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ABSTRACT
Building sophisticated computer players for games has been
of interest since the advent of artificial intelligence research.
Monte Carlo tree search (MCTS) techniques have led to re-
cent advances in the performance of computer players in a
variety of games. Without any refinements, the commonly-
used upper confidence bounds applied to trees (UCT) selec-
tion policy for MCTS performs poorly on games with high
branching factors, because an inordinate amount of time is
spent performing simulations from each sibling of a node be-
fore that node can be further investigated. Move-ordering
heuristics are usually proposed to address this issue, but
when the branching factor is large, it can be costly to order
candidate actions. We propose a technique combining sam-
pling from the action space with a näıve evaluation function
for identifying nodes to add to the tree when using MCTS
in cases where the branching factor is large. The approach
is evaluated on a restricted version of the board game Risk
with promising results.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games

General Terms
Algorithms, Experimentation

Keywords
Monte-Carlo Tree Search, Risk, Evaluation Function, Sam-
pling, Heuristics
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1. INTRODUCTION
Since the advent of artificial intelligence research, develop-

ing computer players for various games has received a large
amount of attention. This can be partially attributed to
the fact that a wide variety of games provide suitable ab-
stractions of real-world tasks. Conceptually, the simplest
games are deterministic two-player games with perfect in-
formation, such as Checkers, Chess, and Go. While the best
action in most such games can theoretically be found by
minimax game-tree search [33], in practice high branching
factors make exact computation infeasible, so that the de-
velopment of various search refinements and heuristics have
been necessary to achieve performance comparable to hu-
mans.

A large improvement in the quality of Computer Go play-
ers can be attributed to the development of Monte Carlo
tree search (MCTS) techniques in 2006 [22]. Subsequently,
various refinements and heuristics have made considerable
further improvements to the performance of Computer Go
players making use of MCTS [13]. An important class of re-
finements are those modifying the exploration-exploitation
tradeoff central to MCTS to de-emphasize exploration of
new actions when branching factors are prohibitively large.
Without such refinements, an inordinate amount of time is
spent performing simulations from each sibling of a node
before that node can be further investigated.

This work proposes such a technique using sampling from
the action space in conjunction with a näıve evaluation func-
tion for identifying nodes to add to the tree during MCTS
when the branching factor is large. The approach is evalu-
ated on a restricted version of the board game Risk. The
results indicate that the sampling approach can improve per-
formance over classical approaches and MCTS implementa-
tions without this enhancement.

2. BACKGROUND AND RELATED WORK
This section highlights important aspects of MCTS and

presents the restricted version of Risk we considered. Vari-
ous related studies are then identified to place our work in
context.

2.1 Basics of MCTS
MCTS is an any-time best-first tree search algorithm which

uses stochastic simulations to both guide the growth of the
search tree as well as evaluate its nodes. The process fol-
lowed in MCTS is illustrated in Figure 1 and consists of it-
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erations of the following phases, starting from a single root
node, until the available time expires:

• Selection — Recursively selecting a best child node
to explore, until a node to expand is identified.1 Leaf
nodes are always expanded if reached; internal nodes
may be expanded if there are legal actions from the
node not yet represented in the current search tree.
The mechanism for identifying the best child is known
as the tree policy.

• Expansion — Adding a new node to the search tree
as child of the node found in the previous step. This
node corresponds to a new legal action to be explored.

• Simulation — Performing a simulation from the newly
expanded node. A simulation (also known as a play-
out or rollout) typically involves playing the rest of
the game using some simple random strategy. This
strategy is known as the simulation policy.

• Backpropagation — Updating nodes in the search
tree with information obtained from the simulation.
Most commonly, nodes maintain information on the
success rate of simulations performed starting from
their descendants; however, various other information
may also be kept.

Figure 1: The MCTS Algorithm (Figure from [5]).

When the search stops, the actions that lead from the root
are considered and the best-performing action is returned.
Coulom [13] considered various options for identifying the
best-performing action — based on his work, it is now fairly
common to consider the action that has been visited the
most as the best. We use this“most robust child”convention
in the rest of this work.

