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Abstract 

The Okiep copper district in the north-western corner of South Africa is a region that has been mined for 

over 150 years. Most mining operations have ceased, but years of mining has left the area scattered 

with abandoned mining sites. Acids (as used in ore processing) together with acid mine drainage 

generated from tailings exposure, collectively referred to as AMD hereafter, are a contamination risk to 

water resources and the biodiversity of this arid area. 

This study focused on an abandoned copper processing pond located close to the town of Nababeep. 

The leaching pond is unlined and has been excavated in the shallow colluvial soils. The natural soils of 

the area are shallow (60 cm) (WRB – Arenosol; SA – Oakleaf). Formations of corroded granite-gneiss 

boulders are an indication of the corrosiveness of the AMD collecting in the pond. The AMD was 

collected from the pond in the dry season at its most concentrated form and the AMD had exceptionally 

high concentrations of Al (26.9 g/l), Fe (42.9 g/l), Mg (20.5 g/l), Cu (3.8 g/l) and Mn (3.4 g/l). Melanterite 

(FeSO4·7H2O), a soluble ferrous compound, was found to play an important role in the immediate 

release of Fe and sulfates. 

The pristine soils have a sandy texture (2–5.2 %clay). The minerals detected in the clay phase include 

illite, kaolinite, montmorillonite and quarts. Pristine soils show some degree of contamination with low 

pH (4.38–4.77) and high Cu and sulfate contents. Soils located in the processing pond, which have been 

exposed to AMD for an extended period of time, showed poorly crystalline phases to be present 

(indicated by a broadening of the XRD peaks for clay minerals). Saturation indices (SI) were determined 

for saturated paste extracts of the pond soils and the obtained SI values support the notion of 

dissolution of silicate clays, as the obtained SI values ranged between –1.3 and –11.77 for illite and –

4.76 to 0.58 for kaolinite. Jarosite, a new phase, formed in the contaminated soil and is a sink for K.  

Long term weathering experiments of pristine soils exposed to AMD indicated that clay minerals are 

significantly weathered and altered, which was identified by observing the broadening of the clay XRD 

peaks. Fourier transform infrared (FTIR) spectra were generated by scanning clay samples of the 

weathered soil. Amorphous phases were confirmed by structured water bands with wavenumber values 

of 3700 and 3300 cm−1 for acid treated soil. Micrographs showed a more amorphous and corroded 

morphology in the acid treated soil.  

Metal retention experiments were conducted by exposing the pristine soil to AMD repeatedly. Iron was 

the predominant metal attenuated in the soil. Metals such as Al, Mn, Na, K, Ca and Co were released by 

the soil into solution. Removal of Si is associated with the dissolution of clay minerals. The pristine soil 

shows limited capacity to neutralize acidity and low capacity to retain metals when leached with AMD. 

Metals were predominantly extracted in the water soluble phase of the long term weathering 

treatments. Aluminium was the most mobile fraction, being extracted predominantly from the water 

soluble fraction (2035 mg/kg). Exchangeable and acid soluble fractions did not retain significant 

quantities of metals. In the soil from the processing pond, the reducible fraction had a high 

concentration of reducible Fe (21175 mg/kg) and Si (3070 mg/kg). The reducible fraction also had the 

highest concentration of Cr (15.85 mg/kg), Cu (41.53 mg/kg), Pb (8.0 mg/kg) and Zn (10.65 mg/kg) 
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compared to the other fractions of this soil. For the control experiment, the concentration of Cu (77.3 

mg/kg), Pb (10.8 mg/kg) and Zn (24.1 mg/kg) were higher than contaminated soil yet lower for Cr (6.05 

mg/kg). From these experiments, it can be concluded that the pristine soils studied have a limited ability 

to retain heavy metals in the non-bioavailable fraction, and, due to the nature of AMD, they are not 

effective in retaining metals sufficiently. 

The findings of this study suggest that the capacity of these pristine soils to buffer pH and retain metals 

is greatly limited. This could be as a result of (1) the low clay content, (2) the low concentration of 

secondary carbonates and (3) the low pH of the soil. The leaching of AMD from the pond is thus not 

regulated by the soils and poses a risk for nearby water resources. 
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Uittreksel 

Die Okiep Koper Distrik, geleë in die noord-westelike hoek van Suid-Afrika, is ‘n streek waar mynbou al 

vir meer as 150 jaar plaasvind. Die meeste mynbou aktiwiteite is gestaak, maar jare van mynbou het die 

streek nagelaat met verskeie verlate mynbouterreine. Sure, wat in die prosessering van erts gebruik 

word, en suurmynwater wat gegenereer word uit die mynuitskot (gesamentlik verwys na as 

suurmynwater) is ‘n besoedelingsrisiko vir waterbronne en biodiversiteit in hierdie dorre area. 

Die studie fokus op ‘n verlate koper prosesserings aanleg naby die dorpie Nababeep. Die logingsdam is 

nie geseël nie en is uitgegrawe in vlak, kolluviale grond. Die natuurlike gronde van hierdie area is vlak 

(60 cm) (WRB – Arenosol; SA – Oakleaf). Formasies van weggevrete graniet-gneis rotse in die opgaardam 

is ‘n aanduiding van die bytende potensiaal van hierdie suurmynwater. Suurmynwater was versamel in 

die dam gedurendie die droë seisoen in die mees gekonsentreerde vorm. Die suurmynwater het 

besonderse hoë konsentrasies van Al (26.9 g/l), Fe (42.9 g/l), Mg (20.5 g/l), Cu (3.8 g/l) en Mn (3.4 g/l). 

Melanteriet (FeSO4·7H2O) is ‘n ysterhoudende verbinding en, alhoewel dit oplosbaar is, speel dit ‘n 

belangrike rol in die onmiddelike vrylating van Fe en sulfate. 

Die onversteurde grond het ‘n sand tekstuur (2–5.2 % klei). Die minerale wat in die klei fraksie ge-

identifiseer is sluit illiet, kaoliniet, montmorilloniet en kwarts in. Die ongerepte gronde dui egter op ‘n 

mate van besoedeling deurdat dit ‘n lae pH (4.38–4.77) enhoë Cu en sulfaat inhoud het. Die grond wat 

geleë is naby die prosesseringsaanleg en ook blootgestel is aan suurmynwater vir ‘n verlengde tyd, dui 

daarop dat swak kristallyne fases teenwoordig is in die grond. Dit word bevestig deur ‘n verbreding van 

die XRD pieke van kleiminerale. Versadiging indekse (VI), wat bepaal is in versadigde grondekstraksies 

van die damgrond, ondersteun die oplossing van die silikaatkleie en word gereflekteer deur VI waardes 

wissel tussen –1.3 en –11.77 vir illiet en –4.76 tot 0.58 vir kaoliniet. Jarosiet is ‘n nuwe fase wat gevorm 

het in die besoedelde grond en is ‘n sink vir K.  

Langtermyn verweringseksperimente wat gedoen is deur die onversteurde grond bloot te stel aan 

suurmynwater wys beduidende verwering en verandering van klei-minerale deur verbreding van die 

XRD pieke. Fourier transform infrarooi (FTIR) spektra is op kleimonsters van die verweerde grond 

gegenereer. Amorfe fases is bevestig deur gestruktureerde waterbindings met frekwensies tussen 3700 

en 3300 cm−1 vir suurbehandelde grond. 

Metaal-vasleggings eksperimente is uitgevoer deur herhaaldelik die onversteurde grond aan die 

suurmynwater bloot te stel. Yster is die metaal wat hoofsaaklik in die grond vasgehou is. Metale soos Al, 

Mn, Na, K, Ca en Co was vrygestel in oplossing deur die grond. Die vrylating van Si deur die grond word 

geassosiëer met die oplossing van kleiminerale. Die onversteurde grond toon beperkte vermoë om suur 

te neutraliseer en metale te bind in die grond wanneer dit met suurmynwater geloog word. 

Metale was hoofsaaklik ge-ekstraëer in die wateroplosbare fase vir die langtermyn 

verweringsbehandelings. Aluminium was die mees mobiele fraksie wat ontrek is van die water oplosbare 

fraksie (2035 mg/kg). Uituilbare en suuroplosbare fraksies het nie ‘n groot hoeveelheid metale vasgehou 

nie. Gronde wat versamel is naby die prosesseringsdam het die hoë konsentrasies  vanFe (21175 mg/kg) 

en Si (3070 mg/kg) in die gereduseerde fraksie gehad. Die reduserende fraksie het ook die hoogste 
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konsentrasie van Cr (15.85 mg/kg), Cu (41.53 mg/kg), Pb (8.0 mg/kg) en Zn (10.65 mg/kg) gehad in 

vergelyking met ander fraksies in die grond. Vir die beheer eksperiment was die konsentrasie van Cu 

(77.3 mg/kg), Pb (10.8 mg/kg) en Zn (24.1 mg/kg) hoër as in die besoedelde grond en laer vir Cr (6.05 

mg/kg). Dus kan daar van hierdie eksperimente afgelei word dat die onversteurde grond beperkte 

kapasiteit het om swaar metale in grond vas te hou in die nie-biobeskikbare fraksie. As gevolg van die 

aard van die suurmynwater, is die grond nie voldoende om die metale effektief in grond te behou nie. 

Die bevindinge van hierdie studie dui daarop dat die kapasiteit van die ongerepte grond om pH te buffer 

en metale in grond te behou baie beperk is. Dit kan toegeskryf word aan die lae kleiinhoud, lae 

konsentrasie van sekondêre karbonate en die lae pH van die grond. Die loging van suurmynwater van 

die logingsdam is dus nie gereguleer deur die gronde nie en stel die naasliggende waterbronne in 

gevaar. 
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Introduction 

Acid mine drainage (AMD) is the acidic metalliferous solution emanating from metal- and coal-mines. 

The generation of AMD is associated with the oxidation of sulfide minerals, especially pyrite (FeS2). 

Mining processes expose the ore rock to atmospheric conditions where the combination of moisture, 

oxygen and microbes accelerate the oxidation of sulfide minerals. A very small fraction of ore is actually 

extracted for economic use. During the extraction process, several tons of gangue mineral material 

called tailings, which contains residual sulfide minerals and possesses a high surface area, are generated. 

This very fine material is usually stored in what is known as tailings dams, which are vast constructions 

that are highly exposed to the atmosphere. This exposure, along with the increased reactive surface 

area of the fine material, further enhances the oxidation of residual sulfide minerals and the subsequent 

release of the AMD into the environment from these tailings dams. The generation of AMD from 

processed tailings is a process that continues for many years, often long after the closure of the mine(s) 

which produced the tailings. The oxidation of these sulfide minerals also release the metals contained 

within them in a soluble form. The high mobility of these metals in an acid medium such as AMD makes 

them prone to dispersion and diffusion, away from their source into surrounding aquatic systems, such 

as streams and rivers, where they have detrimental effects on aquatic ecosystems. Heavy metals are 

toxic and harmful to fauna and flora. In addition to this generation of acidity from mine tailings, some 

processing techniques used during mining involve the addition of acids in order to leach metals into 

solution. When these processing techniques are not conducted in a confined environment, process acids 

(usually sulfuric acid) contribute further to the acidity of the already acidic leachate generated from 

tailings oxidation. In this study, the term AMD is therefore used to represent both the acidic drainage 

emanating from oxidation of sulfide minerals as well as the contribution from sulfuric acid added during 

ore processing techniques. 

Located on the west coast of South Africa is the region called Namaqualand, which is well known for its 

mining heritage. This is an arid region in the Northern Cape province of South Africa. Within the 

Namaqualand region is the Okiep Copper District where copper was discovered in 1685 (Cairncross, 

2004). Mining was significantly inhibited by both the harsh conditions and the distance from the then 

Cape colony, and commercial mining only commenced in 1852. This initiated mining activity near the 

towns of Springbok, Nababeep, Okiep, Concordia and Carolusberg, which continued for over a century. 

Today, major mining has ceased, with only isolated operations of ore processing still occurring. The 

extended period of mining has left the area with numerous remnants of the years of exploitation. In an 

unpublished document of the Okiep Copper Company, 41 different mining sites are listed in the region. 

The list includes mines, tailings heaps, smelter sites and treatment plants, sites which all require 

rehabilitation. The mining practices used in the area at the time were in use long before the drafting and 

subsequent enforcement of any environmental protection legislation, which is mandatory practice 

today. This resulted in poor to non-existent pollution prevention strategies being employed, for 

example, the use of unlined tailings dams and ore processing plants, and today these sites serve as point 

sources of contamination. Soil contamination is evident in many of the derelict mining areas, with Cu 

concentrations as high as 14% having been observed in some soils (Clarke et al., 2014). 
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The area is arid and receives 50–250 mm of rainfall per annum (Desmet, 2007). The aridity of the area 

adds an important dimension to the hydrological flow of contaminants in that conditions are highly 

evaporative. Evaporation leads to the concentration of contaminated solutions. Soluble metal salts 

precipitate out of solution, but heavy rainfall events can cause mobilization and dissemination of the 

salts and metals into the environment. The soil is a major pathway between the point source of 

contamination and the groundwater receptor and it is therefore important to understand the potential 

of the soils to buffer and attenuate metals in contaminated waters. Soils in this arid region are poorly 

developed and shallow, and thus their metal retention capacity is likely to be limited. The area has no 

surface water supplies, and therefore the area relies predominantly on its groundwater supply 

(Pieterson et al., 2009). In a report by the Water Research Commission of South Africa, Pieterson et al. 

(2009) stated that the projected water demand would not meet the available yield. The protection of 

water resources is therefore of utmost importance, since local communities, especially in rural areas, 

are dependent on these groundwater resources. 

Very little work has been conducted on the impact that Cu mining activities have had on the soil and 

water systems of the Namaqualand region. A geo-environmental assessment was conducted by Hohne 

& Hansen (2008) to specifically investigate the environmental impact of mining activities at the major Cu 

mining locations. In this report it is recommended that further work has to be conducted on the soil and 

water conditions to assess the mobility of metals. Contaminant transport in arid systems is poorly 

understood, as the effects are not always immediately evident. However, once contamination has 

commenced, these contamination sources can continue to have a detrimental effect on the surrounding 

environment for thousands of years (Kempton & Atkins, 2000). This could mean that the severity of the 

problem may be somewhat misjudged, and that the pollution of the mining sites has not yet been 

experienced in its full capacity, with the full extent of the detrimental effects on the environment not 

accurately predicted. 

Protecting the environment from pollution is important especially in sensitive ecosystems with high 

biodiversity. Namaqualand falls under the Greater Cape Floral Kingdom and is one of only two desert 

regions recognized as a global biodiversity hotspot. The specific region of Namaqualand falls under a 

subdivision of the Succulent Karoo which contains about 3500 species of flora, of which 25% are 

endemic (Desmet, 2007). The flora of the area is a significant tourist attraction, especially during spring 

when the area boasts a spectacular scene of blooming flowers. Therefore, understanding the impact of 

AMD on the soil is also important from an ecological perspective. 

In this study, a derelict ore processing pond located near the town of Nababeep was investigated. The 

site was not fenced or barricaded and thus was easily accessible it. The site is situated north of the town 

where Cu was mined. Very little information is available on how the ore was treated and processed in 

the pond. It is suspected that the site of investigation was a copper leach plant as it has terraces 

interconnected with pipes. This means that although the ore contains pyrite and other sulfide minerals, 

further acid would have been added to solubilize the metals. This enhances the threat to the 

environment and the spreading of the toxicity further into soils and water sources of the area. It is 

unclear when operations ceased at the processing pond, but anecdotal reports suggest it was in 1972. 

The contamination footprint of the pond is large and metals are accumulating upslope from an 
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ephemeral stream. This stream runs through the town and is a water source for local livestock. The site 

is also not fenced and the public has direct access to the pond. The location itself is wasteland and no 

vegetation is present in the contaminated region. 

The overall aim of this study is to investigate the impact AMD has on soil mineralogy and metal mobility 

in order to determine the role that the Nababeep soils play in buffering additions of acidity and metals 

to the environment. To achieve the overall aim the following objectives are outlined: 

1. Characterize the effects of long term exposure of the soils to acid mine drainage by comparing 

the chemical and mineralogical composition of contaminated soils to nearby pristine soils. 

2.  Assess the changes that occur in mineralogy and mineral equilibria when pristine soils come in 

contact with AMD. 

3. Evaluate the soil’s capacity to buffer the acidity of the AMD and attenuate metals to prevent 

further leaching into the environment 

4. Determine the mobility and bioavailability of the metals in the soils that have been exposed to 

AMD for an extended period. 

The structure of this thesis is arranged to determine each of the above objectives systematically. The 

first chapter, provides a physical and historical background into the area and reviews the latest 

literature on the mechanisms of AMD generation. This chapter also characterizes the physical, 

mineralogical and chemical composition of soils directly in contact with AMD, as well as nearby pristine 

soils. 

The second chapter is an investigation into the weathering effect that AMD has on the soil. This was 

achieved by conducting laboratory weathering experiments over an 8 month period after which the 

mineralogical and chemical compositions of the soils were assessed. 

In the third chapter, the mobility of the metals associated with AMD, are evaluated. The objective is to 

assess the capacity of the pristine soil to buffer pH and attenuate metals upon being contaminated with 

AMD. The partitioning of metals in the soil was investigated by sequential extraction to determine 

mobile and bioavailable fractions of these metals in the soils exposed to AMD for an extended period of 

time. 
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Chapter 1. Characterization of Soils and 

Acid Mine Drainage 

1. Introduction 
This study focuses on a site that shows clear signs of contamination from a tailings pond located close 

the town of Nababeep in the Namaqualand region of South Africa. In this chapter the aim will be to 

firstly characterize AMD collected at the tailings pond. Secondly, the natural soils in close proximity to 

the leaching pond that has been contaminated with the AMD will be characterized. This will be done 

with focus on soil chemistry and mineralogy. To assess the change or influence of the AMD, pristine soils 

from the same area will characterized in a similar fashion. The Namaqualand region has a long mining 

history and this makes it a unique site to investigate. Background information on the physical setting, 

climate, vegetation, geology and history of the area will be provided next, followed by a review on the 

formation of AMD. 

1.1. Background information 

1.1.1.  Location and Physical Setting 

The Namaqualand region is located along the north-west coast of South Africa (Figure 1.1). The region is 

bounded by the Atlantic Ocean in the west and the plains of the Bushmanland in the east, which forms 

the western plateau of the subcontinent (< 900 mamsl). In the west, there is a strip of coastal plain 

which is comprised of marine sands (< 300 mamsl) and moving eastwards these sandy plains give way to 

the western escarpment of South Africa, which is formed by the Kamiesberg mountain range. The 

Kamiesberg range is composed of granite gneiss rock formations. An undulating landscape forms the 

intermediate region from the foothills of the Kamiesberge to the interior. The east to west distance of 

Namaqualand is less than 300 km. To the south the sandy plains transition into a plain covered with 

gravel or pebbles which is known as the Knersvlakte. The Knersvlakte forms the southern boundary of 

the Namaqualand region which is also the border between the igneous rock formations of Namaqualand 

and the sedimentary shale and sandstones of the Cape Fold Mountains (Desmet, 2007). The Olifants 

River defines this southern border whilst the northern border stretches to the Orange River, which runs 

through the region known as the Richtersveld. The Orange River also forms the border between South 

Africa and Namibia. 

There is a wide variety of soil types found in Namaqualand. In the northern part, gypsic and petrogypsic 

soils occur, while aeolian sands are located closest to the coast. The coastal sands are grey while sands 

further inland are red, with an intermediate zone of yellow sands occurring in between. In the higher 

relief areas of the interior, lithosols and shallow red soils on duric horizons are found. In the south, a 

wide variety of soil types are found which are influenced by other parent materials such as dolerite and 

alluvial deposits. A complete overview of the soils of the Namaqualand region is given by Francis et al. 

(2007). Heuweltjies (hillocks) are common in all regions of Namaqualand. 
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Figure 1.1: Map of South Africa indicating the extent of the Namaqualand region. Inset shows the bioregions of Namaqualand (modified from Cowling et al. (1999)) as well as 
the location of the study site and nearby towns.
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The specific study site is located approximately 5 km north of the town of Nababeep (Figure 1.1) in a 

valley that runs in a north-south direction. The elevation is approximately 770 mamsl and the closest 

distance to the coast is 73 km. It is therefore situated not quite in the interior, but in the undulating 

intermediate region of the Kamiesberg. The soils found in this area are shallow red sands, which are 

derived from the granite gneiss (Clifford & Barton, 2012). 

1.1.2. Climate and Vegetation 

The Namaqualand region is arid with predominantly winter rainfall at the coast and summer rainfall in 

the interior (Desmet, 2007). Rainfall steadily increases towards the inland areas, ranging from 50–70 

mm per annum at the coast to 150–300 mm per annum upon moving further inland (Kelso & Vogel, 

2007; and authors therein). Aside from this east-west rainfall gradient, a gradual decrease in rainfall 

from south to north is also observed in the area (Desmet, 2007).  

Climatic data specific to the study site is provided by weather station located in the town of Springbok, 

situated approximately 13 km south east of Nababeep. The average monthly maximum and minimum 

temperatures, recorded between the years 1990 and 2014, are provided in Figure 1.2. The warmest 

month of the year is February, which has an average maximum monthly temperature of 30°C. The 

coolest month is August, with an average monthly minimum temperature of 7.8°C. Rainfall data was 

recorded in same time period as the temperature data and is provided in Figure 1.3. The highest annual 

precipitation occurs in the months of May, June, July and August, typically coinciding with austral winter. 

The average annual rainfall for the study area is 228.2 mm per annum. Older data for the town of Okiep, 

situated close to the sampling site (approximately 10 km East), was obtained from the Department of 

Water Affairs and Sanitation. The monthly precipitation of Okiep is depicted in Figure 1.3. This rainfall 

data for Okiep was recorded from 1957 to 1985 and although the rainfall is on average lower, the same 

pattern as described before for Springbok is observed. The average annual rainfall for Okiep recorded 

during this period (1957–1985) was 167 mm per annum. An annual evaporation rate of 2879 mm per 

annum was measured in Okiep. This high evaporation rate, which greatly exceeds the precipitation, 

highlights both the aridity and water scarcity of the area.  
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Figure 1.2: Average maximum and minimum Monthly Temperatures in Springbok 

 

 
Figure 1.3: Average Monthly Precipitation for the towns of Springbok and Okiep 
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biodiversity. Namaqualand constitutes one quarter of the Succulent Karoo biome and contains 3500 
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region is divided into 7 bioregions (Figure 1.1). The location where this study will be conducted is 
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(SANBI) the study area falls under the Namaqualand Klipkoppe Shrubland vegetation group, which again 

falls under the Namaqualand Hardeveld (Mucina et al., 2006). This specific vegetation type consists of 

small- to dwarf-size shrubs with either ericoid or succulent leaves. Succulents are found within the 

cracks occurring, whilst 1–3m tall non-succulent shrubs are found at the bottom of steep rock sheets 

where water from runoff collects.  

1.1.3. Geology 

The geology of the Nababeep region is comprised of granite gneiss. Reid & Barton (1983) characterized 

the geology of the whole Namaqualand into different domains and suites. The area of investigation falls 

under the Okiep domain which is then further classified into the syn-tectonic Little Namaqualand suite. 

The dominant rock forming minerals present in this suite are primarily feldspars, biotite and hornblende.  

The copper ore found in the Okiep Copper district occurs mostly in the Koperberg suite. The Koperberg 

suite consists of basic to intermediate rocks which intrude into the granitic gneisses that dominate the 

Namaqualand region. These host rocks for the copper ore consist of jotunite, anorthosite, biotite diorite 

as well as hypersthenic rocks that range from leuconorite to hypersthenite (Clifford & Barton, 2012). 

Kisters et al. (1996), and authors therein, describe these intrusions as small and irregular, dyke-, sill- or 

plug-like basic formations in which Cu has mineralized. 

The predominant Cu minerals that occur in the ore body are chalcopyrite (CuFeS2), bornite (Cu5FeS4), 

chalcocite (Cu2S), malachite [Cu2CO3(OH)2] and magnetite (Fe3O4) (Personal communication, Mr Basie 

Fourie, chief executive officer (CEO) of the O’kiep Copper Company). Cairncross (2004) also describes an 

ore that was collected at the mines near Okiep and Nababeep which contains chalcopyrite (CuFeS2), 

chalcocite (Cu2S), fluorite (CaF2), calcite (CaCO3) and gypsum (CaSO4·2H2O). 

