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Abstract 

 

Deciphering patterns of intraspecies population genetic structuring in commercially 

important shark species is essential for an integrated fisheries management approach to 

conservation of regional biodiversity. The common smoothhound shark, Mustelus mustelus, 

is an overexploited, commercially and recreationally important shark species in South Africa. 

Considering the vulnerable status of the common smoothhound shark and due to very limited 

available genetic information, this study aimed to develop molecular markers, assess patterns 

of genetic diversity and population connectivity along the South African coast using 

multilocus data generated from 12 microsatellite markers and the mitochondrial gene, NADH 

dehydrogenase subunit 4 (ND4). The cross-species amplification of microsatellites proved 

useful for genetic diversity and population genetic analysis of the common smoothhound 

shark. These microsatellites could aid in the molecular characterisation of other endemic and 

cosmopolitan species and provide valuable tools for the conservation of potentially 

threatened or exploited shark species. For the microsatellite data, moderate levels of genetic 

diversity based on the heterozygosity, allelic richness and haplotype diversity were found in a 

total of 144 individuals sampled across eight study populations. Estimates for pairwise 

population differentiation, F-statistics, AMOVA and factorial correspondence analysis (FCA) 

indicated significant genetic structure within and between west- and east coast populations. 

Additionally, Bayesian clustering analyses detected two putative ancestral gene pools, 

supporting the presence of a biogeographic barrier at the Cape Agulhas region and therefore 

genetic discontinuity between the Indian and Atlantic Ocean samples. On the contrary, 

mitochondrial data indicated that common smoothhound shark is genetically homogenous 

with substantial interoceanic gene flow. Such conflicting signals found between nuclear and 

mitochondrial DNA (mitonuclear discordance) can be attributed to a number of factors and 

could simply be due to the inherent differences in marker properties or an indication of sex 

biased dispersal. Despite an indication of an expanding common smoothhound shark 

population based on both marker types, a contemporary genetic bottleneck may have gone 

undetected as genetic divergence was very low in some of the study populations. 

Nonetheless, contemporary restriction to gene flow and historical demographics such as 

range expansion are proposed as the most likely forces explaining genetic structure in 

present-day common smoothhound sharks in South Africa. For future sustainable exploitation 
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of common smoothhound shark, the possible existence of two genetically differentiated 

populations and observed asymmetric gene flow along the South African coast should be 

taken into consideration. It is also recommended that in the future further evaluations of fine-

scale genetic structure and seasonal migration patterns in this commercially important species 

are conducted in order to allow integration of this knowledge into existing fisheries 

management practices.   
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Opsomming 

 

 

Die ontsyfering van patrone van intraspesie populasie genetiese struktuur in kommersieel 

belangrike haai spesies is noodsaaklik vir 'n geïntegreerde bestuursbenadering tot visserue en 

bewaring van plaaslike biodiversiteit. Die hondhaai, Mustelus mustelus, is 'n oorbenutte, 

kommersiële en sporthengelary belangrike haai spesie in Suid-Afrika. Met inagneming van 

die kwesbare status van die hondhaai en as gevolg van baie beperkte beskikbare genetiese 

inligting, het hierdie studie gepoog om molekulêre merkers te ontwikkel, asook om die 

patrone van genetiese diversiteit en populasie struktuur te ondersoek langs die Suid-

Afrikaanse kus deur middel van multilokus data gegenereer uit 12 mikrosatelliet merkers en 

die mitokondriale geen, NADH dehidrogenase subeenheid 4 (ND4). Die kruis-spesie 

amplifisering van mikrosatelliete was nuttig vir genetiese diversiteit en populasie genetiese 

analise van die hondhaai. Hierdie mikrosatelliete kan moontlik help met die molekulêre 

karakterisering in ander inheemse en kosmopolitaanse spesies en kan as waardevolle 

hulpmiddels dien in die bewaring van potensieel bedreigde en oorbenutte haai spesies. Vir die 

mikrosatelliet data is matige vlakke van genetiese diversiteit gevind gebaseer op 

heterosigositeit, alleliese rykheid en haplotipe diversiteit gevind in 'n totaal van 144 individue 

getoets oor agt studie populasies. Skattings vir paarsgewyse populasie differensiasie, F-

statistieke, AMOVA en faktoriale ooreenstemming analise het betekenisvolle genetiese 

struktuur aangedui binne en tussen wes- en ooskus populasies. Daarbenewens, het Bayesian 

groepering analise twee potensiele voorvaderlike geenpoele waargeneem, ter ondersteuning 

van die teenwoordigheid van 'n biogeografiese versperring by die Cape Agulhas gebied en 

dus genetiese diskontinuïteit tussen die Indiese en Atlantiese Oseaan monsters. In teenstelling 

het die mitokondriale data aangedui dat hierdie haai spesie geneties homogeen is met 

aansienlike interoseaniese geenvloei. Sulke teenstrydige tekens tussen kern en mitokondriale 

DNS (mitokern onenigheid) kan toegeskryf word aan 'n aantal faktore en kan eenvoudig wees 

as gevolg van die inherente verskille in merker eienskappe of 'n aanduiding van geslags 

sydigeverspreiding. Ten spyte van 'n aanduiding van 'n groeiende hondhaai populasie 

gebaseer op beide merker tipes, kon 'n hedendaagse genetiese bottelnek onopgemerk gegaan 

het aangesien genetiese divergensie baie laag was in sommige van die studie populasies. 

Nietemin, hedendaagse restriksie van geenvloei en historiese demografie soos verbreding van 

reeks voorkoming word voorgestel as die mees waarskynlike dryfkragte wat genetiese 
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struktuur in die hedendaagse hondhaaie in Suid-Afrika verduidelik. Vir toekomstige 

volhoubare benutting van die spesie, moet die moontlike bestaan van twee geneties 

verskillende populasies en waargenome asimmetriese geenvloei langs die Suid-Afrikaanse 

kus in ag geneem word. Vir die toekoms word dit ook aanbeveel dat verdere evaluerings van 

fyn-skaal genetiese struktuur en seisoenale migrasie patrone in hierdie kommersiël belangrike 

spesie uitgevoer word om die integrasie van hierdie kennis in die bestaande bestuur van 

visserye praktyke toe te laat. 
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Chapter 1 

Introduction: Literature Survey, Research Aims and Objectives 

 

1.1   Species Biology: An introduction to Mustelus mustelus  

1.1.1 Classification, Evolutionary History and Phylogeny of Common 

Smoothhound Shark  

The class Chondrichthyes (cartilaginous fishes), which sharks belong to (Compagno et al. 

2005), is divided into two subclasses: Elasmobranchii [all modern sharks and rays 

(elasmobranchs)] and Holocephali [modern chimaeroids (holocephalans)] (Maisey 2012). A 

close phylogenetic relationship between these groups is strongly supported by morphological 

and molecular data (Maisey 2012). Elasmobranchs are distinguished from the holocephalans 

by their gill architecture: elasmobranchs are characterised by multiple (five to seven) paired 

gill slits on the side of their heads (in sharks) or the ventral surface (in rays) whereas 

holocephalans are characterised by a soft gill cover with a single slit on both sides of the head 

(Compagno et al. 2005). According to the fossil record, the evolutionary history of 

chondrichthyans stretches back to the early Devonian (roughly 400 million years ago, MYA) 

(Corrigan and Beheregaray 2009; Maisey 2012) and possibly Silurian (roughly 416 MYA), 

where they radiated to become globally distributed; representing diverse morphological and 

ecological types (Grogan and Lund 2004; Corrigan and Beheregaray 2009).  

Elasmobranchii is the largest subclass of Chondrichthyes (over 1000 species have been 

described) (Compagno et al. 2005) and elasmobranch fish are considered one of the most 

ancient existing vertebrate lineages (Corrigan and Beheregaray 2009). They have survived 

four mass extinction events (Raup and Sepkoski 1982) and most present day taxa are thought 

to be derived from Mesozoic forms (Maisey et al. 2004; Maisey 2012). Elasmobranchs’ 

historically low economic value, sampling challenges and the paucity of studies that use 

molecular methods to study these fish may explain why they are a relatively under-researched 

group; particularly at the genetic and taxonomic level (Walker 1998; Corrigan and 

Beheregaray 2009). Corrigan and Beheregaray (2009) underwrite that the majority of 

molecular phylogenetic considerations of elasmobranchs are limited to higher taxonomic 

levels and mainly deal with the origin and placement of study taxa. Although relationships at 
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or below the family level have rarely been constructed (Eitner 1995; López et al. 2006; 

Cavalcanti 2007; Corrigan and Beheregaray 2009; Lim et al. 2010; Boomer et al. 2012), 

Naylor et al. (2012) described the first comprehensive phylogenetic relationships across 

families in elasmobranchs. Maisey (2012) recommended that the phylogeny of the order 

Carcharhiniformes required re-evaluation since morphological and molecular data from 

various studies have revealed that some families (Scyliorhinidae and Triakidae), as presently 

recognised, may be paraphyletic (Maisey 1984; Iglésias et al. 2005; Human et al. 2006), 

including some para- or polyphyletic genera e.g. Mustelus and Triakis (Figure 1.1) (López et 

al. 2006). 

 

Figure 1.1 Mitochondrial DNA (Cytb, ND4, ND2) maximum parsimony (MP) (A) and maximum 

likelihood (ML) (B) bootstrap consensus topologies. Asterisks indicate clades that appear in >80% of 

the bootstrap pseudoreplicates. Para- or polyphyletic genera are in a grey background. Adapted and 

modified from López et al. (2006).  

Mustelus Linck, 1760 (family Triakidae, order Carcharhiniformes) (Table 1.1) is a species-

rich genus represented by at least 28 recognised species of small to medium-sized demersal 

sharks (Compagno et al. 2005) found globally in continental temperate and tropical waters 

(Smale and Compagno 1997). Mustelus species (spp.) are collectively termed smoothhounds, 
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houndsharks or gummy sharks (Smale and Compagno 1997), although the latter is the 

common name for the best known Australian species, Mustelus antarcticus. In the Mustelus 

genus there is a high degree of conserved interspecific morphology which in turn leads to 

confusion in unambiguously distinguishing Mustelus species (Rosa and Gadig, 2010). 

Consequently the genus has been deemed challenging systematically (Heemstra 1973; White 

and Last 2006, 2008; Boomer et al. 2012). Misidentification of Mustelus spp. is a widespread 

concern and a common occurrence e.g., in the Mediterranean and Black Sea (M. asterias and 

M. Mustelus; Farrell et al. 2009), Australia (M. antarcticus, M. ravidus and M. stevensi; 

Boomer et al. 2012), northern Gulf of California (M. albipinnis, M. californicus, M. henlei 

and M. lunulatus; Pérez-Jiménez et al. 2013) and in South Africa, where the genus is 

represented by three species, M. mosis, M. mustelus and M. palumbes (Smale and Compagno 

1997; Da Silva and Bürgener 2007). These species together with the spotted gully shark, 

Triakis megalopterus, are readily confused in fisheries despite revision of the Mustelus genus 

by Heemstra (1973).  

Table 1.1 Classification of the common smoothhound shark modified from Serena et al. (2009) 

Kingdom Animalia 

Phylum Chordata 

Class Chondrichthyes 

Order Carcharhiniformes 

Family Triakidae 

Scientific Name: Mustelus mustelus 

Species Authority: Linnaeus 1758 

Common Name/s: English – Common Smoothhound; Afrikaans – Hondhaai 

Synonym/s: Squalus mustelus Linnaeus (1758) 

Taxonomic Notes: The morphology of Mustelus spp. is highly conserved leading to 

misidentification of species since numerous early field observational 

research may refer to either one of the species in the Mediterranean and 

Black Sea (M. asterias and M. mustelus) and in South Africa (M. mosis, 

M. mustelus and M. palumbes). 

Genetic Notes:  Molecular approaches have been adopted to discriminate Mustelus 

mustelus from M. asterias (Renon et al. 2001; Farrell et al. 2009; Barbuto 

et al. 2010) and from other Mustelus species (Naylor et al. 2012; Giresi et 

al. 2013).  
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Various molecular approaches have been adopted to discriminate between exploited 

Mustelus spp. and assist in species identification in the commercial trade. In Italy, during the 

late 90s it was noted that M. asterias and M. mustelus are commonly subjected to fraudulent 

substitution with lesser valued sharks (Weaver et al. 1999; Renon et al. 2001; Barbuto et al. 

2010). Therefore, in 2001 Renon and co-workers introduced a biochemical identification 

method, isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE), to discriminate 

between these species and several other shark species of minor commercial value (Renon et 

al. 2001). Barbuto et al. (2010) extended the work of Renon et al. (2001) by employing a 

DNA barcoding approach to identify species substitutions using the cytochrome c oxidase 

subunit I (COI) barcode sequence (Hebert et al. 2003) and barcode reference databases 

[GenBank and Barcode of Life Database (BOLD)]. 

In addition, the Mustelus genus has also received some taxonomic attention in the last few 

years. Recent research efforts have been conducted in the western Atlantic to decipher the 

aforementioned taxonomic problems using anatomic, morphometric and meristic data (Rosa 

and Gadig 2010), in conjunction with molecular data (Giresi et al. 2013; Pérez-Jiménez et al. 

2013). Molecular approaches combined with anatomic and meristic data have also been used 

in the central Indo-Pacific and Australasia to resolve these issues (Boomer et al. 2012). In the 

latter study, it was postulated that the troublesome systematics of the Mustelus genus may in 

part be attributed to a recent radiation following dispersal from a northern hemisphere 

ancestor. Additionally, Boomer et al. (2012) verified the “aplacental” and “placental” clades 

documented by López et al. (2006). The Mustelus spp. that lack white spots and were of 

placental reproductive mode, grouped separately from those with white spots exhibiting 

aplacental reproductive mode and, in general, the Mustelus spp. showed low levels of genetic 

divergence (particularly within the aplacental, white spot group) (Figure 1.2). 
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Figure 1.2 Phylogenetic hypothesis of 14 species of smoothhound sharks (Mustelus) based on 1055 

bp of mtDNA (ND4, ND2).  Bootstrap values are given for ML/MP analyses for white 

spotted/aplacental and non-spotted/placental clades (Boomer et al. 2012, their supplementary data 1). 

1.1.2 Distribution, Ecology, Population Trends and Commercial Importance 

The common smoothhound sharks, Mustelus mustelus, are active, strong-swimming 

epibenthic (living on or near the seafloor) sharks that are fairly slender with flattened ventral 

surfaces on the head and body (Smale and Compagno 1997). They are furthermore 

characterised by a grey to grey-brown body, mostly lacking spots, short head and round 

snout, a broad internarial space, large eyes, teeth with low bluntly rounded cusps arranged in 

multiserial rows and by the upper labial furrows being slightly longer than the lower (Figure 

1.3) (Ebert and Stehmann 2013). 
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Figure 1.3 Anatomical features of common smoothhound shark Mustelus mustelus (Ebert and 

Stehmann 2013). 

Common smoothhounds are cosmopolitan species, i.e. found across a wide distribution 

range from northern Europe to South Africa (eastern Atlantic and South-West Indian Ocean), 

including the Mediterranean Sea (Figure 1.4) (Whitehead et al. 1984; Compagno et al. 2005; 

Serena 2005). They inhabit continental shelves and uppermost slopes, from the intertidal 

region to at least 350 m in depth in temperate and tropical waters (Serena et al. 2009), where 

they may have a major impact on their prey populations (Smale and Compagno 1997). While 

some sharks are opportunistic apex (top) predators, others, such as Mustelus spp., are 

mesopredators (mid-level predators) (Belleggia et al. 2012). For example, with a trophic level 

of 3.8 (Cortés 1999) common smoothhound sharks are considered mesopredators in their 

niche. Mesopredators are at risk of predation from top predators and therefore play a vital 

role in marine ecosystems regulating prey populations. In doing so, they transmit effects of 

top predators to lower trophic levels (Heithaus et al. 2008). Common smoothhounds feed 

mainly on anchovy (fish), crustaceans and mollusks (Smale and Compagno 1997; Filiz 2009). 

Adaptive traits, such as the anatomy, dentition (Figure 1.3) and behaviour, of these animals 

render them well-adapted for this feeding mode (Smale and Compagno 1997).  
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Figure 1.4 Global distribution of common smoothhound shark M. mustelus (modified from 

http://www.zeeinzicht.nl; Compagno et al. 2005). 

In the northern Atlantic, the common smoothhound is data deficient, deterring population 

trend estimates (Serena et al. 2009). Population declines in the Mediterranean Sea have been 

reported since 1997 (Aldebert 1997) and lately a similar trend has been observed in the 

eastern central Atlantic Ocean (Gascuel et al. 2007), eastern Atlantic and South-West Indian 

Ocean (Da Silva 2007). Consequently, global common smoothhound populations have been 

listed as decreasing and the species listed as vulnerable by the IUCN Red List of Threatened 

Species (Serena et al. 2009). This overall decline in populations is a combined response to the 

K-selected (low fecundity, late maturity and long gestation period) life history traits and 

fishing (artisanal, recreational and commercial) (Tillett et al. 2012a) and other anthropogenic 

pressures (Stevens et al. 2000). A drastic reduction in population size (population bottleneck) 

can result in loss of genetic diversity due to genetic drift, resulting in small populations 

experiencing accumulating effects of inbreeding (Nei et al. 1975). This in turn may result in 

severe declines in effective population size (NE) (Wilson et al. 2012) and a relatively low 

population fitness (Ozerov et al. 2013), rendering a population vulnerable to extinction 

(Bouzat 2010).  

In South Africa, common smoothhound shark is one of the topmost shark species harvested 

commercially (Da Silva and Bürgener 2007) and is also recreationally important (Department 

of Agriculture, Forestry and Fisheries 2013). Consumers generally prefer smoothhounds over 

other species as smoothhound fillets are greatly appreciated as a fish dish in Italy (Renon et 
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al. 2001), Asia and Australia (Da Silva and Bürgener 2007). In order to mitigate the recent 

global decrease in common smoothhound populations, more species-specific demographic 

and genetic knowledge are required (see later). 

1.1.3 Life History and Reproduction  

Sharks employ a K-selected life history strategy. Previous work on various shark species 

has shown that reproductive variables in elasmobranchs could be attributed to phenotypic 

plasticity (Yamaguchi et al. 2000; Saïdi et al. 2008) and are influenced by geographic 

variation, specifically latitude (Parsons 1993; Taniuchi et al. 1993; Yamaguchi et al. 2000; 

Saïdi et al. 2008). However, the patterns of variation in reproductive biology of common 

smoothhound sharks among regions are not coherent with latitudinal variation and Saïdi et al. 

(2008) suggested that further investigation is needed to confirm this. The reproductive 

variables of the common smoothhound in different regions are summarised in Table 1.2. It 

can be deduced that males reach sexual maturity sooner [matured at a smaller LT (total length) 

than females, see Table 1.2] and reach a smaller maximum LT, corroborating the sexual 

dimorphism in sharks (Taniuchi et al. 1993; Smale and Compagno 1997; Khallahi 2002, 

2004; Capapé et al. 2006; Saïdi et al. 2008). Noteworthy, the reproductive variables in the 

Senegal population deviated from the expectation of latitudinal variation, i.e. increasing 

rather than decreasing (Saïdi et al. 2008). Little is known about the lifespan of ocean-

dwelling common smoothhound sharks; however, those held in captivity live to an average 

age of 25 years and those in the wild are believed to live longer (Da Silva 2007). 

Common smoothhound sharks are viviparous (live-bearing) with a yolk-sac placenta 

(Compagno 1984; Boomer et al. 2012); embryos develop a placental connection with the 

mother through the interaction of the yolk sac, egg envelope and uterine wall, and reproduce 

seasonally where each cycle may take one year or longer, depending on the resting periods 

between pregnancies (Figure 1.5) (Smale and Compagno 1997). Litter size has been 

positively correlated with maternal length and thus age (Smale and Compagno 1997; Saïdi et 

al. 2008).  
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Table 1.2 Summary of common smoothhound, Mustelus mustelus, reproductive variables observed 

from five different regions 
 

 

 

Figure 1.5 Viviparity in common smoothhound Mustelus mustelus.  

Molecular genetics have also been employed to study the genetic mating systems of various 

shark species using microsatellite markers with the main objective of elucidating multiple 

paternity (a single brood of offspring sired by multiple males), polyandry (females mating 

with more than one male) (e.g., Lage et al. 2008; Daly-Engel et al. 2010; Chapman et al. 

2013; Boomer et al. 2013; Farrell et al. 2014) and reproductive philopatry (repeated use of 

specific nursery areas for parturition) (e.g., Keeney and Heist 2006, Portnoy et al. 2010, Karl 

et al. 2011, Blower et al. 2012, Tillett et al. 2012b, Feldheim et al. 2014). Although multiple 

matings could benefit fitness in males, the indirect genetic benefits are still uncertain and 
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most likely negligible (di Battista et al. 2008). A study by Karl (2008) showed that multiple 

paternity could even result in lower genetic diversity due to an increased variance in male 

reproductive success. This in turn could reduce effective population size and limit population 

genetic diversity. An understanding of reproductive strategies is therefore also important for 

species-specific management and the conservation of commercially-important sharks.  

1.2  The Demersal Shark Fishery, Management and Socio-Economic Issues 

in South Africa 

1.2.1 Historical Development of the South African Demersal Shark Fishery 

The South African shark fishery was initiated in the 1930s off the coast of Durban, Kwa-

Zulu Natal (Kroese et al. 1995; Sauer et al. 2003) and was initially targeted at the tope shark 

Galeorhinus galeus (Van Zyl 1992; Da Silva and Bürgener 2007). A high demand for shark 

liver oil as a source of vitamin A during World War II resulted in elevated shark catches, 

roughly 1500 sharks per trip (Lees 1969). However, the advent of artificial synthesis of 

vitamin A during 1950 led to the collapse of the shark liver market (Lees 1969; Van Zyl 

1992). Despite this, sharks were still caught incidentally and exported as various meat 

products to central Africa (dried and/or salted meat), Europe, the Far East and Australia 

(frozen carcasses) (Kroese et al. 1995). Shark exports from South Africa started to increase 

since 1995 (Stuttaford 1995; Da Silva 2007), owing to the collapse of the Australian tope 

shark industry (McGregor 1991), and South Africa is the only country in sub-equatorial 

Africa reporting substantial yields (> 1 000 tons in aggregate over 1985-2000) in terms of 

shark production and trade (Fowler 2005). Currently, a new directed shark fishery exists and 

has since expanded into the fin trade and, more recently, into the shark fillet industry, mainly 

for Australia (Da Silva 2007; Da Silva and Bürgener 2007).   

1.2.2 Structure of the Fishery  

South Africa’s demersal shark trade primarily targets five shark species with commercial 

value. In order of commercial importance they are: common smoothhound (Mustelus 

mustelus), tope shark (Galeorhinus galeus), copper shark (Carcharhinus brachyurus), dusky 

shark (Carcharhinus obscurus), and whitespotted smoothhound (Mustelus palumbes) (Da 

Silva and Bürgener 2007). To a limited extent, hammerhead species (Sphyrna spp.), gully 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 1                                                                                                                  Introduction 

 

11 | P a g e  
 

sharks (Triakis megalopterus) and cow sharks (Notorhynchus cepedianus) may also form part 

of the trade (Da Silva 2007).  

The recognised fisheries impacting sharks in South Africa comprise 16 sectors (including 

both commercial and non-commercial) that are divided into two principle components, 

directed and non-directed (bycatch) fisheries, in order to conform to global regulation of 

shark catches (McCord 2005). Directed fisheries denote fishing activities that target sharks, 

namely demersal shark longline-, traditional line-, and St. Joseph shark net-fisheries (McCord 

2005; Da Silva 2007). Sharks are also caught as both bycatch and as targeted species in the 

large pelagic longline fishery and the recreational linefishery (Department of Agriculture, 

Forestry and Fisheries 2013; Sharks Biodiversity Management Plan 2014). 

 

 

Figure 1.6 Catches (kg) of demersal sharks in the South African longline fishery, 1992-2011. These 

figures may reflect the weight of the shark after being headed and gutted. Blue line represents tope 

sharks; red, smoothhound sharks (Mustelus spp.); green, requiem sharks (Carcharhinus spp.) and 

purple, cowsharks (Notorhynchus cepedianus) (Da Silva and Bürgener 2007; Bosch 2012).  

The total annual shark catches in South Africa are estimated at 6 562 tons (Figure 1.6) and 

South Africa is the second largest shark landing country in sub-equatorial Africa (Fowler 

2005; Department of Agriculture, Forestry and Fisheries 2013), although not listed under the 

top 20 shark fishing countries in the world (Lack and Sant 2011). Since shark meat is of little 

importance in South Africa, the bulk of processed demersal shark meat is exported to 
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Australia (fish and chip trade) (Da Silva and Bürgener 2007) and Asian countries (shark fin 

trade) (Fowler 2005). Exports of frozen shark surpassing 100 tons per annum from the sub-

equatorial African region by 2005 were only reported by South Africa and Angola, with the 

former engaging largely in shark fin exports to China (Fowler 2005). Imports of shark meat 

have also been reported but it is currently unclear what this meat is being used for (Warman 

2004). 

Shark population declines have been reported worldwide and this could in part be ascribed 

to legal and illegal fisheries to support the increased demand for shark meat. Notably, in 

South Africa shark catches have been fluctuating since 1992, with a sharp increase between 

2008 and 2010, and a drastic decline in 2011 (Figure 1.6). These results corroborate the 

results of stock assessments of the tope (McCord 2005) and common smoothhound (Da Silva 

2007) demersal sharks exploited in southern Africa. McCord (2005) and Da Silva (2007) 

found that these sharks are overexploited and threatened. In other commercially important 

marine organisms, a sudden and drastic decline in population size has been shown to impact 

the levels of genetic diversity (Teske et al. 2011; Dudgeon et al. 2012) and, therefore, the 

observed decline has raised concerns for the conservation and management of sharks 

occurring in South African waters. 

1.2.3 Regulation and Management of the Fishery 

South Africa has a coastline that spans some 3650 km and an Exclusive Economic Zone 

(EEZ) of just over 1 million km
2
 that includes two oceans, the south-east Atlantic and south-

west Indian Ocean, including all marine bio-zones (Griffiths et al. 2010). Sharks are managed 

and regulated under the Marine Living Resources Act 18 of 1998 (MLRA) (Department of 

Agriculture, Forestry and Fisheries 2013; Sharks Biodiversity Management Plan 2014). 

Coastal Marine Protected Areas (MPAs), e.g. the Langebaan Lagoon Marine Protected Area 

(LMPA), have also been implemented to offer partial protection to various coastal shark 

species, such as ragged tooth sharks, cow sharks, smoothhounds, catsharks and juvenile 

requiem sharks (Griffiths et al. 2010). A recent study by Da Silva et al. (2013) on the degree 

of protection by MPAs to shark populations, using M. mustelus as a candidate species, found 

that no-take area protection may be a practical management option for common smoothhound 

since this species demonstrated high levels of site fidelity. This information may be applied 

to other species with similar life history traits. However, it is debated that many targeted 

species are too mobile to benefit from zone protection [e.g. blacktip reef sharks (Vignaud et 
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al. 2013)] and that MPAs are only suitable for resident species (Gell and Roberts 2003; 

Kerwath et al. 2013) and, therefore, various management tools are needed for the 

conservation and sustainable fishing of sharks (Department of Agriculture, Forestry and 

Fisheries 2013). These include special protection of some species under the MLRA, e.g. 

sawfishes (Pristis spp.) and the spotted gully shark (Triakis megalopterus) due to their 

compromised conservation status (Department of Agriculture, Forestry and Fisheries 2013). 

Fisheries management also monitors entry into any commercial fishery by a rights allocation 

process, which is based on scientific recommendations in limiting the number of vessels, 

crew and Total Allowable Catch (TAC) or Total Allowable Effort (TAE) for target species, 

in addition to precautionary catch limits for bycatch species (Department of Agriculture, 

Forestry and Fisheries 2013; Sharks Biodiversity Management Plan 2014).  

South Africa has developed and implemented shark management actions since the launch of 

an International Plan of Action for Sharks in 1999 (IPOA-Sharks, which also includes skates, 

rays, and chimaeras) and adopted a Nation Plan of Action for Sharks in 2001 (NPOA-Sharks) 

(Department of Agriculture, Forestry and Fisheries 2013). The South African NPOA-Sharks 

aims to enhance the conservation and management of sharks and their sustainable use, while 

improving data collection and the monitoring and management of shark fisheries 

(Department of Agriculture, Forestry and Fisheries 2013). The South African NPOA-Sharks 

is implemented in conjunction with the national Sharks Biodiversity Management Plan 

(SBMP) with the goal to improve the status of sharks within South African waters. 

Specifically, the SBMP intends to achieve and maintain a favourable conservation status for 

resident and migratory sharks within South African waters, taking into account the socio-

economic and other values of these species, based on the best available scientific information 

(Sharks Biodiversity Management Plan 2014). 

1.2.4 Socio-Economic Aspects Governing the Fishery 

Marine fisheries contribute to the global economy, but the general lack of data and 

uncertainty about the level of employment in marine fisheries may deter sound estimation of 

fishing effort, leading to overexploitation of marine resources. This in turn may result in 

inaccurate projections of economic and societal costs and benefits (Teh and Sumaila 2013). 

Coastal artisanal fisheries in developing countries may exacerbate illegal shark fishing 

countries by various coastal communities that depend primarily on shark meat as an 

important source of protein (Andrew et al. 2007). Teh and Sumaila (2013) estimated that 260 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 1                                                                                                                  Introduction 

 

14 | P a g e  
 

± 6 million people are involved in global marine fisheries, including both full-time and part-

time jobs in the direct and indirect sectors. In South Africa, previous work established that 

78% of fishermen depend on fishing for 100% of their income (Da Silva 2007) and, in that 

respect, fishermen may practice coastal artisanal fisheries to optimise their income. 

Nature-based tourism (ecotourism) involving marine areas and species has expanded in the 

last two decades (Dobson 2006) and offers opportunities for economic, educational and 

environmental benefit (Techera and Klein 2013). Apart from their fishery importance, sharks 

also play a vital role in shark based ecotourism, an emerging conservation tool that, when 

managed appropriately, allows for recreational use of MPAs, provides means of alternative 

livelihoods for fishers, facilitates marine research and encourages public awareness of 

threatened shark species (Techera and Klein 2013).  Globally, there are 376 established shark 

ecotourism operations across 29 different countries (Gallagher and Hammerschlag 2011). 

Shark-based ecotourism may have negative impact on the behaviour of some already-

threatened shark species; for instance, a dependency on tourist food, fostering aggression 

towards humans, or through incidental disease or injury (Orams 2002). In South Africa, the 

effect of establishing ecotourism on the behaviour of white sharks (Carcharodon carcharias) 

was tested around a seal colony on a small island, Seal Island in False Bay (Laroche et al. 

2007). The study found that moderate levels of ecotourism had a minor impact on the 

behaviour of white sharks, indicating no impact on behavioural effects at the ecosystem level. 

Because of an increase in shark ecotourism operations in South Africa in the last six years, 

further research is necessary to validate this observation.      

1.3   Applied Molecular Population Genetics for Fisheries Management and 

Conservation of Sharks 

1.3.1  Molecular Genetic Markers   

Molecular markers have been extensively applied in population genetics and ecology of 

many terrestrial, freshwater and marine animals (O’Connell and Wright 1997; Chenuil 2006; 

Portnoy and Heist 2012) to characterise and understand the apportioning of genetic variation 

at multiple levels, from intra-individual to interspecific using mitochondrial (matrilineal) 

and/or nuclear DNA (bi-parentally inherited) (Chenuil 2006). Early molecular work on 

elasmobranchs was based on nuclear allozymes (enzymes which possess allelic variation at a 

single locus), amplified fragment length polymorphisms (AFLPs) and restriction fragment 
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length polymorphisms (RFLPs) (Dudgeon et al. 2012; Portnoy and Heist 2012). Allozyme 

analysis is not ideal for delineating genetic divergence among chondrichthyan stocks because 

allozyme heterozygosity in these animals is low (Smith 1986; Heist and Gold 1999a; Heist 

2004a). The disadvantage of AFLPs and RFLPs is that they are dominant markers and 

scoring and analysis of alleles can be difficult (Smith 1986; Heist and Gold 1999a; Heist 

2004a). These markers are also not consistent and easily reproducible between laboratories 

(Chenuil 2006). Therefore molecular genetic studies on elasmobranchs have extended to 

typically employ mtDNA markers [e.g. ND4, ND2, CR (control region)] and, more recently, 

microsatellites due to their hyper-variability offering increased resolution (Dudgeon et al. 

2012). These molecular markers are now widely deployed to discern population genetic 

structure and demographic history in sharks (e.g. Veríssimo et al. 2010; Karl et al. 2011). 

1.3.1.1 Microsatellite Markers 

Microsatellites are simple sequence repeats (SSRs) of one to six base pairs motifs that are 

tandemly arranged e.g., GAn and GACAn, (where n refers to the number of times the unit is 

repeated) (Tautz 1989; O’Connell and Wright 1997; Chenuil 2006; Liu 2007). They are 

characterised by multiple alleles per locus (i.e. are highly polymorphic), co-dominance (each 

allele can be scored) (Chenuil 2006) and random dispersal throughout genomes (Litt and 

Luty 1989; Tautz 1989; O’Connell and Wright 1997). These markers occur in genic (type I) 

and non-genic (type II) regions (Liu et al. 2007). Type II markers are typically used in 

molecular population genetics to elucidate demographic and historic processes since, in most 

cases, these markers are selectively neutral. However, type I markers are derived from known 

genic regions (e.g. Expressed Sequence Tags, ESTs) and are, therefore, gene-linked markers 

that may be subjected to selection (Guichoux et al. 2011). Type I markers have a higher 

probability of conferring phenotypic effects or being closely linked to a causal mutation and, 

therefore, delineating the adaptive potential of species (Liu and Cordes 2004; Guichoux et al. 

2011).  

The lack of molecular markers for many shark species has impeded population- and 

conservation genetic studies; for instance, microsatellites for most species need to be 

developed de novo, a process that is often costly and laborious (Hoffman and Nichols 2011). 