2.1.1 Tree policies for large branching factors
The tree policy determines which nodes are selected in the

selection phase of the MCTS algorithm. Generally, MCTS
considers each node in the search tree as a multi-armed ban-
dit (where each arm corresponds to a possible next action),
and a tree policy applies some strategy for the multi-armed
bandit problem at the node. One of the first MCTS algo-
rithms, upper confidence bounds applied to trees (UCT),
applied UCB1 [2], a classical multi-armed bandit algorithm,
at each node [22]. The authors proved convergence of this al-
gorithm to optimal behaviour, despite the fact that nodes do
not behave exactly like multi-armed bandits in tree search

1We omit minor technical details involving the case where
a node under consideration is a terminal node in the game
tree.

due to nonstationarity of the reward distribution, as dis-
cussed in [13].

The UCT tree policy identifies a node for expansion if
there are legal actions from the corresponding state not yet
in the search tree; once all such legal actions have been added
to the search tree as children for a node, the policy selects
the child node with the highest UCT value (also known as
urgency). The UCT value of a node is calculated as

UCT(v) =
Q(v)

N(v)
+ c

√
ln(N(pv))

N(v)
(1)

where N(v) is the number of simulations from descendants
of a node v, Q(v) is the number of those simulations won,
pv denotes the parent node of v, and c is a tunable explo-
ration constant. Thus, the first term estimates the proba-
bility of winning from v, while the second term represents
uncertainty in the estimate based on the sample size. In this
setting, a higher value for c will result in exploration being
emphasised relative to exploitation. An appropriate value
for c must typically be found experimentally — the experi-
ments in this work used c = 1.2 (found experimentally [17]).

A practical problem with UCT is that it requires every
legal action from a node to be added to the search tree be-
fore any action from that node is evaluated for a second
time. This requirement is inconvenient when the game tree
branching factor is large, so some heuristics bypass this be-
haviour. The best-known heuristics in this regard are first-
play urgency (FPU) [16] and progressive widening [6, 12].

First-play urgency assumes that if some actions that have
already been considered look promising enough, they can
be explored further before trying other unexplored actions.
This is controlled by means of a constant called the FPU
value: if certain children’s UCT values exceed the FPU
value, further exploitation of those children is permitted. To
ensure that all nodes are eventually considered in the limit,
the FPU value is typically set to a value larger than one —
a common value in practice (as used in Oakfoam [32]), and
which we use in this work, is 1.1 [23]. Using this technique
allows good-looking actions found early in positions to be
investigated more thoroughly, while not hampering explo-
ration when initial actions look poor.

Progressive widening avoids early expansion in UCT by
specifying a schedule for adding unexplored actions to nodes:
after a certain number of MCTS iterations descend through
the node, another child becomes eligible to be added to the
tree. Usually these schedules restrict the number of children
to grow as the logarithm or some root of the number of
simulations — examples of each case can be found in [12]
and [27] respectively.

Unlike FPU, this approach could be very poor if legal
actions for expansion are selected entirely randomly: even
if initial actions look poor, the schedule prevents further
exploration. For this reason, progressive widening orders
the legal actions based on some quality heuristic [27] (such
as an evaluation function), and expands them in decreasing
order of the heuristic.

This ordering approach is often also applied to FPU to im-
prove its performance. Common approaches which facilitate
this, by modifying the UCT value formula, are progressive
bias [6] and rapid action value estimation (RAVE) [15] —
however, further discussion of these techniques is beyond the
scope of this paper.
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2.1.2 MCTS for stochastic domains
The version of Risk we consider in our investigations is a

perfect information game, but nevertheless certain outcomes
are determined by chance. Various studies have considered
approaches to dealing with stochasticity and uncertain in-
formation in MCTS [5, 3, 31, 8, 24].

We follow a fairly straightforward extension of MCTS for
dealing with this stochasticity based on the approach origi-
nally proposed for backgammon in [31].

The approach modifies MCTS as follows: in the tree, ac-
tions with stochastic outcomes correspond to nodes, while
the outcomes correspond to separate nodes. Stochastic ac-
tion nodes are never selected for expansion during the selec-
tion step; instead, when the action node is added to the tree
in an expansion step, all of the nodes corresponding to that
action’s outcomes are also added to the tree. Furthermore,
in the selection process, the tree policy is ignored at nodes
with stochastic outcomes — instead, an outcome is selected
according to its probability of occurring.

This approach has drawbacks when there are many stochas-
tic outcomes for some actions. However, in the case we con-
sidered, no node has more than 3 possible outcomes. When
an attack node is expanded, all the possible outcomes are
added to the tree, but are subsequently explored proportion-
ally to their respective probabilities of occurring.

2.1.3 Related work
It generally seems that some kind of prior knowledge about

candidate actions is needed in order to outperform the sim-
ple UCT algorithm combined only with vanilla FPU. When
there are too many actions at a node, however, it is not
feasible to obtain an explicit heuristic ordering on all these
actions.

The work we discuss later presents an approach that uses
sampling to avoid evaluating all candidate actions. Many
implementations avoid this concern by abstracting the state
and action spaces so that the branching factor is feasible for
established approaches. We are not aware of previous stud-
ies directly addressing this problem in this context; however,
related work has been done on similar problems.

Wang et al. [34] present algorithms for regret minimization
of multi-armed bandits with infinitely many arms. Their
work also applies to cases where the number of actions ex-
ceed the number of simulations that can be performed. Pre-
sumably this approach could be incorporated into a tree
search, but we are not aware of a convergence result for
such an approach like the one for UCB1 in [22]. Couëtoux et
al. [10] point out a theoretical convergence issue with apply-
ing progressive widening to continuous (and hence infinite)
state and action spaces with stochastic transitions, and sug-
gest double progressive widening to address it. Couëtoux
and Doghmen [9] give empirical evidence that MCTS using
double progressive widening can outperform regular progres-
sive widening on appropriate domains. The application of
RAVE to continuous state and action spaces has also been
considered: Couëtoux et al. [11] effectively apply Gaussian
kernel density estimation to obtain interpolated values for
applying RAVE.

Churchill et al. [7] propose scripted action ordering in the
context of minimax tree search with alpha-beta pruning for
real-time strategy games. This approach leverages scripts
representing simple domain knowledge: actions predicted
by the scripts are investigated first to enhance subsequent

pruning in the rest of the search. One can envision similar
use of scripts and similar heuristics for identifying initial
nodes to expand when employing progressive widening.

Gibson et al. [18] investigated the use of MCTS and UCT
for drafting territories in the setup phase in the game of
Risk. They extracted candidate tactical features for guiding
territory drafting, and used supervised learning to establish
which combinations of features were important for initial
territory drafting. They showed that the drafting strategy
can have a notable effect on the strength of computer Risk
players, and incorporated their techniques into existing com-
puter players for a Risk variant called Lux Delux [29]. An-
other Risk variant for which computer players have been
developed is Domination [37].

Wolf [36] used learning techniques in the design of his AI
players for Risk. He developed an evaluation function for
evaluating the game state. The evaluation function, coupled
with a game tree search approach, formed the basis for his
AI players. Tan [30] applied Markov chain theory to model
the outcome of Risk battles, but made some erroneous inde-
pendence assumptions. Osborne [26] addressed these errors,
and provides a table predicting battle outcomes which we
make use of in this work.

Other examples of enhancing MCTS with an evaluation
function, include Coulom [13] who introduced a technique
for mixing regular MCTS backup operators with minimax
evaluations. Similar techniques have been shown to signif-
icantly improve [24] the quality of MCTS players in games
like Breakout and LOA [35]. Lanctot et al. [24], introduced
adding evaluation function values to nodes in the MCTS
tree. These values are updated during the backup phase, by
considering the minimax values of a node’s children. This
effectively mixes minimax-style leaf evaluations with Monte-
Carlo simulation results.

2.2 Risk
Risk is a modern strategy board game for 2-6 players in-

vented by French film director Albert Lamorisse in 1957.
Players vie for global domination by recruiting and deploy-
ing troops (or armies) to various territories, and then using
these armies to battle one another. The goal of a player is to
eliminate all other players from the board (or, alternatively,
occupy every territory on the board).

The game inherently includes stochasticity from dice rolls
determining the outcomes of battles, as well as cards drawn
from a deck during the game. There is also imperfect infor-
mation, since the cards drawn remain hidden for some time.
In this study, we consider a simplified form of Risk obtained
by: (a) restricting the game to two players; (b) removing
the deck of cards; (c) simplifying the initial setup of the
game as detailed below; and (d) constraining the number
of troops used to attack or defend in a battle (both play-
ers must always attack and defend with the maximum per-
mitted number of armies)2. This eliminates the imperfect
information component, as well as opponent modelling con-
siderations required for dealing sensibly with many players.
(For the complete rules of Risk, see [1]).

2In the original version of Risk, the attacking player could
choose to attack with any number of armies between one and
three. [36] showed that a player that attacks or defends with
the maximum number of armies possible in an encounter,
has the highest probability of victory in that encounter.
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Risk has a huge branching factor [36]. As an example,
during the recruitment phase, newly recruited troops are al-
located to the territories owned by a player. Thus, each
possible allocation of these troops to the territories owned
corresponds to a legal action. This number of possible troop
allocations is

(
n+m−1

n

)
, where n is the number of troops to

place and m the number of territories that the player owns.
If, for instance, a player owns 21 territories and recruits 7
troops (as is typical at the start of a two-player Risk game),
there are 880070 different legal actions. Note that our sim-
plified Risk version still has states with such large branching
factors.

In our restricted Risk domain, game play begins with an
initial setup phase, after which players take turns. A player’s
turn consists of three distinct game phases, namely:

1. the troop recruitment phase,

2. the attack phase, and

3. the troop manoeuvre phase.

As in the original game, the territories are initially ran-
domly, but equally, divided between the players. Thereafter,
each player receives a pool of sixty armies to allocate to those
territories. They then proceed to place these armies simulta-
neously on their respective territories. This approach is sim-
pler than the original game: the original game provisioned
forty armies to each player and another forty to a ‘neutral’
player, and players would place their troops in a turn-based
fashion. We simplified this, because the initial placement
of troops was not of interest for the general strategies of
players. In our engine, after the territories are allocated,
one player gets randomly selected to place their troops first,
then the other player places their troops.

In the attack phase, the player has the choice of where
they want to initiate an attack from. The player then chooses
a source and a neighbouring destination territory of the at-
tack. A number of dice are then rolled (between one and
three for the attacking player and one and two for the de-
fending player, depending on the number of troops they are
attacking/defending with) and the attack is resolved. If the
attack leads to the player conquering a territory, the player
may move as many troops as he wishes from the attacking
territory to the conquered territory, subject to at least one
troop remaining on the attacking territory.

Finally, the player can manoeuvre some troops by select-
ing a source and destination territory, as well as a number
of troops to move from the source to the destination.3

The game ends when one of the players has successfully
conquered every territory on the map.

3. PROPOSED APPROACH
We propose leveraging a crude evaluation function via

sampling to guide the expansion phase of MCTS when the
branching factor is so large that normal approaches are not
feasible. This allows us to bypass issues with large action
spaces by identifying a promising node to expand based on
its estimated value. Our approach is proposed for situations
where a significant portion of the MCTS running time is con-
sumed by evaluating and ordering the possible actions from

3For manoeuvring, it is required that the source and desti-
nation territories be connected to each other by a chain of
territories owned by the manoeuvring player.

nodes. In such cases, we propose sampling a number K of
unexplored legal actions, evaluating the resulting state, and
expanding the action with the best evaluation. To obtain
good performance, it is desirable that sampling from the ac-
tion space is uniform, i.e. all possible actions are equally
likely to be selected.

3.1 Implementation
We implemented an open-source MCTS-based computer

player for our restricted version of Risk. We achieve uniform
sampling [4] for all the phases in a player’s turn in our Risk
domain as follows. The attack and manouevre actions have
somewhat reasonable branching factors, so it is reasonable
to explicitly enumerate all possible attack actions, as well as
the possible source-destination pairs for all manoeuvre ac-
tions. Attack actions can thus easily be sampled uniformly,
while manoeuvre actions can be sampled uniformly using a
binary search on an array constructed from the possible pairs
and the number of units on the various territories. Moving
after an attack is not dealt with as an MCTS action, but
instead by considering each possible number of troops to
move and selecting the number leading to the game state
with the highest value according to the evaluation function.
For recruitment, a scheme based on randomized partition-
ing was used to sample actions. n troops (tokens) must be
placed into m territories (buckets), so that randomly gener-
ating such a partition effectively ensures a uniform random
troop recruitment.

To ensure all actions can potentially be added to the tree,
and to reduce inefficiency from redundant sampling when
the number of remaining unexplored actions u becomes sim-
ilar to K, the number of samples considered for expansion
is set to max{u/2, 1} when u/2 < K.

When an action is identified as the best of a number of
samples in the attack or manoeuvre phases, it is checked
against the actions already in the tree, to ensure that dupli-
cate actions are not added. Uniqueness is not checked during
the recruitment phase, since selecting duplicates becomes
very unlikely when the branching factor becomes sufficiently
large. In this case, there are thus potentially multiple child
nodes for the same recruitment action, and this may lead to
not all recruitment actions being added to the tree. How-
ever, these effects should only play a noticeable role when a
player has very few remaining territories, in which case the
player has already effectively lost the game. As such, we
believe this effect should not have a significant impact on
our results.

3.1.1 Simulation policy
The simulation policy is a random playing strategy, en-

hanced with some heuristics to simplify decision making and
to increase the speed of individual simulations. The heuris-
tics are hand-crafted and essentially capture the core Risk
strategy of one of the authors:

• Recruitment phase: all recruited troops are placed on
a randomly selected frontier territory.4

• Attack phase: the territory used during recruitment is
chosen as the attacking territory. The neighbouring
enemy territories are then traversed (in a fixed order)
and the first territory (if any) that can be conquered

4A frontier territory is one adjacent to an enemy territory.
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by the attacking territory with a probability higher
than 0.5 is attacked once. (The success probability
of conquering a territory is obtained from the table
in [26]). This is repeated until a territory is conquered
(in which case a random number of troops is moved
to the conquered territory, the conquered territory be-
comes the new active territory, and attacking continues
from there) or there are no more such territories.

• Manoeuvre phase: troops are shifted from the territory
with the most troops, to a random legal destination
territory with the least troops. The number of troops
is chosen such that the two territories have an equal
number of troops after the manoeuvre (in the case of
a tie, the source territory gets an additional troop).
If the territory with the most troops is isolated, no
manoeuvre is performed.

3.1.2 Evaluation function construction
For this work, we constructed a heuristic evaluation func-

tion for the Risk domain which is a linear function of the
thirteen features designed and tested by Wolf [36]. More
details on these features are in Appendix C. To determine
the feature weights, we made use of confidence local opti-
misation (CLOP)[14], a noisy black-box parameter-tuning
algorithm.

Training weights with CLOP was done by constructing a
“Greedy AI”: a simple one-ply game tree search using the
evaluation function and best-of-50 sampling to determine
the set of leaf nodes stemming from the root. It was limited
to a maximum of 10 branches. This greedy player was ideal
for weight training, as it makes decisions quickly, and relies
entirely on the evaluation function for its selection. The
training consisted of repeatedly playing games between this
greedy AI and a baseline heuristic AI (detailed in Section
3.2.2). CLOP used the results of these games to optimise
the feature weights for better general game performance.

3.2 Other agents
We implemented various other computer players to com-

pare our proposed sampling-based MCTS agent [“MCTS(20)”]
to. These were:

• a player using the MCTS simulation policy as a strat-
egy [“Simulation Player”];

• a baseline player [“Baseline”], following an aggressive
variation of the simulation policy;

• a player based on expectiminimax (EMM) search with
a restricted branching factor [“EMM”];

• an MCTS player with no sampling or evaluation func-
tion (i.e. the player essentially expands random ac-
tions) [“MCTS(1)”];

• an MCTS player that first expands the node suggested
by the baseline strategy and thereafter uses the pro-
posed sampling method [“MCTS Baseline”].

• an MCTS player that samples 100 actions instead of
the usual 20 [“MCTS(100)”].

Below we briefly outline EMM search and the approach used
in our baseline player. The setup phase for all players is
done in the same way (since it was not the focus of the

investigation). During the setup phase, troops are placed
on territories, in round-robin fashion, until every territory
has either two or three troops.

3.2.1 EMM player
The EMM algorithm is a recursive depth-first search al-

gorithm that builds a game tree to a predetermined depth,
evaluating leaf nodes using an evaluation function, and prop-
agating leaf values up the tree [25, 28]. It is an extension of
the minimax tree search algorithm using stochastic nodes to
model stochastic events. The value of a stochastic node is
determined by calculating the mean value of its child nodes,
thus making use of the probability of observing each stochas-
tic outcome.

The EMM player in this work was restricted to examine
only ten children per deterministic node, with these chil-
dren identified using best-of-K sampling based on our eval-
uation function. This approach allowed a deeper tree to be
built in the same time frame that the MCTS player received.
The strategy of the EMM player for selecting the number
of troops to move to a conquered territory was identical to
that of the MCTS players.

3.2.2 Baseline player
The baseline player implements an aggressive version of

the MCTS simulation policy as a playing strategy. The
modification to the strategy is made to increase the playing
strength of the player, while sacrificing some of the simula-
tion speed.

During the recruitment phase, all recruited troops are
placed on a frontier territory in order to maximize the re-
sulting ratio of troops on the territory to the sum of oppo-
nent’s troops on adjacent territories. (For example, if after
placement there are three troops on the territory and the
opponent has four neighbouring territories each with two
troops, the ratio is 3

2×4
= 3

8
= 0.375). In the case of ties,

one of the tied territories is chosen randomly.
In the attack phase, the player repeatedly attacks from

its active territory to a (randomly selected) most vulnerable
adjacent opponent territory (i.e. an adjacent opponent ter-
ritory with the least number of troops) until further attack
from the active territory is no longer possible. Initially, the
active territory is the territory on which the player placed
his recruited troops. If an opponent territory is defeated, all
but one of the troops on the active territory are shifted to the
defeated territory, which then becomes the active territory.
When moving troops after successfully conquering an enemy
territory, the baseline player moves all available troops from
the attacking territory to the conquered territory.

The manoeuvre phase is handled exactly the same as in
the simulation policy.

4. EXPERIMENTS AND RESULTS
We measured the relative playing strength of various com-

puter players by using game outcomes to determine rating
intervals for each player. The rating system used is the
Glicko rating system developed by Glickman [19, 20]. This
system is more desirable than the classical Elo rating sys-
tem (which it generalizes), since each player x is assigned not
only a rating µx, but also a rating deviation σx, which cor-
responds to the standard deviation of the estimated player
rank. As with the Elo rating system, a difference of 100 rat-
ing points corresponds to an estimated 64% probability of
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winning for the higher rated player. To measure and keep
track of the ratings, we used a Java library for Glicko-2 [21],
a further generalization of the Glicko rating system. The
Glicko system also caters for changes in rating deviation over
time, but since computer players do not change in strength
over time, we disabled this by setting each player’s rating
volatility as well as the Glicko-2 rating system constant τ to
zero.

A game manager was implemented to schedule games be-
tween the players with the aim of identifying statistically
significant differences in performance. Two pools of players
were created, corresponding to two experiments. The first
experiment compared the performance of MCTS(K) with
other, (mostly) non-MCTS agents, while the second inves-
tigated the effect of K on the performance of MCTS(K).
In each pool, players were given an initial Glicko rating of
1500 and a rating deviation of 350 (the default for an un-
ranked player), and rating values were updated in the pool
after each game was completed. The scheduler initially per-
formed random pairings of players in each pool, to provide
an initial indication of ratings. After that, games were typ-
ically scheduled by identifying pairs of players in the pool
for which the evidence of a difference between the ratings
was weak (to efficiently obtain statistical significance). This
evidence for a pair of players x and y was quantified by cal-
culating the standard score of the difference between their
ratings:

Zxy =
|µx − µy|√
σ2
x + σ2

y

(2)

This helped to identify matches that would be the most in-
formative, as the results would potentially help significantly
distinguish players. Note that the ratings obtained in differ-
ent experiments are not directly comparable. In particular,
there is no reason to expect a similar rating for the same
agent in both experiments.5

For all matches, the starting player was randomly deter-
mined. The EMM agent uses best-of-50 sampling where
applicable, and a five-ply search to select actions, which
typically took a few seconds. The MCTS agents generated
around 1000 playouts per second, and were given 2.5 sec-
onds of computation time to choose each action. In order to
get enough game results, we stopped games once one of the
players had a ten territory advantage over the other player,
subject to at least 100 actions having been performed.

4.1 Results
The final player ratings and rating deviations of the play-

ers in the first experiment are presented in Table 1. Figure 2
presents 95% confidence intervals for the various ratings, and
Table 2 shows the P-values for detecting significant differ-
ences between players in this experiment.

We see that the best performing player is, surprisingly, the
baseline player. At first, it seems the observed performance
of the baseline strategy over our proposed MCTS strategies
could possibly be explained by the fact that the baseline
strategy’s actions are good enough that even the best-of-K

5Although each experiment is reported on individually, the
results of all the games were pooled to obtain a single rating
and rating deviation for each agent once both experiments
were completed. This makes it possible to compare the rat-
ings of agents not involved in the same experiment to some
extent — these results are presented in Appendix B.

Table 1: Ratings and rating deviations of our pro-
posed approach and other agents.

Rating Rating Deviation
Baseline 1669.23 32.71
MCTS Baseline 1595.03 30.23
MCTS(100) 1421.14 40.56
MCTS(20) 1333.77 28.46
MCTS(1) 1319.97 39.33
Simulation Player 1270.66 27.29
EMM 1157.42 43.48

1,000 1,200 1,400 1,600 1,800

Baseline

MCTS
Baseline

MCTS 100

MCTS 20

MCTS 1

Simulation
Player

EMM

Rating of player with RD

Figure 2: 95% confidence intervals for the ratings in
Table 1. These are calculated as twice the ratings
deviation on either side of the estimated rating, as
recommended in [19].

sampling strategy would be unlikely to sample actions bet-
ter than the baseline strategy. Another possible explanation
could be that the evaluation function consistently underval-
ues the results of actions generated by the baseline strategy.
However, our MCTS approach augmented with the baseline
action as the first candidate action is also significantly out-
performed by the baseline strategy, indicating that both of
these explanations do not adequately explain the observa-
tion. Instead, a likely explanation is that the difference in
performance is because the baseline strategy moves all avail-
able troops into conquered territories, while all the MCTS
approaches select the number of troops to move by opti-
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Table 2: P-values for testing whether the player in
the column is stronger than the player in the row
(p-values, to 4 significant digits).
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MCTS
Baseline

0.0485 - - - - -

MCTS(100) < 10−4 0.0003 - - - -

MCTS(20) < 10−4 < 10−4 0.0392 - - -

MCTS(1) < 10−4 < 10−4 0.0367 0.3897 -

Simulation
Player

< 10−4 < 10−4 0.0011 0.0548 0.1515 -

EMM < 10−4 < 10−4 < 10−4 0.0003 0.0028 0.0139

mizing with respect to the evaluation function6. Thus the
situation for the MCTS agent after selecting the baseline
action is different to the situation for the baseline player.
Another possibility, however, is that the poorer performance
of MCTS augmented with the baseline action relative to the
baseline action indicates that the MCTS search, which is
guided by the simulation results, tends to favour the non-
baseline actions in the tree. This seems unlikely because of
the high similarity between the simulation policy and the
baseline player.

Despite being outperformed by the baseline player, we
see that using a näıve evaluation function with sampling to
guide MCTS provides an improvement over the MCTS sim-
ulation strategy, näıve MCTS (i.e. MCTS(1)), as well as the
EMM agent. Furthermore, we see that MCTS(100) signifi-
cantly outperforms MCTS(20). A more thorough investiga-
tion of the effect of K on the performance was conducted
in our second experiment. The results are presented in Ta-
ble 3. We see that increasing the sample size improved the
performance of the player (given the same time constraints).
There is evidence of diminishing returns asK increases, how-
ever, so we expect that for larger K performance will plateau
before beginning to degrade once the sampling overhead be-
comes too large: in general, it seems the optimal value of K
should depend on the branching factor. In this experiment,
the strength increases between successive values of K are
generally not statistically significant. However, the trend is
quite visible, and the differences between players with small
K and those with large K are statistically significant. As far
as we are aware, these are the first results reported in the
literature illustrating and quantifying improvements in the
performance of MCTS due to selective expansion of nodes.

6Since the submission of this paper, all the agents have been
modified to employ MCTS-style search for selecting how
many troops to move after conquering a territory. With this
approach, initial experiments indicate no significant differ-
ence between the baseline and MCTS Baseline players, sup-
porting this hypothesis.

Table 3: Performance comparison of various choices
of K for our proposed sampling approach.

K Rating Rating Deviation
1 1393.98 95.42
2 1357.79 86.14
5 1483.57 76.66
10 1556.21 68.51
20 1582.86 81.48
50 1605.82 72.92
100 1621.76 73.16

5. CONCLUSIONS AND FUTURE WORK
This study presents a sampling-based approach to using

an evaluation function for guiding MCTS during the expan-
sion phase in domains with very large branching factors. Ex-
periments in Risk show improved results over näıve MCTS,
despite a hand-crafted strategy outperforming the proposed
approach.

It would be valuable to investigate the performance of
our approach with a better-tuned evaluation function (or in
another domain with a good evaluation function): a weak
evaluation function may well consistently rate good actions
poorly and vice versa so that all the expanded actions in
the MCTS are poor. Another avenue to investigate in this
regard is not always selecting the sample with highest evalu-
ation, but select samples stochastically based on the various
samples’ evaluations (for example, by using Boltzmann sam-
pling).
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APPENDIX
A. SOURCE CODE

All source code that was used in this work is part of the
open-source Risk framework [4]. Version 1.1 was used for
the work in this paper and is tagged in the code repository.
All default parameters were used.

B. POOLED EXPERIMENTAL RESULTS
Table 4 summarizes the results of the pooled experiments.

C. FEATURES
All the features are scaled to be between 0 and 1. This

was not explicitly done in Wolf’s work [36], but was deemed
necessary for training the weights and for subsequent exper-
iments.

1. Armies. The percentage of the total number of armies
that the current player owns.

2. Best Enemy. The relative strength of the best enemy
player. Since our version of Risk only allows for two-
player games, this would just return the strength of the
single opponent.
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Table 4: Summary of game results and ratings of the various players, after pooling results from both exper-
iments. The first two columns indicate the player rating and rating deviation, while the remaining columns
show the numbers of wins and total games played per player pair. Here a cell’s entry shows the number of
wins of the row’s player against the column’s player, as well as the total number of games played between
the pair. Entries of 0/0 occur when players were not in the same initial experiment. The last column shows
total number of wins and games played by the player in each row.
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EMM 1162.81 45.39 - - - - - - - - - - 20/118
MCTS(2) 1213.32 99.29 0/0 - - - - - - - - - 6/19
Simulation AI 1305.03 25.99 7/21 0/0 - - - - - - - - 119/305
MCTS(5) 1305.03 86.18 0/0 2/3 0/0 - - - - - - - 10/22
MCTS(1) 1334.42 37.60 12/16 0/2 10/18 1/3 - - - - - - 49/135
MCTS(20) 1359.52 26.42 13/13 1/2 36/123 1/1 16/25 - - - - - 105/282
MCTS(50) 1382.54 75.40 0/0 2/3 0/0 4/5 2/3 2/3 - - - - 14/27
MCTS(10) 1403.29 73.58 0/0 5/6 0/0 4/7 1/3 4/6 3/4 - - - 18/30
MCTS(100) 1446.75 35.23 28/28 3/3 6/18 1/3 14/22 9/22 6/9 3/4 - - 86/147
MCTS Baseline 1646.28 28.14 17/18 0/0 88/91 0/0 13/16 26/37 0/0 0/0 9/19 - 189/282
Baseline 1724.37 30.53 21/22 0/0 32/34 0/0 24/27 39/50 0/0 0/0 13/19 65/101 194/253

3. Continent Safety. The relative threat from the op-
ponent against continents completely occupied by the
current player.

4. Continent Threat. The relative threat the current
player poses against continents completely occupied by
the opposing player.

5. Distance To Frontier. The average distance of troops
from frontier territories. Effectively measures the army
distribution of the player.

6. Enemy Estimated Reinforcement. An estimate of
how many troops the enemy might recruit in the next
turn.

7. Enemy Occupied Continents. The number of con-
tinents completely occupied by the opposing player.

8. Hinterland. The percentage of player territories that
are not adjacent to any enemy territories.

9. Maximum Threat. A measure that looks at all possi-
ble attack source and destination combinations, calcu-
lates the victory probability of the battle and considers
the maximum of these.

10. More Than One Army. The percentage of the cur-
rent player’s territories that have more than one troop
on it.

11. Occupied Territories. The number of territories that
the current player occupies in relation to the total num-
ber of territories.

12. Own Estimated Reinforcement. A measure that
estimates how many troops the current player would
recruit in their next turn.

13. Own Occupied Continents. The number of conti-
nents the current player occupies completely.

For more details on these feature calculations, see [36].
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