1.1.4. Historical background 

Copper was discovered by Dutch colonials in 1685 in the Northern Cape province of South Africa during 

an expedition led by Simon van der Stel. They discovered deposits of malachite (Miller, 1995) in an area 

located near the present-day towns of Okiep and Springbok. After this discovery, little development 

took place, mostly because of the remoteness and harsh conditions of the area and for many years the 

area was only prospected and explored (Cairncross, 2004). 

The beginning of commercial mining in the area only commenced once The South African Mining 

Company started mining operations in 1846 (Smalberger, 1975). In 1852, a company called Phillips and 

King purchased the farm upon which the town of Springbok is located today. Phillips and King owned the 

Spektakel, Nababeep and Okiep mines which were later taken over by the Cape Copper Company. 

Another company called Namaqua Copper Company had mining operations at Concordia, an area north 

east of Okiep. In 1919, the Cape Copper Company ceased their operations in the area due to the post 

First World War economic slump. In 1939, the Okiep Copper Company (est. 1937) acquired the sites of 

both Cape Copper Company and later that of Namaqua Copper Company. Development throughout the 

20th century took place at many mining sites in the area. Namaqua Copper Company commissioned a 

flotation plant, and material that could not be smelted or treaded by flotation was leached from the 

tailings dumps (Cairncross, 2004; and authors therein). During the 20th century, 27 mines were operated 
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until the last mine (Carolusberg) closed down in 1998. At that time the Okiep Copper Company was 

managed by Goldfields of South Africa and then bought out by Metorex. 

Currently, most of the mines are inactive with unlined mine dumps and slimes dams remaining as 

evidence of many years of exploitation. However, the advantage of such abandonment is that the 

impact of long-term exposure of the environment to acid mine drainage (AMD) can be investigated. 

Little is known about the history of the town of Nababeep where the site of investigation is located. This 

is because the town was controlled by the mine and consequently all documented history was 

destroyed when the South African Copper Company ceased operations and the Okiep Copper Company 

took over on May 29, 1937 (Smalberger, 1975). This lack of information makes the management of the 

contaminated areas difficult, and, as a result, simplistic remediation techniques are applied, such as 

liming for example (Personal communication, Mr Basie Fourie, CEO of the O’kiep Copper Company). The 

sites are still managed by Okiep Copper Company, who have an interest in barricading the contaminated 

sites in order to prevent people and livestock from being exposed to contamination. Many of the sites 

are in close proximity to villages and one of the problems faced is theft of the fences. The specific site of 

investigation is located approximately 5 km from the town of Nababeep, and has no barrier preventing 

outsiders from reaching and being exposed to the contamination source. 

Lastly, it is important to mention that at the investigation site, the mineralogy of the Cu ore is such that 

it contains pyrite, which acts as a source of sulfuric acid generation. Another source of acid is as a result 

of the introduction of sulfuric acid to the ore in order to leach the metals out for extraction purposes. 

This older mining practice was also carried out in the district (Cairncross, 2004), of which the 

contaminated site of investigation could be a possible example. Sampling was conducted downslope 

from the site, which was terraced and interconnected by overflow pipes. 

1.1.5. Review on the generation of Acid Mine Drainage (AMD) 

Acid mine drainage (AMD) is a term used to describe the discharge water that emanates from 

abandoned mining sites, which is both highly acidic (very low pH) and contains high concentrations of 

heavy metals and toxic elements. Upon release into the surrounding environment, these acidic, metal-

laden waters causes an instant threat to biota and ecological balance. They also result in contamination 

of surface and groundwater, as well as soils (Peppas et al., 2000).  

The occurrence of AMD is associated with the presence of sulfide (S2-, S-)-bearing minerals in potentially 

both ore and mine tailings exposed to oxygen and water. The oxidation of sulfide minerals leads to the 

formation of acidic sulfate (SO4
2-)-rich drainage. There are several reactions by which the acidity is 

generated. The presence of particular metals at particular concentrations will depend on the type and 

amount of sulfide mineral oxidized. The key components necessary for the formation of AMD are the 

sulfide minerals, water or atmospheric humidity and an oxidant such as oxygen (O2). The generation of 

acid sulfate waters is a process that occurs naturally, but mining operations can significantly enhance 

this process due to the increased exposure of the sulfides to the atmosphere through mining activities 

(Akcil & Koldas, 2006). Exposure is further increased during the crushing of ore rock into fine particles, a 

process necessary for the extraction of valuable metals from the ore. As these minerals are crushed, 

reactive sites such as grain edges and corners, defects, solid and liquid inclusion pits, as well as 
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cleavages and fractures, are created and subsequently exposed, and it is on these reactive sites where 

oxidation is most focused (Mckibben & Barnh, 1986). The source of AMD is not solely due to processed 

rock dumps, flotation tailings dams and concentrate stockpiles, but underground and open pit mining 

works also contribute to AMD generation.  

As mentioned, the origin of AMD is the oxidation of sulfide minerals, the most common of which is 

pyrite (FeS2). Table 1.1 indicates the names and formulae of the minerals associated with AMD (Gray, 

1997). Pyrite is found in coal fields and is also associated with many other ores including those of Zn, Pb, 

As, U, Au and Ag.  

Table 1.1: Minerals associated with the generation of AMD (adapted from Gray (1997)). 

Mineral Composition 

Arsenopyrite FeS2·FeAs 

Bornite CuFeS4 

Chalcocite Cu2S 

Chalcopyrite CuFeS2 

Covellite CuS 

Galena PbS 

Millerite NiS 

Molybdenite MoS2 

Pyrite FeS2 

Pyrrhhdite Fe11S12 

Spharerite ZnS 

 

The reaction by which pyrite is oxidized was investigated by Singer & Stumm (1970) and is given in 

reaction 1: 

        
 

 
           

                                             

The buffering capacity of the waste rock is usually not sufficient to neutralize the acid (Tutu et al., 2008). 

The Fe(II) can be further oxidized to Fe(III) through reaction 2: 

     
 

 
           

 

 
                                                            

The Fe(III) can then further oxidize pyrite as described by reaction 3: 

                                
                             

The stability of Fe(III) depends on the pH. According to Tutu et al. (2008), the Fe(III) remains in solution 

at pH lower than 3.5, but at higher pH values the Fe(III) precipitates as Fe(OH)3 through hydrolysis, as 

shown in Reaction 4: 
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This reaction is described by Stumm & Morgan (1996). The specific hydrolysis given in reaction 4, is 

however only one hydrolysis reaction and many other species can form depending on the conditions - 

for example partially hydrolyzed Fe(III). Each reaction has its own equilibrium constant. Furthermore it 

has been reported that the precipitation of Fe(OH)3 acts as a buffer to keep the pH between 2.5 and 3.5 

(España et al., 2005). This phenomenon has two opposing effects. The first effect is that the acidity 

increases the mobility and toxicity of the metals whilst the second is that the precipitation of Fe(OH)3 

results in co-precipitation and adsorption of the metals in solution. Tutu et al. (2008) state that the 

second precipitation effect is more prevalent. Mcgregor et al. (1998) found that metals such as Ni, Co, 

Cu, Cd and Zn co-precipitated out with goethite, a ferric (oxy)-hydroxide, which forms as per reaction 5: 

                                                                                                       

In summary, the reactions that govern AMD are sometimes given in stepwise succession, where step 

one is the pyrite reaction with oxygen and water (reaction 1), and step two is the oxidation of Fe(II) to 

Fe(III), step three involves the hydrolysis reactions given in reactions 4 and 5 and step four is the 

additional oxidation of pyrite by Fe(III). Reactions 3, 4 and 5 all contribute to the acidity of the system. 

The reactions above are balanced but they do not have molecular mechanistic or kinetic meaning. The 

rates of these reactions have been investigated by authors such as Singer & Stumm (1970), who found 

that reaction 2 is the rate-limiting step in abiotic conditions. In these systems, however bacteria play a 

major role in the acceleration of acid generation, by catalyzing the reactions that generate AMD. The 

presence of the bacterium, Thiobacillus ferrooxidans has been commonly suggested to accelerate the 

acid generation significantly. This was investigated by Fowler et al. (1999), who found that bacteria 

increased the pH at the surface of the pyrite, which resulted in higher leaching rates. Schrenk et al. 

(1998), and references therein, investigated pyrite oxidation by another acidophilic bacterium, namely 

Leptospirillum ferrooxidans. L. ferrooxxidans exists in environments with a lower pH while T. 

ferrooxidans are found to exist in peripheral slime-based communities with a pH higher than 1.3 and 

temperatures lower than 30°C. It is also reported that T. ferrooxidans affects the precipitation of ferric 

iron but neither species, T. ferrooxidans nor L. ferrooxidans, play a role in direct catalysis at low pH 

values at Iron Mountain, California. In the same study, species of domains Eukarya and Archaea were 

also found in extreme acidic conditions that could contribute to AMD generation. A new species of 

Archaea of the order Thermoplasmales, was investigated by Edwards et al. (2000) that grows at pH 

values of 0.5 and temperatures of 40°C. This species oxidizes iron and is thought to impact iron and 

sulfur cycles substantially (Edwards et al., 2000). 

Johnson (1998) reports of fungi, yeasts and protozoa that exists at lower pH levels although these are 

not the optimum conditions for growth of these organisms, unlike organisms such as acidophiles that 

have an optimum growth rate at pH lower than 3. Due to the complexities of microbial interactions, the 

contribution of specific microorganisms to AMD remains somewhat controversial. Most reports, 

however, agree that microbial interactions significantly increase the rate of AMD formation, up to 106 

times relative to abiotic-only systems. 
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1.1.6. Secondary minerals associated with AMD 

Secondary minerals formed from AMD are dominated by Fe as this is the cation that has the highest 

concentration in most cases. The cause of precipitation of these secondary minerals is listed by Alpers et 

al. (1994) and includes evaporation, oxidation, reduction, dilution, mixing and neutralization. Extensive 

research has been conducted on secondary minerals forming from acid mine waters (e.g. Nordstrom, 

1982; Blowes et al., 1991; Bigham & Murad, 1996; Bigham et al., 1996; Yu, 1996; España et al., 2006; and 

more). Secondary minerals play an important role in the recycling of metals and acidity in surficial 

environments (Hammarstrom & Smith, 2002). 

One of the most common groups of these secondary minerals is ochre deposits. In the context of AMD, 

this refers to iron reprecipitating from solution. Some authors list this only as iron oxyhydroxide 

minerals (Hammarstrom & Smith, 2002). In an extensive description of these minerals, Bigham & Murad 

(1997) list the most common minerals in ochre deposits as goethite (α-FeOOH), ferrihydrite, 

schwertmannite and jarosite. The colours of these minerals are very distinct yellow to reddish brown. 

Ferrihydrite and schwertmannite are poorly crystalline minerals while jarosite is highly crystalline. 

Goethite does exist as a well crystalline material in nature, although specimens that form in AMD are 

short rod like particles (Brady et al., 1986).  

Yu (1996) investigated Fe and Al mineral phases precipitating from acid mine waters by simulating 

equilibrium with the MINTEQA2 computer program, which suggested that ferrihydrite, FeOHSO4, 

gibbsite (Al(OH)3) and AlOHSO4 should precipitate. However, experimental results indicated that only 

ferrihydrate and Al4(OH)10SO4 could be recognized as precipitates at the bottom of the streams and mine 

drainage channels. The conclusion was made that the lack of FeOHSO4 and AlOHSO4 formation occurred 

because the formation of these minerals are kinetically inhibited and that mineral phases forming from 

the solutions cannot be predicted by equilibrium calculations but rather by identification of the actual 

phases present.   

The fact that AMD solutions are often close to saturation with respect to a number of phases makes the 

solutions difficult to analyze. The solutions are mostly filtered through a 0.45 μm filter. A concern that 

was investigated since 1840 (Mill, 1980) is the presence of colloidal material (particles with diameter < 

0.45 µm) that can pass through a 0.45 μm filter along with the filtered solution, but is not actually part 

of the true solution and rather part of  particulate matter. Yu et al. (1999) similarly address the same 

issue with a 0.45 μm filter, but then express concerns over using smaller filters (0.2 μm or 0.1 μm) in 

that it may lead to an underestimation of iron when it precipitates from solution. Yu et al. (1999) made 

the conclusion that filtering with 0.45 μm filters causes insignificant overestimation relative to the 

dissolved iron concentration. 
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2. Materials and Methods 

2.1. Sampling 

The site chosen for the study is an abandoned ore processing site located 5km to the north of Nababeep 

(Figure 1.4). The processing site is situated close to a stream feeding to Nababeep River. Although no 

information was available about the type of ore or ore processing that took place at the site, 

information from Mr Fourie suggests sulfuric acid heap leaching processes were used to extract Cu from 

the ore. This leaching pond is unlined and unfenced. Iron plates were then placed in the impregnated 

solutions for Cu-plating.  Four main sampling locations were chosen for the purpose of the study (Figure 

1.4). These locations were strategically chosen to represent the various extents of contamination by 

AMD. The sample locations are all situated within the same terrain unit, namely, a colluvial toeslope. 

The first site (Nb1) is in the AMD pond which was covered with a silt layer of gangue material saturated 

with water. This appeared to be the base of a leaching pond and the terraces that were interconnected 

can be observed in the lighter region in Figure 1.4, which possesses no observable vegetation. The 

sampling was conducted in May 2013, before the onset of the rainy season. This means that sampling 

was conducted when conditions were at their most dry and that the water in the pond was at its most 

concentrated in terms of its chemistry. At the time of sampling, a salt crust had formed above the 

gangue material and no free water was visible in the lower pond. The AMD was sampled by digging pits 

in the gangue material, thereby allowing the solution in equilibrium with the gangue material to seep 

into these pits. The AMD was collected in both Nalgene® and glass bottles. During sampling, green 

crystals were observed at the base of the gangue-silt material. These crystals formed a hardpan layer at 

approximately 25 cm beneath the surface. 

The other sampling sites are situated progressively further away from the pond. The second (Nb2) and 

third (Nb3) sites are natural soils that are contaminated with AMD and would be saturated with 

contaminated water at the height of the rainy season. Between Nb2 and Nb3, a sample of disintegrated 

granite-gneiss, which had been exposed to AMD, was sampled. The fourth site (Nb4) is a pristine soil site 

located approximately 700 m north of the first sampling site on the same terrain unit (Figure 1.5). 

The soil at site Nb4 was classified according to the South African Soil Classification (Soil Classification 

Working Group, 1991). Three main horizons (top to bottom) were identified as the A, B1 and B2 

horizons, which overlie the solid granite bedrock. For Nb2 and Nb3, soil sampling was conducted at 

different depths where clear morphological differences were observed (Table 1.2). All the samples were 

bagged in soft polyethylene (PE) bags which were sealed in in an attempt to maintain the soil 

equilibrium conditions at the time of sampling.  
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Figure 1.4: Aerial view of the sampling location which comprises 4 sampling sites. 

 

 
Figure 1.5: Pristine soil sampling pit located at sampling site Nb4. 
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Table 1.2: List of samples according to location and horizon sampled. 

Sampling site/Profile Horizon 

Nb1 AMD Pond 

Nb2 Crust 

0-3 cm 

3-20 cm 

20-40 cm 

40-50 cm 

Nb3 Crust 

1-15 cm 

15-30 cm 

Nb4 A 

(Pristine soil) B1 

 B2 

 

2.2. Characterization of Soil Solutions and AMD 

In order to determine the equilibrium conditions in the soil solution, a saturated paste extraction was 

conducted on the soils as described by Whitney (2011). In order to preserve chemical equilibria, the soil 

was not dried or sieved prior the extraction. The pH and electrical conductivity (EC) was measured in the 

paste using a Metrohm 827 pH lab pH meter and a Jenway 4510 Conductivity Meter, respectively. Redox 

potential of extracted solutions was measured by a Metrohm 744 pH meter with a Pt Ag/AgCl electrode. 

The values were adjusted to the Standard Hydrogen Electrode (SHE) as described by Nordstrom & Wilde 

(2005). The extracted solution was also analyzed for metals and sulfur by inductively coupled plasma-

atomic emission spectrometry (ICP-AES) using a Thermo ICAP ICP-AES. The instrument was calibrated 

every day with multi-element, NIST traceable standards and verified through analysis of a separate set 

of NIST standards. The standards are verified after every twelfth analysis in order to verify calibration 

integrity and monitor drift. Dissolved silica was analyzed colorimetrically with the blue ammonium 

molybdate ((NH4)6Mo7O24·4H2O) method. For the pristine soils, anion concentrations were determined 

by ion chromatography (IC) (Dionex®). 

Three samples of AMD were collected from the AMD pond (Nb1) and analyzed. Prior to analysis, the 

AMD samples were filtered through 0.45 μm nylon syringe filters and then diluted with nitric acid 

adjusted water (pH  2) to prevent precipitation of Fe-phases. Diluted samples were analyzed for major 

metals (ICP-AES) and dissolved silica (colorimetric). Due to the excessively high sulfate concentrations, IC 

analysis required extremely high dilution ratios and yielded unsatisfactory results with large anion –

cation balance errors. Therefore, sulfur was determined by ICP-AES and converted to the equivalent 

concentration of sulfate with the assumption that all the sulfur measured in the samples is in the form 

of sulfate. Two additional techniques were used to determine sulfate concentrations. The first is a 

gravimetric BaCl2 test which is based on the fact that BaSO4 is virtually insoluble in water. Briefly, an 

excess amount of BaCl2 is added to a known volume of AMD and the precipitate is then collected and 
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the remaining solution removed. The precipitate is then dried and weighed. The second method used is 

a turbidimetric method used to test the sulfates in solution with the Spectroquant® Sulfate Cell test. 

Although the gravimetric and the turbidimetric methods yielded higher SO4
2− concentrations, the ICP-AES 

method resulted in the best anion-cation balance in all replicates and was thus deemed to be the most 

accurate. 

The pH and electrical conductivity (EC) were determined with a standard 10 g soil to 25 g of distilled 

water ratio. The pH was also determined by a 1:2.5 soil to 1 M KCl solution. 

Equilibrium modeling of both the soil solutions and AMD was conducted using the PHREEQC software 

package (version 2.17.1.4468 by the United States Geological Survey). 

2.3. Mineralogical and chemical characterization 

The mineralogy of the collected soil samples was characterized using X-ray diffraction (XRD) analysis and 

Fourier transform infrared (FTIR) spectroscopy. For the separation of the clay fraction prior to analysis 

by XRD and FTIR, the clay fraction was first dispersed with NaOH in a manner similar to the method used 

by Norrish & Tiller (1976). Firstly, the bulk soil was air dried and sieved through a 2 mm sieve and the <2 

mm fraction was used. Approximately 100 g of sieved soil was placed in a 250 ml bottle. Thereafter, 

distilled water was added to produce a liquid slurry. To this slurry, 1 M NaOH was added in order to raise 

the pH. Sodium carbonate (Na2CO3) was then added to raise the pH to a final value of 9.5. This slurry 

was then shaken for 3 to 4 hours.  

After shaking, the slurry was transferred to large 3 l jar, which was filled with distilled water to form a 

suspension. This suspension was stirred thoroughly and was allowed to stand for 16 hours. Thereafter, 

the uppermost part of the suspension was siphoned off to a depth of 10 cm. A single performance of 

this procedure was found to be sufficient for separating the clay fraction in the pristine soils. With the 

contaminated soils, however, the ionic strengths of the solutions were too high and this procedure had 

to be repeated in order to obtain dispersion of the clay. The siphoned-off part of the suspension was 

settled out (via flocculation) by lowering its pH to between 5 and 7 with the addition of 1 M HCl. 

Magnesium chloride (MgCl2) was added to enhance flocculation. Once the clay suspension had settled 

out, the clear supernatant above the clay slurry was siphoned off and discarded. The remaining slurry 

was then split into two equal parts.  

The first half of the suspension was saturated with 0.5 M MgCl2 while the second half was saturated 

with 1M KCl to promote Mg and K saturation respectively. The slurries were shaken by hand and 

centrifuged. The supernatant was discarded and the respective samples were again treated with 0.5 M 

MgCl2 and 0.5 M KCl and centrifuged. Once the supernatant was discarded, the excess salt was removed 

by the addition of a 1:1 methanol-water mixture to each sample, after which they were shaken and re-

centrifuged. 

The slurries were poured into dialysis tubing and put into a dialysis bath of distilled water. The water 

was replaced at frequent intervals until the water bath tested free of chlorides (upon addition of 0.1 M 

AgNO3). Thereafter, the clays were dried in evaporation basins and then mortared to fine powders. The 

powders were analyzed by XRD analysis. For those clays where a 14 Å peak was observed on their 
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diffractograms, those clays had to be tested for montmorillonite by saturation with ethylene glycol (EG). 

Mosser-Ruck et al. (2005) report that the procedures for saturation with EG should be standardized 

since there are many reports using different procedures. Liquid EG solvation was performed in this study 

by adding EG onto dry samples until the clay formed a paste. The samples were solvated at room 

temperature (25 ˚C) for 24 hours and thereafter the powder was analyzed.  

The clay powders were analyzed at iThemba Labs, Somerset West, South Africa. The X-ray 

diffractometer was a Bruker AXS (Germany) with Cu-K-alpha radiation (1.5406 Å) and a LynxEye 

detector. The measurements were conducted with a tube voltage of 40kV, a tube current of 40mA, and 

a step size of 0.027 degrees in the 2 theta range. The angle ranges was 3–50 degrees 2θ. 

Infrared spectra (IR) were generated using a Thermo Nicolet NexusTM FTIR spectrophotometer. The air-

dry clay fraction was used and discs were pressed using spectrographic grade KBr. The KBr was  dried 

overnight at 100 °C. A 1% w/w KBr disc was made by weighing 2 mg of sample and 200 mg of KBr. The 

two components were mixed by mortar and pestle until uniform colour appeared. A 13 mm pellet was 

then pressed at 5–8 tons of pressure with a hydraulic press. A blank KBr pellet was also pressed for 

background spectra. The spectra were generated between wavenumbers of 4000 and 400 cm−1 with 128 

co-added scans per run at a resolution of 4 cm−1 and analyzed with OmnicTM 8.1 software suite. 

The total elemental composition of the soils (<2 mm) was determined by X-ray fluorescence (XRF) 

spectrometry, using a handheld Niton® XL3t GOLDDTM++ analyzer by Thermo Scientific. 

2.4. Textural Analysis  

The soils were all sieved with a 2 mm sieve and the fraction remaining on the sieve was weighed to 

determine the percentage of coarse fragments. Sand grades were determined through sieving while silt 

and clay fractions were determined on the pristine soils with the pipette method as described by the 

Soil Classification Working Group (1991). 

3. Results and Discussion 

3.1. Field observations in parent material 

The leaching pond showed extreme evidence of rock weathering. For example, the boulders within the 

area of the pond had mushroom (Figure 1.6a) or column (Figure 1.6b) forms as a result of the aggressive 

weathering caused by the AMD. A sample of this weathered granite was milled and analyzed by XRD to 

determine the phases present (see Figure D2 in Appendix D for the XRD pattern of this weathered 

granite). The main phases identified were quarts, microcline, albite and jarosite. The absence of 

amphibole and biotite, both of which are common components of the granite-gneiss, suggests that 

these minerals have been weathered away, which is a reasonable deduction, considering their high 

susceptibility to weathering relative to the other phases present such as quarts for example (Goldich, 

1938). 
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Figure 1.6: Photos of leaching pond with clear evidence of deterioration of granite rock formations in the form of (a) 

mushroom and (b) column forms. 

 

3.2. Characterization of AMD 

The concentrations of the various species in the sampled AMD, are provided in Table 1.3. A pH of 1.5 

and an average EC of 24.2 mS/cm was measured. Exceptionally high metal concentrations were 

measured for Al (26.9 g/l), Cu (3.8 g/l), Fe (42.9 g/l), Mg (20.5 g/l) and Mn (3.45 g/l). Other notably high 

metal concentrations were Ca (230 mg/l), Ni (340 mg/l) and Zn (1688 mg/l). To put these values into 

context, they can be compared to a set of published guidelines for aquatic systems, which indicates 

what the maximum and/or target concentrations for these different chemical species should be in a 

particular context. Examples of these guidelines include drinking water, water suitable for industrial 

usage, domestic usage, and recreational usage as well as for pristine waters to maintain pristine aquatic 

ecosystems. In South Africa, the Department of Water Affairs and Forestry (now Department of Water 

Affairs and Sanitation) published a series of these guidelines for different industries, as well as aquatic 

and marine environments in 1996. The target water quality range (TWQR) for Cu in very hard waters 

should be 1.4 μg/L (Department of Water Affairs and Forestry, 1996) and thus in the sampled AMD is 

over 2.7 million times higher than the TWQR. The TWQR for Al for waters with pH lower than 6.5 is 5 

μg/L and therefore the Al concentration in the sampled AMD is over 5.3 million times higher than the 

TWQR. Although these standards are for pristine aquatic ecosystems, the comparisons illustrate the 

unusually high concentrations of metals present in the AMD. 