To save time and cost, cross-species amplification of microsatellites from closely related 

species are generally employed (see Chapter 2 for a detailed discussion). However, various 

novel approaches have been developed to speed up the process of generating polymorphic 
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microsatellite markers; the approach of Dawson et al. (2010) that results in a high cross-

species utility and the Hoffman and Nichols (2011) approach for mining polymorphic 

microsatellite markers in silico.  

However, microsatellites also have limitations that should be taken into account when 

interpreting microsatellite genetic data, particularly when the objective is to infer population 

genetic structure, demographic history, parentage analysis, etc. These markers have technical 

difficulties such as null alleles (failure of an allele to amplify due to primer binding site 

sequence variation) and stuttering (in vitro slippage of Taq polymerase causing multiple 

bandings of a single allele), leading to genotyping errors (Hoffman and Amos 2005; Girard 

and Angers 2008). Microsatellites also display size homoplasy (alleles of the same size but 

different lineages, Estoup et al. 2002), which reduces the true allelic diversity of populations 

(Blankenship et al. 2002; Epperson 2005; Selkoe and Toonen 2006). Despite these 

limitations, microsatellite markers have successfully been applied in elasmobranchs for 

genetic stock characterization (degree of genetic connectivity), individual identification, and 

for discerning genetic mating systems, kinship, relatedness, sex-biased dispersal and 

philopatry (Dudgeon et al. 2012; Portnoy and Heist 2012). 

1.3.1.2 Mitochondrial DNA 

Mitochondrial DNA is a minute portion of the DNA of eukaryotic cells that is non-nuclear 

and is devoid of introns, and is located within cytoplasmic organelles called mitochondria 

(Martin et al. 1992; Heist 2004b). It is maternally inherited, haploid and not subjected to 

recombination. Mitochondrial DNA is also a mosaic molecule with faster and slower 

evolving DNA regions permitting the design of conserved primers for addressing 

phylogenetic questions at various taxonomic levels (López et al. 2006; Cavalcanti 2007; 

Corrigan and Beheregaray 2009). Most of these characteristics contrast that of nuclear DNA 

markers (for example, microsatellites). The major drawback of mtDNA is maternal 

inheritance, which reduces the effective population size to a quarter (1/4) of that of nuclear 

DNA (Ovenden 1990). In the past, molecular mtDNA studies of sharks employed NADH 

dehydrogenase subunits 2 and 4 (ND2, ND4) and Cytochrome b (Cytb) genes due to their 

high levels of polymorphism (high evolutionary rates) compared to the Control Region (CR), 

and their assumed neutrality (Tavares et al. 2013). These regions have been used to elucidate 

population genetic structure, phylogeography and evolutionary history within species (e.g. 

Chabot and Allen 2009; Karl et al. 2011; Benavides et al. 2011a, b; Vignaud et al. 2013) and, 
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more recently, to investigate the interaction of species biology and distribution with past 

climatic changes in multiple shark species (O’Brien et al. 2013). 

1.3.2 Integrating Molecular Population Genetic Data into Fisheries 

Management 

1.3.2.1 Population Genetic Structure in Sharks  

Population genetic structure among natural populations is governed by the interaction 

between evolutionary forces (gene flow, mutation, genetic drift and natural selection), life 

history traits and environmental (seascape) features such as currents, upwelling oscillations, 

temperature and biogeographic barriers which limits gene flow amongst populations 

(Dudgeon et al. 2012; Ovenden 2013). Therefore, genetic connectivity among natural 

populations in such complex environments may be investigated by comparing the genetic 

composition of several spatially separated samples taken throughout the species distribution 

range (Waples et al. 2008; Lowe and Allendorf 2010; Dudgeon et al. 2012; Ovenden 2013). 

Various hypotheses of genetic population structure have been proposed. For example, 

isolation by distance (IBD), assuming the stepping stone model of gene flow, postulates that 

gene flow is more likely to occur among populations in close proximity than distant ones, 

such that remote populations are connected via a series of ‘stepping stones’ (Wright 1943). 

Then, abrupt genetic discontinuity describes a sudden change in genetic variation between 

two adjacent populations that results from limited gene flow across a biogeographic barrier 

(Ovenden 2013). Various traditionally-recognised biogeographic barriers (e.g. Isthmus of 

Panama Barrier, Eastern Pacific Barrier, Mid-Atlantic Barrier, Benguela Barrier, Sunda Shelf 

Barrier and Amazon Barrier) have been shown to affect population connectivity in marine 

species and, therefore, impact phylogeographic patterns (Keeney and Heist 2006; Schultz et 

al. 2008; Benavides et al. 2011b; Daly-Engel et al. 2012). South Africa has a long and 

diverse coastline that stretches from the mouth of the Orange River on the west coast to Kosi 

Bay on the east coast. South Africa is located at the transition zone between the Atlantic 

Ocean and Indian Ocean biomes constituting a total of nine marine bioregions across these 

oceans (Lombard 2004) making it of great interest from a biogeographic point of view 

(Figure 1.7). For a variety of marine fish, phylogeographic breaks that coincide with the 

biogeographic disjunction between cool temperate and warm-temperate biota have been 

reported near Cape Point and Cape Agulhas (Teske et al. 2011). South Africa has featured in 

a number of key phylogeographic studies of sharks with a global focus and it was found that 
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the Cape Agulhas Boundary, the Atlantic/Indian Ocean phylogeographical break, does not 

restrict gene flow of cosmopolitan species, such as copper shark (Benavides et al. 2011a) and 

tope shark (Chabot and Allen 2009). Lastly, clinal variation shows that other factors may also 

influence the pattern of allelic variation besides gene flow. Clinal variation stipulates that 

differences in allele frequencies are gradual along a geographical or other environmental 

gradient (e.g. ocean basins) (Manly 1985; Storz 2002) due to differential adaptation to 

conditions, e.g. temperature, pH, salinity or depth (Teske et al. 2011) and isolation by 

distance, resulting in population divergence and leading to the development of ecotypes 

(Lowry 2012; de Bruyn et al. 2013; Louis et al. 2014). 

 

 

Figure 1.7 South Africa's nine marine bioregions, as defined by Lombard (2004), and the recognised 

coastal phylogeographic break, the Benguela Barrier (westernmost - Cape Point, easternmost - Cape 

Agulhas). Modified from Griffiths et al. (2010). 

Elucidating historical and contemporary processes responsible for observed patterns of 

spatial and temporal genetic differentiation in elasmobranch populations (Dudgeon et al. 

2012) is of vital importance for defining reproductively isolated stocks, characterising genetic 

variability and assessing the direction and strength of gene flow between populations 

(Ovenden 2013; Vignaud et al. 2013). Different levels of subdivision over large and smaller 

spatial scales have recently been reported for various shark species (Ovenden et al. 2009; 

Pereyra et al. 2010; Benavides et al. 2011a, b; Mourier et al. 2013; Vignaud et al. 2013). 
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Identifying regional stocks is a key component to achieve a sustainable fishery (Grant and 

Bowen 1998; Ovenden et al. 2013) since species distributions may extend across national and 

international boundaries where protection and management legislation may differ for any 

given species (Ovenden et al. 2013). Recent studies of detailed regional-scale population 

genetic structure have been reported for some species with important implications for 

fisheries management (Mendonça et al. 2013; Mourier et al. 2013; Vignaud et al. 2013). 

Deciphering temporal patterns of population genetic structure can additionally assist in 

evaluating the consequences of demographic and environmental changes on population 

stability and persistence (Ozerov et al. 2013). The use of temporally-replicated samples may 

also assist in the comparison of historical and contemporary patterns of changes in effective 

population size (NE) over time, which is critical for setting conservation priorities and 

identifying management units (Waples et al. 2008; Wilson et al. 2012). Furthermore, a 

temporal approach may help to evaluate the genetic consequences of physical and biological 

environmental changes (Schwartz et al. 2007; Ozerov et al. 2013), particularly in MPAs 

where fishing is regulated, e.g. the Langebaan Lagoon Marine Protected Area (LMPA). To 

assess whether the genetic stability of commercial shark species affected by human activity, it 

is vital to evaluated the effect of fishing pressure on the NE in these regions. 

Reproductive philopatry is the return of adults to specific nurseries to either mate or give 

birth (Feldheim et al. 2004; Hueter et al. 2005). It is one of the most important behaviours 

(Speed et al. 2010) since the degree of segregation of these sites can directly affect the level 

of population subdivision and genetic divergence among geographic regions (Hueter et al. 

2005). Specifically, if local extinctions of philopatric species occur, the chance of recovery is 

greatly reduced as the likelihood of an individual re-utilising an area is not random (Hueter et 

al. 2005).  Given the variance in philopatric behaviour amongst species, knowledge of 

particular nursery areas for individual species (either sex-specific or not) has important 

implications for the spatial scale of management and conservation strategies (Karl et al. 2011; 

Tillett et al. 2012b).  

 

1.3.2.2 Historical Demography of Sharks  

Climate change is among the most significant factors affecting species distribution and 

demographic patterns (growth rate, reproduction and survival) in a variety of shark species 

leading to changes in abundance and disruptions to community structure (Dulvy et al. 2003; 

Perry et al. 2005; Planque et al. 2010; O’Brien et al. 2013). Given that these can also result 
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from complex interations between habitat, environmental conditions and species biology, it is 

vital to investigate how species responded to historic climate fluctuations (O’Brien et al. 

2013). In doing so will allow for a better understanding into a species’ response to current 

climate change. Inferring the demographic history of populations, such as historical migration 

rates and fluctuations in effective population sizes over time (NE; contractions, expansions) 

(Excoffier 2004), will therefore allow for effective management of commercially important 

shark species (Planque et al. 2010; O’Brien et al. 2013). The fossil record for sharks in 

general is relatively poor and mutation rates are unknown, but these are thought to be about 

an order of magnitude slower than in mammals (Martin et al. 1992; Martin 1995). This 

presents a challenge in calculating the timing of expansions and effective population sizes as 

both are highly dependent on the chosen mutation rate (µ). A few studies on sharks have 

examined the neutral substitution rate in mitochondrial genes using divergence estimates 

between species and calibrating these using biogeographic events (e.g. closure of the Isthmus 

of Panama) (Martin et al. 1992; Duncan et al. 2006; Keeney and Heist 2006; Schultz et al. 

2008).  

These molecular clock estimates have also been applied to non-congeneric species (e.g. 

Murray et al. 2008; Pereyra et al. 2010; Verríssimo et al. 2010; Karl et al. 2011; Boomer et 

al. 2012), regardless of the accuracy of this approach being contested (Ho et al. 2011; Grant 

et al. 2012; Shapiro and Ho 2014). Studies reconstructing the demographic history of various 

sharks species, characterised by different life history traits and habitat preferences, 

demonstrated that climate changes during the Pleistocene epoch (approximately 2.6 million to 

11 700 years before present, YBP) had a major impact in shaping the demographic history of 

sharks (Karl et al. 2011; Boomer et al. 2012; O’Brien et al. 2013). Particularly following the 

end of the last glacial maximum (LGM, approximately 20 000 YBP), population expansion 

events have been reported for the whale shark (Rhincodon typus; Vignaud et al. 2014) and 

Mustelus species (Pereyra et al. 2010; Boomer et al. 2012), whereas for the scalloped 

hammerhead shark (Sphyrna lewini) population contraction (i.e. bottleneck) was reported 

(Nance et al. 2011). The latter is unexpected considering that warming after the LGM 

possibly caused population expansions and, because the sea levels were elevated, increased 

suitable coastal habitats for various marine organisms (Peltier 1988; Miller et al. 1995; Nance 

et al. 2011; Teske et al. 2011; Mendonҫa et al. 2013). These studies highlight that, in addition 

to discerning stock structure, management decisions should also consider vulnerability of 

commercially important species to future changes in climate. 
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1.3.2.3 Population Inference Methods 

Describing and quantifying spatial patterns of intraspecific variation is vital in population 

studies (Avise 2000; François and Durand 2010). Around the 1960s, inference about 

population genetic structure was improved by the debut of principal component analysis 

(PCA) and tree-based clustering algorithms (Cavalli-Sforza and Edwards 1965), which made 

no assumptions about the biological processes that generated the data (François and Durand 

2010) Recently, inferring population genetic structure from these descriptive methods 

advanced to model-based parametric Bayesian methods (François and Durand 2010), catered 

for by various computer programs (Blair et al. 2012). 

Summary Statistics: The most widely used statistical measures of population genetic 

structure are Wright’s hierarchical F-statistics (Wright 1931; Evanno et al. 2005), particularly 

the fixation index FST or the mitochondrial DNA analogue ɸST, which quantify the degree to 

which a polymorphic population is subdivided into subpopulations (Wright 1951; Balloux 

and Lugon-Moulin 2002; Meirmans and Hedrick 2011). FST is defined in terms of the 

expected heterozygosity of the overall population and the mean expected heterozygosity 

across the subpopulations (Nei 1977) and was extended by Cockerham and Weir (1987) to 

couple it to the probabilities of identities; therefore, FST varies from -1 to +1. FST is also a 

measure of the Wahlund effect (i.e. a heterozygote deficiency due to population subdivision) 

(Wahlund 1928). FST is based on the island model of migration (distance has no part in 

genetic differentiation between groups) and assumes an infinite alleles model (IAM) (Balloux 

and Lugon-Moulin 2002). Since microsatellites follow a stepwise mutation model (SMM) an 

FST equivalent, (rho) RST, was formulated by Slatkin (1995). RST is calculated from the 

variances of allele sizes, whereas FST will typically be derived from the variances of allele 

frequencies (Slatkin 1995; Balloux and Lugon-Moulin 2002). Nevertheless, these measures 

have some drawbacks, for instance, dependency on within-population diversity, and 

standardised measures have therefore recently been developed. These include FʹST and D 

(Meirmans and Hedrick 2011). FʹST is the normal FST standardised by the maximum value it 

can obtain, given the observed within-population diversity. D uses a multiplicative 

partitioning of diversity, based on the effective number of alleles rather than on the expected 

heterozygosity. FʹST is recommended because it is most suited for inferences of the influence 

of demographic processes such as genetic drift and migration on genetic population structure. 

Methods not assuming predefined structure include multivariate analysis such as factorial 

correspondance analysis (FCA; the genetic relationship among populations determined by 
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visualizing the ordination of populations along the factorial axes in a three-dimensional 

space) (Belkhir et al. 2004) and the Analysis of Molecular Variance (AMOVA) (Excoffier et 

al. 1992). The AMOVA is another widely used descriptive multivariate analysis to infer 

genetic structure using allele frequency variation to determine the apportioning of the total 

genetic variation within populations, among populations within groups and among groups 

(Excoffier and Lischer 2010). Clustering methods are also commonly used in population 

differentiation analyses; tree-based methods where genetic distance is estimated between 

individuals and trees are then constructed (UPGMA or NJ) to group them in clusters are also 

commonly used (François and Durand 2010).  

Model-based methods: Model-based parametric methods involve the monitoring of the 

performance of a given model by a set of parameter values (François and Durand 2010). 

These methods presently provide a more realistic and accurate approach towards making 

inferences on the processes underlying population dynamics (François and Durand 2010). 

Model-based methods that have revolutionised the most important theoretical and 

computational advances in molecular population genetics is the Bayesian computation 

analysis, implemented in computer programs such as STRUCTURE (Pritchard et al. 2000), 

GENELAND (Guillot et al. 2005), TESS (Durand et al. 2009) and BAPS (Corander et al. 

2008). Bayesian analysis permits the integration of variable parameter values as prior 

information into the model to estimate certain population parameters, given the properties of 

an observed dataset, and is computed by updating the prior distribution based on the data 

using a Markov chain Monte Carlo (MCMC) algorithm (François and Durand 2010). 

1.3.2.4 Population Demography 

Several indirect methods based on the analysis of neutral genetic variation have been 

developed to infer historical demographic processes such as migration rates, founder or 

bottleneck effects and population expansion using microsatellite and sequence data (Tajima 

1989; Fu 1997; Cornuet and Luikart 1996; Beerli 1998; Reich et al. 1999). The various 

approaches widely used to infer demographic changes based on microsatellite data include 

those implemented in the programs BOTTLENECK (Cornuet and Luikart 1996; Piry et al. 

1999), the M-ratio method (Garza and Williamson 2001), KGTESTS Excel (Bilgin 2007) and 

MSVAR (Beaumont 1999; Storz and Beaumont 2002). The first three are moment-based 

methods that rely on summary statistics, while the MSVAR method uses a full-likelihood 

Bayesian approach (Beaumont 1999; Storz and Beaumont 2002). Past population 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 1                                                                                                                  Introduction 

 

23 | P a g e  
 

demography is commonly investigated using sequence data with Tajima’s D and Fu’s Fs 

statistics, which detect departures from neutrality/population expansion (Fu 1997; Tajima 

1989). Secondly, haplotype networks are constructed to qualitatively assess demographic 

history under the expectation that populations that had been stable over time would have a 

complex network of unique haplotypes, whereas populations that underwent a recent 

population expansion will have networks with one frequently occurring haplotype and several 

haplotypes differing by one or few mutation(s) (starlike phylogeny, Slatkin and Hudson 

1991). Lastly, demographic history can be inferred using the mismatch distribution analysis, 

where pairwise differences between sequences and their expected frequency under a sudden 

demographic expansion model are calculated. Inferences about changes in population sizes 

are then made following the expectations that a multi-modal or ragged distribution suggests a 

stable population, whereas a smooth unimodal distribution suggests a rapid population 

expansion (Slatkin and Hudson 1991; Rogers and Harpending 1992).  

1.4   Ethics Statement, Research Aims and Objectives 

The collection of specimens from various shark species used in this study complied with the 

Convention on Biological Diversity (http://www.cbd.int/convention/) and the Convention on 

the Trade in Endangered Species of Wild Fauna and Flora (http://www.cites.org/). Muscle or 

fin clips were taken from dead shark specimens caught by local fishermen during fishing 

campaigns and from humanely killed sharks (as stated by the provider). Fin clips were also 

taken from live shark specimens and, to our knowledge, all efforts were made to minimise 

suffering. All permits to collect fin clips or muscle tissue for research purposes were granted 

by the Department of Agriculture, Forestry and Fisheries (Republic of South Africa) and 

Stellenbosch Universdity ethical committee.  

The aim of the study in Chapter 2 was the development and optimisation of medium-

throughput microsatellite multiplex panels for use in studies of regional and cosmopolitan 

elasmobranch species. The study describes the cross-species amplification approach to 

develop putative microsatellite markers for a wide range of applications, including genetic 

diversity assessment and species identification in Mustelus mustelus. In Chapter 3, two 

microsatellite multiplex assays, selected based on levels of polymorphism, are employed to 

investigate population genetic structure and demographic history of common smoothhound 

shark in South Africa, in order to identify putative management units for short-term 

conservation. This chapter applied the traditional approach of defining genetic structure 
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between populations and regions, using FST, AMOVA, FCA and the Bayesian clustering 

model-based method (STRUCTURE). In Chapter 4, the goal is to investigate and confirm the 

observed population structuring patterns of the microsatellite data and determine whether, 

historically, the common smoothhound shark is also divided into evolutionary significant 

units that coincide with the identified management units by analysing the mitochondrial ND4 

region. Overall, this information will contribute to the growing body of research on 

population genetic structure and demographic history of sharks. The findings of this study 

could be incorporated into existing fisheries management practices for commercially 

important species.  
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Chapter 2 

Cross-Species Amplification of Microsatellites and Development 

of Multiplex Assays for Southern African Elasmobranchs 

Abstract 

This chapter describes the testing and optimisation of microsatellite markers in Mustelus 

mustelus and the design of four microsatellite multiplex assays for cross-species utility in 

southern African elasmobranchs. Thirty five microsatellite primer sets previously developed 

for five elasmobranch species were selected from literature for testing cross-species 

amplification in 16 elasmobranch species occurring in southern Africa. Cross-species 

amplification success rates ranged from 28.6%-71.4%. From the successfully amplified 

microsatellites, 22 loci were selected and evaluated for levels of polymorphism, and four 

multiplex assays comprising of the 22 microsatellites were successfully constructed, 

optimised and characterised in a panel of 87 Mustelus mustelus individuals. A total of 125 

alleles were observed across all loci, with the number of alleles ranging from 3-12. Cross-

species amplification of the four optimised multiplex assays was further tested in 11 

commercially-important and/or endemic southern African elasmobranch species. Percentage 

polymorphism ranged from 31.8%-95.5% in these species with polymorphic information 

content decreasing exponentially with evolutionary distance from the source species. Cross-

species amplification of the 35 microsatellites proved to be a time- and cost-effective 

approach to marker development in elasmobranchs and enabled the construction of four novel 

multiplex assays for characterising genetic diversity in a number of southern African 

elasmobranch species. This study successfully demonstrated the usefulness of these markers 

in down-stream applications, such as genetic diversity assessment and species identification, 

which could potentially aid a more integrative, multidisciplinary approach to management 

and conservation of commercially-important cosmopolitan and endemic elasmobranch 

species occurring in southern Africa. 
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2.1 Introduction  

The subclass Elasmobranchii (sharks, skates and rays) comprises a diverse group of over 

1000 species, and is representative of one of the most ancient extant vertebrate lineages 

(Corrigan and Beheregaray 2009). Recently, pressures from direct and indirect fisheries have 

resulted in the depletion of elasmobranch populations globally (Worm et al. 2013). Decline in 

wild populations of elasmobranchs is further compounded by their life history traits that are 

more similar to those of mammals (e.g. low fecundity, late maturity and long gestation 

periods) than those of teleost fishes (Stevens et al. 2000; Shivji et al. 2002). In comparison, 

elasmobranchs may not respond well to high fishing pressures. This trend has been 

particularly pronounced for sharks due to unregulated harvesting to support an increase in 

demand for shark products (e.g. fins, meat, liver oil, skin and cartilage). A drastic reduction 

in population size (population bottleneck) can result in small populations experiencing the 

accumulating effects of inbreeding, leading to severe loss of genetic diversity (Nei et al. 

1975; Glenn et al. 1999). These trends have previously been reported for species such as the 

basking shark (Cetorhinus maximus, Hoelzel et al. 2006) and the narrownose smoothhound 

shark (Mustelus schmitti, Pereyra et al. 2010). Assessing genetic diversity and population 

structure of these exploited species is, therefore, important for sustainable long-term 

management of the global shark fishery industry. 

Misidentification of shark species in fisheries operations is a widespread concern (Myers 

and Worm 2003; Barker and Schluessel 2005; Petersen et al. 2008; Attwood et al. 2011) and 

molecular identification methods have been developed to alleviate this problem (Pank et al. 

2001; Shivji et al. 2002; Abercrombie et al. 2005; Farrell et al. 2009; Naylor et al. 2012; 

Domingues et al. 2013; Giresi et al. 2013). Identification issues have previously been 

addressed using the nuclear ribosomal internal transcribed spacer 2 (ITS2) region (Pank et al. 

2001; Shivji et al. 2002; Abercrombie et al. 2005) and the mitochondrial NADH 

dehydrogenase subunit 2 (ND2) (Naylor et al. 2012; Giresi et al. 2013) and ND4 (Tillett et al. 

2012c; Boomer et al. 2013; Geraghty et al. 2013) genes. To integrate genetic knowledge with 

fisheries management, it is imperative for shark fisheries to report shark landings by species 

instead of lumping them into species- or family groups (e.g. houndsharks, carcharinids, 

hammerheads, etc.). This stems from the difficulties involved with unambiguously 

identifying species within and across families (Pank et al. 2001; Da Silva and Bürgener 2007) 

e.g., carcharinids (Carcharhinus brachyurus, C. obscurus and C. plumbeus) and houndsharks 

(Mustelus mustelus, M. palumbes and Galeorhinus galeus) due to a high degree of conserved 

interspecific morphology (Pank et al. 2001; Domingues et al. 2013). Neglecting to report 
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shark landings by species overlooks important differences in species susceptibility and 

population vulnerability to exploitation (Abercrombie et al. 2005) and that, in turn, has 

important implications for species-specific conservation, management and trade monitoring 

programmes (Clarke 2004). 

The general lack of molecular genetic markers (e.g. microsatellites) for many 

elasmobranch species impedes population and conservation genetic studies as these markers 

can provide valuable information relating to population dynamics (spatial and temporal 

genetic variation) of individual species. Microsatellites are highly polymorphic due to their 

high mutation rate (between 10
−3

 and 10
−4

 mutations per gamete per generation), resulting in 

extensive length polymorphism (Tautz 1989; Weber and Wong 1993). This makes 

microsatellite markers one of the most powerful molecular genetic tools with a remarkable 

array of applications, ranging from genetic diversity (Edwards et al. 2012; Ozerov et al. 

2013) and population structure inference (Urian et al. 2009; Mourier et al. 2013) to 

discerning genetic mating systems (Mobley et al. 2009; Boomer et al. 2013) and the 

identification of species (Martin et al. 2002; Sekino and Hara 2007; Costa et al. 2012). 

The de novo development of microsatellites is challenging in general but even more so in 

elasmobranchs due to the notoriously low rates of polymorphism (Heist and Gold 1999a; 

Dudgeon et al. 2012). The development of microsatellite markers through cross-species 

amplification is the most effective alternative approach to de novo development of 

microsatellites and has recently also been reported in sharks (Boomer and Stow 2010; Chabot 

and Nigenda 2011). Microsatellite cross-species amplification relies on the presence of 

conserved microsatellite flanking sequences (Primmer et al. 2005; Barbara et al. 2007), 

which markedly demonstrate a high degree of conservation in some organisms following 

millions of years of divergent evolution [e.g., 250 million years in sharks (Martin et al. 2002) 

and 470 million years in fish (Rico et al. 1996)]. The success rate of microsatellite cross-

species amplification has been correlated directly to the evolutionary distance between the 

source species and the target species (Primmer et al. 2005; Barbara et al. 2007). 

The underrepresentation of endemic taxa in many cross-species amplification studies is 

unfortunate as endemics should be of great interest for conservation of biodiversity on a 

regional scale. Southern Africa has one of the most diverse chondrichthyan faunas in the 

world, consisting of some 181 species in 44 families, of which 34 species are endemic to 

southern Africa (Compagno 2000; Department of Agriculture, Forestry and Fisheries 2013). 

Growing concerns regarding the sustainability of the southern African shark fishery, 

stemming from local declines of cosmopolitan and endemic species, led to stricter regulations 
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being imposed to avert the collapse of natural populations (Department of Agriculture, 

Forestry and Fisheries 2013; Sharks Biodiversity Management Plan 2014).  

Accordingly, this chapter reports the development and optimisation of microsatellite 

markers through cross-species amplification of species-specific primers from closely related 

species. This included the design and optimisation of four microsatellite multiplex assays and 

their cross-species utility in genetic diversity analysis of 11 southern African elasmobranch 

species. 

2.2   Materials and Methods 

2.3.1 Study Species and DNA Extraction 

Sixteen elasmobranch species (belonging to five families within two orders) occurring in 

southern African waters were selected for cross-species amplification (Figure 2.1). Where 

possible, specimens were collected from at least two sampling locations to better capture 

allelic diversity present within populations of each of the respective species. However, due to 

opportunistic sampling for a majority of the study species, samples were obtained from only a 

single location (Figure 2.1). Muscle tissue or finclips were preserved in 99% ethanol and 

stored at room temperature until further use. Total genomic DNA was isolated using the 

standard cetyltrimethylammonium bromide (CTAB) method of Saghai-Maroof et al. (1984). 

The extracted DNA was quantified using a NanoDrop ND-1000 spectrophotometer v.3.0.1 

(NanoDrop®). For testing cross-species amplification, each DNA sample was adjusted to a 

working concentration of 50 ng/μl and stored at -20 ºC prior to polymerase chain reaction 

(PCR) analysis. 

2.3.2 Microsatellite Primer Transfer 

A total of 35 microsatellite markers, previously developed for five elasmobranch species [G. 

galeus (Chabot and Nigenda 2011), M. canis (Giresi et al. 2012), M. henlei (Byrne and Avise 

2012; Chabot 2012), Raja pulchra (Kang et al. 2012) and Scyliorhinus canicula (Griffiths et 

al. 2011)], were selected for testing cross-species amplification. Primer sequences and the 

annealing temperature (TA) of each primer set, optimised for each of the respective source 

species, are shown in Table 2.1. Polymerase chain reaction conditions optimised for the the 

source species (G. galeus, M. henlei, R. pulchra and S. canicula) were applied except for the 

M. canis [Chabot (2012) PCR protocol] and R. pulchra [modified Byrne and Avise (2012) 

PCR protocol] primer sets. Polymerase chain reactions for all individuals were executed in a  
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Figure 2.1 The 16 elasmobranch species from southern Africa selected for cross-species amplification, including family, species, distribution and sampling locations.
 

a 
Compagno et al. (1989). 
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GeneAmp® PCR System 2700. 

The PCR amplicons, together with negative controls and a Promega 100 bp molecular 

size ladder, were visualised on a 2% agarose gel stained with ethidium bromide for 

preliminary size determination. Success or failure of PCR amplification in cross-species trials 

was determined simply on the basis of whether band intensity was sufficient to score alleles. 

In most instances, less stringent PCR conditions were not employed in the cross-species 

assays so as to minimise the risk of amplification of non-orthologous loci in the target 

species. The number of markers that showed amplification success for all or a percentage of 

individuals in the target species (“+/++” in Table 2.2) were counted as an index to measure 

the cross-species microsatellite amplification performance. 

Table 2.1 The 35 microsatellite markers developed from five closely related species for cross-species 

amplification in the study taxa, including the primers sequences, microsatellite repeat motif, annealing 

temperature (TA) and GenBank accession numbers 

Locus Primer sequence  (5’-3’) Repeat unit TA 
Accession 

number 
References 

Mh1 F: GGAGGAGGGAAGCCTATGG 
R: TCTCTGGCTCCATTCAGGG 

(AG)n 59 N/A Chabot (2012) 

Mh2 F: ACTACACTGCATATAAACAGGC 

R: TTTTCAGAGGGCATAACTCAC 
(GA)n 56 N/A Byrne and Avise (2012) 

Mh6 F: CATGTCCACTTCCCATCGC 

R: GGAGAGATTAGAACAGGTGGC 
(CT)n 59 N/A Chabot (2012) 

Mh9 F: CAACCATCTTTACTACACTG 
R: GATGGACCTCACATTTAACAC 

(GA)n 56 N/A Byrne and Avise (2012) 

Mh25 F: TGCAATAACCGTTCTGCGTC 

R: TCACACCCGCAGTTAGATCC 
(CT)n 59 N/A Chabot (2012) 

Mca25 F: ACACACTTTCACGCACAAGC 

R: TCGCTCAAGTGAGACCAGAG 
(CA)n(CT)n 59 JN129145 Giresi et al. (2012) 

Mca31 F: GGCAGATCAGTTGAGGAAGG 
R: AATGGGGAGACTTCTCTTTGC 

(ATC)n 59 JN083992 Giresi et al. (2012) 

McaB33 F: TCTCCTAATGGAACGTGTGC 

R: GGTATGCGTATGGGTGTCG 
(CA)n 59 JN084002 Giresi et al. (2012) 

Mca44 F: TTTCCGCTGTATCACACATACAC 

R: GCATCTATATGTCTGCGTGTGTC 
(AC)n 59 JN083995 Giresi et al. (2012) 

McaB35 F: AGTGCGTGCCAGTGTATGAG 
R: GTTCTGCATGGGACGTGAC 

(TG)n 59 JN084003 Giresi et al. (2012) 

McaB5 F: TAATCGACACGCAGTCATCG 

R: AAGCTCCAATTCTCACTGTGC 
(GT)n 59 JN083996 Giresi et al. (2012) 

McaB6 F: AGGATAAATACACGCACACAGG 

R: TTTTTGTTTTGCAATCTCACG 
(CA)n 59 JN083997 Giresi et al. (2012) 

McaB22 F: TCCTCTCCAGGACAAACACAC 
R: TCCCACCTGCCATAGTAATTG 

(AC)n 59 JN083999 Giresi et al. (2012) 

McaB27 F: ATCCAGTGGTTTTGAAATGC 
R: CCTCGTAGGTCTCGTC 

(GT)n 59 JN129154 Giresi et al. (2012) 

Mca33 F: CATTTGAACCCCGACAGAAC 

R: TCCAAGTAAGGATGAGTGACACC 
(ATC)n 59 JN083993 Giresi et al. (2012) 

McaB37 F: TCTGCCTCTGTGTCTCATCC 

R: TTTCCATTTCCGACATAGGG 
(GT)n 59 JN084005 Giresi et al. (2012) 

McaB39 F: GGACAGGCAGCATCTGTGTA 
R: CCCAGGGGGATTAGGATATT 

(CA)nGAT(AC)n 59 JN129156 Giresi et al. (2012) 

Gg2 F: TGGCTCAGTCCAGAAACCC 

R: CCCTATTCGAGAGGCCCAG 
(TG)n 59 N/A Chabot and Nigenda (2011) 

Gg3 F: CCGTGACTGAAAGCAGCC 

R: CCCTCAACCATGGCAAGTG 
(GATT)n 59 N/A Chabot and Nigenda (2011) 

Gg7 F: CTGTGGAACCAAACTCCAGC 
R: AGCTGGTCGAGGTGAATGC 

(AG)n 59 N/A Chabot and Nigenda (2011) 

Gg11 F: AAGTTGCACGTTTCCCAGC 

R: TACTGCAGGACCGGTTTCC 
(TCCC)n 59 N/A Chabot and Nigenda (2011) 

Gg12 F: TGTCAAACACCATCGCAGG 

R: TGCTCTGAAGTCTACAAGAATGG 
(TA)n 59 N/A Chabot and Nigenda (2011) 
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Gg15 F: GGCTGAATGGTTTCCCAGC 

R: GCCTCCAACTTAGCATAGCC 
(GA)n 59 N/A Chabot and Nigenda (2011) 

Gg17 F: CCTGCTTGTGACAGTTACCC 
R: ACAGGCATCACCTCTGTGC 

(AC)n 59 N/A Chabot and Nigenda (2011) 

Gg18 F: TCCACTTCAGGAAGGCCAG 

R: CAAAGCCAGGTGGTTCTCC 
(GA)n 59 N/A Chabot and Nigenda (2011) 

Gg22 F: TCCTGGGATGGCAACTTCG 

R: AGGCCACCCAACTATCCTG 
(GT)n 59 N/A Chabot and Nigenda (2011) 

Gg23 F: ACAGACCACAGGGCATGG 
R: TGCAGAGCAGGCTAGATGG 

(AC)n 59 N/A Chabot and Nigenda (2011) 

Rp16-nfrdi F: AGGAAGGCTTCAGCACATAAT 

R: CTCATCTGGAAGAGCACACAC 
(TG)13 54 JQ433557 Kang et al. (2012) 

Rp35-nfrdi F: CTTACTGGTGAGGAATCTGAGC 

R: GCATACACTCCACACACCAC 
(TG)9 61 JQ433564 Kang et al. (2012) 

Scan02 F: TGCAGCTTCGCTATCTTATGC 
R: AAATCTGCTGCTCGCTTCAT 

(TG)9 60 N/A Griffiths et al. (2011) 

Scan06 F: GGCAGTGATTGCATTCTTGA 

R: CAGAAACTGTGCAGAAATCACA 
(TG)9 60 N/A Griffiths et al. (2011) 

Scan12 F: GCCAGTGGCTATAACGGA AC 

R: TCC CAC ACA GTC CTG TTGAA 
(AG)9 60 N/A Griffiths et al. (2011) 

Scan14 F: AACCATCCTCCGCAAATAAA 
R: GAACAGTGCCCCAAGTTCAT 

(CA)9 60 N/A Griffiths et al. (2011) 

Scan15 F: TCATCATCATCACCACCAGAA 

R: GAGCTATGCTGGCAATTCGT 
(CA)15 60 N/A Griffiths et al. (2011) 

Scan16 F: CCGACTCCTTTGGATGTGTT 

R: GGACGCTCTCGTTCTTATGC 
(TG)9 60 N/A Griffiths et al. (2011) 

 

2.3.3 Multiplex Design and Optimisation 

As the primary objective of this chapter was to develop molecular markers for the 

common smoothhound shark Mustelus mustelus, levels of polymorphism were initially 

assessed in a panel of eight individuals of M. mustelus. Amplicons were subjected to 

electrophoresis for two hours at 150 volts on a 12% polyacrylamide gel to detect size 

variants. Microsatellites were considered to be polymorphic when two bands were 

distinguishable in a single individual (i.e. heterozygote) and/or clear size differences were 

detected between different individuals. 

