estimated the kick events. The BC event was 

estimated to occur at the time sample before the ball markers velocity exceeded a 

minimum threshold magnitude. We used a threshold of 30 N on the vertical ground 

reaction force measured by the force plate to detect SFC. The KFC and KFO events 

were then detected using the derivatives of foot marker kinematics. 

The rotational alignment of the thorax, pelvis and foot segments relative to the target 

were calculated using horizontal plane angle between the anteroposterior axes of the 

segments relative to the axis of the laboratory coordinate system which was 

coincident with the line between the tee and the target (Figure 36b). However, this 

method of calculating rotational alignment contains two sources of variability for a 

group: variability due to postural changes and variability in the angle of approach to 

the ball. Therefore, we also assessed rotational alignment normalized for the angle of 
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approach in order to isolate variability related to posture (Figure 36b). This was done 

by subtracting the approach angle from the alignment angle relative to the target. The 

approach angle was calculated as the angle of the vector from the midpoint of the 

four pelvis markers (RASI, RPSI, LASI and LPSI) to the marker at the back of the 

kicking tee at K1. Both sets of segmental alignment data were assessed for the thorax, 

pelvis and feet at KFC, KFO, SFC and BC for each trial, as well as the range of 

motion for the thorax and pelvis during the launch, flight and strike phases. 

 

 
 
Figure 36: A top view illustration for a right-foot goal kick of (a) the temporal events and phases used 

to analysis the kick and (b) the alignment of the thorax, pelvis and foot segments relative to the target. 

Note that in this diagram all segmental angles are clockwise positive angles for a right-footed kicker. 

For the pelvis and thorax, this is referred to as retraction on the kicking leg relative to tee and target. 

Negative alignment is termed protraction. 

Positive alignment angles (as shown in Figure 36b) indicate retraction of the segment 

on the kicking leg side relative to the tee or target, whereas negative angles would 

indicate protraction of that the segment on the kicking leg side relative to the tee or 

target. 
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In order to answer some of the questions posed, we assessed the strength of the 

association between the alignment outcomes using Pearson’s correlation coefficient 

(r). We utilized the commonly accepted values for small, medium and large effect 

sizes (r > 0.1, r > 0.3 and r > 0.5) suggested by Cohen.   

 Results 

On average, the participants approached the tee at a relatively large angle of 59° to 

the target (Table 11). Throughout the goal kick, pelvic alignment remained in overall 

protraction relative to the tee (Table 11 and Figure 37). Pelvic alignment was also 

relatively stable before the strike phase, as demonstrated by a very slight 1° 

protraction during launch followed by a small 5° retraction during flight. However, 

during the strike phase the pelvic protracted by 24°, culminating in a pelvic 

protraction of 27° relative to the tee by ball contact. In contrast to the pelvis, the 

thorax was retracted at the beginning of the launch phase and demonstrated its largest 

range of motion - 24° of protraction - during this phase (Table 11 and Figure 37). 

Like the pelvis, thoracic alignment was relatively stable during the flight phase. 

However, the thorax moved counter to the pelvis and retracted during strike. 

Over the duration of the goal kick, the spine angle had a parabolic form beginning 

and ending in retraction of the thorax relative to the pelvis (Figure 37). The spine 

moved from 17 ± 9° retraction at KFC to 10 ± 7° protraction of the thorax relative to 

the pelvis at KFO – a net protraction of 27° caused primarily by thoracic motion. In 

contrast, the support phase contained a rapid 38° retraction in the spine angle due 

primarily to pelvic motion. Interestingly, the direction of the spine angle motion 

changed near the middle of the flight phase, caused by a combination of changes in 

thorax and pelvis rotation. 

At ball contact, both the kicking foot and the support foot were rotated towards the 

target relative to the line of approach (Table 11 and Figure 38). The support foot was 

rotated by a notable 39° towards the target relative to the approach, while the kicking 

foot was almost parallel to it and thus rotated a large 48° from the direction of the 

target. In contrast, at the beginning of the launch phase (KFC) the kicking foot was 

rotated slightly away from the target relative to the line of approach by 9°.  