Cobalt, Na, K and Pb showed very high standard deviations. In the case of monovalent cations it could be 

matrix interferences. Low concentrations of monovalent cations are difficult to determine accurately 

a
. 

b
. 
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with ICP in the presence of higher valency cations at high concentrations. The percentage cation/anion 

balance error calculated by PHREEQC is 16% in favor of the cations and is attributed to this complexity of 

analyzing the solution.  

 

Table 1.3: Elemental analysis and selected chemical parameters for AMD collected in leaching pond. 

Element/Parameter 
Concentration/Parameter 

value 
Standard Deviation a 

(mg/L) 

pH 1.5 n.d.  

EC (mS/cm) 24.4 n.d.  

Eh (mV) 652 n.d.  

Al (mg/L) 26897 1517 

B (mg/L) 24.12 0.64 

Ba (mg/L) 0.50 0.55 

Ca (mg/L) 230 15.34 

Cd (mg/L) 1.53 0.45 

Co (mg/L) 127 15.49 

Cr (mg/L) 19.89 0.80 

Cu (mg/L) 3819 284 

Fe (mg/L) 42923 4357 

K (mg/L) 7.86 6.20 

Mg (mg/L) 20493 1744 

Mn (mg/L) 3448 182 

Na (mg/L) 20.25 7.79 

Ni (mg/L) 340 43.11 

P (mg/L) 52.17 9.35 

Pb (mg/L) 5.72 2.09 

Si (mg/L) 16.57 2.99 

Sr (mg/L) 0.07 0.01 

Zn (mg/L) 1688 132 

[SO44(aq)](total)(mg/L) 318353 24475 

a. Determined from triplicate  samples (n =3) 
n.d. = not determined 
[SO4(aq)](total)= [HSO4

1-
(aq)] + [SO4

2-
(aq)] +Σ of all metal complexes 

3.3. PHREEQC Modeling 

Once the solution chemistry of the AMD and soil saturated pastes were known, the data was run on a 

thermodynamic simulation program called PHREEQC to determine which mineral phases were expected 

to form under these chemical conditions. Using this modeling software, comparisons could be drawn 

between what the actual and simulated products in equilibrium with the AMD would be. 

Modeling aqueous systems with geochemical software requires the selection of a thermodynamic model 

to characterize the interactions between species in a solvent. España & Ercilla (2008) investigated the 
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Pitzer ion-interaction theory as well as the ion-association model and the Davies equation, by applying 

the models to a highly metal-laden AMD solution in equilibrium with melanterite, a case similar to this 

study. The concentration of iron was 74 g/l, sulfate was 134 g/l and aluminium was 7.5 g/l. It was 

concluded that although both systems have limitations, the Pitzer approach best described the water- 

melanterite equilibrium and hence this system was also used for the modeling in this study. It has been 

reported that the Pitzer specific-ion-interaction can predict the behavior of electrolyte solutions with 

ionic strengths of up to 6 mol/kg. 

Other species that are close to saturation are the sulfate salts, for example MgSO4∙7H2O (epsomite), 

MnSO4 and BaSO4 (barite). 

3.4. Iron and its precipitates 

The AMD had very high Fe and Al concentrations (Table 1.3). A green crystal, identified as melanterite by 

XRD analysis, was found at the base of the pond at Nababeep. This is an emerald green crystal as shown 

in Figure 1.8. In a study by Valente & Gomes (2009), melanterite was also identified. Melanterite has the 

chemical formula FeSO4·7H2O, meaning iron is in its ferrous state (Fe2+) in this mineral. Frau (2000) 

reports that pyrite from the Genna Luas mine in Italy weathers rapidly to melanterite without observing 

ferric iron oxyhydroxides.  

The molality calculated in PHREEQC for Fe(II) was 0.254 mol/kg while the molality for Fe(III) was 0.515 

mol/kg, which means two thirds of the solution consists of ferric iron. In Figure 1.7, the saturation 

indices of selected mineral species that are close to zero or positive, as determined with the Pitzer 

database in PHREEQC, are given. Most of the saturation indices were less than zero, which indicates 

unsaturated conditions. The exceptions were hematite and quarts. The saturation indices for the ferrous 

oxyhydroxides (ferrihydrite and lepidocrocite) are less than zero and would suggest that colloidal 

particles were not forming, as will be explained later. The melanterite saturation index is –1.14, which 

indicates that although it is relatively close to saturation, it is dissolving. 

Oxidation of pyrite has been investigated by several authors (e.g. Buckley & Woods, 1987; Nesbitt & 

Muir, 1994; and several others) under varying conditions. As previously discussed for the oxidation of 

pyrite, the two other main components needed for pyrite oxidation are water and oxygen. The ratio of 

water to oxygen and the amount of exposure time to water and oxygen not only changes the rate of the 

oxidation reactions, but also influences the species that will form (Nesbitt & Muir, 1994). Jerz & Rimstidt 

(2004) found that the oxidation of pyrite in air was more appropriate than aqueous oxidation modeling 

when pyrite oxidation is modeled in waste dumps. In the latter study it was found that air with a 

humidity of less than 95% resulted in a ferrous solid phase, either melanterite or szolmonokite 

(Fe2+SO4·H2O), precipitating in cracks and on the pyrite surfaces. Frau (2000) found that melanterite is 

especially observed during low rainfall periods with high humidity, since melanterite is soluble in water. 

Humidity prevents melanterite from undergoing dehydration to phases such as rozenite (FeSO4.4H2O) or 

szomolnokite which are greenish-white powders. The melanterite samples from Nababeep, when stored 

in the laboratory, also turned white on their surfaces. This mineral results from the precipitation of 

ferrous iron and sulfate, which means that a portion of Fe is still reduced while the sulfide has been 

oxidized to sulfate. The presence of melanterite in the mine tailings in Nababeep, means that iron was 
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not oxidized. The lack of iron oxidation could be attributed to oxygen depletion deeper within the 

tailings layer, especially considering that the tailings were saturated with water. The oxidation of Fe2+ to 

Fe3+ is favored by increase in pH. At this low pH (1.5) the oxidation is slow and as a result the Fe2+ 

persists. Coupled with that could be the possible presence of microbial species. 

 
Figure 1.7: Saturation indices for selected species in the sampled AMD. 

 

 

Figure 1.8: Melanterite sampled at the site near Nababeep. 
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As explained earlier, certain microbes are specialized to use certain chemical species as electron donors, 

which might explain the substantial oxidation of sulfur and limited oxidation of Fe. 

Melanterite is usually identified by its evanescent efflorescence, but Blowes et al. (1991) reported a 

discontinuous hardpan layer in tailings at a mine in Quebec, Canada. The nature of the melanterite at 

the Nababeep site was also more of a deposited hardpan layer in the tailings. Frau (2000) found that the 

dissolution of melanterite is an acidity-generating process and is a source of Fe(III) for aqueous oxidation 

of pyrite. 

The fact that melanterite was identified in the tailings means that iron is present in its reduced, Fe(II) 

form. The overall redox potential of a system can give some indication as to how reduced or oxidized a 

system is. The AMD solution collected for this study had a distinct red-brown color which is usually 

associated with ferric (Fe3+) iron. The melanterite was, however, observed at the base of the tailings 

material (approximately 30 cm) beneath the crusted surface where oxygen levels would be lower as it is 

not exposed to the atmosphere. 

When the redox potential of a system is considered, the system is often visually depicted on an Eh-pH 

diagram, also known as a Pourbaix diagram. These diagrams often make use of the parameter called pe, 

instead of Eh. These diagrams are usually defined in terms of a single chemical species (e.g. Fe), 

although many attempts have been made to construct it for several species, for example the Fe-S-K-O-H 

system, as depicted in Figure 1.9 (used with permission from Bigham et al. (1996)). The system was 

developed by using activities from previous investigations with specific application to acid sulfate 

waters. From Figure 1.9 it can be deduced that goethite and jarosite are the main mineral phases 

regulating the solubility of Fe in AMD with lower pH. The redox potential of the AMD in this study was 

651.5mV (pe = 11) with a pH of 1.5, and this is indicated with a red star in the dissolved species stability 

field on the pe-pH diagram (Figure 1.9). At this position in the diagram, all the species are in the 

dissolved form but close to the jarosite and goethite phase. This is expected as the AMD was in a stable 

solution. From this figure, some predictions can be made when the system is diluted. This might shift the 

position of the star to the right and lead to precipitation of either goethite or jarosite. If the solution is 

further oxidized, jarosite will precipitate. 
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Figure 1.9: A pe-pH diagram for the Fe-S-K-O-H system at 25 °C, where pe = Eh(mV)/59.2. Total log activities of Fe
2+

= 3.47; 
Fe

3+
 = 3.36 or 2.27; SO4

2−
 = 2.32, K

+
 = 3.78 and log KSO values for solid phases are as given previously in paper. Jt = K-jarosite, 

Sh = schwertmannite, Fh = ferrihydrite, Gt = goethite, Py = pyrite. Line equations are Gt (pe = 17.9 − 3pH); Jt (pe = 16.21 − 2 
pH); Fh (pe = 21.50 − 3 pH); Sh (pe = 19.22 − 2.6 pH), and Py (pe = 5.39 − 1.14 pH). Fields of metastability are indicated by 
dashed lines. Single-hatched areas demonstrate expansion of the K-jarosite and ferrihydrite fields if lower log KSO values are 
selected. Used with permission from Bigham et al. (1996). 

 

Yu (1996) investigated the precipitation of Fe and Al compounds from acid mine waters. In this study, an 

Eh-pH system was drawn for iron in water (Figure 1.10), but a dashed line is added in the dissolved 

species stability field of Fe2+ which is a stability line for the FeSO4
+ ion at an Eh of approximately 500 mV 

(pe = 8.45). This is significant, since it would mean that Fe can exist in the oxidized Fe(III) form although 

a pure Fe-H2O system pe-pH diagram would suggest that Fe is stable in its reduced, Fe(II) state. Given 

the high concentration of sulfate in this system, this species of Fe(III) would exist in the AMD. The acidity 

stabilizes ferrous iron. It is expected that strong solution complexation of ferrous iron with sulfate in 
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solution will occur resulting in a decrease in the activity of ferrous iron in solution. This will lower its 

propensity to change phase (oxidize to ferric iron). Again, the conclusion must be made that AMD 

systems are extremely complex and cannot be regarded or treated in parts, but must be investigated by 

taking everything into account. Ferrous iron in solution was determined spectrophotometrically by 

authors such as Frau (2000) using the colorimetric 2,2’-Bipyridine method. The AMD was highly 

concentrated and possessed a red-brown colour, thus colorimetric analyses were not possible. Diluting 

the sample with deionized water was not a suitable solution to the issue, as this resulted in precipitation 

of solid phases, and would also change the system completely in terms of Eh and pH. The colour of the 

AMD and presence of melanterite suggests that Fe is present in both states concurrently and would be 

related to Fe-sulfate complexes. 

 

 
 

Figure 1.10: An Eh-pH diagram adapted from (Yu, 1996) that shows stability diagram of iron with SO4
2−

 taken into account. 
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3.5. Aluminium minerals 

Aluminium occurs at extremely high levels in the AMD (Table 1.3). Despite this, minerals such as gibbsite 

(Al(OH)3) and boehmite (AlO(OH)) had SI values of -6.02 and -5.87, respectively (Figure 1.7) and thus the 

solution was undersaturated with respect to these minerals. This relates to the low pH of the solution. 

Aluminium sulfate minerals are likely to be more stable under acid conditions. A change in pH would 

however change saturation conditions that could lead to Al phases precipitating. With a high Al coupled 

with high sulfate at low pH it is expected that an Al hydroxysulfate such as basaluminite would 

precipitate. 

3.6. Metal Toxicity  

Figure 1.11 depicts the concentrations of Ni, Co, Cu and Zn for this study, as well as the studies by Smith 

& Williams (2000) and Frau (2000). Note that the y-axis scale is logarithmic due to the variance in the 

concentrations of the different studies. This study had higher concentrations for Ni, Co and Zn with 

values of 340 mg/l, 127 mg/l and 3819 mg/l respectively and are several orders of magnitude larger than 

the comparative studies. The zinc concentration in Frau (2000) is however higher than this study with a 

concentration of 10750 mg/l. The concentration of metals in the AMD is related to the ore from which 

the AMD is generated. Frau (2000) investigated a mining area of predominantly pyrite-melnikovite with 

minor amounts of Fe-rich sphalerite (ZnS) to which high zinc concentrations can be attributed. The 

minerals found in the Nababeep ore were chalcopyrite (CuFeS2), bornite (Cu5FeS4), chalcocite (Cu2S), 

malachite Cu2CO3(OH)2 and magnetite (Fe3O4). Copper is therefore the predominant metal of interest at 

this mine and this is reflected in the mine drainage found and would be the element of concern when 

the toxicity of the local water sources in the area are evaluated. 

The main concern with AMD is the threat that it poses to the environment. This threat is firstly related 

to the unnaturally very low pH of the leachate, and secondly, the metals that are released into the 

environment. The discussion of metal toxicity is beyond the scope of this dissertation, although the 

concentration of dangerous and toxic elements in this AMD should be highlighted. Iron and manganese 

are not considered highly toxic although they play an important role in the minerals that precipitate 

from an AMD solution. Toxicity is a complex issue as it is related to both the quantity and how the 

various living organisms are affected by that metal. Copper and zinc are essential for life, as they are 

very important in enzymatic reactions (Brewer, 2010), however, when present in quantities that exceed 

safe levels in water, they can lead to diseases such as Alzheimer’s disease. Zinc, which is considered to 

be relatively non-toxic, has been found to interfere with Cu and Fe utilization in the human body 

(Fosmire, 1990).  
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Figure 1.11: Heavy metal concentrations in AMD for this study, along with two comparable previous studies. 

3.7. Characterization of pristine soils 

3.7.1. Soil Classification and texture analysis 

The pristine soil (Nb4) was classified as a Rubic Arenosol (Food and Agricultural Organization of the 

United Nations, 2014) or an Oakleaf 21/210 (Soil Classification Working Group, 1991) which has formed 

in granite-gneiss colluvial material (binary profile suspected). The coarse texture of the soil (Table 1.4) is 

both an indication of the colluvial nature of the material as well as the immaturity of the solum. The soil 

is relatively shallow with a depth of 60 cm. Three horizons were identified which were an A horizon and 

a B1 horizon, followed by a B2 horizon which overlies solid granite-gneiss. In the field moist state, the 

soil had a red appearance and possessed rhodic properties (Food and Agricultural Organization of the 

United Nations, 2014), but after drying the soil had a more bleached appearance. The Munsell colors in 

the wet state are 5 YR 4/6, 2.5 YR 4/6 and 2.5 YR 3/6 for horizons A, B1 and B2 respectively. The dry 

Munsell colors are 7.5 YR 5/6 7.5 YR 4/6 and 5 YR 5/6 for horizons A, B1 and B2 respectively. This 

bleaching indicates a relatively low Fe content in the soil. 

Table 1.4: Texture of pristine soil, with sand, silt and clay percentages. 

Horizon Sand (%) Silt (%) Clay (%) 

A (0-20 cm) 86.4 11.5 2.10 

B1 (20-55 cm) 88.0 8.40 3.60 

B2 (55-70 cm) 86.7 8.17 5.10 

 

The percentage coarse fragments for each soil depth are provided in Table 1.5 for Nb2, Nb3 and Nb4, 

bearing in mind that Nb4 is a pristine soil. It is included in Table 1.5 for comparison with the 

contaminated soils. The tailings layer found within the Nb2 profile contains 0.56% coarse fragments. It is 

interesting to note that there are more coarse fragments in the A horizon of the pristine soil than in the 
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B1 or B2 horizons. A possible explanation might be that the A horizon is colluvium while the lower 

horizons have been weathered in situ. 

Table 1.5: Coarse fragment percentage for sampled soils. 

Profile Horizon 
Coarse 
Fragments (%) 

Nb2 Crust 8.71 

0-3 cm 0.56 

3-20 cm 16.1 

20-40 cm 15.9 

40-50cm 41.4 

Nb3 Crust 7.75 

1-15cm 8.49 

15-30cm 16.3 

Nb4 A 17.7 

B1 7.79 

B2 11.5 

3.7.2. Soil Chemistry 

Despite the arid climate, the pristine soil has a low pH (Table 1.6). The difference between pH in water 

and pH in KCl is noteworthy. Given the low clay fraction, exchangeable acidity would be expected to be 

lower. As shown in Table 1.6, the pH measured in water increases with every horizon from 5.25 to 6.18. 

The reason for the low pH observed in the pristine soils could be attributed to the acidic granite-gneiss 

from which these soils are derived, although, even in acidic parent material the aridity of the area would 

normally result in higher soil pH values. Another possible cause could be a smelter located at the mine (5 

km away), which has a chimney. It is possible that emissions from this smelter chimney could have 

contained sulfur particles, which has led to acidification of the area by atmosphere-soil-water 

interactions. The electrical conductivity (EC) for the pristine soil is low, with values of 9.58, 7.02 and 6.03 

μS/cm for horizons A, B1 and B2 respectively.  

Table 1.6: The pH (in deionized water and in 1M KCl) and EC values of the pristine soil (Nb4). 

 Horizon pH (H2O) (1:2.5) pH (KCl) (1:2.5) EC (1:2.5 H2O) 

A 5.25 3.78 9.58 

B1 5.60 4.02 7.02 

B2 6.18 4.21 6.03 

 

The saturated paste extraction data is presented in Table 1.7 for the different depths of the pristine soil 

(Nb4). The highest concentrations of elements included Al (0.04–0.72 mmol/l), Mg (0.055–0.66 mmol/l) 

and Si (0.62–0.68 mmol/l) which are all associated with clay minerals and favour the formation of these 

minerals. The concentration of sulfate ranged from 0.15 to 0.24 mmol/l. The reason for the presence 

may therefore be attributed to pollution from smelter. 
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Table 1.7: Concentration of elements, pH and EC of saturated paste extracts for the pristine soil. 

Sample Al Ca Co Cr Cu Fe K Mg Mn Na Ni Pb Si Zn 

  concentration (mmol/l) 

Nb 4 (A) 0.0395 0.1204 0.0002 nd 0.0072 0.0109 0.1188 0.0545 0.0033 0.4142 0.0005 nd 0.6202 0.0028 

Nb 4 (B1) 0.0975 0.1402 0.0001 nd 0.0059 0.0593 0.1314 0.1124 0.0066 0.4042 0.0008 nd 0.4707 0.0043 

Nb 4 (B2) 0.7235 0.3326 0.0015 nd 0.0408 0.6036 0.1226 0.6587 0.0484 0.4554 0.0044 nd 0.6829 0.0186 

nd – not detected 
 

Sample pH EC SO4
2− 

  
 

mS/cm mmol/l 

Nb 4 (A) 4.48 0.105 0.1518 

Nb 4 (B1) 4.38 0.116 0.1791 

Nb 4 (B2) 4.77 0.088 0.2388 

2
9 
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3.7.3. Soil Mineralogy 

Figure 1.12 depicts the XRD patterns for the clay fractions of the three horizons of the pristine soil. The 

patterns reflect a similar mineralogy for all three horizons, which is quarts (SiO2) (4.264 Å), kaolinite 

[Al2Si2O5(OH)4] (7.128, 4.029 and 3.574 Å) and illite [KAl2Si3AlO10(OH)2] (9.97, 4.967 and 2.988 Å). For the 

A-horizon, a fourth phase was identified which has a d spacing at 14.931 Å. This d-spacing matches the 

d-spacing for montmorillonite (MgO·Al2O3·5SiO2·xH2O). The intensity of this peak is less than the 

intensity of the other peaks for the phases such illite or silica. Peak intensity depends on factors such as 

crystallinity and the concentration of the component which produces the peak in the sample. The d-

spacing at 14.932 Å, as shown in Figure 1.13, is attributed to montmorillonite, chlorite or vermiculite 

(Brindley, 1955). After treatment with Mg, K and ethylene glycol it can be concluded that the mineral is 

montmorillonite (see Appendix - Appendix D - Supplementary Data relating to Chapter 1). 

The concentrations of species within the saturated paste extracts can be used to model the phases that 

are in equilibrium within the soil plasma conditions. 

 

 
Figure 1.12: XRD patterns for the three horizons of the pristine soil (Nb4). 

The saturation indices for some of the common soil minerals are given in Figure 1.13 for soil minerals 

considered in this study. This was calculated by PHREEQC using the Pitzer database. Kaolinite and illite, 

which were detected with XRD analysis, are stable phases in the soil solution. Ferric and Al oxides and 

oxy-hydroxides, such as goethite (FeOOH), gibbsite (Al(OH)3) and hematite (Fe2O3), are also stable, as 

indicated by a positive saturation index. Two different sets of montmorillonite stabilities are calculated 

in PHREEQC. The first is an Fe-montmorillonite (Mg0.17Mg0.33Fe0.67Al1.01Si3.99O10(OH)2:5H2O) type and the 

second is a Mg-montmorillonite (Mg0.17Mg0.33Al1.68Si3.99O10(OH)2:5H2O) type. The Fe-montmorillonite has 

a positive saturation index (SI) for all the horizons while the SI for Mg-montmorillonite is negative for 

horizons A and B1. It is therefore possible that montmorillonite is forming in the soils, although it was 
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only detected in the A horizon. The source of Mg in montmorillonite could be attributed to biotite which 

is a primary mineral found in the granite-gneiss. The fact that montmorillonite was not detected in 

horizons B1 or B2 could simply be due to the low concentration of this mineral in the fine earth fraction 

of soil. 

 
 

Figure 1.13: Saturation indices of selected minerals for the A, B1 and B2 horizons of the pristine soil (Nb4). 

 

The FTIR spectra obtained for the clay fractions of the pristine soil are depicted in Figure 1.14. Spectra 

for the three samples are very similar. The one exception is the peaks for the B horizons (B1 and B2) at 

1094 cm−1. The peak at 1636 cm−1 for the A horizon is also more prominent than that for the other 

horizons. The peaks at 3695–3696 cm−1 can be assigned to OH-stretching of inner-surface hydroxyl 

groups of kaolinite. The second peak at 3621 cm−1 can again be attributed to OH-stretching of inner 

hydroxyl groups of kaolinite and peak around 912 cm−1 would also be OH-deformation of inner kaolinite 

hydroxyl groups. This band can also be assigned to the AlAlOH bending of illite. Peaks located at 1032 

and 1009 cm−1 would be assigned to in-plane Si–O stretching of kaolinite. The bands between 780 and 

684 cm−1 can be related to Si–O vibrations. The peak at 538 cm−1 is Si–O–Al out-of-plane bending with Al 

in tetrahedral sheet, whilst the peak at 470 cm−1 would be assigned to Si–O (in-plane) bending and OH-

bending, both associated with illite clays (Steudel et al., 2009a). 
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Figure 1.14: FTIR spectra generated for the pristine soil. 

3.8. Characterization of contaminated soils 

3.8.1. Soil description  

Two contaminated natural soils were sampled in close proximity to the tailings dump. Soil samples were 

collected at different depths as shown in Table 1.5. Both these soils were covered in a crust that formed 

on the surface and although this is not considered to be a soil horizon, it was analyzed in a similar 

fashion. The layer in Nb2 directly below the crust is tailings material and had the same silty texture and 

colour as the mine tailings (Figure 1.15). This layer could have formed by material being washed over the 

soil when the ponds were in use. This is therefore also not true soil material and the material would 

classify as artifacts according to the World Reference Base for soil resources (Food and Agricultural 

Organization of the United Nations, 2014).  
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Figure 1.15: Soil profile of sampling site Nb2. 

3.8.2. Chemical Characterization  

From the data in Table 1.8, the EC’s of the crusts are, as expected,  high with a value of 22.9 mS/cm  

recorded for Nb2, whilst a lower value of 6.35 mS/cm is recorded for the crust formed on Nb3. An EC of 

15.51 mS/cm is measured for the tailings layer formed on Nb2 and this layer has the lowest pH of these 

samples, measuring 2.76 in water. There is a clear difference in both EC and pH between the natural soil 

layers in Nb2 (3-20 cm, 20-40 and 40-50 cm) and those of Nb3 (1-15 cm and 15-30 cm), in that the 

values are less extreme for Nb3 i.e. higher pH and lower EC values than Nb2. Although in both cases it is 

far above “normal” soil conditions (or those observed in pristine soil). Both Nb2 and Nb3, were classified 

as a Witbank soil form (Soil Classification Working Group, 1991). 