Twenty-two polymorphic microsatellite loci were selected, and primers were 

fluorescently labelled and optimised in four multiplex assays (5-6 loci per MPS), using a 

strategy outlined by Guichoux et al. (2011), with one of the following dyes: FAM, VIC, PET, 

or NED. A two-dimensional multiplex plot was created to illustrate the spatial (in base pairs, 

x axis) and spectral (four fluorescent dye labels, y axis) design of the four multiplex systems 

(e.g. MPS1 and MPS2, Figure 2.2). The use of different dyes was to facilitate co-

amplification of multiple microsatellite markers in a single reaction for cost- and time-

efficient genotyping (Multiplex PCR).
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Figure 2.2. Two of the four microsatellite multiplex assays [A; multiplex assay 1 (MPS1) and B; 

multiplex assay 2 (MPS2)] design layout using spatial (PCR product size) and spectral (dye label 

colour) dimensions [FAM (blue), VIC (green), NED (yellow) and PET (red)] for M. mustelus.  

After optimisation of the newly designed MPS (MPS1, MPS2, MPS3 and MPS4), a 

panel of 87 M. mustelus individuals from across the distribution range in southern Africa was 

genotyped for marker characterisation purposes. The multiplex assays were then tested on 11 

additional species to show their overall application in genetic diversity and population 

structure analysis. Finally, a total of 12 microsatellite loci that were successfully genotyped 

across the study species (Mh1, Mh25, Mca25, McaB39, McaB5, McaB22, Mca33, Gg15, 

Gg17, Gg18, Gg22 and Gg23) were selected to demonstrate the potential use of microsatellite 

loci in species identification. 

For the multiplex reaction, the Qiagen Multiplex PCR kit was used and PCR conducted 

according to the manufacturer’s instructions, except for varying TA: 59 ºC for MPS1, MPS3 

and MPS4; and 56 ºC for MPS2. For subsequent analysis on an ABI 3730XL DNA Analyser, 

PCR products were diluted in distilled water and fragment analysis performed together with 

the LIZ600 internal size standard. Individual genotypes were scored based on fragment size 

via PEAK SCANNER® v1.0 (Life Technologies). AUTOBIN v0.9 macro for Excel 

[http://www.bordeaux-aquitaine.inra.fr/biogeco/Ressources/Logiciels/Autobin; Guichoux et 

al. (2011)] was used to detect discrete size variants where allele binning of genotype data 

obtained from PEAK SCANNER was based on raw size.  
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2.3.4 Genetic Diversity Analysis 

The percentage of polymorphism (PP) was calculated using the formula: 

    1  00 P

T

NPP X
N  

where NP is the total number of polymorphic loci and NT is the total number of loci multiplied 

by 100. MICROCHECKER v2.2.3 (Van Oosterhout et al. 2002) was used to evaluate the 

presence of genotypic errors caused by allele dropout, stuttering and null alleles. Null allele 

frequencies (FrNULL) were calculated using the Brookfield 1 estimator implemented in this 

program. Fixation indices (FIS) for each locus and over all loci was estimated to measure 

departure from Hardy-Weinberg equilibrium using the exact probability test (20 batches, 

Dememorization; 10000 and 5000 iterations) using GENEPOP v4.0 (Rousset 2008). Linkage 

disequilibrium between all pairs of loci was calculated using an exact test, also implemented 

in GENEPOP. Slatkin’s exact test (1000 permutations) for neutrality, based on Ewens-

Watterson sampling theory (Slatkin 1994), was used to detect loci under selection as 

implemented in ARLEQUIN v3.5.1.2 (Excoffier and Lischer 2010). The abovementioned 

analyses were done for the multiplex characterisation of 87 Mustelus mustelus individuals). 

The number (AN) of alleles at each microsatellite locus, as well as the effective number of 

alleles AE: 
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where pi is the frequency of the ith
 allele and n is the number of alleles, were calculated using 

the GENALEX v6.5 program (Peakall and Smouse 2012). The proportion of individual 

samples that were heterozygous [direct count heterozygosity (HO) and expected under Hardy-

Weinberg equilibrium (HE)] was calculated using MSATTOOLS v1.0 (Park 2001). 

MSATTOOLS was also used to calculate the polymorphic information content (PIC) of each 

marker according to the following equation in Botstein et al. (1980): 
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1 1 1
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where pi and pj are the frequency of the ith
 and jth

 allele, respectively, and n is the number of 

alleles. 

Due to different sample sizes, direct comparison of genetic diversity estimates (HE, AE 

and PIC) across the 11 species was not plausible and species were therefore grouped 

according to sample size: (1) M. mustelus, M. palumbes, G. galeus, C. brachyurus and H. 
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pictus (n = 8); (2) P. pantherinum, S. lewini and S. zygaena (n = 5), and (3) C. obscurus, C. 

limbatus, C. plumbeus and H. edwardsii (n = 4). The potential use of microsatellite data for 

species-assignment was assessed through principle coordinate analysis (PCoA) in 

GENALEX, using genetic distances between individuals. To evaluate cross-species 

amplification performance, DNA sequences derived from the mitochondrial ND2 gene (1044 

bp) of each species were downloaded from GenBank and Global Cestode Database: 

Elasmobranchs Specimens (http://elasmobranchs.tapewormdb.uconn.edu) (Appendix A: 

Table S2.1). Using these sequences, the genetic distances among the study taxa were 

estimated using the Kimura 2-parameter model (Kimura 1980) with the rate variation among 

sites modelled with a gamma distribution (shape parameter = 5) implemented in MEGA v5 

(Tamura et al. 2011). 

2.3   Results and Discussion 

2.3.1 Cross-Species Amplification 

Cross-species amplification proved useful in establishing genetic markers for use in 

several shark species of commercial importance in South Africa and those (typically 

endemics) that are indirectly affected by fisheries’ operations. Amplification results of the 35 

microsatellites in 50 individuals from 16 different elasmobranch species (1-4 individuals per 

species) are summarized in Table 2.2. Cross-species amplification success rates (percentage 

of microsatellites that amplified successfully) ranged from 60.00%-71.40% in the Triakidae 

and Carcharhinidae families, and from 28.57%-48.57% in the Scyliorhinidae, Sphyrnidae and 

Rajidae families (Figure 2.3). The higher success rates in the Triakidae and Carcharhinidae 

are expected as most microsatellites tested in this study were originally developed for species 

within the Triakidae family. Overall, the microsatellites showed less successful cross-species 

amplification to the taxa more divergent from the source species (see below). Notably, none 

of the individuals showed PCR amplification at any of the six Scyliorhinus canicula 

microsatellites. This may in part be attributed to S. canicula being more distantly related to 

the study species. The mean genetic distance between the all taxa and source taxon was 

21.4±1.7% (mean±SD) (G. galeus as source species; Figure 2.4; Table S2.2) and 18.7±1.5% 

(M. canis as source species; Figure 2.5; Table S2.3). Haploblepharus pictus could not be 

represented in the distance plot due to the lack of genetic information available in GenBank 

and the Global Cestode Database: Elasmobranchs Specimens. 
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Table 2.2 Cross-species amplification of the 35 microsatellites among 16 elasmobranch species from southern Africa 

        Species 

Loci 

MM MP GG SQ CB CL CO CP HP HEd PPa PA SL SZ RS RA 

(n = 4) (n = 3) (n = 4) (n = 1) (n = 4) (n = 3) (n = 4) (n = 4) (n = 4) (n = 4) (n = 4) (n = 1) (n = 3) (n = 3) (n = 1) (n = 3) 

Mh1 + + + + + + + + + + + + + + + ++ 

Mh2 + + + + + + + + - - - - + + - - 

Mh6 - - + - + - - - - - - - - - - - 

Mh9 + + + + + - + + - - - - - - - - 

Mh25 + + + + + + + + + + + + - + + ++ 

Mca25 + - - - + + ++ ++ + - + + - - + + 

Mca31 - - - + + + + - - - - - - + - - 

Mca33 + + + + + + + - + + + + - - + + 

Mca44 ++ - + - - - - - + + + + - - + ++ 

McaB5 + + + + + + + + + + + + + - + + 

McaB6 + - + + + + + + + + - - + - - - 

McaB22 + + + + - + + + + + + + - + + - 

McaB27 + + + + + - - + - + - - - + - - 

McaB33 - - - - + + + + - - - - + - - - 

McaB35 + + - + - - - - + - + + - - - ++ 

McaB37 + + + + - + - - - - - - + - - - 

McaB39 + - + - + + + + + + + + - - + - 

Gg2 + + + + + - - - + - - - - + ++ + 

Gg3 + + + + + + + + + + - - + - ++ + 

Gg7 + + + - + - + + - + - - - + - + 

Gg11 + + + ++ ++ + ++ ++ + + - - - + - - 

Gg12 + + + - + - + + + - - - - - - - 

Gg15 + + + + + + ++ ++ + + + + + + + - 

Gg17 + - + + + + + + - + - - + - - + 

Gg18 + + + + + + ++ + + - - - - ++ + + 

Gg22 + + + + + + + + + - - - - ++ + - 

Gg23 + + + + + + + + - - - - + ++ + + 

Rp16-nfrdi + ++ - + + ++ + + - - - + ++ + + ++ 

Rp35-nfrdi - + - ++ - + - - - - - + + ++ + ++ 

Scan02 - - - - - - - - - - - - - - - - 

Scan06 - - - - - - - - - - - - - - - - 

Scan12 - - - - - - - - - - - - - - - - 

Scan14 - - - - - - - - - - - - - - - - 

Scan15 - - - - - - - - - - - - - - - - 

Scan16 - - - - - - - - - - - - - - - - 

–, no visible band or faint bands with insufficient band intensity for scoring alleles were observed; +, solid bands with sufficient intensity for scoring alleles were detected; ++, solid bands with artifacts were produced but with at least one band of 

expected allele size. Mustelus mustelus (MM), Mustelus palumbes (MP), Galeorhinus galeus (GG), Scylliogaleus quecketti (SQ), Carcharhinus brachyurus (CB), Carcharhinus limbatus (CL), Carcharhinus obscurus (CO), Carcharhinus plumbeus 

(CP), Haploblepharus pictus (HP), Haploblepharus edwardsii (HEd), Poroderma africanum (PA), Poroderma pantherinum (PPa) Sphyrna lewini (SL), Sphyrna zygaena (SZ), Raja straeleni (RS) and Raja alba (RA). 
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Figure 2.3 Amplification success rates of 35 microsatellite loci across 16 elasmobranch species (from 

five families) from southern Africa. 

 

Figure 2.4 Cross-species amplification performance of Galeorhinus galeus microsatellites in 15 of 

the 16 elasmobranch species, and genetic divergence (K2P) between G. galeus and the target species 

based on ND2 sequences. 
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Figure 2.5 Cross-species amplification performance of Mustelus canis microsatellites in 15 of the 16 

elasmobranch species, and genetic divergence (K2P) between M. canis and the target species based on 

ND2 sequences. 

Results of cross-species amplification performance of G. galeus microsatellites exhibited 

a logarithmic regression function (Figure 2.4), albeit non-significant (slope within the 95% 

CI for no difference from zero), that may explain the general trend of negative correlation 

between cross-species amplification performance and genetic divergence seen across taxa 

(Primmer et al. 2005; Barbara et al. 2007; Sekino and Hara 2007; Karaiskou et al. 2008; 

Kang et al. 2012). Cross-species amplification of microsatellite markers from source to target 

species is generally negatively correlated with evolutionary divergence (FitzSimmons et al. 

1995; Primmer et al. 1996; Sekino and Hara 2007; Griffiths et al. 2011; Kang et al. 2012). 

Interestingly, this trend was not observed for the M. canis microsatellites (Figure 2.5). This 

can be due to different life history traits (i.e. mating system and generation time) and genome 

size (C value) between the source and target species, which have been previously found to 

have significant negative effects on cross-species amplification success (Barbara et al. 2007). 

However, apart from the source-target species evolutionary distance, other factors, such as 

mutations in microsatellite flanking sequences, may affect the success rate of cross-species 

amplification. Since microsatellites are usually found in non-coding regions, where the 

substitution rate is higher than in coding regions (Zane et al. 2002), these microsatellite 
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flanking sequences which serve as regions for PCR primer design and binding sites are prone 

to mutations (Primmer et al. 2005). Mutations (indels) in these regions may therefore result in 

null alleles and, in turn, affect the patterns of cross-species amplification as demonstrated in 

birds (Primmer and Ellegren 1998) and salmonids (Angers and Bernatchez 1997). 

Additionally, M. canis microsatellite loci were isolated from an enriched genomic library 

(Giresi et al. 2012), whereas the microsatellites for G. galeus were developed by a high-

throughput sequencing approach (Roche 454 pyrosequencing) (Chabot and Nigenda 2011). 

Based on the observed data, it is hypothesised that these different approaches may have 

influenced the cross-species performance, possibly due to the different resolving power of 

each approach for capturing microsatellites distributed across different parts of the genome. 

Castoe et al. (2010) argue that enrichment-based approaches commonly use a few specific 

repeated motifs, which are largely selected without prior knowledge of their abundance in the 

genome and, therefore, could introduce potential bias in genome representativeness. In 

contrast, microsatellite identification from randomly sequenced genomic regions (e.g. Roche 

454 NGS) allows for an unbiased assessment of all types of microsatellite loci present in a 

genome (Castoe et al. 2010). 

Cross-species amplification of orthologous microsatellites, due to the presence of 

conserved microsatellite flanking sequences (Barbara et al. 2007), can persist over millions of 

years following divergent evolution, as previously shown in sharks (250 million years, Martin 

et al. 2002) and in fish (470 million years, Rico et al. 1996). This indicates lower mutation 

rates within microsatellite flanking regions in aquatic organisms (Rico et al. 1996; Sekino 

and Hara 2007). The reported cross-amplified microsatellite markers will thus contribute to 

establishing a molecular genetic marker repository for each of the southern African 

elasmobranch species included in this study. Future research efforts should be directed at 

generating microsatellite primers that have a high cross-species utility (e.g. Dawson et al. 

2010) and at in silico mining of polymorphic microsatellite markers from expressed sequence 

tag data (e.g. Hoffman and Nichols 2011). 

2.3.2 Multiplex Assay Characterisation 

Twenty-two microsatellite loci that successfully cross-amplified across the study species 

and showed polymorphism in initial screening tests were used to develop four multiplex 

assays (MPS) comprised of at least five microsatellites each. These multiplex assays were 

characterised in a panel of 87 common smoothhound sharks (Mustelus mustelus) (Table 2.3). 
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All 22 microsatellite loci were polymorphic across the multiplexes. With the exception of one 

locus, McaB22, all the microsatellite loci were found to deviate significantly from Hardy-

Weinberg equilibrium, most likely due to a Wahlund effect as samples were pooled from 

diverse geographical locations for analysis. MICROCHECKER detected no significant 

genotyping errors, but indicated that null alleles were present at two loci (Mh9 and Gg7). 

Slatkin’s exact test for neutrality indicated that two loci (McaB22 and Gg3) were candidates 

for being subjected to selection. 

Table 2.3 Characterisation of four multiplex systems for Mustelus mustelus based on 87 individuals 

from southern Africa 

Locus Microsatellite repeat 

motif 

[P] Dye Size range (bp) AN AE HO HE PIC FIS FrNULL PE-W 

Mh1 (AG)n 0.2 VIC 191-211 7 2.2 0.885 0.544 0.443 −0.633** −0.223 0.931 

Mh2 (GA)9 0.3 VIC 587-597 4 1.7 0.367 0.402 0.342 0.089** 0.023 0.688 

Mh9 (GA)9 0.4 FAM 312-326 5 1.7 0.337 0.429 0.373 0.214** 0.062b 0.723 

Mh25 (CT)n 0.2 FAM 122-148 8 1.6 0.356 0.404 0.385 0.118** 0.032 0.802 

Mca25 (CA)n(CT)n 0.2 PET 232-240 3 1.9 0.563 0.463 0.382 −0.217** −0.070 0.226 

McaB39 (CA)10GAT(AC)8 0.2 NED 177-212 3 2.0 1.000 0.509 0.384 −0.977** −0.328 0.501 

MPS1 (mean) - - - - 5 1.9 0.585 0.459 0.385 −0.234 −0.084 0.645 

McaB5 (GT)11 0.2 VIC 189-210 10 3.5 0.826 0.716 0.674 −0.155* −0.067 0.330 

McaB6 (CA)10 0.2 FAM 226-266 9 3.3 0.756 0.702 0.655 −0.077* −0.034 0.498 

McaB22 (AC)18 0.2 NED 137-179 12 8.2 0.874 0.882 0.865 0.010 0.002 0.002 

McaB27 (GT)6 0.2 PET 138-199 4 2.1 0.965 0.536 0.424 −0.808** −0.282 0.589 

Mca33 (ATC)5 0.2 FAM 189-199 6 3.0 0.872 0.674 0.609 −0.295** −0.121 0.347 

McaB37 (GT)5 0.2 NED 219-251 11 1.9 0.483 0.486 0.431 0.007** −0.016 0.997 

MPS2 (mean) - - - - 9 3.7 0.796 0.666 0.610 −0.220 −0.086 0.461 

Gg2 (TG)n 0.2 NED 249-259 7 3.2 1.000 0.688 0.632 −0.458** −0.188 0.324 

Gg3 (GATT)n 0.2 PET 257-265 2 2.0 1.000 0.503 0.375 −1.000** −0.333 0.001 

Gg7 (AG)n 0.2 NED 296-312 4 1.6 0.310 0.393 0.343 0.212** 0.058b 0.584 

Gg11 (TCCC)n 0.2 NED 329-363 4 1.2 0.061 0.182 0.173 0.666** 0.000 0.792 

Gg12 (TA)n 0.2 FAM 276-296 4 1.8 0.610 0.454 0.361 −0.347** −0.110 0.807 

MPS3 (mean) - - - - 4.2 2.0 0.596 0.444 0.377 −0.185 −0.115 0.495 

Gg15 (GA)n 0.2 FAM 147-169 3 2.05 0.977 0.514 0.392 −0.910** −0.308 0.370 

Gg17 (AC)n 0.2 PET 159-181 3 1.02 0.023 0.023 0.023 −0.003** 0.000 1.000 

Gg18 (GA)n 0.2 VIC 179-187 6 2.24 0.976 0.558 0.456 −0.759** −0.272 0.776 

Gg22 (GT)n 0.2 FAM 237-247 4 2.25 0.964 0.559 0.455 −0.733** −0.263 0.488 

Gg23 (AC)n 0.2 VIC 258-278 6 2.84 1.000 0.651 0.582 −0.540** −0.214 0.562 

MPS4 (mean) - - - - 4.4 2.08 0.788 0.461 0.3816 −0.589 −0.211 0.615 

Overall (mean) - - - - 5.7 2.4 0.691 0.512 0.444 0.010 −0.139 0.561 

Primer concentration in the final reaction as μM/primer ([P]); Number of alleles per locus (AN); effective 

number of alleles (AE); observed heterozygosity (HO); expected heterozygosity (HE); polymorphic information 

content (PIC); inbreeding coefficient (FIS) with statistically significant deviations from Hardy-Weinberg 

expectations indicated by * (P < 0.01) and ** (P < 0.001); null allele frequency (FrNULL) with 
b
 indicating the 

presence of null alleles at statistical significance at the 5% nominal level and Ewens-Watterson probability (PE-

W). Mean values for each multiplex assay and overall are indicated in bold. 
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2.3.3 Multiplex Assay Cross-Species Amplification and Efficiency in Species 

Identification 

Cross-species amplification of the four multiplex assays was tested for 11 other southern 

African shark species (Table 2.4). The number of alleles observed was highest in G. galeus 

and M. palumbes. Overall, AN varied from 1 to 7, while the percentage polymorphism (PP) 

for each species over all the markers ranged from 31.8%-95.5%. The polymorphic 

information content (PIC) decreased exponentially with evolutionary distance from the 

source species (Table 2.4) and the four multiplex assays showed the highest PIC in M. 

mustelus, M. palumbes and G. galeus. 

Table 2.4 Multiplex transferability of a total of 22 microsatellite loci, showing the number of alleles 

per locus for 11 elasmobranch species tested 

Locus MP GG CB CL CO CP HP HEd SL SZ PPa 

(n = 8) (n = 8) (n = 8) (n = 4) (n = 4) (n = 4) (n =8) (n = 4) (n = 5) (n = 5) (n = 5) 

MPS1            

Mh1 4 3 1 2 1 1 1 1 4 2 3 

Mh2 - 5 * 1 1 * - - 2 1 3 

Mh9 4 4 * - * * - - 4 5 3 

Mh25 5 5 2 3 2 3 1 3 4 6 3 

Mca25 3 1 1 3 2 1 2 1 3 4 3 

McaB39 3 3 2 2 1 2 2 * 2 3 3 

MPS2            

McaB5 3 1 2 4 2 3 1 1 5 5 7 

McaB6 4 4 * 4 2 1 - 1 2 3 5 

McaB22 2 1 1 4 2 4 2 4 4 7 7 

McaB27 2 2 2 - 1 * - 1 - 2 - 

Mca33 4 2 2 4 2 2 2 3 4 7 6 

McaB37 3 5 1 3 1 1 - - 4 6 7 

MPS3            

Gg2 5 4 1 - 1 1 2 - - 2 - 

Gg3 3 2 1 1 2 * 2 1 - 2 2 

Gg7 4 1 1 - 1 1 2 - - 1 1 

Gg11 6 4 1 - 2 2 * * - 1 3 

Gg12 4 5 - - 1 * 1 1 2 2 1 

MPS4            

Gg15 7 5 1 4 1 4 4 2 5 3 5 

Gg17 4 4 1 4 1 2 2 2 2 3 2 

Gg18 6 3 2 3 1 3 3 3 7 6 4 

Gg22 6 5 2 3 2 2 2 1 3 2 3 

Gg23 4 2 2 1 2 1 3 2 6 4 3 

Total P loci 21 18 8 13 10 10 12 7 16 19 18 

PP 95.5 81.8 36.4 59.1 45.5 45.5 54.5 31.8 72.7 86.3 81.8 

n - number of individuals tested; *Failed to amplify but showed successful transferability initially (see Table 

2.2); − No amplification; allele numbers in bold indicate loci that failed to cross-amplify according to Table 2.2; 

P – polymorphic and PP - percentage of polymorphism. For species abbreviations refer to Table 2.2. 
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The mean genetic diversity estimates for each species in terms of the number of alleles 

(AN), effective number of alleles (AE), observed heterozygosity (HO), expected heterozygosity 

(HE) and PIC are shown in Figure 2.6. In species group 1, the mean HE, AE and PIC varied 

from relatively low in C. brachyurus (mean HE = 0.230; mean AE = 1.4; mean PIC = 0.181) 

to relatively high in M. palumbes (mean HE = 0.653; mean AE = 3.3; mean PIC = 0.606). 

Species group 2 exhibited similar patterns of genetic diversity that varied from moderate in S. 

zygaena (mean HE = 0.593; mean AE = 3.2; mean PIC = 0.554) to relatively high in P. 

pantherinum (mean HE = 0.662; mean AE = 3.4; mean PIC = 0.603). For species group 3 

(species with n = 4), the mean HE, AE and PIC ranged from relatively low in C. plumbeus 

(mean HE = 0.249; mean AE = 1.5; mean PIC = 0.193) to relatively high in C. obscurus (mean 

HE = 0.429; mean AE = 2.1; mean PIC = 0.367). 

 
Figure 2.6 Mean genetic diversity estimates using 12 microsatellite loci shared between species: 

number of alleles (AN), effective number of alleles (AE), heterozygosity (HE) and polymorphic 

information content (PIC). Error bars represent standard error. 

The genotypic distribution of the study species is depicted in Figure 2.7. Most of the 

study species could be differentiated on PC1 and PC2 of the PCoA plot as can be seen with 

individuals of each respective species clustering together. However, individuals of the 

catshark species were dispersed across quadrant 3 and 4 (H. edwardsii and H. pictus), and 

quadrant 1 and 3 (P. pantherinum). The PCoA also revealed that one of the M. mustelus 

individuals was misidentified as G. galeus. The identity of this particular individual was 

subsequently confirmed using the genetic identification method developed specifically for 

smoothhound sharks (Farrell et al. 2009). Briefly, this method involves using four primers 

(one universal forward primer and three species-specific reverse primers) for the 

mitochondrial gene, nicotinamide adenine dehydrogenase subunit 2 (ND2), in a multiplex 

PCR reaction. The reverse primers amplify a fragment of different length for each species (G. 
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galeus, 671 bp; M. asterias, 564 bp; M. mustelus, 392 bp) and can, therefore, be utilised for 

distinguishing species based on fragment size. 

 

Figure 2.7 Principle coordinates analysis (PCoA) of study species based on 12 amplified 

microsatellite loci shared between species. Arrows depict misidentified/mislabelled individuals. 

In this study, the potential use of microsatellites in species identification was 

successfully demonstrated for some of the species included in this study. The polymorphic 

information of these microsatellite loci was characterised by low genetic variation, as 

previously proposed for elasmobranchs (Dudgeon et al. 2012). The genotypic distribution of 

the study species could also be differentiated based on PCoA analysis. Markedly, the lack of 

differentiation between the catshark species (H. edwardsii and H. pictus) on the PCoA plot 

may be explained by the misidentification of the Haploblepharus species, which is a common 

occurrence in the catshark family (Human 2007). To further investigate whether the lack of 

differentiation detected with microsatellites was indeed due to misidentification, the 

cytochrome b (Cytb) and ND2 genes were applied for species comparisons (Human 2007). 

For both genes, sequence analyses revealed individuals with cryptic identification 

(conflicting morphological and genetic identification), suggesting that, in the case of the 

catsharks, the microsatellites optimised in the current study were not successful in 

discriminating between the Haploblepharus species, but could in the future aid in the 

identification of cryptic speciation within the catshark family. 

In South Africa, the aforementioned misidentification issue is prominent in fishing 

operations (particularly in longline and trawl fisheries) where there is a high rate of incidental 

capture of non-target shark species (Myers and Worm 2003; Barker and Schluessel 2005; 

Petersen et al. 2008; Attwood et al. 2011). This hinders the collection of reliable data on 
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shark catch and trade on a species-specific basis, making robust stock assessments and 

identification of overfished and potentially threatened species nearly impossible in most 

situations (Shivji et al. 2002). This was apparent in a study by Attwood et al. (2011), which 

assessed bycatch in South Africa’s inshore trawl fishery based on observer records. In the 

aforementioned study, certain taxa were difficult to identify and, therefore, taxonomic groups 

were lumped in species groups (e.g. Raja spp., Mustelus spp. and Scyliorhinidae), even 

though every attempt was made to analyse data at the species level. Therefore, the molecular 

genetic makers developed by the current study may facilitate obtaining species-specific catch 

data for stock assessment, characterising genetic diversity and delineating population genetic 

structure. This could, in turn, contribute to the implementation of future conservation and 

management plans on a species-specific level in southern Africa. 

2.4   Conclusions 

Cross-species amplification of available microsatellite loci to target species is more time 

and cost-effective in comparison to de novo development and permitted the optimisation and 

use of 22 microsatellite markers across 12 elasmobranch species. Genotyping data of the four 

multiplex assays developed in the current study was successfully used for characterising 

genetic diversity and also highlighted the potential use of microsatellites in species 

identification in a number of commercially important and endemic species. The molecular 

genetic markers developed in this study and their usefulness in down-stream applications 

could, therefore, aid a more integrative, multidisciplinary approach to conservation 

management of elasmobranchs in southern Africa. 
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Chapter 3 

Microsatellite Variation in Mustelus mustelus: Regional 

Population Genetic Structure and Demographics of a Declining 

Coastal Shark 

Abstract 

In marine organisms dispersal may affect genetic variation within and among populations 

through gene flow, thereby influencing fitness and spatial organization at both local- and 

meta-population levels. The patterns of dispersal may be affected by the oceanic 

surroundings, attributed to the influence of climate, hydrodynamics and biogeographic 

barriers. In South Africa, the three recognised biogeographic provinces are the cool-

temperate west coast, the warm-temperate south coast and the subtropical east coast. Known 

biogeographic barriers between these provinces may impact and restrict genetic connectivity 

of regional shark populations, leading to locally adapted stocks. Deciphering these patterns of 

genetic connectivity in commercially important shark species is, therefore, becoming 

increasingly important for integrated fisheries management of threatened shark populations. 

The common smoothhound, Mustelus mustelus, is an overexploited, commercially- and 

recreationally-important shark species in South Africa. Considering the vulnerable status of 

the common smoothhound shark and very limited available genetic information, this study 

assessed patterns of gene flow along the South African coast, using multilocus data from 12 

highly variable microsatellite markers. The present study found moderate levels of genetic 

diversity, as based on the heterozygosity and allelic richness. Estimates for pairwise 

population differentiation, F-statistics, AMOVA and Factorial Correspondence Analysis 

(FCA) detected significant genetic structure within and between the Atlantic and Indian 

Ocean populations. Additionally, Bayesian clustering analyses detected two ancestral gene 

pools in the study populations, further supporting the presence of at least one oceanographic 

feature driving structure of common smoothhound shark along the South African coastline. 

For future sustainable exploitation of common smoothhound shark it is recommended that 

fisheries take into account the possible existence of, and observed asymmetric gene flow 

among, two genetically-differentiated populations along the South African coast.  
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3.1   Introduction  

Nearly 70 years of demersal shark fishing for fins and meat, peaking in 2008-2010, and 

unregulated exploitation of various elasmobranch species in South Africa (Department of 

Agriculture, Forestry and Fisheries 2013) have resulted in local population declines (Sauer et 

al. 2003; Da Silva and Bürgener 2007). This decline is accentuated by the generally slow 

growth rate, late maturity and low reproductive output of these animals (Musick et al. 2000; 

Stevens et al. 2000). Growing concerns regarding the sustainability of the South African 

shark fishery led the South African government to participate in the International Plan of 

Action for the Conservation and Management of Sharks (IPOA-sharks) through 

implementing a National Plan of Action for Sharks (NPOA-Sharks), imposing increasingly 

stricter regulations to avert a collapse of stocks (Department of Agriculture, Forestry and 

Fisheries 2013). It is well recognised that a drastic reduction in population size can result in 

small and isolated populations becoming increasingly susceptible to a loss of genetic 

diversity and consequently also the general survival of populations (Nei et al. 1975; 

Frankham 2005). Characterising genetic variability, assessing the direction and strength of 

gene flow between populations and defining reproductively isolated stocks in marine 

organisms is important for elucidating historical and contemporary processes responsible for 

observed patterns of spatial genetic differentiation (Veríssimo et al. 2010, 2011; Ovenden 

2013; Vignaud et al. 2013).  

In sharks, different levels of subdivision have been reported over large and smaller 

spatial scales (Feldheim et al. 2001; Duncan et al. 2006; Schultz et al. 2008; Chabot and 

Allen 2009; Pereyra et al. 2010; Benavides et al. 2011a, b; Mourier et al. 2013; Mendonça et 

al. 2013; Vignaud et al. 2013, 2014) based on molecular data. These studies highlighted the 

reality of existing barriers to gene flow, shaping genetic structure in a range of small-benthic 

to large-oceanic shark species. For example, hydrodynamic barriers (open oceanic waters; 

Feldheim et al. 2001; Duncan et al. 2006; Schultz et al. 2008), thermal barriers (water 

temperature; Chabot and Allen 2009; Veríssimo et al. 2010) and biogeographic barriers 

(disconnection along continental coastlines; Duncan et al. 2006; Daly-Engel et al. 2012; 

Veríssimo et al. 2012; Vignaud et al. 2013) have been shown to limit gene flow. Integrating 

genetic information into conservation management of shark populations could aid in 

identifying Management Units (MUs), defined as demographically-distinct populations that 
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should be managed separately to ensure the viability of the larger metapopulation (Funk et al. 

