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Abstract 

Anthocyanins are naturally occurring pigments responsible for the colour of many natural products, 

including grapes and wine. These pigments are important to the food industry and have been 

recognised for their nutritional value since they play an important role in the reduced risk of various 

chronic diseases in humans. Anthocyanins also play an important role in the aesthetic perception and 

quality of red wine. However, due to the large structural diversity of grape-derived anthocyanins and 

the many derivatives formed from these during wine ageing, the accurate analysis of wine pigments 

is extremely challenging. Reversed-phase liquid chromatography (RP-LC) is mostly used for 

anthocyanin analysis, although the technique often provides insufficient resolving power for complex 

mixtures of anthocyanins. In addition, the lack of commercially available standards and identical 

mass spectral characteristics hampers identification of these compounds. The coupling of multiple 

orthogonal separation systems in comprehensive 2-dimensional liquid chromatography (LC×LC) 

offers a more powerful approach for the separation of complex mixtures. The current work therefore 

focussed on exploring the potential of LC×LC for the improved analysis of anthocyanins and derived 

pigments in natural products and wine. 

The first part of this work focussed on developing a hydrophilic interaction chromatography (HILIC) 

method as an alternative to RP-LC for the anthocyanin analysis. Following extensive optimisation, 

the method proved suitable for the analysis of a diverse range of anthocyanins in natural products. 

Significantly, it also showed alternative selectivity compared to RP-LC. The optimised HILIC 

method was then used in combination with RP-LC to develop an off-line LC×LC approach for 

anthocyanins. For this purpose, half-minute fractions of the HILIC effluent were collected and re-

injected onto a RP-LC column. The off-line HILIC×RP-LC method demonstrated exceptionally high 

resolving power, as measured in terms of the practical peak capacity, with many compounds separated 

in two dimensions that co-eluted in 1-dimensional HPLC. Interestingly, group-type separation was 

also observed based on the degree and/or nature of glycosylation and acylation of anthocyanins. In 

the final part of the work, a systematic approach was used for the development and optimisation of 

and on-line HILIC×RP-LC method by using a 10-port switching valve to automatically transfer 

fractions between the two columns. This method was then coupled to high resolution mass 

spectrometry (MS) to allow the detailed investigation of anthocyanins and derived products in wine. 

Ninety four pigments were identified in one- and six-year old Pinotage wines based on HILIC×RP-

LC separation in combination with accurate mass MS data and fragmentation information. Significant 

differences in especially the content of derived pigments were observed between the wines.  
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In summary, the methods developed in this work provide the means to improve anthocyanin analysis, 

and therefore also show promise for the detailed investigation of these important compounds and their 

alteration in natural products and their derived commodities.  
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Opsomming 

Antosianiene is natuurlike pigmente wat verantwoordelik is vir die kleur van baie natuurlike 

produkte, insluitende dié van druiwe en wyn. Hierdie pigmente is belangrik vir die voedsel industrie 

en word gereken vir hul voedingswaarde aangesien hulle 'n belangrike rol speel in die verlaagde risiko 

van verskeie chroniese siektes onder die mens. Antosianiene speel ook 'n belangrike rol in die 

estetiese persepsie en kwaliteit van rooiwyn. Desnieteenstaande, as gevolg van die groot strukturele 

diversiteit van druifgeproduseerde antosianiene en die vele chemiese afgeleides wat uit hulle gevorm 

kan word tydens wyn bereiding en veroudering, is die akkurate analise van natuurlike wyn-pigmente 

uiters uitdagend. Omgekeerde-fase vloeistofchromatografie (RP-LC) word meestal gebruik vir die 

analise van antosianiene. Dié tegniek bied egter dikwels onvoldoende skeidingsvermoë vir komplekse 

mengsels van antosianiene en verwante molekules. Verder belemmer die onbeskikbaarheid van 

kommersiële standaarde en identiese massa spektrale eienskappe die identifikasie van hierdie 

verbindings. Die kombinasie van verskillende ortogonale skeidings meganismes in omvattende 2-

dimensionele vloeistofchromatografie (LC×LC) bied egter 'n baie kragtiger benadering vir die 

skeiding van komplekse mengsels. Die huidige werk fokus dus op die ontginning van die potensiaal 

van LC×LC vir die verbeterde ontleding van antosianiene en verwante afgeleide pigmente in 

natuurlike produkte en wyn. 

Die eerste deel van hierdie werk het gefokus op die ontwikkeling van 'n hidrofiliese interaksie 

chromatografiese (HILIC) metode as ŉ alternatief vir RP-LC analise van antosianiene. Na uitgebreide 

optimisering, is gevind dat die metode geskik is vir die ontleding van 'n verskeidenheid van 

antosianiene in natuurlike produkte. Van groot belang is dat dit ook alternatiewe selektiwiteit in 

vergelyking met RP-LC demonstreer. Hierdie geoptimiseerde HILIC metode word dan voorts gebruik 

in kombinasie met RP-LC vir die ontwikkeling van ŉ af-lyn LC×LC benadering vir die analise van 

antosianiene. Hiervoor is half-minuut fraksies van die HILIC uitvloei opgevang en her-ingespuit op 

'n RP-LC kolom. Dié af-lyn HILIC×RP-LC metode toon buitengewoon hoë skeidingsvermoë, gemeet 

in terme van die bereikbare praktiese piek kapasiteit, met baie verbindings wat geskei is in die twee 

dimensies wat saam elueer in 1-dimensionele HPLC. Interessant genoeg is groep-tipe skeiding ook 

waargeneem gebaseer op die graad en / of aard van glukosilasie en asilering van die antosianiene. In 

die laaste deel van die werk, is 'n sistematiese benadering gevolg vir die ontwikkeling en optimisering 

van ŉ aan-lyn HILIC×RP-LC deur gebruik te maak van 'n 10-poort oorskakelingsklep wat fraksies 

outomaties oordra tussen die twee kolomme. Die bogenoemde metode is ook verder gekoppel aan 

hoë resolusie massaspektrometrie (HR-MS) om ŉ gedetailleerde ondersoek van antosianiene en hulle 
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afgeleide verbindings in wyn moontlik te maak. Vier en negentig pigmente is in een- en ses jaar oue 

Pinotage wyne geïdentifiseer gebaseer op HILIC×RP-LC skeiding in kombinasie met akkurate massa 

MS data en fragmentasie inligting. Beduidende verskille in veral die inhoud van antosianien-afgeleide 

pigmente is tussen die wyne waargeneem. 

Ter samevatting, die metodes ontwikkel in hierdie werk baan die weg om antosianien ontleding te 

verbeter en stel gevolglik die moontlikheid van selfs meer gedetailleerde studies van hierdie 

belangrike verbindings in natuurlike produkte in die vooruitsig. 
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1.1 Introduction 

Anthocyanins are pigmented secondary plant metabolites found ubiquitously in nature. They 

are a sub-class of phenolic compounds and responsible for the red colour of grapes, wine and 

other many natural products. Anthocyanins are produced in grape skins during ripening [1], 

but during wine production and ageing the levels of grape-derived anthocyanins rapidly 

decrease as they react with other components, leading to the formation of more stable 

compounds that are responsible for the colour evolution of wine as well as loss of astringency 

[2,3]. Anthocyanins are natural antioxidants and have been shown to play a role in the 

prevention of cancer, heart disease and inflammatory diseases [4-6]. It is therefore important 

to develop improved methods for the accurate analysis and characterisation of these 

compounds. 

Due to the structural diversity of anthocyanins and anthocyanin-derived pigments in natural 

products, however, their accurate qualitative analysis remains challenging. The most 

commonly used method for anthocyanin analysis is reversed-phase liquid chromatography 

(RP-LC), which is usually coupled to selective photodiode array (PDA) detection at 500-550 

nm. However, one of the major limitations of LC-PDA is that it does not provide sufficient 

structural information for the identification of individual anthocyanins. Nowadays RP-LC is 

increasing hyphenated to mass spectrometry (MS), which provides information on molecular 

mass and molecular structure, whereas tandem mass spectrometry (MS/MS) is useful for 

structural elucidation due to the selective fragmentation of anthocyanins [7,8]. Despite the 

power of RP-LC-MS, the technique is also associated with some limitations for the analysis of 

anthocyanins. Conventional RP-LC suffers from low optimal mobile phase flow rates and low 

chromatographic efficiency for anthocyanins under conventional conditions [9,10]. 

Furthermore, many anthocyanins have identical fragmentation patterns, complicating their 

identification by MS. For all of these reasons, more powerful separation methods for 

anthocyanin analysis are required.  

Comprehensive two dimensional liquid chromatography (LC×LC) offers a powerful approach 

to improving resolution in liquid chromatography [11-17]. LC×LC involves the transfer of 

fractions from a primary (first dimension) column to a secondary (second dimension) column 

for further separation. Improved resolution and selectivity is attained in the two-dimensional 

separation space by using two complementary, or orthogonal, separation methods. 
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The aim of this study was to develop LC×LC methods for the improved analysis of 

anthocyanins, focussing on wine anthocyanins and their derived pigments. To do so, the first 

step involved the development of an alternative separation method to RP-LC; hydrophilic 

interaction chromatography (HILIC) was used for this purpose, as the comprehensive 

combination of HILIC and RP-LC has been shown to provide a powerful method for phenolic 

analysis [11-13,18-20]. The applicability of the developed HILIC methodology was 

demonstrated for diverse anthocyanins found in a range of natural products. The next step then 

involved coupling of the HILIC method with RP-LC for the off-line LC×LC analysis of 

anthocyanins. Based on this work, the final step was the development and optimisation of an 

on-line HILIC×RP-LC method hyphenated to high resolution mass spectrometry (HR-MS) for 

the detailed analysis of anthocyanins and derived pigments in red wine.  

 

1.2 Aims and Objectives 

The overall aim of this work was to develop novel LC×LC methods for the improved 

determination of anthocyanins in various natural products, with particular emphasis on 

anthocyanin-derived products in red wine. For this to be achieved the following objectives had 

to be fulfilled: 

i. The development of a HILIC method for anthocyanin analysis to be used in the first 

dimension of LC×LC. This includes evaluation of different stationary phases, mobile 

phase compositions and column temperatures to provide optimal chromatographic 

performance for anthocyanins. 

ii. Off-line hyphenation of the optimised HILIC with RP-LC for the HILIC×RP-LC 

analysis of anthocyanins in natural products. This includes optimisation of column 

dimensions and flow rates in both dimensions as well as optimal hyphenation 

conditions to provide maximum resolution. 

iii. The development of an on-line HILIC×RP-LC-UV-MS method for the detailed analysis 

of anthocyanin derived products in red wine. 
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2.1 Introduction 

This chapter will introduce briefly the main topics of relevance to the work reported in the 

thesis. Topics covered include phenolic and anthocyanin chemistry, an overview of 

anthocyanins in wine and analytical methods for anthocyanin determination, with specific 

emphasis on liquid chromatography, multidimensional liquid chromatography and mass 

spectrometry. Note that the goal is not to present a comprehensive review of all relevant 

literature, but rather to provide a summary of the latest information and developments in each 

of these fields.  

 

2.2 Phenolic compounds 

Phenolic compounds are one of the most important groups of compounds occurring in plants, 

and are widely distributed in the plant kingdom. They are the most abundant secondary 

metabolites found in plants and comprise of more than 8000 different structures [1,2]. Phenolic 

compounds play an important role in determining the organoleptic properties of food, 

contributing for example to bitterness and astringency and colour. These compounds also 

exhibit anti-carcinogenic, anti-inflammatory and immune modulating activities, amongst 

others, and are important anti-oxidants [3].  

Phenolics are characterised by the presence of an aromatic ring bearing one or more hydroxyl 

groups and can be divided into two classes, i.e flavonoids and non-flavonoids. Non-flavonoids 

are divided into simple phenolics, coumarins, xanthones, chalcones, stilbenes and lignans. 

Flavonoids are the most important group of phenolic compounds and are composed of seven 

sub-groups: flavones, flavonols, flavanones, isoflavones, flavanols, flavanonols and 

anthocyanins (Fig. 2.1).  
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Figure 2.1: Classification of the different classes of phenolic compounds found in natural 

products[4]. 
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2.2.1 Flavonoids 

Flavonoids are not only one of the largest groups of phenolic compounds found in nature, but 

they might be the single most important group of phenolic compounds found in food. 

Numerous studies performed on flavonoids have shown that these compounds display 

biological activities such as antiallergenic, antiviral, anti-inflammatory and vasodilating 

effects. More than 9000 different flavonoids have been reported [5]. Flavonoids can be divided 

into different classes based on the degree of oxidation of their central pyran ring [5,6] (Fig. 

2.1). The structure of a flavonoid contains the flavan nucleus consisting of 15 carbon atoms 

derived from a C6-C3-C6 skeleton. Anthocyanins are a unique class of flavonoids characterised 

by their flavylium cationic nature, which defines the properties of these water-soluble 

pigments.  

 

2.2.2 Anthocyanins  

The word anthocyanin is derived from the Greek words anthos (flower) and kyanos (blue). 

Anthocyanins are phenolic compounds responsible for the blue, violet and red colours of many 

flowers, fruits, leaves and stems. They are secondary metabolites, which occur in nature as 

water-soluble glycosides and acyl-glycosides of anthocyanidins. The basic anthocyanidin 

structure is a C6-C3-C6 skeleton consisting of a benzopyran ring with a phenolic ring at the C-

2 position. Anthocyanins occur as positively charged flavylium (2-phenylbenzopyrylium) 

cations at acidic pH, which is also what differentiates them from the rest of the flavonoid group.  

Anthocyanin research has intensified over the last two decades because of the importance of 

their potential health benefits, mainly their antioxidant properties [7,8]. Anthocyanins can be 

found in various fruits, vegetables, beverages and grains, and a diet rich in anthocyanins may 

reduce the risk of heart disease, cancer, visual acuity and age-related neuro-degenerated 

disorders [9-11]. 

The aglycone flavylium cation is called an anthocyanidin. When anthocyanidins are found in 

their glycosidic form they are known as anthocyanins. To date, roughly 30 different 

anthocyanidin structures have been identified [6], although approximately 90% of identified 

anthocyanins are based on the six most common anthocyanidin bases: pelaragonin, petunidin, 
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cyanidin, peonidin, malvidin and delphinidin [6]. These anthocyanidins differ in the 

hydroxylation and methoxylation patterns on the B-ring, as shown in Fig. 2.2. 

 

Figure 2.2: Structures of the most common anthocyanidins occurring in nature. 

 

The diversity of anthocyanin structures stem from differences in glycosylation, including the 

number, nature and positions of the glycoside units, as well as additional aliphatic and aromatic 

acylation of the attached sugars [6]. Anthocyanins are mostly mono-, di- or tri-glycosylated at 

the C-3, C-5, C-7, C-3’, C-5’ or more rarely the C-4’ position [5,12-14]. The monosaccharides 

observed in glycosylated anthocyanins include glucose, rhamnose, xylose, galactose, arabinose 

and fructose [6]. With regard to acylation, the commonly observed aromatic acyl groups 

include p-coumaric, caffeic, ferulic, sinapic and 3,5-dihydroxycinnamic acids as well as p-

hydroxybenzoic- and gallic acid. Acetic, malic, succinic, tartaric, oxalic and malic acid are the 

most frequent aliphatic acids involved in acylation [6]. Clearly, the enormous variety of 

anthocyanins found in nature makes them a very complex and diverse group of compounds. 

 

2.2.3 Anthocyanin solution chemistry 

Brouillard and co-workers [15,16] have shown that anthocyanins occur in solution as several 

different species depending on the pH of the solution. The different chemical forms of 

anthocyanins are: flavylium cation (AH+), quinoidal base (A), carbinol pseudobase (B) and 

chalcone (C). The nature and the percentage of the predominant species depend on the pH.  

At low pH (below 3) [17] the flavylium cation species, which absorb in the visible region of 

the spectrum at ~520 nm and are therefore red, are the dominant species. With an increase in 

pH, thermodynamic and kinetic competition between the hydration of the flavylium cation and 

proton transfer involving the acidic hydroxyl group occurs. The carbinol pseudo-base species 
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is formed by hydration of the flavylium cation, which in turn undergoes further ring opening 

to yield the yellow chalcone (Fig. 2.3).  

 

 

Figure 2.3: Equilibria involving the different chemical forms of anthocyanins in solution.  

 

2.2.4. Anthocyanins and derived pigments in grapes and wine 

Grape anthocyanins are responsible for the colour of red wine. The major anthocyanins present 

in grape skins are the glucosides of delphinidin (Dp), cyanidin (Cy), petunidin (Pt), peonidin 

(Pe) and malvidin (Mv), with malvidin-3-O-glucoside being the most abundant in Vitis vinifera 

species (Fig. 2.4). Direct condensation of anthocyanins yields oligomeric anthocyanins, several 

of which have been identified in the young red wine at low levels [18]. All of these compounds 

are extracted from the skins of grapes during wine maceration/formation. Malvidin contributes 

mostly to the colour of young red wine because of its high degree of methylation on the B-ring, 

making it the reddest anthocyanin [19]. Grape anthocyanins are not very stable in the wine 

matrix; during wine maturation and ageing the concentrations of these compounds decline with 

time due to degradation as well as through their reaction with a variety of other compounds 
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present in wine [20]. This leads to the formation of more stable pigments that impart important 

changes to wine, notably in terms of taste and colour [21].  

 

Figure 2.4: Structures of the common grape anthocyanins found in vitis vinifera species. 

 

It has been shown that these transformations can occur via a range of pathways, including direct 

condensation between anthocyanins and flavanols [22], acetaldehyde-mediated condensation 

with flavanols [23-26] as well as through reactions with other low molecular weight 

compounds such as pyruvic acid [27-32], cinnamic acids [33-36], glycoxylic acid [37, 38], α-

ketoglutaric acid [39] and acetone [36,39,40], to produce the so-called pyranoanthocyanins. 

The formation of these derived pigmented compounds is responsible for the change in colour 

of young red wines from purple-red to orange-red. These compounds are also more stable due 

to higher resistance to the effects of pH changes and bisulphite bleaching [28,30]. A brief 

discussion on each of these classes of derived pigments is presented in the following sections. 
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In addition, these polymeric pigments are important to the mouth-feel propertied of red wine 

[19].  

The formation of direct proanthocyanidin-anthocyanin adducts occurs through coupling 

between the C-4 of an anthocyanin and either C-6 or C-8 of a flavanol or procyanidin molecule 

(referred to as A-F condensation products), or between C-6 or C-8 of the anthocyanin and C-6 

or C-8 of the flavanol/procyanidin, referred to as F-A condensation products [43,44]. 

The acetaldehyde-mediated reaction between anthocyanins and flavonols yields reddish to 

violet polymeric pigments [45]. Acetaldehyde is the most abundant acetaldehyde found in red 

wine and originates from various sources such as yeast metabolism or the oxidation of ethanol. 

The anthocyanin moieties of these derived pigments are more protected against water attack 

and show higher stability with regard to bleaching by sulphur dioxide compared to monomeric 

anthocyanins [46]. 

Anthocyanin-vinylflavanols are formed from the reaction between vinylflavonols (originating 

typically from higher oligomers or the dehydration of flavonol-ethanol adducts) and 

anthocyanins. These compounds display a hypsochromic shift, with maximum absorbance at 

490-510 nm and are therefore more orange than anthocyanins [19,47-49].  

 

Figure 2.5: Structures of malvidin-glucoside-vinyl-(epi)catechin (vinylflavanol), malvidin-

glucoside-(epi)catchin (F-A direct anthocyanin tannin adduct) and malvidin-glucoside-ethyl-

(epi)catechin (acetaldehyde mediated tannin adduct). The flavanol units in these structures may 

also be procyanidin or prodelphinidin molecules for degree of polymerisation ≥ 2.   
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2.2.4.2 Pyranoanthocyanins 

The direct reaction between grape anthocyanins and acetaldehyde, pyruvic acid and 

vinylphenols leads to the formation of pyranoanthocyanins [50-52], which typically are tawny 

coloured. In general pyranoanthocyanins are formed via the reaction of an anthocyanin 

molecule at position C-4 with a compound containing a polarizable double bond [53]. 

Pyranoanthocyanins therefore contain two heteroaromatic rings; the alteration at C-4 is 

responsible for the increased stability of these compounds. They show increased resistance to 

sulphur dioxide bleaching and oxidative degradation and therefore contribute significantly to 

the colour stability of wine [50, 52]. Small amounts of pyranoanthocyanins have been found in 

red wines and grape pomace [27-29,42,54,55], but also in black carrot juice [56] and blood 

orange juice [57]. 

 

(i) Vitisins 

The most prevalent group of pyranoanthocyanins found in red wine are usually vitisins [58-

60]. These compounds are formed during fermentation of must and later during maturation and 

ageing of red wine [61]. A-type vitisins are formed from the reaction between anthocyanins 

and pyruvic acid, whereas B-type vitisins are the result of the reaction with acetaldehyde [51] 

(Fig. 2.6). Oxovitisins are second-generation pigments formed through the nucleophilic attack 

of water on vitisin [62]. In addition, several oligomeric vitisin derivatives have been detected 

in aged ports [47,63].  
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Figure 2.6: Structures of pyranoanthocyanins vitisin A, vitisin B, oxovitisins and oligomeric 

vitisins.  

 

(ii) Anthocyanin-vinylphenol condensation products 

The reaction between grape anthocyanins and several hydroxycinnamic acid such as coumaric 

acid, ferulic acid, caffeic acid and synaptic acid yields the formation of 4-vinylphenol, 4-
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vinylcatechol), resulting from the reaction between malvidin-3-glucoside and caffeic acid, was 

the first compound of this class to be identified and was named after Pinotage wine in which it 

was identified. Higher concentrations of Pinotin A are found in aged compared to young wines 

[68]. 

 

 

Figure: 2.7: Structures of several vinylphenol condensation products of malvidin-3-glucoside. 

 

2.3 Analysis of anthocyanins 

Various techniques such as thin layer chromatography (TLC) [69], capillary electrophoresis 

(CE) [70,71], have been used for the separation of anthocyanins, although high performance 

liquid chromatography (HPLC) is by far the most widely used chromatographic method for 
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bombardment (CF-FAB) [78,79] having been applied. The main focus of the next section will 

therefore be on LC and LC-MS analysis of anthocyanins.  

 

2.3.1 HPLC analysis of anthocyanins 

The most widely used method for anthocyanin analysis, whether it be for analytical purposes 

or preparatory purposes, is HPLC [80]. With the use of HPLC, structurally similar species can 

be separated and identified in combination with various detectors such as UV-Vis, mass 

spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Reversed phase 

liquid chromatography (RP-LC) is the mode of choice for anthocyanin analysis. RP-LC is 

usually performed on C18 columns, with binary mobile phase typically consisting of an 

acidified aqueous phase and either methanol or acetonitrile as organic modifier. For the RP-

LC separation of anthocyanins, highly acidic mobile phases are required, which helps improve 

peak shapes and resolution between closely eluting species [81]. For a typical RP-LC 

separation of anthocyanins, the separation is governed by hydrophobicity and stereochemistry. 

The general elution order is affected by three properties of the anthocyanin: (1) the 

anthocyanidin base, (2) number and nature of the attached glycosidic groups, and (3) the 

number and nature of acyl groups 

The solution chemistry of anthocyanins has important implications for their chromatographic 

analysis. Because several may exist in the mobile phase, inter-conversion between these 

species will affect chromatographic performance [17]. Horváth et al. studied the effect of 

secondary equilibria on chromatographic peak shapes in detail [82,83]. Their results showed 

that, if the rate of inter-conversion is slow, the species will be resolved and multiple peaks will 

be detected. In contrast, rapid inter-conversion rates yield one peak, with the contribution of 

secondary equilibria to band broadening approaching zero. For intermediate rate constants, 

however, broad or distorted peaks are observed; for such reactions secondary equilibria have a 

negative impact on efficiency.  

The Damkӧhler number (Da) may be used to determine the contribution of secondary equilibria 

to the plate height. Da is a dimensionless number defined by the residence time in the mobile 

phase and the relaxation time of the conversion reaction. For Da numbers < 0.1, the species 

will be completely separated and the reaction to no longer affects peak-broadening. Similarly, 

secondary equilibria do not significantly contribute to plate height for very fast conversion rates 
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(Da number > 100). Therefore the critical region define by 0.1 < Da < 100 is where secondary 

equilibria will affect chromatographic performance (Fig. 2.8) [82]. 

 

 

Fig. 2.8: Illustration of the effect of secondary equilibria on band broadening [9, 10]. 

 

de Villiers et al [17] studied the effect of anthocyanin secondary equilibria on their 

chromatographic separation in detail. Under highly acidic mobile phase conditions, only 

flavylium cation, carbinol pseudobase and quinoidal base species are present. These authors 

calculated Da numbers for the proton transfer and hydration reactions, and showed that while 

the former does not contribute to band-broadening (Da > 2.1 × 107), the latter conversion takes 

place on the same scale as the separation (Da < 100) and therefore leads to peak broadening. 

Two approaches to improving the chromatographic performance of anthocyanin analyses were 

reported by de Villiers et al [17,42]. In the first instance, using elevated temperature improves 

the chromatographic efficiency, since high temperatures result in an increase in the rate 

constant for the hydration reaction, thereby reducing band-broadening due to secondary 

equilibria [17,42]. In addition, columns packed with smaller particles provide faster mass 

transfer, which results in an improvement in chromatographic efficiency of anthocyanins, while 

at the same time increasing the linear velocity. However, relatively long columns need to be 

employed due to the dependence of the effect of secondary equilibria on the absolute retention 

time [42].  

Hydrophilic interaction chromatography (HILIC) has in recent years increasingly been used as 

an alternative separation mode for polyphenolic analysis (although the technique has not been 

applied for anthocyanin analysis). HILIC is an aqueous variant of normal phase LC (NP-LC), 

which makes use of polar stationary phases (such as silica, bonded amide and diol phases) in 
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combination with apolar mobile phases. Compounds are separated based on polarity [84]. The 

added benefits of HILIC include its suitability for polar compounds not sufficiently retained in 

RP-LC, excellent compatibility with UV and MS detection, and it also allows for hyphenation 

to other modes of HPLC in 2-dimensional LC. However, isomeric compounds differing for 

example in their glycosylation pattern are not separated in HILIC. For highly complex mixtures 

of phenolics, neither RP-LC nor HILIC provide sufficient resolving power to separate all 

compounds. 

 

2.3.2 Detection methods 

Detection is an important facet of any chromatographic analysis. An ideal detector should 

satisfy the following criteria: be selective, sensitive and be characterised by a linear response 

to solute concentration over a wide dynamic range. It has to be reliable with good stability and 

reproducibility, non-destructive, and have a small internal volume to reduce extra-column band 

broadening. The following discussion will focus on detectors used jointly with HPLC for the 

analysis of anthocyanins.  

LC is most commonly coupled to UV-Vis detection; particularly photodiode array (PDA) 

detectors provide useful information on the nature of the anthocyanidin base as well as 

glycosylation and acylation patterns [85-87]. In addition, since anthocyanins absorb in the 

visible range around 500-550 nm, they can selectively be detected at these wavelengths and 

can therefore be distinguished from other flavonoid classes [44,88]. One of the major 

shortcomings of LC-PDA is however that it does not provide sufficient structural information 

to allow identification of individual anthocyanins with certainty. Since the commercial 

availability of anthocyanin reference standards are also limited, mass spectrometry (MS) is 

increasingly being used as complementary detection method. 

RP-LC hyphenated to MS is one of the most widely applicable analytical tools for anthocyanin 

determination, as it provides information on both the molecular mass and molecular structure, 

which aids in the identification. Various ionisation methods such as electrospray ionisation 

(ESI) [74,89-92], atmospheric pressure chemical ionisation (APCI) [77], continuous flow fast 

atom bombardment (CF-FAB) [79] and matrix assisted laser desorption ionisation (MALDI) 

[72] have been used. Quadrupole mass analysers are most widely applied, due to their 

robustness and low cost. However, high mass resolution analysers such as time-of-flight (TOF) 
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instruments provide the analyst with exact mass and elemental formula information, thereby 

reducing uncertainty in compounds identification.  

Since ESI is the most common form of ionisation used in the LC-MS analysis of anthocyanins, 

the following discussion will be limited to this mode of ionisation. ESI-MS detection of 

anthocyanins is virtually exclusively performed in positive ionisation mode. Under acidic 

mobile phase conditions anthocyanins are predominantly in the flavylium cationic form, which 

facilitates detection of their molecular cations [M+] in positive ionisation mode. For 

glycosylated anthocyanins, the aglycone anthocyanidin base is typically detected as base peak 

under collision induced dissociation (CID) conditions, following the neutural loss of m/z 162 

or 132 (glucoside or arabinoside), m/z 204 (acetyl-glucoside), m/z 308 (coumaroyl-glucoside), 

m/z 324 (di-glucoside or caffeoyl-glucoside) [44,93] (Fig. 2.9A). Fragmentation of acylated 

anthocyanins therefore involves cleavage of the intact acyl-glycosidic group [75]. Furthermore, 

under high collision energy conditions, characteristic fragmentation of the anthocyanidin base 

occurs which provides additional information on the substituents of the aglycone.  

Fig. 2.9 illustrates the fragmentation patterns for anthocyanins under low and high energy CID 

conditions. In the notation used here, Yc
a,b indicates the aglycone ion with the glycosidic bond 

specified by the subscript c for di- and tri-glucosides, and the position of glycosylation on the 

anthocyanidin base denoted by superscripts a and b[93]. Fig 2.9B illustrates the fragmentation 

involving the C-ring for anthocyanidin aglycone cation under high collision energies. Rupture 

of the C-ring bond results in charged fragments containing A-rings (denoted [c,dA]+) and B-

rings, denoted as [c,dB]+. The position of the C-ring fragmentation is specified by the superscript 

c and d in this notation (Fig. 2.9B). Malvidin, peonidin, petunidin, cyanidin and delphinidin all 

yield the [0.2A0]
•+ radical cations at m/z = 150 as a result if cleavage from 0/2 C-ring bonds. 

Delphinidin is the only anthocyanidin that yields the [0.2A0]
•+ cation at m/z = 149. Cyanidin and 

delphinidin both yield the [0.2B0]
+ ion at m/z = 137 and 157, respectively. The loss of CO from 

the [0.2B0]
+ ion to give rise to [0.2B0-CO]+ at m/z = 125. The loss of B-ring yields a relatively 

intense ion at m/z = 179 for malvidin and delphinidin. For cyanidin a weak fragment due to 

cleavage of the C-C bond at position 0/3 of the C-ring results in the [0.3A0]
+ ion at m/z = 120 

[44,93]. 
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Figure 2.9: Illustrations of (A) neutral loss fragmentation of anthocyanins under low energy 

CID conditions and (B) fragmentation involving the C-ring for anthocyanidin aglycone cations 

under high collision energy [44,93]. Notation: Dp: delphinidin, Cy:cyanidin, Pt: petunidin, Pe: 

peonidin, and Mv: malvidin. 
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characterise a large number of anthocyanins in common fruits, berries and grains. Controlled 

fragmentation of anthocyanins aids in compound identification by identifying the nature, 

number and order of the attached sugars, acyl groups and confirmation of the anthocyanidin 

base.  