Table 1.8: The soil depths, pH's and EC values of the contaminated soils 

Profile Horizon 
pH H2O 
(1:2.5) 

pH KCl 
(1:2.5) 

EC (mS/cm) 
(1:2.5) 

Nb2 Crust 2.91 2.70 22.9 

0-3 cm 2.76 2.48 15.5 

3-20 cm 2.94 2.76 8.90 

20-40 cm 2.91 2.77 9.79 

40-50 cm 2.84 2.66 11.0 

Nb3 Crust 3.42 3.39 6.35 

1-15 cm 3.52 3.37 1.44 

15-30 cm 3.36 3.28 1.31 
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The saturated paste extraction data is presented in Table 1.9 for the different depths of the two 

contaminated soils (Nb2 and Nb3). There is an order of magnitude difference between the different soils 

sampled. One example of this phenomenon is the concentrations of Al in the saturated paste extract for 

Nb2 (20–40 cm), Nb3 (15–30 cm) and Nb4 (B-horizon), which are at similar depths, which were 860.6 

mmol/l, 18.4 mmol/l and 0.097 mmol/l (Table 1.7), respectively. The concentration of Fe is not 

proportional to that of AMD. The AMD concentration of Fe was 768.6 mmol/l and for Al was 996.9 

mmol/l but for Nb2 (40–50 cm) the concentration for Fe and Al were 67.5 mmol/l and 591.4 mmol/l, 

respectively. Therefore, assuming the source of these metals is from the AMD, there is a ratio change for 

two cases. Cations with the highest concentrations in the saturated paste extracts were Al and Mg. One 

source of these cations can be weathering of primary and secondary minerals such as biotite. Thus the 

lower concentration Fe that exists in the soil solution is attributed to Fe bound in Fe-precipitates. 

Copper is the heavy metal with the highest concentration in the soil. The concentrations were 23.6 

mmol/l in the Nb2 (3–20 cm) soil sample and for Nb3 (1–15 cm), located further away from source, Cu 

concentration was 0.47 mmol/l. The highest concentration for all species except Na and K is observed 

for Nb2 (0–3 cm). This layer is the tailings layer wherein primary sulfide minerals such as pyrite occur 

and metals are readily released into solution as these tailings are oxidized. The low K value would be 

attributed to formation of jarosite. Arsenate is not given in Table 1.9 as it was not detected in any of the 

soil solutions. Also the concentration of Pb is low and only observed for Nb2. The difference between 

the concentrations of the two contaminated soils, Nb2 and Nb3, is attributed to less exposure to AMD 

for the Nb2 soil located further away from the leaching pond. 
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Table 1.9: Concentrations of different species, pH and EC measured in saturated paste extracts for contaminated soils. 

Sample Al Ca Co Cr Cu Fe K Mg Mn Na Ni Pb Si Zn 

  concentration (mmol/l) 

Nb 2 (0–3 cm) 1619.26 20.65 2.57 0.42 77.72 117.43 0.97 1007.20 81.11 1.45 6.79 0.05 2.36 34.92 

Nb 2 (3–20 cm) 546.67 14.01 0.85 0.14 23.62 29.08 1.01 357.79 27.98 1.49 2.25 0.01 1.42 10.72 

Nb 2 (20–40 cm) 860.59 14.78 1.33 0.19 37.33 49.40 2.84 548.04 42.25 1.70 3.51 0.02 1.84 16.78 

Nb 2 (40–50 cm) 591.52 14.96 0.94 0.18 26.75 67.54 1.04 390.04 30.74 1.48 2.56 0.02 1.82 13.72 

Nb 3 (1–15 cm) 19.79 12.53 0.03 0.00 0.47 0.29 0.76 15.96 1.55 0.79 0.08 nd 1.08 0.44 

Nb 3 (15–30 cm) 18.36 15.53 0.0271 0.0008 0.4104 0.0270 0.1966 13.71 1.34 0.8356 0.0786 nd 1.8429 0.4084 

nd – not detected 
 

Sample pH EC SO4
2− 

  
 

mS/cm mmol/l 

Nb 2 (0-3 cm) 1.74 30.4 1477.00 

Nb 2 (3-20 cm) 2.2 34.8 1728.05 

Nb 2 (20-40 cm) 2.1 34.5 2475.91 

Nb 2 (40-50 cm) 2.23 35.2 1735.85 

Nb 3 (1-15 cm) 3.27 5.75 71.11 

Nb 3 (15-30 cm) 3.16 5.04 63.03 

3
4 
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3.8.3. Soil Mineralogy 

The results of the XRD analysis for Nb2 site are depicted in Figure 1.17. The patterns of the 3–20, 20–40 

and 40–50 cm horizons are very similar, however there are some differences. The first difference is the 

absence of the peak at 9.98 Å for the 40–50 cm layer. This peak has been identified as the peak for illite. 

Another peak representing illite also occurs at 4.47 Å, as indicated in magenta. Kaolinite (d = 7.11 and 

3.57 Å) and quarts (d = 4.26 and 3.35 Å, and others) were two other minerals identified in this soil. A 

new mineral, not previously detected in pristine soil, is jarosite, which has clear and sharp peaks at d = 

5.94, 5.67 and 2.97 Å. This is a ferric iron-sulfate mineral with general formula (K,H3O)Fe3(SO4)2(OH)6 and 

forms in AMD solutions with low pH (Bigham et al., 1996). Only two minerals were identified from the 

XRD pattern for the clay sample of the tailings layer (0-3cm), and these were jarosite and quarts. It was 

extremely difficult to extract clay size particles from this sample since the suspension had a high ionic 

strength that made particles flocculate and settle rapidly. Secondly, it had a very low percentage clay 

and the procedure had to be repeated several times to extract enough clay-sized material for analysis. 

 
Figure 1.16: XRD pattern for the 3 horizons of Nb2. 

 

Figure 1.17 is an overlay of a section of the XRD patterns of Nb2 (40–50 cm) and Nb4 (B-horizon). A 

broadening of the kaolinite peak observed at 7.11 Å compared to pristine soil may indicate a less 

crystalline kaolinite phase possibly transforming into halloysite. 
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Figure 1.17: Section of XRD pattern that compares Nb4 (B-horizon) with Nb2 (40–50 cm). 

 

A section of the crust was analyzed with XRD analysis and the two dominant minerals which fitted the 

peaks best were identified. The first of these minerals is apjohnite with chemical formula 

MnAl2(SO4)4·22H2O. The second mineral is epsomite (MgSO4·7H2O), a hydrated magnesium salt. 

Interestingly, no iron mineral is detected in the crust layer.  

The XRD data for Nb3 is depicted in Figure 1.18. The XRD pattern for Nb3 has a very similar pattern to 

that of Nb2. The minerals identified here were again kaolinite, quarts, jarosite and illite, although the 

first peak of illite at 9.98 Å has very low intensity. As previously mentioned, this might be due to a low 

concentration of illite in the soil. It should be noted that the peaks generated during XRD analysis are, as 

previously mentioned, related to the concentration and crystallinity of minerals in the samples. This 

means that there are many shortcomings to XRD analysis for the analysis for poorly crystalline materials. 
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Figure 1.18: XRD data for the 3 horizons of Nb3. 

The main differences in Fourier Transform infrared (FTIR) spectra between the contaminated soils and 

the pristine soils occur at the wavenumber values between 3700 cm−1 and 2800 cm−1. The range of 

wavenumbers is given in Figure 1.19 for the contaminated soil (Nb2). The broad peak between 3500 

cm−1 and 3000 cm−1 can be assigned to OH vibration of jarosite as identified by Sasaki et al. (1998) for 

peaks at 3390 cm−1 and 3365 cm−1. The broadness of the peak may also be related to water bound to 

metals in more amorphous phases such as ferrihydrite (Russell, 1979). 
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Figure 1.19: FTIR spectra for the contaminated soil Nb2, with special focus on the region of 4000–2500 cm
−1

 in order to 
emphasize the absorption bands. 

 

3.8.4. Equilibrium modeling 

The saturation indices were calculated for the contaminated soils using the Pitzer virial-coefficient 

approach for activity-coefficient determination (Figure 1.20). Epsomite was detected in the crust on the 

surface. The SI in the top-tailings layer for epsomite is below zero, despite being close to zero. 

Saturation of the solution, with respect to epsomite, may be reached upon drying and this will lead to 

epsomite (MgSO4·7H2O) precipitation. The SI for both hematite and goethite is positive, which means 

these two minerals will precipitate on other mineral surfaces. Ferrihydrite’s SI fluctuates around zero 

and is positive for the 2–30 cm and 40–50 cm layers, meaning it too will precipitate The results indicate 

that illite (SI = −9.28 to −11.77), montmorillonite (SI = −4.91 to −5.98) and kaolinite (SI = −4.35 to −5.91) 

are under-saturated with respect to the soil solution, which means these minerals are dissolving under 

the current conditions. Kaolinite and Illite were however detected in the horizons from 3–50 cm. The 

presence of these minerals possibly indicates that their dissolution kinetics could be relatively slow, 

hence preventing these minerals from disappearing from the soil. The conditions might also be changed 

during rainfall events when concentrations are diluted. No clear differences can be distinguished 
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between the different horizons, except for the presence of the epsomite in the 40–50 cm horizon, which 

also had the highest SI value. There is a small difference in SI value between the 3–20 cm and 20–40 cm 

depths of soil profile. The SI for gibbsite [Al(OH)3] in the soil solution ranged from −4.83 to −3.95. 

The Nb3 soil is considered to be less contaminated as it is located further away from the contamination 

point source. The saturation indices for the soil are presented in Figure 1.21. The SI values of 

montmorillonite (SI = −1.51 and −1.72) and illite (SI = −1.3 and −2.06) in Nb3 are still negative for the 1–

15 cm and 15–30 cm horizons although not as negative as in Nb2 for the same horizons. For kaolinite, 

however, a positive SI was calculated, and these values for SI were 0.58 and 0.41 for the 1–15 cm and 

15–30cm horizons respectively. As in Nb2, gibbsite is under-saturated with respect to the soil solution, 

while PHREEQC predicts that hematite and goethite would precipitate from soil solution. In Nb3, the 

ferrihydrate SI is positive for both horizons. The chemical modeling of both Nb2 and Nb3 illustrate that 

silicate clays are largely unstable in the current conditions. This is verified by the XRD data which shows 

low intensity or very broad peaks for the clay minerals. 

 

 
 

Figure 1.20: Saturation indices calculated in PHREEQC for selected minerals in Nb2 at different depths. 
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Figure 1.21: Saturation indices calculated in PHREEQC for selected minerals in Nb3 at different depths 

 

Table 1.10 provides the total metal concentration data obtained for the whole soil samples which is 

compared to the data contained in a study by Hansen (2009), for which the upper percentile (75th 

percentile) of metal concentration values are given. Hansen (2009) investigated the anthropogenic 

influence on the soils of the Okiep Copper District. The total elemental analysis was conducted using a 

portable XRF, thus some metals measured by Hansen (2009) were below the detection limit of the 

instrument.  Copper shows an extremely high concentration, for the Nb2 soil (370 ppm) and the A 

horizon of Nb4, with a concentration of 420 ppm. The value measured by Hansen (2009) for the upper 

percentile was 49 ppm. Table 1.10 indicates that Zn concentrations are well below those detected by 

Hansen (2009).  

Sulfur was not determined in the study of Hansen (2009), but the sulfur contents of the pristine soil in 

this study were 4830, 3510 and 2840 ppm for the A, B1 and B2 horizons, respectively. Given that the 

parent material (granite-gneiss) does not contain sulfur, its presence in the soil indicates an external 

source and substantiates suspicions that the smelter furnace caused contamination of the surrounding 

environment. The fact that concentration decreases with depth supports an aerosol pollution source 

and this certainly challenges the overall pristine nature of the soil.  
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Table 1.10: Metals detected by Niton XRF gun compared with XRF data from Hansen (2009). 

Metal Nb2  
(3-20 cm) 

Nb3  
(1-15 cm) 

Nb4 A 
horizon 

Hansen (2009) 
(75th percentile) 

 ppm 

As <LOD <LOD <LOD 5 

Co <LOD <LOD <LOD 14 

Cr <LOD <LOD <LOD 104 

Cu 370 60 420 49 

Nb <LOD <LOD <LOD 24 

Ni 140 <LOD <LOD 26 

Pb 40 60 90 34 

Rb 110 110 130 202 

Sb <LOD <LOD <LOD 13 

Sn <LOD <LOD <LOD 1 

Sr 80 90 100 193 

Th 30 60 30 80 

U <LOD <LOD <LOD 2 

V <LOD <LOD <LOD 99 

W <LOD <LOD <LOD 7 

Y 40 30 20 92 

Zn 170 40 100 91 

Zr 200 260 170 1520 

LOD = limit of detection 

 

4. Conclusions  
The characterization of the AMD showed that the evaporative conditions of the area concentrated the 

solution to exceptionally high values of metals and sulfates. The highest concentration of metal was Fe 

(42.9 g/l) which was present in two oxidation states, namely ferrous (Fe2+) and ferric (Fe3+) iron. This 

phenomenon is possibly attributed to speciation with the sulfate ions in solution. The low pH (1.5) and 

high concentration of heavy metals renders this solution a hazard to the environment. Melanterite is 

one of the minerals that were sampled in the tailings and this ferrous sulfate crystal plays an import role 

in the immediate release of Fe and sulfate into the environment. 

Pristine soils were classified as arenosols (WRB) and had a sandy texture (2–5.2 % clay). The pristine soils 

had a low pH (3.78–4.21, in KCl) given that it is from an arid region. The saturated paste extracts also 

indicated the presence of sulfate (0.152–0.239 mmol/l) which was not expected from soils derived from 

granite-gneiss and may suggest contamination by the smelter furnace in the nearby town of Nababeep. 

The clay minerals detected by XRD analysis were illite, kaolinite, montmorillonite and quarts. 
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The contaminated soils varied with an order of magnitude in their concentrations of metals due to their 

position and subsequently their exposure to AMD. The soil located closer to the leaching pond (Nb2) had 

for example 546.67 mmol/l Al in the 3–20 cm layer while Nb3 had a concentration 19.8 mmol/l Al in the 

1–15 cm layer. Clay minerals in the contaminated soil seemed to have been altered by broadening of the 

XRD peaks which indicates dissolution of clay minerals into more amorphous phases. A new phase, 

namely jarosite, was also detected in the contaminated soil. 
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Chapter 2. Effect of acid mine drainage on 

mineral weathering 

1. Introduction 
In the previous chapter, the soils and AMD were characterized at a site contaminated by an abandoned 

Cu processing pond, where an acidic metal leachate spread into the nearby soils surrounding the source. 

The contaminated soils were compared to pristine soils. The most notable impact of the AMD on the 

surrounding soils was the introduction of a range of new chemical species to the soil solution, which 

caused a significant shift in the mineral equilibrium conditions. When the equilibrium conditions shift in 

such a radical way, many of the minerals that were stable under natural soil conditions begin dissolving, 

as was shown by the saturation indices that were calculated. Saturation indices, however, only indicate 

what is thermodynamically possible, but the kinetics of these reactions is disregarded. In this extended 

period of time the changes in soil can be monitored and investigated to reflect the influence of long 

term AMD exposure to the soils. 

The main goal of the experiments described in this chapter is to simulate the weathering conditions 

encountered at the Nababeep mining site, in terms of the soil type, acid mine drainage (AMD) 

composition and climatic conditions. The effect of AMD in contact with pristine soils was investigated. 

The climate, as described previously, is arid with high evaporation, low precipitation and hot summers. 

The acidic solution is expected to dissolve the soil phases through mechanisms such as acid attack. 

Firstly the factors involved in weathering reactions will be reviewed. 

1.1. Acid induced weathering 

Proton-promoted weathering has been described by Furrer & Stumm (1986) and is based on the theory 

that protons that bind to surface oxide groups weaken the critical bonds and this leads to release of 

metal from the structure. Figure 2.1 is the representation of the different protonation steps that 

illustrates the release of a trivalent metal (M3+) from a crystalline structure. The process is initiated by 

protonation of the mineral surface and reaches equilibrium with the solution quickly. The release of the 

metal from the structure (step 4) is the rate limiting step and the rate is then related to activity of the 

protonated species (species D in Figure 2.1). 
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Figure 2.1: Schematic representation of the protonation steps that occur during the dissolution of a M2O3 surface site, 
promoted by protonation (adapted from Furrer & Stumm (1986)). 

The number of protons bound to a surface is defined as CH
s (moles/m2) and the activity and, in effect the 

rate of dissolution of species D, is then derived to be related to (CH
s)3. Furthermore, the rate of proton-

promoted dissolution is defined as RL (moles.m−2.h−1): 

       
    

This is, however, true for a mechanism, as depicted in Figure 2.1, where three protons are required for 

dissolution. The relation however is applicable to any proton-promoted dissolution where n protons are 

required for dissolution and the equation becomes: 

       
    

The dissolution of a mineral is therefore related to the interaction of the surface of a mineral with the 

solution it is in contact with. Studies by Huertas et al. (1998) and Ganor et al. (2003) investigated the 

interaction between kaolinite and an acidic solution with specific reference to the surfaces. Ganor et al., 

(2003) established that the point of zero net proton charge (pHPZNPC) occurs at a pH of approximately 5. 

Huertas et al. (1998) also found the pHPZNPC to be 5.5 for kaolinite. When the pH is below this pHPZNPC, a 

positive charge is generated by surface adsorption on Al sites of the octahedral sheets. In a study by 

Huertas et al. (1999), where the dissolution kinetics of kaolinite was investigated, it was found that 

kaolinite dissolves congruently at a pH below 4 and at 25 °C. Cama et al. (2002) expressed the rate of 

kaolinite dissolution in terms of the release of Si and Al in relation to pH and temperature. Two reaction 

paths were established of which one occurs below a pH of 0.5 and second reaction path that occurs at 
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pH ≥ 2.5. Between a pH of 0.5 and 2.5, both reaction paths influence the dissolution rate of kaolinite. 

Studies on proton promoted dissolution of montmorillonite have also been conducted, such as the study 

by Zysset & Schindler (1996) that investigated dissolution at pH between 1 and 5 and different 

concentrations of KCl. The Si and Al ratio in solution suggested congruent dissolution, but at lower KCl 

concentrations there was a deviation from congruent dissolution which is attributed to adsorption of Al 

on exchange sites. It was also concluded that the dissolution is predominantly observed on crystal edge 

surfaces.  

Steudel and co-workers investigated acid activation on non-swelling clay minerals (Steudel, Batenburg, 

Fischer, Weidler, & Emmerich, 2009a) and swelling clay minerals (Steudel et al., 2009b) under different 

H2SO4 concentrations (1 M, 5 M and 10 M) at 80°C for several hours. It is reported that the chemical 

character, such as the chemical composition and initial particle size, plays an important role in the 

alteration of the mineral. For non-swelling clay minerals, edge attack resulted in dissolution of the 

octahedral sheets and the formation of a silica phase. It was determined that di-octahedral layers 

possessed greater resistance to acid than trioctahedral sheets and the order of dissolution of structural 

cations were Mg>Fe>Al. In the study of Steudel et al. (2009b) on swelling clays, the products after 

treatment with H2SO4 had lower layer charge, higher specific surface area and lower CEC. Another study 

by Jozefaciuk & Bowanko (2002) was conducted on bentonite, biotite, illite, kaolinite, vermiculite and 

zeolite and it was found that kaolinite and illite were the most resistant to acid attack by analysis with 

XRD. Aglietti et al. (1988) investigated acid treated kaolinite, and the evolution of an infrared (IR) band 

and XRD patterns were analyzed as a function of original Al content. This experiment was conducted at 

170°C with a 1N solution of sulfuric acid. At 60 % Al extraction, a complete structural collapse was 

observed. Similarly, Hradil et al. (2002) used Al release in order to characterize kinetics of acidification of 

clay. The study compared a 0.5M and 5M sulfuric acid treatment with a 1M hydrochloric acid treatment 

at 25°C up to 240 hours (10 days) on kaolinites, illites and halloysite. The rate of dissolution for kaolinite 

was found to be three times higher in the 0.5 M H2SO4 solution than in the 1 M HCl with equivalent 

hydrogen concentration. Increasing the concentration of 2:1 clays such as illite decreases the rate of Al 

release, as these have a greater resistance to acid attack. 

Swoboda-colberg & Drever (1993) compared the dissolution rates of minerals in a field-scale experiment 

to those in the laboratory. It was found that laboratory experiments overestimated dissolution rates by 

a factor of 200–400 times with exposure to HCl at pH of 2–3.5. The laboratory experiments, however, 

were carried out in a fluidized bed reactor, which provided greater exposure of the acid solution to 

mineral surfaces, and hence more efficient acid attack and dissolution of the minerals.  

1.2. Influence of AMD on clay minerals 

Komadel & Madejova (2006) report that acid attack naturally occurs when soils are exposed to AMD. 

This was in reference to studies by Galan et. al (1999) and Dubikova et al. (2002).  

The study by Galan et al. (1999) was conducted on soils surrounding the Rio Tinto River in Spain which is 

infamous for high metal content and low pH generated by mining activities. In this study, samples from 

two different locations in the valley were tested. The first was a chlorite-rich slate and the second an 

area rich in smectite clays. The chlorite-slates were ground and sieved to obtain a mineral size fraction 
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of < 63 μm. For the soil samples, a clay extraction was conducted by to obtain a <2 μm size fraction. 

Subsamples were treated with natural acid sulfate water collected from the Rio Tinto River with pH of 

2.2. The treatment times for clay minerals extended for 180 min for clay samples and 1 day for the slate 

sample at room temperature. For the chlorite-rich slate, the chlorites showed early transformation to 

vermiculite by alteration of octahedral sheets. There was no change in bulk mineralogy of the slate 

samples with the predominant mineral being mica. For the clay samples, there was however a significant 

change in mineralogy. Illite and kaolinite seemed to resist the treatment by AMD. The amount of 

smectite prior treatment was 70% in < 2 μm fraction, but no smectite was detected after treatment. 

Calcite was also present in the mineralogy of the soil and this rapidly dissolved to buffer the pH of the 

solution and increased the pH from 2.2 to 6.6. The dissolution of smectite and change in pH also 

resulted in precipitation of Fe and Al oxy-hydroxides as well as silica gels. These new amorphous silica 

phases that formed were enriched with Al and Mg, as a decrease in these metals was observed in the 

extracted solution. 

In the second study by Dubikova et al. (2002), soil columns were treated with AMD to investigate the 

acid-soil interaction. The soils are cambisols originating from a mining area in Slovakia. The soils were 

treated with natural AMD (pH 2.1 and 2.3), sulfuric acid solutions with the same H2SO4 concentration as 

AMD, and distilled water. The experiments were conducted over a period of 30 weeks (210 days) at 

room temperature. It was found that the leachates of the 0.15 M H2SO4 treated column rose to 4.3 

initially and stabilized at 3.4 which is a substantial change, since the initial solution pH was 0.8. A similar 

trend was observed for the AMD treated column. The leachate from the AMD column showed a 1 

month retention of Mg while the Al was not leached initially, despite the leachate having a pH of 3.4 and 

their being a high Al concentration. A large percentage of Al and Fe were retained in the columns over 

the period. Almost 100% Fe and 25% Al was retained in column treated with AMD. The natural soil 

contained vermiculite, chlorite, illite, kaolinite and pyrophyllite. The 0.15 M H2SO4 treatment showed 

more severe dissolution of vermiculite than the treatment with AMD. The illite, kaolinite and 

pyrophyllite showed no or little alteration by laboratory treatment. Alteration of chlorite was also 

observed. Jarosite formed in the column treated with H2SO4 and AMD. It is also reported that a silica gel 

formed in the columns. Transmission electron microscopy (TEM) was conducted on samples from the 

treated columns and mohair particles were observed which had high Al and Si content.  

1.3. Microbial enhanced weathering 

The five soil forming factors are time, the presence and role of organisms, topography, climate and 

parent material. The interactions between these factors and the mechanisms by which they operate are 

a complex network of natural processes.  

Organic acids are the products of metabolic activities of soil microbes in the soil and play an important 

role in the release of nutrients from parent materials (Uroz et al., 2009). Calvaruso et al. (2009) 

supported this idea with research showing a rapid increase in mineral weathering in the rhizosphere 

compared to that in the bulk soil. Vandevivere et al. (1994) investigated the dissolution of silicate 

minerals by bacteria and found that gluconate promoted the dissolution of albite, quarts and kaolinite. 