2012).  

The likelihood of species misidentification in shark fishery operations is also a general 

concern hampering the estimation of species-specific catch rates (Myers and Worm 2003; 

Attwood et al. 2011) and is attributed to the conserved interspecific morphology of various 

sharks species occurring sympatrically (Pank et al. 2001). Accordingly, it is vital for fisheries 

to correctly identify sharks to the species level, particularly demersal species, as they are 

usually landed having been headed and gutted at sea (Da Silva and Bürgener 2007). For 

instance, species misidentification of Mustelus species is a common occurrence in the 

Mediterranean and Black Sea (involving M. asterias and M. mustelus), Australia (M. 

antarcticus, M. ravidus and M. stevensi), northern Gulf of California (M. albipinnis, M. 

californicus, M. henlei and M. lunulatus) and in South Africa (M. mosis, M. mustelus and M. 

palumbes) (Heemstra 1973; Smale and Compagno 1997; Da Silva and Bürgener 2007; Farrell 

et al. 2009; Boomer et al. 2012; Pérez-Jiménez et al. 2013). Moreover, these species are 

readily confused with other houndsharks, such as the tope (Galeorhinus galeus) and spotted 

gully (Triakis megalopterus) sharks (Da Silva and Bürgener 2007; Farrell et al. 2009). 

Species-specific catch rate data complemented with genetic data could prove useful in 

assessing species composition of commercially important shark species in fishing operations. 

The common smoothhound shark, Mustelus mustelus Linnaeus 1958, is considered a 

cosmopolitan species i.e., widespread in distribution from the Mediterranean Sea and eastern 

Atlantic Ocean to the South-West Indian Ocean; in southern Africa the species’ range 

includes the west, south and east coasts from Angola to KwaZulu-Natal (Smale and 

Compagno 1997). Common smoothhound shark is an active and strong-swimming, medium-

sized (< 1.6 m), epibenthic (living on or near the seafloor) member of the houndshark family 

Triakidae that is fairly slender with flattened ventral surfaces on the head and body (Smale 

and Compagno 1997). These sharks dwell along continental shelves and uppermost slopes, 

from intertidal regions, mostly less than 100m in depth, although residence at 350m was 

reported in the tropics (Smale and Compagno 1997; Serena et al. 2009). Common 

smoothhound shark is a mesopredator (mid-level predator) (Belleggia et al. 2012) and feeds 

mainly on anchovy (fish), crustaceans and mollusks (Smale and Compagno 1997; Filiz 2009). 

The species is characterised by placental viviparity (live-bearing) (Compagno, 1984; Boomer 

et al. 2012) and reproduces seasonally where each cycle may take one year or longer, 

depending on the resting periods between gravidities (Smale and Compagno 1997). Litter 
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size has been positively correlated with maternal length and, thus, age (Smale and Compagno 

1997; Saïdi et al. 2008), ranging from four to 23 pups per litter (Da Silva and Bürgener 

2007). Little is known about the lifespan of ocean dwelling common smoothhound sharks; 

however, those held in captivity live to an average age of 25 years and those in the wild are 

believed to live longer (Da Silva 2007). Common smoothhound sharks are harvested 

commercially and recreationally across the species range (Da Silva 2007; Serena et al. 2009). 

A decrease in population size in the Mediterranean Sea has previously been reported 

(Aldebert 1997) and lately a similar trend has been observed in the eastern central Atlantic 

(Gascuel et al. 2007), eastern Atlantic and South-West Indian Ocean (Da Silva 2007). 

Globally, common smoothhound shark population trends have been listed as decreasing and 

the species is listed as vulnerable by the IUCN Red List of Threatened Species (Serena et al. 

2009).  

Identifying regional stocks is one of the key components in sustainable fisheries (Grant 

and Bowen 1998; Ovenden 2013) since species distributions may extend across national and 

international management boundaries, where protection and management legislation may 

differ for any given species (Ovenden 2013). A stock assessment of common smoothhound 

shark in southern Africa by Da Silva (2007) found that the species is overexploited and 

threatened, underlining the need for appropriate conservation and management strategies for 

the species in South Africa. In light of this, a recent investigation by Da Silva et al. (2013) on 

the degree of protection afforded to common smoothhound sharks by the Langebaan Lagoon 

Marine Protected Area (MPA) found, using telemetry, that this species demonstrated a high 

degree of site fidelity with an average distance travelled by individuals of 16 km. It was also 

concluded that no-take area protection may be a practical management option for the 

common smoothhound shark since the species demonstrated such site fidelity, and that this 

information may be applied to other species with similar life history traits.  

Considering the vulnerable status and potential site fidelity of this species, this study 

aims to investigate the patterns of gene flow among populations along the South African 

coast. Using microsatellite data, the alterenate hypotheses of panmixia or population 

subdivision is tested among sampled populations of M. mustelus collected along its regional 

range. More specifically, the effect of hydrodynamics and biogeographic barriers on gene 

flow and the impact on genetic structuring of populations are investigated. Assessment of 

population demography could also increase understanding of the influence of fisheries 

activity on the genetic diversity of M. mustelus and aid in establishing a more integrated 

conservation management programme for the species in southern Africa. 
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3.2   Materials and Methods 

3.2.1. Sample Collection and DNA Extraction  

Fin clips and muscle tissue of 158 sharks were obtained from seven different locations 

along the South African coast, as well as from the Dunes, a seascape situated between 

Tombua and Baia dos Tigres in southern Angola (reference population; Figure 3.1). In South 

Africa, samples were collected from the west (Langebaan Lagoon MPA, Robben Island, 

False Bay and Kalk Bay), south (Struis Bay and Jeffreys Bay) and east (Durban) coasts. The 

west coast populations constituted the South-East Atlantic Ocean populations, west of the 

proposed Cape Agulhas Boundary, while the south- and east coast populations constituted the 

South-West Indian Ocean populations, east of the Cape Agulhas Boundary. These samples 

were collected by licensed shark ecology researchers who had volunteered to participate in 

this study (see Acknowledgements) and one commercial fishing company. 

Total genomic DNA was isolated using the standard cetyltrimethylammonium bromide 

(CTAB) method of Saghai-Maroof et al. (1984). The extracted DNA was quantified using a 

NanoDrop ND-1000 spectrophotometer v3.0.1 (NanoDrop®) and each DNA sample was 

adjusted to a working concentration of 50 ng/µl and stored at -20ºC prior to polymerase chain 

reaction (PCR) analysis. 
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Figure 3.1 Sampling localities and sample sizes of Mustelus mustelus with the green circle 

representing Angola, and blue and red circles representing the South-East Atlantic and South-West 

Indian Ocean sampled populations, respectively. The three major coastal biogeographic regions are 

also shown. Map adapted with modification from Whitfield and Baliwe (2013). 

3.2.2. Species Identification 

Misidentification of houndsharks is a common occurrence as their morphology is highly 

conserved between species (Heemstra 1973; Smale and Compagno 1997; Farrell et al. 2009) 

and because of linguistic (ethnic) differences in understanding or interpreting common names 

(Burgess et al. 2005). Therefore, prior to genotyping, all available houndshark samples (158) 

were screened using the genetic identification method of Farrell et al. (2009) and/or barcoded 

with the mitochondrial cytochrome oxidase I (COI) gene, using the primers FishF1 and 

FishR1 according to the recommended PCR conditions outlined in Ward et al. (2005). Bi-

directional sequencing was performed using standard Sanger sequencing chemistry 
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(BigDye® terminator v3.1 cycle sequencing kit, Life Technologies) and capillary 

electrophoresis  conducted at the Central Analytical Facility of Stellenbosch University 

(DNA sequencing unit). Sequences were aligned using the CLUSTALW algorithm 

(Thompson et al. 1994) implemented in BIOEDIT v7.0.9 (Hall 1999). A local BLASTn 

analysis of these sequences was conducted for species identification using the Barcode of 

Life Database (BOLD).  

3.2.3. Microsatellite Genotyping and Marker Validity 

A set of 12 microsatellite markers, previously optimised in two multiplex reactions, 

multiplex assay 1 (MPS1; Mh1, Mh2, Mh9, Mh25, Mca25 and McaB39) and multiplex assay 

2 (MPS2; McaB5, McaB6, McaB22, McaB27, Mca33 and McaB37), were selected and 

polymerase chain reaction (PCR) amplification performed as outlined in Chapter 2. For 

subsequent analysis, PCR products were diluted in distilled water and fragment analysis 

performed, together with the LIZ600 internal size standard, on an ABI 3730XL DNA 

Analyser. Allele scoring was done using GENEMAPPER v4.0 (Life Technologies).  

The efficiency of the markers was tested by inspecting genotypic errors resulting from 

allele dropout, stuttering and null alleles, according to Brookfield (1996) using 

MICROCHECKER v2.2.3 (Van Oosterhout et al. 2002). Departure from Hardy-Weinberg 

equilibrium was tested using the exact probability test (500 batches, 10 000 iterations) in 

GENEPOP v4.0 (Rousset 2008). Linkage disequilibrium between all pairs of loci was 

calculated using an exact test, also implemented in GENEPOP. Slatkin’s exact test (10 000 

permutations) for neutrality, based on Ewens-Watterson sampling theory (Slatkin 1994), was 

used to detect loci subjected to selection as implemented in ARLEQUIN v3.5.1.2 (Excoffier 

and Lischer 2010). Additionally, the FST-outlier method as implemented in LOSITAN v1.44 

(with 10 000 permutations, assuming the infinite alleles model) was used to test for neutrality 

(Antao et al. 2008). 

3.2.4. Within-Population Patterns of Genetic Diversity  

Genetic diversity was measured as the number of alleles (AN) at each microsatellite 

locus, Information (Shannon-Weaver) Index (I), as calculated using the GENALEX v6.5 

program (Peakall and Smouse 2012), observed heterozygosity (HO), expected heterozygosity 

(HE) and polymorphic information content (PIC), as calculated in MSATTOOLS v1.0 (Park 

2001), and allelic richness standardized for sample sizes (AR) as calculated in HP-RARE v1.0 
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(Kalinowski 2005). Mean relatedness was calculated for each population using the 

relatedness estimator, r, of Queller and Goodnight (1989), implemented in GENALEX. 

Significant within-population mean relatedness was tested using a permutation test (999 

permutations, Peakall and Smouse 2006) and upper and lower 95% confidence intervals (CIs) 

for the expected range of r if reproduction were random across sampling sites were derived. 

3.2.5. Among-Population Patterns of Genetic Diversity  

To assess population differentiation, pairwise FST-values between populations [with 

Bonferonni correction at the 5% nominal level (Rice 1989)] were calculated in GENALEX 

v6.5 (Peakall and Smouse 2012), and an exact test for pairwise genotypic differentiation 

(ETGD) was implemented in GENEPOP v4.0 (Rousset 2008). A hierarchical locus by locus 

analysis of molecular variance (AMOVA), with 1 000 permutations to determine 

significance, was computed in ARLEQUIN v3.5.1.2; populations were grouped based on 

geographical origin (Angola, South-East Atlantic or South-West Indian Ocean) to test a 

priori hypothesised hydrodynamic barrier between South Africa and Angola; the Angola-

Benguela Front. Additionally hierarchical AMOVA was used to examine a priori 

hypothesised biogeographic barrier across the South-East Atlantic (including Angola) and 

South-West Indian Ocean; the Cape Agulhas Boundary.To visualise population distinctness, 

a Factorial Correspondence Analysis (FCA) plot was drawn in GENETIX v4.03 (Belkhir et 

al. 1996–2004). Isolation by distance (IBD) was tested using a Mantel test (Mantel 1967), 

implemented via GENALEX (Peakall and Smouse 2012). Population genetic structure was 

further assessed through a Bayesian clustering, model-based method, implemented in 

STRUCTURE v2.3.4, in order to detect the number of genetic clusters (K) present in the 

southern African samples (Pritchard et al. 2000). The admixture model with correlated allele 

frequencies was applied for 10 replicates across K = 1 (panmaxia) to K = 8 (each sampling 

site distinct), with each run consisting of 2 000 000 MCMC iterations and an initial burn-in 

phase of 200 000 iterations, assuming no prior population information. To identify the most 

likely K value, the program STRUCTURE HARVESTER v0.3 was used to process the 

STRUCTURE result files (Earl and vonHoldt 2013). The results from the 10 replicates were 

averaged using the software CLUMPP v1.1.2 (Jakobsson and Rosenberg 2007) and the 

output was visualised using DISTRUCT v1.1 (Rosenberg 2004). Finally, between-population 

genetic distances DA (Nei et al. 1983) were calculated and used to construct a phylogram 

according to the Neighbour-Joining (NJ) method (Saitou and Nei, 1987). The goodness of fit 
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(R2
) of the DA NJ phylogram was tested using TREEFIT v1.2 (Kalinowski 2008). This 

program creates the tree from a genetic distance matrix, and then compares the observed 

genetic distance between populations with the genetic distance (fitted) in the tree and 

computes the R2
 value, the proportion of variation in the genetic distance matrix that is 

explained by the tree (Kalinowski 2008). Additionally, phylogram robustness was tested with 

1 000 bootstraps among loci using the software POPULATIONS v1.2.3 (Langella 1999) and 

visualised using TREEVIEW v1.6.6 (Page 2001).  

3.2.6. Demographical History Inference 

Contemporary estimates of effective population size (NE) were estimated with the 

linkage disequilibrium (LD) test (minimum allele frequency of 0.02) and heterozygosity 

excess method applied to all populations, as implemented in NEESTIMATOR v2.01 (Do et 

al. 2014). The occurrence of recent bottlenecks and changes in NE were evaluated using the 

Wilcoxon signed-rank test for significant deviation from heterozygosity excess and 

deficiency under all three mutation models [infinite alleles model (IAM), stepwise mutation 

model (SMM) and the two-phased model (TPM)], implemented in the program 

BOTTLENECK v1.2.02 (Piry et al. 1999). The TPM is thought to be the best fit for 

microsatellite data and recent bottleneck events (Piry et al. 1990; Williamson-Natesan 2005). 

Analysis in BOTTLENECK was performed using 1 000 replications at the 5% nominal level 

and a TPM composed of 70% SMM and 30% IAM and a variance of 30 (Piry et al. 1999). 

Features of past demographic events were further examined using the interlocus g-test (Reich 

et al. 1999), implemented in the KGTESTS Excel macro provided by Bilgin (2007). The 

interlocus g-test assumes that, in an expanding population, the variance in the widths of the 

allele length distribution across loci is usually lower than in a population of constant size; an 

unusually low value of the g-statistic may be interpreted as an indication of expansion. 

Significance was assessed by computer simulations that established cut-off values for a given 

number of samples and loci, as described in Reich et al. (1999). This test is appropriate for 

the low number of loci and small sample size considered in this study. 

The study populations were grouped into three regional groups: Angola, South-East 

Atlantic Ocean (Langebaan, Robben Island, False Bay and Kalk Bay) and South-West Indian 

Ocean (Struis Bay, Jeffreys Bay and Durban), separated by two putative barriers: a 

hydrodynamic barrier (Angola-Benguela Front) and a biogeographic barrier (Cape Agulhas 

Boundary). Estimates of long-term effective migration rates among these regional groups and 
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their confidence intervals (CIs) were estimated by applying the coalescent-based approach, 

using maximum likelihood inference methods (Beerli 1998; Beerli and Felsenstein 1999, 

2001). The simple electrophoretic ladder model and stepping-stone migration model with 

asymmetric rates were applied, as implemented in MIGRATE-N v3.6 (Beerli 2006; Beerli 

2009; Beerli and Palczewski 2010). All possible combinations of migration that were either 

symmetrical or had no dispersal between populations were evaluated with the likelihood ratio 

test. Bidirectional M (mutation-scaled migration rate) among populations (M=m/μ, where m is 

the immigration rate per generation) and the number of migrants per generation (Nm = Mθ/4) 

were also estimated. For the maximum likelihood runs of MIGRATE-N, one in every 20 

reconstructed genealogies was sampled for each locus for ten short and three long chains. In 

the recorded 1 000 and 10 000 genealogies for short and long chains, respectively, the first 

200 and 2 000 genealogies were discarded as burn-in. 

3.3   Results 

3.3.1. DNA Barcoding and Species Identification 

For species identification prior to population genetic analysis, a total of 158 houndshark 

samples were screened and 144 (91.1%) were positively identified as M. mustelus. The 

remaining samples were identified as other houndshark species, such as Galeorhinus galeus 

and M. palumbes, based on the combination of COI barcoding and the identification method 

of Farrell et al. (2009). With the latter method, species are distinguished based on DNA 

fragment size, 392 bp for M. mustelus and 671 bp for G. galeus. The misidentified 

individuals showed amplification of a band at 671 bp or two fragments when species were 

assigned based on the fragment length visualized on the gel (Figure 3.2). The latter samples 

were barcoded using COI (Ward et al. 2005). 
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Figure 3.2 Results of the multiplex PCR amplification of the ND2 gene for houndshark species 

identification on a 2% agarose gel. Lanes S1-19 are smoothhound samples and Lane L is the 100 bp 

molecular ladder. The ? symbol indicates individuals that amplified for both fragments. 

3.3.2. Within-Population Genetic Diversity 

A total 113 alleles were observed across all loci, with allele numbers ranging from 2-14 

per locus. No significant genotyping errors, due to stuttering and allelic dropout, were 

identified. Fixation indices FIS were highly significant in most populations, with values 

ranging from -1 to 0.835, mostly because of significant heterozygote excess or deficiencies at 

some loci (Appendix B: Table S3.1). Null alleles were present at some of the loci (Mh2 and 

Mh25) at significantly high frequencies (P < 0.05) and most likely explain the significant 

deviations from Hardy-Weinberg expectation at these loci (Table S3.1). Slatkin’s exact test 

for neutrality, based on Ewens-Watterson sampling theory, indicated that two loci (McaB22 

and McaB39) were candidates for being subjected to selection (Table S3.1), whereas the FST-

outlier test showed that four loci, including McaB37 and Mh2 (under directional selection), 

did not conform to neutrality (Figure 3.3).  
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Figure 3.3 LOSITAN results indicating outlier loci as candidate loci under directional (white squares 

in dark grey area) and balancing selection (white circles in light grey area). 

Genetic diversity, based on all measures, was moderate and comparable across the 

sampling populations (Figure 3.4; Table S3.1). Genetic diversity levels were relatively high 

for Jeffreys Bay (mean HE = 0.597; mean AR = 2.3; mean I = 0.988) and relatively low for 

Langebaan (mean HE = 0.427; mean AR = 1.6; mean I = 0.613). Markedly, the Robben Island 

and Jeffreys Bay populations had the highest mean number of private alleles (Figure 3.4).   

 

Figure 3.4 Mean genetic diversity estimates using 12 microsatellite loci; number of alleles (AN), 

allelic richness (AR), information (Shannon-Weaver) index (I), number of private alleles (AP), 

polymorphic information content (PIC) and heterozygosity (HE). Error bars represent standard error. 

Three of the 66 pairs of loci were in linkage disequilibrium (P < 0.01), supporting the 

presence of allele frequency differentials between populations: Mh9-Mca25, McaB5-McaB6 
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and McaB27-Mca33. Four out of eight populations (Angola, Langebaan, Robben Island and 

Struis Bay) showed significantly higher degrees of relatedness (estimates beyond the 95% CI 

for no difference between populations) than expected from randomly sampled individuals 

(Figure 3.5). Although r estimates within most populations were statistically higher than 

expected, values among populations were not exceedingly high (ranging from -0.106 to 

0.359; Figure 3.5). 

 

Figure 3.5 Mean within-population pairwise relatedness, r, for the study populations. Error bars 

represent standard error. 

Estimates of population genetic structure and demographic history were computed using 

a subset of markers (eight microsatellites), excluding loci not conforming to Hardy-Weinberg 

equilibrium, neutrality, and/or exhibiting high null allele frequencies (Mh2, Mh25, McaB22 

and McaB39). 

3.3.3. Among-Population Patterns of Genetic Diversity 

Pairwise genotypic differentiation as estimated by the exact test indicated highly 

significant population differentiation amongst almost all populations, with the majority of the 

P-values reaching the 1% significance level (Appendix B: Table S3.2). Pairwise FST 

estimates, varying from 0.007 to 0.296, were congruent with the results obtained for the exact 

test for genotypic differentiation, indicating moderate-to-high genetic differentiation amongst 

most populations (P < 0.05, Table 3.1). Noticeably, FST estimates were large for almost all 

Atlantic vs. Indian Ocean comparisons, with FST-values reaching 0.296. Hierarchical 

AMOVA for the three geographic clusters (Angola vs. South-East Atlantic Ocean populations 

vs. South-West Indian Ocean populations) supported regional population genetic structure, 

with significant differentiation amongst regions (FCT = 0.084, P < 0.01), within regions (FSC 

= 0.055, P < 0.01) and over all regions and populations (FST = 0.134, P < 0.01) (Figure 3.6a). 
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Hierarchical AMOVA for the oceanic clusters (Angola+South-East Atlantic Ocean 

populations vs. South-West Indian Ocean populations) also indicated the separation of the 

oceans, with significant differentiation amongst oceans (FCT = 0.097, P < 0.01), within 

oceans (FSC = 0.071, P < 0.01) and over all oceans and populations (FST = 0.161, P < 0.01) 

(Figure 3.6b). Factorial Correspondence Analysis (FCA) as depicted in Figure 3.7 clearly 

revealed the same interoceanic pattern of population genetic structure.  

 

Table 3.1 Pairwise FST-values among populations with P-values shown above diagonal  

  FST 

  A LL RI FB KB SB JB D 

Angola (A) 
 

0.001** 0.001** 0.003** 0.001** 0.001** 0.001** 0.001** 

Langebaan (LL) 0.072 
 

0.191 0.005** 0.001** 0.001** 0.001** 0.001** 

Robben Island (RI) 0.090 0.007 
 

0.003** 0.001** 0.001** 0.001** 0.001** 

False Bay (FB) 0.053 0.033 0.043 
 

0.007** 0.001** 0.002** 0.001** 

Kalk Bay (KB) 0.103 0.150 0.172 0.039 
 

0.001** 0.001** 0.001** 

Struis Bay (SB) 0.200 0.207 0.175 0.201 0.296 
 

0.001** 0.001** 

Jeffreys Bay (JB) 0.078 0.110 0.088 0.045 0.075 0.134 
 

0.001** 

Durban (D) 0.180 0.171 0.145 0.129 0.210 0.132 0.082 
 

*Statistical significance at the 5% nominal level and ** statistical significance at the 1% nominal level. 
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Figure 3.6 Locus by locus AMOVA results with populations clustered (a) in three geographic groups, 

Angola vs. Atlantic Ocean populations vs. Indian Ocean populations and (b) two oceainc groups, 

Angola+Atlantic Ocean populations vs. Indian Ocean populations (**significance at the 1% nominal 

level). 
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Figure 3.7 Factorial correspondence analysis plots. (a) Eight Mustelus mustelus populations grouped into Indian- and Atlantic Ocean. Heterogeneity within 

(b) Indian Ocean and (c) Atlantic Ocean along factor 1 and 2. 
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When considering the entire dataset, there was no significant correlation between the 

genetic- and geographic distances (isolation by distance; IBD) at microsatellite loci (r2
 = 

0.0025; P = 0.584; Figure 3.8a). Excluding the peripheral population of Angola, according to 

groupings in the AMOVA, did not reveal a significant IBD relationship either (r2
 = 0.1152; P 

= 0.162; Figure 3.8b). Furthermore, excluding Angola and Indian Ocean populations did dot 

not reveal a significant IBD relationship within the South-East Atlantic either (not reported). 

 

Figure 3.8 Isolation by distance scatterplots with (a) all sampling locations and (b) excluding samples 

from Angola. 

Bayesian clustering analysis in STRUCTURE also indicated population subdivision and 

clustering of the South-West Indian Ocean populations separate from the rest; identifying the 

most likely number of populations as K = 2, based on the Evanno et al. (2005) method (∆K 

statistic), implemented in STRUCTURE HARVESTER (Figure 3.9a and b). Additionally, K 
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= 3 is also shown (Figure 3.9c and d) to demonstrate clinal variation; gradual differences in 

allele frequencies along the southern African coastline.  

Finally, limited gene flow between the Atlantic- and Indian Ocean is clearly 

illustrated in the phylogram based on the between-population genetic distances DA (Nei et al. 

1983; Figure 3.10), where the South-East Atlantic Ocean sampling sites grouped in two 

clades and the South-West Indian Ocean sampling sites in a separate clade. An R2 
value of 

0.953 as estimated in TREEFIT indicates that this phylogram accurately represents the 

genetic distance reflected in the data set with a high degree of confidence.  

 

Figure 3.9 Genetic structure of Mustelus mustelus populations based on Bayesian clustering analyses 

(STRUCTURE). The number of populations (a) K = 2, population Q-matrix; (b) K = 2, individual Q-

matrix; (c) K = 3, population Q-matrix and (d) K = 3, individual Q-matrix, are shown.  
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Figure 3.10 Neighbour-joining phylogram based on DA genetic distances, demonstrating the genetic 

relationships between Atlantic- and Indian Ocean Mustelus mustelus populations in southern Africa. 

The numbers next to the nodes indicate the bootstrap values (percentage) obtained after 1000 

replicates. Only values > 50% are shown. 

3.3.4. Demographic History 

Estimates of the contemporary NE as estimated using the linkage LD method indicated 

very low effective population sizes in most populations (Table 3.2). Given that there was no 

significant IBD relationship and non-significant population differentiation between 

population pairs Langebaan-Robben Island and False Bay-Kalk Bay, a combined NE was also 

estimated. The combined NE for Langebaan and Robben Island was 17.2 [3.9-88.3], and for 

False Bay and Kalk Bay was 97.6 [17.8-∞]. There was no significant heterozygosity excess 

in any population under all three mutation models (TPM, SMM and IAM: Wilcoxon signed-

rank test, P > 0.05). Across all the study populations (excluding Struis Bay), there was 

evidence for a recent demographic expansion event as these demonstrated a significant 

heterozygote deficiency (Wilcoxon signed-rank test, SMM and/or TPM: P < 0.05). However, 

values of the g-test ranged from 0.20 to 5.92 and none of these estimates indicated  

significant population expansion when compared tothe fifth percentile rejection values (≤ 

0.19 and ≤ 0.16, respectively) appropriate for the number of loci and sample sizes (10 and 20, 

respectively) given in Reich et al. (1999; their Table 1).  
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The maximum likelihood estimates (MLE) showed that genetic diversity in southern 

African populations, as measured by mutation-scaled effective population size (θ), was 

highest in the South-West Indian Ocean (θ = 1.791) and lowest in the South-East Atlantic 

Ocean (θ = 0.178). The most probable estimates of migration rates (M) ranged from 13.025 to 

40.762, with the highest migration observed from Angola to the South-East Atlantic Oceanic 

region (M = 40.762). In contrast, estimates of migration rates between the South-West Indian 

Ocean and the South-East Atlantic Ocean (M = 13.025) were lower, providing further 

evidence for interoceanic population genetic structure due to low gene flow. The migration 

between oceans was asymmetrical, as is shown by the number of migrants (Nm) in Table 3.2 

and Figure 3.11.  

 

Table 3.2 NE estimates amongst the study populations based on three methods, linkage 

disequilibrium, heterozygosity excess and the g-test. Combined NE (LL and RI; FB and KB) in shaded 

area. NS = non-significant  

 Method and estimates [95% CI] g-test 

Population Linkage Disequilibrium  Heterozygosity Excess g-ratio P-value 

Angola (A) ∞ [8.6-∞]  ∞ [6.7-∞]  2.94 NS 

Langebaan (LL) 192.3 [13.1-∞] 

17.2 [3.9-88.3] 

∞ [6.8-∞] 

∞ [15.8-∞] 

5.92 NS 

Robben Island (RI) 11.6 [2.9-84.4] ∞ [8.8-∞] 2.52 NS 

False Bay (FB) ∞ [49.0-∞] 

97.6 [17.8-∞] 

∞ [7.7-∞] 

∞ [5.2-∞] 

3.60 NS 

Kalk Bay (KB) ∞ [15.3-∞] ∞ [2.9-∞] 4.22 NS 

Struis Bay (SB) 1.4 [0.9-2.3]  ∞ [2.2-∞]  0.61 NS 

Jeffreys Bay (JB) 24.2 [8.7-∞]  ∞ [8.1-∞]  4.48 NS 

Durban (D) 18.1 [5.4-∞]  ∞ [∞-∞]  0.20 NS 
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Table 3.3 Mutation-scaled effective population size (θ = 4NEμ) and migration rates (M) across Angola 

(A), the Atlantic- and Indian Ocean (AO and IO, respectively)   

 Mean [95% CIs] 

θA 2.287 [2.060-2.550] 

θAO 0.178 [0.170-0.186] 

θIO 1.791 [1.665-1.930] 

MAO > A 15.015 [14.236-15.820] 

MA > AO 40.762 [38.552-43.054] 

MIO > AO 23.295 [21.639-25.033] 

MAO > IO 13.025 [12.189-13.898] 

 

 

Figure 3.11 Number of migrants per generation (Nm = Mθ/4) between different oceanic regional 

Mustelus mustelus populations in southern Africa.  

3.4   Discussion 

3.4.1. Species Identification  

Misidentification of shark species is a common phenomenon in fisheries operations, so 

much so that landings are reported at a species- or family group level (e.g. houndsharks, 

carcharinids, hammerheads etc.). This arises from the difficulties involved with 

unambiguously identifying species within and across families, e.g., houndsharks (Mustelus 

mustelus, M. palumbes and Galeorhinus galeus), due to a high degree of conserved 

interspecific morphology (Heemstra 1973; Farrell et al. 2009; Smale and Compagno 1997; 

Da Silva and Bürgener 2007). Apart from conserved interspecific morphology, 

misidentification of these sharks is further compounded by linguistic (ethnic) differences in 

understanding or interpreting common names, which was also apparent in the current study.  

 In total, 14 sharks were misidentified (i.e. 91.1% observer accuracy) in this study, six of 

which were identified as tope shark and eight as the whitespotted smoothhound shark (M. 

palumbes). This occurred despite the species identification method based on morphological 

and anatomical traits developed by Da Silva (2007). This highlights the necessity for using 
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multidisciplinary approaches in confirming identification of shark species (e.g. Giresi et al. 

2013; Pérez-Jiménez et al. 2013). Genetic identification methods using mitochondrial 

fragments e.g., COI (Ward et al. 2005, 2008; Caballero et al. 2012) and ND2 (Farrell et al. 

2009; Naylor et al. 2012) have been proposed and prove to be effective. Genetic 

identification based on allelic distributions of microsatellites has only been tested to a limited 

degree, but has proven to be successful in individual identification of great white sharks 

Carcharodon carcharias (Gubili et al. 2009) and species identification for some of the 

elasmobranch species included in Chapter 2.  

3.4.2. Genetic Diversity 

Levels of genetic variation in sharks, as represented by the number of alleles per locus, 

allelic richness and/or expected heterozygosity, hase previously been reported to be low 

compared to other fishes (Schmidt et al. 2009; Karl et al. 2011; Dudgeon et al. 2012; Portnoy 

and Heist 2012). For instance, low genetic diversity was detected in the sandbar shark 

(Carcharhinus plumbeus) and a large number of microsatellites had to be screened in order to 

obtain enough informative markers to test for population differentiation (Heist and Gold 

1999a). Some studies have, however, reported moderate (mean 4 ≤ AN ≤ 9; mean 0.400 ≤ HE 

≤ 0.600) to high (mean 10 ≤ AN ≤ 20; mean 0.650 ≤ HE ≤ 0.900) levels of genetic diversity in 

sharks e.g., the whale shark (Rhincodon typus; Schmidt et al. 2009; Vignaud et al. 2014), the 

spiny dogfish (Squalus acanthias, Veríssimo et al. 2010) and the bull shark (Carcharhinus 

leucas, Karl et al. 2011). In the present study, moderate levels of genetic diversity 

characterised all M. mustelus populations, similar to those described for other shark species 

(Ahonen et al. 2009; Ovenden et al. 2009; Schmidt et al. 2009; Vignaud et al. 2014). 

Moderate levels of genetic diversity may be explained by the moderate mean relatedness 

found across populations and significant in half the study populations, which was lower than 

that of expected full-sib relationship (r = 0.5; Queller and Goodnight 1989). Apart from 

relatedness, other factors, such as the life history strategy and reproductive mode of a species 

exert strong influences in shaping genetic diversity (Dudgeon et al. 2012; Portnoy and Heist 

2012). The moderate level of relatedness is also exhibited by the FCA plot, where the 

genotypic distribution of individuals within each respective population with significant mean 

relatedness were tightly clustered, as well as by the AMOVA results, where a large 

percentage variation was within populations. 
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3.4.3. Interoceanic Population Genetic Structure 

In combination, the pairwise FST estimates and the exact test for genotypic differentiation 

(ETGD) can provide valuable information about the genetic connectivity of populations. The 

exact test for genotypic differentiation is considered a more sensitive test for population 

differentiation if unique alleles persist in said populations (Balloux and Lugon-Moulin 2002; 

Holsinger and Weir 2009), as was the case for the current populations (particularly Robben 

Island and Jeffreys Bay, Figure 3.4). The present study suggests that regional common 

smoothhound sharks consist of two genetically differentiated populations, with low levels of 

gene flow between the South-East Atlantic and South-West Indian Ocean populations. This is 

also congruent with the known biogeographic boundaries e.g., the Cape Agulhas Boundary at 

the south-west coast, the Atlantic/Indian Ocean phylogeographical break in south-western 

Africa that coincides with the biogeographic disjunction between the cool temperate and 

warm-temperate biotas (westernmost – Cape Point, easternmost – Cape Agulhas; Teske et al. 

2011) and obstructs gene flow and migration of many marine species (Duncan et al. 2006; 

Daly-Engel et al. 2012; Teske et al. 2014). The Angolan samples are most probably separated 

from the South African populations by the Angola-Benguela Front, resulting in a barrier to 

dispersal. The southward flow of the Angola Current along the narrow shelf of Angola is an 

extension of the south equatorial counter-current that forms the northern boundary of the 

Benguela Current (Hutching et al. 2009). The South-East Atlantic Ocean sampling sites are 

again separated from the South-West Indian Ocean by the Atlantic/Indian Ocean 

phylogeographical break, which has been suggested to impact the genetic connectivity of the 

scalloped hammerhead shark (Sphyrna lewini, Duncan et al. 2006; Daly-Engel et al. 2012). 

