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i

Abstract

Water-borne infections have been a menace in many countries around the globe, claiming

millions of lives. Cholera in particular has spread to all continents and now on its seventh

epidemic. Although control measures have been continually developed through sanitation,

vaccination and rehydration, the infection still devastates populations whenever there is an

outbreak. In this research work, mathematical models for cholera transmission dynamics

with focus on the impact of sanitation and hygiene, metapopulation spread, optimal con-

trol and biological control using a bacteriophage specific for pathogenic Vibrio cholerae are

constructed and analysed. Vital analyses for the models are precisely given as well as nu-

merical results depicting long term behaviour and the evolution of populations over time.

The results of our analysis indicate that; improved sanitation and hand-hygiene are vital in

reducing cholera infections; the spread of disease across metapopulations characterised by

exchange of individuals and no cross community infection is associated with synchronous

fluctuation of populations in both adjacent communities; during control of cholera, the con-

trol measures/efforts ought to be optimal especially at the beginning of the epidemic where

the outbreak is often explosive in nature; and biological control if well implemented would

avert many potential infections by lowering the concentration of pathogenic vibrios in the

aquatic environment to values lower than the infectious dose.
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ii

Opsomming

Water-infeksies is ’n bedreiging in baie lande regoor die wêreld en eis miljoene lewens.

Cholera in die besonder, het op sy sewende epidemie na alle kontinente versprei. Hoewel

beheermaatreëls voortdurend ontwikkel word deur middel van higiëne, inentings en re-

hidrasie, vernietig die infeksie steeds bevolkings wanneer daar ’n uitbraak voorkom. In

hierdie navorsingswerk, word wiskundige modelle vir cholera-oordrag dinamika met die

fokus op die impak van higiëne, metabevolking verspreiding, optimale beheer en biolo-

giese beheer met behulp van ’n bakteriofaag spesifiek vir patogene Vibrio cholerae gebou en

ontleed. Noodsaaklike ontledings vir die modelle is gegee sowel as numeriese resultate wat

die langtermyn gedrag uitbeeld en die ontwikkeling van die bevolking oor tyd. Die resul-

tate van ons ontleding dui daarop dat; verbeterde higiëne is noodsaaklik in die vermindering

van cholera infeksies; die verspreiding van die siekte oor metapopulaties gekenmerk deur

die uitruil van individue en geen kruis gemeenskap infeksie wat verband houmet sinchrone

skommeling van bevolkings in beide aangrensende gemeenskappe; tydens die beheer van

cholera,behoort die beheermaatreëls/pogings optimaal te wees veral aan die begin van die

epidemie waar die uitbreking dikwels plofbaar in die natuur is; en biologiese beheer, indien

dit goed geïmplementeer word, kan baie potensiële infeksies voorkom deur ’n verminder-

ing in die konsentrasie van patogene vibrio in die water tot waardes laer as die aansteeklike

dosis.
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Chapter 1

Introduction

Water-borne infections have been and continue to be a problem in many developing coun-

tries. The World Health Organisation (WHO) estimates that water related diseases are the

leading causes of the death around the world with an estimated annual death toll of about

3.4 million people [2]. WHO characterises water-related diseases in a relatively broad sense

to include; diseases due to chemicals and micro-organisms in water which people drink, in-

fections due to organisms that have their life cycle in water such as schistomiasis, diseases

such as malaria whose vectors breed in water, diseases such as cholera whose aetiologic

agent’s natural habitat is the aquatic environment, other water-related injuries due to water

sports recreation and some drownings, legionnaires’ disease (Legionellosis) whose causing

micro-organisms are carried in aerosols [3], cryptosporiosis and shigella among others. The

severity of water-related infections is mainly attributed to poor sanitation and hygiene, This

includes lack of access to clean drinking water as well as poor handling of foodstuffs. Ac-

cording to Berman [2], the human death toll attributed to lack of clean and safe drinking

water is greater than the combined death toll attributed to terrorism and weapons of mass

destruction.

The vast nature of the problems related towater-borne infections spanmany infections, some

of which are common while the others may be rare or considered neglected diseases. The

severity of the problem often varies from community to community and this is often related

to the level of sanitation and hand-hygiene which are partly related to the social economic

status. The biggest scale water related infections is localised in impoverished countries.

However, the dynamics of the infections within the affected countries tend to differ from

community to community as well as with respect to specific transmission dynamics of the

infection under consideration. There are many water-borne infections some of which com-

2
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Chapter 1. Introduction 3

mon and others rare. Amajor daunting task would be that of considering all these infections,

in an all inclusive modelling framework. For the purpose of our study therefore, we limit

our study cholera. Emphasis in our study is put on understanding the epidemic in gen-

eral and in the South African context owing to the 2000-2002 epidemic that greatly affected

almost the whole country. In some cases however, general information regarding to the dis-

ease is considered with literature cutting across other studies from published literature. In

this respect, we also give a brief highlight of the problem on the global scale from antiquity,

the scale on the African continent before localising it to our anticipated specific transmission

dynamics within a South African community setting.

1.1 Research objectives

The general objectives of this research work are largely centred around developing and us-

ing mathematical models to understand specific aspects of the transmission dynamics of

cholera. The specific objectives are based on the work presented in the various chapters and

are summarised as follows

(i) to briefly describe the epidemiology and aetiology of cholera as a major water-borne

infection, and give an overview of the infection on the global scale as well as in the

South African Perspective.

(ii) to investigate the effect of sanitation on cholera transmission dynamics and give some

conditions necessary for containing the epidemic.

(iii) to ascertain the effect of migration on cholera transmission dynamics and the possible

severity that may be associated with the movement patterns as well as fluctuations

in the population related to migration patterns and exchange of individuals between

adjacent communities.

(iv) to investigate the potential effect of improved hand hygiene, access to clean water and

vaccination on the duration of the disease in the community in comparison to disease

self-limitation.

(v) to study the potential control of cholera through use a biological agent (bacteriophage

specific for virulent vibrios) that can reduce the concentration of vibrios in the aquatic

environment.
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Chapter 1. Introduction 4

All control measures that reduce the likelihood of immunologically naive individuals com-

ing in contact with the parasite, are vital in deducing the severity of the epidemic.

1.2 Significance of the Study

In the current era mulled by significant number of water-borne infections, understanding

the transmission dynamics and potential control measures is vital if such diseases are to be

contained. Our study is therefore, important in the following aspects:

(i) It adds onto the platform for research in mathematical modelling of water-borne infec-

tions and gives an insight into possible predictions of the course of the epidemic given

different transmission patterns.

(ii) It gives an insight into shaping policy making processes related to control of cholera

and the plausibility of restricting movement to and fro cholera endemic areas.

(iii) The mathematical framework presented adds to the elaborate bank of knowledge and

procedure for carrying out analyses related to mathematical models for cholera trans-

mission and mathematical epidemiology in general.

Due to the fact that no effort towards containing diseases is insignificant, a critical look at

the aspects presented in this thesis not fully considered previously may be valuable. Disease

transmission, manifestation and global spread follows a chain of events some of which are

related to human movement, lifestyle, social economic status and policies made in commu-

nities. Therefore, the aspects which include sanitation, human movement, control strategies

for the disease are worth investigating. We note here that if credible data is available on the

various critical aspects of the disease, projection of future trends can be done. However, in

the absence of such data, mathematical models do not necessarily serve as substitutes but as

guiding tools to understanding vital dynamics.

1.3 Pathology, life cycle Vibrio cholerae and cholera vaccines

When Vibrio cholerae enters the digestive system, it embeds itself in the villi of the absorptive

intestinal cells and releases cholera toxin. The cholera toxin (CT) is an enterotoxin made

up of five B-subunits that form a spore that fits one A- subunit [4]. The pathogenesis of

cholera infection includes a number of factors including transmission of the Vibrio cholerae,
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Chapter 1. Introduction 5

colonization of the intestines, production of enterotoxins and persistence of the disease in

the environment.

Physiological responses and symptoms that follow release of cholera toxin include stim-

ulation of mucosal lining of the intestine to secrete fluids. The symptoms include, profuse

watery diarrhoea that has a “rice water” quality, vomiting, rapid (severe) dehydrationwhich

result in urine suppression , fall in blood pressure, cramps in legs and abdomen, subnormal

temperatures and complete collapse [5]. The consequences of excessive dehydration can be

fatal. If uncontrolled through prompt medical intervention, death can occur within 24 hours

of onset. In general if not treated, death does occur 50-70% of the time [6].

Cholera not only affects the population with regard to morbidity, mortality and Disability

adjusted life years (DALYs), it also imposes serious social and economic setbacks. It can

cost the government of South Africa billions of rand to eradicate and working time is lost

due to absenteeism of employees who would be affected or attending to patients. The lost

working time affects production in the industry and consequently tax revenue and a drop

in export potential in the long run [7, 8, 9]. In acute cases, cholera can result in mortality

related to acute myocardial infarction, acute cerebral infarction as well as acute intestinal

gangrene [10]. Cholera can be prevented through proper disposal of human excreta through

building and using proper sanitation systems, proper and safe preparation and handling of

food. Although proper sanitation systems are vital in containing the epidemic, this alone

may not be effective if no effective primary health care education is emphasised.

1.3.1 Vibrio cholerae

PathogenicV. cholerae is a “comma” shaped gram-negative with a single flagellum for move-

ment [11]. They are non-sporulating, non-capsulated, facultative anaerobes, catalase-positive

and motile by means of a single polar flagellum [11]. In liquid media all vibrios show vig-

orous darting motility. Most species are oxidase-positive and reduce nitrates to nitrites [12].

There are several strains of V. cholerae, some of which are pathogenic and some are non

pathogenic. V. cholerae was initially divided into two main strains, namely O1 and non-O1

strains. This classification of the serogroups of vibrios was mainly based on the group and

the antigen. Prior to 1992, the only known pathogenic V. cholerae was the serogroup O1, that

is of antigen O and group 1. This serotype is classified into two biotypes, Classical and El

Tor [13]. Each of the two biotypes (Classical and El Tor) are classified into three serotypes

depending on the type-specific antigen. The three serotypes include, Ogawa, Inaba, and

Hikojima. All the serotypes have a common antigen A and the type-specific antigens, B
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(Ogawa), C (Inaba) and B, C (Hikojima)[13]. In Figure 1.1, we give a brief summary of the

classification of one of the virulent strains of V. cholerae, V. cholerae O1.

O1

El Tor Classical

Ogawa Inaba Hikojima Ogawa Inaba

A,B A,C A,B,C A,B A,B

Hikojima

A,B,C

200 serotypes of
V. cholerae

Antigen

Serogroup

Biotype

Serotype

O139 (Bengal) Others

Figure 1.1: Source [13]: Classification of the strains of V. cholerae

Of all the three serotypes, Hikojima is the rarest and is predominantly found in Japan. The

most widely distributed pathogenic strain is theV. cholerae serotype O1 El Tor N 16961 strain

that causes the pandemic disease cholera [13]. The latest pathogenic serotype O139 was

discovered in 1992. The El Tor strain was active in the seventh and themost recent pandemic

of cholera from 1960s to 1970s as well as the early 1990s along with serotype 0139, both

displaying resistance to multiple drugs.

In the ecological niche, pathogenic vibrios prefer a highly saline environment with relatively

high temperatures [14]. They are however, easily killed by chlorine and exposure to sunlight.

The organism can survive adverse decrease in temperature or salinity by transforming into

a spore-like dormant state yet still infectious [15] and the references therein. In this state, the

vibrios are non-culturable [16] but still infectious [17].

A single plankton copepod can carry upto 104 V. cholerae organisms and this is about 10 times

the infectious dose determined in studies. V. cholerae is a non invasive organism. Therefore,

infection with cholera does not result in fever. Pathogenic V. cholerae is an acid sensitive

micro-organism. Therefore, hydrochloric acid or the use of gastric acid suppressing medica-

tion increases susceptibility to infection with cholera.

1.3.2 Life cycle and viability of pathogenic Vibrio cholerae

Cholera is an infectious diseases caused by the bacteria species Vibrio cholerae. The main

portal or entry of the pathogen into the human body is through oral ingestion. The infec-
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tion is mainly spread by drinking contaminated water or eating food contaminated with the

pathogenic bacteria. Therefore, cholera can be classified as a water-borne/food borne dis-

ease. The bacteria present in the faecal matter of an infected person is the main source of

infection. Once one is infected, the main site affected in the human body is the gastrointesti-

nal tract. When Vibrio cholerae enters the gastrointestinal tract, it embeds itself in the villi of

the absorptive intestinal cells and releases cholera toxin. The cholera toxin (CT) is an entero-

toxin (a protein exotoxin often produced by micro organisms and it targets the intestines)

made up of five B-subunits that form a spore that fits one A-subunit [4].

Figure 1.2: Source [18]: The life cycle of pathogenic Vibrio cholerae.

Individuals who are protected from cholera via access to clean water can still acquire the dis-

ease through consumption of contaminated foods. In this case therefore, vaccination maybe

be a plausible and reasonably effective solution to containing the infection. The justification

for this observation can be traced from studies conducted in Haiti where clean water was

distributed to a small subset of the population in one study and vaccination of an identical

number of individuals in another [19]. Vaccination was observed to produce a much bigger

impact on the case counts as opposed to sole supply of clean water. The main reason is that

whereas individuals who receive clean water still remain susceptible to infection, vaccinated

individuals may not easily contract the pathogen and pass it on.

The persistence and seasonality of the epidemic can be attributed to health carriers of the

pathogen[20], climate and migration and movement patterns of individuals [16]. We exam-

ine each of these factors to ascertain how they affect the cholera epidemic [21]. The healthy

carriers of the pathogen V. cholerae asymptomatic individuals who intermittently excrete the

pathogen at relatively short durations of 6 to 15 days with the maximum period being be-
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tween 30 to 40 days [22] and the references therein. However, there are also chronic con-

valescent carriers and these have been observed to excrete the pathogen intermittently for

periods of 4 to 15 months [22].

V. cholerae are capable of normal growth and development in surface water for a period rang-

ing between 1 hour to 13 days [22] and the references there in. Its survival is entirely centred

around the chemical, biological and physical characteristics of the given stream of estuarine

water. Although the viability of V. cholerae may be short in polluted aquatic environment,

faecal contamination from victims of the epidemics and healthy carriers of the pathogen

continue to reinforce their population in water.

1.3.3 Cholera Vaccines

The world health organisation recommends use of oral cholera vaccines (OCV) in endemic,

pandemic and emergency situations [23]. However, it is still emphasized that OCVs be ad-

ministered while still effecting the other control measures such as use of Oral rehydration

salts (to those infected to restore the ion balance), and supplying clean disinfected water to

the general population.

Cholera vaccines given by injection can help prevent cholera but only reduce the risk by 25−
50% [24]. In addition, injectable vaccines are associated with unpleasant side effects which

include fever, pain at the site of injection, headache and malaise [25]. Given the low efficacy

and the associated side effects, WHOabandoned the use injectable cholera vaccines [25] in all

public health programs since the 1970s. More emphasis has since been put on oral vaccines.

This is a plausible gesture since it is now clear that both adults and children in most societies

prefer oral vaccines to those administered via a parenteral injection [26]. In the recent study

on Cholera in Haiti, Mukandavire et al [27] suggest that vaccines with efficacy of 50% would

result in Cholera control in all the departments under study except in Artibonite. It was

however observed that cholera in Artibonite would be controlled with the use of a vaccine

of 65% efficacy which is similar to most new-generation vaccines [27] and the references

therein. Since the current vaccines have a relatively low efficacy, it is important that although

one may have received the vaccine, they must take precaution to avoid being in cholera

infected areas, ensure consumption of uncontaminated food, water and maintain proper

hygiene. For travellers who anticipate going to cholera endemic regions, it is recommended

that they complete the scheduled vaccine dosage before travel and get booster dozes every

six months. There are however growing concerns about the efficacy of the vaccines with

respect to preventing cholera carriers state or geographical spread of the disease [28].
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According toWHO [23], investigation of the role ofmass vaccination in prevention of cholera

is under way. The major issues of interest to be addressed in the investigation include lo-

gistics, cost effectiveness of mass vaccination, timing, the capacity of producing the vaccine

and the criteria that may be followed during mass vaccination to contain outbreaks. Some

examples of cholera vaccines include [29];

(i) Cholera vaccine USP: This vaccine is prepared as a suspension V. cholerae serotypes

Ogawa and Inaba[5]. During preparation, the vaccine is composed of 8 units of equal

parts of the serotypes Ogawa and Inaba per millimetre [5]. The vaccine is adminis-

tered in an injection with a sodium chloride buffer. The administration of the injection

may be intra-cutaneous (applied to layers between the skin), subcutaneous (an injec-

tion below to the skin directly below the dermis or epidermis) or intramuscular but not

intravenous. When applying the vaccine medical personnel are compelled to adhere to

standard procedures of using a separate sterilised syringe and needle per individual,

in order to prevent the spread of infections.

(ii) Vaccine Dokoral (WC-rBS) [29] is a monovalent vaccine based on formalin and heat

killed whole cells (WC) of V. cholerae 01 (classical and El Tor, Inaba and Ogawa) plus

recombinant cholera toxin B subunit. Thus, Dukoral is a B-subunit killed whole cell

vaccine [30]. The vaccine is given with a bicarbonate buffer which helps protect the B

subunits from being destroyed by gastric acid. Once prepared from the 3ml single dose

vials together with the bicarbonate buffer [31], the vaccine is orally administered. This

vaccine can have upto three years on shelf life time depending on the storage temper-

ature, i.e if stored at a temperature from 2 to 8◦C, and when stored at 37◦C, it remains

stable for upto one month [32]. For effective working of the vaccine, it is recommended

that ingestion of food or drinks should be avoided at least one hour prior and after

taking the vaccine and then boosters should be given every after 6 months [29]. The

vaccine has been rendered safe during pregnancy and in immuno-compromised in-

dividuals such as HIV-infected individuals [29]. It is licensed for persons 2 years of

age and older [30]. It has been applied in a number of countries including Indone-

sia, Uganda, and Sudan (before South Sudan had separated from Sudan) and it is now

licensed for use in many countries around the world. The vaccine has an average pro-

tective efficacy of 50% sustained over a period of 3 year. The protective efficacy varies

from a high of 85% in the first 4 months to about 57% in the second year with negligible

protection thereafter [25].

(iii) The vaccine ShancholTM, is an oral vaccine produced by Shantha Biotechnics of Hy-
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derabad India. The vaccine is made of killed whole cells from a mixture of cholera

pathogenic strains V. cholerae 01 and 0139 [31]. This vaccine meets the international

Good Manufacturing Practice (GMP) standards and is produced under WHO guide-

lines. It has been tried and shown to be safe and immunogenic in both adults and

children. Therefore, it can be used in children aged 1 and older as well as adults. Dur-

ing administration of the vaccine, it is applied in two doses with a period of one to six

weeks apart. This vaccine offers protection between 65- 67% for a period of upto two

years [25, 31] in a place highly endemic with cholera.

Of the two currently used oral vaccines Dukoral and Shanchol, Shanchol has been ob-

served to have the following advantages over Dukoral [31];

• Schanchol requires no administration buffer. This greatly simplifies its application

in field conditions such as post-crisis situations and in refuge camps.

• Shanchol is available at relatively affordable prices which makes it accessible to

many cholera affected countries especially in Asia and Africa.

• The vaccine has got higher efficacy and lasts longer than Dukoral in children aged

1 to 5 years. This an age group characterised with high child mortality

According to WHO [23], there is no parenteral vaccine recommended at the moment. This is

due to the low protective efficacy and high occurrence of severe adverse reactions. The cur-

rently recommended vaccine for use including in emergency situations is the Oral Cholera

Vaccine (OCV). This vaccine has been used recently in Haiti during the cholera outbreak that

hit Haiti after the 2010-2011 Earthquake [33].

1.4 Historic perspective of cholera spread

Up to seven pandemics have been recorded so far with effects felt globally. These pandemics

started in the subcontinent of India [7] and then spread to other parts of the world. The

first six epidemics were mainly caused by V. cholerae 01 classical biotype. The most recent

pandemic is was however different from the first six pandemics associated with the origin

and the disease causing V. cholerae serotype. The seventh pandemic originated in Indonesia

and was caused by V. cholerae serotype El Tol. Although it is vital to understanding the

attributes of these pandemics, our emphasis will be on the seventh epidemics. It is during the

spring of the seventh epidemic that the pandemic reached the African continent including

South Africa [28].
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Pandemic Year Length

1 1817-1823 6 years
2 1826-1838 12 year
3 1938-1855 16 years
4 1863-1874 11 years
5 1881-1896 15 years
6 1899-1923 24 years
7 1961-1975 14 years

Table 1.1: Source [13]: The first seven cholera pandemics

In the Figure 1.3, we give a summary of the cholera cases, deaths and reporting countries

that we recorded by the World Health Organisation between 1970− 2004. These were typi-

cally recorded during the seventh epidemic. We note that for the duration over which data
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Figure 1.3: Source [1]: Cholera cases, deaths, case fatality rates and the number of countries
in Africa that reported cholera from 1970 to 2004
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was recorded, cholera spread to more African countries over the years with the number of

affected countries increasing from 16 in 1970 to 31 in 2004 (see Figure 1.3(b)). The number of

cases were also in-tandemwith the number of reporting countries. The lowest reported cases

being 3180 from 14 countries and the highest being 211748 cases from 29 reporting countries

(see Figures 1.3(a) and 1.3(b) for comparison). Although there is an observed increase in the

recorded deaths (see Figure 1.3(c)), the case fatality rate (CFR) indicates a relatively opposite

trend (see Figure 1.3(d) ). In our view the CFR is a better measure of how cholera cases were

managed. The reduction in the CFR over the years could be attributed to improvement in

the ways cholera cases are managed, sanitation and the general health care system.

1.4.1 A survey of the cholera epidemic in South Africa

Some of the first cases of cholera in South Africa were detected around 1973 in the gold

mines [28]. The introduction of cholera was attributed to migrant labourers from the then

cholera endemic countries such as Malawi, Mozambique and Angola who had come to work

in the gold mines. From that time on cholera cases have been reported in various parts of the

country sometimes in small and pronounced amounts. The major challenge with properly

studying cholera in most communities is due to lack of well documented information and

data on the transmission process, the cholera cases and deaths. This challenge is not unheard

of in many communities in South Africa. Although cholera in South Africa was first detected

in 1973 [28], many cases might have not been properly documented given the country’s

political history. Some of the documented information from health statistics South Africa

and the Kwazulu Natal health department (http://www.kznhealth.gov.za/ ) from the link

(http://indicators.hst.org.za/healthstats/179/data) indicating the scope of the disease is given in

Table 1.2.

The data indicates the cholera cases reported from the 9 provinces of South Africa and the

country case fatality rate (CFR)1. As it can be observed in the table the most recent epidemic

that greatly affected the country started in the year 2000 and only subsided in 2002/2003

after spreading to all but one of the provinces in the country.

By around July 2001, the cholera epidemic had spread to seven of the nine provinces of

South Africa. The major affected areas were the North and Southern parts of KwaZulu Na-

tal where the outbreak had occurred as early as August 2000. The affected area of KwaZulu

Natal had 99% of all the 106224 case reported nationally. Currently, KwaZulu Natal, North-

1The case fatality rate in this case is defined as “The number of deaths divided by the number of case expressed as a
percentage”
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Rep. Cases EC FS GP KZN LP MP NC NW WC ZA CFR

1994 0 0 2 3 0 0 0 0 0 5 -
1995 0 0 1 1 0 0 0 0 0 2 -
1997 0 0 0 0 0 1 0 0 0 1 -
1998 1 0 3 6 0 20 0 2 0 32 -
1999 0 0 0 3 0 1 0 0 0 4 -
2000 0 1 0 10161 0 0 0 4 0 10166 0.8
2000/01 season 9 1 65 105389 792 125 0 6 1 106389 0.2
2001 9 1 65 97059 793 125 0 6 1 98059 0.2
2001/02 season 2335 0 24 15062 465 4 0 12 0 17902 0.7
2002 2352 0 24 13536 465 4 0 12 1 16394 0.7
2003 3142 2 4 560 0 159 0 0 1 3866 1.1
2004 - - - - - - - - - 2780 1.3
2005 - - - - - - - - - 0 -
2008 - - - - - - - - - 4343 -
2009 2 0 47 0 618 6855 0 28 4 7554 -
2009 NICD LCC - - 37 0 449 61 - 19 4 570 -
2010 NICD LCC - - 1 - - - - - - 1 -
2011 NICD LCC - - - - 1 - - - - 1 -

Table 1.2: Cholera cases reported from different provinces of South Africa. EC: Eastern
Cape FS: Free StateGP: GautengKZN: KwaZulu-Natal LP: LimpopoMP: MpumalangaNC:
Northern Cape NW: North West WC: Western Cape ZA: South Africa, CFR: Case Fatality
rate,NICD: National institute for communicable diseases, LCC laboratory confirmed case

ern province, Eastern cape, Mpumalanga and Gauteng are some of the severely affected

provinces with water-borne infections including cholera. Of all the provinces KwaZulu Na-

tal is still the most affected province. The characteristic areas in the provinces that were

mainly affected include townships and informal settlements where there is rapid urbani-

sation yet no adequate access to clean drinking water, poor hygiene, over crowding with

respect to living conditions, unsafe preparation of food, handling and storage, famine and

flooding. The transmission of the mode of the infection was observed to be through con-

sumption of water and food contaminated with Vibrio cholerae pathogen. In recent studies

however, on the cholera infection indicate that the disease can be spread through person-

to-person contact and consumption of contaminated food and water. In the outbreak in

Zimbabwe in from November 2008 to July 2009 which had 98, 585 reported cases and caused

4, 287 deaths [34] the major transmission was attributed to person-to-person contact. A sim-

ilar argument is plausible for the case of South Africa’s 2000− 2002 epidemic which spread

to various provinces yet affected provinces are not all connected by common river networks.
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1.5 Climate and water-borne infections

The intensity of infectious disease outbreaks usually depends on and is driven by climatic

influence and the level of immunity of the host population [35]. Climatic variability is one

of the vital factors that often affect the patterns of vector-borne diseases such as cholera,

malaria, trypanosomiasis, schistosomiasis and West Nile virus among others. The major cli-

matic influencing factors are mainly temperature and rainfall patterns and amount received

in the area. Temperature usually affects the development of mosquito eggs and larvae, the

pupal stage of trypanosomes and miracidia in the life cycle of schistosomes. The effect on

these species affects their survival, multiplication and virulence. Low temperatures are often

characterised by inactivity of the organisms due to inhibition of enzymatic activity within

the organism. High temperatures on the other hand may denature the enzymes causing in-

activity or killing the micro-organism. All organisms have specific temperatures ranges for

optimal functionality and it varies from one organism to another. Temperature also affects

the growth of copepods, phytoplankton and zoo-plankton which often are food nutrients

for some vectors or shelter for others. Climate not only affects the micro-organisms but also

the host human population. Rainfall patterns often lead to variation in the levels of water in

rivers and lakes. These are often recreational areas where humans often come into contact

with water-borne pathogens such as schistosomes, V. cholerae and cryptosporidiasis among

others. In areas with poor sanitation and poor disposal of faecal matter and excreta, run-off

during the wet seasons washes the pathogen into the aquatic reservoir. The aquatic reser-

voirs are conducive environments for the multiplication of the pathogen. Note that although

the environmental temperature ranges may be big, the water temperature ranges tend to be

narrow. The narrow temperature range tends to be conducive for micro- organisms, zoo-

planktons , copepods (zooplanktons which are widely dispersed), phytoplankton as well as

bacteriophage which may prey on some pathogenic vibrios.