 

Stellenbosch University  https://scholar.sun.ac.za



134 

 

         
         (a)                                                              (b) 

 

              (c) 

Figure 37: Absolute alignment in the transverse plane for the (a) pelvis and (b) thorax segments during 

the three phases of the goal kick, as well as relative angular alignment approximating the (c) spine 

angle. Absolute angles for the pelvis and thorax are relative to the line from tee to target, whereas the 

spine angle refers to the transverse plane angle of the thorax relative to the pelvis alignment. Positive 

values for all plots indicate retraction of the segment on the side of the kicking leg. 

The rotational alignment of the thorax, pelvis and feet demonstrated marked inter-

individual variability (Table 11). Furthermore, it was observed that the group 

variability of the segment alignments to the tee was notably lower than the segment 

alignments to the target. It was also found that the group variability for most 
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segmental alignment outcomes was higher than the group variability in approach 

angle. Relative to the tee, inter-individual variability was also shown to be lower for 

the pelvis alignment (group SDs: 4 - 7°) than for the normalized thorax and foot 

alignments (group SDs: 8 - 10°).  

Table 11: Results from point analysis of rotational alignment to tee and target for the thorax, pelvis and 

foot segments. The angle of approach, defined as the line from the center of the pelvis to the tee, is 

given as a reference for the ‘alignment to tee’ results as this was used as part of the calculation. Ranges 

of motion during the three movement phases are also reported for the thorax and pelvis. For each 

outcome, intra-individual variability is reported as the group mean and SD of the participant SDs.  

Time (phase or event) 
Alignment to target  

[mean (SD) [max, min]] 

Alignment to tee  

[mean (SD) [max, min]] 

Intra-individual 

variability 

[mean (SD) [max, min]] 

Approach angle [deg] 

KFC 53 (5) [63, 43] - 1 (0) [2, 0] 

Pelvic range of motion [deg] 

Launch phase -1 (7) [20, -21] - 3 (2) [5, 1] 

Flight phase 5 (5) [17, -9] - 2 (1) [3, 1] 

Strike phase -24 (6) [-4, -36] - 2 (1) [4, 1] 

Pelvic alignment [deg] 

KFC 47 (6) [59, 25] -6 (4) 1, -18] 2 (1) [4, 1] 

KFO 46 (8) [62, 27] -8 (7) [5,-23] 2 (0) [4, 1] 

SFC 50 (8) [69, 33] -3 (6) [12, -18] 2 (1) [3, 1] 

BC 27 (8) [41, 8] -27 (6) [-9, -39] 2 (1) [4, 1] 

Thoracic range of motion [deg] 

Launch phase -24 (8) [-7, -46] - 2 (1) [4, 1] 

Flight phase -3 (6) [13, -18] - 3 (1) [3, 1] 

Strike phase 8 (9) [28, -12] - 4 (3) [9, 1] 

Thoracic alignment [deg] 

KFC 67 (10) [87, 43] 14 (9) [33, -1] 2 (1) [4, 1] 

KFO 44 (11) [67, 22] -10 (9) [9, -27] 2 (1) [4, 1] 

SFC 41 (12) [64, 19] -12 (10) [-6, -31] 3 (1) [5, 1] 

BC 49 (13) [84, 18] -4 (10) [26, -24] 4 (3) [9, 1] 

Foot alignment [deg] 

Kicking foot at KFC 60 (10) [83, 40] 7 (9) [24, -14] 2 (1) [4, 1] 

Support foot at BC 13 (15) [29, -3] -39 (8) [-25, -65] 2 (1) [4, 1] 

Kicking foot at BC 48 (10) [77, 8] -5 (10) [21, -36] 4 (2) [8, 1] 
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In contrast to the inter-individual variability, the group demonstrated consistently low 

intra-individual variability (Table 11). The most consistently executed outcome was 

the angle of approach which varied per participant by approximately 1°. Most other 

parameters varied per participant by 2 ± 1°, although intra-individual variability 

increased slightly during the strike phase. The least consistent execution per 

participant was found for the alignments of the thorax and kicking foot at ball contact 

(4 ± 3°). 

         

Figure 38: Visualization of foot alignment relative to the target line and angle of approach to the tee. 