The retroflection of the Agulhas Current is proposed to act as a biogeographic barrier for the 

small coastal shark species M. mustelus, explaining the high degree of population genetic 

structure detected amongst the South-East Atlantic and South-West Indian Ocean sampling 

sites in this study. It has been demonstrated that strong population genetic structure in sharks 

may be linked to adaptation to ecological niches or other environmental conditions (e.g., 

salinity and temperature) (Schultz et al. 2008; Chabot and Allen 2009; Pereyra et al. 2010; 

Veríssimo et al. 2010, 2011; Benavides et al. 2011a, b; Mourier et al. 2013; Mendonça et al. 

2013; Vignaud et al. 2013, 2014) and, therefore, such separated populations may represent 

distinct evolutionary units (Mendonҫa et al. 2013; Vignaud et al. 2014).  

FST estimates and ETGD indicated significant population genetic differentiation amongst 

all population pairs, except for Langebaan-Robben Island and False Bay-Kalk Bay (Table 
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3.1), and this corroborates the two distinct clusters obtained with the FCA and STRUCTURE 

(Figure 7a and Figure 9, respectively) analyses. To better understand the patterns of gene 

flow within oceans, FCA plots were drawn for each individual ocean group since the high 

intra-ocean genetic variation of the Indian Ocean populations could bias results. Intraoceanic 

population genetic structure was also detected, indicating the presence of less prominent 

biogeographical barriers within the two areas (see Figure 7b and c).  

Based on intraoceanic population genetic structure, the non-significant Mantel test of 

IBD and limited dispersal potential exhibited by the common smoothhound shark, the Cape 

Agulhas Boundary (thermal and/or biogeographic) is proposed as the barrier restricting gene 

flow amongst oceans. Further sampling along the east coast will assist in validating an 

additional barrier potentially located at Algoa Bay. In other shark species, similar barriers 

have been shown to limit gene flow, for instance, hydrodynamic barriers (open oceanic 

waters; Feldheim et al. 2001; Duncan et al. 2006; Schultz et al. 2008), thermal barriers (water 

temperature; Chabot and Allen 2009) and biogeographic barriers (disjunction in continental 

coastlines; Vignaud et al. 2013). Evidence for interoceanic and intraoceanic population 

genetic structure was further demonstrated by the AMOVA, with significant moderate 

differentiation on all hierarchical/grouping levels (amongst regions/oceans and over all 

regions/ oceans and populations). The Bayesian results strongly indicated restricted gene flow 

between the Atlantic and Indian Ocean populations, adding further support to the interoceanic 

structure hypothesised for M. mustelus. Using the DA genetic distances, three clades 

congruent with the proposed biogeographic barriers between Atlantic and Indian Ocean were 

identified for M. mustelus populations. These barriers include the major Cape Agulhas 

Boundary.  

Previous studies on sharks have shown that gene flow is largely male-mediated, with 

females displaying limited dispersal due to site fidelity (Pardini et al. 2001; Schrey and Heist 

2003; Portnoy et al. 2010; Daly-Engel et al. 2012). Even though the sex ratio is slightly 

skewed towards females in the present study, the low yet significant levels of population 

differentiation within the Atlantic Ocean populations are indicative that for common 

smoothhound shark, male-mediated gene flow does occur, at least between the South-East 

Atlantic populations. Using mitochondrial DNA and an equal sex ratio of males to females 

will in future contribute to further understanding the dispersal patterns in the species. 

Overall, the population genetic structure results suggest that the barrier at Cape Agulhas 

may impact to an extent genetic connectivity of common smoothhound shark populations 

since the Benguela Current restricts mixing of Atlantic and Indian Ocean populations along 
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western South Africa (Briggs 1995; Briggs and Bowen 2012). Some level of clinal variation 

was observed along the South African coast; however, future studies including more 

sampling sites could focus on achieving greater resolution in order to test the hypothesis that 

the observed clinal variation is a consequence of adaptation along an environmental gradient.  

3.4.4. Demographic History 

Effective population size NE is a critical parameter in conservation genetics since it 

influences the rate of loss of genetic diversity in finite populations (Wright 1931; Saarinen et 

al. 2009). Contemporary estimates of NE were estimated with the linkage disequilibrium (LD) 

test and heterozygosity excess method. The estimates of NE based on the linkage 

disequilibrium method may be more reliable as this method corrects for bias associated with 

small sample size and heterozygosity excess due to a possible bottleneck event (Waples and 

Do 2010). Contemporary estimates of NE based on the linkage disequilibrium method were 

mostly small (< 100) and below the theoretical critical minimum (> 1000) that is considered 

necessary to maintain genetic diversity and avoid the accumulation of deleterious allele 

(Frankham et al. 2003; Palstra and Ruzzante 2008; Waples and Do 2010). Franklin (1980) 

stated that inbreeding depression may occur if the NE falls below 50, therefore, this raises 

concerns over the conservation status of common smoothhound shark in South Africa. Since 

Robben Island was not genetically differentiated from Langebaan, a combined Ne was 

estimated (NE = 17) and was below the theoretical critical minimum. Furthermore, the 

Wilcoxon sign-rank test did not detect any genetic bottlenecks, but indicated a recent 

population expansion event (founder effect) for all study populations except Struis Bay. 

Recent bottlenecks are known to sometimes go undetected by demographic history inference 

as the loss of allelic diversity is not accompanied by an immediate decrease in heterozygosity 

in some instances, but by a transient heterozygosity excess (Cornuet and Luikart 1996; 

Luikart and Cornuet 1998). Further investigation of the detected population expansion using 

the interlocus g-tests did not provide support for population expansion and this may be due to 

an insufficient number of loci tested (usually n = 15 or 20). Additionally, Reich et al. (1999) 

also reported that, when using the interlocus g-tests, the use of more loci increased the power 

to reject size constancy. On the contrary, the Wilcoxon sign-rank test performs better than 

other methods when the number of loci is low (Luikart et al. 1998).  

The recent population expansion signal detected with the Wilcoxon sign-rank test could 

likely coincide with the early Holocene (approximately 7 000-11 000 years ago) when sea 
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levels were elevated, increasing suitable coastal habitats for various marine organisms, 

including common smoothhound sharks (Miller et al. 1995; Ramsay 1995; Carr et al. 2010). 

An expansion in common smoothhound shark following the last glacial maximum (LGM; 

18 000-23 000 years ago) is highly probable, considering that warming after the LGM caused 

population expansions in many marine and terrestrial organisms (Peltier 1988; Miller et al. 

1995; Carr et al. 2010; Teske et al. 2011). This theorised timing of population expansion 

should in future be tested using mitochondrial DNA, despite the absence of a well-calibrated 

molecular clock for M. mustelus.  

In shark species, migration rate estimates are rare and for the common smoothhound 

shark the migration rates estimated in this study were low and most likely facilitated by 

oceanic currents e.g., strong northward flow on the west coast of the Benguela Current 

(Table 3.3). The low levels of asymmetric gene flow occurring between oceanic regions 

coincide with the strong population genetic structure observed and the known influence of Nm 

on adaptive divergence among populations (e.g. Hendry et al. 2001). Likewise, non-random 

individual dispersal, such as sex-biased dispersal, can also impinge on gene flow patterns 

among populations by affecting rates of dispersal from source populations (Aars and Ims 

2000; Portnoy et al. 2010; Daly-Engel et al. 2012). Interestingly, in rig smoothhound sharks 

(M. lenticulatus), a dispersal distance greater than 1 100 km was reported by Francis (1988), 

using a conventional tagging method. It is proposed that common smoothhound shark males 

may indeed be capable of dispersing over wider geographic areas than previously thought 

(e.g., South Africa to Angola ~1750 km, Figure 3.11). In future, migration rate estimates will 

prove useful when corroborated with tagging or telemetry data for the species. Effective 

population size estimates and founder effects are probably reflective, albeit speculative, of the 

intense fishing pressures experienced by the species and stress the need for appropriate 

conservation and management strategies for common smoothhound sharks in South Africa.  

3.5   Conclusion 

Microsatellite data indicate that modern populations of the common smoothhound shark 

(Mustelus mustelus) in South Africa have moderate levels of genetic diversity based on the 

observed number of alleles, allelic richness and expected heterozygosity. The results of the 

FCA, AMOVA and Bayesian clustering revealed pronounced interoceanic population 

differentiation. The discontinuity of the continental shelf at Cape Agulhas is regarded as a 
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substantial barrier to gene flow, limiting contact between common smoothhound shark 

populations from the Atlantic and Indian Oceans. Although finding an expanding common 

smoothhound shark population, a contemporary genetic bottleneck may have gone undetected 

as the effective population size was very low across populations. The use of mitochondrial 

DNA markers, in addition to microsatellites, may provide further insight into the mechanisms 

responsible for the observed population genetic structure of common smoothhound sharks, as 

well as elucidating the genetic divergence of the Indian Ocean populations. The observed 

significant decline in biomass of common smoothhound sharks in South Africa, together with 

the low effective population sizes, differential dispersal patterns and strong genetic 

partitioning amongst oceans, raises concerns about the conservation status of this species. 
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Chapter 4 

Elucidating Genetic Divergence of Mustelus mustelus Across the 

Indian/Atlantic Boundary 

Abstract  

Sharks commonly have wide distribution ranges covering areas with different seascape 

features such as coastal, pelagic or benthic regions in tropical or temperate areas. As a 

consequence intraspecific populations may be present as divergent and even distinct genetic 

units. For long-term conservation purposes, it is therefore critical that evolutionary significant 

units (ESUs) are identified for exploited shark species. This is especially important in cases 

where species are restricted in distribution, have small population sizes and are subject to 

human induced mortality, which is the case for the common smoothhound shark Mustelus 

mustelus. In this chapter, the mitochondrial ND4 region was analysed to investigate whether 

historically this species is also divided into evolutionary lineages that coincide with the 

recommended management units of Chapter 3. Low levels of divergence and less structure 

was observed than with the microsatellite data and this mitonuclear discordance can be 

explained by a number of different scenarios. These include the inherent differences in 

marker properties such as large effective population size of the nuclear DNA relative to 

mitochondrial DNA as well as selection, sex-biased dispersal and historical demographics 

such as range expansion. A significant and likely recent population expansion was detected 

and postulated to have occurred during the warm interglacial periods in the late Pleistocene to 

early Holocene. Despite the indication of an expanding common smoothhound shark 

population, a contemporary genetic bottleneck may have gone undetected as genetic 

divergence was very low in some of the study populations. Historical demographics such as 

range expansion and contemporary restriction to gene flow are proposed as the most likely 

forces explaining structure in the case of common smoothhound. 
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4.1   Introduction  

Sharks are generally characterised by wide distribution ranges, often covering areas with 

different ecological features, such as coastal, pelagic or benthic regions in tropical or 

temperate areas (Dudgeon et al. 2012). As a consequence, intraspecific populations may be 

present as divergent and even distinct genetic units (Mendonça et al. 2013). In a marine 

environment, levels of gene flow are supposedly dictated by the dispersal ability of a species 

(Ovenden 2013), which may be affected by the oceanic surroundings through the influence of 

climate, hydrodynamics, and thermal and biogeographic barriers (Veríssimo et al. 2010). 

Typically, shark species that exhibit a high dispersal potential have little variation across 

populations, with shallow genetic structure over vast regions (Heist 2004b). For instance, low 

levels of population genetic structure among populations were reported for highly migratory 

species, with population genetic structure being detected only between ocean basins, e.g., in 

the basking shark (Cetorhinus maximus, Hoelzel et al. 2006) and whale shark (Rhincodon 

typus, Castro et al. 2007). In contrast, higher levels of population genetic structure across 

similar spatial scales have been reported for demersal or benthic shark species with low 

dispersal potential and disjunct geographic ranges e.g., zebra shark (Stegostoma fasciatum, 

Dudgeon et al. 2009) and Caribbean sharpnose shark (Rhizoprionodon porosus, Mendonça et 

al. 2013).  

Barriers to gene flow, affecting patterns of dispersal, have been recognised for several shark 

species. The open oceanic waters appear to be a barrier to gene flow (hydrodynamic barrier) 

in species such as the scalloped hammerhead shark (Sphyrna lewini) and the lemon shark 

(Negaprion brevirostris) (Feldheim et al. 2001; Duncan et al. 2006; Schultz et al. 2008), 

whereas warm equatorial waters also function as a barrier to gene flow (thermal barrier) in 

temperate species such as the tope shark (Galeorhinus galeus) (Chabot and Allen 2009).  

A shift in geographical distribution for various species is facilitated by the influence of 

climate change on oceanic currents, which, in turn, affects the patterns of spatial genetic 

diversity through genetic bottleneck events (O’Brien et al. 2013). Genetic bottleneck effects 

occur when a population experiences a severe reduction in effective population size (Avise 

1994). During a genetic bottleneck event, genetic drift reduces genetic variation within, and 

increases genetic divergence among populations (François and Durand 2010). A founder 

effect is a bottleneck event associated with the founding of a new population, possibly 

followed by population expansion (François et al. 2010). Population expansion has 

previously been described in other Mustelus species with similar distribution patterns. In M. 
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antarcticus, M. lenticulatus and M. schmitti, for example, it is proposed that expansions 

occurred during the Pleistocene epoch (approximately 2.6 million to 11 700 years ago) in the 

central Indo-Pacific and off Australia, and in the South-West Atlantic Ocean, based on 

molecular data (Pereyra et al. 2010; Boomer et al. 2012). Understanding historical 

demographical processes and resultant patterns of population genetic structure is important 

for attaining information critical to the identification of Management Units (MUs), defined as 

demographically-distinct populations that should be managed separately to ensure viability of 

the larger meta-population (Funk et al. 2012). From an evolutionary perspective, it is also 

critical to further identify relevant biological units to be conserved, such as a group of 

historically-isolated populations with unique genealogical and adaptive legacies i.e., 

evolutionary significant units (ESUs) (Funk et al. 2012). This is especially important in cases 

where populations are restricted in distribution, have small population sizes and are subject to 

human induced mortality, which is the case for the common smoothhound shark, Mustelus 

mustelus.  

The common smoothhound shark is of considerable socio-economic importance in southern 

Africa, even though the species has relatively low reproductive capacity (Da Silva and 

Bürgener 2007; Department of Agriculture, Forestry and Fisheries 2013). This is a small, 

coastal shark species, which has limited dispersal ability (Smale and Compagno 1997; Da 

Silva et al. 2013), probably due to their complex interactions with coastal environments, such 

as the use of nursery areas, which in itself lends to a theoretically complex evolutionary 

history of the species. In Chapter 3, microsatellite markers detected shallow population 

genetic structure within the South-East Atlantic and South-West Indian Ocean, and strong 

interoceanic population genetic structure (Chapter 3). Additionally, significant evidence of 

population expansion was found based on the Wilcoxon sign-rank test. Accordingly, it is 

postulated that the common smoothhound shark is genetically structured into at least two 

populations which have undergone a recent demographic and geographic population event. 

The goal of this chapter was to confirm the observed patterns of the microsatellite data and 

determine whether, historically, this species is also divided into evolutionary significant units 

that coincide with the recommended management units of Chapter 3, using sequence data 

from on the mitochondrial ND4 region. 
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4.2   Materials and Methods  

4.2.1 Sample collection, DNA Sequencing and Alignment 

A total of 78 individuals were randomly selected across the eight populations used in the 

microsatellite analysis of the previous chapter. A portion (approximately 800 bp) of the 

mitochondrial gene nicotinamide adenine dehydrogenase subunit 4 (ND4) was targeted for 

population genetic structure inference, and polymerase chain reaction (PCR) was conducted 

using primers MaND4F (5ʹ-ACC MAA AGC YCA CGT WGA AGC-3ʹ) and MaND4R (5ʹ-

TCT TGC TTG GAG TTG CAC CA-3ʹ) according to the recommended PCR conditions 

outlined in Boomer et al. (2010). The PCR amplicons were bi-directionally sequenced using 

standard Sanger sequencing chemistry (BigDye® terminator v3.1 cycle sequencing kit, Life 

Technologies) and sent to the Stellenbosch University Central Analytical Facility (DNA 

sequencing unit) for capillary electrophoresis. Sequences were aligned using the 

CLUSTALW algorithm (Thompson et al. 1994), implemented in MEGA v5.2 (Tamura et al. 

2011), manually corrected and trimmed to equal lengths. A local BLASTn search of these 

sequences was first conducted to confirm species identification using GENBANK and unique 

haplotypes were subsequently identified in ARLEQUIN v3.5 (Excoffier and Lischer 2010). 

4.2.2 ND4 Sequence Analysis 

To display the evolutionary relationship among haplotypes, maximum-parsimony haplotype 

networks (Polzin and Daneshmand 2003) were constructed using the median joining 

algorithm (Bandelt et al. 1999) with default parameters in the software NETWORK v4.6.1.2 

(http://www.fluxus-engineering.com). The Hasegawa-Kishino-Yano (HKY) (Hasegawa et al. 

1985) nucleotide substitution model fitted the current data best, as determined by the 

Maximum Likelihood test implemented in JMODELTEST SERVER 2 (accessed at 

http://jmodeltest.org/user), with models ranked using Akaike and Bayesian Information 

Criteria (AIC and BIC) with correction for small sample size (Darriba et al. 2012). 

Phylogenetic relationships among haplotypes were inferred using the maximum likelihood 

method, based on the HKY model (Hasegawa et al. 1985), and phylograms generated in 

MEGA with 1 000 bootstrap replicates. Furthermore, to assess the ability of the ND4 region 

to differentiate between different hounds sharks, the phylogram was rooted with five 

morphologically-similar species as outgroups (Galeorhinus galeus, M. asterias, M. mosis, M. 

schmitti and Triakis megalopterus). 
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4.2.3 Molecular Diversity and Spatial Patterns of Genetic Differentiation 

Using DNASP v5.10.1 (Librado and Rozas 2009), the following genetic diversity 

parameters were estimated for each population: number of polymorphic sites (S), haplotype 

diversity (h), nucleotide diversity (𝜋) and number of pairwise nucleotide differences amongst 

individuals. The degree of genetic differentiation among populations was estimated using 

pairwise ɸST values (with significance determined using 1 000 bootstrapped replicates), 

calculated in ARLEQUIN. Additionally, using ARLEQUIN, the average regional population 

pairwise differences were estimated with three calculations: (1) average number of pairwise 

differences between populations (πXY); (2) average number of pairwise differences within 

population (πX and πY) and (3) corrected average pairwise difference [πXY - (πX + πY)/2]. 

Hierarchical population structure was evaluated through an analysis of molecular variance 

(AMOVA), as implemented in ARLEQUIN; populations were grouped based on 

geographical origin (Angola, South-East Atlantic or South-West Indian Ocean) to test a 

priori hypothesised hydrodynamic barrier between South Africa and Angola; the Angola-

Benguela Front. Additionally hierarchical AMOVA was used to examine a priori 

hypothesised biogeographic barrier across the South-East Atlantic (including Angola) and 

South-West Indian Ocean; the Cape Agulhas Boundary. The best available model in 

ARLEQUIN for these analyses was the Tamura-Nei model (Tamura and Nei 1993), as 

determined by JMODELTEST SERVER. Isolation by distance (IBD) was tested for all 

sampling locations using a Mantel test (Mantel 1967) implemented via the software 

GENALEX v6.5 (Peakall and Smouse 2012). 

4.2.4 Population Demographics  

Demographic analyses were performed in ARLEQUIN using the mtDNA sequence data. 

Deviations from selective neutrality (or population expansion) were also tested with Tajima’s 

D (Tajima 1989) and Fu’s Fs (Fu 1997) (20 000 permutations; α = 0.05 and α = 0.02, 

respectively), based on an infinite-site model without recombination. These tests assume no 

selective advantage among haplotypes and that significant mutational unbalance is associated 

with a recent population expansion event (possibly following a genetic bottleneck). Mismatch 

distributions (i.e. the observed number of differences between pairs of haplotypes) will be 

multi-modal or ragged for populations at demographic equilibrium (i.e. stationary), where the 
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generation of new mutations is offset by random drift, and uni-modal for expanding 

populations, where new mutations accumulate faster than their loss due to drift (Harpending 

1994). Harpending’s raggedness index (HRI) was estimated for each population unit (20 000 

permutations) to infer changes in population size based on the frequency of pairwise 

differences among haplotypes (Schneider and Excoffier 1999).  Divergence from an ancestral 

population size θ0 at T-generations in the past was estimated over all populations. The value 

of T, scaled by the mutation rate µ, i.e. τ = 2µT, was estimated assuming 1) isolation after 

divergence and 2) constant but unequal populations sizes (Schneider and Excoffier 1999). 

Calculating the timing of expansions and effective population sizes is highly dependent on 

the chosen mutation rate (µ). The fossil record for Mustelus and sharks in general is relatively 

poor and mutation rates are unknown for smoothhound sharks. Mutation rates from a variety 

of shark species (Martin et al. 1992; Duncan et al. 2006; Keeney and Heist 2006; Schultz et 

al. 2008) have been applied to non-congeneric species to estimate T and effective population 

size (θ = 2Nefµ, where Nef is the effective female population size) (e.g. Murray et al. 2008; 

Pereyra et al. 2010; Veríssimo et al. 2010; Karl et al. 2011; Boomer et al. 2012). For the 

present study, attempts at dating a population expansion event and estimating Nef were 

unfortunately not possible in the absence of mutation-rate estimates for ND4 in 

elasmobranchs. 

4.2.5 Coalescent Estimation of Migration between Oceanic Regions 

The magnitude and direction of contemporary gene flow among groupings of the eight 

populations were estimated applying the coalescent-based approach, using the maximum 

likelihood inference methods implemented in MIGRATE-N v3.6 (Beerli 1998; Beerli and 

Felsenstein 1999, 2001; Beerli 2009). MIGRATE-N uses coalescent simulations of genetic 

data to infer effective population sizes and past migration rates among n populations. It 

assumes that the migration matrix model is asymmetric and population sizes need not be 

equal. The study populations were grouped into three regional groups: Angola, South-East 

Atlantic Ocean (Langebaan, Robben Island, False Bay and Kalk Bay) and South-West Indian 

Ocean (Struis Bay, Jeffreys Bay and Durban), separated by two putative barriers: a 

hydrodynamic barrier (Angola-Benguela Front) and a biogeographic barrier (Cape Agulhas 

Boundary). The stepping-stone migration model with asymmetric rates was applied (Kimura 

and Weiss 1964). Long-term migration rates (M), 4Ne generations in the past, were estimated 

and all possible combinations of migration that were either asymmetrical or had no dispersal 
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between populations were evaluated with the likelihood ratio test. Bidirectional migration 

rates (M = m/µ, where m is the immigration rate per generation) were also estimated. 

Maximum likelihood analysis was performed with 20 short chains followed by five long 

chains with a sample increment of 100 for both runs, and the first 15 000 generations were 

discarded as burn-in at the beginning of each chain. An adaptive heating scheme with four 

chains and a swapping interval of one was applied. Maximum likelihood estimates were 

verified with three replicate Markov Chain Monte Carlo (MCMC) simulation runs to ensure 

the convergence of similar values for θ.  

4.3   Results 

4.3.1 Haplotype Networks 

A 793 bp fragment of the mitochondrial ND4 locus was successfully amplified and 

sequenced for 78 common smoothhound sharks and was composed of base frequencies of 

29.8% adenine, 30.8% thymine, 26.1% cytosine and 13.4% guanine over all samples. Fifteen 

haplotypes were identified across the study area. The haplotype network incorporating the 

eight putative populations was shaped in a distinct starlike pattern, characterised by one 

central haplotype (CSH2) surrounded by an array of low frequency variants (CSH1; CSH3-

CSH15) (Figure 4.1). A high degree of haplotype sharing was observed with the most 

common haplotype (CSH2) shared by 54 individuals across all the study area; two lower 

frequency haplotypes (CSH4 and CSH9) were shared between two or more locations (Figure 

4.1a). The haplotype network indicated that Angola samples are characterised by 2 unique 

haplotypes, CSH1 and CSH3, the latter shared by three individuals and providing evidence 

for the divergence of this population from South African samples. A phylogenetic tree placed 

all haplotypes into a single, shallow clade (Figure 4.2). The ND4 region was highly variable 

among houndshark species and was able to differentiate among the species (Figure 4.2).  
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Figure 4.1 Median-joining network of Mustelus mustelus mtDNA ND4 haplotypes (a) shown by 

sampling site and (b) region/ocean. All haplotypes are separated by one mutation and the white circle 

represents a hypothetical haplotype not sampled in the study. The sizes of the circles are proportional 

to the frequency of the haplotypes. 
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Figure 4.2 Maximum likelihood phylogenetic tree depicting relationships among Mustelus mustelus haplotypes. Bootstrap support is displayed where ≥ 60%. 

The scale represents the proportion of polymorphic sites between haplotypes.  
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4.3.2 Within-Population Patterns of Genetic Diversity  

A total of 15 polymorphic sites (S), of which seven were parsimony informative and eight 

were singleton mutations, characterised 15 haplotypes (Table 4.1, 4.2, 4.3). The absolute 

number of pairwise differences between distinct haplotypes ranged from one to 10 (Figure 

4.3). Over all the populations, the haplotype diversity (h) and nucleotide diversity (π) were 

0.517 ± 0.069 and 0.00104 ± 0.00386, respectively (Table 4.3). Genetic diversity was low to 

moderate across populations and comparable in most cases. Genetic diversity levels were 

relatively high for Durban (h = 0.846, π = 0.00194) and relatively low for Langebaan (h = 

0.154, π = 0.00019).   

Table 4.1 Polymorphic nucleotide positions for Mustelus mustelus mtDNA ND4 haplotypes. A dot 

indicates that the base in that position is the same as the base in Haplotype 1  

Haplotype 

number 

 

Nucleotide positions 

0 

0 

6 

0 

1 

4 

0 

1 

5 

0 

2 

2 

0 

4 

5 

2 

1 

8 

3 

3 

5 

3 

6 

9 

3 

7 

1 

3 

9 

5 

4 

3 

3 

4 

9 

1 

6 

2 

8 

7 

2 

6 

7 

7 

7 

CSH1 C G C A T A T G T C C C T A T 

CSH2 T . . . . . . . . . . . . . . 

CSH3 T . . . . . . A . T . T . . . 

CSH4 T . . . . . . . . . . . . T . 

CSH5 T . . . . G . . . . . . . . . 

CSH6 T . T . . . . . C . . . . . . 

CSH7 T A . . . . . . . . . . . . . 

CSH8 T . . . . . . . . . T . . . . 

CSH9 T . T . . . . . . . . . . . . 

CSH10 T . . . . . . . . . . . C . . 

CSH11 T . . G . . . . . . . . . . . 

CSH12 T . . . C . . . . . T . . . . 

CSH13 T . . . . . C . . . . . . . . 

CSH14 T . . . . . . . . . . . . . C 

CSH15 T . . . . . . . . T . T . . . 
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Table 4.2 Geographic distributions of Mustelus mustelus haplotypes and the number of individuals in 

each sampling region  

Location n Haplotype (CSH) number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Angola 9 1 5 3 0 0 0 0 0 0 0 0 0 0 0 0 

Langebaan 13 0 12 0 1 0 0 0 0 0 0 0 0 0 0 0 

Robben Island 8 0 5 0 0 1 1 1 0 0 0 0 0 0 0 0 

False Bay 6 0 4 0 0 0 0 0 1 1 0 0 0 0 0 0 

Kalk Bay 7 0 6 0 0 0 0 0 0 0 1 0 0 0 0 0 

Struis Bay 12 0 9 0 0 0 0 0 0 0 0 3 0 0 0 0 

Jeffreys Bay 10 0 9 0 1 0 0 0 0 0 0 0 0 0 0 0 

Durban 13 0 4 0 1 0 0 0 0 4 0 0 1 1 1 1 

 

Table 4.3 Summary of population diversity statistics for Mustelus mustelus integrated over all 

mtDNA ND4 haplotypes from each sampling location. n, number of samples; NH, number of 

haplotypes (unique haplotypes); h, haplotype diversity; π, nucleotide diversity 

Group Population n NH h π 

Atlantic Ocean 

Angola 9 3 (2) 0.639 0.0022 

Langebaan 13 2 (0) 0.154 0.0002 

Robben Island 8 4 (3) 0.643 0.0013 

False Bay 6 3 (1) 0.600 0.0008 

Kalk Bay 7 2 (1) 0.286 0.0004 

Indian Ocean 

  

Struis Bay 12 2 (1) 0.409 0.0005 

Jeffreys Bay 10 2 (0) 0.200 0.0003 

Durban 13 7 (4) 0.846 0.0019 
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Figure 4.3 Haplotype distance matrix showing the number of molecular differences between 15 

haplotypes across eight locations of Mustelus mustelus in southern Africa. 

4.3.3 Spatial Patterns of Genetic Diversity  

Genetic differentiation based on pairwise ɸST estimates among populations was low to high, 

ranging from zero to 0.288 (Figure 4.4), and were non-significant for almost all population 

comparisons. Exceptions were significant ɸST-values between Angola and three of the South 

African populations (Robben Island, Struis Bay and Durban), and between Robben Island and 

Struis Bay. When populations were grouped by oceans (South Atlantic or South-West Indian 

Ocean), pairwise ɸST estimates were low and non-significant. Significant average numbers of 

pairwise differences between populations were detected between Angola, Durban and almost 

all the study populations (Figure 4.5). Notably, the Angola and Durban populations 

harboured comparably large average numbers of pairwise differences within populations (πX; 

2.280 and 2.078, respectively); Langebaan and Jeffreys Bay harboured low πX (0.164 and 
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0.213, respectively). Large corrected average pairwise differences between the populations 

were detected between Angola and the rest of the study populations and moderate pairwise 

differences between Struis Bay and all the other study populations, indicating the divergence 

of these two populations from the remainder (Figure 4.5).  

 

Figure 4.4 Genetic divergence as described by ɸST computed between pairs of populations. 
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Figure 4.5 This graphic depicts the average number of pairwise differences between each population 

in the upper half of the matrix (green), the average number of pairwise differences within each 

population is shown in the diagonal (orange) and the lower half of the matrix (blue) shows the 

corrected average pairwise difference between the populations.  

Results of the AMOVA indicated strong genetic divergence between the Angolan, South-

East Atlantic and South-West Indian Ocean, with significant differentiation amongst regions 

(ɸCT = 0.151, P = 0.043) and over all regions and populations (ɸST = 0.128, P = 0.007) (Table 

4.4). However, there was a lack of within-region genetic variation (ɸSC = -0.027, P = 0.538), 

highlighting the genetic connectivity of populations within regions. Addtionally there was no 

interoceanic population genetic structure between the South-East Atlantic (including Angola 

and South-West Indian Ocean (Table 4.4). The haplotype network revealed no relationship 

between haplotype genealogy and geographic location, but supported the existence of a 

genetic connectivity between populations (Figure 4.1). Particularly, haplotypes CSH2 and 

CSH4 were shared by the Atlantic and Indian Ocean populations, indicating past 

connectivity.        
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Table 4.4 Analysis of Molecular Variance of Mustelus mustelus populations clustered in regional and 

oceanic groups: Angola vs. Atlantic Ocean populations vs. Indian Ocean populations and 

Angola+Atlantic Ocean populations vs. Indian Ocean populations, respectively 

Population grouping Source of variation Sum of 

squares 
Variance 

components 
% of 

Variation 
Angola vs. Atlantic 

Ocean populations vs. 

Indian Ocean 

populations 

Among regions 4.641 0.084 15.10 
Within regions  1.830 -0.013 -2.27 
Within populations 34.091 0.487 87.17 
Total  40.562 0.559  
ɸCT: 0.151 P: 0.043*     
ɸSC: -0.027 P: 0.538     
ɸST: 0.128 P: 0.007**     

Angola+Atlantic Ocean 

populations vs. Indian 

Ocean populations 

Among oceans 0.913        -0.00178 -0.33 

Within oceans  5.559         0.04633 8.72 

Within populations 34.091         0.48701 91.62 

Total  40.562         0.53156  

ɸCT: -0.003 P: 0.521   

ɸSC: 0.087 P: 0.002*   

ɸST: 0.084 P: 0.005*   

*Statistical significance at the 5% and ** 1% nominal level 

Mantel tests revealed a positive and significant correlation between ɸST and geographic 

distance, indicating a pattern of isolation by distance when all populations were compared (r2
 

= 0.642, P = 0.017; Figure 4.6a). However, when considering only populations along the 

South African coastline, no correlation between ɸST and geographic distance was detected (r2
 

= 0.0405, P = 0.185; Figure 4.6b). These results are congruent with the patterns of genetic 

diversity and population genetic structure described above.    
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Figure 4.6 Isolation by distance with (a) all sampling locations and (b) excluding Angolan samples.  

4.3.4 Demographical History  

Overall Tajima’s D and Fu’s F statistics for neutrality were negative and non-significant (D 

= -0.783, P > 0.02 and Fs = -0.505, P = 0.042, respectively) indicating no excess of alleles 

that would be expected following a population expansion event (Fu 1997). Tajima’s D 

showed significant values only for Robben Island and Durban (D = -1.535, P = 0.038 and D 

= -1.562, P = 0.042, respectively; Table 4.5), whereas Fu’s F statistics showed significant 

values only for Durban (Fs = -3.156, P = 0.011) indicating population expansion (Table 4.5). 

All mismatch distributions were consistent with the sudden population expansion model, 

except the Angolan samples which exhibited a bi-modal distribution (Table 4.5, Figure 4.7). 

Harpending’s raggedness index (HRI) was non-significant and ranged from 0.080-0.360. 

Overall, the model of population expansion could not be rejected by any of the tests 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4                                                                                                      Genetic Divergence 

87 | P a g e  
 

performed (sum of squares distances [SSD]: P(Sim. SSD ≥ Obs. SSSD) = 0.677); Harpending’s 

raggedness index: P(Sim. Rag. ≥ Obs. Rag.) = 0.805 (Figure 4.7). Overall the sampling sites, the 

mismatch analysis estimated an ancestral population size (θ0) of 0.3 and actual population 

size (θ1) of 5.1, with a τ value of 0.5. The large difference between θ0 and θ1 resulted in a 

large θ ratio (θ1/θ0 = 17), which is also indicative of population expansion. 