The study states that the mechanisms of microorganisms and how it increases the mineral dissolution 

rates are still unclear. In a review on mineral weathering by bacteria, Uroz et al. (2009) again stated (15 
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years later) that molecular weathering mechanisms of bacteria remain “poorly understood”. The 

previous mentioned studies investigated primary and silicate minerals, but Glasauer et al. (2003) and 

authors within investigated the dissolution of Fe(III)-hydroxides by the process of reduction which is 

induced by dissimilatory iron-reducing bacteria (DIRB). This facultative anaerobic organism can reduce 

iron from goethite, hematite and magnetite and hydrous ferric oxide bound on clay minerals.  

Drever & Stillings (1997) report three mechanisms by which organic acids and their anions affect mineral 

weathering. These are: 1) the change in equilibrium in the soil solution brought about by decreasing the 

pH of the solution, or by forming complexes near the surfaces of minerals; 2) causing a change in 

saturation conditions in the soil solution, with regards to the mineral it is in contact with; and 3) by 

forming organo-metal complexes, such as the complexation of Al3+ in solution for example. Drever & 

Stillings (1997) state that feldspar dissolution rates are independent of pH when the pH of the solution is 

in the range of 4–5 to 8, but increase for pH values below 4–5 in the organic acid solutions. Welch & 

Ullman (1993) investigated the effect of organic acids on plagioclase dissolution and found that 

dissolution rates are the highest at a pH of around 3, and decreases as pH increases to more neutral 

values. This study found effective dissolution of plagioclase was induced by oxalate, citrate, succinate, 

pyruvate and 2-ketoglutarate, and that the rates for plagioclase dissolution by these organic acids were 

10 times greater than for plagioclase dissolution by inorganic acids.  

It can therefore be concluded that the rate of natural mineral weathering is significantly altered by 

presence of microbial life although mechanisms are not completely understood. One of the main 

mechanisms is a change in equilibrium brought by a change in pH and in the context of AMD that would 

also occur when AMD moves into pristine soil. Other mechanisms such as chelation of Al3+ depends on 

microbial activity and may not be a significant influence in the AMD affected system. In the discussion 

on AMD in the previous chapter, some attention has be given to acidophilic organisms living in AMD and 

therefore the presence of microbes cannot not be ruled out and little is known about the interaction 

with the soil environment.  

1.4. Fourier Transform Infrared (FTIR) Spectroscopy of Soil Minerals 

One potential problem with mineral weathering studies is the difficulty in identifying poorly crystalline 

phases. Fourier transform infrared (FTIR) spectroscopy is commonly used to identify minerals showing 

short-range order. A brief review of the technique is provided below.  

The use of FTIR spectroscopy is commonly used in organic applications for the identification of 

functional groups of carbon or carbon-nitrogen compounds and an elaborate set of reference peaks 

exist. In mineral identification, XRD analysis is often used as mineral phases are very crystalline. In order 

to account for more amorphous phases, FTIR is useful. The main minerals identified in the soils sampled 

at Nababeep as reported in the previous chapter include illite, kaolinite, jarosite and montmorillonite 

and it is important to know which peaks are to be assigned to each of these minerals. Table 2.1 is the 

assignments for the different peaks of kaolinites given by Steudel et al. (2009a) and Vaculíková et al. 

(2011), and authors therein. The values agree for both different kaolinites and different authors. 
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Table 2.1: Infrared maxima for kaolinite as measured by FTIR spectroscopy in cm
−1

. 

Assignment Kga-1ba Sedleca Unanova 13_Polb 14_Kaolexb 15_Rogersb 

OH stretching of inner-
surface hydroxyl groups 

3694 3696 3696    

OH stretching of inner-
surface hydroxyl groups 

3669 3669 3669    

OH stretching of inner-
surface hydroxyl groups 

3653 3653 3652    

OH stretching of inner 
hydroxyl groups 

3618 3620 3620    

Si-O stretching 
(longitudinal mode) 

1113 1113 1114 1110 1112 1110 

Si-O stretching 
(perpendicular mode) 

1098      

in-plane Si-O stretching  1033 1032 1032 1030 1033 1035 

in-plane Si-O stretching  1009 1007 1007    

OH deformation of 
inner-surface hydroxyl 
groups 

937 937 935 939 935 939 

OH deformation of inner 
hydroxyl groups 

913 913 912 917 916 917 

Si-O 791 793 794 792 792 792 

Si-O, perpendicular 752 755 754 754 754 754 

Si-O, perpendicular 694 699 697    

Inner surface OH 
vibration 

   644 644 646 

Si-O 645 641 644    

Al-O-Si deformation 540 537 537 539 541 539 

Si-O-Si deformation 468 469 469 472 470 470 

Si-O deformation 433 430 429 431 428 430 

a. Vaculíková et al., 2011 
b. Steudel et al., 2009a 

 

Table 2.2 is the FTIR maxima for montmorillonite (Tyagi et al., 2006) and illite (Steudel et al., 2009a). 

Tyagi et al. (2006) also investigated acid attack on montmorillonite and argue that a broadness of the 

3623 cm−1 band shows substitution of octahedral Al3+ by Fe2+ or Mg2+. This is confirmed by bending 

vibrations forming peaks at 915 cm−1 (AlAlOH), 875 cm−1 (AlFeOH) and 836 cm−1 (AlMgOH).  

Figure 2.2 shows the IR spectra for kaolinite and illite in an acid attack study (Used with permission from 

Steudel et al. (2009a)). The study of Steudel et al. (2009a) investigated acid attack on non-swelling clays 

and reports that the biggest alteration was observed for the bands between 400 and 1200 cm−1. The 

intensity of the OH-deformation bands (912 and 877 cm−1) and adsorption bands at 825 cm−1 and 750 

cm−1 decreased after acid attack. Steudel et al. (2009a) showed that for illite the intensity of Si–O–Al 

bands at 538 cm−1 decreased after acid attack. 
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Table 2.2: Infrared maxima for Montmorillonite and Illite as measured by FTIR spectroscopy in cm
−1

. 

Assignments Montmorillonitea 9_Illiteb 

OH stretching 
 

3697 

 OH stretching 
 

3623 

 OH stretching, hydration 
 

3440 

 OH bending, hydration 
 

1639 

 SiO stretching, out-of-plane 
 

1113 1101 

SiO stretching, in-plane 
 

1035 1030 

AlAlOH bending 915 912 

AlFeOH bending 875 877 

AlMgOH bending 836 823 

Platy form of tridymite 793 

 Si–O–Al vibration 
 

750 

Quartz 692 

 Inner surface OH vibration 
 

622 

Si–O–Al (out-of-plane) bending (Al in tetrahedral sheet)  538 

Si–O bending 
 

529 431 

Si–O (in-plane) bending associated with OH 
 

472 

a. Tyagi et al. (2006) 
b. Steudel et al. (2009a) 

 

Jarosite has the formula MFe3(SO4)2(OH)6 where M is a monovalent cation such as NH4
+, Na+, Ag+ or Pb+ 

which gives it distinctive names such as ammoniojarosite, natrojarosite, argentojarosite and 

plumbojarosite, respectively. When the monovalent cation is K+ it is referred to as jarosite and this was 

the type identified in chapter 1 by XRD analysis. The FTIR spectra for jarosite are given in Table 2.3.  

As mentioned before the breakdown of crystalline materials often leads to the formation of more 

amorphous materials. Allophane and imogolite are examples of the common poorly crystalline 

aluminosilicates often found in soils derived from volcanic material, but they are also found in wide 

range of other soils and parent materials (Harsh, 1999). The identification of these minerals using XRD 

analysis is difficult as they only give diffuse scattering (Farmer et al., 1979). Imogolite has a structural 

formula of (OH)3Al2O3SiOH and Al occurs in octahedral coordination. It has been established that the 

infrared band at 348 cm−1 is characteristic of imogolite (Farmer et al., 1979; Harsh, 1999). Other bands 

for imogolite exist at 925–935 cm−1 and 990–1010 cm−1 (Wada, 1978; and authors within). Harsh (1999) 

reports that the IR spectrum for allophane is similar to that of imogolite. This issue is also addressed by 

Wada (1978) and the author cites many studies that are for and against this argument. It is mentioned 

that the maxima for allophane with SiO2/Al2O3 ratios of 2 to 1.5 would have broad maxima at 1010 and 

945 cm−1 while the maxima for imogolite lie at 990, 995 and 925 cm−1. In the same source it is stated 

that maxima often shift with maturity of soils and content of Al2O3. 
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Figure 2.2: (Left) FTIR spectra for illite treated with 5 M H2SO4 at 80°C for 0, 20 and 96 hours. (Right) FTIR spectra for kaolinite 
treated with 5 M H2SO4 at 80°C for 0, 5, 20 and 96 hours (figures used with permission from Steudel et al. (2009a)). 
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Table 2.3: Jarosite spectra assignments for FTIR (Sasaki et al., 1998). 

Assignment Spectra maxima 
(cm−1)a 

vOH 3390sp 

vOH 3365 

v3(SO4
2−) 1190 

v3(SO4
2−) 1088s 

δ(OH) 1028s 

v1(SO4
2−) 1010 

v4(SO4
2−) 660 

v4(SO4
2−) 630sp 

ϒ(OH) 580 

O-Fe 520 

O-Fe 478 

v2(SO4
2−) 448 

a. sp = sharp; s = strong 
 

Poorly crystalline Fe-oxides are common soil constituents and precipitate from AMD. Brady et al. (1986) 

investigated Fe-oxide formation from AMD and found IR bands related to these poorly crystalline 

materials include OH-stretching at 3400 cm−1, H–O–H deformation at 1620 cm−1 and octahedral 

vibrations [FeO6] between 430 and 470 cm−1. Webster et al. (1998) state that peaks at 797 and 890 cm−1 

are characteristic of goethite. Parfitt & Henmi (1982) investigated allophane and spectra bands of clay 

fractions of andic soils in New Zeeland. In this study the bands at 3150, 3440 and 3520 cm−1 are assigned 

to goethite and gibbsite present with the allophane.  

2. Materials and Methods  

2.1. Weathering experiments  

The soil on which the weathering experiments were conducted is the B2 horizon of the pristine soil 

(Nb4). The reason for selecting this particular horizon is that it is the horizon with the highest fine earth 

fraction (2.1–5.1 %). The surface area of finer particles is larger and weathering rates would occur at a 

higher rate. The soil was prepared by sieving with a 2 mm sieve, and the sieved (< 2 mm) fraction was 

used. 

Sampling of the AMD was conducted at the end of the dry season, when the AMD solution was at its 

most concentrated. The AMD typically diffuses into the soils surrounding the abandoned copper 

treatment site during rainfall events, in which case the AMD is diluted. In order to achieve a more 

realistic AMD concentration, the unfiltered, but translucent AMD was diluted ten times with distilled 

water. This shifted the equilibrium of the highly saturated solution and therefore the new solution was 

left for 48 hours to allow the precipitation of any solid phases. The new solution was then filtered with 

Whatman® 40 filter paper to remove precipitates. Three replicates of the new solution were analyzed by 

inductively coupled plasma-atomic emission spectrometry (ICP-AES).  
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Three weathering systems were run parallel in this investigation. The first were replicate trials of 

treatment of a pristine soil with dilute AMD, while the third was a control. The control was a treatment 

of a pristine soil with a solution having the same EC as was measured for the pristine soil. This solution 

was a 0.438 mM CaCl2∙2H2O solution in deionized water (18 MΩ∙cm, Millipore, Billerrica, MA). 

The weathering experiments were conducted over a period of nearly 8 months (12 December 2013 to 1 

July 2014), a duration of 201 days. The experiments were conducted at a constant temperature of 30°C 

by immersing the sample containers in a water bath. The containers were high density plastic 

containers. The containers were all filled with 750 g of soil. At each new exposure to AMD, 115 ml of 

either control solution  or AMD (AMD-1 and AMD-2) was added. The amount of liquid added was based 

on preliminary tests conducted on 50 g of soil in order to determine the amount of water needed to 

achieve field capacity. Briefly, the soil was saturated in conical filter paper positioned in funnel and 

excess water was then allowed to drain for 20 minutes. The wet soil was weighed and the amount of 

water calculated. 

During the extent of the experiment, the soil was treated with the diluted AMD and allowed to 

evaporate until it was completely dry. The drying period varied between two weeks and a month. This 

reflects the high evaporation rate at the site of investigation. The samples were treated 9 times during 

this period with new AMD (Table 2.4).  

Table 2.4: Timeline of long weathering experiment 

Wetting Cycle Date Month Year 

1 12 Dec 2013 

2 13 Jan 2014 

3 29 Jan 2014 

4 17 Feb 2014 

5 10 Mar 2014 

6 31 Mar 2014 

7 23 Apr 2014 

8 15 May 2014 

9 30 May 2014 

Sampling on 1 July 

 

2.2. Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) was used to determine morphological differences in the different 

treatment methods. The samples used were the long weathered soil control, one of the long weathered 

samples treated with AMD (LW-B) and the pristine soil that was used for long weathering experiments 

but not treated during the time. Since the largest effect of weathering is expected on the smaller 

particles with high surface area, the samples were sieved and only the <106 μm size fraction was used. 

The material was pressed in pellets by making dry paste of soil and a few drops of Mowiol (poly-(vinyl 

alcohol)). The paste was then pressed into a pellet by a hydraulic press, using less than 5 tons of 

pressure on disc. The pellets were dried for 24 hours at 60˚C. 
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The pellets were analyzed by SEM using a Leo® 1430VP Scanning Electron Microscope at the University 

of Stellenbosch. The pellets were mounted on a glass slide with double sided carbon tape and were 

covered with thin layer of gold or carbon for surface electrical conductivity. The beam conditions used 

during surface conditions were 7 kV and approximately 1.5 nA with spot size of 150. Images were then 

taken of surface structure. Clay powders were analyzed directly without any pre-treatment except for 

coating with gold. 

2.3. Mineralogical and Chemical characterization 

The mineralogy of clay fractions from the treated samples were determined by infrared (IR) 

spectroscopy and X-ray diffraction (XRD) analysis as described in Chapter 1. Clay separation techniques 

were conducted as described in previous chapter. 

Saturated paste extracts of treated samples were prepared and analyzed as described in chapter 1. 

3. Results and Discussion 

3.1. Acid mine Drainage 

In Table 2.5, the different parameters and concentrations of species are provided that were measured 

for the diluted AMD used at each treatment in the weathering experiments. The ratio of the 

concentrations between diluted and the concentrated AMD are related and will be discussed in next 

chapter. 
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Table 2.5: Concentration of species, Eh, EC and pH of the diluted AMD used for treatment in weathering experiments. 

Element/ 
Parameter 

Concentration/ 
Value 

Standard 
Deviationa 

pH 2.415 0.007 
EC (mS/cm) 18.69 0.13 
Eh (mV) 656.5 0.71 
Al (mg/l) 2756.33 50.64 
B (mg/l) 1.54 1.33 
Ba (mg/l) 0.088 0.023 
Ca (mg/l) 21.86 1.69 
Cd (mg/l) 0.148 0.026 
Co (mg/l) 12.23 0.26 
Cr (mg/l) 1.91 0.031 
Cu (mg/l) 403.20 13.26 
Fe (mg/l) 4445.67 151.58 
K (mg/l) 0.99 0.12 
Mg (mg/l) 2170.00 74.18 
Mn (mg/l) 351.70 7.21 
Na (mg/l) 1.89 1.24 
Ni (mg/l) 32.43 1.37 
P (mg/l) 6.18 0.27 
Pb (mg/l) 0.41 0.35 

SO4
2− mg/l 31175.19 1975.86 

Si (mg/l) 1.59 0.06 
Sr (mg/l) 0.011 0.008 
Zn (mg/l) 175.63 3.61 
a. Determined from triplicate samples (n = 3) 

 

3.2. Soil Chemistry 

The saturated paste extract data is given in Table 2.5 for control and two AMD treated soils (AMD-1 and 

AMD-2). It should be noted that these were closed systems in that no solution was removed, but water 

was purely evaporated. This means that species that are lower in concentration than the control were 

taken up in insoluble phases. This phenomenon is observed for Ca, K, Na and Si. The loss of K from 

solution could be taken up in the jarosite phase. The loss of Si could be related to the precipitation of 

amorphous Si phases. The diluted AMD added during the experiments had more Fe in solution than Al. 

For the saturated paste extracts, higher Al concentrations were extracted (11.17 mmol/l and 6.26 

mmol/l) for the AMD soils (AMD-1 and AMD-2) than the concentration of Fe (4.27 mmol/l and 2.39 

mmol/l). The lower mobility of Fe is related to either precipitation of Fe-phases and/or release of Al 

from the dissolution of clay minerals. In the latter case, an increase in Si would however be observed 

except if the Si was readily scavenged into new phases. The control had a low pH (3.86) and may be 

related to exchangeable acidity released by the addition of CaCl2. 
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Table 2.6: Saturated paste pH, pe and elemental concentrations for the three treatments. 

Element/ 
Parameter 

Control AMD-1 AMD-2 

pH 3.86 1.95 2.36 

pe 10.02 11.03 11.11 
Al (mmol/l) 0.0377 11.1706 6.2635 

Ca (mmol/l) 0.9671 0.1268 0.1226 

Cd (mmol/l) nd 0.000239 0.000128 

Co (mmol/l) 0.000893 0.026114 0.014980 

Cr (mmol/l) 0.000029 0.004662 0.002702 

Cu (mmol/l) 0.2469 0.7640 0.4272 

Fe (mmol/l) 0.0034 4.2690 2.3870 

K (mmol/l) 0.37 nd nd 

Mg (mmol/l) 0.6237 9.9650 6.1222 

Mn (mmol/l) 0.0434 0.7330 0.4367 

Na (mmol/l) 0.6520 0.0277 0.0188 

Ni (mmol/l) 0.0011 0.0572 0.0319 

Pb (mmol/l) 0.000509 0.000318 0.000168 
SO4

2− (mmol/l) 0.0575 33.4945 20.0405 
Si (mmol/l) 0.47320 0.00652 0.00529 

Sr (mmol/l) 0.00792 0.00001 0.00001 
Zn (mmol/l) 0.04887 0.31845 0.18232 

 

3.3. Mineralogy 

The soil used for the weathering experiments was the soil sampled from the B2-horizon of profile Nb4. 

In order to compare differences that might have occurred in the soil during the experimental treatment 

of the control, the XRD patterns for the B2 horizon and the control are displayed in Figure 2.3. Similar 

clay minerals were detected in both cases which are illite (peaks at d = 9.923, 2.562 and 2.06 Å), 

kaolinite (peaks at d = 7.298 and 3.563 Å) and quarts (peaks at d = 4.246 and 3.336). It should, however, 

be noted that montmorillonite is detected for the control weathering experiment (d = 14.932 and 4.448 

Å), but not in the XRD pattern of the Nb4 B2 horizon. 

Montmorillonite was however detected in the A horizon of this profile and is therefore possibly also 

found in the B horizons. Another possibility is that montmorillonite had formed during the weathering 

reactions. According to Eberl et al. (1984), the three mechanisms by which clay minerals form are 

inheritance, neoformation, and transformation. In this case, inheritance is immediately ruled out as a 

possibility as smectites were below the detection limits before experiments and the parent material is 

granite-gneiss. Kloprogge et al. (1999) reviewed several articles on smectite formation under different 

temperature conditions such as low temperature (<100 °C and ambient pressure), hydrothermal 

conditions (100–1000 °C and high pressures) and extreme hydrothermal conditions (>1000 °C or >10 

kbars). The review therefore focus on neoformation of different smectites and Kloprogge et al. (1999) 

mentions that smectites are one of the most difficult clay minerals to study. One of the articles cited in 
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the review is a study conducted on the formation of montmorillonite at 3 °C, 20 °C and 60 °C by Harder 

(1972). For these experiments, Al, Si and Mg were mixed in solution at different concentrations and it is 

reported that the first changes in the XRD patterns were detected 10 days after initiation and aging the 

samples for longer than a year gave no better results. Three conditions were found to favor the 

formation of montmorillonite of which the first is low silica concentration so that the solutions are 

undersaturated with respect to amorphous silica. 

Secondly, the concentration of elements in solution that make up the smectite should be similar to the 

composition of the solid phase. Thirdly, pH plays an important role, and under basic conditions (pH 10) 

less Mg (10 ppm) is necessary in solution for the formation of smectite minerals. At neutral conditions it 

is still possible to form smectite minerals if the composition of the precipitate contains more than 6% 

MgO. Mg was the third highest ion extracted the in the saturated paste after Ca (38.8 mg/l) and Cu (15.7 

mg/l) with a concentration of 15.1 mg/l. With the low pH of the paste, a much higher Mg content should 

be required for smectite formation. 

In a study by Istok & Harward (1982), smectite formation through transformation was investigated. In 

this case the soil moisture was related to the conversion of serpentine and/or chlorite to smectite. 

Serpentine is similar to kaolinite with trioctahedral Mg layer (brucite) replacing the dioctahedral Al 

(gibbsite) layer in kaolinite. Smectite was only observed in soils in the landscape position that are poorly 

drained and it was concluded that these conditions favored the conversion from serpentine and/or 

chlorite to smectite. With the weathering experiments, the soil water conditions were disturbed as it 

was saturated frequently over the duration of the experiments. However, the formation of smectite in 

the absence of high Mg minerals at the low pH of the pristine soil is difficult to explain. 

 
Figure 2.3: XRD pattern for weathering experiment control and B2 horizon of Nb4. 
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In Figure 2.4 the XRD pattern of the control is compared to those treated with AMD. The distinct peaks 

for the clays are shown in control (lowest pattern) for montmorillonite, illite and kaolinite at d-distances 

of 14.932 Å, 9.923 Å and 7.298 Å respectively. These peaks however, are not prominent in the XRD 

patterns for AMD-1 and AMD-2. This loss of intensity points to either a loss of crystallinity and/or to 

total dissolution of these minerals. Montmorillonite seems to be the most affected as the peak at 14.932 

Å almost completely decrease below detection limit. The change of other peaks is difficult to observe 

because of the overlapping of peaks of other minerals. For illite the reduction of peak intensity can also 

be observed at 2.061 Å. The mineral not observable in the control is jarosite (KFe3(SO4)2(OH)6), with 

primary peak at 3.116 Å and other peaks observable at 5.944, 5.714, 5.095, 3.204, 1.982 and 1.828 Å. As 

previously stated, the intensity of the XRD peaks is a function of both crystallinity and concentration. 

The relative intensity could, however, be useful to compare. Working from zero as a baseline, the 

relative intensity to the control for the quarts peak at 3.336 Å for AMD-1 and AMD-2 was 50.3 % and 

56.2 % respectively. This might be attributed to the dissolution of clay-sized quarts particles from the 

soil which would mean that more silica would be present in the extracted soil solution. The peak 

assigned to quarts at 3.336 Å for control extends beyond peak quarts of treatment B and C in Figure 2.4 

and hides these respective peaks. The crystal structure of quarts could have possibly also been modified 

to more amorphous phases which would lead to lower intensity peaks. 

 
Figure 2.4: XRD pattern for clays of control and AMD weathered soil (AMD-1 and AMD-2). 

Galan et al. (1999) treated smectite rich soils for 180 min with acid water that had a pH of 2.2. The XRD 

results of these treatments also showed the disappearance of the smectite peaks and chemical changes 

were observed in the solution within 30 minutes of treatment. The observed chemical changes included 

an increase in Al, Mg and Fe from octahedral positions and Si and Al from tetrahedral positions. By 

measuring the release of Fe from the smectite (nontrolite) structure it has been found that the 
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dissolution of octahedral and tetrahedral layers occurs simultaneously (Luca & Maclachlan, 1992). In the 

long term acid weathering experiment conducted by Dubikova et al. (2002) on a cambisol, the 

dissolution of vermiculite occurred, but kaolinite and illite seemed to be stable in both a pure 0.15 M 

H2SO4 and AMD treated samples. Dubikova et al. (2002) further reports that the amorphous Fe-

oxyhydroxides that are precipitated in the pore spaces and on surfaces of clay minerals acts as a barrier 

preventing dissolution of these minerals. This is because the exchangeable positions on minerals are 

blocked by Fe-oxyhydroxides and therefore may have prevented clay minerals from completely 

dissolving. 

The FTIR spectra for the clay fractions of the different weathering treatments are depicted in Figure 2.5. 

Two peaks at approximately 3596 and 3621 cm−1 are assigned to OH-stretching of inner hydroxyl groups 

of either kaolinite or montmorillonite (Tyagi et al., 2006; Vaculíková et al., 2011). A peak with high 

intensity is also observed at wavelength of 1031–1032 cm−1 which is assigned to Si–O stretching in 

kaolinite, montmorillonite or illite (Steudel et al., 2009a; Tyagi et al., 2006; Vaculíková et al., 2011). The 

peak in this position is also more prominent in the control weathering spectrum than in weathering 

experiment B and C where this peak collapses to about the same intensity of a second peak at 1008–

1009 cm−1. The peak in this position (1008–1009 cm−1) could also be assigned to in plane Si–O stretching 

(Vaculíková et al., 2011) for kaolinite. A prominent peak exists at 912–914 cm−1 for all three cases which 

is assigned to OH-deformation of inner hydroxyl groups of kaolinite or AlAlOH bending of 

montmorillonite or illite (Steudel et al., 2009a; Tyagi et al., 2006; Vaculíková et al., 2011). A lower 

intensity peak exists at 798–799 cm−1 which is clearly visible for control and AMD-1 spectra but is 

somewhat smaller, but still visible in AMD-2. The peak in this wavenumber range could be assigned to 

goethite (Webster et al., 1998). Webster et al. (1998) also report that another characteristic peak for 

goethite occurs at 890 cm−1 which cannot be identified in Figure 2.5, possibly being hidden by the 

intensity of peak at 912–913 cm−1. A peak which is easily identifiable at 694 cm−1 for control weathering 

experiment, but which appears less distinct for the other two cases due to change in spectra, can be 

assigned to Si–O perpendicular vibrations (Vaculíková et al., 2011). A peak at 535–536 cm−1, which is 

observed in all three cases, is due to Al–O–Si deformation of kaolinite and illite (Steudel et al., 2009a; 

Vaculíková et al., 2011). Another peak characteristic of kaolinite is at a wavenumber range of 469-470 

cm−1 assigned to Si–O–Si deformation (Vaculíková et al., 2011). A clear peak is observed at 431 cm−1 for 

the control weathering experiment and AMD-1, however for the second AMD weathering experiment 

(AMD-2), the peak has collapsed and is only observable as a shoulder. This peak could possibly be 

assigned to Si–O deformation of kaolinite (Vaculíková et al., 2011). 

Some other major differences between the control experiment and the AMD treated trials (AMD-1 and 

AMD-2) are, firstly, the emergence of a distinct but broad peak at 3388–3393 cm−1 in the acid treated 

samples. These peaks are assigned to the hydroxyl vibration of jarosite (Sasaki et al., 1998). Secondly, a 

strong peak is observed at 1088–1089 cm−1 and at 631 cm−1, assigned to SO4
2− vibration of jarosite (Sasaki 

et al., 1998). In Table 2.3, the spectra for jarosite as given by Sasaki et al. (1998) are given. No peaks are 

observed between 700 and 1000 cm−1 for jarosite, but several peaks are assigned to the vibrational 

mode of SO4
2− between 1000 and 1200 cm−1 and overlaps with the Si–O stretching of Si–O in clay 

minerals. 
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The broad peak at 3388–3393 cm−1 can also be assigned to structured water bonds. This band associated 

with water and deeper in structure has been observed for ferrihydrite (Russell, 1979). Madejova et al. 

(2002) also assigned a band at 3435 cm−1 for structural water on montmorillonite. It is however difficult 

to distinguish between the bands for different water-cation interactions. The cation-water interaction 

does influence the position and intensity of the peak. The broad peak area around 3696–3000 cm−1 can 

therefore also be related to water bonded to amorphous phases. 

A very broad and low intensity peak exists for the control weathering experiment at a wavenumber 

value of 1652 cm−1. Although this peak is broad it seems to shift slightly to wavelengths of 1636–1637 

cm−1. Peaks occurring at 1620 cm−1 may be assigned to H–O–H deformation of Fe-oxides as Brady et al. 

(1986) report. Tyagi et al. (2006) report of OH-bending that occurs at 1639 cm−1 for montmorillonite, 

which might be also related to the broad peak observed at 1652 cm−1. 

 
Figure 2.5: FTIR Spectra of three different weathering experiments with wavelengths 4000–400 cm

−1
. 

Interpreting the spectra of a mixture of minerals can be quite challenging given that peaks of different 

minerals may overlap and weaker peaks may be hidden by stronger peaks. No distinct peaks were 

identified for imogolite or allophane. The spectral range was from 4000 to 400 cm−1 and hence the 

characteristic peak of imogolite at 348 cm−1 could not be investigated. Other characteristic peaks for 

these amorphous silicates exist at 925–935 cm−1 and 990–1010 cm−1 (Wada, 1978), however at these 

wavenumber ranges, strong peaks of other functional groups were observed and may have made 

identification impossible. It should be noted that for the separation of the clay fraction from the other 

soil particle sizes, this particle size fraction was suspended in solution. It was further saturated with 

either K+ or Mg2+, which means that only relatively insoluble minerals would be observed in the XRD 
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patterns and IR spectra. This, however, does not rule out the possible formation of more soluble phases 

that also play an important role in acid buffering and element cycles. 

3.4. Mineral Stabilities 

The saturated paste solutions of the three different treatments were modeled in PHREEQC using the 

Pitzer model. The saturation indices (SI’s) are depicted in Figure 2.6 for a selection of minerals with 

respect to soil solution of control. The SI’s with respect to soil solution are positive for all minerals 

depicted in Figure 2.6 with the exception of Mg-Montmorillonite and thus it is not likely to form or to be 

stable in the soil solution. A second group of montmorillonite species that are stable, however, is Fe-

montmorillonite. Montmorillonite was detected by XRD analysis and could thus be assigned to the latter 

group of montmorillonites. The soil solution therefore agrees with the minerals detected by XRD 

analysis and little change in soil mineralogy has occurred over the course of the weathering experiment 

for the control. 

 
Figure 2.6: Saturation indices with regard to the weathering control soil solution. 

The SI’s were calculated for the AMD treated soil solutions (AMD-1 and AMD-2) as well as for the diluted 

AMD (Figure 2.7) with PHREEQC. Solution chemistry of the AMD suggests that ferrihydrite, goethite and 

lepidocrocite would precipitate from solution. Precipitates did form during the dilution process due to 

an increase in pH, but were filtered out. The diluted AMD used in the experiments was observed to be 

translucent, and homogeneous. Precipitation of these minerals is thus kinetically very slow or were 

formed as small colloids. The positive SI for of the Fe-oxyhydroxides (ferrihydrite, lepidocrocite and 

goethite) also supports the idea, postulated by Dubikova et al. (2002), that precipitates of these Fe-

oxyhydroxides on surfaces of minerals would act as a stable barrier to the acidic solution. This was 

however not observed for the clay minerals in this study, as these minerals were dissolved. 

For the AMD treatment, the saturated paste extracts indicate that in all cases, the soil solution was 

under-saturated with respect to kaolinite, montmorillonite and quarts. This supports the observed 

disappearance or reduction in peak intensity for these minerals in the XRD diffractograms. Illite is not 
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shown in Figure 2.7 as K was not detected in the saturated paste extracts of the AMD treated samples, 

which is one of the elements that make up this mineral. Potassium was detected in the AMD itself and 

the PHREEQC calculated SI for illite was –14.16. This low saturation means illite is unstable and therefore 

would dissolve. 

The saturation index of ferrihydrite is positive for AMD-2 and AMD and slightly negative (−0.38) for 

AMD-1. For other Fe-minerals, such as goethite and lepidocrocite, the SI values are positive with respect 

to the soil solution for AMD-1, AMD-2 and diluted AMD. This means Fe-phases would precipitate in 

these solutions. This would explain the low amount of Fe extracted from the saturated pastes, as seen in 

Table 2.6. Amorphous silica also has a saturation index of less than zero which means the formation of 

amorphous silica phases such as imogolite and allophane are probably inhibited. 

 
Figure 2.7: Saturation indices of soil solutions of AMD treated weathering experiments (AMD-1 and AMD-2) and raw AMD. 

 

3.5. Soil Morphology  

The morphologies of the soil for the different treatments were investigated by micrographs obtained 

from a scanning electron microscope (SEM). In Figure 2.8, three micrographs are displayed for the 

control weathering experiment (Figure 2.8a–c), the AMD treated weathering experiment (Figures 2.8d–

f) and the untreated B2 horizon of the pristine soil (Figures 2.8g–i). Structural similarities occur between 

the control weathering experiment and the untreated pristine soil, since they both show larger 

crystalline particles (Figures 2.8a, b, g and i). Clay particles with a size of 2 μm or less (Gee & Bauder, 

1986) are observed in Figures 2.8a, b, c and h. The clay sized particles observed are smooth and oblong 

to oval in shape. Figures 2.8d, e and i are micrographs of the AMD treated sample and portray a very 

different morphology compared to the two other cases. In Figures 2.8d and f, the sample has an 

amorphous mass that covers or binds the particles so that it is difficult to distinguish among the larger 

particle edges. In both of these micrographs (Figures 2.8d and f), linear crystal structures which have 

formed on the surface of this amorphous mass can be observed. In Figure 2.8f, it is also possible to 

-24

-20

-16

-12

-8

-4

0

4

Sa
tu

ra
ti

o
n

 in
d

ex
 

AMD-1 soil

AMD-2 soil

AMD

Stellenbosch University  https://scholar.sun.ac.za



     62 
 

identify smaller clay size particles. This micrograph was collected at a different scale to the other 

micrographs. Figure 2.8e shows a strikingly unique morphology when compared to the other 

micrographs. The morphology observed in this case can be described as a “shattered” appearance and is 

probably as a result of artifacts from sample preparation. The particles are clay to silt size (2–50 μm) 

with sharp corners.  

Micrographs were also collected for the clay fraction (Figure 2.9) for the control, AMD-weathered and 

pristine soil. Subtle differences can be observed between the control and pristine soil. For the AMD-

weathered sample, the edges appeared to be more corroded than the smooth edges observed in the 

control. These observations are in all likelihood attributable to the attack on the edges of the clay 

minerals, and a shift to more amorphous phases. 
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Figure 2.8: Micrographs for control weathered sample (a–c), AMD weathered sample (d–f) and pristine soil B horizon (g–i).
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Figure 2.9: Micrographs of clay fraction for the control weathered sample (a), AMD weathered sample (b) and pristine soil 

(c). 
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4. Conclusion 
An attempt was made to assess the impact of AMD on mineral weathering under evaporative 

conditions. 

The XRD patterns indicated severe changes to the clay fraction of the control and AMD treated soil 

experiments. Montmorillonite is almost completely dissolved by the AMD, while the kaolinite and illite 

also show alterations in the minerals with broadening and collapsing of peaks. The changes were not 

only observed in the XRD patterns, but observations from the IR spectra supported the idea of these 

mineral changes too, by observations such as the reduction of peak intensity of the Si–O stretching 

assigned to kaolinite. Jarosite (KFe3+
3(SO4)2(OH)6) is a predominant mineral that precipitated from 

solution in the AMD treated experiments. This mineral is insoluble and is likely to be an important sink 

for sulfate. The precipitation of jarosite leads to the removal of K+ from solution which may contribute to 

weathering of minerals with K+ in their structure, such as illite for example. 

The stabilities of soil minerals were evaluated with the modeling of soil solution in PHREEQC. The low pH 

of the AMD (2.42) is one of the main reasons why the soil solutions are under-saturated with respect to 

clay minerals such as montmorillonite, illite and kaolinite. Fe-oxyhydroxides, such as ferrihydrite and 

goethite, are stable in the soil solutions, and it is possible that minerals such as kaolinite and illite were 

coated with these Fe-phases, and were therefore protected from total dissolution. 

The morphology of the AMD treated samples was observably different to that of the control treatment. 

A more amorphous matrix was observed from the micrographs. The morphologies of the pristine and 

control weathering experiments were fairly similar in nature. For clay powders, the edges of the acid 

treated soils had a corroded appearance not observed in the control, and could therefore be indicative 

of the mechanism of acid attack on these minerals. 
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Chapter 3. Metal mobility in the Nababeep 

soils 

1. Introduction 
In this chapter, the focus is on the mobility and the availability of chemical species in the soils of the 

Nababeep site, especially associated with the AMD. Soil has a capacity to attenuate metals and buffer 

the acidity of AMD. Rate et al. (2000) lists the mechanisms by which metals are retained in soils as ion 

exchange, outer- and inner-sphere complexes (adsorption), and precipitation or co-precipitation. The 

soil is a pathway for the polluted water but in this process the polluted solution is modified by 

interaction with soil. In order to establish the impact of the acid mine drainage (AMD) on the 

environment, it is important to gain an understanding firstly, of what species are available or soluble 

under different conditions and secondly, how mobile these species are in the soil. This is of high 

importance since this, in effect, determines the extent of pollution and how far the heavy metals and 

acidic solution would spread into the surrounding area, including nearby water bodies such as 

underlying aquifers. Studies have shown that underground water can be acidified and contaminated by 

heavy metals and sulfur leaching from AMD sources (Miao et al., 2013; Lei et al., 2010). At the site of 

investigation, the contamination source is located upslope from an ephemeral stream, which may be at 

risk of receiving polluted water from the AMD source. The spread of water from the processing pond is 

most likely to occur during the rainy season when soils surrounding the pond reach their water holding 

capacity. Evidence of salt pollution was present in a direct line below the pond towards the streambed, 

suggesting there is movement of polluted waters from the pond.  

Understanding the movement and availability of metals in the soil could provide better management 

strategies in order to protect water resources and to stabilize the mobile fraction of trace elements in 

the soil. The aim of this chapter is i) to determine the metal retention and buffer capacity of the 

Nababeep soils, by applying AMD to the pristine soils and ii) to determine the mobility and leachability 

of metals in the contaminated Nababeep soils. Understanding the metal release and retention capacity 

of the soil will allow an estimation to be made of the contamination risks to nearby water sources. 

Leaching experiments were conducted to determine the capacity of the soil to retain AMD. This is to 

simulate conditions when soils are exposed to AMD as it moves into the environment close to the 

processing pond. The metal partitioning was also determined by sequential extraction to evaluate the 

mobility of metals in the soils exposed to AMD. First, a review of the current literature pertaining to 

metal sorption in soils and sequential extraction techniques is presented. 

2. Review on metal mobility in soils  

2.1. Sorption reactions in soils 

The mechanisms that are assumed to be responsible for heavy metal retention in soil systems are given 

by Selim & Amacher (1996). This is firstly the adsorbed fraction by cation exchange which is readily 

exchangeable. Ion exchange is a rapid process and a fully reversible reaction (Selim & Amacher 1996). 

The second mechanism is where ions with a high affinity are sorbed onto specific sites on the soil matrix. 
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Sposito (1989) define the first type as ion exchange. The second type is another group of reactions that 

has stronger retention strength such as inner-sphere complexes, surface precipitation and the possible 

penetration of metals into the crystal lattices of minerals found in soils. The second kind of metal 

retention is often referred to as specific sorption (Tiller et al., 1984). 

Sposito (1989) explains three types of adsorption reactions which are inner-sphere complexes, outer-

sphere complexes and diffuse ion clouds. The outer-sphere complexes occur on the solid surface and 

include the solvation shell. Diffuse ion clouds are ions that neutralize the surface charge but are not 

attached to the solid surface. The outer-sphere complex and the diffuse ion cloud involve mostly 

electrostatic bonding and are therefore considered to be the exchangeable ions in soils. Inner-sphere 

complexes are found in the siloxane cavity of clays and involve either ionic or covalent bonding. Since 

covalent bonds require a specific electron configuration, these reactions are considered to be specific 

sorption and will only occur on specific surface groups. Specific sorption studies can also occur rapidly 

(within one hour) yet true equilibrium can take longer to establish (Benjamin & Leckie, 1981). The initial 

equilibrium can therefore only be considered a pseudo-equilibrium. 

Metals in soil are adsorbed onto specific sites at low concentrations. At higher concentrations these 

specific sites become saturated with metals and the less permanent exchange sites are then filled 

(Mclean & Bledsoe, 1996; and references therein). O’Conner et al. (1984), for instance, investigated Cd 

adsorption on calcareous soils and characterized the retention with a two-part Freundlich relationship. 

The first part was for Cd-specific adsorption sites, and the second was a combination of highly Cd-

specific sites and nonspecific sites attributed to exchange reactions. These relationships are strongly 

dependent on concentrations of the metals. A metal’s affinity for a specific soil surface is related to the 

tendency to form a strong bond. Table 3.1 was compiled by Mclean & Bledsoe (1996), and shows the 

affinities of certain metals for different soils and soil constituents. Puls & Bohn (1988), for instance 

found that Cd has a higher affinity for kaolinite than Zn whilst a study by Forbes et al. (1976) found that 

both Zn and Co have a higher affinity for goethite than Cd does. In general, Pb and Cu has higher 

affinities for different soil constituents than Zn and Ni does. In a study by Tiller et al. (1984) on Cd, Zn 

and Ni adsorption on soils, it was found that the high-affinity sites depended on pH, equilibrium time 

and surface saturation that is specific to each respective clay in soil. 

Table 3.1: Relative affinity of different soils and soil constituents for metals as given by Mclean & Bledsoe (1996). 

Soil or Soil constituent Relative order of sorption Reference 

Goethite Cu>Pb>Zn>Co>Cd Forbes et al. (1976) 
Fe Oxide Pb>Cu>Zn>Cd Benjamin & Leckie (1981) 
Montmorillonite Cd=Zn>Ni Puls & Bohn (1988) 
Kaolinite Cd>Zn>Ni Puls & Bohn (1988) 
Soils Pb>Cu>Zn>Cd>Ni Bidappa et al. (1981) 
Soils Zn>Ni>Cd Tiller et al. (1984) 
Mineral soils Pb>Cu>Zn>Cd Elliott et al. (1986) 
Organic soils Pb>Cu>Cd>Zn Elliott et al. (1986) 
Soil Pb>Cu>Zn>Ni Harter (1986) 
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Another mechanism that influences the mobility of metals in the soil is co-precipitation. This process 

occurs when phases precipitate from solution and is usually associated with a change in pH or a change 

in concentration with additions of new salts. Co-precipitation has been investigated to be a method of 

removing trace metals from AMD by authors such as Lee et al. (2002) and Sánchez España et al. (2006). 

Co-precipitation is however not limited to human induced reactions and has be observed “naturally” or 

unintentionally in AMD systems. Smith & Williams (2000) report on the removal of Cd, Co, Ni, V and Cr 

from AMD downstream from an AMD source. This removal is attributed primarily to co-precipitation 

with crystalline sulfates of which melanterite is the most prevalent. Bortnikova et al. (2001) investigated 

the response of the solution in a reservoir to an inflow of an AMD stream. In this study, co-precipitation 

is suggested as one of the main mechanisms by which metals are removed from solution. This occurs 

through sorption of ions onto the neo-formed Fe-compounds. The phases that formed in solution were 

gypsum, jarosite and Fe-oxides. Johnson (1986) also showed that amorphous Fe-oxyhydroxides 

regulated the concentrations of Cd and Zn in a river contaminated with AMD by specific binding to the 

surfaces of these amorphous Fe precipitates. 

Although artificial metal removal is beyond the scope of this study, a few concepts are worth noting. In 

the study by Lee et al. (2002), the importance of different phases for the removal metals is highlighted. 

The phases of importance include firstly, Fe-oxides, where ferrihydrite forms at pH values below 4 and 

schwertmannite, which forms at pH values above 4. Secondly, Al-rich phases which form at pH values of 

approximately 5 are also important. Thirdly, the other important phase in soils include the Mn-

compounds, which precipitate at a pH of approximately 8. It is stated that the removal of metals 

depends on the formation of these three phases. Sánchez España et al. (2005) support the importance 

of pH on metal removal rates from AMD and also include the importance of the activity of SO4
2− which 

determines the speciation of metals. At high activities of SO4
2− (> 10−1 mol/L), metals such as Al, Zn, Cd, 

Pb and U form anionic bisulfate complexes, which enable these metals to be sorbed at pH values below 

5 (Sánchez España et al. 2006). 

2.2. Leaching of metals and pollution potential 

The subject of metal mobility is important with the regards to the pollution potential of a metal loaded 

solution such as AMD. As discussed above, soils and soil constituents have a significant influence on the 

removal and retention of metals, although there are limitations to their capacity for attenuation. Lei et 

al. (2010) investigated groundwater in close proximity to a tailings storage facility of a nickel sulfide 

mine. It was found that the groundwater from drilling holes was acidic and that the concentrations of 

Co, Cu, Zn, Cd, Al and Mn were 1 to 2 orders of magnitude higher than the background groundwater 

concentrations. Rösner (1998) reported significant As, Cd, Pb, Zn, Fe and Mn pollution in groundwater in 

the vicinity of a mine in Arizona, yet another nearby mining site yielded no evidence of groundwater 

contamination (Rösner 1998). The different responses to contamination were attributed to soil chemical 

reactions, different groundwater systems and dilution effects. 

Some remediation strategies attempt to immobilize metals by the addition of amendments to the soil. 

Amendments such as CaCO3, iron grit, fly ash, manure, bentonite and bone meal (Hodson et al. 2001; 

Concas et al, 2007; Houben et al., 2012) have been evaluated as possible metal immobilization agents in 

soil. One of the factors that reduces the leaching of heavy metals is the increase in alkalinity. 
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Remediation will not be investigated in this dissertation, but the importance of leaching behavior should 

be considered to understand the extent of pollution of metals and to evaluate future solutions to the 

problem. 

2.3. Determination of metal partitioning 

Metals can partition into a number of different soil phases. The phase that a metal partitions into 

determines the mobility and bioavailability of the metal (Filgueiras et al., 2002). Sequential extraction is 

a procedure which selectively dissolves certain phases in the soil sediment or sludge, allowing 

predictions to be made about metal mobility and bioavailability (Filgueiras et al., 2002). Sequential 

extraction is a multi-step process where metals are separated by extracting one or several metal 

fractions at each step using a different solvent. 

The procedure that was followed in this study is based on the method described by Tessier et al. (1979) 

for fluvial bottom sediments. The basic procedures and chemicals used are outlined in Table 3.2. 

Since then the procedure was adapted and used in many applications. The Community Bureau of 

Reference (BCR), which is now called Standards, Measurement and Testing Programme, developed a 

three step sequential extraction method with three fractions (acid soluble, reducible and oxidizable) 

(Ure et al., 1993). The applications and adaptions of sequential extractions vary to such an extent that a 

comprehensive review was done by Filgueiras et al. (2002) on sequential extraction procedures over the 

previous decade of publication and more than 400 papers were reviewed. One of the aims of this review 

is to assess comparability between the different techniques. Figure 3.1 is a summary of the different 

defined extractable phases with the corresponding chemicals used in each stage. The selection of 

different stages and chemicals is dependent on the different applications as listed by Filgueiras et al. 

(2002) which are (1) pollution source characterization, (2) determining metal bioavailability and 

availability, and (3) for determining the binding sites important for assessment of the metal 

accumulations, transport mechanisms and pollution. 

Sequential extraction has been applied to many different materials such as sewage sludge, river 

sediments, fly ash and soil (Filgueiras et al., 2002). Maiz et al. (1997) conducted a two-step sequential 

extraction procedure on soils contaminated by mining, steel factory and traffic emissions. The order of 

metal availability was proposed to be Cd>Pb>ZnCu>Mn>Ni>FeCr. In a study by Barona et al. (1999), 

Cu, Ni and Zn were sequentially extracted in a 3-step procedure on soils contaminated by smelters and a 

steel factory. Copper was found to be the most abundant in the non-residual fraction and hence most 

available while Ni was mostly extracted from residual fraction. In a long-term experiment by McGrath & 

Cegarra (1992), soils were treated with sewage sludge or inorganic fertilizers over a long period (1942–

1961). The soils were then analyzed by a four step sequential extraction. During the first ten years of 

sewage sludge additions, it was found that for the metals Pb, Cu, Zn and Cd there was an increase in the 

proportions of metals in at least one of the first three fractions extracted. These were the fractions 

representing exchangeable, organically bound and carbonate forms and thus the more mobile fractions 

in soil. For a period of more than 30 years of sewage sludge addition as fertilizer, there was little change 

in the distribution of the metals extracted in the distinctive fractions. Chrome was mostly found in the 

residual fraction for most of the cases. 
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Table 3.2: Summary of the sequential extraction procedure described by Tessier et al. (1979). 

Fraction  
number 

Operationally-
defined phase Procedure summary 

Fraction 1 Exchangeable 8 ml - 1M MgCl2, pH 7 or 1 M NaOAc, pH 8.2  
Continuous agitation 
1 hour at room temperature ± 22 °C 

Fraction 2 Bound to 
carbonates 

8 ml - 1M NaOAc pH 5 (HOAc adjusted) 
Continuous agitation 
5 hours at room temperature ± 22 °C 

Fraction 3 Bound to Fe-Mn 
oxides 

20 ml - 0.3 M Na2S2O4 + 0.175 M Na citrate + 0.025 M H-citrate 
           - or 0.04 M NH2OH·HCl in 25% (v/v) HOAc 
Occasional agitation 
6 hours at 96 ± 3 °C  

Fraction 4 Bound to Organic 
Matter 

3 ml 0.2 M HNO3 
5 ml 30% H2O2 pH 2 (HNO3 adjusted) 
intermittent agitation 
1st - 2 hours at 85 ± 3 °C 
2nd - for 3 hours at 85 ± 3 °C 
Allow to cool  
5 ml 3.2 M NH4OAc in 20% (v/v) HNO3 
Dilute sample to 20 ml and agitate for 30 min 

Fraction 5 Residual Residue digested with HF-HClO4 

 

Differences in the distribution of heavy metals of the sludge compared to the soil treated with inorganic 

fertilizers were also observed by McGrath & Cegarra (1992). Lead was found to be most abundant in a 

fraction extracted by ethylenediaminetetraacetic acid (EDTA) which represents the acid soluble fraction 

in the fertilized-treated soils. In the sludge treated soils, lead was more predominant in residual fraction. 

Copper was more predominant in the NaOH fraction assigned to organic matter, however NaOH could 

also attack aluminosilicates and clays (Gleyzes et al., 2002). Lastly, Cd was mostly found in the 

exchangeable fraction (CaCl2) in experiments by McGrath & Cegarra (1992). 

Abdel-Saheb et al. (1994) characterized soils contaminated by mining and smelting activities by 

sequential extraction. In this study by Abdel-Saheb et al. (1994), the different fractions extracted were 

sulfide, carbonate, organic, sorbed and exchangeable fractions and the sulfide fraction had the highest 

concentration of heavy metals. Another sequential extraction study on sandy and loamy texture soils 

found that metals from anthropogenic sources are more mobile than the metals inherited from the 

parent material (Chlopecka et al., 1996). It was found in this study by Chlopecka et al. (1996) that soil 

type, cation exchange capacity (CEC), texture or organic matter did not influence the proportion of 

metal forms. The pH, however, did play a role in that soils with a pH of less than 5.6 had higher relative 

proportions of Cd, Pb and Zn in the exchangeable fraction than in soils with a pH of more than 5.6. 
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Figure 3.1: Figure depicting the relationship between the metal mobility for each fraction and examples of chemicals used for 

each fraction (adapted from Filgueiras et al. (2002)). 

Although there are known limitations to sequential extraction techniques (Martin et al., 1987), it is one 

of the only ways to gather information on the lability of metals. This is important as it determines the 

potential for AMD to move through the soil into nearby water bodies when soil conditions change. 

3. Materials and Methods 

3.1. Metal retention experiments 

The acid mine drainage used in this experiment was collected from the leach pond (as described in 

Chapter 2). At the time of collection (end of the dry season), the AMD was highly concentrated. To 

simulate the dilution that would take place in the rainy season (when movement of AMD into the soil is 

most likely) it was diluted 10 times. The diluted AMD was filtered to remove the precipitates that 

formed during the dilution process. The composition of the diluted AMD was analyzed by ICP-AES.   

A 250 ml separating funnel was used as the leaching column. A glass wool and filter paper pulp plug was 

used to prevent the soil leaving the vessel. The filter paper pulp was prepared by blending torn pieces of 

Whatman 40 paper in distilled water. A small amount of this pulp was added on top of the glass wool 

layer. The glass wool and filter paper pulp layer was not thicker than 1 cm.  
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The amount of liquid added was slightly higher than field capacity (previously determined) and for 80 g 

of soil this was around 13 ml of liquid. It was, however, decided to add 15 ml of AMD to the air dried soil 

at the first leach cycle to ensure enough liquid could be extracted from the first run for analysis. 

Thereafter 13 ml of liquid was added. To make sure the solution moved right through the column the 

tap was left open until the added solution reached the plug filter. The solution was allowed to 

equilibrate with the soil for 24 hours before being extracted under vacuum. This leaching cycle was 

repeated 10 times. The leachates were filtered through 0.45 μm syringe filters, diluted and analyzed by 

ICP-AES. 

3.2. Sequential Extraction 

The sequential extraction procedure was based the procedure described by Tessier et al. (1979). This 

five step procedure was developed for river sedimentary samples and is summarized in Table 3.2. 

The sequential extraction was performed on three different soil samples: the first was from the long 

weathering experiment, the second was the control from the long weathering experiment (both 

described in Chapter 2) and the third was the B horizon (15–30 cm) from the contaminated Nb3 profile 

(Chapter 1).  

Table 3.3 is a modification of the Tessier method (Tessier, 1979) used for the sequential extraction in 

this study. For each soil, 1 g of soil was used and samples were prepared in triplicate. The first deviation 

from the method by Tessier et al. (1979) is the introduction of a water soluble fraction in the first 

treatment. 

The soils exposed to AMD have a substantial amount of soluble salts that have precipitated in the soil 

matrix, but are however not associated with the solid fractions of the original soil. The last residue was 

not treated with HF-HClO4. 

The soil samples were analyzed before and after sequential extraction by X-ray fluorescence (XRF) 

spectrometry in order to determine bulk elemental composition, using a handheld Niton® XL3t 

GOLDDTM++ Analyzer by Thermo Scientific. 

The experiments were conducted in 50 ml polypropylene centrifuge tubes. Between the operationally-

defined phases, separation was accomplished by centrifuging at 8000 rpm for 20 minutes. The 

supernatant was then carefully removed with a micro-pipet without extracting the residual fraction. The 

supernatant was added to a volumetric flask and solution was made up as indicated in Table 3.3 and 

then subsequently analyzed by ICP-AES. After each fraction (except first fraction), the residual fraction 

was washed by adding 10 ml Deionized (DI) water (18 MΩ∙cm, Millipore, Billerrica, MA), shaking the 

sample for 10 minutes, and then centrifuging it. The second supernatant was discarded. The reagents 

used for all procedures were analytical grade and were tested for contamination by a blank control run 

for each fraction. 
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Table 3.3: Summary of experimental procedure followed for sequential extraction. 

Fraction  
number 

Operationally-
defined phase Procedure summary 

Fraction 1 Soluble fraction Add 30 ml of DI water 
Continuous agitation 
1 hour at room temperature ± 22 °C 
Repeat 
Decant in 100 ml volumetric flask and make up with DI water 

Fraction 2 Exchangeable Add 10 ml - 1M MgCl2 
Continuous agitation 
1 hour at room temperature ± 22 °C 

Fraction 3 Bound to 
carbonates 

Add 8 ml - 1M NaOAc pH 5 (HOAc adjusted) 
Continuous agitation 
5 hours at room temperature ± 22 °C 
Decant to 25 ml volumetric flask and make up with DI water 

Fraction 4 Bound to Fe-Mn 
oxides 

Add 20 ml - 0.3 M Na2S2O4 + 0.175 M Na citrate + 0.025 M H-citrate 
Occasional agitation 
1st - 5 hours at 96 ± 3 °C  
2nd (repeat)- 3 hours at 96 ± 3 °C  
Decant to 50 ml volumetric flask and make up with DI water 

Fraction 5 Bound to 
Organic Matter 

Add 3 ml 0.2 M HNO3 
Add 5 ml 30% H2O2 pH 2 (HNO3 adjusted) 
Intermittent agitation 
2 hours at 85 ± 3 °C 
Add 5 ml 30% H2O2 pH 2 (HNO3 adjusted) 
Intermittent agitation 
3 hours at 85 ± 3 °C 
Allow to cool  
5 ml 3.2 M NH4OAc in 20% (v/v) HNO3 
Dilute sample to 20 ml and agitate for 30 min 
Decant to 50 ml volumetric flask and make up with DI water 
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4. Results and Discussion 

4.1. AMD dilution 

The AMD that was used in the treatment of weathering experiments in the previous chapter is the same 

AMD now used in the metal retention experiments. The AMD was not filtered prior to dilution, this 

would give the true effect of rain-induced dilution on the composition of the AMD. The ratio between 

the concentrated and diluted AMD is given to evaluate conservative and non-conservative behavior of 

species (Table 3.4). A ratio of less than ten indicates that dilution results in dissolution of particulate 

species whereas a ratio of more than ten suggests non-conservative behavior or removal of the species 

from solution. After the dilution of the concentrated AMD, a translucent yellow/red precipitate formed 

that would be assigned to be amorphous Fe-oxyhydroxides. The ratio for Fe is, however, slightly less 

than 10 (9.66) which indicates a release of Fe into the solution. 

The ratio between concentrated and diluted AMD for Na is 10.73. Sodium should act conservatively with 

dilution, therefore it can be used as threshold for comparison with other metals. Calcium and heavy 

metals such as Cd, Co, Cr and Ni have a ratio of close to 10 with values of 10.54, 10.34, 10.35, 10.40 and 

10.49 respectively and could be considered to have behaved conservatively. Pb, however, shows some 

non-conservative behavior with a ratio of 14.02. The removal of this metal could be attributed to co-

adsorption with Fe-oxyhydroxides. The pH value increased from 1.5 to a value of 2.42. 

Table 3.4: Metal/Species concentration of concentrated and diluted AMD 

Element/ AMD AMD10 Ratio 

Species mg/l mg/l -- 

Al 26896.67 2756.33 9.76 

B 24.12 1.54 15.67 

Ca 230.33 21.86 10.54 

Cd 1.53 0.15 10.34 

Co 126.57 12.23 10.35 

Cr 19.89 1.91 10.40 

Cu 3819.00 403.20 9.47 

Fe 42923.33 4445.67 9.66 

K 7.86 0.99 7.97 

Mg 20493.33 2170.00 9.44 

Mn 3447.67 351.70 9.80 

Na 20.25 1.89 10.73 

Ni 340.23 32.43 10.49 

P 52.17 6.18 8.44 

Pb 5.72 0.41 14.02 

SO4
2− 318352.60 31175.19 10.21 

Si 16.57 1.59 10.45 

Zn 1688.33 175.63 9.61 
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4.2. Metal retention experiments 

Figure 3.2 depicts the average pH for every 24 hour leachate cycle. The horizontal (red) line is the pH of 

the AMD that was introduced to the column. The first phenomenon observed in Figure 3.2 is the low pH 

for the first two leach cycles (1.35 and 1.39 for the first and second cycle, respectively). This is lower 

than the AMD pH (2.42). This decrease in pH can possibly be attributed to the precipitation of 

amorphous Fe oxyhydroxides which acidifies the solution. Another explanation could be the release of 

reserve acidity. A large difference was observed between the pH in water and KCl in Chapter 1 (Table 

1.4) and the AMD would therefore release exchangeable acidity. After the first two leach cycles the pH 

stabilizes close to the pH of the AMD. 

 
 

Figure 3.2: Measured pH values of leachates extracted (blue diamonds) from soil columns every 24 hours. Red line indicates 
pH of the introduced AMD. 

Figure 3.3 depicts the concentration of Si, Fe, Al and Mn in the leachate after each leach cycle. In Figure 

3.3b, a clear decrease in Fe concentration in the leachate can be observed for the first three cycles after 

which the concentration gradually approaches the concentration of the AMD and then plateaus off to 

more or less the same concentration of AMD. This supports the theory stated above that the 

precipitation of Fe-oxyhydroxides occurs which leads to the acidification of the solution. The 

precipitation of these Fe-oxyhydroxides is limited as the concentration of AMD is unaffected after 5 

leach cycles. The Si concentration measured in the AMD is 1.65 mg/l, but for the first leachate 77.2 mg/l 

was extracted and would mean Si is being released from the soil. The source of Si in leachate could be 

attributed to the dissolution of acid soluble Si phases. Smectite was identified in the Nb4 profile, and 

smectite is unstable in acid soils (Kloprogge et al., 1999). Smectite also has a high surface area, thus it is 

likely that this would be one of the first mineral phases to dissolve. The release of Si decreases with 

progressive leaching until the curve plateaus. Interestingly, this is still above the concentration of the 

AMD. Reasons for this may be a gradual dissolution of clay minerals such as illite and kaolinite 

(Al2Si2O5(OH)4). 
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No specific trend can be observed for Al in Figure 3.3. The first of cycle of leachate had a concentration 

of 2585 mg/l which is lower than the concentration of the AMD (2756 mg/l). In the leachate from the 

second cycle, the Al concentration spiked above the AMD concentration (3122 mg/l). From the third 

leach cycle onwards the concentration of Al in the leachate is above the concentration of the AMD 

which means a net release of Al from the soil. The loss of Al supports the theory that clay minerals such 

as kaolinite and montmorillonite are dissolving. This also implies that no Al-minerals precipitate in the 

solution and Al is one of the most mobile cations in the soil. 

The concentration of Mn in the leachate rapidly drops over the first three leach cycles from an average 

of 963 mg/l to approximately the value of the AMD (351 mg/l in Figure 3.4d). The rapid removal 

indicates that the Mn is easily released from the soil into solution. The source of this Mn remains 

unexplained. It may be attributed to primary minerals, but in chapter 1 the reported minerals found in 

the granite-gneiss is biotite (K(Mg, Fe)3(AlSi3O10)(F, OH)2), hornblende ((Ca, Na)2(Mg, Fe, Al)5(Al, 

Si)8O22(OH)) and feldspar (CaAl2Si2O8). A sample of the weathered granite was also analyzed by XRD and 

the phases identified included microcline (KAlSi3O8) and albite (NaAlSi3O8) and none of these minerals 

contain Mn in its chemical composition. 

In Chapter 1 saturated paste extractions were also conducted on the same soil and could be compared 

to the first leach cycle. The Mn for the saturated paste extracted with DI water was only 2.66 mg/l. This 

means the 963 mg/l value for first leachate would include the Mn added by AMD but also a fraction that 

was solubilized by mechanisms such as acid attack induced by AMD.  
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Figure 3.3: Concentration of Si (a), Fe (b), Al (c) and Mn (d) in leachate for each leach cycle with upper and lower standard 
deviation given for cycle 1, 7 and 10. Red line indicates concentration of species in AMD and black dashed lines indicate 

upper and lower standard deviation. 

 

Figure 3.4 depicts the concentrations of basic cations in the leachate at every leach cycle. A similar 

pattern is observed for Na, K and Ca (Figures 3.4a, c and d) which is a high concentration of the cation in 

the initial leachate followed by a rapid decrease in concentration over the cycles 2 to 4, after which the 

concentration plateaus close to the concentration of the AMD. This means again that these cations are 

rapidly removed from the soil within three or four leaching cycles. This behavior was also observed for 

Ca in leaching experiments by Dubikova et al. (2002) and corresponds with the exchangeable and 

soluble species in the soil. During the first leach cycle, 6.88 mg/kg soil Na, 9.06 mg/kg soil K and 110 

mg/kg soil Ca was removed from soil and would be exchanged with high Mg in AMD. Mg however shows 

different pattern to the other basic cations (Figure 3.4b). The concentration observed for Mg in the 

leachate is always higher than the average AMD concentration (2170 mg/l). The highest Mg 

concentration is observed in the last leach cycle (cycle 10) which is 2521 mg/l Mg. This release of higher 

Mg concentration only later in leaching cycles may be related to dissolution of clay minerals and primary 
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minerals, such as biotite. The lag in release of Mg from the soil was also observed by Dubikova et al. 

(2002) was assigned to the dissolution of clay minerals. It does however not reflect the same pattern as 

Mn that showed a high release into solution initially. The cations contained in the AMD suppress the 

release of alkali and alkali-earth metals from the soil (Dubikova et al., 2002). 

Figure 3.4: Concentration of Na (a), Mg (b), K (c) and Ca (d) in leachate for each leach cycle with upper and lower standard 
deviation given for cycle 1, 7 and 10. Red line indicates concentration of species in AMD and black dashed lines indicate 

upper and lower standard deviation. 

Figure 3.5 depicts the concentration in leachates for heavy metals (Co, Ni, Cu and Zn). Cobalt shows a 

trend similar to that of the Mn where the metal is rapidly removed during the first 3 leach cycles and 

thus removed from the soil. After the first three leach cycles, the curve plateaus off and the 

concentration remains close to that of the AMD introduced at the top of leaching column. During the 

first leach cycle 22.11 mg/l of Co is measured in the leachate equivalent to 4.15 mg/kg soil and thus an 

amount of Co is released from soil into solution. This could possibly be Co associated with Mn-oxides. 

The leachate curves for Ni, Cu and Zn follow a similar trend to each other with leachate concentrations 

fluctuating around the concentration of AMD. In all three cases, the Ni, Cu and Zn concentrations for the 

first cycle were lower than the AMD which can be associated with the co-precipitation of Fe-
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oxyhydroxides, a removal mechanism discussed by authors such as Johnson (1986) and Smith & Williams 

(2000). 

The results demonstrate that the soils show a low capacity to retain the metals in the soil. For the heavy 

metals only the first cycle seemed to have had an influence in retaining the metals. On the contrary a 

number of metals, such as Al, Mn and Co seemed to have been released from the soil into the soil 

solution. The AMD also strips the soil from basic cations. The mechanisms for this may be cation 

exchange and dissolution of clay minerals but the effect is permanent and would have irreversible 

effects on the soil. This would make remediation of the soil challenging. Iron was precipitated from the 

AMD solution and this mechanism may responsible for the initial removal of some heavy metals such as 

Cu, Zn and Ni, heavy metals through co-precipitation. This capacity seems limited, however, with the 

leachate soon attaining equilibrium with the leachate. 

Figure 3.5: Concentration of Co (a), Ni (b), Cu (c) and Zn (d) in leachate for each leach cycle with upper and lower standard 
deviation given for cycle 1, 7 and 10. Red line indicates concentration of species in AMD and black dashed lines indicate 

upper and lower standard deviation. 
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4.3. Sequential Extraction 

The initial phase extracted from the soil was the water extractable phase. Table 3.5 gives this extraction 

data for the long weathering treatment along with the cumulative concentrations of metals added to 

the soil during the weathering experiment. The cumulative metal concentrations are the total metal 

loads added to the soil in nine wetting events. The water soluble metals are expressed as a percentage 

of the cumulative metal concentrations (Table 3.5). For Fe, only 14 % of the added metal concentration 

was released in the soluble fraction. It can therefore be assumed that the Fe phases that precipitated 

out from the AMD were insoluble in water. As previously discussed the jarosite phase was detected in 

the clay phase and this could be one of the main sinks for Fe. Although a low amount of K was added in 

AMD over the experiments (1.36 mg/kg), none of this K was detected in the soluble phase which 

supports the theory that this element is part of jarosite’s chemical composition. 

Table 3.5: Comparison of the input of weathering experiments to the soluble fraction of sequential extraction. 

Element 
  

Input over 
experiments* 

Fraction 1 
(Soluble 
fraction) 

% soluble 

mg/kg soil 

Al 3803.74 2035.67 53% 

Ba 0.12 0.61 500% 

Ca 30.16 94.27 313% 

Co 16.88 9.65 57% 

Cr 2.64 0.82 31% 

Cu 556.42 319.5 57% 

Fe 6135.02 870.6 14% 

K 1.36 nd 0% 

Mg 2994.6 1665.67 55% 

Mn 485.35 258.73 53% 

Na 2.61 nd 0% 

Ni 44.75 25.69 57% 

Pb 0.56 nd 0% 

S 14360.74 6875.33 47% 

Si 2.19 11.62 531% 

Sr 0.015 0.057 367% 

Zn 242.37 127.93 52% 
*                           

            
 

                                        

 

Of the heavy metals Co, Cu, Ni and Zn that were added, between 50 and 60 % were water extractable 

which means that more than half of metals added were present in labile phases in the soil. The same is 

true for Al, Mn and Mg, which had between 50 and 60% water extractability for the amount of metals 

added. Chrome and Pb seemed to have the highest affinity for the soil, with only 31% and 0% being 

extracted by water, respectively. Some elements, namely Ba, Ca, Sr and Si, were released from soil so 
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that a higher concentration was detected in the soluble fraction than the amount that was introduced 

through AMD. This can be largely attributed to the dissolution of silicate minerals by the addition of 

AMD. 

Table 3.6 gives the metal concentrations released in each extractant for the long weathering control, the 

AMD treated soil and the Nb3 (15–30 cm) subsoil. The concentrations of Al and Fe in the water soluble 

fraction of the control was 87 and 50 mg/kg soil, respectively, while for the water soluble fraction of the 

AMD treated sample, the concentration of Al and Fe was 2036 and 870 mg/kg soil, respectively. For the 

AMD treated sample, the highest amount of Al was extracted in this water soluble fraction. As 

previously discussed, clear dissolution of montmorillonite, illite and kaolinite was observed and this 

could be the source of Al species which is extracted in this fraction. The dissolution of these minerals 

would also lead to Si being available in the more soluble fractions. 

Table 3.6: Selected elemental concentrations of different sequential extraction fractions of control, AMD treated long 
weathering experiments and contaminated soil (Nb3 15-30 cm). 

Fraction   mg/kg soil 

  Al Fe Mn Si Ca Co Cr Cu Pb Zn 

Soluble 

A
M

D
 

2035.67 870.60 258.73 11.62 94.27 9.65 0.82 319.50 nd 127.93 
Exchangeable 88.97 36.62 1.16 3.14 8.60 nd nd 9.21 nd 0.79 
Acid Soluble 14.80 387.67 1.12 26.10 10.83 nd nd 12.63 0.27 0.89 
Reducible 596.17 6925.00 11.12 1987.17 48.63 nd 6.00 51.78 14.17 19.72 
Oxidizable 260.48 143.00 3.30 297.05 220.88 0.16 0.51 29.36 3.84 3.72 

Soluble 

C
o

n
tr

o
l 

86.89 49.74 0.98 137.90 13.45 0.05 nd 3.78 nd 1.20 
Exchangeable 12.39 13.73 2.98 2.16 61.72 nd nd 28.57 2.58 3.64 
Acid Soluble 25.32 105.59 2.07 21.08 10.83 nd nd 24.56 3.12 0.95 
Reducible 678.67 4515.50 19.90 1781.17 90.20 nd 6.05 77.15 10.77 24.10 
Oxidizable 274.97 154.23 3.04 282.27 263.25 0.13 0.55 58.31 3.50 4.25 

Soluble 

N
b

3
 1

5
-3

0
 c

m
 

69.85 57.90 17.92 12.36 905.27 0.44 nd 12.53 nd 6.24 

Exchangeable 124.05 21.08 0.48 3.62 71.00 nd nd 2.06 nd 0.65 

Acid Soluble 26.57 20.97 0.50 27.90 11.36 nd nd 4.21 nd 0.36 

Reducible 998.67 21175.0 14.73 3070.17 78.65 nd 15.85 41.53 8.00 10.65 

Oxidizable 412.23 165.02 2.67 589.67 24.08 0.16 0.71 4.04 1.76 4.13 

nd = not detected 
 

The concentration of Si in this sample is lower in first three fractions (water soluble, exchangeable and 

acid soluble) compared to the reducible fraction and this suggests that Si has been scavenged into less 

soluble phases. Another observation is that Al remains in the most mobile fraction of the soil and is not 

bound to neoformed phases. An example of this is alunite (K2Al6(SO4)4(OH)12), which is not water soluble. 

Alunite has been observed in precipitates of AMD by several studies (i.e. Sánchez España et al., 2006; 

Filipek et al., 1987; Jones et al., 2011; Lee et al., 2002; Sánchez España et al., 2005). Alunite precipitation 

may be limited by lack of K in solution. The heavy metal content was significantly higher for Co, Cr, Cu 
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and Zn in the AMD treated soil than in control. These metals are associated with soluble salts from the 

metal laden AMD solution. 

For the exchangeable fraction, the concentration of all elements in Table 3.6, except Al, Fe and Si, were 

higher in the control than for AMD treated soil. Due to the low organic matter content the clay phase is 

responsible for the exchangeable fraction and the clay content of the soil was measured to be only 5.12 

%. The introduction of the metal laden AMD to soil increases the competition of exchangeable sites. The 

concentration of Al extracted in the exchangeable fraction for the AMD treated soils was 88 mg/kg soil 

which the second lowest value in the fractions for the AMD treated soil in this metal partitioning 

experiment.  

The acid soluble fraction is usually associated with carbonates which are not dominant in the parent 

material. The values observed for this fraction is somewhere in between the values of other fractions. 

The concentration of Fe for AMD treated soil is 387.7 mg/kg soil. Claff et al. (2010) investigated Fe 

partitioning in acid soils and although a stronger acid was used than in this study (1M HCl) as an acid 

extractant, it is reported that in this fraction, poorly ordered sulfides and oxides are also dissolved. The 

release of Fe can thus be assigned to dissolution of phases such as ferrihydrite. The use of acetic acid in 

this fraction may also release metals by cation exchange.  