We investigated the statistical correlation between some of the study outcomes and 

found three large (r > 0.5) and significant (p > 0.05) interactions (Table 12). The 

rotational alignments of the pelvis and thorax at BC in relation to the target line were 

Back of 

tee 

Average angle of 

approach at KFC 

Pelvis with 

markers 

Support foot 

alignment at BC 

Kicking foot 

alignment at BC 

Target line 
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strongly correlated with the angle of approach, and thus also with each other. We also 

found six significant medium sized (0.3 < r < 0.5) effects. There were inter-

correlations between larger angles of approach, larger ranges of pelvic rotation during 

strike and larger kicking foot angles at KFC. A larger range of thoracic retraction 

during launch and larger kicking foot angle at KFC were also associated with reduced 

support foot alignment to target at ball contact. Notably, kicking foot angulation at 

BC did not have any notable correlation with the other outcomes. Many of the 

remaining correlations were found to be significant but small (r < 0.3). 

Table 12: Effect sizes between rotational alignment outcomes relative to the target line based on 

Pearson’s correlation coefficient (r). Statistically significant correlations (p > 0.05) are indicated with 

an asterisk (*).  

 
Approach 

angle 

Kicking foot 

at KFC 

Kicking foot 

at BC 

Support foot 

at BC 

Pelvic ROM 

in strike 
Pelvis at BC 

Thorax 

ROM in 

launch 

Approach angle        

Kicking foot at KFC 0.47*       

Kicking foot at BC 0.1 0.2*      

Support foot BC 0.24* -0.31* -0.01     

Pelvic ROM in strike 0.39* 0.35* 0.2* 0.24*    

Pelvis at BC 0.58* 0.41* 0.24* 0.05 0.3*   

Thorax ROM in launch 0.27* 0.29* 0.19* -0.33* 0.26* 0.25*  

Thorax at BC 0.58* 0.05 0.03 0.3* 0.16* 0.64* 0.1 

 Discussion 

This study presents the first quantitative description of expert body segment 

alignment to tee and target during rugby union goal kicking using optical motion 

capture. We conducted a detailed analysis of 150 kicking trials from a group of 15 

professional goal kickers and found high levels of inter-individual variability in 

transverse plane motion of the pelvis, thorax and feet (group SDs of 5-15°). 

Nevertheless, we did find a clear pattern of thoracic retraction during the launch 

phase and pelvic protraction during the strike phase which produces a characteristic 

spine rotation profile during the goal kick. We also found that on average the support 

foot was oriented 13° inwards from the target line at ball contact despite approach 

angles ranging from 50° to 68°. The kicking foot was placed approximately parallel 

to the line of approach during the instep and positioned roughly diagonally in relation 
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to the target line at ball contact. A correlation analysis revealed that the angle of 

approach is strongly associated with thorax and pelvis alignment at BC as well as 

pelvic range of motion during strike, but not so much the thoracic range of motion 

during strike. Support foot alignment at BC was moderately related to thorax rotation 

during launch and kicking foot angulation at KFC, while the kicking foot angle at BC 

showed no correlations to other outcomes. Despite the large differences between 

participants, we found that each participant executed the kick with very consistent 

alignment to tee and target. Intra-individual variability was typically in the region of 

2 ± 1° for most outcomes, although the thorax and kicking foot alignments were less 

consistent (participant SDS: 4 ± 3°) during the strike phase. The findings from this 

study suggest that while there may be no normative reference for optimal body 

alignment, kickers should strive for a high level of consistency in their alignment to 

both tee and target. 

Recent research based on dynamical systems theory has suggested that intra-

individual movement variability may have a functional role in reducing overuse 

injuries and facilitating adaptability in the motor control system [7, 8]. However, this 

study found quite consistent segmental alignment for expert goal kickers. This may 

imply that this aspect of technique is more tightly controlled than others, although it 

is also likely that the controlled nature of the environmental and task constraints 

reduced demands on the movement system for adaptations and injury avoidance [6]. 

On the other hand, the relatively high inter-individual variability in the results 

strongly supports the emphasis placed on organismal constraints by proponents of 

dynamical systems theory. Despite considerable differences in technique, expert goal 

kickers are capable of producing similar levels of performance [16]. This necessitates 

more in-depth research of kicking combining insights and methodologies from motor 

control and biomechanics to understand underlying performance mechanisms and 

find coaching practices that can cater to the unique characteristics of individual 

athletes [20].  

According to a study by Bezodis et al. [13], one important performance mechanism 

in expert goal kicking is control of angular momentum about the longitudinal axis. 

This is achieved by using the non-kicking side arm to counteract angular momentum 

generated by motion of the kicking leg - avoiding instability in the transverse plane. 

These results shed more light into the interaction between the pelvis and thorax as a 

result of these limb movements. Driven by extension and abduction of the non-

kicking side arm during launch and the first half of flight, the thorax protracts 
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strongly from an initial retraction on the kicking side. Due to the lack of pelvic 

rotation over this time, the spine angle passes from retraction into protraction – which 

is suggestive of a build-up of tension in the lumbar spine region. Interestingly, the 

spine angle rapidly changes direction before SFC as the thorax moves toward 

retraction – initiating a short ipsilateral rotation phase with the pelvis. After SFC, the 

pelvis begins rapidly protracting in a contralateral rotation with the thorax. This 

phenomenon has been identified in skilled soccer kicking as the formation and release 

of a ‘tension arc’ [21, 22] wherein the trunk flexors, hip flexors and quadriceps are 

dynamically pre-lengthened prior to kicking leg protraction in order to increase 

subsequent muscle forces. This exploitation of the stretch-shortening cycle of 

muscles has also been observed for the spine angle in expert golf swing biomechanics 

and is known as ‘X-factor stretch’, however (unlike we have observed here) the 

pelvis rotation changes direction first in golf and not the thorax [23]. It appears that 

where golfers initialize the ‘downswing’ from the legs, kickers may do so from the 

upper body during the flight phase. Analysis of X-factor stretch in goal kicking may 

provide additional insights when considered together with the need to control whole-

body angular momentum. However, more research is required to understand the 

possible effects of this tension arc on kicking distance.  

Pelvic stability during launch and flight, despite fast retraction of the kicking leg and 

extension of the support leg, was a notable feature of the results and may be a helpful 

indicator of the effectiveness of the non-kicking side arm movement in reducing 

whole body angular momentum. However, comparable outcomes could not be found 

in the literature for kicking. This study’s findings for range of pelvis rotation during 

strike (-24 ± 6°) agree very well with the values of -22.2 ± 3.3° reported for a study of 

professional instep soccer kicking by Lee and Nolan [24]. Higher values of 30° and 

36° have been reported for soccer kicking, albeit for maximal distance kicking which 

was not investigated in this study [25]. Ball et al. [26] report pelvic alignment to the 

target at ball contact of 21 ± 7° for rugby league goal kicking. This is slightly more 

pelvic protraction than in this study – although this may be related to the larger 

approach angles for the sample. It is not clear to what extent pelvic retraction and 

protraction during the flight and strike phase is an active motion as opposed to being 

a passive result of limb motion. A study by Zang et al. [12] suggests that rotation of 

the pelvis contributes less than 5% to the total foot speed at ball contact. However, 

this study did not investigate expert goal kicking and did not consider upper body 

kinematics. 
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The authors are not aware of any kicking studies investigating foot alignment to tee 

or target for either the support leg or the kicking leg. However, foot alignment may 

play an important role in achieving high foot speed and good ball contact. For 

instance, the finding of a large rotation of the support foot towards the target result in 

external hip rotation at initial foot contact (SFC). This may be a strategy to facilitate 

increased pelvic protraction during the strike phase by enabling a larger range of 

internal hip rotation, and may increase passive tension in the support hip which 

supports more explosive pelvis rotation. Similarly, angulation of the kicking foot at 

ball contact may be related to ‘body lean’ strategies aimed at increasing foot speed by 

maximizing the lever arm length of the kicking leg at impact. It may also play a role 

in improving the foot-ball interaction, perhaps by increasing the potential contact 

surface area, and reducing the risk of the toes touching the ground. However, future 

research is needed to understand the functional role of foot alignment angles in goal 

kicking performance. 

The approach angle results in this study are considerably higher than values reported 

in the literature for other kicking sports. Ball et al. [26] found that rugby league goal 

kickers have a relative straight approach angle of 31 ± 12°, although the approach 

angle definition is omitted. Soccer kicking researchers have reported more diagonal 

approach angles of 43-45° [25]. A previous study by the authors on rugby union goal 

kicking found that the angle of the kicking foot toe marker to the tee at KFC was 43.6 

± 6.2° [16]. However, this is about 10° less than the approach angle found in this 

study when using the line from the center of the pelvis to the back of the tee. This 

highlights the problem of comparability using different definitions of the approach 

angle. We found one soccer study that utilized a marker on the left shoulder [27], 

which would most likely produce different results to the pelvis marker method 

presented here. When controlling for the approach angle, researchers have also drawn 

a line on the ground for participants to follow, but it is unclear how this related to the 

body [28]. Therefore, we would caution against indiscriminate usage of approach 

angle findings in studies of kicking, as there seems to be no standard definition for 

this outcome. However, to avoid offsets due to segment rotations, it seems most 

intuitive to define the approach using a point lying on the central axis of the body 

rather that a lateral point such as the shoulder. The approach trajectory is also slightly 

curved during a goal kick, resulting in a slightly different approach angle at different 

points in time. Therefore, care should be taken to choose an adequate point during the 

kick to quantify the approach angle – we chose the KFC event as it would be easiest 

to visualize and adjust during coaching. 
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The work in this study has a few limitations. Firstly, we did not capture the data on 

the field of play which may have affected the ecological constraints of the 

experiment. Participants were required to wear shoes instead of studded boots, 

although we made every attempt to acclimatize them to the flooring conditions with 

practice attempts prior to testing. We also controlled the tee and target configuration 

for all ten kicking trials, which may have reduced the individual variability compared 

to competitive conditions. However, this allowed us to assess group and individual 

variability for the same task constraints and thus to isolate variability due to the 

kicker. Lastly, although the sample size of this study is larger than most of those 

studies discussed above, it remains a limiting factor for the generalizability of the 

mean values presented considering the high group variability. 

Nevertheless, this study provides a few novel findings that can inform goal kick 

coaching as well as future research. Bezodis and Winter [11] provide some 

recommendations for future research based on an interview with a professional coach, 

and refer specifically to issues of high variability between kickers and the importance 

of the tension arc being maintained during the flight phase. The results support these 

two observations. However, the results are not in support of the recommendation by 

Bezodis and Winter [11] that the support foot be positioned parallel to the target line. 

The central tendency in the study sample was to orient the foot slightly inward, 

although this was highly variable. Also, the finding of a large kicking foot angulation 

relative to the target directly contradict the coaching cue given in the study by 

Bezodis and Winter [11] that the ball contact should occur with kicking foot “toe 

down”. Future work should be conducted to obtain detailed analytics of the 

interaction between boot and ball during the impact phase in order to understand the 

role of foot angulation. 
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 Conclusions 

This study presents novel methods for high performance sports analysis using motion 

capture technologies.  Following an introductory chapter on quantitative movement 

analysis and modern motion capture systems, six stand-alone articles addressing the 

thesis objectives are presented in chapter format. Papers 1-3 detail the design and 

validation of new sensor fusion algorithms for measuring hip and crank arm angles 

during cycling using wireless IMMSs. Papers 4-6 describe the first detailed technique 

analysis of elite rugby union goal kickers using a gold-standard optical motion 

capture system.  

By comparing the results and findings of these individual studies it can be concluded 

that the objectives detailed in the problem statement (Chapter 1.3.2) have been 

successfully achieved. Each article contains details of the limitations of the work, 

which will not be repeated here. However, it is pertinent to synthesize the overall 

contribution of the thesis work as a whole and to briefly discuss the future research 

directions stemming from it. 

 A Synthesis of the Project’s Primary Contributions 

One of the major contributions of the cycling work is that it highlights the efficacy of 

exploiting domain constraints to overcome three of the most significant sources of 

error in IMMS tracking: dynamic acceleration, magnetic interference and sensor-to-

body frame alignment. We developed innovative dynamic acceleration compensation 

methods - based on the constraint of pendulum motion - that drastically improved 

tracking of the gravity vector during pedaling (Papers 1 and 3). We also exploited the 

mechanical constraints of the bicycle in various ways to enable tracking of the crank 

arm without need for a magnetometer (Papers 2 and 3). This is significant because we 

show that IMMS tracking fails without dynamic acceleration compensation or when 

using a magnetometer (and interferences are present). Lastly, we developed novel 

sensor-to-body frame alignment methods that are based on state-of-the-art functional 

calibration approaches and are immune to magnetic interference (Paper 2 and 3). 

Again, we show that - in contrast - conventional static pose calibration methods fail 

in the presence of magnetic disturbances (Paper 3). 

Another important contribution of the IMMS studies is that it demonstrates the ability 

of nonlinear complementary filters to track sports motions regardless of initial 
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estimates and with accuracies comparable to that of the commercial Kalman Filter 

algorithms. Nonlinear complementary filters are relatively new, and we could not 

find any cycling studies utilizing these algorithms. However, since complementary 

filters are much simpler to implement than stochastic algorithms, this work may 

encourage greater utilization and development of sports specific sensor fusion 

algorithms in this class. The work presented may also contribute towards this in that 

it provides a thorough framework for IMMS validations. Paper 1  presents a 

validation of tracking performance for a proprietary algorithm (Xsens MTw, Xsens 

Technologies B.V., Netherlands) as well as a custom algorithm using an optical 

system and marker clusters attached to the pelvis and thigh IMMSs during pedaling at 

different speeds. In Papers 2 and 3 custom crank angle tracking algorithms were also 

benchmarked against both the Xsens proprietary algorithm (Xsens MTw, Xsens 

Technologies B.V., Netherlands) and optical system outputs. We give methodological 

details for all these validations on body-to-sensor frame alignment as well as 

alignment between the IMMS and optical system reference frames.  

The cycling studies also contribute knowledge relating to the validity of motion 

capture data. Firstly, in Paper 1 we investigate the difference between outcomes when 

using a sitting and standing static pose for sensor-to-body frame alignment of the 

pelvis and thigh segments. We found that skin artifacts occurring between the two 

postures can have a significant bearing on hip angle results for both IMMS and 

optical motion capture. This raises important considerations about the body posture at 

which motion capture markers and IMMSs are placed, as well as at which static 

calibrations are conducted, relative to the position in which the movement is 

conducted. Secondly, the cycling studies in Papers 2 and 3 present the first detailed 

two-segment methodology in the literature for tracking crank angles using an optical 

motion capture system. We contend that a two-segment approach is necessary to 

avoid crank angle errors related to non-zero inclinations of the bicycle frame. 

The studies of rugby goal kicking produced a large amount of new knowledge on 

technique and performance variables amongst elite kickers. The analysis focused on 

three clusters of technique variables: foot positioning during the run-up (Paper 4), 

approach speed and acceleration during the run-up (Paper 5) and body alignment to 

the tee and target (Paper 6). We developed a comprehensive framework for analyzing 

a rugby goal kick, starting with a detailed breakdown of the movement into key 

phases, which was previously unavailable in the literature. Most of the variables 

shown in the results for these experiments are also not reported on in the literature 
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and are thus completely novel, whereas others are only reported for small, amateur 

groups. We also detail how we overcame some methodological challenges regarding 

occlusions of the toe marker on the kicking foot (near impact) and the anterior thorax 

markers using virtual reconstructions from additional segmental markers. This made 

it possible to track the thorax and foot segment orientations as well as the toe speed 

during the kick. 

Besides providing normative data for elite kicking technique, the rugby studies also 

provided important insights into movement variability within the group. We found 

that elite players are able to reproduce their kicking technique very consistently for 

repeated attempts. This was somewhat expected as the players spend large amounts 

of time over many years perfecting their kicking routine. Nevertheless, this is an 

interesting finding as some recent research has suggested that intra-individual 

variability is to be expected at an expert level and may even have a functional role to 

play in performance (Section 1.1.3) However, one reason for the low intra-individual 

variability may be the constraints placed on the task during controlled testing. In 

addition, we found that there was notable variability between the kicking techniques 

of different players in the group. It appears that goal kickers are able to obtain high 

goal kick success rates during matches with different foot positioning, run-up 

dynamics and body alignment to the target line. We found that, despite these 

differences, performance variables such as maximum foot speed were relatively 

consistent within the group despite having rather low correlations with individual 

technique variables. This demonstrates the non-linear dynamics of movement in 

general and highlights the need for caution when considering coaching techniques 

which are based on a putative expert model. 

 Future Research Directions 

The work in this study will form the basis for continued work in cycling and rugby 

goal kicking using motion capture technologies. Moreover, the methods presented in 

this thesis can be expanded or adapted in multiple ways for other projects within the 

biomedical engineering research group. 

The work on cycling analysis using wearable sensor technologies forms part of a 

wider effort in the research field to develop a full-body biomechanical analysis 

system that can provide real-time kinetic and kinematic data to cyclists during 

outdoor riding. This requires the ability to track both lower and upper body segmental 
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motion for hours in the presence of dynamic accelerations and (in some cases) 

magnetic interferences both of which are continuous and time-varying. According to 

the literature, this feat has not yet been accomplished. By incorporating joint 

constraints, it may be possible to expand the sensor fusion methods in this thesis to 

include the shank and foot segments, thus enabling a full lower-limb analysis. This 

may also be accomplished using mathematical optimization methods which exploit 

the closed kinematic chains during pedaling. However, in order to reliably measure 

the movement of all of these segments with six degrees of freedom, additional 

auxiliary sensors such as GPS will probably need to be incorporated into the sensor 

fusion scheme.  

The work on rugby union goal kicking is also on-going, with a number of new studies 

planned that will expand knowledge of kicking performance. The data collected for 

this thesis is expected to produce several more publications, and will also form the 

foundation of future research. The next aim is to investigate how elite technique 

differs to that in other populations such as youth, amateur level kickers and non-

kickers. Technique analysis at different levels of skill may reveal unforeseen key 

performance indicators, or rule out those which were initially assumed. It will also be 

very insightful to test these groups with more extensive protocols that involve more 

environmental factors such as fatigue, stress and variability in kicking distance and 

target direction. Furthermore, understanding kicking at different age levels may also 

help us to create talent identification tools and coaching methods which optimize skill 

acquisition by incorporating training techniques appropriate for different stages of 

physical and mental development. It will also be important to investigate the role of 

strength and conditioning in improving kicking performance and reducing injury risk.  

As discussed in the Introduction section, full-body biomechanical analysis is on the 

horizon for outdoor analysis of sports. Therefore, field testing is the ultimate goal for 

the work in both cycling and rugby union goal kicking. Future directions for cycling 

include developing innovative ways of validating outdoor measurements. A rotary 

encoder system could be developed to benchmark crank angle data from wireless 

IMMSs while out on the road instead of in a laboratory as was done for this project. 

Although it may be possible for a short stretch of road with state-of-the-art outdoor-

enabled optical systems, validating body posture data from IMMSs on the road with a 

gold-standard technology remain a daunting challenge. Nevertheless, developments 

in three-dimensional markerless motion capture systems may make it feasible in the 

near future to perform such a validation with cameras on a moving vehicle. Rugby 

Stellenbosch University  https://scholar.sun.ac.za



149 

 

goal kicking analysis, on the other hand, is already possible to validate with IMMSs 

using outdoor enabled stereophotogrammetry and the next phase of the rugby project 

will include efforts to reproduce the optical motion capture analysis (e.g. approach 

speed, timing and acceleration) using IMMSs. Outdoor kicking experiments would 

also provide us with valuable additional information about the outcome of a kick as 

well as the distance travelled by the ball. This is crucial for determining a link 

between technique, performance variables and the eventual outcome (goal success or 

failure). 

Lastly, one of the major future directions in quantitative movement analysis capture 

is advanced analytical tools for extracting nonlinear features from complex datasets. 

This is crucial for improving the understanding of human movement, particularly in 

terms of optimizing movement function. Therefore, the aim is to employ state-of-the-

art computational modeling techniques such as musculoskeletal modeling and 

machine learning algorithms to provide deeper insights into the underlying 

mechanisms of sports performance and injury. By including electromyography and 

force data to the kinematic measurements covered in this thesis, we may be able to 

develop sport-specific musculoskeletal models for cycling and goal kicking that 

reduce soft tissue motion artifacts, identify performance or injury markers on the 

structural biomechanics level or find optimal movement techniques through 

simulation experiments. Machine intelligence methods such as artificial neural 

networks and genetic algorithms also hold the potential for extracting nonlinear 

features in movement data which are inaccessible using traditional statistical analysis 

methods. The current analytical tools are just not suitable for investigating the multi-

segmental, time-dependent patterns of movement underlying phenomena such as 

physical coordination and (more broadly) talent. However, artificial intelligence may 

hold the key unlocking the potential of biomechanics datasets. 

This thesis provides the groundwork for realizing these ambitious goals, which 

ultimately depends on reliable measurements and sufficient knowledge of movement 

to effectively and efficiently address more important research questions in the future. 
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