Table 4.5 Demographic history estimates for Mustelus mustelus in southern Africa 

Oceans Population D P FS PFS τ θ0 θ1 HRI PHRI 

  

Atlantic 

Angola 0.692 0.756 1.450 0.793 4 0.005 2.791 0.360 0.145 

Langebaan -1.149 0.184 -0.537 0.022* 

0.5 0.00 2.902 0.163 0.628 
Robben Island -1.535 0.038* -1.236 0.061 

False Bay -1.132 0.145 -0.858 0.068 

Kalk Bay -1.006 0.220 -0.095 0.226 

Indian 

Struis Bay 0.541 0.806 0.735 0.475 

0.9 0.00 99999.000 0.080 0.535 Jeffreys Bay -1.112 0.177 -0.339 0.172 

Durban -1.562 0.042* -3.156 0.011* 

D = Tajima’s test, P = the P-value of Tajima’s test, FS = Fu’s FS test, PFS = the P-value of FS test, τ = expansion 

time in scaled coalescent units, θ0 = the ancestral population size, θ1 = the ancestral population size, HRI = 

Harpending’s raggedness index and PHRI = P-value of Harpending’s raggedness index  
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Figure 4.7 Pairwise mismatch distribution and the hypothesis of population expansion and geographic expansion of Mustelus mustelus in southern Africa. 
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4.3.5 Migration Rates between Oceans 

Coalescent-based maximum likelihood estimates (MLE) by MIGRATE-N indicated 

asymmetric migration among oceans. The MLE showed that mutation-scaled effective 

population size (θ) was highest in the South-East Atlantic Ocean (θ = 0.0143) and lowest in 

the Angola population (θ = 0.0010).  The most probable estimates of migration rates (M) 

ranged from zero to 27 800, with the highest migration observed from the South-East Atlantic 

to South-West Indian Oceanic region (M = 27 800). Interstingly, there is a lack of migration 

from the South-West Indian Oceanic to South-East Atlantic region (M = 0). The migration 

between oceans was asymmetrical, as is shown by the number of migrants (Nm) in Table 4.6 

and Figure 4.8. 

Table 4.6 Mutation-scaled effective population size (θ = 4Neμ) and migration rates (M) across Angola 

(A), the Atlantic and Indian Ocean (AO and IO, respectively)     
 Mean [95% CIs] 

θA 0.0010 [0.0005 - 0.0013] 

θAO 0.0143 [0.0121 - 0.0239] 

θIO 0.0067 [0.0010 - 0.0208] 

MAO > A 2880 [2060 - 4650] 

MA > AO 9670 [6600 - 11600] 

MIO > AO 0 

MAO > IO 27800 [19100-31300] 

 

 

Figure 4.8 Number of migrants per generation (Nm = Mθ/2) between different oceanic 

regional Mustelus mustelus populations in southern Africa. 

4.4   Discussion 

Mustelus mustelus is one of the top five species harvested commercially in South Africa 

(Da Silva & Bürgener 2007). Stock assessment of the species revealed it was overexploited 

with populations gradually declining (Da Silva 2007; Serena et al. 2009). As a consequence, 

it may require several decades for the species to recover. Despite its commercial importance 

locally and globally, no population genetics analysis, evaluating the impact of fisheries and 
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recreational activities on levels of genetic diversity and population structuring, have been 

conducted on common smoothhound shark. To our knowledge, this is the first study aimed at 

characterising genetic diversity and population differentiation of M. mustelus in the southern 

African region using sequence data (based on the mitochondrial ND4 region). This will 

provide information for population monitoring efforts and long-term management goals by 

defining evolutionary significant units. 

4.4.1 Genetic Diversity   

The mtDNA sequence data analysis revealed low to moderate nucleotide (π) and haplotype 

(h) diversity across populations of this threatened coastal shark (mean π = 0.00104± 0.00386; 

mean h = 0.517±0.069). The overall levels of nucleotide and haplotype diversity for M. 

mustelus were similar to those reported for other Mustelus species: M. antarcticus (π = 

0.0008±0.0008, h = 0.456±0.05) and M. lenticulatus (π = 0.0009±0.0008, h = 0.531±0.05) 

(Boomer et al. 2012), but lower than that reported for other elasmobranchs (e.g. Veríssimo et 

al. 2010; Geraghty et al. 2013). Interestingly, low levels of genetic diversity in the Langebaan 

population agreed with the low genetic diversity estimates revealed by the microsatellite 

analysis (Chapter 3) and this might indicate that the population at Langebaan has undergone a 

recent genetic bottleneck not detected by the demographic analysis. In contrast, the low levels 

of genetic diversity found in the Jeffreys Bay population, suggesting either a founder or 

recent bottleneck event, were not in agreement with the high intra-population genetic 

diversity detected using microsatellites (Chapter 3). Loss of genetic diversity can occur 

actively through selection (Amos and Harwood 1998; Bazin et al. 2006). Although the 

present data did not indicate departure from neutrality for Jeffreys Bay, the mitochondrial 

genome of this population may have been subjected to a recent selective sweep or strong 

background selection. Alternatively, the nuclear genome may have been subjected to 

balancing selection. Lower levels of genetic variation in mtDNA than nuclear DNA have also 

been reported in other shark species e.g., Negaprion brevirostris, N. acutidens and 

Carcharhinus leucas (Schultz et al. 2008; Karl et al 2011); however, this pattern is not 

common to all sharks. For example, high levels of mtDNA genetic diversity on a background 

of lower nuclear DNA diversity have previously been reported for Prionace glauca (Ovenden 

et al. 2009) and Rhincodon typus (Ramírez-Macías et al. 2007). Overall, the intermediate 

levels of genetic diversity found in this study and Chapter 3 for the common smoothhound 
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shark conform to the patterns described for most shark species and raises further concerns 

over the conservation status of this shark. 

4.4.2 Spatial Patterns of Genetic Diversity   

The mitochondrial haplotype data indicated genetic homogeneity within and between the 

South-East Atlantic and South-West Indian Ocean and did not coincide with the interoceanic 

population genetic structure found with the microsatellite analyses. The weak but significant 

genetic divergence [ɸST and FST (Chapter 3)] between the Angolan and the three South 

African populations (Robben Island, Struis Bay and Durban) is probably indicative that 

Angola is genetically divergent from common smoothhound shark populations in South 

Africa. Including more samples could in the future assist in resolving the genetic divergence 

between Atlantic and Indian Ocean samples from South Africa. The haplotype network did 

not indicate geographic structure and supported by the AMOVA which did not detect 

tnteroceanic genetic divergence (Angola+Atlantic Ocean populations vs. Indian Ocean 

populations; ɸCT = -0.003, P > 0.05). The haplotype network indicated the presence of shared 

ancestral polymorphisms (due to recent population divergence) between the oceans but 

indicated divergence of the Angolan samples (Figure 4.1 and 4.2). Additionally, the lack of 

significant isolation by distance further supports substantial levels of historical interoceanic 

gene flow across the Cape Agulhas Boundary (Benguela Barrier). The latter coincides with 

the hypothesis that the leakage of the Agulhas Current during the warm interglacial periods 

throughout the Pleistocene epoch enabled gene flow between Atlantic and Indian Ocean 

populations (Peeters et al. 2004; Dudgeon et al. 2012) (Figure 4.6b). The AMOVA (Angola 

vs. Atlantic Ocean populations vs. Indian Ocean populations; ɸCT = 0.151, P < 0.05) and the 

significant isolation by distance further supported the divergence of the Angolan samples 

from the Atlantic and Indian Ocean samples. This indicates that the hydrodynamic barrier, 

the Angola-Benguela Front is a potential barrier that may restrict gene flow between South 

African and Angolan populations.  

MIGRATE-N estimates of migration rates showed high migration events, albeit highly 

asymmetrical, across the Cape Agulhas Boundary, further supporting interoceanic gene flow. 

Furthermore, gene flow asymmetry may also be indicative of range expansion (Excoffier et 

al. 2009), which frequently leads to the formation of secondary contact zones between 

differentiated populations of a species (Fedorka et al. 2012).  
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The presented results are congruent to the pattern described for other coastal shark species 

e.g., narrownose smoothhound shark (Mustelus schmitti) and sandbar shark (Carcharhinus 

plumbeus), where interoceanic movements and reproductive mixing is female-mediated 

(Pereyra et al. 2010; Portnoy et al. 2010). Incongruence of genetic structure found based on 

mitochondrial and nuclear DNA data sets (mitonuclear discordance) can be attributed to 

different factors: (1) mode of inheritance of the molecular marker type, (2) recent selective 

sweeps in the mitochondrial genome or balancing selection in the nuclear, (3) population size 

changes, (4) sampling bias (unequal gender ratios), and/or (5) sex-specific reproductive 

behaviour, specifically female fidelity to mating and nursery areas (Karl et al. 2011). These, 

along with asymmetric migration rates, are discussed in greater detail in Chapter 5.   

4.4.3 Demographic History  

Both mitochondrial and microsatellite (Chapter 3) analyses of demographic history of the 

southern African common smoothhound shark populations detected a founder event. 

Population expansion was supported by the starlike phylogeny of haplotypes, mismatch 

distribution analyses and the overall significant negative values of D and FS. The profiles of 

the mismatch analyses were very similar for the demographic and geographic expansion 

hypotheses tested in the present study, indicating concurrent occurrence of these expansion 

events. The higher support for the constant population size for the Angolan sample indicates 

that this population represents a more stable population and has not undergone demographic 

expansion (Figure 4.7). Various authors have suggested that the Pleistocene glaciations had a 

major demographic impact on shaping the phylogeography of mtDNA patterns and 

population genetic structure in fish species (Pereyra et al. 2010; Teske et al. 2011; Boomer et 

al. 2012; Mendonça et al. 2013; O’Brien et al. 2013). The absence of a well-calibrated 

molecular clock for M. mustelus presents a challenge in dating the event of population 

expansion and determining the effective population sizes associated with the ancestral and 

actual θ values, since all these estimates require a gene-specific mutation rate. Estimates of 

mutation rates in elasmobranch taxa are only available for the noncoding mitochondrial DNA 

control region (CR) (~10
-5

 mutations per generation) [scalloped hammerheads Sphyrna lewini 

(Duncan et al. 2006); blacktip shark Carcharhinus limbatus (Keeney and Heist 2006); lemon 

shark Negaprion brevirostris (Schultz et al. 2008)] and the mitochondrial cytochrome b gene 

(per-site divergence rate of 0.0414/million years) [bonnethead sharks Sphyrna tiburo (Martin 

et al. 1992); sleeper sharks subgenus Somniosus (Murray et al. 2008)]. These mutation rates 
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have been applied to distantly related species, which were not congeneric, making the 

accuracy of this approach questionable (Ho et al. 2011; Grant et al. 2012; Shapiro and Ho 

2014). For instance, the CR mutation rates were applied to the analysis of the coding regions 

of the mitochondrial genome, ND2 (Veríssimo et al. 2010) and ND4 (Boomer et al. 2012). 

For Mustelus species, Boomer et al. (2012) (M. antarcticus and M. lenticulatus) and Pereyra 

et al. (2010) (M. schmitti) used averaged mutation rates from the scalloped hammerhead 

shark and lemon shark, and bonnethead sharks, respectively, which are very distant relatives 

of smoothhound sharks. In most cases the authors of the original studies that reported these 

rates claimed to be uncertain as to the reliability of these rate estimates (Duncan et al. 2006; 

Keeney and Heist 2006; Murray et al. 2008). The equivalent mutation rates for smoothhound 

sharks are considerably lower due to these animals’ potentially lower metabolic rates (Smale 

and Compagno 1997; Bosch et al. 2013).  For the reasons outlined above, no mutation rate 

was selected and applied in the present study. Nevertheless, the overall demographic 

inferences suggested that the population expansion, followed by the possible reduction in 

population size, that occurred in common smoothhound shark is very likely to be recent given 

the small τ value of 0.5 and the large θ ratio (θ1/θ0 = 17). It is hypothesised this recent 

population expansion occurred during the warm interglacial periods in the late Pleistocene 

(approximately 50 000 years ago) to early Holocene (approximately 7 000-11 000 years ago).  

In the future, estimates of a locus-specific mutation rate for the ND4 gene in M. mustelus 

could assist in supporting the hypothesis of population expansion. Interestingly, some 

selective events (e.g. positive selection) acting on mtDNA can also mimic demographic 

population expansion due to the resulting excess of low-frequency haplotypes, making it 

difficult to unambiguously discern between evidence for natural selection and demographic 

population expansion (Babbucci et al. 2010; Pereyra et al. 2010; Geraghty et al. 2013). A 

population expansion event in common smoothhound shark should therefore be confirmed 

using several unlinked loci in the genome, such as CR and/or sequences of nuclear genes (e.g. 

recombination-activating gene 1, RAG1). 

4.5   Conclusions 

In summary, this study found that based on mitochondrial sequence 

data, Mustelus mustelus populations in South Africa most likely constitute a single panmictic 

population and indicated substantial historical gene flow between the oceans. Based on the 

AMOVA, ɸST and haplotype network it is proposed that the Angolan samples are divergent 
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from the South African populations. Generally, mtDNA is only indicative of long-term 

female dispersal history with no genetic differentiation expected between populations of 

species in which females disperse widely. The distinct and opposing patterns of genetic 

population structure detected with mitochondrial DNA and microsatellite markers can arise 

from various factors, such as a founder event, range expansion in the past or even male 

philopatry; hypotheses supported by the mitochondrial sequence data. In addition, 

discordance could be due to locus-specific artefacts such as selection and differences in 

substitution rates. Further sampling, tagging studies and acoustic tracking could in the future 

assist in a more robust evaluation of the latter findings. A significant and likely recent 

population expansion is postulated to have occurred during the warm interglacial periods in 

the late Pleistocene to early Holocene. Nonetheless, despite finding an expanding common 

smoothhound shark population, a contemporary genetic bottleneck may have gone undetected 

as genetic diversity was very low in some of the study populations. This chapter, in 

conjunction with Chapter 3, highlights the importance of using multilocus genetic data before 

conclusions are drawn about conservation management of commercially important shark 

populations.  
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Chapter 5 

Concluding Remarks and Future Perspectives   

 

5.1   Overview of Research Findings  

The socio-economic importance of the common smoothhound shark Mustelus mustelus has 

had a significant negative impact on global population trends of this species (Aldebert 1997; 

Da Silva 2007; Gascuel et al. 2007; Serena et al. 2009; Da Silva et al. 2013). The species has 

recently started to receive some ecological attention (Smale and Compagno 1997; Da Silva 

2007; Da Silva et al. 2013), but there is still very little genetic information available for this 

shark. In this study, the objectives were to quantify genetic diversity and assess population 

genetic structure of common smoothhound shark along the South African coast using 

multilocus data generated from 12 microsatellite markers and the mitochondrial gene NADH 

dehydrogenase subunit 4 (ND4).  

With regard to effective management strategies, it is important to understand the population 

dynamics and structuring of species in a marine environment and how fishing effort and 

mortality are distributed (Begg and Waldman 1999). In fisheries science, stock structure is 

generally defined based on geographic area and meristic and morphometric measurements 

(Ovenden 1990; Begg and Waldman 1999). The definition of modern stock structure 

integrates genetic knowledge to account for the number and geographic limits of non-

interbreeding, self-recruiting populations within an exploited species, i.e. population genetic 

structure (Ovenden 1990, 2013). Such an understanding is vital for recognising management 

and evolutionary significant units for short and long-term conservation. Delimiting 

population genetic structure for various elasmobranch species is largely incomplete due to the 

general lack of molecular genetic markers, e.g. microsatellites, single nucleotide 

polymorphism (SNPs) and, to a lesser extent, mitochondrial DNA. These can provide 

valuable information relating to the population dynamics (spatial and temporal genetic 

variation, and demographics) of individual species.  

In Chapter 2, the first larger scale (in terms of species used and number of loci) 

development and optimisation of medium-throughput microsatellite multiplex assays for 

regional and cosmopolitan elasmobranch species were presented. In short, a microsatellite 
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repository for the common smoothhound shark and other elasmobranch species was 

successfully established through cross-species amplification, a less costly and time-efficient 

proxy approach to de novo development of microsatellite markers. The cross-species 

amplification success rate and percentage of polymorphism in common smoothhound were 

71% and 100%, respectively, with four multiplex assays consisting of a total of 22 

microsatellite loci successfully optimised and characterised in the species. Cross-species 

amplification of these assays to 11 other elasmobranch species highlighted the usefulness of 

microsatellites for characterising genetic diversity and potentially also species identification 

in houndsharks.  

In Chapter 3, two microsatellite multiplex assays (MPS1 and MPS2) were selected based on 

levels of polymorphism to investigate the extent of population genetic structure and historical 

demographics of common smoothhound shark in southern Africa. Genetic diversity summary 

statistics, analysis of molecular variance (AMOVA), factorial correspondence analysis (FCA) 

and Bayesian clustering indicated moderate levels of genetic diversity across nearly all 

sampling populations and that regional common smoothhound potentially consisted of two 

genetically-differentiated populations with low levels of gene flow between the South-East 

Atlantic and South-West Indian Ocean. The contemporary migration rates among oceans 

were considerably low and could in part explain the observed patterns of population genetic 

structure. The Cape Agulhas Boundary (westernmost extent – Cape Point, easternmost extent 

– Cape Agulhas; Teske et al. 2011) that coincides with the biogeographic disjunction 

between the cool-temperate and warm-temperate biotas was identified as the most probable 

biogeographic barrier between Atlantic and Indian Ocean common smoothhound sharks. In 

addition, no population bottlenecks were detected across the study populations, despite the 

considerably low contemporary estimates of effective population size (NE). Two putative 

management units were, therefore, identified for the common smoothhound shark based on 

the AMOVA, FCA and Bayesian clustering analysis of microsatellite data.  

In Chapter 4, to confirm the observed population structure patterns of the microsatellite data 

and determine whether, historically, this species is also divided into evolutionary significant 

units that coincide with the recommended management units, the mitochondrial ND4 region 

was analysed. Mitochondrial sequence data was for the most part not in concordance with the 

microsatellite analysis results, indicating that, historically, common smoothhound shark 

populations in South African most likely constitute a single population with higher levels of 

interoceanic gene flow for this species. A similar trend has also been observed for copper or 

bronze whaler shark (Carcharhinus brachyurus) populations from southern Africa, where no 
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population genetic structure was detected between the South-East Atlantic (Namibia) and 

South-West Indian Ocean (South Africa) (ɸST = -0.002; Benavides et al. 2011a). In other 

coastal shark species, females generally exhibit philopatry to nursery areas. For instance, high 

levels of population genetic structure among populations were reported for the scalloped 

hammerhead shark (Sphyrna lewini) from the South-East Atlantic (West Africa) and South-

West Indian Ocean (South Africa) (ɸST = 0.566, Daly-Engel et al. 2012). The findings of a 

recent population and geographic expansion event, nonetheless, validated those obtained with 

the microsatellites. Population expansion was proposed to have occurred during the warm 

interglacial periods in the late Pleistocene to early Holocene. 

Overall, the work presented in this thesis constitutes one of the first regional population 

genetic studies for any elasmobranch species in southern Africa. Contemporary restriction to 

gene flow and historical demographics, such as a founder event followed by range expansion, 

are proposed as the most likely forces explaining genetic structure observed in present-day 

common smoothhound. 

5.2   Significance of the Biological Findings 

5.2.1 Molecular Genetic Markers and Outlier Loci 

The greatest challenge in elasmobranch population and conservation genetics is the scarcity 

of molecular genetic resources currently available. In general, this impedes research efforts 

aiming to characterise and understand the apportioning of genetic variation at multiple levels, 

from intra-individual to interspecific (Dudgeon et al. 2012; Portnoy and Heist 2012). To 

circumvent this issue, early molecular work on elasmobranchs was based on genetic markers 

that did not require prior knowledge of a species’ genome e.g., nuclear allozymes, amplified 

fragment length polymorphisms (AFLPs) and restriction fragment length polymorphisms 

(RFLPs) (Dudgeon et al. 2012; Portnoy and Heist 2012). Currently, microsatellite markers 

and mitochondrial DNA are the most widely used molecular markers in elasmobranchs due to 

their hyper-variability, and ease in scoring and down-stream analysis (Chabot and Allen, 

2009; Portnoy et al. 2010; Veríssimo et al. 2010; Karl et al. 2011; Benavides et al. 2011a, b; 

Geraghty et al. 2013; Mendonça et al. 2013; Mourier et al. 2013; Vignaud et al. 2013). In this 

study, 12 microsatellite markers and a 793 bp fragment of the mitochondrial ND4 gene were 

employed to delineate population genetic structure and reconstruct the demographic history 

of the common smoothhound shark in southern Africa.  
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Generally, outlier loci are known to distort population genetic structure and demographic 

history estimates and, in most instances, are attributed to heterogeneous genomic divergence 

due to selection (Nosil et al. 2009; Bierne et al. 2010). This occurs when the effective 

population size is small, as is the case for the common smoothhound shark, which increases 

population divergence through background selection against deleterious mutations and, thus, 

inflates allelic variance at loci with differential recombination rates (Bierne et al. 2010). 

Furthermore, selection may occasionally occur in neutral loci to facilitate ecological 

adaptation in fluctuating environmental conditions (Nielsen et al. 2009). Using various 

outlier detection methods, four of the microsatellites tested in the current study were 

identified as outlier loci; two loci were under directional selection and two under balancing 

selection. The ND4 region also exhibited deviations from neutrality. This mitochondrial 

region did not detect population differentiation. Generally, selection can significantly reduce 

genetic variation; therefore, it is possible that the lower variation in the ND4 region 

constrained the resolution of this locus for detecting weak population subdivision.    

5.2.2 Species Identification in Sharks  

Misidentification of shark species is a common phenomenon; so much so that that these 

animals are reported at a species- or family group level (e.g. houndsharks, carcharinids, 

hammerheads etc.). In South Africa, this occurs despite the species identification method 

based on morphological and anatomical traits developed by Da Silva (2007) and this 

highlights the necessity for using multidisciplinary approaches in confirming identification of 

shark species, for instance, using molecular data to corroborate morphological data (e.g. 

Giresi et al. 2013; Pérez-Jiménez et al. 2013). Genetic identification methods using 

mitochondrial fragments e.g., COI (Ward et al. 2005, 2008; Caballero et al. 2012) and ND2 

(Farrell et al. 2009; Naylor et al. 2012) have proven to be effective for species identification 

in the past. Microsatellite markers have also been proven to be successful in individual 

identification of great white sharks Carcharodon carcharias (Gubili et al. 2009). The present 

study tested and successfully demonstrated the potential for shark genetic identification based 

on microsatellite markers using multi-variant analysis. In future these markers can be 

integrated to existing morphology identification keys for a more multidisciplinary approach. 

5.2.3  Observer Accuracy in the South African Demersal Shark Fishery 

The generally conserved interspecific morphology of sharks confounds identification keys 

used to discriminate between species and is a long-standing concern in fisheries operations 
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(Da Silva and Bürgener 2007; Department of Agriculture, Forestry and Fisheries 2013). 

Another aspect compounding shark misidentification is linguistic (ethnic) differences in 

understanding or interpreting common names, which was also apparent in this study. 

Observer accuracy in this study was fairly high (91.1%) in the identification of common 

smoothhound shark, but relatively low compared to other shark species with conserved 

interspecific morphology e.g., Carcharhinus species (Geraghty et al. 2013; Tillett et al. 

2012c). Geraghty et al. (2013) reported that observer accuracy was high in delineating 

between Carcharhinus species (98.4% for C. brevipinna, 96.6% for C. obscurus and 99.4% 

for C. plumbeus) in the New South Wales Ocean Trap and Line Fishery (NSW OTLF). 

Interestingly, observer accuracy for C. brevipinna in the Northern Territory Offshore Net and 

Line Fishery (NT ONLF) was estimated only at 87.2% (Tillett et al. 2012c), suggesting the 

officials in certain fisheries may lack the species identification skills necessary to correctly 

identify sharks to the species level. In the South African demersal shark fishery, fishery-

observer data remain contested due to the practice of landing demersal sharks having been 

headed and gutted at sea, making species identification nearly impossible (Da Silva and 

Bürgener 2007; Department of Agriculture, Forestry and Fisheries 2013). 

5.2.4 Population Dynamics of Common Smoothhound Shark  

South Africa has a long and diverse coastline that stretches from the mouth of the Orange 

River on the west coast to Kosi Bay on the east coast and is located at the transition zone 

between the Atlantic Ocean and Indian Ocean biomes (Figure 1.6). Although the exact 

locations of the boundaries remain contested, the coastline is divided into nine marine 

bioregions (Lombard 2004; Griffiths et al. 2010), as shown in Figure 1.6. Strong 

environmental gradients (e.g. temperature, salinity), currents and upwelling cells across these 

bioregions have been shown to hinder along-shore dispersal of various marine species, 

leading to restricted gene flow and eventually to genetic divergence (Teske et al. 2011). 

Interestingly, many organisms with ranges spanning multiple biogeographical regions exhibit 

genetic structure across the transition zones between these regions [e.g. invertebrates (Bester-

van der Merwe et al. 2011; Teske et al. 2014) and teleosts (Klopper 2005; Oosthuizen 2007)], 

while others appear to be genetically homogenous (Teske et al. 2014). 

Whether there are also genetic boundaries that relate to the ecologically-determined, coastal 

biogeographical boundaries in South African shark populations remains poorly understood. 

This study is the first to provide some insight into the impact of biogeographical boundaries 

on the degree of population structuring of a coastal shark species with a fairly wide 
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distribution along the South African coast. Assessment of genetic structure in the common 

smoothhound shark revealed distinct and opposing patterns of population genetic structure 

using microsatellite markers and mitochondrial DNA. Microsatellite markers indicated 

significant interoceanic population genetic structure, while mitochondrial DNA detected 

moderate to high levels of interoceanic gene flow. The most appropriate boundary that 

coincided with the break obtained with the microsatellite data was identified as the Cape 

Agulhas Boundary. Even though the sample size was small, this study found that the Angolan 

samples are divergent from South-East Atlantic and South-West Indian Ocean, and the 

Angola-Benguela Front was proposed as a semi-permeable barrier to gene flow. In light of 

mitonuclear discordance, the observed patterns of genetic structure between South African 

and Angolan samples may indicate that these regions are connected via a series of stepping 

stone populations, such that Namibia links South Africa with Angola. 

5.2.5 Mitonuclear Discordance 

Generally, the conflicting patterns of population structure found with the nuclear and 

mitochondrial genomes (mitonuclear discordance) can arise from various factors such a 

differences in effective population size, recombination, ploidy and rates of nucleotide 

substitution (de Biasse et al. 2014). In this study, mitonuclear discordance could have 

resulted from locus-specific artefacts at the ND4 gene region, such as retention of an 

ancestral polymorphism and incomplete lineage sorting between populations (Teske et al. 

2014). These were also evident from the starlike phylogeny obtained in this study which 

showed genetic homogeneity across oceans. In addition, discrepancies between 

microsatellites and mtDNA may result from differential effects of genetic drift, differential 

mutation rates and migration or selection on the particular marker class, or may also result 

from sex-biased dispersal. Indeed, sexes often differ in their degree of dispersal and, hence, in 

their contribution to spatial genetic structure both within and among populations (Francis 

1988; Pereyra et al. 2010; Karl et al. 2011; Benavides et al. 2011b; Daly-Engel et al. 2012). 

Asymmetric migration rates among sexes, but also spatio-temporal variation in sex ratio, will 

then facilitate differential genetic signals between nuclear and mitochondrial markers, as was 

found in this study. In most other coastal and pelagic shark species studied thus far, 

contrasting maternally- and bi-parentally inherited genetic markers indicated dispersive males 

and philopatric females (Pardini et al. 2001; Schrey and Heist 2003; Portnoy et al. 2010; 

Daly-Engel et al. 2012). Conventional and acoustic tagging studies have been conducted to 

better understand the movement patterns of common smoothhound shark in South Africa 
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(Mann and Bullen 2009; Da Silva et al. 2013). Both these studies reported that common 

smoothhound shark demonstrate site fidelity since these animals were generally recaptured 

close to their release site, regardless of time at liberty (Mann and Bullen 2009; Da Silva et al. 

2013). The aforementioned studies did, however, not report any sex-bias in dispersal, while 

tagging studies of the related species M. antarticus and M. lenticulatus found that females 

had a higher dispersal capacity than males (Francis 1988; Pereyra et al. 2010). Therefore, the 

discordance found between microsatellite markers and mitochondrial DNA data of this study 

could be an indication of female-mediated dispersal in common smoothhound shark. 

Additionally, the findings suggest a recent population expansion event that potentially 

coincides with the early Holocene and the rise in sea levels, and warming (Miller et al. 1995; 

Ramsay 1995; Carr et al. 2010; Dudgeon et al. 2012; Portnoy and Heist 2012) that increased 

suitable coastal habitats for common smoothhound sharks. An expansion following the last 

glacial maximum (LGM; 18 000-23 000 years ago) in common smoothhound shark is highly 

probable, considering that warming after the LGM caused population expansions in many 

marine and terrestrial organisms (Peltier 1988; Miller et al. 1995; Carr et al. 2010; Dudgeon 

et al. 2012; Portnoy and Heist 2012). This study detected no signal of a recent population 

bottleneck, which is not entirely unexpected since recent bottlenecks are transient and could 

go undetected by demographic history inferences due to variability in sampling and sampling 

period (Luikart and Cornuet 1998; Heller et al. 2013; Vignaud et al. 2014). Rates of gene 

flow (i.e., the number of migrants per generation) were asymmetrical between oceans, 

indicating the possible effects of temperature gradients and ocean currents. Interestingly, both 

the microsatellite and mitochondrial DNA exhibited similar patterns (in direction) of gene 

flow, indicating that a large proportion of migrants move from the Atlantic to the Indian 

Ocean. This may be indicative of these animals moving with the Agulhas Current when it 

retroflects back into the South-West Indian Ocean and that westward movement is influenced 

by the Benguela Current.  

5.3   Smoothly-Hounding for Conservation Management 

The high fishing pressure currently experienced by the common smoothhound shark in 

southern Africa may be unsustainable given that this shark has decreased in biomass across 

its distribution range (Aldebert 1997; Gascuel et al. 2007; Da Silva, 2006; Serena et al. 2009; 

Da Silva et al. 2013). Although this study reports a significant and probably recent population 

expansion, a recent bottleneck (subsequent to expansion) might have gone undetected. These 
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findings, together with the low resilience to exploitation of this species, raise concerns about 

the future conservation of common smoothhound shark. Da Silva et al. (2013) proposed that, 

since common smoothhound shark exhibit site-fidelity within a small area, these sharks might 

therefore benefit from spatial fishery closures in the absence of species-specific management 

for this species. This shark is heavily exploited on the south-west coast of South Africa 

(South-East Atlantic Ocean) and if this stock becomes extinct it will most likely not be 

replenished by the South-East Indian Ocean stock, given the asymmetrical migration rates 

detected in this study. It is therefore vital that stricter regulations should be put in place, such 

as limiting the number of vessels, crew and Total Allowable Catch (TAC) or Total Allowable 

Effort (TAE) for this species. In South Africa, this has proved valuable for specific protection 

of some species under the Marine Living Resources Act 18 of 1998 (MLRA), e.g. the spotted 

gully shark (Triakis megalopterus) and sawfish (Pristis spp.), due to their compromised 

conservation status (Department of Agriculture, Forestry and Fisheries 2013; Sharks 

Biodiversity Management Plan 2014).  

5.4   Project Limitations and Future Perspectives 

This study was subject to a range of limitations requiring careful consideration. Firstly, 

sample size bias was a major limitation as this study relied on opportunistic sampling, 

making targeting particular sampling sites and obtaining representative samples difficult. The 

sample sizes were also weighted towards the South-East Atlantic Ocean. In future, additional 

sampling from, for example, East London (a sampling site between Jeffreys Bay and Durban) 

and Namibia (linking South Africa with Angola) could assist with more robust allocations of 

management units and, hence, the sustainable exploitation of this target species.  Secondly, 

the lack of gene-specific mutation rate estimates for the ND4 region in elasmobranchs 

deterred estimating the time of expansions and effective population sizes. Lastly, due to 

financial constraints, only a subset of individuals were sequenced for the ND4 region and in 

future screening a larger sample size may provide further information on the retrospective 

historical demographic events reported in this study. In light of these limitations, it is 

recommended that this work be considered as a starting point for further evaluations of 

genetic structure in this commercially important species, and incorporating these into existing 

fisheries management practices, rather than results upon which definitive management 

decisions are made. Additionally, since tagging methods (e.g., acoustic tracking) only 

measure animal movement and do not detect whether the movement has resulted in 
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reproduction in the adopted population i.e., interbreeding (Ovenden 2013), the value of using 

acoustic tracking and genetic data in conjunction to better understand the movement patterns 

is highlighted.  
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Appendix A 

Supplementary Information for Chapter 2 

 

Table S2.1 The ND2 sequence information of the study taxa used to estimate the genetic 

distance to evaluate cross-species performance, including ID verified, availability of images 

(yes or no), specimen identifier (GN No.) which are available in the on-line host specimen 

database (http://elasmobranchs.tapewormdb.uconn.edu) and GenBank accession numbers 

Genus Species ID Verified No. Images GN No. GenBank No. Unique ID 

Mustelus mustelus Yes 5 7218 JQ518709.1 5963 

Mustelus palumbes Yes 5 7322 JQ518710.1 6067 

Mustelus canis ? ? 917 JQ518711.1 ? 

Galeorhinus galeus Yes 5 7236 JQ518695.1 5981 

Scylliogaleus  quecketti ? ? - DQ422121.1 - 

Carcharhinus plumbeus ? ? 903 JQ518632.1 ? 

Carcharhinus brachyurus ? ? 3 JQ518611.1 ? 

