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Abstract 

 

Research has confirmed the educational value of mathematical modelling for learners of all 

abilities. The development of modelling competencies is essential in the modelling approach. 

Little research has been done to identify and develop the mathematising modelling competency 

for specific sections of the mathematics curriculum. The study investigates the development of 

mathematising competencies during the modelling of number pattern problems. The RME theory 

has been selected as the theoretical framework for the study because of its focus on 

mathematisation. Mathematising competencies are identified from current literature and 

developed into models for horizontal and vertical (complete) mathematisation. The complete 

mathematising competencies were developed for number patterns and mapped on a continuum. 

They are internalising, interpreting, structuring, symbolising, adjusting, organising and 

generalising. The study investigates the formulation of a hypothetical trajectory for algebra and 

its associated local instruction theory to describe how effectively learning occurs when the 

mathematising competencies are applied in the learning process. Guided reinvention, didactical 

phenomenology and emergent modelling are the three RME design heuristics to form an 

instructional theory and were integrated throughout the study to comply with the design-based 

research’s outcome: to develop a learning trajectory and the means to support the learning 

thereof. The results support research findings, that modelling competencies develop when 

learners partake in mathematical modelling and that a heterogeneous group of learners develop 

complete mathematising competencies through the learning of the modelling process. 

Recommendations for additional studies include investigations to measure the influence of 

mathematical modelling on individualised learning in secondary school mathematics.  

 

Key words: mathematical modelling, modelling competencies, mathematisation (horizontal 

and vertical), hypothetical learning trajectory, local instructional theory, number patterns 
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Abstrak 

 

Navorsing steun die opvoedkundige waarde van modellering vir leerders met verskillende 

wiskundige vermoëns. Die ontwikkeling van modelleringsbevoegdhede is noodsaaklik in 'n 

modelleringsraamwerk. Daar is min navorsing wat die identifikasie en ontwikkeling van die 

bevoegdhede vir matematisering vir spesifieke afdelings van die wiskundekurrikulum beskryf. 

Die studie ondersoek die ontwikkeling van matematiseringsbevoegdhede tydens modellering van 

getalpatrone. Die Realistiese Wiskundeonderwysteorie is gekies as die teoretiese raamwerk vir 

die studie, omdat hierdie teorie die matematiseringsproses sentraal plaas. 

Matematiseringsbevoegdhede vanuit die bestaande literatuur is geïdentifiseer en ontwikkel tot 

modelle wat horisontale en vertikale (volledige) matematisering aandui. Hierdie 

matematiseringsbevoegdhede is spesifiek vir getalpatrone ontwikkel en op ‘n kontinuum geplaas. 

Hulle is internalisering, interpretasie, strukturering, simbolisering, aanpassing, organisering en 

veralgemening. Die studie lewer die formulering van ‘n hipotetiese leertrajek vir algebra, die 

gepaardgaande lokale onderrigteorie en beskryf hoe effektiewe leer plaasvind wanneer die 

ontwikkelde matematiseringsbevoegdhede volledig in die leerproses toegepas word. Die RME 

ontwikkellingsheuristieke, begeleidende herontdekking, didaktiese fenomenologie en 

ontluikende modellering, is geïntegreer in die studie sodat dit aan die uitkoms van ‘n 

ontwikkelingsondersoek voldoen. Die uitkoms is ‘n leertrajek en ‘n beskrywing hoe die 

leerproses ondersteun kan word. Die analise het tot die formulering van ‘n lokale-onderrig-teorie 

vir getalpatrone gelei. Die resultate van die studie kom ooreen met navorsingsbevindings dat 

modelleringsbevoegdhede ontwikkel wanneer leerders deelneem aan modelleringsaktiwiteite, en 

bewys dat ‘n groep leerders met gemengde vermoëns volledige matematiseringsbevoegdhede 

ontwikkel wanneer hulle deur die modelleringsproses werk. 'n Aanbeveling vir verdere 

navorsing is om die uitwerking van die modelleringsperspektief op individuele leer in hoërskool 

klaskamers te ondersoek. 

Sleutelwoorde:  wiskunde modellering, modellerings bevoegdhede, matematisering 

(horisontaal en vertikaal), hipotetiese leertrajek, lokale onderrigteorie, getalpatrone 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 

 

1.1 BACKGROUND TO THE STUDY 

 

Mathematics education has endured many a change over the past decade. This change can be 

attributed to the change in nature of mathematics and what mathematics means to the average 

learner, his life and career choices. The Programme for International Student Assessment (PISA) 

document emphasises the usefulness of mathematics in the world and the importance of learners’ 

understanding the relevance of it (Organisation for Economic Cooperation and Development 

[OECD], 2003). Meaningful mathematical experiences demand the teaching and learning of 

mathematics be more applied. 

 

Research has established the educational value of mathematical modelling (Barbosa, 2006; 

Kaiser & Schwarz, 2006; Lingefjärd, 2006; Maaβ, 2006). From an educational perspective, 

mathematical modelling is dealt with as a means and as a goal. As a means, the mathematical 

modelling concept has the advantage of developing and constructing mathematical knowledge, 

and as a goal it has the advantage of developing mathematical skills and mathematical thinking 

(Sjuts, 2005). This is true for learners with different abilities at all levels of school mathematics. 

Average learners are capable of forming powerful mathematical models and constructs: these 

conceptual systems that form the basis of these models, are often are more sophisticated than 

those they are currently taught in schools (Lesh, & English, 2005; Kaiser & Schwarz, 2006). 

Mathematical modelling ensures a richer learning experience as it embraces the aspect of doing 

mathematics (Burkhardt, 2006).  To ensure the outcome of the purpose of mathematics 

education, to produce critical, reflective thinkers who are prepared to solve problems in their 

lives, attention must be given to important and relevant mathematics (Brenner, 1998). When a 

teacher adopts a mathematical modelling perspective and consequently a problem-centred 

approach to teaching, it has the possibility to change the perspective of teaching and learning 

mathematics from the teacher’s perspective and the learners’ perspective.  

 

Stellenbosch University  http://scholar.sun.ac.za



2 
 

The learning of mathematics involves constructing concepts based on an existing reference 

frame. It is a socio-constructive experience. Mathematics education employs constructivism from 

a cognitive position as well as a methodological position (Hanley, 1994; Noddings, 1990). The 

constructivist learning theory is the process whereby individuals construct their own knowledge 

and understanding for themselves. Thus the learning process is a social phenomenon where 

communication is vital (Cobb & Yackel, 1998; Ward, 2005). The ability to solve mathematical 

problems is more valuable than having the knowledge but lacking the competencies to apply that 

knowledge. “Knowledge should be intelligent and applicable, not an inactive and isolated one, 

because knowledge should be developed into ability” (Sjuts, 2005, p. 424). The constructivist 

theory requires a learner-centred, problem-centred and collaborative approach to teaching, where 

the learner has the opportunity to interact with their awareness, as well as the opportunity to 

construct their own knowledge. Cobb (1999) regards the prime responsibility of the teacher to 

generate a collaborative, problem-solving environment. Solving mathematical problems 

adequately initially requires inductive skills but later also deductive skills in the development of 

their reasoning, which forms an important basis for higher mathematical thinking. Through 

mathematical modelling, learners develop the necessary competencies and skills to solve 

mathematical modelling problems. Maaβ (2006) discusses the importance of using problem 

solving skills and divergent thinking when dealing with a mathematical modelling problem.  

 

Mathematical models are representations constructed from real life problems to aid the problem-

solving process. Mathematical modelling can be described as the process where an authentic 

problem is solved by forming a model of the real situation, constructing a mathematical model 

from the real situation, constructing a mathematical model from the real model, finding a 

mathematical solution, and interpreting and validating the solution with regards to the original 

problem (Borromeo Ferri, 2006; Lingefjärd, 2006; Maaβ, 2006). Various problem-solving skills 

and competencies are enhanced while working through the modelling cycle on unseen, non-

routine problems. The modelling cycle explains the modelling process from a real world problem 

to a validated solution. The competencies noted as a learner moves through the modelling cycle 

are understanding the task, simplifying the task, mathematising, working mathematically, 

interpreting and validating the solution. During this study various competencies are explored but 
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the focus of this study is on the competency mathematising. The following section provides an 

explanation of the mathematisation process and its relevance to the study. 

 

 

1.2 RATIONALE OF THE STUDY 

 

Realistic Mathematics Education (RME) is a teaching and learning theory that was first 

introduced and developed by the Freudenthal Institute in the Netherlands. RME has a certain 

view on mathematics education. Freudenthal (see Gravemeijer, 1994) envisioned that 

mathematics education needs to be connected to reality and mathematics as a human activity. If 

mathematics is connected to reality it will allow learners to reinvent mathematics so that they 

experience a similar invention-process. This will allow for mathematics to be meaningful and 

relevant in their lives. They have developed six principles that depicts the essence of RME: the 

activity principle, reality principle, level principle, intertwinement principle, interaction principle 

and the guidance principle (Van den Heuvel-Panhuizen, 2000, pp. 5-9). If the RME principles 

are integrated within mathematics education learners will work with a series of progressive 

realistic problems during guided instruction and will have the opportunity to reinvent 

mathematics by doing it.  

Mathematics as human activity involves an explorative type of modelling which occurs at the 

“level of concept formation” (Andresen, 2007, p. 2042). This is the activity of mathematising. 

Mathematising involves the sense making, quantifying and coordinating of experiences using 

different mathematical methods (Lesh & Sriraman, 2005). Treffers signifies eight characteristics 

that need to occur during the learning process so that opportunities for mathematising are best 

possible. These include activity, differentiation, vertical planning, structural character, 

applicability, language, dynamics and a specific approach (Treffers, 1987, p.58-71). Treffers 

(1987) distinguished between horizontal and vertical mathematisation. In horizontal 

mathematisation learners organise and solve a problem that is real to them and in vertical 

mathematisation learners reorganise the mathematical system itself (Van den Heuvel-Panhuizen, 

2003). According to Wessels (2009), learners find the mathematising component the principle 

problem area within the mathematical modelling process. The study will integrate the RME 

Stellenbosch University  http://scholar.sun.ac.za



4 
 

 

Level 1: Activity in task setting 

 

Level 2: Referential activity 

 

Level 3: General activity 

 

Level 4: Formal activity 

principles and characteristics for mathematising when planning and executing the teaching and 

learning activities.  

During mathematical modelling, learners construct models in different parts of the modelling 

process and at different activity levels. Figure 1.1 shows the relationship between the four 

activity-levels that result in the merging of models. Horizontal mathematising is the first step in 

the modelling process. When a learner translates a contextual problem into a mathematical 

model, the learner’s own experience is being reinvented. As the problem is being analysed, 

activity at situational level occurs. Horizontal mathematising occurs at the situational level. As 

the learner further engages in the problem, a model is formed at referential level. This model is 

constructed to be a model of a specific situation. Models are further used to model other 

situations: this is known as the activity at general level which occurs as the model of now 

becomes a model for. Vertical mathematisation occurs as a learner moves between the referential 

and the formal activity levels.  

 

 

 

 

 

 

 

 

 

 

  

Figure 1.1: Levels of activity (Gravemeijer, Cobb, Bowers & Whitenack, 2000, p. 243) 

 

The objective of the RME theory is to deliver a local instructional theory (LIT) that includes 

learning activities and rationales to provide the necessary support for teachers to adapt and 

implement the instructional theory for their specific classes (Gravemeijer, 1999, 2004). The 

RME theory’s design heuristics provide the necessary guide to develop a local instructional 

theory (LIT). The design heuristics are guided reinvention, didactical phenomenology and 
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emergent modelling (Gravemeijer, 1999). The (LIT) develops through the formulation of an 

actual observed learning trajectory (LT) by planning a hypothetical learning trajectory (HLT). A 

HLT provides a teacher with a path of development which is directed towards a specific goal and 

changes continually to support teaching and learning. Simon (1995, p. 133) notes the importance 

of a HLT. When constructing a HLT, it needs to incorporate learning goals, the learning 

activities and the thinking and learning of learners. Instructional tasks are designed to match the 

levels of thinking to progressively work towards the goal of that specific trajectory. A different 

number of problems constitute the HLT. As a learner moves through the trajectory, strategic 

thinking is developed, and he is able to construct a higher or further level of formal mathematics 

beyond informal mathematics. 

 

In the South African curriculum, a fraction of the time is allocated to modelling problems. 

If the focus is shifted to a problem-solving mathematics curriculum, the possibility exists that 

learners can achieve a higher level of thinking. Higher order thinking involves and results in the 

connections a learner makes between different mathematical knowledge and constructs. Van den 

Heuvel-Panhuizen (2003) notes that models can be utilised to bridge the gap between informal 

and formal mathematics; resulting in formal understanding. Through the learner’s construction of 

emerging models and the process of progressive mathematisation, it leads to building strategic 

knowledge which will assist him moving up to a higher level of understanding mathematics and 

constructing mathematical knowledge.  

 

 

1.3 PROBLEM STATEMENT 

 

The contributing value of mathematical modelling to the learning process of the individual 

learner and the complementing role in mathematics education cannot be ignored. The 

transmission approach to mathematics subject didactics involves an over-reliance on a series of 

procedures of algebraic manipulation and solving routine problems from a theoretical point of 

view. This type of mathematics has done little to enhance learners’ ideas of mathematics in real 

life or the understanding of real life problems (Brown, 2008). The process of mathematisation is 

also part of the traditional teaching approach but the sense making, quantifying and coordinating 
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of experiences using different mathematical methods (see Lesh & Sriraman above) which is the 

heart of mathematics understanding, is missing in many mathematics classrooms. Mathematising 

is directly related to the underlying processes when a learner grapples with unseen, non-routine 

problems. The emphasis in this study will be placed on the mathematisation process, by 

formulating a teaching-learning trajectory which will focus on the understanding of number 

patterns that is being learned. As the learner moves through the different activity levels in no 

specific order, based on Gravemeijer’s model (see Figure 1.1), the different elements that suggest 

horizontal and vertical mathematisation processes can be noted. It is possible to make a 

distinction between horizontal and vertical mathematisation and to explore the competencies of 

each mathematisation process. The following research questions will guide the study.  

 

Research question: 

How does the development of a local instructional theory influence learners’ development of 

mathematising competencies when modelling number pattern problems? 

The study will aim to: 

Aim 1: describe a mathematical modelling perspective towards the teaching and  

learning of mathematics 

Aim 2:  analyse the process of mathematisation, and mathematising competencies 

Aim 3: analyse number patterns in terms of the processes of mathematisation  

Aim 4:   design of hypothetical learning trajectory that will form a learning trajectory 

Aim 5:   design a learning trajectory that will form a framework for a local instructional theory 

 

Sub research questions: 

1.1 What is the nature and scope of the didactics and curriculum theory that should be 

formulated to address the research question? 

1.2  What is a modelling perspective towards the teaching and learning of mathematics? 

 

2.1 What constitutes the process of mathematisation?  

2.2 What are the differences between horizontal and vertical mathematisation based on a 

mathematical modelling framework? 

2.3 What are horizontal and vertical mathematising competencies? 
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3.1 How can number patterns be explained in terms of the processes of mathematisation? 

3.2 What are mathematising competencies for number pattern problems?  

 

4.1 What constitutes a hypothetical learning trajectory? 

4.2 How does the type of activity contribute to the aim/objective of the activity?  

4.3  What are the roles of the activities which make up the hypothetical learning trajectory? 

4.4  How does a hypothetical learning trajectory contribute to and influence a learner’s 

mathematising? 

 

5.1 When does a hypothetical learning trajectory become a learning trajectory? 

5.2 Does a local instructional theory assist the application of modelling in mathematics to 

lead to a better understanding of mathematisation by the learners? 

 

The intention for this study is to contribute to the current research on learning and teaching of 

mathematical modelling. 

 

 

1.4 AIM OF THE INVESTIGATION 

 

The aim of the study focuses on the foundation: learning for meaningful understanding. An 

improved adaptation would be: understanding for meaningful learning. When combining a 

mathematical modelling approach with a problem-centred perspective towards the teaching and 

learning of mathematics, the learner experiences mathematics as a process created by the learner 

himself. For meaningful mathematical experiences to occur, it is important for a learner to build 

his own understanding. Section 1.2 explained that a RME theory will result in meaningful 

learning when mathematics is reinvented through guided instruction. The RME theory will be 

incorporated in all aspects of the study. 

 

In Chapter 2 the various perspectives of mathematical modelling will be explored to establish the 

characteristics of the mathematical modelling process. The mathematical modelling 

competencies will be identified and explained to focus the study on the activities that identify the 
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competency mathematising. The process of mathematisation will be investigated to distinguish 

between horizontal and vertical mathematising competencies and to develop models for 

mathematising competencies. The goals for the study will be selected by means of a 

phenomenological analysis in Chapter 3 so that the HLT in Chapter 4 is in line with the RME 

theory’s design heuristics for an instructional theory. Mathematical modelling learning activities 

will be selected for the HLT based on the researcher’s predicted learning goals. The learning 

activities in the HLT will guide the learning process as learners complete the different activities. 

The learning activites will support learners’ reasoning and mathematical development. 

Investigating the dimensions of development of the models and adapting the LT accordingly will 

accommodate the facilitation of further understanding. The learners will learn the modelling 

process during the teaching experiment while working through the modelling problems. As the 

learners work towards emergent modelling, a comprehensive description will be given to analyse 

the mathematisation process. It is then possible to investigate the learners’ horizontal and vertical 

mathematising competencies. Chapter 5 will analyse the horizontal and vertical mathematising 

competencies and provide a rationale for each learning activity. A local instructional theory will 

evolve through the actual observed learning trajectory which will form a theory for number 

patterns. 

 

 

1.5 RESEARCH METHODOLOGY 

 

1.5.1  Research design 

The project will be carried out in the context of a typical design research framework within a 

qualitative research process (Gravemeijer et al., 2000). This research design is flexible and 

evolves as theories develop throughout the research process. It is characterised by planning and 

creating educational settings for investigating the teaching and learning process. The design-

based research methodology consists of the preparation phase for a teaching experiment, the 

teaching experiment to support learning and a retrospective analysis for the collected data (Cobb 

& Gravemeijer, 2008). A feasibility study will be conducted to develop a local instructional 

theory for a specific topic in the mathematics curriculum, namely Number Patterns. A 

hypothetical learning trajectory will be used as guidance for the study and data-analysis. The 
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data-analysis will be aimed at understanding the horizontal and vertical mathematisation 

processes of the learners.  

 

1.5.2  Sample 

The investigation will be conducted in a multi-cultural, English medium school. The classroom 

will follow a typical mathematical modelling perspective constituting a problem-centred 

approach. During their Grade 10 year, the learners were introduced to the problem-centred 

approach to teaching and learning mathematics. The learners will therefore be familiar with a 

collaborative culture of learning. A focus group will be randomly selected consisting of six 

learners from the Grade 10 mathematics class. 

 

1.5.3  Method 

1.5.3.1 Research instruments  

Research instruments to assist in collecting data will be designed and used during the teaching 

experiment. A baseline assessment will be developed to assess the learners’ pre-knowledge of 

number patterns. It will help formulate a clear goal for a trajectory. The baseline assessment will 

provide the starting points of the initial HLT. The number pattern competencies will be 

documented throughout the teaching experiment. An interview questionnaire will be used to gain 

insight into learners’ opinions about the modelling process. The researcher observation guide 

will be used to collect valuable information during the teaching experiment. 

   

1.5.3.2 Development of the hypothetical learning trajectory (HLT) 

High quality modelling problems will ensure that learners move through all the steps of the 

modelling process. The design of the problems will be guided according to the RME principles. 

Learning activities will be selected by the researcher to support the learners’ learning. The 

activities need to be authentic, applicable and appropriate (Busse, 2006; Kaiser & Schwarz, 

2006; Maaβ, 2006). The development of a HLT will be described. Each learning activity which 

constitutes the LT will be analysed and explained. The data from the learners’ written work and 

audio recordings will be used to compare the researcher’s predicted learning goals with the 

actual observed learning. The teaching experiment of the study (macro cycle) consists of micro 
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cycles (teaching experiments) that form a local instructional theory (LIT). A LIT will be 

developed for number patterns.  

 

1.5.3.3 Collecting data 

(a) The focus group will be audio recorded and transcribed  

(b) Class discussions will be video recorded and transcribed 

(c) Field reports will be collated on a daily basis 

(d) Portfolios of the instructional activities and the focus group’s written work will be 

collected 

(e) The elements indicating the different activity levels and mathematisation processes will 

be noted  

(f) Learners’ written transcripts will be analysed  

(g) Horizontal mathematising will be identified and analysed 

(h) Vertical mathematising will be identified and analysed 

(i) The role of the activities will be explored 

(j) Progress during the modelling process will be noted 

 

1.5.3.4 Research criteria 

Cobb, Stephan, McClain and Gravemeijer (2001) explained three criteria that an investigation 

should fulfil for the study to contribute to an improvement in mathematics education. The first 

criterion requires the documentation of the development of the collaborative classroom during 

the course of the teaching experiment. During the retrospective analysis, the learning activities 

will be analysed so that the development of the class as a community of mathematical learners 

can be appreciated. The second criterion focuses on the documentation of the mathematical 

reasoning of individual learners as they participate in the classroom community. The 

retrospective analysis will include a task-based analysis which focuses specifically on the 

individual’s attainment of learning goals. The longitudinal analysis also references specific 

learners and records their contributions to the study. The third criterion recommends that the 

outcome of the investigation should result in an improvement of the instructional design. This is 

an outcome of the DBR methodology, the RME theory and therefore an outcome of the study. 

Through the development of a LIT the learners’ learning is supported and the improvement of 
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the individual and collective group is shown throughout the teaching experiment (macro cycle). 

This also contributes to the reliability of the study that will be discussed in Chapter 4. 

 

1.5.3.5 Ethical considerations  

Permission was given by the ethical committee of Stellenbosch University (Appendix D1) and 

the KwaZulu-Natal Department of Education to conduct the research. All measures were taken to 

minimise risks and maximise benefits during the study. Informed consent was given by the 

principal, head of department and the participants. The researcher used a coding system to 

protect the privacy of the participants. The participants were coded alphabetically and in no 

specific order from A to Q.  

 

 

1.6 LAYOUT OF THE DISSERTATION 

  

Chapter 1 gives a brief overview of the theoretical framework. The attention is directed at the 

motivation, aims and objectives of the investigation. The problem statement is described to focus 

the investigation on the information subject to the importance of the research. The research 

design is shortly described as direction for the study and lists important elements for 

investigation within the literature review. 

 

Chapter 2 provides a review of past and current research focuses on a mathematical modelling 

perspective in mathematics education. This serves as a framework towards the teaching and 

learning of mathematics. Literature is compared and clarified to serve as a basis of the study. It is 

important to note that limited research has been done in relation to the actual mathematisation 

processes: horizontal and vertical mathematising. In this chapter, these processes will be 

explained, analysed and incorporated within mathematical modelling.  

 

Chapter 3 is the first phase of the design study. A phenomenological analysis will result in the 

goals for the study. This will assist with the development of adequate mathematical modelling 

problems to lead the empirical study. A baseline assessment will be designed, explained and 
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analysed to identify the baseline knowledge of the learners. This chapter will deliver a specific 

situation analysis on which the HLT will be based on.    

 

Chapter 4 describes the second phase of the design study. The specific research problems will 

focus the study on the aims and objectives of the study. Research design methods and data 

collection methods will be explained. This chapter will show how the HLT is developed 

throughout the investigation by continuously predicting and assessing the learning tract of the 

learners.   

 

Chapter 5 is the retrospective analysis of the study. A complete didactical framework will be 

presented which involves the reasons for the chosen activities and an analysis of the activities 

including information on horizontal and vertical mathematising. A goal description will be given 

of each activity. The function of the mathematical material will be explained in detail. 

 

Chapter 6 draws conclusions from the data and the retrospective analysis. It also includes the 

limitations of the study and provides recommendations for further areas of study. 
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CHAPTER 2 

MATHEMATICAL MODELLING PERSPECTIVES TOWARD THE 

TEACHING AND LEARNING OF MATHEMATICS  

 

2.1 INTRODUCTION 

 

To adequately understand the full implication of a mathematical modelling perspective towards 

the teaching and learning of mathematics, it is beneficial to investigate the current perspectives 

supporting the movement towards modelling. The different perspectives of mathematical 

modelling and the classification of each modelling perspective is tabulated by Kaiser and 

Sriraman (2006, p. 304). It summarises the central aims of each perspective and also relates it to 

earlier perspectives. This chapter investigates mathematical modelling under the educational 

modelling perspective, the socio-critical perspective, the cognitive perspective, the contextual 

perspective and the epistemological perspective. The investigation will help the reader to 

establish the connectedness of these perspectives. It will also establish a suitable focal point to 

provide an essential basis for the empirical study. The socio-critical perspective, discussed in 

Section 2.1, explains the value of mathematical modelling and describes the educational goals of 

a modelling approach to mathematics education. A contextual perspective towards mathematical 

modelling in Section 2.2 elaborates on how flexible mathematics can benefit from the 

understanding of real life applications. The educational perspective, discussed in Section 2.3, 

describes how mathematical modelling can be used as a vehicle for learning. It revisits the 

modelling cycle, the modelling process, modelling competencies and focuses on the different 

types of educational modelling: didactical and conceptual. The cognitive perspective in Section 

2.4 looks at the different processes involved in the mathematical modelling process. It also forms 

a conceptual framework for teaching and learning mathematics. A realistic perspective in Section 

2.5 explains how real problems serve as motivation for learning mathematics. A socio-cultural 

perspective with the emphasis on semiotics in Section 2.6 will discuss how learners’ 

representations form the basis of learning when they are working collaboratively through a 

modelling problem. Modelling under an epistemological perspective is based on Freudenthal’s 

explanation of modelling as an activity of mathematising. This perspective is investigated in 

Section 2.7, and forms the basic structure of the study.  
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2.2  MATHEMATICAL MODELLING: A SOCIO-CRITICAL PERSPECTIVE 

 

2.2.1 The value of mathematical modelling 

The mathematical modelling approach to teaching allows for the kind of valuable exploration in 

mathematics that has been absent to date. Zbiek and Conner (2006) describe the aims of 

mathematical modelling as being: to provide a learner with the opportunity to design powerful 

models; to provide them with an alternative and engaging setting in which learners’ learn 

mathematics; to motivate learners by showing them real world applicability and to provide them 

with the opportunities to integrate mathematics with other areas of the curriculum. Zbiek and 

Conner (2006) investigate how mathematical modelling can act as a vehicle to construct new 

concepts. Their study is regarded as an important guide, as this investigation is aimed at 

providing evidence that a modelling perspective to teaching can form a basis of conceptual 

understanding, create deeper meaning, form new constructs and therefore improve the learning 

of mathematics. Mathematics education will be able to provide students with knowledge and 

abilities of mathematics, and knowledge and abilities concerning other subjects (Blum & Niss, 

1991). 

 

2.2.2 Educational goals 

Mathematical modelling involves the various processes an individual needs to work through to 

acquire the mathematical modelling competencies needed for successfully solving future 

modelling problems. Learners can use and observe the mathematics they learn at school, in their 

real lives. When mathematics is connected to reality, it provides experiences which are relevant 

to learners’ experiences and relevant to society (Van den Heuvel-Panhuizen & Wijers, 2005). 

Zbiek and Conner (2006) argue the need to design rich learning experiences to make the learning 

of mathematics more meaningful. Mathematical modelling contributes towards giving more 

meaning to the teaching and learning of mathematics (Blum, 1993) thus learners will feel more 

motivated and positive in the mathematics classroom. This form of modelling develops 

mathematics which seems useful to the learners as it enables them to have an increased sense of 

control over their experiences. The purpose of mathematical modelling is to teach learners that 

the mathematics they learn can be related to their real life experiences (Mukhopadahyay & 

Greer, 2001). Learners must be able to tackle any kind of problem when dealing with real life 
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issues and making important decisions. Life, after all, is about making choices. An important 

point is made by Burkhardt (2006) when noting that modelling is a means to “guide 

understanding and sensible decisions” (p. 182). When modelling with mathematics, one of the 

aims is to produce critical, politically engaged citizens (Barbosa, 2006). Mathematical modelling 

is perhaps a rudiment of this very important educational goal. 

 

 

2.3 MATHEMATICAL MODELLING: A CONTEXTUAL PERSPECTIVE 

 

Learning mathematics through real world situations is appealing to learners.  Real world 

problems motivate learners to study mathematics and provide insight into the real world. 

Teachers can develop the opportunity for learners to learn through valuable applications to solve 

important problems and make invaluable decisions in their future endeavours. Doerr and English 

(2003, p. 110) are of the opinion that a modelling approach to teaching and learning “shifts the 

focus of the learning activity from finding a solution to a particular problem to creating a system 

of relationships that is generalisable”. In all areas of life, we are confronted with new challenges. 

An inward looking mathematics curriculum is not the solution and is inadequate for extra-

mathematical areas. Extra-mathematical areas refer to those sciences or contexts in which 

mathematics can be applied. The learning of mathematics must be concerned with flexible and 

not problem-specific mathematics (Brown, 2008; Kaiser & Schwarz, 2006). The product formed 

when problem-specific mathematics is taught would be mathematical theory imitators instead of 

the much-needed mathematical thinkers.  

 

 

2.4 MATHEMATICAL MODELLING: AN EDUCATIONAL PERSPECTIVE 

 

2.4.1 Refocusing mathematics education 

Mathematics education at school level must be focused on a holistic design of teaching and 

learning: a design based on different perspectives to meet the standards of teaching learners who 

have had different mathematical experiences and have different mathematical abilities. When a 

learner is given the opportunity to grapple with a mathematical problem, a learner uses his 
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previous experiences, mathematical and non-mathematical; to find a solution to the problem 

(Treffers, 1987). The task of a teacher is to encourage mathematical understanding by thinking 

mathematically. Teachers often assume that learners are thinking mathematically when they can 

do a certain computation or master a certain skill. Doing a computation or mastering a skill does 

not prove that deeper conceptualising of mathematics has taken place. Lesh and English (2005) 

note the trend of mathematics education moving from “mathematics as computation towards 

mathematics as conceptualization, description and explanation” (p. 487). This shift could 

possibly support a deeper understanding of mathematics.  

 

2.4.2  The influence of affect 

Various influences determine the input and outcome of the teaching and learning of mathematics. 

Affect has an effect on cognitive abilities (Hannula, 2006). Affect includes attitudes, beliefs, 

emotions, values, motivation, feeling, mood, conception, interest, anxiety and view. Various 

psychological needs will influence the goals of a learner which is influenced by certain beliefs 

about accomplishing these goals (Hannula, 2006).  The most prominent factor is the teacher’s 

beliefs. A teacher’s beliefs about the nature of mathematics and mathematical knowledge are 

spectacles through which we look at teaching and learning (Presmeg, 1998). The teacher’s ideas 

and perspectives of the nature and role of mathematics are inevitably moulded in his teaching 

and mirrored in the learner, regardless of the true meaning of it.  

 

Mathematical modelling can ensure the development of a mathematics curriculum where a 

learner can do mathematics because he truly understands the deeper connections and not because 

of a mere procedure. Learners will have the opportunity to feel motivated and positive in the 

mathematics classroom. Teaching mathematical modelling can perhaps enable teachers to 

change their conception of teaching practice (Bassanezi, 1994). The models and modelling 

approach provides the learners opportunities to develop general competencies and problem 

solving competencies (Borromeo Ferri & Blum, 2008). The importance of the applicability of 

school mathematics is a central factor for the planning of a curriculum, and, more importantly, 

the approach to mathematics education. Mathematics education needs to be suitable for the 

learners attempting further studies at tertiary level. It also needs to be relevant to the learners 

seeking other career opportunities.  
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2.4.3 Didactical modelling 

Mathematical modelling as a means to education involves the various processes and 

competencies a learner goes through and develops when working with models. The development 

of mathematical modelling competencies is considered to be a goal of mathematics education 

(Jensen, 2007; Kaiser & Schwarz, 2006). Modelling competencies are the knowledge and skills 

required to move through the modelling process with a positive attitude. The pedagogical idea 

behind mathematical modelling competency is to emphasize the holistic aspect of modelling 

(Blomhøj & Kjeldsen, 2006). The focus needs to be shifted to the mathematical ability of a 

learner. “What does the learner know?” needs to be modified into: “What can the learner do?” 

Freudenthal (see Gravemeijer & Terwel, 2000) believed that doing mathematics was more 

important than working on a ready-made product. He further noted that mathematics as a human 

activity is an activity of solving problems whether from reality or mathematical matter. The 

ability to solve mathematical problems is more valuable than having the knowledge but lacking 

the competencies to apply that knowledge. Knowledge should be intelligent and applicable, not 

an inactive and isolated one, because knowledge should be developed into ability (Sjuts, 2005). 

Mathematics in the classroom situation needs to be a multi-dimensional study of a doing-

mathematics within a real life context (Burkhardt, 2006).  

 

Mathematical modelling can be considered as an advanced form of competency-based learning 

as the requirement of competencies will ensure successful modelling experiences (Blomhøj & 

Kjeldsen, 2006; Maaβ, 2006; Kaiser & Schwarz; 2006). If a learner is introduced to a new 

concept, his conceptual development is based on similar previous mathematical experiences. 

Modelling activities motivate the learning process and help learners to establish a basis for the 

construction of mathematical concepts (Blomhøj & Kjeldsen, 2006). Lesh and Sriraman (2005) 

argue that the focus of mathematics education is based on the development of conceptual 

systems rather than the development of different tools or thinking patterns to express and to 

operate within these conceptual systems. Ernest (Almedia & Ernest, 1996) views the aim of 

mathematics education as ideally being to: 

…foster critical mathematical literacy and thus empower students to become 

critical citizens in modern society. This involves having a sound knowledge of 

significant subset of school mathematics and the confident possession of the 

process skills of applying mathematical knowledge independently to solve and 
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pose problems and evaluating the situations critically. However, it also 

necessitates the ability to interpret and critically evaluate the mathematics 

embedded in social and political claims and systems, from advertisements to 

government pronouncements (Introduction, para. 11). 

  

Galbraith (Haines & Crouch, 2007) describes modelling as the means of collecting and 

constructing mathematical knowledge. Competencies can be regarded as critical aims for 

modelling to be successful. These include: understanding the task, simplifying and structuring, 

mathematising, working mathematically, interpreting, validating, presenting and reflecting. 

Biccard’s (2010) investigation into the above mentioned competencies provided a good insight 

on how these competencies develop as learners regularly work through mathematical modelling 

problems.  

 

Mathematical modelling can be defined as solving problems based on real life .We can therefore 

characterise the mathematics in our daily living. The modelling process requires learners to form 

a mathematical model and to use mathematics to find a solution. Mathematical modelling 

provides learners with knowledge and skills to deal with life outside the classroom (Haines & 

Crouch, 2007). A higher level of thinking, as well as combinational thinking, can be developed. 

Transmission methods fail to deliver this very important facet of mathematics education: to be 

able to engage in higher order mathematical thinking. 

 

2.4.4 Conceptual modelling 

The mathematical modelling concept has the advantage not only of developing and constructing 

mathematical knowledge, but also of developing mathematical skills and mathematical thinking 

(Sjuts, 2005). Modelling at a level of concept formation involves the actual learning and 

understanding of mathematics by acquiring knowledge, skills, attitudes and values. The different 

levels of constructing mathematical understanding that lead to mathematical knowledge can be 

related directly to mathematical modelling and the outcomes thereof. Modelling has been 

assigned as a possible answer to address conceptual difficulties (Lesh & Lehrer, 2003). Lesh and 

Harel (2003) explain that the conceptual development of a learner engaged in a modelling 

session of 60-90 minutes is similar to that of learners’ conceptual development of several years. 

Blomhøj and Kjeldsen (2006) emphasizes that mathematical modelling is an educational goal in 
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its own right and can be used as a tool for motivating and supporting the learning of 

mathematics. The skills, competencies and knowledge we want learners to acquire (the 

objectives for learning) is directly proportional to the reason for applying a specific teaching 

approach. Modelling activities motivate the learning process and help learners to establish 

cognitive roots for the construction of mathematical concepts (Blomhøj and Kjeldsen, 2006). 

Lesh and Sriraman (2005) argue that the focus of mathematics education is based on the 

development of conceptual systems rather than the development of different tools or thinking 

patterns to express and to operate within these conceptual systems. Mathematical modelling is a 

tool to develop knowledge and skills and enhance learners’ confidence and thinking abilities and 

build a positive attitude towards mathematics (Gellert, Jablonka & Keitel, 2001). Learners must 

be able to apply the various steps in the modelling cycle to various open-ended problems (Haines 

& Crouch, 2007). This approach can be applied to other problems to solve them successfully and 

to develop a critical, reflective individual. Mathematical literacy can be fostered through the 

mathematical modelling process, where a learner needs to build a mathematical model. The 

learner needs to be able to verbalise a real problem and translate it into a mathematical problem 

by using mathematical language. A mathematical solution is found and that needs to be 

translated to a real answer. Another aim alluded to above is the confident solving of problems 

regarding real issues. Mathematical modelling links mathematics to real life. The learner must 

also be able to evaluate critically the problems and solutions in terms of the real situation.  

 

2.4.5 The process of mathematical modelling 

The modelling cycle from a cognitive perspective (Figure 2.1) is used to further explain the 

modelling process from a real world problem to an interpreted solution. It also gives a clear 

layout of all the necessary competencies and sub-competencies during the modelling cycle.  The 

real situation represents the situation or the given problem. The learner shows some 

understanding when moving from the real problem to a mental representation. Any 

representation shows a degree of understanding. These mental representations differ as 

mathematical thinking, experiences and extra-mathematical knowledge vary from individual to 

individual. From the mental representation a real model is formed by identification and 

idealisation. 
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Figure 2.1: Blum and Leiβ’s modelling cycle from a cognitive perspective (Borromeo 

Ferri, 2006, p. 92; Haines & Crouch, 2007, p. 2) 

 

Setting up the model includes the following competencies: identifying the relevant mathematics 

within the realistically-set problem; representing the problem in a different way; organising the 

problem according to mathematical concepts and assumptions; understanding the relationships 

between the language of the problem and the symbolic and formal knowledge needed to 

understand it mathematically; finding regularities, relations and patterns; recognising aspects that 

are isomorphic with known problems; and translating the problem into mathematical model. 

When moving from the real model to a mathematical model, mathematising takes place. 

Mathematisation is the process where something obviously not mathematical is converted into 

something that is mathematical (Wheeler, 1982; 2001). When a learner is engaged in the process 

of mathematisation, he is required continuously to make and build on, assumptions, conditions, 

limitations, and constraints (Zbiek &Conner, 2006). Extra-mathematical knowledge is used to 

build this mathematical model. Verbal statements are now on a mathematical level and the 

transition into mathematics is completed at this stage. Working within the mathematical world to 

obtain mathematical results includes competencies such as: using and switching between 

different operations and representations, refining and adjusting mathematical models, combining 

and integrating models, argumentation, and generalisation. The learners write down their results 

based on the model. When learners interpret their results, they are transitioning mathematical 
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results to real results. These results are discussed and validated. Validation needs to be made in 

relation to the real results of the mental representation. Interpreting, validating and reflecting 

competencies include interpreting mathematical solutions in a real context, understanding the 

extent and limits of mathematical concepts, reflecting on mathematical arguments, explaining 

and justifying results, and critiquing the model and its limits. When a learner is reporting his 

modelling process, he is involved in communicating the processes verbally and through written 

work, on matters dealing with mathematical content, and understanding other learners and their 

explanations.  

 

2.4.6 Mathematical modelling competency 

Mathematical modelling competency includes those skills and knowledge considered necessary 

when working through all the steps in the modelling process (Blomhøj & Kjeldsen, 2006). Niss, 

Blum, and Galbraith, (2007) give a much more comprehensible definition as:  

…the ability to identify relevant questions, variables, relations or assumptions in a 

given real world situation, to translate these into mathematics and to interpret and 

validate the solution of the resulting mathematical problem in relation to the given 

situation, as well as the ability to analyze or compare given models by investigating 

the assumptions being made, checking properties and scope of a given mode (p. 

12). 

 

A learner must develop the competency to understand the real problem and set up a real model 

based on the mental representation obtained as a result of his understanding (Maaβ, 2006). This 

means that the learner must acquire the necessary skills to be able to simplify the problem, 

construct relations or patterns, and look for important, available and relevant information. 

According to Haines and Crouch (2007), learners find it difficult to move from the real model to 

the mathematical model. Biccard (2010) also commented that the learners in her modelling 

groups found it challenging to mathematise the real problems. This may be due to a learner’s 

weak knowledge base and lack of abstract thinking (Haines & Crouch, 2007). These aspects can 

be improved by working with mathematical models on a regular basis. Tanner and Jones (1995; 

Blomhøj & Kjeldsen, 2006) warn that knowledge alone is not enough for successful modelling: 

the learner should also monitor his own process and progress throughout the modelling process.  
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An important metacognitive-competency is when the learner is able to plan, monitor and validate 

his own actions (Maaβ, 2006). The learner must now set up a mathematical model from the 

information gathered and the real model they constructed (Maaβ, 2006). Setting up the 

mathematical model requires the representation of the real model in mathematical form. Once the 

mathematical model is constructed, the learner must use his mathematical knowledge to solve 

mathematical problems adequately within this model (Maaβ, 2006). Mathematical results must 

be interpreted in accordance with the real situation (Maaβ, 2006). Learners interpret 

mathematical results in extra-mathematical contexts. Once the solution is obtained, a learner 

must validate his results to consider the appropriateness in relation to the original problem 

(Maaβ, 2006). Validating a solution entails critically checking and reflecting on found solutions, 

reviewing and going through the modelling process again if the solution does not fit. As 

discussed earlier, the reflection through the entire learning process is a vital component of 

successful modelling as a learner is constantly reviewing his own work and thinking, and is fully 

in control of his own learning and the modelling process. Tanner and Jones (Maaβ, 2006) 

indicate that knowledge alone is not enough when dealing with the modelling process: a learner 

must be able to use this knowledge and monitor his process and progress. A learner can now 

judge the effectiveness, adequacy and value of his own model as well as the process in its 

entirety.  

 

2.4.7  A closer look at mathematical modelling competencies and sub-competencies 

As many attributing factors influence mathematical performance, we need to focus on those 

factors which influence modelling competencies and hence the overall performance, progress 

and development in the mathematical-modelling process. According to the COM²-project: 

progress regarding the attainment of mathematical modelling competencies can be described 

according to three aspects, which can thus also be assessed regarding the three competencies (see 

Blomhøj & Kjeldsen, 2006, p. 167; Haines & Crouch, 2007, pp. 5-6): 

i. Technical level: this is measured according to the level of mathematics and 

the flexibility of the mathematics the learners are using. 

ii. Radius of action: the radius of action is measured according to the domain 

of the situations in which learners can perform modelling activities. 

iii. Degree of coverage: this is measured according to which part of the 

modelling process the learners are working with as well as the level of the 

reflections by the learner. 
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As we acquire different metacognitive strategies to develop metacognition, thus further 

expanding our cognitive abilities, we need sub-competencies to utilise competencies in order to 

deal with the modelling process efficiently (Maaβ, 2006). There is a definite connection between 

modelling competencies and mathematical knowledge. When carrying out single steps of the 

modelling process, sub-competencies are the skills and processes that need to be carried out so 

that competencies can be attained. Sub-competencies are those competencies needed to achieve 

various modelling competencies when modelling a problem. The following table differentiates 

between competencies and sub-competencies by listing the activities of sub-competencies 

activities and the corresponding competencies of mathematical modelling. 

 

Competencies Sub-competencies 

Understanding the real problem Make assumptions, recognise variables, construct relations 

between variables, distinguish between relevant and irrelevant 

information 

Setting up a mathematical model Mathematising, simplifying, choosing appropriate mathematical 

notations, representing the situation 

Solve the mathematical problem Heuristics, mathematical knowledge 

Interpreting the results Interpreting mathematical results in extra-mathematical contexts, 

generalising solutions, using appropriate mathematical language, 

communicating about the solution 

Validating the solution Critically checking and reflecting on solutions, reviewing parts of 

the process, reflecting on other ways to solve the problem, 

generally questioning the model 

Table 2.1: Differentiating between competencies and sub-competencies (Maaß, 2006, 

pp.116-117)  

 

To make use of the modelling process successfully sub-competencies need to be developed. 

Opinions as to which part of the modelling process is more important vary. Biccard (2010) noted 

that some competencies in the cycle were more significant than others. Without these 

competencies the pure mathematics gets lost in the process. It is known that learners are able to 

reconstruct their knowledge by constructing concepts to rectify misconceptions (Cobb, 1999; 

Borromeo Ferri, 2006). Metacognitive modelling competencies could be reconstructed for many 

Stellenbosch University  http://scholar.sun.ac.za



24 
 

learners (Maaß, 2006). Weaknesses within metacognitive modelling competencies matched 

general misconceptions on the modelling process based on weaknesses in general problem-

solving skills (Lucangeli, Tressoldi & Cendron, 1998; Maaβ, 2006). “Knowledge about the 

modelling process influences the acquirement of modelling competencies positively” (Galbraith 

& Clatworthy, 1990, p. 158).  Learners need to know what is expected of them. Learners’ 

attention must be brought to the important aspects when setting up a real model as it is the 

starting point of the modelling process. The validation process must be discussed in detail. There 

is a relationship between the quality of meta-knowledge and the competencies of modelling a 

problem (Yimer & Ellerton, 2006).  

 

When working with the modelling process it is important to have a sense of direction (Maaß, 

2006).  It is a common problem for learners to ‘get stuck’. They lose motivation and give up their 

efforts. When a learner is familiar with a specific process and a framework is set in place, it 

seems less difficult to tackle a problem, a learner feels more motivated and comfortable in his 

doing, and shows ownership regarding the problem, especially when facing an unknown task 

(Jonassen & Land, 2000). Trelibs (1979) recognises a sense of direction as important for 

modelling. Learners need to be sure of the direction in which they are going. They need to focus 

and work towards an end result. Competencies in arguing seem to be an important variable 

concerning the modelling process (Duffy & Cunningham, 1996; Hein, 1991; Matthews, 2003). It 

is important for a teacher to create a suitable social environment for the construction of 

knowledge within the learners to occur effectively (Hein, 1991; Janvier, 1996).  Communication 

is an important factor of learning as it goes hand-in-hand with explaining, reasoning and 

justifying decisions and ideas especially in the sense-making procedure (Lesh & Yoon, 2007). 

When a learner can communicate his thought processes, findings and conclusion in a formal 

mathematical language, we are given an indication of what the learner knows, if the learner has 

attained certain competencies, metacognitive abilities and if he has mastered a skill or even 

satisfactory constructed knowledge (Borromeo Ferri, 2006). Communication is a tool whereby a 

learner heightens his awareness of his own learning. Emphasis must be placed on the modelling 

process when arguing, rather than arguing in relation to learners’ own experiences (Maaß, 2006). 

Learners must focus on writing down all arguments and reasons for decisions they make and 

routes they follow. Argumentative mathematical skills form part of communicating mathematics 
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appropriately. Brown and Redmond (2007) place emphasis on collective argumentation as this 

bases argumentation in a social context which is applied to establish deeper meanings. 

 

 

2.5 MATHEMATICAL MODELLING: A COGNITIVE PERSEPCTIVE 

 

2.5.1 Cognitive processes during mathematical modelling 

The modelling approach enhances sense making (Mousoulides, 2009). Modelling problems 

promote understanding thus growth in understanding, as there is no memorised answer and no 

‘correct’ solution. The ability to solve algorithmic procedures does not indicate depth of 

understanding. Students capable of solving these types of problems often cannot connect these 

manipulations to the real world (Schoenfeld, 1988). Problem solving based on a mathematical 

modelling perspective enables the learner to develop a deeper understanding of mathematics as it 

allows the learner to construct a stable understanding about situations (Izsák, 2004). The 

knowledge and conceptual tools developed via the modelling process is situated cognition 

(Lamberts & Goldstone, 2005; Lesh and English, 2005). Situated cognition refers to the 

knowledge emerging from authentic, context-bound activities as well as from social 

constructions (Olivier, 1999). Anderson, Reder and Simon (1997) argue that learning is not 

bound to the specific situation of its application; knowledge can transfer between different tasks. 

The idea is that instruction does not have to take place in a complex social setting only; there is 

also value to individual learning. A negative aspect of the transmission approach is the lack of 

preparation for unseen problems. The transmission approach results in a learner reconstructing 

existing objective knowledge (Murray, Olivier & Human, 1998). Learning needs to be a personal 

experience where a learner creates his own subjective knowledge rather than reconstructing 

objective knowledge. The active reasoning and organising of information promote meaningful 

learning (Chamberlin, n.d.).  

 

Encoding and decoding define the cognitive elements of the modelling process (Occelli, 2001). 

Encoding involves the formulation of abstract pictures from the observable reality, thus building 

models representing these pictures, while decoding involves referring back to the observed 

reality (Occelli, 2001).  Occelli (2001) differentiates between two types of “fundamental loops” 
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(para. 10) in the modelling activity: the internal loop describes the abstraction during the 

modelling process and the external loop represents the general modelling context of the 

modelling problem. Cognitive processes integrate the abstraction and context to initiate the 

modelling activity. Lesh and Sriraman (2005) argue that concept development transforms into 

understanding and forms mathematical modelling perspectives. The different levels of 

constructing mathematical understanding, which lead to mathematical knowledge, can be 

compared directly to mathematical modelling and the outcomes thereof.  

Borromeo Ferri (2006) explains that if a teacher looks at a learner’s modelling process from a 

cognitive viewpoint, he can only refer to the verbal descriptions and representations, and external 

illustrations and representations to identify if the learner is successful at beginning and 

understanding the first steps of the modelling cycle and working through the process effectively. 

The mathematical-modelling concept has the advantage, not only of developing and constructing 

mathematical knowledge but also of developing mathematical skills and mathematical thinking 

(Sjuts, 2005).  

 

Mathematical understanding and continuous focus and activation of the learner’s metacognitive 

processes are requirements for mathematical modelling. Metacognition refers to: “The active 

monitoring and consequent regulation and orchestration of processes in relation to the cognitive 

aspects on which they bear, usually in the sense of some concrete goal or objective” (Stillman & 

Galbraith, 1998, p. 162). Metacognitive knowledge consists of knowledge and beliefs about 

factors that influence the outcomes of cognitive knowledge and understanding. Metacognition is 

divided into the following processes: monitoring, control, orienting and reflecting. 

Metacognition entails the knowledge of monitoring a process and involves verifying and 

acknowledgement of one’s own diagnosis. Metacognitive teaching in a cooperative setting has 

shown the potential to enhance problem-solving skills and mathematical-modelling construction 

(Mevarech, Zion & Michalsky, 2005). If teachers are knowledgeable concerning the mental 

processes and the learners’ thinking habits, and misconceptions they will adjust and adapt their 

type of instruction to enhance thinking, understanding, knowledge construction, the development 

of models, and meaningful learning. Knowledge is a development and procession of thinking, 

learning and making sense of complex situations (Burkhardt, 2006; Mickelson, 2006). Thus the 

knowledge of metacognitive strategies enables the management of thinking and learning.  
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Jagals’ (2013) study on the role of reflection and confidence when doing mathematics and the 

various components of metacognition were explored. Two of Jagals’ concluding remarks 

emphasises the importance of the activity of reflection: “The act of reflection stimulates the level 

of confidence relating to planning and monitoring of tasks” (p. 179), and “the act of reflecting 

possibly manipulate and vary the knowledge and feelings associated with person, strategy and task 

characteristics during problem solving” (p. 180). Sjuts (2005) identifies metacognitive thinkers as 

self-regulated learners, who plan, organise, self-instruct, self-monitor, and self-evaluate during 

the process of learning. Research has shown that the higher the metacognitive ability of a learner, 

the higher the learner’s thinking abilities and academic levels (Garofolo & Lester, 1985; 

Mevarech et al., 2005). Self-regulated learners are in control of their affective processes (Sjuts, 

2005). Affect determines the rate of the development of learning and especially learners’ 

mathematical development (Hannula, 2006; Janvier, 1996). Affect controls cognitive processes 

(Owens, 2008). The importance of conscious self-regulation and extreme control over a learner’s 

own learning process is essential in all areas of the problem-solving process. Self-regulated 

learning describes the ability of a learner to set his own goals, to use appropriate methods and 

techniques regarding the content and the goal, and to review, as well as judge, his own processes 

(Maaß, 2006).  It forces a learner to be in charge of his metacognitive processes. When learners 

take responsibility for their own learning experiences, metacognitive abilities become an 

important factor of learning. It is important for a learner to be aware of his own thinking and 

understanding as they form the foundation for the construction of knowledge. 

 

2.5.2  Conceptual development 

The cognitive structure in the human mind is associated with the concept image which is all 

those mental representations and processes regarding the concept (Tall, 1988). Tall (1988) also 

states when a learner meets an old concept in a new context, it is the concept image with all its 

assumptions and not the concept definition that reacts to the new task. The roles of emotions, 

consciousness and physical environments have effects on mathematical thinking, therefore 

influencing the forming and development of concepts (Thagard, 2008). Negative emotions, 

consciousness and physical environments have a negative effect and positive emotions, 

consciousness and physical environments have a positive effect on learning. This implies that the 
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learning milieu determines the cognisance of a learner. Mayer and Hagarty (1996, p. 34) 

summarize the cognitive processes during the problem-solving process:  

i. Translating: a learner constructs a mental representation. 

ii. Integrating: the learner makes assumptions and recognitions during the 

construction of mental representations. 

iii. Planning: devising a plan for solving the problem 

iv. Executing: carrying out the plan and computations  

 

Polya’s (1973) four steps to the problem-solving process involve: understanding the problem, 

developing a plan based on connections made, carrying out the plan, and evaluating that solution 

by looking back. The process above is very similar to that of Polya’s, yet Polya’s shows more 

reflective characteristics. 

 

Building blocks of mental representations are perceptions, past actions and the result of 

reflecting on, and abstracting from, already existing representations. These will often involve 

identifying and retrieving a sample or prototype (Lutz & Huitt, 2003). Tall (1988) refers to the 

sample type or prototype as a concept image. Abstract objects emerge at intersections in 

development of mathematical knowledge when some new process is introduced and applied by 

another already existing and known process. Abstraction is the activity when a learner becomes 

aware of similarities amongst objects, symbols and concepts. The stages in abstraction are listed 

as follows: internalisation, condensation, reification, generalisation, synthesis and abstraction 

(Mitchelmore, 2002).  Abstract objects mediate between the product of lower process and higher 

level manipulation (Sfard & Linchevski, 1994). Structural development is considered to be a 

difficult operation as it is more abstract and advanced stage of conceptual development.  

 

Mathematical awareness and assumptions influence the extent of seeing mathematical structure 

in situations during model development (Zbiek & Conner, 2006). A conceptual theory is closely 

associated with model building. The conceptual theory forms as a learner revises, refines and 

extends his ways of thinking. During this revising, refining and extending conceptual tools such 

as constructing, describing and explaining are developed. As models are continually revised and 

revisited, new ways of thinking are developed. This local conceptual development is similar to 

Piaget and Van Hiele’s theories of conceptual development (see Lesh & Harel, 2003). Their 

theories emphasise mathematical thinking being the interpretation and observation of situations. 
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The product of an individual’s conceptual operations and development is mathematical 

knowledge (Voigt, 1996).  

 

The development of conceptual systems involves more than accumulating relations, operations 

and principles. They occur along a variety of dimensions. These dimensions can be specific to 

general, concrete to abstract, simple to complex, intuitive to formal and situated to de-

contextualised (Lesh & Lehrer, 2003). When a learner reflects on and abstracts from past 

experiences and perceptions he builds on existing representations to form new 

conceptualisations. These cognitive structures are connected by conceptual schema and mediate 

interactions between conceptual understanding of situations and symbolic representations (Izsák, 

2004). These processes are reversible and are organised by logic. The stages of logical modelling 

are composed by conceptualisation, verbalisation, and formalisation (French & Finlay, 2000). 

Learners’ representations of situations are based on their understanding of physical patterns, 

existing conceptual representations and symbolic patterns. Learners use these patterns to 

recognise situations which can be modelled and connect these to conceptual representations 

through symbolic representations. Models are therefore focused on describing patterns and other 

mathematical representations so that learners can build an understanding of the system that is 

modelled. “Mathematical models are conceptual systems that are: (a) expressed for some specific 

purpose and (b) using some representational media” (Lesh & Lehrer, 2003, pp. 111-112).  

 

Lesh and Lehrer’s (2003) developed a modelling cycle to show the process a learner goes 

through when they develop models. Figure 2.2 shows how the model is represented by some 

representational media and it is described or explained. Both the describing and representing is 

based on the purpose of the model. This purpose of the model is the “end-in-view” (p. 112). Lesh 

and Lehrer (2003) state that the modelling cycle can be revisited and revised more than once, and 

through this revisiting and revising they predict the learner to show different ways of thinking 

regarding the symbols the learner chose to use, the process he followed, and the way he got to 

the solution. Learners make sense of new information by relating it to previous understanding 

and experience. Olivier (1992) explains that learning depends on the schema formed in a 

previous learning experience. Learners make sense of new information by relating it to earlier 

learning. It is therefore easier for a learner to add to his existing schema, than to change it.  
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Figure 2.2: A modelling cycle (Lesh & Lehrer, 2003, p.112) 

 

Olivier (1992, p. 200) further elaborates on “overgeneralization”; when a learner applies the 

same operation to a new situation, because he was successful in previous instance. A state of 

equilibrium occurs when an individual experiences mismatches between internal conceptual 

understanding and the understanding of the modelling situation (Izsák, 2004). As the informal 

understanding of models evolves through multiple conceptual systems, levels of understanding 

become mature and mathematical thinking can now be organised around abstractions rather than 

experiences (Lesh, Doerr, Carmona & Hjalmarson, 2003).  

 

2.5.3 Conceptual systems 

Educational requirements needed for the development of mathematics as a pure science need to 

be more than just a functional numeracy (Lesh & English. 2005). Sfard and Linchevski (1994) 

note the difficulties a learner experiences when he is introduced to a new mathematical concept. 

This is known as the ability to reify. The possibility of performing higher-level processes on 

processes by representing compact expressions, spurs structural thinking. Through reification 

learning becomes more meaningful and retrieval processes are faster. Sfard (1991) defines 

reification as “an ontological shift - a sudden ability to see something familiar in a totally new 

light” (p. 19). If a learner does not understand, it means that he is not reifying. Reification is 

 

Model 

Representational Media 

Conceptual 

System 

 

 

System Being Modelled 

   Goal or Purpose 

End in   

View 

Stellenbosch University  http://scholar.sun.ac.za



31 
 

when a learner regards an abstract object to be a concrete one. This process of reification evolves 

through reflective abstraction to develop new and modified constructs (Simon, 1995).  

Mathematics can be viewed operationally and structurally. The development of mathematical 

ideas into understanding naturally occurs from the operational stage to the structural stage. The 

operational way of thinking is regarded as the verb, the process or work that has to be done, 

whereas structural approach is regarded as working concretely with the objects. In context of the 

mathematical modelling approach to teaching and learning, the operational stage can be 

compared with horizontal mathematisation and the structural stage can be compared with vertical 

mathematisation. A learner uses reflecting activities to move from the operational (ideas) to 

structural (understanding) stage, whereas in the transition between horizontal (organising 

information according to a learner’s understanding) and vertical mathematising (working with 

symbols), the term objectification is used. Objectification is explained in Section 2.6.  

 

The transition between the operational to structural conceptions leads to insight and an increase 

in confidence during the problem solving process (Sfard, 1991). When a learner cannot bridge 

the gap between the operational and the structural stage, the understanding of operating within 

the structural stage is lost. It becomes instrumental not the desired relational, and the learner 

cannot donate meaning to the structural conceptions. The learners are able to do the complex 

structural operations, yet the operations are meaningless. This is known as “pseudostructural 

conceptions” (Sfard & Linchevski, 1994, p. 220). In our current curriculum, learners are not 

given the opportunity to move form operational conceptions to structural conceptions. The 

operational-structural duality is missing. The reification concept is a major influencing factor in 

this study. It will be a lens through which the researcher will look at the learners’ constructions, 

by analysing their operational and structural conceptions. 

 

Kaiser and Sriraman (2006), Carlsen (2010) and French and Finlay (2000) also note that 

conceptual systems are human constructs which are developed in a social setting through 

establishing shared meanings. The modelling approach shifts the focus of mathematical learning 

to a system of relationships which are developed to be reusable and sharable in a community of 

collaboration (Doerr & English, 2003).  
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The constructivist approach is a philosophy of learning which deals with the concept that 

knowledge is constructed internally. The learning process is a social happening where 

communication is vital (Cobb & Yackel, 1998, Ward, 2005). Vygotsky (1978) believed that 

community contributes to making meaning. Students make progress though Vygotky’s zone of 

proximal development (ZPD). He defined the learner’s zone of proximal development as the 

distance between the actual developmental level and the potential level of development (Allal & 

Ducrey, 2000; Vygotsky, 1978). Vygotsky sees the ZPD as the sensitive area where guidance 

and encouragement are given to a learner to allow the learner to develop knowledge.  “ZPD is 

the distance between the actual developmental level as determined by independent problem 

solving and the level of potential development as determined through problem solving under 

adult guidance or in collaboration with more capable peers” (Vygotsky, 1978, p. 86). Vygotsky’s 

theory also suggests collaborative learning in order to move through the development and 

understanding of mathematical structures. Voigt (1994) shows how learners do not necessarily 

share meanings but negotiate and collaborate to form a consensus on an emergent meaning. 

When working collaboratively, learners work in groups: to seek shared understanding, meaning 

and solutions. This explains the advantages of learners working collaboratively; a learner who is 

able to help another can do so while they learn something too. This gives rise to the group 

composition in the current study. They need to be heterogeneous for optimal learning to occur.  

 

The collaborative approach classifies learning as an active and constructive process dependent on 

rich learning environments, diverse environments, and a social experience (Smith & MacGregor, 

1992). Ideas and actions are integrated in a reflective inquiry situation (Hiebert et al., 1997).  

This leads to organising which results in conceptual development (Human, 2009). On evaluating 

the various elements of the collaborative teaching approach to the mathematical modelling 

perspective, the complementary nature of the two when dealing with the mathematical modelling 

process is clearly noted. The traditional teaching approach seems to be inadequate when dealing 

with a dynamic process such as problem solving through modelling (Blum, Galbraith, Henn & 

Niss, 2007; Lingefjärd, 2006).  

 

2.5.4 Advancing mathematical thinking 
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Emergent properties from higher level systems evolve from systems of interaction and primitive, 

concrete, enactive and intuitive levels (Lesh & Lehrer, 2003). This implies that a learner will 

build on his informal mathematical thinking to develop a formal mathematical thinking: the level 

of mathematics will be based on how he reflects on his experiences. This leads to remarkable 

achievements by learners judged to be too young and lacking in ability for such sophisticated and 

powerful forms of mathematical thinking (Blum & Niss, 1991). Sjuts (2005) notes that higher 

cognitive achievements are possible at a much younger age. Mathematics education needs to 

focus on higher level skills and deeper flexibility (Burkhardt, 2006). Modelling activities 

motivate the learning process and help learners to establish cognitive roots for the construction of 

mathematical concepts (Blomhøj & Kjeldsen, 2006).  

 

Thinking mathematically involves making sense of, computing, mathematising, quantifying, and 

coordinating through the use of other mathematical systems (Lesh & Sriraman, 2005). The way 

in which learners invent, understand and work with mathematical facts and connections using 

internal imaginations and external representations is linked to their mathematical thinking styles 

(Borromeo Ferri & Blum, 2008). The different types of thinking styles can be categorised as 

visual, analytical and integrated. Mathematical thinking is overcoming and not avoiding 

mathematical complex mathematical situations. Lesh and Harel (2003, p. 187) suggest mature 

levels of thinking develop when: 

i. learners are challenged to develop models and conceptual tools to be 

sharable and reusable, 

ii. learners are introduced to powerful representational systems for 

expressing constructs, and 

iii. learners are encouraged to go beyond thinking with and about 

constructs. 

 

 

When mature levels of mathematical thinking develop, significant expectations for 

generalisations exist. Three types of generalisations occur progressively: expansive 

generalisation entails the applicability of existing schema expanded without reconstruction; 

reconstructive generalisation involves existing schema which are reconstructed to a wider range 

of applicability; and disjunctive generalisation occurs when new schema is constructed which is 

applicable to new contexts (Zazkis & Applebaum, 2007). Within the development of powerful 
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constructs and conceptual systems, the likelihood of a small number of big ideas leads to 

thinking beyond what is expected of the learner (Lesh & Lehrer, 2003). The spiral concept of 

learning is where concepts are introduced in an intuitive, early stage and later revisited and 

connected to other knowledge. In this phase a higher level of abstraction is reached. Visualising 

makes abstract ideas more tangible. Reflective abstraction is introduced by Piaget to describe the 

individual’s development of abstractions (see Dubinski, 1999). When learners organise their 

experiences and then compare it with current abstractions to construct new combinations 

reflective abstraction occurs. Guided reflection contributes to advancing mathematical thinking 

(Zazkis & Applebaum, 2007). This involves rigorous deductive reasoning. The requirements of 

advancing mathematical thinking are the effective use of outside tools and reconstructive 

generalisation (Zazkis & Applebaum, 2007). The knowledge to exercise control over various 

thinking processes enables a learner to plan and adjust strategies, ideas and even his thinking. It 

is essential to reflect on strategies and attempts to advance mathematical thinking. Knowledge is 

a development and procession of thinking, learning and making sense of complex situations 

(Burkhardt, 2006; Mickelson, 2006). 

 

 

2.6 MATHEMATICAL MODELLING: A SOCIO-CULTURAL PERSPECTIVE 

 

A socio-cultural perspective focuses on the external and internal representations that are 

influenced by culture when learners do mathematics. The internal representations include mental 

and computational representations (Hesselbart, 2007, p. 13). Goldin (2002, p. 210) includes 

natural language, personal symbols, visual and spatial images, problem solving heuristics and 

affect as internal representations of a learner that solves mathematical problems. Semiotic 

representations are external representations used to access mathematical objects (Duval, 1999, 

2006). External representations can have many purposes to symbolise an internal representation 

(see Goldin, 2002, p. 208). Radford (2008a, 2008b) adopts a cultural-semiotic approach to 

mathematics education. In a cultural-semiotic approach, culture is the tool whereby mathematical 

objects acquire meaning. Radford (2008a) notes that artifacts support thinking; “neither merely 

aids to thinking or simple amplifiers, but rather constitutive and consubstantial parts of thinking” 

(p. 218). Semiotic representations originate at the level of task-setting where a learner builds a 
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real model from the real problem (see Chapter 1, Section 1.2) using various representations. 

Radford’s theory of knowledge objectification is based on the way a learner makes sense of his 

world and the social aspect of learning (Radford, 2008b). Through social interaction (discussion 

and discourse) objectification may take place. In mathematical modelling, when a learner moves 

from semiotic representations (representing information as objects/symbols using cultural 

knowledge) to working with symbols (making these symbols subjective in terms of the 

mathematical problem using reflective strategies) objectification takes place.  

 

Each semiotic system needs specific registers of representations for different types of 

mathematical thinking to take place (Duval, 1999). Registers of representation can include 

natural language, symbolic language, graphs and geometrical figures. There are three main 

cognitive activities of semiotics: formation, treatment and conversion (Hesselbart, 2007, p.11). 

Formation is the term used when representations in a specific register is constructed. When these 

representations are transformed into another transformation within that register, it has undergone 

treatment. New mathematical knowledge is constructed through the treatment activity 

(Hesselbart, 2007, p.13). When a representation in a register is transformed into a representation 

belonging to a different register, conversion takes place. Hesselbart (2007) notes that one of the 

characteristics of mathematical activity is that learners often work with representations that 

belong to more than one semiotic register in a single problem. It is also possible to move from 

representations from one register to representations of another register. Although learners find 

this shifting between representation of different registers challenging, it is the interrelated feature 

of mathematics that offer such valuable connections for advanced mathematical thinking and 

understanding. Goldin (2002) notes that “effective teachers continuously make inferences about 

students’ internal representations, their mathematical conceptions and misconceptions, based on 

their interaction with or production of external representations” (p. 211).  

 

 

2.7 MATHEMATICAL MODELLING: A REALISTIC PERSPECTIVE 

 

The National Council of Teachers of Mathematics (NCTM) argues that problem solving needs to 

develop into a more prominent focus in the school curriculum (NTCM, 1989, p. 6). Learning 
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becomes a meaningful experience when learners grapple with unfamiliar and non-limiting 

problems. Problem solving is considered to be a form of conceptual understanding as these 

problems promote understanding (Chamberlin, n.d.). In a didactical setting learners work 

collaboratively and learners take responsibility for their own learning (Blomhøj & Kjeldsen, 

2006).  The learners are viewed as problem solvers and the learners need to seek alternative and 

more productive ways to think about a situation. Cognitive abilities and metacognitive abilities 

are used during the enquiry stages and through the steps in the problem solving process (Panitz, 

1997). The importance of mathematical modelling in a mathematics curriculum is to develop 

problem-solving skills and attitudes (Danusso, Testa & Vicentini, 2009). There is significance in 

a model and modelling experience when a learner constructs his own personal knowledge. The 

models and modelling perspective acknowledges this fact (Carlsen, 2010). Conceptual tools in 

problem solving include constructing, describing and explaining. These are consistent with the 

conceptual tools used in mathematical modelling (Lesh & Harel, 2003).  

 

The Dutch approach to mathematics education acknowledges the value of mathematics as a 

human activity and provides learners the opportunity to experience this directly.  Realistic 

Mathematics Education (RME) is portrayed through six principles (Van den Heuvel-Panhuizen, 

2000, pp. 5-9). 

i. Activity principle: A learner is actively involved in their own learning by 

developing mathematical constructs and understanding.  

ii. Reality principle: Learners grapple with problems that are context-rich and 

real to them. They can link mathematics to reality and understand the 

usefulness of mathematics in everyday life. 

iii. Level principle: Learners use reflecting skills to pass through levels of 

increasing understanding. Tasks are constructed so that they have 

progressive and coherent elements.   

iv. Intertwinement principle: Mathematical content is interrelated. This 

principle allows learners to find connections between various concepts 

within mathematics. 

v. Interaction principle: RME supports the constructivist approach to 

mathematics education. Knowledge as a shared activity can lead to higher 

levels of understanding through reflection when learners share their ideas 

and strategies. 

vi. Guidance principle: Teachers facilitate the learning process by guiding 

them; they provide the learners with the opportunities to reinvent 

mathematics in order to construct mathematical knowledge. 
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To summarise the RME approach: Learners engage in a series of realistic problems which 

provide them with the opportunity to create mathematical constructs by reinventing them (Kwon, 

2005; Van den Heuvel-Panhuizen, 2000; Van den Heuvel-Panhuizen & Wijers, 2005). The 

construction of models in RME reflects the important and relevant aspects of the mathematical 

concepts of a problem situation (Grigoraș & Hoede, 2008). When a problem-solver revisits, 

revises and tests cycles of model construction, new ways of thinking are developed and the 

possibility exists that new constructs are ready to be developed (Lesh & Harel, 2003). These 

concepts are much more refined than constructs developed around traditional methods. Model-

eliciting activities (MEAs) are simulations of contextual situations which involve several 

modelling cycles (Lesh & Lehrer, 2003). Learners need to construct symbolic representations of 

meaningful situations. Average-ability students are capable of developing powerful mathematical 

models and constructs. Conceptual systems that support these models often are more 

sophisticated that anybody has tried to teach the relevant students at school (Lesh & English, 

2005). In a problem-solving session local conceptual development occurs and continues to 

develop and change when a learner moves through similar activities (Lesh & Harel, 2003). 

 

 

2.8 MATHEMATICAL MODELLING: AN EPISTEMOLOGICAL PERSPECTIVE 

 

2.8.1 Model building 

From the above explanation it is evident that the purpose of models is to bridge the gap between 

different levels of understanding. It also gives a learner access to constructing formal knowledge. 

Van den Heuvel-Panhuizen (2003) shows that models can accommodate level-raising: from 

informal level of mathematics to a formal level of mathematics. They also allow a change in 

perspective when broader applicability can be achieved through the progression towards the 

stage of reflective generalisation. These new perspectives and possibilities allow for higher 

levels of understanding during a problem-solving situation. Models also provide flexibility so 

that they are useful in higher level activities (Van den Heuvel-Panhuizen, 2000). The driving 

force of RME is mathematisation. Üzel and Mert Uyangör (2006) note the RME reinvention 

principle uses mathematisation as a guide. When a learner attempts a mathematical problem, he 

observes extra and relevant information; he contextualises the problem and mathematises the 
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situation (Carlsen, 2010). Wheeler (2001) also argues that mathematisation consist of those 

mental processes that produce mathematics through modelling and not the activity of making a 

model. However, Steiner (1968) notes that mathematisation forms part of the activity of model 

building. When a chain of models is developed, it enables discourse which results in deeper 

understanding of mathematical principles (Presmeg, 2003). RME offers a complete and effective 

pedagogy which enhances understanding of the processes producing mathematics (Wheeler, 

2001). The level principle of RME provides a learner with growth in understanding mathematics 

and gives the curriculum a longitudinal coherency of progressive growth (Van den Heuvel-

Panhuizen, 2000).  

 

2.8.2 Emergent modelling 

Emergent modelling is a dynamic process in which models emerge to support the emergence of 

formal mathematical knowledge (Gravemeijer, 2002; Doorman & Gravemeijer, 2009). As 

discussed previously, models are fundamental in the RME theory. Models are entities in their 

own right and a means of mathematical reasoning (Doorman & Gravemeijer, 2009). The activity 

of modelling is an organising activity from which models emerge. In RME, formal mathematics 

grows from the learner’s activities. Expressive models can serve as a model for emergent 

modelling because models emerge from learners’ activities where problem contexts are 

experientially real for the learner (Doorman & Gravemeijer, 2009). Emergent models represent a 

bottom-up approach to learning as informal symbolisations derive their meaning from contextual 

problems and, over time, develop an independent meaning of symbolisations to be classified as 

formal mathematics (Gravemeijer & Stephan, 2002). Emergent modelling constitutes two 

processes (Gravemeijer, 2002, pp. 1-2): 

i. Translating, which involves the translation of problem situations in 

mathematical expression which functions as a model 

ii. Organising, which involves structuring the problem situation so that a 

model emerges 

 

A model derives its meaning from an emerging framework and becomes more important as it 

becomes a base for reasoning. A model of can be described as the situation-specific solution of a 

problem. It is also the process of executing and describing the solution methods and 

mathematical meaning from the basis of conceptual development. A model for can be described 

as the development of formal mathematical reasoning. This model is generalisable so that it is no 
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longer solution specific (Gravemeijer & Stephan, 2002). Learners use various symbolisations 

and each activity experienced is a natural expansion of an activity with previously-constructed 

symbolisations. A model of can be described as symbolising and a model for becomes 

symbolising to reason mathematically. The transfer from models of to the model for is a dynamic 

shift. It is also a holistic, metaphorical concept. Three interrelated processes encompass emergent 

models (Gravemeijer, 2002). Firstly, an overarching model illustrates the informal activities of 

the learner. Secondly a model of to the model for shift demonstrates the formal activities of the 

learner. Thirdly, the emergent model represents the series of symbolisations which are now 

connected to generalisable arguments. Formal mathematical symbols will eventually be rooted in 

concrete activities of students (Gravemeijer, 2002). Learners develop formal mathematics by 

mathematising informal mathematics (Gravemeijer & Stephan, 2002). The four types of activity 

are important factors when dealing with emergent modelling: 

i. Task setting: situation-specific solutions related to a specific setting  

ii. Referential activity: the situation is now described by symbolisations 

specific to the instructional task (model of) 

iii. General activity: reasoning and acting independently on specific 

situation (model for) 

iv. Formal mathematical reasoning: reasoning is no longer dependent on 

the support of ‘model for’ mathematical reasoning 

 

Freudenthal’s domain-specific instructional theory gives learners the opportunity to reinvent 

mathematics by mathematising real matter and real mathematics. In the following sections, the 

four activity levels will be integrated with the mathematisation process and, more specifically, 

with horizontal and vertical mathematisation.  

 

2.8.3 The nature of mathematisation 

The instructional design of RME is organised so that learners can organise subject matter at one 

level to produce a new understanding at a higher level (Kwon, 2005). Van Hiele’s levels prove 

that activities of mathematising on a lower level can be the subject of enquiry on a higher level 

(Van den Heuvel-Panhuizen, 2003). Well-chosen subject matter enhances the opportunity to 

develop informal mathematical thinking and context-specific solutions (Doorman & 

Gravemeijer, 2009). Through organising, formalising and structuring, a higher level of 

mathematical thinking can be achieved. Organising, formalising and structuring are facets of 
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mathematising (Wheeler, 1982). If pedagogy is focused on the process of mathematisation and 

all its constituent elements, the learner has to accept responsibility for his own learning process 

(Wheeler, 2001). This is in accordance with the fact that RME principles are rooted in, and 

developed from, a constructivist approach to learning. Wheeler (1982) further notes that 

mathematisation is closer to a phenomenology of awareness and convictions we experience, 

when doing mathematics. This process powers and empowers mathematical thought. The nature 

of mathematisation includes the following: to perceive relationships, to idealise relationships, to 

operate on relationships, to internalise, to visualise actions, perceptions and transformations, to 

alter frames of reference, to refocus neglected attributes, to coordinate and contrast the real and 

ideal, to recast problems and to synthesise perception (Wheeler, 1982). The presence of 

mathematisation can be noted through the following activities (Wheeler, 1982, p. 47): 

i. Structuring: searching for patterns, putting structure into a structure 

(Wheeler, 2001) 

ii. Dependence: putting ideas into relation and coordinating them 

iii. Infinity: all mathematics implicitly or explicitly linked to infinity, 

generalisability or universability of ideas and structures 

  

A typical, generalised learning process of a mathematisation pedagogy starts with an authentic 

problem. Informal and intuitive knowledge is developed and a mathematical model is 

constructed by the process of horizontal mathematisation. Vertical mathematisation occurs when 

a learner solves, compares and discusses the model to form a solution. The model is then further 

developed into a reusable and sharable system which can be used to interpret other contextual 

problems (Üzel & Mert Uyangör, 2006). Informal mathematics using outside tools and reflective 

generalisation support the development of abstract thinking which ultimately results in more 

formal mathematics.  Different levels of understanding can be stimulated according to the chosen 

mathematical problem. Üzel & Mert Uyangör (2006) categorise the four types of mathematics 

education:  in a mechanistic approach, no vertical or horizontal mathematisation is evident; an 

empiricist approach only satisfies horizontal mathematisation; and a structuralist approach caters 

for horizontal mathematisation only; a realistic approach however, will serve for horizontal and 

vertical mathematisation. It is important for mathematical problems to be rooted in a realistic, 

imaginable and flexible context so that the created systems can be developed and applied on a 

general level to serve the ultimate purpose of reinventing mathematics (Van den Heuvel-

Panhuizen, 2003). The following two sections will define, elaborate on, and identify the 

Stellenbosch University  http://scholar.sun.ac.za



41 
 

modelling competencies and the process levels of mathematics involved within horizontal and 

vertical mathematisation. 

 

2.8.4 Defining horizontal and vertical mathematisation 

Horizontal and vertical mathematisation cannot be separated; they are two different processes, 

separately definable, yet they are complementary in nature and in purpose. Horizontal 

mathematising is the crossing between the real world situation and a mathematical model of the 

situation. Van den Heuvel-Panhuizen (2000) classifies horizontal mathematising as the activity 

occurring when a learner comes up with tools to organise and solve activities in a real life 

situation. Treffers describes horizontal mathematising as “going from the world of life to the 

world of symbols” (Van den Heuvel-Panhuizen, 2003, p. 12). Horizontal mathematisation occurs 

when any of the following activities can be identified: identifying or describing specific 

mathematics in a general context; schematising; formalising and visualising a problem in 

different ways; recognising relations and regularities; recognising isomorphic aspects in different 

problems; and transferring a real world problem into a mathematical problem (Üzel & Mert 

Uyangör, 2006).  

 

Vertical mathematising concerns finding a mathematical solution to the mathematical model 

which was constructed during the horizontal mathematisation phase. It is defined as the process 

of organising within the mathematical system itself (Van den Heuvel-Panhuizen, 2000). Treffers 

described vertical mathematisation as “moving within the world of symbols” (Van den Heuvel-

Panhuizen, 2003, p. 12). This implies identifying shortcuts when discovering connections and 

patterns between different systems. Vertical mathematising occurs when the following activities 

can be identified: reorganising within a mathematical system, representing a relation in a 

formula; proving regularities; refining and adjusting models; using different models; combining 

and integrating models; formulating a mathematical model; and generalising a mathematical 

model (Üzel & Mert Uyangör, 2006). These activities are not hierarchical. During mathematical 

modelling at the stage of vertical mathematisation, a learner combines mathematical entities by 

creating a mathematical object from other mathematical objects. Analysing refers to 

manipulating and interpreting the mathematical entity mathematically. The learner then analyses 

the mathematical entity to derive new parameters and properties of mathematical entity. This 
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involves solving the mathematical problem. After the learner has obtained a mathematical 

solution, he associates the solution with the real world problem. Highlighting occurs when the 

conclusion is being revised according to the context. A learner then aligns his ideas when 

reflecting on the appropriateness of the solution, and reconciling inconsistent results. Vertical 

mathematisation is considered to be the vehicle to advance mathematical thinking. The 

advancing of mathematical thinking involves abstraction and deductive reasoning, and skills, 

which can be acquired and developed within the process of vertical mathematisation (Zbiek & 

Conner, 2006). 

 

2.8.5 Developing mathematising competencies 

The first step in the modelling process is to explore the real situation and to identify conditions 

and assumptions in the real world contexts, so that various constraints and restrictions are 

acknowledged. The competencies involved and developed when working through the 

mathematical modelling process are described in Section 2.4.7. The first mathematical-modelling 

competency a learner needs to master is the competency to understand the real problem (Maaß, 

2006, p. 116). The sub-competencies relating to horizontal mathematising are: making 

assumptions regarding the problem and simplifying the situation; recognising quantities that 

influence the situation; naming them and identifying key variables; constructing relations 

between variables; looking for available information; and differentiating between relevant and 

irrelevant mathematics. The second competency is related to setting up a model based on the real 

problem. The sub-competencies relating to horizontal mathematising are: mathematising relevant 

quantities and their relations, simplifying relevant quantities and their relations, reducing their 

number and complexity, choosing appropriate mathematical notations and representing situations 

graphically.  

 

The competencies and sub-competencies developed during vertical mathematising deal with the 

competencies to solve mathematical questions within the mathematical model. The third 

competency in the mathematical modelling process is focused on the activities when the learner: 

uses heuristic strategies such as division of the problem into part problems,  

establishing relations with similar or analog problems, rephrasing the problem, viewing the 

problem in a different form, varying the quantities or the available data, and using mathematical 
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knowledge to solve the problem. The fourth competency requires interpreting mathematical 

results in a real situation. These involve: interpreting mathematical results in extra-mathematical 

contexts; generalising solutions that were developed for a specific situation; and viewing 

solutions to a problem by using appropriate mathematical language and/or communicating about 

the solutions. The fifth competency is validating the solution. The sub-competencies include: 

critically checking and reflecting on found solutions; reviewing some parts of the model or the 

whole model; going through the modelling process again if solutions do not fit the situation; 

reflecting on other ways of solving the problem, or reflecting and adjusting models if solutions 

can be developed differently; and generally questioning the model. It must be noted that 

throughout the process of mathematisation, during horizontal or vertical mathematisation, a 

learner needs to develop and use metacognitive competencies. These involve competencies such 

as: meta-cognitive questioning, practicing, reviewing, obtaining mastery on higher and lower 

cognitive processes, verification and, most importantly, reflection (Mevarech & Kramarski, 

1997, p. 386).  

 

2.8.6 Models for horizontal and vertical mathematising 

As noted above, knowledge development occurs during the transition from a ‘model of’ a 

situation to the more general ‘model for’ a situation. The progression of knowledge evolves from 

a level of pre-informal, to informal, to pre-formal, and finally to a more formal mathematics. 

Figure 2.3 represents a horizontal mathematising model, and includes the central components, 

steps and modelling competencies required, to reach a level of adequate constructing of pre-

informal knowledge. This is also the first step in emergent modelling. At this stage, the problem 

situation needs to be internalised. The model begins at the task-setting level where a learner must 

attempt to understand the realistic problem. This activity level is dependent on the learner’s 

intra- and extra-mathematical experiences. The next component involves the interpreting of the 

real problem so that the learner can identify the problem, and the different problem areas within 

the problem, thereby advancing to the actual model of importance.  The learner then needs to 

build an understanding of the relationships within the information, to emerge at the next 

component dealing with structuring the problem. Structuring involves finding various patterns, 

regularities, relations and isomorphic elements. This is normally based on the existing reference 

frame of the learner. A learner will obtain a more meaningful experience if the patterns, relations 
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and regularities are new to him, compared to a situation where he has worked with similar ideas 

and constructs before. The construction of informal knowledge occurs between the transitions 

from horizontal to vertical mathematisation. As noted in Section 2.6, the process that describes 

moving from symbolising to working with symbols is termed objectification. This signifies the 

transition between horizontal and vertical mathematisation. Objectification is an essential 

component when assessing modelling problems.  

 

Figure 2.4 attempts to organise the activity of vertical mathematising by focusing on the 

relevant activities and competencies involved during the process. The first stage in the 

vertical mathematisation process is the referential activity, which was the final stage of the 

horizontal mathematisation process. This involves symbolisations which are context 

specific. The next level introduces the refining and manipulating of objects, in order to 

adjust adequately the mathematical model. Organising the mathematical model concerns 

combining, structuring and integrating symbols, when simplifying the mathematical model. 

The symbolisations are still situation specific, and through the activity of formalising they 

become more general. The last stage is the most important activity in the emergent 

modelling process. It depicts that moment when the model is not situation specific any 

more, but can be developed for more than one situation. A learner acquires a stage of 

formal knowledge when the level of generalisation is reached. At this level of 

generalisation new concepts can be discovered.  
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Figure 2.3: A model for horizontal mathematising (own representation) 

 

 

Figure 2.4: A model for vertical mathematising (own representation) 
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2.9 PROGRESSING THE PROCESS OF HORIZONTAL AND VERTICAL 

MATHEMATISATION  

 

Figure 2.5 shows progressive mathematisation when a reified model is constructed to build new 

or adapted knowledge and constructs. These constructs are reusable and sharable and lead to the 

construction of theories by means of a deductive approach. From the process of vertical 

mathematisation, models are re-organised. New knowledge is constructed based on reified 

material.  

 

Figure 2.5: A model for progressive mathematisation (own representation) 

 

Generalisation occurs at different levels resulting in the emergence of abstraction and advanced 

mathematical thinking. A repeated process of horizontal and vertical mathematisation, can lead 

to the process of progressive mathematisation where models can be used over an array of 

situations. 

 

 

2.10  SUMMARY 

 

The importance of mathematical modelling as a curriculum theory cannot be questioned. Based 

on the previous sections, it is evident that mathematical modelling offers the learner a chance to 

learn mathematics in a way which can be utilised in real-life. The purpose of mathematical 
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modelling is to teach learners that the mathematics they learn can be related to their real-life 

experiences (Mukhopadahyay & Greer, 2001). To overcome the irrelevance of learning imitative 

mathematics, and for mathematics to become a noticeable variable in our society, a solution 

could be to implement mathematical modelling. Learners will feel more motivated and positive 

in the mathematics classroom. The mathematical modelling approach is an important one to 

consider when looking at enhancing the teaching and learning of mathematics. All learners are 

able to engage in modelling activities, although the complexities and the level of modelling may 

differ (Kaiser & Schwarz, 2006). There is a high demand for higher-level thinking. Owing to the 

fact that mathematical modelling requires, and then develops metacognitive abilities, higher-

order thinking will be the resultant product. Research has shown that some average ability 

learners are able to construct complex models that are incomparable with any mathematics they 

have learnt at school (Kaiser & Schwarz, 2006). The mathematical modelling approach to 

instruction allows for the kind of valuable exploration in mathematics that has been absent to 

date. This can be rectified when a learner works with mathematical modelling as a problem-

solving activity. Problemising mathematics is a way of extending the inquiry component of 

mathematics. Problemising mathematics is a dynamic occurrence which ultimately leads to 

conceptual development. It is a valuable component in the learning of mathematics, because it 

adds a collaborative element to the learning of mathematics. It also guides the learners’ attention 

on more productive ideas and mathematical thoughts, which would have been absent in other 

approaches of teaching and learning. The most important aspect of mathematics through problem 

solving is the opportunity for learning to become a meaningful experience. Learning becomes the 

responsibility of the learner.  

 

The process of mathematisation occurs during the mathematical modelling process when the 

emphasis is on the activities of model building and emergent modelling. This is evident when a 

learner needs to construct a mathematical model from a real situation, solve the mathematical 

model to find a mathematical solution and then interpret the solution with respect to the original 

real contextual problem. Mathematisation involves conceptualising, verbalising, and formalising 

mathematical systems. The process of mathematisation can be divided into two sub-processes: 

horizontal mathematising and vertical mathematising. Figures 2.3 and 2.4 (Section 2.8.6) clearly 

show the difference between the different components when engaging in the process of 
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horizontal and vertical mathematisation. However, the modelling process does not end there. The 

aim is to develop emergent models to serve the purpose of reinventing mathematics when models 

are created which are sharable and reusable. Mathematical modelling as a means to education 

enhances the possibility of creating formal mathematical knowledge and mathematical thinking. 

Therefore, the mathematisation model will now be constructed to include horizontal and vertical 

mathematising competencies for number patterns. In order for emergent modelling to occur, the 

focus is on progressive mathematising. Progressive mathematising is when a model is 

reorganised and generalised to become a universal model. It can also be defined when a learner 

rises through the four levels of activity, which is identical to moving through the process of 

horizontal and vertical mathematisation (Andresen, 2007). Zazkis and Applebaum (2007) also 

state that advancing mathematical thinking is when a learner engages in continuously and 

reflectively looking back, when working through horizontal and vertical mathematising. 

Doorman and Gravemeijer (2009) verify formalisation and generalisation as the main 

components of progressive mathematisation. A higher level of thinking is developed and evolves 

into increasingly abstract mathematical reasoning. This follows after sequences of activities are 

modelled and the learner is now able to construct a new theory. This theory is created through 

meaningful mathematics experience. It provides a referential base for formal reasoning 

(Gravemeijer, 2002). Reflective abstraction leads to new or modified concepts (Simon, 1995). 
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CHAPTER 3 

TOWARDS PROGRESSIVE MATHEMATISATION 

PHASE 1: Preliminary design of an instructional sequence  

 

3.1 INTRODUCTION 

 

This chapter provides a specific requirement for the study. It offers a description and explanation 

for the preparation phase of the developmental research design. The preparation and design stage 

of the triangulation sequence of a Design Based Research (DBR) study will introduce and guide 

the development of the instructional activities (Bakker, 2004, p. 40). These activities will 

formulate a hypothetical learning trajectory (HLT) which will form the basis of the classroom 

experiment. In Chapter 4, the second phase of the DBR will use the HLT to guide the teaching 

experiment. The HLT becomes a learning trajectory (LT). A day-to-day process of reflecting on 

the learners’ understanding and the strategies they apply to solve the problems might lead to 

refining and adjusting the trajectory (Bakker, 2004). An outcome for this study is to design a LT 

which provides a teacher with a framework for a local instructional theory (LIT) for number 

patterns. This LIT can then be adjusted and refined for a specific classroom according to the 

needs for the given situation.  

 

Various factors need to be discussed before the HLT is designed. The first decision to be made is 

the goals and outcomes of the subject content. Studies using DBR have emphasised the value of 

the goals and subject content being selected from a phenomenological analysis (Bakker, 2004; 

Bakker & Van Eerde, in press; Gravemeijer & Bakker, 2006). The RME instructional theory is 

the result of a continual DBR (Gravemeijer & Bakker, 2006). This instructional theory can be 

applied by looking at the three major heuristics: guided reinvention, didactical phenomenology 

and emergent modelling (Gravemeijer, 1999). The three instructional design heuristics will be 

discussed in the following sections: historical phenomenology and didactical phenomenology. A 

phenomenological analysis will focus the goals and outcomes on a selected few that will be 

discussed throughout the chapter. The aim of this chapter is to develop a curriculum for the HLT 

consisting of learning material that will be used in the teaching experiment. The learning 
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material selected must fulfil the requirements of generating meaning through guided reinvention 

and constructing mathematical knowledge during the learning process. 

 

 

3.2 PHENOMENOLOGICAL ANALYSIS 

 

A historical phenomenology and a didactical analysis will be used to identify goals and 

successive outcomes for the subject content.  

 

3.2.1 Historical phenomenology 

Bakker (2004, p. 51) acknowledges the importance of a historical investigation of a topic 

because it serves as a basis for preparing the teaching of the content. The information that is 

collected through a historical phenomenology can also assist finding the starting points for 

instruction. In Chapters 2.7 and 2.8 the guidance principal of the RME theory was discussed. The 

guidance principal is based on the idea that learners should have the opportunity to construct 

knowledge by reinventing mathematics. A look into a topic’s history can accommodate this 

reinvention principle by understanding the development of the learning process as technology 

and new ways of thinking developed.  

 

3.2.2 Didactical phenomenology 

According to Bakker (2004) a didactical phenomenology can identify problem situations that 

might occur during teaching and learning a specific concept. Problem areas that occurred in 

history might give researchers’ ideas for future problem areas and suggest possible ways to 

overcome these problems. “A didactical phenomenological analysis, is closely connected with 

the idea of guided reinvention: it informs the researcher/designer about a possible reinvention 

route” (Gravemeijer & Bakker, 2006, p. 2). The reinvention principal can have its roots by 

considering the historical phenomenology and the didactical phenomenology. A didactical 

phenomenology originates from three analyses: the literature study, historical phenomenology 

and learners’ prior knowledge (Bakker, 2004, p. 91).  The following section is a 

phenomenological analysis to identify the goals of the content and suggested outcomes for each 

goal.  
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3.2.3 Phenomenological analysis: Selecting the goals and outcomes for the subject content 

The goals and outcomes will be selected from the following sources: Research on the teaching 

and learning of number patterns in the past, the literature study done in Chapter 2 and the 

baseline assessment. The baseline assessment is a tool that will be used to establish the learners’ 

prior knowledge.  

 

The first goal of the subject content emphasises the value of representations. In Section 3.3 the 

different ways patterns can be represented will be discussed. From Chapter 2 it is evident that 

learners use representations to move from the real image of the real problem to the mathematical 

solution in the modelling process. The internal and external representation a learner uses and 

creates gives us a glimpse of the reasoning that accompanies the representations. The roles of 

these representations will be investigated when learners generalise number patterns.  

 

The second goal for determining the content for the instructional activities addresses two 

separate matters. The South African mathematics teaching guidelines for number patterns are 

focused on investigating patterns. The exploration of patterns may provide learners the 

opportunity to generalise number patterns. Research has shown that generalising algebraic 

expressions for situations that are represented arithmetically is an activity learners find difficult 

(see Ellis, 2007a, 2007b; see Warren & Cooper, 2008). Section 3.4 will investigate why learners 

find moving from the real world to symbols challenging. The different ways learners can 

generalise number patterns using functional and recursive relationships will also be described. 

Ellis (2007a, 2007b) has developed a taxonomy to categorise generalising actions and 

reflections. This taxonomy will be useful when mathematising competencies are developed for 

number patterns in Section 3.5.  

 

Section 3.5 identifies the third goal, to develop mathematising competencies for number patterns. 

Mathematising competencies will be developed exclusively for number pattern problems so that 

they can be easily recognised and identified in Chapter 5 when data is analysed.  

 

The construction of the baseline assessment is a component of the phenomenological analysis 

and the fourth goal in the analysis. The outcome of the baseline assessment is to establish the 
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learners’ prior knowledge. In Section 3.6 the construction of a baseline assessment will be 

analysed. The results of the baseline assessment will be discussed per question. The aim of the 

baseline assessment is to establish the learners’ prior knowledge. The prior knowledge of the 

learners will serve as a starting point for the HLT.  

 

In Section 3.7 the elements of a HLT will be described. Lesh’ principles for designing MEA’s 

and the RME theory’s design principles will be used to explore selecting quality learning 

material for the LT. 

 

 

3.3 GOAL 1: REPRESENTATIONS 

 

The importance of representations in mathematical modelling is evident from the literature study 

in Chapter 2. The modelling cycle in Section 2.4.5 shows the mathematical modelling 

competencies a learner develops when working through the modelling process. Setting up the 

mathematical model is the second competency in Maaß’s competency list and involves the sub-

competencies: mathematising, simplifying, choosing appropriate mathematical notations and 

representing the situation (2006, pp. 116-117). By setting up a mathematical model, a mental 

representation needs to be formed from the real situation and a learner needs to produce an 

external representation by internalising the representation. The purpose of representations is to 

help formulate and communicate ideas and information (Zarkis & Liljedahl, 2004). The 

following section describes the role of representations within the modelling process. 

 

3.3.1 The role of representations 

Section 2.5.1 explains that encoding and decoding are elements of the modelling process when a 

learner builds mental images of a real problem (encoding) while referring back to the problem 

(decoding). The process of encoding and decoding can be compared with the two-sided process 

of internalisation and externalisation as explained by Pape and Tchoshanov (2001). Their view 

that representations are built from a cultural perspective is similar to Radford’s (2008b) view that 

social interaction using culture as a vehicle gives meaning to representations. Pape and 

Tchoshanov (2001) suggest that the main role of representations is to aid the understanding of 
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abstract ideas. These abstract ideas can then be externally represented so that relationships can be 

identified and models can be constructed. Bruner’s learning model (see Pape & Tchoshanov, 

2001, p. 123) identifies three levels of engagement with representations: the enactive, iconic and 

symbolic. The enactive engagement involves manipulating concrete material, the iconic pictures 

and graphs while the symbolic represents working with numerals. Lesh, Landau and Hamilton 

(1983) list five types of representations: real life experiences, manipulative models, pictures and 

diagrams, spoken words and written symbols. Bruner’s engagement model can be used to 

identify the representations. Real life experiences and manipulative models are enactive 

engagement, pictures and diagrams that form part of the iconic engagement and spoken words 

and written symbols are symbolic engagement. The five representations mentioned involve both 

internal and external representations. The following two sections discuss internal and external 

representations. This will provide valuable information for the study when mathematising 

competencies are developed for number patterns in Section 3.5. 

 

3.3.2 Representing representations 

In Section 2.5.2 internal representations and the different elements of concept formation were 

discussed. Mathematics is dependent on visualisation of concrete and abstract ideas (Arcavi, 

2003). Visualisation is a mental representation. Internal representations include mental 

representations and computational representations (Hesselbart, 2007). Mental representations 

will develop as a learner reflects on existing representations based on past experiences and social 

interaction. Pape and Tchoshanov (2001) show that a combination of visual, concrete and 

abstract representations will result in increased understanding. Internal abstractions can only be 

adequately represented as a learner’s experience representing his abstractions increases (Pape & 

Tchoshanov, 2001). By analysing a learner’s external representations his internal representations 

can be noted. Cognitive representation is the interrelated functioning of internalising and 

externalising processes (Pape & Tchoshanov, 2001). As the skills of internalising his abstract 

ideas develop, cognitive representations will increase. Chapter 2.6 investigates a socio-cultural 

perspective towards mathematical modelling which is focused around external representations. 

Duval (1999, 2006) noted that semiotic representations are external representations. External 

representations are those representations that can be observed. From a modelling perspective the 

representations from Lesh, Post and Behr (1987) can be related to the representations that a 
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learner could possibly use or construct during the modelling process. Lesh et al. (1987) list five 

systems of representations: experience based scripts that are organised around real world 

problems, manipulative models, pictures or diagrams, spoken language and written symbols. In 

the following section, representations will be used to generalise solutions.  

 

 

3.4 GOAL 2: GENERALISATIONS 

 

In Section 2.4.7 it is noted that generalising is a sub-competency when a learner is working 

within the mathematical world of symbols. In Sections 2.8.4 to 2.8.6 the competency 

generalising is described and represented as a vertical mathematising competency. Ellis (2007a, 

p. 225) provides a few definitions of generalisation: the rule about relations, extension of 

reasoning and identification of commonalities. Generalisation can also be described as 

expressing a general rule for common elements (Ellis, 2007b, Samson, 2012). The value of 

generalising cannot be ignored.  

 

The South African Department of Education (DoE) strongly encourages the notion that learners 

are exposed to mathematical experiences that will give them the opportunity to develop 

mathematical reasoning to prepare them for more abstract mathematics in tertiary education. The 

Curriculum and Assessment Policy Statement (CAPS) provides the following teaching 

guidelines for number patterns at Grade 10 level: “Investigate number patterns leading to those 

where there is a constant difference between consecutive terms, and the general term is therefore 

linear” (Department of Education (DoE, 2011, p. 12). The Grade 11 teaching guidelines show the 

progression from linear to quadratic: “Investigate number patterns leading to those where there is 

a constant second difference between consecutive terms, and the general term is therefore 

quadratic” (DoE, 2011, p. 12). 

 

De Villiers (2007) notes that the modelling perspective is not suited for all topics in the South 

African mathematics curriculum. The teaching guidelines for number patterns provide 

opportunities for exploration and can be provided when a modelling approach to the teaching and 

learning is implemented. The chance for exploration can also be limited if the transmission 
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approach is applied and learners solve imitative, routine problems. Learners should be given the 

opportunity to explore patterns so that they can form conjectures and ultimately generalise 

number patterns. Carraher, Schliemann, Brizuela and Earnest (2006, p. 3) regard generalisation 

as: “the heart of algebraic reasoning”. Generalisation is the link between arithmetic expressions 

and functions and allows us to engage with concepts and their meanings. It is therefore important 

for a learner to be able to switch between different representations. In Section 2.4.7 is it 

explained that as a learner works though the modelling cycle, he needs to be able to switch 

between different operations and representations. This will lead to more general solutions. 

According to Arcavi (2003), learners find it difficult to switch between representations. The next 

section will discuss the difficulties learners experience when generalising and suggest some of 

the reasons for these difficulties. 

 

3.4.1 Difficulties in generalisation  

Van den Heuvel-Panhuizen (2003) notes that the ultimate purpose of reinventing mathematics is 

for a learner to create models by using the process of generalising. Generalisation was the second 

goal selected for the subject content because of its value for mathematical reasoning and because 

of the difficulties learners encounter. Warren and Cooper (2008, p. 172) summarise the following 

reasons for learners’ generalisation difficulties: 

i. The transition of patterns to functions 

ii. Finding a functional relationship and exploring a concept as a variable 

iii. Lack of appropriate language needed to describe relationships 

iv. Inability to visualise spatially 

v. Older students battle with the process of generalisation 

 

Warren and Cooper (2008) explain the meaningless and monotonous activities learners complete 

in class to practise generalising patterns. Learners are given a simple pictorial or numeral pattern 

and asked to continue the pattern, to identify the repeating part and then generalise a rule for the 

pattern. Ellis (2007b) notes that learners can easily recognise the pattern but cannot generalise 

the pattern successfully. Traditional algebra lessons are focused on manipulating symbols which 

negatively impacts a learner’s algebraic understanding and reasoning (Ellis, 2007b). Brenner et 

al. (1997) have based their study on multiple representations. The aim of the study was to 

examine if pre-algebra students can represent symbols, words and graphics more effectively if 

the instruction was more focused on understanding word problems rather than symbol 
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manipulation skills. Instruction moved away from teaching manipulation skills and focused on 

guided discovery using meaningful problem solving contexts. Learners showed a better 

understanding in the topic but also showed an improvement of representational skills (Brenner et 

al., 1997). Samson (2012) suggests that a more visual approach to introduce algebra can support 

the important processes when a learner generalises solutions. Arcavi (2003) similarly notes that 

visualisation is a contributing factor when a learner engages in reasoning and problem-solving. 

 

3.4.2 Generalising patterns 

Mathematics is dependent on visualising concrete and abstract ideas (Arcavi, 2003). Abstraction 

is when a learner recognises a pattern within a representation and generalisation is when he 

extends that pattern to a general solution. When a learner uses the processes of recognising and 

generalising, he uses inductive reasoning to formulate these conjectures.  

 

Andrews (1990, p. 9) gives his thoughts on how a learner would generalise the following 

problem which he refers to as a “standard approach to a linear relation”: 

 

𝑛 1 2 3 4 5 6 

𝑓(𝑛) 3 7 11 15 19 23 

 

The first difference is constant: 4 

A recursive relationship can be represented by the general solution: 𝑡(𝑛 + 1) = 𝑡(𝑛) + 4, 𝑛 ∈ 𝑁 

The functional relationship can be represented by the general solution: 𝑓(𝑛) = 4𝑛 − 1 

A more structural way of generalising the pattern is by considering the structure of the values. A 

structural analysis requires deductive reasoning. During vertical mathematisation learners 

generalise patterns using abstraction and deductive skills (Zbiek & Connor, 2006)  

 

𝑓(1) = 3 

𝑓(2) = 3 + 4                 = 3 + 1 × 4 

𝑓(3) = 3 + 4 + 4         = 3 + 2 × 4 

𝑓(4) = 3 + 4 + 4 + 4 = 3 + 3 × 4 

𝑓(𝑛) = 3 + (𝑛 − 1) × 4 
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Samson (2012) differentiates between local and global visualisation. Local visualisation is 

identified by a recurring addition of a unit that results in the next term. Local visualisation is the 

visualisation strategies applied to establish a recursive relationship or a functional relationship. 

Global visualisation is a broader visualisation that focuses on the relationship between the term 

and its position. Global visualisation results in a generalised functional relationship. The 

following pictorial sequence is used to explain local and global visualisation: 

 

 

 

Figure 3.1: Pictorial sequence 

 

The fifth shape will be used to explain the local visualisation. In Figure 3.2, both generalisations 

were obtained by using an additive unit in the pattern. In the first rule, 𝑇𝑛 = 1 + 3𝑛 was 

generalised by adding three matches to the original starting match each time to get the next term. 

In the second rule, a four-match constant was added to three matches of 𝑛 − 1 to get to the next 

term. 

 

 

 

 

 

 

 

 

Figure 3.2: Local visualisation of Term 5 (Samson, 2012, p. 3) 

 

Global visualisation does not make use of the recurring feature of the pattern. In Figure 3.3, each 

term is divided into a top row and a bottom row of 𝑛 matches and a middle row of 𝑛 − 1 matches 

which results in the rule: 𝑇𝑛 = 2𝑛 + (𝑛 + 1). The second generalisation was obtained by 

correcting the over count groups of four matches (4𝑛) because there are 𝑛 − 1 overlapping 

matches. The rule is 𝑇𝑛 = 4𝑛 − (𝑛 − 1). 
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Figure 3.3: Global visualisation of Term 3 (Samson, 2012, p. 3) 

 

The construction of triangular numbers follows the rule that each new polygon is formed by 

adding another row of dots to the existing polygon.  

 

 

 

 

Figure 3.4: A pictorial quadratic sequence  

 

The structure of the sequence results in a functional relationship: 

Term 1: 1 = 1 × (1 + 1) ÷ 2 

Term 2: 3 = 2 × (2 + 1) ÷ 2 

Term 3: 6 = 3 × (3 + 1) ÷ 2 

Term 4: 10 = 4 × (4 + 1) ÷ 2 

Term 𝑛:  𝑇𝑛 = 𝑛 × (𝑛 + 1) ÷ 2   

The recursive relationship shows the important characteristic of a quadratic pattern: it has a 

constant second difference.  

The recursive relationship is generalised: 

𝑡(𝑛 + 1) = 𝑡(𝑛) + [𝑟𝑢𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒′𝑠 𝑝𝑎𝑡𝑡𝑒𝑟𝑛]  

𝑡(𝑛 + 1) = 𝑡(𝑛) +  [𝑛 + 1], 𝑡(1) = 1 and 𝑛𝜖𝑁 
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Warren and Cooper (2008) suggest that a better understanding of algebraic reasoning skills will 

deepen a learner’s understanding of the structure in mathematics. Ellis (2007a, 2007b) 

emphasises the value of justification and generalisation. Although a learner can easily generalise 

a recursive relationship it leaves them with little opportunity for further exploration. If a learner 

adapts a functional approach to generalisation, he has the opportunity to really engage and 

explore functions. As learners’ generalising skills increase, their reasoning with patterns, 

quantities and real life problems will increase (Ellis, 2007b). This will not only link algebra to 

real life problems but give learners the opportunities to find meaning in algebraic reasoning and 

manipulation.  

 

3.4.3 Categorising generalisations 

In Section 2.5.4 the three levels of generalisation were described according to Zazkis and 

Applebaum (2007): expansive generalisation involves the relevance of existing schema expanded 

without reconstruction; reconstructive generalisation involves existing schema which are 

reconstructed to a wider range of applicability; and disjunctive generalisation occurs when new 

schema is constructed which is relevant to new contexts. Ellis (2007a, 2007b) has developed 

taxonomy to categorise generalisations. The taxonomy will be explored and compared with 

Zazkis and Applebaum’s three levels of generalisation. Ellis’ taxonomy categorises different 

levels of generalising. It differentiates between learners’ activity as they generalise (generalising 

actions) and their final statements of generalisation (reflection generalisations). Generalising 

actions can be divided into three categories: relating (Type I), searching (Type II) and extending 

(Type III) (Ellis, 2007a, p. 235). These activities can be viewed in a hierarchical manner. When a 

learner is relating, he forms associations between two or more problems, situations, ideas or 

mathematical objects. This is noted when a learner recalls a similar previous situation or 

problem. When a learner is searching, he attempts to locate a similar element or idea by looking 

for relationships, procedures, patterns or solutions. Extending involves the expansion of a 

pattern, relationship or rule into a more general format. At this point in the generalisation 

process, their reasoning is extended past the problem, situation or case in which it started. 

Reflection generalisations categorise the activities that will result in a general solution that are 

articulated verbally or in written symbols. The reflection activities are identification or statement 

(Type IV), definition (Type V) and influence (Type VI) (Ellis, 2007a, p. 245). The activities for 
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the reflection generalisations can take place in any order. In the Type IV reflection activity the 

learner’s generalisation can be identified according to general patterns, properties, rules or 

common elements. In the definition activity, a rule is produced that can be applied to all the 

elements in the relationship or pattern. The influence activity in a previously generalisation is 

implemented or adapted so that it can be applied to a new situation.  

 

The levels of Zazkis and Applebaum’s (2007) generalisation are not as clearly defined as Ellis’ 

taxonomy. Expansive generalisation can be grouped into Type III, the extending action. During 

the extending action of generalisation a learner expands the range of a case from which it 

originated. Reconstructive generalisation forms part of Type IV, the identification or statement.  

During the identification or statement stage, the strategy or idea can be implemented beyond a 

specific case. Disjunctive generalisation can be paired with Type VI, influence. At this stage, the 

idea or strategy can be modified to a new problem or situation. Ellis’ taxonomy provides a 

framework to effectively be able to pinpoint the exact nature of a learner’s generalising 

activities. The taxonomy will be incorporated when mathematising competencies are developed 

for number patterns. It will also be a useful tool when competencies are identified so that data 

can be effectively analysed in Chapter 5. 

 

 

3.5 GOAL 3: DEVELOPING MATHEMATISING COMPETENCIES FOR NUMBER 

PATTERNS 

 

In Section 1.2 and Section 2.8.6, the process of mathematisation and model building was 

discussed in terms of Gravemeijer’s activity levels. In Section 2.4.7 mathematising competencies 

have been elaborated and defined. In Section 2.8.6 models for horizontal and vertical 

mathematising competencies were constructed by linking Üzel and Mert Uyangör’s activities for 

mathematising to the horizontal and vertical competencies. Figures 2.3 and 2.4 model these 

activities for horizontal and vertical mathematisation. The next step involves adjusting and 

interpreting mathematising competencies specifically for number patterns. These mathematising 

competencies need to be developed so that horizontal and vertical mathematising competencies 

can be identified and described as a learner works through the modelling process. Various 
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frameworks will be considered when describing horizontal and vertical mathematising 

competencies so that a valid and reliable tool can be developed to assess mathematising 

competencies during Phase 2 in the teaching experiment (Chapter 4). The model that will be 

developed in this section will be a guideline for recognising mathematising competencies in the 

modelling cycle. It can be readjusted and refined at any stage. In the process of understanding the 

various competencies for mathematising for number patterns, various frameworks will be 

compared and aligned. Table 3.1 maps competencies within key frameworks to provide a reliable 

development for number pattern competencies. Gravemeijer’s activity levels (Gravemeijer, Cobb, 

Bowers & Whitenack, 2002), Van den Heuvel-Panhuizen (2003) classification of mathematising 

competencies, Üzel and Mert Uyangör’s activities for horizontal and vertical mathematising 

(2006) and Ellis’ generalising taxonomy (2007a, 2007b) will be compared and scrutinised.  

 

3.5.1 Mapping mathematising competencies with current frameworks 

As explained in Chapter 1.2, Gravemeijer’s activity levels show the relationship between the 

activity and the development of emergent models through the motion of progressive 

schematising. Üzel and Mert Uyangör (2006) noted that horizontal mathematisation occurs when 

any of the following activities can be identified: identifying or describing specific mathematics 

in a general context, schematising, formalising and visualising a problem in different ways, 

recognising relations and regularities, recognising isomorphic aspects in different problems, and 

transferring a real world problem into a mathematical problem. In the activity of task setting the 

following horizontal mathematising competencies can be noted, internalising and structuring. In 

Ellis’ generalising taxonomy, the generalising actions can be compared with the horizontal 

mathematising competencies of internalising, interpreting and structuring. Internalising focuses 

on the competency of understanding the real problem. When a learner understands a problem, he 

uses previous experiences to make sense of a new one. Relating (Type I) can refer to relating 

situations or relating objects (Ellis, 2007a). A learner relates situations or objects when he can 

connect to previous situations or objects based on similar elements or when he creates new 

situations based on those similar properties. Searching (Type II) can be compared with 

structuring (Table 3.1). When a learner is searching, he attempts to locate a similar element or 

idea by looking for relationships, procedures, patterns or solutions. Ellis (2007a) notes that a 

learner can search for a similar relationship, procedure, pattern or solution or result using a 
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previous situation as a frame of reference. When structuring during horizontal mathematising, a 

learner recognises isomorphic elements, regularities, patterns or relations.  

 

Objectification takes place when a learner moves from horizontal mathematisation to vertical 

mathematisation. On Gravemeijer’s activity levels this movement is known as the referential 

activity. During the referential activity a learner moves from horizontal to vertical 

mathematisation and symbolising takes place. The referential activity can be compared with 

Ellis’ extending (Type III). Extending involves the expansion of a pattern, relationship or rule 

into a more general format. The constructed model is the ‘model of’ a specific situation. 

Reflection generalisations in Ellis’ taxonomy categorises the activities that will result in a 

general solution that are articulated verbally or in written symbols. This categorisation reflects 

the activities in Üzel and Uyangör’s (2006) activities for vertical mathematising. These activities 

are reorganising within a mathematical system, representing a relation in a formula; proving 

regularities; refining and adjusting models; using different models; combining and integrating 

models; formulating a mathematical model; and generalising a mathematical model. During 

Gravemeijer’s general activity and formal activity, vertical mathematising competencies can be 

noted. The competency of adjusting can be compared with Ellis’ identification or statement 

(Type IV).  In the Type IV reflection activity the learner’s generalisation can be identified 

according to general patterns, properties, rules or common elements. The identification or 

statement level can include: identifying situations or objects that are similar, constructing a 

general rule or identifying a pattern, extending strategies or procedures beyond a specific case. 

The organising competency can be compared with the generalisation activity of definition (Type 

V). In the definition activity, a rule is produced that can be applied to all the elements in the 

relationship or pattern. In the level of formal activity, the vertical mathematical competency of 

generalising is aligned. Models can now be used to model other situations. This is known as the 

activity at general level (see Table 3.1) which occurs as the ‘model of’ now becomes a ‘model 

for’. 
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 Gravemeijer’s 

activity levels 

(Gravemeijer, Cobb, 

Bowers & 

Whitenack, 2000),   

Van den Heuvel-

Panhuizen’s competencies 

(2003) 

Üzel and Mert Uyangör’s activities for 

horizontal and vertical mathematising 

(2006) 

Ellis’ taxonomy (2007a, 

2007b) 

Horizontal 

mathematisation 

Level 1 Activity of 

task setting 

Internalising Understanding the problem Type I Relating 

Interpreting Making assumptions, identifying 

conditions, constraints and restrictions, 

quantities that influence the situation 

Structuring Recognising isomorphic elements, finding 

regularities, finding patterns, finding 

relations 

Type II Searching 

Level 2 Referential 

activity 

Symbolising Symbolising Type III Extending 

Vertical 

mathematisation 

Using and switching between 

symbolisations 

Level 3 General 

activity 

Adjusting Refining, using and switching between 

operations 

Type IV 

Identification/Statement 

Organising Combining, integrating, structuring, 

argumentation 

Type V Definition 

Level 4 Formal 

activity 

Generalising Independent reasoning and acting Type VI Influence 

 

Table 3.1: Mapping the mathematising competencies with Gravemeijer’s activity levels and Ellis’ generalising taxonomy 
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In Ellis’ taxonomy the reflection of influence (Type VI) is when a generalisation is implemented 

or adapted so that it can be applied to a new situation.  

 

The models for mathematisation in Section 2.8.6 need to be refined for mathematising 

competencies when a learner models number pattern problems. The next section will use Table 

3.1 as a basis to develop competencies so that the learners’ external representations can be used 

as a competency indicator as he moves through the modelling process. 

 

3.5.2 Number pattern competencies for mathematising 

In Section 3.5.1 number pattern competencies have been mapped (Table 3.1) so that 

mathematising competencies for number patterns can be developed. Table 3.2 separates 

horizontal and vertical mathematising competencies and focuses each competency on one or 

more sub-competency. Ellis’ taxonomy (2007a, 2007b) uses various activities to characterise a 

learner’s generalisation activities into specific levels. Using these levels and explanations, 

competencies can now be identified by looking at a learner’s external representations, i.e. what 

the learner does, says, makes and writes. These activities serve as indicators to acknowledge 

whether horizontal and vertical competencies are utilised when working through a number 

pattern modelling problem.  

 

Internalising is the horizontal mathematising competency when a learner explores the real 

problems so that he understands the problem and is able to simplify the problem. The 

competency internalising can be identified when a learner rephrases the problem into his own 

language, when he explains or notes important information. According to the generalisation 

taxonomy (Ellis, 2007a, 2007b) a learner relates back to previous problems when attempting to 

make sense of a current problem. During the competency interpreting, the learner recognises 

quantities that influence the situation and make assumptions to note conditions that will work or 

not work for a problem. When a learner is interpreting he recognises quantities that influence the 

situation. In Ellis’ taxonomy relating objects can be compared with interpreting while searching 

can be compared with the competency structuring. Structuring involves setting up a real model 

based on relationships and patterns. The external representations of a learner when he is 

structuring will demonstrate finding and stating patterns or relationship within the problem. 
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Table 3.2: Number pattern competencies for mathematising 

 Competencies Sub-competencies What the learner does, says, makes or writes 

Horizontal Internalising  Understanding the problem 

 Distinguishing between relevant and 

irrelevant information 

 Simplifying the situation 

 Learner states the problem in language he understands 

 Learner notes/explains important information 

 Learner notes/explains/relates a previous problem that is similar to 

the current one 

Interpreting  Making assumptions 

 Identifying conditions 

 Identifying constraints 

 Recognising quantities that influence 

situation 

 Learner makes assumptions 

 Learner notes conditions that will work/not work for a problem 

 Learner recognises quantities that influence the situation 

 

Structuring  Setting up a real model 

 Naming quantities 

 Identifying key variables 

 Recognise patterns 

 Recognise relationships  

 Learner looks for a pattern/relationship 

 Learner notes a recurring value or situation in the problem 

 Learner recognises a pattern/relationship 

 Learner states the relationship or pattern 

 

Symbolising  Choosing appropriate mathematical symbols 

 Using symbols 

 Setting up a mathematical model 

 Switching between symbolisations 

 Learner draws pictures to represent the problem 

 Learner draws pictures to show the relationship/pattern 

 Learner uses objects to build the pattern 

Vertical  Learner uses symbols to represent his pictures/patterns 

 Learner forms a pattern using symbols 

 Learner extends his pattern 

 Learner formulates a rule using symbols 

 Learner creates a model of 

Adjusting  Rephrasing the problem 

 Refining 

 Using and switching between operations 

 

 Learner adapts his pattern so that it makes sense for the situation 

 Learner tests his pattern 

 Learner refines his pattern after testing it 

 Learners reflects back to the pattern/symbols 

 Learner reflects back to the real problem 

 Learner creates a model for 

Organising  Viewing problem in a different form 

 Use mathematical knowledge to solve 

problem 

 Using heuristics 

 Combining 

 Integrating 

 Learner constructs a rule that works for all elements 

 Learner reflects back to the real problem  

 Learner uses the rule to solve a problem 

 Learner validates his solution 

 Learner creates a model for 

Generalising  Establishing similar relationships in different 

problems 

 Independent reasoning and acting 

 Learner uses deductive reasoning to prove his rule 

 Learner uses/adapts the rule for another situation 
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The competency symbolising can be a horizontal or a vertical competency. Activities that 

identify horizontal competencies can be: the learner draws pictures to represent the problem, he 

shows the relationship or pattern in the problem, he uses objects to build the pattern. Vertical 

mathematising can be identified when learners use symbols to represent the problem. When a 

learner is adjusting, the emphasis is on refining the symbolisations. Adjusting can be noted when 

a learner refines his symbolisations. Ellis’ taxonomy (2007a, 2007b) summarises the 

identification or statement to be focused around a continuing phenomenon, a statement of 

commonality or similarity or a general principle. This means the act of finding a pattern or rule 

that symbolises a common element. The competency organising is identifiable when a learner 

constructs a rule that works for all elements. Generalising involves independent reasoning and 

acting and a learner can now use or adapt the rule for another situation. 

 

The third goal in the phenomenological analysis was to develop mathematising competencies 

specifically for number patterns. The number pattern competency continuum will be used in 

Chapter 5 as a tool to identify competencies during the teaching experiment. 

 

 

3.6 GOAL 4: ESTABLISHING THE LEARNERS’ PRE-KNOWLEDGE 

 

The starting point of the HLT is dependent on the learners’ prior knowledge. A baseline 

assessment is an effective tool to establish a learner’s mathematical skills and knowledge. The 

baseline assessment provides a teacher the opportunity to effectively plan the learning process. 

Kyriakides (2002) notes that the baseline assessment is used to identify what the learner can and 

cannot do so that differentiated learning needs can be targeted. The baseline assessment also 

serves as a basis for measuring future progress. The baseline assessment will provide important 

information about groups and individuals in the mathematics classroom and how the groups in a 

class can be structured. It will focus the HLT.  

 

3.6.1 Analysis of the baseline assessment 

Question 1 focuses on recognising, describing, extending, explaining patterns in different 

settings.  
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1.1 The given sequence consists of regular polygons staring with a 3-sided regular polygon 

(triangle), then a 4-sided regular polygon (square) and then a 5-sided regular polygon (a 

pentagon). Different choices are given, but the learner is not limited to one choice. If a learner 

selects: 

A:  The learner is not extending the given pattern, but he recognises that the next shape needs 

to have 6 sides. 

B:  The learner recognises the pattern, he can extend the sequence correctly, and he 

understands that the shapes are all regular.  

C:  The learner knows that the next shape in the sequence must have six sides, but he does 

not understand regular shapes. 

D:  The learner cannot extend the sequence; he does not recognise the pattern. 

 

1.2 The given sequence consists of an unfamiliar combination sequence: 

 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, ….  

Different choices are given, but the learner is not limited to one choice. If a learner chooses: 

A:  He recognises the linear or arithmetic part of the sequence only.  

B:  He recognises the linear or arithmetic part of the sequence and realises there must be a 

one in the sequence. 

C:  He recognises the combination sequence and extends the pattern correctly. 

D:  He does not recognise the pattern, he cannot extend it. 

 

1.3  In the open sequence: 1, 2, 4, … the learner has the opportunity to: 

A:  He recognises a quadratic sequence, even though he might not know that it is called a 

quadratic pattern, he still recognises that there is a pattern that emerges with the first 

differences. 

B:  Recognise an exponential pattern, even though he might not know that it is called an 

exponential/geometric pattern, he still recognises that there is a pattern that emerges 

when you multiply by a constant value. 

C:  No pattern. The learner cannot extend this sequence, which means he cannot relate to 

forming any next term. 
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D:  No pattern. The learner cannot extend this sequence, which means he cannot relate to 

forming the next term. 

 

1.4 The following sequence bids quite a challenge. 1, 3, 5, 7, 5, 3, 1, 3, … The learner has four 

options to try and describe the pattern.  If he chooses:  

A:  He recognises the first part of the sequence that is adding three each time. He does not 

apply this recursive rule to the second part of the sequence. 

B:  He recognises the second part of the sequence that is subtracting three each time. He does 

not apply this recursive rule to the first part of the sequence. 

C:   He cannot see a constant pattern, so the learner decides not to attempt his own 

description. 

D:  The learner attempts his own description for the pattern he sees. He might even attempt to 

extend the pattern. 

 

1.5 In this question, a sequence is given, and a learner needs to select the correct rule which 

will work for each term. This question attempts to assess whether a learner can relate a rule to a 

sequence. If he chooses: 

A:  He only applied the rule for the first term.  

B:  Could apply the rule for the first two terms only. This means that the learner did not test 

the rule for all the terms. 

C:  He could test the rule for each term successfully. 

D:  He does not understand how to relate the rule to the sequence. 

 

1.6 This question does not involve extending or recognising or even describing a pattern. 

During the modelling problems it is important for a learner to apply the correct operation rules, 

this question will assess if learners can use the BODMAS (brackets of division, multiplication, 

addition and subtraction) from left to right. 

 

Question 2 focuses on recognising, describing, extending and explaining patterns with different 

properties. This question is an open question with the aim to assess the knowledge of patterns 

that learners have. Learners need to construct any linear number pattern, describe it by giving the 
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first few terms and explaining how they would find more terms. This will clearly show if a 

learner knows that there is a constant first difference between two consecutive terms. 

In the second part of this question, the learner needs to construct any quadratic number pattern, 

describe it by giving the first few terms and explaining how they would find more terms. Even 

though they might not know what a quadratic number pattern looks like, the question hints that 

there is a constant second difference. A learner might use a simple sequence such as 1, 4, 9, 16, … 

and can at least explore the possibility of getting a second difference to be constant. 

In the third part of the question, learners have the opportunity to construct any sequence other 

than a linear or quadratic. This question will give the teacher a clear understanding of the learner 

when he describes different sequences. He might describe and extend a cubic, a geometric 

sequence or a Fibonacci sequence. This accounts for the learner thinking of patterns and 

relationships between numbers. 

 

Question 3 assesses the use of the In-Out table or diagram. The In-Out table shows the functional 

relationship of a pattern clearly (see Section 3.4.2). During the modelling problems, learners can 

choose to use the tables as a model building tool to represent the real problem as a mathematical 

problem. Once again, the learner needs to recognise patterns that are represented in a different 

way. This question is constructed so that the level of pattern recognition can be established. 

Question 3.1 involves a straight-forward sequence. Terms are given in order, so the learner might 

look at the Out column to find a relationship between the patterns. Learners need to fill in the 

missing terms in the sequence. In 3.2 the terms are not given in any order, and learners are forced 

to find a general rule to represent the Out values in terms of the In values in order to fill in the 

missing values. In the last question (3.3), information is given in no specific order, and is 

presented in a table. Learners need to find a general rule to represent the Out values in terms of 

the In values in order to fill in the missing values. 

 

3.6.2 Results of the baseline assessment 

The results of the baseline assessment will be discussed per question.  

1.1. All the learners got this question correct. All learners recognised the pattern, they could 

extend the sequence correctly, and they understood that the shapes were regular. 
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1.2. All but one learner answered this question correctly. Sixteen learners recognised the 

combination sequence and extended the pattern correctly. One learner recognised the linear 

part of the sequence but added in a one because he realised there had to be an extra one in 

the sequence. 

1.3. Six learners answered A. Answer A suggests that the learners recognised that to get to the 

second term one was added, to get to the third term two was added so to get to the fourth 

term three was to be added (quadratic pattern). Nine learners answered B. B suggests that 

the learner multiplied each term by two to get to the next (exponential number pattern). 

Two learners answered C which means they ignored the first term and added two to get to 

the next term. 

1.4. All learners answered D. The majority attempted to explain a pattern:  

F: Add two to the first three numbers, subtract two from the next three numbers, add two 

to the next three numbers and so forth. 

D: 5 will come next because the pattern first begins with #1-7 then #5-1, so #3,… can be 

followed. This is a reverse pattern. 

 

1.5. The six learners that answered B did not test the rule for all the terms or they might have 

guessed the answer. The learners correctly answered C and they could apply the rule for all 

the terms in the sequence. One learner did not answer the question.  

1.6. Twelve out of seventeen learners correctly inserted brackets to make the equation true. 

Three learners incorrectly inserted brackets and two learners left it blank. 

2.1. Fourteen learners could construct a linear number pattern correctly. Some examples were: 

I: 2, 4, 6, 8, 10… 

The learner described the pattern: You add two every time. 

The learner wrote down the incorrect rule:  𝑇𝑛 = 𝑛 + 1 

 

 

M:  

 

 

 

 The learner’s incorrectly explained: Add 5 

 

2.2. When constructing a quadratic number pattern, seven learners correctly noted a quadratic 

pattern. Nine learners answered incorrectly. Of the learners that answered incorrectly, the 

5 10 15 20 25 30 

1 2 3 4 5 6 
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majority constructed a linear pattern. One learner did not provide an answer. An example 

of a learner that gave a correct answer was: 

 A: 1, 2, 4, 7, 11, 16 … 

The learner described the pattern: To get to a new term, consecutive natural numbers must 

be added. 

 

2.3. Two learners constructed quadratic number patterns, fourteen learners either wrote down a 

linear pattern or one that had no relationship between the terms and one learner did not 

answer the question. 

 

3.1. Eleven learners explained the rule in words. Three learners did not explain the rule 

correctly and three learners did not answer the question. The following response was very 

well articulated: 

F: The out is one less than three times the in. 

 

3.2. All seventeen learners explained the rule in words. 

3.3. Only four out of the seventeen learners gave a clear explanation of the relationship in the 

pattern. 

  Figure 3.5: Learner A searches for patterns 

 

Although the learner A did not complete his rule as a sentence, she searched for patterns by 

working with the differences between the In and the Out values (see Figure 3.5).  

 

3.6.3 Using the baseline assessment to group learners in the modelling classroom 

In the previous section, the results of the baseline assessment were explained. From the results, 

the learners need to be grouped within the heterogeneous classroom. Linchevski and Kutscher’s 

(1998) reports on a study where the aim was to investigate the effect of mixed ability teaching on 

achievement. This study was carried out over two years involving twelve schools. It was 
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concluded that it is possible for all ability levels in mathematics to effectively increase in 

heterogeneous classes (Linchevski & Kutscher, 1998). Baer (2003, p. 170) notes:  

What little research that has been done in the elementary and secondary levels 

suggest a pattern similar to that found in non-cooperative learning settings: high 

achievers do much better in homogeneous groups; among average and low 

achievers there is little difference between students in heterogeneous and 

homogeneous groups.  

 

Slavin (1987) suggests positive and negative factors to both ability and mixed ability grouping. 

Pigford (1990) notes three positive heterogeneous effects:  increased student achievement, 

positive race relations and increased self-esteem. In Chapter 2.7 it was explained that low or 

average achievers can develop powerful models to scaffold their learning in the modelling 

classroom. When learners work on modelling problems, they work collaboratively towards the 

same result. Appendix B3 is a table used to summarise the results of the baseline assessment and 

shows the random, heterogeneous grouping of the learners. In Section 4.4.2 the selecting of the 

groups will be discussed. Section 4.4.6 will focus on selecting the learning activities for the 

teaching experiment. 

 

 

3.7 HLT IN THE PRELIMINARY PHASE 

 

3.7.1 Getting the HLT ready 

In Chapter 1, a HLT was explained as the hypothesised path of development of a student’s 

thinking and learning. Simon’s (1995) study explains the challenges of developing an 

instructional design that would allow learners to reinvent mathematics. This study is based on a 

constructivist perspective. Section 2.5.3 explains the value of community in the learning process. 

The constructivist learning theory constitutes learning as a process whereby individuals construct 

their own knowledge and understanding for themselves in a social setting. The learner is in 

charge and takes complete responsibility for his own learning. Cobb (1999) emphasises the 

educator’s facilitating role in a constructivist classroom, which involves guiding the learner to be 

an active participant in their learning. An educator needs to create and maintain a rich 

environment which stimulates active involvement of the learners and their own learning (Janvier, 

1996). Progressive education involves the social aspect as an integral element of learning (Hein, 
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1991). The constructivist theory requires a learner-centred, cooperative and problem solving 

approach to teaching, where the learner has the opportunity to interact with their awareness as 

well as the opportunity to construct their experiences (Hein, 1991; Ward, 2005). The important 

role of the mathematics educator is emphasised by Confrey (1990): 

An educator should promote and encourage the development for each individual 

within his class of a repertoire for powerful mathematical constructions and 

should seek to develop in students the capacity to reflect on, and evaluate, the 

quality of this construction (p. 108).  

 

The constructivist approach provides educators with important information on the understanding 

of the learning of mathematics, but neglects to establish a model for teaching (Simon, 1995; 

Matthews, 2003). Hein (1991) notes that learners construct knowledge based on previous 

knowledge constructions. If the learners’ preconceived knowledge seems to be incorrect, 

incomplete or invalid a learner world reformulate existing constructs only if the knowledge is 

connected to their existing knowledge base (Hanley, 1994). Reflecting upon the learning process 

during the learning process is considered to be a principle of learning (Hein, 1991). The learning 

and understanding of mathematics is a progressive developmental process. This progressive 

process needs to be understood by the teacher. He needs to be able to set goals for each lesson 

and predict what the learner should be learning next. These goals will establish the direction of a 

HTL. Simon (1995) notes that a LT needs to incorporate learning goals, the learning activity and 

the thinking and learning of learners. The teacher then needs to provide the learners with 

instructional tasks that are designed to match the levels of thinking so that learners can 

progressively work towards the goal of that specific trajectory.  

 

Figure 3.6 shows a mathematical teaching cycle which explains how a teacher uses a HLT to 

plan for a learning activity. Initially the baseline assessment will direct the HLT because it 

assesses the learners’ existing knowledge. During the course of the teaching experiment in 

Chapter 4, the iterative process of setting learning goals, planning and setting the learning 

activity and adjusting the HLT will lead to an actual learning trajectory. The final learning 

trajectory will include the activities and the order of the activities that the learners complete to 

achieve the learning goals set by the teacher. It is evident that the learning activities in the LT 

have essential roles. The learning activities must be a means for the learner to have the 
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opportunity to reinvent mathematics, progress their mathematical thinking and construct 

knowledge through building models.  

 

Figure 3.6: Mathematics teaching cycle (Simon, 1995, p. 136) 

 

In the next section the properties of a modelling activity that will adhere to the before mentioned 

roles will be investigated. 

 

3.7.2 Model-eliciting activities  

In the previous section the function of a HLT was explored. The activities that form the LT need 

to promote the learners’ mathematical thinking. Due to the nature of mathematical modelling and 

the aims of the study, it is appropriate to use model-eliciting activities (MEAs) for the learning 

activities. MEAs are used to investigate learners’ thinking (Chamberlin & Coxbill, n.d.). Lesh 

and Lehrer (2003) note that the mathematical thinking learners’ need to solve MEAs is different 

to the understanding and mathematical thinking needed when solving textbook questions. MEAs 

involve constructing symbolisations from real situations when working through the modelling 
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cycle (Chamberlin & Coxbill, n.d.; Lesh & Harel, 2003; Lesh & Lehrer, 2003). MEAs are solved 

in an express, test and revise approach. Lesh’s six design principles form the basis to create 

formal MEAs and capture the important properties modelling problems must encompass for 

progressive mathematisation can occur. The design principles to create MEAs are the model-

construction principle, reality principle, self-assessment principle, model documentation 

principle, model share-ability and reusability principle, and the effective prototype principle 

(Lesh, Hoover, Hole, Kelly & Post, 2000).  

i. Model construction principle. The model construction principle 

articulates that a model needs to be devised to solve the problem.  

ii. Reality principle. The reality principle refers to a meaningful activity 

that is real and relevant to the learners. 

iii. Self-assessment principle. The activity needs to be such that the learners 

are able to validate their solutions and decide whether they have done 

enough. 

iv. Model documentation principle. Learners need to document and 

represent their solutions in a way that explains their mathematical 

thought processes and thinking.  

v. Model share-ability and reusability principle. This principle emphasises 

the shift from a model-of a specific situation to a model-for a general 

situation. The latter is a model that can be reused or modified for a new 

situation. 

vi. Effective prototype principle. The effective prototype principle refers to 

a model that is simple yet effective for the situation so that others can 

interpret and use it successfully.  

 

In the next section, a checklist will be designed to effectively note the correlation of the learning 

activities with the RME principles and MEA design principles.  

 

3.7.3 Selecting criteria to develop a checklist for mathematical modelling problems 

In Section 2.7 the RME principles were discussed. Together with Lesh’s six design principles 

noted in Section 3.7.2 a checklist will be developed to ensure that the learning activities in the 

learning trajectory adhere to these principles. Doerr (2006) investigated a MEA and selected four 

of the six principles that she found relevant for the task. These questions will be used as a 

guideline to develop a tool to evaluate modelling problems. Table 3.3 shows the criteria for each 

RME principle and the converted question for the checklist. Five principles are selected from 

Lesh’s MEA principles and the RME principles to form the criteria for the checklist. These 

principles are relevant to the types of learning activities that will foster mathematical modelling 
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perspectives. The first principle selected from the MEA principles is the reality principle. The 

reality principle is also a RME principle. The questions on the checklist will be focused on the 

meaningfulness of the problem. Problems and their solutions need to be real and meaningful to 

the learners. 

 

Principle Criteria Questions 

Model 

construction 

principle 

 Learners are able to make meaningful 

connections within the problem 

 Problems need to allow for creating 

models for relationships, patterns and 

rules for these relationships 

 Does the activity involve 

constructing, describing or 

explaining a structurally 

significant system? (Doerr, 

2006, p. 7) 

Reality principle  Problems and solutions are real and 

meaningful to the learners 

 Is the context of the activity 

realistic and useful? 

 Will students be encouraged to 

make sense of the situation 

based on extensions of their 

own personal knowledge and 

experiences? (Doerr, 2006, p. 

7) 

Self-assessment 

principle 

 Learners can judge the usefulness of 

their solution based on the problem  

 The learning activity has sufficient 

information for the learner to know 

when he has accomplished his goal and 

when his solution complete 

 Does this activity provide 

enough information for a 

learner to establish if he has 

done enough? 

 

Level principle  The learning activity forms part of the 

vertical planning component of the 

RME principles 

  The learning activity is progressive or 

forms part of progressive activities 

 Is this task progressive or form 

part of a progressive sequence 

of activities? 

 Can this task be used in a 

higher level of activity? 

Language  The language used in the learning 

activity is appropriate for the learners 

 Is the language of the activity 

appropriate for the learners? 

Table 3.3: Checklist for mathematical modelling problems 

 

The second principle is the model principle selected from Lesh’s design principles. The criteria 

for this perspective will be based on whether the learner is able to make meaningful connections 

with the problem. Problems need to allow for creating models for relationships, patterns and 

rules for these relationships. The third selected principle is the self-assessment principle. 

Learners must be able to judge the usefulness of their solutions. The learning activity needs to 

have sufficient information for a learner to know when he has accomplished his goal and when 
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his solution is complete. The level principle is selected from the RME principles and will 

establish whether the learning activity forms part of the vertical planning component of the RME 

principles. This will ensure that the problems are progressive. The fifth principle is the language 

principle. The language principle is a RME principle and the criteria for the checklist will be 

based on the appropriateness of the language for the learners. Treffers (1987) explains the 

starting points of mathematics education through: “activity, differentiation, vertical planning, 

structural character, the language aspect, the applicability, the dynamics and the specific 

approach” (p. 59). By developing a checklist of specific criteria, the learning activities are 

designed so that these starting points are achievable. By building models to represent realistic 

situations learners relate mathematics to their previous experiences and learn mathematics by 

doing. When the learning activities form a LT that shows progression, mathematics is learnt 

according to the needs of the learner’s mathematical thinking and logic. Each activity that will be 

considered for the HLT will adhere to the principles that were selected in Table 3.3.  

 

 

3.8 SUMMARY 

 

The purpose of this chapter was to select the goals and outcomes of the subject content for the 

study. Goals were selected by means of a phenomenological analysis so that the HLT was 

focused in terms of Gravemeijer’s guidelines for an instructional theory: guided reinvention, 

didactical phenomenology and emergent modelling. The first goal was focused on the external 

representation of learners. The outcome for investigating representations was to explore the 

different representations a learner might use to build a real model and a mathematical model. The 

way in which learners represent their thinking and understanding will assist identifying and 

describing the revealed mathematising competencies during the analysis of the teaching 

experiment. The second goal was to investigate the process of generalisation so that the different 

levels of generalisation could be identified and characterised. Ellis’ taxonomy provided a 

framework to effectively be able to locate the learner’s generalisation activity. Mathematising 

competencies were then developed specifically for number patterns modelling problems. The 

third goal was developing mathematising number pattern competencies. These mathematising 

competencies will be used in the next chapter when the learners’ activities are analysed. The 
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fourth goal was to construct and use a baseline assessment to establish learners’ prior knowledge 

to focus the HLT and therefore the LT. The RME principles and Lesh’s MEA design principles 

were used to develop criteria for a checklist to easily review the learning activities. This will 

ensure that the learning activities are true thought-provoking mathematical modelling problems. 

In the next chapter the HLT becomes a LT. Chapter 4 will explain the teaching experiment as 

guided reinvention takes place by implementing the HLT. 
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CHAPTER 4  

EMPIRICAL INVESTIGATION  

PHASE 2: Educational experiment and adjusted, elaborated, refined sequence 

 

4.1  INTRODUCTION 

 

The main purpose of this section is to explain the methodology and the hypothetical learning 

trajectory (HLT) that becomes the learning trajectory (LT) in the experimental phase. Chapter 2 

has served as the theoretical background for the study. The various perspectives of mathematical 

modelling were investigated to explore the purpose of mathematical modelling and the aims for 

each perspective. The RME approach to the teaching and learning of mathematics has been 

investigated in Chapter 2 and 3 and implemented in this empirical design of the study. Chapter 3 

started the preparation stage of the study. The instructional goals were identified through a 

phenomenological analysis considering goals and outcomes that were evident in the history of 

number patterns and the overarching literature study in Chapter 2.  

 

Four main goals were selected to focus and prepare the study for the experimental phase. The 

goals were: investigating the role of presentations to relate learners’ presentations with their 

reasoning, investigating generalisation because this was classified as a difficult area in the 

phenomenological analysis and is an outcome in the mathematics curriculum’s guidelines, 

developing mathematising competencies for number pattern problems so that mathematising 

competencies could be identified, and developing and discussing the baseline assessment to 

investigate learners’ prior knowledge to focus the HLT and to start the LT.  

 

The purpose of Section 4.2 is to address the research problem and aims of the study. Referring 

back to the research question and aims in Chapter 1 will amplify the problem statement and aims 

for Chapter 4. These aims will be reviewed in Section 4.2. The design-based research (DBR) is 

the frame of the study. Section 4.3 will explain the purpose of DBR and how it’s been 

interwoven in the study. The research instruments in Section 4.4 will be explained as they were 

developed and used in the experimental phase. Section 4.5 will explain the HLT in the 

experimental phase. The triangulation component of DBR explains the merging of the data 
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collection methods and coding procedure that was followed to ensure validity and reliability. The 

phases of the cycles in the experimental phase will be explained and the retrospective analysis 

will be linked to the local instructional theory (LIT).  

 

 

4.2 SPECIFYING THE RESEARCH PROBLEM AND AIMS 

 

The research question of the study is: How does the development of a local instructional theory 

influence learners’ development of mathematising competencies when modelling mathematical 

number pattern problems? Five aims were constructed to direct the study so that the research 

question can be explored. Chapter 2 addressed the first aim which was to describe a 

mathematical modelling perspective towards the teaching and learning of mathematics. All the 

modelling perspectives were investigated. A socio-critical perspective introduced the value of 

mathematical modelling and the educational goals depicted when a learner models mathematics. 

The contextual perspective related mathematics to real life and explained that mathematics can 

be meaningful to a learner if they were subjected to flexible, real life problems. An educational 

perspective involved mathematical modelling as a concept-developing aid where mathematical 

modelling competencies are developed through the modelling process. The cognitive perspective 

explored the cognitive and meta-cognitive processes required when a learner grapples with a 

modelling problem. The roles of representations were the focus of the socio-critical perspective 

and explored the process of objectification which is the transition between the horizontal and 

vertical mathematisation processes.  

 

The RME theory was discussed in the realistic modelling perspective and the process of 

horizontal and vertical mathematisation was investigated in the epistemological perspective. The 

RME framework and the development of mathematising competencies form the basis of the 

study. The epistemological perspective of modelling (Section 2.8) explored mathematising 

competencies and the development of these competencies through model building. Exploring the 

horizontal and vertical mathematisation processes was the second aim of the study. The 

horizontal and vertical mathematising competencies were modelled in Figures 2.3 and 2.4 

(Section 2.8.6). As mentioned in Section 4.1 one of the goals as directed by the 
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phenomenological analysis was to develop mathematising competencies specifically for number 

patterns. The third aim of the study was directed towards the analysis of number patterns in 

terms of the processes of mathematisation. Table 3.2 explains the competencies and sub-

competencies for number patterns. It introduces indicators described by the learners’ 

representations so that competencies can be identified and coded. In Chapter 6 the 

generalisability of this model will be explored. Section 3.7 addressed HLT in the preliminary 

phase. The fourth aim in the study was to explore the design of a HLT. In Section 4.4.3 the 

selection of the tasks will explain how the HLT started from the baseline assessment and how the 

HLT developed throughout the experimental phase. Section 4.5 will initiate the fifth and final 

aim of the study and will focus on the retrospective analysis that will result in a LIT for number 

patterns. 

 

 

4.3 RESEARCH DESIGN 

 

As mentioned in the previous section, the main outcome of the study is to produce a domain-

specific, local instructional theory. In a design experiment that concerns the development of a 

domain-specific, instructional theory, the goal is to develop an empirically grounded theory 

including the processes of students’ learning in that domain and the means by which this learning 

can be supported (Cobb & Gravemeijer, 2008, p. 86). DBR is characterised as a flexible research 

methodology used by researchers to directly improve educational practices (Bakker, 2004; 

Brown, 1992; Burkhardt & Schoenfeld, 2003; Edelson, 2002; Gravemeijer & Bakker, 2006; 

Wang & Hannafin, 2005). Section 3.1 provided a brief summary of the main aspects of a DBR, 

the three phases and the HLT. The three phases of the DBR methodology are: the planning 

phase, the experimental phase and the retrospective analysis (Cobb & Gravemeijer, 2008).  

 

Learning situations are planned by hypothesising the path of a learner’s reasoning and 

understanding. The HLT in the planning phase is aligned with a learner’s pre-knowledge 

determined by a baseline assessment. Section 4.4.4 will explain how the baseline assessment 

contributes to the starting points and thus the initial HLT. Phase 2 of the DBR is the teaching 

experiment. The experiment takes place in a classroom setting. The researcher sets learning goals 

Stellenbosch University  http://scholar.sun.ac.za



81 
 

for the learners so that an activity can be selected to support the learner’s learning. Section 4.4.3 

explains how activities are selected based on shifts in the learner’s reasoning. Gravemeijer and 

Bakker (2006, p. 1) explain the DBR as “design cycles of preparing, designing, testing and 

revising”. These activities that result from the cyclic processes of preparing, designing, testing 

and revising form the actual learning trajectory. During a DBR study, educational practices can 

directly be improved because theories are developed as instructional sequences are implemented 

and learning is supported throughout the sequence. A DBR framework results in useful results in 

the form of an instructional theory (Edelson, 2002). It provides teachers and researchers the 

opportunity to refine the instructional sequence to their situation (Cobb & Gravemeijer, 2008). 

Through the development of a LT an associated LIT for number patterns will emerge. This will 

capture the mathematisation processes that learners developed throughout the teaching 

experiment. 

 

 

4.4 EMPIRICAL DESIGN 

 

The empirical design of the study involves the design and administration of the teaching 

experiment. In the following sections the different components of the study will be explained. 

The pilot study will introduce the first trail of a baseline assessment and learning activities in 

Section 4.4.1. A detailed explanation of the selection of the learners will be given in Section 

4.4.2. In Section 4.4.3 the different research instruments that were developed and the purpose of 

each instrument will be explained. The data collecting method in Section 4.4.4 outlines the 

means of data collection and the role of the researcher for each activity. Section 4.4.5 will 

explain how validity and reliability of the study were enhanced. The aspect of triangulation is 

pertinent in the validity of the data and its interpretations. The selecting of the learning activities 

is a focal component of the chapter. Section 4.4.6 describes the HLT before and the LT during 

the teaching experiment. 

 

4.4.1 Pilot study 

The pilot study took place during August 2012. Six learners participated in the pilot study. These 

learners would not be involved in the teaching experiment. The purpose of the pilot study was to 
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assess the adequacy of the baseline assessment (see Appendix B1) and the activities (Appendices 

A13-A17). Learners did not understand the questions. No previous research existed on the 

development of a baseline assessment for modelling problems. Once the learning goals were 

identified using the phenomenological analysis, a more adequate baseline assessment could be 

designed. The development of the baseline assessment was discussed in Section 3.6.1. The 

baseline assessment in the pilot provided some starting points for the initial activity in the pilot 

study. As the six learners worked through the activities, the learners showed interesting ways of 

pattern generalisation. The activities also had a definite vertical progression. Although the 

activities were real to the students, e.g. building matches and working with chords in a circle, the 

need to ascertain the quality of a modelling problem arose. The design of a checklist with criteria 

from RME principles and Lesh’s principles to design MEAs led to the development of Table 3.3 

(see Section 3.7.3). Although the activities adhered to the checklist of the principles for 

mathematical modelling problems, it lacked the chance for learners to construct real models from 

a real problem. The real model was given (representations of the patterns) in most of the 

activities. The activities were retained as possible activities for the LT in the teaching 

experiment. The pilot study contributed to planning time frames, constructing and adjusting 

research instruments and selecting quality modelling problems for the LT. 

 

4.4.2 Selecting the learners 

The design experiment’s participants were seventeen Grade 10 learners. The teaching 

experiments took place on a Monday afternoon for 90 minutes and on Saturdays for three hours. 

The study could not take place during the school day. The topic number patterns was completed 

in adherence to the curriculum documents early in February. Due to the rigid and full Grade 10 

syllabus, the only time that the design experiment could be conducted was outside of an ordinary 

school day. After explaining the aims and objectives for the study to a class of twenty five, 

seventeen learners were interested to see how mathematics was reinvented from modelling 

problems. The learners were ardent in their intent to improve their understanding of number 

patterns. The seventeen learners’ abilities were heterogeneous. Mixed-ability and same-ability 

grouping was discussed in Section 3.6.3. Research suggests that heterogeneous ability grouping 

for low-ability and average-ability allow for the best improvement while the high-ability learners 

show the same improvement in either a heterogeneous or homogeneous group (Baer, 2003; 
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Linchevski & Kutscher, 1998; Pigford, 1990). Modelling problems have the advantage that 

models can be constructed at different levels. In a heterogeneous group, although the learners 

work collaboratively, learners may construct models at different levels. In Section 2.10 it was 

stated that all learners are able to engage in modelling activities, although the complexities and 

the level of modelling may differ (Kaiser & Schwarz, 2006). The learners were randomly 

grouped into three heterogeneous groups. A focus group was selected at random to follow the 

development of their mathematising competencies throughout the design experiment. In the next 

section the research instruments will be discussed.  

 

4.4.3 Developing the research instruments 

Research instruments were developed to document the development of number pattern 

competencies (NPCs). The research instruments and their contribution towards the study will be 

explained in the following section. Edelson (2002) notes that research instruments provide 

helpful data to support the last phase of the DBR, the retrospective analysis. All “conjectures 

about shifts in reasoning” (Cobb & Gravemeijer, 2008, p. 69) and “contextual influences” (Wang 

and Hannafin, 2005, p. 18) need to be recorded. The research instruments were designed to 

support these conjectures and influences. 

 

4.4.3.1 Baseline assessment and table (see Appendix B2 & B3) 

The baseline assessment was analysed in Section 3.6. The objective of the baseline assessment 

was to establish the learners’ current modes of reasoning and their ZPD, in other words what 

they are ready to learn with support.  A table (Appendix B2) was used to summarise the data. It 

provided the researcher with information for the first learning activity in the LT. The baseline 

assessment had no effect on the selection of the learners in the groups, but it did contribute to the 

selection of the initial learning activity. The selection of the learning activities will be discussed 

in Section 4.4.6. 

 

4.4.3.2 Interview questionnaire (see Appendix B4) 

The interview questionnaire was designed to understand the learners’ views about the types of 

questions in the teaching experiment. The questions were aimed to investigate if the learners felt 

accomplishment and motivation before, during and after the learning activities. It also 
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investigated the participants’ feeling with working in a group and their confidence when 

grappling with unknown problems. The questionnaire was conducted before the last Saturday 

session.  

 

4.4.3.3 Researcher observation guide (see Appendix B5) 

The researcher observation guide was designed for multiple purposes: Group interaction was 

documented, shifts in understanding were noted and meta-cognitive strategies were noted. A 

component for the teacher/researcher’s reflection was also constructed. In the current study, the 

researcher is also the teacher. The researcher use the reflection part on the guide to reflect on the 

facilitating role, the learning activities, the questions asked or answered, and what she could do 

to improve her practice. The researcher observation guide was used during and after the 

modelling sessions.  

   

4.4.3.4 Number pattern competency continuum (see Appendix B6) 

A research instrument was needed to adequately assess mathematical competencies. In Section 

2.4.7, the COM²-project rated the progress of mathematical modelling competencies according to 

three aspects: the technical level, the radius of action and the degree of coverage (see Blomhøj & 

Kjeldsen, 2006, p. 167; Haines & Crouch, 2007, pp. 5-6). The research observation guide needed 

to encompass these. Biccard (2010) used the three aspects as an assessment tool. She skilfully 

indexed competencies to measure the levels of attained competencies. In the current study the 

aim is to teach the modelling process and competencies while a learner works through the 

learning competencies. The number pattern competency (NPC) continuum will be used to 

identify the competency revealed during the modelling sessions. Section 3.5.2 explains how the 

NPCs for mathematising were developed. Table 3.2 in Section 3.5.2 explain the indicators to 

identify mathematising competencies when a learner models a number pattern problem.  

 

4.4.4 Collecting the data 

There were six means of data collection. The data collection’s function was to collect 

information so that inferences could be made about the learners’ mathematising competencies. 

Each learning activity started with a whole group discussion to share ideas, individual or small 

group activity and then a whole group discussion of the analyses (Cobb and Gravemeijer, 2008). 
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Audio recordings were made of the focus group while the learners worked through the learning 

activities. Video recordings of the class discussions and presentation sessions were made. The 

focus groups’ written work was collated at the end of each modelling session. All interviews, 

video and audio recordings were transcribed by the researcher. The audio transcriptions, 

researcher observations and written work were assessed by the researcher on a daily basis to 

determine the HLT in the experimental phase, in other words the LT. The learners’ 

mathematising competencies were identified using the NPC continuum. This enabled a visual 

performance of the learners’ Zone of Proximal Development (ZPD). The written work and 

transcripts of the recordings were coded per NPC. The researcher used informal mini-interviews 

to better understand what the learners were doing, saying and writing during the modelling 

process. The questions posed by the researcher did not interfere with the groups’ direction of 

thinking and reasoning but rather helped their reflective processes and guided the modelling 

process. The researcher posed questions like: What have you got? Can you explain? How do you 

think this will help you? These mini-interviews were noted during the transcribing of the audio 

recordings. 

 

A data collection plan in Table 4.1 shows the data collecting method, the means by which the 

data was collected and the role of the researcher for the different methods. 

Data collection 

method 

Means of data 

collection 

Role of the researcher Appendix 

Baseline 

assessment 

Function and results 

discussed in Section 3.6 

to form groups and starts 

the LT in Section 4.4.6 

Developing and analysing the baseline assessment B2, B3 

Learning 

activities in LT 

Written work of the 

learners 

Developing and/or sourcing modelling problems, 

checking the quality of the modelling problems, 

making verbatim transcripts, coding the data per 

competency, analysing data and interpreting data 

 

Audio recordings of 

focus group and video 

recording of group 

discussions 

 

Interview 

questionnaire 

Audio recorded 

activities 

Scheduling appointments, preparing and conducting 

interviews, making verbatim transcripts, coding and 

interpreting data 

B4 

Mini interviews Audio recorded 

activities 

Asking thought-provoking questions, making 

verbatim transcripts, coding and interpreting data 

 

Researcher 

observation guide 

Written notes Coding and interpreting data B5 

 Table 4.1: Data collecting method 
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4.4.5 Validity and reliability 

4.4.5.1 Internal validity 

The validity of a study is based on the credibility of the data and the analysis of the data. To 

improve the validity of a study two methods can be employed: data triangulation and using 

counter examples to test conjectures during the retrospective analysis (Bakker, 2004; Bakker & 

Van Eerde, in press; Denscombe, 2007). Triangulation refers to “the practice of viewing things 

from more than one perspective” (Denscombe, 2007, p. 134). Section 4.4.4 explored data 

collection from six sources, a baseline assessment, learners’ written work, interviews (including 

mini interviews), and verbatim transcripts from mechanical audio and video recordings. The 

confidence in the internal validity is enhanced through the multiple methods of data collection. 

The series of sequential teaching cycles (see Section 4.5.1) makes it possible to test and compare 

the conjectures developed in experiments. This serves as a confirmation of conjectures and 

interpretations during the retrospective analysis. Direct quotations used in the retrospective 

analysis also improves the credibility and hence the validity of the study. 

 

4.4.5.2 External validity 

Bakker and Van Eerde (in press, p.25) note that external validity is based on the 

“generalisability” and “transferability” of the results. The application of a design research is 

specific to the starting points of a HLT and the development of learners’ reasoning during the 

micro cycles (see Section 4.5.1). Conjectures, expectations and interpretations throughout the 

teaching experiment have been documented in such a way that other researchers can adjust, 

refine and use them according to their contexts. 

 

4.4.5.3 Internal reliability 

The internal reliability concerns the level of dependence of the data and analysis of the data by 

the researcher (Bakker and Van Eerde, in press). The internal reliability of the study was 

improved by the following methods:  

 audio and video recordings were collected from mechanical devices,  

 Section 4.4.3 explained the development of the research instruments, 

 Section 4.4.4 discussed the method of data collection, 

 Section 4.4.4 discussed the data coding, and 
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 inferences in the retrospective analysis were supported by data triangulation and the 

literature review. 

 

4.4.5.4 External reliability 

External reliability refers to whether the same results will be obtained by a different researcher. 

The three phases of DBR that has framed the study has been clearly explained and linked to the 

aims and outcomes of the study. Every step of the preparation phase has been clearly 

documented. The various elements of the experimental phase were discussed. Table 4.2 shows 

how an initial HLT was constructed based on the researchers conjectures, expectations and 

interpretations. Table 4.3 shows how the HLT changed during the teaching experiment to 

support the learners’ thinking and reasoning. The retrospective analysis will give a detailed 

explanation of the results. The reader can therefore track all the researcher’s decisions and 

conclusions. Due to these documentations it is clear that the research is dependent on the 

participants and the conditions.  

 

4.4.6 Selecting the learning activities 

The fourth aim of the study (discussed in Section 4.1) is to design a HLT. Section 3.7.1 

explained the typical cycle of a HLT. The learning activities in the HLT will be used to scaffold 

learners’ ZPD so that models of increasing level can be constructed throughout the actual 

learning trajectory. Edelson (2002) notes that the learning activity is used to “teach 

mathematising competencies, create a record of progress, monitoring progress, communicating 

progress” (pp. 113-114). Although the learners are used to a culture of problemising 

mathematics, they had to learn the modelling process and modelling competencies through the 

teaching experiment. This section will summarise the learning activities in the HLT and the LT. 

Some of the activities might not be used in the LT. The HLT develops in the preparatory phase 

but is flexible and can change (Bakker, 2004; Edelson, 2002; Wang & Hannafin, 2005). The 

HLT guides the researcher. If he knows the current point of a learner’s reasoning he can predict 

the path of a reasoning and predict a new learning goal. The learning activity will help achieve 

that goal. The goal might not be reached through that activity and he needs to reformulates a 

HLT. Table 4.2 gives an overview of the predicted HLT before the teaching experiment. 
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Learning activity  Instruments used to collect 

data 

Conjectured starting 

points 

Researcher’s conjectured 

goals and expectations 

Conjectured outcomes 

Baseline assessment Baseline assessment, table of 

baseline assessment results 

Unknown, the baseline 

assessment revealed starting 

points 

Learners should be able to 

write the rule for a linear 

number pattern 

(generalising) 

Learners could identify and 

extend linear and some 

quadratic patterns 

(generalising) 

Modelling session 1 

Broken eggs 

(Appendix A1) 

 Known: Learners could 

identify and extend linear and 

some quadratic patterns 

Learners should be able to 

identify the unknown quantity 

by generalising a rule for a 

linear pattern (generalising) 

Learners could identify the 

unknown quantity by 

generalising a rule for a linear 

pattern 

(generalising) 

Modelling session 2 

Marcella’s doughnuts 

(Appendix A3) 

 Learners can identify the 

unknown quantity by 

generalising a rule 

 

Learners should be able to 

create a model for Marcella’s 

doughnuts and work 

backwards to find the 

unknown quantity (adjusting) 

Learners created a model for 

Marcella’s doughnuts and 

work backwards to find the 

unknown quantity (adjusting) 

Modelling session 3 

Extended doughnuts 

(Appendix A4) 

 Learners created a model for 

Marcella’s doughnuts and 

work backwards to find the 

unknown quantity  

Learners should find the rule 

for Marcella’s doughnuts and 

explain how the values are 

dependent on each other 

(generalising) 

Learners could use and adapt 

the rule for another situation 

(generalising) 

Modelling session 4 

Consecutive sums 

(Appendix A7) 

 Learners can generalise and 

use and adapt a rule for 

another situation 

 

Learners should be able to 

investigate patterns and 

generalise linear patterns 

(generalising) 

Learners can generalise linear 

patterns (generalising) and 

they can form quadratic 

patterns using symbols 

(symbolising) 

Modelling session 5 

Pulling out roots 

(Appendix A10) 

 Learners investigate patterns 

and can generalise linear 

patterns, they can form 

quadratic patterns using 

symbols  

Learners should be able to 

identify and generalise 

quadratic patterns 

(generalising) 

Learners can identify and 

form quadratic patterns using 

symbols (symbolising) 

Modelling session 6 

Squares  

(Appendix A6) 

 Learners can identify and 

form quadratic patterns using 

symbols  

Learners should be able to 

identify and generalise 

quadratic patterns 

(generalising) 

Learners are able to identify 

and generalise quadratic 

patterns (generalising) 

Modelling session 7 
Cutting through the 

layers 

 Learners can investigate 
patterns and can generalise 

linear and quadratic patterns 

Learners should be able to 
investigate patterns and can 

generalise linear, quadratic 

Learners investigate patterns 
and can generalise linear and 

quadratic patterns 
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(Appendix A12) and other patterns 

(generalising) 

(generalising) and  can extend 

cubic and exponential patterns 

(symbolising) 

Modelling session 8 

The garden border 

(Appendix A8) 

 Learners can investigate 

patterns and can generalise 

linear and quadratic patterns 

Learners should be able to 

identify linear patterns 

(symbolising) 

Learners were able to identify 

and generalise linear patterns 

(generalising) 

 Table 4.2: HLT of the design experiment 

 

 

Learning activity  Instruments used  Starting points Researcher’s goals and 

expectations 

Actual outcomes 

Baseline assessment Baseline assessment Unknown, the baseline 

assessment revealed starting 

points 

To identify the learner’s 

current points of reasoning 

(generalising) 

Learners could identify and 

extend and find the general 

rule for linear and for some 

quadratic patterns 

(generalising) 

Modelling session 1 

Broken eggs 

(Appendix A1) 

Baseline assessment, activity Learners can identify and 

extend linear and some 

quadratic patterns 

Learners should be able to 

identify the unknown quantity 

by grouping the eggs and then 

use multiples of 7 to find the 

number of eggs (symbolising) 

Learners could identify the 

unknown quantity by 

extending the linear pattern 

(symbolising) 

Modelling session 2 

More broken eggs 

(Appendix A2) 

Researcher observation guide, 

NPC continuum to assess 

learner’s written work and 

audio recordings, video 

recordings of the group 

discussions 

Learners can identify the 

unknown quantity by 

extending the linear pattern 

 

Learners should be able to 

generalise a rule for the linear 

pattern (adjusting) 

Learners could generalise the 

pattern by using 

 𝑇𝑛 = 𝑎 + (𝑛 − 1)𝑑  

Modelling session 3 

Marcella’s doughnuts 

(Appendix A3) 

Researcher observation guide, 

NPC continuum to assess 

learner’s written work and 

audio recordings, video 

recordings of the group 

discussions 

Learners can identify the 

unknown quantity by 

generalising a rule using  

𝑇𝑛 = 𝑎 + (𝑛 − 1)𝑑 

Learners should be able to 

create a model for Marcella’s 

doughnuts and work 

backwards to find the 

unknown quantity (adjusting) 

Learners created a model for 

Marcella’s doughnuts and 

worked backwards to find the 

unknown quantity (adjusting) 

Modelling session 4 

Extended doughnuts 

(Appendix A4) 

Researcher observation guide, 

NPC continuum to assess 

learner’s written work and 

Learners created a model for 

Marcella’s doughnuts and 

work backwards to find the 

Learners should be able to 

formulate a pattern and 

generalise a rule for the linear 

Learners can generalise linear 

patterns (generalising) 
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audio recordings, video 

recordings of the group 

discussions 

unknown quantity  

Learners can generalise and 

use and adapt a rule for 

another situation 

pattern (generalising) 

Modelling session 5 

Thinking diagonally 

(Appendix A5) 

Researcher observation guide, 

NPC continuum to assess 

learner’s written work and 

audio recordings, video 

recordings of the group 

discussions 

Learners investigate patterns 

and can generalise linear 

patterns 

Learners should be able to 

identify and generalise 

quadratic patterns 

(generalising) 

Learners can identify and 

form quadratic patterns using 

symbols (symbolising) 

Modelling session 6 

Squares 

(Appendix A6) 

Researcher observation guide, 

NPC continuum to assess 

learner’s written work and 

audio recordings, video 

recordings of the group 

discussions 

Learners can identify and 

form quadratic patterns using 

symbols  

Learners should be able to 

identify and generalise 

quadratic patterns 

(generalising) 

Learners are able to identify 

and generalise quadratic 

patterns (generalising) 

Modelling session 7 

Consecutive sums 

(Appendix A7) 

Researcher observation guide, 

NPC continuum to assess 

learner’s written work and 

audio recordings, video 

recordings of the group 

discussions 

Learners can investigate 

patterns and can generalise 

linear and quadratic patterns 

Learners should be able to 

investigate patterns and can 

generalise linear, quadratic 

and other patterns 

(generalising) 

Learners investigate patterns 

and can generalise linear and 

quadratic patterns 

(generalising)  

Modelling session 8 

The garden border 

(Appendix A8) 

Researcher observation guide, 

NPC continuum to assess 

learner’s written work and 

audio recordings, video 

recordings of the group 

discussions 

Learners can investigate 

patterns and can generalise 

linear and quadratic patterns 

Learners should be able to 

identify and extend  linear and 

quadratic patterns 

(symbolising) 

Learners were able to identify 

and generalise linear patterns 

(generalising) 

Modelling session 9 

Folding paper 

(Appendix A9) 

Researcher observation guide, 

NPC continuum to assess 

learner’s written work and 

audio recordings, video 

recordings of the group 

discussions 

Learners can investigate 

patterns and can generalise 

linear and quadratic patterns 

Learners should be able to 

identify and generalise simple 

exponential patterns 

(generalising) 

Learners were able to identify 

and generalise simple 

exponential patterns 

(generalising) 

Table 4.3: LT of the design experiment 
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The starting points in the HLT for the first learning activity is based on the baseline 

assessment. The results of the baseline assessment (Appendix B3) indicated that the learners 

could identify linear patterns and extend them. The first activity’s purpose was to introduce 

the learners to the modelling process by giving them a realistic problem which resulted in a 

linear pattern. This is also in line with the curriculum guidelines for number patterns (see 

Section 3.4). The table gives the order of the activities based on the researcher’s conjectured 

starting points, expectations and conjectured outcomes. Table 4.3 is the LT as it developed 

during the course of the teaching experiment. The table shows the starting points, the 

researcher’s expectations and goals, and the actual observed learning goals that were attained 

during the learning activities. The instruments used during the modelling session are also 

listed, and the actual observed learning during the modelling sessions provided the starting 

points for the successive sessions. The first activity’s purpose was to introduce the learners to 

the modelling process using a realistic problem which resulted in a linear pattern. The HLT in 

Table 4.2 and the LT in Table 4.3 are summative representations. The retrospective analysis 

in Chapter 6 will give a comparison of the LT and the actual learning outcomes, and a 

description of the associated LIT for number patterns.  

 

 

4.5 HLT IN THE EXPERIMENTAL PHASE 

 

4.5.1 A conjectured local instructional theory 

Local instructional theories are developed during DBR. A feature of the DBR is its cyclic 

nature. Figure 4.1 represents several micro cycles that forms one macro cycle. A micro cycle 

represents a learning activity in the modelling session. The macro cycle represents the 

teaching experiment of the study. Each instructional experiment is preceded by a thought 

experiment. If the actual observed learning goal at the end of the instructional experiment 

does not confirm the conjectured learning goal, the conjectured LT needs to be adjusted or 

reassigned for the next instructional experiment. The new micro cycle commences after the 

reflective analysis where the new learning goals are conjectured. During the HLT each 

learning activity was selected to support the learner’s reasoning at that specific point. The 

thought experiment was referred to as starting points in Section 4.4.6. The micro cycles form 

the macro cycles which develops into a LIT. 
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Figure 4.1: Local instructional theory and thought and instruction experiments 

(Gravemeijer, 1994, p.9) 

 

Figure 4.2 is a diagrammatic representation of the first four micro cycles of the LT (from 

Table 4.3). It also incorporates the three phases of DBR within each micro cycle and the 

macro cycle (red ink). The macro cycle is referred to as the “encompassing learning 

trajectory” by Cobb and Gravemeijer (2008, p. 77).  

 

Figure 4.2: Macro cycle and micro cycles of the conjectured LIT (adapted from 

Gravemeijer, 1994, p.9) 

 

The diagram (Figure 4.2) represents the conjectured LIT for number patterns. 
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4.5.2 Towards a local instructional theory 

The aim of the study is to use a DBR framework and develop a LIT that is domain specific. 

Cobb and Gravemeijer (2008) discuss the issues that have an impact on the analysis and the 

findings of the research. Argumentative grammar refers to the logical reasoning used to 

analyse data. In Chapter 3 the goals for the study were developed using a phenomenological 

analysis. Through these goals mathematising competencies were developed. When learners 

collaboratively engage in mathematical modelling problems they develop mathematical 

modelling competencies. These competencies will be identified and explicitly described in 

the retrospective analysis. “The Hawthorne Effect refers to the fact that any intervention 

tends to have positive effects merely because of the attention of experimental teams to the 

subjects’ welfare” (Brown, 1992, p. 163). Brown rejects this argument because there is a 

relationship between the activities practiced during a design experiment and the 

improvements shown by participants’. The Hawthorne effect will be proven incorrect in the 

following ways: When the researcher plans and implements a teaching experiment, all the 

shifts in learners’ understanding will be documented as well as the means of support for the 

reasoning. Wang and Hannafin (2005) note that claims need to be evidence based. It is clear 

from Section 4.4.5 that the researcher is going to follow all the mentioned procedures to 

ensure the validity and reliability of the study. 

 

 

4.6 SUMMARY  

 

The aim of the chapter was to discuss the HLT in the experimental phase. The problem 

statement and aims of the study were reviewed and aligned with the research design. The 

review of the problem statement and aims of the study led to the development of the research 

instruments. The research instruments were designed to document the development of NPCs 

during the modelling sessions of the teaching experiment. The six methods of data collection 

were summarised in Table 4.1 and the role of the researcher for each method was explained. 

Section 4.4.6 explained the selection of the learning activities and how the researcher’s 

conjectured expectations and goals for the learners’ would be supported by a learning 

activity. Table 4.2 shows the first HLT and the conjectured learning path the researcher 

predicted before the design experiment. Table 4.3 shows the LT during the design experiment 

and how the actual outcomes for each learning activity served as the starting point for the 
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learning activity in the next modelling session. The trustworthiness and repeatability of the 

study were explained by exploring ways in which the validity and reliability of the data 

analysis would be improved. Section 4.5 focused the chapter towards the development of a 

domain-specific, LIT. The retrospective analysis in Chapter 5 will produce a comparative 

analysis of the LT and the actual observed learning outcomes. The goals for each activity will 

be clarified and the function of the learning material will be described. This will form a 

domain-specific instructional theory based on a holistic three-dimensional goal description 

(Treffers, 1987). Through the development of a LT and hence a LIT learners will have the 

opportunity to learn the modelling process and develop modelling competencies to construct 

new concepts by reinventing mathematics. It is evident that a local instructional theory is 

suitable for a mathematical modelling perspective to teaching and learning.  
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CHAPTER 5 

DEVELOPING A LOCAL INSTRUCTIONAL THEORY 

PHASE 3: Retrospective analysis 

 

5.1  INTRODUCTION 

The purpose of this chapter is not only to produce a retrospective analysis of the collected 

data but also to provide a local instructional theory (LIT) for the topic number patterns. 

Chapter 2 gave an overview of the different modelling perspectives and provided a 

theoretical framework for the study. The RME framework together with a DBR paradigm 

provided the foundation necessary to effectively plan the teaching experiment in the first 

phase (Chapter 3) and guide the teaching experiment in the second phase (Chapter 4). 

According to Bakker and Van Eerde (in press, p. 21) two types of analyses are valuable in 

DBR, the comparison of the learners’ actual learning during the different tasks in the learning 

trajectory (LT) and an overall more longitudinal approach. These two analyses will be 

explained in Section 5.2.  In Sections 5.3 to 5.11 each learning activity will be analysed and 

explained in a rationale. The analyses and rationales form the basis of the local instructional 

theory which will be highlighted in Section 5.12.  

 

 

5.2 DESIGN-BASED RESEARCH ANALYSES 

5.2.1 Comparing the HLT and LT 

The problem statement and aims of the study were explained in Chapter 1 and revisited in 

Section 4.2. The fifth aim of the study focuses on the retrospective analysis that will result in 

the LIT. Table 4.2 showed the conjectured path of learning based on the baseline assessment 

results before the design experiment and Table 4.3 gave a summary of the LT of the learners 

for the duration of the design experiment. Dierdorp et al. (2011, p. 139) note that it is not 

possible to identify learners’ actual learning but it is possible to describe their observed 

learning. To coincide with the aims and objectives of the study, the retrospective analysis will 

deliver a detailed comparison of the LT and the actual observed learning targeting the 

conjectures and the researcher’s final decisions based on the learners’ reasoning. A data 

matrix analysis will be used for the comparison so that data collected from the transcripts, 
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field notes and interviews can be used as evidence or counter-evidence to clarify whether the 

conjectured goals in the LT (see Table 4.3) is on par with the learners actual observed 

learning. When the conjectures of the learners’ learning and correlated learning activities are 

compared with the learners’ actual observed learning a conclusion can be reached as to how 

well the learners’ learning was supported.  

Table 5.1 is a data matrix analysis that shows the following information (Bakker & Van 

Eerde, in press, p. 22; Dierdorp et al, 2011, p. 139): 

i. The first column is the learning activity the researcher used. It is noted that the 

activities in the LT (Table 4.3) will be used because these are the learning activities 

the learners worked on during the design experiment.   

ii. The second column describes the task. 

iii. The third column is the researcher’s conjectured learning goals based on the baseline 

assessment in the initial activity and then based on the actual learning perceived in the 

preceding lessons.  

iv. The fourth column provides excerpts from verbatim transcripts to deliver evidence 

which will support or contradict the prediction made in the third column. The coding 

during the data analysis was labelled: conjecture, transcript, clarification. 

v. In the fifth column the transcripts will be clarified and explained based on the field 

notes and transcripts  

vi. The sixth and final column is the result column. This column shows how well the 

HLT and the LT match. Three categories will be selected (+, ±, −). Dierdorp et al. 

(2011, p. 139) explain that two categories would be “too coarse for an evaluation and 

more than three categories would suggest more precision that can be justified”. If the 

conjecture is confirmed for at least two thirds of the learners, a ‘+’ sign will be 

allocated. If the conjecture is confirmed for a third or less of the learners a ‘–’sign will 

be allocated. For the confirmation of the intermediate group, a ‘±’ will be allocated. If 

there wasn’t enough information to assign one of the three categories, it would be left 

blank.  

In the analyses the letters A to Q represent the learners in the class. The class is grouped into 

three groups. Group 1 is the focus group. Learners A, B, D, F, I and M are the learners in the 

focus group. R is the code denoted for the researcher which is also the teacher in the teaching 

experiment. Table 5.2 is a table that summarises the results of the data matrix analysis. 
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Learning 

activity in 

the LT 

Task Conjecture Transcript excerpt Clarification Result 

Modelling 

session 1  

Broken eggs 

(Appendix 

A1) 

Learners need 

to determine 

how many 

eggs the 

farmer had 

originally. 

Learners should be 

able to identify the 

unknown quantity 

by grouping the 

eggs and then using 

multiples of 7 to 

find the number of 

eggs. 

D: Group 1 to group 7, then I grouped them in 

two’s and three’s and so on and leave the left 

ones over 

B: Wait, so won’t it be on group 2? Wait, are 

they saying that in each group there is one left 

over every time? 

 

A: Group two, two eggs, group three, three 

eggs, four, four eggs. Can’t you see? If you get 

groups of seven, loose eggs add them up, 

divide them and see that you get groups of 

seven. 

 

B: I thought of a number that can go into all of 

these numbers, I think it will be 301 

 

M: When you minus, can’t we try numbers that 

go into 7? 

 

I: I figured out if it ends, takes a while but I am 

adding 7 the whole time 

5 out of the 6 learners draw groups with 

one left over in the groups of 2, 3, 4, 5 

and 6. 

 

 

 

 

 

The group looks at numbers that could 

be divided by 7 evenly and tests them. 

They use decimals to check if their 

answers work: 

A: For a 2, you need a comma five, for a 

3 you need a comma three recurring 

 

 

The group found that 301 was not the 

only number that worked: 

I: Try 721 

B: It does work 

+ 

Modelling 

session 2 

More broken 

eggs 

(Appendix 

A2) 

Learners need 

to find more 

solutions to 

the problem. 

They need to 

generalise a 

rule to find 

more 

solutions. 

Learners should be 

able to identify the 

unknown quantity 

by generalising a 

rule for a linear 

pattern 

(generalising). 

M: It’s 𝑇𝑛 = 𝑎 + (𝑛 − 1)𝑑 

A: Times the 𝑑? 

D: Minus 𝑑? 

A: It works 

M: It does 

A: What is this called again? General 

formula? 

 

D: Explain it to me 

I and M: It’s 𝑇𝑛 = 𝑎 + (𝑛 − 1)𝑑, 𝑑 is the 

difference 

The learners used multiples of 7 to find 

a number that works for the rules in the 

first learning activity. Each answer had 

to end in a one, e.g. 301, 721, 1141, 

1561 etc.  

 

 

 

The learners find a constant difference 

of 420 when they subtract the numbers 

and M remembers the general formula 

± 
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A: Which is 420 

D: What is 𝑎? 

A: 𝑎 is your first number 

D: This is 7 

A: No, 𝑛 is the number you are trying to find 

D: Oh 

I: 𝑇𝑛 = 𝑎 + (𝑛 − 1)𝑑, so the difference is 420, 

420 times 𝑛, 420times -1 which is -420. You try 

move them around so, so it’s gonna be 420n-

420 and you carry on from there 

 

R: Why are you using that specific formula? 

I: Because we are trying to find 𝑇𝑛 

R: Are you saying that this formula will work 

for any pattern? 

A: No, we are just trying to see something 

for linear patterns. 

 

 

 

 

 

 

 

 

Three of the six learners confidently use 

the general formula (𝑇𝑛 = 𝑎 +
(𝑛 − 1)𝑑) for linear number patterns. 

 

Modelling 

session 3  

Marcella’s 

doughnuts 

(Appendix 

A3) 

Learners need 

to figure out 

how many 

doughnuts 

Marcella 

originally had 

by working 

backwards. 

Learners should be 

able to create a 

model for 

Marcella’s 

doughnuts and 

work backwards to 

find the unknown 

quantity 

(adjusting). 

A: Can we make an equation of this, ‘cause we 

don’t know what the number is 

B: So she says half so it’s x over 2, for each of 

you so then plus two 

 

A: You guys, I just thought of something! Why 

can’t you have like a pie thing? 

D: Pie chart 

A: How many parts are there? 

 

I: Can’t you like do percentages? 

D: How? 

I: Like 100% and then you broke it in half and 

then you have 50% and broke it in half and 

then you are left with something  

 

I: Guys, I started working backwards, because 

the only way to figure this out is 8 divided by 2 

minus 2, that’s the only way that I think there 

A and B try to construct an equation to 

represent that half of the doughnuts are 

taken and then two more. 

 

Learner A discuss an idea to use a pie 

chart with the group.  

 

 

 

 

A’s pie chart idea gives learner I the idea 

of working with percentages. Although 

this doesn’t work it gives them the sense 

of the values they need to work with and 

the process of Marcella’s doughnuts. 

 

Learner I realises that they need to work 

backwards to find the answer. 

 

+ 
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is 92 thingies, because I divided by 2 minus 2, 

give us 44, divided by 2 minus two, 20 divided 

by 2 minus 2, divided by 2 minus 2 

D: Please explain? 

B: Write it down 

I: I can’t write it down. I started working 

backwards, I tried to figure out the number, if 

you would actually divided by two and minus 2 

would be equal to two 

 

The evidence from the transcripts and 

written work show that the conjecture is 

confirmed for 5 out of the 6 learners in 

the group. 

Modelling 

session 4 

Extended 

doughnuts 

(Appendix 

A4) 

The learners 

need to 

construct a 

mathematical 

model and 

then use the 

model to 

generalise a 

formula to 

show how the 

number of 

doughnuts at 

the end 

depend on the 

number of 

doughnuts 

Marcella 

originally had. 

Learners should be 

able to formulate a 

pattern and 

generalise a rule for 

the linear pattern 

(generalising). 

A: We chose number four, right. We decided 

that Marcella came back with 4 doughnuts 

instead of two 

 

A: If we find the original amount, it has to be 

44, it only works with the 44 because it’s a 

two. I’m saying two won’t be a sixty, it won’t 

work. So with the two it has to be a 44 

I: I think for two it’s only 44 and for 4 it’s only 

60, so there should be a pattern somewhere 

there that is making them all cooperate 

together so I think we should start working 

with different numbers: 1, 2, 3, 4, 5 

M: Try every number 

A: Different original amounts, and that’s how 

it’s dependent on it ‘cause it can’t be any other 

number 

 

B: I think I’ve got it, the formula is 28 plus 

I: 28 is zero 

 

A: 28 plus n times 8 

R: Okay, how does this relate to the original 

question? 

D: Exactly it doesn’t 

4 out of the 6 learners confirmed the 

conjecture that learners are able to 

formulate a pattern. 

 

The learners realise that each number at 

the end had a specific number at the 

beginning. They decide to use the rule 

for Marcella’s doughnuts in the previous 

activity to find the corresponding values 

for the numbers at the end. 

 

 

 

 

 

 

 

 

 

2 out of the 6 learners generalise a 

formula and show the group why they 

use 28 and 8 in the general term. 

 

After their explanation, there is evidence 

to show that 4 out of the 6 learners 

+ 
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I: The difference of all of them is 8, the first 

one, the 0 is 28 so we got that 

 

D: Why are we adding 28 again? 

understand the relationship with the 28 

and the 8.  

 

 

From the transcript, D still can’t relate 

the mathematical model to the real 

situation. 

Modelling 

session 5 

Thinking 

diagonally 

(Appendix 

A5) 

Learners need 

to determine 

the number of 

diagonals a 

100-gon. 

Learners should be 

able to identify and 

generalise quadratic 

patterns so that they 

can use the 

generalisation to 

solve a problem 

(generalising). 

B: I see a pattern 

I: What pattern do you see? 

Four sides then there is two diagonals, so 

multiply it by a half. There is five sides and five 

diagonals multiply by 1. There is six sides and 

9 diagonals, so you multiply by three over two, 

I: Say that, multiply 9 by 3 over 2 

A: I am lost 

M: How did you figure this out? 

B: I just noticed that each time the difference 

and I wanted to find out how you multiply 

 

R: So what could you do with that in terms of 

finding the 100-gon? 

I: I’m guessing there is going to have to be a 

divide by two somewhere 

B: You’ll say n minus 3 over two. So you will 

say 100 minus three over two and you get 57 

over two 

M: 57 or 97 

D: That’s 97 

B: Times 97 over two and that’s how many 

diagonals it is 

The conjecture that learners will be able 

to identify and generalise a quadratic 

pattern is confirmed for 3 of the 6 

learners. 

 

 

 

 

 

 

 

 

 

 

The learners use the general term to 

calculate how many diagonals a 100-gon 

has. 

± 
 

Modelling 

session 6  

Squares 

(Appendix 

A6) 

Learners had 

to determine 

how many 

squares a 40-

stack square 

Learners should be 

able to identify and 

generalise quadratic 

patterns 

(generalising). 

I: I’ve got a formula 

B: What is the formula? 

I: n times n plus one over two 

 

 

The learners recognise that there is a 

second constant difference similar to the 

previous question. They generalise a 

formula to calculate the number of 

blocks in a stack. 

+ 
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has. D: You add a block each time to the set of 

blocks 

R: I see 

A: What is happening to be able to get to here 

I: I double them and I add one more, this is 

three, you double three and you add one more 

A: Yah, you add one more to each stack 

 

M: The median of 40, one and 40, which is 20 

and 21, right 

A: Guys, it’s the median times the number in 

the stack 

B: That’s what I said 

A: The median, that’s 20 

F: That’s 20 and a half 

 

 

The learners relate the rule back to the 

blocks in the stacks and find that 

the 𝑛 + 1 can be explained by the block 

that is being added to the stack each 

time. 

 

 

 

 

 

 

The group works with the numbers and 

find that if they multiply the median of 

the stack number by the stack number it 

gives them the number of blocks in the 

stack. 

 

The conjecture is confirmed for all the 

students. 

Modelling 

session 7 

Consecutive 

sums 

(Appendix 

A7) 

Learners 

search and 

identify 

patterns 

(linear or 

quadratic or 

other) and 

generalise 

these patterns. 

Learners should be 

able to investigate 

patterns and 

generalise linear, 

quadratic or other 

patterns 

(generalising). 

B: Did anyone notice that if you take the 

median of the numbers that are in it and you 

multiply it by the number of digits in the 

sequence, it gives the final answer 

 

R: So does that mean I can take a number, let’s 

take 135, can I find the five consecutive 

numbers? 

A: You can’t 

D: You can, you divide it by five, and then how 

many numbers is there in succession? 

R: How many numbers do you want there to 

be? 

M: Six 

B: You’d divide it by 6 

Learner B recognises a pattern and 

generalises a formula by using 

mathematical knowledge gained in the 

previous modelling sessions. 

 

Using this rule, the consecutive numbers 

can be calculated by dividing the value 

by the number of consecutive numbers 

in the series. This gives them the median 

number and they can add the preceding 

and succeeding numbers in the series. In 

the post-discussion (see Section 5.9.1.6), 

the learners find that not all numbers can 

be written as consecutive sums. 

 

+ 
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R: Let’s do it 

M: 135 divided by 6, 22 comma 5 

D: Oh I get it 

F: Oh I get it now 

 

I: If there is five numbers here, five times five 

plus one over two, 10. Three numbers there, 3 

times 3 plus one over two, 6. 

 

I: If you started at one, what if there are 7 

numbers and you started at 2? That’s the 

problem. Let me try though. 

M: What are you trying to do now? If you’re 

starting with two, and the rule is to start with 

one 

I: Just wait, we’re on to something, oh I got it, 

seven plus seven times seven plus three over 

two 

A: It’s 35 

M: So three has to starts with n+5? 

 

A: So the plus thingy changes all the time to an 

odd number? 

I: Yes 

 

 

 

 

The previous activity’s generalisation 

was used to find the sum of 𝑛 numbers 

when starting at 1.  

 

The group members discuss the 

possibility of starting at another position 

and reach the following conclusion: they 

will use 𝑛 + 1 when starting a series of 

consecutive numbers at one, 𝑛 + 3 when 

starting the consecutive numbers at two, 

𝑛 + 5 when starting the consecutive 

series at 3. The translation will always 

increase by two. 

 

 

The conjecture is confirmed for all the 

learners in the group. 

Modelling 

session 8 

The garden 

border  

Task 1 

(Appendix 

A8) 

Learners 

determine how 

many tiles a 

10m by 10 m a 

square garden 

border has. 

Learners should be 

able to count the 

number of tiles in 

the garden border. 

M: 36 

D: Yah, somewhere around there 

M: Is 36 the square? 

B: 6? 

I: Six times plus the ten 

 

D: So you just counted to get the answer 

B: Task 1 is 36 

The conjecture is confirmed for all the 

learners in the group. The learners 

counts 36 tiles in the 10m by 10m 

garden border. 

+ 
 

Modelling 

session 8  

The garden 

The learners 

change the 

dimensions of 

Learners should be 

able to create a 

mathematical 

B: I think it’s 4n minus 4 

 

B: Well we found 𝑇𝑛 so that we can find any 

The conjecture is confirmed for 4 out of 

the six learners. The learners find the 

rule 4𝑛 − 4 and learns how the other 

+ 
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border 

Task 2 

(Appendix 

A8) 

the square 

garden border 

and then 

calculate the 

number of 

tiles needed. 

model and 

generalise linear 

patterns 

(generalising). 

number 

A: What is the 𝑇𝑛? 

B: 4n minus 4 

D: What is the 𝑛? 

B: The term 

 

group found the formula structurally 

(see Section 5.10.2) 

Modelling 

session 8  

The garden 

border 

Task 3 

(Appendix 

A8) 

Learners 

change the 

garden into a 

rectangle and 

then determine 

the amount of 

tiles they will 

need for the 

garden border. 

Learners should be 

able to create a 

mathematical 

model and 

generalise a linear 

pattern 

(generalising). 

A: We need to find the median of the two and 

then use the formula 4n-4, so 7 is the median 

of that and the median of 9 and 7 is 8 

 

A: Since the formula is 4n-4,  

M: Substitute the median 

A: Minus four, which is 36 

 

 

 

 

The conjecture is confirmed for 5 of the 

6 learners. 

 

 

Thee learners explain how to find the 

number of tiles for a 9m by 11m 

rectangle. By finding the median, they 

essentially turn the rectangle into a 10m 

by 10m square and use the previous 

activity’s generalisation to solve for the 

number of tiles. 

+ 
 

Modelling 

session 9 

Folding 

paper 

(Appendix 

A9) 

Learners 

search for 

patterns by 

folding paper 

and need to 

figure out how 

many folds 

they have 

when they fold 

it infinite 

times. 

Learners should be 

able to identify and 

generalise an 

exponential pattern 

(generalising). 

B: It’s two to the power n and it works for all 

of them 

D: How did you get the power thing? Oh, I 

knew that 

F: Wait, what’s n? 

B: It’s the number of folds 

 

 

 

 

 

The conjecture was confirmed for 5 of 

the 6 learners.  
+ 

 

Table 5.1: A data matrix analysis to compare the conjectures in the LT with the actual  

   learning outcomes
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+ ×  × ×  × × × × × × 

±  ×   ×       

−            

Task 1 2 3 4 5 6 7 8.1 8.2 8.3 9 
Table 5.2: Actual results compared with the conjectures for the learning activities in the 

LT 

 

5.2.2 A three-dimensional goal description 

Bakker and Van Eerde (in press, p. 4) note that DBR has an “explanatory and advisory aim, 

namely to give theoretical insights into how particular ways of teaching and learning can be 

promoted”. In the Wiskobas project, Treffers (1987) developed a holistric three-dimensional goal 

description. The three dimensional goal description is formed by incorporating the instructional 

activties, learning activities and the instructional aids (Treffers, 1987, p. 187). The instructional 

activities are formed around leading questions, suggestions and working methods while the 

learning activities explore difficulties in the task and indicate slolution methods. Bakker and Van 

Eerde’s explanatory and advisory aims will be met by developing a three-dimensional goal 

description approach for each learning activity. 

Treffers (1987, p. 188) notes that the components of a holistic goal description are not isolated, 

which means that the aims and objectives are included in a description of the teaching and 

learning process. He adds that this description can be used with parts of transcripts of lessons to 

indicate important learning instants. Section 4.4.4 explained that video and audio recordings 

were transcribed. Transcripts were coded in terms of mathematising competencies that were 

developed in Section 3.5.2 and are located on the NPC continuum (Table 3.2). Evidence that 

confirms and does not confirm the development of mathematising competencies will ensure a 

more cyclic and longitudinal method of data analysis. It is important to determine the 

development of the learners’ mathematising competencies as they work through the modelling 

problems. Colour coding was used to identify the mathematising competencies.  

For each activity in Sections 5.3 to 5.11, the learning activity will be analysed. The analysis will 

be holistic and will outline the working procedures, specific difficulties in the activities and 

solution approaches. Each competency will be described using excerpts from the transcripts, 

learners’ written work and explained using the NPC continuum. The retrospective analysis is 

therefore directly linked to the research question and aims of the study. A rationale for each 
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activity will include the starting points for the activities, notes and reflections from the researcher 

observation sheet, and overall goals for the modelling sessions. The goals that will be addressed 

may include learning goals, teaching goals and activity goals. The task oriented analysis in 

Section 5.2.1 does not include the role of the teacher and learners but will be discussed in the 

following sections.  

 

 

5.3 ACTIVITY 1 

Broken eggs (Appendix A1) 

5.3.1 Analysis of the learning activity  

It is apparent from the transcripts in Table 5.1 that the conjecture that learners should be able to 

identify the unknown quantity by using multiples of seven was confirmed. Learners were able to 

identify the unknown quantity by grouping the eggs and then using multiples of seven to find the 

number of eggs. The task-based analysis provided an individual assessment of the focus group. 

The following analysis will use the NPC continuum (Appendix B6) to identify and explain the 

development of the group’s number pattern competencies.  

 

5.3.1.1 Internalising 

The competency internalising is noted when the learner states the problem in language he 

understands. The researcher asked the group how they were going to go about the task.  

D: We are going to put them in groups 

Learner A stated the important information out loud: Wait, so won’t it be in group 2? Wait, are 

they saying that in each group there is one left over every time?  

The above question provides evidence of how the learner tries to understand the problem by 

using language she understands. 

 

5.3.1.2 Interpreting 

Interpreting occurs when learners make assumptions and specify important information. The 

learners talk about the different groups. M tries to see if they know how many eggs there were 
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while D immediately starts drawing a diagram to show that there is one left over for the groups 

two through six. 

M: Do we know how many eggs there were? 

M: In group two there’s two 

D: There is two in a group, three in a group 

B: Is there any order? 

D: O, wait, see here. So there is two here, and then there is one left over, all of those three, add 

to group three, one left over, take it to group 5, and so on 

The rules that are formulated in the above excerpt will be used in the next learning activity too. 

Figure 5.1 shows the learner’s real model. The learners correctly made the assumption that there 

is one left over for each of the groups of two, three, four, five and six. 

 

 

 

 

 

  

  

Figure 5.1: D’s interpretation of the real problem by setting up a real model 

 

5.3.1.3 Structuring 

The following excerpt shows that the learners notice a value in the problem that is important, in 

this case using groups of seven. 

A: It works for two, works with three, only works with two 

D: I’ve got 27 but it only works for four groups 

B: You should use the information we have, should see what we get 

A: We should use like multiples of seven, with each one 

D: Okay 
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5.3.1.4 Symbolising 

As mentioned in the data matrix analysis (Table 5.1), five out of the six learners in the groups 

illustrated actual groups of eggs in their real models, while B constructed a table to show the 

remainder of eggs after grouping: 

 

 

 

 

Figure 5.2: The learners’ real models (A and B’s written work) 

 

Four of the six learners wrote down all the multiples of seven, knowing that one of the multiples 

had to work for the rules given in the question. 

  

 

 Figure 5.3: 

Learners write the multiples of seven (B’s written work) 

 

5.3.1.5 Adjusting 

The competency adjusting is noted when a learner tests his pattern. The learners notice that the 

number 301 works for all the rules. As the learners test more numbers, they notice decimal 

values they needed to get when dividing the number of eggs by 2, 3, 4, etc. 

A: For a five, we need something comma 45, for a three, something comma three recurring, for a 

two, comma 5 

R: How are you going 

I: Getting there. There is a pattern, for a 2, you need to get a comma five, for a three you need a 

comma three recurring 
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The learners use the decimals as a rule to test for more numbers. Figure 5.4 shows how the 

learners formulated the decimal-rules. 

 

 

 

  

 

Figure 5.4: B writes the decimal values to help them to test solutions 

 

Although the group does not generalise a single rule to calculate the number of eggs the farmer 

originally had, the learners still devise a set of rules that will enable them to work more 

efficiently. 

I: (To B) Try 721 

A: It does work 

B: It works 

The excerpt above indicates that 721 also works for their decimal-rules. 

 

5.3.1.6 Organising 

Organising can be noted when a learner constructs a rule that works for all the elements. The 

rule is validated by reflecting it back to the real problem. The next learning activity is designed 

to reveal evidence for this competency. 

 

5.3.1.7 Generalising 

The competency generalising occurs when the general terms are found deductively, and/or a rule 

is used for another situation. The next learning activity is designed to reveal evidence for this 

competency. 

 

5.3.2 Rationale for the activity  

The baseline assessment provides valuable information to indicate the starting points for the 

HLT. Learners were able to extend linear and some quadratic number patterns in the baseline 
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assessment. With support they would be able to generalise linear number patterns. Keeping in 

mind that the learners need to learn the modelling process, the first problem had to be an 

authentic problem where the terms in the pattern was not evident. The first learning activity 

formed the foundation for the second activity. The learning activity was checked with the 

checklist for modelling problems based on RME principles and Lesh’s principles for designing 

MEAs (Lesh et al., 2000). To give the reader an idea of the reasoning behind the principles, the 

first learning activity will be explained according to the principles listed in the checklist 

(Appendix C1). The learning activity involves constructing a structurally significant system 

because learners had to group the farmer’s eggs following certain rules: When she puts the eggs 

in groups of two, there was one egg left over, when she put the eggs in groups of three, there was 

one egg over, the same thing happened when she puts them in groups of four, five and six but 

when she groups them in groups of seven, she ended up with complete groups. The second 

principle was the reality principle. The context was real and useful because the learners could 

imagine this happening; it was in their own personal knowledge and experiences. The self-

assessment principle ensures that the learners are given enough information to judge if they have 

done enough. The learning activity was quite explicit in its instruction. The level principle 

questions whether the learning activity forms part of a progressive activity. The second learning 

activity is the extension of the first learning activity and forms part of a progressive activity. 

Although the learners found one solution, they tested more numbers. This proves that the task 

can be used in a higher level of activity. The language of the task was appropriate, this is 

apparent from questions the learners answered successfully in the pilot study and the baseline 

assessment. 

The lesson started with a class discussion of possible ideas for starting points. In a modelling 

classroom the teacher needs to create and maintain a rich environment which stimulates active 

involvement of the learners and their own learning (Janvier, 1996, p. 453). The teacher which is 

also the researcher needs to therefore guard against sabotaging the learners’ reasoning but rather 

give them the opportunity to formulate their own ideas and reasoning. Hein (1991) acknowledges 

teachers’ difficulties concerning their need to construct meaning for their learners and their 

concern whether their learners’ would be able to construct meaning on their own. This implies a 

radical change in the teacher’s belief system. This goal was realised by using a reflection section 

on the researcher observation guide to keep track of the researcher's involvement during the 

modelling session, the questions the researcher asked and the answers the researcher provided. 
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During the first modelling session, the researcher noted not giving the learners enough time to 

work with new ideas.  

Throughout the modelling sessions mini-interviews helped the researcher to gain insight about 

the learners’ ideas and reasoning. The mini-interviews also provided the learner with the 

opportunity to reflect on his own ideas and reasoning. The following example is taken from the 

first modelling session:  

R: So how are you going to go about this? 

D: We are going to put them into groups 

R: So what have you got here? 

D: Group 1 to group 7, then I grouped them in two’s, three’s and so on and leave the left ones 

over 

A: Wait, so won’t it be on group 2? Are they saying that in each group there is one left over in 

each time? 

D: Are they saying that if you have two here and two here, makes sense what happens to the 

eggs. Shall we try it? 

A: Let’s try it 

The researcher gained insight into learners A and D’s internalising processes. Learner D’s initial 

idea that she shared with the researcher became a discussion between D and A. Learner A stated 

the question in her own words. After the reflection of their idea the learners formed a real model 

by grouping the eggs. 

The first learning activity’s purpose was to introduce the modelling process to the learners. 

Blomhøj and Kjeldsen (2006, p. 167) note that the modelling task will determine the success of 

the modelling experience. The modelling task needs to be valuable, authentic and real. The 

intention of giving the learners a real problem that didn’t have an obvious pattern was to reveal 

and develop the learners’ horizontal competencies in the NPC continuum. 

In the learning activity, learners were given the opportunity to group values according to rules so 

that they can find a number that works for all the rules in the real problem. The researcher 

allowed the learners to test and revise until they found a solution that they were satisfied with. In 

the first learning activity the learners were able to identify the unknown quantity by grouping the 

eggs to show that the groups two through six had one egg left over each time except for the 

seven groups which had no eggs left over. They found 301 to be the number of eggs the farmer 
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originally had. The duration of the first modelling session was 90 minutes. 

 

5.4 ACTIVITY 2 

More broken eggs 

5.4.1 Analysis of the learning activity 

5.4.1.1 Internalising 

The competency internalising is noted when the learner states the problem in language he 

understands and notes a similar problem. The group realises that the second activity is a 

continuation of the first. The learners understand that they need to find more numbers that will 

work for the grouping rules.  

D: We have already found 301 

I: We need to find more, that is the problem 

 

5.4.1.2 Interpreting 

Interpreting takes place when learners make assumptions, specify important information or note 

conditions that influence the situation. Learner A and D discuss the numbers that can and cannot 

work.  

D: So are you saying that if you add 103… So you’re saying the number of what? 

I: We don’t have a pattern 

D: It doesn’t work  

A: It does 

D: It doesn’t work 

A: It does 

D: No, it doesn’t work, 320 plus 420 is 103 

A: No it’s 721 

With the help of A and I, learner D realises that every time they added 420, the number worked 

for the rules of the farmer’s eggs. Learner D asked a good question:  

D: What’s the lowest number that works? 

I: It’s 301 

The lowest number that worked for the farmer’s rules was indeed 301, but it could have been a 
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good learning moment if learner D had questioned it further. 

 

5.4.1.3 Structuring 

The competency structuring occurs when the learner looks for a relationship or a pattern. 

Learner I’s objective was to look for a pattern. The group decides that they are going to start with 

the number 301. B notices that if he adds 420 every time, the answers work for the rules in the 

first activity. 

D: We have already found 301 

I: We need to find more, that is the problem 

B: That there is a 420 difference every single time, the ones that work perfectly 

 

After B notes the relationship, the researcher questions learner A: 

R: How many solutions have you got? 

A: Only one 

R: The question said there is more than one. What do you think? At the moment you have only 

one number 

A: Well we have four, mam 

R: You have four? What were the other numbers? 

A: First solution is we got 7 time 43 and then we added 420 each time 

 

A stated the recursive relationship in words when she said they added 420 each time. The 

researcher suggested that the learners read the problem again to get more focused. This directive 

was to guide the modelling process so that the learners get used to working through the 

modelling cycle (see Section 2.4.5).  

 

5.4.1.4 Symbolising 

Two out of the six learners note down the pattern and show the recurring nature of the 420. 

In the previous activity, the learners found that 721 also worked for the rules for the farmer’s 

broken eggs. The learners then added the difference of the two numbers to the 721 and saw that 

the next number, 1141 also worked (see Figure 5.5). 
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Figure 5.5: Learners show the relationship of the terms (B’s written work) 

 

5.4.1.5 Adjusting 

The competency adjusting occurs when the learner tests his pattern and refines it after testing it. 

It is interesting to note that learner I has expanded the term values in Figure 5.6. If she expanded 

further, she might have ended up with a rule to represent the functional relationship of the terms. 

In the above excerpt of the written work, it is evident that the learner has established a recursive 

rule to represent the relationship of the term values. 

 

 

 

  

  

  

  

  

Figure 5.6: Learner I expands the terms    

 

5.4.1.6 Organising 

Organising involves formulating a rule that works for all the terms. The learners then remember 

a general formula that they were introduced to earlier in the year. They substituted the values and 

found that it worked for all the elements in their number pattern, 

D: Explain it to me 

I and M: It’s 𝑇𝑛 = 𝑎 + (𝑛 − 1)𝑑, 𝑑 is the difference 

A: Which is 420 

Stellenbosch University  http://scholar.sun.ac.za



114 
 

D: What is 𝑎? 

A: 𝑎 is your first number 

D: This is 7 

A: No, 𝑛 is the number you are trying to find 

D: Oh 

I:  𝑇𝑛 = 𝑎 + (𝑛 − 1)𝑑, so the difference is 420, 420 times 𝑛, 420times -1 which is -420. You try 

move them around so, so it’s gonna be 420n-420 and you carry on from there 

T: Why are you using that specific formula? 

I: Because we are trying to find 𝑇𝑛 

T: Are you saying that this formula will work for any pattern? 

A: No, we are just trying to see something 

 

5.4.1.7 Generalising 

The learners formulate the general term 420𝑛 − 420 by using integrating, a pre-internalised 

construct for this situation. 

 

5.4.2 Rationale for the activity 

The learning activity was checked and was in line with the checklist for modelling problems 

based on RME principles and Lesh’s principles for designing MEAs (Appendix C1). The groups 

discuss what the task entail and possible ideas to help them towards a solution. The researcher 

then approaches each group to discover their ideas. The teacher should guide discussions in a 

non-directive but supportive manner (Burkhardt, 2006, p. 188). Teachers need to give students 

sufficient time to complete the activities as well as support during the modelling process. 

Guidance must be given strategically, remembering that learners need to develop competencies 

and sub-competencies on their own. Supplementary questions will enhance the learners’ progress 

and lead them to go further. The questions that the researcher asked in this modelling session 

were: How many solutions have you got? What do you think? What are you doing? How are you 

guys going? Are you making progress? The questions the teacher asks can consciously steer the 

modelling process and motivate and support learners. The modelling session was 80 minutes in 

length, this included a representation of each group’s solutions at the end where the class made 

valuable comments and suggestions.  
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It is important for the teacher to be knowledgeable about the modelling process. Before the 

modelling sessions started, the researcher explained the modelling process to the learners. 

Learners need to be aware of their expectations with respect to their different roles and actions 

during the modelling process. Learner I referred back to the problem throughout the activity, 

questioning why a certain method would work. Learner G has not yet made a contribution even 

though she was engaged in the activity. 

During the learning activity learners had the opportunity to find more solutions that would yield 

the same result for the farmer’s broken eggs. The conjecture was based on the fact that learners 

would be able to generalise a linear number pattern so that they could find more solutions. The 

learners found two solutions. 

A: The second solution is the 𝑇𝑛 

After investigating the transcripts and researcher’s observation sheet, the learners incorrectly 

used the term solution rather than ways to find the different solutions. All six learners in the 

group confidently worked with a recursive relationship. Three out of the six learners confidently 

used the previously-internalised general term 𝑇𝑛 = 𝑎 + (𝑛 − 1)𝑑.  

 

 

5.5 ACTIVITY 3 

Marcella’s doughnuts 

5.5.1 Analysis of the learning activity 

5.5.1.1 Internalising 

From the NPC continuum, the learner is internalising when he states the problem in his own 

words, he notes or explains important information, he relates a previous similar problem to the 

current one. The group discusses the problem: 

I: On the side of the road she sees two people, so that means minus two and then, um 

M: Where is that? 

B: And then it says some surfers, it doesn’t tell you how many 

A: But the two doesn’t really help ‘cause they took half the bag 

I: No, for the people that were there, take one for each of them 
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B: So you might as well, and they took two more, minus two 

I: After that they took another half, so that’s another x over 2 

B: And then Susan took half the bag again 

A: So she gave the people from the homeless half the bag and then two more 

 

For A, the people who collected food for the needy in her words became “homeless people”. 

From the excerpt above, it is obvious that the group recreates the story as it happened. 

 

5.5.1.2 Interpreting 

For the interpreting competency the learner recognises quantities that influence the situation. 

The learners recognise that Marcella gives away half the bag and two more every time she stops. 

They calculate that Marcella gave away six doughnuts because she stopped three times and had 

two left over in the end: 

I: For Susan, she had two more 

M: She also took half and two more, then there were two left 

D: So the twos are like 8 together, but like the halves are 

A: (To B) Is that why you’ve got x over two here? 

D: Because it’s half and we don’t know how many there is  

The learners get a sum of eight because she gave away six on the way home and had two left 

over. 

 

5.5.1.3 Structuring 

Structuring is when the learner notes a pattern or a relationship.  

R: What do you know? 

A: She had more than 8 

R: What else do you know? 

A: She gave away half of her bags three times 

R: What else do you know? 

M: She’s got two left 

A: If you have half the bags three times and 8 okay, half of the bags three times. Can you say half 

of the bags three times? 

M: I did that 
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I: No, you broke it half so you got another number, so you broke that in half and you got another 

number, and you broke that on half, and you get another number 

M: It’s like the same half every time 

The researcher questions the group and they communicate that she gives half the bag away each 

time. At the end, M notes that is the same half every time.  

A has an idea: You guys! I thought of something. Why can’t we have a pie thing? 

After A shares her idea of using a pie chart, learner I suggests that they should use percentages. 

I: Like 100% and then you broke it in half and then you have 50% and broke it in half and then 

you are left with something 

A: Okay so we start with 100%, so she gave away half, which is 50 

The learners seem to forget that Marcella also gives away two more the three times she stops. 

After investigating, the researcher discovers that they did not forget about the two that Marcella 

gives away each time. 

R: (To B) What have you got written down here? Looks quite interesting, problem is there is not 

8 doughnuts left 

B: In the story 8 doughnuts are given away 

And later A noted: 

A: Can’t we add it in the end? 

 

5.5.1.4 Symbolising 

Symbolising is when learners use object or symbols to show their relationships or patterns. 

 

 

 

 

Figure 5.7: Learners show the relationship of the terms   
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In Figure 5.7, learner D shows how half of the doughnuts were given away and two more. This 

process happens three times because Marcella stopped three times. 

5.5.1.5 Adjusting 

In the competency adjusting, patterns are adjusted so that they make sense for the situation.  

  

 

 

 

  

  

Figure 5.8: Learners use the rules from the real problem 

 

In Figure 5.8 learner B tests his model with ninety two and calculates there is eight doughnuts 

left after Marcella gives away half of the doughnuts each time and then two more. He then tests 

forty four and finds an answer of two. The learners established a set of rules for the real problem 

and used these rules to find values that relate to the real problem. 

 

5.5.1.6 Organising 

The learners did not construct a single rule that worked for all elements.  

 

5.5.1.7 Generalising 

The learners did not construct a rule deductively. 

 

5.5.2 Rationale for the activity 

The conjecture of the previous learning activity was not confirmed with the observed based on 

the observed outcomes in the transcripts and written work. This provided the researcher with a 

challenge for the next activity. The options were to give the learners another linear problem or a 

quadratic problem. The baseline assessment’s results indicated that the learners were not ready to 

generalise a quadratic number pattern, especially not this early in the learning trajectory. The 

next modelling task had to be a problem where the learners could associate with the activity to 
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find deeper connections and not rely on 𝑇𝑛 = 𝑎 + (𝑛 − 1) + 𝑑 which they had used in the 

previous activity. Although learners were given the opportunity to generalise the linear number 

pattern in the second learning activity, they were not able to. The learners had to be given the 

opportunity to generalise a rule for a linear number pattern. 

Marcella’s doughnuts problem was the first part of a progressive activity. The activity was 

checked against the checklist for modelling problems based on RME principles and Lesh’s 

principles for designing MEAs (Appendix C1). A sign of the authenticity of the problem was 

when A mentioned: You guys this is crazy, already two people took half of her bag and two 

more!  

The self-assessment principle was evident in the following excerpt: 

D: How do we know if we are right or not? 

A: I don’t know 

B: It will be a whole number 

The modelling session was 90 minutes in length. The learners had the opportunity to discuss 

their initial understanding in their groups. The question was very wordy and the learners had to 

really take their time to read it a couple of times. The researcher’s self-reflection was positive. 

The questions asked by the researcher were non-directive and the questions the researcher 

answered were thought-provoking rather than thought-directing. The class discussion at the end 

was positive. The learners were able to successfully create a model for Marcella’s doughnuts and 

work backwards to find the unknown quantity. 

 

 

5.6 ACTIVITY 4 

Extended doughnuts 

5.6.1 Analysis of the learning activity 

5.6.1.1 Internalising 

The competency internalising is noted when the learner states the problem in language he 

understands. The learners have a chance to communicate some ideas of what the question might 

mean in the class discussion. The researcher asks the learners what the questions might ask. 

Learner C (Group 3) says that the question is asking for a formula.  

Stellenbosch University  http://scholar.sun.ac.za



120 
 

The teacher leads the discussion: 

R: Okay, what do you think, do you also read formula when you read this question? 

E: I think that the question is saying we cannot work out how much she had in the beginning if 

we don’t know what she has in the end 

R: Okay, so what you just said is that we know what is happening with one number to know what 

is happening with the other. So what is happening with the one number to get to the other 

number? 

I: From the solution downwards it’s solution divide by two minus 2, but from the thingy, the 

number of when she gets home it’s times and then you add 2 

The class then discuss what would happen if the end number would change.  

Q says: Mam, would it be good or bad to change the answers? If you are changing the answers, 

then the original ones would have to change, I don’t see a problem with it. 

R: If she changes the amount that she comes home with? 

A: It just means the original numbers would be changing 

T: How would they be changing? 

I: You are still using the same formula, but different numbers 

The learners internalised the activity of how the solution to Marcella’s doughnuts depend on the 

number of doughnuts she has when she gets home. They understand that there is a formula that 

will stay the same even though the numbers change. 

 

5.6.1.2 Interpreting 

The competency interpreting focuses on smaller details that impacts the situation. The 

conversation in the group is focused around the set of rules they used in the previous learning 

activity. 

D: Plus two times two, minus two, divide by two. So two is part of the main to get the answer. So 

that’s how it will be dependent on, ‘cause if you say for times three you are not going to get the 

same thing 

M: And that will be 8 

 

 

Stellenbosch University  http://scholar.sun.ac.za



121 
 

  

  

  

Figure 

5.9: Interpreting the real problem   

 

From the above excerpts it is noted that the two is an important quantity that influences the 

situation. Figure 5.9 is evidence that the learner finds a connection between the 2 and the 44. 

 

5.6.1.3 Structuring 

Structuring involves looking for a relationship or a pattern. The group’s focus changes to finding 

a pattern. 

A: If we find the original amount, it has to be 44, it only works with the 44 because it’s a two. 

I’m saying two won’t be a sixty, it won’t work. So with the two it has to be a 44 

I: I think for two it’s only 44 and for 4 it’s only 60, so there should be a pattern somewhere there 

that is making them all cooperate together so I think we should start working with different 

numbers: 1, 2, 3, 4, 5 

M: Try every number 

A: Different original amounts, and that’s how it’s dependent on it ‘cause it can’t be any other 

number 

The learners find that the difference between the original numbers, when they changed the end 

values has a constant difference of eight. 

 

5.6.1.4 Symbolising 

The learners use the set of rules from the previous activity when Marcella only had two 

doughnuts left when she arrived home. They calculate the values if she had different numbers of 

eggs left.  

B’s working (left in Figure 5.10) shows the original values if Marcella had three, five, six and 

seven doughnuts at the end. B writes out how many eggs there were when Marcella got home 

with the corresponding number of eggs she originally had (right in Figure 5.10). Learner M’s 

questions lead the group into the right direction: 
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M: What happens to zero to get to 28? What happens to one to get a 36? What happens to 2 

to get 44? What happens to 3 to get 53? 

D: We are adding two and timesing the answer by two. That’s what we are doing 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.10: Symbolising (left) to find the terms of the pattern (right) 

 

5.6.1.5 Adjusting 

In the following excerpt, the learner tries to formulate a rule by relating numbers from the real 

problem: 

A: Since she stopped three times we can make it like a rule, you’d be like two plus two, like two 

squared so we can shorten the thing 

M: I put the three in brackets but it still didn’t work 

M tested her rule but it didn’t work for all the elements. 

 

5.6.1.6 Organising 

The group constructs a rule for the real problem that works for all the elements. 
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B: I think I’ve got it, the formula is 28 plus 

I: 28 is zero 

They then relate it back to the real problem 

A: 28 plus n times 8 

R: Okay, how does this relate to the original question? 

D: Exactly it doesn’t 

I: The difference of all of them is 8, the first one, the 0 is 28 so we got that 

 

The excerpt above shows that learner D cannot relate the computation to the real problem. There 

is also no observed evidence that learner G shows an understanding of the generalisation. Based 

on these results the conjecture is only confirmed for four out of the six learners (see Table 5.1). 

 

5.6.1.7 Generalising 

The group has generalised a rule for the formula using deductive reasoning (see Section 5.6.1.6). 

The generalisation is a structural analysis. They focus on the original number that had no eggs 

left over at the end and the eight eggs (six from stopping three times and giving two away, and 

two because Marcella had two left over). The question they had to answer was: How does the 

solution of Marcella’s doughnuts depend on the number of doughnuts she has when she gets 

home?  

The group’s generalisation for the computational procedure reads: 

B: Number she has left multiplied by 8 and then you add 28 to it 

 

5.6.2 Rationale for the activity 

The duration of the modelling session was 90 minutes and included a class discussion before, 

during and at the end of the session. The time allocated for class discussion during the session 

was because the groups struggled to formulate ideas. Although the learners looked for other 

values by changing the number at the end, the concept of dependence was new to them. Towards 

the end of the modelling session, learner A summarised the task:  

Guys, we were just saying how you get to the original number. 

The group interaction was particularly good during this modelling session. All the group 

members made valuable contributions. The researcher noted metacognitive strategies during the 
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modelling session: Learners reflected often and related their symbolisations back to the real 

problem. It was noted in the transcripts of the audio recordings that the group referred back to the 

learning activity four times. 

The learners worked through the modelling cycle three times (refer to Figure 2.1). The first cycle 

was noted in the beginning of the modelling session when learners tried to understand the task by 

relating the dependence question to changing the number of doughnuts at the end. They set up a 

mathematical model and found different answers for the different eggs at the end. They related 

their model back to the original problem and noticed amounts that would influence the situation. 

The second modelling cycle was on a higher level than the first, learners changed the number of 

doughnuts that were given away. They set up a mathematical model by using a third and giving 

away three doughnuts every time. The learners were trying to investigate other situations similar 

to Marcella’s. In the third cycle learners used their model from the first cycle and focus on the 

importance of the value two. They wanted to set up a simpler mathematical model and used the 

constant difference of the values they calculated in the first cycle. The group noticed that the 

difference depends on the number of times she stopped. The learners set up a model that 

represented a shortcut for the doughnuts at the beginning from the number they had at the end. 

The learners validated their results and were satisfied with their solution. The task focused on the 

relationship of the values which led them to look for connections instead of relying on the 

general formula or 𝑇𝑛 that they used in the third learning activity. The learners were given the 

opportunity to generalise a linear number pattern. Through the scaffolding nature of the learning 

activity, the learners were able to formulate a rule for the number pattern because they realised 

that they needed a shortcut to get to the original number of eggs.  

 

 

5.7 ACTIVITY 5 

Thinking diagonally 

5.7.1 Analysis of the learning activity 

5.7.1.1 Internalising 

The competency internalising is identified when the learner notes important information. The 

learners decide to draw more polygons to see how many diagonals they have. They agree that to 
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find the diagonals in the 100-gon they will need to find a pattern or a formula to help them.  

M: (To B) Isn’t there a formula for this? 

B: We will have to find a pattern, here there is a two and here there is a 5 

D: Okay, but there is 4 sides and 2 diagonals and then 5 sides and 5 diagonals. So what’s that 

going to say 

D: There is no link here, you think you should draw it? 

The link is discussed in the next section. 

 

5.7.1.2 Interpreting 

D, F and A want to see how many pentagons they need to make a hundredgon,  

F: 20 of these will make a 100 

D: Wait, so just five times what then 

A: Five times twenty, you guys 

They discard the idea and decide to link the question to the interior angles in a polygon. 

After they discuss the purpose of the formula 180(𝑛 − 2), the group decides that calculating the 

angles in the triangle will not get them closer to calculating the diagonals for a polygon. The 

above explanation shows how the learners communicate different ideas that could work or not 

work for the situation. 

 

5.7.1.3 Structuring 

When a learner is structuring he is searching for a pattern or a relationship. The next conjecture 

the learners make involves the number of sides and the diagonals of a polygon. If the sides of the 

polygon is an odd number then the diagonals will equal the number of sides, and if the polygon 

has an even number of sides, then the number of diagonals is half the number of sides. The 

learners find the number of diagonals for a hundredgon: 

A: A hundred divided by two has fifty diagonals 

R: How did you find this? 

A: Even number diagonals are half of it, for six it is 3, 8 it is 4, and therefore a hundred is 50 

D asks a valid question: How do we prove this?  

The learners try to formulate a pattern. They refer back to Marcella’s doughnuts but note the 

conditions that will not work for this problem: 
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A: Remember the pattern we had, there was the Marcella-thing B came up with, do you think this 

will give us something like that pattern? 

I: There is no constant difference, remember that time the difference was eight 

The learners notice that the rule found in the previous activity would be related only to a pattern 

with a constant difference. They sketched more polygons to see how many diagonals each of 

them has in order to find a pattern. 

 

5.7.1.4 Symbolising 

Learner D makes the following suggestion: I think we need to write the number of sides and 

diagonals and find the difference 

The learner’s suggestion proved to be a useful one. The learners discovered that the first 

difference increased by one every time. 

The group use their pattern to predict how many diagonals the next polygon should have and 

then tested it by drawing the polygon and its diagonals 

A: Wait, why should 8 be 20? 

B: Well then our ten must be wrong because the difference is always one extra, like there the 

difference is three, there the difference is four, there the difference is five, there we haven’t done 

yet 

I: Nine should be 27, let’s try that out 

B: Then draw a big octagon and a bigger nonagon, like do the size of a page then we can clearly 

see 

  

 

 

 

 

 

 

Figure 5.11: Counting the diagonals in a nonagon   
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Figure 5.11 shows the nonagon the group constructed to show that it has 27 diagonals. 

5.7.1.5 Adjusting 

Learner D notices a pattern by looking at the diagonals and the sides. 

B: I see a pattern 

I: What pattern do you see? 

B: Four sides then there is two diagonals, so multiply it by a half. There is five sides and five 

diagonals multiply by 1. There is six sides and 9 diagonals, so you multiply by three over two, 

I: Say that, multiply 9 by 3 over 2 

Learner A is obviously confused and M asks learner D how he figured it out,  

A: I am lost 

M: How did you figure this out? 

B: I just noticed that each time the difference and I wanted to find out how you multiply 

The researcher asks the group if they can use their rule to find the number of diagonals in a 

hundredgon, 

R: So what could you do with that in terms of finding the 100-gon? 

I: I’m guessing there is going to have to be a divide by two somewhere 

B: You’ll say n minus 3 over two. So you will say 100 minus three over two and you get 57 over 

two 

M: 57 or 97 

D: That’s 97 

B: Times 97 over two and that’s how many diagonals it is 

In the discussion above, the competency adjusting is identified when the learner reflects back to 

the problem and uses the diagonals and sides to relate to the mathematical model. 

 

5.7.1.6 Organising 

In the competency organising the learner tests his pattern/rule and reflects back to the real 

solution. Figure 5.12 is taken from D’s written work, she uses the rule to show that a hexagon 

has 9 diagonals and nonagon has 27 diagonals. 

 

  

 

  

Figure 5.12: Rule to calculate the number of diagonals in a hexagon and nonagon 
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5.7.1.7 Generalising 

The learners deductively generalise a rule for the quadratic pattern: 

 

 

 

  

Figure 5.13: The 

diagonals in a hundredgon (A’s written work) 

 

The group used their generalisation to find the number of diagonals for a hundredgon. 

 

5.7.2 Rationale for the activity 

The modelling session was broken into two parts. The first part’s duration was 60 minutes where 

the learners had the opportunity to use their pre-knowledge to connect with the problem. The 

learners formed some conjectures based on incorrect assumptions. The learners only connected 

opposite angles in the polygon. They did not include all the diagonals in the polygons. This led 

them to the conjecture that if the number of sides of the diagonals is an odd number then the 

diagonals will equal the number of sides, if the polygon has an even amount of sides, then the 

number of diagonals is half the number of sides (see Section 5.7.1.3). The researcher noticed that 

some groups were not familiar with the notion of diagonals and used a discussion during the 

activity to let the knowledgeable groups help the other learners. The second part of the modelling 

session was 90 minutes in length. The researcher expected that the learners would take longer to 

generalise a quadratic number pattern than a linear number pattern. The use of technology could 

be valuable for learners to discover unfamiliar concepts. The learners spent some time drawing 

the diagonals searching for patterns. Section 5.7.1.5 explains how learner B found a rule by 

looking for a structural relationship. The learners in the group were interested to learn how the 

learner used the diagonals and sides to derive the generalisation.  

The researcher noted metacognitive strategies that were observed during the modelling session: 

learners sketched polygons to count diagonals, they worked with different mathematical ideas 

(working with degrees) but discarded the ideas when the learners realised that it would not bring 

Stellenbosch University  http://scholar.sun.ac.za



129 
 

them closer to the relationship between the sides and the diagonals of the polygons. The 

researcher was impressed with the use of mathematical terms the learners used fluently 

(difference, nonagon). It is evident that the learners’ mathematical proficiency is improving as 

they work through the modelling problems.  

 

 

5.8 ACTIVITY 6 

Squares 

5.8.1 Analysis of the learning activity  

5.8.1.1 Internalising 

The learners relates the learning activity to the previous one. In the pre-activity discussion, E 

notes that: it’s the same question.  

 

5.8.1.2 Interpreting 

Interpreting can be noted when learners make assumptions and specify important information. 

There is no evidence in the data to depict the competency interpreting.  

 

5.8.1.3 Structuring 

The learners look for a pattern by drawing in more stacks. Learner D draws a five-stack and 

discovers that it has ten blocks.  

 

5.8.1.4 Symbolising 

D starts drawing the 40-high stack.  

M: This is going to be so huge 

I: Are you actually drawing it? 

 

Figure 5.14 shows D’s real model.  It indicates the competency symbolising which is part of 

horizontal mathematisation. 
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 Figure 5.14: D’s 

symbolisation  

Learners M and D draw the next stack to see that fifteen blocks will form a five-stack. In Figure 

5.15 learner B predicts the amount of squares in the next terms using the recurring value. 

 

 

 

 

  

 

  

  

Figure 5.15: Predicting the stacks and squares (B’s written work) 

 

5.8.1.5 Adjusting 

The learners look at the numbers to find a rule that is a simplified version of the generalised rule 

𝑛(𝑛+1)

2
. The learners relate the rule for the quadratic pattern to the real problem. Learner D 

explains it in terms of blocks in the set of blocks: 

D: You add a block each time to the set of blocks 

In the second generalisation, the learners invented the generalisation in Figure 5.16 which is the 

same as  
𝑛(𝑛+1)

2
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Figure 5.16: The number of blocks in a 40-high stack (I’s written work) 

 

5.8.1.6 Organising 

The learners generalise the a rule which worked for all the elements in their pattern: 
𝑛(𝑛+1)

2
. They 

use the rule to find how many squares a forty-stack would have.  

 

 

  

 

 

  

𝑛𝑡ℎ term to find the squares in a 40-stack Figure 5.17: The 

(A’s written work) 

 

The learners used the 40-stack values as an example and discussed ways of simplifying the 

process of multiplying 40 by 20 and a half.  

D said: 𝑛 times the median of the, and got interrupted by his group. The group later returned to 

this idea: 

M: The median of 40, one and 40, which is 20 and 21, right 

In the previous excerpt the learner explains that the midpoint between one and forty is between 

the values twenty and twenty one. The midpoint of twenty and twenty one is twenty and a half. 

A: Guys, it’s the median times the number in the stack 

Stellenbosch University  http://scholar.sun.ac.za



132 
 

B: That’s what I said 

A: The median, that’s 20 

F: That’s 20 and a half 

 

5.8.1.7 Generalising 

The learners use deductive reasoning to find the rule 
𝑛(𝑛+1)

2
.  

The rule they find afterwards, 𝑚𝑒𝑑𝑖𝑎𝑛 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑐𝑘𝑠 is an astute way to incorporate the 

median value of stacks. In the next learning activity the learners use this rule for another 

problem. 

 

5.8.2 Rationale for the activity 

The modelling session’s duration was 60 minutes. The learning activity aimed to develop the 

learner’s internalising and structuring competencies by relating the question to the previous one 

and by recognising a quadratic number pattern. The observed mathematising competencies were 

more vertical than horizontal. Section 2.8.4 explored horizontal and vertical mathematisation. It 

was noted that the activities of vertical mathematisation do not necessarily occur in a specific 

order. When the NCP continuum was designed using Ellis’ generalisation taxonomy in Section 

3.4.3, the reflection activities which were compared with vertical mathematisation also did not 

take place in a specific order. The above explanation corresponds with the analysis in Section 

5.8.1 because the vertical mathematising competencies (symbolising, adjusting, organising and 

generalising) were observed in no specific order and overlapped at times.  

The learners related the pattern with the previous one within the first ten minutes of the session. 

Although the conjecture in the previous learning activity was only confirmed for three out of the 

six learners, the data shows that all the learners in the group learned from the previous 

experience. They successfully generalised the quadratic pattern. During the activity, the 

researcher noted the possibility to swap Activities 6 and 7 in a future LT. In retrospect, the 

learning activities proved useful in their current positions. During the discussion at the end of the 

session the groups shared their generalisations. The researcher used the fourth activity’s wording 

for the current problem: How does the stack, and the class completed the sentence like a 

recitation, depend on the number of boxes we have.  
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5.9 ACTIVITY 7 

Consecutive sums 

5.9.1 Analysis of the learning activity 

5.9.1.1 Internalising 

The group attempts to understand the problem by discussing ideas to start the problem. 

M: What do they want? I’m trying to get an idea 

A: I have no idea 

B: Well they want you to like pick any random number and then like start a pattern with 

consecutive numbers and then they want to see if we can distinguish a pattern as in n+1, n+2, 

n+3 

M: Hm, any random number 

B: It can be any number, then we can like find a pattern 

M: So, find any number and find its consecutive numbers 

B: So basically you have to find the 𝑛𝑡ℎ term 

The learners form consecutive series using their favourite numbers to start with. The learners 

allocate group members to construct series with specific starting values and specific number of 

terms.  

 

5.9.1.2 Interpreting 

The competency interpreting involves recognising quantities that would influence the situation. 

Learner M and I add five consecutive numbers in the following excerpt and notice a pattern. 

M: I think it depends on the number you add, how many numbers we add up 

I: It depends on how many numbers you add because this time the difference is five 

 

5.9.1.3 Structuring 

The learners begin to work more methodically by starting their series at different numbers but 

keeping the number of terms in the sequence the same. In M’s written work (Figure 5.18) she 

firstly adds five consecutive numbers starting at three and repeats this for four, five, six and then 

seven consecutive terms in each series. The group investigates series starting with the next 

number of the last series. M finds a constant difference of twenty five when adding five 
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consecutive numbers starting at three, eight and thirteen. She does the same with four 

consecutive terms and finds a constant difference of sixteen between the sums. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.18: Setting up series to find patterns (M’s written work) 

 

5.9.1.4 Symbolising 

In Figure 5.18 the learner uses symbolisations to add consecutive numbers with the aim to search 

for patterns. The group use 𝑥2 to describe the relationship between the differences of the sum of 

five consecutive numbers starting at three. The amount of terms squared equals the difference 

between successive sums. This also works when the learners add four consecutive numbers and 

find that the constant difference between the sums is four squared.  

The learners formulate a rule using the median to work out the consecutive numbers, 

D: If you know your median, you can work out the consecutive 

A: No, if you like add them together 

B: If you add the consecutive sums you will get 60 
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I: Consecutive numbers, numbers going this way and that way, is it consecutive? 

B: Well if they grow after each other then they are consecutive 

I: So you can work down and you can work the other way as well 

The symbolisation in Figure 5.19 is a rule to find the sum of 𝑛 consecutive numbers with the first 

term starting at one. 

 

Figure 5.19: The 𝑛𝑡ℎ term for finding the sum of n consecutive numbers (I’s written 

  work) 

Section 5.9.1.6 explains how learner I adapts the rule to determine the consecutive sum of a 

series starting from numbers other than one. 

 

5.9.1.5 Adjusting 

The learners test their generalisations. In Figure 5.20 the learners test their median-formula that 

the sum of a consecutive series can be calculated when the median number of a series is 

multiplied by the number of terms in the series.  

 

 

 

 

  

Figure 5.20: 

Testing the median-formula (M’s written work) 

 

Figure 5.21 is an excerpt from learner I’s written work which shows that the sum is calculated in 

a series consisting of seven and five consecutive terms using the general term. 
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Figure 5.21: Testing the 𝑛𝑡ℎ term (I’s written work) 

 

5.9.1.6 Organising 

B notes: Did anyone notice that if you take the median of the numbers that are in it and you 

multiply it by the number of digits in the sequence, it gives the final answer? 

The learners discuss how this rule would work when a sequence consists of an odd amount of 

numbers. They decide that they would find the midpoint of the two numbers by adding them 

together and then dividing the sum by two. 

The group develops a rule to determine the consecutive terms of a sum that has a known amount 

of consecutives.  

R: So does that mean I can take a number, let’s take 135, can I find the five consecutive 

numbers? 

A: You can’t 

D: You can, you divide it by five, and then how many numbers is there in succession? 

R: How many numbers do you want there to be? 

M: Six 

B: You’d divide it by 6 

R: Let’s do it 

M: 135 divided by 6, 22 comma 5 

D: Oh I get it 

F: Oh I get it now 

 

The formula explained in the excerpt above will not work for all numbers because all numbers 

cannot be written as consecutive sums. During the post-activity discussion the group explain 

their formula to the class and confidently say that this formula would work for any number. They 

use 135 to explain their formula, 

A: If we divide this by 6 we get 22 and a half. So our median is 22 and 23. So 23 and 22 will be 
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our middle numbers, and there has to be six numbers in the sequence, so it’s, 24, 25, 21 and 20, 

is you add all of this together you will get 135 

D: That’s if you had to work with consecutive numbers and you were given the answer 

E: I don’t understand how you get to the 6 numbers, how would you know? 

A: Cos you divide by six, the six tells you how many numbers there has to be 

D: Yah 

A: Even if you divided this by 4, you get the median thing, okay, 135 divided by 3, is equal to 45, 

so our median number is 45, and there has to be, so the number in our sequence has to be 3, so 

it’s 46 and 44, if you plus all of these numbers together, you will get 135 

The class asks the group to do one more example, to write fifty five as the sum of three 

consecutive numbers. B logically explains why it cannot work: 

Your statement was that if you gave us 55, you had to find three consecutive numbers, and our 

group said that any consecutive numbers, what was it the median would, the number of numbers 

in the sequence multiplied by the median that would be your final answer, but 55 is one of those 

numbers that will never find a, what’s it, constant pattern  

R: So we can safely say some numbers you cannot write as consecutive sums. So it’s important to 

always check your findings and to see if it fits for all numbers.  

In the above excerpt, the learners constructed a rule that works for elements that have 

consecutive sums. They used their rule to solve a problem and provided the class with useful 

feedback when the rule did not work for all the numbers. 

 

5.9.1.7 Generalising 

The learners develop a formula to write the consecutive sums for values (if they exist). This rule 

was the same as the one they constructed in the previous activity. Learner I’s generalisation 

(Figure 5.21) is the same as the rule used in the previous activity to determine the number of 

blocks in a 40-high stack. In the previous learning activity it was used to find the sum of 𝑛 

number of consecutive terms starting from one. She generalises further: 

I: If you started at one, what if there are 7 numbers and you started at 2? That’s the problem. Let 

me try though. 

M: What are you trying to do now? If you’re starting with two, and the rule is to start with one 

I: Just wait, we’re on to something, oh I got it, seven plus seven times seven plus three over two 
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A: It’s 35 

M: So three has to starts with n+5? 

Learner A summarises what needs to happen to the 𝑛: 

A: So the plus thingy changes all the time to an odd number? 

I: Yes 

The task-based analysis in Section 5.1 and the explanation in the above sections demonstrate that 

the learners used the generalisations that were constructed in the previous learning activity and 

adapted it to for the current learning activity. Modelling activities provide learners with the 

opportunity to make meaningful connections. This does not happen in traditional classrooms and 

the learners forget what they learn. 

 

5.9.2 Rationale for the activity 

The learners had the opportunity to explore the concept of consecutive numbers in this learning 

activity. The analysis in Section 5.9.1 provided a detailed description of the 90-minute modelling 

session. They used the knowledge they constructed in the previous learning activities to 

generalise patterns successfully. Metacognitive strategies that were noted during the modelling 

session included: learners kept track of their progress, learners predicted an unsuccessful 

outcome and then followed with another idea. The group members allocated or volunteered 

specific tasks and used each other’s series and the sums when they searched for patterns. The 

learners were able to share their patterns and generalisations at the end of the session. The post-

discussion delivered important learning monents discussed in Section 5.9.1.6. 

 

 

5.10 ACTIVITY 8 

Garden border 

5.10.1 Analysis of the learning activity  

5.10.1.1Internalising 

The learners use their own words to state the problem. In the first part of the modelling session, 

the learners try to establish the meaning of dimension and discuss whether the tiles will change 
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or the border will change. A asks the researcher how the dimensions can change. The researcher 

formulates her responses so that it helps the learner’s reflection without giving her an answer. 

A: Mam, how does she change the dimensions of the garden? 

R: How do you think you change the dimensions? 

A: Make it bigger? 

R: What do you think? 

A: Well is it like add more tiles to the border? 

R: Don’t you think when we enlarge an area, you have to add more tiles to the border? 

The group discuss the meaning of dimension. They use a dictionary to look up the meaning, 

A: It’s a measurement in length, breadth or thickness. An example is, the dimensions of the box 

are 20cm by 10 cm by 4cm 

M: Is it like the length, breadth and height? 

Once the learners are confident with the new term, the consider the dimensions 23 by 20: 

B: You know it says 23 by 20 it doesn’t mean that you multiply it, it’s like 23 by 20 

A: The tile wouldn’t be square 

B: I know 

The above discussion provides a summary of what the learners regard important for second task: 

the meaning of dimension, increasing the border by adding more tiles and making the garden 

square.  

In the third task the learners discuss what the question means,  

A: I don’t understand task 3, it’s not really asking you a question 

M: So it’s like 8 

D: Wouldn’t you just double it? 

I: It’s not a square anymore 

After the discussion the learners understand that the next task requires them to find the number 

of tiles in a rectangular garden. 

 

5.10.1.2 Interpreting 

Interpreting involves making assumptions, noting conditions that will work or not work for a 

problem, and recognising conditions that influence the situation. In the second task the learners 
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discuss the possibility of a garden around a border with only one tile: 

A: Guys, how can 1m by 1m be 0 tiles? 

I: That’s what we said at first but it doesn’t 

B: Tile one is 1m, one metre is a single line 

A: That’s what I’m trying to say, so it can’t be 0 metres 

B: It’s zero tiles 

The learners discuss how to change the dimension of the border. They can either change the tile 

size or change the amount of tiles in the border. They refer to the real problem and come to the 

same conclusion, they need to change the number of tiles and not the tile size.  

B: It is only the amount of tiles that changed, you can’t change the tiles 

In the second task the square garden changes to a rectangular garden.  

D suggests: Okay there’s 24 tiles here. If it was a rectangle, wouldn’t you just double it? ‘Cause 

it’s metre by metre and it’ll turn into two metres, so wouldn’t it be 48 then? Or not? 

The learner makes an incorrect assumption, she does not take into consideration that the longer 

side of the border will be two tiles wider than the breadth of the border. The group refers back to 

the problem and creates a garden border that is two metres wide. 

 

5.10.1.3 Structuring 

The learners draw square borders in search for a pattern (Figure 5.22). They write down each 

dimension and the total number of tiles.  

 

  

 

 

 

  

Figure 5.22: Constructing the real model of the square garden (I’s written work) 

Stellenbosch University  http://scholar.sun.ac.za



141 
 

The learners write down the dimensions of the square borders and the sum of the tiles for each 

border. They note a constant difference of four between the number of tiles in the square garden 

starting with a one by one border. 

Learner I finds a relationship between the square garden border in the second task and the 

rectangular garden border in the third task, 

I: If it’s a square garden, wouldn’t the dim, the thingies be the same? Wouldn’t this be a 6m by 

6m wide and if it’s a rectangle? And it’s two metres wider, so that would be 8m 

They use this idea to establish a rule that works for all the rectangular garden borders that are 

two metres longer than they are wide (see 5.10.1.6). 

 

5.10.1.4 Symbolising 

The NPC continuum shows that learners are symbolising when they use pictures or symbols to 

show the relationship of the problem. In Figure 5.23, the learners search for a relationship 

between the terms by using a real model. The diagrams indicate the length of each side without 

the blocks. They use mathematical symbols that would lead them to working independently from 

the real problem. 

 

 

  

  

 

 

 

 

Figure 5.23: Searching for a constant difference (M’s written work) 
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Figure 5.24: Stating the constant difference using symbols (M’s written work) 

 

The learners find the sum of the tiles for each border and discover a constant difference of four 

(Figure 5.24). Learner A relates the constant difference to the previous task’s constant difference. 

A: If we only change the length of the garden and don’t change the tile, we are pretty much 

going to go with this four difference thing all the time 

 

5.10.1.5 Adjusting 

During the post-discussion, Group 3 explain how they calculate the answer of the first task. 

L (Group 3): We were given the garden with 10 metres, so we took 10 multiplied it by 4, 

subtracted 4 and found the answer 

R: Why did you subtract four? 

The learners explain that they multiply the ten tiles from each side by four because there are four 

sides in a square. Four of the blocks were shared so they subtracted four from the total. Samson 

explained this as local visualisation (see Section 3.4.2). In Figure 5.25 the learners write the 

general rule referring to the real problem in the second task. Group 1 does not explain the general 

term as clearly as Group 3. 

  

  

  

 

  

Figure 5.25: Relating the rule to the real problem (D’s written work) 
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Figure 5.26: Testing the rule (D’s written work) 

The competency adjusting is described as testing the pattern or rule. In Figure 5.26 the learner 

tests the rule by substituting eleven which is the median of ten and twelve into the rule 4𝑛 − 4. 

 

5.10.1.6 Organising 

The researcher asks the group to explain their generalised rule for the second task, 

B: We saw that it was four sides, so we had to use something like four, because a square has four 

sides 

R: So are you saying that if you had a hexagon, that you would times it by six? 

B: You could. But would you? 

R: I don’t know, that’s the question I am asking you 

R: Did your rule work for each and every 

B and M: Yes it did 

A: If we don’t change the tile 

R: What do you mean if you don’t change the tile? 

B: The dimension of the tile 

 

The learners turn the rectangles into squares by finding the median of the length and breadth of 

the rectangular border’s dimension: 

I: I think it’s the same formula but since it’s 6 and 4, it’s 8 and 6, you find the median. Really 

you do, because it’s 7, so it’s got to be 4 times 7 minus 4 
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After the group tests this idea, they formulate a rule for the rectangular garden border. The 

learners explain that the dimensions of the rectangles can be written as dimension of squares by 

finding the median of the sides of the rectangles, 

I: It’s more or less the same thing, it’s just that you are working with two numbers. We find a 

median of them and we work with the same formula 

The rule for finding the number of tiles in a rectangular square garden border will be 4𝑛 − 4, 

where 𝑛 is the median of the length and the breadth of the rectangular garden border. 

 

5.10.1.7 Generalising 

The learners derived a general term for the number of tiles in a square border. The rule to find 

the number of tiles in a 𝑛 by 𝑛 square garden border is 4𝑛 − 4, 𝑛 representing the number of tiles 

in one of the side borders of a square garden. In task three, the learners used the rule derived in 

task two for the rectangular garden in task three. The median of the rectangular dimension of a 

garden border results in the number of tiles in the dimension for a square garden border. 

 

5.10.2 Rationale for the activity 

The learning activity consists of three tasks that progressively build on one another. In the first 

task learners had to count the number of 1m square tiles in a 10 m by 10 m square garden. In the 

second activity the group had to generalise a rule to determine how many tiles the gardener 

would need if the square garden’s dimensions changed. In the third activity the learners had to 

determine the number of tiles the gardener would need if the garden was rectangular and not 

square. The learners could imagine the garden and its borders. The use of building blocks or 

square counters may be useful for the learners to represent the real model. The use of technology 

(a drawing tool) may be useful. The learning activity’s local and global visualisation possibilities 

(see Section 3.4.2) makes it a good learning aid to support learners if they have difficultiies to 

connect the real problem with a general term.  

The learners found the use of a dictionary useful to define unfamiliar words (see Section 

5.10.1.1). The learners went through the modelling cycle four times in the second task. The 

learner that directed the modelling cycle back to the real problem asked the following questions: 

A: Do you think that if the tile isn’t a square, would it make that border a square? 

A: You guys, do we change even the length of the border? Only the tiles? 
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A: Do we only change the size of the tile? 

In the data matrix analysis (Table 5.1) the conjecture was unconfirmed for learner A. 

The analysis in Section 5.10.1 discussed the observed mathematising competencies throughout 

the 80 minute modelling session. As the researcher predicted, the learning activity provided the 

learners the opportunity to develop and reveal horizontal mathematising competencies. This 

modelling problem gives learners the opportinity to explore linear number patterns and is 

suitable in a LT’s earlier learning activities. In retrospect, the researcher would replace this 

activity with a modelling problem that would result in a quadratic generalisation or a simple 

cubic generalisation. The reason for this change would be to develop and reveal vertical 

mathematising competencies.  

 

 

5.11 ACTIVITY 9 

Folding paper 

5.11.1 Analysis of the learning activity 

5.11.1.1 Internalising 

The competency internalising is noted when the learner states the problem in language he 

understands. The learners decide to fold paper to see what happens to the regions. Learner I is 

not convinced when she asks: Mam, what are we really supposed to do? The group explain to I 

that they need to fold the paper to investigate how the regions change. If they fold the paper 

once, the paper is divided into two regions. If the paper is folded twice, they count four regions. 

 

5.11.1.2 Interpreting 

Learner I makes the following prediction: 

I: Five will probably be 20 

A: No, wouldn’t it be 16 times 2? ‘Cause 2 times 2 is 4, 4 times 2 is 8, 8 times 2 is 16, 16 times 2 

is what? 

I: 32 

F: Yah 

A: The number just keeps doubling 
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Learner A helps learner I by explaining why five folds will not have twenty regions. Learner A 

makes an accurate assumption: So if it’s two, there is no limit, it will be double folds infinity 

5.11.1.3 Structuring 

The competency structuring occurs when a learner looks for patterns or relationships. Figure 

5.27 lists the number of regions for the number of folds. The learners try to find a pattern by 

searching for a constant difference. They calculate the first differences of the values in Figure 

5.27. 

A: 2, 6 

F: 8 

A: 2, 4, 8, 16 

F: It’s not constant, that’s the thing 

 

 

 

  

  

  

Figure 5.27: The learner notes the regions as she is folding the paper (D’s written work) 

 

  

 

 

 

 

Figure 5.28:  The learners search for a pattern (A’s written work) 

 

The learners notice the that each value doubles to get to the next: 
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A: For every fold the previous number doubles 

M: Doubles! 

5.11.1.4 Symbolising 

In Figure 5.28 the learners use mathematical symbols to show the relationship of the regions. 

Figure 5.29 shows the rule for the folding paper learning activity. 

 

 

 

 

Figure 5.29: The 𝑛𝑡ℎ term (D’s written work) 

 

5.11.1.5 Adjusting 

When the learners adapt their pattern to make sense for the situation and test his pattern, the 

competency adjusting can be noted. In the following excerpt, the learners relates the rule to the 

real problem: 

F: Wait, what is 𝑛? 

I: It’s the thingy 

B: The number of folds 

In Figure 5.29 the learners indicate that the 𝑛 in the 𝑛𝑡ℎ term represents the folds and the two is 

used because the region is doubled with every fold.   

 

5.11.1.6 Organising 

The organising competency can be identified when learners test patterns or rules and reflects 

back to the real problem. 
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Figure 5.30: The learners test the 𝑛𝑡ℎ term (D’s written work) 

In Figure 5.30, the learner tests the formula to see if two to the power of the number of folds 

gives them the regions they counted when they worked with the real problem.  

 

5.11.1.7 Generalising 

Learner B generalised an exponential pattern and tested it. It worked for all the terms. 

B: It is two to the power n and it works for all of them 

D: How do you get the power thing? Oh, I knew that! 

 

5.11.2 Rationale for the activity 

The learners had to fold a piece of paper. The first fold resulted in two regions. They had to 

investigate how the number of regions depend on the number of folds. The learning activity 

stated: Imagine there is no limit to the number of folds possible. The learners excitedly folded 

the paper. The analysis in Section 5.11.2 explained the mathematising competencies revealed 

during this 60 minute modelling session.  

Learner D shared an experiment that he saw on a television program. The team of scientists 

folded a football-size piece of paper eleven times. They demonstrated that the myth of not being 

able to fold a piece of paper more than seven times was false. 

D: They used a tape measure and everything to be precise and they used a piece of paper the size 

of a giant football field, it was insane!  

http://www.youtube.com/watch?v=kRAEBbotuIE  

The learners tried to find a constant difference (see Section 5.11.1.3) but once they discovered a 

constant ratio, they were able to generalise the rule. The conjecture was confirmed for five out of 

the six learners because no evidence in the data was found that learner F showed an 

understanding of the exponential generalisation. 

 

 

5.12 THE PROGRESSION OF A LOCAL INSTRUCTIONAL THEORY 
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This section will explain the first steps of the progression from the RME theory to an attempt to a 

number pattern theory. Bakker (2004, p. 243) uses a reflective component and a prospective 

component to explain an instructional theory. Section 5.12.1 will present a reflective component 

from a RME theory that will address the research question and general results relevant to the 

instructional theory. Section 5.12.2 will discuss a prospective component that will form a theory 

for number patterns and will include suggestions for a number pattern theory at secondary school 

level (Year 8 to Year 11). 

 

5.12.1 RME theory 

The research question of the present study is: 

How does the development of a local instructional theory influence learners’ development of 

mathematising competencies when modelling number pattern problems? 

Cobb and Gravemeijer (2008, p. 86) note: 

In a design experiment that concerns the development of a domain-specific, 

instructional theory, the goal is to develop an empirically grounded theory about both 

the processes of students’ learning in that domain and the means by which this 

learning can be supported. 

 

The above mentioned empirically grounded theory starts with an all-encompassing theory. The 

RME theory was selected for this study. The following section explains how the goal of 

developing an empirically grounded theory for number patterns has been developed in the study: 

This study has been formulated around a DBR in the wider context on RME and the 

Netherlanders’ conception of it. A literature study on a mathematical modelling perspective to 

teaching and learning was used to explore the mathematisation process and the nature of 

horizontal and vertical mathematisation. A NPC continuum (see Section 3.5.2) was formulated 

so that the horizontal and vertical mathematising competencies could be identified during the 

modelling sessions. A HLT was designed and implemented in the design experiment to predict 

the learners learning goals and selecting learning activities to scaffold their learning. “The 

objective of the RME approach is that students experience formal mathematics no differently 

from informal mathematics” (Gravemeijer, 1999, p. 160). During the teaching experiment 

learners worked with the modelling process and constructed models. The learners’ construction 

of models provided them the opportunity to reinvent formal mathematics. Their informal models 
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of emerged to models for at a formal level when learners adapted and used their generalisations 

in other situations. 

Chapter 5 provided a retrospective analysis which incorporated the two types of analyses that are 

valuable in DBR. The first analysis was a task-based data matrix analysis that was used to 

compare the HLT with the learners’ actual observed learning (see Section 5.2.1). The second 

analysis was a longitudinal analysis to identify and explain the revealed mathematising 

competencies during the design experiment. Sections 5.3 to 5.11 presented a holistic three-

dimensional goal description which formed the basis of the LIT.  

Table 5.3 summarises the learning activities in the LT and the horizontal and vertical 

competencies that the learners revealed during the modelling sessions. The symbol ‘’ indicates 

that the mathematising competency was revealed and the ‘’ indicates that the mathematising 

competency was not revealed during the learning activity. The results in Figure 6.1 are based on 

the analysis in Section 5.3 to 5.11. For the first and the third learning activity, the symbol ‘-’ 

indicates that the task did not give the learners the opportunity to reveal the competencies 

organising and generalising. No evidence was found in the transcripts, written work or 

interviews to suggest that the competency was revealed. Table 5.3 indicates that the researcher’s 

prediction of the learning goals were consistent with the actual observed learning outcomes.  

 

 

Mathematising competencies 

Horizontal mathematising Vertical mathematising 

Learning activities 

in the LT 

Internalising Interpreting Structuring Symbolising Adjusting Organising Generalising 

Learning activity 1  

Broken eggs 

     - - 

Learning activity 2  

More broken eggs 

       

Learning activity 3 

Marcella’s 

doughnuts 

     - - 

Learning activity 4 

Extended doughnuts 

       

Learning activity 5 

Thinking diagonally 

       

Learning activity 6  

Squares 

       

Learning activity 7  

Consecutive sums 

       

Learning activity 8 

The garden border 

       

Learning activity 9  

Folding paper 

       

Table 5.3: Mathematising competencies revealed in the LT 
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The learning activities were used to scaffold the learners reasoning so that they could generalise 

more challenging number patterns in the next modelling sessions. The powerful modelling 

problems allowed for the development of mathematising competencies. The RME theory used in 

a DBR framework has resulted in the following outcomes for the study: 

1. The learners learned the modelling process 

2. The learners developed mathematical modelling competencies 

3. The learners developed horizontal and vertical mathematising competencies 

4. The learners successfully generalised linear, quadratic and exponential number patterns 

 

5.12.2 A number pattern theory 

Gravemeijer (1999) notes that the final outcome of a design study is to formulate an instructional 

theory based on “theoretical deliberations and empirical assessments” (p. 157). The instructional 

theory explains how the learning of a specific topic can be supported. The key features of a first 

level number pattern generalisation theory provides guidance for this support. The goal of the 

RME theory is to establish means by which learners can reinvent mathematics (Gravemeijer, 

1999). This reinvention principle occurs when learners construct models through the process of 

mathematising. Table 5.4 outlines the key features of the instructional design for a number 

pattern theory by referring to the RME principles that will ensure emergent modelling.  

Key features of the instructional design RME principle 

Learners are active participants in their learning   Activity principle 

The curriculum is directed towards pattern generalisation: Learners 

give meaning to patterns in various kind of situations that are real to 

them 

Reality principle 

The curriculum contains a teaching strategy in progressive stages in 

which pattern generalisation is developed through model building: 

searching for and extending patterns (linear, quadratic and 

exponential), generalising linear patterns, generalising quadratic 

number patterns, generalising exponential number patterns 

Level principle 

Learners are given the opportunity to use pre-established knowledge 

and tools to solve problems 

Intertwinement principle 

Group and class discussions are used to share ideas and evoke 

reflection to construct meaning 

Interaction principle 

Learners are offered the opportunity to reinvent mathematics through 

guidance in the form of well-structured and selected learning activities 

Guidance principle 
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in a LT   

Table 5.4: Key features of a number pattern theory 

These key features can be noted throughout the learning activities’ analyses and rationales. The 

planning phase of the teaching experiment, the development of the teaching experiment and the 

retrospective analysis have provided the reader with the basis of an instructional theory and has 

incorporated the RME design heuristics throughout. 

During the phenomenological analysis in Section 3.2 the goals for the content of the study were 

formulated. The second goal of the study (see Section 3.4) was the notion of generalisation. The 

historical and didactical phenomenological analyses indicated that the process of generalisation 

is a problem area for learners. The South African mathematics curriculum provided teaching 

guidelines that focused on investigating and generalising linear number patterns in Grade 10 and 

quadratic number patterns in Grade 11. The LT curriculum therefore focused on a generalisation 

goal. The results from the study show (see Tables 5.2 & 5.3) that a mixed ability group of Grade 

10 learners are able to generalise linear, quadratic and exponential number patterns when their 

learning is predicted and adequately supported throughout the teaching experiment.  

 

The mathematical modelling approach to the teaching and learning of number patterns can 

successfully be integrated into a mathematics curriculum. It will ensure the development of 

sophisticated models, the opportunity to reinvent formal mathematics and create meaningful 

mathematical experiences. Table 5.5 gives an overview of the role of the suggested learning 

activities in an instructional sequence by referring to the progression stages (see Table 5.4) and 

topics of mathematical discourse noted from the teaching experiment.  

 

Gravemeijer (1999, 2004) summarises that the local instructional theory is the whole 

instructional sequence, the general theory, and the framework against which teachers can 

develop a HLT to fit their classrooms. The suggested learning activities produced the first 

attempt to such an instructional sequence. The general theory was explained in the literature 

study, applied in the preparation phase and implemented in the teaching experiment. 

The developmental nature of the study provides the teacher with a framework to develop a LT 

and guidance to successfully support learners’ learning by following a mathematical modelling 

perspective. The requirements of LIT are evident in the theory that has been developed for 
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number patterns. 

 

Suggested learning 

activities 

Progression stages Potential activity and 

mathematical discourse topics 

Learning activity 1  

Broken eggs 

Searching for patterns Grouping 

Using multiples of seven  

Learning activity 2  

More broken eggs 

Extending linear number pattern 

Generalising linear number pattern  

Many solutions follow the same 

rules 

Finding a shorter way to get more 

solutions 

Learning activity 3 

Marcella’s 

doughnuts 

Searching for patterns Trying different mathematical 

strategies to solve the problem 

Backtracking to find the solution 

 

Learning activity 4 

Extended doughnuts 

Extending linear number pattern 

Generalising linear number pattern 

Dependence of one value on 

another 

The same process was repeated 

three times 

Learning activity 5 

Thinking diagonally 

Extending quadratic number pattern 

Generalising quadratic number 

pattern 

What is a diagonal? 

Absence of a constant difference 

Relating the diagonals to the 

shape’s sides 

 

Learning activity 6  

Squares 

Extending quadratic number pattern 

Generalising quadratic number 

pattern 

Absence of a constant difference 

Relating the squares to the stacks 

 

Learning activity 7  

Consecutive sums 

Extending quadratic number pattern 

Generalising quadratic number 

pattern 

What is consecutive? 

Noticing relationships  

Different consecutives to be tested 

 

Learning activity 8 Extending exponential number 

patterns 

Generalising exponential number 

patterns 

Folding paper 

Using differences to search for a 

pattern 

Table 5.5: Role of the suggested learning activities in the instructional sequence 

 

 

5.13 SUMMARY 

 

The retrospective analysis featured the two analyses that would result in important evidence for a 
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DBR study. A task oriented comparison was essential to compare the conjectured learning with 

the actual learning that was observed by the researcher based on the data. A data matrix analysis 

presented these comparisons and matched the accuracy of the predictions in Table 5.1. Table 5.2 

showed a results summary. A longitudinal analysis was implemented in Sections 5.3 to 5.11. The 

analysis provided evidence for the learners’ mathematising competencies as they worked through 

the learning activities. This analysis also contributed to the rationale for the modelling sessions. 

This analysis was in line with Treffers’ (1987) aim of a holistic three-dimensional goal 

description: it provides informed guidelines to support teachers by giving a constructive analysis 

of the learning materials and didactics. Each selected activity in the LT has played a significant 

role in the learners’ learning of the modelling process and the development of number pattern 

competencies.  

The confirmation of the conjectures in Table 5.2, the development of the mathematising 

competencies for number patterns and the explanation of the activities in the analysis have 

formed the basis of the LIT. Section 5.12.1 explained how the RME theory was used throughout 

the study to form a theory for number patterns. The LIT for number patterns was discussed in 

Section 5.12.2. Chapter 6 will provide the conclusions for this study and will include the 

limitations of the study and recommendations for further areas of study. 
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CHAPTER 6 

CONCLUDING REMARKS AND RECOMMENDATIONS 

 

6.1 CONCLUSIONS 

 

The study investigated the process of mathematisation in secondary school mathematics. The 

research question focused on developing a local instructional theory (LIT) for number patterns 

and its influence on the development of mathematising competencies. This investigation proved 

to be progressive in nature, building on elements to move from one step to the next.  

 

A literature study to the mathematical modelling approach to teaching and learning mathematics 

showed that mathematical modelling offers the learners the opportunity to learn mathematics in a 

way that is meaningful. Mathematical modelling from different perspectives explored the 

various social, cognitive and emotional benefits that learners can experience when they are 

exposed to a mathematical modelling environment. When learners engage constructively in the 

mathematical modelling process they develop modelling competencies. 

 

The process of mathematisation occurs through the activity of model building during the 

mathematical modelling process. Learners construct models so that formal knowledge and 

mathematical thinking emerge through sharable and reusable models. Mathematisation can be 

viewed as two identifiable but interrelated processes, horizontal mathematising and vertical 

mathematising. Horizontal mathematising can be explained as converting a real problem into a 

model of symbols. Vertical mathematising occurs when a learner organises mathematical 

symbols into a mathematical model to produce a mathematical solution. The study produced 

models for horizontal and vertical mathematising which inlcuded sub-competencies for each.  

 

The RME theory was selected as an all-encompassing theory for the study, guiding the different 

steps towards the LIT. The goals for the study were selected by means of a phenomenological 

analysis so that the hypothetical learning trajectory (HLT) was in line with the RME theory’s 

guidelines for an instructional theory: guided reinvention, didactical phenomenology and 
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emergent modelling. Mathematising competencies were developed specifically for number 

patterns. The RME principles and principles to construct model-eliciting activities were used to 

develop criteria for a checklist to easily review the learning activities. 

 

Seventeen learners participated in the teaching experiment. The learners were randomly grouped. 

The learners worked on nine mathematical modelling learning activities that were selected for 

the HLT based on the researcher’s predicted learning goals. The aim of the activities was to 

support learners’ reasoning and mathematical development. Mathematising competencies of the 

focus group were recorded and analysed and the classroom discussions provided valuable 

reflections and contributions.  

 

The retrospective analysis had a three-fold function: it featured an analysis of the mathematising 

competencies, it compared the conjectured  learning in the learning trajectoy (LT) with the actual 

learning that was observed by the researcher based on the data, and it provided the basis of the 

LIT. The learners’ number pattern competencies were identified and explained. The horizontal 

mathematising competencies internalising, interpreting, structuring and symbolising were 

revealed hierarchically. The vertical mathematsing comeptencies symbolysing, adjusting, 

organising and generalising were revealed in no specific order and showed overlapping 

elements. The learning activities in the HLT supported the learners’ learning and the learning of 

the modelling process. The learning activities in the HLT encouraged the development of 

number pattern competencies.  

 

The RME’s objective is to design instructional trajectories that provide teachers the support to 

form their own HLT (Gravemeijer, 2004, p. 107). The RME’s principles of teaching and learning 

has been incorporated throughout the study; the planning of the teaching experiment, the 

implementation of the teaching experiment, the retrospective analysis and the formation of a 

number pattern theory. During the teaching experiment, the learners learned the modelling 

process while working through the modelling problems. The learners developed competencies 

because of their participation in the design experiment. When learners are given the opportunity 

to reinvent mathematics through a mathematical modelling perspective, mathematising 

competencies are developed that may have never developed in a traditional classroom. 
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6.2 LIMITATIONS OF THE STUDY 

 

In mathematics education there has been a focus on mathematical modelling as a teaching and 

learning framework. In mathematics teaching methodologies a special focus has developed for 

mathematical modelling as a teaching and learning approach. The focus of mathematics 

education has moved towards a modelling perspective within education. The limited research 

done on mathematising competencies must be stated as a limitation of the study, although it has 

given the researcher the opportunity to develop horizontal and vertical mathematising 

competencies that are generalisable for different topics.  

 

Only one pilot study was implemented before the teaching experiment. Biccard (2012) used two 

pilot studies to test and refine the research instruments and trial the learning activities. The pilot 

study undertaken in the planning phase of the teaching experiment fulfilled questions regarding 

the baseline assessment, learning activities, time frames and research instruments. The pilot’s 

baseline assessment was discarded. The baseline assessment needs to provide the researcher with 

the learners’ current mathematical reasoning. This information is essential for the LT. The 

teaching experiment’s baseline assessment was an improvement on the first. The researcher often 

questioned: What does a baseline assessment look like for a mathematical modelling perspective 

to teaching and learning? Although the baseline assessment fulfilled its purpose of establishing 

the learners pre-knowledge for the starting points of the HLT, further experience with the 

modelling process might produce a better version. 

 

Bakker and Van Eerde (in press, p. 13) note that pre-tests and post-tests are typically 

implemented before and at the end of the study so that the results can be compared. The purpose 

of the study was to investigate the development of mathematising competencies while learners 

were working through mathematical modelling problems. The retrospective analysis provided 

evidence that competencies developed. The researcher is yet to explain how a criterion 

referenced test (post-test) would be employed, perhaps to measure goals directed by curriculum 

standards. This leads to the question of assessment which will be discussed in Section 6.4. 

This teaching experiment in the study was the researcher’s second experience a mathematical 

modelling classroom. The researcher relied on past and current research to aid the planning and 
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executing of the design study. The researcher selected learning activities based on conjectures 

and intuition. An outcome of this study is that the researcher can better judge which 

competencies would be revealed in modelling problems. This will be a valuable skill to take into 

the classroom and further studies in mathematical modelling. 

The teaching experiment was completed twice a week over a period of four weeks (see Section 

4.4.2). At least two learning activities were completed on the Saturday classes. This required the 

researcher to have a range of modelling problems prepared if the HLT had changed. A HLT 

changes when the researcher’s conjectured learning goals do not match with the actual observed 

learning. The researcher was also left with a short reflection period in-between the modelling 

sessions. 

The researcher was the teacher and single coder during the study. The researcher guarded against 

directing the learners’ ideas and reasoning but let them instigate their own ideas and reasoning. 

This was enhanced by consciously reflecting on the researcher’s practice and the aims for the 

study. Bakker and Van Eerde (in press, p. 23) note that “peer examination” of interpretations 

ensures the validity of the results. Strategies were implemented (see Section 4.4.5) to improve 

the validity and reliability of the study to eliminate this shortcoming. 

 

 

6.3 SUMMARY OF CONTRIBUTIONS 

 

This study has made multi-faceted contributions to the research on the teaching and learning of 

mathematical modelling focusing on mathematising competencies. Chapter 2 is a comprehensive 

literature study exploring the different modelling perspectives and the functions of each 

perspective. The educational and social benefits when adopting a mathematical modelling 

perspective in the classroom were highlighted. The modelling process and the development of 

mathematical modelling competencies have been pronounced in mathematics education research 

(see Section 2.4). The study shows that modelling competencies develop when learners engage 

in mathematical modelling problems.  

The focus was narrowed to the mathematisation process. Models for horizontal and vertical 

mathematisation (Section 2.8.6) were produced. The models represent the competencies for 

horizontal and vertical mathematising. The horizontal mathematising competencies include 
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internalising, interpreting, structuring and symbolising. The vertical mathematising 

competencies were symbolising, adjusting, organising and generalising.  

The researcher developed a number pattern competency (NPC) continuum (see Section 3.5.2). 

The NPC continuum was used to identify the horizontal and vertical mathematising 

competencies revealed during the modelling sessions. Corresponding with Ellis’ generalisation 

taxonomy, the horizontal mathematising competencies were revealed in a specific order while 

the vertical mathematising competencies were revealed in no particular order (see Section 5.8.2). 

The vertical mathematising competencies also displayed overlapping elements. 

Research shows that average-ability learners can develop sophisticated models. This study shows 

that a heterogeneous group of learners can develop mathematising competencies during the 

development of models. The prerequisite of developing powerful models are: the teacher 

supports the learners’ learning by predicting learning goals, the teacher uses quality modelling 

problems to support their learning, the teacher gives learners time to discover new ideas, and the 

teacher facilitates but does not direct the learners’ thinking and reasoning by allowing them to 

reinvent mathematics. 

The study delivered a LIT that can the incorporated into different year levels and class groups. 

Chapter 2 provides the teacher with background information relevant to the modelling 

classroom. Chapter 3 guides the teacher to plan a teaching experiment by setting goals, 

developing a baseline assessment and selecting modelling tasks. A checklist to judge the quality 

of a modelling problem was devised in Section 3.7.3. Chapter 4 introduces the development of a 

LT and shows how it can be adapted and changed to suit a specific class at a specific moment. 

Chapter 5’s three-dimensional goal description provides the teacher with a guide to identify 

learning moments and provide support in a modelling classroom.  

 

 

6.4 RECOMMENDATIONS FOR FURTHER STUDY 

 

In a homogeneous or heterogeneous classroom there are learners with multi-ability levels and 

different past-experiences that influence their mathematical reasoning and abilities. The teacher 

needs to support every student’s learning by locating their zone of proximal development (ZPD) 

to ensure that learning is progressive. The initial ZDP can be located by using a baseline 
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assessment. A further study which includes the development of a baseline assessment for a 

mathematical modelling perspective is required. The development of a baseline assessment 

specific to mathematical modelling might influence the development of formal and summative 

assessment for mathematical modelling integrating the competency-assessment aspects described 

in Section 2.4.7. This study showed that learners revealed horizontal and vertical competencies 

while working with mathematical modelling problems. The researcher suggests an investigation 

to measure the influence of a mathematical modelling perspective to teaching and learning for 

individualised learning in a secondary school mathematics classroom.  

A challenge is to introduce the mathematical modelling perspective into everyday classrooms. In 

Section 2.4.2 it was noted that a teacher’s belief is inevitably moulded in his teaching practice. 

To change a teacher’s practice, he needs to be an active participant in his own development. 

Teacher development and ongoing support are necessary components for the implementation of a 

mathematical modelling curriculum. If the modelling perspective is introduced during the teacher 

training programs at tertiary institutions it could possibly initiate the beginning of a mathematical 

modelling trend.  

In the study mathematising competencies were developed for number patterns. The development 

of mathematising competencies need to be developed for different topics. The development of 

mathematising competencies for different topics would lead to the development of local 

instructional theories for different domains. The result would be a coherent mathematical 

modelling curriculum for secondary school mathematics.  

The study’s introductory statement is that mathematics education has suffered many changes 

attributable to the change in nature of mathematics and what mathematics means to the average 

learner, his life and career choices. The study has shown that a mathematical modelling 

perspective to the teaching and learning of mathematics will not only develop mathematising 

competencies but expose learners to the discovery of meaningful mathematics. 
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APPENDICES 

Appendix A 

Appendix A1  

The broken eggs 

(Fendel, Resek & Interactive Mathematics Program [IMP], 1997, p. 12)  

 

The situation 

A farmer is taking her eggs to market in her cart, but she hits a pothole, which knocks over all 

the containers of eggs.  

Though she herself is unhurt, every egg is broken. 

So she goes to her insurance agent, who asks her how many eggs she had. She says she doesn’t 

know, but she remembers some things from various ways she tried picking the eggs. 

She knows that when she put the eggs in groups of two, there was one egg left over. When she 

put them in groups of three, there was also one egg left over. The same thing happened when she 

put them in groups of four, groups of five and groups of six. 

But when she put them in groups of seven, she ended up with complete groups of seven with no 

eggs left over. 

 

Your task 

Your task is to answer the insurance agent’s question. 
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Appendix A2    

More broken eggs  

(Fendel, Resek & IMP, 1997, p. 70)  

 

In Activity 1, you found a possible number of eggs that the farmer might have had when her cart 

was knocked over. 

You may have found only one solution to the problem, but there are actually many solutions.  

 

Your task 

Your task is to look for other solutions to the problem. Find as many as you can. If possible, find 

and describe a pattern for getting all the solutions and explain why all solutions fit your pattern. 

Here are the facts you need to know: 

 When the farmer put the eggs in groups of two, there was one egg left over. 

 When she put them in groups of three, there was also one egg left over. The same thing 

happened when she put them in groups of four, groups of five or groups of six. 

 When she put them in groups of seven, she ended up with complete groups of seven with 

no eggs left over. 
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Appendix A3  

Marcella’s Doughnuts 

(Fendel, Resek & IMP, 1997, p. 19)  

 

Have you ever been really in the mood to eat a doughnut? There are some pretty amazing things that can 

get in the way of this pursuit. Marcella was walking home from the beach one day. She had just bought a 

big bag of doughnuts and was going to share them with her daughter, Sonya.  (Sonya loves doughnuts.) 

On the side of the road she saw two people collecting food for needy families. Well, Marcella decided 

that she had quite a few doughnuts in her bag. Sonya didn’t need that many doughnuts.  

“Here,” said Marcella, “you can have half of my doughnuts for the needy.” The people were very happy 

to get the doughnuts. Marcella thought for a moment and then said, “Aw, take one for each of you.”  

As Marcella walked along the beach, some surfers came out of the water. They saw, and even smelled, 

the fresh doughnuts she had. “Could you by any chance spare a few doughnuts?” they pleaded. “We are 

so-o-o hungry after riding all of those gnarly waves.” 

As you might imagine, Marcella was not thrilled. But she had a good heart and recognised hunger after 

physical exertion, so she handed her bag to the surfers. They took half of her doughnuts and then, just as 

they were about to hand the bag back, they took two more.  

Now Marcella was a very reasonable person who liked to help others. She thought she still had enough 

doughnuts left to make Sonya happy. She walked on.  

As many of you may already have guessed, Marcella didn’t get far before she had another encounter. Just 

before she reached home, her friend Susan approached. After exchanging greetings, Susan explained that 

she was on her way to get some doughnuts for her family. Susan seemed in a bit of a rush.  

Generosity overtook Marcella and she found herself saying, “Why don’t you save yourself the trip and 

take some of my doughnuts? As you can see, I’ve got several.” So Susan took half of what Marcella had 

in the bag and two more. 

Marcella finished her walk home without further interruption. When she opened her once bulging bag of 

doughnuts, she discovered that there were only two left! She had a doughnut for lunch with her daughter 

Sonya, and then there were none! 

After lunch, Sonya asked her mother how many doughnuts had been in the bag to begin with. Marcella 

told her story of her walk and then said that if Sonya could figure it out herself, Marcella would take her 

rollerblading the next day. Sonya took a while, but then she figured it out and got her rollerblade outing. 

What was Sonya’s answer? 
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Appendix A4  

Extended Doughnuts 

(Fendel, Resek & IMP, 1997, p. 21)  

 

This extended section gives you the opportunity to examine what the critical elements of the 

problem are and how they could be changed. 

How does the solution to Marcella’s doughnuts depend on the number of doughnuts she has 

when she gets home? 

 

 

 

 

 

Appendix A5  

Thinking diagonally 

 

 

 

 

 

 

 

A square has two diagonals and a pentagon has five diagonals. How many diagonals does a 

100 − gon have? 
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a "4-high" stack

a "3-high" stack

a "2-high" stack
a "1-high" stack

Appendix A6 

Squares  

(Fendel, Resek & IMP, 1997, p. 56) 

Suppose some squares are stacked in piles of different heights as shown in the pictures below.   

 

 

 

 

 

 

Find the number of squares in the stacks below. Generalise a description for the number of 

squares in a “40-high” stack. 

 

Appendix A7  

Consecutive sums 

(Fendel, Resek & IMP, 1997, p. 28) 

A consecutive sum is a sum of a sequence of consecutive numbers. So each expression below is 

a consecutive sum. 

2 + 3 + 4 

8 + 9 + 10 + 11 

23 + 24 

For this activity, you should only consider consecutive sums involving positive whole numbers. 

These are also called the natural numbers or counting numbers. 

Your task 

Explore the idea of consecutive sums. Try to find patterns and make generalisations. 
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Appendix A8  

The garden border 

(Fendel, Resek & IMP, 1997, p. 57) 

Leslie was planning an oriental garden.  

 

 

 

Task 1 

She wanted the garden to be square, 10 meters on each side, and she wanted part of this area to 

be used for a border of tiles. The tiles she wanted were each 1 meter by 1 meter square.  

How many tiles does Leslie need? 

 

Task 2 

She decides to change the dimensions of the square garden. How many tiles does she need? 

 

Task 3 

Suppose Leslie’s garden is not square. 

Leslie thinks of an alternative shape, a rectangular garden. If 

she has a garden that is 6m by 8 m, the tiles would look like 

the diagram on the right. How many tiles would Leslie need to 

build any rectangular border? 
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Appendix A9  

Folding paper 

Take a piece of paper, and fold it as many times as you can. After one fold there will be two 

regions. Imagine there is no limit to the number of folds possible.  

 

 

 

 

 

 

 

Appendix A10 

Pulling out rules 

(Fendel, Resek & IMP, 1997, p. 14) 

The supervisor of a community garden project organises volunteers to help dig out weeds. The 

supervisor has found that the more people they have, the more weeds get pulled out. That is not 

surprising, but the results get even better than one might think. Although one person will only 

pull out one bag a day, two people will pull out about three bags a day and three people will pull 

out about seven bags per day. It is the beginning of spring, and the garden must be cleared of 

huge amount of winter weeds. The supervisor estimates that there are about 100 bags worth of 

weeds to be pulled. 

How many volunteers would the supervisor needs in order to get the job done in one day? 
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Appendix A11 

Scoops 

(Fendel, Resek & IMP, 1997, p. 56) 

Suppose you have some scoops of ice cream, and each scoop is a different flavour. How many 

different flavours can you arrange the scoops in a stack?  

The pictures show the cases of one scoop and two scoops. 

 

 1 scoop – 1 way    2 scoop – 2 ways 

 

 

Find the number of ways to arrange the scoops if there were 100 scoops. 

 

 

Appendix A12          

Cutting through the layers  

(Fendel, Resek & IMP, 1997, p. 61) 

 

Imagine a single piece of string, which can be bent back and forth. In the picture the string is 

bent so that it has three “layers”. But it is still one piece of string. 

Imagine now you take scissors and cut across the bent string, as indicated by the dotted line. The 

result will be four separate pieces of string, as shown in the diagram on the right.  

You could have made more than one cut across the bent string, creating more pieces. In the next 

picture, two cuts have been made, creating a total of seven pieces. 

 

Your task 

Suppose the number of layers is 𝐿 and the number of cuts is 𝐶. Find a rule for the formula 

expressing the number of pieces as a function of both 𝐿 and 𝐶. 
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Appendix A13 

The researcher would like to acknowledge MALATI and the Open Society Foundation for South 

Africa for the following problem. 

Activity 1 

1. Lynn forms triangle patterns with matches. How many matches will she need to build 

100 triangle patterns? And 𝑛 triangle patterns? 

 

 

2. On the next day Lynn forms square patterns with matches. How many matches does she 

need to build 100 square patterns? And 𝑛 square patterns? 

 

 

 

3. On the third day Lynn forms pentagon patterns. How many matches does she need to 

build 100 pentagon patterns? And 𝑛 pentagon patterns? 

 

 

 

 

 

4. On the fourth day Lynn forms hexagon patterns. How many matches does she need to 

build 100 hexagon patterns? And 𝑛 hexagon patterns? 

5. On the fifth day Lynn forms decagon patterns. How many matches does she need to build 

100 decagon patterns? And 𝑛 decagon patterns? 
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Appendix A14 

Activity 2  

1. Nokwanda forms triangle patterns with matches. How many matches will she need in 

total to build the whole triangle sequence up to 100 triangle patterns? And the 𝑛th 

pattern? 

 

 

2. On the next day Nokwanda forms square patterns with matches. How many matches will 

she need in total to build the whole sequence up to 100 square patterns? And the 𝑛th 

pattern?  

 

 

3. On the third day Nokwanda forms pentagon patterns. How many matches will she need 

in total to build the whole sequence up to 100 pentagon patterns? And the 𝑛th pattern? 

 

 

 

 

 

4. On the fourth day Nokwanda forms hexagon patterns. How many matches will she need  

  in total to build the whole sequence up to 100 hexagon patterns? And the 𝑛th pattern? 

5. On the fifth day Nokwanda forms decagon patterns. How many matches will she need in 

total to build the whole sequence up to 100 decagon patterns? And the 𝑛th pattern? 
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Appendix A15 

Activity 3 

 Poly forms patterns by using the number of vertexes in a figure formed by polygons. The first 

number in any group of polygonal numbers is always 1, or a point. The second number is equal 

to the number of vertexes of the polygon. The third polygonal number is made by extending two 

of the sides of the polygon from the second polygonal number, completing the larger polygon 

and placing vertexes and other points where necessary.  

1.   

 

 

How many points will Poly need to form the 𝑛th pattern in the triangular patterns? 

 

2.  

 

 

 

 

How many points will Poly need to form the 𝑛th pattern in the square patterns? 

 

3. How many points will Poly need to form the 𝑛th pattern using pentagonal patterns? 

4. How many points will Poly need to form the 𝑛th pattern using hexagonal patterns? 
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Appendix A16 

Activity 4   

 

 

2 chords divide a circle into 4 regions. What is the maximum number of regions 6 chords will 

divide a circle into? And 20 chords? And 𝑛 chords? 

# chords (𝑛) 0 1 2 3 4 5 6 20 𝑛 

# regions (𝑅)          

 

 

 

 

 

 

 

 

 

 

 

 

 

4

3

2
1

2

1
1
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Appendix A17 

Activity 5  

1. Two teams have the same number of players. Each player on one team shakes hand with 

each player on the other team. How many handshakes will take place between two 5-player 

teams?  Between two 10-player teams? 

Write an equation for the number of handshakes ℎ between two 𝑛 player teams. 

 

2. One team has one more player than the other. Each player on the one team shakes hands 

with each player on the other team. How many handshakes will take place between a 6-player 

team and a 7-player team? Between an 8 player team and a 9-player team?  

Write an equation for the number of handshakes ℎ between an 𝑛-player team and an (𝑛 − 1) 

player team. 

 

3. Each member of a team gives a high five to each teammate. How many high fives will 

take place among a team with 4 members? Among a team with 8 members? 

Write an equation for the number of high fives ℎ among a team with 𝑛 members. 
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Appendix B Research instruments 

Appendix B1 Baseline assessment for pilot study 

Baseline assessment 

Name: ________________________________________________ Date: ____________ 

Instructions: Answer the following questions in the spaces provided. The additional paper for 

rough work must be handed in together with the assessment task 

1. Extend the following patterns by completing the following tables. 

1.1 

 

 

 

1.2 

 

 

 

 

 

1.3 

 

 

 

 

1.4 

 

 

1.5 

 

𝑛 1 2 3 4 5 6 10  𝑛 

𝑇(𝑛) 2 4 6 8    44  

𝑛 1 2 3 4 5 6 10 32 𝑛 

𝑇(𝑛) 5 6 7 8      

𝑛 1 2 3 4 5 6 10  𝑛 

𝑇(𝑛) 5 8 11 14    77  

𝑛 1 2 3 4 5 6 10  𝑛 

𝑇(𝑛) 1 4 9 16    324  

𝑛 1 2 3 4 5 6 7 

𝑇(𝑛) 6 9 14 21    
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1.6 

  

 

1.7 

 

 

 

1.8  

  

 

 

1.9  

 

 

 

1.10

  

 

 

2. The following diagrams represent customers seated around different tables in a restaurant 

 

𝑛 1 2 3 4 5 6 7 

𝑇(𝑛)  7 17 31    

𝑛 1 2 3 4 5 6 10  𝑛 

𝑇(𝑛) 1 8 27 64    4096  

𝑛 1 2 3 4 5 6 7 

𝑇(𝑛) 2 16  128    

𝑛 1 2 3 4 5 6 10  𝑛 

𝑇(𝑛) 1 3 9 27    478296

9 

 

𝑛 1 2 3 4 5 6 10  𝑛 

𝑇(𝑛) 2

3
 

3

4
 

4

5
 

5

6
 

   19

20
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2.1 Draw the next two diagrams in the sequence.  

 

 

2.2 Write down the sequence generated by the number of dots in each diagram. 

 

 

2.3 Write down the 6
th

 and 7
th

 terms in this sequence.  

 

 

2.4 Write down in words how the pattern continues in relation to the diagrams. 

 

 

 

2.5 Try do describe in words or symbols the nth term (general term) for this sequence in the  

form  𝑇(𝑛) =  

 

 

 

 

4. To join circles together they need a fastener as indicated in the representation below. 
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4.1 Complete the table from the diagrams. 

 

 

 

4.2 Represent the pattern using your table as a graph by plotting the number of circles on the 

x-axis against  the number of fasteners on the y-axis.    

 

 

 

 

 

 

 

 

 

 

4.4 Use your graph to predict:  

 (i) How many fasteners are needed for 7 circles? _____________________________ 

 (ii) How many circles use 18 fasteners exactly? ______________________________ 

 

 

Circles x 2 3 4 

Fasteners y  4  
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Appendix B2 Baseline assessment for design experiment 

Baseline assessment 

Number patterns 

Mathematics often involves looking for patterns in various situations. A collection of shapes or 

numbers is called sequences. Each shape or number is called a term of the sequence, and the 

terms are separated by commas. 

Instructions: Answer the following questions in the spaces provided. Do all your rough work on 

the question paper. SHOW ALL YOUR WORKING, even if you think it is not important. 

Question 1  

Four options are given in each question. Circle the letter(s) of the correct answer. 

1.1 The following regular polygons make up a sequence: 

 

   ,   ,   , … 

The next polygon in the pattern is: 

A. six 

B.  

 

C.  

 

D.  

 

1.2 Consider the following sequence: 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, … 

The next three terms in the following sequence is: 

A.  7, 8, 9 

B.  7, 1, 1 

C. 7, 1, 8 

D. 6, 1, 5 
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1.3 The following sequence is given:  1, 2, 4, … 

The next term is: 

A. 7 

B. 8 

C. 6 

D. none of the above 

 

1.4 1, 3, 5, 7, 5, 3, 1, 3, … 

The description of the above sequence can be: 

A.  Add three to each term 

B. Subtract three from each term 

C. I can’t see a pattern 

D. Explain your own pattern: __________________________________________________ 

______________________________________________________________________________ 

 

1.5 Look at the following sequence: 2, 6, 12, 20, 30, … 

A possible rule for this sequence could be: 

A. 𝑛 × 𝑛 + 1 

B. 4𝑛 − 2 

C. 𝑛 × 𝑛 + 𝑛 

D. I don’t understand what this means 

 

1.6 Insert brackets so that the resulting statement forms a correct equation. 

 12 − 8 . 1 + 7 = 32 
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Question 2 

Make three different number sequences of your own:  

2.1 LINEAR:  A sequence with a constant first difference. 

2.2 QUADRATIC: A sequence with a constant second difference.  

2.3 ANY:   And any other sequence (cannot be linear or quadratic). 

Describe it by giving the first few terms and explaining how you would find more terms. 

2.1 LINEAR:  A sequence with a constant first difference. 

 

 

 

 

 

2.2 QUADRATIC: A sequence with a constant second difference.  

 

 

 

 

 

2.3 ANY:   And any other sequence (cannot be linear or quadratic). 
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Question 3 

Supply the missing entries in the following In-Out tables/diagrams.  

Then write a rule for each table that tells what to do with the In to get to the Out. Express each 

rule as a sentence, such as: The Out is one more than four times the In. Be as clear as you can! 

3.1 In  Out          

 1  2 

 2  5           

 3  8 

 4   ?           

 5   ? 

  

Rule as a sentence: _____________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

3.2 In          Out 

  2           4  

  3           6 

  11           22  

  27          ?   

  ?           18 

   

Rule as a sentence: _____________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

3.3  

In 2 4 7 10 12 ? 

Out 7 13 22 31 ? 76 

 

Rule as a sentence: _____________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 
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Appendix B3 Baseline assessment table 

Group Learner 1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 3.1 3.2 3.3 

1 A B C A D B        

2 B B C B D C        

1 C B C A D C        

2 D B C A D C        

3 E B C B C C        

1 F B C B D C        

3 G B C B D B    quad    

2 H B C B D C        

1 I B C A D C        

2 J B B A C C    quad    

3 K B C B D C     -   

3 L B C B D C        

1 M B C A C B        

2 N B C C D B        

2 O B C B D B        

3 P B C C D B -    -   

3 Q B C B D -  - - - -   

 

Correct  Incorrect  - Not done
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Appendix B4 Interview questionnaire 

Name: _________________________     Date: ________________ 

1. What do you believe mathematics is all about? 

_____________________________________________________________________ 

2. Are you very good at mathematics? Why? 

_____________________________________________________________________ 

3. What do you enjoy the most during our sessions? 

________________________________________________________________________ 

4. What do you enjoy the least during our sessions? 

________________________________________________________________________ 

5. Are you enjoying the activities you are doing? Why? 

________________________________________________________________________ 

6. Was there a time(s) when you have impressed yourself? 

________________________________________________________________________ 

7. Have you learnt something new?  

________________________________________________________________________ 

8. Have you learnt something that you can apply in your classes at school? 

________________________________________________________________________ 

9. What did you learn about yourself during this program? 

________________________________________________________________________ 

10. Do you feel more confident when tackling problems/group work? 

________________________________________________________________________ 

11. Would you be able to assist other learners better? 

________________________________________________________________________ 
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Appendix B5 Researcher’s observation guide  

Activity: ______________________________________________________ 

Date: ___________________________ 

 Positives Negatives Other 

Watching/Listening    

Group interaction    

Meta-cognitive 

strategies 

   

Questions asked    

Sense of direction    

Other    

Other    

Reflection    
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Appendix B6 Number pattern competency (NPC) continuum 

 

  

 

 

 Competencies Sub-competencies What the learner does, says, makes or writes 

Horizontal Internalising  Understanding the problem 

 Distinguishing between relevant and irrelevant 

information 

 Simplifying the situation 

 Learner states the problem in language he understands 

 Learner notes/explains important information 

 Learner notes/explains/relates a previous problem that is similar to the current one 

Interpreting  Making assumptions 

 Identifying conditions 

 Identifying constraints 

 Recognising quantities that influence situation 

 Learner makes assumptions 

 Learner notes conditions that will work/not work for a problem 

 Learner recognises quantities that influence the situation 

Structuring  Setting up a real model 

 Naming quantities 

 Identifying key variables 

 Recognise patterns 

 Recognise relationships  

 Learner looks for a pattern/relationship 

 Learner notes a recurring value or situation in the problem 

 Learner recognises a pattern/relationship 

 Learner states the relationship or pattern 

Symbolising  Choosing appropriate mathematical symbols 

 Using symbols 

 Setting up a mathematical model 

 Switching between symbolisations 

 Learner draws pictures to represent the problem 

 Learner draws pictures to show the relationship/pattern 

 Learner uses objects to build the pattern 

Vertical  Learner uses symbols to represent his pictures/patterns 

 Learner forms a pattern using symbols 

 Learner formulates a rule using symbols 

 Learner creates a model of 

Adjusting  Rephrasing the problem 

 Refining 

 Using and switching between operations 

 

 Learner adapts his pattern so that it makes sense for the situation 

 Learner tests his pattern 

 Learner refines his pattern after testing it 

 Learners reflects back to the pattern/symbols 

 Learner reflects back to the real problem 

 Learner creates a model for 

Organising  Viewing problem in a different form 

 Use mathematical knowledge to solve problem 

 Using heuristics 

 Combining 

 Integrating 

 Learner constructs a rule that works for all elements 

 Learner reflects back to the real problem  

 Learner uses the rule to solve a problem 

 Learner validates his solution 

 Learner creates a model for 

Generalising  Establishing similar relationships in different 

problems 

 Independent reasoning and acting 

 Learner uses deductive reasoning to prove his rule 

 Learner uses/adapts the rule for another situation 
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Appendix C Checklists 

Appendix C1 Checklist for modelling problems 

 

  

 

 

 

 

 

Principle Questions YES NO 

Model 

construction 

principle 

Does the task involve constructing, 

describing or explaining a structurally 

significant system?  

  

Reality principle Is the context real and useful?   

Will students be encouraged to make sense 

of the situation based on extensions of their 

own personal knowledge and experiences? 

  

Self-assessment 

principle 

Does this task provide enough information 

for a learner to establish if he has done 

enough? 

 

  

Level principle Is this task progressive or form part of a 

progressive activity? 

  

Can this task be used in a higher level of 

activity? 

  

Language Is the language of the task appropriate for 

the learners? 
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Appendix D Permission documents 

Appendix D1 Ethical clearance from the Stellenbosch University 
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Appendix D2 Permission from the KwaZulu-Natal Education Department  
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Appendix D3 Permission from the principal of Port Shepstone High School  
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Appendix D4 Permission from the Mathematics Head of Subject 
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Appendix D5 Consent to participate in research 
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Appendix D6 Informed assent to participate in research 
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