The extracted concentration of Fe for the control was 4515 mg/kg soil and 6925 mg/kg soil for the AMD 

treated sample in the reducible fraction. The Fe is significantly higher for the AMD treated soil (p = 

0.0029) and this additional release can be attributed to neoformed minerals such as jarosite. In Chapter 

1, the formation of Fe-compounds was discussed in terms of pe-pH diagrams. In Figure 1.10, formation 

conditions of jarosite are shown which is at low pH and high pe (oxidizing conditions). When minerals 

such as jarosite are therefore exposed to reducing conditions, the solid Fe-phases dissolve. Dold (2003) 

did a two part reducible fraction extraction and found jarosite dissolving in the reducible fraction 

amongst other phases of ferric (Fe3+) minerals. No jarosite was detected in the control phase. The 

release of Fe is however also related to other Fe phases such as goethite and hematite. For the control, 

the highest amount of Al extracted was in the reducible fraction (679 mg/kg soil). Aluminium is however 

not a redox sensitive element and the release of Al must be related to phases that do contain redox 

sensitive cations. The amount of Al extracted in reducible fraction for the control is higher than soil 

treated with AMD (596 mg/kg soil). This can be attributed to a change in mineralogy of the AMD treated 

sample. The average concentration of Si in the reducible fraction is significantly higher in the AMD 

treated soil (p = 0.031). The highest Pb concentration was detected in the reducible fraction of the 

control and AMD treated soil. The Pb was significantly higher in the AMD treated soil (p = 0.027) which 

can be attributed to its release upon the dissolution of Fe-phases. The release of metals from the 

reducible fraction was also observed  for Cr, Cu and Zn.  

The oxidizable fraction is the fraction associated with organic matter and supergene sulfides. There is no 

significant difference in the concentrations between the AMD treated and control weathering 

experiments which means the organic matter remained unaffected over the experiments. Calcium was 

the highest in the oxidizable fraction for both AMD treated soil (220.9 mg/kg soil) and control (263.3 

mg/kg soil).  
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The extracted Cu concentration was higher in the control for all fractions except the water soluble 

fraction of AMD treated soil (Table 3.6). The pristine nature of the Nb4 sampled site soil has been 

questioned previously in this dissertation and this release of Cu supports the idea of possible 

contamination from previous mining activities. It may also be attributed to the naturally elevated Cu 

concentrations resulting from the presence of Cu-ore mineral deposits in the area. 

All the metals in the soluble fraction of the AMD treated soil are significantly higher (p-values < 0.001) 

than in the contaminated soil (Nb3 15-30 cm) which suggests that the soluble species have already been 

removed from these soils. Significantly more Al and Si are observed in exchangeable, acid soluble, 

reducible and oxidizable fractions of the contaminated soil than in the AMD treated soil. The elevated 

amounts are ascribed to the extended years of exposure to AMD resulting in an accumulation of these 

species. Iron concentration is also more than three times higher in the reducible fraction for the 

contaminated soil (21175 mg/kg soil) than AMD treated soil. Copper concentrations were significantly 

higher in all the fractions for the AMD treated soil and this would suggest that for an open soil system, 

metal attenuation is less effective. The Pb and Zn concentrations in the reducible fraction of the AMD 

treated soil is higher than contaminated soil and supports the notion that metal attenuation is limited in 

natural environments. The comparability of the contaminated and AMD treated soil is also questionable. 

The AMD treated soil was pristine soil treated for 201 days while contaminated soil sample is exposed to 

AMD conditions for several years. The 15–30 cm layer of the contaminated soil is above a rock layer and 

therefore more saturated with water. Therefore, the layer is prone to water saturation and reducing 

conditions probably prevail, which would, in turn, influence metal mobility and mineralogy significantly. 

The water soluble, exchangeable and acid soluble fractions are often considered to be bioavailable (Maiz 

et al., 1997). As discussed, the soluble fraction for the AMD treated soils is the highest. This is because 

this is a closed system where metals accumulated over the period of the experiment and cannot be 

directly compared to the contaminated soil. It is, however, interesting to note that total Cu for the 

bioavailable fraction (water soluble + exchangeable + acid soluble) in the control is 56.91 mg/kg soil. This 

value is only 18.8 mg/kg soil for the contaminated soil. The total extracted Cu is 192.37 mg/kg soil and 

64.37 mg/kg soil for the control and contaminated soil respectively. This puts the amount of Cu in the 

contaminated soil into perspective in that it is lower than in the control where no Cu was added. This is 

also true for Pb with a bioavailable fraction of 5.7 mg/kg in the pristine soil and no detected Pb in the 

bioavailable fraction of contaminated soil. One explanation for this is that the heavy metals in the 

contaminated soil have already been released.  

In the comparison between AMD and the control, slight differences were observed that showed that the 

AMD altered the soil to some degree. There is however no convincing evidence that heavy metals in 

general are retained in the soil and retained in the more immobile fractions such as reducible and 

oxidizable fractions. The comparison between the contaminated soil and AMD treated soil showed that, 

even though this soil has been exposed to contamination for several years, only Cr is retained more in 

the non-mobile fractions (15.9 mg/kg soil in reducible fraction) than the AMD treated soil. For the other 

heavy metals, the AMD treated soil retained more Cu, Pb and Zn in the reducible and oxidizable 

fractions. 
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In summary, the control weathering experiment showed high release of Si (137.9 mg/kg) and Al (86.9 

mg/kg) in the water soluble fraction. This favours precipitation of clay minerals such as kaolinite. For the 

exchangeable and acid soluble fraction, no extractions were noteworthy, except for high Cu 

concentrations. The highest concentration for all metals was obtained for the reducible fraction, except 

for Ca which was in the oxidizable fraction. One significant metal that was released is Mn, which was the 

highest among all three different treatments (19.9 mg/kg). The greatest quantity of heavy metals was 

released in the reducible fraction, which means that these are not bioavailable. 

The AMD treated soil had high amounts of metals which was extracted in the water soluble fraction. 

This was the highest for Al (2036 mg/kg), Mn (259 mg/kg), Co (9.65 mg/kg), Cu (319.5 mg/kg) and Zn 

(128 mg/kg). This was a closed system experiment to mimic the highly evaporative conditions of 

Namaqualand and thus a large amount of the metals precipitated as salts. Secondly, this can be 

attributed to dissolved minerals such as Mn-oxides. Again no noteworthy concentrations were obtained 

in the exchangeable and acid soluble fractions, but for the reducible fractions, the concentrations of Al 

(596 mg/kg), Fe (6925 mg/kg) and Si (1987 mg/kg) were very high. This is due to the dissolution of 

reducible Fe phases such as jarosite, hematite and goethite, which are neoformed and originate from 

the pristine soil before the experiments. 

The contaminated soil had a high amount of Ca (905.3 mg/kg) in the water soluble fraction that was 

possibly released from the tailings. A high concentration of Al was extracted in the exchangeable 

fraction (124 mg/kg). Exceptionally high Al (999 mg/kg), Fe (21175 mg/kg) and Si (3070 mg/kg) were 

released in the reducible fraction. This may be attributed to several years of exposure to AMD that led 

to the precipitation of both crystalline and amorphous Fe-phases. In the reducible fraction, a high 

concentration of Cr (15.9 mg/kg) was also extracted. 

5. Conclusions 
In this chapter an attempt was made to understand the mobility of metals both in the context of metals 

added to pristine soils and metals released from contaminated soils. Two approaches were followed in 

order to investigate metal mobility. Firstly, metal attenuation studies were conducted on pristine soil 

with AMD and secondly, sequential extraction was conducted on the contaminated soil, AMD 

weathering experiment soil, and the control weathering experiment. 

The metal attenuation experiments showed that Fe was initially removed from the AMD solution, 

possibly through precipitation in the form of amorphous Fe-oxyhydroxides. The dissolution of 

aluminosilicate phases such as clays is also suspected due to the release of Si and Al from the soil. Basic 

cations such as Na, K and Ca were stripped from the soil. The removal can be attributed to cation 

exchange with other metals and dissolution of clay size particles and is therefore irreversible soil 

deterioration. Heavy metals such Cu, Ni and Zn showed some removal during the first cycle of removal. 

This capacity is however limited and after first cycle the sites were saturated and these metals were 

mobile so that the same concentration was collected in the leachate as in the AMD. A net release of Co 

and Mn form soil was observed. The conclusion can be made that the capacity of the soils to attenuate 

metals are low. The reason for this is that the parent material from which the soils are derived, are 

acidic granite-gneiss characterized by an absence of secondary carbonates. Secondly, the soils in this 
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arid region are poorly developed and have a low clay content, a component that is responsible for most 

of the surface reactions that immobilize metals. Thirdly, air pollution from the nearby smelter may have 

possibly also added to the acidity of the soil. 

Sequential extraction showed that the soluble fraction of the AMD treated soil is high for most 

elements, although elements were still taken up in less mobile fractions. For example, of the amount of 

Fe introduced over the weathering experiments, only 14 % was released in the soluble fraction. In the 

AMD treated soil, a large proportion of metals were also extracted from the reducible fraction. This 

shows the importance of Fe-phases as a mechanism to retain metals. Jarosite, for example, is assumed 

to be one of the dominant sinks for both Fe and subsequently K.  

Overall, the soil showed a limited capacity to remove metals from solution. It should be noted that the 

soil falls in a sandy texture class and would therefore naturally have low cation exchange capacity. 

Secondly, the AMD is also highly metal-laden, which requires significant adsorption sites to reduce the 

concentration of metals. A large fraction of the metals are therefore mobile and would spread further 

into soil pedons or underground water resources. 
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Chapter 4. General conclusions and 

further work 

The aim of this study was to gain an understanding as to what the impact of the AMD is on soils in terms 

of mineral weathering and mineralogy. Related to this, is the mobility and bioavailability of metals in the 

soil system, as well as the soil solution chemistry. These concepts are important in understanding the 

metal cycling and toxicity present at a site contaminated by AMD. The focus of this study is on 

contaminated soils located near a copper mine close to Nababeep, Northern Cape, South Africa. This is 

located in the Namaqualand region which is an arid region but is also known to be a diversity hotspot 

with a high level of endemism. 

The major conclusions that can be drawn from this study are outlined, and then elaborated upon in the 

paragraphs that follow. 

The corrosive nature of the water (AMD) can be visibly observed on the granite-gneiss rock that has 

been weathered within the leach pond. Melanterite crystals were observed that formed beneath the 

tailings. This ferrous sulfate crystal is associated with solutions with exceptionally high concentrations of 

Fe and sulfate. This, together with the orange colouration of the water, suggests both ferrous and ferric 

iron species are present in the AMD. The composition of the AMD reflected high concentrations of 

metals such as Fe, Al and Cu, Mn and Mg. The reason for these high concentrations is attributed to the 

evaporative environment that has been accumulating the metals for an extensive period of time. 

The clay minerals that were identified in the pristine soils close to the processing pond are kaolinite, 

illite, quarts and montmorillonite. High levels of sulfate and Cu, and a low pH, was observed in the 

pristine soil. This might be indicative of air pollution which emanated from the smelter plant during its 

operation. The soils in the pond show alterations in its mineralogy in comparison with the pristine soil. 

These changes include the disappearance of montmorillonite and the broadening of the kaolinite XRD 

peaks, suggesting a transformation to a more amorphous mineral. Neoformed jarosite was also 

detected in the clay phase of the pond soils. 

Long term weathering experiments were conducted by exposing the pristine soil to AMD and a CaCl2 

control for 8 months. An interesting phenomenon was observed in that montmorillonite was detected in 

the control experiment, but no montmorillonite was detected in the original soil used for the 

experiments. The formation of montmorillonite in the control could not easily be explained as the soil 

solution was acidic. Saturated paste extracts of the AMD treated soils showed that the soil solution was 

undersaturated with respect to minerals such as illite and kaolinite. Alteration of these minerals was 

observed in collapsed and broader XRD peaks. Illite and kaolinite did not completely disappear, which 

may be related to this process being kinetically slow. Another contributing factor may be a precipitate 

layer of Fe-oxides or oxyhydroxides on the surfaces of these minerals. This acts like a barrier to prevent 

total dissolution of the mineral (Dubikova et al., 2002). 
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Scanning electron microscope (SEM) images of the AMD treated soils and control, when compared with 

each other, showed differences. The AMD treated soil had a more amorphous nature. Secondly, a more 

corroded appearance was observed for the clay fraction of the AMD treated soil compared to the 

control. The amorphous nature of the soil was confirmed by a broad IR band representing structured 

water molecules, indicative of metal coordination, which was not observed in the control soil. Jarosite 

also formed in the soils treated with AMD, which is a possible explanation why K was not detected in the 

saturated paste extracts of theses soils. 

Metal retention experiments were conducted in order to gain a better understanding into the capacity 

of the pristine soils to buffer pH and immobilize metals. Fe-phases precipitated in the soil initially but no 

prolonged Fe removal from solution into less soluble phases was observed, however. An amount of Cu 

was retained in the soil initially, but its concentration in solution soon matched that of the AMD Cu 

concentration, suggesting Cu attenuation was limited. A metal such as Co, for example, was released by 

the soil rather than retained. This may have to do with dissolution of Mn-oxide phases as Mn also 

showed a net release from the soil. The basic cations Na, K and Ca were also removed from the soil 

solution into the extract. This may be attributed firstly to cation exchange, but also to dissolution and 

replacement of clay structures. These results demonstrated that the soils have a very low capacity to 

retain metals. The metals of greatest concern are heavy metals that are toxic at low concentrations. 

Only slight attenuation was observed for Cu. In many respects, leaching the soils with AMD actually 

increased the metal and salt load of the solution. The low capacity of the soils to attenuate metals is 

attributed to the acidity of the parent material, the absence of secondary carbonates, the low clay 

content of the soils and the fact that the pristine soils have already been contaminated by air pollution. 

In addition to this, the AMD is highly concentrated and therefore the limited metal retention capacity of 

the soil will become saturated rapidly. 

Metal mobility and bioavailability of the contaminated soils was assessed by means of a sequential 

extraction. For the soils exposed to AMD for 8 months, high amounts of metals were extracted in the 

water soluble fraction. This is related to the metal salts that precipitated in the closed system which are 

highly mobile and bioavailable. In the contaminated pond soil, which represents an open system, the 

reducible phase showed the highest metal concentrations. This suggests the incorporation of metals in 

Fe- and Mn-oxide phases. Jarosite may also be responsible for metal attenuation in the reducible phase. 

This means the metals that are attenuated by the soils partition into phases that are not bioavailable, 

but the relatively low concentrations of metals extracted from all phases, confirm the low metal 

attenuation capacity of the soils. A very high Cu concentration was extracted from the pristine soil in the 

exchangeable, acid soluble, reducible and oxidizable fractions, which may relate to naturally high 

background levels of Cu in the soils or significant Cu contamination from the mining operations in the 

area. 

The AMD has a significant influence on the soils that were investigated. What was observed is an 

substantial change in the mineralogy and chemistry of the soil. The soil also does not show a high 

capacity to retain the metals, in order to prevent these metals from spreading further into the 

environment. This means nearby water systems are at great risk to be polluted by heavy metals and 

acidic solutions. 
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Further work 
One of the main gaps that still exist for these contaminated sites is the quality of water of the 

surrounding water systems. Due to the aridity and highly evaporative conditions, rivers are non-

perennial, but unconfined aquifers continue to move water through underground systems and the 

contamination of this water is of great concern. The sampling of borehole water should also be 

conducted in order to monitor changes that would occur in the water bodies. 

Effective remediation strategies should be implemented at these contaminated sites. Johnson & 

Hallberg (2005) reviewed different remediation strategies for AMD. Two main streams of neutralization 

exist, one is biological and the other chemical. These two strategies are subdivided to each have active 

and passive treatment systems. The area of Namaqualand is, however, arid and this might pose some 

unique challenges for strategies that aim to bring remarkable differences and preserve the soil and 

natural resources. 

The mineral jarosite was detected in a soil from the contaminated site, and was also neoformed in the 

long weathering experiment conducted in the laboratory. This mineral is important as it contains K in its 

structure that is not only a major nutrient but also an integral part in the structures of minerals such as 

illite. No detectable K was found in the saturated paste extracts of AMD treated soils. Another species in 

the structure of this phase is sulfate, and this mineral may be an important sink for the removal of 

sulfates from soil solution. Understanding the chemistry of this mineral’s formation is important as it 

plays a key role in the regulating and/or cycling of these elements and chemical species. Research has 

been conducted on this mineral (Dutrizac & Jambor, 2000), but there is still a gap in knowledge with 

respect to applications to this investigation site. 
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Appendix B - Information Tables 
Table B1 is a summary of the chemical species found as secondary minerals in AMD (Hammarstrom & 

Smith, 2002). The relative solubility is also indicated on this table but the mineral solubility is dependent 

on the degree of crystallinity and the particle sizes.   
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Table B1: Secondary minerals forming from AMD (Hammarstrom & Smith, 2002). Species indicated with * are highly soluble, 
◊ - relatively insoluble. Chemical formulae obtained from Mandarino & Fleischer (1999). 

Sulfate Minerals Carbonate Minerals 

alunogen* Al2(SO4)3·17H2O aurichalcite (Zn,Cu)5(CO3)2(OH)6 
alunite K2Al6(SO4)4(OH)12 azurite Cu3(CO3)2(OH)2 
anglesite◊ PbSO4 cerussite PbCO 
antlerite◊ Cu3SO4(OH)4 hydrozincite Zn5(CO3)2(OH)6 
argenojarosite◊ Ag2Fe

3+
6(SO4)4(OH)12 malachite◊ Cu2CO3(OH)2 

barite◊ BaSO4 smithsonite ZnCO3 
basaluminite Al4(SO4)(OH)10·5H2O Iron oxyhydroxide (ochre) minerals  
bassanite* 2CaSO4·H2O akageneite β-Fe

3+
(O,OH,Cl) 

beaverite◊ Pb(Cu
2+

,Fe
3+

,Al)6(SO4)4(OH)12 bernalite Fe
3+

(OH)3·nH2O (n=0 to 0.25) 
beudantite PbFe

3+
3(AsO4)(SO4)(OH)6 ferrihydrite 5Fe

3+
2O3·9H2O 

bianchite* (Zn,Fe
2+

)SO4·6H2O goethite Fe
3+

O(OH) 
bilinite Fe

2+
Fe

3+
2(SO4)4·22H2O hematite Fe

3+
2O3 

brochantite◊ Cu4(SO4)(OH)6 lepidocrocite Fe
3+

O(OH) 
chalcanthite* CuSO4·5H2O maghemite Fe2O3 
copiapite* Fe

2+
Fe

3+
4(SO4)6(OH)2·20H2O Other Minerals 

coquimbite* Fe
3+

2(SO4)3·9H2O bindheimite Pb2Sb2O6(O,OH) 
dietrichite* (Zn,Fe

2+
,Mn)Al2(SO4)4·22H2O chalcophanite (Zn,Fe

2+
,Mn

2+)
Mn

4+
3O7·3H2O 

epsomite* MgSO4·7H2O chlorargyrite group Ag(Cl,Br) 
ferricopiapite* Fe

3+
2/3Fe

3+
4(SO4)6(OH)2·2H2O chrysocolla (Cu

2+
,Al)2H2Si2O5(OH)4·nH2O 

ferrohexahydrite* FeSO4·6H2O cinnabar HgS 
fibroferrite◊ Fe

3+
(SO4)(OH) ·5H2O coronadite Pb(Mn

4+
,Mn

2+
)8O16 

goslarite* ZnSO4·7H2O ferrimolybdite Fe
3+

2(Mo
6+

O4)3·8H2O(?) 
gunningite* ZnSO4·H2O ilsemannite Mo3O8·nH2O(?) 
gypsum CaSO4·2H2O litharge PbO 
hexahydrite* MgSO4·6H2O luzonite Cu3AsS4 
halothrichite* FeAl2(SO4)4·22H2O olivenite Cu2(AsO4)(OH) 
hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6 psilomelane group (Ba,H2O)2(Mn

4+
,Mn

3+
)O10 

jarosite◊ KFe
3+

3(SO4)2(OH)6 scorodite Fe
3+

AsO4·2H2O 
jurbanite Al(SO4)(OH) ·5H2O 

 
  

kornelite Fe
3+

2(SO4)3·7H2O 
 

  
leadhillite◊ Pb4SO4(CO3)2(OH)2 

 
  

linarite◊ PbCu(SO4)(OH)2 
 

  
melanterite* FeSO4·7H2O 

 
  

meta-aluminite Al2(SO4)(OH)4·5H2O 
 

  
paracoquimbite* Fe

3+
2(SO4)3·9H2O 

 
  

pentahydrite MgSO4·5H2O 
 

  
pickeringite* MgAl2(SO4)4·22H2O 

 
  

plumbojarosite◊ PbFe
3+

6(SO4)4(OH)12 
 

  
rhomboclase* (H3O)Fe

3+
(SO4)2·3H2O 

 
  

romerite* Fe
2+

Fe
3+

2(SO4)4·14H2O 
 

  
rozenite* FeSO4·4H2O 

 
  

schwertmannite Fe
3+

8O8(OH)6(SO4)..nH2O 
 

  
serpierite◊ Ca(Cu,Zn)4(SO4)2(OH)6·3H2O 

 
  

siderotil* Fe
2+

SO4·5H2O 
 

  

szomolnokite* Fe
2+

SO4·H2O 
 

  
voltaite K2Fe

2+
5Fe

3+
4(SO4)12·18H2O 

 
  

woodhouseite CaAl3(PO4)(SO4)(OH)6     
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Appendix C - Statistics Example 
Hypothesis statement 

         

         

                                                                                            

Test if the concentration of Al is significantly higher than the concentration of AMD. 

The average concentrations for three replicates are given below for AMD and seventh leach cycle. The 

variance has been calculated with the var.s function in excel. This is the variance based on a sample. 

Values for triplicates of 7th leach cycle 

  A7 B7 C7 Average Variance (var.s) 

Al (mg/l) 3033 2899 3019 2983.667 5425.33 

Values for triplicates of AMD  

 
AMD10 (1) AMD 10 (2) AMD 10 (3) Average Variance (var.s) 

Al (mg/l) 2744 2713 2812 2756.333  2564.33 

 

  ̅   ̅  √
 

 
  
  

 

 
  
  

            

  ̅   ̅  √
 

 
          

 

 
          

  ̅   ̅         

                

                 

  
 ̅    ̅

  ̅   ̅
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The degrees of freedom is 4 (3+3 -2). For a one tailed significance the critical value t-value for 0.05 

probability is 2.132.  

Thus 4.406 > 2.132 and thus the H0 hypothesis is rejected which means the Al concentration in the 

leachate of cycle 7 is significantly greater than the AMD. 

The t-value has a corresponding p-value of:  0.0058        

 

Appendix D - Supplementary Data relating to Chapter 1 
The d-spacing at 14.932 Å, as shown in Figure 1.15, is attributed to montmorillonite, chlorite or 

vermiculite (Brindley, 1955). A differentiation should therefore be made between these minerals. The 

saturation with potassium would result in a collapse of the interlayer spacing of montmorillonite, but 

not that of chlorite (e.g. Ghosh & Tomar, 1974). It does, however, collapse the d-spacing of vermiculite 

as well from 14 Å to 10 Å (Schaetzl & Anderson, 2005). The change in montmorillonite d-spacing when 

changing from Mg-saturation to K-saturation is 14–16 Å to 11–12 Å. The Mg-saturated clay powders in 

this study were therefore further treated with ethylene glycol (EG) to distinguish between 

montmorillonite and vermiculite, since the d-spacing of vermiculite stays at 14 Å after saturation with 

EG, whilst in the case of montmorillonite, the EG moves into the interlayer spaces and increases the d-

spacing to 17–18 Å. Figure 1.15 shows the different XRD patterns for the different saturation 

treatments. The Mg-saturated clay shows a peak at the d-spacing of 14.931 Å and when saturated with 

potassium the peak shifted to 12.75 Å. The clay sample saturated with EG had a d-spacing of 

approximately 17.172 Å. The conclusion can be made that the mineral identified in this case was 

montmorillonite. 

Figure D2 shows the XRD pattern of an analyzed ball-milled sample of the highly weathered granite 

described in section 3.1 of chapter 1. 
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Figure D1: Different saturation conditions for the A-Horizon in pristine soil to determine clay phase. 
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Figure D2: XRD pattern for the ball-milled sample of highly weathered granite described in chapter 1. 1
04
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