Carcharhinus obscurus Yes 5 3213 JQ518612.1 4679 

Carcharhinus  limbatus ? ? 1303 JN082204.1 ? 

Haploblepharus edwardsii Yes 5 7237 JQ518679.1 5982 

Poroderma africanum ? ? 1772 JQ518682.1 ? 

Poroderma pantherinum Yes 5 7325 JQ518683.1 6070 

Sphyrna lewini ? ? 5663 JQ518691.1 ? 

Sphyrna zygaena ? ? 1097 JQ519079.1 ? 

Raja straeleni Yes 5 7192 JQ518894.1 5937 

Rostroraja alba Yes 5 7302 JQ518900.1 6047 

 

Table S2.2 Estimates of evolutionary divergence between ND2 sequences of source species 

Galeorhinus galeus and target species using  Kimura-two-parameter distances (K2P: Kimura 

1980) 

Target species K2P distance Std. Error No. of SSRs transferred 

Mustelus mustelus GN7218 0.136 0.013 10 

Mustelus palumbes GN7322 0.131 0.013 9 

Scylliogaleus quecketti 0.131 0.013 8 

Carcharhinus brachyurus GN3 0.186 0.016 9 

Carcharhinus limbatus GN1303 0.173 0.015 7 

Carcharhinus obscurus GN3213 0.169 0.015 9 

Carcharhinus plumbeus GN903 0.172 0.015 9 

Haploblepharus edwardsii GN7237 0.219 0.018 5 

Poroderma africanum GN1772 0.261 0.020 1 

Poroderma pantherinum GN7325 0.258 0.019 1 

Sphyrna lewini GN5663 0.185 0.016 4 

Sphyrna zygaena GN1097 0.195 0.017 7 

Raja straeleni GN7192 0.379 0.025 6 

Rostroraja alba GN7302 0.397 0.025 5 

Mean: 21.4% 1.7% 6.4 
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Table S2.3 Estimates of evolutionary divergence between ND2 sequences of source species 

Mustelus canis and target species using Kimura-two-parameter distances (K2P: Kimura 

1980)  

Target species K2P distance Std. Error No. of SSRs transferred 

Mustelus mustelus GN7218 0.190 0.016 12 

Mustelus palumbes GN7322 0.182 0.016 6 

Galeorhinus galeus GN7236 0.173 0.015 8 

Scylliogaleus quecketti 0.167 0.014 8 

Carcharhinus brachyurus GN3 0.091 0.010 8 

Carcharhinus limbatus GN1303 0.110 0.011 9 

Carcharhinus obscurus GN3213 0.069 0.008 8 

Carcharhinus plumbeus GN903 0.001 0.001 7 

Haploblepharus edwardsii GN7237 0.251 0.019 7 

Poroderma africanum GN1772 0.273 0.021 7 

Poroderma pantherinum GN7325 0.269 0.021 7 

Sphyrna lewini GN5663 0.140 0.013 4 

Sphyrna zygaena GN1097 0.155 0.014 3 

Raja straeleni GN7192 0.376 0.026 6 

Rostroraja alba GN7302 0.350 0.024 5 

Mean: 18.7% 1.7% 7.0 
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Appendix B 

Supplementary Information for Chapter 3 

 

Table S3.1 Summary genetic diversity estimates at 12 microsatellite loci in eight Mustelus 
mustelus sampling sites in southern Africa 

Population Locus  AN AR HO HE PIC FIS FrNULL PE-W 

Angola 

Mh1 3 1.5 0.273 0.255 0.228 -0.071 -0.023 0.903 

Mh2 3 2.2 0.3 0.611 0.492 0.522 0.177 0.211 

Mh9 5 2.6 0.556 0.712 0.617 0.231 0.07 0.604 

Mh25 6 2.8 0.273 0.749 0.669 0.647** 0.258b 0.544 

Mca25 4 2 0.455 0.463 0.411 0.02 -0.009 0.732 

McaB39 2 1.9 1 0.524 0.375 -1.000** -0.333 0.025* 

McaB5 6 2.7 0.583 0.717 0.641 0.194 0.062 0.63 

McaB6 5 2.5 0.75 0.674 0.59 -0.119 -0.063 0.606 

McaB22 10 3.3 0.75 0.877 0.823 0.150* 0.049 0.514 

McaB27 1 1 0 0 0 0 0 N/A 

Mca33 2 1.8 0.5 0.464 0.346 -0.082 -0.039 0.207 

McaB37 1 1 0 0 0 0 0 N/A 

Average 4 2.1 0.453 0.504 0.433 0.041 0.012 0.498 

Langebaan 

Mh1 1 1 0 0 0 0 0 N/A 

Mh2 3 1.9 0.391 0.474 0.39 0.178 0.05 0.374 

Mh9 3 1.9 0.391 0.474 0.39 0.178 0.05 0.376 

Mh25 5 2.5 0.174 0.657 0.594 0.740** 0.285b 0.201 

Mca25 4 1.8 0.348 0.378 0.347 0.081 0.016 0.567 

McaB39 2 1.9 1 0.511 0.375 -1.000** -0.333 0.011* 

McaB5 7 2.7 0.913 0.733 0.671 -0.252 -0.114 0.622 

McaB6 4 2.4 0.455 0.644 0.571 0.299 0.107 0.157 

McaB22 10 3.3 0.857 0.875 0.838 0.02 -0.002 0.036** 

McaB27 2 1.1 0.043 0.043 0.042 0 -0.001 1 

Mca33 3 1.3 0.174 0.165 0.154 -0.054 -0.011 0.881 

McaB37 3 1.3 0.174 0.165 0.154 -0.054 -0.011 0.881 

Average 3.9 1.9 0.41 0.427 0.377 0.011 0.003 0.464 

Robben 

Island 

Mh1 1 1 0 0 0 0 0 N/A 

Mh2 2 1.5 0.111 0.286 0.239 0.618* 0.13 0.405 

Mh9 3 1.6 0.19 0.324 0.279 0.418 0.096 0.711 

Mh25 6 2.9 0.316 0.78 0.721 0.602** 0.252b 0.164 

Mca25 3 1.5 0.318 0.28 0.247 -0.14 -0.035 0.756 

McaB39 3 2 1 0.534 0.407 -0.913** -0.314 0.456 

McaB5 7 2.8 0.773 0.761 0.71 -0.016 -0.017 0.248 

McaB6 5 2.8 0.773 0.768 0.71 -0.006 -0.012 0.021* 
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McaB22 10 3.4 0.955 0.885 0.851 -0.081 -0.048 0.009** 

McaB27 5 1.4 0.182 0.175 0.168 -0.037 -0.009 1 

Mca33 3 1.4 0.182 0.173 0.163 -0.05 -0.011 0.803 

McaB37 2 1.6 0.05 0.296 0.247 0.835** 0.185b 0.381 

Average 4.2 2 0.404 0.439 0.395 0.103 0.018 0.45 

False Bay 

Mh1 2 1.1 0.063 0.063 0.059 0 -0.002 1 

Mh2 4 2 0.188 0.466 0.417 0.605** 0.182b 0.512 

Mh9 2 1.5 0.167 0.29 0.239 0.436 0.087 0.468 

Mh25 7 2.6 0.385 0.683 0.625 0.447** 0.164b 0.821 

Mca25 5 2.1 0.438 0.51 0.462 0.146 0.038 0.71 

McaB39 2 1.9 1 0.516 0.375 -1.000** -0.333 0.016* 

McaB5 6 2.7 0.647 0.725 0.66 0.111 0.034 0.443 

McaB6 5 2.5 0.647 0.679 0.61 0.049 0.007 0.37 

McaB22 14 3.4 0.882 0.889 0.853 0.008 -0.01 0.629 

McaB27 6 1.9 0.471 0.414 0.385 -0.143 -0.049 0.968 

Mca33 3 2 0.824 0.542 0.436 -0.545* -0.195 0.318 

McaB37 5 1.6 0.176 0.275 0.258 0.364 0.071 0.993 

Average 5.1 2.1 0.49 0.504 0.448 0.04 -0.001 0.604 

Kalk Bay 

Mh1 2 1.1 0.063 0.063 0.059 0 -0.002 1 

Mh2 4 1.8 0.385 0.403 0.363 0.048 0.002 0.79 

Mh9 3 2.3 0.25 0.607 0.468 0.625 0.184 0.744 

Mh25 5 2.5 0.214 0.656 0.584 0.682** 0.256b 0.438 

Mca25 3 1.9 0.467 0.503 0.396 0.076 0.014 0.558 

McaB39 2 1.9 1 0.516 0.375 -1.000** -0.333 0.017* 

McaB5 6 2.8 0.688 0.758 0.696 0.096 0.027 0.231 

McaB6 5 2.5 0.875 0.657 0.588 -0.346 -0.146 0.385 

McaB22 10 3.4 1 0.901 0.86 -0.114 -0.068 0.010* 

McaB27 6 2.4 0.813 0.615 0.558 -0.336 -0.136 0.814 

Mca33 4 2.2 0.875 0.597 0.51 -0.489 -0.188 0.376 

McaB37 2 1.1 0.063 0.063 0.059 0 -0.002 1 

Average 4.3 2.2 0.558 0.528 0.46 -0.063 -0.033 0.53 

Struis Bay 

Mh1 3 2.3 0.294 0.633 0.532 0.543* 0.198b 0.083 

Mh2 3 2 0.556 0.503 0.404 -0.111 -0.054 0.59 

Mh9 4 2.3 0.588 0.62 0.522 0.053 0.009 0.356 

Mh25 5 2.5 0.941 0.679 0.603 -0.403** -0.17 0.272 

Mca25 2 1.8 0.706 0.471 0.352 -0.524** -0.171 0.172 

McaB39 2 1.9 1 0.515 0.375 -1 -0.333 0.015* 

McaB5 6 2.8 1 0.759 0.695 -0.330** -0.151 0.239 

McaB6 5 2.8 1 0.75 0.684 -0.347** -0.157 0.076 

McaB22 9 3.1 1 0.822 0.772 -0.225** -0.113 0.438 

McaB27 1 1 0 0 0 0 0 N/A 

Mca33 3 1.2 0.118 0.116 0.109 -0.016 -0.005 1 

McaB37 2 1.8 0.647 0.451 0.342 -0.455 -0.146 0.2 
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Average 3.8 2.1 0.654 0.527 0.449 -0.234 -0.091 0.313 

Jeffreys 

Bay  

Mh1 5 1.6 0.313 0.29 0.271 -0.079 -0.024 0.993 

Mh2 3 2.4 0.636 0.671 0.567 0.054* 0.003 0.041* 

Mh9 2 1.8 0.625 0.458 0.337 -0.4 -0.137 0.277 

Mh25 5 2.6 0.333 0.683 0.626 0.521** 0.197b 0.111 

Mca25 5 2.6 0.563 0.7 0.638 0.201** 0.069 0.122 

McaB39 5 2.5 1 0.677 0.593 -0.500** -0.208 0.429 

McaB5 6 2.5 0.813 0.653 0.599 -0.254 -0.11 0.583 

McaB6 6 2.6 0.5 0.69 0.616 0.281 0.101 0.634 

McaB22 11 3.5 0.813 0.921 0.883 0.122** 0.042 0.002** 

McaB27 6 1.8 0.438 0.391 0.366 -0.123 -0.043 0.981 

Mca33 3 1.8 0.5 0.417 0.367 -0.206 -0.068 0.359 

McaB37 5 2.2 0.467 0.611 0.507 0.243 0.078 0.853 

Average 5.2 2.3 0.583 0.597 0.531 -0.012 -0.008 0.449 

Durban 

Mh1 5 1.9 0.278 0.43 0.396 0.361** 0.099 0.811 

Mh2 4 2.3 0.444 0.601 0.522 0.273** 0.079 0.525 

Mh9 4 1.9 0.412 0.437 0.385 0.059 0.009 0.707 

Mh25 5 2.3 0.5 0.595 0.542 0.164** 0.05 0.434 

Mca25 3 1.6 0.368 0.317 0.275 -0.167 -0.046 0.732 

McaB39 2 1.9 1 0.514 0.375 -1.000** -0.333 0.011* 

McaB5 6 2.5 0.563 0.681 0.612 0.179** 0.059 0.734 

McaB6 6 3 0.429 0.812 0.75 0.482** 0.199b 0.071 

McaB22 12 3.5 0.875 0.913 0.874 0.043 0.005 0.055 

McaB27 1 1 0 0 0 0 0 N/A 

Mca33 4 2.5 0.467 0.674 0.587 0.315* 0.112 0.279 

McaB37 3 1.7 0.267 0.343 0.294 0.228 0.048 0.737 

Average 4.6 2.2 0.467 0.526 0.468 0.078 0.023 0.463 

Overall 

Populations 

Mh1 2.8 1.4 0.161 0.217 0.193 -0.025 0.007 0.798 

Mh2 3.3 2.0 0.376 0.502 0.424 0.159 0.055 0.487 

Mh9 3.3 2.0 0.397 0.490 0.405 0.200 0.046 0.530 

Mh25 5.5 2.6 0.392 0.685 0.621 0.425 -0.060 0.373 

Mca25 3.6 1.9 0.458 0.453 0.391 0.003 -0.016 0.544 

McaB39 2.5 2.0 1.000 0.538 0.406 -1.000 -0.315 0.443 

McaB5 6.3 2.7 0.748 0.723 0.661 -0.020 -0.026 0.466 

McaB6 5.1 2.6 0.679 0.709 0.640 0.026 -0.023 0.328 

McaB22 10.8 3.4 0.892 0.885 0.844 -0.025 -0.018 0.409 

McaB27 3.5 1.5 0.243 0.205 0.190 -0.080 -0.030 0.953 

Mca33 3.1 1.8 0.455 0.394 0.334 -0.150 -0.051 0.528 

McaB37 2.9 1.5 0.231 0.276 0.233 0.047 0.005 0.721 

Average 4.4 2.1 0.502 0.507 0.445 -0.005 -0.010 0.471 

Number of alleles per locus (AN); allelic richness (AR); observed heterozygosity (HO); expected heterozygosity (HE); 

polymorphic information content (PIC); inbreeding coefficient (FIS) with statistically significant deviations from Hardy-

Weinberg expectations indicated by * (P < 0.01) and ** (P < 0.001); null allele frequency (FrNULL) with b indicating the 

presence of null alleles at statistical significance at the 5% nominal level and Ewens-Watterson probability (PE-W).  
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Table S3.2 Exact test P-values for pairwise genotypic differentiation for eight Mustelus 
mustelus sampling sites in southern Africa using 12 microsatellite markers. P > 0.01 are 

underlined 

 
ETGD 

  A LL RI FB KB SB JB 

Angola (A) - 
      

Langebaan (LL) 0.000 
      

Robben Island (RI) 0.000 0.042 
     

False Bay (FB) 0.000 0.000 0.001 
    

Kalk Bay (KB) 0.000 0.000 0.000 0.981 
   

Struis Bay (SB) 0.000 0.000 0.000 0.000 0.000 
  

Jeffreys Bay (JB) 0.001 0.000 0.000 0.085 0.000 0.000 
 

Durban (D) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Abstract

Background: Similarly to the rest of the world, southern Africa’s diverse chondrichthyan fauna is currently
experiencing high fishing pressures from direct and non-direct fisheries to satisfy market demands for shark
products such as fins and meat. In this study, the development of microsatellite markers through cross-species
amplification of primer sets previously developed for closely related species is reported as an alternative approach
to de novo marker development. This included the design of four microsatellite multiplex assays and their
cross-species utility in genetic diversity analysis of southern African elasmobranchs. As this study forms part of a
larger project on the development of genetic resources for commercially important and endemic southern African
species, Mustelus mustelus was used as a candidate species for testing these multiplex assays in down-stream
applications.

Results: Thirty five microsatellite primer sets previously developed for five elasmobranch species were selected
from literature for testing cross-species amplification in 16 elasmobranch species occurring in southern Africa.
Cross-species amplification success rates ranged from 28.6%-71.4%. From the successfully amplified microsatellites,
22 loci were selected and evaluated for levels of polymorphism, and four multiplex assays comprising of the 22
microsatellites were successfully constructed, optimised and characterised in a panel of 87 Mustelus mustelus
individuals. A total of 125 alleles were observed across all loci, with the number of alleles ranging from 3–12 alleles.
Cross-species amplification of the four optimised multiplex assays was further tested on 11 commercially important
and endemic southern African elasmobranch species. Percentage of polymorphism ranged from 31.8%-95.5% in
these species with polymorphic information content decreasing exponentially with evolutionary distance from the
source species.

Conclusions: Cross-species amplification of the 35 microsatellites proved to be a time- and cost-effective approach
to marker development in elasmobranchs and enabled the construction of four novel multiplex assays for characterising
genetic diversity in a number of southern African elasmobranch species. This study successfully demonstrated the
usefulness of these markers in down-stream applications such as genetic diversity assessment and species identification
which could potentially aid in a more integrative, multidisciplinary approach to management and conservation of
commercially important cosmopolitan and endemic elasmobranch species occurring in southern Africa.
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Background
The subclass Elasmobranchii (sharks, skates and rays)
comprises a diverse group of over 1000 species, and is
representative of one of the most ancient extant verte-
brate lineages [1]. Recently, pressures from direct and
non-direct fisheries have resulted in the depletion of
elasmobranch populations globally [2]. Decline in wild
populations of elasmobranchs is further compounded by
their life history traits that are more similar to those of
mammals (e.g. low fecundity, late maturity and long ges-
tation periods) than those of teleost fishes [3,4]. In com-
parison, elasmobranchs may not respond well to the
high fishing pressures. This trend has been particularly
pronounced for sharks due to unregulated harvesting to
support an increase in demand for shark products (e.g.
fins, meat, liver oil, skin and cartilage). A drastic reduc-
tion in population size (population bottleneck) can result
in small populations experiencing the accumulating ef-
fects of inbreeding leading to severe loss of genetic di-
versity [5,6]. These trends have previously been reported
for species such as the basking shark (Cetorhinus maximus)
[7] and the narrownose smoothhound shark (Mustelus
schmitti) [8]. Assessing genetic diversity and population
structure of wild populations is therefore important for sus-
tainable long-term management of the global shark fishery
industry.
Misidentification of shark species in fisheries opera-

tions is also a widespread concern [9-12], and molecular
individual identification methods have been developed
to alleviate this problem [4,13-17]. To integrate genetic
knowledge with fisheries management, it is imperative
for shark fisheries to report shark landings by species in-
stead of lumping them into species- or family groups
(e.g. houndsharks, carcharinids, hammerheads etc.). This
stems from the difficulties involved with unambiguously
identifying species within and across families [13,18] e.g.,
carcharinids (Carcharhinus brachyurus, C. obscurus and
C. plumbeus) and houndsharks (Mustelus mustelus, M.
palumbes and Galeorhinus galeus) due to a high degree
of conserved interspecific morphology [14]. Neglecting
to report shark landings by species overlooks important
differences in species susceptibility and population vul-
nerability to exploitation [15], and that in turn has im-
portant implications for species-specific conservation,
management and trade monitoring programmes [19].
The general lack of molecular genetic markers (e.g.

microsatellites) for many elasmobranch species impedes
population and conservation genetic studies in that these
markers can provide valuable information relating to
population dynamics (spatial and temporal genetic vari-
ation) of individual species. Microsatellites are highly poly-
morphic due to their high mutation rate (between 10−3

and 10−4 mutations per gamete per generation) resulting
in extensive length polymorphism [20,21]. This makes
microsatellite markers one of the most powerful molecu-
lar genetic tools with a remarkable array of applications
ranging from genetic diversity [22,23] and population
structure inference [24,25] to discerning genetic mating
systems [26,27] and the identification of species [28-30].
Because the de novo development of microsatellites is

challenging due to notoriously low rates of polymorphism
in elasmobranchs [31], the development of microsatellite
markers through cross-species amplification is the most
effective alternative approach to de novo development of
microsatellites and has recently also been reported in
sharks [32]. Microsatellite cross-species amplification re-
lies on the presence of conserved microsatellite flanking
sequences [33], which in some organisms markedly dem-
onstrate a high degree of conservation following millions
of years of divergent evolution (e.g., 250 million years in
sharks [28] and 470 million years in fish [34]). The success
rate of microsatellite cross-species amplification has dir-
ectly been correlated to the evolutionary distance between
the source species and the target species [33,35].
The underrepresentation of endemic taxa in many

cross-species amplification studies is unfortunate as en-
demics should be of great interest for conservation of
biodiversity on a regional scale. Southern Africa has one
of the most diverse chondrichthyan faunas in the world,
consisting of some 181 species in 44 families of which
34 species are endemic to southern Africa [36,37]. Grow-
ing concerns regarding the sustainability of the southern
African shark fishery, stemming from the local declines of
cosmopolitan and endemic species, lead to stricter regula-
tions being imposed so as to avert the collapse of natural
populations [38-40]. Accordingly, we report here the de-
velopment of microsatellite markers through cross-species
amplification of species-specific primers from closely re-
lated species. This included the design and optimisation of
four microsatellite multiplex assays and their cross-species
utility in genetic diversity analysis of 11 southern African
elasmobranch species.

Results and discussion
Cross-species amplification
Development of microsatellite loci through cross-species
amplification proved useful in establishing genetic markers
for shark species that are commercially important and
those (typically endemics) that are indirectly affected by
fisheries’ operations. Amplification of the 35 microsatellites
in 50 individuals from 16 different elasmobranch species
(1–4 individuals per species) proved to be effective (Table 1).
Cross-species amplification success rates or the percent-
age of microsatellites that amplified successfully ranged
from 60.00%-71.40% in the Triakidae and Carcharhinidae
families and from 28.57%-48.57% in the Scyliorhinidae,
Sphyrnidae and Rajidae families (Figure 1). The higher
success rates in the Triakidae and Carcharhinidae is



Table 1 Cross-species amplification of the 35 microsatellites among 16 elasmobranch species of southern Africa
Species References MM MP GG SQ CB CL CO CP HP HE PP PA SL SZ RS RA

Loci (n = 4) (n = 3) (n = 4) (n = 1) (n = 4) (n = 3) (n = 4) (n = 4) (n = 4) (n = 4) (n = 4) (n = 1) (n = 3) (n = 3) (n = 1) (n = 3)

Mh1 [56] + + + + + + + + + + + + + + + ++

Mh2 [57] + + + + + + + + - - - - + + - -

Mh6 [56] - - + - + - - - - - - - - - - -

Mh9 [57] + + + + + - + + - - - - - - - -

Mh25 [56] + + + + + + + + + + + + - + + ++

Mca25 [49] + - - - + + ++ ++ + - + + - - + +

Mca31 [49] - - - + + + + - - - - - - + - -

Mca33 [49] + + + + + + + - + + + + - - + +

Mca44 [49] ++ - + - - - - - + + + + - - + ++

McaB5 [49] + + + + + + + + + + + + + - + +

McaB6 [49] + - + + + + + + + + - - + - - -

McaB22 [49] + + + + - + + + + + + + - + + -

McaB27 [49] + + + + + - - + - + - - - + - -

McaB33 [49] - - - - + + + + - - - - + - - -

McaB35 [49] + + - + - - - - + - + + - - - ++

McaB37 [49] + + + + - + - - - - - - + - - -

McaB39 [49] + - + - + + + + + + + + - - + -

Gg2 [50] + + + + + - - - + - - - - + ++ +

Gg3 [50] + + + + + + + + + + - - + - ++ +

Gg7 [50] + + + - + - + + - + - - - + - +

Gg11 [50] + + + ++ ++ + ++ ++ + + - - - + - -

Gg12 [50] + + + - + - + + + - - - - - - -

Gg15 [50] + + + + + + ++ ++ + + + + + + + -

Gg17 [50] + - + + + + + + - + - - + - - +

Gg18 [50] + + + + + + ++ + + - - - - ++ + +

Gg22 [50] + + + + + + + + + - - - - ++ + -

Gg23 [50] + + + + + + + + - - - - + ++ + +

Rp16-
nfrdi

[44] + ++ - + + ++ + + - - - + ++ + + ++

Rp35-
nfrdi

[44] - + - ++ - + - - - - - + + ++ + ++

Scan02 [45] - - - - - - - - - - - - - - - -

Scan06 [45] - - - - - - - - - - - - - - - -

Scan12 [45] - - - - - - - - - - - - - - - -

Scan14 [45] - - - - - - - - - - - - - - - -

Scan15 [45] - - - - - - - - - - - - - - - -

Scan16 [45] - - - - - - - - - - - - - - - -

–, no visible band or faint bands with insufficient band intensity for scoring alleles were observed; +, solid bands with sufficient intensity for scoring alleles were
detected; ++, solid bands with artefacts were produced but with at least one band of expected allele size. Mustelus mustelus (MM), Mustelus palumbes (MP),
Galeorhinus galeus (GG), Scylliogaleus quecketti (SQ), Carcharhinus brachyurus (CB), Carcharhinus limbatus (CL), Carcharhinus obscurus (CO), Carcharhinus plumbeus
(CP), Haploblepharus pictus (HP), Haploblepharus edwardsii (HE), Poroderma africanum (PA), Poroderma pantherinum (PP) Sphyrna lewini (SL), Sphyrna zygaena (SZ),
Raja straeleni (RS) and Raja alba (RA).
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expected as most microsatellites tested in this study were
originally developed for species within the Triakidae fam-
ily. Overall, the microsatellites showed less successful
cross-species amplification to the taxa more divergent
from the source species. Notably none of the individuals
showed PCR amplification at any of the six Scyliorhinus
canacula microsatellites. This may in part be attributed to
S. canacula being more distantly related to the study spe-
cies. The mean genetic distance between the taxa was
21.4 ± 1.7% (mean ± SD) (G. galeus as source species;



Figure 1 Success rates of 35 microsatellite loci across five families of southern African elasmobranch species.
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Figure 2) and 18.7 ± 1.5% (M. canis as source species;
Figure 3). Haploblepharus pictus could not be repre-
sented in the distance plot due to the lack of genetic in-
formation available in GenBank and Global Cestode
Database: Elasmobranchs Specimens.
Results of cross-species amplification performance of

G. galeus microsatellites exhibited a logarithmic regres-
sion function (Figure 2), albeit non-significant (slope
within the 95% CI for no difference from zero), that may
explain the general trend of negative correlation between
cross-species amplification performance and genetic di-
vergence seen across taxa [30,33,35,41]. Cross-species
amplification of microsatellite markers from source to
target species is generally negatively correlated with evo-
lutionary divergence [30,42-45]. A similar trend was not
observed for the M. canis microsatellites (Figure 3). This
can be due to different life history traits (i.e. mating sys-
tem and generation time) and genome size (C value) be-
tween the source and target species, which have been
previously found to have significant negative effects on
cross-species amplification success [33]. However, apart
from the source-target species evolutionary distance
other factors, such as mutations in microsatellite flank-
ing sequences, may affect the success rate of cross-
species amplification. Since microsatellites are usually
found in non-coding regions where the substitution rate
is higher than in coding regions [46], these microsatellite
flanking sequences which serve as regions for PCR pri-
mer design and binding sites are prone to mutations
[35]. Mutations (indels) in these regions may therefore
result in null alleles and in turn affect the patterns of
cross-species amplification as demonstrated in birds [47]
and salmonids [48].
Additionally, M. canis microsatellite loci were isolated
from an enriched genomic library [49] whereas for G.
galeus the microsatellites were developed by a high-
throughput sequencing approach (Roche 454 pyrosequenc-
ing) [50]. Based on the observed data it is hypothesised
that these different approaches may have influenced the
cross-species performance possibly due to the different
resolving power of each approach for capturing micro-
satellites distributed across different parts of the gen-
ome. Castoe et al. [51] argues that enrichment-based
approaches commonly use a few specific repeated mo-
tifs, which are largely selected without prior knowledge
of their abundance in the genome and therefore could
introduce potential bias in genome representativeness.
In contrast, microsatellite identification from randomly
sequenced genomic regions (e.g. Roche 454 NGS) allows
for an unbiased assessment of all types of microsatellite
loci present in a genome [51].
Cross-species amplification of orthologous microsatel-

lites, due to the presence of conserved microsatellite
flanking sequences [33], can persist over millions of
years following divergent evolution as previously shown
in sharks (250 million years [28]) and in fish (470 million
years [34]). This indicates lower mutation rates within
microsatellite flanking regions in aquatic organisms [30,34].
The reported cross-amplified microsatellite markers will
thus contribute to establishing a molecular genetic marker
repository for each of the Southern Africa elasmobranchs
species included in this study. Future research efforts may
be dedicated to generating microsatellite primers that have
a high cross-species utility (e.g. [52]) as well as in silicomin-
ing of polymorphic microsatellite markers from expressed
sequence tag data [53].



Figure 2 Cross-species amplification performance of Galeorhinus galeus microsatellites in 15 of the 16 elasmobranch species, and
genetic divergence between G. galeus and the target species based on ND2 sequences.
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Multiplex assay characterisation
Twenty-two microsatellite loci that successfully cross-
amplified across the study species and showed poly-
morphism in initial screening tests were used to develop
four multiplex assays (MPS) comprised of at least five
microsatellites each. These multiplex assays were charac-
terised in a panel of 87 common smoothhound sharks
(Mustelus mustelus) (Table 2). All 22 microsatellite loci
were polymorphic across the multiplexes. With the
Figure 3 Cross-species amplification performance of Mustelus canis m
divergence between M. canis and the target species based on ND2 se
exception of one locus, McaB22, all the microsatellite
loci were found to deviate significantly from Hardy-
Weinberg equilibrium most likely due to Wahlund effect
as samples were pooled from diverse geographical loca-
tions for analysis. MicroChecker detected no significant
genotyping errors but indicated that null alleles were
present at two loci (Mh9 and Gg7). Slatkin’s exact test
for neutrality indicated that two loci (McaB22 and Gg3)
were candidates for being subjected to selection.
icrosatellites in 15 of the 16 elasmobranch species, and genetic
quences.



Table 2 Characterisation of four multiplex assays for Mustelus mustelus based on 87 individuals from southern Africa

Locus Microsatellite repeat motif [P] Dye Size range (bp) AN AE HO HE PIC FIS FrNULL PE-W

Mh1 (AG)n 0.2 VIC 191-211 7 2.2 0.885 0.544 0.443 −0.633** −0.223 0.931

Mh2 (GA)9 0.3 VIC 587-597 4 1.7 0.367 0.402 0.342 0.089** 0.023 0.688

Mh9 (GA)9 0.4 FAM 312-326 5 1.7 0.337 0.429 0.373 0.214** 0.062 b 0.723

Mh25 (CT)n 0.2 FAM 122-148 8 1.6 0.356 0.404 0.385 0.118** 0.032 0.802

Mca25 (CA)n(CT)n 0.2 PET 232-240 3 1.9 0.563 0.463 0.382 −0.217** −0.070 0.226

McaB39 (CA)10GAT(AC)8 0.2 NED 177-212 3 2.0 1.000 0.509 0.384 −0.977** −0.328 0.501

MPS1 (mean) - - - - 5 1.9 0.585 0.459 0.385 −0.234 −0.084 0.645

McaB5 (GT)11 0.2 VIC 189-210 10 3.5 0.826 0.716 0.674 −0.155* −0.067 0.330

McaB6 (CA)10 0.2 FAM 226-266 9 3.3 0.756 0.702 0.655 −0.077* −0.034 0.498

McaB22 (AC)18 0.2 NED 137-179 12 8.2 0.874 0.882 0.865 0.010 0.002 0.002

McaB27 (GT)6 0.2 PET 138-199 4 2.1 0.965 0.536 0.424 −0.808** −0.282 0.589

Mca33 (ATC)5 0.2 FAM 189-199 6 3.0 0.872 0.674 0.609 −0.295** −0.121 0.347

McaB37 (GT)5 0.2 NED 219-251 11 1.9 0.483 0.486 0.431 0.007** −0.016 0.997

MPS2 (mean) - - - - 9 3.7 0.796 0.666 0.610 −0.220 −0.086 0.461

Gg2 (TG)n 0.2 NED 249-259 7 3.2 1.000 0.688 0.632 −0.458** −0.188 0.324

Gg3 (GATT)n 0.2 PET 257-265 2 2.0 1.000 0.503 0.375 −1.000** −0.333 0.001

Gg7 (AG)n 0.2 NED 296-312 4 1.6 0.310 0.393 0.343 0.212** 0.058b 0.584

Gg11 (TCCC)n 0.2 NED 329-363 4 1.2 0.061 0.182 0.173 0.666** 0.000 0.792

Gg12 (TA)n 0.2 FAM 276-296 4 1.8 0.610 0.454 0.361 −0.347** −0.110 0.807

MPS3 (mean) - - - - 4.2 2.0 0.596 0.444 0.377 −0.185 −0.115 0.495

Gg15 (GA)n 0.2 FAM 147-169 3 2.05 0.977 0.514 0.392 −0.910** −0.308 0.370

Gg17 (AC)n 0.2 PET 159-181 3 1.02 0.023 0.023 0.023 −0.003** 0.000 1.000

Gg18 (GA)n 0.2 VIC 179-187 6 2.24 0.976 0.558 0.456 −0.759** −0.272 0.776

Gg22 (GT)n 0.2 FAM 237-247 4 2.25 0.964 0.559 0.455 −0.733** −0.263 0.488

Gg23 (AC)n 0.2 VIC 258-278 6 2.84 1.000 0.651 0.582 −0.540** −0.214 0.562

MPS4 (mean) - - - - 4.4 2.08 0.788 0.461 0.3816 −0.589 −0.211 0.615

Overall (mean) - - - - 5.7 2.4 0.691 0.512 0.444 0.010 −0.139 0.561

Primer concentration in the final reaction as μM/primer ([P]); Number of alleles per locus (AN); effective number of alleles (AE); observed heterozygosity (HO);
expected heterozygosity (HE); polymorphic information content (PIC); inbreeding coefficient (FIS) with statistically significant deviations from Hardy-Weinberg
expectations indicated by *(P < 0.01) and **(P < 0.001); null allele frequency (FrNULL) with

bindicating the presence of null alleles at statistical significance at the 5%
nominal level and Ewans-Watterson probability (PE-W). Mean values for each multiplex assay and overall are indicated in bold.
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Multiplex assay cross-species amplification and efficiency
in species identification
Cross-species amplification of the four multiplex assays
was tested for 11 other southern African shark species
(Table 3). The number of alleles observed was highest in
G. galeus and M. palumbes, varying from 1 to 7, while
the percentage of polymorphism (PP) for each marker
ranged from 31.8%-95.5%. The polymorphic information
content (PIC) decreased exponentially with evolutionary
distance from the source species (Table 3) and the four
multiplex assays showed the highest PIC in M. mustelus,
M. palumbes and G. galeus.
The mean genetic diversity estimates for each species

in terms of number of alleles (AN), effective number
of alleles (AE), observed heterozygosity (HO), expected
heterozygosity (HE) and PIC are shown in Figure 4. In
group 1, the mean HE, AE and PIC varied from relatively
low in C. brachyurus (mean HE = 0.230; mean AE = 1.4;
mean PIC = 0.181) to relatively high in M. palumbes
(mean HE = 0.653; mean AE = 3.3; mean PIC = 0.606).
Group 2 exhibited similar patterns of genetic diversity
that varied from moderate in S. zygaena (mean HE =
0.593; mean AE = 3.2; mean PIC = 0.554) to relatively
high in P. pantherinum (mean HE = 0.662; mean AE =
3.4; mean PIC = 0.603). For group 3 with n = 4, the mean
HE, AE and PIC ranged from relatively low in C. plum-
beus (mean HE = 0.249; mean AE = 1.5; mean PIC =
0.193) to relatively high in C. obscurus (mean HE = 0.429;
mean AE = 2.1; mean PIC = 0.367).
The genotypic distribution of the study species is

depicted in Figure 5. Most of the study species could be
differentiated on PC1 and PC2 of the PCoA plot as can



Table 3 Multiplex transferability results of a total of 22 microsatellite loci showing the number of alleles per locus for
the 11 elasmobranch species tested

Locus MP GG CB CL CO CP HP HE SL SZ PP

(n = 8) (n = 8) (n = 8) (n = 4) (n = 4) (n = 4) (n =8) (n = 4) (n = 5) (n = 5) (n = 5)

MPS1

Mh1 4 3 1 2 1 1 1 1 4 2 3

Mh2 - 5 * 1 1 * - - 2 1 3

Mh9 4 4 * - * * - - 4 5 3

Mh25 5 5 2 3 2 3 1 3 4 6 3

Mca25 3 1 1 3 2 1 2 1 3 4 3

McaB39 3 3 2 2 1 2 2 * 2 3 3

MPS2

McaB5 3 1 2 4 2 3 1 1 5 5 7

McaB6 4 4 * 4 2 1 - 1 2 3 5

McaB22 2 1 1 4 2 4 2 4 4 7 7

McaB27 2 2 2 - 1 * - 1 - 2 -

Mca33 4 2 2 4 2 2 2 3 4 7 6

McaB37 3 5 1 3 1 1 - - 4 6 7

MPS3

Gg2 5 4 1 - 1 1 2 - - 2 -

Gg3 3 2 1 1 2 * 2 1 - 2 2

Gg7 4 1 1 - 1 1 2 - - 1 1

Gg11 6 4 1 - 2 2 * * - 1 3

Gg12 4 5 - - 1 * 1 1 2 2 1

MPS4

Gg15 7 5 1 4 1 4 4 2 5 3 5

Gg17 4 4 1 4 1 2 2 2 2 3 2

Gg18 6 3 2 3 1 3 3 3 7 6 4

Gg22 6 5 2 3 2 2 2 1 3 2 3

Gg23 4 2 2 1 2 1 3 2 6 4 3

Total P loci 21 18 8 13 10 10 12 7 16 19 18

PP 95.5 81.8 36.4 59.1 45.5 45.5 54.5 31.8 72.7 86.3 81.8

n - number of individuals tested; *Failed to amplify but showed successful transferability initially (see Table 1); − No amplification; allele numbers in bold indicate
loci that failed to cross-amplify according to Table 1; P – polymorphic and PP - percentage of polymorphism. For species abbreviations refer to Table 1.