Climatic conditions affect the dilution, ionic concentration, salinity and organic nutrients of

the aquatic reservoirs. Dilution is associated with the concentration of pathogen species per

unit volume and the molar concentration of ions. This is vital with regard to the quantity

of species an individual must consume in order to develop the infection as well as their

ionic nutrients. For example, in the case of cholera this is referred to as ID50 [36], i.e the

amount of vibrios which when consumed result in fifty percent probability of contracting

the infection. Extreme weather conditions not only affect the virulence and concentration of

the pathogen but also the mobility of humans. For instance, during high rainfall seasons,

extreme wintry conditions and very high temperatures, the movement of humans is greatly

Stellenbosch University  http://scholar.sun.ac.za



Chapter 1. Introduction 15

hampered reducing spatial spread of individuals. On the other hand, after a wet season

increased mobility can enhance spatial spread of the disease.

The transmission pattern of the infection may be confounded by the immunity of the pop-

ulation resulting from outbreaks that could have occurred previously, or low number of

susceptible individuals. Quite often, the transmission of the pathogen in the population is

a result of non-linear interaction between the susceptible and infectious individuals or the

susceptible individuals consuming the pathogen from an aquatic reservoir.

Date Cases Deaths Date Cases Deaths

Oct 13, 2000 2175 22 Dec 29, 2000 11183 51
Oct 18, 2000 3271 26 Jan 7, 2001 15983 60
Oct 19, 2000 3279 27 Jan 25, 2001 27431 72
Oct 26, 2000 3806 31* Feb 4, 2001 37204 85
Nov 2, 2000 4270 32 Feb 14, 2001 48647 108
Nov 10, 2000 4580 33 Feb 23, 2001 56092 120
Nov 11, 2000 5385 35 Mar 3, 2001 62607 131
Nov 27, 2000 5876 35 Mar 14, 2001 69761 139
Dec 5, 2000 6548 41 Mar 27, 2001 78140 163
Dec 18, 2000 8137 41 April 16, 2001 86107 181

Table 1.3: Cases and deaths due to cholera reported to WHO during the 2000/2001, cholera
outbreak in KwaZulu Natal. The number highlighted with an asterisk was originally
recorded as 33 and later corrected by WHO as 31
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Figure 1.4: Comparison between the 2000/01 and 2001/02 cholera epidemics in KwaZulu-
Natal

The cholera cases peaked during the hottest months (mid summer) of the year for the two

subsequent years when the disease greatly affected the country.
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1.6 Outline of this work

In Chapter 2 we give a brief review of themodelling work done on transmission dynamics of

cholera. The review includes highlights on the general transmission routes (i.e the primary

as well as the secondary route), classification of infective individuals, some control measures

incorporated in some mathematical models (e.g biological control with a bacteriophage) as

well as some mathematical treatise applied to the mathematical models.

In Chapter 3, we study the effect of sanitation on the severity of cholera with the main aim or

examining the level necessary to contain the infection. Mathematical analysis of the model

is done, sensitivity analysis of the model to some key parameters performed using the Latin

hypercube sampling scheme and numerical simulations to ascertain the long term dynamics

of the sub-populations.

In Chapter 4, a two community model is formulated with the link between communities

accounted for by movements across communities. In the model it is assumed that no cross

community infection occurs and that the infection is transmitted through both the primary

and secondary routes. Mathematical analyses of the model is done. Sensitivity analysis is

also performed on themodel parameters and it indicates that movement across communities

could spur the epidemic even in the less prone community.

In Chapter 5, optimal control of cholera between linked communities is studied. The permis-

sible control are assumed to be non linear and that implementation of controls may contain

the infection in about half the time it would take the infection under self-limitation.

In Chapter 6, biological control of cholera as a result of predatory relationships between

bacteriophage andV cholerae is studied. In the model used, Holling type II response function

is used contrary to previous work in [37, 38], logistic growth for the V cholerae is assumed in

tandem with [38] but contrary to Malthusian growth used in [37].

1.7 Publications

This thesis was built around the following papers and work presented at conferences as

follows
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Chapter 3

• “Modelling the impact of hygiene on the dynamics of cholera”, J.B.H. Njagarah and F.

Nyabadza, (in review).

The results in this paperwere presented at the 55nd annual SouthAfricanMathematical

Society (SAMS) conference hosted at Stellenbosch University, South Africa, October

30,-November 02, 2012

Chapter 4

• J.B.H. Njagarah and F. Nyabadza, “A metapopulation model for cholera transmission

dynamics between communities linked by migration”, Applied Mathematics and Com-

putation, 241:317-331: 2014. [39].

The results of this paper were presented at the Southern Africa Mathematical Sciences

Association (SAMSA) conference, November 25-29, 2013, Jointly hosted by the Stellen-

bosch University, UCT, UWC and CPUT.

Chapter 5

• “Modelling optimal control of cholera in communities linked by migration”, J.B.H.

Njagarah and F. Nyabadza, (in review)

Chapter 6

• “Modelling the control of V cholarae with a pathogen specific bacteriophage”, J.B.H.

Njagarah and F. Nyabadza, in preparation.
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Chapter 2

Literature review

Cholera being an ancient disease, it could not escape the treatment of mathematical models

to understand its dynamics. The models developed and the subsequent modifications made

to the existing models, are motivated by the continued understanding of the dynamics of the

disease. Special treatment in some developed models is devoted to the specific places that

could be under study. This is on the belief that even though the aetiological agent of cholera

is the same, the transmission and dynamics of the disease may vary from place to place. This

may require explicit determination of parameter values related to the complex transmission

dynamics of the disease in the area in question. It is as-well plausible to believe that, with

the progressive trends of research on the infection, more factors that drive the epidemic are

identified. Some of the identified factors may be feasible to incorporate in the transmission

dynamics of the models developed.

Some of the major challenges that have existed in modelling cholera dynamics have been

consideration of all the possible transmission pathways, which include human- to-human

transmission and the indirect environment-to human transmission [40], at the same time

incorporating the population classifications (into symptomatic and asymptomatic) as well

as the influence from other biological agents such as vibrio specific bacteriophage in an all

inclusive model. We therefore, review some of the previous work done on modelling of

cholera and highlight the key results from the selected models.

2.1 Mathematical models of cholera dynamics

In an attempt to study the complex transmission pathways, epidemiological models that de-

scribe the human-environment interaction have been developed. One of the earliest math-

18
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ematical model for the transmission dynamics of cholera was proposed by Capasso and

Paveri-Fontana [41] when studying the cholera epidemic in the Bali 1973. This model was

published in 1979, a period when mathematical modelling of cholera was in its infancy. The

model consist of two coupled differential equations given in system (2.1) as

dx1
dt

= −a11x1 + a12x2,

dx2
dt

= g(x1)− a22x2.

(2.1)

The two compartments (state variables) in this model include x1 which describes the con-

centration of the pathogen in the aquatic environment, and x2 the population of infected

people. In the model all the constants aij are constant. The function g(x1) accounts for the

incidence of cholera infection. The model presented in system of equations (2.1) describes

the dynamics of the population infected with cholera and the pathogen freely living in the

environment. In the model construction, time delay was neglected and focus was put on the

sewage system simply carrying faecal cholera bacteria into the sea.

In Codeço’s 2001 paper [36], the model by Capasso and Paveri-Fontana [41] was extended.

In the extended model, the author considered the role played by the aquatic reservoir in

the dynamics of cholera. In addition to the concentration of the pathogen in the aquatic

environment and population of infected individuals, Codeço considered the population of

susceptible individuals in a three compartmental model. The resulting model is given by the

system of equations (2.2),

dS

dt
= n(H − S)− aλ(B)S,

dI

dt
= aλ(B)S− rI,

dB

dt
= eI − (mb− nb)B,

(2.2)

where λ(B) = B
K+B . In the model, the terms S, I, B and H represent the susceptible popu-

lation, the infected individuals, the concentration of the pathogen (V. cholerae) in the aquatic

environment and the total human population respectively. n represents the human natural

natality/mortality rates (day−1). λ(B) is the probability that an individual who has contact

or consumes untreated water catches cholera and a the rate of contact with untreated water.

The combination of the two terms yields a saturation function aλ(B), which describes the

rate at which susceptible individuals become infected. We note that the argument that the

function λ ∈ [0, 1] was also used in [41] where it is indicated that λ is approximately equal

to vibrio concentration for at small concentrations of the pathogen and approximately equal
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to one at very high vbrio concentrations. Therefore, the continuous function λ(B) of the

vibrio concentration satisfies the saturation requirement for agreement between mathemat-

ical modelling and cholera data. This similar argument has been always implied in ensuing

mathematical models of cholera transmission dynamics.

Hartley et al. [42] extended the model presented by Codeço [36] in which the pathogen

was not classified in accordance to its infective states. The model in [42] incorporated the

hyperinfective (HI) and non hyperinfective (LI) states in the transmission dynamics of the

cholera pathogen. The model equations of [42] is indicated in the system of equations (2.3).

dS

dt
= bN − βLS

BL

kL + BL
− βHS

BH

kH + BH
− bS,

dI

dt
= βLS

BL

kL + BL
+ βHS

BH

kH + BH
− (γ + b)I,

dR

dt
= γI − bR,

dBH

dt
= ξ I − χBH,

dBL

dt
= χBH − δLBL.

(2.3)

In this model, BH and BL are the concentrations of HI and LI per ml, I are the infectious

individuals and S the susceptible population. βL and βH is the rate of drinking LI and HI V.

cholerae respectively. The rest of the parameters are well explained in [42]. In the numerical

simulations, it is indicated that transmission due to HI produces majority of the new infec-

tions with a peak ratio of 1.6 between the HI and non-HI. In the same way, it was shown

that the non-HI is responsible for the slow dynamics where as HI for the fast dynamics. The

reproduction number for the model was calculated and indicated to be 18.2 when βH ∼ βL.

It however, reduces as βL becomes smaller that βH until it approaches a value of 3.2 when

there is no contact with HI V. cholerae (βH = 0). The major observation was that, the freshly

excreted pathogen was more infectious than the recently excreted pathogen. It would also

dominate the epidemic in case poor hygiene, continued and poor access to clean water. On

the other hand, if good hygiene is maintained and proper disposal of sewage, the older

non-hyperinfective organisms would dominate the epidemic. The model in [42] therefore

suggests that irrespective of the time when an immunologically naive individual gets into

contact with the pathogen there is always a possibility of contracting the disease. The major

difference is only observed in the hyperinfectivity of the pathogenic vibrios one gets into

contact with.

Mukandavire et al. [34] proposed amodel that considers both human-to-human and environment-
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to human transmission pathways. The model was used to study the dynamics of the cholera

outbreak in Zimbabwe in 2008-2009. The model was used to estimate the basic reproduction

numbers as well as partial reproduction numbers of the 10 provinces that were affected by

the cholera epidemic. The model is presented in by the system of equations (2.4).

dS

dt
= µN − βeS

B

k+ B
− βhSI − µS,

dI

dt
= βeS

B

K+ B
+ βhSI − (γ + µ)I,

dR

dt
= γI − µR,

dB

dt
= ξ I − δB.

(2.4)

In the obtained results, the authors observed high heterogeneities in the variation of the both

basic reproduction numbers as well as partial reproduction numbers across provinces. This

could be due to the different transmission processes involved in the different provinces as

well as the differences in living conditions. One intriguing observation was that human-to-

human transmission was significant and accounted for about 41− 95% of all the transmis-

sion. This observation strongly supports the view that cholera may be contagious which

dates back to Filippo Pacini’s 1865 discoveries [43].

Jensen et al. [38] model which involved deterministic control of V. cholerae by the lytic bacte-

riophage specific for V. cholerae is presented below

dS

dt
= −π

(

V

C(a)k+V

)a

S− δS+ δN,

dI−
dt

= π

(

l

l + P

)(

V

C(a)k+V

)a

S− (µ− + δ)I−,

dI+
dt

= π

(

P

l + P

)(

V

C(a)k+V

)a

S− (µ+ + δ)I+,

dR

dt
= µ− I− + µ+ I+ − δR,

dV

dt
=

[

m

(

1− V

kv

)

− γP

]

V + c(I− + I+),

dP

dt
= (βγV − ω)P+ αcI+.

(2.5)

The description of the state variables and the parameters is given in [38]. The bacteriophage

in the model was considered to be antagonistic to the vibrio concentration. In this respect the

phage concentration can have an influence on the bacterial bloom that initiates the infection

and the severity of the infection.
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In 2012, Wang and Liao [44] published a generalised choleramodelwhere they did epidemic-

endemic analysis. In the model, the authors utilised a generalised incidence function f (I, B)

which includes multiple transmission pathways. Although no explicit incidence function

was given, the authors stated possible examples of such function as those used in the afore-

mentioned models [34, 36, 38, 42]. In their generalised model, the authors also accounted

for the pathogen growth function, h(I, B), stating that it depends on both the ecology of the

pathogen in the aquatic environment as well as the climatic conditions. Their generalised

model is presented below.

dS

dt
= bN − S f (I, B)− bS,

dI

dt
= S f (I, B)− (γ + b)I,

dR

dt
= γI − bR,

dB

dt
= h(I, B).

(2.6)

In the model both the natural natality and mortality rates are equal and the total human

population under consideration is constant.

Other models on cholera include; the model “On space-time evolution of cholera epidemic”

which focuses on cholera spread along a river network [45]. The model which incorporates

intervention strategies as well as the classification of infected individuals into those symp-

tomatic and asymptomatic [20], the model incorporating the climatic changes and their in-

fluence on cholera indicating double peaks per year [9] among others.

Some questions to answer, observations from aforementioned models and possible modifi-

cations that can be made are highlighted below

(i) In the aforementionedmodels, no account is given of disease inducedmortality and for

that matter the general population mostly considered to be constant. If the disease in-

duced mortality is considered, then the population will not be constant and the models

would give generally different and more realistic dynamics.

(ii) The aforementioned transmission models do not put into consideration that in the

wake of the epidemic or outbreak, individuals also change behaviour. For example

they start to practice proper hygiene, boil drinking water, avoid consumption of poten-

tially Vibrio contaminated food, properly dispose faecal matter the general decrease in

movement to and from cholera endemic areas. These factors if accounted for can give

a plausible basis for proper control of the infection.
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(iii) With respect to the model with bacteriophage in the control process, the interactions is

purely deterministic and presupposes that the aquatic medium is purely homogeneous.

It is currently clear that more V. cholerae will be concentrated in areas where there is

high effluent disposal (warm and nutrient rich) and also have a strong dynamics with

both zooplankton (especially copepods) and phytoplankton. In addition, other factors

such as temperature, salinity and PHmake the aquatic environment heterogeneous and

with ambient conditions of such factors, multiplication of vibrios in the environment is

enhanced.

(iv) In the cholera dynamics, the person to person transmission root is not given much

weight in most of the aforementioned models. This leaves a key question of whether

this transmission root is really negligible, after the observing the spread of the infection

during the 2000-2002 epidemic that devastated all but one province in South Africa,

and the 2008 epidemic in Zimbabwe. In addition, there are concerns on the control of

the epidemics and the efforts needed to contain any cholera outbreak.
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Chapter 3

Role of hygiene driven contact in
cholera transmission dynamics

3.1 Introduction

Cholera is one of the most notorious water borne infections affecting people world wide. It

is mainly a problem in areas where people have no access to clean water, where there is poor

hygiene, handling and storage of food. There have been numerous studies on the infection

since John Snows work in England in 1811 during the outbreak in England. He pointed

to the sewage contaminated water source to contain the pathogen that caused the disease.

The pathogen (etiologic agent Vibrio cholerae) was discovered by an Italian microbiologist

Filippo Pacini (1812-1883) in 1854 [43, 46] during the epidemic in Florence-Italy. However,

he had not been recognised for this discovery not until 1956, 83 years after his death. All

the credit had gone to a German Microbiologist Robert Koch who also discovered the same

pathogen in his separate studies without knowledge of Pacini’s work. During Pacini’s work

on cholera, he steadfastly reiterated that the disease is contagious [43, 47]. Since 1811, upto

seven epidemics of cholera have swept many parts of the world with the most affected areas

being India, Bangladesh and Indonesia. The first cases of cholera on the African continent

were in 1971 during the seventh epidemic.

The first cases in South Africa were mainly concentrated in mines [28]. Once the person is

infected with the pathogen, it attacks the gastric lining causing sever diarrhoea. Although

it can be contained through oral rehydration and restoration of the electrolyte imbalance in

the body, the infections still result in some disease induced mortality. Indeed the mortality

and cases observed in the recent outbreaks can not be ignored. Here we cite the example

of the recent outbreak in Haiti where upto 217 000 people were infected. The epidemic

24
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had also claimed about 4 000 lives by January 2011 since its beginning in October 2010 [19].

Such mortality is not negligible and ought to be given some consideration in studies aimed

at understanding the cholera transmission dynamics and severity. Although the last major

outbreak of cholera epidemic was in 2000-2001, in KwaZulu Natal, there have been sporadic

cases of the disease in the Northern Cape, Limpopo, Eastern cape and still in KwaZulu Natal

provinces.

3.2 Model development and analysis

A number of mathematical models have been developed to study the dynamics of cholera

infection. The very first model was Capasso and Paveri-Fontana [41] where they studied

the 1973 cholera epidemic in Bali, Italy. The model consisted of system of two differen-

tial equations describing the population of infected individuals and the concentration of the

pathogen in the aquatic reservoir. The model was later extended by Codeço [36] who in-

cluded an equation of the susceptible population in order to study the long term dynamics

of the population. In addition she explicitly considered the role played by the pathogen in

the aquatic reservoir. Here she used a maximum saturation function λ(B) = B
K+B , where B

is the concentration of the pathogen in the aquatic environment and K the concentration of

the pathogen that can cause 50% chance of getting infected if consumed. This same function

has been used in the recent models of cholera dynamics, see for instance [34, 38, 42] among

others. The saturation function of the form of λ(B) indicates that the increase in rate of inci-

dence of the disease more gradual than linear in B and S. In addition, this ensures that the

contact rate is bounded.

We use a mathematical model (which is a modification from the aforementioned models in

Chapter 2) to analyse the transmission dynamics of cholera. In this model we assume that

in the wake of the epidemic, the population changes behaviour with respect to devoting to

proper sanitary practices, good handling and storage of food, reduction in person-to person

contact. We represent the expression for behaviour change with an exponential function that

decreases as a result of improvement in hygiene. In the aforementioned models, the natality

and mortality rates are assumed to be the same with no infection aggravated mortality. In

our view, even though, the mortality due to cholera might have reduced recently due to

presence of proper medical care, rehydration and restoration of electrolyte imbalance, the

mortality cases are still significant.

In our model we assume that once the infection breaks out, the population may change be-
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haviour by starting to boil drinking water and properly dispose faecal material, and as a

result of awareness and provision of clean water and bleach to clean the water, the tread of

the epidemic will decrease. We compartmentalise the population basing on different levels

of infection. The recruitment into the susceptible population is at a constant rate. The re-

cruitment is due to natural natality as well as immigration. The population infected with V.

cholerae is not all symptomatic. We have a group of healthy carriers of the pathogen. These

remain asymptomatic yet in case of improper disposal of waste material shed the pathogen

in the environment and water sources and this contributes to the spread of the infection.

3.2.1 Hygiene related contact function

The spread of cholera and the concentration of both the hyperinfective pathogen (newly

shed into the environment) and the non hyperinfective V. cholerae is influenced by the level

Hygiene of the affected community. Hygiene may involve proper preparation and handling

food, boiling or filtering drinking water as well as ensuring proper disposal of faecal mate-

rial. In the model we assume that the effective person to person contact is influenced by the

level of hygiene. Therefore, we propose a functional relationship f (H), between person to

person contact and level of hygiene. We denote the hygiene level by the variable H, which

is related to the total population. H measures the proportion of the population that prac-

tising proper hygiene. The function f (H) describes the contact rate which is dependent on

the level of hygiene. It is plausible to believe that the effective contact rate will reduce with

increased levels of hygiene.

f (H) =































βc, (3.1a)

βmax − η1H, (3.1b)

βmaxe
−η2H, (3.1c)

βmax

1+ eη3(H−H50)
. (3.1d)

The constant contact rate has been used previously in modelling person-to-person contact

in cholera transmission dynamics by Mukandavire et al. [34]. The equations (3.1b)-(3.1d)

have been suggested by [48] as potential candidates for the functional relationship between

effective contact rate and hygiene in the model for hepatitis A. Equation (3.1b) predicts that

the effective person-to-person contact rate is reduced linearly proportionally to the improve-

ment in the level of hygiene. Such a linear reduction would only be viable if the transmission

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3. Transmission dynamics of cholera 27

mode is through contact with members of the same house-hold [48]. The equation (3.1c) is

feasible if all individuals share a common source of the pathogen. On the other hand, equa-

tion (3.1d) is most useful in the situation where; if the level of hygiene is low, there is a

small effect on the transmission dynamics of the pathogen but the effect increases at higher

hygiene levels [48].

We propose a contact rate function that is dependent on the proportion of the population

that practices proper hygiene.

f (H) =
βmax
h

1+ AeηH
(3.2)

The constant A is the scale parameter and η the shape parameter. The parameter A is such

that 0 < A ≪ 1. This implies that if the level of hygiene is very poor, the rate of spread of the

pathogen through person-to-person contact will be approximately βmax
h . This could be of a

devastating impact in case of an outbreak. The parameter η determines how fast the impact

of improved hygiene can be felt in case of an outbreak. It is important to note that if H = 1,

f (H) → 0 when η → ∞. Therefore, the parameter η must be chosen such that f (H) → 0

as H → 1. A typical example of hygiene driven change in person-to-person contact rate is

showed in Figure 3.1.

Figure 3.1: Contact rate as a function of the level of hygiene in the community.

We note that for H <
ln(A)

η , f (H) is concave down indicating an increasing negative change

of contact with the level of hygiene. On the other hand at H >
ln(A)

η , f (H) is concave up

showing a decreasing negative contact with the level of hygiene. We also propose that the

rate at which symptomatic and asymptomatic individuals shed the pathogen into the envi-

ronment differs. Although, this shedding rate may depend on the level of hygiene, quan-
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tifying it with a functional response is a daunting task. The symptomatic individuals are

believed to shed the pathogen into the environment in greater quantities but for a slightly

short time. On the other hand, asymptomatic individuals shed the lower concentrations

into the aquatic environment compared to symptomatic individuals. However, the shed-

ding time is much longer for the asymptomatically infected individuals. The flow diagram,

Figure 3.2, shows the dynamics of the population in different compartments as well as the

interaction with the aquatic environment. The typical Susceptible-Infected-Recovered (SIR)

model describes the vital dynamics which are typical of the cholera epidemics. The infec-

tious population is classified into symptomatic and asymptomatic individuals. The major

routes of infection include consumption of vibrio contaminated water and well as through

person-to-person contact characterised by consumption of unhygienic food stuffs.
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Figure 3.2: Flow diagram of dynamics of the populations involved in the dynamics of
cholera.

State Description

S Population of susceptible individuals
Is Infected individuals who are symptomatic
Ia Infected individuals who are asymptomatic
R Recovered individuals
P Concentration of vibrios in the aquatic environment

Table 3.1: Description of the model phase state variables

3.2.2 Model

The proposed system of differential equations is

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3. Transmission dynamics of cholera 29

dS

dt
= π +wR− β

P

K + P
S− f (H)IS− µS, (3.3a)

dIs
dt

= ρ

(

β
P

K + P
S+ f (H)IS

)

− (µ + δ1 + γ1)Is, (3.3b)

dIa
dt

= (1− ρ)

(

β
P

K + P
S+ f (H)IS

)

− (µ + δ2 + γ2)Ia, (3.3c)

dR

dt
= γ1 Is + γ2Ia − (µ +w)R, (3.3d)

dP

dt
= α1(H)Is + α2(H)Ia − µpP+ rP

(

1− P

Kp

)

. (3.3e)

The description of model parameters as summarised in the Table 3.2

Parameter Description

π Rate of recruitment of individuals into the susceptible class
w Rate at which immunity acquired due to cholera waves
β Rate at which susceptible individuals contact with the aquatic reservoir
K Concentration of Vibrios that can cause a 50% chance of infection
µ Natural morality rate of the general population
δ1 Mortality rate of Is individuals due to cholera
δ2 Mortality rate of Ia individuals due to cholera
γ1 Rate of recovery of symptomatically infected individuals
γ2 Rate of recovery of asymptomatically infected individuals
Kp Carrying capacity of the aquatic reservoir for the pathogen
α1 Rate at Is individuals shed the pathogen in the environment
α1 Rate at Ia individuals shed the pathogen in the environment
r Growth rate of the pathogen
µp Decay rate of the pathogen
ρ Proportion of infected individuals who are symptomatic

Table 3.2: Description of the model parameters

3.2.3 Model analysis

Given that person-to-person contact is based on the level of hygiene, the improvement is

hygiene should be such an effort to reduce the infections or even to prevent the infection

completely. We observe that the number of infected individuals will decrease if the model

parameters are such that dI
dt < 0, where I = Ia + Is. From (3.3), the change in the number of

those infected with cholera is given by

dI

dt
= β

P

K + P
S+ f (H)IS− (µ + δ + γ) T. (3.4)
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The infection will be contained if the person to person contact which is dependent on level

of hygiene is such that

f (H) <
QI(K+ P)− βPS

(K+ P)IS
, where Q = (µ + δ + γ). (3.5)

This expression for hygiene dependent person-to-person contact (3.2) substituted into the

inequality (3.5) gives the threshold hygiene level as

H =
1

η
ln

[

1

A

(

Cmax(K + P)IS

QI(K+ P)− βPS
− 1

)]

. (3.6)

Note from the expression (3.6) that the level of hygiene is influenced by contact with water

supplies as well interaction between individuals. If the aquatic environment is assumed to

play the major role, then the expression becomes

H =
1

η
ln

[

1

A

(

CmaxS

Q
− 1

)]

,

which involves only the direct transmission route.

Positivity of solutions

We show that if the system starts with non-negative initial conditions (S0, Is0, Ia0, R0, P0), the

solutions/trajectories of (3.3) will remain non-negative for all t∈ [0,∞). This is an ideal con-

dition to check since the model monitors human population and the pathogen concentration

in the aquatic environment. We thus have the following theorem

Theorem 3.2.1. Given that the initial conditions of the system (3.3) (S0 > 0, Is0 > 0, Ia0 >

0, R0 > 0, P0 > 0), the resulting solutions (S(t), Is(t), Ia(t), R(t), P(t)) are all non-negative for
all t∈ [0,∞).

Proof. To show positivity of solution, it is enough to show that each of the trajectories of
system (3.3) is non negative for all t > 0. From equation (3.3a), the differential inequality
describing the evolution of the susceptible population over time is given by

dS

dt
≥ −

(

βP(t)

K+ P(t)
+ f (H)I(t) + µ

)

S. (3.7)

The resulting differential inequality can be solved by separation of variables. Since at t =
0, S(0) = S0, then the complete solution to the differential inequality for the susceptible
population is given by

S(t) ≥ S0 exp

{

−
(

µt+
∫ t

0

(

βP(τ)

K+ P(τ)
+ f (H)I(τ)

)

dτ

)}

. (3.8)
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From (3.8) it can be shown that
lim inf
t→∞

S(t) ≥ 0. (3.9)

Using the same principle, the rest of the phase space variables t approaches infinity can be
shown to satisfy

Is(t) ≥ Is0e
−Q1t, Ia(t) ≥ Ia0e

−Q2t, R(t) ≥ R0e
−(µ+ω)t, (3.10)

fromwhich the limit inf of the corresponding state variables can be shown to be non-negative.
Using the equation describing the evolution of the pathogen concentration, we have a dif-
ferential inequality given by

dP

dt
+ (µP − r)P ≥ − rP2

KP
. (3.11)

Equation (3.11) is a Bernoulli type of equation. It is solved by substitution, i.e P = y−1 to
obtain

P≥ 1

CKP(µP − r)e(µP−r)t − r
≥ e−(µP−r)t

CKP(µP − r)
. (3.12)

Boundedness of solutions

The model can be separated into two parts which include, the human population WH and

the concentration of the pathogen in the aquatic environment WP such that

WH = {(S, Ia, Is, R) : S+ Ia + Is + R = N} ∈ R4
+ (3.13)

and

WP = {P} ∈ R1
+, (3.14)

respectively. From equation (3.3a) the differential inequality of the susceptible population is

given by
dS

dt
+ µS ≤ π + ωR. (3.15)

Using a suitable integrating factor, I.f = e−¯t, the differential inequality (3.15) can be solved

to obtain

S ≤ π

µ
+ e−µt

∫ t

0
ωR(τ)eµτdτ. (3.16)

Following the theorem of differential inequality by Birkhoff and Rota [49] we obtain

lim sup
t→∞

S(t) ≤ π

µ
. (3.17)
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Therefore, the state variables describing the evolution of the susceptible population is less

or equal to the ratio of the recruitment rate and the natural mortality rate.

We note also that the total population is given as N = S+ Is + Ia + R. If we take the time

derivative of N i.e dN
dt and substitute the equations (3.3a) -(3.3d) into the resulting expression

we obtain
dN

dt
= π − µN − (δ1 + γ1)Is − (δ2 + γ2)Ia. (3.18)

The solution (3.18) can be obtained by separating variables and integrating both sides with

respect to the corresponding variable. This results into

ln|π − µN| ≥ −µt+ c, (3.19)

where c is a constant of integration. If we exponentiate both sides and assume that the initial

total population is N0, the solution becomes

N ≤ π

µ
−
(

π

µ
− N0

)

e−µt. (3.20)

Therefore,

lim sup
t→∞

N =
π

µ
. (3.21)

Since N is the sum of all state space variables, then each of the individual state variables is

less or equal to π
µ .

Using equation (3.3e), we assume that the growth rate of the pathogen in linear at a constant

rate r. We therefore obtain a differential inequality

dP

dt
≤ α1 Is + α2 Ia − µPP+ rP. (3.22)

Since each of Is and Ia is less or equal to
π
µ , the equation (3.22) becomes

dP

dt
≤ (α1 + α2)

π

µ
− µPP+ rP. (3.23)

The solution to this equation can be obtained by using a suitable integrating factor to obtain

P ≤ (α1 + α2)π

µ(µP − r)
+ Ae−(µP−r)t. (3.24)

Therefore,

lim sup
t→∞

P(t) ≤ (α1 + α2)π

µ(µP − r)
. (3.25)
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The domain of biological significance of the system (3.3) is

Ω :=

{

S, Is, Ia, R, P≥0 : S+ Is + Ia + R ≤ π

µ
, P(t) ≤ (α1 + α2)π

µ(µP − r)

}

(3.26)

The domain Ω is positively invariant under the flow induced by the system (3.3). There-

fore, the system (3.3) is biologically meaningful and it is feasible to analyse the model in the

domain Ω.

3.2.4 Disease free equilibrium and its stability

Supposing that the community has not experienced cholera infection for very a long time,

say for generations, no individual will be expected to be immune. This is because, immu-

nity to cholera infection is often acquired because of passed infection or exposure and or

immunisation. This implies that the entire community will be rendered susceptible to the

infection. In this respect, there will be no symptomatic or asymptomatic infectious individ-

uals. In addition, the aquatic reservoirs with which the general population has contact are

free of virulent or toxigenic vibrios [36]. Therefore, the community is free the infection and

the disease free equilibrium is given by

E0 = (S∗, I∗s , I
∗
a , R

∗, P∗) =
(

π

µ
, 0, 0, 0, 0

)

. (3.27)

Therefore, if initially neither the infective nor the pathogen exists in the environment, the

community is expected to remain free of the disease. On the other hand, in the treatment of

the initial conditions, if either Ia0 > 0 or Is0 > 0 and P0 = 0, the infection will originate from

the infected people in the community. On the contrary, if Ia0 = 0 and Is0 = 0 but P0 > 0, the

infection would be triggered by freely leaving vibrios in the environment.

Basic reproduction number

In this model new infections are generated in three ways, namely; by consumption of the

pathogen from the aquatic environment, contact with symptomatically or asymptomatically

infected individuals. We therefore define the basic reproduction number (R0) as “the aver-

age number of new infections generated by a single (asymptomatic or symptomatic) infected

individual in a completely susceptible population [50] or through contact with the pathogen

infested aquatic reservoir". We also emphasize that the reproduction number computed

should reflect all the routes contributing to new infections. We use the next-generation ma-

trix method by van den Driessche and Watmough [51], such that the matrices of new infec-
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tions and transitions are given by

F =









ρ
(

βPS
K+P + IS

)

(1− ρ)
(

βPS
K+P + CIS

)

0









, V =









Q1 Is

Q2 Ia

−α1 Is − α2 Ia + Q4P









, (3.28)

where Q1 = (µ + δ1 + γ1), Q2 = (µ + δ2 + γ2), Q4 = (µP − r) and C = Cmaxβh. In this

case the C is the effective person-to-person contact rate. It is the product of the maximum

possible contacts, Cmax and the probability βh, that a contact results into cholera infection.

The derivatives of the resulting matrix expressions for the new infections and transition

states evaluated at the disease free equilibrium are given by

F =









ρCπ
µ

ρCπ
µ

ρβπ
µK

(1−ρ)Cπ
µ

(1−ρ)Cπ
µ

(1−ρ)βπ
µK

0 0 0









, V =









Q1 0 0

0 Q2 0

−α1 −α2 Q4









. (3.29)

The entry (i, j) of the matrix V−1 is defined as the average life expectancy if an individual in

compartment i and entry (i, j) of F the rate at which an infected individual in compartment

j produces new infections in compartment i [51]. The reproduction number R0 is given as

the spectral radius of matrix FV−1 which is classified as the next generation matrix.

R0 = ρ
(

FV−1
)

,

=
ρπ

µQ1Q4

(

βα1

K
+ CQ4

)

+
(1− ρ)π

µQ2Q4

(

βα2

K
+ CQ4

)

. (3.30)

The terms 1/Q1 and 1/Q2 indicate the maximum time an individual is expected to stay in

compartments Is and Ia respectively. The reproduction number consists of four terms which

characterise the contribution from the different pathways to new infectionswith cholera. The

terms R01 = ρπβα1

µQ1Q4K
and R02 = (1−ρ)πβα2

µQ2Q4
represent the new infections of symptomatic and

asymptomatic individuals respectively that result from consumption of the pathogen from

the aquatic environment. On the other hand the terms R03 = ρπC
µQ1

and R04 = (1−ρ)πC
µQ2

show

new infections of symptomatic and asymptomatic individuals respectively due to person-

to-person contact.

Local stability of the disease free equilibrium (DFE)

Theorem 3.2.2. The cholera free equilibrium of locally asymptotically stable whenever R0 < 1 and
unstable otherwise.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3. Transmission dynamics of cholera 35

The result of Theorem 3.2.2 follows directly from the next generation matrix. An alternative

proof can be given by linearising the system of equation (3.3) at the disease free equilibrium.

In this case, the a constant value for the hygiene driven person-to-person transmission is

assumed and the alternative proof is given as follows.

Proof. To prove local stability of the model, we linearise the system (3.3) and evaluate the
Jacobian at the disease free equilibrium E0. In this proof the person to person transmission
rate f (H) is assumed to be some constant value fh. The Jacobian is therefore given by

J(E0) =

















−µ
ρ fhπ

µ
ρ fhπ

µ ω
ρβπ
µK

0
ρ fhπ

µ − Q1
ρ fhπ

µ 0
ρβπ

µ

0 (1−ρ) fhπ
µ

(1−ρ) fhπ
µ −Q2 0 (1−ρ)βπ

µK

0 γ1 γ2 −Q3 0
0 α1 α2 0 −Q4

















(3.31)

The matrix (3.31) has two negative eigenvalues λ1 = −µ and λ2 = −Q3. The rest of the
eigenvalues are the roots of the polynomial

P(λ) = λ3 + a2λ2 + a1λ + a0, (3.32)

where the constants are such that










a1 = Q1Q4[1− (R01 + R02)] + Q2Q4[1− (R03 + R04)] +Q1Q2[1− (R02 + R04)],

a2 = Q1(1− R02) + Q2(1− R04) + Q4,

a0 = Q1Q2Q4(1−R0).

We note that when R0 ≤ 1, the coefficients a0 and a1 will be positive. We now use Routh-
Hurwitz condition for a third order polynomial [52]. We note that if all the coefficients
a0, a1 and a2 are positive, then the roots of the polynomial (3.32) will all be either negative
or with negative real parts if a1a2 > a0. Thus, using the coefficients of the polynomial (3.32),
we have

a1a2 − a0 = Q1Q4

(

Q1 + Q4 −
fhπ

µ

)

(1− R01 − R02)

+Q2Q4

(

Q2 + Q4 −
fhπ

µ

)

(1− R03 − R04)

+Q1Q2

(

Q1 + Q2 +Q4 −
fhπ

µ

)

(1− R02 − R04) +Q1Q2Q4 > 0.

(3.33)

Therefore, the disease free equilibrium E0 ∈ Ω is locally asymptotically stable whenR0 < 1
and unstable elsewhere. This completes the proof.

It is necessary to clarify what exactly happens when the basic reproduction number is less or

greater than unity, with respect to progression of the disease or containment of the disease
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burden. When R0 ≤ 1, in presence of a small number of infectives introduced in the com-

munity, the resulting number of subsequent infective individuals will be lower than that of

their predecessors. As a result the change in the number of those infected with time will be

negative an therefore, the infection cannot progress in the population. On the other hand,

if R0 > 1, the subsequent generation of infective individuals will be greater than their pre-

decessors. As a result the infection will spread and become endemic in the population until

the susceptible population reaches such a level that the probability of infective individuals

transmitting the disease to new individuals is very low due to depletion of the susceptible

pool. This implies that given all the parameter values of the model, we can find the crit-

ical value of susceptibles below which the infection can not spread. To obtain this critical

value for the model, we use the approach outlined in [50] based on the disease threshold.

Given the reproduction number (3.30), make use of the susceptible population at the disease

free steady state. If we set R0 = 1 and that S∗0 = π
µ , then we have the critical value of the

susceptible population given by

Sc =
Q1Q2Q4K

β(ρα1Q2 + (1− ρ)Q1α2) + fhKQ4(ρQ2 + (1− ρ)Q1)
. (3.34)

We note here that if the population of infectious individuals is not classified into those symp-

tomatic and asymptomatic, which would imply that Q1 = Q2 = Q and α1 = α2 = α, the

critical value of the susceptible population reduces to a value similar to that obtained in

[50]. We note that the threshold susceptible population Sc changes with key parameters as

indicated below:

1. it is inversely proportional to the effective person-to-person contact rate. Since this rate

is proportional to the level of hygiene, then with improved hygiene, a large population

of susceptible individuals will be required for onset of the epidemic.

2. It is directly proportional to the concentration of vibrios which when ingested cause

50% chance of infection with cholera.

This concentration K is also referred to as infection barrier [36]. If the model incorporates

no person-to-person contact, this proportionality of Sc to K would be typically linear if other

parameters are kept constant.
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Global stability of the disease free equilibrium

The equilibrium point of a dynamical system (3.3) is said to be stable if solutions of such a

system starting close to the equilibrium point within the invariant region approach the equi-

librium point. On the contrary, if the equilibrium point is unstable, then all solutions starting

sufficiently close to that particular equilibrium point will move away from the equilibrium

point.

Theorem 3.2.3. The disease free equilibrium E0 of the model system (3.3) is globally asymptotically
stable in the invariant region Ω whenever R0 < 1 and unstable otherwise.

Proof. To prove Theorem 3.2.3, we chose a suitable Lyapunov function given by

V(t) = a1 Is(t) + a2 Ia(t) + a3P(t), (3.35)

which involves individuals who directly contribute to escalation of the infection together
with the pathogen. The constants a1, a2, a3 are all non negative and we ought to find them.
We note that Lyapunov function, V(t) is a C1 and a positive definite function for all x /∈ E0.
The time derivative of the Lyapunov function (3.35) is given by

dV

dt
= a1

dIs
dt

+ a2
dIa
dt

+ a3
P

dt
,

= a1

[

ρ

(

β
P

K + P
S+ fh IS

)

− Q1 Is

]

+ a2

[

(1− ρ)

(

β
P

K + P
S+ fh IS

)

− Q2 Ia

]

+ a3 [α1 Is + α2 Ia −Q4P] .

We note that S ≤ π
µ and assume that near the disease free equilibrium, K ≫ P (the concen-

tration of the pathogen is negligible compared to the carrying capacity) such that K+ P ≈ K.
Therefore, the time derivative of the Lyapunov function satisfies the following inequality

dV

dt
≤
[

a1
ρπβ

µK
+ a1

(1− ρ)πβ

µK
− a3Q4

]

P

+

[

a1
ρπ fh

µ
− a1Q1 + a2

(1− ρ)π fh
µ

+ a3α1

]

Is

+

[

a1
ρπ fh

µ
+ a2

(1− ρ)π fh
µ

− a2Q2 + a3α2

]

Ia.

(3.36)

We equate the coefficients of the components Ia and P to zero and solve for the coefficients
of the Lyapunov function obtaining

a1 = Q2 −
π(1− ρ)

µ

(

βα2

Q4K
+ fh

)

, a2 =
πρ

µ

(

βα2

Q4K
+ fh

)

, a3 =
πβρQ2

µQ4K
. (3.37)

Substituting the constants a1, a2 and a3 into the inequality (3.36), we obtain

dV

dt
≤ −Q1Q2 [1−R0] Is. (3.38)
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When R0 ≤ 1, dV
dt is negative semidefinite, with equality at R0 = 1 and, or Is ∈ E0. There-

fore, the largest compact invariant set in Ω such that dV
dt = 0 when R0 ≤ 1 is the singleton

E0. Therefore, by the LaSalle Invariance Principle [53], the disease free equilibrium E0 is
globally asymptotically stable in Ω if R0 ≤ 1 and unstable otherwise.

Epidemiologically, the implication of Theorem 3.2.3 is that whenR0 is less than one, a small

influx of cholera infected individuals into the community, will not generate an outbreak. The

subsequent numbers of those infectedwill be less than that of their predecessors and eventu-

ally the disease will be annihilated. We note also that a number of parameters are necessary

in reducing the disease threshold to a value 0 < R0 < 1. Some of these parameter are re-

lated to consumption of contaminated water and foods. Control of hygiene related processes

may involve chlorination of drinking water and those related to human behaviour may en-

tail alteration of traditional community historical habits which may be challenging. From

a mathematical modelling perspective, consideration of controls may require treatment of

the modelling work as an optimal control problem. A model with controls is presented in

Chapter 5 with focus on the metapopulation spread of the infection.

3.2.5 The endemic equilibrium

Let the endemic equilibrium be represented by the phase space

E1 = (S∗, I∗a , I
∗
b , R

∗, P∗) ∈ R5
+

. At the endemic equilibrium, each of the population phase space variable is constant, such

that the rate of change of each of the components is zero. We note that the endemic equi-

librium may be exhibited at some point related the concentration of the pathogen. Either

when the concentration of the pathogen is low such that P≪Kp or when P≃Kp. However,

the latter case implies that the entire aquatic environment would be contaminated which

is less likely since vibrios may not sustain their concentration in the environment without

constant shedding [41]. The first case scenario implies that the term P/Kp ≃ 0, the evolu-

tion of pathogen in the environment in absence of shedding from infected persons will be

Malthusian where it may be increasing or decreasing depending on the difference between

decay and growth rates. Malthusian growth is a plausible assumption at low concentration

of the pathogen also supported by the rapid growth of the innoculum of vibrios observed in

[54] (more details to this are indicated in Chapter 6). Assuming that P≪Kp at the endemic
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equilibrium, from (3.3) We obtain

0 = π +wR∗ − β
P∗

K+ P∗ S
∗ − f (H)I∗S∗ − µS∗, (3.39a)

0 = ρ

(

β
P∗

K + P∗ S
∗ + f (H)I∗S∗

)

−Q1 I
∗
s , (3.39b)

0 = (1− ρ)

(

β
P∗

K+ P∗ S+ f (H)I∗S∗
)

− Q2 I
∗
a , (3.39c)

0 = γ1 I
∗
s + γ2 I

∗
a −Q3R

∗, (3.39d)

0 = α1 I
∗
s + α2 I

∗
a − Q4P

∗ (3.39e)

From equations (3.39b) and (3.39c), we obtain the expression of all new infections in terms

I∗s as follows

Q1 I
∗
s

ρ
=

(

β
P∗

K + P∗ S
∗ + f (H)I∗S∗

)

, (3.40)

Q2 I
∗
a

1− ρ
=

(

β
P∗

K + P∗ S+ f (H)I∗S∗
)

. (3.41)

Equating the left hand sides of equations (3.40) and (3.41), we obtain the expression of

asymptomatically infected individuals as a function of those symptomatically infected as

I∗a =
(1− ρ)Q1 I

∗
s

ρQ2
. (3.42)

Using this relation we have,

I∗ = I∗a + I∗s = Φ3 I
∗
s , where Φ3 =

(1− ρ)Q1 + ρQ2

ρQ2
. (3.43)

From equation (3.39d) the endemic equilibrium population of individuals who have recov-

ered can be given respectively as

R∗ =
γ1 Is + γ2 Ia

Q3

= Φ2 Is, where Φ2 =
ργ1Q2 + (1− ρ)γ2Q1

ρQ2Q3
.

(3.44)

Similarly, from equation (3.39e) the equilibrium concentration of the pathogen is given by

P∗ =
α1 I

∗
s + α2 I

∗
a

µp
,

= Φ1 I
∗
s where Φ1 =

ρα1Q2 + (1− ρ)α2Q1

ρQ2Q4

(3.45)

If we substitute equation (3.39b) into equation (3.39c), we obtain, the expression for the sus-
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ceptible population as

S∗ =
π

µ
+

ωR∗

µ
− Q1 I

∗
s

ρ
,

=
π

µ
+

ωΦ2 Is
µ

− Q1 I
∗
s

ρ

=
π

µ
− Φ4 I

∗
s where Φ4 =

Q1

µρ

[

1− ω

(

γ1ρ

Q1Q2
+

(1− ρ)γ2

Q2Q3

)]

. (3.46)

Since the solution of the system (3.3) is only feasible in the invariant region Ω, the expression

(3.46) is only feasible when Φ4 ≥ 0, with equality at the disease free equilibrium. Similarly,

if we substitute for P∗ and I∗a in equation (3.39b), we obtain

[

βΦ1

K+ Φ1 I∗s
+ fhΦ3

]

I∗s S
∗ =

Q1 I
∗
s

ρ
. (3.47)

This implies that one of the roots of the equation is I∗s = 0, which corresponds to the disease

free equilibrium E0 (see expression (3.27)). At this equilibrium point, the expression of S∗ is

equal to Sc (see expression (3.34)). If I∗s 6= 0, we then obtain the expression of S∗ from eq.

(3.47) as

S∗ =
Q1(K+ Φ1 I

∗
s )

βΦ1ρ + ρ(K + Φ1 I∗s ) fhΦ3
. (3.48)

If we equate the equations (3.46) and (3.48), we obtain a quadratic equation of the form

a2 I
∗2
s + a1 I

∗
s + a0 = 0, (3.49)

where the constants are given as

a0 = Q1K(1− R0),

a1 = Q1Φ1 [1− (R03 + R04)] + ρΦ4 (Φ1β + K fhΦ3) ,

a2 =
Φ1Φ2Q1 fh

µ

[

1− ω

(

γ1ρ

Q1Q2
+

γ2(1− ρ)

Q2Q3

)]

> 0.

(3.50)

When R0 is greater than unity, the equation (3.49) has only one positive root. In addition, if

R0 ≤ 1, the equation (3.49) has no positive root. This result leads to the following lemma

Lemma 3.2.1. The dynamical system (3.3), has a unique endemic equilibrium wheneverR0 > 1 and
disease free equilibrium whenever R0 < 1.
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3.3 Numerical results

3.3.1 Parameter estimation

Although not often communicated, there is a lot of uncertainty in the choice of parameter

values for the model. Some of the data from which parameters for models are chosen may

be from experiments, case control studies, clinical trials or surveys among others. All these

methods are not completely error proof much as efforts may be made to minimise possible

errors. It is therefore important to carefully study the disease dynamics, put into consid-

eration individual differences, location, social economic status while selecting parameter

values. In this section therefore, we estimate some of the parameters values from existing

literature in order to parametrize the model. Although some parameters are chosen from

a wide range of studies, most of the parameters chosen are with greater focus to Southern

Africa and more so to South Africa.

The life expectancy of South Africa has been varying over the years and from province to

province [55]. In our estimation of the demographic parameters, we capitalise on KwaZulu

Natal province owing to the fact that it is one of the provinces severely affected by cholera

and most recently the 2000-2002 outbreak. In the research paper by Bertuzzo et al. [45] the

life expectancy of KZN region was taken to be 60 years . However, according to Statistics

South Africa, the general country’s human life expectancy has been varying since 1990 when

it was 62 years to 2007 when it dropped to 50 years [55]. According to the same report, the

life expectancy of KZN for males was 48.8 and 49.1 for the duration 2001-2006 and 2006-2011

respectively. The average life expectancy for females was slightly higher at 50.3 and 50.2

for the years 2001-2006 and 2006-2011 respectively. This rather low life expectancy of KZN

region has also been influenced by the high prevalence of HIV. In our parametrisation of the

model we therefore choose the average life expectancy of 50 years synonymous with that

of sub-Saharan Africa [56]. This value therefore translates in an average mortality rate of

approximately 5.48×10−5 per day.

The survival of the bacteria in the aquatic environment varies with the habitat ranging from

brackish, estuarine waters to highly saline sea and ocean waters. In a study by Bertuzzo et al.

[45] in Thukela basin of KwaZulu Natal, they reported a net mortality rate of µp = 0.228 per

day. Note that the value 0.228 per day corresponds to a net survival time of approximately

5 days. This net survival time seems low with reference to reported values from other stud-

ies. According to Hartley et al. [42], the considered survival of vibrios was 30 days. On

the other hand, Munro and Colwell [57] in their studies where they employed microcosms,
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demonstrated that the bacteria can remain viable for more than 50 days upto 60 days even in

absence of organic nutrients. We note that, even in the wake of hypoxia or extreme oxygen

depletion, V. cholerae can still survive for a long time since they are facultatively anaerobic.

We consider an estimated mortality rate of vibrios to be 0.02 on the interval (0.017− 0.033)

per day corresponding to survival of upto 50 days on average. The lower limit of the inter-

vals corresponds maximum survival of approximately 60 days [57], whereas the upper limit

correspond to low survival of about 30 days [42].

Given the long term survival of V. cholerae in the environment, the disappearance and re-

emergence of cholera disease, the association of the pathogen with zooplankton, phyto-

plankton and copepods, it reasonably indicates that the pathogen is always present in the en-

vironment and some net growth rate associated with its population evolution. In Codeço’s

work when studying the role of the aquatic reservoir in cholera dynamics, she used net

growth rate of V. cholera of 0.73 day1.

Bertuzzo et al. [45] also estimated the additional mortality rate attributed to cholera to be

4.0×10−1 per day. In the study by Bertuzzo et al. [45], the authors did not distinguish the

cholera infected population into symptomatic and asymptomatic. We assume that this value

is related to only the symptomatic individuals since asymptomatic cholera infected individ-

uals are reported to have no cholera aggravated mortality [20, 58]. Studies from different au-

thors indicate that symptomatic and asymptomatic cholera infected individuals have differ-

ent recovery rates. Hendrix [59] reported about studies by Lindenboum and his colleagues

in Pakistan in 1964 who indicated that the average duration of diarrhoea to range between

2.7 to 6.3 days with the average at 4.5 days. From this reported diarrhoeal duration, Neilan et

al. [20] attributed the maximum duration of 6.3 days asymptomatically affected individuals.

This value gives a recovery rate of γ2 = 0.15 day−1, for asymptomatic individuals [20]. In

our model however, we consider a nominal value of γ2 = 0.2 day−1 which corresponds to

the average recovery time of 5 days. This value is well within the range reported by Hendrix

[59] and the period of 3 to 7 days [38] for which copious diarrhoea due to cholera lasts.

The duration of immunity for individuals affected by cholera was estimated to be 9.3±8.3

weeks [58]. If we consider a maximum waning period of 17.6 weeks, this value gives the

minimum waning rate, ω = 8.12×10−3 day−1 which is still within the range considered in

[58].

The symptomatic and asymptomatic individuals have been shown to have variable rates of

shedding the pathogen into aquatic environment. This shedding rate is characterised by the

concentration of vibrios in the stool as well as the length of time for which the individual
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sheds. Where as symptomatic individuals shed large concentration of the pathogen in the

rice water stool, asymptomatic individuals shed relatively lower concentrations. However,

asymptomatic individuals stay infectious for a relatively longer time with lower recovery

rate compared to their symptomatic counterparts. According to Neilan et al. [20], the aver-

age shedding rate of the pathogen obtained from [36, 60, 61] is 0.5 day−1 for asymptomatic

individuals. On the others hand the average shedding rate of 50.0 day−1 has been observed

for symptomatic individuals [20, 60, 61]. King et al. [58] indicated that asymptomatic cholera

infected individuals do not suffer cholera related death. However, in the study by Neilan

et al [20] when comparing two study areas, Bogra and Calcuta, the cholera related mortal-

ity rates (symptomatic) used were 0.240 year−1 and 4.662 year−1 respectively. Owing to the

relatively big difference between the two values, we can claim that cholera related mortality

rates for symptomatic individual varies with the population group affected. It is ideal to

believe that this maybe related to the level of hygiene, healthcare and emergency Medical

care for symptomatic individuals. It is already clear that in communities where the level of

hygiene is very poor, high mortality due to water-borne infections is often not a surprise.

The worst-case scenario exposure of people to contaminated water has been estimated to be

at most once a day [36, 62, 63]. We use a similar value of β = 1 day−1 as the constant contact

rate, i.e at least one contact per day.

Parameter Range Norminal Value Units Source

π 6 day−1 Assumed
w 8.12×10−3 day−1 [58]
β 0-1 1 day−1 [36, 62, 63]
K 106 − 109 106 cells L−1 [36]

µ 5.48×10−5 day−1 [55, 56]
δ1 6.58×10−4 − 0.015 0.012 day−1 [20, 64]
δ2 0 day−1 [20, 58]
γ1 0.031-0.059 0.045 day−1 [20, 64]
γ2 0.16− 0.22 0.20 day−1 [20, 59]
Kp 108 cells L−1 Assumed
α1 0.5 day−1 [36, 60, 61]
α2 50.0 day−1 [20, 60, 61]
r 0.73 day−1 [36]

µp 0.017− 0.033 0.02 day−1 [42, 57]
ρ 0.2 [58]
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3.3.2 Sensitivity analysis

The model system (3.3) has many parameters whose nominal values or parameter ranges

are carefully estimated from published work. Since many of these parameters were not

determined experimentally, their accuracy is not guaranteed. In the same way the chosen

parameter values are not chosen with absolute certainty but with reasonable estimation. It

is therefore necessary to establish the observed responses and influence of such parameters

on the model. Establishment of such responses can be achieved through uncertainty or sen-

sitivity analysis of the model parameters to the disease dynamics in case of an outbreak. We

perform sensitivity analysis to determine the role of different parameter values in the dy-

namics of cholera epidemic. Therefore, sensitivity analysis is a process of ascertaining the

degree to which an input parameter affects the output of the model [65]. Various methods

for sensitivity analysis have been highlighted in [65], including the use sensitivity indexes

and Partial rank correlation coefficients (PRCCs) and their application in previous studies.

In the same line simulation software programs are continuously being developed devoted

to risk and sensitivity analysis. One of the recent developments is SaSAT [66] which uses

the Latin hypercube sampling scheme (LHS). Although the LHS may have limited control

on the accuracy of the model output, it can be reliably used to predict the most influential

parameters. In our model sensitivity analysis, we use the LHS implemented in Matlab to

ascertain the major contributors to the model output in relation to other parameters in the

model. Since we need a baseline or predictor of whether the disease may break out or not

if new infective individuals get into the vulnerable population, we capitalise on the model

basic reproduction number. This is ideal since the reproduction number is the “average

number of secondary cases that an infectious individual may cause if they were introduced

in a purely susceptible population". Since the nominal values of some model parameters are

chosen from a respective parameter range, we set such nominal values as the peak values

during the sampling of the such parameter intervals. For each of these parameter ranges, we

assume statistical independence. We then equitably and simultaneously sample the param-

eter space [8] without replacement. At each run, we perform 1000 simulations and evaluate

the partial rank correlation coefficients (PRCCs) of the parameters of interest. The results of

simulation are given in the Tornado plot, Figure (3.3).

The parameters with negative PRCCs are observed to reduce the severity of the disease if

they increased. On the other hand, the processes which lead to increase in the parameters

with positive partial rank correlation coefficients also aggravate the severity of the disease.

Increased decay of the pathogen, improved hygiene and recovery of both symptomatic and

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3. Transmission dynamics of cholera 45

Figure 3.3: Tornado plot showing some important parameters driving the cholera epidemic.

asymptomatically infected individuals are observed to reduce the severity of the disease

if such parameters are increased. Recovery of infected individuals has a two fold benefit

in the fight against the infection; (i) it leads to reduction the likelihood getting new in-

fections through direct person to person transmission, and (ii) a negligible amount of the

pathogen would be shed into the aquatic reservoir greatly reducing the infection risk, most

especially for the community that may have direct contact with a potentially contaminated

water source. In addition, recovering individuals acquire some immunity to the disease

which only wanes over a reasonable period of time hence reducing the susceptible. On the

other hand, increased growth in the population of vibrios, and increased discharge of fresh

bacteria into the aquatic environment by either the symptomatic or asymptomatic individ-

uals, increase the severity of the infection. From the Figure 3.3, we observe that the level of

hygiene plays a very significant role in reducing spread of the disease. On the contrary, the

growth rate of the pathogen has been observed to be instrumental in aggravating the spread

and severity of the disease.
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Figure 3.4: Scatter plots of parameters with the more negative PRCCs.

Figure 3.5: Scatter plot of the relation-
ship between R0 and the growth rate of
the pathogen, r, parameter with the more
positive PRCC.

3.3.3 Numerical simulations

The model system of equations (3.3) is numerically integrated in python-scipy, using the

standard ordinary differential equations solver odeint.

The plot in Figure 3.6 is obtained by replacing the nominal value of hygiene dependent

contact rate in expression (3.30) with the functional response f (H), for variable H while

keeping other parameters constant. The observed inverse proportionality between R0 and

H, shows the importance of improving hygiene if infections are to be contained or prevented.

From Figure 3.7, with poor hygiene, a negligible number of susceptible individuals is re-

quired for the disease to break out or become endemic. On the contrary, if the level of

hygiene is high, a very big population of susceptible individuals will be required for an

outbreak. Therefore, a high level of hygiene reduces the likelihood of an outbreak of cholera

if new infected individuals are introduced in the community. In Figure 3.7, the values on
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Figure 3.6: R0 as a function of level
of hygiene H. The rest of the pa-
rameter values used are: β = 0.05,
π = 0.9 ∗ 5.8×10−5, µ = 5.8×10−5,
K = 10×6, ρ = 0.2, α1 = 0.05,
α2 = 50, γ1 = 0.25, γ2 = 0.2, r =
0.73, µp = 1.06, ω = 8.12×10−3,
δ1 = 0.022, Kp = 1×108. For these
parameter values, R0 = 1 when
H ≈ 0.463.
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Figure 3.7: Variation of the criti-
cal susceptible population with the
level of hygiene H. The parameter
values used are as follows: β =
0.05, π = 0.9 ∗ 5.8×10−5, µ =
5.8×10−5, K = 10×6,ρ = 0.2, α1 =
0.05, α2 = 50, γ1 = 0.25, γ2 =
0.2, r = 0.73, µp = 1.06, ω =
8.12×10−3, δ1 = 0.022, Kp = 1×108.
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the vertical axis represent arbitrary values not actual numbers of individuals. Therefore, the

major important feature to observe in this figure is the trend in the critical susceptible popu-

lation with the level as the independent variable, which is hygiene in this case. It is obtained

by replacing the nominal value fh in expression (3.34) with the original person-to-person

contact functional response for the specified level of hygiene.

We observe that the outbreak is so explosive at the beginning and then followed by a self-

limiting phase. The explosive nature has been associatedwith the two infectious states of the

pathogen, i.e the hyper-infectious and less infectious states [42]. The hyper-infectious vib-

rios being newly shed into the environment, susceptible individuals would have a higher

potential of contact with such pathogen as opposed to the less hyper-infectious that might

have stayed longer in the environment and whose virulence is relatively low. Although,

at both extreme ends of hygiene level the outbreak is explosive, we observe a faster and
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Figure 3.8: Evolution of the popu-
lation of infectives, for different lev-
els of hygiene H. The rest of the pa-
rameter values used are: β = 0.05,
π = 0.9 ∗ 5.8×10−5, µ = 5.8×10−5,
K = 10×6, ρ = 0.2, α1 = 0.05,
α2 = 50, γ1 = 0.25, γ2 = 0.2, r =
0.73, µp = 1.06, ω = 8.12×10−3,
δ1 = 0.022, Kp = 1×108. For these
parameter values, R0 = 1 when
H ≈ 0.463.
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Figure 3.9: Evolution of the symp-
tomatic population, for different
levels of hygiene H. The parame-
ter values used are as follows: β =
0.05, π = 0.9 ∗ 5.8×10−5, µ =
5.8×10−5, K = 10×6, ρ = 0.2,
α1 = 0.05, α2 = 50, γ1 = 0.25,
γ2 = 0.2, r = 0.73, µp = 1.06, ω =
8.12×10−3, δ1 = 0.022, Kp = 1×108.
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higher explosive nature in case of very poor hygiene (see Figures 3.8, 3.9 and 3.10). At the

self-limiting phase which happens near the endemic steady state, it is clear that the infection

will have a more devastating effect in the case when the hygiene levels are appalling. The

self-limiting phase observed in Figures 3.8, 3.9 and 3.10 is a result of depletion of the suscep-

tible population which reduced the likelihood of person to person contact as well as contact

with the aquatic reservoir. We note also that the ratio of asymptomatic to symptomatically

infected individuals is four to one and this is maintained for either level of hygiene. For this

comparison see, the infected population phase space trajectories in Figures 3.9 and 3.10. Our

model gives uni-modal outbreak with no recurrences. We acknowledge the fact that in some

areas, outbreaks have bimodal patterns with variable inter-annual variability [9, 67]. How-

ever, these patterns depend on the parameter values specific to the locations whose epidemic

is being modelled. For the Figures 3.8, 3.9 and 3.10 the given values of H = [0.2, 0.4, 0.6, 0.9]
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Figure 3.10: Evolution of the
asymptomatic population, for dif-
ferent levels of hygiene H. The pa-
rameter values used are as follows:
β = 0.05, π = 0.9 ∗ 5.8×10−5,
µ = 5.8×10−5, K = 10×6,ρ = 0.2,
α1 = 0.05, α2 = 50, γ1 = 0.25,
γ2 = 0.2, r = 0.73, µp = 1.06, ω =
8.12×10−3, δ1 = 0.022, Kp = 1×108.
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have associated R0 = [27.4, 14.1, 3.6, 0.87]. This clearly affirms the importance of hygiene

improvement in the fight against water-borne infections. We assert therefore that, although

sporadic cases of cholera may occur with high levels of hygiene in place, an outbreakmay be

less likely. This is due to the fact that, at high hygiene levels, the health systems of the com-

munity affected would be having effective control, surveillance and proper ways of manag-

ing sporadic cases. This would result in lower subsequent generations of the infective than

their predecessors, hence containing the impending outbreak.
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(a) 3D plot of R0 as a function hygiene level and con-
tact rate with the contaminated source
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(b) Contour plot of R0 as a function hygiene level and
contact rate with the contaminated source

Figure 3.11: Disease threshold as a function of water-person and person-to-person contact
rates

The worst case scenario in case of epidemic outbreak may be experienced when the level of

hygiene is poor; maximizing person-to-person contact rate and when there is no accesses to
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clean water; which maximises disease transmission through contact with the contaminated

reservoir. The arbitrary values of R0 on the R0-axis in Figure 3.11(a) indicate the corre-

sponding relationship between hygiene level and contact with a contaminated reservoir. At

high values ofR0, the outbreak may devastate the affected community and at low values of

R0, the outbreak can be contained. Note that the contact rate and level of hygiene may not

be discrete but on a continuous scale (see Figure 3.11(b)) of time. Therefore, a combination of

factors may result into a disease threshold in a particular colour band. Given reliable data on

cholera cases and influential factors, credible values of the disease threshold can be explicitly

determined.
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Figure 3.12: Phase-portraits for the susceptible and infected population, at low and high
hygiene levels

It can be observed from the phase-portraits (Figures 3.12(a) and 3.12(b)) that lim inf
t→∞

S(t) > 0

irrespective of the level of hygiene. We note that, from Figure 3.12(b) that all solutions end

on the susceptible population’s-axis (I → 0 as t → ∞). On the other hand, when the level

of hygiene is low, solutions approach a non negative steady state which is dependent on the

initial conditions. At both low and high levels of hygiene, the higher the immunologically

naive population there is, the more devastating the infection can be. Although in both cases

the outbreakmay be explosive in nature, it is way so devastating when the level of hygiene is

poor. At high levels of hygiene, the solution trajectories starting in Ω, approach the disease

free equilibrium. This reiterates the importance of good hygiene practices in containing

cholera spread.
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3.4 Conclusion

In this Chapter, a simple deterministicmodelwhich incorporates hygiene dependent person-

to-person contact rate was presented and analysed. Important mathematical features of the

models such as the threshold for the epidemic, steady states, positivity and boundedness of

solutions as well as the region of biological significance were determined. The model was

shown to have a disease free equilibrium which is both locally and globally asymptotically

stable when the reproduction number is less than unity. This disease free equilibrium is

unstable when the disease threshold is greater than unity. The model has a unique endemic

equilibrium for R0 > 1.

Sensitivity analysis of the model parameters was carried out using the basic reproduction

number as the threshold value with sampling based on the Latin hypercube Sampling scheme.

The output of results of sensitivity analysis were indicated in the Tornado plot as well as the

scatter plots. The tornado plot indicates relative sensitivity of the parameters based on the

obtained values of partial rank correlation coefficients. Of all the parameters, the level of

hygiene with a PRCC of less than −0.6 and the decay rate of the pathogen with PRCC of

approximately −0.5, are the most sensitive parameters. These two are therefore influen-

tial in containing the epidemic if they are increased owing to their negative PRCCs. Of the

parameters with positive PRCCs, the growth rate of the pathogen was shown to be more

influential but with a slightly lower PRCC of approximately PRCC ≈ 0.4. Therefore, re-

ducing the growth of the pathogen, would help contain the epidemic. In general, the level

of hygiene has been shown to be instrumental if water-borne infections are to be contained.

Therefore, this inverse relationship exhibited between a high level of hygiene and the likeli-

hood of disease outbreak should be exploited, to prevent infections. Although many factors

are influential in reducing spread of cholera, these factors such as recovery of infected in-

dividuals, decay of the pathogen which when increased reduce the severity of the infection

may not easily be controlled. It is therefore, vital to focus on the preventive measures related

to improved hygiene and general hand-hygiene.

In our results, there was no observable significant difference in the concentration of the

pathogen with varying levels of hygiene, when the growth of the pathogen was assumed

to be either exponential or logistic. The pathogen growth is also dependent on the balance

between its intrinsic growth rate and mortality rate and this would result in either exponen-

tial decay or increase. The main observed difference in the two cases is simply faster decay

when in the case of pathogen logistic growth as opposed to when the growth terms is as-

sumed to be exponential. The lack of significant difference in pathogen concentration with
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varying hygiene level is partly because, the major rates at which the pathogen is shed into

the aquatic environment are constant and do not depend on the level of hygiene in our case.

This same low sensitivity has been detected with respect to disease threshold shown in Fig-

ure 3.5. This could be one of the reasons that no significant emphasis is put on investigating

the growth of the pathogen in the aquatic environment in some previous work [36, 42, 50]

among others.

We acknowledge the fact that this work may have shortfalls as follows. The models does

not take into account vaccination. However, vaccination is recommended as a preventive

measure for cholera. Some emphasis on vaccination is given in Chapter 5 with respect to op-

timal control. In addition the model does not consider the role played by the bacteriophage

in reducing the concentration of vibrios [37, 38], which in turn reduces the probability of

immunologically naive individuals getting infected. The model considers a uni-modal epi-

demic although in some cases the cholera epidemic has been observed to be recurrent with

reducing severity. Proposed improvements of the model include, consideration of a combi-

nation of hygiene, vaccination and biological control with vibrio specific bacteriophage.
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Chapter 4

Metapopulation model for cholera
transmission

4.1 Introduction

Similar to ecological studies of persistence and extinction of species, there is great interest in

ascertaining why infections persist in the population. This concern has shaped the history of

epidemiological research as well as population dynamics studies. For a long time now, ho-

mogeneity of the population in dynamics of infectious diseases has always been assumed. It

however does not account for vital heterogeneous aspects related to spatial structure. When

spatial information is required, or when spatial homogeneity does not adequately account

for the observed behaviour or disease transmission, then spatial modelling becomes handy

in accounting for spatially distinct individual characteristics. Some of these characteristics

include differences in mixing behaviour as well as migration which results into heterogene-

ity [68]. Spatial structure and the spatial scales roughly operate in three broad classes of

heterogeneities which are as described in [69];

1. environmental (covering geography and space including climate and hydrological fac-

tors)

2. contact (which involves contact patterns betweenhosts and pathogens includingmove-

ment of hosts), and

3. host/pathogen heterogeneity (related to genetic factors and resistance to the disease)

It is for this reason that spatial modelling has taken great shape in the study of disease

dynamics while accounting for the degree of uniqueness in one patch relative to another.

53
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Different approaches used in spatial modelling range from the use of systems of reaction-

diffusion equations (RDEs) [52] to meta-population model framework. Use of RDEs is often

faced with a challenge of complexity, and is based on an assumption of continuous move-

ment of organisms in space in a random walk fashion which may not be entirely realistic

[68]. Meta-population (patch) models are however, based on the assumption of homogene-

ity within a patch and spatial heterogeneity is accounted for by migration between patches.

This assumption is plausible since humans often frequent a home range, as opposed to ran-

dom walk which is assumed in RDEs. We note that the above two mentioned approaches

may not be the only ways in which to account for spatial heterogeneity. For instance, Lloyd

and May [70] in their multi-patch model accounted for heterogeneity through mixing of in-

dividuals from separate patches without explicit migration.

Populations in spatially disjunct locations exhibit spatial synchrony if they fluctuate in a

similar manner [71]. Synchronous fluctuation is characterised by coincident changes in the

abundance, population cycles or other varying characteristics of geographically adjunct pop-

ulations. These fluctuations in populations may be predominantly quantitative or qualita-

tive. According to Matter [72], populations or local populations within a metapopulation

often vary together in population size. In addition, in theoretical assessment of synchrony,

identical ability of populations to absorb and produce dispersing individuals is assumed. In

ecological studies, spatial synchrony is attributed to dispersal (migration) or environmen-

tal stochasticity (“moran effect”). In accordance with the Moran effect, “if two populations

have the same density-dependent structure, then correlated density-dependent structures

can bring fluctuations in populations into synchrony [73]". In this effect therefore, the dy-

namics of the population may congruently depend on some asynchronous exogenous fac-

tors which may include temperature and rainfall among others. These factors are important

drivers of the cholera epidemic most especially in areas where it is endemic. Migration has

also been observed as a potential mechanism by which an infection may be transmitted from

one community to another. However, there has been no explicit study on the would be antic-

ipated consequences of migration between communities in times of cholera epidemic. Our

study is motivated by the recent major cholera out break in South Africa during 2000-2002,

that spread to eight out of the nine provinces [74] in the country. See also Table 1.2 for the re-

ported cases and the associated case fatality ratios. The provinces are not all connected by a

common river network and neither did the epidemic start at the same time in all the affected

provinces. First cases were reported in KwaZulu Natal province and later in other regions.

Since the disease is water-borne and human-to-human transmission is known as a potential

route, this raises speculations that human movement must have played a significant role in
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disease transmission. In the recent work by Bertuzzo et al. [45], a spatial transmission model

developed and analysed indicated hydrologic networks and human mobility as drivers of

the dispersal of the pathogen.

The work in this chapter is motivated by the desire to understand the possible effect of

migration between communities on the spread of cholera. Although substantial work has

been done in the study of cholera transmission dynamics, no explicit consideration of meta-

population study has been previously done. We consider an SIR meta-populations model

for cholera describing disease transmission between two communities (patches) connected

by a transport network. Although, the communities are assumed to be connected with ex-

change of populations between communities, cross community transmission is assumed not

to exist. In the cholera transmission dynamics which involve both symptomatically infected

and asymptomatic carriers, we assume that it is only the asymptomatically infected who can

move from one community to another, most especially if the separating distance is large. In

general the transmission dynamics of the vibrios in humans in a metapopulation framework

may be complex due to the local and long-range movements of individuals. In addition, the

non human source of the vibrios i.e that aquatic reservoir is also complex. This is depended

on the rate at which the water is flowing, the volume which is related to the dilution of the

pathogen concentration, its virulence and the salinity of the aquatic reservoir. In addition it

is important to note that the movement between populations depends on the density of the

population and the distance separating the adjunct communities. However, incorporating

all factors, in an all inclusive model can be a daunting task and the resulting model may be

mathematically intractable.

4.2 Model formulation

We consider a simple SIR meta-populations model for cholera transmission dynamics. The

model describes two sub-populations which represent two communities connected by the

transport network. In the cholera transmission dynamics which involves both symptomatic

and asymptomatic (healthy) vibrio carriers, we assume that it is only the healthy carriers

who can move from one place to another, most especially if the separating distance is large.

The restriction on the movement ability is due to the fact that, once an individual consumes

the pathogen in water or contaminated food, the symptoms appear within a short period of

time. This may be much shorter than the time required for an individual to move from one

population sub-group to another. This condition applies well to inter-provincial movements.

The inter-provincial movement is predominantly by road transport. Transmission resulting
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from individuals travelling by air transport means is assumed to be less likely, given the

conditions and sanitary weaknesses of how cholera is easily spread. The major exception

here could be with migrant workers who could be living in poor conditions with no access

to clean, treated water. Sometimes the transmission could occur en route at stop overs as

travellers buy food staffs along the route. In general the transmission dynamics of the vibrios

in humans is complex due to the local and long-range movements of individuals. In addi-

tion, the non human source of the vibrios i.e the aquatic reservoir is also complex. This is

depended on the rate at which the water is flowing and the and the volume, which is related

to the dilution of the pathogen, its virulence and the salinity of the aquatic reservoir. In the

same way it is important to note that the movement between populations depends on the

size as well as the distance between the populations.

4.3 The mathematical model

In the model formulation, the general population considered is divided in two main com-

munities and each community divided into three compartments with reference to vibrio

transmission and disease states of the individuals. The compartmentalisations in a single

community involves individuals who are immunologically naive (Susceptible population) S,

those infected I and those individuals who have recovered R but with temporary immunity.

Within a community, the subpopulations within a compartment are assumed to be homo-

geneous and thus mix homogeneously. In addition, we assume that in a case when cholera

is endemic, acquired immunity wanes in a relatively shorter time than the duration of the

infection in the population. This motivates the need to consider a SIRSmodel for the dynam-

ics within a community considered, in the case of endemic cholera. Our metapopulations

model for cholera accounts for two movement patterns. First, the movement of susceptible

individuals from one community to the other. In this respect susceptible individuals can

move from one community to the other and back. During the migration of susceptible indi-

viduals, we assume that no infection occurs en route. The recruitment of new susceptibles

into communities is at a rates π1 and π2 for the first and second communities respectively.

This recruitment is mainly through immigration and new births during the modelling time.

Once individuals are away from their home community, they follow the disease dynam-

ics of destination community. Secondly, the movement of infective individuals is typically

by those who do not show symptoms. These play a vital role in metapopulation transmis-

sion modelling of cholera dynamics since they contribute to the disease transmission for a

relatively long time. The role played by those infected but without symptoms may range
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from person to person transmission as well as shedding of the pathogen into the aquatic

reservoir. The overall dynamics of the general population are accounted for by the contri-

bution from both subpopulations. We assume that the recovered individuals are more likely

to be confined in their home communities as they would be recovering from the trauma

and weakness caused by the disease. Therefore, movement of recovered individuals across

communities is less likely. The susceptible population is depleted following contact with the

aquatic reservoir at rate β1 and β2 as well as through person-to person contact at rates α1 and

α2 in the first and second community respectively. We note that an individual must consume

atleast the concentration (K) of vibrios equivalent to an amount that increases the possibility

of being infected to about 50%, if they are to contract the infection [36]. The infected indi-

viduals recover from cholera at rates γ1 and γ2 respectively for the two communities. The

recovered population in each of the communities acquire some immunity due to exposure

to cholera but this immunity wanes at a similar rate ω. Individuals in each compartment

suffer natural mortality at rates µ1 and µ2 for the first and second community respectively.

Infected individuals suffer disease inducedmortality at rates δ1 and δ2 for the two communi-

ties respectively. Infected individuals in the first and second communities shed the pathogen

into the aquatic environment at rates σ1 and σ2 respectively. This shedding rate varies with

communities depending on the level of sanitation, infrastructure development and general

lifestyle. The flow diagram of disease progression is given in Figure 4.3.

S1 I1 R1

S2
I2 R2

B2

B1

π2

π1

µ1

µ2R2

R1µ1

µ2S2

S1

γ1

γ2

I1

I2

σ2

σ1I1

I2

ω

ω

R

R2

1

(µ1+δ1)I1

(µ2+δ2)I2

b2I2b1I1a2S2a1S1

λ1

λ2

Figure 4.1: Flow diagram of disease dynamics in two sub-populations
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The model system of equations for the first sub-population is given by

dS1
dt

= π1 + a2S2 + ωR1 − β1
B1

K+ B1
S1 − α1 I1S1 − (a1 + µ1)S1,

dI1
dt

= β1
B1

K+ B1
S1 + α1 I1S1 + b2 I2 −Q1 I1,

dR1

dt
= γ1 I1 − (µ1 + ω)R1,

dB1

dt
= σ1 I1 − Q2B1

(4.1)

and for the second sub-population given by

dS2
dt

= π2 + a1S1 + ωR2 − β2
B2

K+ B2
S2 − α2 I2S2 − (a2 + µ2)S2,

dI2
dt

= β2
B2

K+ B2
S2 + α2 I2S2 + b1 I1 −Q3 I2,

dR2

dt
= γ2 I2 − (µ2 + ω)R2,

dB2

dt
= σ2 I2 − Q4B2,

(4.2)

where Q1 = (µ1 + δ1 + γ1 + b1), Q2 = (µp − g1), Q3 = (µ2 + δ2 + γ2 + b2), Q4 = (µp − g2).

The initial conditions of the model are such that S1(0) > 0, I1(0) ≥ 0, R1(0) ≥ 0 and B1(0) ≥
0 for the first patch and S2(0) > 0, I2(0) ≥ 0, R2(0) ≥ 0 and B2(0) ≥ 0 for the second patch.

The local population are connected by migration of individuals from one sub-population to

the next and back. Some of the key issues of interest include extinction of the disease in

one population and re-emergence in the other. In this respect the scale of the infection may

differ between metapopulations. The population of community 1, i.e N1 evolves according

to the sum of the first three equations of system (4.1) and N2 evolves according to the sum

of the first three equations of system (4.2). If we consider each of the sub-populations as a

closed community with respect to the adjacent community, i.e, there are no emigrations and

immigrations of individuals, the evolution of each of the sub- populations is given by

dN1

dt
= π1 − µ1N1 − δ1 I1≤π1 − µ1N1, (4.3a)

dN2

dt
= π2 − µ2N2 − δ2 I2≤π2 − µ2N2. (4.3b)

The solution to each of the equation in system (4.3) is given by Ni≤πi
µi
+
(

N0i − πi
µi

)

e−µit,

where N0i are the initial populations for i = {1, 2}. The solution of all the equations from

systems (4.1) and (4.2) all remain non negative for all t ≥ 0. The total population (N1,N2)

in each of the sub-populations is bounded by πi
µi
, for i = {1, 2}. The total population in both
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sub populations is given by N = N1 + N2 such that the evolution of the total time over a

specified period is given by

dN

dt
≤ π1 + π2 − (µ1N1 + µ2N2). (4.4)

If we let µ⋆ = min{µ1, µ2}, then it can be shown that

lim sup
t→∞

N ≤ π1 + π2

µ⋆
. (4.5)

From the last equation of system (4.1) and using the upper bound on the total population in

equation (4.5), the evolution of vibrios B1 satisfy the inequality

dB1

dt
≤ σ1

(

π1 + π2

µ⋆

)

− Q2B1. (4.6)

If we assume that B1(0) = B10, then we have

B1(t) ≤
σ1
Q2

(

π1 + π2

µ⋆

)

+

(

B10 −
σ1
Q2

(

π1 + π2

µ⋆

))

e−Q2t.

This implies that

lim
t→∞

B1(t) =
σ1
Q2

(

π1 + π2

µ⋆

)

.

Using a similar approach with the fourth equation of system (4.2) and that B2(0) = B20, it

can be shown that

B2(t) ≤
σ2
Q4

(

π1 + π2

µ⋆

)

+

(

B20 −
σ2
Q4

(

π1 + π2

µ⋆

))

e−Q4t,

and that

lim
t→∞

B2(t) =
σ2
Q4

(

π1 + π2

µ⋆

)

.

Therefore, the phase space of the model is given by

Ω :=

{

(S1, I1, R1, B1, S2, I2, R2, B2) : S1 + I1 + R1 + S2 + I2 + R2≤
π1 + π2

µ⋆

}

. (4.7)

The solutions in Ω are all non negative and bounded. Hence the domain of biological signifi-

cance is positively invariant and attracting. Therefore all solutions starting in Ω remain in Ω.

The guide to the proof of positivity and boundedness of solution can be found in [75, 76, 77].
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4.4 Equilibrium points

The model has four equilibrium points given by

E0 = {S∗1 , 0, 0, 0, S∗2 , 0, 0, 0} ∈ R8
+, (4.8a)

E1 = {S∗∗1 , I∗∗1 , R∗∗
1 , B∗∗

1 , S∗∗2 , 0, 0, 0} ∈ R8
+, (4.8b)

E2 = {S̄∗1, 0, 0, 0, S̄∗2, Ī∗2, R̄∗
2, B̄∗

2} ∈ R8
+, (4.8c)

E3 = { ¯S∗∗1 , ¯I∗∗1 , ¯R∗∗
1 , ¯B∗∗

1
¯S∗∗2 , ¯I∗∗2 , ¯R∗∗

2 , ¯B∗∗
2 } ∈ R8

+, (4.8d)

of which E0 is the disease free equilibrium. The equilibrium points E1 and E2 are referred to

as the first and second boundary endemic equilibria, whereas E3 is referred to as the interior

endemic equilibrium.

The disease free equilibrium E0 in both sub-populations is obtained by reducing the systems

of equations (4.1) and (4.2). At this equilibrium, we also assume that in both the accessed

aquatic environments, there is no pathogen. Therefore, the systems of equation (4.1) and

(4.2) reduce to

dS1
dt

= π1 + a2S2 − (µ1 + a1)S1,

dS2
dt

= π2 + a1S1 − (µ2 + a2)S2.

(4.9)

Equating the right hand side of the system of equations (4.9) to zero and solving for the

equilibrium points we obtain

S∗1 =
π1(a2 + µ2) + a2π2

µ1µ2 + µ1a2 + a1µ2
, S∗2 =

π2(a1 + µ1) + a1π1

µ1µ2 + µ1a2 + a1µ2
. (4.10)

4.4.1 The reproduction number

The reproduction number for the model is obtained using the next generation method de-

scribed in [51]. If the infection is existent in a single isolated patch, then the corresponding

threshold numbers for its persistence is given by

R01 =
π1(α1Q2K+β1σ1(µ1+δ1+γ1))

µ1(µ1+δ1+γ1)Q2K
, and R02 =

π2(α2Q4K+β2σ2(µ2+δ2+γ2))
µ2(µ2+δ2+γ2)Q4K

(4.11)

respectively for the first and second community. Such values, R01 and R02 of the disease

threshold apply to completely isolated communities. On the contrary, if the infection exists

in a single community which is connected to another patch through movement, the phe-
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nomenon related to the movement of individuals should be reflected in the disease thresh-

old.

When the communities are connected by migration, the community specific reproduction

numbers are given by

R01M =
(π1(µ2 + a2) + a2π2)(β1σ1 +Q2α1K)

Q1Q2(µ1 + a1)(µ2 + a2)(1− Φ1)K
and

R02M =
(π2(µ1 + a1) + a1π1)(β2σ2 +Q4α2K)

Q2Q4(µ1 + a1)(µ2 + a2)(1− Φ1)K
,

for first and second community respectively, where

Φ1 =
a1a2

(µ1 + a1)(µ2 + a2)
< 1.

The term Φ1 =
a1

µ+a1
· a2

µ2+a2
indicates the fraction of immunologically naive individuals who

move from either the first community or the second and back. The values 1
µ1+a1

, 1
µ2+a2

indicate the average time individuals in compartments S1 and S2 stay in their respective

compartments. Therefore, (1− Φ1) indicates the fraction of individuals who do not cycle

between compartments S1 and S2. The model reproduction number R0M, is given as the

maximum of the patch specific reproduction numbers

R0M = max{R01M ,R02M}. (4.12)

Global stability of the disease free equilibrium E0

Lemma 4.4.1. The disease free equilibrium E0 is globally stable whenever, R0M < 1 and unstable
otherwise.

Let V = θ1 I1 + θ2B1 + θ3 I2 + θ4B2 be a candidate Lyapunov function. The constants θi for

i = 1, 2, 3, 4 are non negative. We can find the constants θ1 such that the Lyapunov candidate

is positive definite. The derivative of the Lyapunov function is given by

dV

dt
= θ1

dI1
dt

+ θ2
dB1

dt
+ θ3

dI2
dt

+ θ4
dB2

dt
,

= θ1

[

β1
B1

K1 + B1
S1 + α1 I1S1 + b2 I2 − b1 I1 − (µ1 + δ1 + γ1)I1

]

+ θ2 [σ1 I1 −Q2B1]

+ θ3

[

β2
B2

K2 + B2
S2 + α2 I2S2 + b1 I1 − b2 I2 − (µ2 + δ2 + γ2)I2

]

+ θ4 [σ2 I2 − Q4B2] .

We note that for all t ∈ [0, t), B1
K+B1

<
B1
K and B2

K+B2
<

B2
K . From the disease free equilibrium,
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we can re-write the values for susceptible individuals as

S∗1 =
π1(a2 + µ2) + a2π2

(µ1 + a1)(µ2 + a2)(1− Φ1)
, S∗2 =

π2(a1 + µ1) + a1π1

(µ1 + a1)(µ2 + a2)(1− Φ1)
, (4.13)

where

Φ1 =
a1a2

(µ1 + a1)(µ2 + a2)
< 1.

Therefore, the derivative of the Lyapunov function satisfies the inequality

dV

dt
≤
[

θ1
β1S

∗
1

K
− θ2Q2

]

B1 + [θ1α1S
∗
1 − θ1Q1 + θ2σ1] I1

+

[

θ3
β2S

∗
2

K
− θ4Q4

]

B1 + [θ3α2S
∗
2 − θ3Q3 + θ4σ2] I2.

We now set the coefficients to B1 and B2 to zero and evaluate to obtain

θ1 = KQ2, θ2 = β1S
∗
1 , θ3 = KQ4 and θ4 = β2S

∗
2 . (4.14)

We then use the coefficients obtained (4.14) into the candidate Lyapunov function. The

derivative of the resulting Lyapunov function is given by

dV

dt
≤ KQ2

[

β1
B1

K1
S∗1 + α1 I1S

∗
1 + b2 I2 − b1 I1 − (µ1 + δ1 + γ1)I1

]

+ β1S
∗
1 [σ1 I1 − Q2B1]

+ KQ4

[

β2
B2

K
S∗2 + α2 I2S

∗
2 + b1 I1 − b2 I2 − (µ2 + δ2 + γ2)I2

]

+ β2S
∗
2 [σ2 I2 − Q4B2]

Collecting like terms, we obtain

dV

dt
≤ [S∗1(β1σ1 + Q2α1K)− KQ1Q2] I1 + [S∗2(β2σ2 + Q4α2K)− KQ3Q4] I2

= KQ1Q2

[

(π1(µ2 + a2) + a2π2)(β1σ1 + Q2α1K)

Q1Q2(µ1 + a1)(µ2 + a2)(1− Φ1)K
− 1

]

I1

+ KQ3Q4

[

(π2(µ1 + a1) + a1π1)(β2σ2 + Q4α2K)

Q3Q4(µ1 + a1)(µ2 + a2)(1− Φ1)K
− 1

]

I2

= KQ1Q2 (R01M − 1) I1 + kQ3Q4 (R02M − 1) I2.

We note that whenever R01M < 1 and R02M < 1 then
dV

dt
< 0. Equality holds when

R01M = R02M = 1 or when I1 = I2 = 0. Therefore, by the LaSalle Invariance principle [53],

the disease free equilibrium is globally stable wheneverR0 < 1. This completes the proof.
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4.4.2 Endemic steady state E1

Lemma 4.4.2. The model system (4.1) and (4.2) has a unique boundary endemic equilibrium E1 in
Ω whenever R01M > 1 and R02m < 1.

Lemma 4.4.2 implies that cholera persists in the first sub-population but dies out in the sec-

ond sub-population.

Proof. We note that with absence of the infections in the second sub-population, then I2 = 0.
Then



































π1 + a2S
∗∗
2 + ωR∗∗

1 =
(

β1
B∗∗
1

K+B∗∗
1
+ α1 I

∗∗
1

)

S∗∗1 + (a1 + µ1)S
∗∗
1 ,

(

β1
B∗∗
1

K+B∗∗
1
+ α1 I

∗∗
1

)

S∗∗1 = Q1 I
∗∗
1 ,

γ1 I
∗∗
1 = (µ1 + ω)R∗∗

1

σ1 I
∗∗
1 = Q2B

∗∗
1

π2 + a1S
∗∗
1 = (µ2 + a2)S∗∗2

(4.15)

From the fifth equation of (4.15), S2 can be given as

S∗∗2 =
π2 + a1S

∗∗
1

µ2 + a2
. (4.16)

Similarly, from the fourth and the third equations of (4.15), we obtain

B∗∗
1 =

σ1 I
∗∗
1

Q2
, (4.17)

R∗∗
1 =

γ1I
∗∗
1

µ1 + ω
respectively. (4.18)

When we substitute (4.17) into the second equation of (4.15), we obtain

(

β1σ1 I
∗∗
1

Q2K+ σ1 I
∗∗
1

+ α1 I
∗∗
1

)

S∗∗1 = Q1 I
∗∗
1 . (4.19)

This gives I∗∗1 = 0 as one of the solutions. This solution corresponds to the disease free equi-
librium (4.8a). If I∗∗1 6= 0 the other solution gives the relationship between the susceptible
population S∗∗1 and the population of infected I∗∗1 in metapopulation one such that

S∗∗1 =
Q1Q2K +Q1σ1 I

∗∗
1

(βσ1 + α1Q2K) + α1σ1 I
∗∗
1

(4.20)

If we substitute for B∗∗
1 , and R∗∗

1 in the first equation of (4.15), we obtain

Φ3 = Q1(1− Φ2)I
∗∗
1 + (µ1 + a1)(1− Φ1)S

∗∗
1 , (4.21)
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where

Φ3 =
π1(µ2 + a2) + a2π2

µ2 + a2
, Φ2 =

ωγ1

(µ1 + ω)Q1
.

The terms γ1
Q1

and ω
µ1+ω indicate fraction of individuals who move out of the compartments

I1 and R1 respectively. We note that, since there is no direct reverse route from R1 to I1, there
is no direct cycling of individuals between these two compartments.

Thenwe substitute for S1 (equation (4.20)) into equation (4.21) to obtain a quadratic equation
given by

A2 I
2
1 +A1 I1 +A0 = 0 (4.22)

where










A2 = α1δ1Q1(1− Φ2)

A1 = Q1(Φ2)(β1σ1 + α1Q2k) + σ1Q1(µ1 + a1)(1− Φ1)(1−R01c)

A0 = Q1Q2(µ1 + a1)(1− Φ1)k (1−R01m)

where

R01M =
Φ3(β1σ1 + α1Q1k)

Q1Q2(µ1 + a1)(1− Φ1)k
, and R01c =

Φ3α1

Q1(µ1 + a1)(1− Φ1)

We note that the solution of the polynomial (4.22) depends on the signs of A1 and A0. We
there for have the following observations

• when A0 < 0 (i.e whenR01M > 1) we have exactly one solution for all values of A1.

• When A0 > 0 (i.e when R01M < 1) we have no positive solution if A1 > 0 and two
distinct positive roots when A1 < 0.

Therefore, when R01M > 1 we have a unique disease persistent equilibrium localised in
sub-population 1.

4.5 Local stability of the endemic equilibrium E1

We use the center manifold theory (CMT) described in [78]to ascertain whether the bound-

ary equilibrium E1 is locally stable. We not that if the disease is localised only in the first

community, we assume no immigration of infects from the second community as well as no

pathogen exists in that community. Let us consider the system of equations (4.1) and the first

equation of system (4.2) with the bifurcation parameter φ such that

dx

dt
= f (x, φ), f : R5 × R → R and f ∈ C2(R5 × R). (4.23)
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Assume that 0 is a non-hyperbolic steady state of the first community, then f (0, φ) = 0 for

all φ. Let the linearisation matrix, A be such that

A = Dx f (0, 0), (4.24)

has a left eigenvector denoted by y and the right eigenvector denoted by v. Then the local

dynamics of the model around 0 is totally governed by a and b [78, 79], where

a = ∑
k,i,j=1

ykvivj
∂2 fk

∂xi∂xj
(0, 0) (4.25)

b = ∑
k,i,j=1

ykvi
∂2 fk

∂xi∂φ
(0, 0) (4.26)

According to [78], the local dynamics of the model around 0 is determined by the signs of

a and b. We detail the condition on the signs of a and b and the bifurcation parameter for

convenience of interpretation of the stability.

i. a > 0, b > 0, when φ < 0 with |φ| ≪ 1, 0 is locally asymptotically stable, and there

exists a positive unstable equilibrium; when 0 < φ ≪ 1, 0 is unstable and there exists a

negative and locally asymptotically stable equilibrium.

ii. a < 0, b < 0, when φ < 0 with |φ| ≪ 1, 0 is unstable; when 0 < φ ≪ 1, 0, is locally

asymptotically stable, and there exists a positive unstable equilibrium.

iii. a > 0, b < 0, when φ < 0 with |φ| ≪ 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ ≪ 1, 0 is stable and a positive

unstable equilibrium appears.

iv. a < 0, b > 0, when φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive

and locally asymptotically stable.
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Let us now redefine the state variables (S1, I1, R1, B1, S2) as (x1, x2, x3, x4, x5). Then the asso-

ciated system of equations obtained from systems (4.20) and (4.38) is given by

dx1
dt

= f1 = π1 + a2x5 + ωx3 − β1
x4

K+ x4
x1 − α1x2x1 − (a1 + µ1)x1

dx2
dt

= f2 = β1
x4

K+ x4
x1 + α1x2x1 − Q1x2,

dx3
dt

= f3 = γ1x2 − (µ1 + ω)x3,

dx4
dt

= f4 = σx2 − Q2x4,

dx5
dt

= f5 = π2 + a1x1 − (a2 + µ2)x5.

(4.27)

We evaluate the bifurcation parameter φ by equating R01m to one to obtain

φ = β1
∗ =

Q1Q2(µ1 + µ1)(µ2 + µ2)(1− Φ1)K− Q2α1K(π1(µ2 + a2) + a2π2)

σ1(π1(µ2 + a2) + a2π2)
. (4.28)

We linearise the system of equations (4.27) to the first community at the disease free equilib-

rium and with the bifurcation parameter φ to obtain

J(E1) =



















−(a1 + µ1) −α1S
∗
1 ω

−φ∗S∗1
K a2

0 −(Q1 − α1S
∗
1) 0

φ∗S∗1
K 0

0 γ1 −(µ1 + ω) 0 0

0 σ1 0 −Q4 0

a1 0 0 0 −(a2 + µ2)



















. (4.29)

The characteristic polynomial of the matrix (4.29) is given by

P(λ) = (λ + µ1 + ω)
(

λ4 + G3λ3 + G2λ2 + G1λ + G0

)

= 0, (4.30)

where














































G0 = (µ1 + a1)(µ2 + a2)(1− Φ1)
[

Q1Q2 −
(

α1Q2 +
σ1φ∗

K

)

S∗
]

,

G1 = (µ1 + a1)(µ2 + a2)(1− Φ1)
[

Q2 + Q1

(

1−Rp
01M

)]

,

G2 = (µ1 + a1)(µ2 + a2)(1− Φ1) + (µ1 + a1)σ1 + (µ2 + a2)Q2

+Q1(µ1 + a1 + µ2 + a2)
(

1−Rp
01M

)

G3 = µ1 + a1 + µ2 + a2 + Q1

(

1−Rp
01M

)

,

and Rp
01M =

π1(µ2 + a2) + a2π2

Q1(µ1 + a1)(µ2 + a2)(1− Φ1)
.

Substituting for φ∗ and S∗ in the expression for G0, we obtain G0 = 0. In addition, close
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to the disease free equilibrium, Rp
01M is less than one and the coefficients G1, G2, G3 of the

polynomial (4.30) are all positive. Therefore, using Descartes rule of signs, the resultant

characteristic polynomial gives a zero eigenvalue and the rest of the eigenvalues are all neg-

ative. The matrix (4.29) has left eigenvectors y = (y1, y2, y3, y4)
T corresponding to the zero

eigenvalue, where















































y1 = 0,

y2 = σ1(µ1 + a1)(µ2 + a2)(1− Φ1),

y3 = 0,

y4 = Q1(µ1 + a1)(µ2 + a2)(1− Φ1)− α1 (π1(µ2 + a2) + a2π2)

y5 = 0.

The right eigenvector associated with the zero eigenvalue of (4.29) is v = (v1, v2, v3, v4)
t

where














































v1 = Q1Q2Q3(1− Φ1 − Φ2),

v2 = Q2,

v3 = γ1Q2

(µ1+ω) ,

v4 = σ1,

v5 = a1
µ2+a2

v1.

(4.31)

We now evaluate the non-zero second order mixed derivatives of with respect to the vari-

ables where we obtain

∂2 f1
∂x1∂x2

=
∂2 f1

∂x2∂x1
= −α,

∂2 f1
∂x1∂x4

=
∂2 f1

∂x4∂x1
= −φ∗

K
, (4.32)

∂2 f2
∂x1∂x2

=
∂2 f2

∂x2∂x1
= α,

∂2 f2
∂x1∂x4

=
∂2 f2

∂x4∂x1
=

φ∗

K
. (4.33)

The non-zero partial derivatives to used in calculating b are

∂2 f1
∂x4∂φ

= −S∗1
K
,

∂2 f2
∂x4∂φ

=
S∗1
K
. (4.34)

We now substitute the expressions into (4.25) and (4.26) to obtain

a = −2β∗µy2
π

[v2v4(1+ η2) + v2v3(1+ η1) + v3v4(η1 + η2)] ,

b = µQ2Q3(1− Φ1) [Q2Q3(1− Φ1) + η1σQ3 + η2σρ] .
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Clearly, we observe that a < 0 and b > 0. Thus, the drug persistent steady state is locally

asymptotically stable close to R0 = 1. We can summarise the results in the following Lemma.

Lemma 4.5.1. The drug persistent steady state is locally asymptotically stable when R0 > 1 but
only if R0 is close to 1.

4.5.1 Endemic steady state E2

Lemma 4.5.2. The model system (4.1 and 4.2) has a unique boundary endemic equilibrium E2 in Ω

whenever R02M > 1 and R01M < 1.

Lemma 4.5.2 implies that cholera persists in the second sub-population (I2 > 0) but dies out

in the first sub-population.

Proof. We note that in the absence of the infections in the first sub-population, I1 = 0. Then
from equations (4.1) and (4.2) at E2, we have



































π1 + a2S̄∗2 = (µ1 + a1)S̄∗1,

π2 + a1S̄∗1 + ωR̄∗
2 =

(

β2
B̄∗
2

K+B̄∗
2
+ α2 Ī∗2

)

S̄∗2 + (a2 + µ2)S̄∗2,
(

β2
B̄∗
2

K+B̄∗
2
+ α2 Ī∗2

)

S̄∗2 = Q3 Ī∗2,

γ2 Ī∗2 = (µ2 + ω)R̄∗
2

σ2 Ī∗2 = Q4B̄
∗
2

(4.35)

Using the first, fourth and fifth equations of the system of equations (4.35), we obtain expres-

sions for S̄∗1 , R̄
∗
2, and B̄2

2 as

S̄∗1 =
π1 + a2S2

µ1 + a1
, (4.36a)

R̄∗
2 =

γ2 I2
µ2 + ω

, (4.36b)

B̄∗
2 =

σ2 I2
Q4

respectively. (4.36c)

Substituting for B̄∗
2 in the third equation of system (4.35) we obtain

(

β2σ2 I
∗
2

Q4K+ σ2 Ī∗2
+ α2 Ī∗2

)

S2 = Q3 I
∗
2 . (4.37)

This gives Ī∗2 = 0 as one of the solutions. This solution corresponds to the disease free steady
state. If Ī∗2 6= 0,then remaining part of the expression gives the relationship between S̄∗2 and
Ī∗2 such that

S̄∗2 =
Q3Q4K +Q3δ2 Ī∗2

(β2δ2 + α2Q4K) + δ2α2 Ī∗2
(4.38)
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We substitute for B̄∗
2 , and R̄∗

2 in the second equation of (4.35), we obtain

Φ5 = Q1(1− Φ4) Ī∗2 + (µ1 + a1)(1− Φ1)S̄∗2 , (4.39)

where

Φ5 =
π2(µ1 + a1) + a1π1

µ1 + a1
, Φ4 =

ωγ1

(µ2 + ω)Q3
.

Then we substitute for S̄∗2 (equation (4.38)) into equation (4.39) we obtain a quadratic equa-
tion given by

C2 Ī∗2
2
+ C1 Ī∗2 + C0 = 0 (4.40)

where










C2 = α2σ2Q3(1− Φ4)

C1 = Q3(1− Φ4)(β2σ2 + α2Q− 4K) + σ2Q3(µ2 + a2)(1− Φ1)(1−R02c)

C0 = Q3Q4K(µ2 + a2)(1− Φ1)(1−R02M) where

R02M =
Φ5(β2σ2 + α2Q4K)

Q3Q4K(µ2 + a2)(1− Φ1)
and (4.41)

R02c =
Φ5α2

Q3(µ2 + a2)(1− Φ1)
(4.42)

We note that the solutions of the polynomial (4.40) depends on the signs of C1 and C0. We
there for have the following observations

• When C0 < 0 (i.e whenR02M > 1), we have exactly one positive solution for all values
of C1.

• When C0 > 0 (i.e when R02M < 1) the polynomial (4.40) has no positive roots since
A1 > 0.

Therefore, the model has a unique disease persistent equilibrium E2 whenever R02M > 1
and R01M < 1

Owing to the complexity of the model and increased non-linearity of the terms involved,

attempts to explicitly determine existence and stability of the interior equilibrium (disease

persistent equilibrium) were rendered futile. We now resort to numerical simulations to

ascertain the phase space trajectories of the compartments involved.
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4.6 Numerical simulations

The numerical simulations of the model are performed using the ordinary differential equa-

tions numerical integration routine odeint in python-scipy. In our numerical simulations, the

transmission dynamics of the infection in the considered communities are characterised by

assumptions based on; social economic status, welfare, infrastructural development as well

as difference in health care systems and awareness. In our model simulations, we assume

that community 1 has better services compared to community 2. As result, the likelihood of

disease severity and parameters related to transmission dynamics are assumed to be higher

in sub-population 2 compared to community 1. Each of the communities is in contact with

a distinct contaminated aquatic reservoir. Since we assume that the communities are not

separated by a great distance, we assume that the abiotic and biotic factors that influence the

multiplication of the pathogen are not significantly different. However, due to the relative

difference in the standard of life, the shedding rate of the pathogen in the poorer community

is expected to be higher. This would greatly affect the concentration of the pathogen in the

corresponding aquatic reservoir.

4.6.1 Parameter estimation

The comprehensive selection of parameters values use in the simulation is outlined in Chap-

ter 3. In this chapter however, some of the parameters have been selected within the spec-

ified ranges to cater for the differences in the communities mimicked in this study as well

as the disease transmission dynamics. The full list of parameter values used in the simu-

lation is given in Table 4.1. In the parameter values chosen, there are noticeably reason-

able differences in the parameters for sub-populations 1 and 2. It is necessary to highlight

that the parameter related to shedding of the pathogen typically affects the concentration

of the pathogen and has less influence on the human population. We note that the symp-

tomatic and asymptomatic individuals have markedly different shedding rates, i.e 50 day−1

and 0.5 day−1 respectively. It should be noted that of all infected individuals, often up to

80% are asymptomatic.

4.7 Sensitivity and uncertainty analysis

We carry out sensitivity analysis to quantify uncertainty of the parameters to the metapop-

ulation model output. This is vital since it enables us identify critical input parameters that
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Parameter Range Value Units Source

π1 µ × N1 Assumed

π2 µ × N2 Assumed

β1 0-1 0.00125 Assumed

β2 0-1 0.0125 Assumed

K 106 − 109 106 cells L−1 [36]

µ1 0.02 day−1 [55, 56]

µ2 0.02 day−1 [55, 56]

δ1 6.58×10−4 − 0.0182 0.0125 day−1 [20, 64]

δ2 6.58×10−4 − 0.0182 0.045 day−1 [20, 64]

γ1 0.031− 0.059 0.045 day−1 [20, 58]

γ2 0.031− 0.059 0.035 day−1 [20, 58]

µp 1.017− 1.083 1.06 day−1 [36, 42, 50, 57]

g1, g2 0.73 day−1 [36]

α1 0.031− 0.059 0.045 day−1 Assumed

α2 0.031− 0.059 0.035 day−1 Assumed

σ1, σ2 10− 100 50.0 cellsml−1day−1person−1 [36]

Table 4.1: Nominal values of estimated parameter values used in the simulations

should be the center of focus if the disease is to be contained. Sensitivity and uncertainty

analysis are performed using the Latin hypercube sampling (LHS) scheme, a Monte-Carlo

stratified samplingmethod that allows us to obtain an unbiased estimate of themodel output

for a given set of input parameter values [8]. The parameter space is simultaneously sampled

without replacement and assuming statistical independence between the parameters. The

selected samples is used to compute unbiased estimates of output values for disease thresh-

olds specific to the communities under study as well as that of the model. The computed

partial rank correlation coefficients of the specific output threshold values are graphically

presented in tornado plots, see Figures 4.2 and 4.3.

A positive (negative) correlation coefficient corresponds to an increasing (decreasing) mono-

tonic trend between the disease threshold and the parameter under consideration. Figures

4.2(a) and 4.2(b) are produced using disease threshold ratios R01M and R02M respectively.

From the figures, the parameters related to movement of individuals from one community

to another have reasonably significant PRCCs. We note that in both plots, person-to-person

contact can not be ignored. The parameters µp, g1 and g2 have the lowest PRCCs with respect

to the corresponding disease thresholds. However, their direction of influence is clearly vis-

ible. In this regard, since no effort toward reducing disease spread is rendered insignificant,

any action that increases mortality of vibrios and reduces their multiplication eventually not

only reduces the infection but also the risk. In addition the rates σ1 and σ2 at which infected

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4. Metapopulation model for cholera transmission 72

(a) (b)

Figure 4.2: Tornado plots showing PRCCs of the different parameter values. Figure 4.2(a), is
produced assuming that the infection is localised only in community one and similarly for
Figure 4.2(b).

Figure 4.3: Tornado plot showing PRCCs of the parameter values and the model reproduc-
tion number.
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individuals shed the pathogen into the aquatic environment as well as the contact β1 and β2

increase the severity of the disease when increased.

Increasing the migration of infected individuals from their corresponding subpolulations,

results in the reduction in the total infective density. This eventually results in the reduction

in the correlation of infective densities in the two communities and consequently a decrease

in the epidemic coupling between the two communities [80]. However, continued in and

outflow of both susceptible and the infected between the two communities potentially coun-

teracts decorrelation that would be caused by emigration and reduced infective density in

either community.

Endemic cholera in isolated patches

In this case endemicity of cholera in the model is accounted for by considering changes in

the model parameters. Since infection with cholera confers some immunity, we assume that

in the case of endemic cholera, the modelling time is long enough and that immunity may

wane in the process leading to some recovered individuals becoming immunologically naive

again. In the simulation therefore, the parameter ω is non-zero.
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Figure 4.4: Comparison of the susceptible and infected populations in homogeneous isolated
sub-populations. The community specific disease thresholds evaluated using expressions
R01 and R02 in equation (4.11) are 1.762 and 2.049 respectively.

In both the isolated sub-populations, the outbreak is explosive in nature. There is observed

higher severity of the infection in community 2 with poorer facilities compared to commu-

nity 1. We note that the infection reaches equilibrium much earlier in the community 2
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compared to community , see Figure 4.4(b). This is due to the fact that; even though in a

community 2 the initially susceptible population is much higher than that in community 1,

the transmission parameters in community 2 are also high. This results in faster depletion of

the susceptible pool (Figure 4.4(a) ) hence reducing the likelihood of getting new infection.

The rates are however, slower in community 1. Thus, the infection reaches a self-limiting

phase much earlier in community 2 than in community 1. Long term dynamics indicate that,

in the case of poorer conditions more than one episode of the epidemic may occur although

the second episode may be much smaller than the first. Owing to the long term dynamics

of the model, we predict that at equilibrium, the infected proportion in the patch with better

facilities may be slightly higher than in the poorer patch. This is may be attributed to the

fact that, in a poorer community, the infection would have greatly devastated the suscepti-

ble pool and that there may be far less people to infect. See Figure 4.4 for comparison. This

disease devastating presumption is also depicted in the evaluated disease threshold values

for the isolated communities.

Non endemic cholera in isolated communities

In the case of non endemic cholera, we assume that the waning rate is negligible. Over the

modelling time,
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Figure 4.5: Comparison of the susceptible and infected populations in homogeneous isolated
sub-populations in the case of non-endemic cholera.

Similar to the casewith endemic cholera, the outbreak is explosive followed by a self-limiting

phase, see figure 4.5(a). This phase is also attributed to depletion in the susceptible popu-

lation (Figure 4.5(b)) which reduces the likelihood of getting new infections. Unlike in the
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case of endemic cholera, non-endemic cholera is characterised by as single outbreak and no

recurring episodes.

Synchronous fluctuation of the sub-populations
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Figure 4.6: Comparison of susceptible and infected populations across patches assuming
movement of only susceptibles between patches. The parameters describing movement are
such that a2 > a1 > 0, b2 = b1 = 0.

Increase in the susceptible population in the first community, is directly related to increasing

the likelihood of an individual getting infected. This is due to the fact that increase in the

susceptible population increases the probability of infected individuals transmitting the dis-

eases to those uninfected through person-to person contact. In addition there is an increases

chance that more immunologically naive individuals will come in contact with a vibrio con-

taminated aquatic source. It can clearly be observed that, when movement between com-

partments of susceptible population compartments is in existence, the is synchronous fluc-

tuation of the populations in compartments of S1 and S2, see figure 4.6(b). No such scenario

is observed in the compartments of I1 and I2, for which no migration has been accounted for,

see figure 4.6(a).

Making an assertion that migration causes synchrony in metapopulation driven epidemics

may be naive. This is owing to the fact that many other intrinsic and extrinsic factors includ-

ing temperature and rainfall are vital contributors. As opposed to Figure 4.6(a), Figure 4.7(a)

shows synchronous fluctuation of the population in compartments I1 and I2.
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Figure 4.7: Comparison of susceptible and infected populations across communities assum-
ing movement of both susceptible and infected individuals between communities. The pa-
rameters describing movement are such that a2 > a1 > 0 and b2 > b1 > 0.

4.8 Conclusion

A deterministic model for cholera dynamics between connected communities is presented.

Vital mathematical features including isolated patch specific disease thresholds were pre-

sented as well as disease thresholds accounting for migratory connection between patches.

The effect of various process including migration on the dynamics of cholera have been ex-

amined. Sensitivity analysis has been performed to equitably ascertain the potential effect

of vital parameters on the severity of the infection.

Understanding disease spread in non-isolated communities is important in containing of

many communicable, infectious and childhood diseases. Movement of both susceptible

and infected individuals influences the severity and persistence of the infection as well as

synchronous fluctuation of the population in both communities. When the combined com-

munity disease threshold is greater than unity, the disease is more likely to persist in both

communities if there is unrestricted migration. Otherwise, the disease will only persist in a

community where the specific community disease threshold is greater than unity.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 5

Optimal control of cholera in
connected communities

5.1 Introduction

Various controls for cholera have been recommended. These controls range from preventive

measures to treatment protocols. Preventive measures are aimed at averting new infections

by preventing the immunologically naive people from consuming or coming into contact

with the bacteria. Treatment and control targets the infected persons reducing the number of

those infected as well as reducing the case fatality rate. Such preventive and control measure

are explained in detail with regard to the metapopulation model of two connected commu-

nities as follows. First, an Oral Cholera Vaccine (OCV) recently recommended [23] is now

in use. Notably, it was recently used during the cholera outbreak that affected Haiti after

the 2010-2011 earthquake [33]. Secondly, sanitation and hygiene reduce the rate of pathogen

ingestion. Such controls include chemical treatment and boiling of water for cooking and

drinking, proper storage and preparation of foods to prevent contamination. Thirdly, for the

infected case management and treatment procedure which involves administering Oral Re-

hydration Salts (ORS) to restore ion balance, intravenous administration of fluids in serious

cases and use of antibiotics is recommended.

Mathematical modelling of cholera transmission dynamics dates back to the 1970s with the

work done by Capasso & Paveri-Fontana [41], but more profound work has been done in

the last 1 to 2 decades. Most of the work done so far focuses on specific communities and

not the metapopulation framework of the infection. An extensive highlight of the metapop-

ulation framework in epidemic models involving both cross community infections as well

as exchange of populations between communities is given in [81] but not a single case is spe-

77
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cific to cholera. Optimal control of the infection has only been studied recently in [20] when

comparing cholera transmission between two separate Indian communities of Bogra and

Calcutta. To our knowledge, no optimal control study has been considered in the metapop-

ulation framework for cholera transmission to date. However, general modelling of control

of epidemics in metapopulations was recently done using an SIS model [82]. In this same

work, the authors highlighted the likely difficulty andmathematical intractability to be faced

if a SIR or SIRS model is to be used. In this paper, we consider a SIRS model with controls

since cholera transmission typically follows such dynamics.

5.2 Mathematical model

In the model, we consider two routes of transmission. The primary route, characterised

by consumption of vibrio infected water from aquatic sources. The secondary route (also

referred to as person-to-person transmission), is characterised by consumption of food con-

taminated with vibrios from faecal matter. The human population is subdivided into three

compartments depending on their status with respect to the infection. The Susceptible S,

are those who are at risk of contracting cholera either through contaminated water of by the

secondary route. Once infected, individuals move into compartment I. Those who recover

from the infection move into compartment R at rates γ1 and γ2 for the first and second com-

partments respectively. The infection confers some temporary immunity which wanes at a

rate ω. In the infection dynamics, the disease may be endemic or non-endemic. In the for-

mer case, the acquired immunity of those once infected is expected to wane at a faster rate

resulting in a SIRS type of model as opposed to the SIRmodel in the latter case. It is assumed

that the time delay between consumption of vibrio infected food or contaminated water and

the commencement of infectiousness is negligible (see also [41]).

The flow diagram of disease progression in two communities is given in Figure 5.1.

The terms Λ1 = (1− u) β1B1

K+B1
+ (1−m)α1 I1 and Λ2 = (1− u) β2B2

K+B2
+ (1−m)α2 I2 are the inci-

dence functions for the first and second community respectively. These two terms describe

the rate of apparition of new cholera cases in the respective communities.
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Figure 5.1: Flow diagram of disease dynamics in two communities.

The model system of equations for the first sub-population is given by

dS1
dt

= π1 + a2S2 + ωR1 − (1− u)β1
B1

K+ B1
S1 − (1−m)α1 I1S1 − (a1 + µ1)S1 − vS1, (5.1a)

dI1
dt

= (1− u)β1
B1

K+ B1
S1 + (1−m)α1 I1S1 + b2 I2 − Q1 I1 − rI1, (5.1b)

dR1

dt
= vS1 + γ1 I1 + rI1 − (µ1 + ω)R1, (5.1c)

dB1

dt
= σ1 I1 − Q2B1, (5.1d)

dS2
dt

= π2 + a1S1 + ωR2 − (1− u)β2
B2

K+ B2
S2 − (1−m)α2 I2S2 − (a2 + µ2)S2 − vS2, (5.1e)

dI2
dt

= (1− u)β2
B2

K+ B2
S2 + (1−m)α2 I2S2 + b1 I1 − Q3 I2 − rI2, (5.1f)

dR2

dt
= vS2 + γ2 I2 +−(µ2 + ω)R2, (5.1g)

dB2

dt
= σ2 I2 − Q4B2, (5.1h)

where Q1 = (µ1 + δ1 + γ1 + b1), Q2 = (µp − g1), Q3 = (µ2 + δ2 + γ2 + b2), Q4 = (µp − g2).

Note that all constants in the balance equations are non negative. In addition Q2 and Q4 are

positive, indicating that in absence of faecal contribution from infective humans, the bacteria

can not sustain itself in the aquatic environment [41]. The initial conditions of the model are

such that S10, I10, R10, B10,S20, I20, R20 and B20 are all non-negative.
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5.2.1 Model analysis

The solution to model system of equations (5.1) with non-negative initial conditions are all

non-negative and bounded. Interested readers can investigate positivity and boundedness

of the solutions using the method based on the theory on differential equations outlined in

Chapter 3.

Theorem 5.2.1. The feasible region Ω given by

Ω : =

{

(S1(t), I1(t), R1(t), B1(t), S2(t), I2(t), R2(t), B2(t)) ∈ R8
+| 0 < N <

π1 + π2

µ⋆

}

, (5.2)

where, µ⋆ = min{µ1, µ2} and N = S1(t) + I1(t) + R1(t) + S2(t) + I2(t) + R2(t), with initial
conditions S10 > 0,I10 ≥, R10 ≥ 0,B10 ≥ 0, S20 > 0,I20 ≥ 0,R20 ≥ 0 and B20 ≥ 0 is positively
invariant and attracting with respect to the model system (5.1) for all t > 0.

We note that if both communities are free of the infection, no treatment control protocol may

be implemented. However, vaccination may still be in place as will be indicated in the steady

state points. Although, the permissible controls vary with time, to analyse the steady states,

we assume that the controls are constant thereby analysing a non-autonomous system of

differential equations, see also [83]. Therefore, the disease free equilibrium E0 given by

E0 = {S∗1 , 0, 0, 0, S∗2 , 0, 0, 0}, (5.3)

where

S1 =
π1(a2 + µ2 + v) + a2π2

(a1 + µ1 + v)(a2 + µ2 + v)(1− Φ1)
, S2 =

π2(a1 + µ1 + v) + a1π1

(a1 + µ1 + v)(a2 + µ2 + v)(1− Φ1)
. (5.4)

The term Φ1 = a1
(a1+µ1+v)

· a2
(a2+µ2+v)

indicates the proportion of susceptible individuals who

move back and forth in compartments S1 and S2. Therefore, (1− Φ1) indicates the fraction

of susceptible individuals who don’t move from their home compartments. We note also

that the proportions of the susceptible S1 and S2 fall off as quadratic terms of the vaccination

(in the denominator) and increase linearly (in the numerator). Therefore, if the higher the

vaccination coverage, the lower fraction of the population that remains naive to the infection.

The community specific disease threshold numbers can be obtained using the next gener-

ation matrix method outlined in [51]. When computing the disease thresholds however,

we assume that the controls are constant so that the model system of equations is non au-

tonomous.

R01oc =
(π1(a2 + µ2 + v) + a2π2) ((1−m)α1Q2K+ (1− u)β1σ1)

Q1Q2(a1 + µ1 + v)(a2 + µ2 + v)(1− Φ1)K
(5.5)
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for the first community, and

R02oc =
(π2(a1 + µ1 + v) + a1π1) ((1−m)α2Q4K+ (1− u)β2σ2)

Q3Q4(a1 + µ1 + v)(a2 + µ2 + v)(1− Φ1)K
(5.6)

for the second community. Then the model basic reproductionR0oc is given by

R0oc = max{R01oc,R02oc}.

From the structure of the model used and the obtained community specific reproduction

numbers controls are evident. From the expressions for community specific disease thresh-

olds, it is evident that increasing access to clean water and enhancing proper hand hygiene

reduces the disease threshold. Therefore, with enhanced controls, the subsequent number of

those infected will be less than that of their predecessors hence reducing the severity of the

infection.

It should also be noted that application of control strategies mainly reduces transmission of

the infection related to contact with the aquatic reservoirs, hand hygiene mainly related to

handling of foodstuffs and vaccination aimed at reducing the risk of immunologically naive

persons from contracting the infection through any of the indicated routes. It is already

known that during times of cholera, administration of ORS is important in resorting the ion

balance in the body and fluids lost due to excessive diarrhoea.

Theorem 5.2.2. The disease free steady state (5.3) of model (5.1) is globally asymptotically stable
whenever, R0oc < 1 and unstable otherwise.

The proof to Theorem 5.2.2 can be given using the approach to the proof for Lemma 1 in

[39]. However, in this case the community specific reproduction numbers to be used are (5.5)

and (5.6). In addition, any parameters related to control of the infection must be assumed

constant. Similarly, the community specific endemic equilibrium points can be obtained

following the approach in [39] as well as the proofs of local stability.

5.2.2 Optimal control

The general procedure of optimal control process in an epidemiological model involves the

following process;

• identify permissible controls applicable to the model,

• set up the objective function with controls,
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• construct the Hamiltonian,

• evaluate co-state variable (adjoint functions),

• identify the threshold controls that minimise the Hamiltonian.

This optimal control minimisation procedure follows Pontryagin’s Maximum/Minimum

principle [84].

In the general case, for a selected set of permissible controls u1, u2, and u3 the objective

function J can be set up as

J = min
u1,u2,u3

∫ t f

0

(

e1 I1 + e2 I2 + q1u
2
1 + q2u

2 + q3u
2
3

)

dt, (5.7)

where e1, e2 q1, q2 and q3 are positive weights associated with minimising infections and the

costs respectively. If we assume that the cost of controls to be non-linear, quadratic terms

(for mathematical tractability) can be used. A detailed description of the optimal control

process using both non-linear controls and linear controls, the challenges associated and

and possible remedies are given in [85].

Let λS1 , λI1 , λR1
, λB1

, λS2 , λI2 , λR2
and λB2

be the adjoint functions or co-state variables

associated with the states. We multiply each of the adjoint functions with the right side of

the equation describing the evolution of each state variable. The objective function is given

by

J (u, v,m) =
∫ T

0

(

ξ1 I1 + ξ2 I2 + χu2 + yv2 + zm2
)

dt. (5.8)

The coefficients ξ1, ξ2, χ, y and z are the coefficients associated with the cost over a finite

period of time T. ξ1 I1 and ξ2 I2 indicate the cost associated with minimising the infection in

the first and second community respectively. χ, y and z are relative cost weights for the

respective control measures. The main goal is to minimise the number of those infected in

both communities at the same time minimising the cost of controls. In this respect, we seek

an optimal control u∗, v∗ and m∗ such that

J (u∗, v∗,m∗) = min
u,v,m

{J (u, v,m)|u, v,m ∈ U}, (5.9)

where

U := {(u, v,m)|u, v,m : [0, T] → [0, 1], for all u, v,m}.
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The Hamiltonian is given by,

H = ξ1 I1 + ξ2 I2 + χu2 + yv2 + zm2 + λS1

[

π1 + a2S2 + ωR1 − (1− u)β1
B1

K+ B1
S1

−(1−m)α1 I1S1 − (a1 + µ1)S1 − vS1] + λI1

[

(1− u)β1
B1

K+ B1
S1 + (1−m)α1 I1S1

+b2 I2 − Q1 I1 − rI1] + λR1
[vS1 + γ1 I1 + rI1 − (µ1 + ω)R1] + λB1

[σ1 I1 −Q2B1]

+ λS2

[

π2 + a1S1 + ωR2 − (1− u)β2
B2

K+ B2
S2 − (1−m)α2 I2S2 − (a2 + µ2)S2 − vS2

]

+ λI2

[

(1− u)β2
B2

K+ B2
S2 + (1−m)α2 I2S2 + b1 I1 − Q3 I2 − rI2

]

+ λR2 [vS2 + γ2 I2 +−(µ2 + ω)R2] + λR2 [σ2 I2 − Q4B2] .

(5.10)

Theorem 5.2.3 (Lenhart & Workman, (2007) [85]). Let u∗, v∗ and m∗ be the optimal controls
for the system (5.1), x∗ be the state space at equilibrium and λ(t) positive semi-definite piecewise
differentiable functions for all t. If we suppose that for all 0 ≤ t ≤ T,

0 = Hu(t, x
∗, u∗, v∗,m∗,λ(t)) = Hv(t, x

∗, u∗, v∗,m∗,λ(t)) = Hm(t, x
∗, u∗, v∗,m∗,λ(t)),

then
H(t, x∗, u∗(t), v∗(t),m∗(t),λ(t)) ≤ H(t, x∗, u(t), v(t),m(t),λ(t)) (5.11)

To prove Theorem 5.2.3, for the model system (5.1), it is enough to find the optimal controls

u∗, v∗,m∗ that minimise the Hamiltonian as indicated below.
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To find the differential equations with respect to the associated adjoint functions, we differ-

entiate the Hamiltonian with respect to each of the state variables

dλS1

dt
=

[

(1− u)β1
B1

K+ B1
+ (1−m)α1 I1

]

S1(λS1 − λI1) + (a1 + µ1 + v)λS1 − vλR1
− a1λS2 ,

dλI1

dt
= (1−m)α1S1(λS1 − λI1)− ξ1 + (Q1 + r)λI1 − (γ1 + r)λR1

− σ1λB1
− b1λI2 ,

dλR1

dt
= (µ1 + ω)λR1

− ωλS1 ,

dλB1

dt
=

(1− u)β1S1K

(K+ B1)2
(λS1 − λI1) + Q2λB1

,

dλS2

dt
=

[

(1− u)β1
B2

K+ B2
+ (1−m)α2 I2

]

S2(λS2 − λI2) + v(λS2 − λR2
) + a2(λS2 − λS1) + µ2λS2 ,

dλI2

dt
= (1−m)α2S2(λS2 − λI2)− ξ2 + (Q3 + r)λI2 − (γ2 + r)λR2

− σ2λB2
− b2λI1 ,

dλR2

dt
= (µ2 + ω)λR2

− ωλS2 ,

dλB1

dt
=

(1− u)β2S2K

(K+ B2)2
(λS2 − λI2) + Q4λB2

,

with transversality condition

λS1(T) = λI1(T) = λR1
(T) = λB1

(T) = λS2(T) = λI2(T) = λR2
(T) = λB2

(T) = 0. (5.12)

We note that the for the given transversality condition (5.12)

dλS1

dt
= − ∂H

dS1
,

...

dλB2

dt
= − ∂H

dB1
.

The optimal controls are characterised by the following expressions

u∗(t) = max (0,min (û(t), 1)) ,

v∗(t) = max (0,min (v̂(t), 1)) , and

m∗(t) = max (0,min (m̂(t), 1)) .
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The standard control arguments on the controls [86], the optimal controls are such that

u∗ =



















0 if û ≤ 0,

û if 0 < û < 1,

1 if û ≥ 1.

The upper bound of u∗ would indicate that drinkable water is least likely to be responsible

for the oral faecal route of transmitting the infection, most especially if water is chlorinated.

v∗ =



















0 if v̂ ≤ 0,

û if 0 < v̂ < 1,

1 if v̂ ≥ 1.

The value v∗ = 1, would be attributed to a perfectly effective vaccine. Quite often cholera

vaccines have low protective efficacy and have adverse effects associated. In one study by

the Public Health Agency of Canada [87], the efficacy of the cholera and diarrhoeal vaccine

was observed to range between 64% to 85% against Vibrio cholerae 01 El Tor.

m∗ =



















0 if m̂ ≤ 0,

m̂ if 0 < m̂ < 1,

1 if m̂ ≥ 1.

Similarly, m∗ = 1, would signify no transmission of the pathogen through consumption of

foods, and that all foodstuffs are well prepared and hygienically stored, free from contami-

nation. Unfortunately, this is not usually the case in communities where cholera is endemic.

Differentiating H with respect to each of the admissible controls, we obtain

∂H

∂u
= 2χu+ (λS2 − λI2) β2

B2

K+ B2
+ (λS1 − λI1) β1

B1S1
K+ B1

,

∂H

∂v
= 2yv+ (λR1

− λS1) S1 + (λR2
− λS2) S2,

∂H

∂m
= 2zm+ (λS1 − λI1) α1 I1S1 + (λS2 − λI2) α2 I2S2.

(5.13)
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The control characterisations, û, v̂, and m̂ of the optimal controls u∗, v∗ and m∗ are obtained

from
∂H

∂u
=

∂H

∂v
=

∂H

∂m
= 0

û =
(λI2 − λS2) β2

B2
K+B2

+ (λI1 − λS1) β1
B1S1
K+B1

2χ
,

v̂ =
(λS1 − λR1

) S1 + (λS2 − λR2) S2
2y

,

m̂ =
(λI1 − λS1) α1 I1S1 + (λI2 − λS2) α2 I2S2

2z
.

5.3 Numerical Results

To numerically solve the optimal control problem, wemodify code7.mdeveloped by Lenhart

and Workman [85]. This optimal control problem is classified as a quadratic programming

problem, since the controls are in quadratic form. The state space variables are solved for-

ward in time and the adjoints associated with the state variables solved backward in time.

The model system of equations is numerically integrated using the ODE integration rou-

tine (ode45) a fourth order Runge-Kutta Method in Matlab. The parameter values used are

estimated from published literature and some intuitively selected. For example; the esti-

mated prices per dose of Dukarol and Shanchol are $4.7− $9.4 and $1.85 respectively [31].

We note however that there are other costs that may be involved related to administration,

advertising, transportation and remuneration for the health workers. Hence the value R100

attributed to each square vaccination rate. The unit of the parameters is per day except for

those indicated otherwise. The estimated costs associated with the controls per person are

given in Table 5.1. The rest of the parameters used for the metapopulation model are given

in Table 4.1.

Coefficient Cost value

ξ1 R 200 Per percentage reduction in I1
ξ2 R 120 Per percentage reduction in I2
X R 200 per (level of water related treatment)2

Y R 100 per (vaccination rate)2

Z R 200 per (hand hygiene related infection reductions)2

Table 5.1: Costs associated with permissible controls

The algorithm for simulating the system using the “forward-backward sweep method” is

adopted from [85]. We outline the steps followed during the simulation for convenience of
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the reader;

Step 1. The time interval over which the system is to be integrated is subdivided into N

equal subintervals. The initial guesses of piecewise-constant controls u0(t), v0(t) and

m0(t) on the interval t ∈ [ti, ti+1] , for i = 0, 1, · · · ,N are assumed.

Step 2. Using the assumed controls u0, v0,m0 and the initial conditions

~x(0) = (S10, I10, R10, B10, S20, I20, R20, B20) of the model, the system is numerically

integrated forward in time [0, T] according to its system of differential equations in

the optimality system.

Step 3. using the assumed controls u0(t), v0(t) and m0(t) and values of ~x, the costate system

~λ(t) in accordance with its system of differential equations with the transversality

condition, is integrated backward in time [T, 0].

Step 4. The controls vector ~u is updated by entering the new state vector ~x and the costate

values~λ in the optimal characterisations.

Step 5. Convergence of the iterations is then checked by ascertaining whether successive

iterations are negligibly close for some specified level of tolerance. Once this is

achieved, then optimal control is said to have been achieved, the iteration is stopped

and the output values recorded as solutions. Otherwise, the algorithm is set back to

Step 2.

5.3.1 Isolated communities in presence of controls

The communities are assumed to be isolated if there is no movement across adjacent com-

munities. However, we allow for recruitment from other areas. In the simulation, we use the

parameters indicated in Table 4.1 and set all the parameters, describing movement to zero.

The trajectories of the infected population in both communities is given in Figure 5.2.

When all the controls are implemented, our results suggest that, the time taken for the dis-

ease to be contained, maybe approximately half of the time required to contain the disease

without controls, i.e by self limitation. Although the infection is less devastating in the first

community, it stays relatively longer in the community compared to the second commu-

nity (compare the solid lines in Figures 5.2(a) and 5.2(a)). It is plausible that due to a high

transmission in the second community, the disease depletes the susceptible pool at a much

faster rate and at about 100 days, there are virtually no more susceptible people to infect. In
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(a) (b)

Figure 5.2: The infectious, I1 in presence of controls (dashed line) and in absence of controls
(solid line)

the model with controls however, the disease is contained at approximately the same time

in both communities. Taking a closer look at dashed curves in Figures 5.2(a) and 5.2(a), it

can be observed that the disease is contained slightly earlier in the first community than in

the second community for the same level of effort. This scenario is a typical comparison of

infections with high and low incidence. The trajectories of the state space variables for the

model with control, the adjoint and the control values converge around relatively the same

time. The iteration process terminates when these different variables converge sufficiently.

5.4 Connected communities in presence of controls

When the communities are connected, the parameters describingmovement are all non-zero.

Movement of susceptible and infected people is associated not only with increases severity

but also a long duration of the infection in the two communities, see Figures 5.2 and 5.3.

In presence of controls however, there is no observed significant difference in the disease

severity and duration.

The profiles of control related to clean water supply, vaccination and improved hygiene are

indicated in figures 5.4(a), 5.4(b) and 5.5 respectively. It can be be observed that the control

process ought to be optimal at the beginning of the epidemic. It is at this point that the

infection is explosive in nature and should be contained at a faster rate.

The susceptible group in both communities is initially characterised by depletion followed
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(a) Infected group in the first community (b) Infected group in the first community

Figure 5.3: Infected groups in the two communities with and without controls

(a) (b)

Figure 5.4: Profiles of controls related to domestic water treatment and vaccination

Figure 5.5: Profile of hygiene related control
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(a) Susceptible group in the first community (b) Susceptible group in the second community

Figure 5.6: Susceptible populations in the two communities

(a) Recovered group in the first community (b) Recovered group in the second community

Figure 5.7: Proportion of recovered individuals in the two communities, with and without
controls
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by an increase, Figure 5.6. We note that the rapid depletion of the susceptible population

is due vaccination, which was assumed to be exponential in the model. As a result the

recovered group is replenished and reduces when the control is halted, Figure 5.7. By the

end of the entire control period, the community is comprised of the susceptible group. Once

the infection has been contained, it is assumed that the small group of people who could still

be carrying the disease, may pose a low threat of re-introducing it.

Although the general trajectory of the susceptible groups in the two communities is similar,

there is a striking difference that ought to be highlighted. Whereas there is an observed ini-

tial increase in the susceptible group in the first community, that in the second community

only decreases. This trend is attributed to movement which is inclined toward the first com-

munity owing to the better living conditions assumed in the model parameter estimation.

5.5 Conclusion

In this Chapter, a metapopulation model for cholera transmission characterised by exchange

of individuals between communities has been analysed. The community specific disease

thresholds have been given and their importance determining the existence and stability of

equilibria of the model highlighted. The conditions for annihilating the infection based on

specific controls while keeping other parameters constant have been indicated. Our numer-

ical results indicate that in presence of controls, in case of an outbreak the disease maybe 8

times less devastating compared to the case without controls. In addition, the duration of

the infection in the community is less likely to be more than half the time it would remain

prevalent in absence of controls.

The model presented in this chapter is not short of shortfalls. We acknowledge the fact that

controls across communities may not be uniform as assumed in the models. Controls efforts

are often influenced by demographics of the community (including ageing which is associ-

ated with immune dysfunction), the behaviour of individuals involved in the disease trans-

mission dynamics as well as the social economic. In addition, politics which greatly affects

theminority groups as well as social inequality which impacts the vulnerable groups, urban-

ization associated with overcrowding, inadequate infrastructure and economic stochasticity

among others. All these affect the bureaucracy associated with implementation of controls,

putting up a sustainable solutions and can be source of heterogeneity. The model also as-

sumes a negligible time difference between infection and when one becomes infectious as

well as apparition of symptoms. Although such simplifying assumptions may be presumed
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feasible, their investigation is necessary to ascertain the effect on the epidemic size and du-

ration.
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Chapter 6

Control of V. choleraewith
bacteriophage

6.1 Introduction

Recent developments in studies to contain cholera infection have focused on prevention of

the infection, through “anti-infection strategies". Such strategies range from improvement

in sanitation to avoid contamination to sensitisation of the general public to ensure proper

hand hygiene, preparation and storage of food stuffs. In regions with no sanitary flash toi-

lets, emphasis is on proper usage of pit latrines. We note however that, in cases where flash

toilets are used, not all may be connected to a municipal centrally managed sewer or prop-

erly secured sceptic tanks. The run off during rainy seasons, may wash the waste faecal

material to the aquatic reservoirs and riverine catchment areas. It may be these same reser-

voirs (water catchment areas) that could be the prime source of water for some impoverished

communities.

Various control measures including improvements in sanitation, chemical treatment of water

and vaccination have been previously studied [20, 83, 88] among others. However, the im-

plementation of some of these measures has proved ineffective, in some cases not economi-

cally viable and application of chemicals often raises a public outcry over environmental and

ecological concerns. Vaccination for example, although believed to confer some immunity

to cholera infection, it is not entirely used as a preventive measure and no longer mandatory

even for travellers to cholera endemic areas.

An innovative measure of biological control has been studied recently which may be use-

ful and ecologically friendly. If biological control can effectively lead to reduction in the
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concentration of V. cholerae in the aquatic reservoir, then it would contribute significantly

to reducing the likelihood of consuming as infectious dose of the pathogen. Use of specific

bacteriophage for V. cholerae is ideal in the following ways. Firstly, the use of antibiotics may

result into antibiotic resistant vibrios [89]. Secondly, biological control is eco-friendly since

the use of chemicals may be lethal to other aquatic inhabitants. Thirdly, specific bacterio-

phage can be used to attack specific bacteria.

Although the mechanism underlying the rapid proliferation of vibrios during ocean warm-

ing is not clearly known, it has been observed that outbreaks are correlated with high tem-

peratures especially those recorded in El Niño Southern Oscillation (ENSO) and Monsoon

climate [90]. In the study conducted by Long et al [90], some marine bacteria for example

Bacteriodetes, Alphaproteobacteria, and Gammaproteobacteria can impede the growth of

Vibrio cholerae. These are referred to as antagonistic bacteria. They are however, less active at

high temperatures and easily out-competed by the vibrios. The association of high prolifer-

ation of Vibrio cholerae at high temperatures and low activity of antagonistic bacteria related

to production of anti-bacterial agents by the vibrios.

In recent observations, existence of bacteriophage in aquatic environments has been antag-

onistic with existence of V. cholerae and consequently the incidence of cholera [37]. Once in

the aquatic environment vibrios remain viable and the cells can maintain proper metabolic

activity although they maybe non-culturable [91]. Nelson et al. [91] reported that the multi-

plication of vibrios is antagonistic to the concentration of lytic bacteriophage in the aquatic

environment. In addition, vibrios once shed from stool in the aquatic environment, they

quickly decay from amore hyperinfective to a less hyperinfective butmore persevering state.

It is in the non-hyperinfective state that the vibrios may be active but non-culturable. In this

state, the vibrios are well adapted to survival in the environment. Containing vibrios in such

a state by biological control may require using of effective and efficient bacteriophage or else

other remedies ought to be employed.

The potential biocontrol strategy for controlling virulent V. cholerae may entail using lytic

bacteriophage specific for V. cholerae. The use of the bacteriophage as therapy would involve

direct inoculation of the bacteriophage into the environment [92]. The strong assumption

under this control measure comes with the fact that the environmental hosts for pathogenic

bacteria such as water, soil, food and other organisms do not have complex systems to select

against the foreign agents (bacteriophage) as opposed to the human body [92]. The rationale

of using biocontrol is that it would reduce the concentration of pathogenic bacteria in the

ecological niche thereby reducing the likelihood of infection as well as the severity and per-
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sistence of the bacterial epidemic. If the bacteriophage directly preys on the pathogen, then

presence of phage will reduce the density of the pathogen in aquatic environment. Conse-

quently, this reduces the likelihood of consuming the amount of vibrios equivalent to the

infectious dose in contaminated water. Although organic nutrients may exist in the aquatic

reservoir depending on whether it is oligotrophic, mesotrophic or eutrophic, we assume

that the phage may feed on the vibrios in preference to the organic nutrients. Bacteriophage

specific for Vibrio cholerae were isolated in fresh water samples in Kenya [93] around lake

Victoria all of the Myoviridae family. The isolated bacteriophage were suggested to be lytic

to Vibrio cholerae basing on the tiny, round and clear plaques they (phages) produced. This is

an important promise for biological control of the V. cholerae.

Twomodels have been presented previously accounting for the use of a bacteriophage in the

control of cholera [37, 38]. A summary of themodel by Jensen et al. [38] was given in Chapter

2. Although it has been indicated that lytic bacteria may also kill vibrios in infected individ-

uals [38], we do not consider such a scenario in this modelling work. We instead concentrate

on the potential reduction of vibrios in the aquatic environment. If the density of the vibrios

is reduced, it is the concentration of those remaining in the aquatic environment that can

aggravate the spread of the epidemic. In essence, reduction of the concentration of virulent

vibrios in the aquatic environment reduces the likelihood of consuming an infectious dose

if contaminated water is consumed. Das and Mukherjee [37] considered a four equations

model for cholera transmission in the presence of V. cholerae as well as the bacteriophage

that acts as a predator for the vibrios. The population of the lytic phage was considered be

solely dependent on the vibrios for survival and no alternative food sources. Replenishment

of the V. cholerae was considered to followMalthusian growth and with additional shedding

from the infected human population. The assumption of Malthusian growth may only be

valid at lower concentration of the pathogen when the nutrients are in abundance and there

is no intra specific competition. The term describing predation interaction was based on

mass action or the typical Holling type I response functional. Such a response function has

some shortfalls and may not be realistic as will be indicated in the model development.

6.2 Model development

We construct a mathematical model for the dynamics of bacteriophage and V. cholerae pop-

ulation. We assume that the organisms are not uniformly distributed in the aquatic envi-

ronment. This is due to uneven distribution of nutrients, water currents and the interaction

with preying phage. The interaction of the phage and bacteria results in movements of both

Stellenbosch University  http://scholar.sun.ac.za



Chapter 6. Role of the Bacteriophage 96

organisms which we ought not ignore. This necessitate analysis of the dynamics of the two

interacting populations assuming a spatially heterogeneous environment.

Although the study by Capasso and Paveri-Fontana [41] indicates that vibrios can not sus-

tain their concentration in the aquatic environment, some recent studies indicate the sus-

tainability possibility. In the study by Vital et al. [54], V. cholerae subtype O1 Ogawa El tor

was shown to grow extensively in different kinds of fresh water. In the study a low den-

sity innoculum of (5× 103cells ml−1) was observed to multiply upto a density of (1.55 ×
106cells ml−1). We note that this extensive growth was observed in river, lake as well as

effluent waste water from a treatment plant.

Faruque et al. [94] suggested that, in the aquatic reservoir, the bacteriophage and the bacteria

(pathogen) reproduce and interact. In the modelling work involving the human population,

the vibrios and the bacteriophage, Jensen et al. [38], proposed that vibrios grow logistically

in the aquatic environment, whereasDas andMukherjee [37] consideredMalthusian growth.

in both the aforementioned models, the interaction of the phage and vibrios is assumed to

modulate concentration of vibrios and consequently the severity of cholera.

6.3 Biological control model

With regard to biocontrol as a model of time-and space continuous systems of two interact-

ing species, the general model has been proposed in [95, 96, 97] among others. This is given

by the following general coupled pair of reaction-diffusion equations,

∂V(x, t)

∂t
= D1∇2V + φ(V, B),

∂B(x, t)

∂t
= D2∇2B+ ψ(V, B).

(6.1)

x is the co-ordinate that measures the position in a linear habitat, t stands for time [98]. We

note also that the system (6.1) can be analysed in a 1D, 2D and 3D space, but the higher the

space dimension the more intractable the analysis is.

Therefore, the equations give the evolution of the two co-existing sub-populations in time

and space. The terms V(x, t) and B(x, t) are the densities of the population of vibrios and

bacteriophage species respectively. D1 and D2 are diffusion coefficients of the pathogen and

bacteriophage. These diffusion coefficients are taken to be constant. However, we acknowl-

edge the expected irregularities in real life cases where these diffusion coefficients may vary

[98] due to vibrio and phage population densities, alternative food resources available and
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the excretion of anti bacterial agents by the vibrios. One of themajor challenges of a reaction-

diffusion biocontrol system is determining the suitable functions for φ(V, B) and ψ(V, B)

which best describe the interaction yet solvable. φ(V, B) is a reaction term that describes the

population growth dynamics of the vibrios as well as their interaction with bacteriophage.

ψ(V, B) is a reaction term that describes the dynamics of the growth of the population of the

bacteriophage. The term accounts for the development of bacteriophage which is influenced

by their consumption of the vibrios. It is under the assumption that; consumption vibrio

contributes positively to the growth of the bacteriophage population at some specific rate. It

also describes the natural mortality of the bacteriophage. Some of the functional responses

use in such predator-prey systems include; Holling types I, II and III [99, 100] which are

respectively given by

φ(V, B) = AVB, φ(V, B) = A
VB

H +V
and φ(V, B) = A

V2B

H2 +V2
.

In the last two expressions, H is the half-saturation of the density of the prey, and A is the

predation rate [52, 95]. In a model for biological control of cholera by Das and Mukherjee

[37], the growth rate of the pathogen was assumed to be Malthusian in absence of predation.

We note also that Jensen et al [38] considered the pathogen growth to be logistic. In both

models in [37, 38] the optimal choice for the response function for predation was a Holling

type I. This type of functional response is based on two assumptions namely; (1) predation

by Bacteriophage increases linearly with vibrio density and (2) the time it takes the phage

to handle vibrios is negligible and therefore, there is no interference between the phage’s

searching for the vibrios and feeding. In our view, this may be an oversimplification of the

rather complex interaction in the aquatic environment.

We assume that the population of pathogenic vibrios grows logistically in absence of preda-

tory bacteriophage species. We also account for the population decrease of pathogenic vib-

rios resulting from predation at a constant rate µ. This constant represents the maximum

amount of resource that can be obtained from consuming a prey per unit time. For the pop-

ulation of the phage, given other food sources the phage population is expected to increase

following a key assumption that, the bacteriophage have more preference of vibrio as a food

source to other available sources in the aquatic habitat. We note that in areas where cholera is

endemic, there may be constant shedding of the pathogen into the aquatic environment. We

let the pathogen be shed into the aquatic reservoir at a rate Λ. We note that once the vibrios

are shed into the aquatic environment through diarrhoea, they multiply rapidly contaminat-

ing the water source. We assume that this rapid multiplication of the vibrios follows logistic

growth. In an ideal predatory biological control process, we would consider the phage to be
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entirely dependent on the pathogen as the food source. This may not be the case since the

phage may still live on an alternative food source. We assume that the phage’s population

increases mainly as a result of predation.

φ(V, B) = Λ + rvV

(

1− V

Kv

)

− µ
VB

V + M
, (6.2a)

ψ(V, B) = −δB+
µξVB

V + M
, (6.2b)

where µ is also referred to as the catchability coefficient, conversion efficiency or predation

coefficient [95], ξ is a parameter that gives the predation benefits (µ > ξ), δ the natural

mortality rate of the predators, Kv the carrying capacities of the vibrio population.

The resultant system of partial differential equations is given by

∂V(x, t)

∂t
= D1

∂2V

∂x2
+ Λ + rvV

(

1− V

Kv

)

− µ
VB

V + M
, (6.3a)

∂B(x, t)

∂t
= D2

∂2B

∂x2
− δB+

µξVB

V + M
. (6.3b)

The initial and boundary conditions are such that

V = B = 0 on ∂Ω× (0,∞) , (6.4)

V(x, 0) = V0(x), B(x, 0) = B0(x), x ∈ Ω. (6.5)

where ∂Ω is the boundary of the domain Ω.

Note that the system of equations is coupled only by the non-linearities in the functions φ

and ψ. The two important conditions on ψ and φ are such that; for all

V, B ≥ 0, ψ(0, B) ≥ 0 and φ(V, 0) ≥ 0. (6.6)

6.4 Model analysis

Before embarking on the combined interaction between two organisms, we study the dy-

namics of a single species present in the aquatic environment. We propose that growth of

population of V. cholerae follows logistic growth. The term V2 describes the limitation in the

population size. Considering the single population equation of vibrios, enables us to under-

stand the qualitative behaviour of solutions of the considered reaction-diffusion equation.

Suppose the vibrio population grows at a rate rv, and Kv the carrying capacity of the vibrios

in the aquatic environment. If we let the vibrios to move at a rate Dv, then the equation
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describing this movement is given by

∂V(x, t)

∂t
= Dv∇2V + Λ + rvV

(

1− V

Kv

)

. (6.7)

The various parameters in the equation are defined as follows; Dv is the diffusivity (L2T−1),

α is the growth rate of the pathogen (T−1), K the carrying capacity (measured as population)

and Λ the recruitment rate into the pathogen population (measured as population per unit

time). It is often important to reduce the PDE to dimensionless form. See [101, 96] for some

examples. Our non-dimensionalisation process requires scaling the different variables as

indicated indicated below;






















τ = rvt : Scaling time to the pathogen growth rate

z = x
√

rv
Dv

: Scalling the distance to diffusion length

Ṽ = V
K : Scalling the population to carrying capacity

(6.8)

Using the scaled terms, we have

∂τ

∂t
= rv,

∂z

∂x
=

√

rv
Dv

Then the components of the PDE (6.7) transformed to the rescaled variables are given as



















∂V
∂t = αK ∂Ṽ

∂τ ,

∂V
∂x =

√

α
D

∂Ṽ
∂z , .

∂2V
∂x2

= αK
D

∂2Ṽ
∂z2

(6.9)

Substituting the necessary terms in (6.9) into equation (6.7) (and dropping the tildes), we

obtain the non-dimensional form as

∂V

∂τ
=

∂2V

∂z2
+ ν +V(1−V), (6.10)

where ν = Λ/rvKv. Assuming no diffusion occurs (i.e Dv = 0) and applying principles

of dynamical systems to the resulting ODE, at equilibrium the ODE has only steady state

points given by

V =
1±

√
1+ 4ν

2
. (6.11)

Note that if ν = 0, the equation (6.10) reduces to the typical Fisher-equation with two equi-

librium points V = 0 and V = 1. In the case of equation (6.10) however, there is only

the non-trivial equilibrium point (6.11) which is unstable. This stability condition can be
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investigated by assuming that the PDE (6.10) admits a travelling wave solution, followed

by transforming the PDE into a second order non-linear ODE. The resultant ODE can be

reduced to a system of first order ODEs and stability of resultant equilibrium point investi-

gated using eigenvalues from the Jacobian evaluated at the equilibrium point in which case

all the eigenvalues are non-negative for all values of Q.

We look for solutions of the form

V(x, t) = U(x− ct) = U(s), s := x− ct.

Note that
ds

dx
= 1 and

ds

dt
= −c. Therefore, the components of the partial differential equa-

tion (6.10) can be transformed as follow;

∂V

∂x
=

dU

ds
· ds
dx

=
dU

dx
,

∂2V

∂x2
=

∂

∂x

(

dU

dx

)

=
d2U

ds2
· ds
dz

=
d2U

ds2
,

for the partial derivative with respect to space and

∂V

∂t
=

dU

ds
· ds
dt

= −c
dU

ds
,

for the partial derivative with respect to time. The resulting second order ODE is given by

d2U

ds2
+ c

dU

ds
+ ν +U (1−U) . (6.12)

If we let W := U′, the equation (6.12) can be decomposed into a system of first order ODEs

such that






U′ = W,

W ′ = − [cW + ν +U (1−U)] .
(6.13)

The steady states of the system are given as W = 0, and U = 1±
√
1+4ν
2 . Since the dy-

namical system monitors evolution of populations, then the only feasible paired solution

is
(

0, 1+
√
1+4ν
2

)

. It is important to note that in absence of additional replenishment of the

population (i.e ν = 0), the steady states for the system (6.13) will be the trivial equilibrium

and the carrying capacity. These are the typical equilibria for the Fisher equation [98].
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The steady state
(

0, 1+
√
1+4ν
2

)

Suppose the system is perturbed to start at a new point in the neighbourhood of the equilib-

rium point

(W∗,U∗) :=

(

0,
1+

√
1+ 4ν

2

)

.

We linearise the system (6.13) and evaluate the Jacobian at the steady state (W∗,U∗) to obtain

D f (W∗,U∗) =

(

0 1

−1+ 2U∗ −c

)

.

The resultant eigenvalues are given by

λ± =
−c±

√

c2 − 4(1− 2U∗)
2

,

=
−c±

√

c2 + 4
√
1+ 4ν

2
.

Thus, the steady state (W∗,U∗) whenever it exists is unstable. This is not surprising since

for the Fisher equation, the non trivial equilibrium is unstable as well.

6.4.1 Non-dimensionalisation of the full systems of equation

To non-dimensionalise the system of equations (6.3), we rescale the values as follows using

expressions similar to [101] such that

τ = rt, z = x

√

r

D1
α =

D2

D1
, Ṽ =

V

Kv
, Q =

M

Kv
,

B̃ = B

(

µ

rKv

)

, γ =
µξ

r
, c =

δ

r
, υ =

Λ

rKv
.

(6.14)

From the rescaled terms, we have

dτ

dt
= r,

dz

dx
=

√

r

D1
.

The components of the system of partial differential equations are then give as

∂v

∂t
= k

∂Ṽ

∂τ
· dτ

dt
= rk

∂Ṽ

∂τ
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The second partial derivative is given by

∂2V

∂x2
=

∂

∂x

(

k

√

r

D1

∂Ṽ

∂z

)

= k

√

e

D1

∂2Ṽ

∂z2
· dz
dx

=
rK

D1

∂2Ṽ

∂z2

Following the same principle, the partial derivatives for the second partial differential equa-

tion are given by







∂B
∂t = r2K

µ
∂B̃
∂τ , and

∂2B
∂x2

= r2K
µD1

∂2 B̃
∂z2

.
(6.15)

We now substitute the rescaled terms from equation (6.14) and the partial derivative com-

ponents (6.15) into the system of equations (6.3), replace τ with t, z with x and also drop the

tildes, to obtain

∂V

∂t
=

∂2V

∂x2
+ υ +V (1−V)− BV

V + Q
,

∂B

∂t
= α

∂2B

∂x2
− cB+

γBV

V +Q
.

(6.16)

Similar to the system of equations (6.3), the initial and boundary conditions for the non-

dimensionalised system are such that

V = B = 0 on ∂Ω× (0,∞) , (6.17)

V(x, 0) = V0, B(x, 0) = B0, for 0 < x < 1. (6.18)

From equation (6.16), if the maximum obtainable resources from the prey consumption are

a unit, then the bacteriophage density is produced by converting the Vibrio cholerae to phage

biomass at a conversion factor γ.

6.4.2 Well-posedness of the model

We consider well-posedness of the model (6.3), in the sense observed by the French mathe-

matician Jacques Salomon Hadamard (1868-1963). According to Hadamard [102], a model

describing a physical phenomenon is said to be well posed if the solution; exists, is unique

and continuously depends on the initial data. In this case, if one or more of the conditions is

violated, then the problem is said to be ill-posed [103]. This further implies that if the prob-
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lem is well posed, then the behaviour of the solution remains relatively unchanged when

there is a small perturbation in the initial conditions.

Definition 6.4.1 (Invariant region [101]). The invariant region of a system of partial differen-
tial equations (6.3), is a closed subset D of the phase-space R2 such that for any initial population
(V0(x), B0(x)) that lies in D for all x∈Ω, then the solution (V(x, t), B(x, t)) lies in D for all x and
for all t > 0 for which the solution exists.

6.4.3 Non-negativity of the solution

When any of the species grows to the corresponding carrying capacity, then it implies that

the other has been completely out competed.

Lemma 6.4.1. Let us consider V0, B0 ∈ L∞(Ω) and that

ψ(x, t,V, B), φ(x, t,V, B) : Ω× [0,∞)×R×R → R

are measurable, then the response functions ψ and φ are Liptschz continuous.

Proof. Let V,V̂,B and B̂∈D be such that for all x∈Ω and t∈ [0, t),

0 < |V|, |V̂|, |A|, |B̂| < ρ,

then we want to show that

|ψ(x, t,V, B)− ψ(x, t, V̂, B̂)|+ |φ(x, t,V, B)− φ(x, t, V̂, B̂)|≤C(ρ)
(

|V − V̂|+ |B− B̂|
)

Given our functional responses ψ and φ, each of the species population is bounded by the
corresponding carrying capacity. Therefore, for all x and t > 0, we have that 0 ≤ V(x, t) <
Kv and 0 ≤ B(x, t) < Kb

6.4.4 Linear analysis of a spatially homogeneous model

It can be observed that the model (6.16) in absence of diffusion reduces to a system of first

order coupled ordinary differential equations;

dV

dt
= υ +V (1−V)− BV

V +Q
,

dB

dt
= −cB+

γBV

V + Q
.

(6.19)

The system of equations (6.19) can be analysed in presence or absence of constant replenish-

ment of the vibrio concentration in the aquatic environment from infected individuals. In

presence of constant vibrio shedding in the environment (i.e, υ 6= 0), the system (6.19) has

two equilibrium points.
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1. The equilibrium point E0
bc given by

E0
bc =

(

1+
√
1+ 4υ

2
, 0

)

. (6.20)

Note that for the case when there is no shedding of the pathogen into the aquatic en-

vironment, υ = 0, the equilibrium point E0
bc reduces to (1, 0) and the system would

have a trivial equilibrium point (0, 0) as indicated in [104]. Therefore, not considering

the shedding of the pathogen into the aquatic environment leads to underestimation

of the pathogen concentration.

Stability of the steady state E0
bc

To determined the local stability of the E0
bc, we linearise the system of equations (6.19)

at the equilibrium point. The Jacobian of system (6.19) is given by

J (E) =





1− 2V − BQ
(Q+V)2

− V
V+Q

γBQ
(V+Q)2

−c+ γV
V+Q



 . (6.21)

At the equilibrium point E0
bc, the Jacobian is given by

J (E0
bc) =

(

1− 2V∗ − QV∗
V∗+Q

0 −c+ γV∗

V∗+Q

)

. (6.22)

The eigenvalues corresponding the Jacobian (6.22) are

λ1 = 1− 2V∗ and λ2 = −c+
γV∗

V∗ + Q
.

We note that the following conditions hold for the vibrio concentration;

0 ≤ V

Kv
≤ 1 and 0 ≤ V

M+ Q
< 1. (6.23)

Considering the lower limits of (6.23) (a case when the concentration of the pathogen

is very low), we obtain

λ1 = 1 < 0 and λ2 = −c < 0.

Therefore, the equilibrium point E0
bc, is a saddle point whose stable manifold is in the

V-direction and the unstable manifold is locally in the B-direction.
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On the contrary, if we apply the upper bound of (6.23), we obtain

λ1 = −1 < 0 and λ2 = −c+ γ > 0, c < γ.

This implies that the equilibrium point E0
bc, is still a saddle point whose stable manifold

is in the B-direction and the unstable manifold is locally in the V-direction if c < γ.

Otherwise, the equilibrium point will be a stable point.

2. The equilibrium point E1
bc = (V∗∗, B∗∗) where

V∗∗ =
cQ

γ − c
, where γ > c,

B∗∗ =
γ

c

[

υ +
cQ

γ − c

(

1− cQ

γ − c

)]

.

Stability of the steady state E1
bc.

To show local stability of the equilibrium E1
bc, we linearise the non-diffusive system

(6.19) at the equilibrium point to obtain the Jacobian

J (E1
bc) =





1− 2V∗∗ − B∗∗Q
(Q+V∗∗)2 − V∗∗

V∗∗+Q
γB∗∗Q

(V∗∗+Q)2
−c+ γV∗∗

V∗∗+Q



 . (6.24)

To determine stability of E1
bc, it is enough to determine the signs of the eigenvalues of

J (E1
bc). We determine the sign of determinant and that of the trace. The determinant

of the Jacobian is given by

detJ (E1
bc) =

(

1− 2V∗∗ − B∗∗Q
(Q+V∗∗)2

)(

−c+
γV∗∗

V∗∗ + Q

)

+
γQB∗∗V∗∗

(V∗∗ + Q)3
.

We note that, at the steady state, when B∗∗ 6= 0, then −c+ γV∗∗

V∗∗+Q = 0. Therefore,

detJ (E1
bc) =

γQB∗∗V∗∗

(V∗∗ +Q)3
> 0.

Since detJ (E1
bc) > 0, the resulting roots are either both positive or both negative.

The trace of the Jacobian J (E1
bc) is given by

tr(J (E1
bc)) = 1− 2V∗∗ − B∗∗Q

(Q+V∗∗)2
+

(

−c+
γV∗∗

V∗∗ + Q

)

,

= 1− 2V∗∗ − B∗∗Q
(Q+V∗∗)2

.

(6.25)
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Assuming at the endemic equilibrium E1
bc, V/Kv ≈ 1, then

tr(J (E1
bc)) = −

(

1+
B∗∗Q

(Q+V∗∗)2

)

.

Given that det J > 0 and tr(J (E1
bc)) < 0 then the eigenvalues of the Jacobian J are all

negative. Hence, the fixed point E1
bc is stable.

Before embarking on the numerical results of the heterogeneous model, we give the numer-

ical results of the homogeneous non-dimensionalised model.
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Figure 6.1: Interaction of V. cholerae and bacteriophage obtained for parameter values; γ =
0.0488, c = 0.0182, ν = 0.015, Q = 0.05, V0 = 0.1, B0 = 0.05

The population of vibrios is predicted to grow explosively due to anticipated availability

of resources. Although the carrying capacity is approximately 1, the vibrio concentration

may hardly reach the carrying capacity as presence of predatory bacteriophage regulates

their population, Figure 6.1. Predation from bacteriophage reduces the vibrios until they

reach negligible concentrations. On the other hand, the bacteriophage concentration in the

aquatic environment increases until there is not enough vibrios as their food supply. The

bacteriophage concentration gradually decreases due do lack of resources and only increases

again when there is enough vibrios to prey on. The trend of a typical predator-prey relation

is observed throughout. The interaction between vibrios and bacteriophage is antagonistic

(see Figure 6.2) in nature. This kind of relation was predicted in the models by Jensen et al.

[38] and Das and Mukherjee [37].
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Figure 6.2: Phase portrait of V. cholerae and bacteriophage obtained for parameter values:
γ = 0.0488, c = 0.0182, ν = 0.015, Q = 0.05, V0 = 0.1, B0 = 0.05

We note here also that the model is highly sensitive to changes in parameters most espe-

cially; ν which is related to shedding of vibrios from the human population. With increased

shedding of vibrios, the vibrio population would increase uncontrolled and this increases

the likelihood of consuming an infectious dose of vibrios from a contaminated environment.

At the same time, the parameter related to the predation rate ought to be high, together

with lower depletion of the bacteriophage population if the vibrio population is to be easily

contained. For the selected set of parameter values, the phase portrait, Figure 6.2 remains

as unchanged even when the simulation is run over a longer period of time. This kind of

scenario predicts a stable limit cycle in the model for the selected set of parameters.

6.5 Numerical simulations of the heterogeneous model

To solve the system with diffusion numerically, we ought to discretise the system of equa-

tions. The discretisation can be done using finite elementmethod or finite difference discreti-

sation schemes, Crank Nicholson scheme among others. We note that in the dynamics of the

model system, only solutions in the positive quadrant V ≥ 0, B ≥ 0 are biologically feasi-

ble since the model monitors organisms. Although a variety of discretisation schemes exist,

we use the Crank-Nicholson scheme for our system of equations. The major motivation for

using the Crank Nicholson scheme is that, it is unconditionally stable. This discretisation

is implicit in time and the diffusion term is given as the average of finite difference of the

corresponding component at the current time and one time step ahead. With the Crank-

Stellenbosch University  http://scholar.sun.ac.za



Chapter 6. Role of the Bacteriophage 108

Nicholson method, we transform the components of the PDE for the vibrio population as

follows

∂V

∂t
=

V
j+1
i −V

j
i

∆t
,

∂2V

∂x2
=

1

2(∆x)2

[(

V
j+1
i+1 − 2V

j+1
j +V

j+1
j−1

)

+
(

V
j
i+1 − 2V

j
i +V

j
i−1

)]

.

The term ∆x is the width of the grid, i.e the distance between any two adjacent spatial dis-

cretisation points. ∆t is the distance between any two consecutive temporal discretisation

points.

The other terms can be approximated as follow;











V = 1
2

(

V
j+1
i +V

j
i

)

,

B = 1
2

(

B
j+1
i + B

j
i

)

.

The subscript i represents the space component and the superscript j time. Similar defini-

tions are used for the bacteriophage populations. The Crank-Nicholson scheme is sought

here since it is unconditionally stable.

V
j+1
i −V

j
i

∆t
=

1

2(∆x)2

[

V
j+1
i+1 − 2V

j+1
i +V

j+1
i−1 +V

j
i+1 − 2V

j
i +V

j
i−1

]

+ ν +V
j
i

(

1−V
j
i

)

− V
j
i B

j
i

V
j
i + Q

.

If we let R1 =
∆t

2(∆x)2
and we transfer all terms forward in time to the left side of the expres-

sion, we obtain

− R1V
j+1
i−1 + (1+ 2R1)V

j+1
i − R1V

j+1
i+1 = R1V

j
i−1 + ν∆t

+

[

(1− 2R1) +

(

(1−V
j
i )−

B
j
i

V
j
i +Q

)

∆t

]

V
j
i + R1V

j
i+1. (6.26)

Applying the boundary conditions, we note that

∂V(0, t)

∂x
=

∂V(1, t)

∂x
= 0,

imply that, at the left boundary

Vi −Vi−1

∆x
= 0 =⇒ Vi−1 = Vi,

and

Vi+1 −Vi

∆x
= 0 =⇒ Vi+1 = Vi,
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on the right boundary. Applying the boundary conditions and recursively the points on the

stencil, the resulting system of equations can be written as

AVV
j+1
i = bV

j
i + fVvec , for i = 1, 2, · · · , n. (6.27)

where AV and bV are tridiagonal matrices and fBvec is a approximating the coupling terms

for the dynamics of vibrio population. The left side of the equation (6.27) is given as

AVV
j+1
i =































(1+ R1) −R1 0 0 · · · 0 0

−R1 (1+ 2R1) −R1 0 · · · 0 0

0 −R1 (2R1 + 1) −R1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −R1 0

0 0 0 0 · · · (2R1 + 1) −R1

0 0 0 0 · · · −R1 (R1 + 1)





























































V
j+1
0

V
j+1
1

V
j+1
2
...

V
j+1
n−2

V
j+1
n−1

V
j+1
n































.

The terms on the right side of the equation(6.27) are given as

bV
j
i =































(1− R1) R1 0 0 · · · 0 0

−R1 (1− 2R1) R1 0 · · · 0 0

0 R1 (1− 2R1) −R1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · R1 0

0 0 0 0 · · · (1− 2R1) −R1

0 0 0 0 · · · R1 (1− R1)





























































V
j
0

V
j
1

V
j
2
...

V
j
n−2

V
j
n−1

V
j
n































.

and

fVvec =































(∆t)V
j
0

(

(1−V
j
0)−

B
j
0

V
j
0+Q

)

(∆t)V
j
1

(

(1−V
j
1)−

B
j
1

V
j
1+Q

)

...

(∆t)V
j
n−1

(

(1−V
j
n−1)−

B
j
n−1

V
j
n−1+Q

)

(∆t)V
j
n

(

(1−V
j
n)− B

j
n

V
j
n+Q

)































.

We now apply the Crack-Nicholson scheme to the equation describing the evolution of the
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bacteriophage to obtain

B
j+1
i − B

j
i

∆t
=

α

2(∆x)2

[

B
j+1
i+1 − 2B

j+1
i + B

j+1
i−1 + B

j
i+1 − 2B

j
i + B

j
i−1

]

− cB
j
i +

γB
j
iV

j
i

V
j
i + Q

. (6.28)

We let R2 = α(∆t)
2(∆x)2

and transfer the terms with superscript (j + 1) to the left side of the

equation obtaining

−R2B
j+1
i−1 + (1+ R2)B

j+1
i − R2B

j+1
i+1 = R2B

j
i−1 + (1− 2R2)B

j
i − c(∆t)B

j
i +

(∆)tγB
j
iV

j
i

V
j
i +Q

+ R2B
j
i+1.

We now apply boundary conditions such that

∂B(0, t)

∂x
=

∂B(1, t)

∂x
= 0,

which implies that, at the left boundary

Bi − Bi−1

∆x
= 0 =⇒ Bi−1 = Bi,

and

Bi+1 − Bi

∆x
= 0 =⇒ Bi+1 = Bi,

on the right boundary. Applying the boundary conditions and recursively the points on the

stencil, the equation (6.26) results into a system of equations given as

ABB
j+1
i = bB

j
i + gBvec , for i = 1, 2, · · · , n. (6.29)

where AB and bB are tridiagonal matrices and gBvec is a approximating the coupling terms.

The left side of equation (6.29) is given by

ABB
j+1
i =































(1+ R2) −R2 0 0 · · · 0 0

−R2 (1+ 2R2) −R2 0 · · · 0 0

0 −R2 (2R2 + 1) −R2 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −R2 0

0 0 0 0 · · · (2R2 + 1) −R2

0 0 0 0 · · · −R2 (R2 + 1)





























































B
j+1
0

B
j+1
1

B
j+1
2
...

B
j+1
n−2

B
j+1
n−1

B
j+1
n































.
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And the terms on the right side given by

bB
j
i =































(1− R2) R2 0 0 · · · 0 0

R2 (1− 2R2) R2 0 · · · 0 0

0 R2 (1− 2R2) R2 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · R2 0

0 0 0 0 · · · (1− 2R2) R2

0 0 0 0 · · · R2 (1− R1)














































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




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





























.

and

gBvec =































(∆t)B
j
0

(

−c+
γV

j
0

V
j
0+Q

)

(∆t)B
j
1

(

−c+
γV

j
1

V
j
1+Q

)

...

(∆t)B
j
n−1

(

−c+
γV

j
n−1

V
j
n−1+Q

)

(∆t)B
j
n

(

−c+ γV
j
n

V
j
n+Q

)































.

6.5.1 Numerical simulations

The numerical simulation of the model is carried out using python-scipy. For a given set of

initial conditions we simulate the systems of equations (6.27) and (6.29) and obtain steady

state solutions of the simulation. The spatial dimension is set on a range of 0− 1 where the

limits indicate the hostile boundaries of the aquatic reservoir. The spatial dimension is sub-

divided into 100 partitions. The temporal dimension is set from 0− 100 with approximately

1000 partitions. We set the initial proportions of the bacteriophage and vibrios in a ratio of

1 : 2. The simulation is done using a linear systems solver in python-scipy as indicated below.

V_new = numpy.linalg.solve(A_V, b_V.dot(V) + f_vec(V,B))

B_new = numpy.linalg.solve(A_B, b_B.dot(B) + g_vec(V,B))

The output of the simulation is put in a 100× 1000 multidimensional space-time array. The

outputs are similar at each position but differ from one time step to another.
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Case with persistent oscillations

The simulation is run and steady state proportions are obtained. The initial conditions for all

the simulations are in concentrations of bacteriophage:Vibrios as 0.05 : 0.1. Figure 6.3 shows

the initial concentration set for the two organisms.
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Figure 6.3: Initial conditions vibrio and bacteriophage proportions

In the model simulations, we observe essential features of the oscillatory behaviour of a

predator-prey system, see Figures 6.4(a) and 6.4(b). The change in the populations of the

vibrios is antagonistic to that of bacteriophage. The cycles of the antagonistic fluctuation

in the population for the two organisms are at regular intervals of approximately 180 time

points. This is approximated to about 6 months. A similar time scenario is observed in the

case when homogeneity is assumed, Figure 6.1.

Since the data output is a multidimensional dataset, it is plausible to visualise such data us-

ing heat plots. In the heat plots, clusters of rows with similar proportions are displayed on

the plot with similar colours with high values being dark and lower values representedwith

brighter colours. In the obtained heat map, the lowest proportion of the vibrios and bacterio-

phage is set to dark blue in accordance with the default gradient of colours for the heat map,

see Figure 6.6(a). The bright yellow/brown colour with differing intensity correspond to

the highest values. The intensity of the colour map gradually reduces to a dark blue colour

which corresponds to the lowest value of the vibrio proportion. The colour bands follow the

oscillatory behaviour exhibited in the model output. The time difference between the colour

bands an estimate of about 180 days. This would be synonymous with the biannual occur-

rence the infection. Similarly, in the heat plot for bacteriophage proportion, Figure 6.6(b),
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Figure 6.4: 3D display of V. cholerae and bacteriophage proportions in a heterogeneous envi-
ronment. Parameter values used are γ = 0.0488, c = 0.0182, ν = 0.015, Q = 0.05, V0 = 0.1,
B0 = 0.05, α = 1.8
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Figure 6.5: Temporal evolution of vibrio and bacteriophage proportions. The parameter
values used are: γ = 0.0488, c = 0.0182, ν = 0.015, Q = 0.05, V0 = 0.1, B0 = 0.05, α = 1.8
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Figure 6.6: Heat plots of proportions vibrios and bacteriophage proportions

the lowest values of the bacteriophage proportion as displayed with a dark blue colour. The

colour intensity gradually reduces to light blue which represents the highest value of the

bacteriophage proportion.

With respect to biological control of the infection, this scenario would not be effective. The

infection would keep recurring due to increased likelihood of consuming an infectious dose

of the pathogen at high concentrations of the vibrios in the environment. This may occur at

regular intervals of about 6 months periods as observed in the Figures 6.1 and 6.5.

Case with potential control of the vibrios

The numerical results in this subsection as obtainedmodify some parameter values as will be

indicated in the figure captions contrary the figures in the previous subsection. The change

in the parameter value the intuitive view that is if the vibrio concentration is to be contained

by using the bacteriophage, the following cases ought to be in place:

• The bacteriophage should be more effective and efficient in clearing the vibrios hence

a high predation rate.

• The bacteriophage should have a high survival time in the aquatic environment to

increase the predatory rate per bacteriophage in clearing the pathogens.

• Efforts should be in place to reduce the replenishment of vibrio concentrations into the

aquatic environment from external sources.
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In our obtained results with the conditions above implemented, we observe that, although

initially the proportional of vibrios is two folds higher than that of the bacteriophage, preda-

tory interaction considerably depletes the concentration of vibrios. The resulting proportions

indicate a high concentration of bacteriophage in the environment and a negligible concen-

tration of the vibrios, see Figures 6.8 and 6.9 .

Figure 6.7: Space-time display of vibrio and phage proportions in space and time for param-
eter values: γ = 0.05, c = 0.018, ν = 0.03, Q = 0.05, V0 = 0.1, B0 = 0.05, α = 1.8
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Figure 6.8: Evolution of vibrio and bacteriophage proportionswith time: γ = 0.05, c = 0.018,
ν = 0.03, Q = 0.05, V0 = 0.1, B0 = 0.05, α = 1.8

Similar to the previous subsection, the multidimensional dataset can be visualised using

heat plots. In the heat plot for the vibrios, the lowest proportion of the vibrios to dark blue

in accordance with the default gradient of colours for the heat map, see Figure 6.9(a). The
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Figure 6.9: Heat plots of proportions vibrios and bacteriophage proportions: γ = 0.05, c =
0.018, ν = 0.03, Q = 0.05, V0 = 0.1, B0 = 0.05, α = 1.8

bright yellow/brown colour with differing intensity correspond to the highest values. The

intensity of the colour map reduces to a dark blue colour which corresponds to the lowest

value of the vibrio proportion. The sharp change of the colour bands indicates an explosive

increase or drop on the vibrio concentrations in presence of the bacteriophage. A rapid

increase in vibrio population was previously observed in the study be Vital et al. [54], on V.

cholerae subtype O1 Ogawa El tor.

In the heat plot for bacteriophage proportion, Figure 6.9(b), the lowest values of the bac-

teriophage proportion are also displayed with a dark blue colour. The highest values are

displayed with a hight blue colour. The colour intensity gradually reduces dark blue to light

blue which indicating a gentle increase in bacteriophage concentrations.

6.6 Conclusion

In this chapter, two scenarios of the interaction between vibrios and bacteriophage have been

considered. Firstly, the typical oscillatory predator-prey system which depicts the antago-

nistic interaction between the vibrios and the bacteriophage. Such an interaction does not

result into containment of infection. Secondly, a case with a more effective bacteriophage

that results in containing the vibrio concentration. The steady state proportions indicate a

negligible concentration of vibrios in the aquatic reservoir. If this is successfully achieved,

it considerably reduces the likelihood of consuming an infectious dose of vibrios even if

contaminated water is consumed.

However, the numerical results still indicated a persistent high concentration of the bacterio-
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phage even when the V. cholerae concentration is negligible. This is an unforeseen behaviour

since in the model, the bacteriophage entirely depends on the vibrios and have no alterna-

tive food source. In addition the numerical results in Figure 6.8 show noise at the transition

points. Unfortunately, we have not yet been able to establish the real cause of such noise

although we believe, they could be due multiple oscillations in the discretised system at the

corresponding points.
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Chapter 7

Conclusion and discussion

In this thesis, we used mathematical models to study the transmission dynamics of cholera

with the main view of understanding possible ways through which the disease can be con-

tained or an outbreak prevented. Four key aspects were considered, i.e the importance of

hygiene, meta-population dynamics with movement between communities, optimal con-

trol and biological control of the infection using a vibrio specific bacteriophage. Our study

of cholera with focus on hygiene related contact function, metapoulation spread of cholera

with no cross community infection, and optimal control of the infection in a metapopulation

setting with no cross community infection but exchange of individuals between communi-

ties is the first of the kind. In addition, although biological control vibrio cholerae density

using a bacteriophage is not a new concept, modelling of such an interaction with parabolic

reaction-diffusion equations has not been attempted prior to this work (to best of our knowl-

edge).

In Chapter 3, the model describing the transmission dynamics of cholera was presented.

The model incorporated two transmission routes namely; (1) contact with the contaminated

aquatic environment where the contact probability follows a maximum saturation function

which is dependent on the concentration of the pathogen in the environment, and (2) person

to person contact which is assumed to be influenced by the level of hygiene. The model

has a disease free equilibrium which is globally stable and an endemic equilibrium which is

unique. Extensive selection of model parameters was done, sensitivity analysis performed

using the Latin hypercube sampling scheme and numerical simulations were also done.

In the metapopulation model, heterogeneity was considered where two communities hav-

ing similar cholera transmission dynamics were analysed. The community specific disease

thresholds were obtain for two cases namely; (1) when the communities were assumed to be

118
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isolated with no movement between them and (2) when the communities were connected

by back and forth movement of both immunologically naive as well as the infected indi-

viduals. Vital dynamics of the model were analysed including the invariant region/region

of biological significance. The model equilibria were obtained including the disease free

equilibrium and the community specific equilibria (boundary equilibria). The disease free

equilibrium was showed to be globally asymptotically stable when the community specific

disease thresholds in non-isolated communities were each less than unity. Both the commu-

nity specific endemic equilibria exist whenever the community specific disease thresholds

are greater than unity, the equilibria are unique and locally asymptotically stable.

The considered communities were classified with the assumption of difference in living con-

dition. Our numerical results indicate that, in isolated communities the disease was likely

to stay longer in the community with poor facilities compared to one with better living con-

ditions. If the communities are connected, with only movement of those susceptible, there

is a likelihood of the disease greatly affecting the community with better living conditions.

This has been attributed to the high susceptible pool that would increase the likelihood of

new infections. If the communities are connected by a migratory network there is likely

synchronous fluctuation of the population of both the infected and immunologically naive

individuals. However, the severity of the infection is more inclined to the community that

gets more susceptible and infected immigrants.

Optimal control of cholera in a metapopulation setting with exchange of individuals be-

tween communities and no cross community transmission was considered. Our observa-

tions indicate that, an epidemic in community in presence of controls can be contained in

approximately half the time it would take through self-limitation.

In the model for biological control of cholera using a vibrio specific bacteriophage, two sce-

narios were observed. First, a scenario where the disease is likely to remain persistent due

to the recurring high concentrations of the pathogen. This a case when the bacteriophage is

assumed to be less effective in clearing theV. cholerae. Secondly, a scenario with a more effec-

tive predatory bacteriophage, with high survival rate and reduced shedding of the vibrios in

the aquatic environment. This would result in faster containment of the V. cholerae concen-

tration. If the vibrio concentration is reduced, this reduces the likelihood of infection with

cholera if contaminated water is consumed. A reduced concentration of the pathogen in the

aquatic environment reduces the likelihood of consuming the concentration of the pathogen

equivalent to the infectious dose.
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7.1 Limitations and future work

One of the major challenges we faced during this study was the fact that we were unable to

obtain data most especially data for the 2000− 2002 cholera outbreak that devastated most

provinces in South Africa. This was the case despite the numerous communications made to

personnel potentially having the data. Availability of a complete trusted dataset on a cholera

epidemic would have aided in estimating community specific disease parameter and testing

possible control scenarios for future reference in case of an outbreak.

The models we used do not put into account the time delay between the time infection and

when the infected person becomes infectious. This is time delay was predicted in [41]. It

may be plausible to investigate the effect of delay on the transmission dynamics of the dis-

ease. In addition the infection rate may not necessarily be constant throughout the epidemic

period. We acknowledge the fact that considering time dependent parameter may give more

insights into the disease dynamics. The metapopulation models do not put into account the

possibility of cross community infection and access to a common contaminated water source

for adjacent communities. This aspect may have a significant effect on the transmission dy-

namics and severity of the disease.

In the models used in Chapters 4 and 5, the infected population is not classified into those

symptomatic and asymptomatic individual. In addition, stochasticity that may be attributed

to the environmental conditions could influence the infection pattern related to both the

primary and secondary routes. The noise resulting from such stochastic consideration may

give a more realistic picture of the fluctuating non constant disease transmission rates.

The dynamics of the vibrios and the lytic bacteriophage occur in a completely heterogeneous

environment with varying levels of salinity, temperature, nutrient supply and changing wa-

ter currents. However, coupling a complete model with the human population (using ODEs)

as well as the heterogeneous dynamics of the vibrios and the bacteriophage (using reaction-

diffusion system of equations) may be a challenging task. However, if implemented it would

give amore comprehensive view of the potential importance of the bacteriophage in the con-

trol of cholera.
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