Studies involving anthocyanidin and anthocyanin derived pigment fragmentation, include work 

done by Alberts et al [44] and Pati et al [97], who made use of LC-MS/MS for the screening 

and identification of anthocyandin derived pigments in wine. Li et al [98] used LC-MS/MS for 

the identification of anthocyanins in grape juice and Cabernet Sauvignon grape pomace, 

whereas Huang et al [92] and De la Cruz et al [99] used LC-MS for the identification of 

anthocyanins in grapes. In fact, MS and MS/MS have been instrumental in identifying derived 

pigments in wine and model solutions, thereby allowing the elucidation of their formation 

pathways [18,36,100-103]. 

 

2.4 Recent trends in anthocyanin and other phenolic compound analysis 

As alluded to above, HPLC is the most widely used separation method for phenolic analysis. 

However, due to the limited chromatographic efficiency obtained on these instruments, 

complete chromatographic separation of complex samples, such as is the case for natural 

products, is not possible. During the last decade some significant developments, such as 

innovative stationary phase supports and instrumental improvements have helped to achieve 

higher throughput analyses and/or more efficient liquid chromatographic separations. A short 

discussion on some of the advances and their application on phenolic analysis will be addressed 

below. 

 

2.4.1 Ultra-high pressure liquid chromatography (UHPLC) 

The term UHPLC refers to LC separations performed at pressures above 400 bar. The 

popularity of the UHPLC stems from the fact that the technique can accommodate columns 

packed with sub-2 µm particles, which results in an increase in improved chromatographic 

performance. Columns containing smaller particles are packed more tightly, resulting in shorter 

diffusion distances and a more uniform flow through the column and therefore less peak 

broadening [104,105]. In terms of the van Deemter equation, which describes the origin of ban 
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broadening in a packed column, the A (Eddy dispersion) and C (resistance to mass transfer) 

terms are reduced with a reduction in particle size. The effect of this can be seen in the plate 

height curves for 5, 3.5 and 1.7 µm particles in the figure below.  

 

 

Fig. 2.10: Experimental van Deemter curves for 1.7, 3.5 and 5.0 µm RP-LC columns 

illustrating the effect of a reduction in particle size [106]. 

 

Particle size reduction is associated with one important limiting factor: since the resistance to 

mobile phase flow through a column packed with sub-2 µm particles is higher, higher operating 

pressures are required. This is illustrated by Darcy’s law, which relates the pressure drop across 

a column (ΔP) to the column permeability (K0), mobile phase viscosity (ƞ), column length (L), 

mobile phase linear velocity (u) and particle size (dp):  

∆𝑃 =  
𝐾𝑜𝜂𝐿

𝑑𝑝
2 𝑢𝑜 =  

𝐾𝑜𝑁𝐻

𝑑𝑝
2 𝜇𝑜      Equation 2.1 

According to equation 2.1 the pressure drop across a column is directly proportional to the 

column length and inversely proportional to the square root of dp. Furthermore, since the 

optimal mobile phase linear velocity, uopt, is inversely proportional to dp, the pressure required 

to operate at uopt is proportional to 1/dp
3. Therefore, since an increase in column length 

coincides with an increase in pressure, the reduction in dp is often accompanied by a reduction 
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in column length leading to faster analyses times. Under these conditions the gain in efficiency 

is not significant. However, when the length of the column is kept the same, higher efficiencies 

are obtained at the cost of increased instrumental pressure. The driving force behind the 

development of commercial UHPLC instrumentation and columns has therefore been the gain 

in speed and/or resolution attainable.  

  

2.4.2 Alternative stationary phase morphologies 

The most commonly used support for HPLC columns are fully porous silica particles. 

However, some limitations are associated with the use of these phases, such as frictional 

heating, which occurs at ultra-high pressures [107]. Therefore, attempts have been made to find 

alternative stationary phase morphologies to overcome some of the shortcomings of porous 

silica.  

Monolithic columns are on such type of support, which consist of macroporous structures 

[108]. The benefit of these columns is that because of their through-pore structures, they have 

far less resistance to solvent flow, which enhances permeability of the column. Highly efficient 

chromatographic separations can be achieved through the use of long (meter-length) columns. 

In addition short monolithic columns can be operated at very high flow rates for an increase in 

analysis speed. 

Superficially porous particles are made up of a non-porous solid core coated with a thin porous 

layer. Various particle sizes are nowadays available, ranging from 1.3-5 µm. The major 

advantage of using a superficially porous phase is that their performance is similar to those of 

UHPLC columns packed with smaller particle sizes, but at lower operating pressures. The 

minimum plate height for these phases are lower than the 2dp limit common for fully porous 

phases, which is responsible for the fact that similar efficiencies can be obtained on larger 

particles compared to conventional phases. This means that these columns can also be used on 

conventional HPLC instruments. In addition, the recent availability of high-pressure resistant 

superficially porous phases extends their use to UHPLC instruments, where improved 

performance compared to UHPLC columns of the same particle size can be obtained [107]. 
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2.4.3 High temperature liquid chromatography (HTLC) 

Temperature provides an important means of improving chromatographic separation, also in 

the case of phenolic compounds. In LC the mobile phase viscosity is generally high, which 

causes slow diffusion and a strong resistance to mobile phase to flow and therefore high back 

pressure and high mass transfer resistance. All of these parameters can be reduced by increasing 

the analysis temperature. The effect of temperature on column performance is illustrated in 

Fig. 2.11, where plate height curves obtained on the same column at different temperatures are 

shown [109]. From this figure, it is evident that with an increase in temperature the maximum 

achievable efficiency, indicted by the minimum plate height value, remains virtually 

unchanged, while the optimal mobile phase linear velocity is shifted towards higher values, 

resulting in a reduction in analysis time. Even faster analyses may be achieved when using 

UHPLC in combination with HTLC. 

 

 

Fig. 2.11: Theoretical plate height curves illustrating the effect of temperature on the 

performance of a 5 µm HPLC column [109]. 

 

The beneficial effects of elevated temperatures for the RP-LC separation of anthocyanins have 

been demonstrated by de Villiers et al [17,42]: an increase in optimal mobile phase linear 

velocity and a lower maximum plate height are observed at higher temperature. This is due to 

faster reaction kinetics for the hydration reaction at elevated temperatures, which results in a 
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decreased contribution of secondary equilibria to band-broadening. Nevertheless, the analysis 

of anthocyanins at optimal mobile phase flow rates result in relatively long analysis times, 

although this might be partially offset by the use of UHPLC column. Alternatively, the low 

operating pressure implies that longer columns may be used as to benefit from efficiency gains 

[17,42]. 

 

2.4.4 Multi-dimensional liquid chromatography (MDLC) 

The term ‘multidimensional’ liquid chromatography (MDLC) refers to a family of techniques 

in which more than one separation mode are applied to separate the components in a sample. 

MDLC is characterised by an increase in resolving power compared to one-dimensional LC 

due to the combination of different separation mechanisms.  

Two distinct modes of 2-D MDLC can be distinguished: heart-cutting 2-D LC and 

comprehensive 2-D LC (denoted LC×LC). In heart-cutting 2-D LC, only one or a few fractions 

of the target compounds are collected from the first dimension effluent and re-injected onto the 

second dimension column, typically by means of a loop interface. The remaining first 

dimension effluent is by-passed to waste. In LC×LC, the entire first dimension effluent is 

collected and subjected to separation in the second dimension. This provides better separation 

of all compounds in the sample as opposed to only a selected fraction. 

The benefits of LC×LC can be illustrated using the concept of peak capacity, which is defined 

as the maximum number of peaks that can fit into a given separation space between the first 

and last eluting peak [110]. Peak capacity is a theoretical metric, which is often used to measure 

the quality of a separation process. In heart-cutting 2-D-LC the peak capacity is the sum of the 

peak capacities in the first (1nc) and second (1nc +
 2nc), whereas in LC×LC it is the product of 

the peak capacities in the first and second dimension (1nc ×
 2nc).  

LC×LC can be performed in either off-line, stop-flow or on-line modes. Off-line 2D LC is 

probably the easiest mode, which involves the collection of fractions of the first dimensional 

effluent (manually or with a fraction collector) and their reinjection onto the second dimension 

column. To perform an off-line 2-D LC separation only one HPLC system is required for all 

analyses. Compatibility of mobile phases is not a major concern, since immiscible solvents can 

be evaporated and redissolved in the second dimension injection solvent. Furthermore, off-line 

operation does not place restrictions on the chromatographic conditions such as column 
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dimensions, flow rates and analysis times in the two dimensions. However, the major limitation 

of off-line LC×LC is that it is often tedious and time consuming, and there is always the 

possibility of sample contamination/loss and degradation. Automation of off-line LC×LC is 

also hard to achieve.  

Stop-flow LC×LC involves the direct transfer fractions from the primary column effluent onto 

the secondary column, after which the first dimension flow is stopped while the transferred 

fraction is analysed in the second dimension. When the separation in the second dimension is 

completed the first dimension flow is resumed again for the transfer of the following fraction. 

On-line LC×LC is characterised by a much higher throughput, which results in more 

reproducible results. In this configuration fractions from the primary column are directly 

transferred to the second dimension column by employing a 2-position switching valve 

equipped with two loops. While a fraction is collected in one loop the content of the other is 

analysed on the second dimension column. Very fast second dimension analyses are therefore 

required for on-line LC×LC, typically resulting in lower chromatographic performance 

compared to off-line LC×LC. Other limitations include the complexity of setting up an on-line 

2-D system, especially the design of the interface. Not all separation modes are easily combined 

in on-line LC×LC, due to mobile phase incompatibility. 

Before addressing LC×LC method development and optimisation, a few key concepts relevant 

to this process will be discussed below.  

 

2.4.4.1 Peak capacity, sampling frequency and orthogonality 

As alluded to above, the major advantage of performing an LC×LC separation is the increased 

peak capacity, since for an ideal LC×LC separation system the peak capacity is multiplicative, 

i.e., 

𝑛𝑐,2𝐷
∗ = 𝑛𝑐 × 𝑛𝑐

2  1
        Equation 2.2 

where nc,2D, is the LC×LC peak capacity and 1nc and 2nc the peak capacities of the first and 

second dimension separations, respectively. However, to attain this performance, several 

important criteria have to be met. The first of these involves the use of sufficient first dimension 

sampling frequencies.  
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To maintain the first dimension resolution in a 2D configuration, a sufficient number of 

fractions across each peak eluting from the first dimension should be transferred. The sample 

or modulation period should therefore be shorter than the peak width emerging from the 

primary column. This is necessary since if any partially separated peaks in the first dimension 

are collected in the same fraction, their separation is completely lost. Therefore the general 

requirement is that the peaks eluting from the primary column should be sampled at least three 

to four times across their width to avoid loss of the first dimension resolution due to under-

sampling. 

Murphy and co-workers [111] and Seeley [112] studied the effect of sampling rate on 

resolution in LC×LC, with both groups coming to the same conclusion that when the first 

dimension peak is sampled a minimum of three times, the loss in resolution is minimal. In a 

later study by Horie and co-workers [113], it was shown that the best compromise between 

sampling rate and second dimension analysis time in on-line LC×LC can be achieved when 

each first dimension peak is sampled a minimum of two times. The reason for this is that, while 

increased sampling rates are required to maintain first dimension resolution,  the use of shorter 

second dimension analyses comes with a reduction in peak capacity in this dimension, 

ultimately lowering the overall peak capacity. This facet is of the utmost importance in on-line 

LC×LC due to the fact that the second dimension separation should be completed within the 

sampling period. Thus for optimum system performance a compromise between sampling rate 

and second dimension analysis time is important. Since the two separations are performed 

independently in off-line and stop-flow LC×LC, the sampling rate can be selected 

independently of the second dimension analysis time. The only disadvantage is that higher 

sampling rates means more fractions are analysed in the second dimension, which  results in 

longer overall analysis times. 

Under-sampling of the first dimension peaks therefore contributes to loss of resolution and 

peak capacity in an LC×LC separation. To correct for under-sampling, the following 

relationship is used [114]:   

𝑛𝑐,2𝐷
∗ = 

𝑛𝑐 × 𝑛𝑐
21

𝛽
        Equation 2.3 

where β was used as the under-sampling correction factor, which can be calculated using the  

equation below [114]: 

Stellenbosch University  http://scholar.sun.ac.za



28 
 

𝛽 =  √1 + 3.35 (
𝑡𝑐   × 𝑛𝑐   

12

𝑡𝑔
1 )      Equation 2.4 

where 𝑡𝑐
2  is the second dimension cycle time and 𝑡𝑔

1  is the gradient time in the first dimension 

[114]. When performing an off-line LC×LC separation the second dimension cycle time ( 𝑡𝑐
2 ) 

is replaced by the first dimension sampling time ( 𝑡𝑠
1 ). 

A second important criterion to attain maximal performance in LC×LC is the requirement of 

sufficient orthogonality. Two separation methods are orthogonal if the separation mechanisms 

involved are independent of each other and show distinct retention profiles or provide different 

selectivities [115]. However, many separation modes have retention mechanisms in common, 

making the realisation of perfect orthogonality in practice difficult [116, 117]. In essence, the 

advantage of an LC×LC separation is not fully utilised if the entire 2-dimensional separation 

space is not completely utilised, and this require the combination of orthogonal separations.  

Several mathematical metrics have been developed to measure and take into account 

orthogonality in the estimation of LC×LC performance [118-122]. For this dissertation only 

the methods used herein will be discussed briefly, specifically the surface coverage (SC) 

methodology developed by Stoll and co-workers [120,121] and the convex hull method 

[119,120]. The Stoll method is based on dividing the separation space (defined as the 2-

dimensional space obtained using the range-scaled retention time in both dimension) into 

individual ‘bins’, and determining the SC value as the collective area encompassing all bins 

containing peaks. The number of bins B should approximate the number of components N in 

each sample [118]. Bins that do not contain compounds but are enclosed in the space covered 

by peaks are included. To obtain the SCS, the number of bins within the enclosed area is then 

divided by the total number of bins.  

The convex hull method [119] estimates SCCH by means of a rectangular hull, where the 

minimum convex hull is defined as the smallest polygon that can surround a group of peaks 

with none of the inner angles exceeding 180° [120]. Both methods provide similar results and 

work for all kinds of data [118,120]. Fig. 2.12 illustrates graphically how surface coverage 

values are obtained using each of these methods. 
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Fig. 2.12: Examples of surface coverage plots obtained using (a) the convex hull method and 

(b) the Stoll method and for the HILIC×RP-LC analysis of grape skin anthocyanins. The 

respective surface coverage values are SCCH: 0.482 and SCS: 0.639. 

 

Both SCS and SCCH can be used as measures of the effective surface coverage, fc, of the 2-

dimensional separation space. This value can then be used to obtain a more accurate measure 

of the performance of a LC×LC separation by correcting for finite orthogonality according to 

Equation 2.5:  

𝑛𝑐,2𝐷
∗  =  

𝑛𝑐 × 𝑛𝑐
2  ×𝑓𝑐

1

𝛽
        Equation 2.5 

where the practical LC×LC peak capacity (𝑛𝑐,2𝐷
∗ ) takes into account first dimension under-

sampling as well as finite orthogonality. 

Although both first dimension under-sampling and finite orthogonality should be taken into 

account when determining LC×LC performance, many literature reports omit these parameters 

or only account for one, which hampers accurate comparison between different methods.  

 

2.4.4.2 Method development and instrumental design in LC×LC 

Prior to the coupling of two separations in LC×LC, the individual 1-dimensional separations, 

should each be optimised according to the sample being used. In this process, all the parameters 

that influence peak capacity and practical aspects of the coupling of the two dimensions should 

also be taken into account. Parameters to consider include efficiency of the individual 
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dimensions, orthogonality, sampling rate, column dimensions and flow rates and compatibility 

of the mobile phases. 

In terms of the first dimension separation, the separation is defined by the maximum resolution 

required for a given application, since the analysis time is typically not limited in this 

dimension. To increase efficiency, the first dimension may consist of several columns coupled 

in series. Use of a narrow-bore HPLC column in the first dimension allows for minimal dilution 

and provides low flow rates that are compatible with second dimension injection volumes. The 

need for a pre-concentration step at the head of the second dimension column, or flow splitting, 

is therefore avoided. At the same time, complications associated with solvent incompatibility 

between different separation modes are minimised [117,123]. Wide-bore columns can be used 

in the first dimension, however, the effluent often should be split prior to the interface resulting 

in a decrease in sensitivity.  

The general rule is to always use a second dimension column with a larger i.d. than the one 

used in the first dimension [124]. In the second dimension, wide-bore columns are therefore 

preferred to accommodate large fraction volumes and to enable the use of higher flow rates, 

which shortens re-equilibration times in the case of gradient analyses. In on-line LC×LC the 

analysis speed in the second dimension is of primordial importance. As alluded above, a 

sufficient number of fractions per first dimension peak width is required to maintain the peak 

capacity in this dimension. This implies that fast second dimension analysis should be 

performed, since the cycle time, defined as the time to perform a gradient and re-equilibrate 

the column, is equal to the sampling time. There are various ways to increase the analysis speed 

in the second dimension, such as using sub-2 µm phases and UHPLC instrumentation, 

monolithic columns, superficially porous phases and/or elevated temperatures [125,126].  

Once the individual separations have been optimised, the next step is to select the mode of 

coupling. Off-line LC×LC provides simplicity and the highest peak capacity, but at long 

analysis times. Stop-flow LC×LC is an automated alternative to off-line operation, whereas on-

line LC×LC provides high throughput but generally lower performance than off-line or stop-

flow operation. The choice of hyphenation mode therefore depends on the time available and 

the required resolving power.  

The major advantage of performing off-line 2-D LC is that longer analysis times can be used 

in the second dimension to achieve high peak capacities. This is as a result of both dimensions 

being carried out independently. For off-line method development the first dimension sampling 
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time is chosen for an acceptable degree of under-sampling based on measured peak widths, 

whereas the second dimension cycle time is chosen to provide the required resolution in this 

dimension. Especially 𝑡𝑠
1  (in other words, the number of fractions), but also 𝑡𝑐

2  directly 

determines the total analysis time in on-line LC×LC [127]. Depending on the mobile phase 

properties and column dimensions and flow rates in both dimensions, the evaporation of 

solvent might be required prior to re-injection onto the second dimension column. 

Method development for stop-flow LC×LC is essentially similar to off-line operation, with the 

added consideration that the overall peak capacity may be affected by band-broadening that 

occurs in the primary column during the stop-flow periods. The effective stop-flow periods 

experienced by each 1st dimension peak as well as the effective diffusion coefficient of the 

target analyte(s) determines the extent of such band-broadening. This aspect may be quantified 

and used as an additional criterion in stop-flow development [127,128] 

On-line LC×LC separation is usually performed with the help of switching valve (s) equipped 

with trapping loops. Fractions from the primary column are collected in one loop, while the 

content of the second loop is being analysed on the secondary column. This is a continuous 

process and occurs throughout the first dimension separation. In order to avert band 

displacement it is of the utmost importance that the second dimension separation be complete 

before transfer of the next fraction [129]. As a consequence on-line LC×LC inherently involves 

a compromise between the degree of under-sampling (which requires short sampling times), 

and second dimension peak capacity (which requires long second dimension cycle times). This 

compromise is reflected in a plot of corrected 2-dimensional peak capacity (𝑛𝑐,2𝐷
∗ ) as a function 

of second dimension cycle time ( 𝑡𝑐
2 ) which is equal ( 𝑡𝑠

1  in on-line LC×LC) as shown in Fig. 

2.13. From this figure it is evident that 𝑛𝑐,2𝐷
∗  increases with increasing 𝑡𝑐

2  up to a certain point 

– in this region increasing second dimension peak capacity with longer analysis times 

dominates the overall peak capacity. Beyond the maximum, excessive under-sampling leads to 

a reduction in 2-D peak capacity for longer 𝑡𝑐
2

 times. For a given on-line LC×LC system, there 

is therefore an optimal sampling time which will provide the highest practical peak capacity. 

In terms of the mobile phase compatibility between two dimensions, if the injection volume 

onto the second dimension column is smaller than the fraction volume (i.e. the product of the 

first dimension flow rate and the sampling time), splitting before the second dimension column 

may be used in on-line and stop-flow LC×LC [127,130,131]. 
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Figure 2.13: Plots of corrected LC×LC peak capacity (primary y-axis, lines b and c at different 

first dimension flow rates) and the inverse of the under-sampling correction factor (1/β, 

secondary y-axis, dotted line, curve a) as a function of second dimension cycle time ( 𝑡𝑐
2 ) for 

on-line HILIC×RP-LC analysis of procyanidins [127].  Further experimental conditions may 

be found in[127]. 

 

2.4.4.3 Applications of LC×LC to phenolic analysis 

Due to the growing need for LC methods suitable for the analysis of complex samples, there 

has been an exponential increase in the use of LC×LC during the last decade. The technique 

has found application in various fields, including in the separation of complex biological 

samples [132], polymers[133-136], natural products [130,137,138], peptides [139,140], 

biomolecules [141], proteins [142], food [143], wine [144,145] etc. In this section, a brief 

overview of some application of LC×LC for phenolic analysis will be presented.  

Various combinations of modes such as have been applied to the analysis phenolic compounds 

in a wide variety of samples, including NP-LC×RP-LC [146-148], HILIC×RP-LC 

[130,137,138,149,150] and RP-LC×RP-LC [144,151-156]. The same separation mode may be 

applied in both the dimensions, as is the case with RP-LC×RP-LC, which has been 

demonstrated by Mondello and co-workers [144,151,153,156]. These authors performed on-
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line RP-LC×RP-LC of wine [144] and beer [145] phenolics. The advantage of this is that 

mobile phase incompatibility is minimised, although orthogonality is often poor. 

For a more orthogonal combination NP-LC, HILIC or even size exclusion chromatography 

(SEC) can be used in combination with RP-LC, since these modes impart alternative separation 

selectivity due to their retention mechanisms. One of the major concerns when using NP-LC 

or HILIC is the solvent immiscibility (in the case of NP-LC) or mismatch between two 

dimensions. This factor is important, since the first dimension mobile phase is the injection 

solvent used in the second dimension when evaporation is not performed. Despite this 

limitation both NP-LC and HILIC have successfully been coupled to RP-LC and been applied 

for the LC×LC analyses of phenolic compounds. NP-LC×RP-LC was applied for the 

characterisation of psolarens and flavones in citrus oil [146,157] using MS detection. 

HILIC×RP-LC has been studied in detail by Kalili et al [138,149,150] for the analysis of 

diverse phenolic compounds in natural products. These authors also hyphenated on-line 

HILIC×RP-LC with fluorescence and MS detection for the analysis of grape procyanidins 

[137] .  

On-line LC×LC separation is most commonly used in phenolic analysis, with various 

separation modes being coupled [130,132,137,144,145,158,159] Different column stationary 

phases and mobile phases have been used in the on-line LC×LC analysis of a range of phenolic 

compounds in various samples such as wine [144], plant extracts, apples [160], beer [145], 

grape seeds [137] and cocoa [130]. 

Rather surprisingly, off-line LC×LC is less often used for phenolic analysis. Off-line 

HILIC×RP-LC was utilised by Kalili et al [130,138,149,150], for the analysis of various 

phenolic compounds such as procyanidins, phenolic acids, flavanols etc., in a range of samples 

which included cocoa, apples, green tea and rooibos tea. Much higher peak capacities were 

obtained compared to the on-line configuration, however at longer analysis times. 

Stop-flow LC×LC is the least often used mode of hyphenation, although it has been explored 

for phenolic analysis. Kalili et al [127,130] investigated the potential of stop-flow LC×LC for 

the analysis of procyanidins in cocoa. These authors showed that additional first dimension 

band broadening due to stop-flow operation is not significant for these compounds, and 

reported similar peak capacity values compared to off-line LC×LC. Blahova et al [161] also 

explored stop-flow LC×LC for various phenolic standards and found good separation at 

slightly longer second dimension gradient times. 

Stellenbosch University  http://scholar.sun.ac.za



34 
 

The choice of detector used in LC×LC depends on the analyte being detected and the separation 

mode used in the second dimension. UV is by far the most common detection method in the 

LC×LC analysis of phenolics [144,159,162], although the selectivity of fluorescence for 

procyanidins has been exploited in combination with LC×LC [130,137,138, 149,150], and 

several studies have used MS in combination with LC×LC [137,138,163]. Hyphenation of 

LC×LC with MS is expected to find increasing application in phenolic analysis. 

From the above short summary, it is evident that improved chromatographic separation is 

obtained by LC×LC for phenolic analysis. Clearly LC×LC will continue to play an important 

role in the analysis of complex phenolic fractions in the future. Although LC×LC has not to 

date been employed for anthocyanins, it would seem from the reports cited above that 

HILIC×RP-LC would be a promising approach for exploiting the benefits of LC×LC in 

anthocyanin analysis. 
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3.1 Introduction 

The aim of this dissertation was to develop comprehensive two-dimensional liquid 

chromatographic (LC×LC) methods for anthocyanins and their derived products in red wine. 

Several key requirements had to be fulfilled in order to achieve this. First, a hydrophilic 

interaction chromatographic (HILIC) method was developed and evaluated as a 

complementary separation mode to reversed-phase liquid chromatography (RP-LC) for the 

analysis of anthocyanins. The developed HILIC method was used in the first dimension in 

LC×LC analyses, first of all through the off-line coupling to RP-LC. Optimal experimental 

conditions were established for both first and second dimensions to provide exceptionally high 

practical peak capacities, although at the cost of very long analysis times. This information was 

then used for the development and optimisation of an on-line HILIC×RP-LC separation using 

a capillary LC system in the first dimension and an Ultra-performance liquid chromatographic 

(UPLC) system in the second. The on-line HILIC×RP-LC method was hyphenated to a high 

resolution mass spectrometer for the identification of a wide range of anthocyanin derived 

pigments in red wine. 

 

3.2 Hydrophilic interaction chromatographic analysis of anthocyanins 

C.M. Willemse, M.A. Stander, A. de Villiers, J. Chromatogr. A 1319 (2013) 127-140; 

Addendum A. 

 

RP-LC is the separation method of choice for the analysis of anthocyanins due to its high 

selectivity and good chromatographic performance. RP-LC is usually coupled to a photo-diode 

array detector (PDA) which has the advantage of selective detection of these analytes at 500 

nm, allowing them to be distinguished from other flavonoid classes [1,2]. When hyphenated to 

mass spectrometry (MS) additional structural information (i.e., molecular mass and fragments) 

can be obtained for compound identification. However, despite these advantages RP-LC-MS 

suffers from some limitations, and these, in combination with the complexity of anthocyanins, 

means that their complete characterisation is often not possible using a single method. For these 

reasons, alternative separation methods remain relevant in anthocyanin analysis. HILIC would 

be a promising alternative mode of separation to RP-LC because of its complementary 

selectivity and suitability for polar molecules. This technique has found widespread application 
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for the analysis of various phenolic compounds, and also shows promise for hyphenation to 

other modes of HPLC in 2-dimensional LC, as has been demonstrated for the analysis of 

phenolic compounds by various researchers [3-7]. The aim of this work was therefore to 

examine the suitability of HILIC for the analysis of anthocyanins in natural products. To this 

end, diverse anthocyanins found in blueberries, black beans, red grape skins, red radish and red 

cabbage were used as target analytes.  

In the development of the HILIC method for anthocyanins, several experimental parameters 

were systematically optimised. First, a range of HILIC stationary phases were evaluated using 

a scouting gradient, to determine which was most suitable for the target analytes. Of the six 

different stationary phases evaluated, the best results in terms of retention and selectivity were 

obtained on a BEH amide stationary phase. Even on this column though, broad peaks were 

obtained for the anthocyanins in all samples using the scouting gradient. The exception was 

the red radish anthocyanins, for which good efficiency was attributed to the fact that this sample 

uniquely contained acylated pelaragonidin derivatives. This then lead to the optimisation of the 

mobile phase composition to improve chromatographic performance. Since anthocyanins exist 

as different chemical species in solution, the mobile phase pH has a profound effect on their 

solution chemistry [8-10]. For the RP-LC analysis of anthocyanins, for example, low pH 

mobile phases are essential to ensure prevalence of the flavylium cationic species, thereby 

improving the chromatographic performance by minimising the detrimental effects of 

secondary equilibria [11,12].  

Under the chromatographic conditions used for the scouting gradient (5% formic acid in 

acetonitrile and water), the corrected pH was determined to be 2.20. At this pH, a significant 

portion of anthocyanins are present in the carbinol pseudobase form, and the resulting inter-

conversion between flavylium cationic and carbinol species is expected to cause severe peak 

broadening [11]. Decreasing the pH of the mobile phase by increasing the formic acid content 

to 10% confirmed this conclusion: improved peak shapes, selectivity and resolution were 

obtained, proving that mobile phase pH also plays an important role in HILIC. Trifluoroacetic 

acid (TFA, 0.4%) was also investigated as an alternative acidic mobile phase component and 

was found to further improve peak shapes and increase retention due to the lower polarity of 

this mobile phase. The effect of temperature was investigated, since an increase in temperature 

has been shown to improve the chromatographic separation of anthocyanins due to faster inter-

conversion between anthocyanin species [11]. Indeed, much better performance was observed 
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at 50ºC. Finally, the optimal mobile phase flow rate was established by measuring the plate 

height curve for malvidin-3-O-glucoside under the optimal conditions.   

The optimal method was hyphenated to a high resolution time-of-flight (TOF) MS detector 

operated in positive ionisation mode for the identification of the anthocyanins in each of the 

analysed samples. Tentative identification was based on accurate mass data, fragmentation 

information in MSE mode and comparison of UV- and MS spectra with previous literature 

reports. Anthocyanidin bases were detected as base peaks in the MSE spectra, following the 

loss of m/z 162 or 132 (monoglucosides), m/z 204 (acetyl-glucosides), m/z 308 (coumaroyl-

glucosides) and m/z 324 (diglucoside or caffeoyl-glucoside), etc. Furthermore, fragmentation 

of the anthocyanidin base under high collision induced dissociation (CID) MSE conditions (20 

- 60 V) was observed, which allowed confirmation of the anthocyanidin moiety [1,13].  

A total of 35 anthocyanins were identified in black beans, blueberries and grape skins, 

comprising mainly of monoglucosides in black beans and blueberries and additional acylated 

mono-glucosides in grape skins. Anthocyanidin-galactosides could not be distinguished from 

the corresponding -glucosides due to co-elution in HILIC. Interestingly, several anthocyanin 

derived pigments were also detected in grape skins, of which acetylvitisin A, coumaroylvitisin 

A and the B-type vitisins were reported in grape skins for the first time. 

Red cabbage and red radish contain highly acylated anthocyanins; 36 compounds were 

tentatively identified in these samples. The major anthocyanidin found in red cabbage was 

cyanidin, with variations stemming from different acylation patterns of cyanidin-3-

di/triglucosides. It was not possible to unambiguously identify several compounds with 

identical molecular weights and fragmentation patterns based on HILIC retention and MS data 

alone. In red radish, only pelaragonidin derivatives were detected, with the exception of 

cyanidin-3-(glycosyl)rhamnoside and cyanidin-3-(diglycosyl)rhamnoside (the latter identified 

for the first time in this sample). Several isomeric structures which could not unambiguously 

be distinguished were also detected in red radish. Pelaragonidin-(feruloyl)triglucoside-5-

(malonoyl)glucoside and pelaragonidin-3-(p-coumaroyl)triglucoside-5-(malonoyl)glucoside 

were tentatively identified for the first time in red radish.  

Since this work represented the first application of HILIC for anthocyanin analysis, it was 

interesting to investigate the retention behaviour of these compounds in this mode. It was found 

that, for the same glycosylation and acylation pattern, compounds were separated according to 

the polarity of the anthocyanidin base. Anthocyanidins containing the most methoxy-
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substituents, i.e., malvidin derivatives, eluted first, followed by peonidin, petunidin, 

pelaragonidin, cyanidin and lastly delphinidin derivatives. Furthermore, anthocyanidin-

arabinosides eluted before the corresponding -hexosides (the opposite is true for RP-LC), and 

anthocyanidin-glucosides co-eluted with the corresponding –galactosides in HILIC. Retention 

in HILIC increases with the degree of glycosylation and decreases with acylation of 

anthocyanidins, the exception being caffeoyl-derivatives which show higher retention than the 

corresponding non-acylated anthocyanidins. Comparison of HILIC retention behaviour with 

the well-established RP-LC elution characteristics of anthocyanins therefore highlights the 

complementary nature of the two separation modes. 

 

3.3 Comprehensive two-dimensional liquid chromatographic analysis of anthocyanins 

C.M. Willemse, M.A. Stander, A.G.J. Tredoux, A. de Villiers, J. Chromatogr. A 1359 (2014) 

189-201; Addendum B 

 

The coupling of two independent LC separations in comprehensive two-dimensional liquid 

chromatography (LC×LC) offers a dynamic and powerful approach for the separation of 

compounds in complex matrices. In this work the previously developed HILIC method was 

combined with RP-LC for the LC×LC analysis of anthocyanins. Off-line HILIC×RP-LC was 

chosen for the separation of these compounds, since this mode of hyphenation is the easiest to 

implement and places no restrictions on the second dimension analysis time. This factor is 

especially important for anthocyanin analysis, since the short second dimension analysis times 

required for on-line LC×LC are especially detrimental for these compounds due to the effect 

of secondary equilibria [11,12]. In addition, off-line operation provides the highest overall 

practical peak capacity.  

Systematic optimisation of the off-line HILIC×RP-LC method involved first of all the choice 

of first and second dimension column dimensions, flow rates and gradient times. The 

previously developed HILIC method [14] was adapted to a wide-bore 150×4.6 mm i.d. column 

operated at a flow rate of 0.2 mL/min. These conditions were selected based on the low optimal 

flow rate for anthocyanins in HILIC [14]: for off-line LC×LC using short sampling times, this 

flow rate provided ideal fraction volumes. This column also provided a higher sample capacity 

and peak capacity, the latter due to the reduced effect of extra-column peak broadening. A 
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superficially porous C18 column (50 × 4.6 mm i.d., 2.6 µm) was used in the second dimension, 

with a RP-LC gradient method based on that of de Villiers et al [11, 12] for the high-efficiency 

separation of anthocyanins. A second dimension gradient time of 30 minutes was used.  

One of the major challenges coupling HILIC and RP-LC is the relative elution strengths of the 

solvents used in the two dimensions [15-17]. A maximum of 2µL of each HILIC fraction could 

be injected onto the second dimension column to avoid peak distortion of the early eluting 

compounds (this was confirmed experimentally). A sampling time, 𝑡𝑠
1 , of 0.5 minutes was 

selected, which provided an acceptable degree of under-sampling of the first dimension peaks. 

Fraction volumes of 100 µL were therefore collected (flow rate 0.2 mL/min), meaning that 

~2% (2 µL) of each HILIC fraction was injected onto the RP column. 

Raw UV data at 500 nm were used to construct contour plots of each of the analysed samples, 

and compounds were identified based on 1-dimensional HILIC- and RP-LC-ESI-TOF-MS 

data. A total of 87 anthocyanins were identified in the contour plots for blueberries, black 

beans, grape skins, red cabbage and red radish samples. The contour plots revealed improved 

resolution for numerous compounds that could not be separated in one of the 1-dimensional 

separations. Furthermore, it was noted that group-type separation of anthocyanins was afforded 

by the combination of HILIC and RP-LC separations. This was especially evident for the highly 

acylated and glycosylated anthocyanins identified in red grape skins and red cabbage. The 

position of compounds in these contour plots thereby provides additional information that 

could assist in compound identification.  

The performance of the off-line HILIC×RP-LC separation was evaluated in terms of peak 

capacity, 𝑛𝑐[18,19]. The 1-dimensional HILIC separations provided peak capacities ranging 

between 46 and 78 for the different samples, whereas RP-LC provided peak capacities ranging 

between 109 and 196 (average 163). This exceptional performance in RP-LC can be ascribed 

to the use of a 2.6 µm superficially porous column operated at optimal flow rate and elevated 

temperature[11,12]. In order to obtain a realistic measure of the performance of HILIC×RP-

LC separation of anthocyanins, practical 2-dimensional peak capacities (𝑛𝑐,2𝐷
∗ ) were calculated 

taking first dimension under-sampling and finite orthogonality into account according to:  

𝑛𝑐,2𝐷
∗  =  

𝑛𝑐 × 𝑛𝑐
2  ×𝑓𝑐

1

𝛽
        Equation 3.1 
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where, β is a measure of first dimension under-sampling, calculated according to Li et al [20], 

and fc is fractional surface coverage of the available 2-dimensional separation space [21]. Two 

methods were used to estimate the effective surface coverage (SC): the ‘bin counting’ method 

of Stoll et al [22] and the convex hull method [23, 24]. Differences in SC values between these 

methods were noted, which emphasises the importance of the metrics used to estimate 

orthogonality in the calculation of practical 2-D peak capacity. Practical peak capacities of up 

to 6950 were obtained for the off-line HILIC×RP-LC analysis of anthocyanins, providing peak 

production rates up to 2.5 peaks/min. It should be noted that this gain in performance compared 

to 1-dimensional LC methods is only attainable using off-line LC×LC, and therefore very long 

analysis times, since a longer second dimension gradient time can be used to provide high peak 

capacities in this dimension [25]. Nonetheless, HILIC×RP-LC was found to offer a promising 

method for anthocyanin analysis, with the group-type separation obtained by the combination 

of these modes especially useful in facilitating compound identification. 

 

3.4 Comprehensive two-dimensional HILIC×RP-LC-UV-MS analysis of anthocyanins 

and derived pigments in wine 

C.M. Willemse, M.A. Stander, J. Vestner, A.G.J. Tredoux, A. de Villiers, (submitted to Anal. 

Chem.); Addendum C 

 

The final experimental work involved the on-line comprehensive HILIC×RP-LC-MS analysis 

of anthocyanins and derived pigments in red wine. Despite the important roles that 

anthocyanins play in determining many important wine characteristics, the accurate qualitative 

and quantitative analysis of wine pigments remains challenging due to their extreme structural 

diversity and complexity. During wine ageing, the grape-derived anthocyanins are transformed 

through a range of chemical reactions involving other wine constituents to a large number of 

derived pigments, which are responsible for the evolution and stabilisation of wine colour as 

well as changes in the sensory properties of the product. Because of the complexity of the 

derived products and their low levels in aged wines, MS plays a critical role in their 

identification. Therefore, in this work the development of an on-line HILIC×RP-LC method 

and its hyphenation to high resolution time-of-flight mass spectrometry (HR-Q-TOF-MS) was 

explored for the detailed analysis of anthocyanins and derived products in red wine.  

Stellenbosch University  http://scholar.sun.ac.za



50 
 

For the development of the on-line HILIC×RP-LC method, the performance of each 1-

dimensional separation mode was evaluated under various conditions to enable the selection of 

the best conditions for the on-line method. The first dimension the flow rate ( 𝐹1 ) and gradient 

time were varied using a 1 mm i.d. amide column operated at 50ºC, and the resulting peak 

width measured and used to calculate the peak capacity according to:  

𝑛𝑐,1𝐷 = 1 +  
𝑡𝑔

1
𝑛⁄ ∑ 𝑤𝑏

𝑛
1

     equation 3.2 

where 𝑡𝑔 is the gradient time and 𝑤𝑏 is the peak width at baseline, averaged for n peaks. In the 

second dimension the flow rate and column temperature remained constant at 860 µL/min and 

60°, respectively, and the second dimension cycle time ( 𝑡𝑐
2 ) was varied. RP-LC peak 

capacities were calculated according to equation 3.1 for each cycle time, and these were fit to 

an empirical equation [26] which allowed determination of 𝑛𝑐
2  for any given 𝑡𝑐

2  . For each 

set of conditions, the practical LC×LC peak capacity was calculated according to equation 3.2 

by correcting for limited orthogonality using the surface coverage metric determined by the 

convex hull method and first dimension under-sampling using β, calculated using first 

dimension peak widths. To accommodate the fact that the maximum injection volume of HILIC 

fractions in the second dimension is 2 µL, flow splitting after the first dimension column was 

assumed in these calculations. The results of this optimisation process showed that the highest 

2-dimensional peak capacity would be obtained at low first dimension flow rates and long first 

dimension gradients. At the optimal conditions 

( 𝐹 = 1µL/min1 , 𝑡𝑔 = 416 min1 , 𝑡𝑠 = 10 min1 ) a split flow of 4:1 would be required, 

providing a practical peak capacity of 2173. However, because of the low levels of pigments 

in especially aged wine, we opted to use a first dimension flow rate of 1µL/min and a sampling 

time of 2 min, thereby avoiding the need to split at the cost of some performance loss.  

Under these conditions, the first dimension separation was performed on a Cap-LC system, 

which was hyphenated through a high-pressure 10-port 2-position valve to a UPLC instrument 

where RP-LC separation was performed using a cycle time of 2 min. A UV detector acquired 

data on-line just after the second dimension column, where after the effluent was split ~ 1:1 

before connection to the Q-TOF-MS detector. Raw MS and UV data at 500 nm were exported 

to Matlab 7.14 for data processing.  

The samples used in this study were one- and six-year old Pinotage wines, pre-concentrated 

using an in-house developed solid phase extraction (SPE) procedure. The obtained contour 
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plots illustrate the complexity of pigmented fractions of especially aged red wines. Both grape-

derived anthocyanins and a large number of their derived pigments were tentatively identified 

using accurate mass MS and MSE data. In total, 94 pigments were identified, including 

anthocyanidin-mono- and -di-glucosides, oligomeric anthocyanins, anthocyanin-tannin 

adducts, acetaldehyde-mediated tannin adducts, vinylflavanol condensation products, 

oxovitisins, A and B-type vitisins and anthocyanin-vinylcatechol, -vinylphenol, -vinylguaicol 

and –vinylsyringol derivatives.The differences in pigment composition between the two wines 

were clearly evident from the contour plots. For example the 2013 wine contained more grape-

derived anthocyanins such as anthocyanidin-mono- and di-glucosides as well as oligomeric 

anthocyanins, whereas levels of anthocyanin-tannin adducts, vinylflavanols, A-type vitisins, 

vinylcatechol, -guaicol and -syringol derivatives were higher in the older wine.  

The benefit of using HILIC×RP-LC-MS is clearly evident from the contour plots, as neither 

HILIC nor RP-LC provides complete resolution of all compounds, especially using a 2 min 

second dimension gradient. For example, 1-dimensional HILIC-MS cannot distinguish 

between isomeric compounds such as anthocyanidin-galactosides and glucosides or cis and 

trans isomers, whereas RP-LC provides separation of these isomers based on hydrophobicity. 

In addition, the structured elution pattern offered by HILIC×RP-LC separation provides an 

added advantage in that it allows the tentative assignment of the degree and/or nature of 

glycosylation and/or acylation of unidentified peaks according to their position in the contour 

plots relative to known compounds.  

The results presented in this work illustrate that HILIC×RP-LC hyphenated to high resolution 

MS offers a powerful analytical method for the detailed analysis of anthocyanins and derived 

pigments in wine. This methodology shows promise for the study of wine pigment evolution, 

and potentially for elucidation of new reactions involving anthocyanins during wine ageing.  
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4.1 General conclusions 

Anthocyanins are important natural pigments, whose analysis remains challenging due their 

unique solution properties, structural diversity and the lack of commercially available 

standards. This is especially the case for the grape-derived anthocyanins and their derived 

pigments found in red wine due to the low levels and large number of related derivatives formed 

during wine ageing. The ultimate goal of the research reported in this thesis was therefore to 

develop improved analytical methods for the determination of the complex mixtures of 

anthocyanins, with special emphasis on the pigments encountered in red wine. Since a single 

liquid chromatographic method is not capable of resolving such large numbers of related 

compounds, the combination of multiple orthogonal separations in comprehensive 2-

dimensional liquid chromatography (LC×LC) was explored for this purpose.   

In order to achieve the goal of improved separation of anthocyanins by LC×LC, a systematic 

approach was followed: 

i. In the first instance, a hydrophilic interaction chromatography (HILIC) method was 

developed as an alternative separation mode to reversed-phase liquid chromatography 

(RP-LC) for the analysis of anthocyanins. Method development involved optimisation 

of several key parameters, such as the stationary- and mobile phases, column 

temperature and flow rate, to provide optimal chromatographic performance. The 

optimised HILIC method was hyphenated to selective ultra-violet (UV) detection at 

500 nm and high resolution mass spectrometry (HR-MS) for identification purposes. 

The potential of the HILIC-UV-MS method was demonstrated by its application to a 

wide range of anthocyanins, ranging from relatively simple to highly complex in terms 

of structure, in blueberries, grape skins, red cabbage, red radish and black beans. The 

developed method provided and alternative separation selectivity compared to RP-LC 

and was therefore suitable for coupling to RP-LC in LC×LC.   

ii. The optimised HILIC method was coupled to RP-LC in an off-line LC×LC 

configuration. Each 1-dimensional method was optimised prior to hyphenation, which 

involved selection of column dimensions and flow rates in each dimension as well as 

optimal sampling times ( 𝑡𝑠
1 ) and second dimension cycle times ( 𝑡𝑐

2 ) for maximum 

resolution. The applicability of off-line HILIC×RP-LC in combination with UV and 

MS detection was demonstrated for the same samples and compounds as in (i). Off-line 

HILIC×RP-LC showed improved separation of compounds not resolved in either 
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HILIC or RP-LC. Exceptionally high practical peak capacities were calculated for the 

off-line HILIC×RP-LC separation. Also of interest was that group-type separation of 

anthocyanins was observed in the contour plots. 

iii. In the final part of the work, an on-line HILIC×RP-LC method hyphenated to high 

resolution time-of-flight mass spectrometry (HR-Q-TOF-MS) was developed for the 

analysis of anthocyanins and derived pigments in old and young red wines. For the on-

line method, optimisation of each 1-D method and the parameters used in their coupling 

was performed. For the first dimension separation, a 1 mm i.d. column was used at a 

flow rate of 1 µL/min and various gradient times and flow rates were evaluated, while 

in the second dimension various second dimension cycle times were evaluated on a 50 

mm 1.7 µm superficially porous column. By using a sampling time of 2 min, the need 

to split the first dimension eluent before the second dimension column was avoided. A 

large number of pigments were identified in red wine by HILIC×RP-LC-MS, including 

anthocyanidin-mono- and -di-glucosides, oligomeric anthocyanins, anthocyanin-tannin 

adducts, acetaldehyde-mediated tannin adducts, vinylflavanol condensation products, 

oxovitisins, A and B-type vitisins and anthocyanin-vinylcatechol, -vinylphenol, -

vinylguaicol and –vinylsyringol derivatives. Differences in pigment composition 

between the two wines were clearly evident from the contour plots. For example the 

2013 wine contained more grape-derived anthocyanins such as anthocyanidin-mono- 

and di-glucosides and oligomeric anthocyanins, whereas levels of anthocyanin-tannin 

adducts, vinylflavanols, A-type vitisins, vinylcatechol, -guaicol and -syringol 

derivatives were higher in the older wine.  

 

Based on the results obtained in this study for various samples and analytes, it is clear that the 

combination of multiple complementary analytical techniques is highly beneficial for 

anthocyanin determination, since their complexity in several natural products exceeds the 

separation capabilities of a single analytical technique. One of the benefits of performing 

LC×LC clearly illustrated in this work, is that compounds co-eluting in one dimension were 

separated in the other, and vice versa.  

Both on-line and off-line HILIC×RP-LC methods were developed. In both cases, optimal 

performance required careful optimisation of certain parameters, including gradient times, 

sampling times, flow rates and column dimensions. On-line as well as off-line LC×LC offered 
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improved separation performance compared to 1-dimensional HILIC and RP-LC. On-line 

HILIC×RP-LC offers the advantage of automation and conventional analysis times, whereas 

off-line operation provides higher peak capacities at longer analysis times.  

Hyphenation of HILIC×RP-LC with UV and MS in an on-line manner provided not only a 

third dimension but also an increase in specificity. In particular, on-line HILIC×RP-LC-UV-

MS offered a powerful method for screening of wine pigments. Even though complete 

separation was not provided, group-type retention information and the power of high resolution 

MS allow the potential identification of new analytes and elucidation of their formation during 

wine ageing. 

In conclusion, one-dimensional HILIC and both off-line and on-line HILIC×RP-LC methods 

were developed for anthocyanin analysis for the first time. Hyphenation of HILIC×RP-LC 

separation to HR-TOF-MS was shown to be a powerful method for the detailed characterisation 

of anthocyanins and derived pigments in highly complex samples such as wine, and this 

approach shows promise for shedding further light on these influential natural pigments. 

 

4.2 Recommendations for future studies 

Due to the complexity associated with anthocyanins and their derived pigments in wine and 

the potential of HILIC×RP-LC for their analysis as demonstrated in this dissertation, further 

research is required to improve these methods or extend already developed methods. Firstly, 

due to the low levels of these pigments in especially aged wine, selective extraction and pre-

concentration of these pigments should be performed to improve the sensitivity of the methods 

used here and allow identification of more trace-level compounds.  

Since stop-flow LC×LC is considered an automated alternative to off-line LC×LC, it would be 

interesting to combine HILIC and RP-LC separations under stop-flow conditions. To do this, 

the effective diffusion coefficients should be measured, since additional first-dimension peak-

broadening might be the limiting factor.  

Because MS cannot distinguish between isomeric anthocyanins and their derivatives, several 

of which were detected in wine, it would be relevant extend HILIC×RP-LC separation to the 

preparative level to isolate particular compounds for structural elucidation by nuclear magnetic 
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resonance (NMR) spectroscopy. Hyphenation of NMR to HILIC×RP-LC would of course also 

be an option, although much more complicated in practice.  

In order to enhance the orthogonality of the HILIC×RP-LC separation of anthocyanins, it 

would be interesting to evaluate the use of different gradient profiles in the second dimension. 

The use of segmented in fraction (SIF), full in fraction (FIF), or continuous shifting (CF) 

gradients may prove useful in this regard (P. Jandera et al, J. Sep. Sci. (2010) 33: 1382-1397, 

G. M. Leme et al, Anal. Bioanal. Chem. (2014) 406: 4315-4324). 

Extension of the developed methodologies to other anthocyanin-containing natural products 

such as cranberries and pomegranate would be interesting, since these samples contain 

mixtures of different pigments. Finally, exploring the simultaneous analysis of both 

anthocyanins and non-coloured flavonoids in samples such as wine, cranberries, etc, would 

extend the applicability of the methods developed in this thesis. 
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a  b  s  t  r  a  c  t

Hydrophilic  interaction  chromatography  (HILIC)  provides  an  alternative  separation  mode  for  the  analysis
of  phenolic  compounds,  in which  aqueous-organic  mobile  phases  with  polar  stationary  phases  are  used.
This  paper  reports  the evaluation  of  HILIC  for the  analysis  of  the  natural  pigments  anthocyanins,  which
are  of  importance  because  of  their  chromophoric  properties  and  a range  of  health  benefits  associated
with  their  consumption.  Several  HILIC  stationary  phases  (silica,  diol,  amine,  cyanopropyl  and  amide)  and
mobile  phase  combinations  were  evaluated,  with  the  latter  proving  particularly  important  due  to  the
distinctive  chromatographic  behaviour  of  anthocyanins.  Diode  array detection  was used  for  selective
detection  of anthocyanins,  while  high  resolution  quadrupole-time-of-flight  mass  spectrometry  (Q-TOF-
MS)  was used  for compound  identification.  The  potential  of  HILIC  separation  is demonstrated  for  a  range
of  anthocyanins  varying  in  glycosylation  and acylation  patterns  found  in  blueberries,  grape  skins,  black
beans,  red  cabbage  and  red  radish.  HILIC  is  shown  to  be  a complementary  separation  method  to  reversed
phase  liquid  chromatography  (RP-LC)  due  to the alternative  retention  mechanism.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Extensive research has been focused on plants and food rich in
phenolic antioxidants, specifically fruit and vegetables, since they
play a pivotal role in the reduced risk of a number of chronic and
degradative diseases in humans [1–3]. Fruits and vegetables are
one of the most important sources of phenolic compounds in the
human diet. The phenolic pigments anthocyanins (anthocyanidin-
glycosides), a class of the flavonoid family, are responsible for
the red, blue and violet colours of many plants, flowers, fruits,
grains and vegetables [4]. Anthocyanins have been used as natural
food colourants for many years, but recently attention has shifted
towards their possible application as nutritional supplements, con-
stituents of functional food formulae, medicines, etc. [5]. Due to the
importance of anthocyanins to the food industry, understanding
their chemical structure and distribution is of some significance.
Anthocyanins are predominantly found in nature as glycosides of
polyhydroxy- or polymethoxy-derivatives of flavylium salts. The
six common anthocyanidins found in nature are pelaragonidin
(Pel), cyanidin (Cy), peonidin (Pe), delphinidin (Dp), petunidin (Pt)

� Presented  at the 39th International Symposium on High-Performance Liquid-
Phase  Separations and Related Techniques, Amsterdam, Netherlands, 16–20 June
2013.

∗ Corresponding author. Tel.: +27 21 808 3351; fax: +27 21 808 3360.
E-mail  address: ajdevill@sun.ac.za (A. de Villiers).

and malvidin (Mv) (Fig. 1), although more than 30 anthocyanidins
have been identified [6]. Further structural variation stems from
different degrees of glycosylation and acylation involving a variety
of acids [7], resulting in a diverse range of anthocyanin structures:
more than 560 natural anthocyanins have been identified to date
[6,8].

Due to this complexity, the accurate qualitative and quantita-
tive analysis of anthocyanins remains challenging. The most widely
used separation method for the analysis of anthocyanins is reversed
phase liquid chromatography (RP-LC), because of its high sen-
sitivity and selectivity, good chromatographic performance and
relatively short analysis times. This mode of separation is often cou-
pled to photodiode-array (PDA) detection, which provides some
information on the nature of the aglycone as well as glycosyl-
ation and acylation patterns [9–11]. Since anthocyanins absorb
in the visible range around 500–550 nm, they can selectively
be detected at these wavelengths, and therefore distinguished
from other flavonoid classes [12,13]. However, LC-PDA is does
not provide sufficient structural information to allow identifica-
tion of individual anthocyanins, which, in light of the limited
commercial availability of the reference compounds, is a major
limitation. RP-LC hyphenated with mass spectrometry (MS) may
provide information on both the molecular mass and molecular
structure, which greatly facilitates in the identification of antho-
cyanins. Tandem mass spectrometry (MS/MS) is especially helpful
in structural elucidation since selective fragmentation provides
additional information [14,15]. Despite these benefits, however,
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Fig. 1. Structures of anthocyanins identified in black beans, blueberries, red grape
skins, red cabbage and red radish. Abbreviations: Dp: delphinidin, Cy: cyanidin, Pel:
pelaragonidin, Pt: petunidin, Pe: peonidin, Mv:  malvidin.

LC–MS alone also demonstrates some limitations for anthocyanin
analysis. In positive ionisation mode (almost exclusively used for
anthocyanin analyses), non-anthocyanin flavonoids such as glyco-
sylated flavonols show identical molecular ions and fragments [16].
Moreover, MS  is not capable of distinguishing between glycosidic
isomers such as –glucoside and –galactosides, while the rela-
tively simple fragmentation pattern of glycosylated anthocyanins
makes the identification of related compounds in complex mix-
tures challenging. For these reasons, chromatographic separation
of anthocyanins remains essential.

Conventional RP-LC methods display some shortcomings
associated with the unique chromatographic behaviour of antho-
cyanins, primarily in terms of relatively low chromatographic
efficiency and low optimal mobile phase flow rates, the latter
implying that long analysis times are required for maximum resolu-
tion at conventional temperatures [17,18]. In combination with the
large structural diversity of anthocyanins, this means that complete
chromatographic separation of complex anthocyanin mixtures,
such as encountered in for example grapes, blueberries and radish,
is not always possible. Therefore the identification of anthocyanins,
mostly based on the RP-LC elution order, UV–vis spectra as well as
mass spectral information, is often tentative.

In order to improve the certainty in compound identifica-
tion, alternative separation modes for anthocyanin analysis, such
as reported for example by Vergara et al. [19] using a mixed
mode ion-exchange-RP stationary phase, would be useful in terms
of providing complementary selectivity. Hydrophilic interaction
chromatography (HILIC, a term coined by Alpert [20]) is an aqueous
variant of normal phase liquid chromatography (NP-LC) [21] which
has in recent years found increasing application in phenolic analy-
sis [22–24]. Potential advantages of HILIC include its suitability for
the analysis of polar compounds that are not sufficiently retained in
RP-LC, excellent compatibility with UV and especially MS  detection
and an alternative separation mechanism [20], which implies that
compounds not easily separated by RP-LC may  be resolved in this
mode. As a consequence, HILIC also shows promise for hyphenation
to other modes of HPLC in 2-dimensional liquid chromatography,
as has been demonstrated by the HILIC × RP-LC analysis of an array
of phenolic compounds [25–30].

To  the best of our knowledge, HILIC has not yet been applied to
the analysis of anthocyanins. The objective of this study was there-
fore to explore the applicability of HILIC for anthocyanin analysis.
The potential of the approach will be demonstrated by the analysis
of diverse anthocyanins in blueberries, grape skins, black beans, red
cabbage and red radish.

2.  Experimental

2.1. Reagents and materials

HPLC  grade methanol, acetonitrile and trifluoroacetic acid
(TFA) were purchased from Sigma–Aldrich (Steinheim, Germany)
and formic acid from Merck (Darmstadt, Germany). Malvidin-3-
O-glucoside chloride was obtained from Extrasynthese (Genay,
France), and dissolved at 1 mg/mL  in methanol as stock solution.
Deionised water was  obtained using a Milli-Q water purification
system (Millipore, Milford, MA,  USA). All mobile phases were fil-
tered through 0.45 �m HVLP membrane filters (Millipore) and
degassed in an ultrasonic bath before use. Blueberries, red cabbage,
red radish, grapes and black beans were purchased from a local
supermarket. The OASIS HLB solid phase extraction (SPE) cartridges
(6 mL,  500 mg)  were from Waters (Milford, MA,  USA).

2.2. Sample preparation

Each  of the five samples, i.e., blueberries, red cabbage, red radish,
grape skins and black beans, were prepared in the same man-
ner. 15 g of each of the samples was frozen using liquid nitrogen
and ground in a coffee grinder. Anthocyanins were extracted from
the ground samples with 3× 150 mL  methanol/formic acid/water
(50/5/45 (v/v/v)). After filtration, the extracts were combined and
concentrated to ∼100 mL on a Büchi rotary evaporator at 30 ◦C. Of
this extract, 15 mL  was loaded on a preconditioned (3 mL  methanol
and 3 mL  water acidified with 0.1% formic acid) SPE cartridge.
The cartridge was  rinsed with 5× 1 mL  acidified water and eluted
with 2× 0.5 mL  methanol/formic acid (95/5 (v/v)). The methanolic
fraction containing the anthocyanins was  filtered through a PDVF
syringe filter (Millipore) prior to HPLC analysis to remove potential
particulate matter (no loss of anthocyanins was observed following
this step).

2.3.  Chromatographic conditions

2.3.1. HPLC–UV scouting gradient conditions
HILIC–UV analyses were performed on an Acquity UPLC sys-

tem equipped with a binary bump, sample manager, column oven
compartment, photodiode array (PDA) detector (500 nL flow cell,
10 mm path length) and controlled by Empower software (Waters).
UV chromatograms were recorded at 500 nm using an acquisition
rate of 10 Hz. Raw UV data was  exported into Origin 8.5 (OriginLab
Corporation, USA) to create the figures.

Five different columns were evaluated during the initial exper-
iments to find the stationary phase that provided the best
separation. These included Develosil Diol (Nomura Chemicals,
250 mm × 4.6 mm i.d., 5 �m particles), Spherisorb NH2 (Waters,
250 mm × 4.6 mm i.d., 5 �m particles), Luna CN (Phenomenex,
250 mm × 4.6 mm i.d., 5 �m particles), Betasil Diol-100 (Thermo
Scientific, 250 mm × 4.6 mm i.d., 5 �m particles), XBridge BEH
Amide (Waters, 150 mm × 4.6 mm i.d., 2.5 �m particles), Kinetex
HILIC (Phenomonex, 150 mm × 2.1 mm i.d., 2.6 �m particles) and
Shodex Asahipak NH2P (Showa Denko, 250 mm × 4.6 mm i.d., 5 �m
particles) columns. The mobile phase composition for these exper-
iments consisted of (A) 5% formic acid in acetonitrile and (B) 5%
formic acid in water. All experiments were performed at a flow rate
of 1 mL/min (with the exception of the Kinetex column, where the
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flow rate was 0.2 mL/min), ambient temperature with an injection
volume of 2 �L. The gradient was as follows: 4–40% B (0–43 min),
40% B isocratic (43–48 min), 4–100% B (48–53 min) before returning
to initial conditions at 60 min. For the amide column the gradient
was adjusted for a 150 mm length column.

Apart for the experiments listed above to evaluate different sta-
tionary phases, all separations were performed on an Acquity UPLC
BEH Amide column (150 mm × 1.0 mm i.d., 1.7 �m particles) with
a UPLC pre-column filter (Waters). Three different mobile phase
compositions were used during initial scouting experiments on
this phase, consisting respectively of (A) 5% formic acid/or 10%
formic acid/or 0.4% trifluoroacetic acid (TFA) in acetonitrile and (B)
5% formic acid/or 10% formic acid/or 0.4% TFA in water. The flow
rate was 0.05 mL/min for all these experiments. The scouting gradi-
ent profile used was as follows: 4–40% B (0–24 min), 40% isocratic
(24–27 min), 40–100% B (27–30 min) before returning to initial con-
ditions at 33 min. The column was re-equilibrated for 15 min  before
the next analysis. Analyses were performed at 25 ◦C as well as 50 ◦C.

2.3.2. Optimised gradient conditions for HPLC–UV and
HPLC–ESI-MS analyses

The  optimised methods employed a binary mobile phase con-
sisting of (A) 0.4% TFA in acetonitrile and (B) 0.4% TFA in water.
The flow rate was 0.025 mL/min and all analyses were performed
at 50 ◦C. Four different gradients were used; for blueberries and
red grape skins: 4–35% B (0–35 min), 35–100% B (35–36 min),
100% B for 5 min; red cabbage: 13–40% B (0–40 min), 40–100% B
(40–41 min), 100% B for 5 min; black beans: 5–30% B (0–27 min),
30–100% B (27–28 min), 100% B for 5 min; red radish: 15–33.5% B
(0–36 min), 33.5–100% B (36–37 min), 100% B for 5 min. The col-
umn was re-equilibrated for 15 min  before each analysis. Injection
of 0.5 �L was performed in a partial loop with needle overfill mode
using acetonitrile/TFA (99.6/0.4, v/v) as the weak needle wash sol-
vent.

LC–MS, LC–MSE and LC–MS/MS analyses were performed on
a Waters Acquity UPLC system equipped with a binary solvent
manager, sample manager and column oven, interfaced through
an electrospray ionisation (ESI) source to a Waters Synapt G2
quadrupole time-of-flight (Q-TOF) mass spectrometer. The mass
spectrometer was operated in positive ionisation mode, with a
capillary voltage of 2.5 kV and a cone voltage of 35 V. The source
and desolvation temperatures were 120 ◦C and 275 ◦C, respectively.
The desolvation gas flow was 650 L/h and the cone gas flow 50 L/h
(both N2). LC–MS, LC–MSE and LC–MS/MS conditions were identi-
cal except that for LC–MSE acquisition a collision energy ramp of
20–60 V was used, whereas for LC–MS/MS a static collision energy
of 30 V was used. Data was acquired from 200 to 2000 amu  and
collected and processed using MassLynx v.4.1 software (Waters).
The instrument was calibrated using sodium formate solution and
leucine enkephalin was  used as lock mass for accurate mass deter-
minations.

2.3.3. Construction of van Deemter curves
Plate height data were acquired on an XBridge BEH Amide

column (50 mm × 4.6 mm,  2.5 �m particles) with a KrudKatcher
pre-column filter (Phenomenex, Torrance, CA, USA) at 50 ◦C on
the HPLC–UV instrument. The mobile phase consisted of (A) 0.4%
TFA in acetonitrile and (B) 0.4% TFA in water in the ratio 97/3
(phase A/phase B). The sample contained 10 mg/L naphthalene as
void-time marker and 50 mg/L malvidin-3-O-glucoside dissolved
in the mobile phase. The flow rates were increased from 0.05 to
2.0 mL/min. 10 different flow rates were used and all measure-
ments were performed in duplicate. UV detection was performed
at 280 and 500 nm,  with an acquisition rate of 10 Hz. To correct
for the system contribution to band broadening, the column was

replaced  with a union and naphthalene was  injected under the
same conditions.

3.  Results and discussion

3.1.  HILIC method optimisation

3.1.1.  Evaluation of stationary phases
HILIC methods previously reported for the separation of proan-

thocyanidins, flavonols and chalcones by our group [25–27] were
used as starting point for the development of a HILIC method for
anthocyanins. Initial HILIC–UV experiments were performed using
mobile phases consisting of 5% formic acid in acetonitrile (sol-
vent A) and 5% formic acid in water (solvent B). The use of highly
acidic mobile phases was  dictated by the unique chromatographic
behaviour of anthocyanins (see further). A range of different sta-
tionary phases was  evaluated, including silica (Kinetex HILIC), diol
(Develosil Diol, Betasil Diol-100), amino (Spherisorb NH2, Shodex
Asahipak NH2P), cyanopropyl (Luna CN) and amide (BEH Amide)
phases. With the exception of the cyanopropyl, amide and diol
phases, all columns showed very poor retention of anthocyanins
(Figure S1).

In  the case of the bare silica column, the lack of retention
is most likely due to the suppression of ion exchange inter-
action involving free silanols under the highly acidic mobile
phase conditions dictated for anthocyanin analysis [31]. For the
amino columns, protonation of stationary phase is responsible
for exclusion of the positively charged flavylium cations (the
same behaviour was observed for aminopropyl (Spherisorb NH2)
and polyamine-functionalised polymeric (Shodex NH2P) phases).
While the cyanopropyl bonded phase showed some retention, the
selectivity was  very poor, with all anthocyanins eluting as a sin-
gle peak. In contrast, the diol phases showed higher retention and
partial separation of anthocyanins under these conditions. Signif-
icant differences were however observed between the two  diol
phases evaluated, with the Develosil phase providing improved
retention and separation. These results are in accordance with pre-
vious reports which highlighted the suitability of this diol phase
for procyanidin analysis [26,27,32] and might be associated with
higher carbon load and the lack of endcapping of the Develosil
phase compared to the Betasil phase. Of all the columns evaluated,
the BEH Amide phase showed the best performance in terms of
both retention and selectivity. The high retention of cationic species
on the amide phase is in accordance with previous reports [29].
On the column used here, retention is likely associated with the
amide functionality and not the ethyl-bridged (BEH) particle, as
much higher retention has previously been demonstrated for basic
compounds on the BEH Amide phase compared to a native BEH
phase [33], also considering that ion exchange is expected to play a
minimal role in retention under the highly acid mobile phase condi-
tions used. It would therefore be interesting to evaluate alternative
amide phases, such as for example the carbamoyl-based TSK-gel
Amide, in future work to determine whether these phases might
provide improved performance for this application.

Since the most promising results were obtained on the BEH
Amide phase, the scouting gradient was  adapted on this column
to ensure elution of anthocyanins in all five samples across the
entire gradient profile (Fig. 2). It is immediately evident that,
with the exception of red radish, anthocyanins in all the other
samples were characterised by very broad peaks. Red radish
is unique amongst the samples investigated in that it contains
pelaragonidin-tri-glycosides varying in their acylation patterns.
Considering that the other acylated anthocyanins show markedly
broader peaks (for example acylated cyanidin-triglycosides in red
cabbage), this behaviour is presumably related to the nature of the
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Fig. 2. LC–UV chromatograms obtained at 500 nm for the HILIC analysis of blueberry, red grape skin, black bean, red cabbage and red radish anthocyanins on an amide
column (150 mm × 1 mm i.d., 1.7 �m particles) using the scouting gradient (Section 2.3.1) and a mobile phase consisting of 5% formic acid in acetonitrile (phase A)/5% formic
acid  in water (phase B) at 25 ◦C. Injection volumes were 0.5 �L for blueberry, 2 �L for red grape skin, red cabbage and black bean and 1 �L for red radish extracts, respectively.
Peak numbers correspond to Table 1.

anthocyanidin moiety. The divergent chromatographic character-
istics of pelaragonidin species are likely linked to differences in
the kinetics of the hydration reaction between flavylium cationic
and carbinol pseudobasic forms of this anthocyanidin. According
to data reported by Leydet et al. [34], the equilibrium constant
for the hydration reaction of pelarogonidin-3-O-glucoside is about
40–60% lower than for the other five anthocyanins (due to a

faster  “reverse” rate constant for this reaction in the case of
pelargonidin). Due to the smaller percentage of pseudobasic species
of pelargonidin derivatives present at a given pH, the effect of
the hydration reaction on chromatographic efficiency is there-
fore also expected to be reduced. This observation is consistent
with less peak broadening evident for pelaragonidin species in red
radish.
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The higher retention evident for red radish and cabbage antho-
cyanins compared to the other samples is due to the presence of di-,
tri- and tetra-glycosylated species of cyanidin and pelarogonidin in
the former two samples (see further).

In order to develop a generic HILIC method suitable for the
analysis of diverse natural anthocyanins, further optimisation of
especially the mobile phase composition was required to improve
the chromatographic performance, as discussed briefly in the fol-
lowing sections.

3.1.2.  Optimisation of mobile phase composition
The prevalent mobile phase pH has a profound effect on the

solution chemistry (and colour properties) of anthocyanins [7,35],
and should therefore be considered in HPLC method development.
Extensive research by Brouillard and co-workers [36–38] as well
as other researchers has demonstrated that anthocyanins exist in
solution as mixtures of different species: the flavylium cation (AH+),
quinoidal base (A), carbinol pseudobase (B) and chalcone (C) forms
(Fig. 3). The flavylium cationic species, which is responsible for vis-
ible absorption at ∼520 nm,  and therefore the red colour of most
anthocyanins, predominates at low pH (below 3) [17]. With an
increase in pH, thermodynamic and kinetic competition between
the hydration of the flavylium cation and proton transfer involv-
ing the acidic hydroxyl group occurs. Hydration of the flavylium
cationic species leads to formation of a carbinol pseudo-base, which
can undergo further ring opening to yield the yellow chalcone.

The  chromatographic implications of these secondary reactions
have been studied by de Villiers et al. [17,18]. Highly acidic mobile
phases are essential to ensure prevalence of the flavylium cationic
species and improved chromatographic performances, since inter-
species conversions that occur at higher pH severely compromise
efficiency. Further improvements may  be obtained by operating
at elevated temperature and at the optimal mobile phase linear
velocity [17,18]. Previous work on the topic was however focused
exclusively on RP-LC separation; therefore, the effect of mobile
phase pH in HILIC was also evaluated here.

Under the chromatographic conditions used for the scouting
analysis (Fig. 2), i.e. acetonitrile/water containing 5% formic acid,
the pH at the start of the gradient was measured as 0.54. This value
was obtained using a standard pH electrode calibrated in aque-
ous reference solutions, denoted w

s pH. While this value would be
sufficiently low (in an aqueous environment) to ensure that antho-
cyanins are virtually exclusively present in the flavylium cationic
form, it should be considered that under HILIC conditions, i.e. where
a high percentage of organic modifier is used, the effective pH, s

spH,
is much higher [39]. According to the conversion protocol reported
by Gagliardi et al. [39], the effective pH of 5% formic acid in 96%
acetonitrile would be ∼2.20. This value is indeed in the region
where a significant portion of anthocyanins will be present in the
carbinol pseudobase form, and therefore where secondary equilib-
ria are expected to affect chromatographic performance [17]. In
reality the situation is probably much more complex, since the pri-
marily aqueous environment close to the stationary phase would
effectively have a lower pH than the bulk of the mobile phase. This
is primarily due to the higher activity coefficients of protons in the
aqueous environment, and may  be enhanced by potential parti-
tioning of the acidic component of the mobile phase in the aqueous
layer surrounding the stationary phase. It is therefore likely that
an effective pH gradient is formed between the layer of solvent
associated with the stationary phase and the bulk mobile phase,
which will affect anthocyanin equilibria. To study the effect of these
phenomena is exceptionally hard. Nevertheless, the fact that the
effective pH in the bulk mobile phase is higher than in predom-
inantly aqueous mobile phases containing the same acid content
remains valid, and this is expected to affect the chromatographic
behaviour of anthocyanins.

To verify this hypothesis, and confirm that secondary equilib-
ria are responsible for the broad peaks observed in Fig. 2, the acid
content of the mobile phase was increased to 10% formic acid, keep-
ing all other conditions identical. The w

s pH and s
spH values for this

mobile phase under initial HILIC conditions are −0.74 and ∼0.92,
respectively. A comparison between 5% and 10% formic acid mobile
phases (refer to Figure S2) indeed shows improved peak shapes for
the more acidic mobile phase, especially in the case of black bean
and red cabbage anthocyanins, thereby confirming that pH plays
an important role in the chromatographic efficiency in HILIC. In
addition, retention for virtually all analytes decreased significantly
with an increase in formic acid content, as expected for a more polar
mobile phase.

The  use of trifluoroacetic acid (TFA) as acidic mobile phase com-
ponent was  also investigated, as TFA is known to impart unique
selectivity, especially in the case of anthocyanins, where ion-
pairing plays a role in their RP-LC separation [40]. The scouting
gradient was therefore performed using 0.4% (v/v) TFA instead of
formic acid. w

s pH and s
spH values for this mobile phase under ini-

tial HILIC conditions were −0.11 and ∼1.55, respectively, therefore
slightly higher than for a 10% formic acid mobile phase. Despite
this, however, anthocyanin peak shapes for all samples improved
dramatically with the TFA phases. An increase in retention for all
anthocyanins may  be largely ascribed to the lower polarity of the
mobile phase containing 0.4% TFA compared to 10% formic acid.
Counteracting this effect, ion-pairing of anthocyanins with TFA is
likely to occur, which would decrease retention. The effect of ion-
pairing is clearly overshadowed by the differences in mobile phase
polarity. However, the ion-pair reaction with the flavylium cation
is expected to compete with the hydration reaction, and this pos-
sibly contributes to a reduction in band broadening due to the
latter equilibrium. As example, Fig. 4a–c illustrates the effect of
mobile phase composition and pH on the HILIC analysis of black
bean anthocyanins. A complete overview of the analysis of each of
the samples using each of the mobile phase compositions discussed
above is presented in Figure S2.

3.1.3. Effect of temperature
Increasing  the temperature has been shown to be an effective

means of improving the chromatographic performance for the sep-
aration of anthocyanins [17,18]. This follows from the fact that
higher temperatures result in an increase in the rate constant for the
hydration reaction, thereby leading to a reduction in band broad-
ening due to secondary equilibria [17]. The effect of increasing the
analysis temperature to 50 ◦C was  therefore evaluated using the
0.4% TFA mobile phase. It should be noted that, although antho-
cyanins are susceptible to thermal degradation, it has been shown
that thermal degradation does not pose a risk at this tempera-
ture for analysis times less than 1 h [17]. Comparison of Fig. 4c
and d clearly confirms that a noteworthy improvement in peak
shape and resolution is obtained at the higher temperature for
black bean anthocyanins. Figure S3 presents an overview of the
effect of analysis temperature for all investigated samples. A sim-
ilar improvement with increasing temperature was  observed for
the formic acid mobile phases (results not shown), as previously
also shown for RP-LC separations [17,18].

3.1.4. Optimisation of mobile phase flow rate
Previous work has shown that anthocyanins, when analysed

by RP-LC, exhibit exceptionally low optimal linear velocities and
elevated plate heights. This implies drastic losses in efficiency
and/or speed under conventional RP-LC conditions. In general,
HILIC shows much lower chromatographic efficiency, as well as
lower optimal flow rates, compared to RP-LC [41]. In order to get
an idea of the optimal flow rate for the HILIC analysis of antho-
cyanins, plate height curves were constructed using the optimal
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Fig. 3. The pH-dependant equilibria between the different chemical forms of anthocyanins, demonstrated for malvidin-3-O-glucoside.

conditions ascertained previously: a mobile phase containing 0.4%
TFA in acetonitrile and water at 50 ◦C. Malvidin-3-O-glucoside
was  used as representative compound in these experiments and
a 50 mm × 4.6 mm,  2.5 �m dp Amide column was used to minimise
the effect of extra-column band broadening.

The plate height curve obtained on this column is presented in
Fig. 5. The most striking feature of these data is the exceptionally
low optimal linear velocity: the value of ∼0.1 mm/s  corresponds
to an optimal flow rate of ∼0.07 mL/min on a 4.6 mm i.d. column
(∼4 �L/min on a 1 mm i.d. column). Furthermore, the minimum
plate height value of 20.15 �m corresponds to about 8dp, which is
much higher than the norm of ∼2dp for RP-LC, and even compared
to other HILIC separations [41]. Analogously to RP-LC [17], these
results demonstrate a residual effect of secondary equilibria even
at 50 ◦C, which might be further exacerbated by mixed-mode HILIC
retention mechanisms [41].

For the 150 mm × 1.0 mm,  i.d., 1.7 �m dp Amide column used
for gradient analysis in this study, the optimal flow rate would be
slightly higher (∼6 �L/min) due to the smaller particle size. How-
ever, due to practical considerations such as pumping accuracy
and analysis times, gradient analyses were performed at 25 �L/min
on this column. These conditions were found to provide adequate
results on a low-dispersion instrument.

3.2. Application of HILIC–ESI-MS(/MS) to the analysis of
anthocyanins in natural products

Based on the optimal HILIC experimental conditions derived
for anthocyanin analysis (Section 3.1), gradient profiles were fine-
tuned for the analysis of each of the samples under investigation.
These optimised methods were coupled to high resolution ESI-Q-
TOF MS  detection to identify anthocyanins in each of the samples.

The  general identification strategy based on MS  data will be out-
lined below, followed by a more detailed discussion on the HILIC
separation of anthocyanins in each of the samples investigated.
Note that no quantification was  performed in the current study
due to a lack of authentic standards. However, the sensitivity of the
developed methods was sufficient to allow detection of trace-level
(<1 mg/kg) [42] anthocyanins in for example grape skin extracts.

3.2.1. HILIC–ESI-MS(/MS) identification of anthocyanins
ESI-MS detection was  performed in positive ionisation mode,

since anthocyanins are predominantly present as flavylium cations
under the acidic mobile phase conditions, facilitating the produc-
tion of molecular cations [M]+ in the highest yields. Compounds
were tentatively identified based on accurate mass measurements
in combination with molecular formulae as well as by compari-
son of UV-, and MS  spectra and primary fragmentation patterns
compared to literature reports [13,43–46]. Retention characteris-
tics relative to RP-LC were also taken into account (refer to Section
3.3 further).

The Q-TOF instrument was  programmed to acquire data in scan
mode for molecular ion information, while at the same time acquir-
ing MSE data, where a ramp of collision cell energy is used to obtain
fragmentation information for any ions present in the collision cell.
Targeted MS/MS  experiments were also performed for selected co-
eluting compounds in black beans and red cabbage. Examples of
typical MSE and MS/MS  mass spectra for different classes of antho-
cyanins are presented in Fig. 6a–f. It should be noted that while
mobile phases containing relatively high quantities of TFA such as
used here are often considered incompatible with MS  detection due
to potential ion suppression and source contamination, acceptable
results were obtained using the developed HILIC methods. Some ion
suppression compared to mobile phases containing formic acid was
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Fig. 4. LC–UV chromatograms obtained at 500 nm for the HILIC analysis of black bean anthocyanins using the scouting gradient (Section 2.3.1) with the following mobile phases
and  temperatures (a) 5% formic acid modified mobile phase (s

spH = 2.20) at 25 ◦C, (b) 10% formic acid modified mobile phase (s
spH = 0.92) at 25 ◦C, (c) 0.4% trifluoroacetic acid

modified mobile phase (s
spH = 1.55) at 25 ◦C and (d) 0.4% trifluoroacetic acid modified mobile phase at 50 ◦C. Injection volumes of 0.5 �L were used. For further experimental

detail, refer to Section 2.3.1. Peak numbers correspond to Table 1.
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Fig. 5. Experimental van Deemter curve obtained for malvidin-3-O-glucoside on an
XBridge BEH Amide column (50 mm × 4.6 mm i.d., 2.5 �m dp). Mobile phase com-
position: 97% phase A/3% phase B (acetonitrile/water, both containing 0.4% TFA),
column temperature 50 ◦C.

observed, yet sufficient sensitivity was  obtained to allow accurate
detection of even trace-level anthocyanins using MS  and MS/MS. In
practice cleaning of the sample cone was  required as well as thor-
ough rinsing to clean the system from TFA for subsequent analyses.

The common glycosylation sites for anthocyanins are the 3- and
5-hydroxyl positions on the C and A rings, respectively (Fig. 1).
In addition, various acylated derivatives, as well as several di-
and triglucosides of the 6 main anthocyanindin bases (delphinidin,
cyanidin, petunidin, peonidin, pelargonidin and malvidin) were
detected. The anthocyanidin bases were detected as base peaks
in the MSE mass spectra, following the loss of for example m/z
162 or 132 (monoglucosides), m/z 204 (acetyl-glucosides), m/z
308 (coumaroyl-glucoside) and m/z 324 (diglucosides or caffeoyl-
glucosides), etc. [12,14]. As is common for acylated anthocyanins,
fragmentation therefore involves cleavage of the intact acyl-
glycosidic group [15].

Furthermore,  under MSE conditions, some fragmentation of the
anthocyanidin base was  also observed. Significantly, under high
collision energy conditions, this fragmentation pattern is charac-
teristic and allows the identification of the relevant anthocyanidin
[12,14]. For example, in the case of methoxylated anthocyani-
dins such as peonidin (Fig. 6a–c), losses of CH3

•, CHO•, CO and/or
CH3OH are dominant, and this fragmentation pattern is largely
independent of the glycosylation/acylation substitution of the base
[14,47].
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Fig. 6. MSE spectra of (a) peonidin-3-glucoside, (b) peonidin-3-acetylglucoside, (c) peonidin-3-(p-coumaroyl)glucoside, and MS/MS  spectra of (d) cyanidin-3-diglucoside-5-
glucoside, (e) cyanidin-3-(sinapoyl)diglucoside-5-glucoside, (f) cyanidin-3-(sinapoyl)(feruloyl)triglucoside-5-glucoside. The peonidin derivatives were detected in red grape
skins  and the cyanidin derivatives in red cabbage.

MSE as well as MS/MS  spectra are also very informative for
the anthocyanidin-di-O-glycosides and their acylated derivatives
such as found in red cabbage and red radish. For example, the MSE

spectrum obtained for cyanidin-3-glucoside-5-diglucoside (Fig. 6d)
shows three major fragment ions at m/z  449, 611 and 287, respec-
tively. The ions at m/z 611 and m/z  449 correspond to the loss of
glucoside (−162 m/z) and di-glucoside (−324 m/z) groups, respec-
tively, while the ion at m/z  287 identifies the aglycone (cyanidin).
For these molecules, cleavage of the inter-glycosidic bond is not
common (with the exception of anthocyanidin-rutinosides [15]),
and therefore di-hexosides (or caffeoyl-glucosides) are readily
identified by the loss of m/z  324. For acylated anthocyanidin-di-
O-glucosides, similar fragmentation behaviour was observed, with
the acyl-(di)glycoside moiety being cleaved intact during fragmen-
tation. For example, cyanidin-3-(sinapoyl)diglucoside-5-glucoside
(6) displayed fragment ions at m/z  817, 449 and 287 (Fig. 6e).
These correspond to the loss of glucose (162), sinapoyl-glucose
(162 + 206) and loss of both groups to result in the aglycone cyani-
din ion. Fig. 6f shows the fragmentation patterns of highly acylated

derivative  of cyanidin-3-diglucoside-5-glucoside. Fragment ions at
m/z 1155, 449 and 287 correspond to loss of 162 (glucose), 706
(324 + 382) and 868 (i.e. 706 + 162) m/z. The loss of 382 indicates the
presence of more than one acylated group, and this compounds was
therefore identified as cyanidin-3-(sinapoyl)(feruloyl)triglucoside-
5-glucoside (8), previously identified in red cabbage [46,48].

The  remainder of the anthocyanins was  tentatively identified
using the same criteria as outlined above, details being provided in
Table 1. Note that, in the absence of available standards, the identi-
ties of the specific hexoside or pentosides could not be established
based on MS,  MSE and MS/MS  data alone. In addition, distinction
between –glucoside and –galactoside isomers was not possible,
since these compounds co-eluted in HILIC (see further). The same
applies to the position and sequence of glycosylation (i.e. 3- or 5-
glycosides, especially in the case of di- and tri-glycosides) and to
the acylation position (acylation at 3′- and 6′- positions are most
commonly encountered). For unambiguous structural elucidation,
complementary techniques such as nuclear magnetic resonance
(NMR) of LC-NMR would be required [43]. Tentative compound
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Table 1
Mass  spectral data obtained for the HILIC–ESI-MS(/MS) analysis of anthocyanins detected in blueberries, red grape skins, black beans, red cabbage and red radish under optimised gradient conditions for each sample (refer to
Section  2.3.2 for details).

Compound
numbera

tR (min) Identity Molecular
formula [M]+

Experimental
mass (m/z)

Error (ppm) MSE fragments MS/MS  fragments References

Black beans
1  18.16 Malvidin-3-glucoside C23H25O12 493.1343 −0.6 331.08*b, 315.05, 287.06,

242.06
331.08*b, 315.05, 287.06, 242.06,
213.06

[45]

2  18.76 Peonidin-3-glucoside C22H23O11 463.1235 −1.1 301.07*b 301.07*b, 286.05, 258.05 [45]
3  22.03 Petunidin-3-glucoside C22H23O12 479.1189 −0.2 317.07*b, 302.04 317.07*b, 302.04, 274.05, 245.05,

217.05, 203.04
[45]

4 22.47 Cyanidin-3-glucoside C21H21O11 449.1085 0.2 287.06*b, 213.05 287.06*b, 213.06 [45]
5  25.38 Delphinidin-3-glucoside C21H21O12 465.1035 0.4 303.05*b n.p.c [45]
6  27.13 Delphinidin-3,5-diglucoside C27H31O17 627.1550 −1.8 465.10, 303.05*b n.p.c [45]

Blueberries
1  12.42 Malvidin-3-arabinoside C22H23O11 463.1240 0.0 331.08*b, 315.05, 287.06,

242.06
n.p.c [45,46]

2  13.32 Peonidin-3-arabinoside C21H21O10 465.1140 1.2 301.07*b n.p.c [45,46]
3  18.59 Malvidin-3-glucoside C23H25O12 493.1346 0.0 331.08*b, 315.05, 242.06 n.p.c [45–47]
4  19.12 Peonidin-3-glucoside C22H23O11 463.1240 0.0 301.07*b, 286.05, 258.05,

149.02
n.p.c [45–47]

5  19.50 Petunidin-3-arabinoside C21H21O11 449.1091 1.6 317.07*b, 287.06 n.p.c [45–47]
6  20.24 Cyanidin-3-arabinoside C20H19O10 419.0979 0.2 287.06*b, 213.06, 149.03 n.p.c [45,46]
7  23.28 Petunidin-3-glucoside C22H23O12 479.1197 1.5 317.07*b, 302.04, 274.05,

149.02
n.p.c [45–47]

8  23.49 Cyanidin-3-glucoside C21H21O11 449.1080 −0.9 287.06*b, 213.05, 149.03 n.p.c [45–47]
9  23.95 Delphinidin-3-arabinoside C20H19O11 435.0925 −0.5 303.05*b n.p.c [45,46]
10  26.75 Delphinidin-3-glucoside C21H21O12 465.1040 1.5 303.05*b, 149.03 n.p.c [45–47]

Red  grape skins
1  7.07 Acetaldehyde derivative of

malvidin-3-actylglucoside (Acetylvitisin B)
C27H27O13 559.1452 5.5 355.07*b n.p.c [13,53–56]

2  9.12 Acetaldehyde derivative of
malvidin-3-(p-coumaroyl) glucoside
(Coumaroylvitisin B)

C34H31O14 663.1714 3.8 355.08*b n.p.c [13,53–56]

3  10.69 Acetaldehyde derivative of
malvidin-3-glucoside (Vitisin B)

C25H25O12 517.1373 5.2 355.09*b n.p.c [12–14,53–56]

4  12.74 Malvidin-3-acetylglucoside C25H27O13 535.1453 0.2 331.08*b, 315.05, 242.06 n.p.c [41,45]
5  13.38 Peonidin-3-acetylglucoside C24H25O12 505.1346 0.0 301.07*b, 286.05 n.p.c [45,46]
6  15.24 Pyruvic acid derivative of

malvidin-3-acetylglucoside (Acetylvitisin A)
C28H27O15 603.1350 0.5 399.07*b n.p.c [13,51–54]

7  17.00 Malvidin-3-(p-coumaroyl) glucoside C32H31O14 639.1717 0.5 331.08*b n.p.c [42,45]
8  17.38 Peonidin-3-(p-coumaroyl) glucoside C31H29O13 609.1613 0.8 301.07*b, 286.05, 258.05,

147.02
n.p.c [42,45]

9  18.19 Pyruvic acid derivative of
malvidin-3-(p-coumaroyl) glucoside
(Coumaroylvitisin A)

C35H31O16 707.1609 −0.4 399.07*b n.p.c [12,13,53–56]

10  18.89 Petunidin-3-acetylglucoside C24H25O13 521.1296 0.2 317.07*b, 302.04 n.p.c [42,46]
11  19.21 Malvidin-3-glucoside C23H25O12 493.1354 1.6 331.08*b, 315.05, 287.06,

149.03
n.p.c [42,45,47]

12  19.57 Malvidin-3-(caffeoyl) glucoside C32H31O15 655.1663 0.0 331.08*b, 242.06, 147.05 n.p.c [42,46]
13  19.77 Peonidin-3-glucoside C22H23O11 463.1239 −0.2 301.07*b, 286.05, 258.05,

201.06
n.p.c [42,45,46]

14  19.92 Peonidin-3-(caffeoyl) glucoside C31H29O14 625.1551 −1.0 301.07*b, 149.02 n.p.c [42,46]
15  20.56 Malvidin-3-glucoside-pyruvic acid (Vitisin A) C26H25O14 561.1244 −4.1 399.08*b n.p.c [13,53–56]
16  20.73 Petunidin-3-(p-coumaroyl) glucoside C31H29O14 625.1567 1.6 317.07*b n.p.c [42,46]

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



136
C.M

.
 W

illem
se

 et
 al.

 /
 J.

 Chrom
atogr.

 A
 1319 (2013) 127– 140

Table 1 (Continued)

Compound
numbera

tR (min) Identity Molecular
formula [M]+

Experimental
mass (m/z)

Error (ppm) MSE fragments MS/MS  fragments References

17 21.17 Cyanidin-3-(p-coumaroyl) glucoside C30H27O13 595.1458 1.0 287.06*b, 149.02 n.p.c [42,46]
18  22.50 Petunidin-3-(caffeoyl) glucoside C31H29O15 641.1524 2.8 317.07*b n.p.c [42,46]
19  22.82 Delphinidin-3-(p-coumaroyl)glucoside C30H27O14 611.1413 2.0 303.04*b n.p.c [42,46]
20  22.87 Delphinidin-3-acetylglucoside C23H23O13 507.1139 0.0 303.05*b n.p.c [42,46]
21  23.46 Petunidin-3-glucoside C22H23O12 479.1191 0.2 317.07*b n.p.c [42,45–47]
22  24.00 Cyanidin-3-glucoside C21H21O11 449.1083 −0.2 287.06*b n.p.c [42,45–47]
23  27.23 Delphinidin-3-glucoside C21H21O12 465.1046 2.8 303.05*b n.p.c [42,45–47]

Red  cabbage
1  16.24 Cyanidin-3-(sinapoyl) glucoside-5-glucoside C38H41O20 817.2172 −2.3 449.75, 287.06*b 919, 449, 287*b, 207, 158, 147 [45,58]
2  17.17 Cyanidin-3-(sinapoyl)

(sinapoyl)diglucoside-5-glucoside
C55H61O29 1185.3298 0.6 1023.28, 449.10, 287.06*b 1023.29, 449.11, 287.06*b, 207.07,

177.06
[45,58]

3  17.32 Cyanidin-3-(sinapoyl)
(feruloyl)diglucoside-5-glucoside

C54H59O28 1155.3190 −0.3 993.27, 899.45, 449.11,
287.06*b

993.27, 449.11, 287.06*b,  207.07,
177.06

[45,58]

4  17.87 Cyanidin-3-(feruloyl)
(feruloyl)diglucoside-5-glucoside

C53H57O27 1125.3094 0.6 963.26, 449.11, 287.06*b 963.27, 449.11, 287.06*b,  207.07,
177.06

[45,58]

5  22.86 Cyanidin-3-(feruloyl) diglucoside-5-glucoside C43H49O24 949.2615 0.1 787.20, 449.11, 287.06*b 787.21, 449.11, 287.06*b,  177.06,
145.03

[45,58]

6  22.87 Cyanidin-3-(sinapoyl) diglucoside-5-glucoside C44H51O25 979.2717 −0.2 449.11, 287.06*b 817.22, 449.11, 287.06*b,  207.07,
175.04

[45,58]

7  23.29 Cyanidin-3-(p-coumaroyl)
diglucoside-5-glucoside

C42H47O23 919.2502 −0.7 757.20, 449.11, 287.06*b 757.20, 449.11, 287.06*b, 147.05 [45,58]

8  25.20 Cyanidin-3-(sinapoyl)
(feruloyl)triglucoside-5-glucoside

C60H69O33 1317.3732 0.8 1155.33, 449.11, 287.06*b 1155.32, 449.11, 287.06*b, 177.05 [58]

9  25.27 Cyanidin-3-(sinapoyl)
(sinapoyl)triglucoside-5-glucoside

C61H71O34 1347.3806 −1.6 1185.32, 449.11, 287.06*b 1185.36, 449.11, 287.06*b, 177.05 [58]

10  25.54 Cyanidin-3-(sinapoyl) (p-coumaroyl)
triglucoside-5-glucoside

C59H67O32 1287.3625 0.8 1125.28, 449.11, 287.06*b 1125.30, 449.11, 287.06*b, 147.05 [58]

11  25.69 Cyanidin-3-(caffeoyl) diglucoside-5-glucoside C42H47O24 935.2427 −3.2 773.19, 449.11, 287.06*b n.p.c [45,58]
12  27.91 Cyanidin-3-(feruloyl) triglucoside-5-glucoside C49H59O29 1111.3146 0.4 949.16, 449.11, 287.06*b 947.24, 449.11, 287.06*b,  116.05 [45,58]
13  28.17 Cyanidin-3-(sinapoyl) triglucoside-5-glucoside C50H61O30 1141.3247 −0.1 979.26, 449.11, 287.06*b 979.26, 449.11, 287.06*b,  207.07 [45,58]
14  28.99 Cyanidin-3-diglucoside-5-glucoside C33H41O21 773.2141 0.1 611.16, 449.11, 287.06*b n.p.c [45,58]
15  31.23 Cyanidin-3-(feruloyl) triglucoside-5-glucoside C49H59O29 1111.3127 −1.3 949.25, 449.11, 287.06*b 949.25, 449.11, 287.06*b,  177.05 [45,58]
16  31.29 Cyanidin-3-(sinapoyl) triglucoside-5-glucoside C50H61O30 1141.3220 −0.4 979.27, 449.11, 287.06*b 979.28, 449.11, 287.06*b,  207.06,

177.05
[45,58]

17  31.71 Cyanidin-3-(p-coumaroyl)
triglucoside-5-glucoside

C48H57O28 1081.3055 1.8 919.25, 449.11, 287.06*b n.p.c

Red radish
1  9.31 Cyanidin-3-(glycosyl) rhamnoside C27H31O15 595.1678 2.5 433.11, 287.06*b n.p.c [45]
2  12.83 Pelaragonin-3-(feruloyl)

(feruloyl)diglucoside-5-(malonoyl)glucoside
C56H59O29 1195.3137 −0.4 519.11, 271.06*b,  177.05,

149.02
n.p.c [45]

3  13.11 Pelaragonin-3-(p-coumaroyl)
(feruloyl)diglucoside-5-(malonoyl)glucoside

C55H57O28 1165.3037 0.1 917.23, 519.11, 271.06*b n.p.c [45]

4  15.27 Pelaragonin-3-glucoside-5-glucoside C27H31O15 595.1687 4.0 271.06*b n.p.c [45]
5  15.25 Pelaragonin-3-(feruloyl)

diglucoside-5-(malonoyl) glucoside
C46H51O26 1019.2676 0.7 771.22, 519.12, 271.06*b 771.22, 519.12, 271.06*b,  177.05 [45]

6  15.64 Pelaragonin-3-(p-coumaroyl)diglucoside-5-
(malonoyl)glucoside

C45H49O25 989.2566 0.3 741.21, 519.12, 271.06*b 741.21, 519.12, 271.06*b,  147.05 [45]

7  16.78 Pelaragonin-3-(feruloyl)
diglucoside-5-(malonoyl) glucoside

C46H51O26 1019.2663 −0.6 519.11, 271.06*b 519.11, 271.06*b, 147.05 [45]

8  16.81 Cyanidin-3-(diglucosyl)rhamnoside C33H41O20 757.2194 0.4 287.06*b 287.06*b,  203.03 [45]
9  17.04 Pelaragonin-3-(p-coumaroyl)diglucoside-5-

(malonoyl)glucoside
C45H49O25 989.2567 0.4 741.19, 519.11, 271.06*b 741.19, 519.11, 271.06*b,  201.06 [45]

10  17.45 Pelaragonin-3-(feruloyl)
diglucoside-5-(malonoyl) glucoside

C46H51O26 1019.2662 −0.7 771.21, 519.11, 271.06*b,
149.02

771.21, 519.11, 271.06*b,  147.05 [45]
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identification in the current work was  therefore based on previous
literature reports for the relevant samples [46,48–52].

3.2.2. HILIC analysis of black bean, blueberry and red grape skin
anthocyanins

HILIC–UV  (500 nm)  chromatograms obtained using the opti-
mised (Section 2.3.2) gradient conditions for black bean, blueberry
and red grape skin anthocyanins are presented in Fig. 7,
with compound numbers corresponding to Table 1. Mainly
anthocyanidin-3-O-monoglycosides were found in blueberries and
black beans, while red grape skins also contained several acyl-
ated derivatives. A total of 35 anthocyanins were identified in
these samples, most of which have previously been reported in
the literature [43–46]. Identification of compounds was relatively
straightforward based on accurate mass data as well as fragmen-
tation information (Table 1). Due to the retention mechanism in
HILIC, anthocyanidin-galactosides could not be distinguished from
their –glucoside isomers, although the former have previously been
identified in black beans and blueberries [44–46].

In red grape skins, it is interesting to note the presence of
several derived anthocyanin species, including the pyruvic acid
(Vitisin A (15)) [53] and acetaldehyde (Vitisin B (3)) [54] derivatives
of malvidin-3-O-glucoside, as well as malvidin-3-acetylglucoside
(acetylvitisin  A (6) and acetylvitisin B (1)) and malvidin-3-p-
coumaroylglucoside (coumaroylvitisin A (9) and coumaroylvitisin
B (2)) [13,53–56]. These compounds are formed by reaction
between the relevant anthocyanin and pyruvic acid and acetalde-
hyde, respectively, and are mainly thought to be produced during
fermentation and wine ageing [13,53,54]. Our results confirm a pre-
vious report of Vitisin A in grape skin extracts [55], although to the
best of our knowledge, this is the first time that acetylvitisin A,
coumaroylvitisin A and the B-type Vitisins are detected in grape
skin. These compounds displayed lower retention than the ‘native’
anthocyanins in HILIC due to the reduced polarity of the derived
anthocyanidin base.

3.2.3.  HILIC analysis of red cabbage and red radish anthocyanins
Chromatograms recorded at 500 nm for the HILIC analysis of

red cabbage and red radish anthocyanins using optimised gradient
conditions (Section 2.3.2) are shown in Fig. 8 (compound numbers
correspond to Table 1).

A  total of 17 anthocyanins were identified in red cabbage
(Fig. 8a, Table 1). Only cyanidin derivatives were found in this veg-
etable, with variation stemming from different acylation patterns
of cyanidin-3-di/triglucoside-5-glucoside [46,52,57]. The general
elution pattern was  therefore based on the number of glycosydic
groups and the type and number of acylated groups.

Several compounds with identical molecular weights were
detected in red cabbage, including cyanidin-3-(sinapoyl)
triglucoside-5-glucoside (13 and 16) and cyanidin-3-(feruloyl)
triglucoside-5-glucoside (12 and 15). Although it is not possi-
ble to unambiguously identify these compounds based on the
available MS  data, their structures most likely differ in terms of
the position of acylation of the –sinapoyl/-feruloyl groups. Other
acylated cyanidin-3-triglucoside-5-glucoside derivatives detected
include cyanidin-3-(sinapoyl)(feruloyl)triglucoside-5-glucoside
(8), cyanidin-3-(sinapoyl)(sinapoyl)triglucoside-5-glucoside (9)
and cyanidin-3-(sinapoyl)(p-coumaroyl)triglucoside-5-glucoside
(10)  [58]. These compounds generally showed lower retention
in HILIC than the corresponding non-acylated cyanidin-3-
diglucoside-5-glucoside (14).

Compound 17 has have similar MS  characteristics, both in
terms of (nominal) molecular weight and fragmentation pattern, to
cyanidin-3-(caffeoyl)(p-coumaroyl)diglucoside-5-glucoside previ-
ously identified in red cabbage [46,58]. However, accurate mass
data clearly indicated that the molecular weight of compound 17
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Fig. 7. LC–MS–UV chromatograms obtained at 500 nm for the HILIC analysis of (a) black bean, (b) blueberry and (c) red grape skin anthocyanins at 50 ◦C on an amide
column (150 mm × 1 mm id, 1.7 �m dp) using as mobile phase 0.4% TFA in acetonitrile (solvent A)/0.4% TFA in water (solvent B). For gradient details and further experimental
conditions, refer to Section 2.3.2. Peak numbers correspond to Table 1. Coloured lines indicate the retention time window in which specific anthocyanin classes elute. Notation;
AGlc:  anthocyanidin-glycosides, AAcyGlc: anthocyanidin-acyl-glycosides.

did not fit the structure of the latter compound, but rather that
of cyanidin-3-(p-coumaroyl)triglucoside-5-glucoside. Distinction
between these structures would not be possible based on low-
resolution MS  or MS/MS  data alone, even considering the relative
retention times, which clearly highlights the benefits of high reso-
lution MS  (HR-MS) instruments for anthocyanin analysis.

Nineteen anthocyanins were identified in red radish (Fig. 8b,
Table 1), mainly comprising highly acylated anthocyanins
derivatives of pelaragonidin (the exceptions being cyanidin-3-
(glycosyl)rhamnoside (1) and cyanidin-3-(diglycosyl)rhamnoside
(8),  the latter reported here in red radish for the first time). The
principal anthocyanins in this sample are acylated derivatives
of pelaragonin-3-diglucoside-5-glucoside, with the major acyl-
substituents being a combination of –p-coumaroyl, –feruloyl, and
–malonoyl groups [59].

As  was the case for red cabbage, several isomeric structures
were detected, including pelaragonin-3-(feruloyl)diglucoside-
5-(malonoyl)glucoside (5, 7 and 10) and pelaragonin-3-(p-
coumaroyl)diglucoside-5-(malonoyl)glucoside (6, 9 and 11). All
isomers displayed identical fragmentation patterns, and could
therefore not be unambiguously identified based solely on MS  data,
although they most likely differ in terms of their respective acyla-
tion patterns.

Pelaragonidin-3-(feruloyl)triglucoside-5-(malonoyl)glucoside
(17) and pelaragonin-3-(p-coumaroyl) triglucoside-5-(malo-
noyl)glucoside (19) are to the best of our knowledge reported
here for the first time in red radish. Similar to red cabbage,
compounds with similar MS  properties were previously
assigned to the 3-(feruloyl)(caffeoyl)diglucoside and 3-(p-
coumaroyl)(caffeoyl)diglucoside derivatives [46]. While low
resolution MS  cannot distinguish between –(caffeoyl)diglucoside
and  triglucoside substitution, HR-MS data confirm the structure
containing the latter. All other compounds identified in red radish
(Table 1) were in agreement with previously reported literature
[35].

3.3. Observations on the retention behaviour of anthocyanins in
HILIC

From the data presented in Figs. 7 and 8 and Table 1, some
interesting observations may  be made regarding the retention
behaviour of anthocyanins in HILIC. First, for the same glycosyl-
ation and acylation pattern, compounds are separated according
to the polarity of the anthocyanidin base; the elution order is
therefore malvidin (with most methoxy-substituents), followed by
peonidin, petunidin, cyanidin and lastly delphinidin. Pelaragonidin
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derivatives eluted earlier than the corresponding cyanidin deriva-
tives (compare compounds 14 and 18 in red cabbage and radish,
respectively), although their retention relative to the other antho-
cyanidins is not clear due to the lack of compounds containing
identical glycosylation/acylation substituents.

In terms of the effect of glycosylation on HILIC retention, ara-
binosides eluted before the hexosides for the same anthocyanidin
base and degree of acylation (which is the opposite elution order
compared to RP-LC), while glucosides and galactosides were not
resolved in HILIC. In contrast, galactosides are separated from glu-
cosides in RP-LC, with the latter eluting later and followed by the
arabinosides [44].

A  higher degree of glycosylation results in higher HILIC reten-
tion [27]. The elution order of anthocyanidin-mono-glycosides, as
observed in blueberries and black beans, is therefore: malvidin-
3-arabinoside ≤ malvidin-3-glucoside ≤ peonidin-3-arabinoside
≤  peonidin-3-glucoside ≤ petunidin-3-arabinoside ≤ petunidin-
3-glucoside ≤ cyanidin-3-arabinoside ≤ cyanidin-3-glucoside ≤
cyanidin-3-glucoside ≤ delphinidin-3-arabinoside ≤ delphinidin-
3-glucoside.

Acylation of anthocyanins generally decreases HILIC reten-
tion, the exception being caffeoyl-derivatives, which show
higher retention than the corresponding non-acylated antho-
cyanin. Mono-acylated anthocyanins eluted in the sequence acetyl-
glucosides < p-coumaroyl-glucosides < glucosides < caffeoyl-gluco
sides (as observed in grape skins). It is also relevant to note that
for anthocyanins acylated with cinnamic acids, cis and trans iso-
mers were not separated in HILIC, whereas the former isomers elute
earlier in RP-LC [20,58].

For  highly acylated compounds, the evaluation of the effect
of individual acyl groups on HILIC retention is far from straight-
forward, partially since this will also depend on the substitution
pattern. Nevertheless, some conclusions may  be drawn from the

retention order observed for related compounds. For example,
the relative retention of the acylated derivatives of cyanidin-3-
diglucoside-5-glucoside in red cabbage are according to the polarity
of the respective acyl groups: sinapoyl-sinapoyl ≤ sinapoyl-
feruloyl ≤ feruloyl-feruloyl ≤ feruloyl ≤ sinapoyl ≤ p-coumaroyl ≤
caffeoyl. The same elution order is observed for the more
retained acylated cyanidin-3-triglucoside-5-glucoside derivatives,
as well as for the acylated derivatives of pelaragonin-3-
diglucoside-5-(malonyl)glucoside observed in red radish:
feruloyl-feruloyl ≤ (p-coumaroyl)(feruloyl) ≤ feruloyl ≤ p-couma
royl  ≤ caffeoyl (Table 1).

Comparison of the abovementioned HILIC retention orders
with well-established RP-LC elution characteristics of anthocyanins
[12,14,17,18,43–46,58] highlights the complementary nature of the
two separation modes. This opens the door for the combination of
HILIC and RP-LC separations for the comprehensive 2-dimensional
liquid chromatographic (LC × LC) analysis of anthocyanins. Due
to the divergent retention mechanisms, improved resolution of
complex anthocyanin fractions by HILIC × RP-LC analysis may be
envisaged. Several approaches may  be used to overcome the chal-
lenges associated with the coupling of HILIC and RP-LC due to
mobile phase incompatibility, as illustrated in reports highlighting
the beneficial application of HILIC × RP-LC for the high-resolution
separation of phenolic samples [25–27,60].

4. Conclusions

The application of HILIC for the analysis of anthocyanins has
been demonstrated for the first time. Due to the unique chromato-
graphic behaviour of anthocyanins, extensive optimisation was
required to deliver acceptable performance. This involved first of
all the selection of the most suitable stationary phase (the 1.7 �m
BEH amide phase). Highly acidic mobile phases are especially
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critical when using high organic content mobile phases, due to
the pH-dependant solution chemistry of anthocyanins. The use
of elevated temperatures and analysis at low flow rates further
improved the separation of these compounds. HILIC methods
suitable for the analysis of a diverse range of anthocyanins,
including anthocyanidin-mono-, di- and tri-glycosides and their
acylated derivatives were developed. Application to blueberries,
red grape skins, black beans, red cabbage and red radish illustrates
the potential of the technique, and allowed identification of 71
anthocyanins by ESI-MS(/MS).

HILIC  was found to offer an alternative separation mechanism to
RP-LC, with the clear separation according to degree of glycosyla-
tion and acylation facilitating tentative compound identification.
HILIC has the added advantage of lower operating pressures
due to the lower viscosity of the eluents. Co-elution of isomeric
anthocyanidin-hexosides and cis/trans acylated isomers as well as
lower chromatographic efficiency and higher organic modifier con-
sumption represent drawbacks of HILIC compared to RP-LC. The
alternative separation mechanism offered by HILIC shows promise
for use in 2-dimensional LC analysis of complex anthocyanin
fractions, which will be explored in future work. Furthermore,
the applicability of the developed methods for the simultaneous
analysis of anthocyanins and non-coloured flavonoids should be
explored.
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Figure S1: LC-UV chromatograms obtained at 500 nm for the HILIC analysis of grape skin 

anthocyanins on different HILIC stationary phases: (a) Develosil diol, (b) XBridge BEH 

Amide, (c) Kinetex HILIC (silica), (d) Shodex Asahipak NH2P, (e) Luna cyanopropyl, (f) 

Spherisorb aminopropyl, and (g) Betasil Diol-100. Mobile phases: (A) 5 % formic acid in 

water and (B) 5 % formic acid in water. Analyses performed at ambient temperature. 

Injection volumes of 2 µL were used. For further experimental detail, refer to section 2.3.1. 
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Figure S2: LC- UV chromatograms obtained at 500 nm for the HILIC analysis of (a) black 

bean, (b) blueberry, (c) red grape skin, (d) red cabbage and (e) red radish anthocyanins using 

the scouting gradient (Section 2.3.1) on the BEH Amide column (150 mm × 1.0 mm i.d., 1.7 

µm) with the following mobile phases: 5 % formic acid modified mobile phase at 25 ºC; 10 

% formic acid modified mobile phase at 25 °C; and 0.4 % trifluoroacetic acid modified at 25 

ºC. Injection volumes of 0.5 µL were used. For further experimental detail, refer to section 

2.3.1.  
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Figure S3: Overview of the effect of temperature on the HILIC separation of (a) black bean, 

(b) blueberry, (c) red grape skin, (d) red cabbage and (e) red radish anthocyanins. The 

scouting gradient (Section 2.3.1) was used in all cases with 0.4 % trifluoroacetic acid as 

mobile phase modifier on the BEH Amide column (150 mm × 1.0 mm i.d., 1.7 µm). Injection 

volumes of 0.5 µL were used. For further experimental detail, refer to section 2.3.1. 
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Figure S4: Total ion chromatograms obtained for the HILIC-ESI-MS analysis of 

anthocyanins in (a) red grape skin, (b) blueberry, (c) black beans, (d) red radish and (e) red 

cabbage extracts. Analyses were performed at 50 ºC on an amide column (150 × 1 mm id, 1.7 

µm dp) using as mobile phase 0.4 % TFA in acetonitrile (solvent A)/ 0.4 % TFA in water 

(solvent B). For gradient details and further experimental conditions, refer to Section 2.3.2. * 
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a  b  s  t  r  a  c  t

Anthocyanins  are  naturally  occurring  plant  pigments  whose  accurate  analysis  is  hampered  by  their com-
plexity  and  unique  chromatographic  behaviour  associated  with  on-column  conversion  reactions.  This
paper  reports  the  evaluation  of  off-line  comprehensive  two-dimensional  liquid  chromatography  (LC  × LC)
for  the  analysis  of  anthocyanins.  Hydrophilic  interaction  chromatography  (HILIC)  was  used  in the  first
dimension  in  combination  with reversed  phase  liquid  chromatography  (RP-LC)  in  the  second  dimen-
sion.  For  the  selective  detection  of  anthocyanins,  diode  array  detection  was  used,  while  high  resolution
quadrupole-time-of-flight  mass  spectrometry  (Q-TOF)  was  used  for compound  identification.  As appli-
cation,  the  HILIC  × RP-LC  separation  of  diverse  anthocyanins  in  blueberries,  red  radish,  black  beans,  red
grape  skins  and  red cabbage  is  demonstrated.  Off-line  HILIC  ×  RP-LC  revealed  information  which  could
not  be  obtained  by one-dimensional  HPLC  methods,  while  the structured  elution  order  for  the  antho-
cyanins  simplifies  compound  identification  and  facilitates  the  comparison  of anthocyanin  content  of
natural  products  by means  of  contour  plots.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Anthocyanins are a group of the flavonoid family of phenolic
compounds comprising water-soluble pigments that are respon-
sible for the red, blue and violet colours of many flowers, fruits,
grains and vegetables [1]. These pigments are important to the food
industry and have been recognised for their nutritional value, since
they play a role in the reduced risk of a number of chronic and
degradative diseases in humans [2,3]. Over the last two decades
there has been a significant growth in anthocyanin research due to
their potential use in applications varying from food colourants to
supplements with potential health benefits [4].

Due to the complexity of many natural products the accurate
qualitative and quantitative analysis of anthocyanins remains chal-
lenging. The most successful separation of anthocyanins is obtained
by reversed phase liquid chromatography (RP-LC) [5]. Cou-
pled to photodiode-array (PDA) detection, selective detection of

� Presented  at the 13th International Symposium on Hyphenated Techniques in
Chromatography and Separation Technology, Bruges, Belgium, 29–31 January 2014.

∗ Corresponding author. Tel.: +27 21 808 3351; fax: +27 21 808 3360.
E-mail address: ajdevill@sun.ac.za (A. de Villiers).

anthocyanins is possible [6,7], since they absorb in the visible range
around 500–550 nm in low pH mobile phase conditions. RP-LC
hyphenated with mass spectrometry (MS) or tandem mass spec-
trometry (MS/MS) provides increased sensitivity and structural
elucidation capabilities [8]. Despite these advantages, however,
RP-LC–MS also demonstrates some limitations for anthocyanin
analysis. First, RP-LC separation of anthocyanins is characterised
by extremely low optimal mobile phase velocity, and, when ana-
lysed under sub-optimal conditions, very low chromatographic
efficiency [9,10]. This is a result of inter-conversion between differ-
ent anthocyanin species in solution, which depends on the pH and
anthocyanin structure [9–11]. Secondly, the chemical diversity and
lack of commercially available standards hampers identification,
whereas similar fragmentation patterns between different antho-
cyanin classes complicate structural elucidation. For these reasons,
improved chromatographic separation of anthocyanins remains
important.

The coupling of two  independent LC separations in compre-
hensive two-dimensional liquid chromatography (LC × LC) offers
a powerful approach for the separation of compounds in complex
samples [12–15]. In LC × LC all sample components eluting from the
first dimension are also subjected to separation in a second dimen-
sion [16], in this manner providing the advantages of increased

http://dx.doi.org/10.1016/j.chroma.2014.07.044
0021-9673/© 2014 Elsevier B.V. All rights reserved.
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Fig. 1. General structures of black bean, blueberry, red grape skin, red cabbage and red radish anthocyanins. Abbreviations: Dp, delphinidin; Cy, cyanidin; Pel, pelaragonidin;
Pt, petunidin; Pe, peonidin; Mv,  malvidin.

resolution and selectivity in comparison to one-dimension (1-D)
LC.

One of the principal requirements of an efficient LC × LC system
is that the separation modes employed be orthogonal. This implies
that the separation mechanisms to be used in each dimension be
carefully selected in order to minimise the retention correlation
between dimensions [17]. Hydrophilic interaction chromatography
(HILIC) is receiving increasing attention as an alternative mode to
RP-LC for the analysis of polar compounds. In fact, the combina-
tion of HILIC and RP-LC provides a high degree of orthogonality,
and HILIC × RP-LC has successfully been applied to the analysis of a
range of phenolic compounds [18–21]. However, to the best of our
knowledge, LC × LC has to date not been applied to anthocyanin
analysis.

The objective of this study was therefore to develop a
HILILC × RP-LC method, employing the HILIC method recently
developed for anthocyanins [22], for the separation of various
anthocyanin-rich natural products. As application, several samples
characterised by complex and diverse anthocyanin constituents
were selected, including blueberries, grape skins, black beans, red
cabbage and red radish (Fig. 1).

2. Experimental

2.1. Reagents and materials

Blueberries,  black beans, grapes, red cabbage and red radish
were purchased from a local supermarket. HPLC grade acetoni-
trile, methanol and trifluoroacetic acid (TFA) were purchased from
Sigma-Aldrich (Steinheim, Germany) and formic acid from Merck
(Darmstadt, Germany). Deionised water was prepared using a Milli-
Q water purification system (Millipore, Milford, MA,  USA). All
mobile phases were filtered through 0.45 �m HLVP membrane fil-
ters (Millipore), and degassed in an ultrasonic bath. The OASIS HLB

solid  phase extraction (SPE) cartridges (6 mL,  500 mg)  were from
Waters (Milford, MA,  USA).

2.2. Sample preparation

Each  of the five samples were extracted in the same manner as
reported previously [22]. The extracts were loaded on a precondi-
tioned SPE cartridge, rinsed with acidified water and eluted with
3 mL  × 1 mL  methanol/formic acid (95/5, (v/v)) [22]. The methano-
lic fraction containing the anthocyanins was evaporated to dryness
and re-dissolved in 0.5 mL  methanol/formic acid (95/5, (v/v)) prior
to HPLC analysis. No loss of anthocyanins was  observed following
SPE clean-up.

2.3.  Instrumentation

One-dimensional HILIC-UV and RP-LC–UV analyses as well
as off-line HILIC × RP-LC analyses were performed on a Waters
Acquity UPLC system equipped with a binary pump, sample man-
ager, column oven compartment, photodiode array (PDA) detector
(500 nL flow cell, 10 mm  path length) and controlled by Waters
Empower software (Waters, Milford, MA,  USA). UV–vis chro-
matograms were recorded at 500 nm using an acquisition rate of
10 Hz.

LC–MS  and LC–MSE analyses were performed on a Waters
Acquity UPLC system equipped with a binary solvent manager,
sample manager and column oven, and interfaced through an elec-
trospray ionisation (ESI) source to a Waters Synapt G2 quadrupole
time-of-flight (Q-TOF) mass spectrometer.

2.4. Chromatographic conditions

2.4.1. Off-line HILIC × RP-LC analyses
HILIC  separation was  performed on an XBridge BEH Amide

column (150 mm × 4.6 mm i.d., 2.5 �m particles, Waters) with a
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Table  1
HILIC  gradient details for each of the samples analysed.

Sample Gradient Injection volume (�L)

Blueberries 4–35% B (0–92.58 min), 35–100% B (92.58–95.22 min), 100% B for 5 min  5
Grape skins 4–35%  B (0–92.58 min), 35–100% B (92.58–95.22 min), 100% B for 5 min  6
Red cabbage 13–40% B (0–105.80 min), 40–100% B (105.80–108.45 min), 100% B for 5 min 10
Red radish 15–33.5% B (0–92.58 min), 33.5–100% B (92.58–97.87 min), 100% B for 5 min 10
Black beans 5–30% B (0–71.42 min), 30–100% B (71.42–74.06 min), 100% B for 5 min  10

Krudcatcher UHPLC pre-column filter (Phenomenex, Torrace USA).
The binary mobile phase consisted of (A) 0.4% TFA in acetonitrile
and (B) 0.4% TFA in water. Four different gradients were used,
which are tabulated together with the relevant injection volumes
in Table 1. Injections were performed in the ‘partial loop with nee-
dle overfill’ mode using acetonitrile/TFA (99.6/0.4, v/v) as the weak
needle wash solvent. The flow rate was 200 �L/min, and all analyses
were performed at 50 ◦C.

For  off-line HILIC × RP-LC analyses half minute fractions (0.1 mL
each) of the HILIC effluent were collected using a BIO-RAD 2110
fraction collector (Corston, UK). Collected fractions were trans-
ferred to 1.5 mL  vials containing 250 �L glass inserts and were kept
under nitrogen prior to RP-LC analyses.

RP-LC separation was performed in the second dimension on a
Kinetex C18 column (50 mm × 4.6 mm i.d., 2.6 �m particles) with
a security guard column (Phenomenex, for 4.6 mm  i.d. columns).
The binary mobile phases consisted of 7.5% (v/v) formic acid in
water (A) and 7.5% (v/v) formic acid in acetonitrile (B). The gradient
used was as follows: 1% B (0–0.75 min), 1–13.5% B (0.75–8.50 min),
13.5–23.5% B (8.50–16.75 min), 23.5–28.5% B (16.75–19.5 min),
28.5% B isocratic (19.5–24.5 min), before returning to initial con-
ditions at 25.0 min. The flow rate was 500 �L/min and the column
was re-equilibrated for 15 min  before the next analysis. The col-
umn temperature was set to 50 ◦C. An injection volume of 2 �L in
the ‘partial loop with needle overfill’ mode was used, with 7.5%
formic acid as the weak needle wash solvent.

2.4.2. HPLC-ESI-MS analyses
LC-Q-TOF-MS data were acquired in positive ionisation mode

with a scan range of 200–2000 amu. MSE (an acquisition mode per-
formed concurrently with full scan acquisition in a single analysis,
where fragmentation is performed using a collision energy ramp)
data were acquired across a mass range of 40–2000 amu. All instru-
mental parameters were the same as previously reported [22].
Data were collected and acquired using MassLynx v.4.1 software
(Waters).

2.5. Data handling

Raw  UV–vis data were exported into OriginPro 8.5 soft-
ware (OriginLab Corporation, USA) to construct the figures. Excel
(Microsoft Corporation, USA) and Matlab (Mathworks Inc., Nat-
ick, Massachusetts, USA) were used to calculate orthogonality data
according to Ref. [23]. For the calculation of surface coverage, exper-
imental retention data obtained for each sample were normalised
in both dimensions [23].

3.  Results and discussion

3.1.  Method optimisation: choice of experimental conditions

RP-LC  was selected as separation mode in the second dimen-
sion of LC × LC, due to its high efficiency, speed and compatibility
with MS  detection. The RP-LC method used here was based on the
optimal conditions reported for anthocyanin analysis by de Villiers
et al. [9,10]. In short, a highly acidic mobile phase (7.5% formic acid)
was used at a relatively low flow rate (500 �L/min on a 4.6 mm i.d.

column)  and elevated temperature (50 ◦C). Under these conditions,
the detrimental effect of on-column inter-conversion reactions on
the chromatographic efficiency of anthocyanins is largely negated
[9]. Highly acidic mobile phases also ensure that the anthocyanins
are predominantly in their flavylium cationic form, which absorb
maximally in the visible region around 500–550 nm and there-
fore allows group selective detection at these wavelengths [7]. A
superficially porous C18 column (Kinetex, 50 mm × 4.6 mm,  2.6 �m
dp) was used, as this column has been shown to provide good
chromatographic performance for the analysis of various pheno-
lic compounds [24]. Following optimisation of the gradient profile,
the Kinetex column provided good separation of the diverse antho-
cyanins present in all the samples for gradient times of 30 min
(including re-equilibration) (Fig. S1).

The most important consideration for the first dimension sep-
aration was to obtain a high degree of orthogonality relative to
the RP-LC separation used in the second dimension. HILIC and RP-
LC have been shown to be a versatile, orthogonal combination for
the LC × LC separation of diverse phenolic compounds [17–20]. The
HILIC method recently reported for the separtion of anthocyanins
was therefore used in the first dimension [22], with some modifica-
tion with regard to the column i.d. and gradient time. A wide-bore
(150 mm × 4.6 mm i.d.) column was selected since anthocyanins
show very low optimal flow rates in HILIC [22] – on the 4.6 mm
column, the optimal flow rate is only 0.2 mL/min. This flow is ideal
for off-line LC × LC when short sampling times are used. The use of
a narrow-bore 1 mm column, for example, would result in an opti-
mal  flow rate of ∼6 �L/min [22], which is below the capabilities of
most commercial HPLC instruments and unpractical from a fraction
collection point of view. Furthermore, 4.6 mm i.d. columns provide
higher volume loadability and peak capacity (the latter due to the
diminished effect of extra-column band broadening) than narrow-
bore columns commonly used in LC × LC. As can be seen in Fig. S2,
which summerises 1-D HILIC analyses of the samples, good chro-
matographic peak shapes were obtained for the anthocyanins in
each of these samples.

Hyphenation of two  separations in LC × LC can be performed
in three ways, i.e. on-line, off-line and stop-flow, with the former
two being most frequently used. In the on-line approach, fractions
from the first dimension are continuously transferred to the second
dimension column by employing a switching valve and fast sec-
ond dimension separations, whereas in stop-flow mode the flow in
the first dimension is stopped during the second dimension anal-
ysis of the transferred fraction [18]. Off-line LC × LC involves the
collection of fractions from the first dimension which are then re-
injected onto the second dimension column. This approach places
less restrictions on the second dimension analysis time, and by
allowing maximum exploitation of each of the 1-D separations [25]
provides the highest peak capacities, typically in the order of a few
thousand [18–20].

Off-line  HILIC × RP-LC was  selected in the current study for sev-
eral reasons. First, since off-line coupling places less restriction on
the second dimension analysis time, this mode provides higher
overall resolution and higher peak capacities, although at the cost
of longer analysis times, compared to on-line LC × LC [18,20,25,26].
This is due to separations in the two dimensions being carried
out independently; therefore second dimension analyses can be
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performed under optimal conditions (low flow rate, longer gradient
times) for maximum resolution. Secondly, in the case of antho-
cyanins as target analytes, the very fast second dimension analyses
required for on-line operation will result in much worse perfor-
mances than for ‘normal’ analytes. This is because band-broadening
associated with the hydration secondary equilibrium is especially
detrimental for short analysis times [9,10]. Compared to stop-flow
operation, the off-line approach offers a simpler experimental con-
figuration at the cost of automation [25,27].

The coupling of HILIC and RP-LC in LC × LC is challenging due to
the relative elution strengths of the solvents in the two  dimensions
[14,28,29]. Injection of large volumes of HILIC fractions onto the
RP-LC column results in severe injection band broadening which
impacts negatively on the second dimension separation [19,29]. On
the 50 mm × 4.6 mm i.d. C18 column used in the second dimension,
maximally 2 �L of the HILIC fractions could be injected to avoid
peak distortion of especially early eluting compounds.

Since complete fraction transfer is not possible in off-line
LC × LC, this implies that some sensitivity loss will occur. Exactly
how much depends on the sampling time, 1ts, the first dimension
volumetric flow rate and the maximum permissible injection vol-
ume  in the second dimension. A sampling time of 30 s was  selected
in the current study since this provided an acceptable degree of
under-sampling of the first dimension peaks (see Table 3 further).
(Note that shorter sampling times would decrease under-sampling,
but significantly increase the total analysis time [25,27,30]). Using a
first dimension flow rate of 0.2 mL/min, fraction volumes of 100 �L
were obtained, which are practical to work with in off-line separa-
tions. Therefore, ∼2% (2 �L) of each HILIC fraction is injected onto
the second dimension column. This loss in sensitivity is partially
compensated for by employing relatively large injection volumes,
enabled by the use of a 4.6 mm i.d. column in the first dimension.
Furthermore, injecting highly concentrated extracts permits the
detection of even low-level anthocyanins under these conditions
(see further).

3.2.  HILIC × RP-LC analysis of anthocyanins in natural products

Contour plots obtained for the off-line HILIC × RP-LC analyses
of blueberry, grape skin, black bean, red cabbage and red radish
anthocyanins are shown in Figs. 2–5. Identification of peaks in these
contour plots was based on correlation of retention times with both
1-dimensional HILIC-ESI-MS(/MS) and RP-LC-ESI-MS(/MS) data.
MS detection was performed in positive ionisation mode and com-
pounds were identified based on accurate mass data as well as
fragmentation information obtained from MSE and MS/MS  experi-
ments and comparison with previous literature reports [8,31–38].
A summary of the MS  data for each of the identified compounds
is presented in Table 2. For further details on the identification
of anthocyanins in each of the investigated samples, the reader is
referred to Ref. [22].

3.2.1.  Blueberries and black beans
Blueberries and black beans contained relatively simple

anthocyanins, mainly comprising anthocyanidin-mono-
glycosides.  For blueberries, 15 anthocyanins were identified
(Fig. 2a). Anthocyanidin-glucosides and anthocyanidin-
galactosides were not resolved in HILIC, whereas in RP-LC
the anthocyanidin-galactosides elute before the corresponding
anthocyanidin-glucosides [22]. Anthocyanidin-arabinosides elute
last in RP-LC, and much earlier than the corresponding–glucosides
and–galactosides in HILIC. As a result, malvidin-3-glucoside
(3)  and malvidin-3-galactoside (4), peonidin-3-glucoside (5)
and peonidin-3-galactoside (7), petunidin-3-glucoside (9) and
petunidin-3-galactoside (10), cyanidin-3-glucoside (11) and
cyanidin-3-galactoside (13) as well as delphinidin-3-glucoside

(14) and delphinidin-3-galactoside (15) co-elute in HILIC, but are
separated in RP-LC based on the glycosidic moiety. On the other
hand, cyanidin-3-galactoside (11) and delphinidin-3-arabinoside
(12)  co-elute in HILIC due to the similar polarity of these com-
pounds despite differences in terms of both the anthocyanidin
base and glycosidic groups (the same is true for compounds 4, 5
and 6).

Compounds which co-eluted in RPLC, for example cyanidin-3-
arabinoside (8) and petunidin-3-glucoside (9) were separated in
HILIC primarily based on the sugar moiety. However, several co-
eluting compounds were not separated in either of the dimensions,
such as peonidin-3-galactoside (5) and petunidin-3-arabinoside (6)
as  well as delphinidin-3-arabinoside (12) and cyanidin-3-glucoside
(13).

Ten anthocyanins were identified in black beans (Fig. 2b). RP-
LC provided complete separation of all anthocyanins, whereas the
HILIC dimension added little relevant information for this sam-
ple. Interestingly though, three distinct groups of compounds are
observed in the HILIC dimension. The first of these includes the mal-
vidin and peonidin derivatives, the second more strongly retained
(in HILIC) group includes the petunidin and cyanidin derivatives,
while the most retained group contains the delphinidin deriva-
tives. The only acylated compound, delphinidin-3-acetylglucoside
(4),  does not follow this trend, as acylation results in earlier elution
in HILIC. Similar to blueberries, all anthocyanidin-galactosides and
-glucosides co-elute in HILIC but were resolved in RP-LC.

3.2.2.  Red radish
Red  radish anthocyanins comprise a mixture of mono-

or di-acylated derivatives of anthocyanidin-di-(or-tri)glucosides.
The  major anthocyanidin present in red radish is pelarag-
onidin, with the exception of two compounds, cyanidin-3-
(glycosyl)rhamnoside (1) and cyanidin-3-(diglycosyl)rhamnoside
(8)  [22,32]. A total of 21 anthocyanins spanning a wide range of con-
centrations were identified (Fig. 3). Red radish anthocyanins were
relatively strongly retained on the amide column due to their high
degree of glycosylation, and also generally displayed high RP-LC
retention due to their high degree of acylation. Unlike blueber-
ries and black beans, no clear elution pattern according to common
structural characteristics was  evident for red radish anthocyanins.
This is due to the structural diversity of these compounds, and
the contrasting effects of the nature, number and position of acyl
groups on retention in both dimensions.

For example, pelaragonidin-3-(p-coumaroyl)diglucoside-
5-(malonoyl)glucoside (6C) and pelaragonidin-3-(feruloyl)-
diglucoside-5-glucoside (7B) were only partially separated in
HILIC, but were well resolved in RP-LC due to more efficient differ-
entiation according to the degree of acylation in the latter mode. On
the other hand, pelaragonidin-3-diglucoside-5-glucoside (14) and
pelaragonidin-3-(feruloyl)diglucoside-5-glucoside (7A) as well as
pelaragonidin-3-(feruloyl)diglucoside-5(malonoyl)glucoside (5D)
and pelaragonidin-3-(caffeoyl)diglucoside-5(malonoyl)glucoside
(10) co-eluted in RP-LC, since the separation of highly glycosylated
species with the same degree of acylation is not very efficient
according to the nature of the acyl-group. These compounds
were however separated in HILIC as a result of the polarity of
acyl-substituents. While acylation generally results in a decrease
in retention in HILIC, caffeoylated derivatives show the highest
retention among the acylated derivatives, resulting in retention
times for these compounds which are close to those of the corre-
sponding non-acylated anthocyanins. This allows clear separation
of compounds 5D and 10 in HILIC.

Several isomeric compounds were identified in red radish (com-
pounds labelled 5A–D, 6A–C and 7A,B in Table 2). These compounds
have identical molecular formulae and fragmentation patterns, but
are clearly separated by HILIC and/or RP-LC. Most likely these
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Table  2
Mass  spectral and retention data obtained for the HILIC-ESI-MS(/MS) and RP-LC-ESI-MS analysis of anthocyanins detected in blueberries, red grape skins, black beans, red
cabbage  and red radish under optimised gradient conditions for each sample (refer to Section 2.4.1 for details).

Compound numbera HILIC tR
b (min) RP-LC tR

b

(min)
Identity Molecular

formula [M]+
Experimental
mass (m/z)

MSE

Fragments
References

Blueberries
1 23.91 9.34 Malvidin-3-arabinoside C22H23O11 463.1135 331c, 315,

287,  242
[8,22,32]

2  24.79 8.63 Peonidin-3-arabinoside C21H21O10 433.1244 301c [8,22,32]
3  32.31 8.35 Malvidin-3-galactoside C23H25O12 493.1346 331c, 315,

242
[8,22,32,39]

4  33.44 8.83 Malvidin-3-glucoside C23H25O12 493.1343 331c, 315,
287,  242

[8,22,32,39]

5  33.75 8.17 Peonidin-3-galactoside C22H23O11 463.1240 301c, 286,
258,  149

[8,22,32,39]

6  33.99 7.73 Petunidin-3-arabinoside C21H21O11 449.1091 317c, 287 [8,22,32]
7  34.58 8.19 Peonidin-3-glucoside C22H23O11 463.1240 301c, 286,

258,  149
[8,22,32,39]

8  35.07 6.88 Cyanidin-3-arabinoside C20H19O10 419.0979 287c, 213,
149

[8,22,32,39]

9  42.19 7.22 Petunidin-3-galactoside C22H23O12 479.1197 317c, 302,
274,  149

[8,22,32,39]

10  42.90 7.27 Petunidin-3-glucoside C22H23O12 479.1197 317c, 302,
274,  149

[8,22,32,39]

11  43.06 5.92 Cyanidin-3-galactoside C21H21O11 449.1080 287c, 213 [8,22,32,39]
12  43.76 5.97 Delphinidin-3-arabinoside C20H19O11 435.0925 303c [8,22,32]
13  44.51 5.97 Cyanidin-3-glucoside C21H21O11 449.1080 287c, 213 [8,22,32,39]
14  52.60 5.02 Delphinidin-3-galactoside C21H21O12 465.1039 303c [8,22,32,39]
15  53.31 5.47 Delphinidin-3-glucoside C21H21O12 465.1040 303c, 149 [8,22,32,39]

Black  beans
1  30.00 8.82 Malvidin-3-galactoside C23H25O12 493.1343 331c, 315,

287,  242
[8,22]

2  30.89 8.39 Malvidin-3-glucoside C23H25O12 493.1343 331c, 315,
287,  242

[8,22]

3  31.89 8.06 Peonidin-3-glucoside C22H23O11 463.1235 301c [8,22]
4  32.05 9.28 Delphinidin-3-acetylglucoside C23H23O13 507.1139 303.05c [8,22]
5  39.81 7.03 Petunidin-3-galactoside C22H23O12 479.1184 317c, 302,

274,  242
[8,22]

6  40.44 7.10 Petunidin-3-glucoside C22H23O12 479.1189 317c, 302 [8,22]
7  41.38 5.84 Cyanidin-3-galactoside C21H21O11 449.1102 287c [8,22]
8  41.85 6.34 Cyanidin-3-glucoside C21H21O11 449.1085 287c, 213 [8,22]
9  50.24 4.98 Delphinidin-3-galactoside C21H21O12 465.1044 303c [8,22]

10  50.62 5.42 Delphinidin-3-glucoside C21H21O12 465.1035 303c [8,22]

Red  radish
1  25.57 10.14 Cyanidin-3-(glycosyl) rhamnoside C27H31O15 595.1678 433, 287c [22,32]
2  26.32 15.24 Pelaragonin-3-(feruloyl)

(feruloyl)diglucoside-5-
(malonoyl)glucoside

C56H59O29 1195.3137 519, 271c,
177, 149

[22,32]

3  26.45 14.86 Pelaragonin-3-
(p-coumaroyl)
(feruloyl)diglucoside-5-
(malonoyl)glucoside

C55H57O28 1165.3037 917, 519,
271c

[22,32]

4  28.33 6.98 Pelaragonin-3-glucoside-5-glucoside C27H31O15 595.1687 271c [22,32]
5Ad 28.49 13.77 Pelaragonin-3-(feruloyl)

diglucoside-5-(malonoyl)
glucoside

C46H51O26 1019.2676 771, 519,
271c

[22,32]

6A 31.60 13.19 Pelaragonin-3-
(p-coumaroyl)diglucoside-5-
(malonoyl)glucoside

C45H49O25 989.2566 741, 519,
271c

[22,32]

7A 32.71 12.82 Pelaragonin-3-(feruloyl)
diglucoside-5-glucoside

C43H49O23 933.2651 933, 771,
433, 271c

[22,32]

5B 33.64 11.50 Pelaragonin-3-(feruloyl)
diglucoside-5-(malonoyl)
glucoside

C46H51O26 1019.2663 519, 271c [22,32]

8  34.47 9.70 Cyanidin-3-(diglucosyl)rhamnoside C33H41O20 757.2194 287c [22,32]
6B 35.14 11.51 Pelaragonin-3-

(p-coumaroyl)diglucoside-5-
(malonoyl)glucoside

C45H49O25 989.2567 741, 519,
271c

[22,32]

5C 36.39 13.53 Pelaragonin-3-(feruloyl)
diglucoside-5-(malonoyl)
glucoside

C46H51O26 1019.2662 771, 519,
271c, 149

[22,32]

6C 37.48 13.05 Pelaragonin-3-
(p-coumaroyl)diglucoside-5-
(malonoyl)glucoside

C45H49O25 989.2564 741, 519,
271c

[22,32]

5D 37.71 11.26 Pelaragonin-3-(feruloyl)
diglucoside-5-(malonoyl)
glucoside

C46H51O26 1019.2662 771, 519,
271c, 149

[22,32]
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Table  2 (Continued)

Compound numbera HILIC tR
b (min) RP-LC tR

b

(min)
Identity  Molecular

formula [M]+
Experimental
mass (m/z)

MSE

Fragments
References

7B 38.11 12.47 Pelaragonin-3-(feruloyl)
diglucoside-5-glucoside

C43H49O23 933.2654 771, 433,
271c

[22,32]

9  39.45 12.06 Pelaragonin-3-
(p-coumaroyl)diglucoside-5-glucoside

C42H47O22 903.2560 741, 433,
271c, 149

[22,32]

10 42.34 11.25 Pelaragonin-3-(caffeoyl)
diglucoside-5-(malonoyl)
glucoside

C45H49O26 1005.2512 757, 519,
271c, 149

[22,32]

11 45.44 10.61 Pelaragonin-3-(caffeoyl)
glucoside-5-glucoside

C42H47O23 919.2508 757, 433,
271c

[22,32]

12  46.85 7.43 Pelaragonin-3-diglucoside-5-
(malonoyl)glucoside

C36H43O23 843.2197 519, 271c [22,32]

13  53.35 n/d Pelaragonin-3-(feruloyl)
triglucoside-5-(malonoyl)
glucoside

C52H61O31 1181.3163 933, 271c [22,32]

14  54.21 12.79 Pelaragonin-3-diglucoside-5-glucoside C33H41O20 757.2192 595, 433,
271c

[22,32]

15  54.84 5.60 Pelaragonin-3-
(p-coumaroyl)triglucoside-5-
(malonoyl)glucoside

C51H59O30 1151.3075 519, 271c [22,32]

Red  grape skins
1  17.81 n/d Acetaldehyde derivative of

malvidin-3-actylglucoside
(Acetylvitisin B)

C27H27O13 559.1452 355c [6,7,22]

2  20.58 14.25 Acetaldehyde derivative of
malvidin-3-(p-coumaroyl)
glucoside(Coumaroylvitisin B)

C34H31O14 663.1714 355c [6,7,22]

3  22.04 12.97 Acetaldehyde derivative of
malvidin-3-glucoside (Vitisin B)

C25H25O12 517.1373 355c [6,7,22]

4  23.94 12.91 Malvidin-3-acetylglucoside C25H27O13 535.1453 331c, 315,
242

[6,7,22,47]

5  24.86 12.39 Peonidin-3-acetylglucoside C24H25O12 505.1346 301c, 286 [6,7,22,47]
6  27.07 10.65 Pyruvic acid derivative of

malvidin-3-acetylglucoside
(Acetylvitisin A)

C28H27O15 603.1350 399c [6,7,22]

7  28.46 15.91 Malvidin-3-(p-coumaroyl) glucoside C32H31O14 639.1717 331c [6,7,22,47]
8  28.97 15.49 Peonidin-3-(p-coumaroyl) glucoside C31H29O13 609.1613 301c, 286,

258,  147
[6,7,22,47]

9  31.00 13.08 Pyruvic acid derivative of
malvidin-3-(p-coumaroyl) glucoside
(Coumaroylvitisin A)

C35H31O16 707.1609 399c [6,7,22]

10  33.13 11.04 Petunidin-3-acetylglucoside C24H25O13 521.1296 317c, 302 [6,7,22,47]
11  33.79 8.85 Malvidin-3-glucoside C23H25O12 493.1354 331c, 315,

287,  149
[6,7,22,47]

12  34.08 13.78 Malvidin-3-(caffeoyl) glucoside C32H31O15 655.1663 331c, 242,
147

[6,7,22,47]

13  34.88 8.24 Peonidin-3-glucoside C22H23O11 463.1239 301c, 286,
258,  201

[6,7,22,47]

14  35.32 13.24 Peonidin-3-(caffeoyl) glucoside C31H29O14 625.1551 301c, 149 [6,7,22,47]
15  36.41 9.78 Malvidin-3-glucoside-pyruvic acid

(Vitisin A)
C26H25O14 561.1244 399c [6,7,22]

16  37.51 14.02 Petunidin-3-(p-coumaroyl)
glucoside

C31H29O14 625.1567 317c [6,7,22,47]

17  38.17 13.42 Cyanidin-3-(p-coumaroyl) glucoside C30H27O13 595.1458 287c, 149 [6,7,22,47]
18  39.18 12.13 Petunidin-3-(caffeoyl) glucoside C31H29O15 641.1524 317c [6,7,22,47]
19  41.38 9.18 Delphinidin-3-acetylglucoside C23H23O13 507.1139 303c [6,7,22,47]
20  42.5 12.37 Delphinidin-3-(p-coumaroyl)glucoside C30H27O14 611.1413 303c [6,7,22,47]
21  43.27 7.25 Petunidin-3-glucoside C22H23O12 479.1191 317c [6,7,22,47]
22  44.80 6.47 Cyanidin-3-glucoside C21H21O11 449.1083 287c [6,7,22,47]
23  53.34 5.51 Delphinidin-3-glucoside C21H21O12 465.1046 303c [6,7,22,47]

Red  cabbage
1  30.14 13.24 Cyanidin-3-(sinapoyl)

glucoside-5-glucoside
C38H41O20 817.2172 449, 287c [22,32,44]

2  31.91 12.92 Cyanidin-3-(sinapoyl)
(sinapoyl)diglucoside-5-glucoside

C55H61O29 1185.3298 1023, 449,
287c

[22,32,41,42,44]

3  32.26 12.46 Cyanidin-3-(sinapoyl)
(feruloyl)diglucoside-5-glucoside

C54H59O28 1155.3190 993, 899,
449, 287c

[22,32,42,44]

4  33.58 12.48 Cyanidin-3-(feruloyl)
(feruloyl)diglucoside-5-glucoside

C53H57O27 1125.3094 963, 449,
287c

[22,32,42,44]

5  45.84 11.58 Cyanidin-3-(feruloyl)
diglucoside-5-glucoside

C43H49O24 949.2615 787, 449,
287c

[22,32,43,44]

6A 45.84 11.58 Cyanidin-3-(sinapoyl)
diglucoside-5-glucoside

C44H51O25 979.2717 449, 287c [22,32,43,44]

6B 45.84 6.51 Cyanidin-3-(sinapoyl)
diglucoside-5-glucoside

C44H51O25 979.2694 817, 449,
287c

[22,32,43,44]
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Table  2 (Continued)

Compound numbera HILIC tR
b (min) RP-LC tR

b

(min)
Identity Molecular

formula [M]+
Experimental
mass (m/z)

MSE

Fragments
References

7 47.20 11.05 Cyanidin-3-(p-coumaroyl)
diglucoside-5-glucoside

C42H47O23 919.2502 757, 449,
287c

[22,32,44]

8  51.37 10.08 Cyanidin-3-(sinapoyl)
(feruloyl)triglucoside-5-glucoside

C60H69O33 1317.3732 1155, 449,
287c

[22,32,44]

9  51.37 10.34 Cyanidin-3-(sinapoyl)
(sinapoyl)triglucoside-5-glucoside

C61H71O34 1347.3806 1185, 449,
287c

[22,32,44]

10  52.26 9.74 Cyanidin-3-(sinapoyl)
(p-coumaroyl)
triglucoside-5-glucoside

C59H67O32 1287.3625 1125, 449,
287c

[22,32,44]

11  59.39 n/d Cyanidin-3-(caffeoyl)
diglucoside-5-glucoside

C42H47O24 935.2427 773, 449,
287c

[22,32,44]

12A 59.10 6.49 Cyanidin-3-(feruloyl)
triglucoside-5-glucoside

C49H59O29 1111.3146 949, 449,
287c

[22,32,44]

13A 62.20 n/d Cyanidin-3-(sinapoyl)
triglucoside-5-glucoside

C50H61O30 1141.3247 979, 449,
287c

[22,32,44]

14  62.20 4.88 Cyanidin-3-diglucoside-5-glucoside C33H41O21 773.2141 611, 449,
287c

[22,32,44]

12B 66.90 8.79 Cyanidin-3-(feruloyl)
triglucoside-5-glucoside

C49H59O29 1111.3127 949, 449,
287c

[22,32,44]

13B 66.90 9.01 Cyanidin-3-(sinapoyl)
triglucoside-5-glucoside

C50H61O30 1141.3220 979, 449,
287c

[22,32,44]

15  68.10 8.50 Cyanidin-3-(p-coumaroyl)
triglucoside-5-glucoside

C48H57O28 1081.3055 919, 449,
287c

[22,32,44]

a Peak numbers correspond to Figs. 2–5.
b t0 times for HILIC and RP-LC separations were 7.0 and 0.92 min, respectively.
c Base peak ion in MSE or MS/MS  spectrum.
d Peak numbers marked with superscript letters A, B, C or D denote isomeric compounds with identical MS  characteristics.

isomers differ in their acylation patterns, although the exact dif-
ferences in acylation positions could not be determined based on
MS data. The fact that some of these isomeric compounds co-eluted
in one dimension (for example 5C and 5D in HILIC, and 6A and
6C in RP-LC) and cannot be distinguished by MS,  emphasises the
importance of improved chromatographic separation offered by
HILIC × RP-LC.

3.2.3. Red grape skins
Red  grape skin anthocyanins comprise mainly the

anthocyanidin-monoglucosides and their acetyl-, p-coumaroyl-,
and caffeoyl-derivatives. A total of 23 anthocyanins and derivatives
were identified in this sample (Fig. 4). Grape anthocyanins have a
characteristic elution order in RP-LC, with the -glucosides eluting
before acetyl-glucosides, which elute before the p-coumaroyl-
glucosides. For each of these classes, the relative elution order
is based on the anthocyanidin bases according to the follow-
ing sequence: delphinidin, cyanidin, petunidin, peonidin and
malvidin. Partial overlap between the different classes of grape
anthocyanins does occur, especially for the acylated compounds
(the caffeoyl derivatives for example elute between the -acetyl
and -p-coumaroyl derivatives). As a consequence, co-elution
between compounds of different classes may  occur. For example,
delphinidin-3-(p-coumaroyl)glucoside (20) and peonidin-3-
acetylglucoside (5) were found to co-elute in RP-LC. The retention
order of anthocyanins according to both the anthocyanidin base
and the nature of acylation are somewhat different in HILIC,
resulting in the clear separation of these compounds in HILIC.

On  the other hand, the non-acylated and caffeoyl deriva-
tives of malvidin and peonidin (i.e. malvidin-3-glucoside (11) and
malvidin-3-(caffeoyl)glucoside (12), peonidin-3-glucoside (13)
and peonidin-3-(caffeoyl)glucoside (14)) were not resolved in HILIC
but were separated in RP-LC as a result of the higher retention of
caffeoyl derivatives in this mode. The pyranoanthocyanin Vitisin B
(3), resulting from the cycloaddition of acetaldehyde to malvidin-
3-glucoside [7,45], was also observed in the contour plot at lower
HILIC and higher RP-LC retention, respectively, than malvidin-3-
glucoside (11) [7,45].

3.2.4. Red cabbage
A  total of 18 anthocyanins were identified in red cabbage (Fig. 5,

Table 2) based on relative RP-LC retention times, MS  and MSE

data compared to previous literature reports [32,40]. Only cyani-
din derivatives were found in this sample, with variation stemming
from different acylation patterns of cyanidin-3-(di/tri)glucoside-
5-glucosides [32,33,46]. Several isomeric structures which could
not be distinguished based on MS  data (compounds 6A,B, 12A,B and
13A,B) were also detected in red cabbage.

The  general elution pattern for red cabbage anthocyanins is
based on the number of glycosidic groups as well as the type and
number of acylated substituents. The tetra-glycosidic species dis-
play higher retention in HILIC than the corresponding tri-glycosides
[22]; the opposite is observed in RP-LC. Furthermore, variation
in the nature of the acyl-groups allowed partial separation of red
cabbage anthocyanins in HILIC and clear separation in RP-LC. For
example, for the same degree of glycosylation, the elution order
in RP-LC is p-coumaroyl < -feruloyl < -sinapoyl, while in HILIC the
retention order is roughly opposite, although the -sinapoyl and
-feruloyl derivatives are not resolved in this mode. As a conse-
quence, cyanidin-3-(sinapoyl)(sinapoyl)diglucoside-5-glucoside
(2) and cyanidin-3-(sinapoyl)(feruloyl)diglucoside-5-glucoside
(3), cyanidin-3-(sinapoyl)(feruloyl)triglucoside-5-glucoside (8)
and cyanidin-3-(sinapoyl)(sinapoyl)triglucoside-5-glusoside (9)
as well as cyanidin-3-(feruloyl)triglucoside-5-glucoside (12B) and
cyanidin-3-(sinapoyl)triglucoside-5-glucoside (13B) all co-elute
in HILIC but were separated in the RP-LC dimension due to better
differentiation according to the nature of acyl groups in this mode.

Cyanidin-3-(feruloyl)diglucoside-5-glucoside (5) and cyanidin-
3-(sinapoyl)diglucoside-5-glucoside (6A) co-eluted in both dimen-
sions, whereas cyanidin-3-(feruloyl)triglucoside-5-glucoside (12A)
and cyanidin-3-(sinapoyl)diglucoside-5-glucoside (6B) co-eluted
in RP-LC, but were separated in HILIC based on their different
degree of glycosylation.

3.2.5.  Structured elution patterns of anthocyanins
The primary reason for performing LC × LC analysis of antho-

cyanins is to combine the selectivity of two independent separation
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Fig. 2. Contour plots obtained at 500 nm for the off-line HILIC × RP-LC analysis of (a) blueberry and (b) black bean anthocyanins. For gradient details and experimental
conditions, refer to Section 2.4.1. Peak numbers correspond to Table 2.
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2.4.1. Peak numbers correspond to Table 2.

modes to obtain enhanced resolution. From the precedent discus-
sion and the contour plots presented in Figs. 2–5 the improved
resolution offered by a HILIC × RP-LC separation is evident. In fact,
with the exception of the RP-LC analysis of black beans, neither
1-dimensional HILIC nor RP-LC provided complete separation of
anthocyanins in any of the other samples (Supplementary infor-
mation, Figs. S1 and S2). This is also true for dedicated RP-LC

methods  developed for example for the analysis of red grape
skins and blueberries [8], red radish and black beans [32] and red
cabbage [44].

Another noteworthy advantage of HILIC × RP-LC separation is
the group-type separation afforded by the combination of these
separation modes, as highlighted for grape skin and red cabbage
anthocyanins by the dotted lines in Figs. 4 and 5.
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Fig. 4. Contour plot obtained at 500 nm for the off-line HILIC × RP-LC analysis of grape skin anthocyanins. For gradient details and experimental conditions, refer to Section
2.4.1. Peak numbers correspond to Table 2. Notation: AGlc, anthocyanidin-glucosides; AAcyGlc, anthocyanidin-acetyl-glucosides; ACGlc, anthocyanidin-caffeoyl-glucosides;
A(pC)Glc,  anthocyanidin-(p-coumaroyl)glucosides.
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In the case of grape skins, anthocyanidin-3-glucosides elute
in the region of high HILIC retention (∼30–55 min  Fig. 4)
and low RP-LC retention (∼ 5–9 min). Relative to this group,
anthocyanidin-acetyl-glucosides elute in the region of moderately
high RP-LC (9–13 min) and lower HILIC retention (∼20–47 min).
Anthocyanidin-caffeoyl-glucosides elute amongst the acetyl-
glucosides but show higher retention in both dimensions. Finally,
anthocyanidin-p-coumaroyl-glucosides were the most retained
compounds in RP-LC and were moderately well retained in HILIC.
Within each of these classes, anthocyanins are grouped according
to the polarity of the anthocyanidin base, with the elution order
being opposite in HILIC to that observed in RP-LC, but also differing
in the relative retention between different anthocyanidin bases.

For the higher acylated anthocyanidin- tri- and tetra-glucosides
in red cabbage the following grouping was observed: the
anthocyanidin-di-acylated-tri-glucosides were the least retained
group of compounds in the HILIC dimension (∼31–35 min), and
were highly retained in the second dimension (∼12–14 min)
(Fig. 5). Relative to this group the anthocyanidin-mono-acylated-
tri-glucosides were more retained in the HILIC dimension
(∼45–50 min) and less in the RP-LC dimension (∼11–12 min).
Compared to these two groups, the anthocyanidin-di-acylated-
tetra-glucosides displayed higher retention in HILIC (∼51–55 min),
indicating that the degree of glycosylation is more important than
the degree of acylation in HILIC. Analogous to the tri-glucosides,
the mono-acylated-tetra-glucoside derivatives, the most retained
group of compounds in the first dimension (∼65–70 min), eluted
after the di-acylated-tetra-glucosides. In general the opposite
behaviour is observed in the second dimension, with RP-LC reten-
tion increasing with an increase in the degree of acylation and a
decrease in the degree of glycosylation.

The red radish sample also contains highly acylated antho-
cyanidins, and, similar to red cabbage, their relative retention
was primarily determined by the degree of glycosylation (espe-
cially important in HILIC) and acylation (influential in RP-LC).
For red radish anthocyanins, however, the presence or absence
of malonoyl-groups on the 5-O-glucoside added additional

selectivity: this form of acylation results in lower HILIC and higher
RP-LC retention (Fig. 3, Table 2). For both red cabbage and red radish
anthocyanins, for the same degree of glycosylation and acylation,
the elution order in both dimensions was  based on the polarity of
the acyl group.

This  relatively structured elution pattern observed for the
anthocyanins is advantageous, since it allows tentative assign-
ment of the degree and/or nature of acylation/glycosylation of
unidentified peaks according to their position in the contour
plot relative to known compounds. This is especially help-
ful when compounds with similar masses and fragmentation
patterns are encountered, such as for example pelaragonidin-3-(p-
coumaroyl)diglucoside-5(malonoyl)glucoside and pelaragonidin-
3-(feruloyl)diglucoside-5(malonoyl)glucoside isomers found in
red radish and cyanidin-3-(sinapoyl)diglucoside-5-glucoside and
cyanidin-3-(feruloyl)triglucoside-5-glucoside isomers in red cab-
bage. It is relevant to note here that the reproducibility of off-line
HILIC × RP-LC separation has been shown to be excellent [27].

3.3. Evaluation of the performance of off-line HILIC × RP-LC
separation of anthocyanins

The  performance of LC × LC separations is commonly evaluated
in terms of peak capacity, nc, defined as the number of peaks that
can theoretically be separated within a given analysis time [34,35].
Ideally the peak capacity of an LC × LC separation is equal to the
product of the peak capacities of the first (1nc) and second (2nc)
dimensions [36,37]. To determine the peak capacities of both HILIC
and RP-LC separations, the following relationship was used [26,38]:

nc,1D = 1 + tg

1/n
∑n

1wb
(1)

where  tg is the gradient time and wb is the peak width at baseline,
averaged for n number of peaks. The HILIC separation provided peak
capacities ranging between 46 and 78 for the analysed samples,
with the largest value obtained for red radish (Table 3). These val-
ues represent relatively good performance, especially considering
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Table  3
Summary of parameters used to calculate the practical peak capacity of off-line HILIC × RP-LC analysis of anthocyanins.

Parameters Blueberries Black beans Grape skins Red cabbage Red radish

HILIC peak capacitya, 1nc 58 46 65 60 78
RP  peak capacity (average)a, 2nc 176 196 109 171 159
Surface  coverageb, (SCs, fc) 0.563 1.00 0.639 0.625 0.938
Surface  coveragec, (SCCH, fc) 0.254 0.733 0.482 0.488 0.740
Theoretical  peak capacityd, nc,2D 10208 9016 7085 10260 12402
Under-sampling correction factore,  ̌ 1.15 1.16 1.22 1.10 1.32
Practical  peak capacityf, n*c,2D 4997 7772 3711 5830 8813
Practical  peak capacityg, n*c,2D 2255 5697 2799 4552 6953

a Calculated according to [38], Eq. (1).
b Calculated according to Stoll et al. [52] (supplementary information Fig. S3).
c Calculated according to the convex hull method [54] (supplementary information Fig. S4).
d nc,2D = 1nc × 2nc.
e

 ̌ = calculated according to Li et al. [49], Eq. (3).
f Calculated according to Eq. (2) [23], corrected for lack of orthogonality by using SCS [52] and under-sampling according to [49].
g Calculated according to Eq. (2) [23], corrected for lack of orthogonality by using SCCH [53] and under-sampling according to [49].

that chromatographic efficiency, and therefore peak capacities, are
generally lower in HILIC compared to RP-LC [47]. Peak capacities
for the second dimension RP-LC separations varied between 109
and 196 (average 163). These values represents excellent perfor-
mance for a relatively short gradient, which can be ascribed to the
use of a 2.6 �m superficially porous phase operated under optimal
conditions (low flow rate and elevated temperature), in accordance
with [9,10].

In  order to obtain a realistic measure of the performance
of HILIC × RP-LC separation of anthocyanins, the practical 2-
dimensional peak capacity (n∗

c,2D), taking into account both the
effects of first dimension sampling rates (i.e. first dimension under-
sampling) and finite orthogonality, was calculated according to:

n∗
c,2D =

1nc × 2nc × fc
ˇ

(2)

where   ̌ is a measure of under-sampling of first dimension peaks
[48] and fc is the fractional surface coverage of the available 2-
dimensional space [23].

For  the off-line hyphenation of HILIC and RP-LC separations, a
first dimension sampling time of 0.5 min  was used in the current
study. Considering the measured anthocyanin peak widths in HILIC,
every first dimension peak was therefore sampled 2–3 times. The
under-sampling correction factor, ˇ, was calculated according to Li
et al. [49] (Eq. (3)), and is listed for each sample in Table 3:

 ̌ =
√

1 + 3.35

(
1ts × 1nc

1tg

)
(3)

where 1ts is the sampling time and 1tg the gradient time in the
first dimension. Note that for off-line operation the sampling time
replaces the second dimension cycle time (2tc) in the original equa-
tion reported in Ref. [49], since the latter no longer determines the
sampling rate [26]. With the exception of red radish, the  ̌ values
determined for all samples indicated acceptable losses in the HILIC
peak capacity due to insufficient sampling rates. A higher  ̌ value for
red radish is a result of better HILIC efficiency for the anthocyanins
in this sample. The likely reasons for this have been addressed in
Ref. [22]: in short, the divergent chromatographic behaviour of red
radish anthocyanins may  be ascribed to higher rate constants for
the hydration reaction of the pelaragonidin derivatives found in
this sample compared to the other anthocyanidin derivatives [50].

Secondly, the orthogonality of the HILIC × RP-LC separation
of anthocyanins was also taken into account in the estimation
of the practical performance of the approach. Orthogonality is a
quantitative measure of efficacy of separation space utilisation in
comprehensive multidimensional separations. Several orthogonal-
ity metrics have been developed [23,51], although there is little

consensus  in literature regarding the most accurate measure of this
parameter. In this contribution, the effective surface coverage (SC,
fc) was  used as a measure of orthogonality, since this metric has
a direct relationship to the 2-D peak capacity [23]. Surface cover-
age (SC) was  estimated using two complementary methods: the
‘bin counting’ procedure described by Stoll et al. [52,53], and the
convex hull method (SCCH) [53,54] (referred to as SCS and SCCH in
Table 3, respectively). In the former approach the separation space
is divided into individual ‘bins’, and SC is determined by the col-
lective area of all bins containing peaks. The discretisation, in other
words the choice of the number of bins, is a critical parameter. In
this work, the number of bins, B, was  selected to be equal to the
number of components N in each sample according to Ref. [23]. In
the calculation of SCS, bins that do not contain compounds but that
are enclosed in the space covered by peaks are included; SCS is then
obtained by dividing the number of bins within the enclosed area
containing peaks by the total number of bins [23,53]. The convex
hull method estimates SC by means of a rectangular hull [53,54],
where the minimum convex hull is defined as the smallest poly-
gon that can surround a group of peaks with none of the inner
hull angles exceeding 180◦. A possible limitation of this method
is that open spaces within and near the hull edges may be included
because all interior hull angles are convex. It should also be noted
that both SCS and SCCH are sensitive to outlying components – such
data points may  therefore result in overestimation of orthogonality
of some two-dimensional systems found in literature.

SC values obtained using each of these methods, and the prac-
tical 2-dimensional peak capacities calculated from these values
according to Eq. (2) are presented for each of the samples in Table 3
(details on the calculation of SC are presented in the Supplementary
Information (Figs. S3 and S4). SCCH values are significantly lower
than the corresponding SCS values for all samples. These discrep-
ancies emphasise the importance of the metric used to estimate
orthogonality in the calculation of practical peak capacities. The
effect of the number of bins on SCS is especially critical for samples
with few analytes, as can be seen in the larger differences between
SCS and SCCH values for blueberries. Since the convex hull method
does not rely on discretisation, this method was considered to pro-
vide a more reliable measure of surface coverage, and the following
discussion will be limited to n∗

c,2D values obtained using SCCH
data.

From Table 3, it is evident that off-line HILIC × RP-LC analysis of
anthocyanins provides exceptionally high practical peak capacities
compared to 1-dimensional separations (depending on the sam-
ple, 39–124× higher values). These values confirm the improved
separation evident from the contour plots presented in Figs. 2–5
compared to 1-dimensional separations presented in Supplemen-
tary Information (Figs. S1 and S2). This improvement in separation
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performance is especially important considering that MS  detection
does not allow identification of isomeric structures.

It should be noted that this gain in performance is only achiev-
able using off-line operation, since the longer second dimension
gradient times provide high peak capacities in this dimension [26].
The off-line HILIC × RP-LC separation of a single sample requires
2310 min  for the shortest HILIC gradient and 3300 min  for the
longest under the conditions used here. Nevertheless, peak capacity
production rates (i.e. the number of peaks that can theoretically be
separated per minute) are in the order of 1.4–2.5 peaks/min. These
values compare favourably to those obtained by 1-dimensional
HILIC (0.6–0.8 peaks/min) and RP-LC (4.4–7.8 peaks/min) separa-
tions, yet provide much higher practical performance than either
of these methods.

In  this context, it is worth noting that while on-line LC × LC as a
rule provides much higher peak production rates, this may  not be
the case for anthocyanins: the unique effect of secondary equilibria
means that the chromatographic performance for these molecules
is much worse under fast analysis conditions as required for on-
line LC × LC operation. Current research is focused on exploring the
possibilities of on-line HILIC × RP-LC separation of anthocyanins.

4. Conclusions

The analysis of anthocyanins is challenging owing to the fact
that many of these compounds co-elute in one-dimensional sepa-
rations and have the same molecular weight and MS  fragmentation
patterns. In this study, off-line comprehensive 2-dimensional
HILIC × RP-LC methods for the analysis of anthocyanins were suc-
cessfully developed and evaluated. HILIC × RP-LC analysis was
found to offer improved resolution due to the combination of
independent separation mechanisms, allowing separation of com-
pounds co-eluting in either of the one-dimensional HPLC modes.
Practical peak capacities, taking into account both first dimen-
sion under-sampling and finite orthogonality, of up to 6950 were
obtained, providing peak production rates of up to 2.5 peaks/min.
Furthermore, the group-type separation obtained by the combina-
tion of HILIC and RP-LC retention mechanisms was found to provide
an effective means of facilitating compound identification.

The off-line HILIC × RP-LC method reported here proved suit-
able for the separation of a wide range of anthocyanins, including
anthocyanidin-mono-, -di-, tri- and tetra-glycosides as well as their
acylated derivatives found in blueberries, red grape skins, black
beans, red cabbage and red radish.
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Figure S1: LC-MS-UV chromatograms obtained at 500 nm for the RP-LC analysis of (a) black bean, (b) blueberry, (c) red grape skin, (d) red 

cabbage and (e) red radish anthocyanins at 50 ºC on a C18 column (50 × 4.6 mm i.d., 2.5 µm dp) using as mobile phase 7.5 % formic in acetonitrile 

(solvent A)/ 7.5 % formic in water (solvent B). For gradient details and further experimental conditions, refer to Section 2.4.1. Peak numbers 

correspond to Table 2. 
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Figure S2: LC-MS-UV chromatograms obtained at 500 nm for the HILIC analysis of (a) black bean, (b) blueberry, (c) red grape skin, (d) red 

cabbage and (e) red radish anthocyanins at 50 ºC on an Amide column (150 × 4.6 mm i.d., 2.5 µm dp) using as mobile phase 0.4 % TFA in 

acetonitrile (solvent A)/ 0.4 % TFA in water (solvent B). For gradient details and further experimental conditions, refer to Section 2.4.1. Peak 

numbers correspond to Table 2. 
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Figure S3: Surface coverage plots obtained using the Stoll method [23] for (a) blueberry, (b) black bean, (c) red radish, (d) red grape skin and (e) 

red cabbage anthocyanins. Data are summarised in Table 3. 
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Figure S4: Surface coverage plots obtained using the convex hull method [53] for (a) blueberry, (b) black bean, (c) red radish, (d) red grape skin 

and (e) red cabbage anthocyanins. Data are summarised in Table 3. 
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Abstract 

The chemical alteration of anthocyanins represents one of the most important transformations 

involved in red wine ageing. Accurate analysis of the these derived pigments, as required to 

study the evolution of anthocyanins and tannins during ageing, is however hampered by their 

extreme structural diversity, low levels, and the fact that many of these compounds have 

identical mass spectral characteristics. In this context, chromatographic separation is critical. 

In this contribution, the application of on-line hydrophilic interaction chromatography (HILIC) 

× reversed phase LC (RP-LC) separation coupled to high resolution MS is described for the 

detailed characterization of anthocyanins and their derived pigments in aged red wine. A 

systematic approach was followed for the optimization of HILIC×RP-LC separation 

parameters using a capillary LC system in the first dimension and an ultra-high pressure LC 

system in the second dimension to ensure maximum sensitivity and performance. Ninety four 

anthocyanin-derived pigments were tentatively identified in one- and six year old Pinotage 

wines using accurate mass and fragmentation information obtained on a quadrupole-time-of-

flight (Q-TOF) MS instrument. On-line HILIC×RP-LC-MS was found to offer high resolution 

separation due to the combination of two different separation modes, while the structured 

elution order observed improved certainty in compound identification. This approach therefore 

shows promise for the detailed elucidation of the chemical alteration of anthocyanins during 

wine ageing. 

Key words: Comprehensive two-dimensional liquid chromatography (LC×LC), anthocyanins, 

derived pigments, HILIC×RP-LC, wine, mass spectrometry (MS) 
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1. Introduction 

Anthocyanins (anthocyanidin-glycosides) are influential constituents of red grapes and wine 

that play an important role in the aesthetic perception and quality and also serve as markers for 

wine authentication. Red grape varieties are characterized by a relatively complex mixture of 

anthocyanins, primarily consisting of 5 anthocyanidin-glucosides and –diglucosides and their 

acylated, coumaroylated and caffeoylated derivatives1,2. During the production and ageing of 

red wine, these grape-derived anthocyanins undergo a number of chemical transformations that 

play an important role in the properties of the end product. Levels of grape-derived 

anthocyanins rapidly decrease as they react with other wine components, leading to the 

formation of more stable products that are responsible for the evolution of wine color as well 

as sensory properties (Figure S1). Extensive research utilizing model solutions as well as wine 

samples in combination with MS has enabled elucidation of the most important reaction 

pathways. These include the direct3 and acetaldehyde-mediated4 condensation with flavanols 

and proanthocyanidins, the formation of anthocyanin dimers and higher oligomers5,6, and the 

formation of diverse pyranoanthocyanins3 through reaction of anthocyanins with 

acetaldehyde7, pyruvic acid8,9, cinnamic acids10,11, acetoacetic acid12 and procyanidins in the 

presence of acetaldehyde13. As a result of these reactions, the complexity of the pigmented 

fraction of wines increases significantly during ageing. This, together with the fact that many 

of the formed products are present at trace levels and are themselves precursors to further 

reactions, is responsible for significant challenges in the accurate analysis of these compounds.  

The most commonly used method for the analysis of red wine anthocyanins is reversed-phase 

(RP) LC, mostly coupled to diode array detection (DAD) and/or MS or tandem mass 

spectrometry (MS/MS). RP-LC-DAD allows for selective detection of anthocyanins at 500 nm, 

whereas MS provides increased sensitivity and structural information. MS/MS is particularly 

beneficial for structural elucidation and compound identification14. However, RP-LC-

MS(/MS) also suffers from several limitations. The RP-LC separation of anthocyanins displays 

very low optimal flow rates as a result of on-column inter-conversion between flavylium 

cationic and carbinol pseudobasic forms of anthocyanins15,16, resulting in long analysis times 

or poor performance under sub-optimal conditions. Furthermore, the lack of commercially 

available standards and identical MS characteristics of several anthocyanin derivatives means 

that unambiguous identification of compounds is not possible in the absence of their 

chromatographic resolution. 
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The applicability of hydrophilic interaction chromatography (HILIC) as an alternative 

separation mode has recently been demonstrated for the analysis of diverse anthocyanins17. 

This mode of separation showed clear separation of anthocyanins according to degree of 

glycosylation and acylation, although isomeric compounds were not resolved. The combination 

of HILIC and RP-LC in comprehensive two-dimensional liquid chromatography (LC×LC) has 

been shown to offer an exceptionally powerful approach for the analysis of complex phenolic 

fractions18-23. We have recently demonstrated how off-line HILIC×RP-LC analysis provides a 

promising approach for complex anthocyanins mixtures, including grape skin extracts22. In this 

contribution, the development and optimization of an on-line HILIC×RP-LC method suitable 

for the analysis of pigments in aged wine is reported. The optimized method was hyphenated 

to high resolution time-of-flight (TOF) MS detection to allow tentative identification of a wide 

range of the target analytes.  

 

2. Experimental 

2.1 Reagents and materials 

Pinotage wine samples of 2013 and 2008 vintages were kindly donated by W.J. du Toit 

(Department of Enology and Viticulture, Stellenbosch University). The wines were produced 

using standard winemaking procedures at the Welgevallen Experimental cellar (DEV, SU), 

using grapes from the same vineyard and blueberries were purchased from the local 

supermarket. HPLC grade acetonitrile, methanol and trifluoroacetic acid (TFA) were 

purchased from Sigma-Aldrich (Aston Manor, South-Africa) and formic acid from Merck 

(Modderfontein, South-Africa). Deionised water was prepared using a Milli-Q water 

purification system (Millipore, Milford, MA, USA) and all mobile phases were filtered through 

0.45 µm HLVP membrane filters (Millipore) and degassed in an ultrasonic bath. The OASIS 

HLB solid phase extraction (SPE) cartridges (20 mL, 1 g) were from Waters (Milford, MA, 

USA). 

 

2.2 Sample preparation   

Blueberries were extracted in the same manner as previously reported17. Wine samples (100 

mL) were loaded onto a preconditioned (6 mL methanol and 6 mL water acidified with 0.1% 
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formic acid) SPE cartridge. The cartridge was rinsed with 2 × 10 mL acidified water and eluted 

with 5 mL methanol/formic acid (95/5 (v/v)). All anthocyanin containing methanolic fractions 

were evaporated to dryness and re-dissolved in 0.5 mL methanol/formic acid (95/5 (v/v)) prior 

to HPLC analysis.  

 

2.3 Instrumentation and chromatographic conditions 

A Waters capillary LC (CapLC®) system controlled by MassLynx v.4.1 software (Waters) was 

used in the first dimension. HILIC separation was performed on an Acquity UPLC BEH Amide 

column (150 × 1 mm i.d., 1.7 µm particles) with a UPLC pre-column filter (Waters). The 

mobile phases consisted of (A) 0.4 % TFA in acetonitrile and (B) 0.4 % TFA in water. The 

gradient was as follows: 12-35% B (0-315 min), 35-100% B (315-324 min), 100-12% B (324-

369 min). The flow rate was 1.0 µL/min and the column was thermostatted to 50 °C. Injection 

volumes of 2 and 3 µL were used for extracts of the 2013 and 2008 wine samples, respectively.  

In the second dimension RP-LC separations were performed on a Phenomenex Kinetex C18 

column (50 × 2.1 mm i.d., 1.3 µm particles) equipped with a security guard column 

(Phenomenex, Torrace, USA). Analyses were performed on an Acquity UPLC system 

equipped with a PDA detector controlled by Empower software (Waters). The binary mobile 

phases consisted of 7.5 % (v/v) formic acid in water (A) and 7.5 % (v/v) formic acid in 

acetonitrile (B). The gradient used was as follows: 1 % B (0-0.04 min), 1-13.5 % B (0.04-0.44 

min), 13.5-23.5 % B (0.44-0.86 min), 23.5-28.5 % B (0.86-1.0 min), 28.5 % B isocratic (1.0-

1.16 min), before returning to initial conditions at 1.26 min. The total analysis time including 

re-equilibration was 2 min. The column temperature was set to 60 ºC and the flow rate was 860 

µL/min.  

MS and MSE data were acquired on a Waters Synapt G2 quadrupole time-of-fight (Q-TOF) 

instrument operated independently from a separate computer equipped with MassLynx v.4.1 

software. Electrospray ionization was performed in positive mode with scan ranges of 200-

2000 amu and 40-2000 amu for MS and MSE acquisition, respectively. All other conditions 

were identical to those reported previously17, except that MSE acquisition was performed using 

a collision energy ramp of 20-60V. The instrument was calibrated using sodium formate 

solution and leucine encephalin was used as lock mass for accurate mass determination. 
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For HILIC×RP-LC separations the Cap-LC and UPLC instruments were interfaced through a 

10-port 2-position high pressure switching valve (1000 bar maximum pressure, 150 µm bore, 

Valco Instruments Co. Inc., Houston Texas, USA) equipped with two 5 µL loops and 

configured in a symmetrical manner24 (Figure S2). Switching of the valve occurred every 2 

min via the UPLC external events, which resulted in a first dimension sampling time of 2 min 

and a second dimension injection volume of 2 µL (i.e., 1 µL/min × 2 min). The RP-LC effluent 

was split ~ 1:1 after the PDA detector to provide a flow of ~ 430 µL/min to the MS. 

 

2.3.3 Data handling 

All optimisation and evaluation calculations were performed using Microsoft Excel. MS data 

analysis and identification of compounds was performed using Masslynx v.4.1. UV data for 

individual 2-minute second dimension analyses were exported as .csv files and used to create 

a matrix in Excel. Data were baseline corrected by subtracting a blank analysis and contour 

plots were generated using Matlab 7.14 (The Mathworks, Natick, MA, USA). MS data were 

acquired as a single data file for each analysis; the data were exported as .cdf files and imported 

into Matlab to create contour plots.  

 

3. Results and Discussion 

3.1 Method optimization 

Previous work by our group has demonstrated the advantages of off-line HILIC×RP-LC for 

anthocyanin analysis22: the combination of these orthogonal separation modes provides much 

higher resolving power, while group-type separation of different classes of anthocyanins 

faciliate compound identification and comparison between samples. The off-line methodology 

does however present several disadvantages, primarily in terms of very long analysis times (up 

to 55 hours) and increased risk of sample alteration during fraction collection and transfer. For 

the HILIC×RP-LC-MS analysis of wine pigments, therefore, an on-line methodology was 

developed to reduce the total analysis time (and data file size).  

On-line LC×LC involves the transfer of fractions from the first dimension column directly to 

the second dimension column via a switching valve. Several practical implications follow from 

this mode of operation. First of all, the speed of the second dimension separation is critical, 
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since in the time alloted for the collection of each fraction (the sampling time, 1ts), the previous 

fraction should be analysed and the column re-equilibrated: 

𝑡𝑠
1 = 𝑡𝑐

2 = 𝑡𝑔 + 𝑡𝑟𝑒−𝑒𝑞𝑢𝑖𝑙
22         equation 1 

Where 𝑡𝑐
2  is the second dimension cycle time, which is the sum of the gradient and re-

equilibration times. 𝑡𝑠
1  directly determines the degree of under-sampling of first-dimension 

peaks, while 𝑡𝑐
2  determines the second dimension (and overall) peak capacity as well as the 

total analysis time25. Furthermore, in the absence of flow splitting, the product of the first 

dimension volumetric flow ( 𝐹1 ) and the sampling time is equal to the injection volume per 

fraction in the second dimension, 𝑉𝑖𝑛𝑗
2 :  

𝑉𝑖𝑛𝑗 = 𝐹 × 𝑡1 𝑠
12            equation 2 

This is an important consideration in on-line HILIC×RP-LC, since HILIC mobile phases are 

strong injection solvents in RP-LC and therefore 2Vinj should be minimised. In order to establish 

the optimal experimental conditions for on-line HILIC×RP-LC, each of these considerations 

was taken into account in a similar manner as outlined reported previously25,26 and briefly 

outlined below.  

For the first dimension HILIC separation, a 1 mm i.d. amide column was used. A capillary LC 

system was employed in this dimension, since it has been shown that the optimal flow rate for 

anthocyanins on this column was ~6 µL/min17. Various first dimension gradient times ( 𝑡𝑔
1 , 

168-451 min) and flow rates ( 𝐹1 , 1-10 µL/min) were evaluated; for each set of conditions the 

peak capacity was determined according to equation 327: 

        equation 3 

where 𝑡𝑔 is the gradient time and 𝑤𝑏 is the peak width at baseline, averaged for n peaks. In the 

second dimension a Kinetex 50 × 2.1 mm, i.d., 1.3 µm dp C18 column was used for maximum 

performance for very short analysis times at a flow rate of 0.86 mL/min to minimize re-

equilibration times. A column temperature of 60°C was used to minimize the detrimental effect 

of anthocyanin secondary equilibria on chromatographic performance15,16. Several gradient 

times (1-10 min) were evaluated on this column, and the peak capacities obtained using 

equation 3 were fit to the empirical relationship derived by Fairchild and co-workers28. This 

𝑛𝑐,1𝐷 = 1 + 
𝑡𝑔

1
𝑛  𝑤𝑏

𝑛
1
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equation was used to determine the second dimension peak capacity for any cycle time in 

method optimization. Because the complexity of the wine extracts precluded accurate 

measurement of peak widths in both 1-dimensional analyses, a blueberry extract, which 

contains a simpler anthocyanin profile, was used to determine peak capacities in both 

dimensions for method optimization.  

Using these two sets of peak capacity values, the practical two-dimension peak capacity could 

be determined for any combination of conditions by correcting for both finite orthogonality 

and first dimension under-sampling: 

        equation 4 

where β is a measure of under-sampling of first dimension peaks29 and fc is the fractional 

surface coverage of the available 2-dimensional space30. Values for fc were determined using 

the ‘convex hull’ method31 and normalized retention data for the compounds identified in the 

wine samples (refer to section 3.2, Figure S5) 

Plots of 𝑛𝑐,2𝐷
∗  as a function of 𝑡𝑔

1  and 𝑡𝑐
2  for various 𝐹1  are presented in Figure S3. Most of 

these curves illustrate a characteristic maximum for 𝑛𝑐,2𝐷
∗ , which is a consequence of the 

compromise between second dimension peak capacity (higher 𝑡𝑐
2 and 𝑛𝑐

2 ) and less under-

sampling (lower 𝑡𝑐
2  and 𝑡𝑠

1 ). For the lower flow rates and longer first dimension gradient 

times, the maximum performance is reached only at very long 𝑡𝑐
2  times (> 10 min, Figure 

S3A and B). Comparing different first dimension flow rates and gradient times, it is evident 

that higher two-dimensional peak capacities are obtained at lower first dimension flow rates 

and longer gradient times. This is because the optimal sampling time increases with first 

dimension peak width, resulting in higher second dimension and therefore overall peak 

capacities. 

Related to these findings is the effect of first dimension flow and sampling time on the injection 

volume in the second dimension. Since this value is limited by the requirement to avoid 

injection band broadening (experimentally determined to be 2 µL for the columns and phases 

used here), splitting of the first dimension flow is required if optimal conditions in both 

dimensions are to be used25,32. The drawback of this is of course a loss in sensitivity. Figure 1 

𝑛 ∗𝑐,2𝐷  =
𝑛𝑐 

1 × 𝑛𝑐 × 𝑓𝑐
2

𝛽
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summarises the relationship between the corrected 2-dimensional peak capacity, 𝑡𝑐
2  and the 

required split ratios for various first dimension flow rates. 

 

 

Figure 1: Plot of corrected practical 2-dimensional peak capacity (𝑛𝑐,2𝐷
∗ ) as a function ofsecond 

dimension cycle time ( 𝑡𝑐
2 ) at various first dimension flow rates. The split ratios and total 

analysis times required for selected points are indicated. 

 

From Figure 1 it is evident that lower first dimension flow rates generally provide higher peak 

capacities, although this comes at the cost of longer overall analysis times (Figure S4). 

Furthermore, for a given first dimension flow rate, an increase in 𝑡𝑐
2  implies a concomitant 

increase in the split ratio. For example, for a first dimension flow rate of 10 µL/min and 𝑡𝑐
2  = 

8, a split ratio of 39:1 is required, whereas at 1 µL/min for the same 𝑡𝑐
2  a split ratio of 3:1 is 

required. Furthermore, the split ratio required at the optimal second dimension cycle time 

decreases with the first dimension flow (indicated in Figure 1).  
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Due to the low levels of anthocyanins and derived pigments in especially aged red wine, 

sensitivity was of paramount importance in the current study. For this reason, a low first 

dimension flow rate (1 µL/min) was selected to minimize the split ratio. For this flow rate, the 

optimal sampling time is ~10 min, with a requisite split ratio of 4:1. Initial experiments under 

these conditions showed insufficient sensitivity, and therefore we selected to reduce the cycle 

time to 2 min and work under splitless conditions. Under these conditions, practical two 

dimensional peak capacity is sacrificed for increased sensitivity (due to shorter second 

dimension analyses): 𝑛𝑐,2𝐷
∗  = 889 compared to 𝑛𝑐,2𝐷

∗  =2173 at 𝑡𝑐
2  = 10 min, split 4:1, indicated 

in Figure 1.  

A summary of the performance of the HILIC×RP-LC separation is presented in Table S1. The 

value for the surface coverage used here was the average value for both wine samples (Figure 

S5), while peak capacities in both dimensions were obtained for the blueberry extract. The gain 

in performance offered by on-line LC separation is evident. Under the conditions used here, 

the effect of first-dimension under-sampling is virtually negligible, although the performance 

of the second dimension separation is sacrificed by the use of short cycle times to avoid flow 

splitting. Comparison of these performance parameters with off-line HILIC×RP-LC separation 

of anthocyanins22 confirms that off-line operation affords much higher peak capacities due to 

the first and second dimension separations being carried out independently. However, this 

increased performance comes at a cost of exorbitant total analyses times for off-line 

separations.  

In the case of on-line HILIC×RP-LC, corrected 2-D peak capacities are 3.1× higher than have 

been reported even for highly optimized RP-LC separation of anthocyanins16. This gain in 

performance is especially relevant in light of the fact that many pigments in red wine cannot 

be distinguished by MS, as will be outlined in the next section. It is also worth noting that the 

reproducibility of the on-line HILIC×RP-LC method was good, with retention time variations 

of ± 1 modulation period in the first dimension and ± 0.03 min in the second dimension, 

respectively.  

 

3.2 On-line HILIC×RP-LC-MS analysis of red wine pigments 

Contour plots obtained at 500 nm for the on-line HILIC×RP-LC-UV-MS analysis of the 2013 

and 2008 Pinotage wines using the established conditions are shown in Figures 2 and 3. From 
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these figures, both the complexity of wine pigments and the improved resolution offered by 

the combination of the complementary separation mechanisms of HILIC and RP-LC is evident. 

Many of the compounds detected co-elute in either one of the dimensions, and the effective 2-

dimensional separation space is well utilized under the experimental conditions used.  

While UV detection at 500 nm has the advantage of allowing selective detection of pigmented 

molecules, hyphenation of HILIC×RP-LC with Q-TOF MS detection proved indispensible in 

allowing the identification of compounds based on accurate mass data, fragmentation 

information obtained from simultaneous MSE acquisition and comparison of relative retention 

times in both HILIC and RP-LC dimensions with previous literature reports14,16,33,34. On the 

basis of MS data, a total of 94 compounds were identified in both wine samples using relative 

retention times and accurate mass measurements. A summary of all compounds identified is 

presented in Table 1; these are discussed by class below.  

Anthocyanidin-glucosides: The predominant colored species present in the young 2013 

Pinotage wine are grape-derived anthocyanins, largely comprising anthocyanidin mono-

glucosides and their corresponding acetyl-, p-coumaroyl-, and caffeoyl derivatives. Malvidin-

3-glucoside (4) was the major pigment in both wines. Acylation of anthocyanins generally 

decreases HILIC retention, with the acetylated derivatives eluting slightly later than the 

corresponding coumaroylated derivatives17,22. Malvidin-3-caffeoyl-glucoside (15) was the sole 

caffeoylated derivative detected, only in the 2013 wine. Grape-derived anthocyanins are not 

stable in wine and their levels decrease significantly during maturation, as is evident from the 

much lower levels of compounds 1-15 in the 2008 wine.  

Anthocyanidin-di-glucosides: Low levels of anthocyanidin-di-glucosides (malvidin-3,5-

diglucoside (18), malvidin-3-coumaroylglucoside-5-glucoside (19) and malvidin-3-

acetylglucoside-5-glucoside (20)) were tentatively identified in the 2013 Pinotage based on 

accurate mass and relative retention times16,35. These compounds eluted before their 

corresponding anthocyanidin monoglucosides in RP-LC and were highly retained in HILIC.  

Oligomeric anthocyanins: The direct condensation of anthocyanins results in several 

oligomeric anthocyanins, four of which were tentatively identified in this sample using accurate 

mass data5,6,36. These include the dimers malvidin-glucoside-malvidin-glucoside- (21), 

malvidin-glucoside-malvidin-acetyl-glucoside (23) and malvidin-glucoside-malvidin-

coumaroyl-glucoside (24). The oligomeric anthocyanins are characterized by very broad peaks, 

which may be due to inter-conversion reactions of anthocyanins exacerbated by the fast second 
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dimension cycle time15,16. Similar to the free anthocyanins, levels of the diglucosides and 

oligomeric anthocyanins decrease rapidly with age. As a consequence, these compounds were 

not detected in the 2008 Pinotage. 
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Table 1: Mass spectral and retention data obtained for HILIC×RP-LC-UV-MS analysis of anthocyanin and derived pigments in 2008 and 2013 Pinotage wines. 

Peak 

No. 

HILICa 

tR 

(min) 

HILICb
 

tR 

(min) 

RP-LCa 

tR  

(min) 

RP-LCb 

tR  

(min) 

Identity Molecular 

Formula 

[M]+ 

Accurate 

massc 

(m/z) 

Error 

(ppm)d 

MSE fragments     MSE 

Fragments 

     Anthocyanidin-glucosides          

1 260.1 258.3 0.51 0.50 Delphinidin-3-glucoside C21H21O12 465.1035 0.2 303.05      

2 218.3 218.8 0.60 0.59 Petunidin-3-glucoside C22H23O12 479.1186 -0.4 317.06, 302.04, 274.80, 244.79      

3 186.2 185.0 0.67 0.66 Peonidin-3-glucoside C22H23O11 463.1244 0.4 301.07, 286.04, 258.05, 229.04, 

217.80, 202.06 

     

4 184.3 183.0 0.72 0.69 Malvidin-3-glucoside C23H25O12 493.1348 0.2 331.08, 315.05, 287.05, 270.05, 

242.05 

     

5 200.3 n.d.e 0.73 n.d. Delphinidin-3-acetylglucoside C23H23O13 507.1143 0.4 303.05      

6 168.3 n.d. 0.73 n.d. Cyanidin-3-acetylglucoside C23H23O12 491.1286 9.6 287.05      

7 168.3 n.d. 0.84 n.d. Petunidin-3-acetylglucoside C24H25O13 521.1295 0 317.06, 302.04, 274.04, 244.79      

8 144.3 n.d. 0.92 n.d. Peonidin-3-acetylglucoside C24H25O12 505.1354 0.8 301.00, 286.04, 258.05, 229.04, 

202.05 

     

9 142.4 141.3 0.96 0.94 Malvidin-3-acetylglucoside C25H27O13 535.1456 0.4 331.08, 315.04, 299.05, 287.05, 

270.05, 242.05 
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10 204.5 205.3 0.92 0.90 Delphinidin-3-coumaroyl-glucoside C30H27O14 611.1399 -0.2 303.05, 274.80      

11 176.5 n.d. 0.97 n.d. Cyanidin-3-coumaroyl-glucoside C30H27O13 595.1454 0.2 287.05      

12 172.5 171.3 1.01 1.01 Petunidin-3-coumaroyl-glucoside C31H29O14 625.1557 0 317.06, 302.04, 274.04, 246.79      

13 150.5 151.4 1.10 1.09 Peonidin-3-coumaroyl-glucoside C31H29O13 609.1598 -1.0 301.07, 286.04, 258.05      

14 148.1 145.5 1.13 1.13 Malvidin-3-coumaroyl-glucoside C32H31O14 639.1712 -0.2 331.08, 315.05, 299.05, 287.05, 

270.05, 242.05 

     

15 166.5 n.d. 1.01 n.d. Malvidin-3-caffeoyl-glucoside C32H31O15 655.1665 0.2 331.08      

     Anthocyanidin-di-glucosides          

16 282.1 n.d. 0.65 n.d. Delphinidin-diglucoside (3,5- or 3,7) C27H31O17 627.1472 -8.9 303.04      

17 246.3 n.d. 0.71 n.d. Malvidin-3,7-diglucoside C29H35O17 655.1807 -6.7 331.08      

18 266.2 n.d. 0.64 n.d. Malvidin-3,5-diglucoside C29H35O17 655.1917 4.3 331.08      

19 226.6 n.d. 0.99 n.d. Malvidin-3-coumaroylglucoside-5-glucoside C38H41O19 801.2216 -0.2 331.08      

20 224.4 n.d. 0.76 n.d. Malvidin-3-acetylglucoside-5-glucoside C31H37O18 697.9181 0.1 331.08      

     Oligomeric anthocyanins          

21 282.4 n.d. 0.89 n.d. Malvidin-glucoside dimer C46H49O24 985.2612 -0.2 823.20, 644.13, 331.08      

22 264.4 n.d. 0.82 n.d. Malvidin-glucoside dimer C46H49O24 985.2792 17.8 823.19, 331.07      
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23 226.6 n.d. 0.98 n.d. Malvidin-glucoside-malvidin-acetylglucoside 

dimer 

C48H51O25 1027.2719 0 823.21, 331.08      

24 232.7 n.d. 1.06 n.d. Malvidin-glucoside-malvidin-coumaroyl-

glucoside dimer 

C55H55O26 1131.3027 4.5 969.25, 823.21, 661.15, 331.08      

25 218.3 n.d. 0.7 n.d. Malvidin-malvidin-glucoside dimer C41H39O19 823.2136 2.1 331.08      

     Direct anthocyanin-tannin adducts          

26 270.1 268.2 0.50 0.50 Catechin-malvidin-glucoside (F-A type) C38H37O18 781.1985 0.5 619.14, 331.08      

27 n.d. 270.1 n.d. 0.46 (Epi)catechin-(C4-C6)-malvidin-glucoside 

(F-A type) 

C38H37O18 781.1925 -5.5 n.d.      

28 n.d. 270.2 n.d. 0.58 Epicatechin-malvidin-glucoside (F-A type) C38H37O18 781.1977 -0.3 619.15, 467.10, 331.08      

29 n.d. 270.2 n.d. 0.55 Malvidin-glucoside-(epi)gallocatechin (F-A 

type) 

C38H37O18 797.1209 n.d. 653.0641      

30 n.d. 214.9 n.d. 0.71 Malvidin-acetylglucoside-(epi)catechin (F-A 

type) 

C40H39O19 823.2107 2.1 619.15      

31 196.6 195.5 1.06 1.08 Malvidin-glucoside-di(epi)catechin (F-A 

type) 

C53H49O24 1069.2690 7.6 n.d.      
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32 n.d. 268.3 n.d. 0.6 Malvidin-glucoside-(epi)catechin-

(epi)gallocatechin (A-F type) 

C53H51O25 1087.2644 -7.5 n.d.      

33 244.3 238.61 0.6 0.6 Malvidin-glucoside-di(epi)catechin (A-F 

type) 

C53H51O24 1071.2787 1.7 n.d.      

34 164.3 n.d. 0.82 n.d. Malvidin-acetylglucoside-(epi)catechin (A-F 

type) 

C40H41O19 825.2252 1.0 n.d.      

35 190.3 189.0 0.72 0.71 Malvidin-glucoside-catechin (A-F type) C38H39O18 783.2079 -5.7 621.15      

36 196.4 193.1 0.84 0.82 Malvidin-glucoside-epicatechin (A-F type) C38H39O18 783.2133 -0.3 621.16, 469.10      

37 n.d. 197.0 n.d. 0.68 Malvidin-glucoside-(C4-C6)-(epi)catechin 

(A-F type) 

C38H39O18 783.2133 -0.3 621.15      

38 226.5 224.9 0.80 0.83 Peonidin-coumaroyl-glucoside-(epi)catechin 

(F-A type) 

C46H41O19 897.2348 10.6 n.d.      

39 222.5 223.0 0.85 0.86 Malvidin-coumaroyl-glucoside-catechin (F-A 

type) 

C47H43O20 927.2372 2.4 619.14      

40 226.5 n.d. 0.87 n.d. Malvidin-coumaroyl-glucoside-(epi)catechin 

(F-A type) 

C47H43O20 927.2339 -0.9 619.14      

     Acetaldehyde-mediated tannin adducts          
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41 198.9 199.5 1.30 1.23 Malvidin-ethyl-di(epi)catechin C55H53O24 1097.2914 -1.3 n.d.      

42 248.5 n.d. 0.82 n.d. Malvidin-glucoside-ethyl-(epi)gallocatechin C40H41O19 825.2242 0 n.d.      

43 258.5 n.d. 0.81 n.d. Malvidin-glucoside-ethyl-gallocatechin C40H41O19 825.2154 -8.8 n.d.      

44 216.8 n.d. 1.12 n.d. Malvidin-coumaroyl-glucoside-ethyl-

(epi)gallocatechin 

C49O47O21 971.2663 5.3 n.d.      

45 232.5 234.8 0.85 0.84 Malvidin-glucoside-(C4-C6)-ethyl-

(epi)catechin 

C40H41O18 809.2312 1.9 n.d.      

46 238.4 236.8 0.78 0.78 Petunidin-glucoside-ethyl-epicatechin C39H39O18 795.2179 4.3 n.d.      

47 248.4 246.6 0.76 0.72 Petunidin-glucoside-ethyl-catechin C39H39O18 795.2176 4.0 n.d.      

48 220.5 223.0 0.85 0.87 Peonidin-glucoside-ethyl-(epi)catechin C39H39O17 779.2220 3.3 n.d.      

49 210.5 n.d. 0.89 n.d. Malvidin-glucoside-ethyl-epicatechin C40H41O18 809.2315 2.2 n.d.      

50 220.5 n.d. 0.87 n.d. Malvidin-glucoside-ethyl-catechin C40H41O18 809.2284 -0.9 647.19      

51 182.6 n.d. 1.01 n.d. Malvidin-acetylglucoside-ethyl-catechin C42H43O19 851.2388 -1.1 n.d.      

52 188.7 n.d. 1.10 n.d. Malvidin-acetylglucoside-ethyl-epicatechin C42H43O19 851.2471 7.2 n.d.      

53 200.8 n.d. 1.18 n.d. Peonidin-coumaroylglucoside-ethyl-

(epi)catechin 

C48H45O19 925.2524 -3.1 n.d.      
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54 190.6 n.d. 1.10 n.d. Malvidin-coumaroyl-glucoside-ethyl-

(epi)catechinf 

C49H47O20 955.2663 0.2 n.d.      

55 196.8 199.5 1.21 1.21 Malvidin-coumaroyl-glucoside-ethyl-

(epi)catechinf 

C49H47O20 955.2580 -8.1 n.d.      

56 202.7 n.d. 1.10 n.d. Malvidin-coumaroyl-glucoside-ethyl-

(epi)catechinf 

C49H47O20 955.2682 2.1 n.d.      

     Anthocyanin-vinylflavanol condensation 

products 

         

57 248.5 n.d. 0.90 n.d. Malvidin-acetylglucoside-vinyl-

di(epi)catechin 

C57H51O25 1135.2878 15.9 n.d.      

58 250.4 246.7 0.77 0.78 Delphinidin-acetylglucoside-vinyl-catechin C40H35O19 819.1815 4.2 n.d.      

59 222.6 217.1 0.94 0.92 Petunidin-acetylglucoside-vinyl-catechin C41H37O19 833.1886 -4.3 n.d.      

60 194.6 193.3 1.05 1.02 Peonidin-acetylglucoside-catechin C41H37O18 817.1991 0.6 643.12      

61 196.6 193.3 1.02 1.02 Malvidin-acetylglucoside-vinyl-catechin C42H39O19 847.2087 0.1 n.d.      

62 n.d. 181.5 n.d. 1.15 Malvidin-acetylglucoside-vinyl-(epi)catechin C42H39O19 847.2104 1.8 643.14      

63 172.5 n.d. 0.98 n.d. Malvidin-acetylglucoside-vinyl-(C4-C6)- 

(epi)catechin 

C42H39O19 847.2118 3.2 n.d.      
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64 188.7 189.5 1.16 1.15 Malvidin-coumaroyl-glucoside-vinyl-

(epi)catechin 

C49H43O20 951.2275 -7.3 643.14      

65 233.4 232.1 0.71 0.68 Malvidin-glucoside-vinyl-(epi)gallocatechin C40H37O19 821.1866 -6.3 659.14      

66 278.4 272.5 0.86 0.84 Malvidin-glucoside-vinyl-di(epi)catechin C55H49O24 1093.2726 11.2 931.20, 641.13, 623.58      

67 214.7 213.3 1.05 1.05 Malvidin-glucoside-vinyl-catechin C40H37O18 805.1970 -1.4 643.14, 491.09      

68 214.8 211.3 1.13 1.14 Malvidin-glucoside-vinyl-(epi)catechin C40H37O18 805.1989 0.5 643.14, 491.09      

     Oxovitisins          

69 166.5 163.3 0.98 0.99 Pyranone-malvidin-glucoside C25H25O13 533.1314 1.9 371.07      

70 142.5 137.4 1.11 1.09 Pyranone-malvidin-acetylglucoside C27H27O14 575.1371 -3.0 n.d.      

71 160.7 153.4 1.23 1.21 Pyranone-malvidin-coumaroyl-glucoside C34H31O15 679.1638 -2.5 371.07      

     Anthocyanin-pyruvic acid products          

72 196.3 197.0 0.77 0.75 Malvidin-glucoside-pyruvic acid (Vitisin A) C26H25O14 561.1258 1.4 399.06, 383.04, 355.03, 310.05      

73 156.2 157.1 0.78 0.79 Malvidin-acetylglucoside-pyruvic acid 

(Acetylvitisin A) 

C28H27O15 603.1342 -0.8 399.07, 383.04, 355.04      

74 162.4 157.3 0.96 0.94 Malvidin-coumaroyl-glucoside-pyruvic acid 

(Coumaroylvitisin A) 

C35H31O16 707.1608 -0.4 399.06      
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75 n.d. 199.0 n.d. 0.70 Peonidin-glucoside-pyruvic acid C25H23O13 531.1162 2.3 365.05      

76 n.d. 232.6 n.d. 0.61 Petunidin-glucoside-pyruvic acid C25H23O14 547.1139 5.1 385.05      

77 n.d. 187.2 n.d. 0.83 Petunidin-coumaroyl-glucoside-pyruvic acid C34H29O16 693.1465 0.9 385.05      

     Anthocyanin-acetaldehyde derivatives          

78 158.2 n.d. 0.79 n.d. Malvidin-glucoside-acetaldehyde (Vitisin B) C25H25O12 517.1389 4.3 355.08      

79 138.5 n.d. 1.05 n.d. Malvidin-coumaroyl-glucoside-acetaldehyde 

(Acetylvitisin B) 

C34H31O14 663.1703 -1.1 355.07      

80 170.1 166.9 0.55 0.56 Delphinidin-glucoside-acetaldehyde C23H21O12 489.1029 -0.4 n.d.      

81 156.3 153.2 0.92 0.9 Delphinidin-acetylglucoside-acetaldehyde C25H23O13 531.1128 -1.1 n.d.      

     Anthocyanin-vinylcatechol derivatives          

82 n.d. 175.5 n.d. 1.13 Malvidin-glucoside-vinylcatechol (Pinotin A) C31H29O14 625.1581 2.4 463.10, 447.07, 419.08      

83 n.d. 143.5 n.d. 1.2 Malvidin-acetylglucoside-vinylcatechol C33H31O15 667.1660 -0.3 463.10      

84 n.d. 147.6 n.d. 1.26 Malvidin-coumaroyl-glucoside-vinylcatechol C40H35O16 771.1889 -3.6 463.10      

85 148.6 147.6 1.2 1.23 Peonidin-coumaroyl-glucoside-vinylcatechol C39H33O15 741.1796 -2.3 n.d.      

86 208.5 211.2 1.05 1.01 Petunidin-glucoside-vinylcatechol C30H27O14 611.1375 -2.6 449.08      

     Anthocyanin-vinylphenol derivatives          
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87 150.6 151.5 1.19 1.19 Malvidin-glucoside-vinylphenol (Pigment A) C31H29O13 609.1608 0 447.10, 431.07      

88 126.7 125.5 1.27 1.26 Malvidin-acetylglucoside-vinylphenol C33H31O14 651.1709 -0.5 447.10      

89 176.5 177.4 1.1 1.1 Petunidin-glucoside-vinylphenol C30H27O13 595.1395 -5.7 433.09, 417.08      

     Anthocyanin-vinylguaicol derivatives          

90 150.7 147.6 1.22 1.23 Malvidin-glucoside-vinylguaicol C32H31O14 639.1734 2.0 477.11      

91 n.d. 147.6 n.d. 1.23 Peonidin-glucoside-vinylguaicol C31H29O13 609.1555 -5.3 n.d.      

92 n.d. 179.5 n.d. 1.15 Petunidin-glucoside-vinylguaicol C31H29O14 625.1687 13 463.10      

93 n.d. 205.3 n.d. 1.02 Delphinidin-glucoside-vinylguaicol C30H27O14 611.1388 -1.3 449.08      

     Anthocyanin-vinylsyringol derivatives          

94 n.d. 145.6 n.d. 1.29 Malvidin-glucoside-vinylsyringol C33H33O15 669.1773 -4.6 507.32      

a Retention times for the 2013 wine. b Retention times for the 2008 wine. c Experimental accurate mass. d difference between experimental and theoretical accurate mass in parts per million 

(ppm). e Not detected. f identities of the isomers could not be determined based on retention and MS data.  

 

Stellenbosch University  http://scholar.sun.ac.za



22 
 

 

Comparison between Figure 2 and 3 also shows that most of the grape-derived anthocyanins 

identified in Figure 2 had been replaced by derived pigments in the older wine. A large number 

of pigments formed from the grape-derived anthocyanins during production and/or ageing were 

tentatively identified in both the Pinotage wines. 

Anthocyanin-tannin adducts: Anthocyanin-proanthocyanin adducts are mostly formed during 

the early stages of wine maturation35,37. Three different classes of compounds resulting from 

reactions involving anthocyanins and flavanols can be distinguished. The first group comprises 

the direct condensation products between anthocyanins and proanthocyanidins. Depending on 

the relative positions of the flavanol and anthocynain moieties, flavanol-anthocyanin (F-A) and 

anthocyanin-flavanol (A-F) configurations can be distinguished. The former compounds result 

from nucleophilic attack of anthocyanins in their hydrated forms on cationic flavanols, 

themselves originating from cleavage of procyanidins, while the latter class are formed from 

nucleophilic addition of the flavanol at C4 of an anthocyanin in the flavylium cationic form3,37-

43. Several direct tannin adducts were tentatively identified, including five A-F and six F-A 

adducts detected mostly in the 2008 wine. The F-A adducts are more retained in HILIC and 

elute earlier than the A-F adducts in RP-LC.  

A second class of anthocyanin-proanthocyanin adducts is formed by acetaldehyde-mediated 

condensation of anthocyanins and flavonols, leading to ethyl-linked adducts13,44,45. Sixteen 

acetaldehyde mediated condensation products were tentatively identified in the 2013 wine, 

only six of which were detected in the 2008 wine. This observation confirms that these 

compounds are progressively replaced during wine ageing.   

Anthocyanin-vinylflavanol condensation products are formed through cycloaddition of 

vinylflavanols (produced from cleavage of larger procyanidins) and anthocyanins44,46-51. 

Several vinylflavanol condensation products were detected, including the vinyl(epi)catechin 

derivatives of malvidin-glucoside (67, 68), malvidin- (61), peonidin- (60), petunidin- (59) and 

delphinidin-acetylglucoside (58), as well as two dimeric vinylflavanol adducts (57, 66). These 

higher oligomers are largely separated from the majority of pigments by their higher retention 

in the HILIC dimension.  

Several isomeric species were detected for the anthocyanin-tannin adducts. Since mass spectral 

data for these compounds were identical, tentative identification was based on the RP-LC 
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elution orders: in the case of two isomers, the catechin-derivative elutes before the epicatechin 

isomer. For some compounds, three isomers were observed, with the earliest eluting compound 

in RP-LC assigned to the C4-C6 adducts of the catechin species42.   

 

 

Figure 2: Contour plot for the on-line HILIC×RP-LC-UV-MS analysis of a 2013 Pinotage 

wine obtained at 500 nm. For gradient details and experimental conditions, refer to Section 

2.3.2. Peak numbers correspond to Table 1 and Figure 3. 

 

Pyranoanthocyanins: Pyranoanthocyanins are a group of stabilized pigments formed via the 

cycloaddition of compounds containing a polarizable double bond such as pyruvic acid, 

acetaldehyde and vinylphenols with anthocyanins at the C4 position7,9,11,52. These pigments are 

mainly formed from grape-derived anthocyanins during fermentation of must and later during 

maturation and ageing of red wines53. Anthocyanin-pyruvic acid and –acetaldehyde 

derivatives, the so-called Vitisin A and B compounds, respectively, are usually the most 

abundant pyranoanthocyanins found in red wine7,8,54. Six A-type vitisin derivatives, 

corresponding to the pyruvic acid derivatives of malvidin- (72), peonidin-(75) and petunidin-

glucoside (76) and the acetyl (73) and coumaroylated derivatives (74, 77) of malvidin-3-

glucoside were detected in the 2008 wine; only the malvidin derivatives were observed in the 
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younger wine. In contrast, four B-type vitisin derivatives were identified in the 2013 Pinotage, 

while only the delphinidin-glucoside (80) and delphinidin-acetylglucoside-acetaldehyde (81) 

derivatives were detected in the older wine.  

Anthocyanin-vinylphenol condensation products are formed by reaction between cinnamic 

acids and anthocyanins11. Five vinylcatechol, three vinylphenol, four vinylguaicol and one 

vinylsyringol derivatives were identified in the Pinotage wines. Especially the –vinylcatechol 

and –vinylguiacol derivatives were much more prevalent in the six year old wine. Noteworthy 

is that Pinotin A (malvidin-glucoside-vinylcatechol, 82) was not detected in the 2013 wine, but 

was one of the major pigments (based on peak area) in the older Pinotage. These observations 

are in line with reports that levels of anthocyanin-vinyl-phenol derivatives increase with wine 

age35,55.  

A third class of pyranoanthocyanins, the oxovitisins, are second-generation pigments formed 

through the nucleophilic attack of water on vitisins56. Three oxovitisins were detected (69-71); 

as expected, their levels were much higher in the older Pinotage wine.    

  

 

Figure 3: Contour plot for the on-line HILIC×RP-LC-UV-MS analysis of a 2008 Pinotage 

wine obtained at 500 nm. For gradient details and experimental conditions, refer to Section 

2.3.2. Peak numbers correspond to Table 1 and Figure 2. 
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3.3 Comparison of pigment composition between young and aged Pinotage wines based on 

HILIC×RP-LC contour plots 

Chromatographic retention data in two dimensions, especially in combination with mass 

spectral data, provides useful information for the identification of anthocyanins and their 

derivatives. An additional important benefit of HILIC×RP-LC separation is that the contour 

plots obtained facilitate the comparison of pigment profiles in young and aged wines by means 

of visual comparison. This is demonstrated in the retention data plots for the 2013 and 2008 

Pinotage wines shown in Figure 4, where the compounds present in both samples are identified 

based on their presence at the same position in the two-dimensional separation space. It has 

previously been shown that group-type separation is observed for the HILIC×RP-LC analysis 

of anthocyanins22. The anthocyanidin-mono-glucosides, -diglucosides, oligomeric 

anthocyanins (red circles, squares and triangles, respectively), anthocyanin-tannin adducts and 

anthocyanin-vinylflavanol condensation products (blue squares and triangles, respectively) all 

appear on the right-hand side of the contour plots. These groups of compounds are highly 

retained in HILIC and weakly to moderately retained in RP-LC. In the bottom left of the plots 

the anthocyanidin-acylated derivatives (red squares), anthocyanin-tannin adducts (blue 

squares), -pyruvic acid derivatives and acetaldehyde derivatives (black circles and triangles) 

are observed; these compounds are less retained in both RP-LC and HILIC dimensions. 

Compounds showing high retention in RP-LC and low retention in HILIC (top left of the plots) 

include the anthocyanin-coumaroylated derivarives (red squares), acetaldehyde-mediated 

tannin adducts, vinylflavanol condensation products (blue circles and triangles), oxovitisins 

(black circles), –vinylcatechol and –vinylphenol derivatives (magenta circles and squares). 

This retention information proves invaluable as an additional criterion in compound 

identification: from the position of a peak in the two-dimensional separation space, information 

may be gained about its relative polarity with reference to known compounds.  
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Figure 4: Retention data plot for the HILIC×RP-LC analysis of anthocyanins and derived 

pigments in (a) 2013 and (b) 2008 Pinotage wine. Symbols; □ anthocyanidin-glucoside, ○ 

anthocyanidin-diglucoside, ∆ oligomeric anthocyanins, □ anthocyanin-tannin adducts, ○ 

acetaldehyde-mediated tannins, ∆ vinylflavanol condensation products, □ oxovitisins, ○ 

anthocyanin-pyruvic acid derivatives, ∆ anthocyanin-acetaldehyde derivatives, ○ 

anthocyanin-catechol derivative, □ anthocyanin-phenol derivative, ∆ anthocyanin-guaicol 

derivative and ◊ anthocyanin-syringol derivatives. 

 

The plots in Figure 4 also facilitate evaluation of the evolution of pigments in Pinotage wines 

with age. For example, from Figure 4 the absence of anthocyanidin-diglucosides (red circles) 

and oligomeric anthocyanins (red triangles) in the 2008 wine sample is evident, and can be 

attributed to the significant decrease in concentration of the grape-derived anthocyanins during 

wine ageing. On the other hand, more anthocyanin-tannin adducts (blue squares), 

acetaldehyde-mediated tannins (blue circles) and anthocyanin-pyruvic acid derivatives (black 

circles) are detected in the aged wine.  

 

4.  Conclusions 

The evolution of anthocyanins plays a critical role in red wine processing and ageing, yet 

elucidation of the reactions involved and their effect on the pigment composition is hampered 

by the complexity and low levels of the products involved. It is only recently that “second 
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generation” derivatives could be identified through the application of highly selective 

analytical methodologies. In this contribution on-line HILIC×RP-LC-UV-MS has been shown 

to be a powerful method for the separation and identification of a wide range of anthocyanin 

derivatives found in young and aged red wines. The combination of two independent 

chromatographic retention mechanisms with accurate mass data and fragmentation information 

increases the certainty in compound identification. Improved chromatographic resolution 

facilitates distinguishing between compounds with identical MS characteristics, while the 

group-type separation obtained by HILIC×RP-LC provides an additional means of 

identification. UV contour plots facilitate visual comparison of pigment profiles between 

wines. HILIC×RP-LC-MS was therefore shown to offer a powerful method for screening of 

wine pigments, in addition to the potential identification of new molecules and pathways 

involved in their formation during wine ageing.  
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Figure S1. Structures of anthocyanins and their derived pigments detected in wine. 

Abbreviations: Dp = delphinidin; Cy = cyanidin; Pt = Petunidin; Pe = Peonidin; Mv = malvidin; 

ANC = anthocyanidin. 
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Figure S2: Schematic representation of the instrumental configuration used for on-line 

HILIC×RP-LC-UV-MS analyses. 
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Figure S3: Plots of corrected practical 2-D peak capacity (n*c,2D) as a function of second 

dimension cycle time (2tc) for various first dimension flow rates and gradient times: (A) flow 

rate 1 µL/min, gradient times (a) 230 min, (b) 295 min and (c) 406 min; (B) flow rate 2 µL/min, 

gradient times (a) 156 min, (b) 217 min and (c) 376 min; (C) flow rate 6 µL/min, gradient times 

(a) 72 min, (b) 126 min and (c) 217 min; (D) flow rate 10 µL/min, gradient times (a) 50 min, 

(b) 75 min and (c) 150 min.  
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Figure S4: Plot of corrected practical 2-D peak capacity as a function of total analysis time and 

second dimension cycle time at a first dimension flow rate of 6 µL/min. Values are plotted for 

first dimension gradient times of: 82 min (blue), 141 min (red) and 247 min (black). 
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Figure S5: Determination of the surface coverage of the two-dimensional separation space 

using the convex hull method for anthocyanins and derived pigments identified in (a) 2013 and 

(b) 2008 Pinotage wines by HILIC×RP-LC-MS analysis.  
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Table S1: Summary of parameters used to calculate the practical peak capacity of on-line 

HILIC×RP-LC analysis of red wine pigments. 

Parameters Value 
aHILIC peak capacity, 1nc 22 
aRP peak capacity (average), 2nc 63 
bSurface coverage, (SCCH , fc) 0.6821c 

dTheoretical peak capacity, nc,2D 1386 
eUnder-sampling correction factor, β 1.02 
fPractical peak capacity, n*c,2D

 889c 

Total analysis time (min) 408 
 

aCalculated according to27, equation 3. 

bCalculated according to the convex hull method31. 

cValues are the average for the 2013 and 2008 wines. 

dnc,2D = 1nc × 2nc 

eβ = calculated according to Li et al.29. 

fCalculated according to equation 4, corrected for lack of orthogonality by using SCCH
31 and 

under-sampling according to29. 
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