Maduna et al. BMC Research Notes 2014, 7:352 Page 7 of 12
http://www.biomedcentral.com/1756-0500/7/352

Stellenbosch University  http://scholar.sun.ac.za
be seen from individuals of each respective species clus-
tering together. Individuals of the catshark species
(H. edwardsii, P. pantherinum and H. pictus) however,
were dispersed across quadrant 3 and 4. The PCoA also
revealed that one of the M. mustelus individuals was
misidentified as G. galeus. The identity of this particular
individual was subsequently confirmed using the genetic
identification method developed specifically for smooth-
hound sharks [16]. Briefly, this method involves using
four primers (1 universal forward primer and 3 species-
specific reverse primers) for the mitochondrial gene,
nicotinamide adenine dehydrogenase subunit 2 (ND2),
in a multiplex PCR reaction. The reverse primers amp-
lify a fragment of different length for each species (M.
asterias, 564 bp; M. mustelus, 392 bp; G. galeus, 671 bp)
and can therefore be utilised for distinguishing species
based on fragment size.
In this study, the potential use of microsatellite loci

in species identification was successfully demonstrated
using shared microsatellite loci between species. The
polymorphic information of these microsatellite loci was
characterised by low genetic variation as previously pro-
posed for elasmobranchs [31]. The genotypic distribu-
tion of the study species could also be differentiated
based on PCoA analysis. Markedly, the lack of differenti-
ation between the catshark species (H. edwardsii and
H. pictus) on the PCoA plot may be explained by the
misidentification of the Haploblepharus species that is a



Figure 4 Mean genetic diversity estimates using 12 microsatellite loci shared between species: number of alleles (AN), effective
number of alleles (AE), heterozygosity (HE) and polymorphic information content (PIC). Error bars represent standard error.
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common occurrence in the catshark family [54]. To
further investigate whether the lack of differentiation de-
tected with microsatellites was indeed due to misidentifi-
cation, the cytochrome b (Cyt b) and ND2 genes were
applied for species comparisons [54]. For both genes, se-
quence analyses revealed individuals with cryptic identi-
fication, suggesting that in the case of the catsharks, the
microsatellites optimised in the current study were not
successful in discriminating between the Haploblepharus
species but could in the future aid in the identification
of cryptic speciation within the catshark family.
In South Africa, the aforementioned misidentification

issue is prominent in fishing operations (particularly in
longline and trawl fisheries) where there is a high rate
of incidental capture of non-target shark species [9-12].
This hinders the collection of reliable data on shark
catch and trade on a species-specific basis making ro-
bust stock assessments and identification of overfished
and potentially threatened species nearly impossible in
most situations [4]. This was apparent in a study by
Attwood et al. [12], which assessed bycatch in South
Africa’s inshore trawl fishery based on observer records.
Figure 5 Principle coordinates analysis (PCoA) of study species based
Arrows depict misidentified/mislabelled individuals.
In the aforementioned study, certain taxa were difficult to
identify, and therefore taxonomic groups were lumped in
species groups (e.g. Raja spp., Mustelus spp. and Scyliorhi-
nidae), even though every attempt was made to analyse
data at species level. Therefore, the molecular genetic
makers developed by the current study may facilitate in
obtaining species-specific catch data for stock assessment,
characterising genetic diversity and delineating population
genetic structure. This in turn will contribute to the im-
plementation of future conservation and management
plans on a species-specific level in southern Africa.

Conclusions
Cross-species amplification of available microsatellite
loci to target species has proven to be more time- and
cost-effective in comparison to the de novo development
approach and permitted the cross-amplification of 22
markers across 12 elasmobranch species. Cross-species
amplification of the four multiplex assays developed in
the current study highlighted the usefulness of microsa-
tellites for characterising genetic diversity and potentially
also species identification of a number of commercially
on 12 shared amplified microsatellite loci between species.
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important and endemic elasmobranch species. The mo-
lecular genetic markers developed in this study and their
usefulness in down-stream applications could therefore
aid in a more integrative, multidisciplinary approach to
conservation management of elasmobranchs in southern
Africa.

Methods
Ethics statement
The collection of specimens from various shark species
used in this study complied with the Convention on Bio-
logical Diversity (http://www.cbd.int/convention/) and
the Convention on the Trade in Endangered Species of
Wild Fauna and Flora (http://www.cites.org/). All per-
mits to collect finclip or muscle tissue for research pur-
poses were granted by the Department of Agriculture,
Forestry and Fisheries (Republic of South Africa).

Study species and DNA extraction
Sixteen elasmobranch species occurring in southern
African waters belonging to five families within two orders
were selected for cross-species amplification (Additional
file 1). Where possible, specimens were collected from at
least two sampling locations to better capture allelic diver-
sity present within populations of each respective species.
However, due to opportunistic sampling for a majority
of the study species, samples were obtained from only
a single location (Additional file 1). Muscle tissue or
finclips were preserved in 99% ethanol and stored at
room temperature until further use. Total genomic DNA
was isolated using the standard cetyltrimethylammonium
bromide (CTAB) method of Saghai-Maroof et al. [55].
The extracted DNA was quantified using a NanoDrop
ND-1000 spectrophotometer v.3.0.1 (NanoDrop®). For test-
ing cross-species amplification, each DNA sample was ad-
justed to a working concentration of 50 ng/μl and stored at
-20°C prior to polymerase chain reaction (PCR) analysis.

Microsatellite primer transfer
A total of 35 microsatellite markers previously developed
in five elasmobranch species (Raja pulchra [44], Scylior-
hinus canacula [45], M. canis [49], G. galeus [50]
and M. henlei [56,57]) were selected for testing cross-
species amplification. Primer sequences and annealing
temperature (TA) of each primer set optimised for
each respective source species are shown in Table
S2 (Additional file 2). Polymerase chain reaction condi-
tions optimised for the majority of the source species
[G. galeus, M. henlei, R. pulchra and S. canacula] were
applied for cross-species microsatellite examinations
except for the M. canis ([56] PCR protocol) and some
R. pulchra (modified [57] PCR protocol) primer sets.
Polymerase chain reactions for all individuals were exe-
cuted in a GeneAmp® PCR System 2700.
The PCR amplicons were visualised on a 2% agarose
gel stained with ethidium bromide together with nega-
tive controls and Promega 100 bp molecular size ladder
for preliminary size determination. Success or failure of
PCR amplification in cross-species trials was determined
simply on the basis of whether band intensity was suffi-
cient to score alleles. In most instances, less stringent
PCR conditions were not employed in the cross-species
assays so as to minimise the risk of amplification of non-
orthologous loci in the target species. The number of
markers that showed amplification success at all or a
percentage of individuals in the target species (“+/++” in
Table 1) were counted as an index to measure the cross-
species microsatellite amplification performance.

Multiplex design and optimisation
As this study forms part of a larger project on the devel-
opment of genetic resources for commercially important
and endemic species of southern Africa, Mustelus mus-
telus was used as a candidate species for testing of the
four novel multiplex assays. Levels of polymorphism were
initially assessed at all the successfully cross-amplified
microsatellite loci in a panel of eight individuals of
M. mustelus. Amplicons were subjected to electrophoresis
for two hours at 150 volts on a 12% polyacrylamide gel to
detect size variants. Microsatellites were considered to be
polymorphic when two bands were distinguishable in a
single individual (i.e. heterozygote) and/or clear size differ-
ences were detected between different individuals.
Twenty-two polymorphic microsatellite loci were se-

lected, and primers fluorescently labelled and optimised
in four multiplex assays (5–6 loci per MPS) using a
strategy outlined by Guichoux et al. [58] with one of the
following dyes: FAM, VIC, PET, or NED. The use of dif-
ferent dyes was to facilitate co-amplification of multiple
microsatellite markers in a single reaction for cost- and
time-efficient genotyping (Multiplex PCR).
After optimisation of the newly designed MPS (MPS1,

MPS2, MPS3 and MPS4), a panel of 87M. mustelus indi-
viduals from across the distribution range in southern
Africa was genotyped for marker characterisation pur-
poses. The multiplex assays were then tested on 11 add-
itional species to show their overall application in genetic
diversity and population structure analysis. Finally, a total
of 12 microsatellite loci that were successfully genotyped
across the study species (Mh1, Mh25, Mca25, McaB39,
McaB5, McaB22, Mca33, Gg15, Gg17, Gg18, Gg22 and
Gg23) were selected to demonstrate the potential use of
microsatellite loci in species identification.

The percentage of polymorphism (PP) was calculated
using the formula:

PP ¼ NP

NT
X 100

http://www.cbd.int/convention/
http://www.cites.org/
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where NP is the total number of polymorphic loci and
NT is the total number of loci multiplied by 100.
For the multiplex reaction, the Qiagen Multiplex PCR kit

was used and PCR conducted according to the manufac-
turer’s instructions except for varying TA, 59°C for MPS1,
MPS3 and MPS4; and 56°C for MPS2. For subsequent ana-
lysis on an ABI 3730XL DNA Analyzer, PCR products
were diluted in distilled water and fragment analysis per-
formed together with the LIZ600 internal size standard.
Individual genotypes were scored based on fragment size
via Peak Scanner® software v.1 (Life Technologies). Auto
Bin v.0.9 macro for Excel (http://www.bordeaux-aquitaine.
inra.fr/biogeco/Ressources/Logiciels/Autobin; see [58]) was
used to detect discreet size variants where allele binning of
genotype data obtained from Peak Scanner® software v.1
was based on raw size.

Genetic diversity analysis
MicroChecker v.2.2.3 [59] was used to evaluate the pres-
ence of genotypic errors caused by allele dropout, stut-
tering and null alleles. Null allele frequencies (FrNULL)
were calculated using the Brookfield 1 estimator imple-
mented in this program. Locus-specific fixation index
(FIS) and over all loci was estimated to measure departure
from Hardy-Weinberg equilibrium using the exact prob-
ability test (20 batches, Dememorization; 10000 and 5000
iterations) using Genepop v.4.0 [60]. Linkage disequilib-
rium between all pairs of loci was calculated using an
exact test implemented also in Genepop. Slatkin’s exact
test (1000 permutations) for neutrality, based on Ewens-
Watterson sampling theory [61] was used to detect loci
under selection as implemented in Arlequin v.3.5.1.2 [62].
The number (AN) of alleles at each microsatellite locus, as
well as the effective number of alleles AE:

AE ¼ 1=
Xn
i¼1

pi
2

where pi is the frequency of the ith allele and n is the
number of alleles was calculated using the GenAlEx
v.6.5 program [63]. The proportion of individual samples
that were heterozygous [direct count heterozygosity
(HO) and expected under Hardy-Weinberg equilibrium
(HE)] was calculated using MsatTools [64]. MsatTools
was also used to calculate the polymorphic information
content (PIC) of each marker according to the following
equation in [65]:

PIC ¼ 1−
Xn
i¼1

pi
2−2

Xn−1
i¼1

Xn
j¼iþ1

pi
2pj

2

" #
where pi and pj are

the frequency of the ith and jth allele respectively and
n is the number of alleles.
Direct comparison of genetic diversity estimates (HE, AE

and PIC) across the 11 species was not plausible due to
the different sample sizes that were used. Species were
therefore grouped into three groups according to sample
size: (1) M. mustelus, M. palumbes, G. galeus, C. bra-
chyurus and H. pictus (n = 8); (2) P. pantherinum, S. lewini
and S. zygaena (n = 5) and (3) C. obscurus, C. limbatus, C.
plumbeus and H. edwardsii (n = 4). The potential use of
microsatellite data for species-assignment was assessed
through principle coordinate analysis (PCoA) in GenAlEx
v.6.5 using genetic distances between individuals.
To evaluate cross-species amplification performance,

DNA sequences derived from the mitochondrial ND2
gene (1044 bp) of each species were downloaded from
GenBank and Global Cestode Database: Elasmobranchs
Specimens (http://elasmobranchs.tapewormdb.uconn.edu)
(Additional file 3). The genetic distance of the study taxa
was estimated using the Kimura 2-parameter model with
the rate variation among sites modelled with a gamma dis-
tribution (shape parameter = 5) implemented in MEGA
v.5 [66].
Additional files

Additional file 1: The 16 elasmobranch species of southern Africa
selected for cross-species amplification, including family, species,
distribution and sampling locations.

Additional file 2: The 35 putative microsatellite markers developed
from five closely related species for cross-species amplification in the
study taxa, including the primers sequence, microsatellite repeat motif,
annealing temperature (TA) and GenBank accession numbers.

Additional file 3: The ND2 sequence information of the study taxa
used to estimate the genetic distance to evaluate cross-species
performance, including ID Verified, availability of images (yes or no)
which are available in the on-line host specimen database (http://
elasmobranchs.tapewormdb.uconn.edu) and GenBank accession
numbers.
Abbreviations
CI: Confidence interval; PP: Percentage of polymorphism; P: Polymorphic;
PIC: Polymorphic information content; AN: Number of alleles; AE: Effective
number of alleles; HO: Observed heterozygosity; HE: Expected heterozygosity;
FIS: Inbreeding coefficient; FrNULL: Null allele frequency; PE-W: Ewans-Watterson
probability; K2P: Kimura 2-parameter model; ND2: Nicotinamide adenine
dehydrogenase subunit 2; MM: Mustelus mustelus; MP: Mustelus palumbes;
GG: Galeorhinus galeus; SQ: Scylliogaleus quecketti; CB: Carcharhinus
brachyurus; CL: Carcharhinus limbatus; CO: Carcharhinus obscurus;
CP: Carcharhinus plumbeus; HP: Haploblepharus pictus; HE: Haploblepharus
edwardsii; PA: Poroderma africanum; PP: Poroderma pantherinum; SL: Sphyrna
lewini; SZ: Sphyrna zygaena; RS: Raja straeleni; RA: Raja alba.
Competing interests
The authors have no competing interests to declare.
Authors’ contributions
SNM performed cross-species amplification, microsatellite genotyping,
genetic data analyses, organised the samples and drafted the manuscript.
CR participated in cross-species amplification and microsatellite genotyping.
RR-W participated in experimental design and coordination and contributed
to manuscript preparation. AEB-vdM conceived the study, provided funds,
participated in its design and coordination and contributed to manuscript
preparation. All authors read and approved the final manuscript.

http://www.bordeaux-aquitaine.inra.fr/biogeco/Ressources/Logiciels/Autobin
http://www.bordeaux-aquitaine.inra.fr/biogeco/Ressources/Logiciels/Autobin
http://elasmobranchs.tapewormdb.uconn.edu
http://www.biomedcentral.com/content/supplementary/1756-0500-7-352-S1.doc
http://www.biomedcentral.com/content/supplementary/1756-0500-7-352-S2.doc
http://www.biomedcentral.com/content/supplementary/1756-0500-7-352-S3.doc
http://elasmobranchs.tapewormdb.uconn.edu
http://elasmobranchs.tapewormdb.uconn.edu


Maduna et al. BMC Research Notes 2014, 7:352 Page 11 of 12
http://www.biomedcentral.com/1756-0500/7/352

Stellenbosch University  http://scholar.sun.ac.za
Acknowledgements
The authors gratefully acknowledge and thank the KwaZulu-Natal Sharks
Board, Oceans Research, South African Department of Agriculture, Forestry
and Fisheries (DAFF), South African Shark Conservancy and White Shark
Africa for providing valuable samples. The authors also thank Michelle-
Angelique Hallendorff for editorial revision and Clint Rhode and Luca Mirimin
for valuable discussions. This work was funded by the National Research
Foundation, South Africa.

Received: 7 February 2014 Accepted: 2 June 2014
Published: 10 June 2014

References
1. Corrigan S, Beheregaray LB: A recent shark radiation: molecular

phylogeny, biogeography and speciation of wobbegong sharks
(family: Orectolobidae). Mol Phyl Evol 2009, 52:205–216.

2. Worm B, Davis B, Kettemer L, Ward-Paige CA, Chapman D, Heithaus MR,
Kessel ST, Gruber SH: Global catches, exploitation rates, and rebuilding
options for sharks. Mar Policy 2013, 40:194–204.

3. Stevens JD, Bonfil R, Dulvy NK, Walker PA: The effects of fishing on sharks,
rays, and chimaeras (chondrichthyans), and the implications for marine
ecosystems. ICES J Mar Sci 2000, 57:476–494.

4. Shivji M, Clarke S, Pank M, Natanson L, Kohler N, Stanhope M: Genetic
identification of pelagic shark body parts for conservation and trade
monitoring. Conserv Biol 2002, 16:1036–1047.

5. Nei M, Maruyama T, Chakraborty R: Bottleneck effect and genetic
variability in populations. Evolution 1975, 29:1–10.

6. Glenn TC, Stephan W, Braun MJ: Effects of a population bottleneck on
whooping crane mitochondrial DNA variation. Conserv Biol 1999, 13:1097–1107.

7. Hoelzel AR, Shiviyi MS, Magnussen J, Francis MP: Low worldwide genetic
diversity in the basking shark. Biol Lett 2006, 2:630–642.

8. Pereyra S, García G, Miller P, Oviedo S, Domingo A: Low genetic diversity
and population structure of the narrownose shark (Mustelus schmitti).
Fish Res 2010, 106:468–473.

9. Myers RA, Worm B: Rapid worldwide depletion of predatory fish
communities. Nature 2003, 423:280–283.

10. Barker MJ, Schluessel V: Managing global shark fisheries: suggestions for
prioritising management strategies. Aquat Conserv Mar and Freshwat
Ecosyst 2005, 15:325–347.

11. Petersen SL, Honig MB, Ryan PG, Underhill LG, Compagno LJV: Pelagic
shark bycatch in the pelagic longline fishery off Southern Africa. In
Understanding and Mitigating Vulnerable Bycatch in Southern African Trawl
and Longline Fisheries. Edited by Petersen SL, Nel DC, Ryan PG, Underhill LG;
2008. WWF South Africa Report Series - 2008/Marine/002.

12. Attwood CG, Peterson SL, Kerwath SE: Bycatch in South Africa's inshore
trawl fishery as determined from observer records. ICES J Mar Sci 2011,
68:2163–2174.

13. Pank M, Shivji MS, Stanhope M, Natanson L, Kohler N: Rapid and
simultaneous identification of body parts from the morphologically
similar sharks Carcharhinus obscurus and Carcharhinus plumbeus
(Carcharhinidae) using multiplex PCR. Mar Biotechnol 2001, 3:231–240.

14. Domingues RR, de Amorim AF, Hilsdorf AWS: Genetic identification of
Carcharhinus sharks from the southwest Atlantic Ocean
(Chondrichthyes: Carcharhiniformes). J Appl Ichthyol 2013, 29:738–742.

15. Abercrombie DL, Clarke SC, Shivji MS: Global-scale genetic identification
of hammerhead sharks: Application to assessment of the international
fin trade and law enforcement. Conserv Genet 2005, 6:775–788.

16. Farrell ED, Clarke MW, Mariani S: A simple genetic identification method
for northeast Atlantic smoothhound sharks (Mustelus spp.). ICES J Mar Sci
2009, 66:561–565.

17. Naylor GJP, Caira JN, Jensen K, Rosana KAM, White WT, Last PR: A DNA
sequence based approach to the identification of shark and ray species
and its implications for global elasmobranch diversity and parasitology.
Bull Am Mus of Nat Hist 2012, 367:1–262.

18. Da Silva C, Bürgener M: South Africa’s demersal shark meat harvest.
Traffic Bulletin 2007, 21:55–65.

19. Clarke SC: Understanding pressures on fishery resources through trade
statistics: A pilot study of four products in the Chinese dried seafood
market. Fish Fish 2004, 5:53–74.

20. Tautz D: Hypervariability of simple sequences as a general source for
polymorphic DNA markers. Nucleic Acids Res 1989, 17:6463–6471.
21. Weber JL, Wong C: Mutation of human short tandem repeats. Hum Mol
Genet 1993, 2:1123–1128.

22. Edwards CJ, Soulsbury CD, Statham MJ, Ho SYW, Wall D, Dolf D, Iossa G,
Baker PJ, Harris S, Sacks BN, Bradley DG: Temporal genetic variation of
the red fox, Vulpes vulpes, across western Europe and the British Isles.
Quat Sci Rev 2012, 57:95–104.

23. Ozerov MY, Veselov AE, Lumme J, Primmer CR: Temporal variation of genetic
composition in Atlantic salmon populations from the Western White Sea
Basin: influence of anthropogenic factors? BMC Genet 2013, 14:88.

24. Urian KW, Hofmann S, Wells RS, Read AJ: Fine-scale population structure
of bottlenose dolphins (Tursiops truncatus) in Tampa Bay, Florida.
Mar Mamm Sci 2009, 25:619–638.

25. Mourier J, Mills SC, Planes S: Population structure, spatial distribution
and life‐history traits of blacktip reef sharks Carcharhinus melanopterus.
J Fish Biol 2013, 82:979–993.

26. Mobley KB, Amundsen T, Forsgren E, Svensson PA, Jones AG: Multiple
mating and low incidence of cuckoldry for nest-holding males in the
two-spotted goby, Gobiusculus flavescens. BMC Evol Biol 2009, 9:6.

27. Boomer JJ, Harcourt RG, Francis MP, Walker TI, Braccini JM, Stow AJ: Frequency
of multiple paternity in gummy shark, Mustelus antarcticus, and rig, Mustelus
lenticulatus, and the implications of mate encounter rate, postcopulatory
influences, and reproductive mode. J Hered 2013, 104:371–379.

28. Martin AP, Pardini AT, Noble LR, Jones CS: Conservation of a dinucleotide
simple sequence repeat locus in sharks. Mol Phyl Evol 2002, 23:205–213.

29. Costa M, Fernandes C, Rodrigues M, Santos-Reis M, Bruford MW: A panel of
microsatellite markers for genetic studies of European polecats (Mustela
putorius) and ferrets (Mustela furo). Eur J Wildl Res 2012, 58:629–633.

30. Sekino M, Hara M: Individual assignment tests proved genetic boundaries
in a species complex of Pacific abalone (genus Haliotis). Conserv genet
2007, 8:823–841.

31. Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T,
Krück NC, Morgan JAT, Tillett BJ, Ovenden JR: A review of the application
of molecular genetics for fisheries management and conservation of
sharks and rays. J Fish Biol 2012, 80:1789–1843.

32. Boomer JJ, Stow AJ: Rapid isolation of the first set of polymorphic
microsatellite loci from the Australian gummy shark, Mustelus antarticus
and their utility across divergent shark taxa. Conserv Genet Resour 2010,
2:393–395.

33. Barbara T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C: Cross-species
transfer of nuclear microsatellite markers: potential and limitations.
Mol Ecol 2007, 16:3759–3767.

34. Rico C, Rico I, Hewitt G: 470 million years of conservation of microsatellite
loci among fish species. Proc R Soc Lond B 1996, 263:549–557.

35. Primmer CR, Painter JN, Koskinen MT, Palo JU, Merilä J: Factors affecting avian
cross-species microsatellite amplification. J Avian Biol 2005, 36:348–360.

36. Compagno LJV: An overview of chondrichthyans systematics and
biodiversity in Southern Africa. Trans R Soc S Afr 2000, 54:75–120.

37. Department of Agriculture, Forestry and Fisheries (DAFF): South Africa’s
National Plan of Action for the Conservation and Management of Sharks.
[http://www.daff.gov.za/doaDev/topMenu/DRAFT_NPOA_SHARKS.pdf]

38. Navigating Global Shark Conservation: Current Measures and Gaps.
[http://www.pewenvironment.org/uploadedFiles/PEG/Publications/Report/
Navigating%20Global%20Shark%20Conservation_Current%20Measures%
20and%20Gaps%207%206%2012.pdf]

39. Namibia's National Plan of Action to prevent, deter and eliminate illegal,
unreported and unregulated fishing. [http://209.88.21.36/opencms/export/
sites/default/grnnet/MFMR/downloads/docs/Namibia_NPOA_IUU_Final.pdf]

40. Pierce SJ, Trerup M, Williams C, Tilley A, Marshall AD, Raba N: Shark fishing in
Mozambique: A preliminary assessment of artisanal fisheries. Maputo: Eyes on
the Horizon; 2008:1–28.

41. Karaiskou N, Buggiotti L, Leder E, Primmer CR: High degree of transferability
of 86 newly developed zebra finch EST-linked microsatellite markers in 8
bird species. J Hered 2008, 99:688–693.

42. FitzSimmons NN, Moritz C, Moore S: Conservation and dynamics of
microsatellite loci over 300 million years of marine turtle evolution.
Mol Biol Evol 1995, 12:432–440.

43. Primmer CR, Møller AP, Ellegren H: A wide-range survey of cross-species
microsatellite amplification in birds. Mol Ecol 1996, 5:365–378.

44. Kang J, Park J, Jo H: Rapid development of microsatellite markers with
454 pyrosequencing in a vulnerable fish, the mottled skate, Raja pulchra.
Int J Mol Sci 2012, 13:7199–7211.

http://www.pewenvironment.org/uploadedFiles/PEG/Publications/Report/Navigating%20Global%20Shark%20Conservation_Current%20Measures%20and%20Gaps%207%206%2012.pdf
http://www.pewenvironment.org/uploadedFiles/PEG/Publications/Report/Navigating%20Global%20Shark%20Conservation_Current%20Measures%20and%20Gaps%207%206%2012.pdf
http://www.pewenvironment.org/uploadedFiles/PEG/Publications/Report/Navigating%20Global%20Shark%20Conservation_Current%20Measures%20and%20Gaps%207%206%2012.pdf
http://209.88.21.36/opencms/export/sites/default/grnnet/MFMR/downloads/docs/Namibia_NPOA_IUU_Final.pdf
http://209.88.21.36/opencms/export/sites/default/grnnet/MFMR/downloads/docs/Namibia_NPOA_IUU_Final.pdf


Maduna et al. BMC Research Notes 2014, 7:352 Page 12 of 12
http://www.biomedcentral.com/1756-0500/7/352

Stellenbosch University  http://scholar.sun.ac.za
45. Griffiths AM, Casane D, McHugh M, Wearmouth VJ, Sims DW, Genner MJ:
Characterisation of polymorphic microsatellite loci in the small-spotted
catshark (Scyliorhinus canicula L.). Conserv Genet Resour 2011, 3:705–709.

46. Zane L, Bargelloni L, Patarnello T: Strategies for microsatellite isolation: a
review. Mol Ecol 2002, 11:1–16.

47. Primmer CR, Ellegren H: Patterns of molecular evolution in avian
microsatellites. Mol Biol Evol 1998, 15:997–1008.

48. Angers B, Bernatchez L: Complex evolution of a salmonid microsatellite
locus and its consequences in inferring allelic divergence from size
information. Mol Biol Evol 1997, 14:230–238.

49. Giresi M, Renshaw MA, Portnoy DS, Gold JR: Isolation and characterization
of microsatellite markers for the dusky smoothhound shark, Mustelus
canis. Conserv Genet Resour 2012, 4:101–104.

50. Chabot C, Nigenda S: Characterization of 13 microsatellite loci for the
tope shark, Galeorhinus galeus, discovered with next generation
sequencing and their utility for eastern Pacific smooth-hound sharks
(Mustelus). Conserv Genet Resour 2011, 3:553–555.

51. Castoe TA, Poole AW, Gu W, Jason De Koning AP, Daza JM, Smith EN,
Pollock DD: Rapid identification of thousands of copperhead snake
(Agkistrodon contortrix) microsatellite loci from modest amounts of 454
shotgun genome sequence. Mol Ecol Res 2010, 10:341–347.

52. Dawson DA, Horsburgh GJ, Küpper C, Stewart IR, Ball AD, Durrant KL, Burke
T: New methods to identify conserved microsatellite loci and develop
primer sets of high cross-species utility–as demonstrated for birds.
Mol Ecol Res 2010, 10:475–494.

53. Hoffman JI, Nichols HJ: A novel approach for mining polymorphic
microsatellite markers in silico. PLoS One 2011, 6:e23283.

54. Human BA: A taxonomic revision of the catshark genus Haploblepharus
Garman 1913 (Chondrichthyes: Carcharhiniformes: Scyliorhinidae).
Zootaxa 2007, 1451:1–40.

55. Saghai-Maroof MA, Solima KM, Jorgenson RA, Allard RW: Ribosomal DNA
spacerlength polymorphisms in barley: Mendelian inheritance, chromosomal
location, and population dynamics. Proc Natl Acad Sci U S A 1984, 81:8014–8018.

56. Chabot CL: Characterization of 11 microsatellite loci for the brown
smooth-hound shark, Mustelus henlei, discovered with next-generation
sequencing. Conserv Genet Resour 2012, 4:23–25.

57. Byrne RJ, Avis JC: Genetic mating system of the brown smoothhound
shark (Mustelus henlei), including a literature review of multiple paternity
in other elasmobranch species. Mar Biol 2012, 159:749–756.

58. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O,
Lepoittevin C, Malaus T, Revardel E, Salin F, Petit RJ: Current trends in
microsatellite genotyping. Mol Ecol Resour 2011, 11:591–611.

59. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P: MICROCHECKER:
software for identifying and correcting genotyping errors in
microsatellite data. Mol Ecol Notes 2004, 4:535–538.

60. Rousset F: GENEPOP’007: a complete re-implementation of the GENEPOP
software for Windows and Linux. Mol Ecol Resour 2008, 8:103–106.

61. Slatkin M: An exact test for neutrality based on the Ewens sampling
distribution. Genet Res 1994, 64:71–74.

62. Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: an integrated software package
for population genetics data analysis. Evol Bioinform Online 2005, 1:47–50.

63. Peakall R, Smouse PE: GenAlEx 6.5: genetic analysis in Excel: population
genetic software for teaching and research – an update. Bioinformatics
2012, 28:2537–2539.

64. Park S: The Excel microsatellite toolkit. [http://animalgenomics.ucd.ie/
sdepark/ms-toolkit]

65. Botstein D, White RL, Skolnick M, Davis RW: Construction of a genetic
linkage map in man using restriction fragment length polymorphisms.
Am J Hum Genet 1980, 32:314–331.

66. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S:MEGA5: molecular
evolutionary genetics analysis using maximum likelihood, evolutionary
distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731–2739.

doi:10.1186/1756-0500-7-352
Cite this article as: Maduna et al.: Microsatellite cross-species
amplification and utility in southern African elasmobranchs:
A valuable resource for fisheries management and conservation. BMC
Research Notes 2014 7:352.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit




