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Abstract 
Schizophrenia is a debilitating disorder that occurs the world over. Although antipsychotics 

are largely effective in treating the positive symptoms of schizophrenia, the outcomes are 

non-optimal in many patients. As antipsychotic treatment response has been shown to be 

heritable, it is expected that the implementation of antipsychotic pharmacogenomics should 

aid in the optimization of antipsychotic treatments, however to date clinically applicable 

results are limited. Therefore this study utilized exome sequencing in a cohort of well 

characterized first episode schizophrenia patients to identify the genetic factors 

contributing to antipsychotic treatment response.  

 

The utility of exome sequencing for antipsychotic pharmacogenomic applications in the 

African context was assessed through examination of the literature and publically available 

data. Thereafter, a cohort of 104 well characterized South African first episode 

schizophrenia patients who were treated with flupenthixol decanoate for twelve months 

was collected. From this cohort, subsets of patients on extreme ends of the treatment 

response spectrum were identified for exome sequencing. Thereafter a bioinformatics 

pipeline was used to call and annotate variants. These variants and those that have 

previously been associated with antipsychotic response, along with a panel of ancestry 

informative markers, were prioritized for genotyping in the entire cohort of patients. After 

genotyping of the 393 variants, statistical analyses were performed to identify associations 

with treatment response outcomes. 

 

Examination of the literature revealed a need for exome sequencing in Africa. However, 

critical analyses of next generation sequencing data demonstrated that complex regions of 

the genome may not be well suited to these technologies. Thus, it may be necessary to 

combine exome sequencing with knowledge obtained from past research, as was done in 

this study to identify the genetic factors contributing to antipsychotic treatment response. 

Using this strategy, the current study highlighted the potential role that rare variants play in 

antipsychotic treatment response and additionally detected 11 variants that were 

significantly associated with antipsychotic treatment response outcomes (P=2.19x10-5). Nine 

of these variants were predicted to alter the function of the genes in which they occurred; 

of which eight were novel with regards to antipsychotic treatment response. The remaining 

two variants have been associated with antipsychotic treatment outcomes in previous 

GWAS. Examination of the function of the genes in which the variants occurred revealed 

that the variants associated with (i) positive symptom improvement were involved in the 

folate metabolism pathway and (ii) negative and general pathological symptoms 

improvement had potential links to neuronal development and migration.   

 

To our knowledge this study is the first to utilize exome sequencing for antipsychotic 

pharmacogenomic purposes. The ability of this study to identify significant associations, 

even after correction for multiple testing, has highlighted the importance of combining 

genomic technologies with well characterized cohorts. The results generated from this study 

have served both to replicate results from previous antipsychotic pharmacogenetic studies 

and to identify novel genes and pathways involved in antipsychotic response. These results 

should aid in improving our understanding of the biological underpinnings of antipsychotic 

treatment response and may ultimately aid in the optimization of these treatments.
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Opsomming 
Skisofrenie is ‘n siekte wat wêreldwyd voorkom en lei tot erge funksionele inkorting.  

Alhoewel antipsigotiese medikasie redelik effektief is in die behandeling van die positiewe 

simptome van skisofrenie, is die funksionele uitkomste in baie pasiënte nie optimaal nie.  

Die reaksie op antipsigotiese behandeling blyk oorerflik te wees.  Die verwagting is dus dat 

die implementering van antipsigotiese farmakogenomika met die optimalisering van 

antipsigotiese behandeling sal help.  Tot dusver het die resultate van farmakogenomika 

studies egter beperkte kliniese toepassings opgelewer.  Hierdie studie het dus eksoom-

volgordebepaling in 'n groep van goed-karakteriseerde eerste-episode skisofrenie pasiënte 

gebruik om die genetiese faktore wat bydra tot die antipsigotiese behandelings-reaksies te 

identifiseer. 

 

Die gebruik van eksoom-volgordebepaling vir antipsigotiese farmakogenomika in die Afrika-

konteks is deur die ondersoek van literatuur en openbaar-beskikbare data geëvalueer.  

Daarna is 'n groep van 104 goed-gekarakteriseerde Suid-Afrikaanse eerste-episode 

skisofrenie pasiënte, wat met flupenthixol dekanoaat vir twaalf maande behandel is, 

versamel.  Uit hierdie groep is subgroepe van pasiënte op die teenoorgestelde eindpunte 

van die behandelings-reaksiespektrum vir eksoom-volgordebepaling geïdentifiseer. Hierna is 

'n bioinformatika pyplyn gebruik om variante te identifiseer en te annoteer.  Hierdie 

variante, asook variante wat voorheen met antipsigotiese reaksie geassosieer is, is saam 

met 'n paneel van afkoms-informatiewe merkers vir genotipering in die hele groep pasiënte 

geprioritiseer vir genotipering.  Na genotipering van die 393 variante, is statistiese analises 

uitgevoer om assosiasies met behandelings-reaksie uitkomste te identifiseer. 

‘n Ondersoek van die literatuur het getoon dat daar 'n behoefte vir eksoom-

volgordebepaling in Afrika is.  ‘n Kritiese analise van volgende-generasie volgordebepalings 

data het egter getoon dat komplekse dele van die genoom nie geskik is vir die gebruik van 

hierdie tegnologie nie.  Om die genetiese faktore wat bydra tot suksesvolle antipsigotiese 

behandeling te identifiseer, mag dit nodig wees om eksoom-volgordebepaling te kombineer 

met bevindings verkry uit vorige navorsing, soos gedoen in hierdie studie.  In die huidige 

studie het die gebruik van hierdie strategie die potensiële rol van skaars variante in 

antipsigotiese behandelings-reaksies beklemtoon en ‘n bykomende 11 variante is 

geïdentifiseer wat beduidend met antipsigotiese behandelingsrespons geassosieer is 

(P=2.19x10-5).  Daar is voorspel dat nege van hierdie variante die funksie van die gene 

waarin hulle voorkom sal verander en agt van hierdie variante is vir die eerste keer met 

antipsigotiese behandelingsrespons geassosieer. Die oorblywende twee variante is met 

antipsigotiese behandelingsrespons in vorige GWAS geassosieer. ‘n Ondersoek na die 

funksie van die gene waarin die variasies voorgekom het, toon dat die variante wat 

geassosieer is met (i) verbetering van positiewe simptome ‘n rol speel in folaat-

metabolisme, terwyl variante wat geassosieer is met (ii) die verbetering in negatiewe en 

algemene patologiese simptome potensiële skakels met neuron ontwikkeling en migrasie 

het. 

Na ons wete is hierdie die eerste studie wat eksoom-volgordebepaling vir antipsigotiese 

farmakogenomika doeleindes gebruik. Die vermoë van hierdie studie om beduidende 

assosiasies te identifiseer, selfs na korreksie vir veelvoudige toetse, onderstreep die 

belangrikheid van die kombinering van genomiese tegnologie met goed-gekarakteriseerde 

pasiënte. Die bevindinge van hierdie studie het nie net die resultate van vorige 
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antipsigotiese farmakogenetiese studies bevestig nie, maar  ook nuwe gene en variante wat 

betrokke is in antipsigotiese reaksie geïdentifiseer.  Hierdie resultate sal hopelik ons begrip 

van die onderliggende biologiese faktore wat antipsigotiese behandelingsrespons beïnvloed 

verbeter en uiteindelik ook met die optimalisering van behandeling help. 
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CHAPTER 1: Introduction 
 

More than 13% of the global burden of disease can be attributed to neuropsychiatric 

disorders [1] with approximately $2.5 trillion spent per year in the USA on mental disorders 

alone [2]. This burden is, however, not equally shared and it has been reported that only 

25% of the global burdens attributed to neuropsychiatric disorders fall on high income 

countries, with the already resource limited low- and middle income countries (LMIC) 

absorbing the rest of the burden [1]. This burden is heightened by inadequate treatments 

and it has been estimated that, in LMIC, only between 16-24% of people suffering from 

serious mental disorders receive treatment [3]. This may in part be attributed to a lack of 

resources, which are a result of inadequate funds and the high rate of other disease such as 

HIV/AIDS, with 70% of African countries spending less than 1% of their already small health 

care budgets on mental health [4]. The lack of mental health services in LMIC is further 

highlighted by the fact that there are approximately 200 fold less psychiatrists per 100 000 

individuals in low income countries when compared to high income countries, with these 

disparities extending to other aspects of mental health care [2] (Figure 1.1). In conjunction 

with this, research disparities in LMIC are of serious concern. This is reflected by the 10/90 

gap, which refers to the fact that only 10% of health research funding is allocated to health 

issues that account for 90% of the global disease burden [5]. Taking this a level further, 

there is a 5/95 gap with regards to publications, with only 5% of the research from LMIC 

published in high impact psychiatric journals [6]. This lack of research combined with the 

inability of the over-burdened health care systems to recognise mental health issues as 

serious health concerns, adds to the stigma and costs associated with these disorders [7]. As 

primary health care options are not available to psychiatric patients and communities are 

often not equipped to understand the biological underpinnings of these disorders, many 

individuals and their caregivers are placed under immense socio-economic burdens. For 

example, in Somalia, due to the lack of understanding and treatment of psychiatric 

disorders, family members pay for the “hyena cure”, which entails placing the individual 

suffering from a psychiatric illness into a pit of starved hyenas so as to rid the patient of 

djinns (evil spirits) [8].  

 

One of the mental disorders most affected by these issues is schizophrenia, which is 

extremely complex and poorly understood [9,10]. Furthermore, the debilitating symptoms 

associated with this disorder make it both highly stigmatised and costly to treat [9]. The high 

costs associated with schizophrenia can be divided into direct and indirect costs, with direct 

costs relating to the costs of treating the disease (e.g. hospitalisations, health care costs and 

medications) and indirect costs relating to the burden of the disease (e.g. loss of 

productivity as a result of the disease) [11]. In high income countries, the direct and indirect 

costs related to schizophrenia are approximately equal, with most of the direct costs 

attributed to hospital admissions and only a small portion of expenses associated with the 

cost of medication. In LMIC on the other hand, the economic burden of schizophrenia is 

skewed towards indirect costs, with nearly 10 times as many Disability Adjusted Life Years 

(DALYs) attributed to schizophrenia in LMIC when compared to high income countries (15.2 

million DALYs vs. 1.6 million DALYs) [11,12]. The unequal burden of the indirect costs 

associated with schizophrenia in LMIC can be attributed to the current lack of health care 

resources allocated to the treatment of this stigmatised and debilitating disorder, which is 
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largely overshadowed by the HIV/AIDS and TB epidemics [13]. Thus, very few schizophrenia 

patients will be hospitalised, which is reflected by the fact that in Nigeria, the cost of 

medication accounts for 61.8% of the direct costs associated with schizophrenia, in 

comparison to the 1.1-9.0% of direct costs in high income countries [11]. This may create 

the false impression that patients frequently receive medication in LMIC. However, as 

mentioned previously, 76-84% of patients with serious mental disorders living in these 

regions do not receive treatment [3]. Thus, the treatment of schizophrenia in LMIC requires 

urgent attention, which includes an increase in the resources allocated to health care and 

research. Although this will result in an initial increase in the direct costs associated with 

schizophrenia, the long term decrease in indirect costs should outweigh these concerns.    

 
 

 
Figure 1.1: Disparities in mental health care services when comparing low- and middle 

income countries to high income countries [14]. Reprinted with permission from the World 

Health Organisation. Accessed 26 August 2013.  

In conjunction with the issues associated with the lack of health care services for 

schizophrenia patients, it is important that the optimisation of antipsychotic treatment is 

considered. Although antipsychotic treatment is the most effective way to relieve the 

symptoms associated with schizophrenia and improve the daily functioning of individuals 

[15], this treatment remains effective in only a portion of individuals and is accompanied 

with many adverse drug reactions (ADRs) [16] (refer to Chapters 2.2.2 and 2.2.3 for more 

details). Thus, in order to further decrease the costs associated with schizophrenia by 

improving treatment outcomes, optimisation of treatment is required. It is for this reason 

that the implementation of pharmacogenetics, which is the study of how genetic variants 

influence treatments, is of utmost importance. Pharmacogenetics offers the opportunity to 

improve treatment outcomes, reduce ADRS and aid in the reduction of costs related to 

unnecessary hospitalisations and DALYs [17]. Considering that only 1% of drugs are 

developed for the treatment of diseases that affect individuals from poor countries [18], 

pharmacogenomics may also have a role to play in reducing the cost and time associated 
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with clinical trials in these countries. Using the example of the monoclonal antibody, 

trastuzumab, which is used in the treatment of cancer, the implementation of 

pharmacogenetic screening decreased the time required for the clinical trial from 10 years 

to 1.6 years and reduced the associated costs by an estimated $35 million [19]. More 

directly, however, if genetic variants are identified to predict which patients will not 

respond to treatment or will develop ADRs, antipsychotic treatment regimes can be 

optimised prior to treatment. Some of the success stories with regards to the utilisation of 

pharmacogenetics for the optimisation of treatment include warfarin (CYP2C9, VKORC1 and 

CYP4F2), clopidogrel (CYP2C19) and abacavir (HLA-B) [20]. The treatment outcomes of all 

three of these drugs have been shown to be influenced by specific genetic variants. The 

level of evidence for the role that these variants play is high and Clinical Pharmacogenetics 

Implementation Consortium (CPIC) dosing guidelines and Food and Drug Administration 

(FDA) pharmacogenomic drug label information are available for all three drugs [21,22]. 

With special reference to warfarin, the CPIC have designed a dosing algorithm which takes 

other factors such as age and weight into account along with genotype. The provided dose 

calculator allows the physician to enter values and provides warnings if the values entered 

are questionable. In the example provided in Table 1.1, the patient is a 70 year old 

Caucasian, 180 centimetres tall, weighs 74 kilograms and is not taking CYP2C9 enzyme 

inducers or amiodarone. Furthermore, the patient is heterozygous for the VKORC1 -1639 

SNP and “wild type” for CYP2C9. Based on this information, a suggested dose of 29 

mg/week was calculated [23].  

 

Table 1.1: Warfarin dosing calculator. Reproduced with permission from [23,24], Copyright 

Massachusetts Medical Society. Accessed 2 August 2013. 

Variable Units or Allowed Values Enter Value Error Messages/Warnings 

Age Years 70   

Height Centimetres 180 
 

Weight Kilograms 74 
 

VKORC1 genotype 

A/A 

A/G   
A/G 

G/G 

U (for Unknown) 

CYP2C9 genotype 

*1/*1 

*1/*1   

*1/*2 

*1/*3 

*2/*2 

*2/*3 

*3/*3 

U (for Unknown) 

Race 

A (for Asian) 

C   
B (for Black or African American) 

C (for Caucasian or White) 

U (for Unknown or Mixed Race) 

Taking Enzyme Inducer Y (for yes) or N (for no) N   

Taking Amiodarone Y (for yes) or N (for no) N   

Computed Weekly Starting Dose (milligram/week): 29 
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The utility of these findings is clear, however, there remain only a few examples where 

specific genotypes provide good evidence for predictive treatments. With the introduction 

of high throughput sequencing technologies and the ability to sequence entire genomes, 

there have been great advances in human genetics and genomics [25]. With these 

substantial developments, it is expected that the number of clinically useful 

pharmacogenetic findings will increase. This is highlighted by the fact that during the time 

when geneticists were feeling pessimistic about the lack of significant variants identified 

from genome-wide associations studies (GWAS), the field of pharmacogenomics was able to 

identify a number of significant findings, which were replicated [26,27]. Nonetheless the 

number of pharmacogenetic GWAS, with particular reference to whole genome and exome 

sequencing (WGES), remains limited [26]. Although association studies identifying novel 

pharmacogenetic findings through the use of WGES are currently lacking, the role for 

pharmacogenetics using this technology was recently highlighted in a study by Ashley et al. 

[28]. This study sequenced the genome of a healthy individual and by using the information 

available on PharmGKB (a web-based database which provides information about variants 

that have been associated with pharmacogenetic traits) was able to provide 

pharmacogenetic advice for 100 drugs. Furthermore, at the 2012 American Society of 

Human Genetics conference [29] the ethical considerations regarding the returning of 

results obtained from WGES studies, particularly those relating to incidental findings, was 

the topic of much concern. Nonetheless, it was almost unanimously agreed that the 

discovery of pharmacogenomic variants are of value to patients as they are likely to be 

clinically actionable [30]. Furthermore, the return of these results is not hampered by the 

stigma that may be associated with other incidental disease-related findings. In fact, the 

return of pharmacogenomic findings may aid in reducing stigma by improving the treatment 

of diseases and alleviating the associated symptoms. This is of particular relevance for 

schizophrenia, where the severe and debilitating symptoms are the cause of much 

stigmatisation and suffering [9]. Thus, the utility of WGES may be especially relevant to the 

field of antipsychotic pharmacogenomics. Not only are sequencing technologies likely to 

shed light on the unexplored areas of the genome, but they offer the opportunity to 

examine all variation simultaneously so as to provide a comprehensive picture of the 

variome. If these technologies can be utilised in LMIC where current research is limited and 

optimal treatments are urgently required, the high socio-economic burden of schizophrenia 

may be alleviated.  
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CHAPTER 2: Literature review 
 

2.1 Schizophrenia 

2.1.1 Clinical aspects of schizophrenia 

Schizophrenia is a debilitating disorder affecting an estimated 24 million individuals across 

the globe [31]. This chronic and relapsing disorder, which is aggravated by an absence of 

cures and inefficient treatment [12], is considered one of the top ten causes of disease-

related disability throughout the world [10]. In the USA, the severity of schizophrenia is 

reflected by the 100 000 beds that are occupied by schizophrenia patients every day, with 

the annual costs accounted to schizophrenia amounting to $32.5 billion [32]. It is estimated 

that of all the individuals who develop schizophrenia, only 15% of patients will lead 

productive lives, while 60% will experience intermittent episodes and 25% will not be able 

to live independently [32]. This highlights the devastating nature of schizophrenia, which 

affects not only those living with the disorder, but places great emotional and financial 

strains on caregivers. Not only is the treatment of schizophrenia costly, but both affected 

individuals and their caregivers experience a substantial loss of productivity as a result of 

the disorder, with caregivers dedicating an estimated 6-9 hours per day to the care of 

schizophrenia patients [11].  

 

The incidence and prevalence rates of schizophrenia are more or less consistent the world 

over, with about 8-40 new cases per 100 000 individuals reported annually, amounting to a 

lifetime risk of 0.7% [33]. Although the prevalence of schizophrenia is often reported to be 

approximately 1%, more recent estimates report a prevalence closer to 0.5% [34]. 

Nonetheless, this is a large portion of the global population that is affected by the disorder 

and although schizophrenia has been formally described for the last two centuries [34], the 

burden caused by the illness continues to affect individuals all around the world. The onset 

of schizophrenia usually occurs during adolescence or early adulthood [35], with age of 

onset ranging from 15-45 years of age, but most commonly occurring between 18-30 years, 

with an earlier age of onset correlating with more severe symptoms [36]. Substance abuse 

or a life stressor may precipitate the occurrence of schizophrenia, however, it is usually very 

difficult to pinpoint a specific event [36,37]. Schizophrenia is characterised by many severe 

and varying symptoms which can broadly be classified into positive, negative, cognitive and 

mood symptoms [36]. These symptoms are usually measured with the use of the Positive 

and Negative Syndrome Scale (PANSS) [38], the Scales for the Assessment of Negative and 

Positive Symptoms (SANS and SAPS) or the Brief Psychiatric Rating Scale (BPRS) [39]. More 

specifically the symptoms associated with schizophrenia are indicated in Box 2.1. 
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The progression of schizophrenia is lengthy and varies from patient to patient; however, it 

can be broadly divided into five main stages. These are the premorbid phase (stage 0), the 

prodromal phase (stage 1a and b), the first episode of psychosis (stage 2), incomplete 

remission/relapse (stage 3) and the persistent unremitting disease (stage 4) [40]. The 

features most commonly associated with the various stages are summarised below, 

however, it should be noted that it is not always easy to differentiate between these stages 

and the symptoms are often imprecise [36]. The premorbid stage is characterised by an 

increased risk for psychosis and subtle signs of cognitive difficulty and social isolation. The 

prodromal stage is associated with transient positive or general symptoms and a 

corresponding decline in function, with stage 1a exhibiting mild, non-specific symptoms and 

1b exhibiting psychotic symptoms below the clinical threshold. Although individuals who are 

classified in this phase often go on to experience their first episode of clinical psychosis, 

Box 2.1: The symptoms associated with schizophrenia [36] 

• Positive Symptoms, which are absent in the general population, but present in 

schizophrenia patients and include: 

o Impaired reality testing 

o Delusions, which mostly occur as persecutory delusions and delusions of 

reference, but also include delusions of control, thought insertion, withdrawal 

and broadcasting  

o Hallucinations, of which auditory hallucinations are the most frequent 

• Negative Symptoms, which are present in the general population, but absent in 

schizophrenia patients and include: 

o Abulia, which is a lack of motivation 

o Alogia, which is a poverty of speech 

o Anhedonia, which the is inability to experience pleasure 

o Avolition, which is a lack of initiative 

o Apathy, which is a lack of interest 

o Reduced social drive 

• Symptoms of disorganisation, which include:  

o Formal thought disorder 

o Disorganised behaviour 

• Mood symptoms, which often precede the formal onset of schizophrenia and include: 

o Impairment in affective experiences and expression 

o Increased emotional arousal 

o Depression 

• Motor symptoms, which include: 

o Slowing of psychomotor activity 

o Excessive motor activity 

• Cognitive symptoms, which include: 

o Impairment in episodic memory 

o Impairment in processing speed 

o Impairment in verbal fluency 

o Impairment in attention 

o Impairment in executive functions 

o Impairment in working memory 
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which marks stage 2, more than half of these “at risk” individuals do not develop 

schizophrenia. In order for a patient to be diagnosed as experiencing the first psychotic 

episode; hallucinations, delusions, disorganised speech or behaviour, or negative symptoms 

must be present for at least a month. At least one schneiderian (bizarre hallucination or 

delusion) or two core symptoms (hallucination, delusions, disorganised speech or 

behaviour, or negative symptoms) must be present [36,40]. However, the Diagnostic and 

Statistical Manual of Mental Disorders version five (DSM-5), released in 2013, has proposed 

that in all cases two core symptoms must be present before diagnosing a first episode of 

schizophrenia [41]. After experiencing the first episode of schizophrenia, the decline 

towards stages 3 and 4 is most pronounced in the first five years [36,40].  

 

Schizophrenia is commonly referred to as a disorder, the most likely reason for this 

stemming from the lack of biochemical markers for diagnosis and the heterogeneity of the 

disorder, with symptoms varying from patient to patient [42]. Due to the occurrence of 

these varying symptoms, the DSM-IV [43] and International Classification of Diseases 

version 10 (ICD-10) [44] provide different sub-types of schizophrenia , however, it has been 

decided by the DSM-5 to remove these subtypes due to the overlap in many of the 

symptoms [41]. The previous sub-types that were included in the diagnosis of schizophrenia 

were (i) catatonic type, which refers predominantly to psychomotor symptoms; (ii) 

disorganised type, which refers to incoherent or inappropriate behaviours; (iii) paranoid 

type, which refers to hallucinations and delusions; (iv) schizoaffective type, which refers to 

mood and psychotic symptoms; (v) undifferentiated type, which refers to non-specific 

symptoms; and (vi) residual type, which refers to milder cognitive and negative symptoms. 

In addition to these six sub-types, the ICD-10 also refers to (i) simple type, which refers to 

the absence of severe delusions and hallucinations and (ii) latent type, which refers to the 

presence of odd behaviours [36,45]. Further complicating the understanding of 

schizophrenia is the fact that it can be very difficult to differentiate this highly 

heterogeneous disorder from other psychiatric disorders, as the symptoms overlap 

substantially [46,47] (Figure 2.1). If the heterogeneity of schizophrenia can be clarified and 

the boundaries between the psychiatric disorders can be made clearer, perhaps a more 

defined understanding of the disorder can be obtained to facilitate research efforts.  

 

 
Figure 2.1: A representation of the overlap in symptoms observed between schizophrenia 

and other psychiatric disorders [47]. Reprinted with permission from Nature Publishing 

Group. 
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2.1.2 Risk factors for schizophrenia 

Even though schizophrenia is complex and the lack of understanding of this disorder is 

heightened by the intricacy of the brain, there has been substantial research performed and 

several risk factors have been associated with the development of schizophrenia. These 

include (i) prenatal exposures such as stress, infection and poor nutrition; (ii) obstetric 

complications; (iii) childhood traumas; (iv) urban birth; (v) migrant status; (vi) adolescent 

cannabis abuse; (vii) brain injury; (viii) anti- N-methyl D-aspartate (NMDA) receptor 

encephalitis; (ix) male gender; (x) lower socio-economic class; (xi) winter/spring birth; (xii) 

famine; (xiii) poverty; and (xiv) older parental age [10,34,46,48]. Although these factors are 

associated with schizophrenia, the actual cause and effect remains difficult to elucidate in 

many cases. For example it is difficult to determine whether the abuse of cannabis causes 

the onset of schizophrenia or whether schizophrenia patients are more likely to abuse 

cannabis due to their disease status. Similarly, does migration and urban living precipitate 

schizophrenia, or do schizophrenia patients move towards urban areas? Does poverty act as 

a stressor for the development of schizophrenia or does the loss of employment as a result 

of schizophrenia lead to poverty? Furthermore, factors such as urban birth or migration may 

not directly cause schizophrenia, but may instead be linked to factors such as racism, 

poverty or a lack of social support networks [34,49].  

 

Although the level of evidence for the above mentioned risk factors remains limited, one of 

the most robustly associated risk factors for the development of schizophrenia is genetics 

[48]. Individuals with two affected parents have a 45 fold higher risk of developing 

schizophrenia when compared to the general population [50]. Furthermore, when 

comparing monozygotic and dizygotic twins, the risk for developing schizophrenia is 

approximately four fold higher in monozygotic twins (40-48 vs. 10-17 fold higher risk of 

developing schizophrenia, when compared to the general population) [50]. Thus, a family 

history of schizophrenia, or shared genetic variation, remains the most reliable predictor for 

developing the disorder [48].  

2.1.3 The genetics of schizophrenia  

Schizophrenia has been reported to be the most heritable of the psychiatric disorders (65-

81% heritability) [51,52] and for this reason there have been many studies performed 

attempting to elucidate the genes and variants involved in schizophrenia, with nearly 9 000 

variants reported to be associated with the disorder in at least one study [53]. The studies 

identifying these genetic variants have developed substantially over the years, as 

technologies have advanced (Figure 2.2). Before the advent of GWAS in 2005, the majority 

of schizophrenia research was performed using linkage analyses or the examination of 

candidate genes. Linkage studies are reliant on utilising families affected with schizophrenia 

to identify regions of the genome that are shared between affected individuals, but not 

unaffected individuals, while candidate gene association analyses rely on some knowledge 

of the biological underpinnings of schizophrenia and investigate allele frequency differences 

in these genes between cases and controls [52,54,55]. The predominant biological pathways 

that are suspected to be involved in the development of schizophrenia include the 

dopamine, serotonin and glutamate pathways, due to the binding of antipsychotics to these 

receptors [56] and as such genes belonging to these pathways have been the focus of many 

candidate gene studies [53]. 
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Figure 2.2: The progression of studies examining the genetic factors contributing to 

schizophrenia susceptibility [52,57]
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Unfortunately, although there have been many promising results obtained from these 

candidate gene studies, the associations have been poorly replicated, with many conflicting 

results [42]. Furthermore, these studies have only provided information regarding biological 

aspects that we are already aware of. Thus, in conjunction with the GWAS era in human 

genetics, studies shifted their focus to large scale GWAS examining schizophrenia 

susceptibility [52,54,55]. GWAS investigating human disease were successful in identifying 

associations with other complex disorders such as type 2 diabetes, stroke, obesity and 

certain cancers [58] and thus the highly heritable and poorly understood psychiatric 

diseases were also expected to yield GWAS results that could help explain the missing 

heritability. At a similar time, studies also began to place their focus on scanning the 

genome for large structural variations or copy number variants (CNVs) [52,54,55]. Although 

the results obtained from these two approaches have not yielded conclusive results, there 

have been some interesting findings. The most noteworthy results that have been described 

with regards to the CNVs contributing to schizophrenia susceptibility include the 1q21.1, 

2p16.3, 3q29, 15q13.3, 17q12 and 22q11.21 deletions and 1q21.1, 7q36.3 and 16p11.2 

duplications, with the 22q11 deletion reported to be associated with a 25 fold increase in 

schizophrenia risk [42,52]. Interestingly, the results obtained from the GWAS and CNV 

studies have shown that common variants examined in GWAS have very small effect sizes, 

while rare CNVs seem to be highly penetrant and confer larger risks [34,59] (Figure 2.3).  
 

 

Figure 2.3: Relative contribution of common and rare variants to the development of 

schizophrenia. The yellow and orange ellipses represent associations that have been 

detected with common variants and rare copy number variants, respectively. The red 

rectangle and empty panel represent Mendelian mutations and intermediate frequency 

variants, for which no associations have been detected to date [59]. Reprinted with 

permission from Nature Publishing Group. 
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The advantage of GWAS lies in the fact that little is known regarding the biological 

mechanisms underlying schizophrenia; and as GWAS survey the entire genome, regions 

which are not known to be involved in schizophrenia may be uncovered. To date, the most 

replicable result obtained from the published schizophrenia GWAS, relates to variants 

occurring within the major histocompatibility complex (MHC). This region of the genome is 

involved in immune function and variants present in this area corroborate the theory that 

exposure to infection during gestation may increase the chances of developing 

schizophrenia [48,52]. Although, these results do make sense in the context of the biology 

of schizophrenia, the high gene density and low linkage disequilibrium (LD) of this region 

make identifying causal variants very difficult [52]. Unfortunately, to date, other findings 

from schizophrenia GWAS have not generated many replicable results [48]. The lack of 

significant and reproducible results obtained from these GWAS may in part be attributed to 

insufficient sample sizes. The millions of SNPs that are genotyped in GWAS result in multiple 

testing issues and in order to obtain P values that meet the requirements for genome-wide 

significance (P ≤ 5x10-8) thousands of samples are required, especially in cases such as 

psychiatric disorders where the effect sizes are expected to be small. For this reason 

schizophrenia consortiums are required in order to pool patient cohorts and increase 

sample sizes. The largest of these consortiums is the psychiatric genome consortium (PGC), 

which is a multi-national effort to combine a large number of schizophrenia patients for 

GWAS in order to allow for the identification of more robust associations [60]. In the latest 

PGC schizophrenia GWAS publication a three stage strategy was utilised, which consisted of 

(i) a discovery cohort of 5 001 schizophrenia cases and 6 243 controls, (ii) a meta-analysis 

stage utilising 8 832 cases and 12 067 controls and (iii) a replication cohort of 7 413 cases 

and 19 762 controls, making this the largest schizophrenia GWAS to date [61]. This study 

identified 22 significantly associated loci, of which 13 were novel, and implicated the 

neuronal calcium signalling pathway in schizophrenia susceptibility. In addition, some of the 

findings from the previous PGC GWAS were highlighted once again. These included 

significantly associated variants in the vicinity of (i) one of the most well replicated findings 

in schizophrenia GWAS, namely the MHC complex, (ii) MIR137 (a microRNA) and (iii) TCF4 (a 

neuronal transcription factor). These findings emphasise once again not only the role that 

the MHC may play in schizophrenia susceptibility, but also the importance of epigenetic and 

transcriptional regulation, as well as gene networks [54,61,62].  

 

Unfortunately, even with the impressive sample sizes that were utilised by the PGC, the 

effect sizes of the variants that were associated in these studies remain small, with odds 

ratios of only between 0.8 and 1.2 and associated variants only explaining a portion of the 

heritability [61]. The results from the published GWAS highlight the likelihood that hundreds 

of variants and genes may be involved, each conferring a small risk for the development of 

schizophrenia [63]. However, as GWAS genotype common variants and rely on brute force 

to identify associations, it is possible that the techniques utilised are unable to detect the 

effects of rare causal variants. Furthermore, as the associated variants are mostly intergenic, 

it is difficult to interpret the biological significance of such findings [55]. Therefore, with the 

elegant publication by Ng et al. [64] describing the ease with which the gene associated with 

Freeman–Sheldon syndrome was identified, there was much anticipation for the application 

of high throughput sequencing for other diseases. Even though the study by Ng et al. [64] 

examined a rare Mendelian disorder, the likelihood that WGES in the context of 

schizophrenia may uncover rare causal variants with large effect sizes, was met with 
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anticipation. For this reason schizophrenia studies have recently begun to shift their focus 

towards the use of high throughput or next generation sequencing (NGS). The use of exome 

sequencing has allowed the focus to shift from variants that have no known affect to 

variants that occur within coding regions, thus increasing the likelihood that causal variants 

may be directly identified. 

 

Although it appears likely that NGS technologies will be the focus of future research, to date 

there have only been six published studies using these technologies to investigate 

schizophrenia susceptibility, of which two examined the South African Afrikaner population 

[65,66]. Four of these six studies focussed on sporadic cases of schizophrenia and identified 

de novo variants present in probands by sequencing trios or quads with only one affected 

offspring [65–69]. By utilising this approach they could overcome the issues associated with 

the overwhelming amount of data that is generated by WGES [65,66,68]. All four of these 

studies found that there was a higher rate of de novo variants in affected individuals and 

that these de novo variants were more likely to be non-synonymous and/or adversely affect 

the protein product [65,66,68,69]. Furthermore, the study by Gulsuner et al. [69] 

highlighted the role that damaging de novo variants played in disrupting genes involved in 

the neurogenesis of the prefrontal cortex. The fifth study also utilised a family based 

approach and sequenced representatives from five large families that were affected by 

schizophrenia. This study identified protein altering variants in genes associated with the 

NMDA receptor gene, which may be implicated in schizophrenia [70]. The last WGES study 

focussed on the identification of rare variation, which may have been overlooked by GWAS. 

This study utilised a discovery cohort of 166 schizophrenia patients (10% African, 89% 

European and 1% other), which were enriched for treatment resistance and a family history 

of schizophrenia, and 307 controls (6% African, 92% European and 2% other). The 

genomes/exomes of these individuals were sequenced and rare variants, which were 

predicted to alter the protein products, were identified. A total of 5 155 variants which were 

present in one or more cases and no controls were identified. These variants were 

subsequently prioritised for genotyping in 2 617 cases (45% African, 54% European and 1% 

other) and 1 800 controls (37% African, 59% European and 3% other). Association analyses 

did not reveal any variants that reached genome-wide significance, however, 49% of the 

variants were detected in only one or two schizophrenia individuals highlighting the 

possibility that rare functional variation may be involved in the development of 

schizophrenia [67]. Furthermore, as the majority of variants which occur at an allele 

frequency of less than 0.5% are only present in one population group [71], these findings 

may emphasise the importance of sequencing the genomes of schizophrenia patients and 

controls from many different populations.    

 

Although genetic studies examining schizophrenia susceptibility continue to develop, there 

remains limited knowledge regarding the exact role that genetics plays. This may in part be 

attributed to locus heterogeneity, incomplete penetrance and the influence of the 

environment [42]. It remains likely that the variants contributing to schizophrenia differ 

between unrelated individuals, and that although there may be a common causal pathway, 

due to the heterogeneity of the variants and genes involved, GWAS may be unable to detect 

these pathways. Furthermore, due to the genetic persistence of schizophrenia, it has been 

postulated that the variants involved in the precipitation of schizophrenia are maintained 

throughout generations due to some evolutionary advantage and that the schizophrenia 
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phenotype is only expressed above a certain threshold, which is no longer advantageous 

[72]. This highlights the likelihood that many variants may be involved in schizophrenia. 

Lastly, due to the current inability to explain the development of schizophrenia by 

examining genetic or environmental factors as separate entities, it seems likely that the two 

may interact [34], suggesting a role for epigenetics in schizophrenia susceptibility (refer to 

Chapter 7.3 for further details). The current evidence, thus, points to the probability that 

schizophrenia is a complex multi-factoral and polygenic disorder [73]. Therefore, in order for 

genetic studies to be successful, WGES to examine all variation simultaneously in 

combination with well characterised cohorts may be required. 

 

2.2 The antipsychotic treatment of schizophrenia 

2.2.1 Background 

Central to the management of schizophrenia is the successful treatment of the disorder. 

Until the 1950s, with the opportune discovery of the first antipsychotic, chlorpromazine 

[74], institutionalisation of patients was the treatment option of choice and only 26% of 

patients were discharged [75]. The doubling in the improvement of patients with 

schizophrenia in the 1970s, when compared to the 1920s, is largely attributed to the 

introduction of antipsychotics in the 1950s [76]. The introduction of these agents into the 

treatment of schizophrenia is arguably the greatest advancement in schizophrenia research. 

To date, antipsychotics remain the only effective therapeutic agents that are available for 

the treatment of schizophrenia [15] and their effects have consistently been shown to be 

superior to placebos [77–79]. Highlighting the value of these drugs, the WHO currently lists 

four antipsychotics (chlorpromazine, risperidone, fluphenazine and haloperidol) as essential 

medications [80], which are thus described as “of utmost importance” and “indispensable 

and necessary for the health and needs of the population” [81]. The importance of 

antipsychotic research is reflected by the 3 782 articles relating to the search term 

“antipsychotic” that were in recorded in the year 2012 in the PubMed Database (accessed 2 

August 2013) [82]. 

 

Antipsychotics mainly treat positive and disorganised symptoms and prevent relapse, 

however, they are less effective for cognitive or negative symptoms [15,83]. In addition to 

the inability of antipsychotics to treat all symptoms, it has been reported that approximately 

40% of patients do not respond substantially to medication and up to 70% develop ADRs 

[84,85]. Furthermore, these differences in treatment response are varied and include 

differences in the time, dose and medication required for response, as well as differences in 

the development of ADRs. Thus, patients need to be considered individually and each case 

requires careful monitoring, making the treatment of schizophrenia complicated. Treatment 

algorithms are often incorporated in order to aid in the treatment of a patient based on the 

response that is observed. Unfortunately, obtaining the desired response may require the 

use of multiple different antipsychotics and this trial-and-error based process may take 

months (Figure 2.4) [86,87]. When making decisions on how to treat a patient, it is 

important to consider factors relating to the patient (e.g. age, gender and history of 

treatment response), the illness (e.g. duration, symptom type and comorbidity), the 

medication (e.g. efficacy, tolerability and cost) and the environment (e.g. diet, support and 

financial situation) [83]. Furthermore, if non-optimal treatment outcomes are observed, 
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decisions need to be made regarding whether to change the type or the dose of medication. 

According to consensus recommendations, patients showing little or no response to first 

line treatment should be treated for 3

showing partial response should be treated for 4

increased or an alternate antipsychotic should be used 

an inadequate response coupled with ADRs, the medication is changed, whereas when an 

inadequate response without ADRs is observed, the dose is changed 

should respond quickly to antipsychotic medication with no ADRs. Unfortunately this is 

seldom the case [89].   
 

© Copyright 2004-2006 International Psychopharmacology Algori

ADRs: Adverse drug reactions, TD: tardive dyskinesia, CLOZ: clozapine, ECT: electroconvulsive therapy.

Figure 2.4: International Psychopharmacology Algorithm Project Dosing Algorithm
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As mentioned previously, the first antipsychotic to be discovered was chlorpromazine (in 

the 1950s) and the introduction of this treatment allowed for the deinstitutionalisation of 

patients in the 1960s, which was a leap forward in the treatment of schizophrenia patients. 

Since then an additional 50 first generation antipsychotics (FGAs) have been introduced, 

however, treatment with many of these drugs is predominantly accompanied with 

extrapyramidal symptoms (EPS) [15]. In the 1960s, there was another prominent advance in 

the treatment of schizophrenia with the development of clozapine, the first second 

generation antipsychotic (SGA) [90]. Clozapine showed a greater efficacy when compared to 

the FGAs and was not accompanied with EPS. However, treatment with clozapine was in 

some instances accompanied by a severe and potentially lethal ADR known as 

agranulocytosis [90]. Due to the presence of this serious ADR, clozapine was not widely used 

until the 1990s when the superiority of clozapine with regards to response in treatment 

refractory patients and the reduction of suicide was demonstrated [91,92]. Even though 

clozapine remains superior to other antipsychotics in terms of efficacy, it is still not used in 

the first line treatment of schizophrenia in most settings [93]. Coinciding with the more 

accepted use of clozapine in the 1990s, a second round of SGA development took place, 

with the hope of introducing antipsychotics that would be as effective in reducing 

symptoms as clozapine, but unaccompanied by agranulocytosis. To date, there are twelve 

available SGAs, excluding clozapine, however there appear to be no clear differences in the 

treatment response profiles of FGAs and SGAs [15]. Although SGAs are associated with less 

EPS, they are unfortunately accompanied with a greater rate of weight gain and related 

ADRs [94]. To corroborate these findings, the Cost Utility of the Latest Antipsychotic Drugs 

in Schizophrenia (CUtLASS), Clinical Antipsychotic Trials of Intervention Effectiveness 

(CATIE), Schizophrenia Outpatients Health Outcome study (SOHO), Comparisons of Atypicals 

in First Episode (CAFE) and European First Episode Schizophrenia Trial (EUFEST) studies have 

examined various aspects of antipsychotic treatment [95]. Although these studies varied in 

the approaches used, the general message obtained was that antipsychotics are 

heterogeneous in nature, the efficacy of different antipsychotics is similar, with the 

exception of clozapine which appears to be superior, and FGAs are more frequently 

associated with EPS, while SGAs are more frequently associated with weight gain and 

resulting metabolic conditions [95].  

 

Although many gaps remain in our understanding of the mechanism of action of 

antipsychotics, there are certain aspects that have been elucidated. The central mechanism 

of action for all classes of antipsychotics is their binding to dopamine D2 receptors [96]. In 

addition, SGAs bind not only to dopaminergic receptors, but also to serotonergic receptors 

[97]. Although the dopamine and serotonin receptors are the most well documented targets 

for antipsychotics, this class of drugs may also bind to alpha-adrenergic, histaminic and 

muscarinic receptors [96,98]. The different affinities that antipsychotics have for receptors 

and the differences in their absorption, distribution and elimination profiles contribute to 

the varying treatment response profiles that are observed between individuals and drug 

types [15,96]. Nonetheless, the core feature of antipsychotics remains their ability to reduce 

the availability of dopamine, which results in a decrease in positive symptoms (psychosis, 

mania, tics, aggression). Unfortunately, as mentioned previously, this mechanism of action 

does little to reduce negative or cognitive symptoms and the reduction in dopamine can in 

fact result in the aggravation of these symptoms [96]. Thus, the goal of optimal treatment 

with current antipsychotics would be to improve their regional specificity by allowing for an 
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antagonistic effect on the mesolimbic dopamine, to alleviate the positive symptoms, and an 

agonistic effect on frontostriatal dopamine to prevent the occurrence of negative and 

cognitive symptoms [83]. Therefore, research into the development of new antipsychotics is 

driven by the need to treat negative and cognitive symptoms in addition to the positive 

symptoms. Research initiatives such as the Measurement and Treatment Research to 

Improve Cognition in Schizophrenia (MATRICS) study focus on targeting glutamatergic, 

cholinergic, gaba-ergic, neuroleptic, canabinoid and non-neurotransmitter receptors, in 

addition to the dopamine and serotonin receptors [56]. However, to date results obtained 

from these initiatives are limited. 

 

In addition to antipsychotic therapy, other options for treatment exist. These include (i) 

electroconvulsive therapy, which is utilised mainly for the treatment of catatonic symptoms; 

(ii) repetitive transcranial magnetic stimulation, which is employed chiefly for the treatment 

of positive symptoms and auditory hallucinations; (iii) deep brain stimulation; (iv) family and 

patient psychoeducation, which aids in improving the affected individuals and their 

caregivers’ understanding of the disorder, while also providing coping strategies; (v) 

cognitive behaviour therapy that provides patients with the ability to rationally explain their 

symptoms; (vi) social skills training, which aids in improving the daily living skills of the 

patients; and (vii) assertive community treatment, which utilises a multi-disciplinary 

approach to deliver clinical care to patients [15]. Ideally, all patients should receive, in 

addition to antipsychotic medication, psychosocial interventions. As may be noted, many of 

these treatment options are focussed on the symptoms that are not treated by 

antipsychotics and are used in combination with the therapeutic agents. They also serve as 

reminder of the deficits with regards to antipsychotic treatment, which currently requires 

optimisation [73]. 

 

2.2.2 Response to antipsychotic treatment 

It is difficult to define treatment response, which like schizophrenia, is a highly 

heterogeneous phenotype, with individuals responding differently to antipsychotic 

medications. This difference in response is reflected in the British National Formulary which 

states that “various antipsychotic drugs differ somewhat in predominant actions and side 

effects. However, the differences between antipsychotic drugs are less important than the 

greater variability in patient response” [16]. If the biological mechanisms underlying the 

differences in treatment response phenotypes can be determined, treatment outcomes can 

be optimised in such a way that individuals can be treated according to their response 

profiles. Although it is difficult to compare the differences in response observed between 

different patients, there are a few main aspects that should be considered when examining 

treatment response outcomes. The factors that are central in response to antipsychotic 

treatment include treatment resistance, remission and relapse (Figure 2.5).  
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Figure 2.5: The central features of response to antipsychotic treatment 
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particular reference to positive symptoms 
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features of response to antipsychotic treatment [84,99–101]. 

A patient is usually considered resistant to treatment or treatment refractory after 2-3 

successive treatments have been prescribed without the alleviation of symptoms, with 

. In more robust definitions, the use of 

[67]. As mentioned 

previously antipsychotic treatment is only effective in a subset of individuals and treatment 

. Although the study of treatment 

response is vital for the effective treatment of schizophrenia, the phenotype is difficult to 

define and there have been several different methods of identifying treatment refractory 

response. In earlier studies a less than 20% improvement in 

PANSS/BPRS scores was used to identify patients that were not responding to treatment. 

guidelines for the identification of treatment refractory patients 

ggested that an individual be considered treatment resistant if pervasive symptoms 

3 different antipsychotics, with each treatment 

6 weeks. The presence of pervasive symptoms is measured in terms of a score of 

greater than 4 on the Clinical Global Impression Scale, which ranges from 0-7 (equivalent to 

75 on the PANSS scale or 45 on the BPRS scale); a score greater than 49 on the Functional 

Assessment for Comprehensive Treatment of Schizophrenia scale and a score greater than 

50 on the Global Assessment of Functioning scale, both of which range from 0-100 [102]. In 
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contrast to treatment resistance, remission without relapse is the ultimate goal of the 

antipsychotic treatment of schizophrenia. As with other aspects of treatment outcomes, 

remission is difficult to define, however, the Remission in Schizophrenia Working Group 

defines remission as the absence, or mild presence, of eight core schizophrenia symptoms 

(delusion, unusual thought content, hallucinatory behaviour, conceptual disorganisation, 

mannerisms/posturing, blunted affect, passive/apathetic social withdrawal and lack of 

spontaneity and flow of conversation) for at least six months, while partial remission does 

not require the six month time period to be included in the definition. These symptoms 

should be assessed by means of the PANSS or SANS/SAPS scales [104]. 

 

As mentioned above it is the goal of antipsychotic treatment to allow patients to reach 

remission and many patients do reach this goal. However, unfortunately the majority of 

patients will relapse and experience additional psychotic episodes or a worsening in the 

observed symptoms [105]. It has been reported that the majority of first episode 

schizophrenia (FES) patients respond well to treatment in the first year, with 80% of patients 

obtaining remission status and only 16% of patients relapsing. Unfortunately, by year five 

82% of the patients relapse [101]. Examining patients after fifteen years, it has been 

reported that only 0-12% of patients remain relapse free [106]. Thus, although patients who 

are treated early do for the most part improve after short-term treatment, long term 

treatment is associated with relapses, ongoing symptoms and a poor quality of life for 

patients [56,107]. Furthermore, the majority of costs associated with schizophrenia can be 

attributed to the relapse of patients, with an estimated $2 billion dollars spent per annum in 

the USA on the readmission of schizophrenia patients [108]. Although, to our knowledge, 

the costs related to relapse in South Africa are not known, due to the lack of resources 

allocated to the treatment of psychiatric disorders in LMIC (refer to Chapter 1) [3,4], it 

seems likely that these costs will also be high. It has also been estimated that the mental 

health costs of relapsed patients are 2-5 times higher than non-relapsed patients [109]. 

Therefore, by preventing relapse, the costs associated with schizophrenia can be greatly 

reduced.  

 

In addition to examining the occurrence of relapse, Robinson et al. [101] reported that 

patients who discontinue medication were at a five-fold higher risk for relapse. 

Unfortunately, the measurement of non-adherence has proven to be problematic, as self-

reporting is very unreliable. Furthermore, although treatment outcomes and response rates 

are better in patients experiencing their first episode of psychosis [110,111], non-adherence 

is also highest in this group, with 39% of FES patients discontinuing medication and only 

20% remaining adequately adherent [110]. Thus strategies to improve adherence rates are 

urgently required. In a recent survey, 84% of psychiatrists referred to lack of insight, belief 

that patients no longer require medication and ADRs as the most likely reasons for non-

adherence, highlighting the need for optimised treatment protocols with reduced ADRs in 

order to prevent discontinuation [112]. The case study in Box 2.2 provides real life evidence 

for the effect of ADRs on adherence and treatment outcome and the corresponding need 

for optimised treatments [113]. 
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One of the most effective strategies to combat non-adherence is the use of long-acting 

injectables (LAI). When comparing LAI to oral medication it has been reported that in the LAI 

group there were fewer discontinuations (26% vs. 70%), more symptoms reductions, higher 

remission rates (64% vs. 4%) and lower relapse rates (9.3% vs. 42%) [114]. Although LAI 

were introduced in the 1960s and have been shown to result in better treatment outcomes, 

less than 20% of patients receive LAI and less than 10% of psychiatrists offer LAI as a first 

line treatment [115]. Despite the fact that LAI are not commonly prescribed, 62% of 

psychiatrists reported that the use of a LAI would be the best way to reduce non-adherence 

[112]. As early treatment is associated with better outcomes and FES patients are most 

likely to be non-adherent, the use of LAI during this time frame may be optimal. By 

providing early intervention and improving adherence in these patients, it seems likely that 

better treatment outcomes can be attained. LAI are usually not prescribed due to their 

association with a lack of autonomy for the patient. However, if the psychosis is not 

alleviated the patient will not be able to make independent decisions. An example of how 

patients may benefit and even prefer the use of LAI is demonstrated by the case study 

reported in Box 2.3 [116].  

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to non-compliance, other factors have also been associated with poor treatment 

outcomes. Poor treatment outcomes have been associated with (i) male gender; (ii) early 

age of onset; (iii) early response outcomes, with response over 2-4 weeks highly indicative 

of the long term response; (iv) ethnicity; (v) co-morbidity; (vi) prolonged periods of 

untreated illness; (vii) severity of cognitive and negative symptoms (viii) lack of insight; (ix) 

poor pre-morbid functioning; and (x) a family history of schizophrenia [10,15,103,117,118]. 

With special reference to duration of untreated psychosis (DUP) as a predictor for treatment 

Box 2.2: Case study 1 

A highly functioning individual experienced her first episode of psychosis after which she 

was prescribed a low dose of antipsychotic medication. Ten weeks after initiation of the 

antipsychotic treatment, her symptoms disappeared. However, the disappearance of the 

symptoms was accompanied with sedation and extrapyramidal side effects, which she did 

not want her peers to find out about. She subsequently stopped treatment and the 

hallucinations and delusions returned. These symptoms were more intense than those 

experienced in her first episode of psychosis and re-initiation of treatment was less 

effective than before [113]. 

Box 2.3: Case study 2 

A woman experienced persecutory delusions and was thus hospitalised due to her 

destructive and aggressive behaviour. She was subsequently prescribed 5 mg/day of oral 

risperidone after which she experienced abnormal involuntary movements and was 

therefore prescribed olanzapine. One day after she was discharged, she decided to 

discontinue her medication and four days later she was re-hospitalised due to physical 

aggression. She was then prescribed 20 mg/week of flupenthixol LAI. The voices that she 

was hearing finally disappeared and she no longer felt as if she was being persecuted. 

Twelve months after remission she experienced some movement disorders and was 

prescribed risperidone LAI. She personally opted to remain on the LAI, rather than oral 

treatment, as she found it more convenient and was worried about relapsing again [116].    
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outcomes, it has been reported that 87% of patients experiencing their first episode of 

psychosis will respond to treatment in comparison to 20-30% of multi-episode patients 

responding to treatment [107]. It should however be noted that those patients responding 

well to treatment may be filtered out of multi-episode studies due to the fact that they no 

longer require hospitalisation or treatment [113]. Thus, in order to obtain maximum 

treatment efficacy, many factors need to be taken into account. Most importantly early and 

optimal treatment protocols appear to result in the better treatment outcomes.   

    

2.2.3 Adverse drug reactions caused by antipsychotic treatment  

When examining antipsychotics as a whole, they are associated with many debilitating and 

varied ADRs. These include neurological, cardiovascular, gastrointestinal, haematological, 

genitor-urinary, musculoskeletal and endocrine ADRs [15]. These varied and severe ADRs 

are a major reason for non-compliance [119]. Thus, if the mechanisms underlying the 

occurrence of ADRs can be determined, compliance and subsequently treatment outcomes 

can be improved. Although ADRs are not completely understood, in general terms, the 

occurrence of ADRs is related to the interference of antipsychotics with different pathways. 

Although the mechanism of action of antipsychotics relies on the blockade of certain 

receptors, excessive blockade of these or other receptors may result in ADRs [98]. The 

unwanted effects related to the antagonism of various receptors caused by antipsychotics 

include excessive blockade of: (i) dopamine receptors in the nigrostriatal pathway, which 

may result in EPS; (ii) dopamine receptors in the hypothalamic pathway, which may result in 

hyperprolactaenemia; (iii) dopamine receptors in the mesocortical pathway, which may 

aggravate negative and cognitive symptoms; (iv) histaminergic receptors, which may result 

in sedation, weight gain and metabolic disorders; (v) cholinergic receptors, which may result 

in a dry mouth, constipation, impaired cognition, blurred vision, urinary retention and 

tachycardia; and (vi) alpha1-adreniergic receptors, which may result in orthostasis [83,120].  

   

The differences in ADRs that are observed between antipsychotics are related to the 

differences in binding profiles that these drugs display. When examining the 64 

antipsychotics that are available on the market, their ADR profiles vary widely [15]. 

However, in broad terms, the ADRs related to FGAs can be grouped separately to those 

occurring as a result of SGAs [83,96]. FGAs have a greater affinity for dopamine receptors 

and are thus more likely to result in movement disorders and changes in prolactin levels, 

with tardive dyskinesia (TD) occurring in approximately 20-30% of FGA treated patients 

[121] and antipsychotic sexual dysfunction as a result of changes in prolactin levels 

occurring in 30-80% of patients [119]. The occurrence of these ADRs can be attributed to 

the narrow therapeutic range of antipsychotics, with 60-80% striatal dopamine receptor 

occupancy required in order for the antipsychotics to reduce symptoms. However, if a 

greater than 80% dopamine occupancy occurs, the above mentioned movement and 

prolactin related ADRs are more likely to occur [97,122]. One of the most severe movement 

disorders is TD, which typically develops about three months or later after treatment. TD is a 

movement disorder which is characterised by repetitive and involuntary movements which 

occur predominantly in the orofacial region, however, may also include the limb and trunk 

regions. The observed movements include chewing, tongue protrusion, lip smacking, 

puckering and pursing of lips and rapid eye blinking [123]. TD is usually diagnosed using the 

Schooler-Kane TD Research and Diagnostic Criteria [124]. EPS ADRs are less severe than TD 
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and occur within the first days or weeks of treatment. This group of ADRs include dystonia 

(sustained abnormal posture), akathisia (inner unrest) and parkinsonism (tremors, rigidity 

and bradykinesia) [125]. With regards to the changes in prolactin levels, an increase of 2-10 

fold in prolactin has been observed in patients receiving FGAs [86]. This increase in prolactin 

levels has been reported to result in an increase in breast cancer as well as gynaecomastia, 

galactorrhoea, amenorrhea, sexual dysfunction and osteoporosis [56,126]. 

 

Due to the fact than SGAs have a high affinity for serotonin receptors, the dopamine 

receptors are less likely to be blocked, and therefore less EPS are observed in relation to 

these drugs [83,96]. However SGAs, unlike the FGAs, have a higher affinity for the 

serotonergic and histaminergic receptors [83] and thus a higher rate of weight gain is 

observed, with about 30% of SGA treated patients gaining weight [121]. Although weight 

gain in itself is a serious ADR, it is often accompanied with various other factors which can 

diminish the quality of life of these patients. These factors include diabetes, hyperglycemia, 

hyperlipidemia, hyperphagia, cardiovascular disease, depression, low self-esteem and non-

adherence to medication [121,127]. When comparing schizophrenia patients to controls, it 

was observed that schizophrenia patients had three times as much intra-abdominal fat 

[128]. Furthermore, after treatment with SGAs, it has been reported that the prevalence of 

obesity increases by 10% [129]. This is of serious concern due to the rise of obesity in the 

general population, with 68% of the general US population considered overweight and 34% 

considered obese [130]. As the rate of obesity and type II diabetes is even higher in 

schizophrenia patients, this may have severe health consequences for schizophrenia 

patients [131–133]. Highlighting these health concerns, it has been reported that 50% of 

schizophrenia patients develop metabolic abnormalities, which are accompanied with 

increased cardiovascular risk and mortality [131]. Antipsychotic induced weight gain, 

although poorly understood, can be attributed to imbalances in energy intake (e.g. appetite 

and food intake) and energy expenditure (e.g. decreased activity or metabolism) [134].   

 

Another drug which differs notably with regards to its ADR profile is clozapine, which causes 

agranulocytosis in 0.8% of cases [135]. Agranulocytosis occurs as a result of the destruction 

of defensive white blood cells and this may result in fatality in approximately 10% of cases 

[136]. As such, due to the agranulocytosis related deaths of eight clozapine-treated Finnish 

schizophrenia patients in 1975, the use of clozapine was curtailed [137]. However, in the 

1980s a study showed the superiority of treatment utilising clozapine in treatment 

refractory patients [91]. This was an important finding due to the fact that as many as 25% 

of schizophrenia patients are treatment refractory and 50% of these patients respond to 

clozapine [99,100]. Therefore in the 1990s clozapine was once again introduced globally. In 

order to prevent the occurrence of agranulocytosis and to reduce fatality rates, patients 

now undergo routine hematologic monitoring. This monitoring includes weekly white blood 

cell counts for the first 18 weeks, after which the white blood cells are counted every four 

weeks [121,138].      

 

As has been highlighted thus far, antipsychotics, in combination with other treatment 

strategies, can prevent relapse and reduce symptoms and in so doing reduce the disease 

burden associated with schizophrenia. However, antipsychotics may be costly and can result 

in ADRs and poor treatment efficacy, which increase the burden of disease (as described 

above and summarised in Figure 2.6). It is thus important to ensure that the benefits 
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associated with antipsychotics outweigh the negatives. If treatment can be optimised to 

improve treatment response outcomes and eliminate ADRs, the overall burdens associated 

with the disorder can be decreased.  

 

 
Figure 2.6: The role that treatment interventions have on reducing the burden of 

schizophrenia [15]. Reprinted with permission from Elsevier. 

 

2.3 Antipsychotic pharmacogenomics 

2.3.1 Background 

At the same time that the first antipsychotic drug was introduced in the 1950s [74], the 

term pharmacogenetics was coined to refer to the influence that genetic variants may have 

on the differences in drug responses that are observed between individuals [139]. 

Interestingly, in the 1990s when the second generation of antipsychotic drugs were 

introduced [15], technologies to scan the entire genome were developed, and with these 

new approaches, the term pharmacogenomics came into use. Pharmacogenomics refers to 

the analysis of variants in all the genes in the genome rather than focussed candidate 

approaches. However, as genome-wide analyses are becoming common practice, the terms 

pharmacogenetics and genomics are used interchangeably [140,141]. Pharmacogenomics 

can further be sub-divided into efficacy pharmacogenomics, which examines genetic 

variants contributing to differences in treatment response, and safety pharmacogenomics, 

which examines how genetic variants contribute to the development of ADRs [140].  
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In terms of antipsychotic pharmacogenomics, although many factors such as concomitant 
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heritable trends [145–147]. This demonstrated heritability in c
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role that pharmacogenomics can play in the optimisation of antipsychotic treatment. 

 

 

Figure 2.7: The role that pharmacogenomics can play in improving antipsychotic treatment 

outcomes.  
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treatment outcomes that are observed, illuminates the value that pharmacogenomics has 
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a once off test that will not change over time [87,148]. Thus, trial and error dosing, which 

can take months to years to optimise, can be replaced [120]. Figure 2.7 demonstrates the 
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The need for antipsychotic pharmacogenomics is highlighted by the availability of genetic 

tests that have been designed for antipsychotic pharmacogenetic applications (Table 2.1) 

[16,85,140,149]. The majority of these tests do not target specific ADRs, but examine 

variation in the cytochrome P450 (CYP) genes, which are responsible for metabolising 

antipsychotics. However, four tests have been described for weight gain related ADRs and 

clozapine-induced agranulocytosis. In terms of other success stories, six SNPs have been 

identified that are predictive of an individual’s response to iloperidone. When examining 

individuals that showed a more than 20% improvement in PANSS scores, it was found that 

75% of these individuals tested positive for at least one of the six SNPs [150]. The value of 

antipsychotic pharmacogenetics is further validated by the information provided on the 

PharmGKB database [151]. 

 

Table 2.1: Pharmacogenetic tests that have been designed for antipsychotic treatment 

Test Response outcomes Reference 

Psychotropic-Induced Metabolic Symptoms (PIMS) 

PhyzioType
TM

 System (Genomas)  
Weight- and lipid-related ADRs [152] 

High-Low Metabolic Risk for Neuro-Psychiatric and 

Cardio-Metabolic Drugs (HILOmet) PhyzioType
TM

 

System (Genomes)
 
 

Metabolic Syndrome [153] 

PGXPredictTM: CLOZAPINE (Clinical Data Inc.)  
Clozapine induced agranulocytosis 

[154] 

Clozapine Test (LGC)  [155] 

Luminex Tag-It Mutation Detection Kit (Luminex) 
CYP2D6 and CYP2C19 variants 

[156] 

AmpliChip® CYP450 Test (Roche)
1
 [157] 

BRAINchip test (Progenika)  

Treatment response outcomes 

* 

The GeneSightRx Psychotropic Test (AssureRx Health)  [158] 

SureGene Test for Antipsychotic and Antidepressant 

Response (STA
2
R) (SureGene; PGXL) 

[159] 

PHARMAchip (Progenika) [160] 

iPLEX® ADME PGx (Sequenom) [161] 

VeraCode® ADME CorePanel (Illumina) [162] 

Neurofarmagen® (AB-Biotics) [163] 

IMPACT genetic test (CAMH) [164] 

1
FDA approved; * Website no longer available.  

 

Unfortunately, although tests are available for implementation in the clinic, physicians are 

often hesitant to put these tests into practice and they remain under-utilised. This applies 

not only to the lesser validated psychiatric tests, but also for well-validated examples such 

as the HLA-B*5701 test for predicting abacavir hypersensitivity reactions, which has a 

sensitivity of 100% and a specificity of 96% [165,166]. The paucity of genotyping tests within 

the clinical setting may be related to a number of factors which include: (i) physician 

satisfaction with already existing monitoring processes; (ii) a lack of data pertaining to the 

cost-effectiveness of pharmacogenetic tests; (iii) impracticality of such tests (e.g. time 

period that is required to receive results); and (iv) a lack of conclusive results [167]. For this 

reason, more substantial evidence is required for pharmacogenetic results and this 

information needs to be combined with clear guidelines such as those proposed by the CPIC, 
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whereby peer-reviewed, evidence-based guidelines for gene/drug pairs are provided to 

facilitate the implementation of pharmacogenetics [168] (Table 1.1). 

2.3.2 Candidate gene antipsychotic pharmacogenetic studies 

Although not much is known regarding the mechanism of action of antipsychotics, certain 

pathways and genes have been identified that are known to be involved. When a drug is 

ingested, there are two main mechanisms of interest with regards to pharmacogenetic 

studies, namely the pharmacokinetic and pharmacodynamic processes. In simple terms, 

pharmacokinetic processes refer to what the body does to the drug, while 

pharmacodynamic processes relate to what the drug does to the body. Thus knowledge 

pertaining to the genes involved in these two processes guide the selection of the candidate 

genes that are examined [169]. 

 

The main genes involved in pharmacokinetics include those that contribute to the 

absorption, metabolism and transport of drugs. Due to the fact that these processes are 

important for many drug classes, the related genes are often classified under PharmGKB’s 

Very Important Pharmacogenes (VIP) [170]. Although studies have examined many genes 

involved in pharmacokinetics, the main focus has been on the metabolism of the drugs, 

which occurs in two phases: phase I metabolism, which involves oxidation enzymes, and 

phase II metabolism, which involves conjugation enzymes such as N-acetyltransferases, 

thiopurine S-methyltransferases, UDP glucuronosyltransferases and glutathione S-

transferases [171]. More specifically, studies have predominantly examined variation in the 

CYP genes which are involved in phase I metabolism [140]. These genes are good candidates 

for pharmacogenetic studies as they show a great deal of variation which affects the 

resulting activity of the enzymatic protein products.  

 

To aid in the classification of the identified CYP variants and the effects that these variants 

have on metabolism, individuals can be divided into different metabolism groups based on 

the functionality of the genes present. These groups include poor metabolisers (PM) (no 

functional copies of the gene), intermediate metabolisers (IM) (only one functional copy of 

the gene, or two decreased function genes), extensive metabolisers (EM) (two functional 

copies of the gene) and ultra-rapid metabolisers (UM) (more than two functional copies of 

the gene) [140]. If, for example, an individual is a PM, the drug cannot be properly 

metabolised and there will be a build up of the drug, which may lead to ADRs. Conversely, if 

an individual is a UM, the drug will be metabolised too quickly and the desired response will 

not be achieved. In the case of prodrugs, the opposite effect is observed [172]. One of the 

best studied CYP genes is CYP2D6, which is involved in the metabolism of 25-30% of central 

nervous system drugs, including 40% of antipsychotics [73]. Additionally, this gene is highly 

variable with over 100 recorded alleles that change the function of the gene and include 

gene deletions, gene duplications, hybrid genes and gene conversions [173]. As is frequently 

observed with regards to pharmacogenetic alleles, the pattern of variation in this gene 

differs substantially between different population groups [174] (Figure 2.8), which could 

affect the treatment outcomes observed in these populations. By genotyping individuals 

prior to dosing and utilising the information regarding the functionality of the gene, the 

dose of the drug can be adjusted according to the metaboliser group that the genotyped 

individual falls into. As shown in Figure 2.9, PMs will require a lower dose of antipsychotic or 

antidepressants, while UMs will require a higher dose [175].  
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Figure 2.8: The differences in the frequencies of variants contributing to CYP2D6 

metabolising function across the globe [174]. Reprinted with permission from Wolters 

Kluwer Health. 

 

 
Figure 2.9: The suggested dosage adjustments for various antidepressants and 

antipsychotics based on CYP2D6 metaboliser status. PM: Poor metaboliser, IM: 

Intermediate metaboliser, EM: Extensive metaboliser, UM: Ultra-rapid metaboliser [175]. 

Reprinted with permission from Nature Publishing Group. 
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The pharmacodynamics of antipsychotics refers to the mechanism of action of drugs, and 

includes genes such as those coding for the receptors that the drugs bind to in order to elicit 

a response. Variation in pharmacodynamic genes can affect both safety and efficacy 

pharmacogenetics; however, the genes that safety or efficacy studies focus on may differ 

depending on the phenotype that is being examined. With regards to efficacy 

pharmacogenetics, the main candidate genes relate to the receptor binding profiles of the 

drugs, and may also include genes involved in the pathogenesis of schizophrenia, such as 

DISC1 and DTNBP1 [73]. As mentioned previously all antipsychotics bind to dopamine 

receptors, while SGAs also bind to serotonin receptors. Therefore the genes encoding these 

receptors, as well as genes involved in these pathways, would be excellent candidates. As 

such, the most popular candidate genes include the dopamine receptors (D1-D5), 

transporters (SLC6A3) and metabolisers (COMT) as well as serotonin receptors (HTR2A and 

HTR2C), and transporters (SLC6A4) [172]. Furthermore, different antipsychotics bind with 

different affinities to the dopaminergic, serotonergic, noradrenergic, histaminergic and 

cholinergic receptors. Therefore genes in these pathways all make good candidates for 

antipsychotic efficacy pharmacogenetic studies. However, the selection of the candidate 

genes may be slightly different depending on the drugs under investigation [16].   

 

With regards to safety pharmacogenetics, once again the candidate genes of interest may 

relate to the binding profiles of the drugs. However, knowledge based on the fact that FGAs 

are more likely to result in movement disorders and SGAs are more likely to result in weight 

gain ADRs can be used to guide the selection of candidate genes. The more frequent 

occurrence of movement related ADRs and hyperprolactinemia as a result of treatment with 

FGAs is related to the higher affinity that these drugs have for dopamine receptors. 

Therefore, genes relating to the dopamine pathway are good candidates for 

pharmacogenetic studies examining these ADRs. In a similar manner the higher affinity of 

SGAs for serotonin receptors and the corresponding greater likelihood of weight gain 

related ADRs, make genes in the serotonin pathway ideal candidates for weight gain related 

ADRs [176]. This is validated by the fact that serotonin plays a role in feeding behaviour and 

thus variants changing serotonin levels may explain the weight gain phenotypes that are 

observed [134,172]. In addition to the genes related to serotonin, other genes that may be 

involved in weight gain ADRs include genes involved in the regulation of appetite (e.g. the 

SNAP-25, LEP, LEPR, and histamine receptor genes); genes involved in lipolysis (e.g. the 

alpha adrenergic receptors); and genes involved in the metabolism of fatty acids and 

cholesterol (e.g. INSIG2) [134,176–178]. Thus, it is important to consider the biological 

underpinning of the ADR phenotypes when selecting candidate genes.  

 

The narrow therapeutic window of antipsychotics [97,122] highlights the value of 

pharmacogenetics as a tool to optimise dosing. When examining review articles relating to 

“antipsychotic pharmacogenetics/genomics” that have been written within the last five 

years, it was noticed that the majority of research has focussed on candidate genes and that 

the most frequently referred to genes relate to both pharmacokinetic and 

pharmacodynamic processes, with an over-representation of genes related to metabolism 

processes as well as the dopamine and serotonin pathways (Table 2.2). 
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Table 2.2: The top 25 most frequently studied candidate antipsychotic genes as determined by relevant articles in the PubMed Database. 

Gene Function Associated Pharmacogenetic Trait References 

ABCB1 Antipsychotic transporter Treatment response, Weight gain [16,120,127,171,176,177,179–182] 

CYP1A2 

Antipsychotic metabolism 

Treatment response, Movement disorder [15,16,119,120,171,176,177,179,183–186] 

CYP2D6 
Treatment response, Movement disorder, Weight gain, QT 

prolongation 
[16,88,119–121,171,176,177,179–181,183–192] 

DRD1 

Dopamine receptors 

Treatment response [176,193] 

DRD2 
Treatment response, Movement disorder, Weight gain, 

Hyperprolactinemia, Neuroleptic malignant syndrome 

[16,73,88,100,119–121,127,148,171,176–

181,183–187,189–191,193–196] 

DRD3 Treatment response, Movement disorder 

[15,16,73,100,119–

121,148,171,176,177,179,183–187,189–

191,193,195] 

DRD4 Treatment response, Movement disorder, Weight gain 
[16,73,119,171,176,177,179–

181,183,185,190,191,193,195] 

SLC6A3 Dopamine transport Treatment response [16,73,100] 

COMT Dopamine metabolism Treatment response, Movement disorder 

[16,73,100,119–

121,171,176,177,179,183,185,187,189,193,195–

198] 

HTR1A 

Serotonin receptors 

Treatment response [16,73,100,148,171,176,179,189,195] 

HTR2A Treatment response, Movement disorder, Weight gain 

[15,16,73,88,100,119–

121,127,148,150,171,176,177,179–181,183–

187,189–191,195] 

HTR2C Treatment response, Movement disorder, Weight gain 
[15,16,73,88,119–121,127,171,176–181,183–

189,191,195] 

HTR6 Treatment response, Weight gain [16,73,119,127,176,177,179–181,195] 

SLC6A4 Serotonin transport Treatment response, Movement disorder, Weight gain 
[16,73,100,119,120,127,171,176,178–

181,194,195] 

RGS4 
Inhibits DRD2 and DRD3 

signalling 
Treatment response [16,73,171,176,177,179] 
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Gene Function Associated Pharmacogenetic Trait References 

SNAP25 
Involved in the regulation of 

neurotransmitter release 
Treatment response, Weight gain [16,73,127,171,176,178–181,195] 

GNB3 
Integrates signals between 

receptors and effector proteins 
Treatment response, Weight gain [16,100,119,127,148,171,176,178–181,195] 

GSTM1 Detoxification of drugs Movement disorder [16,171,183–185] 

SOD2 
Prevents damage caused by 

reactive oxygen species 
Movement disorder [121,148,171,176,183,185,189] 

LEP 
Plays a major role in the 

regulation of body weight 
Weight gain [16,121,127,171,176,178–181,184,186,189] 

LEPR Leptin receptor Weight gain [16,121,127,176,180,181,184] 

MTHFR 
Folate and homocysteine 

metabolism 
Treatment response, Weight gain [16,176,177,179–181,195] 

HLA-DQB1 
Involved in immune response 

Agranulocytosis [16,121,136,176,186,189] 

TNF Treatment response, Weight gain, Agranulocytosis [16,121,127,136,171,176,178–180] 

BDNF 
Member of the nerve growth 

factor family 
Treatment response, Movement disorder, Weight gain [16,73,127,171,176,179–181,183,195,199] 
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2.3.3 Genome-wide association studies for antipsychotic pharmacogenomics 

Many candidate genes that may be involved in antipsychotic treatment outcomes have 

been identified. Although the role that these genes play in antipsychotic response are 

biologically validated, not many of the findings have been consistently replicated. The lack 

of replication may either be related to associations detected as a result of false positives, or 

the fact that studies are very heterogeneous in nature with reference to genotyping 

strategies, classification of phenotypes and the ethnicity of patients [172,195]. Nonetheless 

part of the inconsistency in these results may be related to gaps in our knowledge regarding 

the mechanism of action of antipsychotics, an inability of these studies to examine all genes 

and variants simultaneously and limited power to detect associations. It is for this reason 

that GWAS are expected to identify additional genes that are involved in pharmacogenetic 

phenotypes. However, although there are a multitude of antipsychotic pharmacogenetic 

studies examining candidate genes, only a handful of studies have used GWAS approaches 

[53]. 

 

The first antipsychotic GWAS to be published examined antipsychotic induced weight gain in 

a small sample of individuals from 21 families and identified a region on chromosome 12, 

which contained the PMCH gene [200]. In a second GWAS, which used 100 individuals to 

detect an association with TD, the GABA pathway was identified as a potential contributor 

to the development of TD [201]. Since then, just over ten GWAS have been published that 

meet the requirements for appearing on the HuGE Navigator GWAS Integrator [202] (Table 

2.3). These GWAS have examined several different aspects related to the 

pharmacogenomics of antipsychotics, ranging from treatment response phenotypes to ADRs 

such as TD and weight gain. Unfortunately the sample sizes used in these studies remain 

small, with the largest cohort obtained from the CATIE study (n=738). In addition, the 

majority of the published GWAS have used this CATIE cohort, which is a heterogeneous 

cohort of patients receiving various different antipsychotics. Thus, this study is not ideally 

suited to pharmacogenomic research. Although the majority of the P-values obtained from 

the published GWAS do not meet genome-wide significance, there is one study that 

obtained a P-value a few orders above this threshold. The success of this study may be 

related to the fact that this study was designed with pharmacogenomics in mind. The study 

utilised a longitudinal design, which made use of well characterised patients, as well as 

replication cohorts. The patients were drug-naive prior to treatment and drug plasma levels 

were used to assess compliance, thus more accurate assessment of phenotypes was 

possible [203]. This highlights the importance of careful study design.  
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Table 2.3. The GWAS and top variants significantly associated with antipsychotic 

pharmacogenetic traits as reported on the HuGE Navigator GWAS Integrator [202]. 

 

Variant 
Published 

Gene 
Disease/Trait Reference 

Discovery 

Cohort Size 

Replication 

Cohort Size 
P Value 

rs489693 MC4R  Weight gain [203] 139 205 6x10
-12 

 

rs1405687 Intergenic Treatment response  [204]* 738 NA 5x10
-8 

 

rs7838490 MMP16  BMI and cholesterol [205] 594 NA 6x10
-8 

 

rs7669317 Intergenic EPS [206]* 738 NA 8x10
-8 

 

rs11240594 SLC26A9  Treatment response  [207]* 738 NA 1x10
-7 

 

rs888219 Intergenic Treatment response  [208]* 738 NA 2x10
-7 

 

rs4959235 SLC22A23  QT interval prolongation  [209]* 738 NA 2x10
-7 

 

rs11110077 ANKS1B  Working memory  [207]* 738 NA 4x10
-7 

 

rs17706989 WWOX  Reasoning  [207]* 738 NA 1x10
-6 

 

rs993648 CERKL QT prolongation [210] 183 NA 3x10
-6 

 

rs12476047 FIGN  Treatment response  [211]* 397 NA 3x10
-6 

 

rs10805321 Intergenic EPS [212] 409 NA 9x10
-6 

 

rs3943552 GLI2 TD [213]* 327 170 6x10
-5

 

rs11851892 NPAS3 PANSS-T score [214] 106 104 9x10
-5

 

*These studies were performed using samples obtained from the CATIE study. BMI: Body Mass Index; EPS: 

Extrapyramidal Symptoms, TD: Tardive Dyskinesia, PANSS-T: Positive and Negative Symptom Scale-Total score. 

 

This being said, it is often difficult to obtain large and well characterised cohorts. Although 

the effect sizes attributed to pharmacogenetic traits are expected to be larger than those 

attributed to diseases [26], large cohorts of more than 1000 individuals are often required in 

order to reach genome-wide significance. Unfortunately, it is difficult to obtain large cohorts 

of similarly treated schizophrenia patients, which exhibit the pharmacogenetic traits of 

interest [176,215]. Highlighting these issues, it has been reported that 40% of genetic 

studies examining antipsychotic response have cohorts smaller than 100 and 20% have 

cohorts smaller than 50 [189]. Furthermore, although replication is vital for the validation of 

GWAS results, it may be very difficult to obtain cohorts of patients that have been treated 

with the same drug in a similar manner and whose treatment outcomes have been assessed 

using comparable measurements [27,215]. Nonetheless, as we move forward into the era of 

genomic research, study design is of utmost importance and many factors need to be taken 

into consideration. These factors include accurate diagnoses and measurements of 

response, as well as the use of homogeneous cohorts and the assessment of confounders.  

 

With regards to the diagnosis of schizophrenia, patients should receive a DSM, ICD or 

equivalent diagnosis of schizophrenia before being included in studies examining 

schizophrenia. It has been calculated that a reduced diagnostic accuracy (i.e. misdiagnosis) 

can seriously impact on the number of samples required to detect an association. In other 

words, smaller cohorts of better characterised patients will have the same power as larger 

cohorts of less well characterised patients [216]. In order to successfully study treatment 

response outcomes in schizophrenia, the following cohorts would be ideal. Patients who are 

experiencing their first episode of schizophrenia (therefore illness course can be eliminated 
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as a confounder) and are not affected by disease comorbidity should be recruited. These 

patients should be previously drug-naive (therefore treatment duration will be eliminated as 

a confounder) and once they begin treatment they should receive the same drug (to 

eliminated differences in drugs), which they receive as an injectable (to eliminate non-

adherence as a confounder), without concomitant medication. These cohorts of patients 

should be examined for as long as possible so as to examine the effects of medication over a 

long time period and patients should be regularly assessed at the same time periods 

[117,176,177,180,195,217].  

 

With particular reference to the study of treatment response phenotypes, it is important to 

utilise patients that exhibit a range of treatment response phenotypes. When using a cross-

sectional cohort of multi-episode patients, it remains likely that those patients who have 

responded well to medication will be filtered out of the examined cohort and thus the 

sample will be biased towards non-responders, making association analyses difficult. [113]. 

The value of the use of FES cohorts in the assessment of treatment response was 

demonstrated by Zhang et al. [218], where it was reported that a 50% greater effect size 

was observed with regards to the -141C DRD2 variant and treatment response when 

utilising a meta-analysis in FES cohorts rather than multi-episode cohorts. This diluting of 

samples may also be attributed to the fact that 20-72% of chronic schizophrenia patients are 

non-adherent to medication. To demonstrate the importance of adherence in 

pharmacogenetic studies, a sample of 250 patients with 90% adherence will be better 

powered than a sample of 400 patients with 50% adherence [218].  

 

Once these well characterised cohorts have been collected, it is important that treatment 

outcomes are calculated using standardised measurements. However, unfortunately unlike 

other disorders where biochemical/physiological tests are available to diagnose symptoms, 

the assessment of the symptoms present in schizophrenia is reliant on the use of various 

scales that are given scores based on observation. Thus, these measurements remain 

susceptible to bias due to the subjective nature of these scales. Furthermore, the diagnostic 

categories are not clearly delineated from one another and they are often shared with other 

psychotic disorders, further complicating the accurate assessment of phenotypes [42]. 

Nonetheless, careful and regular assessment with the relevant scales may help to alleviate 

these issues. The most well validated scales for these assessments include the PANSS or 

SANS and SAPS scores for treatment response measurements; the abnormal involuntary 

movement scale, extrapyramidal symptom rating scale, Simpson-Angus scale, Barnes 

Akathisia Rating Scale or Unified Parkinson’s Disease Rating Scale for EPS; and body mass 

index, hip circumference, waist:hip ratio, lipid status and blood pressure for weight gain 

related ADRs [85]. Using standardised scales will help to ensure that measurements are 

comparable over time and across patients. In addition, different symptom domains should 

be considered separately and outcome measurements should be compared to baseline 

measurements, further highlighting the importance of recruiting patients at their first 

episode of schizophrenia [217].  

 

While current schizophrenia GWAS have utilised strategies that rely on scanning common 

genetic variants in large cohorts of schizophrenia patients, it appears that antipsychotic 

pharmacogenomic studies may require better characterised cohorts of patients and 

technologies that are able to examine the entire spectrum of variation. By utilising WGES of 
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well characterised patients, the likelihood of identifying causal variants may be increased 

due to the ability of these technologies to detect both rare and common variants within 

functional regions. Thus, results obtained from these WGES studies are more likely to have 

direct relevance in the clinical setting. Unfortunately, to date there are no studies utilising 

WGES approaches to uncover the genetic factors relating to antipsychotic treatment 

outcomes. 

 

2.4 The study of antipsychotic pharmacogenomics in the South African 

context 

2.4.1 Resource limited settings and unique cultural considerations 

In LMIC, there is a high rate of poverty, inequality and violence, which may exacerbate the 

onset of schizophrenia [219]. In South Africa, these factors have been heightened by the 

racial discrimination and political violence of the apartheid regime [220]. The lack of 

education, financial resources, accessibility to health care services, high rate of co-morbid 

disease and substance abuse may all act as stressors and may prevent the effective 

treatment of patients [221]. In the Western Cape of South Africa, the use of 

methamphetamine (Tik) is very high and this plays a role in heightening the already frequent 

occurrence of psychiatric disorders, as well as complicating the treatment thereof [222]. The 

lack of resources in South Africa is highlighted by the fact that there is only one psychiatrist 

per 100 000 individuals. Most of these psychiatrists work in Cape Town and Gauteng 

(Johannesburg and Pretoria regions), with only 4.7% of psychiatrists working in state 

hospitals in rural areas [223]. This emphasises the disparities in access to health in an 

already under-resourced country. In addition, the overburdened health care systems of 

South Africa appeared to experience a decline in resources from 1997 to 2005. Per 100 000 

individuals, the number of beds declined from 48 to 28, the number of mental health staff 

decreased from 19.5 to 11.95, the number of psychiatrists declined from 0.4 to 0.3 and the 

number of nurses declined from 15.6 to 10.1 [4]. Furthermore, it has been reported that 

only a quarter of South Africans with mental disorders sought out treatment and, perhaps 

even more shockingly, only 5.7% received formal mental health care [224]. This lack of 

treatment may be related to a lack of resources, as well as the high level of stigma 

associated with schizophrenia, which is reportedly higher than in other mental disorders 

[225]. A study examining the stigma associated with South African Xhosa schizophrenia 

patients reported that 52% and 44% of the family members believed schizophrenia patients 

to be dirty or dangerous [226]. Other comments included the fact that they were 

unpredictable, tense, worthless, delicate, slow, weak and foolish. Another South African 

study reported that 65% of patients felt as though they had been discriminated against as a 

result of their illness. In addition, many patients had experienced some kind of abuse, with 

58% of the patients experiencing name-calling, 58% experiencing verbal abuse and 39% 

experiencing physical abuse. The abuse was more frequent among isiXhosa speaking 

individuals, when compared to English and Afrikaans speaking patients [227].  

 

In addition to this abuse, treatment of patients is often limited, which may be accounted for 

by cultural beliefs. In a study examining Xhosa schizophrenia patients, 67% of the family 

members believed that the symptoms of the disorder could be attributed to amafufunyana, 

which refers to witchcraft or spirit possession; or ukuthwasa, which refers to a calling to 
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become a traditional healer. Amafufunyana has been associated with undressing, aggressive 

behaviour and psychomotor agitation. Ukuthwasa has been associated with social 

withdrawal, irritation, restlessness, screaming and shouting, dancing and auditory 

hallucinations [228]. In the context of South Africa, a large percentage of patients will use 

traditional healers as their first line of treatment, before seeking medical advice [229], with 

an estimated 80% of the South African populations visiting the 200 000- 350 000 traditional 

healers in the country [230]. In the context of schizophrenia, when examining a cohort of 

predominantly Zulu patients, it was observed that half of the patients believed that their 

illness was as a result of a spiritual cause and 38.5% of these patients consulted a traditional 

healer [231]. Another study reported that 80% of Xhosa schizophrenia patients consulted a 

traditional healer and of these 80%, 53% were diagnosed with amafufunyana (50.9% of 

which had a family history of schizophrenia) and 4.5% were diagnosed with ukuthwasa 

(100% of which had a family history of schizophrenia) [228]. Of further concern, patients 

who are diagnosed by traditional healers experience a longer DUP [231]. As a longer DUP 

has been associated with worse treatment outcomes [232], this may have implications for 

the well-being of these patients. Thus, it may be important to form a bridge between 

western medicine and traditional healers. 

 

The inefficient treatment of schizophrenia places a heavy financial burden on South African 

health services. In addition to cultural sensitivities, these poor treatment outcomes are 

influenced by a lack of guidelines for the treatment of psychiatric disorders and differences 

in ethnicities between patients and clinicians, making communication and interpretation of 

symptoms difficult [233]. It is important that language barriers are overcome and that 

information is provided in the home language of the patient in a way that is sensitive on 

both a cultural and social level [230]. Furthermore, due to less regular check-ups 

accompanied with an inability to regularly monitor patients, drugs such as clozapine which 

are associated with dangerous ADRs, are less likely to be prescribed even though they have 

been documented to show better treatment outcomes in treatment resistant patients [233]. 

Even if patients are able to gain access to treatment, non-adherence is of serious concern 

and is influenced by the difficulty in obtaining antipsychotics. Often patients need to queue 

outside the clinic from 4 am. They may have to wait for hours in order to obtain medication 

and stand the risk of being mugged during this time. Many patients choose to use half of the 

prescribed dose so that they can make less frequent visits to the clinic [234].  

 

Of further concern, treatment regimes and guidelines available to high income countries are 

often not applicable in the context of LMIC. When examining the use of antipsychotics in the 

treatment of schizophrenia, the costs of these treatments need to be considered. In this 

regard several studies, including the CATIE and CUtLASS studies, have reported that costs 

associated with the use of FGAs are lower than those of SGAs [235]. For this reason, studies 

that have examined the cost-effectiveness of treatment recommend the use of FGAs in 

combination with psychosocial interventions to reduce the costs associated with the 

disorder, while keeping the costs associated with the treatment of the disorder to a 

minimum [236,237]. Highlighting the high cost associated with SGAs, it has been reported 

that in the last decade the global expenditure on antipsychotics in the USA has increased 

approximately 20 fold, from $0.5 billion per year to $15 billion per year. This is largely 

attributed to the more frequent use of SGAs [185], which are approximately ten times as 

expensive as FGAs [86]. Nonetheless, although the efficacy of FGAs and SGAs has been 
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reported to be very similar, it is generally recommended that SGAs are given as first line 

treatment as they are less likely to result in EPS. Unfortunately, in Africa, where resources 

are limited, the cheaper FGAs are usually utilised. More specifically, in South Africa only 

schizophrenia patients who have access to private psychiatric facilities (approximately 30% 

of the population) have access to SGAs. Thus, the majority of South Africans will need to use 

FGAs as their first line of treatment [86]. Therefore, studies examining antipsychotic 

pharmacogenomics in the African context should focus on FGAs. If pharmacogenomic 

interventions to alleviate the ADRs associated with FGAs can be developed, the cost-

effectiveness of the treatment strategies can be further improved [140].  

 

Interestingly, even though access and quality of treatment in less economically developed 

countries is limited, it has been reported that schizophrenia patients in these regions have 

been shown to respond better to treatment than those living in higher income countries 

such as Europe. This has been observed both with respect to response and remission rates 

[238]. It has been suggested that the African collective culture provides a greater level of 

support, when compared to the Western culture of individualism, and for this reason 

treatment outcomes in these patients are better [239]. However, the validity of these 

results has been questioned. The findings may be influenced by the fact that there may be a 

higher rate of misdiagnosis in developing countries, which may skew the results, and not all 

patients who are suffering from schizophrenia in the developing world may have access to 

the hospitals sites where these studies were performed [221]. Nonetheless, although there 

are many hurdles in examining schizophrenia and the treatment thereof in LMIC, South 

Africa remains a leader in Africa with regards to mental health services and research [2]. 

Egypt, Nigeria and South Africa provide the largest number of biomedical research papers in 

Africa [18] and South Africa is considered one of the top five LMIC with regards to 

psychiatric research [240]. Thus, the future of research into the optimisation of 

antipsychotic treatment in South Africa is bright.     

 

2.4.2 The rainbow nation and implications for genomic studies 

Archbishop Desmond Tutu aptly named South Africa the rainbow nation due to the many 

diverse individuals that make the country their home, which is reflected by the eleven 

official languages spoken in South Africa. The populations residing within South Africa range 

from homogenous (Afrikaner population) to admixed (Coloured population) to ancient and 

genetically diverse (African populations) (refer to Warnich et al. [230] for more details 

regarding the history and genetic composition of the South African populations). These 

populations offer unique challenges, as well as advantages for genomic research. The high 

diversity and low LD observed in the African populations, although not ideal for GWAS, are 

valuable for WGES and fine mapping strategies (refer to Chapter 3 for more details) [241]. In 

contrast the homogenous Afrikaner population is less suited for fine mapping, but is well 

suited to GWAS due to the ability to tag large areas of the genome with relatively few 

variants. Lastly, the admixed nature of the South African Coloured (SAC) (referred to as such 

by the National Census) or South African Mixed Ancestry population allows for the 

opportunity to identify pharmacogenomic variants of relevance to several different 

populations [242].  
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The admixture present in the SAC population, along with the differences in genetic make-up 

observed between the different South African populations, brings to light a very important 

consideration with regards to the implementation of pharmacogenetics in South Africa. It 

seems unlikely that a uniform panel of variants will be identified that will apply to all 

individuals residing within the country and thus an individualised approach to medicine may 

be required. Furthermore, it should be noted that although South Africa provides rich 

sources of populations with unique advantages for pharmacogenomic research, the well-

being of these individuals should be considered before research is performed. It is becoming 

more popular for researchers from developed countries to perform studies on local South 

African populations and for this reason the concept of genomic sovereignty is important. 

This ensures that genomic material that is utilised from South African individuals is 

protected and that the generated research is beneficial to the local individuals from whom 

the material was sourced [230]. 

 

To date, the only published studies relating to the genetics of schizophrenia in South Africa 

have been performed in the Xhosa and Afrikaner populations [240]. Currently, there are no 

published studies that have utilised the SAC to identify associations with schizophrenia. This 

may be related to the fact that the high admixture in this population complicates genetic 

association studies. In order to correct for this admixture, ancestry informative markers 

(AIMs) are required. These AIMs should be selected based on the different frequencies at 

which these markers occur in the populations that have contributed to the ancestry of the 

SAC population [243]. By using these AIMs to perform principle component analyses, the 

principle component scores can be used as covariates in the statistical analyses in order to 

correct for false positives that may be caused by population stratification. Thus, the 

development of AIMs that have been designed specifically for the highly admixed SAC 

population are essential in order for association studies to be performed in these 

populations. 

 

With regards to antipsychotic pharmacogenetic studies, more than half of these studies 

have been performed in European-descent individuals, with the majority of the remaining 

studies performed in Asian individuals [244]. This leaves African populations poorly 

represented. In addition, although large resequencing projects such as the 1000 Genomes 

Project have undertaken to characterise the human variome, the diverse populations 

present in South Africa remain under-represented (refer to Chapter 3 for more details) 

[241]. Therefore, it is important that pharmacogenomic studies are performed in South 

African populations and that the variation present in these populations is characterised. 

With reference to antipsychotic treatment, it has been reported that South African 

individuals of different ethnicities respond differently to antipsychotic treatment, such that 

SAC individuals respond best (32% response rate), followed by Africans (24% response rate) 

and European descent individuals (9% response rate). It has also been reported that Asians 

require a lower dose of antipsychotics to achieve a treatment response [245]. The 

contribution of Asian ancestry to the SAC group may partially explain the better response 

rates in this group of individuals. These same ethnic differences were reported for the 

development of TD and antipsychotic induced weight gain, with African ancestry individuals 

reportedly more likely to develop TD and experience weight gain after antipsychotic 

treatment than European descent individuals [246–248]. There are many factors that could 

explain the differences in response rates that are observed between individuals of different 
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ethnicities. These include diet, body mass, substance abuse, and importantly in the context 

of this study, genetics [245]. The effect of genetic variations on population specific response 

to medication has been demonstrated with regards to the development of Steven Johnson 

syndrome (SJS) as a result of carbamazapine treatment. It has been observed that 

individuals that carry the HLA-B*502 allele are likely to develop SJS, however this is only the 

case for Asian individuals [249]. Due to the fact that large differences in pharmacogenetic 

allele frequencies are observed between different South African populations [240], it is 

important to determine how these and other variants contribute to the differences that are 

observed with regards to treatment outcomes. Thus the use of unique South African 

populations in antipsychotic pharmacogenomic sequencing studies may provide much 

needed answers for the optimisation of the treatment of schizophrenia patients. 

2.5 Aims and objectives 
 

This project aims to identify genetic variants contributing to antipsychotic treatment 

response outcomes. 

 

This will be achieved through the completion of the following objectives: 

1) Evaluate the utility of WGES for antipsychotic pharmacogenomics in African populations 

2) Identify and characterise the coding variation present in a subset of FES antipsychotic 

non-responders and responders with the use of exome sequencing 

3) Compare the patterns of variation occurring in antipsychotic non-responders and 

responders 

4) Identify genetic variants associated with antipsychotic treatment response in the South 

African FES cohort 
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PART 1: Evaluation of the utility of whole genome and 

exome sequencing for antipsychotic 

pharmacogenomics in Africa 
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CHAPTER 3: Whole genome resequencing in 

pharmacogenomics: moving away from past disparities to 

globally representative applications 
Drögemöller Britt I1, Wright Galen EB1, Niehaus Dana JH2, Emsley Robin A2, Warnich Louise1 

1 Department of Genetics, Stellenbosch University, South Africa  
2 Department of Psychiatry, Stikland Hospital, Stellenbosch University, South Africa  

Reprinted with permission from Future Medicine. 

3.1 Summary 
Africa suffers from a high burden of disease; nonetheless, it has been one of the most 

under-represented continents with regard to genomic research. It can be argued that this 

disproportionate research is related to the fact that the genome architecture of African 

individuals is poorly suited to SNP-based genome-wide association studies, given existing 

genotyping platforms. However, this argument is no longer plausible with the arrival of next 

generation sequencing technologies, which allow for the analysis of entire genomes. Using 

pharmacogenes to critically examine the merit of next generation sequencing technologies 

in pharmacogenomics, we found a substantial amount of novel/uncharacterised variation, 

which was predicted to alter protein function. This variation was predominantly observed in 

African individuals, emphasising the benefit of next generation sequencing technologies 

specifically for these individuals. We also observed an improvement in the reliability of 

sequencing technologies in a relatively short time. Therefore, as sequencing technologies 

develop and decrease in cost, the ability to reliably detect variation will improve and these 

technologies will begin to replace other less comprehensive genotyping assays.  

Keywords:  

Africa, next generation sequencing, pharmacogenomics, pharmacogenes, genomics  

3.2 Inequalities in genomic research   
There has been a large disparity in genomic research, with approximately 75% of GWAS 

performed in European descent individuals [250], while the remaining GWAS provide a poor 

representation of African individuals. When consulting the existing database of GWAS 

literature [202] (accessed 28th March 2011), out of a total of 5 854 possible “GWAS hits”, 

465 were related to the search term “African”. However, from these results, only six studies 

referred to specific populations residing within the continent (i.e. West Africans, Nigerians, 

Malawians, Gambians and Ghanaians [251–256]), while all other studies referred to African 

Americans or African descent individuals. As can be seen in Figure 3.1, the “GWAS hits” that 

have been obtained from African populations represent a very small portion of the 

continent and only fall in areas of the Niger-Kordofanian language family distribution 

[257,258]. Since Africa is host to 30.5% of the world’s 6 909 living languages [259], it is not 

realistic to refer to Africans as one homogenous population group, nor is it accurate to infer 

the results obtained from the highly admixed African American GWAS onto present day 

African populations [260]. 
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Figure 3.1 A: Percentage African “GWAS hits” [202], which represent ~8% of the GWAS 

performed to date, stratified by those studies using specific populations within Africa and 

those using populations defined as African American or African descent. B: The countries in 

Africa from which the GWAS cohorts were gathered. This image highlights the fact that 

those few studies that have used populations from within Africa represent only a very small 

portion of the continent 

The under-representation of studies examining populations residing within Africa seems 

ironic when considering that out of the 28 countries worldwide that have a death rate 

higher than 1 850 per 100 000, 26 of these countries are situated in Africa [261], making 

Africa one of the continents most likely to benefit from the translation of GWAS results. 

Furthermore, due to the shortage of genomic research in Africa, those GWAS that have 

been performed include the more frequently studied TB, HIV and malaria epidemics 

[252,255,256], while other disorders, such as complex psychiatric disorders, are absent. The 

lack of psychiatric GWAS in Africa is further highlighted by the absence of these studies in 

the PGC, whose goal is to conduct meta-analyses utilising GWAS data for psychiatric 

disorders [60]. This absence is a result of the better genome wide coverage and greater 

amounts of data available for European descent individuals; however, it is the long term 

goal of the PGC to include African descent individuals [60]. This emphasises a need for 

additional studies within Africa that move beyond the more frequently examined epidemics 

to cover a wider variety of diseases and disorders. It should also be noted that one of the 

predominant explanations for the lack of genomic research in Africa can be attributed to a 

lack of funding, resources and infrastructure within the continent. This in turn results in a 

lack of expertise and subsequently a shortage of comprehensive genetic/genomic studies 

pertaining to African individuals [249]. Without access to large cohorts of well characterised 
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African individuals, current technologies have been unable to incorporate the genomic 

architecture of these populations into genome wide assays.   

Fortunately the realisation that we need to address these research disparities has come at 

the right time. Although the GWAS of the past have focussed on European descent 

populations, it can be argued that these types of GWAS, utilising SNP genotyping, are well 

suited to the genomic architecture of European descent individuals, while the low LD 

present in African individuals is uniquely suited for fine-mapping [250,262]. Therefore by 

utilising individuals of African Diaspora in resequencing studies, we may be able to more 

easily elucidate causal variants, owing to the lower LD in these individuals. By identifying 

causal variants as opposed to those that are merely in LD with these variants, we may be 

able to increase the amount of evidence-based guidelines to aid in the application of 

genomic results into the clinical setting [263]. Furthermore, Africa provides the ultimate 

setting for the translation of genomic results, due to its high disease burden and ample 

disease cohorts [264,265], with reference to both communicable [266,267] and non-

communicable diseases [268,269]. However, before Africa enters the genomic research 

arena, it is important that researchers focus on utilising techniques that will benefit from 

the complex architecture of African genomes. Bearing this in mind, there is evidence to 

suggest that SNP-based GWAS employing commercial microarrays may be replaced, in many 

areas, with the use of NGS technologies [270]. Therefore, Africa may be entering the field of 

genomics at the perfect time, coinciding with the explosion in sequencing technologies.  

3.3 Next generation sequencing technologies  
This year, as we commemorate the decade that has passed since the human genome 

sequence was published, a retrospective look at sequencing reveals one of the most rapidly 

advancing technologies to date. Although Sanger sequencing, published in 1977 [271], 

earned Frederick Sanger the Nobel Prize in 1980; the sequencing of the human genome 

using this technique took thirteen years to complete [272]. Today, with the use of NGS 

technologies, the whole genome sequence can be obtained in a few weeks and the 

associated cost has dropped about a million fold [273], making the field of genomics one of 

the leaders in science and technology at present. Even so, the potential of high throughput 

sequencing remains largely unharnessed and there is much room for improvement. By 

smoothing out the associated flaws and implementing WGES on a regular basis, it is hoped 

that the criticism associated with the lack of translatable results obtained from the Human 

Genome Project (HGP) can be addressed and genomic applications in the clinical setting will 

become routine.   

Exciting as this technology may be, it is important that the biases of past genomic research 

are not repeated and that all populations are equally represented. Even though European 

ancestry individuals have been over-represented in GWAS to date, the lack of clinically 

applicable results obtained from these studies have fortunately prevented a large increase 

in global health disparities as a result of this research bias. However, if this uneven research 

continues into WGES studies, which are more likely to identify causal variants, the 

knowledge gap and health disparities between developing and developed countries are 

likely to increase, to the detriment of developing countries [249]. Unfortunately, even in the 

short time that WGES technologies have been available, research disparities are already 

emerging. These disparities refer both to sequencing-related equipment and resequencing 

data. While a substantial amount of both Caucasian and Asian genomes are being 
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sequenced, the resequencing of African genomes is lagging behind [274]. Due to the fact 

that all humans originate from Africa and African populations have largely avoided the 

bottleneck effects experienced by non-Africans [275,276], genomic characterisation of these 

populations should provide the most comprehensive catalogue of human variation. 

Therefore, if anything, these individuals should be over-represented rather than under-

represented in genomic research. As mentioned in the previous section, the lack of African 

GWAS data can be justified by the difficulty in completely capturing the variation in African 

genomes using Eurocentric SNP-based genotyping techniques, due to high levels of genetic 

variation and low levels of LD [250]. However, WGES technologies allow for the almost 

complete capture of high levels of genomic variation, and low LD may even improve the 

ability to identify causal variants. Unfortunately, although the sequencing technologies for 

genomic studies are available and affordable, and Africa provides the required disease 

cohorts for these studies [264,265], WGES in African individuals remains limited.   

These issues are, however, being addressed and the 1000 Genomes Project is in the process 

of resequencing 100 individuals from each of the five selected African populations from 

Nigeria, Kenya, Gambia and Malawi, as well as an additional population from either Sierra 

Leone or Nigeria [277]. These data should play a role in adding to the knowledge of not only 

the African genome, but also the human variome. This is important, as examination of the 

available resequencing data has demonstrated that African genomes consistently exhibit 

more variation, both novel and known, than non-Africans [278–281]. Unfortunately, with 

the exception of Kenya and Sierra Leone, the populations that are included in the 1000 

Genomes Project originate from the same areas in Africa where the “GWAS hits” of the past 

have been obtained [251–256] (Figure 3.1). Therefore, once again the majority of Africa 

remains unaccounted for. However, every sequenced genome will add to our understanding 

of human variation and will create a stepping stone for future resequencing projects in 

more African populations. Through the careful implementation of WGES in Africa, taking 

into consideration the possibility of identifying causal variants contributing to diseases, it is 

hoped that genomic findings can be translated into the clinical context to improve health. 

These results are likely to have the biggest impact in Africa where improvement of health 

care is urgently required. 

3.4 Pharmacogenomics: A front runner for translation of genomic 

results into the clinical setting? 
Although the HGP was expected to play a role in understanding disease, the most tangible 

results were in fact related to personalised medicine and the effective treatment of disease 

after diagnosis [282]. More specifically, pharmacogenetics/genomics was both predicted 

and has been proven to show promise for clinical applications [19,283]. This is 

demonstrated by the translation of results from pharmacogenetic studies into the clinical 

setting [284,285], in combination with the number of FDA-approved drugs with 

pharmacogenomic information on their labels [22]. Furthermore, in some cases the cost-

effectiveness has been calculated with regard to the utilisation of specific pharmacogenetic 

tests to improve drug efficacy and decrease ADRs [286–292]. Although these studies have 

shown that the pharmacogenetic tests are in some cases very expensive, which is a 

particular hindrance for implementation in developing countries, they have also shown that 

pharmacogenetic tests can be cost effective if the appropriate considerations are made and 

the allele frequencies of the specific variants are high enough in the population being tested 
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[287–291]. Results such as these, providing evidence for cost-benefit outcomes, are 

important as it has been widely reported that ADRs and treatment failure are responsible 

for large economic and healthcare burdens worldwide [293–295]. Additionally, these results 

emphasise a need to characterise and understand the variation present in the genes 

influencing drug response and to determine the role they play in treatment outcomes in 

different populations.     

Unfortunately, studies providing examples of the cost effectiveness of pharmacogenomics 

within Africa are missing, which may in part be attributed to a lack of data pertaining to the 

specific variants affecting treatment outcome. This is of serious consequence as Africa is 

suspected to be burdened with a high rate of non-optimal treatment regimes. One of the 

reasons that Africa is burdened by ADRs and poor drug efficacy is the high prevalence of 

HIV/AIDS, which requires lifelong treatment with antiretrovirals [296]. Not only are patients 

more likely to experience ADRs due to the presence of the disease, but the use of 

concomitant drugs increases the likelihood of drug-drug interactions, which subsequently 

results in non-optimal treatment outcomes [294,297]. Furthermore, diseases and the 

treatment thereof are aggravated by poverty and a lack of resources, and as mentioned 

previously in Chapter 1, although 10% of the global burden of disease can be attributed to 

diseases occurring in poor countries, only 1% of new drugs are developed for the treatment 

of these diseases [298]. Therefore, not only are the relevant drugs not developed for Africa, 

but those drugs that are developed are predominantly designed using European descent 

individuals as a reference, which is unlikely to be an optimal fit for the highly diverse 

genomes of individuals residing within Africa. Therefore, research to determine the 

presence and effect of variation in pharmacogenes (i.e. pharmacogenetic/genomically 

relevant genes) needs to be performed in Africa to assess the types and dosages of 

medication required for optimal treatment.  

Validation for the requirement of these studies is provided by past studies, which have 

resequenced pharmacogenes in Africans and consistently discovered novel variation that is 

likely to affect treatment outcome [299–305]. As most African pharmacogenetic studies 

have been performed focussing on candidate genes [230], there is much that future 

pharmacogenomic studies in Africa stand to gain from the implementation of WGES.   

3.5 Critical evaluation of the variation present in pharmacogenes 
Before large and expensive projects are designed and initiated, proof of the value of these 

studies is required. The most cost-effective way of doing this is to review data that is already 

publically available. Therefore, as this article is focussed predominantly on the application of 

pharmacogenomic data, we critically examined and compared the variation present in the 

pharmacogenes of African and non-African individuals. In order to obtain a comprehensive 

overview of this variation, we utilised high throughput data derived from genome-wide 

studies utilising either large scale SNP genotyping or WGES. 

To evaluate the value of WGES data, we utilised the Galaxy library and corresponding 

tutorial [306] to compare the variation observed in the pharmacogenes of thirteen 

ethnically diverse individuals, which were broadly divided into seven Africans and six non-

Africans. For more details regarding the analyses performed and the individuals utilised, 

refer to Appendix 1 and Table S1. More specifically, we examined the top ten 

pharmacogenes (ABCB1, CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, TPMT, 
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UGT1A1 and VKORC1) as described by Thorn et al. [307]. Although these pharmacogenes 

have all been extensively studied, using the data obtained from the Galaxy library for the 

thirteen individuals, we found that half of these genes contained novel/uncharacterised 

non-synonymous SNPs that were predicted to be “damaging” by the SIFT algorithm [308] 

(Table 3.1). In the context of this article we defined uncharacterised variants as those 

variants, which although predicted to alter the respective protein products, have not been 

described in either the allele nomenclature websites [309,310] or on PharmGKB [21] 

(accessed 1 February 2011). The presence of these variants emphasises the variability of the 

genes and suggests that more comprehensive genotyping assays may be required in future 

studies. More specifically, not only was there consistently a higher level of variation present 

in the pharmacogenes of African individuals when compared to non-Africans, but 

approximately three quarters of the novel/uncharacterised variation was detected in African 

individuals (Table 3.1). These data provide a strong argument for the resequencing of 

pharmacogenes, specifically in African descent individuals. The data also provide a potential 

explanation for the higher frequency of genotype-phenotype discordance observed in 

individuals with African ancestry [311], which may be attributed to uncharacterised 

variation present in pharmacogenes.   

Table 3.1: Novel/uncharacterised non-synonymous SNPs predicted to be damaging, from 

resequencing data of 10 pharmacogenes in 13 ethnically diverse individuals 

Gene Africans Non-Africans 

CYP1A2 T324I 

CYP2C9 L287M 

CYP2C19 L17H 

CYP2D6 R365H 

CYP3A4 

I118F 

Q200H 

L401P 

 

It is, however, equally important to consider variation that has been characterised and 

proven to be of value to pharmacogenetic applications. Therefore, we examined variation 

known to affect drug response, in the highest ranked genes with perceived importance for 

gene-drug interactions, as described by the CPIC [168] (Table 3.2). We also included COMT 

and TPMT-cisplatin to this list of drug-gene interactions, as it has recently been reported to 

be highly significant for pharmacogenetic applications [312]. To evaluate and compare the 

presence and frequency of this variation in Africans [Yoruba individuals from Nigeria (YRI)] 

and non-Africans [Northern and Western European ancestry individuals from Utah (CEU)], 

we utilised data from the International HapMap Project [313]. Unfortunately, consultation 

of the HapMap data revealed that genotype information was absent for almost half of the 

variants listed in Table 3.2, emphasising a need for population based studies focussing 

specifically on pharmacogenetic variation.  
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Table 3.2: List of important previously characterised variants affecting treatment response 

Gene Drug  Variant ADR/treatment outcome 

CYP2D6 Tamoxifen 

*3 (rs35742686)1 

*4 (rs3892097)1 

*5 (gene deletion)1 

*6 (rs5030655)1 

*7 (rs5030867)1 

Unfavourable treatment outcome 

CYP2C19 Clopidogrel 

*2 (rs4244285) Decrease in platelet responsiveness 

*3 (rs4986893)1
 Decrease in platelet responsiveness 

*17 (rs12248560) Improved response 

VKORC1 

Warfarin 

-1639 G>A (rs9923231) Increased risk of bleeding 

1173 C>T (rs9934438) Increased risk of bleeding 

CYP2C9 
*2 (rs1799853) Increased risk of bleeding 

*3 (rs1057910) Increased risk of bleeding 

HLA-B Abacavir *5701 (rs2395029) Hypersensitivity syndrome 

TPMT Mercaptopurine 

*2 (rs1800462)1
 Toxicity 

*3 (rs1142345) Toxicity 

*4 (rs1800584)1
 Toxicity 

TPMT 
Cisplatin 

rs12201199 Hearing loss 

COMT rs9332377 Hearing loss 

1: No genotype information available on HapMap 

 

Even with the limited data, clear differences in allele frequencies between the two HapMap 

populations were observed (Figure 3.2A). In general, the variants appeared to be more 

representative of the CEU population, highlighting the disproportionate research that has 

been performed with regard to the characterisation of pharmacogenetic variation. Although 

not all of the relevant pharmacogenetic variants were detected in the African descent 

individuals, these variants have for the most part been well characterised and are thus likely 

to be accounted for by already available pharmacogenetic genotyping assays. Of further 

interest, although many variants were not detected in African descent individuals, some 

variants were present at much higher frequencies in these individuals and may therefore 

have even more value for pharmacogenetic applications in Africa (e.g. COMT rs9332377 and 

TPMT rs12201199, both associated with cisplatin-induced hearing loss [312]). The 

differences in allele frequencies observed between the YRI and CEU can be extended to the 

other nine HapMap populations, as has been well demonstrated by Adeyemo and Rotimi 

[58], who showed that the more removed the HapMap populations were from one another, 

the more the allele frequencies differed. Together these results serve to support the notion 

that multiple populations need to be studied in order for us to gain a comprehensive 

understanding of human variation and its effect on pharmacogenetic traits. 

More specifically, even those studies that have taken African variation into account have 

predominantly used the YRI as a reference for African individuals. This is not always an 

accurate representation, as demonstrated by Rotimi and Jorde [314] with regard to the 

differences in allele frequencies observed for the HLA-B*5701 abacavir hypersensitivity 

syndrome associated variant, and further highlighted in Figure 3.2B for VKORC1 -1639 G>A, 

which is included in three of the five FDA approved in vitro diagnostic tests for warfarin 
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dosing [305]. Both these variants show that although the allele frequencies were extremely 

low in the YRI population, the same is not true for other African populations. Therefore, if a 

particular variant is not of relevance to one African population, it should not be assumed 

that it will not be relevant for pharmacogenetic applications in another African population. 

This once again highlights that the handful of African populations that have been included in 

GWAS and resequencing projects are unlikely to be representative of the entire continent. 

 

Figure 3.2 Differences in pharmacogenetic allele frequencies A: The differences in allele 

frequencies observed between the CEU and YRI individuals for known pharmacogene 

variants that have been genotyped by the HapMap Project. B: The differences in allele 

frequencies observed between African ancestry individuals for VKORC1 -1639 G>A. 

Population descriptors: CEU: Utah residents with Northern and Western European ancestry 

from the CEPH collection, ASW: African ancestry in Southwest USA, LWK: Luhya in Webuye, 

Kenya, MKK: Maasai in Kinyawa, Kenya, YRI: Yoruban in Ibadan, Nigeria. All data were 

obtained from the HapMap Genome Browser release #28 [313].  

In summary, these data show that available pharmacogenetic information has greater 

relevance for non-African populations, which may be attributed to the greater amount of 

research that has been performed, in combination with the lower levels of genetic variation 

and greater homogeneity of these populations, when compared to Africans. In contrast, not 

only is there a large proportion of uncharacterised variation present in African genomes, but 

the value of characterised variation differs between populations. These data all support the 

resequencing of many, diverse African genomes. Although we have demonstrated that 
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resequencing applications have the greatest value for African populations, as sequencing 

becomes cheaper and more readily available, the replacement of other less comprehensive 

genotyping assays with this technology would be beneficial to all population groups.  

3.6 Hurdles associated with sequencing technologies 
Before large scale resequencing projects are initiated, it is important that we are realistic 

about the potential hurdles associated with these new technologies. Although the time and 

costs associated with the generation of sequence data are steadily decreasing, the 

production of vast amounts of data offers a whole new range of constraints. A few years 

ago, the generation of sequence data was considered a rate-limiting step, now the analyses 

of these data create a variety of bottlenecks of their own. With regard to the cost of 

sequencing, it is often cheaper to resequence the data than to store it [315]. Thus, it is 

crucial that the technologies and techniques to store and analyse the generated data are 

developed at a rate equal to, or faster than, the rate at which sequencing technologies are 

developing. These additional costs and considerations may prevent the application of 

resequencing technologies in certain contexts and alternative genotyping strategies may 

need to be considered based on the resources available to the specific research unit. These 

genotyping assays may include commercially available pharmacogenetic tests, such as the 

AmpliChip® CYP450 Test [157] from Roche or the DMET™ chip from Affymetrix [316]. It 

should, however, be noted that these assays have predominantly been designed according 

to populations of European descent and may therefore not account for African specific 

alleles [299,303]. Although customised assays that are designed according to African 

populations will address these issues, they will most likely not account for rare variants, 

which are more common in African individuals [299,303]. Sequencing of candidate genes 

will provide data for all variants and will eliminate the bottlenecks caused by the vast 

amounts of data generated by WGES, however, this strategy will also eliminate the unbiased 

results that can be obtained by examining the entire genome. Therefore, it is essential to 

consider both the research question and the resources available before implementing a 

genotyping assay.        

On a technical level, NGS technologies are far from perfect. However, the ability to detect 

variation has already improved dramatically since NGS was first introduced. Utilising the 

resequencing data for the thirteen individuals described in Table S1, we divided the 

individuals into eight individuals sequenced prior to 2010 and five individuals sequenced in 

2010. Examination of the three CYP2C19 alleles described in Table 3.2 showed that the 

ability to detect these variants differed according to the date that the sequencing data was 

published (Table S1 and Figure 3.3). This clearly demonstrates the improvement, not only in 

cost but also in quality, of NGS technologies (including techniques for the targeted capture 

of exomes) in a short period of time, the advancement of which is likely to continue. As 

technologies continue to improve in accuracy and decrease in cost, the likelihood of WGES 

becoming the genotyping assay of choice in the future will increase.  
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Figure 3.3: A comparison of the number of individuals for which genotype information was 

not available for the examined SNPs, stratified according to the date that the sequencing 

data was published. For the sequencing data published prior to 2010, eight individuals were 

examined, while for the sequencing data published in 2010, five individuals were examined. 

CYP2C19*17 occurs beyond the regions captured for exome sequencing, thus explaining the 

inability to detect this variant in the two individuals for whom only exome sequences were 

published in 2010 and no whole genome data was available. 

However there is still room for improvement, which is demonstrated by examining genotype 

data for CYP2D6, which is arguably one of the most important pharmacogenes [168]. The 

complex nature of the gene has resulted in both SNP-based and NGS technologies having 

difficulty capturing CYP2D6 gene variation. This may in part be attributed to the high levels 

of sequence similarity observed between CYP genes and their corresponding pseudogenes 

[317] and is demonstrated by the lack of data pertaining to CYP2D6 in the examined 

databases. In the HapMap database [313] the allele frequencies for only two SNPs are 

available and neither of these SNPs are of relevance to pharmacogenetic applications. 

Although genotype data for more SNPs are available in the VIP and 1000 Genomes Project 

database [318], this genotype data is far less than that obtained for other less variable 

genes (e.g. there are 82 CYP2D6 alleles reported to date, which is more than double the 

number of alleles reported for the second most variable CYP gene present in the VIP genes 

and 1000 Genomes Project database).   

Furthermore, the complexity of CYP2D6 makes accurate allele prediction difficult. To 

demonstrate this, we reviewed the CYP2D6 alleles reported for Craig Venter and James 

Watson by Ng et al. [319], to evaluate the potential for error in allele classification. We 

additionally included CYP1A2, CYP2C9, CYP2C19 and CYP3A4 in this evaluation of allele 

classification, as these genes fell into our previous criteria for the top ten pharmacogenes. 

Out of the ten predicted allele combinations for these five genes, we disagreed with four of 

the allele combinations reported by Ng and colleagues [319] (Table 3.3). For CYP2C9 the 

discordance is of little consequence as both allele combinations result in EM phenotypes. 
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With regard to CYP2C19, however, we predicted that Craig Venter would be a CYP2C19 PM 

(confirmed by the NCBI dbSNP database), while Ng and colleagues [319] predicted that he 

would be an EM. Additionally when looking at James Watson’s genome, the presence of 

CYP2C19*27, which was reported on the CYP allele nomenclature website [309] post the Ng 

et al. [319] publication, serves as a reminder that new data are continually being discovered 

and should be added to databases on a regular basis. The CYP2D6 data is, however, the 

most convincing with regard to the ease with which errors can occur in the allele 

classification process. Ng and colleagues [319] predicted that James Watson was 

homozygous for CYP2D6*10, which correlates with the resequencing data, such that he was 

homozygous for the P34S and S486T SNPs, which form the decreased function CYP2D6*10 

allele. However, when examining the data more extensively, we also noticed that there was 

no genotype information available for the 1846 G>A splicing defect variant, which along 

with the P34S and S486T SNPs, form the CYP2D6*4 null allele - the most frequent non-

functional allele in Caucasians [311]. When we consulted NCBI’s Entrez SNP database [320], 

we found that James Watson was indeed homozygous for the 1846 G>A splicing defect and 

was thus a PM rather than an IM. Another consideration with regard to CYP2D6, is that any 

individual genotyped as homozygous for an allele, as both Craig Venter and James Watson 

were, may instead be hemizygous for that allele due to the presence of the CYP2D6*5 gene 

deletion allele. Thus, for the time being, it appears that accurate CYP2D6 allele prediction 

will require specially designed genotyping assays which will cover the spectrum of variation 

of this gene, accounting for the gene’s homologous nature and including gene deletions and 

duplications, as well as hybrid genes. Furthermore, with regard to the assignment of 

pharmacogene alleles it appears that allele calling software, to eliminate potential human 

error, may be required. It is, however, important to remember that human interpretation is 

essential in order to critically examine the data and interpret the findings. 

Table 3.3: Allele combination comparisons utilising data from our analyses to compare to 

that of Ng et al. [319]. 

 

Craig Venter James Watson 

Gene Ng et al. [319] alleles Our alleles Ng et al. [319] alleles Our alleles 

CYP1A2 *1F/*1F *1F/*1F *1F/*1F *1F/*1F 

CYP2C9 *1A/*1B *1A/*1B *1A/*1A *1A/*1C 

CYP2C19 *1B/*1B *2/*2 *1B/*1B *1B/*27
1
 

CYP2D6 *1A/*1A *1A/*1A *10/*10 *4/*4 

CYP3A4 *1A/*1A *1A/*1A *1A/*1B
1
 *1A/*1B

1
 

Alleles in grey blocks are the combinations which do not correlate.  

1: The genotype given by the NCBI SNP database does not correlate to the given genotype, 

highlighting inconsistencies between different databases. 

 

3.7 Conclusions 
Genomic technologies have developed at a rapid pace. Unfortunately, although the 

technologies provide opportunities to aid in the improvement of human health, not all 

populations have benefitted equally from these technologies. The vast majority of genomic 

studies have been performed in European descent populations, followed by Asian 

populations. Even though the genetically diverse and ancient African populations are most 
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representative of all populations, they have been consistently under-represented in 

genomic research. Although it is generally accepted that Africa should be included in future 

studies, even with the advent of NGS technologies which are uniquely suited to the complex 

genomes of Africans, Africa remains neglected. NGS provides us with the much needed 

opportunity to catalogue human variation on a scale that would have been unimaginable a 

few years ago. Therefore we should take advantage of these opportunities and include all 

human populations in global genomic research endeavours.   

It is, however, essential that we remain realistic with regard to what can be achieved both 

with reference to the technical challenges associated with current sequencing technologies 

and the translation of results. Sequencing technologies are still developing and there 

remains much room for improvement. This paper has shown that resequencing technologies 

are not yet capable of detecting all variation in all gene regions. The complex nature of 

certain genes, such as CYP2D6, are problematic for present day technologies, which have 

not yet completely overcome obstacles such as high sequence similarity. Additionally, the 

almost overwhelming amounts of data allow ample opportunity for the incorporation of 

errors, both human and technical. Therefore, it is important that we develop methods to 

analyse these data in an efficient and reliable manner that can be applied to the clinical 

setting.   

Furthermore, if sequencing projects are to be implemented within Africa, with its lack of 

resources and infrastructure, there are several improvements that need to be made. These 

improvements include the development of appropriate facilities, collaborations and 

educational programs, all of which require a large amount of financial support. It is for this 

reason that the Human, Hereditary and Health in Africa (H3Africa) initiative has been 

proposed. This initiative, focussing on genomic research in Africa, aims to build resources 

and infrastructure within the continent, and in so doing contribute to the education and 

training of African scientists [293]. However, additional funding from organisations such as 

the government and private sectors is required. In order to convince these organisations of 

the value of the proposed research, proof of the clinical utility of genomic studies should be 

provided. Although, it may be argued that the translation of results into the clinical context 

has been slow, there have been a few good examples with regard to pharmacogenomics (as 

described in Chapter 1), which is highlighted by the fact that this field has been included as 

one of the suggested research avenues for the H3Africa initiative [293]. Thus, 

pharmacogenomics may be a good starting point for the utilisation of WGES for 

implementation in the clinic.  

The question remains whether, at present, personalised medicine can be applied to every 

individual, all around the world. The short answer to this is, ‘No’. At present, this is not 

feasible, especially in developing countries. Firstly there is not enough evidence to convince 

medical practitioners of the value of personalised medicine. Secondly, there is not enough 

information pertaining to the variation present in poorly characterised populations to 

confidently prioritise variants in pharmacogenes for genetic tests, the costs of which remain 

too expensive for routine use. Furthermore, sequencing technologies still need to develop, 

both with regard to quality and cost, to the point where it can be used in the clinical 

context. Sequencing technology is, however, in its infancy and if we look at the variation 

that has already been detected in the genomes of only five resequenced southern African 
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individuals [280], it is clear that there remains much to be discovered from the analyses of 

African genomes.   

3.8 Future perspectives 
In the future, WGES is likely to be applied more regularly in research. In five to ten years 

some of the main hurdles associated with present day sequencing will have been overcome. 

As the technology improves, the quality will improve and with this the reliability of variant 

detection. With regard to analysis of the data, optimised pipelines to suit the needs of the 

specific research project will be available, and computational training will be incorporated 

into biological degrees. Institutes making use of multi-disciplinary collaboration will become 

commonplace and large research networks, allowing for the creation of large cohorts, will 

be the norm. Furthermore, as the quality and reliability of NGS technologies improve and 

the costs decrease, these assays may replace the traditional SNP-based genotyping assays 

and will be of more value for detecting uncharacterised and rare variation, which has 

particular relevance for the highly diverse genomes of African individuals. However, 

although sequencing technologies may become more commonplace, it is important to 

remember that their use in research will depend largely on the context to which they are 

applied. Even though the associated sequencing costs are likely to continue to decrease, the 

costs and resources required to store the vast amounts of data may still limit the application 

of these technologies. Therefore before applying sequencing technologies, it will be 

necessary to carefully consider whether the large amounts of data that will be obtained are 

necessary, or reliable enough, to answer the research question of interest.   

With regard to the sequencing data that is generated in the future, there are three main 

areas that we feel will be positively affected: (i) databases, (ii) the understanding of the 

genome and complex disorders, and (iii) incorporation of genomic data into the clinical 

setting. An increase in data will result in an increase in what is known regarding variation 

and as this data is added to the growing databases, it will become easier to correlate this 

variation to a specific phenotype or disease. More comprehensive databases will allow for 

more comprehensive studies and with this our knowledge of the genome will improve. This 

increase in understanding with regard to the genome and the complex interactions that 

exist within this system, in combination with the ability to detect all variation, including rare 

and novel variation, will give us insight into complex disorders. Lastly, as WGES becomes 

more reliable and easier to implement, we will reach a point where the whole genome 

sequence of an individual will become part of the medically relevant information of a 

patient and will be used to guide, among other things, treatment regimes.  
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4.1 Summary 
Introduction: Due to the unmet needs of current pharmacotherapy for schizophrenia, 

antipsychotic pharmacogenetic research is of utmost importance. However, to date, few 

clinically applicable antipsychotic pharmacogenomic alleles have been identified. 

Nonetheless, next generation sequencing technologies are expected to aid in the 

identification of clinically significant variants for this complex phenotype. The aim of this 

study was therefore to critically examine the ability of next generation sequencing 

technologies to reliably detect variation present in pharmacogenes. Methods: Candidate 

antipsychotic pharmacogenes and very important pharmacogenes were identified from the 

literature and the Pharmacogenomics Knowledgebase. Thereafter, the percentage sequence 

similarity observed between these genes and their corresponding pseudogenes and 

paralogues, as well as the percentage low complexity sequence and GC content of each 

gene, was calculated. These sequence attributes were subsequently compared to the 

“inaccessible” regions of these genes as described by the 1000 Genome Project. Results: It 

was found that the percentage “inaccessible genome” correlated well with GC content 

(P=9.96 x 10-5), low complexity sequence (P=0.0002) and the presence of 

pseudogenes/paralogues (P=8.02 x 10-7). In addition it was revealed that many of the 

pharmacogenes were not ideally suited to next generation sequencing due to these 

genomic complexities. These included the CYP and HLA genes, both of which are of 

importance to many fields of pharmacogenetics. Conclusions: Current short read sequencing 

technologies are unable to comprehensively capture the variation in all pharmacogenes. 

Therefore, until high-throughput sequencing technologies advance further, it may be 

necessary to combine next generation sequencing with other genotyping strategies.  

 

Key Words: 

Antipsychotics, genome sequencing, pharmacogenomics, pharmacogenes, schizophrenia  

4.2 Introduction 
As detailed in Chapters 2.1 and 2.2 schizophrenia is one of the most debilitating mental 

disorders and current antipsychotic treatments have substantial limitations with poor 

response rates [186], high relapse rates [101] and many severe forms of ADRs [119]. 

Antipsychotic treatment response varies substantially between individuals [218], 

highlighting the need for accurate genetic predictors of this phenotype. Furthermore, both 

schizophrenia and antipsychotic treatment response have been shown to be highly heritable 

[46,171] and for this reason it seems likely that genetic variation plays an important role in 

antipsychotic treatment outcomes. 
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Although there was much initial anticipation regarding the application of antipsychotic 

pharmacogenetics [171], it appears that both schizophrenia and antipsychotic treatment 

response are complex phenotypes. Thus, it seems more likely that rare variants and/or 

several common variants in many genes will interact with one another to influence the 

range of phenotypes that are observed with regards to both the disorder and treatment 

thereof [321]. This genomic complexity, combined with environmental influences, may 

explain the lack of clinically useful results that have been obtained from antipsychotic 

pharmacogenetic studies to date. Adding to this void, most of the past studies have focused 

on examining variants in single candidate genes (refer to Chapter 2.3.2 for more details) and 

have been largely unable to simultaneously examine the variation present in all the genes in 

the genome (refer to Table S2 for antipsychotic pharmacogenetic review articles). By 

analysing the entire spectrum of variation present in entire gene networks and pathways, 

we may be able to obtain a more comprehensive overview of the genetic factors 

contributing to antipsychotic treatment phenotypes. This may be achieved through the 

implementation of NGS technologies, which allow for the high throughout analyses of all 

variants in all genes. 

 

Unfortunately, although these sequencing technologies have revolutionised the field of 

genomics in a remarkably short time, the human genome remains complex containing 

regions which are repetitive, GC rich and/or exhibit areas of high sequence similarity. These 

complexities hinder NGS technologies by decreasing the accessibility of the genome or 

interfering with the alignment of sequence reads [322–324]. Currently the most affordable 

NGS technologies for whole genome analyses still utilise short read sequencing. 

Consequently areas of high sequence similarity are often affected by misalignments, even 

though there have been large advances in alignment and variant calling algorithms such as 

those implemented by the Burrows-Wheeler Alignment (BWA) Tool [325] and the Genome 

Analysis Toolkit (GATK) [326]. The inability of these sequencing technologies to capture all 

the variation in the entire genome, without bias, is reflected by differences in sequencing 

coverage across the genome. 

 

The 1000 Genomes Project, which has made excellent use of NGS to characterise the human 

variome across different world population groups, has drawn attention to the fact that 

differences in sequence coverage across the genome may act as an indication of which areas 

of the genome are accessible to short read sequencing [281]. Variants that occur outside of 

these accessible areas may not always be reliably called. In the pilot phase of the 1000 

Genomes Project, the “accessible genome” was calculated by determining which areas 

contained coverage that differed by a factor of 2 from the median coverage across the 

genome, as well as which areas had more than 10% of their reads exhibiting mapping 

quality scores of less than 0 [327]. All areas falling outside of these specifications were 

considered accessible [281]. After the completion of the sequencing of 1 092 genomes from 

14 populations, the 1000 Genomes Project also created a more stringent definition of the 

“accessible genome”. This stated that the coverage of an area needed to be within 50% of 

the average coverage across the genome, only 0.1% of the reads could have mapping quality 

scores of 0 and the average mapping quality needed to be greater than 56 [71]. Although 

this definition is stringent and only 2% of sites that are called using the GATK’s variant 

quality score re-calibration are likely to be false positives [71], using this strict mask may 
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serve as a warning for problematic areas and variants called in these areas may need to be 

examined with caution.              

 

The occurrence of inaccessible areas within the genome may be of particular relevance to 

the field of pharmacogenomics. Some of the most important pharmacogenes include the 

CYP and HLA gene families, both of which have been implicated in antipsychotic 

pharmacogenetics (Table S2). These genes are highly polymorphic, with the HLA region 

being the most polymorphic in the human genome [328], and variation within these genes 

are documented and analysed using special nomenclature systems [309,329,330]. For this 

reason the variation present in these families of genes requires extensive characterisation, 

highlighting the utility of sequencing technologies as genotyping strategies for these genes. 

Unfortunately, these genes also show areas of high sequence similarity to other regions of 

the genome due to the large number of related genes and pseudogenes [330,331]. This 

draws attention to the likelihood that the CYP and HLA genes may not be well suited to NGS 

(the difficulties associated with CYP2D6 have already been alluded to in the previous 

chapter) and it remains likely that other pharmacogenes may be affected in a similar 

manner.   

 

The analyses performed by this study aimed to assess the ability of short read NGS 

technologies to reliably detect the variation present in pharmacogenes related to the 

antipsychotic treatment of schizophrenia. Furthermore, we examined pharmacogenes, 

which have been shown to be most relevant to the field of pharmacogenetics in the broader 

sense, and compared them to the antipsychotic pharmacogenes. The assessment of all the 

pharmacogenes was performed by critically examining sequence coverage data in 

combination with the genomic complexities present in these gene regions.  

4.3 Materials and methods  

4.3.1 Identification of candidate antipsychotic pharmacogenes and very important 

pharmacogenes 

In order to identify candidate genes that are of interest to schizophrenia related 

antipsychotic pharmacogenetics, a literature search was performed in the PubMed 

Database using the search terms “antipsychotic pharmacogenetics” and “antipsychotic 

pharmacogenomics” [82] (accessed 15 January 2013). To ensure that the latest and most 

relevant candidate genes were identified, “review” was used as an article type filter and a 

publication date filter of “5 years” was incorporated into the search. References of 

identified articles were reviewed for additional relevant citations. Articles that were not 

available in English and were not related to genetic association studies examining the 

antipsychotic treatment of schizophrenia were excluded. The remaining articles were 

subsequently mined to identify genes that are annotated on the reference sequence and 

have been associated with antipsychotic treatment response or ADR phenotypes of 

relevance to the treatment of schizophrenia.  

 

In addition to the identified antipsychotic pharmacogenes, all PharmGKB VIPs [170] 

(accessed 15 January 2013) were included in downstream analyses. These genes were 

included to serve as a comparison for the antipsychotic pharmacogenes. Furthermore, the 

inclusion of pharmacogenes of high relevance to other fields of pharmacogenetics allowed 
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for the results obtained from this study to have relevance to the field of pharmacogenetics 

as a whole. 

 

4.3.2 Critical analyses of factors potentially influencing the sequencing of 

pharmacogenes 

Three main factors that could potentially impact results obtained from the NGS of the 

identified candidate genes were considered and the detailed methodology for the analyses 

used to examine these factors can be found in Appendix 2. These three factors were (i) high 

sequence similarity to paralogues or pseudogenes, (ii) GC content and (iii) repetitive or low 

complexity sequences. High sequence similarity may result in misalignment of the sequence 

reads and GC content may affect the accessibility of gene regions for sequencing 

applications, while low complexity sequences may affect both these aspects.  

 

Identification of paralogues and pseudogenes 

Paralogues showing greater than 70% sequence similarity to the candidate genes of interest 

were identified through the use of Ensembl BioMart [332] using the Ensembl Genes 69 

Database and the Homo sapiens genes (GRCh37.p8) dataset. Related pseudogenes, or 

related functional genes in cases where the candidate genes were pseudogenes, were 

identified and gene sequences were obtained using NCBI’s gene resource [333]. To 

determine which of the pseudogenes contained areas with more than 70% sequence 

similarity to the genes of interest, mVISTA was used [334]. 

 

Calculation of percentage GC content and low complexity sequences 

The GC content of each gene was calculated through the utilisation of Ensembl BioMart 

[332]. To identify the percentage of low complexity or repetitive sequence present in each 

gene, the gene co-ordinates were obtained from Ensembl BioMart [332]. These co-ordinates 

were then used to determine the percentage of masked sequence present in each gene by 

using the Pre-masked Genome Search, available from RepeatMasker [335].  

4.3.3 Assessment of pharmacogenes using the 1000 Genomes Project mask files 

Once candidate antipsychotic pharmacogenes and VIPs had been identified and critically 

examined, the “accessible genome”, as defined by the 1000 Genomes Project coverage data 

[71], was used as a proxy for the ability of these genes to be successfully sequenced. In 

order to determine which areas of the candidate genes did not fall into the “accessible 

genome” (referred to as the “inaccessible genome”) as calculated by the 1000 Genomes 

Project “strict mask”, the bed file containing the unmasked areas was downloaded [327]. 

Thereafter, the areas falling into the gene regions as defined by Ensembl BioMart [332] 

were assessed to determine how many base pairs fell outside of the “accessible genome”. 

Refer to Appendix 2 for more details.  

4.3.4 Statistical analyses  

Differences between the VIPs and antipsychotic pharmacogenes with regards to percentage 

inaccessibility, GC content and low complexity sequences were assessed employing the 

Wilcoxon-Matt-Whitney test. A Pearson’s Chi-squared test of independence was used to 

assess the differences between these two groups with regards to the number of genes with 

more than 70% sequence similarity to pseudogenes/paralogues. The relationship between 

percentage inaccessibility and the dichotomous presence of a pseudogene or paralogue 
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(with more than 70% sequence similarity) was also assessed using the Wilcoxon-Matt-

Whitney test. Additionally, associations between percentage inaccessibility, GC content and 

low complexity sequences were examined using the Spearman's rank-order correlation. For 

group comparisons, genes belonging to both the VIP and antipsychotic pharmacogene lists 

were excluded from analysis. P values less than 0.05 were considered significant. All 

statistical analyses were performed in R [336]. 

4.4 Results 
Using the search criteria for antipsychotic pharmacogenetics literature as described above, 

38 articles remained which referred to associations that were found with variants in 152 

genes (Table S2). The antipsychotic pharmacogenetic traits that these genes were 

associated with were: treatment response, weight gain, movement disorders, 

agranulocytosis, QT prolongation, hyperprolactinemia and neuroleptic malignant syndrome. 

When the search was broadened to include important pharmacogenes from other fields of 

pharmacogenetics, it was found that PharmGKB listed 47 VIPs, of which 12 were also 

included in the list of antipsychotic pharmacogenes (Table 4.1).  

 

Statistical analyses revealed significant positive correlations between percentage 

inaccessibility and GC content (ρ=0.281, P=9.96 x 10-5), as well as percentage low complexity 

sequence (ρ=0.269, P=0.0002). The mean percentage inaccessibility was higher for genes 

with paralogues/pseudogenes (i.e. 43.47%) compared to those without these homologous 

regions (i.e. 21.30%) and this difference was statistically significant (P= 8.02 x 10-7). The 

results obtained from the analyses of the genomic composition (GC content, sequence 

similarity, low complexity sequences and “inaccessible genome”) of the candidate 

antipsychotic pharmacogenes and VIPs are shown in Table S2. When examining the 

pharmacogenes that had more than 50% of their gene regions falling into the “inaccessible 

genome” (Table 4.2), 23 genes were identified. Examination of the genomic composition of 

these genes revealed that 20 of the genes (86.96%) exhibited more than 70% sequence 

similarity to paralogues or pseudogenes. When examining the remaining three genes, it was 

observed that two of these three genes were affected by low complexity sequence or high 

GC content. In the case of the first gene, TGFB1, approximately half of the sequence present 

in this gene was repetitive (i.e. constitutes low complexity sequence). In the case of the 

second gene, DRD4, Figure 4.1 depicts how all but two of the inaccessible areas in DRD4 are 

either repetitive or GC rich.   

 

 
Figure 4.1: DRD4 and the corresponding inaccessible regions of the gene. The regions are 

not drawn to scale and are merely a representation of how genomic complexities can 

influence genome sequencing coverage. The blocks represent areas of the gene that are 

inaccessible and are: (i) masked by RepeatMasker; (ii) contain greater than 60% GC content; 

and (iii) contain less than 60% GC content and are not masked by RepeatMasker. The 

numbers in the blocks indicate the GC content of these areas. 
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Table 4.1: The genomic composition of antipsychotic pharmacogenes that are also considered to be very important pharmacogenes 

Gene 
Associated Antipsychotic 

Pharmacogenetic Trait 
Reference Paralogue/Pseudogene GC Content (%) 

Low Complexity 

Sequence (%) 
“Inaccessible Genome” (%) 

ABCB1 Treatment response, Weight gain 
[16,120,127,171,176,177,179–

182] 
> 70% sequence similarity 37.05 51.55 19.39 

ADRB2 Weight gain [178] 
 

50.61 0.00 13.97 

COMT Treatment response, Movement disorder 

[16,73,100,119–

121,171,176,177,179,183,185,18

7,189,193,195–198]  
53.41 50.18 39.19 

CYP1A2 Treatment response, Movement disorder 
[15,16,119,120,171,176,177,179,

183–186] 
> 70% sequence similarity 52.03 32.79 24.48 

CYP2C19 Treatment response [88,179] > 70% sequence similarity 38.88 80.16 62.63 

CYP2D6 
Treatment response, Movement 

disorder, Weight gain, QT prolongation 

[16,88,119–

121,127,171,176,177,179–

181,183–192] 

> 70% sequence similarity 62.68 0.00 100.00 

CYP3A4 Treatment response [120,176] > 70% sequence similarity 39.62 39.33 46.57 

CYP3A5 Treatment response [120] > 70% sequence similarity 40.47 48.48 31.64 

DRD2 

Treatment response, Movement 

disorder, Weight gain, 

Hyperprolactinemia, Neuroleptic 

malignant syndrome 

[16,73,88,100,119–

121,127,148,171,176–181,183–

187,189–191,193–196]  
48.36 33.70 9.33 

GSTP1 Movement disorder [16,183] > 70% sequence similarity 63.05 2.84 25.74 

MTHFR Treatment response, Weight gain [16,176,177,179–181,195] 
 

54.53 27.37 22.32 

NQO1 Movement disorder, Agranulocytosis [16,136,171,176,183,185] 
 

47.09 54.04 47.77 

 

Table 4.2: The genomic composition of those genes with more than 50% “inaccessible genome” 

Antipsychotic Pharmacogenes 

Gene 
Associated Antipsychotic 

Pharmacogenetic Trait 
Reference Paralogue/Pseudogene  GC Content (%) 

Low Complexity 

Sequence (%) 
“Inaccessible Genome” (%) 

DRD4 
Treatment response, Movement 

disorder, Weight gain 

[16,73,119,171,176,177,179–

181,183,185,190,191,193,195]  
67.02 21.56 65.10 

GSTM1 Movement disorder [16,171,183–185] > 70% sequence similarity 46.35 55.35 96.88 

HLA-B Agranulocytosis [121,136] > 70% sequence similarity 59.00 0.00 97.01 
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HLA-C Agranulocytosis [121,136] > 70% sequence similarity 59.28 0.00 99.26 

HLA-DQA1 Agranulocytosis [121,136] > 70% sequence similarity 39.77 44.87 77.50 

HLA-DQB1 Agranulocytosis [16,121,136,176,186,189] > 70% sequence similarity 47.03 13.30 95.00 

HLA-DQB3* Agranulocytosis [136] > 70% sequence similarity 48.72 0.00 72.15 

HLA-DRB1  Agranulocytosis [121,136] > 70% sequence similarity 40.74 33.79 99.84 

HLA-DRB5 Agranulocytosis [121,136] > 70% sequence similarity 42.84 36.39 100.00 

HSPA1A Agranulocytosis [121,136] > 70% sequence similarity 59.76 0.00 97.37 

OXT Treatment response [176] > 70% sequence similarity 71.94 0.00 88.18 

TGFB1 Weight gain [181,184] 
 

52.41 50.01 61.39 

Antipsychotic Pharmacogene falling into the Very Important Pharmacogene Category 

Gene 
Associated Antipsychotic 

Pharmacogenetic Trait  
Paralogue/Pseudogene GC Content (%) 

Low Complexity 

Sequence (%) 
“Inaccessible Genome” (%) 

CYP2C19 Treatment response [88,179] > 70% sequence similarity 38.88 80.16 62.63 

CYP2D6 
Treatment response, Movement 

disorder, Weight gain, QT prolongation 

[16,88,119–

121,127,171,176,177,179–

181,183–192] 

> 70% sequence similarity 62.68 0.00 100.00 

Other Very Important Pharmacogenes 

Gene 
Associated Antipsychotic 

Pharmacogenetic Trait 
Reference Paralogue/Pseudogene GC Content (%) 

Low Complexity 

Sequence (%) 
“Inaccessible Genome” (%) 

ADRB1 NA NA 
 

57.51 6.99 51.80 

BRCA1 NA NA > 70% sequence similarity 44.09 57.07 58.64 

CYP2A6 NA NA > 70% sequence similarity 53.42 20.61 98.57 

CYP2B6 NA NA > 70% sequence similarity 44.63 60.12 73.13 

CYP2C9 NA NA > 70% sequence similarity 37.78 71.96 56.82 

GSTT1 NA NA > 70% sequence similarity 52.22 44.13 65.34 

SULT1A1 NA NA > 70% sequence similarity 52.72 44.23 89.67 

TYMS NA NA > 70% sequence similarity 45.77 49.32 52.92 

VKORC1 NA NA > 70% sequence similarity 55.01 41.11 53.17 

*This gene is a pseudogene. 
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Analysis of differences between the VIPs and antipsychotic pharmacogenes with regards to 

percentage GC content was not statistically significant (P=0.915), however the differences 

between the two groups with regards to percentage inaccessibility was statistically 

significant (P=0.035). Finally, it was shown that the VIPs were more likely to be affected by 

areas of high sequence similarity (P=0.029), with 42.86% of the VIPs exhibiting more than 

70% sequence similarity to paralogues or pseudogenes (compared to 24.29% of the 

antipsychotic pharmacogenes).  

4.5 Discussion 
This article has identified a significant number of studies that have reported associations 

with various antipsychotic pharmacogenetic traits. The majority of the genes examined in 

these studies were associated with treatment response (52.26%), followed by weight gain 

(29.68%), movement disorders (23.23%) and agranulocytosis (9.03%) (Table S2). The most 

likely reasons for this are: (i) treatment response, although difficult to measure, is arguably 

the most significant hurdle in the treatment of schizophrenia and only approximately half of 

patients respond to treatment [186]; (ii) weight gain and related metabolic disorders are the 

most prominent ADRs with atypical antipsychotics [337]; (iii) movement disorders are the 

most frequent ADRs observed with typical antipsychotics [337] and (iv) agranulocytosis is a 

severe, and in some cases lethal, ADR associated with antipsychotic treatment [338] (refer 

to Chapter 2.2 for more details). These traits were associated with several different genes 

and interestingly, of the 47 VIPs, 12 (25.53%) were also antipsychotic pharmacogenes. This 

highlights the importance of antipsychotic pharmacogenetics in the context of 

pharmacogenetics as a whole. Thus, NGS projects examining antipsychotic 

pharmacogenomics may be valuable and therefore it is necessary to critically examine the 

likelihood that antipsychotic pharmacogenes will be successfully sequenced. 

 

Although the 1000 Genomes Project masking may be an overly stringent assessment of the 

quality of sequencing data, the findings from this study indicate that the areas of the 

genome that were considered to be inaccessible correlated well with all three genomic 

complexities that were examined (percentage GC content: P=9.96 x 10-5, percentage low 

complexity sequence: P=0.0002, presence of paralogues/pseudogenes with more than 70% 

sequence similarity: P=8.02 x 10-7). This aligns with the description of the 1000 Genomes 

Project masked regions, which are described as areas where reads are “ambiguously placed” 

or where there are “unexpectedly high or low numbers of aligned reads” [281]. These 

discrepancies in read alignment may stem from the initial capture and amplification 

processes during the library preparation prior to sequencing. However, it remains likely that 

a portion of these reads are successfully captured, amplified and sequenced, but alignment 

of these sequence reads is error prone [339]. Therefore, the library preparation and 

alignment algorithms associated with NGS technologies may require improvement and it is 

for this reason that sequencing companies are addressing these issues [324].  

 

With reference to the specific genes that were considered inaccessible, DRD4 may be 

especially important to consider for antipsychotic pharmacogenomic studies, as all current 

antipsychotics bind to dopamine receptors [96]. This gene is affected by both low 

complexity sequence and high GC content (Figure 4.1) and these attributes are likely to 

affect the success with which this gene can be sequenced using NGS technologies. Along 

with this gene a further 22 pharmacogenes contained more than 50% inaccessible 
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sequence, with 20 of these genes showing greater than 70% sequence similarity to 

paralogues or pseudogenes and one gene containing approximately 50% low complexity 

sequences. In total, 22/23 (95.65%) of the genes that were considered largely inaccessible 

(more than 50% inaccessible), also contained a significant percentage of sequence 

complexities (more than 50% of their gene regions were affected by sequence similarity, 

high GC content or low complexity sequences).  

 

When comparing the antipsychotic pharmacogenes and VIPs, it was observed that these 

two groups were similar with respect to percentage GC content and low complexity 

sequence. Although there was a significant difference in the percentage inaccessible 

sequence (P=0.035), this was likely to be driven by the significant differences that were 

observed with respect to the number of genes with more than 70% sequence similarity to 

pseudogenes/paralogues (P=0.029). As antipsychotic pharmacogenes are often required for 

vital processes such as dopamine regulation, they are more likely to be under evolutionary 

constraint. In contrast, the largest gene family present in the VIPs, namely the CYP gene 

family (10 of the 47 VIPs are CYP genes), has evolved rapidly. Furthermore, it has been 

hypothesised that as a result of the current non-essential nature of these genes, they have 

accumulated many variants [331]. The resulting large polymorphic gene families make short 

read sequencing of these areas very challenging and highlight the potential short-comings 

with regards to NGS in the context of pharmacogenomic studies (Chapter 3). The hurdles 

associated with the NGS of polymorphic gene families such as the CYP and HLA genes, are 

reflected in the large areas within these genes that are deemed inaccessible by the 1000 

Genomes Project strict masking annotation. Both of these families contain genes that are 

100% masked. These genes, namely the CYP2D6 and HLA-DRB5 (Table 4.2), show large 

regions of sequence similarity to other genes or pseudogenes within their respective 

families. This is clearly demonstrated in Figure 4.2, where the high sequence similarity 

observed between CYP2D6 and the two corresponding pseudogenes is displayed. 

 

Figure 4.2: The percentage sequence similarity between CYP2D6 and the corresponding 

pseudogenes as calculated by mVISTA. 

These findings reiterate that the presence of sequence complexities may hinder the 

unbiased nature of WGES and it seems likely that certain areas within the genome may 

remain impervious to NGS variant detection, as was well demonstrated in a recent study 

examining kidney disease [323]. It is important to note that these sequence complexities not 

only complicate the identification of single nucleotide variants, but may also further hamper 

the detection of CNVs. This is of particular relevance to pharmacogenes such as CYP2D6 

where gene deletions, duplications and hybrid genes have been reported [173]. Although it 

is possible to examine CNVs with algorithms designed to examine NGS read depth, the 

genomic complexities examined in this study are likely to confound these results [340]. 

Thus, the examination of CNVs present in pharmacogenes that are affected by these 

sequence complexities is likely to yield inaccurate results. 
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It is well known that although NGS technologies far surpass Sanger sequencing with regards 

to time and cost [273], the accuracy of Sanger sequencing and CNV assays for variant 

detection remains unparalleled. From the results obtained in this study, it appears that 

current short read sequencing methods are not sufficiently reliable for variant detection for 

many pharmacogenes. This highlights the fact that the design of NGS pharmacogenetic 

assays, such as the PGRN-Seq [341], needs to be performed with caution. This assay warns 

that genes such as CYP2D6, HLA-B and HLA-DQB3 are unlikely to be accurately sequenced 

due to high sequence similarities, which correlates well with our data. All three of these 

genes are antipsychotic pharmacogenes and CYP2D6 is considered among the top ten VIPs 

[307], possibly limiting the applicability of this assay for antipsychotic pharmacogenetic 

applications. The difficulties with genotyping both CYP2D6 and the HLA genes have been 

previously documented and carefully designed genotyping strategies are required, including 

CNV assays [304,328,329,342]. With particular reference to using NGS for HLA genotyping it 

appears that the use of RNA-seq, which allows for greater representation of HLA alleles that 

are highly expressed, in combination with longer read lengths, to prevent misalignment, 

may be a better strategy [328,329]. Even so variant detection in these genes will remain a 

challenge.    

 

Although the genomic complexities associated with many of the pharmacogenes do provide 

unique challenges, the advancement of sequencing technologies offers the potential for the 

discovery of variants associated with antipsychotic response phenotypes. NGS approaches 

can be used to simultaneously examine known pathways, as well as to discover novel 

targets, while allowing for the detection of both common and rare variants. However, for 

NGS to be truly unbiased, it is essential that all genes are represented, including well known 

pharmacogenes such as the CYP and HLA families. The results from this study serve as a 

reference for which pharmacogenes may require careful analyses with regards to NGS data. 

It should, however, be noted that these results are limited as they only refer to candidate 

pharmacogenes and examine these genes as a whole. Future studies may need to examine 

additional genes and it may be necessary to focus on specific regions within these genes.              

 

4.6 Conclusion 
Future advances are likely to incorporate longer read lengths in sequencing technologies 

such as nanopore technology [343], thereby enabling comprehensive characterisation of 

variation in all genes. Studies making use of well characterised cohorts in combination with 

these comprehensive genotyping strategies may then obtain results that are applicable to 

clinical practice. In the interim, the combination of short read NGS analyses with already 

existing strategies, such as the use of long-range PCR or longer read NGS, may be the best 

strategy to examine antipsychotic pharmacogenetics.  
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CHAPTER 5: Patterns of variation influencing antipsychotic 

treatment outcomes in South African first episode 
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Reprinted with permission from Future Medicine. 

5.1 Summary  
Introduction: Many antipsychotic pharmacogenetics studies have been performed 

examining candidate genes or known variation, however, our understanding of the genetic 

factors in antipsychotic pharmacogenetic traits involved remain limited. Materials and 

methods: A cohort of 130 first episode schizophrenia patients was collected and treated 

with flupenthixol decanoate for twelve months, after which a subset of non-responders and 

responders to treatment were identified for exome sequencing. The variation observed in 

the responders and non-responders was subsequently compared. Results: Examination of 

coding variation revealed a potential role for rare loss of function variants in treatment 

response outcomes. In addition, the majority of the loss of function variation that was 

considered likely to be involved in non-optimal antipsychotic treatment response was either 

novel or rare in Asian and European populations. Conclusion: This study highlights the 

importance of exome sequencing for antipsychotic pharmacogenomics studies, particularly 

in African individuals, and the results suggest that future research should focus on rare loss 

of function variants in diverse populations.  

Keywords:  

Antipsychotic treatment, exome, genome, rare variants, sequencing, schizophrenia, South 

Africa  

5.2 Introduction 
As described in Chapter 3, there have been many advances in human genetics as a result of 

advances in sequencing technologies [25]. Nonetheless, there remain a large number of 

diseases for which substantial genomic and pharmacogenomic information is lacking, of 

which schizophrenia is one [54,344]. To aid in genomic research efforts to identify the 

variants involved in the schizophrenia, large consortiums such as the PGC [60] have been 

formed. Unfortunately, even though these consortiums are utilising thousands of patients 

and novel loci have been identified [61,62], there are still gaps in our knowledge regarding 

the genetics of schizophrenia (refer to Chapter 2.1.3 for more details regarding the current 

genetic findings).  
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Therefore, with the rapid decrease in sequencing costs [273], research efforts have turned 

to WGES for much needed answers. In contrast to the hundreds of candidate gene studies 

that have been performed [53], there are currently only six published schizophrenia studies 

using WGES strategies [65–70] and no WGES studies focusing on antipsychotic treatment 

response. As reported in Chapter 2.1.3, the results from the WGES schizophrenia studies 

have added to the growing evidence that there may be more variants, both de novo and 

rare, present in schizophrenia patients and that these variants are more likely to have an 

adverse effect on the resulting protein products. This corroborates earlier findings that 

schizophrenia patients are more likely to harbour damaging variants in the form of rare 

CNVs [345]. In addition to this, it has been reported that rare variants confer a bigger risk for 

schizophrenia susceptibility than common variants [52] (Figure 2.3). In contrast to GWAS, 

WGES is able to detect both common and rare variants, highlighting the importance of 

utilising such technologies when investigating schizophrenia and antipsychotic treatment 

response outcomes.  

Although there are no large consortiums or WGES studies that have focused on 

antipsychotic pharmacogenomics, this avenue of schizophrenia research is important. As 

detailed in Chapter 2.2 antipsychotics are the only known therapeutic agents that are 

consistently shown to be superior to placebos for the treatment of schizophrenia [77,78], 

however, treatment outcomes are plagued by a lack of efficacy and many ADRs [84,85]. 

Reports that differences in treatment response are heritable [172] highlight the need to 

elucidate the genetic factors involved in influencing response to antipsychotic treatment. 

Unfortunately, past research has focused predominantly on candidate genes [176] and the 

majority of findings have not been well replicated [172]. Therefore, it seems likely that many 

genes and variants, some that could still be unknown, may be involved in antipsychotic 

treatment response outcomes, making WGES an ideal tool for antipsychotic 

pharmacogenomic research. 

This study therefore sequenced the exomes of eleven South African FES patients to examine 

the patterns of variation contributing to antipsychotic treatment outcomes, focusing 

predominantly on functional variants. These results should play a role in enhancing our 

understanding of antipsychotic treatment response in the South African context and guide 

the design of future antipsychotic pharmacogenomic studies.  

5.3 Materials and methods 

5.3.1 Patient samples 

Written informed consent was provided by all patients and/or their guardians prior to this 

study and ethical clearance was obtained from the Committee for Human Research, Faculty 

of Health Sciences, Stellenbosch University. A cohort of 130 South African FES patients, who 

were assessed with the Structured Clinical Interview for the DSM-IV [43], were collected 

over four years. After a wash out period of up to seven days, all patients were treated with 

flexible doses of flupenthixol decanoate and treatment response was measured by means of 

the PANSS for twelve months. Patients were monitored every two weeks for the first six 

weeks, and every three months thereafter.  

From this cohort a subset of ten South African SAC patients falling at extreme ends of the 

treatment response phenotype were selected for exome sequencing. These patients 
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consisted of five non-responders and five responders to treatment. The non-responder 

individuals all discontinued treatment due to a lack of efficacy, while the responder 

individuals all exhibited a greater than 40% improvement in PANSS total scores during the 

twelve months of treatment. The non-responder and responder individuals were matched 

for age (within five years) and gender. In addition, to allow for the examination of shared 

variation between related individuals, a sibling of one of the non-responders was selected 

for exome sequencing. This sibling was also a non-responder to flupenthixol decanoate 

treatment. 

5.3.2 Exome sequencing 

Genomic DNA (gDNA) from the eleven individuals was extracted from venous blood using 

the QIAamp DNA Blood Maxi Kit (Qiagen, Germany), according to the manufacturer’s 

instructions (refer to Appendix 3 for details). Thereafter, the gDNA samples were sent to the 

HudsonAlpha Genomics Service Laboratory, Alabama, USA [346] for exome capture and 

sequencing. Exome capture was performed using the Agilent SureSelect Human All Exon 50 

Mb kit (Agilent Technologies, California, USA) and 50 bp paired-end sequencing was 

subsequently performed on the Illumina HiSeq2000 (Illumina, California, USA) (refer to 

Appendix 4 for details).  

5.3.3 Bioinformatics pipeline for exome sequence analysis 

The generated exome data for the eleven FES individuals was analysed with the use of a 

bioinformatics pipeline, which made use of the following programs: (i) BWA [325] for 

sequence read alignment; (ii) SAMtools [347] for sorting and indexing of reads; (iii) the GATK 

[326], including variant quality score recalibration, for variant calling; and (iv) SeattleSeq 

Annotation 134 [348] for variant annotation. These analyses are detailed in Appendices 4 

and 5. Only variants that were assigned a “PASS” value in the “FILTER” field of the vcf files 

that was generated by GATK were included in downstream analyses. All novel SNPs were 

submitted to dbSNP [320] and submitted SNP numbers were assigned. 

5.3.4 Comparison of the patterns of variation observed in the non-responder and 

responder individuals 

In order to examine the patterns of variation observed in the unrelated non-responder and 

responder FES individuals, the total and average number of coding variants observed in each 

group was compared. More specifically, the variants were divided into different classes 

based on the effect that they were predicted to have on protein function. In each case the 

percentage of novel variants was investigated. The analyses used to do this are described in 

Appendix 6.    

With regards to the non-responder siblings, all variants that were predicted to abolish the 

function of the resulting protein product i.e. loss of function (LOF) variants (frameshift, 

splice-site and stop lost/gained variants) were examined. These LOF variants were then 

prioritised for the likely role that they play in non-response by excluding (i) all variants that 

were not shared between the non-responder siblings and (ii) all variants that were present 

in the responder individuals. This list of LOF variants was further prioritised by identifying 

variants that occurred in any of the other unrelated non-responder individuals. Allele 

frequency data was obtained from the 1000 Genomes Project Browser [349]. 
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5.4 Results 
Exome sequencing was performed successfully for all eleven FES individuals and the 

sequence coverage obtained for each individual exome ranged from 61x to 82x, with 

between 80-87% of the targeted areas obtaining a coverage of at least 30x. A total of 56 346 

coding variants were identified in the ten FES individuals, of which 5 557 were novel 

(9.86%). Comparison of the variation observed in the non-responder and responder FES 

individuals did not reveal any clear differences, although slightly more coding variants were 

observed in the non-responder individuals with reference to both the total number of 

variants (42 678 vs. 42 333 coding variants) and the average number of variants per 

individual (19 362 vs. 19 253 coding variants) (Table 5.1).  

Table 5.1: The total and average number of variants observed in the five non-responder and 

responder individuals 

Class of variation 
Non-responders (n=5) Responders (n=5) 

Total Average Total Average 

Synonymous 22 805 10 509 22 549 10 393 

Non-synonymous* 18 917 8 337 18 815 8 336 

Frameshift** 652 354 660 363 

Splice-site** 204 95 211 95 

Stop-gained/lost** 171 66 165 66 

Total coding 42 749 19 361 42 400 19 253 

* changes the protein product, ** abolishes the function of the protein product 

 

Examination of the novel variants revealed that these variants were far less likely to be 

shared between the responders and non-responders when compared to known variants, 

such that 55.63% of known coding variants were shared between the two groups and only 

7.43% of novel variants were shared (Figure 5.1). This was particularly the case for the stop 

gained/lost variants, which are likely to have a large impact on the function of the protein. 

None of the stop gained/lost variants that were detected in both non-responders and 

responders were novel. However, a large percentage of the stop gained/lost variants 

occurring in only the non-responders or the responders were novel (35.71% and 31.25%, 

respectively). Furthermore, the percentage of novel variants was highly correlated to the 

predicted effect that the variant has on the protein product, such that LOF variants were 

more likely to be novel (Figure 5.2). Examination of the variants that were not shared 

between the non-responders and responders revealed that a large percentage of these 

variants were present in only one individual, such that 98.00% of the novel variants and 

82.17% of the known variants that were unique to either of the groups were present in only 

one individual.  
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Comparison of the coding variation present in the non-responder and responder 

The majority of the coding variants that were observed in the ten FES 

individuals were shared by the non-responders and responders. There were, however, 

slightly more coding variants observed in the non-responder individuals.

A small portion of the novel coding variants were shared by the two groups, with the 

majority observed in only the non-responder or responder groups. 

The percentage novel variation per individual observed for each class of variant.
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When the LOF variants present in the non-responder siblings were examined, it was 

observed that there were a total of 211 LOF variants that were common to both siblings. 

However, after removing all variants that were also present in the responder individuals, 

only 22 LOF variants remained, of which six were present in at least one of the additional 

unrelated non-responder individuals. When examining all 22 LOF variants it was observed 

that nine of these variants were novel (ss678319342 in C6, ss678371274 in DNMBP, 

ss678329213 in HIST1H2BM, ss678372253 in NRAP, ss678431152 in SLC25A41, ss678374868 

and ss678374869 in STK33, ss678424277 in TMEM235, ss678333610 in ZBTB24), there was 

no population frequency data available on the 1000 Genomes Project Browser for two 

variants (rs71710115 in HOMEZ, rs35744335 in PKD1L3) and one variant (rs11368509 in 

UPP2) has only been detected in the Khoisan population to date [280]. The allele 

frequencies of the remaining ten variants in the African, Asian and European populations 

genotyped by the 1000 Genomes Project are displayed in Table 5.2. Eight of these ten SNPs 

have allele frequencies of less than 5% in the both Asian and European populations (refer to 

shaded areas in Table 5.2). 

Table 5.2: The allele frequencies of the loss of function variants present in the non-

responder siblings, but absent from the responder individuals 

 

Variant Gene LOF variant AFR ASN EUR 

rs112899189 CLLU1OS Frameshift 0.03 0.00 0.01 

rs10666583 GRIN3B Frameshift 0.07 0.08 0.28 

rs73439094 C6orf52 Splice-5 0.26 0.03 0.00 

rs8065203 CYTH1 Splice-3 0.03 0.00 0.00 

rs57118523 HK1 Splice-3 0.07 0.00 0.00 

rs149764161 MYL5 Splice-3 0.01 0.00 0.00 

rs17104991 SLC25A21 Splice-5 0.12 0.00 0.00 

rs74141230 TRIM17 Splice-3 0.15 0.01 0.00 

rs28759013 TXNDC16 Splice-3 0.11 0.00 0.00 

rs80220955 OR5AC2 Stop-lost 0.08 0.01 0.23 

AFR: African 1000 Genomes Project population, ASN: Asian 1000 

Genomes Project population, EUR: European 1000 Genomes Project 

population, LOF: Loss of function. Variants with minor allele 

frequencies < 0.05 are shaded in grey. 

 

5.5 Discussion 
To our knowledge, this is the first published study utilising exome sequencing to examine 

the pharmacogenomics of antipsychotic response. Furthermore, to date there is only one 

publically available non-European South African genome sequence, namely that of 

Archbishop Desmond Tutu [280]. Thus, this study provides important data regarding the 

variation present in South African schizophrenia patients. This is of significance as African 

populations are underrepresented in both genomic and psychiatric research [240,241]. 

When comparing the data generated by this project to the ‘healthy’ high coverage trio 

genomes sequenced by the 1000 Genomes Project [281], it was observed that the number 

of coding variants observed in the FES individuals fell within the individual range reported by 

the 1000 Genomes Project. Comparison of the non-responders and responders revealed 
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that there were slightly more variants present in the non-responder individuals, although 

these differences were minimal. Of greater significance for future studies was the 

identification of LOF variants that were shared between the sibling non-responders but 

were not present in the responder individuals, the significance of which should be 

investigated in a larger cohort. These analyses identified a total of 22 variants in 21 genes, of 

which none were present in all of the non-responder individuals. The inability of this study 

to identify a single variant that could completely explain non-response, even with the use of 

well characterised patients, provides further evidence that antipsychotic treatment 

response is a complex trait. This draws attention to the likelihood that different genes and 

variants may be involved in treatment response outcomes in different individuals. Thus, 

although the gene networks and pathways that are disrupted may be common to all non-

responder individuals, the specific variants present may differ between individuals.   

To further examine the role that the 21 genes that were disrupted in the non-responder 

individuals may play in antipsychotic response, a literature search was performed in the 

PubMed Database [82] utilising each of the gene names and the term “antipsychotic”. The 

results from this search revealed that only one of the genes, GRIN3B, had a previous 

connection to antipsychotic response [350]. The lack of information pertaining to the role 

that these genes play in antipsychotic response is likely related to the fact that very little is 

known regarding the function of the majority of these genes, as recorded on NCBI’s gene 

resource [333]. Thus, these genes are unlikely to have been included in past candidate gene 

studies. With reference to the specific variants, of the 22 prioritised LOF variants, 20 were 

novel or had MAF<0.05 in the 1000 Genomes Project Asian and European populations. 

Although, to our knowledge, none of the 22 variants have been reported in past 

antipsychotic research, all but two occur at very low frequencies in the Asian and European 

populations. These populations have been the focus of the majority of such studies, leaving 

African populations under-represented in antipsychotic pharmacogenomic studies [244]. 

Thus, variants affecting African individuals may differ to those affecting non-African 

individuals. In addition, the fact that many of these LOF variants were either novel or 

occurred at low frequencies highlights the likely role that rare or novel variants may play in 

the non-response phenotype.  

The role that these variants play in non-response was further highlighted when examining 

the global patterns of novel variation, with particular reference to the LOF variants. It was 

observed that there were a large number of novel variants that were unique to either the 

non-responders or responders (Figure 5.1) and 98.00% of this unshared novel variation was 

only observed in one individual. Therefore, it is likely that this variation may be rare, 

although genotyping of these variants in a larger cohort will be necessary to confirm this. 

Furthermore, when examining the different classes of variation, it was observed that the 

LOF class showed the highest percentage of novel variants (Figure 5.2). A recent publication 

examining autism has reported a two-fold increase in rare LOF variants (MAF<0.05) in cases 

when compared to controls [351]. As the genetics of schizophrenia and autism have been 

shown to overlap [352], such findings may be transferable to schizophrenia and related 

phenotypes. Due to the fact that examination of known common variation through the use 

of GWAS has yielded incomplete information regarding the contribution of genetics to 

schizophrenia and antipsychotic treatment response, it remains likely that the some of the 

answers to the missing heritability lie in rare and novel variation, which can only be 

detected through sequencing. 
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Sequencing studies examining schizophrenia have also emphasised the potential role that 

rare and de novo variants play in the development of schizophrenia [65–68]. As these 

variants are unlikely to be shared between different populations [71], it may be necessary to 

examine many different populations to determine the exact variation contributing to poor 

treatment outcomes and the development of schizophrenia. This is especially relevant for 

southern African populations, which exhibit high levels of variation, but have been under-

represented in genomic research to date [240,241,280].  

5.6 Conclusions 
This study utilised well characterised patients on extreme ends of the antipsychotic 

treatment spectrum, as well as the addition of sibling non-responders, to prioritise variation 

that may be involved in antipsychotic treatment. These analyses identified 22 LOF variants 

that may be involved in antipsychotic non-response, the effects of which should be 

investigated in a larger cohort. It should also be noted that the use of schizophrenia patients 

who have been treated for several years and have never responded to treatment, rather 

than FES patients, may have increased the power of this study. Nonetheless, the results 

from this study have highlighted the complexity of antipsychotic treatment response, as 

well as the importance of rare and novel LOF variation in this phenotype. This reiterates the 

need for WGES to detect the entire spectrum of variation, particularly in the under-

represented African populations. Furthermore, these genotyping strategies should be 

accompanied with statistical methods to account for variation in entire pathways, the 

importance of which has been highlighted by Kiezun et al. [339]. 

5.7 Future perspectives 
In the next five-ten years, WGES will become more affordable and more accessible. Past 

psychiatric research has focused predominantly on common variants; however, it seems 

likely that it may become more important to focus on rare variants. It appears that the 

variants involved in antipsychotic treatment response may differ between individuals; 

however, the pathways involved may be common. Thus, in future, statistical methods that 

are able to examine rare variants in multiple genes will be necessary. The implementation of 

these strategies may identify novel drug targets and aid in optimal antipsychotic treatment 

regimes. 
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6.1 Summary  
Introduction: Although the administration of antipsychotics is an integral part of 

schizophrenia treatment, the use of these agents is not equally effective in all patients. 

Therefore the field of pharmacogenomics may play a valuable role in the optimisation of 

antipsychotic treatment. However, in order for pharmacogenomic studies to be successful, 

careful study designs utilising extensive clinical and genomic data need to be implemented. 

Materials and methods: This study utilised a well characterised cohort of first episode 

schizophrenia patients who were treated with flupenthixol decanoate (depot injections) for 

twelve months during which the response to treatment was regularly assessed. The exomes 

of a subset of patients on extreme ends of the treatment response spectrum were 

sequenced. These data were used in combination with the results from previous 

antipsychotic studies to design a panel of variants for genotyping in the entire cohort. The 

genetic data were used to identify associations with treatment response outcomes. Results: 

Eleven variants were significantly associated with treatment response outcomes  

(P<2.19x10-5). These included two variants that have been significantly associated with 

antipsychotic pharmacogenetic traits in past GWAS and nine variants which were predicted 

to change the function of the corresponding proteins, eight of which were novel. 

Examination of the function of these proteins revealed a potential role for (i) folate 

metabolism with regards to the positive symptom domain and (ii) proteins which may be 

involved in neuronal migration with regards to the negative symptom domain. Conclusion: 

This study has demonstrated the value of well characterised cohorts and genomic data for 

antipsychotic pharmacogenomic applications. The use of these strategies made it possible 

to identify novel genetic variants that may be involved in antipsychotic treatment response, 

as well as to replicate past findings with regards to antipsychotic pharmacogenomics. These 

findings should play a role in improving our understanding of antipsychotic treatment 

response both in the context of South Africa and globally.    

Keywords:  

Antipsychotics, exome sequencing, first episode schizophrenia, treatment response, South 

Africa 
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6.2 Introduction 
As detailed in Chapters 2.1.1 and 2.2.2, schizophrenia is a poorly understood and complex 

disorder that occurs the world over [9,10], the symptoms of which are most effectively 

treated with the use of antipsychotics [15]. Nonetheless, treatment outcomes associated 

with antipsychotics are non-optimal, unpredictable and vary widely between patients with 

only approximately 60% of patients responding to antipsychotic treatment [16,84,86]. Thus, 

methods to optimise antipsychotic treatment are urgently required. 

 

It is for this reason that there is much anticipation for the implementation of antipsychotic 

pharmacogenomics. If genetic variants can be identified that will predict the optimal 

antipsychotic treatment required for each individual prior to dosing, the occurrence of ADRs 

and non-response can be reduced and the long term outcomes of schizophrenia patients 

can be improved (Figure 2.7). As highlighted in Chapter 4, there have been many studies 

examining antipsychotic pharmacogenomics; however, they have focused predominantly on 

candidate genes (Table S2). The results obtained from these studies have been inconsistent 

and the identified pharmacogenetic variants have been shown to have little clinical 

relevance [176,195].  

 

The lack of clinically relevant results obtained from antipsychotic pharmacogenetic studies 

could in part be attributed to the fact that the mechanism of action of antipsychotics is only 

partially understood [96]. By replacing candidate gene approaches with strategies that scan 

the entire genome, we may be able to improve our understanding of antipsychotic 

pharmacogenomics and identify novel pathways involved in treatment response to this class 

of medications [241]. Unfortunately, to date there are only a handful of studies that have 

utilised GWAS for antipsychotic pharmacogenomics and these studies have used different 

cohorts and examined different drugs and phenotypes [203,204,206–214] (Table 2.3).  

 

An interesting observation from the past antipsychotic pharmacogenetic studies, both 

candidate gene studies and GWAS, is that significant associations have been detected with 

several different genes and variants (Table S2 and Table 2.3). This highlights the complexity 

of antipsychotic treatment response and it seems likely that many variants, genes and 

pathways may be involved in influencing antipsychotic treatment outcomes. In addition to 

this, the antipsychotic treatment response phenotype has been reported to be a non-

uniform trait with patients exhibiting different treatment response trajectories [103]. 

Further complicating analyses is the fact that the symptoms observed in schizophrenia 

patients vary from patient to patient, with regards to both the type of symptoms and the 

severity of these symptoms [36]. Thus, in order to identify the genetic variants contributing 

to antipsychotic treatment response, patients will need to be carefully characterised in 

terms of clinical and genomic information and antipsychotic treatment response will need 

to be assessed with reference to the different symptom domains.  

 

The value of well characterised cohorts in combination with extensive genomic data is 

highlighted when examining the antipsychotic GWAS that were described in Table 2.3. 

Interestingly, of these eleven GWAS, the most significant association (P=6x10-12) was 

obtained in a study by Malhotra et al. [203], which utilised a well characterised FES cohort 

to identify an association with weight gain. The significant association detected by this study 

highlights two key points in antipsychotic pharmacogenomic research, namely the 
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importance of (i) genome-wide technologies for the identification of novel variants related 

to treatment response outcomes and (ii) the use of well characterised cohorts of patients. 

Although the significance of well characterised patients was detailed in Chapter 2.3.3, in 

summary the four most important aspects that need to be considered for antipsychotic 

pharmacogenetics are related to (i) eliminating differences in disease progression, (ii) 

standardised treatments, (iii) compliance and (iv) longitudinal assessments. 

[176,180,195,217].   

 

Another important aspect of antipsychotic pharmacogenomics that has been largely 

overlooked is the lack of data pertaining to African populations. Not only are there no 

antipsychotic GWAS performed in Africa [202], but research pertaining to candidate genes is 

also lacking in these populations [240,244]. This is of serious consequence, as was brought 

to attention in Chapter 1, due to the fact that the burden of schizophrenia, measured in 

DALYs, in LMIC is ten times higher than in high-income countries [12]. Thus, optimal 

treatment is urgently required. In addition, as described in Chapter 3, there is a lack of 

genomic information available for populations residing in Africa. Therefore antipsychotic 

pharmacogenomic studies using WGES are necessary in Africa. 

 

Unfortunately, the lack of resources in Africa may hamper the implementation of large scale 

genomic studies in the context of South Africa [4]. Thus, innovative strategies that allow for 

the identification of risk alleles from several populations and provide information regarding 

the genetic factors contributing to antipsychotic treatment response, without excessive 

costs, are required. These strategies may include the use of the SAC population, which has 

ancestry contributions from several different sources and can thus be used to detect risk 

alleles from different populations [242]. In addition, the careful characterisation of patients 

allows for the identification and subsequent analysis of individuals on extreme ends of the 

phenotypic spectrum. WGES of this subset of patients can provide information regarding the 

genetic variation with the greatest influence on the phenotype of interest [353]. Lastly, as 

WGES will detect several variants, the use of family members can help to reduce the noise 

created by non-causal variants [353]. Therefore, using a combination of innovative 

strategies, the costs associated with genomic technologies can be reduced and valuable 

information can be obtained.  

 

6.3 Materials and Methods 

6.3.1 Patient samples 

The patients described in Chapter 5 were utilised and venous blood samples were obtained 

for 104 of these patients [gender: 79% male; median age (years): 24±7; ethnicity: 80% SAC, 

13% Xhosa and 8% European descent]. All gDNA samples were extracted from the venous 

blood samples by means of the Miller et al. [354] protocol. As described previously, patients 

received flexible doses of flupenthixol decanoate over twelve months and were regularly 

assessed by means of the PANSS (Table 6.1). In addition, patients were assessed with 

regards to treatment refractoriness over the twelve months. Treatment refractoriness was 

defined as: (i) study discontinuation due to poor response, (ii) endpoint percentage change 

in PANSS total score <20% or (iii) endpoint PANSS total score >70, provided that patients 

meeting criteria (ii) and (iii) had completed at least three months of treatment and had not 
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experienced a relapse. A total of nine patients met these criteria. Extensive demographic 

and medical information was also collected for each patient at the baseline assessments.  

Table 6.1: PANSS score assessments at baseline and twelve months 

  Median Lower Quartile Upper Quartile 

Baseline PANSS-P score 24 22 27 

Month 12 PANSS-P score 8 7 9 

Baseline PANSS-N score 25 21 29 

Month 12 PANSS-N score 12 10 17 

Baseline PANSS-G score 45 40 51 

Month 12 PANSS-G score 21 18 26 

Baseline PANSS-T score 94 85 105 

Month 12 PANSS-T score 43 37 52 

PANSS: Positive and Negative Syndrome Scale, P: Positive, N: Negative,  

G: General pathological, T: Total 

 

6.3.2 Prioritisation of variants for genotyping in the entire FES cohort 

Patients falling on extreme ends of the treatment response spectrum were selected for 

exome sequencing and these samples were sequenced and analysed as previously described 

in Chapter 5. These exome data were used in combination with the literature to prioritise 

variants for genotyping in the entire FES cohort. The variants prioritised for genotyping 

included: (i) the three-six variants that were most significantly associated with antipsychotic 

treatment outcomes in each of the past GWAS; (ii) variants that have most frequently been 

reported to be associated with antipsychotic treatment outcomes in past candidate gene 

studies as reported in the review articles described in Chapter 4; (iii) variants in the top 25 

candidate antipsychotic pharmacogenes (Table 2.2) that were identified in the exome 

sequence data and were predicted to alter the function of the genes; and (iv) variants 

present in the exome data that were identified from variant and gene based analyses 

performed using the Variant Annotation, Analysis and Search Tool (VAAST) [355] as 

described by the software authors. The VAAST analyses removed all variants that were not 

common to the sibling non-responders and used different analyses to model the inheritance 

mode of antipsychotic response. In addition, VAAST was used to identify variants that 

occurred in three or more of the non-responders and none of the responders (and vice 

versa) and were predicted to alter the function of the genes in which they occurred. The 

predicted effect of variants on gene function was assessed with the use of SIFT [308], 

PolyPhen-2 [356] and SeattleSeqAnnotation134 [348] (refer to Appendix 7 for more details 

regarding the selection process). 

The prioritised list of variants was subsequently assessed with Illumina’s Assay Design Tool 

(ADT) to measure the feasibility of genotyping each of the SNPs using a 384-plex BeadXpress 

Assay (Illumina, California, USA). Where possible, all variants that received failure codes 

from this tool were tagged with variants identified from the exome and/or 1000 Genomes 

Project data (r2>0.8) (refer to Appendix 7 for specific details). In cases where no tagSNPs 

were available for these failed variants, PCR-RFLP/TaqMan assays were designed instead. 

Employing these criteria, 293 variants were prioritised for genotyping in the entire cohort. 

Furthermore, 100 AIMs were included for genotyping in the entire cohort. These AIMs were 
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selected from genome-wide 

reported to contribute to the ancestry of the 

European, South Asian and East 

variants that were prioritised for genotyping

and more detailed descriptions of the strategies 

Figure 6.1: The selection of variants for genotyping using the BeadXpress 

6.3.3 Genotyping of the prioritised variants in the 

Genotyping of the variants that passed 

University of Utah Genomics 

using VeraCode technology

Thereafter, genotype clustering of 

GenomeStudio Data Analysis 

for exclusion based on the DNA report

heterozygosity for X chromosome v

and BeadXpress data was examined. 

unsatisfactory genotype clusters or call rates less than 90% were excluded

Appendix 8 for more details). 

be tagged by other variants, PCR

custom TaqMan assay was designed for the remaining variant. Details regarding the

of these assays and the specific 

6.3.4 Statistical analyses 

Allele and genotype frequencies

(HWE), were determined for all genotyped polymorphisms. 

in Tools For Population Genetic Analysis (TFPGA) Software v1.3 

Fisher’s exact test. P<0.002 were considered significant

were successfully genotyped or had

the unrelated individuals. To identify 

months longitudinal PANSS scores, a mixed

utilised. Due to the skewed distributions
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wide SNP array data from the five populations that have been 

reported to contribute to the ancestry of the SAC population (African San, African non

European, South Asian and East Asian) as described by Daya et al. [357]. 

variants that were prioritised for genotyping in the entire cohort is displayed in Figure 6.1 

and more detailed descriptions of the strategies employed are provided in Appendix 7.  

The selection of variants for genotyping using the BeadXpress 

Genotyping of the prioritised variants in the entire FES cohort

variants that passed the Illumina ADT assessment was performed at the 

enomics Core Facility [358] with a 384-plex Illumina BeadXpress 

using VeraCode technology. Duplicate samples were included as internal controls. 

genotype clustering of the variants was performed using default setting on the 

nalysis Software (Illumina, California, USA). Samples were 

based on the DNA report or incorrect gender assignment 

X chromosome variants) and genotype concordance between the exome 

and BeadXpress data was examined. All clusters were manually inspected and

clusters or call rates less than 90% were excluded

 For the nine variants that failed the ADT analysis 

PCR-RFLP assays were designed for eight of these variants and a 

custom TaqMan assay was designed for the remaining variant. Details regarding the

specific genotyping conditions used are provided in Appendix 8.

 

Allele and genotype frequencies, as well as deviations from Hardy–Weinberg equilibrium 

were determined for all genotyped polymorphisms. HWE analyses 

in Tools For Population Genetic Analysis (TFPGA) Software v1.3 [359] using a chi

0.002 were considered significant for HWE testing.

successfully genotyped or had MAF>0.01 were included in the subsequent analyses of 

To identify allelic and genotypic associations with the 

PANSS scores, a mixed-effects model repeated measures analysis was 

skewed distributions of these scores, log transformations were 
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five populations that have been 

population (African San, African non-San, 

. A summary of the 

is displayed in Figure 6.1 

are provided in Appendix 7.   

 

The selection of variants for genotyping using the BeadXpress Assay. 

cohort 

was performed at the 

plex Illumina BeadXpress Assay 

uplicate samples were included as internal controls. 

using default setting on the 

). Samples were examined 

 (as determined by 

and genotype concordance between the exome 

All clusters were manually inspected and variants with 

clusters or call rates less than 90% were excluded (refer to 

analysis and could not 

RFLP assays were designed for eight of these variants and a 

custom TaqMan assay was designed for the remaining variant. Details regarding the design 

conditions used are provided in Appendix 8. 

Weinberg equilibrium 

HWE analyses were performed 

using a chi-squared or 

. Only variants that 

MAF>0.01 were included in the subsequent analyses of 

associations with the twelve 

model repeated measures analysis was 

of these scores, log transformations were 
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performed. For the treatment refractory analyses, a logistic regression model was used. To 

allow for the correction of population stratification, ancestry proportions were estimated by 

ADMIXTURE [360] utilising the AIMs data obtained for the FES cohort, as well as the data 

obtained from the five populations from which the AIMS were designed. All association 

analyses were subsequently adjusted for age, gender and the proportions of ancestry of the 

different groups for each individual calculated by ADMIXTURE analyses. In addition, the 

mixed-effects model repeated measures analyses were adjusted for baseline PANSS scores. 

Inheritance models were tested for all significant allelic and genetic associations and the 

most significant of the models are reported in the results (P<2.19x10-5). Effect estimates 

with 95% confidence intervals are derived from the models. Graphs of observed values are 

presented as an indication of the corresponding unadjusted patterns in the data. All 

statistical analyses were performed in R [336] using the R package, genetics (version 1.3.6) 

[361].  
 

6.4 Results 
After exclusion of all variants that failed quality control, a total of 347 variants (252 

prioritised variants and 95 AIMs) remained (90.36% success rate). Removal of all variants 

with MAF<0.01 resulted in the inclusion of 228 variants for the subsequent statistical 

analyses. Examination of these variants in the FES individuals revealed that all patients were 

successfully genotyped and duplicate samples correlated. Thus, all unrelated individuals 

(n=103) were included in the subsequent statistical analyses. All variants on autosomal 

chromosomes that were included in the downstream analyses were in HWE, with the 

exception of rs4926044, which was included in the subsequent analyses but was flagged. 

Furthermore, the genotypes obtained from the exome data for these variants were 

compared to the BeadXpress data. In cases where the genotypes called from the two 

strategies did not correlate, GenomeStudio was used to manually inspect the clusters 

generated by the BeadXpress Assay, while SAMtools tview [347] was used to manually 

inspect the alignments of the exome sequence reads. Any lack of correlation between these 

genotyping strategies could be attributed to low coverage of the exome sequence data, 

misalignment of the sequence reads or incorrect BeadXpress calling. In the case of incorrect 

BeadXpress calling, the clusters were either redefined according to the correct genotype or 

the clusters were tightened to eliminate incorrect genotype assignment. Two SNPs 

(rs11556167 and rs150402481) did not correlate between the genotyping strategies and this 

could not be attributed to poor exome or BeadXpress genotyping. Therefore these two SNPs 

were flagged. 

 

Statistical analyses of the 228 successfully genotyped variants revealed that, after 

Bonferroni correction for multiple testing, eleven variants were significantly associated with 

the five traits that were examined with regards to the genotypic and allelic models that 

were utilised (P<2.19x10-5). All variants, with the exception of rs2027937 (ORG-allele=161.4, 

95% CI 12.1–7954.3, P=1.0x10-5) which was associated with treatment refractoriness (Figure 

6.2), were associated with change in PANSS scores over twelve months of treatment with 

flupenthixol decanoate. Closer inspection revealed that eight of these variants occurred in 

novel loci that were identified from the VAAST exome analyses. All of these variants were 

predicted by SIFT and/or PolyPhen-2 to alter the function of the protein, with the exception 

of one variant which was used to tag a missense variant (rs10153210) in TCF25 (r2=1, 
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LOD=3.3). With regards to the remaining three variants, two have been associated with 

antipsychotic treatment response outcomes in past GWAS and one has been associated 

with antipsychotic treatment response outcomes in past candidate gene studies. The effect 

sizes and inheritance models of these variants, as well as the predicted effects that the 

variants have on their corresponding protein products, are displayed in Table 6.2, Table 6.3 

and Figure 6.3, as well as Appendix 10.   
 

 
Figure 6.2: A mosaic plot representing the observed genotype frequencies for rs2027937 

associated with treatment refractoriness, with the width of the plots representing the 

number of individuals in each group. Those individual who were not treatment refractory 

(n=94) exhibited at MAF=0.05, while those who were treatment refractory (n=9) exhibited a 

MAF=0.33.  
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Table 6.2: The effect sizes (estimated difference in slope) and corresponding 95% confidence intervals of the significantly associated variants 

for specific inheritance models on the traits 

Locus name Gene  Trait P value Model PANSS Slope Difference 95% CI 

rs3924426 SLCO3A1  
PANSS-N score 9.6x10-7 

Recessive CC vs. TT+TC 
-6.0% -8.1% -3.8% 

PANSS-T score 4.7x10-6 -4.9% -6.7% -3.0% 

rs1801133 MTHFR 
PANSS-P score 2.1x10-6 

Additive AA vs. AG vs. GG 
3.6% 2.1% 5.1% 

PANSS-T score 1.2x10-5 2.3% 1.3% 3.4% 

rs10380 MTRR PANSS-P score 3.1x10-6 Dominant TT+CT vs. CC -3.0% -4.4% -1.6% 

rs36062234 DNAAF1 PANSS-N score 3.1x10-6 Recessive GG vs. CG+CC -10.0% -13.9% -6.0% 

rs112033334 FREM3 
PANSS-G score 4.2x10-6 

Recessive AA vs. AG+GG 
-10.7% -15.0% -6.2% 

PANSS-T score 3.1x10-5 -8.8% -12.9% -4.5% 

rs7245949 MUC16 
PANSS-T score 4.9x10-6 

Dominant AA+AG vs. GG 
-2.2% -3.1% -1.2% 

PANSS-N score 1.6x10-5 -2.6% -3.7% -1.5% 

rs10923472 SPAG17 PANSS-N score 7.3x10-6 Additive AA vs. AG vs. GG 2.0% 1.1% 2.9% 

rs10153210 TCF25 PANSS-N score 1.2x10-5 Additive CC vs. CT vs. TT -2.8% -4.0% -1.6% 

rs10805321 Intergenic PANSS-G score 1.8x10-5 Recessive AA vs. CC+CA -5.5% -8.2% -2.7% 

rs149570530 DNHD1 
PANSS-N score 1.8x10-5 

NA* CG vs. CC 
-6.2% -9.0% -3.3% 

PANSS-G score 4.7x10-5 -5.9% -8.5% -3.3% 

*As there were no homozygotes for the variant, the model of inheritance could not be conclusively determined. PANSS: Positive and Negative Syndrome 

Scale, P: Positive, N: Negative, G: General pathological, T: Total, NA: Not applicable. 
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Table 6.3: The significantly associated variants and their predicted effects on traits 

Locus name Trait Gene Effect on gene product PolyPhen-2 SIFT 

rs39244261 
PANSS-N score 

SLCO3A1  Intronic NA NA 
PANSS-T score 

rs18011332 
PANSS-P score 

MTHFR A222V Probably damaging Damaging 
PANSS-T score 

rs10380 PANSS-P score MTRR H622Y Benign Damaging 

rs36062234 PANSS-N score DNAAF1 D387E Possibly damaging Tolerated 

rs112033334 
PANNS-G score 

FREM3 H1500Y Not predicted Damaging 
PANSS-T score 

rs7245949 
PANSS-T score  

MUC16 T2891I Probably damaging Not predicted 
PANSS-N score 

rs10923472 PANSS-N score SPAG17 P1348L Probably damaging Damaging 

rs101532103 PANSS-N score TCF25 Intronic NA NA 

rs108053211 PANSS-G score Intergenic NA NA NA 

rs149570530 
PANSS-G score  

DNHD1 F1360L Probably damaging Damaging 
PANSS-N score 

rs2027937 Treatment refractoriness CCHCR1 A367T Probably damaging Tolerated 
1
: Previous GWAS association, 

2
: Previous candidate gene association, 

3
: In LD (r

2
=1, LOD=3.33 in exome data) with rs13338056 which results in a K53Q 

amino acid change in TCF25, PANSS: Positive and Negative Syndrome Scale, P: Positive, N: Negative, G: General pathological, T: Total, NA: Not 

applicable 
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Figure 6.3: The differences in the patterns of PANSS scores for the variants with the most 

significant P values for each of the symptom domains. A: Association of rs3924426 with 

PANSS negative scores, B: Association of rs1801133 with PANSS positive scores, C: 

Association of rs112033334 with PANSS general pathological scores, D: Association of 

rs7245949 with PANSS total scores.  

A 

B 

C 

D 
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Examination of the five ancestral contributions to the 

proportion of ancestry present in each individu

(Table 6.4 and Figure 6.4). Due to the fact that the 

the FES cohort (n=82), the allele frequencies of the 

this highly admixed population were compared to those reported for the 

Genomes Project populations that have 

the SAC population, namely the African (AFR)

populations (Figure 6.5). 

 

Table 6.4: Maximum, minimum and median proportions of ancestry observed in the SAC FES 

  African (Non-San)

Minimum 0.00001 

Median 0.26287 

Maximum 0.70783 

 

 

Figure 6.4: Proportions of ancestry

observed in each of the SAC FES individuals that were examined.
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five ancestral contributions to the SAC FES individuals revealed that 

present in each individual differed substantially

Due to the fact that the SAC population comprised the majority of 

the FES cohort (n=82), the allele frequencies of the eleven significantly associated variants in 

opulation were compared to those reported for the 

Genomes Project populations that have contributed most substantially to the 

namely the African (AFR), Asian (ASN) and European (EUR) descent 

: Maximum, minimum and median proportions of ancestry observed in the SAC FES 

individuals 

San) African (San) European East Asian 

0.00001 0.00001 0.00001 

0.22623 0.22781 0.13308 

0.59357 0.55550 0.60614 

Proportions of ancestry, as determined by ADMIXTURE analyses of the 95 AIMs,

d in each of the SAC FES individuals that were examined. 

THE GENETICS OF ANTIPSYCHOTIC RESPONSE 

FES individuals revealed that the 

substantially across the cohort 

population comprised the majority of 

significantly associated variants in 

opulation were compared to those reported for the three 1000 

contributed most substantially to the ancestry of 

and European (EUR) descent 

: Maximum, minimum and median proportions of ancestry observed in the SAC FES 

 South Asian 

0.00001 

0.12769 

0.52522 

 
, as determined by ADMIXTURE analyses of the 95 AIMs, 
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Figure 6.5: Minor allele frequency comparisons 

pharmacogenomics phenotypes in the current study. Frequencies for 

(n=758) and Asian (n=286) populations from the 

African Coloured, MAF: Minor Allele Frequency, *There was no data available for 
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Minor allele frequency comparisons of the eleven polymorphisms that were significantly associated with antipsychotic 

henotypes in the current study. Frequencies for the SAC FES population (n=82) and the African (n=

populations from the 1000 Genomes Project are shown. AFR: African, ASN: Asian, 

, *There was no data available for this SNP on the 1000 Genomes Project 
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of the eleven polymorphisms that were significantly associated with antipsychotic 

FES population (n=82) and the African (n=492), European 

ASN: Asian, EUR: European, SAC: South 

the 1000 Genomes Project browser. 
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6.5 Discussion 
The current study utilised a unique strategy to identify the genetic variants involved in 

antipsychotic treatment response outcomes in a South African FES cohort. This approach 

made use of a well characterised cohort in combination with comprehensive genomic data. 

To our knowledge, this is the first study to utilise WGES for the identification of variants 

contributing to antipsychotic treatment outcomes. Although, the cost of WGES may be 

prohibitively expensive in the context of Africa, this study made use of a prioritisation 

strategy which encompassed the exome sequencing of only a subset of patients, thereby 

dramatically decreasing the associated costs. This strategy identified patients on extreme 

ends of the treatment response spectrum for exome sequencing in order to identify variants 

contributing to the phenotype of interest, as has been previously described [353,362–364]. 

In addition to this, sequencing of two siblings who were non-responders allowed for the 

subtraction of all variants that were not common to these two samples. This decreased the 

number of variants that needed to be considered in the downstream analyses. Furthermore, 

the genotyping strategy utilised in this study accounted for the fact that exome sequencing 

examines only the coding regions of the genome by including non-coding variants that have 

been associated with antipsychotic treatment response traits in previous GWAS. The panel 

of variants that was prioritised for genotyping in the entire cohort was also supplemented 

with variants from past candidate gene studies to make allowance for the fact that NGS may 

not be able to detect variation in all candidate antipsychotic genes (refer to Chapter 4). To 

our knowledge, this genotyping panel is the largest and most comprehensive that has been 

used to examine antipsychotic treatment response in the African context.   

The use of the 384-plex BeadXpress Assay allowed for medium throughput genotyping, 

which provided the opportunity to examine a relatively large number of variants at an 

affordable price. Additionally, the size of this assay also facilitated the genotyping of a panel 

of AIMs. Analysis of these AIMs in the FES cohort revealed that the proportion of ancestry in 

the SAC individuals varied substantially (Table 6.4 and Figure 6.4). Thus, in order to 

eliminate the occurrence of false positives as a result of population stratification, 

genotyping of these AIMs in the FES cohort was essential [357]. The incorporation of the 

AIMs in the genotyping strategy permitted the inclusion of the SAC samples in our analyses. 

This is important as not only are the SAC the largest population group in the Western Cape 

(South Africa) where this study took place [365], but their admixed nature allows for the 

identification of variants from several different populations [242]. As shown in Figure 2.8, 

the allele frequencies of pharmacogenomic variants can differ substantially between 

populations. Therefore, certain variants may confer a risk for pharmacogenetic traits, but 

the risk that these variants confer may be specific to that population group. Examination of 

the highly admixed SAC population therefore allows for the unique opportunity to identify 

variants from several different population groups. This is highlighted in Figure 6.5, where 

the MAF of the majority of the significantly associated variants in the SAC occur at an 

intermediate frequency between the African, European and Asian populations. Although the 

variants identified may not have relevance to all populations (e.g. rs10153210), examination 

of the SAC allows for the identification of these variants without the need to sequence 

multiple populations. 

The analysis of this unique cohort, in combination with the carefully constructed genotyping 

strategy, allowed for the identification of eleven variants that were significantly associated 
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with treatment response outcomes, even after correction for multiple testing of the 228 

variants included in the association analyses. As mentioned in Chapter 2.3.3, only one 

antipsychotic GWAS has identified a variant that reached the genome-wide significance 

level required after adjustment for multiple testing and this study also utilised a FES cohort 

[203]. Thus, the results from the current study have served to highlight once again the 

importance of well characterised cohorts, particularly FES cohorts, for antipsychotic 

pharmacogenomic studies.  

With reference to the specific associations that were detected, all but two of the variants 

were predicted to have a direct impact on the function of the gene in which they occurred 

[in the case of rs10153210, this was inferred from the fact that this variant tagged a 

missense variant, rs13338056 (r2=1, LOD=3.33 in exome data)] (Table 6.3). The fact that 

these variants occur in protein coding sequences will allow for more direct applications in 

the future, as the specific effects of the identified proteins on antipsychotic treatment 

response can be examined. Although all of these variants were significantly associated with 

better treatment outcomes, with the exception of rs1801133 and rs10923472 which were 

associated with worse treatment outcomes, the observed effects that the variants had on 

the treatment outcomes varied substantially (Figure 6.3 and Appendix 10). The non-uniform 

effect that the variants had on treatment outcomes is to be expected as it has been 

reported that the treatment response trajectories observed between patients differ 

substantially, with patients showing different baseline PANSS scores and different rates of 

improvement [103]. The number of variants that were associated with treatment response 

outcomes combined with the observation that these variants acted in different manners to 

affect the treatment response trajectories, highlights once again the complexity of 

antipsychotic treatment response. These results suggest that many variants may act 

together to influence the wide array of treatment response phenotypes that are observed.  

Focussing on the specific variants revealed that the two non-coding variants that were 

significantly associated with the changes in PANSS negative and general pathological scores 

(rs3924426 and rs10805321), although not directly impacting on the function of a protein 

product, have been associated with antipsychotic traits in past GWAS. The first variant, 

rs3924426, was previously associated with the occurrence of QT prolongation after 

treatment with iloperidone (P=2x10-6) [210] and the second variant, rs10805321, was 

associated with antipsychotic induced EPS (P=9x10-6) [212]. Although neither of these 

variants were associated with antipsychotic treatment response (which was not investigated 

by either of the studies), as shown in Table S2, antipsychotic candidate genes are often 

associated with both response to antipsychotic treatment and antipsychotic induced ADRs 

(e.g. CYP2D6 and DRD2). The most likely reason for this is that the mechanisms involved in 

these antipsychotic treatment outcomes are interlinked [119]. This applies to the broader 

context where, as mentioned in Chapter 2.3.2, the genes involved in antipsychotic 

treatment outcomes overlap with the genes that have been implicated in the pathogenesis 

of schizophrenia [73]. Broadening the spectrum even further, it has recently been 

demonstrated that the genetics of psychiatric disorders are highly correlated [366]. Thus, 

the identification of variants involved in antipsychotic treatment response outcomes may 

have relevance to other aspects of antipsychotic treatment, as well as schizophrenia 

susceptibility or even susceptibility to other psychiatric disorders.     
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Examination of the significantly associated coding variants revealed that one of the variants, 

rs1801133 (A222V), has been reported to result in a 35% decrease in the enzyme activity of 

the protein encoded by an antipsychotic candidate gene, MTHFR, that is involved in the 

folate metabolism pathway [367]. Closer inspection of the remaining significantly associated 

variants (all identified by means of the VAAST analyses) revealed that another variant, 

rs10380 (H622Y) in MTRR, was also involved in the folate metabolism pathway [368]. 

Although both these genes have been implicated in schizophrenia susceptibility [368–370], 

no reports of an association with MTRR and antipsychotic treatment response were 

identified on the PubMed Database [371] (accessed 15th August 2013) [368,370]. 

Nonetheless, the folate metabolism pathway has been implicated in antipsychotic 

treatment response and rs1801133 has been associated with antipsychotic 

pharmacogenomic traits (Table S2) including a better response to antipsychotics [372,373]. 

Interestingly, our association with this variant was found in the opposite direction of the 

two other treatment response associations, both of which were performed in European 

descent individuals. As our cohort consists of predominantly SAC individuals, with a 

significant proportion of African ancestry (Figure 6.4), it is possible that the differences in 

the direction of effect may be attributed to differences in ancestry. This may be related to 

different patterns of LD and for this reason the surrounding variant landscape should be 

examined in the future, with particular reference to non-coding variants, which were not 

the focus of this study. Alternatively, due to the clinical heterogeneity of schizophrenia 

[374], the differences in ancestry may affect the way in which the schizophrenia and 

treatment response phenotypes are expressed. This has previously been reported as a 

potential explanation for the opposite effects that were observed with regards to the COMT 

rs737865 variant in the Xhosa population when compared to non-African populations [375]. 

This highlights once again the importance of examining the effects of genetic variants in 

different population groups, particularly in the context of Africa, which has been under-

represented in terms of antipsychotic pharmacogenomic research [244].  

With regards to the remaining seven significantly associated variants, six were associated 

with the changes in PANSS scores for the general pathological or negative symptom domain, 

which has been reported to show little improvement after antipsychotic treatment [15,83], 

while the remaining variant was associated with treatment refractoriness. To our 

knowledge, none of the genes whose functions were affected by these variants have 

previously been associated with antipsychotic treatment response traits or schizophrenia. 

However, one of the variants (rs112033334) was predicted to change the function of a gene 

(FREM3), which has been associated with major depressive disorder [370]. As mentioned 

above, the symptoms and genetics of psychiatric disorders are interlinked and more 

specifically, schizophrenia and major depressive disorder have been shown to overlap 

[47,366]. Therefore, this finding warrants further attention and highlights the fact the 

psychiatric genetic findings may have relevance to the broader spectrum of psychiatric 

disorders. Examination of the remaining six variants revealed that four of the variants 

(rs10923472 in SPAG17, rs149570530 in DNHD1, rs2027937 in CCHCR1 and rs36062234 in 

DNAAF1) occurred in genes, which although poorly characterised with regards to their 

specific functions, have been implicated in microtubule associated functions [376–381]. This 

may be of importance as microtubules reportedly play a role in facilitating neuronal 

migration [382] and this process is vital to the development of a normal brain [383]. In 

addition, it has been reported that genetic variants which affect genes that are involved in 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 6                                                               THE GENETICS OF ANTIPSYCHOTIC RESPONSE 

 

 
91 

 

neuronal migration processes result in a wide array of diseases, including schizophrenia 

[384–386]. More specifically, variants in microtubule associated genes have also been 

implicated in the development of mental disorders [382,387,388]. This once again 

illuminates the likelihood that the genetics of antipsychotic treatment outcomes and 

psychiatric disorders overlap. Therefore, the specific functions of these genes, as well as the 

role that neuronal migration plays in both schizophrenia and treatment response 

phenotypes, should be investigated in the future. Of further significance, the variant 

associated with treatment refractoriness (rs2027938, A367T) occurred in a gene (CCHCR1) 

which is located in close proximity to the MHC region [389]. As mentioned in Chapter 2.1.3, 

the MHC region is one of the most well replicated findings in schizophrenia GWAS research 

[61] and has also been implicated in antipsychotic pharmacogenomic traits (Table S2), thus 

warranting further investigation. It should, however, be noted that this region is highly 

polymorphic and prone to false positives as a result of population stratification [390]. A 

further note of caution should be made with reference to the imprecise odds ratio (as can 

be seen by the wide confidence interval) observed for this variant, due to the relatively 

small sample size. This small sample size also has relevance to the associations observed 

with regards to rs112033334 and rs36062234, where there was only one homozygous 

individual for each of these variants that was driving the significant associations. These 

results should therefore be interpreted with caution and it will be necessary to genotype 

these variants in larger cohorts to confirm these findings. 

With regards to the remaining two variants, one of the variants (rs7245949, T2891I) was 

present in MUC16. It should be noted that it has been reported that MUC16 is prone to false 

positives in WGES studies due to the large number of homologous sequences associated 

with the MUC genes [391]. Therefore, the significance of this variant should also be 

interpreted with caution. The remaining variant (rs10153210, which is in LD with the K53Q 

missense variant) was present in TCF25. This gene codes for a transcription factor expressed 

in the brain, which is involved in embryonic development [392]. As neuronal migration also 

occurs during development, the identification of variants involved in these processes may 

provide evidence for the neurodevelopmental hypothesis, whereby it has been postulated 

that abnormalities in brain development during gestation may contribute to the occurrence 

of the schizophrenia phenotype later in life [393]. Further validating these findings, the most 

recent schizophrenia exome sequencing study also identified a role for genes involved in 

neurodevelopment [69]. Of additional interest, both published PGC schizophrenia GWAS 

referred to in Chapter 2.1.3, identified significant associations with variants in the vicinity of 

TCF4 (a neuronal transcription factor) [61,62], which may serve to provide further evidence 

for the role that transcription factors play in schizophrenia and antipsychotic response, as 

well as highlighting the importance of considering the effect of gene regulation and gene 

networks in antipsychotic treatment response outcomes. Taken together, the results from 

this study have highlighted the complexity of antipsychotic response, which appears to 

overlap with the genetics of schizophrenia. Nonetheless, this study has been successful in 

identifying novel and previously reported pathways were implicated in antipsychotic 

treatment response outcomes.  
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6.6 Conclusions 
This study has demonstrated the utility of combining the use of well characterised, 

longitudinal cohorts and WGES technologies for the discovery of variants that may 

contribute to antipsychotic treatment response outcomes. Employing these data we were 

able to design an extensive panel of variants, including variants that have previously been 

associated with antipsychotic treatment response, for genotyping in larger cohorts of 

schizophrenia patients receiving antipsychotic medication. The use of this panel of variants 

in the FES cohort identified eleven variants that were significantly associated with 

antipsychotic treatment response outcomes. Nine of these variants were linked to a 

predicted change in function of a protein product (Table 6.3), thus providing direct 

information regarding the role that these variants may play in antipsychotic treatment 

response outcomes. With regards to the specific functional roles that these variants play, 

the folate metabolism pathway was implicated in the patterns of response that were 

observed with regards to the positive symptoms domain; while proteins associated with 

microtubules were implicated with regards to the negative or general pathological symptom 

domain. The identification of these microtubule associated genes, as well as TCF25 which is 

reported to regulate genes involved in embryonic development, suggests a possible role for 

aberrant neuronal migration in relation to schizophrenia and response to antipsychotics. 

This highlights the validity of the neurodevelopmental hypothesis and brings to light the 

overlapping genetics of schizophrenia and antipsychotic treatment outcomes. It should also 

be noted that the majority of the significant associations were detected with respect to the 

negative symptom domain. This is of importance as antipsychotic treatments are less 

effective in treating this symptom domain [15,83]. Thus if the biological mechanisms 

involved in the lack of improvement in negative symptoms after antipsychotic treatment 

can be elucidated, novel strategies can be developed to optimise treatment protocols. In 

addition, this study revealed that the influence of genetic variants on treatment response 

outcomes varied. Thus, instead of a variant predicting whether a patient will respond or not 

respond to treatment, the genotype information is more likely to predict the treatment 

response trajectory of that patient. The number of variants that were significantly 

associated and the different affects that they have on treatment response highlight once 

again the complexity of antipsychotic response. If the results obtained from this study can 

be replicated in additional cohorts of schizophrenia patients receiving antipsychotic 

treatment, this information can be used to aid in our understanding of the mechanisms 

involved in antipsychotic treatment response outcomes and can ultimately be used to guide 

the optimisation of antipsychotic treatments. 
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CHAPTER 7: Conclusions, study limitations and future 

directions 

7.1 Conclusions 
This study investigated a number of aspects regarding antipsychotic pharmacogenomics, 

which could broadly be divided into (i) the evaluation of the utility of WGES for 

antipsychotic pharmacogenomics in the African context and (ii) the subsequent utilisation of 

exome sequencing for antipsychotic pharmacogenomics in the South African setting. By 

critically examining the use of NGS in the context of Africa and subsequently applying these 

technologies, this study was able to successfully achieve the aims and objectives described 

in Chapter 2.5. The results of the first part of this study demonstrated the need for NGS 

technologies for antipsychotic pharmacogenomic research in the diverse populations of 

South Africa, while the second part of the study successfully implemented this genotyping 

strategy to identify eleven variants associated with antipsychotic treatment response, eight 

of which are novel. 

 

7.1.1 PART 1: Evaluation of the utility of exome sequencing for antipsychotic 

pharmacogenomics in the African context 

Mining of the scientific literature revealed that Africa has been under-represented in terms 

of genomic research. This applies particularly to psychiatric research, with no psychiatric 

GWAS reported in Africa at the time that the GWAS Integrator was searched [202]. Although 

the genomes of African individuals may not be well suited to SNP-chip analyses, the low LD 

and high levels of genetic variation make these individuals uniquely suited to WGES 

[250,262]. Due to the high rate of non-optimal treatment in Africa [296], the 

implementation of pharmacogenomics is urgently required. Unfortunately, due to the fact 

that populations residing within Africa have been under-represented in genomic research, 

little is known regarding the variation present in these individuals. This study has shown that 

NGS data from African individuals is more likely to uncover novel or uncharacterised 

variants, when compared to non-African populations. In addition, it has been shown that 

the frequencies of variants of relevance to pharmacogenomics are likely to differ 

substantially between population groups. Thus, these results indicate that WGES is required 

in order to elucidate the genetic factors contributing to antipsychotic response in the 

context of Africa. 

 

However, due to the fact that it is known that important pharmacogenes such as the HLA 

and CYP genes are situated in complex regions of the genome, it was decided that the utility 

of NGS for variant detection in antipsychotic pharmacogenes should be critically examined. 

To do this, a subset of antipsychotic pharmacogenes and VIPs were analysed with regards to 

(i) sequence similarity to paralogues or pseudogenes, (ii) percentage GC content and (iii) 

percentage low complexity sequence. In addition each gene was examined to determine 

what percentage of the gene fell within the “inaccessible genome” as defined by the 1000 

Genomes Project mask files. These analyses revealed that the inaccessibility of genes for 

NGS applications was highly correlated to the presence of paralogues/pseudogenes with 

high sequence similarity to the genes of interest (P=8.02x10-7), percentage GC content 
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(P=9.96x10-5) and percentage low complexity sequence (P=0.0002). Furthermore, VIPs were 

more likely than antipsychotic pharmacogenes to be inaccessible (P=0.035), likely driven by 

the higher likelihood for VIPs to possess paralogues/pseudogenes (P=0.029). These results 

highlight the fact that intensively researched pharmacogenes, such as the CYP and HLA 

genes may not be ideally suited to NGS applications with current technologies. Therefore, 

alternate strategies may be required to examine these genes.  

 

Taken together, these results have brought attention to the utility of WGES in Africa, while 

also providing information regarding the possible shortcomings associated with these 

technologies. With regards to the scarcity of genomic research in Africa, the future is looking 

bright with initiatives such as the H3Africa program lighting the way and playing a role in 

decreasing the disparities in genomic research [394]. Furthermore, the current lack of data 

pertaining to the diverse populations in Africa provides an opportunity for researchers to 

harness the ability of WGES to provide much needed information for these populations. 

However, while there is much to be gained from using these technologies, it is important to 

consider their shortcomings. Although it was demonstrated by this study that genomic 

complexities influence the ability of NGS technologies to call variants, these hurdles can in 

part be overcome by utilising information that has already been generated by past genetic 

association studies. In addition, the large number of databases that provide information 

regarding the genomic composition of the genes of interest (e.g. GC content, low complexity 

sequence and sequence similarity to other regions of the genome) [332,333,335,395,396], 

in combination with the information provided by the 1000 Genomes Project mask files 

[327], can serve as guidelines to indicate which areas of the genome may need to be 

examined with caution. By utilising information that has been generated by past studies 

together with novel information obtained from WGES studies, the missing pieces of the 

puzzle can slowly be added to the bigger picture of antipsychotic pharmacogenomics.  

 

7.1.2 PART 2: The utilisation of exome sequencing for antipsychotic 

pharmacogenomics in the South African context  

In order to identify the genetic variation contributing to antipsychotic treatment response in 

the South African context, exome sequencing was performed in eleven SAC FES individuals. 

To our knowledge, this study is the first to use WGES for pharmacogenomic and psychiatric 

applications in the context of Africa. To do this, an innovative strategy was utilised to 

overcome the prohibitive costs of WGES. This was done by making use of a subset of 

individuals on extreme ends of the treatment response spectrum, in combination with 

family data to reduce the number of variants that needed to be examined. Using this 

strategy allowed for a dramatic decrease in the associated costs and this approach may be 

used as a template for future genomic research that is performed in the resource limited 

settings of Africa. The use of this exome sequencing approach identified a total of 56 346 

coding variants, of which 5 557 were novel (9.86%). The data generated from these analyses 

provided the first genomic information for South African SAC schizophrenia patients. 

Although genomic studies have been performed in the SAC population, these studies 

utilised SNP-chip based approaches [242,397], therefore limiting the ability of these studies 

to identify novel variants. Thus, this study is the first to use WGES in the SAC population to 

identify novel variants.  
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Examination of the global patterns of variation revealed that novel variants were unlikely to 

be shared between the non-responders and responders and 98% of the novel unshared 

variants were private and only present in one individual. Furthermore, LOF variants were 

more likely than other classes of variation to be novel. When examining only those LOF 

variants that were shared between the sibling non-responders and were not present in any 

of the responders, it was observed that there were 22 variants in 21 genes meeting these 

criteria. Of these 22 variants, 20 were novel or occurred at a MAF<0.05 in the 1000 

Genomes Project Asian and European populations, highlighting the complexity of 

antipsychotic response and the need to examine different population groups. In addition 

only one of these genes, GRIN3B, has a previous connection to antipsychotics. Although 

these analyses were not able to identify any variants that could completely explain non-

response, they did highlight the importance of WGES in order to identify the variants 

contributing to non-response. These results also served to highlight the potential impact of 

rare variants on antipsychotic treatment response phenotypes and the need to develop 

methods to identify the role that these rare variants play. Due to the fact that rare variants 

are usually not shared between population groups [71], these results serve as yet another 

reminder that antipsychotic pharmacogenomic research needs to be performed in many 

different populations. This is particularly the case for the populations residing within Africa, 

as these populations have been under-represented in past genomic research and have high 

levels of rare variation [71].   

 

Although, it appears that rare variation may play a role in antipsychotic treatment response 

outcomes, the effect of more common variants (MAF>0.01) was also examined in this study. 

To do this, a panel of 393 variants was prioritised for genotyping in the entire cohort. This 

genotyping panel included (i) variants that have been associated with treatment response 

outcomes in past antipsychotic GWAS and candidate gene studies, (ii) variants present in 

the exome data that were predicted to alter the function of candidate antipsychotic 

pharmacogenes, (iii) variants in the exome data that were predicted to alter gene functions 

and occurred differentially in the non-responder and responder individuals and (iv) AIMs, to 

allow for the correction of population stratification in the statistical analyses. This 

comprehensive genotyping assay is, to our knowledge, the most extensive with regards to 

antipsychotic pharmacogenomics in Africa. This assay employed the use of the genomic data 

generated from the exome sequencing, while harnessing the information that has already 

been generated with regards to the genetic variants involved in antipsychotic treatment 

response. In so doing, this assay provided for the opportunity to identify novel genes 

involved in antipsychotic treatment response, while simultaneously allowing for the ability 

to replicate past associations.  

 

With regards to the AIMs that were included in the genotyping panel, the information 

generated by these variants was integral to the results that were obtained in this study. 

Figure 6.4 clearly demonstrates that this group of individuals is highly admixed. Therefore, 

association analyses performed in these individuals are likely to be affected by population 

stratification and thus false positives may occur. However, as this population makes up a 

large percentage of the South Africa population [365], particularly in the Western Cape, 

where this study took place, it is not realistic to exclude this population group from genetic 

analyses, especially in cases such as this study where it is difficult to obtain large cohorts of 

FES patients on standardised treatment regimes. The AIMs used in this study proved 
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successful in allowing for the inclusion of the SAC samples in the association analyses. 

Furthermore, Figure 6.5 highlights that if the effects of population stratification can be 

accounted for, the admixed nature of the SAC may be of value for the identification of 

variants present in multiple populations, as described by Patterson et al. [242]. More 

specifically, the ability of admixed populations to detect pharmacogenetic variants which 

are of relevance to different population groups has previously been described [303,398]. 

These studies highlight the utility of admixed populations for pharmacogenetic applications, 

which was also demonstrated in the current study, where the SAC cohort provided the 

opportunity to identify variants that may be present in multiple South African populations 

thereby broadening the application of these variants in the context of the rainbow nation. 

 

The statistical analyses performed in this cohort identified significant associations with 

eleven variants, nine of which were predicted to have an impact on the function of a protein 

product (Table 6.3). To our knowledge, eight of these functional variants have not previously 

been associated with antipsychotic treatment response outcomes and are therefore novel. 

The remaining two variants in non-coding regions have been associated with antipsychotic 

pharmacogenomic traits in past GWAS; therefore this study was able to once again bring to 

light the potential role that these variants play in antipsychotic outcomes. Examination of 

the specific variants that were significantly associated with antipsychotic treatment 

response outcomes revealed that different pathways were linked to different symptom 

domains, such that the folate metabolism pathway was implicated in improvement in 

positive symptoms, while genes potentially related to neuronal migration were associated 

with the negative or general pathological symptoms. This highlights that due to the non-

uniform nature of schizophrenia [42], the different symptoms that are present in 

schizophrenia patients may need to be treated independently of one another. With regards 

to positive symptoms, due to the fact that evidence was provided that disregulation of the 

folate metabolism pathway may influence treatment response, supplementation with folic 

acid may improve treatment regimes [370]. In contrast, the identification of the role that 

variants may play in influencing neurodevelopment processes can improve our 

understanding of negative or cognitive symptoms. As antipsychotic treatments are less 

effective for the treatment of these symptoms [15,83], this information may eventually be 

used in the development of drugs that target these symptoms. It should also be noted that 

the effect that the different variants were shown to have on treatment response 

trajectories varied substantially. These results reiterate once again the complexity of the 

genetics of antipsychotic treatment response. 

 

Interestingly, both folate metabolism and neuronal migration have previously been 

implicated in schizophrenia susceptibility [69,368,393], which suggests that antipsychotic 

treatment response and schizophrenia are interlinked. Therefore, an improved 

understanding of antipsychotic response may improve our understanding of schizophrenia. 

Further evidence is provided for the similarities in the genetics of antipsychotic treatment 

response and schizophrenia by the fact that this study implicated both rare and common 

variants in treatment response outcomes. This is in accordance with the literature relating 

to the genetics of schizophrenia as past genomic studies examining schizophrenia have 

provided evidence for the role that both rare [65–68] and common variants [61,62] play in 

the development of the disorder. Due to the fact that both of these types of variation may 

be involved in antipsychotic treatment response and schizophrenia, different approaches 
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may be required to study the effects of these variants. In terms of rare variants, which are 

likely to be population specific [71], studies using sequencing technologies to examine 

several different populations may be required. However, common variants are likely to be 

shared across different population groups [399]. Furthermore, the contribution of common 

variants to schizophrenia susceptibility have been shown to overlap between African and 

European populations [400]. Therefore, the results obtained from the examination of the 

role that common variants play in treatment response in one population may allow for 

extrapolation onto other populations.  

 

In closing, this study identified both novel and known genes that may be involved in 

antipsychotic treatment response. The identification of these genes should aid in improving 

our understanding of both the biological underpinnings of schizophrenia and antipsychotic 

treatment response outcomes. By using this information in future studies we may be able to 

move forward in the quest towards the use of genetic information to predict the treatment 

response outcomes of patients prior to treatment. This should play a role in optimising 

treatment regimes and reducing the socio-economic burdens placed on patients and their 

caregivers as a result of non-optimal antipsychotic treatment. 

 

7.2 Study limitations 

This study has a number of characteristics that makes it valuable to the field of antipsychotic 

pharmacogenomics. These strengths are related to (i) the unique and well characterised 

cohorts used in this study; (ii) the high throughput genomic technologies utilised and (iii) the 

application of these research strategies in the context of Africa. However, in conjunction 

with these strengths, there are also limitations that need to be considered. The main 

limitations of this study include (i) a relatively small sample size, including the lack of a 

replication cohort, and (ii) the inability to examine all variants, including structural and non-

coding variants, in the entire cohort of patients. 

 

With reference to the sample size, as described in Chapters 2.1.3 and 2.3.3, in order to 

detect associations with variants of small effect sizes, large cohorts are required. To obtain 

such cohorts it will be important to form international collaborations with structures similar 

to the PGC, which focus on antipsychotic pharmacogenomics. It should, however, be noted 

that it is very difficult to obtain large cohorts of well characterised schizophrenia patients for 

pharmacogenomic studies and in comparison to the majority of other antipsychotic 

pharmacogenetic studies, the FES cohort used in this study is large [189]. Nonetheless, even 

though this study made use of a well characterised discovery cohort for which extensive 

longitudinal data was available, it remains possible that some associations may have been 

missed. By using larger cohorts, additional variants that are significantly associated with 

antipsychotic treatment response may be detected. It should also be noted that although 

the FES cohort utilised in this study was well characterised in terms of pharmacogenomics 

and no other antipsychotics, mood stabilizers and psychostimulants were permitted; other 

psychotropic medications such as benzodiazepines, antidepressants or anticholinergics were 

used in parallel to the flupenthixol decanoate treatment when required. Thus, it will be 

important in the future to assess the effects of these multi-drug therapies on treatment 

outcomes. 
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In addition to the requirement for bigger sample sizes, the replication of results is also an 

important consideration. With reference to the results obtained from this study, we have 

already utilised our extensive genotyping panel to examine the genetic variation in a cohort 

of FES individuals obtained from the Zucker Hillside Hospital (New York, USA), for which 

clinical data is currently being collected. These individuals (n=89) are predominantly African 

American (69%) and thus will serve as an interesting comparison to the SAC individuals, as 

both these populations are highly admixed, with a large proportion of African ancestry 

(Figure 6.4, [260]). Mention should also be made to the fact that even though AIMs were 

included to correct for ancestry differences, the non-homogenous nature of these 

individuals with regards to ethnicity may complicate the analyses of these populations. 

Another aspect of the American FES patient cohort that will make for an interesting 

comparison is the fact that these patients are receiving SGAs. Therefore it will be of interest 

to determine if the results obtained from our study, which examined treatment response 

with regards to FGAs, can be extrapolated onto the treatment response outcomes observed 

after treatment with SGAs. The information generated from this replication cohort should 

aid in obtaining a more comprehensive understanding of the role that the associated 

genetic variants play in antipsychotic treatment response.  

 

The genotyping strategy utilised in this study has many advantages, however, there are 

certain disadvantages that need to be considered. The three main shortcomings associated 

with exome sequencing are the inability to reliably detect (i) variants in complex regions of 

the genome (as described in Chapter 4), (ii) non-coding variants and (iii) CNVs [340]. To aid 

in overcoming the issues associated with the inability of NGS to detect variation in all 

regions of the genome, we included variants in candidate genes that have previously been 

associated with antipsychotic treatment response. Furthermore, a study by our group has 

undertaken to examine the variation in other known candidate antipsychotic 

pharmacogenes, such as CYP2D6, using already validated techniques including long range 

PCR. It should also be noted that sequencing technologies have already advanced during the 

course of this study and the sequence read lengths have increased [401], with technologies  

such as Pacific Biosciences' single molecule real-time sequencing technology able to obtain 

average read lengths of 3 000 bp [402]. Thus the ability of NGS to identify variants in 

complex regions of the genome is also likely to have improved. With reference to the 

inability of exome sequencing to detect non-coding variants, at present the most cost 

effective strategy is to utilise information on non-coding variants from past GWAS. In this 

study, to account for the effects of non-coding variants, the most significantly associated 

variants from past antipsychotic GWAS were included in the genotyping panel and a study 

by our group is currently examining the regulatory significance of these variants using the 

ENCODE data, as described by Schaub et al. [403]. Lastly, with regards to CNVs, although it is 

possible to examine CNVs with the use of NGS data, the capture and sequence biases 

introduced by exome sequencing complicate these analyses [340]. Moreover, the small 

number of exomes sequenced by this study make these strategies even more unreliable. 

The fact that only a subset of exomes were sequenced also prohibited the detection of rare 

variation in all individuals. As rare variation may play an important role in antipsychotic 

treatment response (refer to Chapter 5), these variants should be investigated in the future.  

 

Lastly, it is important to refer to the ethical implications of WGES, which may be particularly 

important in the context of Africa where guidelines are limited [404]. As mentioned in the 
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introduction, the use of WGES is often accompanied by incidental findings, which introduces 

ethical concerns. As the stigma associated with pharmacogenomic findings is likely to be less 

than the stigma associated with disease-related findings and pharmacogenomic findings are 

also more likely to be actionable [30], the return of such findings to study participants 

should be considered. It will, however, be important that such findings are validated both in 

terms of the presence of the variants and their effects on treatment outcomes. Although 

this study did not identify any variants that would currently meet these criteria, in the 

future it will be important address these issues, as detailed by Wright et al [404].   

 

7.3 Future directions 

This study has generated a number of interesting results that have opened up several future 

research avenues. These avenues of research include (i) obtaining larger cohorts of 

schizophrenia patients, (ii) the utilisation of additional genotyping strategies, (iii) the 

examination of additional pharmacogenetic traits, (iv) the inclusion of information relating 

to expression and epigenetic profiles and (v) the incorporation of pharmacogenomic 

information into the clinical setting.   

 

In terms of the first avenue of research, large cohorts are a valuable commodity to obtain 

statistical power. In order to obtain these large cohorts it will be important to form 

consortiums, such as the PGC, which examine not only schizophrenia but also the treatment 

thereof. It should, however, be noted that these cohorts must be well characterised. Thus, 

as antipsychotic pharmacogenomic research moves forward, it is essential that appropriate 

study designs are implemented to ensure the success of large studies. One such approach 

may include the implementation of the NIMH’s Research Domain Criteria [47,405]. These 

criteria suggest that as the symptoms, treatments and genetics of patients with psychiatric 

disorders overlap substantially [47,366] (Figure 2.1), it may be more accurate to place 

individuals on a spectrum according to the symptoms that they display and to subsequently 

identify measurable endophenotypes that span multiple psychiatric disorders [405]. 

Identifying endophenotypes specific to antipsychotic response across multiple psychiatric 

disorders may aid in increasing samples sizes. By collecting large cohorts of patients, 

additional variants and pathways that are involved in antipsychotic treatment outcomes 

may be identified and the results obtained from the current study can be further 

substantiated.  

 

Although the current study utilised a comprehensive genotyping strategy, this strategy still 

had limitations with regards to the ability to detect all types of variation. Thus, in the future, 

in order to investigate all types of variation, genome sequencing of all the patients in this 

cohort should be performed. Unfortunately, this may not currently be possible due to the 

costs associated with such analyses. Thus, future studies may instead combine the 

information obtained from exome sequencing with genotyping strategies such as those 

employed by the Affymetrix Genome-Wide Human SNP Array [406], which contains 

approximately one million SNP and CNV probes that are spread throughout the genome. 

The generation of these data would allow for examination of both non-coding variants and 

CNVs, and may also be used to provide a more comprehensive picture of the complex 

ancestry contributions of the SAC population. In addition, due to the prohibitively expensive 
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nature of WGES, targeted resequencing strategies of prioritised regions may be utilised in 

order to identify rare variants.  

 

The cohorts of patients and genotyping strategies described above should also be used to 

examine other aspects of antipsychotic treatment. As described in Chapter 2.2.3, the 

occurrence of antipsychotic induced ADRs is a serious concern and can result in an increase 

in the socio-economic burdens placed on patients and their caregivers [15]. Therefore if 

optimal antipsychotic treatment is to be achieved, these pharmacogenetic traits also need 

to be considered. If the genetic factors that cause ADRs can be identified, pharmacogenetic 

strategies can be implemented to avoid the occurrence of these ADRs. In so doing, 

compliance to antipsychotic treatment can be improved [119]. Thus, by examining all 

aspects of antipsychotic treatment response, including ADRs, pharmacogenetic strategies 

can be designed to obtain optimal treatment response without the need for the lengthy trial 

and error procedures described in Chapter 2.2.1 [86,87].  

 

In addition to these aspects of research which are focussed on examining the effects of 

genetic variants, strategies that utilise high throughput data generated from studies 

examining the differences in epigenetic regulation and gene expression levels should also be 

considered. As mentioned in Chapter 2.1.3, schizophrenia is a complex phenotype that is 

influenced by both the environment and genetics. Furthermore, previous research has 

shown that the use of antipsychotics affects gene expression levels and epigenetic 

regulation [407]. Therefore, these avenues of research are important and several NGS 

strategies exist that can facilitate this research. These include (i) RNA-seq, which examines 

the transcriptome and can thus be used to examine gene expression and ncRNA levels; (ii) 

ChIP-seq, which sequences the areas of the genome that are bound to proteins such as 

transcription factors, so as to identify transcription factor binding sites; (iii) Meth-seq, which 

can be used to identify the regions of the genome that are methylated and thus inaccessible 

to transcription factors; and (iv) DNase-seq, which can be used to assess the chromatin 

assembly and can thus be used to determine the accessibility of chromatin for transcription 

purposes [59,403,408].  

 

The major hurdles associated with the implementation of these technologies are related to 

the fact that gene expression levels and epigenetic changes vary across cell types and are 

usually tissue specific [408]. Unfortunately, studies relating to the treatment of 

schizophrenia ideally require brain tissue, the use of which is prohibited by the 

inaccessibility of this organ [409]. Although the use of peripheral tissue, such as blood, may 

act as an indication of the gene levels in the brain, it is difficult to determine how accurate a 

representation this is [59]. Thus alternative methods such as the use of post-mortem brains, 

human induced pluripotent cells (hiPSC) and animal models may be more reliable. 

Unfortunately, although these methods have been applied to schizophrenia and 

antipsychotic research and interesting findings have been reported [407,409–411], all these 

methods have limitations. With regards to the post-mortem brain, not only is it difficult to 

obtain post-mortem brain samples, but the gene expression and epigenetic changes may be 

confounded by factors such as disease progression and treatment history [410]. Although 

the use of animal models does allow for the ability to manipulate genes and determine the 

effect of antipsychotic treatment on the animal, it is very difficult to model schizophrenia 

and to assess symptoms such as hallucinations and delusions in animals [59,412,413]. Thus, 
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it seems that the hiPSC approach may yield the most applicable results for antipsychotic 

pharmacogenomics. This innovative strategy can reprogram the fibroblast cells from 

schizophrenia patients into hiPSC, which can subsequently be differentiated into neurons 

[414]. Furthermore, it has been reported that the antipsychotic treatment of these hiPSC 

derived neurons can improve their neuronal connectivity [414]. Thus the use of hiPSC may 

improve our understanding of the mechanism of action of antipsychotic drugs, as well as to 

provide insight into why certain individuals do not respond to this treatment.   

  

Together with the data generated by this study, this future research can be utilised to 

develop predictive tests, such as the one described in Table 1.1, that can be used to 

optimise antipsychotic treatment (Figure 2.7). It should, however, be noted that these 

predictive tests are likely to be more complicated than the one described in Table 1.1, due 

to the complexity of antipsychotic treatments. Instead of only providing recommendations 

regarding the dose of medication to use, these tests will also need to provide 

recommendations regarding the type of antipsychotic to use. Furthermore, due to the 

complexity of antipsychotic response, these tests may need to harness the power of 

sequencing technologies in order to obtain comprehensive pharmacogenomic information. 

Nonetheless, if these tests can be validated with regards to practicality, the treatment of 

schizophrenia can be improved and the associated burden and stigma can be reduced. As 

mentioned in Chapter 3, the use of pharmacogenetic tests can reduce the costs associated 

with ineffective treatments [287–291]. This is particularly important in the context of South 

Africa with its lack of resources, unique population groups and cultural considerations. In 

addition, if evidence can be provided regarding the biological underpinnings of 

schizophrenia and treatment response, the stigma can be reduced and individuals will be 

more likely to seek treatment. Together these strategies can be used to alleviate the 

unequal burdens of disease caused by schizophrenia in LMIC.  
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APPENDIX 1: Analyses performed in GALAXY 
In order to obtain the data required for the analysis of the genomes/exomes examined by Schuster 

et al [280], the following was performed in GALAXY [306]: 

− Click Shared data/data libraries > Bushman library (refer to Table S1 for a description of the 

individuals present in this dataset) 

− Select All SNPs in personal genomes 

− Click Go 

− Return to homepage and select the Bushman library 

− Click Filter and sort > Filter 

− Select the following: 

− Filter: The bushman library dataset 

− C1==’chrx’ and C2>=y and C3<=z; where x is the chromosome where the gene of interest 

is located and y and z are the chromosomal positions between which the gene is 

located. These positions were obtained for each of the genes from PharmGKB's gene 

boundary positions i.e. PharmGKB sets gene boundaries by expanding the mRNA 

boundaries by no less than 10 000 bases upstream (5') and 3 000 bases downstream (3') 

to allow for potential regulatory regions. 

− Click Execute 

− Click Edit attributes and rename with the “gene name” 

− Click Get data > UCSC Main 

− Select the following: 

− Assembly: Mar 2006 (NCBI36/hg18) 

− Group: Variation and repeats 

− Track: SNPs 130 

− Position: chrx:y-z (where once again where x is the chromosome where the gene of 

interest is located and y and z are the chromosomal positions)   

− Output format: BED 

− Send output to: Galaxy 

− Click Get output > Send query to Galaxy 

− Click Edit attributes and name the file with the “gene name_dbsnp130” 

− Click Operate in Genomic Interval > Subtract  

− Then subtract “gene name_dbsnp” from “gene name” to get novel SNPs 

− Click Execute 

− Click Edit attributes and name “gene name novel SNPs” 

− Click Join, subtract, group > Join 2 datasets 

− Select the following: 

− Join “Gene name” using C2 with “Gene name_dbSNP” to get the rs numbers for the 

know SNPs 

− Click Execute 

− Paste list into Microsoft Excel (2007) 

− Determine the effect of the identified variants using SIFT [308] 
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Table S 1: Thirteen ethnically diverse individuals utilised to compare pharmacogene variation 

Individual identity Continent of Descent Geographic/Linguistic/ethnic group Significance of individual 
Date of sequencing Sequenced region 

2010 Prior to 2010 Genome Exome 

Desmond Tutu Africa Bantu (Xhosa/Tswana) Archbishop and human rights activist X  X X 

!Gubi Africa Tuu Khoisan individual X  X X 

G/aq’o Africa Juu (Ju/’hoansi) Khoisan individual X  X X 

D#kgao Africa Juu (Ju/’hoansi) Khoisan individual X   X 

!Aıˆ Africa Juu (!Kung) Khoisan individual X   X 

NA18507 Africa Yoruba HapMap Project participant  X X  

NA 19240 Africa Yoruba HapMap Project participant  X X  

Craig Venter  Europe American Involved in Human Genome Project  X X  

James Watson  Europe American Co-discovered the DNA double helix structure  X X  

NA 12891 Europe American (Utah) HapMap Project participant  X X  

NA 12892 Europe American (Utah) HapMap Project participant  X X  

Korean Asia Korean First sequenced Korean individual  X X  

Chinese Asia Chinese First sequenced Chinese individual   X X  

The different symbols within the names of the Khoisan individuals represent click consonants in the Khoisan languages [280]. 
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APPENDIX 2: Next generation sequencing analyses of 

antipsychotic pharmacogenes 
In order to obtain the data required for analysis of the antipsychotic pharmacogenes, the following 

was performed: 

Commands performed in the Unix shell are indicated in grey font 

− Identification of paralogues and pseudogenes using Ensembl BioMart [332]: 

− Select the following database and dataset: Ensembl Genes 69 and Homo sapiens genes 

(GTCh37.p8) 

− Select the following filters: Gene> ID list limit > HGNC ID(s) 

− Paste in the names of the antipsychotic pharmacogenes    

− Select the following attributes: Homologs > Paralogues > Human Paralog Ensembl Gene 

ID and % Identity with respect to query gene.   

− Identification of related pseudogenes and their corresponding sequences using NCBI’s gene 

resource [333]: 

− Search for the relevant gene 

− Find the pseudogene information under General gene information > Related 

pseudogenes 

− Click on the pseudogene of interest 

− To obtain the sequence of the pseudogene click on FASTA under Genomic regions, 

transcripts, and products  

− Select and save the sequence 

− The gene sequences of interest were obtained in the same way. 

− Identification of the percentage sequence similarity between genes and related pseudogenes 

using mVISTA [334]: 

− Give the number of pseudogenes that need to be aligned to the gene of interest under 

Total number of sequences > Submit 

− Upload and submit the sequences of the pseudogene(s) and relevant gene of interest.  

− Calculation of GC content using Ensembl BioMart [332]: 

− Select the following database and dataset: Ensembl Genes 69 and Homo sapiens genes 

(GTCh37.p8) 

− Select the following filters: Gene> ID list limit > HGNC ID(s) 

− Insert the names of the antipsychotic pharmacogenes    

− Select the following attributes: Features > Gene > Ensembl Gene ID and % GC content.   
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− Determination of the gene co-ordinates for the genes of interest using Ensembl BioMart [332]: 

− Select the following database and dataset: Ensembl Genes 69 and Homo sapiens Genes 

(GTCh37.p8) 

− Select the following filters: Gene> ID list limit > HGNC ID(s) 

− Insert the names of the antipsychotic pharmacogenes    

− Select the following attributes: Features > Gene > Ensembl Gene ID and Gene Start (bp) 

and Gene End (bp).   

− Calculation of the percentage low complexity sequence present in the genes of interest using 

RepeatMasker [335]: 

− Under Sequence selection select  

− Genome/Assembly: Human – Feb 2009 hg19  

− Range: Gene co-ordinates  

− Result type: Masked genomic sequence  

− Masking format: n  

− Under Filtering select: 

− Repeat classes: All  

− Click Submit Query  

− Download the sequence 

− Determine the number of base pairs that were masked using the fgrep utility 

$ fgrep –o n gene_name | wc –l 

− Calculate the percentage low complexity sequence by dividing the number of masked 

base pairs by the total number of base pairs in the gene. 

− Calculation of the percentage “accessible genome”, as defined by the 1000 Genomes Project 

coverage data [281]: 

− Download the “strict mask” bed file [327] 

− Separate the masked sequence into different chromosomes (command for chromosome 

1 shown here) 

$ grep chr1 strict_masked_file.txt > chr1_strict_masked_file.txt 

− Determine the number of base pairs that were masked for each gene in Microsoft Excel 

(2007) 

− Calculate the percentage strict masked sequence by dividing the number of masked base 

pairs by the total number of base pairs in the gene. 
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Table S 2: The percentage sequence similarity, GC content, low complexity sequence and “inaccessible genome” associated with each of the pharmacogenes 

Antipsychotic Pharmacogenes 

Gene 
Associated Antipsychotic 

Pharmacogenetic Trait 
Reference Paralogue/Pseudogene  GC Content (%) 

Low Complexity 

Sequence (%) 
“Inaccessible Genome” (%) 

ABAT Movement disorder [16,171,176,183] 
 

47.35 57.35 36.26 

ACACA Weight gain [184] > 70% sequence similarity 41.27 43.88 29.66 

ADIPOQ Weight gain [178,180,181] 
 

43.88 41.43 24.48 

ADRA1A 
Treatment response, Movement 

disorder, Weight gain 
[16,171,176,178,181] 

 
41.26 40.72 13.48 

ADRA2A Movement disorder, Weight gain [16,121,127,171,176,178–181] 
 

59.81 4.63 48.11 

ADRB3 Weight gain [127,178,180,181] 
 

59.22 10.11 41.16 

AJAP1 Treatment response [73] 
 

52.75 28.54 15.50 

AKT1 Treatment response [16,176] > 70% sequence similarity 64.08 5.86 22.47 

ALDH9A1 Movement disorder [16,171,176,183] 
 

40.34 57.86 33.60 

ANKK1 
Treatment response, Movement 

disorder, Hyperprolactinemia 
[121,187,193,194] 

 
50.93 39.67 9.12 

ANKS1B Treatment response [16,73,100,176,177] 
 

37.84 55.86 21.26 

APOA4 Weight gain [181] 
 

57.68 15.71 0.00 

APOA5 Weight gain [16] 
 

60.22 0.00 1.31 

APOE Weight gain [16,176,181] 
 

61.22 27.18 48.97 

APOL3 Weight gain [16] 
 

47.22 43.98 23.18 

ATP2B2 Treatment response [73] > 70% sequence similarity 49.60 42.87 11.21 

BAG3 Treatment response [73] 
 

49.77 26.25 23.17 

BDNF 
Treatment response, Movement 

disorder, Weight gain 
[16,73,127,171,176,179–181,183,195,199] 

 
40.24 32.41 26.02 

CELF4 QT prolongation [188] 
 

52.35 20.06 10.30 

CERKL QT prolongation [16,176,188,415] 
 

37.01 44.16 12.13 
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CHAT Treatment response [16] 
 

47.82 45.34 14.53 

CHRNA7 Treatment response [100] > 70% sequence similarity 41.69 60.28 34.20 

CHST8 Treatment response [16,176,177,196] 
 

50.64 43.90 24.33 

CNR1 Treatment response, Weight gain  [16,127,176,180,181] 
 

39.10 17.78 9.04 

CNTF Treatment response [150,188] 
 

41.63 7.50 0.00 

CNTN4 Treatment response [187] 
 

37.97 40.71 17.25 

CNTNAP5 Treatment response [16,73,100,176,177] 
 

38.93 45.34 17.17 

CYBA Agranulocytosis [176] 
 

61.89 28.39 49.31 

CYP17A1 Movement disorder [176,185] 
 

52.48 19.27 16.35 

DECR1 Movement disorder, QT prolongation [16,121] 
 

38.15 52.45 29.17 

DISC1 Treatment response [73] 
 

42.18 46.87 22.55 

DRD1 Treatment response [176,193] 
 

47.95 2.01 6.42 

DRD3 Treatment response, Movement disorder 

[15,16,73,100,100,119–

121,148,171,176,177,179,183–187,189–

191,193,195]  
41.05 45.23 20.91 

DRD4 
Treatment response, Movement 

disorder, Weight gain 

[16,73,119,171,176,177,179–

181,183,185,190,191,193,195]  
67.02 21.56 65.10 

DTNBP1 Treatment response [73,100,176,198] 
 

39.93 55.11 21.15 

EHF Treatment response [16,100,176,177,196] 
 

43.81 19.44 7.45 

EN1 Treatment response [100] 
 

58.21 8.44 39.38 

EPHA6 Treatment response [73] 
 

35.41 47.94 18.48 

ESR1 Movement disorder [183,185] 
 

39.66 44.55 22.32 

FAAH Weight gain [180,181] > 70% sequence similarity 55.38 31.74 30.19 

GABRA3 Movement disorder [16,171,176,183] 
 

37.38 69.10 29.82 

GABRA4 Movement disorder [16,171,176,183] > 70% sequence similarity 35.28 29.95 5.99 

GABRB2 Movement disorder [16,171,176,183,185] > 70% sequence similarity 35.96 38.87 4.82 

GABRG3 Movement disorder [16,171,176,183,185] > 70% sequence similarity 40.79 49.83 14.87 
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GFRA2 Treatment response [15,73,100,150,176,177,188,415] 
 

52.15 37.04 42.36 

GHRL Weight gain [178] 
 

53.50 18.01 0.77 

GLI2 Movement disorder [183] 
 

52.42 29.05 10.91 

GNB3 Treatment response, Weight gain [16,100,119,127,148,171,176,178–181,195] > 70% sequence similarity 54.70 27.17 21.06 

GPHN Movement disorder [16,171,176,183] 
 

36.43 65.29 29.58 

GPR137B Treatment response [16,176,177,196] 
 

43.62 48.32 35.46 

GRIA4 Treatment response [15,73,100,150,177,188,415] 
 

35.32 35.14 13.33 

GRM3 Treatment response, Weight gain [16,176,189,198] 
 

36.97 36.34 9.35 

GRM7 Treatment response [198] 
 

37.80 43.53 13.71 

GRM8 Treatment response [100,196] > 70% sequence similarity 37.51 45.20 21.12 

GSK3B Movement disorder [183] > 70% sequence similarity 37.15 55.06 25.64 

GSTM1 Movement disorder [16,171,183–185] > 70% sequence similarity 46.35 55.35 96.88 

HLA-B Agranulocytosis [121,136] > 70% sequence similarity 59.00 0.00 97.01 

HLA-C Agranulocytosis [121,136] > 70% sequence similarity 59.28 0.00 99.26 

HLA-DQA1 Agranulocytosis [121,136] > 70% sequence similarity 39.77 44.87 77.50 

HLA-DQB1 Agranulocytosis [16,121,136,176,186,189] > 70% sequence similarity 47.03 13.30 95.00 

HLA-DQB3* Agranulocytosis [136] > 70% sequence similarity 48.72 0.00 72.15 

HLA-DRB1  Agranulocytosis [121,136] > 70% sequence similarity 40.74 33.79 99.84 

HLA-DRB5 Agranulocytosis [121,136] > 70% sequence similarity 42.84 36.39 100.00 

HOMER1 Treatment response [100] 
 

37.23 47.30 23.37 

HRH2 Treatment response [120,176,195] 
 

50.08 45.91 11.86 

HS3ST2 Treatment response [73]  
 

43.49 51.66 22.60 

HSPA1A Agranulocytosis [121,136] > 70% sequence similarity 59.76 0.00 97.37 

HSPG2 Movement disorder [183] 
 

56.09 38.41 26.10 

HTR1A Treatment response [16,73,100,148,171,176,179,189,195] 
 

58.78 5.39 3.11 
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HTR2A 
Treatment response, Movement 

disorder, Weight gain 

[15,16,73,88,100,119,120,120,121,127,148,150

,171,176,177,179–181,183–187,189–191,195]  
39.51 47.07 10.47 

HTR2C 
Treatment response, Movement 

disorder, Weight gain 

[15,16,73,88,119–121,127,171,176–181,183–

191,195]  
35.03 50.91 24.03 

HTR3A Treatment response [16] 
 

50.68 33.94 16.24 

HTR3E Treatment response [100] > 70% sequence similarity 47.50 52.20 48.48 

HTR4 Treatment response [100] 
 

38.87 56.24 18.87 

HTR6 Treatment response, Weight gain [16,73,119,127,176,177,179–181,195] 
 

52.93 46.62 25.33 

HTR7 Treatment response [73,100,150,177,188,189,415] > 70% sequence similarity 40.61 65.52 25.72 

IL1A Treatment response [16,148,176,177,196] 
 

39.97 32.70 11.50 

IL1RN Treatment response [195] 
 

46.04 43.53 14.03 

INSIG1 Weight gain [181] > 70% sequence similarity 44.41 14.61 16.36 

INSIG2 Weight gain [16,176,180,181] > 70% sequence similarity 37.96 16.00 13.21 

KCNH5 Treatment response [73] > 70% sequence similarity 36.85 51.55 19.58 

LEP Weight gain [16,121,127,171,176,178–181,184,186,189] 
 

49.04 32.51 15.55 

LEPR Weight gain [16,121,127,176,180,181,184] 
 

37.79 55.36 26.34 

MC2R Treatment response [176] 
 

42.77 50.27 27.66 

MC4R Weight gain [181] 
 

45.06 0.00 0.00 

MEIS2 Weight gain [16,176] > 70% sequence similarity 38.26 20.18 9.76 

MPO Agranulocytosis [121,136,176] > 70% sequence similarity 55.13 23.75 11.96 

MTNR1A Movement disorder [183] 
 

43.16 52.49 31.47 

NEFM Treatment response [176,179] > 70% sequence similarity 49.83 15.47 27.61 

NOS1AP QT prolongation [16,176] 
 

42.72 40.10 14.21 

NOS3 Movement disorder [171,176,183,185] 
 

57.60 26.29 26.91 

NPAS3 Treatment response [15,16,73,100,150,176,177,188,415] 
 

38.23 25.91 10.12 

NPY5R Weight gain [181] 
 

38.17 14.27 20.55 

NQO2 Agranulocytosis [121,176] 
 

46.72 51.82 37.82 

Stellenbosch University http://scholar.sun.ac.za



 

 
113 

 

APPENDIX 2          NGS ANALYSES OF PHARMACOGENES 
 

 

NR3C2 Treatment response [73] 
 

38.42 37.60 17.68 

NRG1 Treatment response [16,73,171,176,179] 
 

37.90 37.65 16.42 

NRG3 QT prolongation [188] 
 

37.51 43.36 14.04 

NUBPL QT prolongation [16,176,188] 
 

38.49 67.00 36.22 

NUDT9P1* Treatment response [15,73,100,150,177,188,415] 
 

38.84 0.00 0.00 

OPRM1 Movement disorder [183,185] 
 

38.81 47.55 20.81 

OXT Treatment response [176] > 70% sequence similarity 71.94 0.00 88.18 

PAICS Treatment response [73] 
 

39.79 44.69 31.87 

PALLD QT prolongation [188] 
 

39.87 34.15 17.04 

PAM Weight gain [178] 
 

35.92 33.00 12.11 

PDE7B Treatment response [73,100] 
 

38.31 38.57 17.50 

PIP5K1B Treatment response [73] 
 

40.19 43.01 14.93 

PKHD1 Weight gain [178] 
 

38.33 41.09 17.43 

PMCH Weight gain [16,178,181] > 70% sequence similarity 33.09 0.00 29.22 

PON1 Weight gain [181] 
 

39.93 57.64 21.92 

PPARG Weight gain [176,180,181] 
 

38.71 38.36 17.58 

PRKAA1 Weight gain [181] > 70% sequence similarity 37.74 49.88 24.88 

PRKCA Treatment response [100] > 70% sequence similarity 43.87 38.30 21.12 

PTGFRN Treatment response [73] 
 

44.19 44.98 18.50 

RGS2 Movement disorder [16,171,176,187] 
 

40.83 0.96 8.10 

RGS4 Treatment response [16,73,171,176,177,179] 
 

39.47 6.75 2.27 

RGS9 Movement disorder [176,183,185] 
 

47.68 43.29 23.15 

RLN3 Weight gain [176] 
 

50.95 53.52 34.52 

SCAP Weight gain [181] 
 

48.04 54.09 41.73 

SCARB1 Weight gain [181] > 70% sequence similarity 51.49 58.38 30.31 
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SCARB2 Weight gain [181] 
 

41.24 40.78 18.30 

SLC1A6 Treatment response [100] 
 

45.74 66.78 44.36 

SLC26A2 Treatment response [16,176,195] 
 

41.19 58.85 25.33 

SLC26A9 Treatment response [16,177,189,196] 
 

52.02 21.37 9.59 

SLC6A11 Movement disorder [16,171,176,183,185] 
 

47.00 42.39 8.12 

SLC6A2 Treatment response [100] 
 

48.47 38.06 12.53 

SLC6A3 Treatment response [16,73,100] 
 

54.61 23.85 23.45 

SLC6A4 
Treatment response, Movement 

disorder, Weight gain 

[16,73,100,119,120,127,171,176,178–

181,194,195]  
46.87 26.48 22.47 

SLCO3A1 QT prolongation [16,176,188] 
 

45.12 37.67 12.88 

SNAP25 Treatment response, Weight gain [16,73,127,171,176,178–181,195] 
 

40.89 31.15 8.85 

SOD2 Movement disorder [121,148,171,176,183,185,189] > 70% sequence similarity 42.37 45.75 39.31 

SREBF1 Weight gain [181] 
 

58.04 26.72 28.69 

ST6GAL2 Treatment response [73] 
 

41.34 33.77 12.29 

TGFB1 Weight gain [181,184] 
 

52.41 50.01 61.39 

TNF 
Treatment response, Weight gain, 

Agranulocytosis 
[16,121,127,136,171,176,178–180] 

 
52.82 8.63 0.00 

TNR Treatment response [15,73,100,150,177,188,415] 
 

43.87 33.72 9.22 

TRPM1 Treatment response [100,176] 
 

43.98 52.22 21.95 

UNC5C Treatment response [73] 
 

37.41 32.94 13.75 

XKR4 Treatment response [15,16,73,100,150,176,177,188,415] 
 

40.23 40.75 15.11 

ZBTB20 Treatment response [73] 
 

36.04 34.33 10.86 

ZNF804A Treatment response [100] 
 

34.04 48.90 14.72 

 

Gene 
Associated Antipsychotic 

Pharmacogenetic Trait  
Paralogue/Pseudogene GC Content (%) 

Low Complexity 

Sequence (%) 
“Inaccessible Genome” (%) 

ABCB1 Treatment response, Weight gain [16,120,127,171,176,177,179–182] > 70% sequence similarity 37.05 51.55 19.39 
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ADRB2 Weight gain [178] 
 

50.61 0.00 13.97 

COMT Treatment response, Movement disorder 

[16,73,100,119–

121,171,176,177,179,183,185,187,189,193,195

–198]  
53.41 50.18 39.19 

CYP1A2 Treatment response, Movement disorder [15,16,119,120,171,176,177,179,183–186] > 70% sequence similarity 52.03 32.79 24.48 

CYP2C19 Treatment response [88,179] > 70% sequence similarity 38.88 80.16 62.63 

CYP2D6 
Treatment response, Movement 

disorder, Weight gain, QT prolongation 

[16,88,119–121,127,171,176,177,179–

181,183–186,188–192] 
> 70% sequence similarity 62.68 0.00 100.00 

CYP3A4 Treatment response [120,176] > 70% sequence similarity 39.62 39.33 46.57 

CYP3A5 Treatment response [120] > 70% sequence similarity 40.47 48.48 31.64 

DRD2 

Treatment response, Movement 

disorder, Weight gain, 

Hyperprolactinemia, Neuroleptic 

malignant syndrome 

[16,73,88,100,119–121,127,148,171,176–

181,183–187,189–191,193–196]  
48.36 33.70 9.33 

GSTP1 Movement disorder [16,183] > 70% sequence similarity 63.05 2.84 25.74 

MTHFR Treatment response, Weight gain [16,176,177,179–181,195] 
 

54.53 27.37 22.32 

NQO1 Movement disorder, Agranulocytosis [16,136,171,176,183,185] 
 

47.09 54.04 47.77 

Other Very Important Pharmacogenes 

Gene 
Associated Antipsychotic 

Pharmacogenetic Trait 
Reference Paralogue/Pseudogene GC Content (%) 

Low Complexity 

Sequence (%) 
“Inaccessible Genome” (%) 

ACE NA NA > 70% sequence similarity 54.48 33.20 23.52 

ADH1A NA NA 
 

35.55 23.47 30.08 

ADH1B NA NA > 70% sequence similarity 35.81 24.52 35.49 

ADH1C NA NA 
 

35.59 29.86 36.09 

ADRB1 NA NA 
 

57.51 6.99 51.80 

AHR NA NA > 70% sequence similarity 34.56 25.26 9.64 

ALDH1A1 NA NA > 70% sequence similarity 36.05 41.13 13.25 

ALOX5 NA NA 
 

47.72 50.96 29.26 

BRCA1 NA NA > 70% sequence similarity 44.09 57.07 58.64 

CYP2A6 NA NA > 70% sequence similarity 53.42 20.61 98.57 
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CYP2B6 NA NA > 70% sequence similarity 44.63 60.12 73.13 

CYP2C9 NA NA > 70% sequence similarity 37.78 71.96 56.82 

CYP2E1 NA NA 
 

45.84 48.72 24.79 

CYP2J2 NA NA 
 

39.79 54.75 11.37 

DPYD NA NA 
 

35.09 39.65 13.67 

F5 NA NA 
 

38.10 41.82 12.60 

G6PD NA NA 
 

56.32 35.05 37.56 

GSTT1 NA NA > 70% sequence similarity 52.22 44.13 65.34 

HMGCR NA NA 
 

37.88 26.14 19.06 

KCNH2 NA NA 
 

59.57 19.36 19.09 

KCNJ11 NA NA 
 

63.78 12.90 37.70 

NR1I2 NA NA 
 

46.33 42.32 19.30 

P2RY1 NA NA 
 

50.23 0.00 14.30 

P2RY12 NA NA 
 

35.77 21.96 7.93 

PTGIS NA NA 
 

46.04 70.42 26.90 

PTGS2 NA NA 
 

34.87 8.88 4.06 

SCN5A NA NA 
 

50.93 30.97 10.19 

SLC19A1 NA NA 
 

59.34 24.42 41.20 

SLCO1B1 NA NA > 70% sequence similarity 35.22 70.87 26.17 

SULT1A1 NA NA > 70% sequence similarity 52.72 44.23 89.67 

TPMT NA NA > 70% sequence similarity 41.46 48.78 30.30 

TYMS NA NA > 70% sequence similarity 45.77 49.32 52.92 

UGT1A1 NA NA > 70% sequence similarity 42.47 40.53 17.39 

VDR NA NA 
 

47.72 37.33 18.38 

VKORC1 NA NA > 70% sequence similarity 55.01 41.11 53.17 

*This is a pseudogene; Those genes that are shaded in grey highlight the genes whose sequences are more than 50% inaccessible as determined by the 1000 Genomes Project strict masking. 
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Specified protocols 
 

Purification of DNA from whole blood using the QIAamp® DNA Blood Maxi kit (QIAGEN, Germany) 

1. Pipette 500 µl QIAGEN Protease into the bottom of a 50 ml centrifuge tube 

2. Add 5-10 ml of blood, mix briefly 

3. Bring volume to 10 ml with PBS 

4. Add 12 ml Buffer AL, invert 15 times, shake for at least 1 min 

5. Incubate at 70°C for 10 min 

6. Add 10 ml 100% ethanol, invert 10 times, shake 

7. Transfer half of the solution onto the QIAamp Maxi column, which is placed in a 50 ml centrifuge 

tube 

8. Centrifuge at 3 000 rpm for 3 min 

9. Remove the QIAamp Maxi column, discard the filtrate, place the QIAamp Maxi column back in 

the 50 ml centrifuge tube 

10. Load the remainder of the solution onto the QIAamp Maxi column 

11. Centrifuge at 3 000 rpm for 3 min 

12. Remove the QIAamp Maxi column, discard the filtrate, place the QIAamp Maxi column back in 

the 50 ml centrifuge tube 

13. Add 5 ml Buffer AW1 to the QIAamp Maxi column 

14. Centrifuge at 5 000 rpm for 1 min  

15. Add 5 ml Buffer AW2 to the QIAamp Maxi column 

16. Centrifuge at 5 000 rpm for 15 min 

17. Place the QIAamp Maxi column in a clean 50 ml centrifuge tube, discard the collection tube 

containing the filtrate 

18. Pipette 1 ml Buffer AE directly onto the membrane of the QIAamp Maxi column 

19. Incubate at room temperature for 5 min 

20. Centrifuge at 5 000 rpm for 2 min 

 

Miller et al. [354] gDNA Extraction Protocol 

1. Shake the tube with blood well to mix the contents and transfer the contents (±10 ml) to a 

marked 50 ml polypropylene tube 

2. Add ±30 ml cold Lysis Buffer and mix by inversion 

3. Place the tube on ice for 15-30 min and mix by inversion every 5 min 

4. Centrifuge the tubes for 10 min at 1 500 x g (4°C) 

5. Carefully discard the supernatant and keep the pellet. Pat slightly dry on paper 

6. Add 10 ml cold PBS to the pellet, mix and centrifuge again for 10 min at 1 500 x g (4°C) 

7. Carefully discard the supernatant and keep the pellet. Pat slightly dry on paper 

8. Dissolve pellet in: 3 ml Nuclear Lysis Buffer, 50 µl Proteinase K (10 mg/ml),300 µl 10% SDS 

9. Shake very well and incubate overnight in a water bath at 56°C 

10. Add 1 ml 6M NaCl to each tube and shake continuously for 1 min 

11. Centrifuge for 20 min at 2 500 x g at room temperature 

12. Transfer supernatant to a Falcon tube. Be careful not to transfer any of the pellet or foam. The 

supernatant must be clear 

13. Add 3 volumes ice cold (-20°C) 99.9% ethanol to the supernatant in the Falcon tube and mix very 

carefully 

14. A DNA bundle should form. Carefully hook the bundle out with a needle and place it in an 

Eppendorf tube that contains 1 ml 70% ethanol 

15. Centrifuge at 1 400 x g for 5 min at 4°C 
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16. Carefully discard the ethanol and allow the pellet to dry 

17. Dissolve the pellet in 100-200 µl TE, depending on the size of the pellet  

 

SureClean Quick-Clean Protocol (Bioline, UK) 

1. Add 1 x volume of Quick-Clean to nucleic acid solution, vortex thoroughly 

2. Incubate at room temperature for 10 min 

3. Centrifuge at maximum speed in a microfuge for 10 min, discard supernatant 

4. Add 100 μl of 70% Ethanol, vortex for 30 sec 

5. Centrifuge at maximum speed for 10 min, remove supernatant 

6. Air-dry to ensure complete removal of ethanol 

7. Resuspend pellet in 10 μl of water   

 

Big Dye v3.1 Sequencing Chemistry (Applied Biosystems
TM

, California, USA) 

1. Add 21 ng of purified PCR product 

2. Add 1.3 μl of Big Dye reaction mix 

3. Add 2.7 μl Half Dye mix 

4. Add 3.3 ρmol of primer 
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Reagents and solutions 
All solutions were brought to volume with distilled water. 

 

10% Sodium Dodecyl Sulphate (SDS) 

0.3468 M SDS (BDH Laboratory Supplies) 

 

10X TBE Electrophoresis Buffer (pH 8.3) (All reagents supplied by Sigma-Aldrich (Pty) Ltd.) 

0.0890 M Trizma® Base 

0.0890 M Boric acid  

0.0020 M Ethylenediaminetetraacetic acid  

 

15% Dimethyl sulfoxide (DMSO) 

15% DMSO (v/v) (Sigma-Aldrich (Pty) Ltd.) 

 

70% ethanol 

70% (v/v) ethanol (Sigma-Aldrich (Pty) Ltd.) 

 

Agarose gels  

1-3% (w/v) Agarose (SeaKem®) 

0.5 µg/ml Ethidium Bromide (Sigma-Aldrich (Pty) Ltd.)  

 

Cresol Loading Dye 

2% (v/v) cresol stock solution (Sigma-Aldrich (Pty) Ltd.)  

0.9933 M sucrose (Merck Chemicals (Pty) Ltd.) 

 

Phosphate Buffered Saline (PBS) (pH 7.4) (All reagents supplied by Merck Chemicals (Pty) Ltd.) 

0.0268 M KCl  

0.1369 M NaCl  

0.0080 M Na2HPO4  

0.0015 M KH2PO4  
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APPENDIX 4: Exome data generation 

Preparation of gDNA samples 
 

The gDNA was extracted from whole blood samples with the QIAamp DNA Blood Maxi Kit (QIAGEN, 

Germany) according to manufacturer’s instructions and eluted in 1 ml of AE Buffer. Thereafter the 

NanoDrop® ND-100 (Nanodrop Technologies Inc., Delaware, USA) was used to assess the quality, 

purity and concentration of each gDNA sample at 260 nm. Each sample was subsequently diluted 

with Qiagen Buffer EB (QIAGEN, Germany) to 50 ng/µl, of which 100 µl was aliquoted into an 

eppendorf tube and frozen at -20°C. All frozen gDNA samples were shipped on dry ice by DHL 

couriers. An export permit for biological substances was obtained from the South African 

Department of Health and this was included in the shipment along with a hazardous goods 

declaration form. 

Quality control of gDNA samples  
 

Once the gDNA samples were shipped to the HudsonAlpha Genomics Service Laboratory, they were 

run on a 0.8% agarose gel in 1X TBE at 100 V for 1 hr 45 min to assess the quality of the samples. 

Samples were given lab codes, LW0001-LW0011, and the resultant gel for the assessment of gDNA 

integrity is shown below in Figure S1. All samples were deemed intact. The Qubit® Fluorometer (Life 

Technologies, California, USA) was subsequently utilised to accurately determine the concentration 

of each sample and the total ng of gDNA available (Table S3)  

 

 

 

Figure S 1: The integrity of gDNA samples LW0001-LW0011 

 

 

 

 

 

 

 

 

HLI   LW0001   LW0002    LW0003   LW0004   LW0005   LW0006  LW0007  LW0008  LW0009  LW0010    LW0011   
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Table S 3: Quality assessments for the gDNA samples 

Sample ID 
Reported Conc 

(ng/µl)  

Initial QC Qubit 

(ng/µl) 

Calculated QC  

Qubit (ng/µl) 

Reported 

 volume (µl) 

Remaining 

volume (µl) 

Total 

(ng) 

LW0001 50 16.4 49.2 150 140 6888.0 

LW0002 50 16.3 48.9 150 140 6846.0 

LW0003 50 16.6 49.8 150 140 6972.0 

LW0004 50 16.5 49.5 150 140 6930.0 

LW0005 50 16.8 50.4 150 140 7056.0 

LW0006 50 14.4 43.2 150 140 6048.0 

LW0007 50 13.5 40.5 150 140 5670.0 

LW0008 50 19.9 59.7 150 140 8358.0 

LW0009 50 16.2 48.6 150 140 6804.0 

LW0010 50 16.7 50.1 150 140 7014.0 

LW0011 50 21.7 65.1 150 140 9114.0 

Conc: Concentration, QC: Quality control 

 

Quality control of sequence reads  
 

After the quality of the gDNA samples was verified, the samples were ready for processing. The 

samples underwent (i) sonification, end repair and subsequent quantification with a Quant-iT™ 

PicoGreen® dsDNA Assay Kit (Invitrogen™, California, USA); (ii) whole genome amplification and 

subsequent quantification, (iii) hybridisation with the Agilent SureSelect All Exon 50 Mb capture kit 

(Agilent Technologies, California, USA) and subsequent quantification with the Bioanalyzer (Agilent 

Technologies, California, USA) and (iv) 50 bp paired end sequencing on the HiSeq2000 (Illumina, 

California, USA). 

The generated sequence reads were then aligned to the human genome reference sequence (hg19), 

using BWA [325] and the reads were sorted and indexed using SAMtools [347] (refer to Figure S2 for 

a graphic representation of bioinformatic pipeline used). The quality of the generated sequence 

reads was assessed using an in house quality control program at HudsonAlpha Genomics Service 

Laboratory [346]. This program is similar to the free software package, FastQC [416]. Information 

was provided for observed (i) fragment sizes, (ii) qualities, (iii) qualities per cycle and (iv) bases per 

cycle, for each individual (Figure S3). A summary of the sequence coverage and alignment is 

provided in Tables S4 and S5.  
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Figure S 2: Alignment and sorting of generated reads 

Table S 4: Summary of sequence coverage obtained for the targeted exomes of the eleven FES 

samples 

Sample Median Read Depth 

1x 

Coverage 

(%) 

4x 

Coverage 

(%) 

8x 

Coverage 

(%) 

20x 

Coverage 

(%) 

30x 

Coverage 

(%) 

LW0001 72x 99.11% 97.41% 95.36% 89.53% 83.93% 

LW0002 67x 98.94% 97.14% 94.88% 88.42% 82.00% 

LW0003 82x 99.14% 97.81% 96.20% 91.53% 86.93% 

LW0004 63x 99.09% 97.23% 94.87% 87.80% 80.63% 

LW0005 81x 99.20% 97.69% 95.92% 90.96% 86.24% 

LW0006 66x 99.21% 97.49% 95.31% 88.68% 81.99% 

LW0007 82x 99.22% 97.78% 96.00% 90.79% 85.95% 

LW0008 76x 99.55% 98.36% 96.58% 90.94% 85.83% 

LW0009 67x 99.20% 97.64% 95.67% 89.55% 83.13% 

LW0010 61x 98.91% 96.91% 94.45% 87.13% 79.63% 

LW0011 63x 98.78% 96.85% 94.50% 87.70% 80.74% 
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Figure S 3: Example of A: Observed fragment 

per cycle; D: Observed quality scores per cycle

A 

C 

D 
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Observed fragment sizes; B: Observed quality scores; 

Observed quality scores per cycle.  

B 

EXOME DATA GENERATION 

 

 

Observed quality scores; C: Observed bases 
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Table S 5: Sequence reads generated and aligned to the hg19 reference sequence 

Sample # Fragments Total sequence (bp) 
Aligned pairs 

(proper) 

Aligned 

sequence (%) 
Track size (bp) 

Sequence in 

track (%)  

Sequence in track plus or 

minus 100bp (%) 

Sequence in track plus 

or minus 200bp (%) 

LW0001 113904678 11390467800 98.33% 99.00% 51646629 44.86% 61.60% 66.20% 

LW0002 101842349 10184234900 98.45% 99.06% 51646629 46.39% 63.76% 68.47% 

LW0003 125223080 12522308000 98.24% 98.99% 51646629 46.93% 65.22% 70.78% 

LW0004 100075179 10007517900 98.12% 98.86% 51646629 44.95% 62.76% 68.35% 

LW0005 118744308 11874430800 98.41% 99.05% 51646629 47.83% 66.64% 72.50% 

LW0006 102500028 10250002800 98.18% 98.95% 51646629 45.48% 63.52% 69.35% 

LW0007 119766615 11976661500 98.16% 98.96% 51646629 47.44% 66.50% 72.70% 

LW0008 146696944 14669694400 97.97% 98.76% 51646629 32.81% 45.84% 50.04% 

LW0009 104929467 10492946700 98.18% 98.88% 51646629 45.24% 62.92% 68.40% 

LW0010 96405718 9640571800 98.23% 98.92% 51646629 44.47% 61.71% 66.90% 

LW0011 106194950 10619495000 98.28% 98.97% 51646629 41.93% 58.22% 63.07% 
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APPENDIX 5: Variant calling and annotation of exome data 
The exome analyses were performed using a variety of different programs. These specific analyses 

are documented below. In each case, the sample LW0001 is used to describe the analyses 

performed, however, these analyses were performed identically for all eleven FES exome samples.  

 

Commands performed in the Unix shell are indicated in grey font 

Transfer of data  
− The data (bam and bai files) generated by HudsonAlpha Genomics Service Laboratory were 

downloaded using the internet file transfer program (i.e. ftp) onto a local laboratory computer. 

− All data was backed in duplicate on two external hard drives, which were kept at separate 

locations. 

− In addition, the data was transferred from the local laboratory computer to the “data” directory 

on the Rhasatsha High Performance Computer (HPC), at the Department of Engineering, 

Stellenbosch University, via the secure copy (scp) utility: 

$ scp 1379LW0001.bam 14337185@head002.sun.ac.za:data 

− To transfer data from the HPC onto the local laboratory computer the scp utility was also used: 

$ scp 14337185@head002.sun.ac.za:file_name . 

− Excluding the transfer of files to and from the HPC, all transferring of files to and from remote 

and local sites was performed using FileZilla [417]. 

− All software that was required for the downstream analyses was installed onto the HPC. 

Submission of jobs to the high performance computer 
− To submit jobs a submit file was made in vim: 

$ vim file_name 

− Each file contained the following header: 

#!/bin/sh 

#PBS –m abe 

#PBS –M 14337185@sun.ac.za 

Where abe instructs an e-mail to be sent when the job aborts, begins or exits. 

− For each submit file the commands required for the job were entered and the file was saved: 

$ ZZ 

− The job was submitted to the queue on the HPC:  

$ qsub file_name 

− The status of the submitted jobs was checked: 

$ qstat –r 

The Genome Analysis Toolkit (GATK): variant calling 
− To run the GATK [326] the required resources (Table S6) were obtained from: ftp://gsapubftp-

anonymous@ftp.broadinstitute.org (Password: <blank>), in the folder bundle/1.2/b37 (updated 

20/09/2011) and were downloaded into the folder /apps/GenomeAnalysisTK-1.1-31-

gdc8398e/resources/ 

 

Stellenbosch University http://scholar.sun.ac.za



APPENDIX 5                                                                            VARIANT CALLING AND ANNOTATION 
 

 
 
 126 

Table S 6: The GATK resources 

Resource Description 

human_g1k_v37.fasta and human_g1k_v37.fai Human reference sequence 

dbSNP_132.b37.vcf and dbSNP_132.b37.vcf.idx The dbSNP release version 132 

hapmap_3.3.b37.sites.vcf and hapmap_3.3.b37.sites.vcf.idx HapMap genotypes 

1000G_omni2.5.b37.sites.vcf and 1000G_omni2.5.b37.sites.vcf.idx 1000 Genomes genotypes 

 

− A graphical representation of the GATK read recalibration and variant calling processes are 

shown in Figure S4. Submit files for the GATK analyses were created and submitted on the HPC 

using the following scripts: 

 

# Picard: MarkDuplicates 

$ java -Xmx4g -jar /apps/picard-tools-1.50/MarkDuplicates.jar 

INPUT=/export/home/14337185/data/1379LW0001.bam 

OUTPUT=/export/home/14337185/LW0001_mkd.bam 

METRICS_FILE=/export/home/14337185/LW0001_metrics.txt ASSUME_SORTED=true 

CREATE_INDEX=true VALIDATION_STRINGENCY=LENIENT 

 

# The GATK: RealignerTargetCreater 

$ java -Xmx1g -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

        -T RealignerTargetCreator \ 

        -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -o LW0001.intervals \ 

        -I /export/home/14337185/LW0001_mkd.bam \ 

 

# The GATK: TargetRealigner 

$ java -Xmx4g -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

        -I /export/home/14337185/LW0001_mkd.bam \ 

        -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -T IndelRealigner \ 

        -targetIntervals LW0001.intervals \ 

        -o LW0001realignedBam.bam \ 

        -compress 0 \ 

 

# The GATK: CountCovariate 

$ java -Xmx4g -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

        -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -B:dbsnp,vcf /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/dbsnp_132.b37.vcf \ 

        -I /export/home/14337185/LW0001realignedBam.bam \ 

        -T CountCovariates \ 

        -cov ReadGroupCovariate \ 

        -cov QualityScoreCovariate \ 

        -cov CycleCovariate \ 

        -cov DinucCovariate \ 

        -recalFile LW0001.recal_data.csv \ 
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# The GATK: TableRecalibration 

$ java -Xmx4g -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

        -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -I /export/home/14337185/LW0001realignedBam.bam \ 

        -T TableRecalibration \ 

        -o LW0001.recal.bam \ 

        -recalFile /export/home/14337185/LW0001.recal_data.csv \ 

 

# The GATK: CountCovariate 

$ java -Xmx4g -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

        -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -B:dbsnp,vcf /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/dbsnp_132.b37.vcf \ 

        -I /export/home/14337185/LW0001.recal.bam \ 

        -T CountCovariates \ 

        -cov ReadGroupCovariate \ 

        -cov QualityScoreCovariate \ 

        -cov CycleCovariate \ 

        -cov DinucCovariate \ 

        -recalFile LW0001.recal2_data.csv \ 

 

# The GATK:Rscript 

$ java -Xmx4g -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/AnalyzeCovariates.jar \ 

        -recalFile /export/home/14337185/LW0001.recal_data.csv  \ 

        -Rscript /usr/bin/Rscript \ 

        -resources /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources \ 

        -outputDir /export/home/14337185 \ 

        -ignoreQ 5 \ 

 

# The GATK: UnifiedGenotyper 

$ java  -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

        -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -T UnifiedGenotyper \ 

        -I /export/home/14337185/LW0001.recal.bam \ 

        -I /export/home/14337185/LW0002.recal.bam \ 

        -I /export/home/14337185/LW0003.recal.bam \ 

        -I /export/home/14337185/LW0004.recal.bam \ 

        -I /export/home/14337185/LW0005.recal.bam \ 

        -I /export/home/14337185/LW0006.recal.bam \ 

        -I /export/home/14337185/LW0007.recal.bam \ 

        -I /export/home/14337185/LW0008.recal.bam \ 

        -I /export/home/14337185/LW0009.recal.bam \ 

        -I /export/home/14337185/LW0010.recal.bam \ 

        -I /export/home/14337185/LW0011.recal.bam \ 

        -B:dbsnp,vcf /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/dbsnp_132.b37.vcf \ 

        -o FES.raw.vcf \ 

        -stand_call_conf 30.0 \ 

        -stand_emit_conf 10.0 \ 

        -glm BOTH \ 
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# The GATK: VariantRecalibrator 

$ java -Xmx32g -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

        -T VariantRecalibrator \ 

        -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -B:input,VCF /export/home/14337185/FES.raw.vcf \ 

        -B:hapmap,VCF,known=false,training=true,truth=true,prior=15.0 /apps/GenomeAnalysisTK-

1.1-31-gdc8398e/resources/hapmap_3.3.b37.sites.vcf \ 

        -B:omni,VCF,known=false,training=true,truth=false,prior=12.0 /apps/GenomeAnalysisTK-1.1-

31-gdc8398e/resources/1000G_omni2.5.b37.sites.vcf \ 

        -B:dbsnp,VCF,known=true,training=false,truth=false,prior=8.0 /apps/GenomeAnalysisTK-1.1-

31-gdc8398e/resources/dbsnp_132.b37.vcf \ 

        -an QD -an HaplotypeScore -an MQRankSum -an ReadPosRankSum -an MQ \ 

        --maxGaussians 4 \ 

        --percentBadVariants 0.05 \ 

        -recalFile /export/home/14337185/FES.vcf.recal \ 

        -tranchesFile /export/home/14337185/FES.tranches \ 

        -rscriptFile /export/home/14337185/FES.plots.R \ 

 

# The GATK: ApplyRecalibration 

$ java -Xmx32g -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

        -T ApplyRecalibration \ 

        -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -B:input,VCF /export/home/14337185/FES.raw.vcf \ 

        --ts_filter_level 99.0 \ 

        -tranchesFile /export/home/14337185/FES.tranches \ 

        -recalFile /export/home/14337185/FES.vcf.recal \ 

        -o /export/home/14337185/FES.vcf \ 
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Figure S 4: Variant calling pipeline in the GATK. 

VARIANT CALLING AND ANNOTATION 
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APPENDIX 6: Comparison of the non-responder and 

responder exome data 
 

Commands performed in the Unix shell are indicated in grey font 
 

− The FES.vcf file was used to create variant call format (vcf) files (that record the variant 

information obtained from NGS data in a standardised format for downstream analyses) 

containing only the unrelated non-responders and the polymorphic variants in these individuals 

that passed all the GATK filters, using the GATK’s SelectVariants utility. This was repeated to 

create a vcf file with only the unrelated responders (responders_PASS.vcf): 

$ java -jar /apps/GenomeAnalysisTK-1.1-31-gdc8398e/GenomeAnalysisTK.jar \ 

       -R /apps/GenomeAnalysisTK-1.1-31-gdc8398e/resources/human_g1k_v37.fasta \ 

        -T SelectVariants \ 

       -B:variant,VCF /export/home/14337185/data/FES.vcf \ 

       -o /export/home/14337185/SelectVariants/non_reponders_PASS.vcf \ 

   -sn 1379LW0002 \  

     -sn 1379LW0006 \ 

  -sn 1379LW0009 \ 

  -sn 1379LW0010 \ 

  -sn 1379LW0011 \ 

 -env \ 

-ef 

− The files were then submitted to SeattleSeqAnnotation134 (hg19/GRCh37) for annotation [348]. 

− Input files: VCF SNVs and Indels (both) 

− All annotation options were selected and the files were Submitted 

− The annotated files were decompressed 

$ gunzip SeattleSeqAnnotation* 

− Variants occurring in coding regions or splice-sites were selected using pattern scanning with the 

awk utility: 

$ awk ‘$9 ~ /splice-3/’ non-responders.txt > non-responders_splice-3.txt 

$ awk ‘$9 ~ /splice-5/’ non-responders.txt > non-responders_splice-5.txt 

$ awk ‘$9 ~ /frameshift/’ non-responders.txt > non-responders_frameshift.txt 

$ awk ‘$9 ~ /stop-lost/’ non-responders.txt > non-responders_stop-lost.txt 

$ awk ‘$9 ~ /stop-gained/’ non-responders.txt > non-responders_stop-gained.txt 

$ awk ‘$9 ~ /missense/’ non-responders.txt > non-responders_missense.txt 

$ awk ‘$9 ~ /synonymous/’ non-responders.txt > non-responders_synonymous.txt 

− This was repeated for the responders. 

− These files were then combined to create single files containing all the coding variants present in 

the unrelated responders and non-responders:  

$ cat non-responders_* > non-responders_coding.txt 

$ cat responders_* > responders_coding.txt 
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− Files containing only novel variants were created with awk: 

$ awk ‘$11 ==  "0" { print }’ responders_coding.txt > responders_coding_novel.txt 

$ awk ‘$11 ==  "0" { print }’ non_responders_coding.txt > non_responders_coding_novel.txt 

− Files which contained only the chromosome number and position of the variants, without 

duplicates, were created for all classes of variation using the SeattleSeqAnnotation files using the 

cat, cut and sed utilities: 

$ cat responders_coding.txt | cut –f2,3 | sed '/^\G/d' | sed 's/\t/:/g’ > responders_chr_pos.txt 

− These files (for the non-responders and responders) were then uploaded onto BioVenn [418] and 

Venn diagrams were drawn. These files were created as embedded svg files. 

− To determine how many of the variants that were not shared between the responders and non-

responders were only present in one individual, files were created that only contained the 

variants that were present in one of the unrelated FES individuals: 

$ cat FES_PASS.vcf | cut –f1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20 > 

FES_PASS_unrelated.vcf 

$ python findSingleton.py > FES_PASS_unrelated_singletons.vcf 

Where findSingleton.py was a python script: 

 

# Import file data 

  

id_infilename = "/home/britt/Desktop/vcf_files_singletons/FES_PASS_unrelated.vcf" 

  

id_infile = open(id_infilename) 

id_lines = id_infile.readlines() 

  

for id_line in id_lines: 

    id_list = id_line.split() 

    count = 0 

    for item in id_list: 

        if item[0:3] == "0/1": 

            count += 1 

        elif item[0:3] == "1/1": 

            count += 1 

    if count == 1: 

            print id_line 
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− Thereafter all blank lines were removed using the Unix stream editor, sed: 

$ sed ‘/^$/d’ FES_PASS_unrelated_singletons.vcf > FES_PASS_unrelated_singletons_noblanks.vcf 

− And the header was added: 

$ cat header FES_PASS_unrelated_singletons_noblanks.vcf > 

FES_PASS_unrelated_singeltons_noblanks_header.vcf 

− Then two separate files were created from this file which contained only the unrelated non-

responders in the one file and only the unrelated responders in the other file: 

$ awk ‘{print $1,$2,$3,$4,$5,$6,$7,$8,$9,$11,$14,$17,$18,$19}’ 

FES_PASS_unrelated_singletons_noblanks_header.vcf > FES_PASS_unrelated_NR.vcf 

$ awk ‘{print $1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$12,$13,$15,$16}’ 

FES_PASS_unrelatedsingletons_noblanks_header.vcf > FES_PASS_unrelated_R.vcf 

− The findSingleton.py python script was run again for each of these files, the blanks were removed 

and the header was added as previously described. 

− These files were then submitted to SeattleseqAnnotation134 and files with only coding variants 

were created as described above. 

− The number of singleton coding variants in the non-responder and responder groups were then 

determined as reported in the SeattleSeqAnnotation134 files.
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APPENDIX 7: Selection of variants to genotype in the larger 

cohorts 
 

Commands performed in the Unix shell are indicated in grey font 

 

Variants were selected to be genotyped using the 384-plex GoldenGate Custom Genotyping on 

VeraCode (Illumina, California). Detailed descriptions for the prioritisation strategy are provided 

below. 

Variants previously associated with antipsychotic response 

Previous associations obtained from genome-wide association studies 
Using the HuGE Navigator (version 2.0), the GWAS integrator was used to search for GWAS 

associations relating to the search term “antipsychotics” [202]. This search identified 103 variants 

that were reported to be significantly associated (P <1.0 x 10-5) with antipsychotic response traits in 

previous GWAS. The top three-six variants for each reported study or associated trait were 

prioritised. These 28 variants from the seven reported traits shown below all passed the Illumina ADT 

analysis and were thus included in the final 384 variant assay. The studies and traits that were 

identified were as follows: 

− Response to iloperidone treatment (QT prolongation) [210] 

− Response to antipsychotic therapy (extrapyramidal side effects) [206]   

− Treatment response to antipsychotics [208]  

− Response to antipsychotic treatment [204]  

− Reasoning [207] 

− Working memory [207] 

− Response to antipsychotic therapy (extrapyramidal side effects) [212] 

Previous associations detected in candidate genes 
The Pubmed Database [82] was used to search for review articles from the last five years using the 

search term “antipsychotic pharmacogenetics”. The top 25 genes that were most frequently 

reported on in these articles were selected for further analyses (refer to Table 2.2 for details on these 

25 genes). Of the 25 genes, 8 are already being examined by other projects in our laboratory (COMT, 

CYP1A2, CYP2D6, DRD2, DRD3, DRD4, HTR2A, SOD2), thus these genes were excluded from all further 

analyses. 

 

The articles obtained from the PubMed Database search were subsequently data mined to identify 

variants that were reported to be associated with antipsychotic response and occurred within the 

remaining 17 genes. This analysis identified 41 variants, of which 7 were not suitable for genotyping 

with the BeadXpress Assay. Furthermore, the HLA alleles were excluded both due to their complexity 

and the fact that they have predominantly been associated with clozapine induced agranulocytosis, 

which was not the drug or trait of interest for this study. Thus 34 variants underwent analyses with 

Illumina’s ADT. Of these variants, three in ABCB1 were not supported by the BeadXpress platform 

due to the fact that they had more than two variants at that site; two in HTR6 and LEP failed due to 

the failure code 360 (SNP has low score) and two in SNAP25, one in GNB3 and one in HTR1A failed 
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due to the failure code 340 (another marker in the list is closer than 61 nucleotides away). The more 

frequently referred to SNAP25 variant was thus included and in the case of GNB3 and HTR1A the 

functional variants detected in the exome data (see below) were included rather than the previously 

reported variants. Thus, a total of 22 variants were included in the 384 variant assay. Due to 

limitations in the size of the assay that we were using, the failed variants were not tagged as the 

exome variation data was a priority for this study.   

Variants identified from the exome data 

Functional variants detected in candidate genes 
Using SeattleSeqAnnotation134 [348], the vcf files generated by the GATK [326] were annotated as 

described above. Thereafter the variation present in the 17 prioritised candidate genes described 

above was identified employing awk:   

$ awk ‘$21 ~ /gene_name/’ vcf_file_name.txt > gene_name.txt   

A file containing all the information for the variants present in these candidate genes was created: 

$ cat gene_name1.txt gene_name2.txt etc > candidate_genes.txt  

This variation was subsequently prioritised for genotyping by filtering out all variants that did not fall 

under the following SeattleSeqAnnotation134 functionGVS categories: 

− Frameshift 

− Stop-lost 

− Stop-gained 

− Splice-3 

− Splice-5 

− Missense 

For the missense variants to be included, the amino acid changes were required to be predicted 

to be damaging by either the SIFT [308] or PolyPhen-2 algorithms [356].  

 

These analyses revealed 41 variants. Of these, three variants (BDNF Val66Met: rs6265, LEPR 

Lys656Asn: rs8179183, MTHFR Ala222Val: rs1901133) had already been included in the assay due to 

their reported association with antipsychotic response in the literature. After submission to 

Illumina’s ADT, 27 of the 41 variants received failure codes 340 or 360. Of the 27 variants, 25 were in 

HLA-DQB1 (22 with the failure code 340 and 3 with the failure code 360). As 22 of the HLA-DQB1 

variants failed due to the failure code 340, it was possible to include six of these in the final assay by 

removing other variants that were closer than 61 nucleotides. Together these HLA-DQB1 variants 

were in perfect LD with seven of the HLA-DQB1 variants that failed. The remaining two variants that 

failed were in the HTT gene (failure code 360) and one of these variants was in perfect LD with 

another HTT variant that did not fail. Thus, none of the failed SNPs were tagged as the genes were 

adequately represented by the total of 17 variants that were included in the 384 variant assay. 
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Variant Annotation, Analysis and Search Tool
In order to detect the genes that were differentially affected by variants in the resp

responders, VAAST [355] was used. To perform these analyses different disease models were used 

(Figure S5) and only variants that

 

Figure S 5: The models of disease that were used in the VAAST analyses

no results. 
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Variant Annotation, Analysis and Search Tool (VAAST) gene-based analyses
In order to detect the genes that were differentially affected by variants in the resp

was used. To perform these analyses different disease models were used 

(Figure S5) and only variants that passed the GATK filters were considered. 

of disease that were used in the VAAST analyses. Those blocks in red revealed 

VARIANT PRIORITISATION 

based analyses 
In order to detect the genes that were differentially affected by variants in the responders and non-

was used. To perform these analyses different disease models were used 

 

. Those blocks in red revealed 
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To perform the analyses, the vaast_hsap_chrs_hg19.fa.gz, refGene_hg19gff3.gz files were 

downloaded. 

− Thereafter the genome variation format (gvf) files (variant files that use sequence ontology to 

describe the data) were created:  

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/vaast_tools/vaast_converter -b hg19 –p 

/home/britt/Desktop/VAAST/gvf 

/home/britt/Desktop/GATK_output/nonfilteredvcf/FES_PASS.vcf 

− The decoy sequences (chrGL*), which have been designed by the Broad institute to remove 

sequences that do not map well, were removed and chrMT was replaced with chrM:  

$ sed ‘/^chrGL/d’ 1379LW0001.gvf > LW0001_nodecoy.gvf  

$ sed ‘s/chrMT/chrM/g’ LW0001_nodecoy.gvf > LW0001.gvf 

− The generic feature format version 3 (gff3) (similar to the gvf files, but with additional features) 

and gvf files were sorted:  

$ /apps/VAAST_Code_1.0.3/bin/vaast_tools/vaast_sort_gff 

/export/home/14337185/VAAST_data_files/refGene_hg19.nochrM.gff3 

/export/home/14337185/gvf/LW0001.gvf /export/home/14337185/gvf/LW0002.gvf 

/export/home/14337185/gvf/LW0003.gvf /export/home/14337185/gvf/LW0004.gvf 

/export/home/14337185/gvf/LW0005.gvf /export/home/14337185/gvf/LW0006.gvf 

/export/home/14337185/gvf/LW0007.gvf /export/home/14337185/gvf/LW0008.gvf 

/export/home/14337185/gvf/LW0009.gvf /export/home/14337185/gvf/LW0010.gvf 

/export/home/14337185/gvf/LW0011.gvf  

− The fasta, gff3 and gvf files were indexed: 

$ /apps/VAAST_Code_1.0.3/bin/vaast_tools/vaast_indexer 

/export/home/14337185/VAAST_data_files/vaast_hsap_chrs_hg19.fa 

/export/home/14337185/VAAST_data_files/refGene_hg19.nochrM.sorted.gff3 

/export/home/14337185/gvf/LW0001.sorted.gvf 

/export/home/14337185/gvf/LW0002.sorted.gvf 

/export/home/14337185/gvf/LW0003.sorted.gvf 

/export/home/14337185/gvf/LW0004.sorted.gvf 

/export/home/14337185/gvf/LW0005.sorted.gvf 

/export/home/14337185/gvf/LW0006.sorted.gvf 

/export/home/14337185/gvf/LW0007.sorted.gvf 

/export/home/14337185/gvf/LW0008.sorted.gvf 

/export/home/14337185/gvf/LW0009.sorted.gvf 

/export/home/14337185/gvf/LW0010.sorted.gvf 

/export/home/14337185/gvf/LW0011.sorted.gvf  

− The gvf files were annotated using the variant annotation tool (VAT). Additionally, the default 

chunk size were changed to 263000000 (the size of the biggest chromosome): 

$ /apps/VAAST_Code_1.0.3/bin/VAT -f 

/export/home/14337185/VAAST_data_files/refGene_hg19.gff3 -a 

/export/home/14337185/VAAST_data_files/vaast_hsap_chrs_hg19.fa –c 263000000 –g female –

b hg19 /export/home/14337185/gvf/LW0001.sorted.gvf > 

/export/home/14337185/gvf/LW0001.vat.gvf 
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− This was repeated for all samples by changing the sample names and the gender, where: 

LW0001, LW0002, LW0003, LW0005, LW0011 are female and LW0004, LW0006, LW0007, 

LW0008, LW0009, LW0010 are male. These *.vat.gvf files were then all indexed as described 

previously. 

− The following condenser (cdr) files (which contain the merged information from the gvf files) 

were created: 

responders.cdr 

$ /apps/VAAST_Code_1.0.3/bin/VST -o 'U(0, 2, 3, 6, 7)' -b hg19 

/export/home/14337185/gvf/LW0001.vat.gvf /export/home/14337185/gvf/LW0002.vat.gvf 

/export/home/14337185/gvf/LW0003.vat.gvf /export/home/14337185/gvf/LW0004.vat.gvf 

/export/home/14337185/gvf/LW0005.vat.gvf /export/home/14337185/gvf/LW0006.vat.gvf 

/export/home/14337185/gvf/LW0007.vat.gvf /export/home/14337185/gvf/LW0008.vat.gvf 

/export/home/14337185/gvf/LW0009.vat.gvf /export/home/14337185/gvf/LW0010.vat.gvf 

/export/home/14337185/gvf/LW0011.vat.gvf > /export/home/14337185/cdr/responders.cdr 

non_responders_with_I.cdr 

$ /apps/VAAST_Code_1.0.3/bin/VST -o 'U(I(4, 5),U(1, 8, 9, 10))' -b hg19 

/export/home/14337185/gvf/LW0001.vat.gvf /export/home/14337185/gvf/LW0002.vat.gvf 

/export/home/14337185/gvf/LW0003.vat.gvf /export/home/14337185/gvf/LW0004.vat.gvf 

/export/home/14337185/gvf/LW0005.vat.gvf /export/home/14337185/gvf/LW0006.vat.gvf 

/export/home/14337185/gvf/LW0007.vat.gvf /export/home/14337185/gvf/LW0008.vat.gvf 

/export/home/14337185/gvf/LW0009.vat.gvf /export/home/14337185/gvf/LW0010.vat.gvf 

/export/home/14337185/gvf/LW0011.vat.gvf > 

/export/home/14337185/cdr/non_responders_with_I.cdr 

− The following analyses were performed using the variant annotation, analysis and search tool 

(VAAST) as shown in Figure S5: 

Complete penetrance, dominant inheritance and locus heterogeneity: 

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/VAAST –gp 4260 –m lrt –ref –k –pnt c –iht d –o 

/home/britt/Desktop/VAAST/analysis_c_d_y 

/home/britt/Desktop/VAAST/VAAST_data_files/refGene_hg19.gff3 

/home/britt/Desktop/VAAST/cdr/responders.cdr 

/home/britt/Desktop/VAAST/cdr/non_responders_with_I.cdr  

Complete penetrance, dominant inheritance and no locus heterogeneity: 

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/VAAST –gp 4260 –m lrt –ref –k –pnt c –iht d –lh n 

–o /home/britt/Desktop/VAAST/analysis_c_d_n 

/home/britt/Desktop/VAAST/VAAST_data_files/refGene_hg19.gff3 

/home/britt/Desktop/VAAST/cdr/responders.cdr 

/home/britt/Desktop/VAAST/cdr/non_responders_with_I.cdr  

Complete penetrance, recessive inheritance and locus heterogeneity: 

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/VAAST –gp 4260 –m lrt –ref –k –pnt c –iht r –o 

/home/britt/Desktop/res_nonres_I/analysis_c_r_y 

/home/britt/Desktop/VAAST/VAAST_data_files/refGene_hg19.gff3 

/home/britt/Desktop/VAAST/cdr/responders.cdr 

/home/britt/Desktop/VAAST/cdr/non_responders_with_I.cdr 
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Complete penetrance, recessive inheritance and no locus heterogeneity: 

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/VAAST –gp 4260 –m lrt –ref –k –pnt c –iht r –lh n 

–o /home/britt/Desktop/res_nonres_I/analysis_c_r_n 

/home/britt/Desktop/VAAST/VAAST_data_files/refGene_hg19.gff3 

/home/britt/Desktop/VAAST/cdr/responders.cdr 

/home/britt/Desktop/VAAST/cdr/non_responders_with_I.cdr 

Incomplete penetrance, dominant inheritance and locus heterogeneity: 

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/VAAST –gp 4260 –m lrt –ref –k –iht d –o 

/home/britt/Desktop/res_nonres_I/analysis_i_d_y 

/home/britt/Desktop/VAAST/VAAST_data_files/refGene_hg19.gff3 

/home/britt/Desktop/VAAST/cdr/responders.cdr 

/home/britt/Desktop/VAAST/cdr/non_responders_with_I.cdr  

Incomplete penetrance, dominant inheritance and no locus heterogeneity: 

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/VAAST –gp 4260 –m lrt –ref –k –iht d –lh n –o 

/home/britt/Desktop/res_nonres_I/analysis_i_d_n 

/home/britt/Desktop/VAAST/VAAST_data_files/refGene_hg19.gff3 

/home/britt/Desktop/VAAST/cdr/responders.cdr 

/home/britt/Desktop/VAAST/cdr/non_responders_with_I.cdr  

Incomplete penetrance, recessive inheritance and locus heterogeneity: 

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/VAAST –gp 4260 –m lrt –ref –k –iht r –o 

/home/britt/Desktop/res_nonres_I/analysis_i_r_y 

/home/britt/Desktop/VAAST/VAAST_data_files/refGene_hg19.gff3 

/home/britt/Desktop/VAAST/cdr/responders.cdr 

/home/britt/Desktop/VAAST/cdr/non_responders_with_I.cdr  

Incomplete penetrance, recessive inheritance and no locus heterogeneity: 

$ /home/britt/Desktop/VAAST_Code_1.0.3/bin/VAAST –gp 4260 –m lrt –ref –k –iht r –lh n –o 

/home/britt/Desktop/res_nonres_I/analysis_i_r_n 

/home/britt/Desktop/VAAST/VAAST_data_files/refGene_hg19.gff3 

/home/britt/Desktop/VAAST/cdr/responders.cdr 

/home/britt/Desktop/VAAST/cdr/non_responders_with_I.cdr  
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No results were obtained when “no locus heterogeneity” was included. Thus, only the remaining four 

disease models could be used for variant selection. From each of these analyses the top 20 genes 

were identified and the variation present in these genes was prioritised utilising the following 

criteria: 

− All variants with a VAAST likelihood ratio greater than 0 

− The SeattleSeqAnnotation134 annotation was used, as described above, to identify additional 

functional variation present in these genes. These variants were identified by filtering out all 

variants that do not fall under the following SeattleSeqAnnotation134 functionGVS categories: 

− Frameshift 

− Stop-lost 

− Stop-gained 

− Splice-3 

− Splice-5 

− Missense 

For the missense variants to be included, the amino acid changes were required to be 

predicted to be damaging by both the SIFT [308] or PolyPhen-2 [356] algorithms. 

− As an additional filter, all variants that were monomorphic, had low coverage and occurred on 

the X chromosome as heterozygotes in males were excluded. 

 

These analyses identified 162 variants in 55 genes. After Illumina’s ADT analysis, it was found that 

twelve variants failed due to the failure code 360. Of these variants, six (in the genes GLIS1, ZC3H3, 

ANKRD53, CHFR and ZNF470) were tagged by other variants (refer to the paragraph below for details 

on how tagging SNPs were identified). For the remaining six variants (in the genes N4BP3, NOV, 

SIPA1L2, ADO and KRT5), no tagging variants were identified. An additional 22 variants failed due to 

the failure code 340. To determine which variant from each of these 11 pairs of variants would be 

included, the following strategy was used: (i) determine which of the variants in the pair is better 

tagged by another variant and then include the other variant in the assay; (ii) choose the variant 

which is validated by VAAST in the assay; (iii) choose the variant which is predicted by SIFT and 

PolyPhen to be more damaging. From the 11 variants that remained, only 1 (in GPRIN2) was not 

tagged by any other variants. This left 139 variants that could be included in the assay. The remaining 

variants were tagged by 19 SNPs. Thus a total of 158 variants were included in the assay to represent 

the VAAST gene analysis. The variants that were not able to be genotyped or tagged by other 

variants were genotyped with the use of PCR-RFLP/TaqMan analyses in the South African FES cohort.     

To account for the variants that were not able to be genotyped, haplotype data from the exome 

sequence individuals and the 1000 Genomes Project were used. Haplotype data for the three African 

populations (ASW, LWK, YRI) available on the 1000 Genomes Project browser [349] were loaded onto 

Haploview v4.0 [419] and the default settings were used to identify variants that were in LD with the 

variants that failed the ADT (r2>0.8, LOD>3). Tagging variants were chosen as follows: (i) if a variant 

was shown to be in perfect LD in the eleven exome sequence individuals, but this pattern of LD is not 

confirmed by the 1000 Genomes Project data, the confidence of this tagging is not high. Therefore, 

all variants showing this pattern should be genotyped; (ii) if a variant is in LD with the variant of 

interest in all three 1000 Genomes Project populations, this variant is considered a good tagging SNP 

and thus only this variant is included; (iii) if a variant is in perfect LD in the eleven exome sequence 

individuals and this pattern is observed in at least one 1000 Genomes Project population, this variant 
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is considered a good tagging SNP and thus only this variant is included; and (iv) if a variant is not 

present in the exome data and LD is observed in less than three 1000 Genomes Project populations, 

where possible, at least two variants are required to tag the SNP.  

Variant Annotation, Analysis and Search Tool (VAAST) variant-based analyses 
To determine which variants occurred in three or more non-responders and none of the responders 

and vice versa, the following analyses were performed in VAAST [355], considering only variants that 

passed the GATK filters: 

 

$ /apps/VAAST_Code_1.0.3/bin/VST -o 'C(S(">3",1,4,5,8,9,10),S(">0",0,2,3,6,7))' -b hg19 

/export/home/14337185/gvf/LW0001.vat.gvf /export/home/14337185/gvf/LW0002.vat.gvf 

/export/home/14337185/gvf/LW0003.vat.gvf /export/home/14337185/gvf/LW0004.vat.gvf 

/export/home/14337185/gvf/LW0005.vat.gvf /export/home/14337185/gvf/LW0006.vat.gvf 

/export/home/14337185/gvf/LW0007.vat.gvf /export/home/14337185/gvf/LW0008.vat.gvf 

/export/home/14337185/gvf/LW0009.vat.gvf /export/home/14337185/gvf/LW0010.vat.gvf 

/export/home/14337185/gvf/LW0011.vat.gvf > 

/export/home/14337185/cdr/nonresponders_shared.cdr 

 

$ /apps/VAAST_Code_1.0.3/bin/VST -o 'C(S(">3",0,2,3,6,7),S(">0",1,4,5,8,9,10))' -b hg19 

/export/home/14337185/gvf/LW0001.vat.gvf /export/home/14337185/gvf/LW0002.vat.gvf 

/export/home/14337185/gvf/LW0003.vat.gvf /export/home/14337185/gvf/LW0004.vat.gvf 

/export/home/14337185/gvf/LW0005.vat.gvf /export/home/14337185/gvf/LW0006.vat.gvf 

/export/home/14337185/gvf/LW0007.vat.gvf /export/home/14337185/gvf/LW0008.vat.gvf 

/export/home/14337185/gvf/LW0009.vat.gvf /export/home/14337185/gvf/LW0010.vat.gvf 

/export/home/14337185/gvf/LW0011.vat.gvf > /export/home/14337185/cdr/responders_shared.cdr 

 

− These two files were then combined using the following command: 

$ cat nonresponders_shared.cdr responders_shared.cdr > shared.cdr  

− One was subtracted from all chromosome positions for nucleotide deletions (to ensure that the 

cdr and vcf positions for the indels correlate, as vcf deletions are padded).   

− Thereafter the analyses described below were performed to create a vcf file containing the 

variants that were present in the cdr file to allow for submission SeattleSeqAnnotation 134. 

For the cdr file: 

− A file with only columns 1 and 2 (chromosome and position), no tabs and no ‘chr’ was created: 

− $ cat shared.cdr | cut -f1,2 | sed 's/\t/,/g' | sed 's/chr//' > FEScdrcommanochr.txt  

− A file with the remaining columns (3-8) was created: 

$ cat shared.cdr | cut -f3,4,5,6,7,8 shared.cdr > FEScdr3_8.cdr  

− These two files were combined:  

$ paste -d' ' FEScdrcommanochr.txt FEScdr3_8.cdr > FEScdrall.txt  

For the vcf file: 

− A file with only columns 1 and 2 (chromosome and position) and no tabs was created:  

$ cat FES_PASS.vcf | cut -f1,2 | sed 's/\t/,/g' > FESvcfcomma.txt  

− A file with the remaining columns (3-20) was created:  

$ cat FES_pass.vcf | cut -f3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 FES_pass.vcf > 

FESvcf3_20.txt  
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− These two files were combined:  

$ paste -d' ' FESvcfcomma.txt FESvcf3-20.txt > FESvcfall.txt  

− All the lines that were shared between the cdr and vcf files were printed:  

$ awk 'FNR==NR{ a[$1]=$0;next } ($1 in a)' FEScdrall.txt FESvcfall.txt > combined.txt  

− The number of lines in each of the files were counted:  

− $ wc –l shared.cdr 

$ wc –l combined.txt 

− The number of header lines was subtracted:  

$ grep –c “^#” shared.cdr 

$ grep –c “^#” combined.txt 

− There were two extra lines in the FESvcfall.txt file that correlated to two chromosome positions 

that had both an indel and a SNV at this position. After determining which of these variants the 

variant of interest was, the extra variant was deleted. 

− To ensure that the combined .txt file was in the same format as a vcf file, the data was pasted 

into excel and the data was moved to columns using the “text to columns” function in Microsoft 

Excel (2007). 

− Thereafter the vcf header was added to the combined.txt file 

$ cat header.txt combined.txt > Seattleseqfreq.vcf 

 

The Seattleseqfreq.vcf file was then submitted to SeattleSeqAnnotation134 [348]and the variants 

were filtered based on the following criteria: 

− Variants that had genotype information for at least 10 of the individuals.  

− Variants occurring within miRNAs 

− Variants falling under the following SeattleSeqAnnotation134 functionGVS or functionGVS 

categories: 

− Frameshift 

− Stop-lost 

− Stop-gained 

− Splice-3 

− Splice-5 

− Missense 

For the missense variants to be included, the amino acid changes were required to be 

predicted to be damaging by either the SIFT or PolyPhen algorithms  

 

These analyses detected 56 variants and 49 of these variants passed the Illumina ADT criteria. Four of 

the variants that failed the ADT analyses (in UPP2 and SLC39A4) failed due to the failure code 340. 

Due to the fact that all of these variants were considered important, in each case one variants was 

included in the BeadXpress Assay and the other variant was manually genotyped with the use of PCR-

RFLP (SLC39A4) or a custom TaqMan assay (UPP2). A further three variants failed (in PLEKHG3, TCF25 

and NDOR1) due to the failure code 360, however five tag SNPs for all of these variants were 

identified, as previously described. Thus a total of 56 variants were included in the 384 variant assay.  
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APPENDIX 8: Genotyping protocols for prioritised variants 
 

Polymerase chain reaction amplification  
Variants that were not included in the Illumina BeadXpress Assay were genotyped by means of PCR-

RFLP genotyping. Primers for the amplification of the regions containing the variants of interest were 

designed with the use of the PrimerQuest [420], OligoAnalyzer 3.0 [421] and PrimerBLAST [422] 

computational tools. All reference sequences were obtained from Ensembl [395] (refer to Table S7 

for primer sequences). All PCR amplification reactions were prepared to a final volume of 25 µl, 

containing 20 ng of gDNA (or a 1/100 dilution of PCR product for nested PCR reactions), a final 

concentration of 1X buffer, 1.5 mM MgCl₂, 0.4 mM dNTPs, 0.4 µM of both the forward and reverse 

primer and 0.5 U BIOTAQ™ Polymerase (Bioline, UK ). In addition, the PCR for the amplification of the 

ADO region utilised a final concentration of 1 M Betaine (Sigma-Aldrich (Pty) Ltd, Aston Manor, South 

Africa); while the PCR reactions for N4BP3 and NOV utilised 5% Dimethyl sulfoxide (DMSO) (Sigma-

Aldrich (Pty) Ltd, Aston Manor, South Africa). All amplification cycles reactions consisted of an initial 

denaturation of 94°C for 3 min; followed by 40 cycles (or 25 cycles for nested PCR reactions) of 

denaturation at 94°C for 15 sec, annealing for 15 sec at the temperatures given in Table S7, and 

extension at 72°C for 30 seconds; after which the cycles were concluded with a final extension step 

at 72°C for 5 min. The resulting amplicons were subsequently examined by loading 5 μl of PCR 

product and cresol loading buffer each into 1% (w/v) ethidium bromide-stained agarose gels, which 

then underwent gel electrophoresis in 1X TBE gel electrophoresis buffer, at 120 V. The products were 

subsequently analysed under UV light at A260 nm and HyperLadder IV (Bioline, UK) was used as a 

molecular weight marker.   

Sanger sequence verification 
The presence of the variants that were to be genotyped by means of PCR-RFLP was verified with the 

use of Sanger sequencing of selected individuals testing positive for the variants of interest. After 

amplification, SureClean (Bioline, UK) was used to purify the resulting PCR products, according to the 

specified manufacturer’s protocol. Thereafter, the NanoDrop® ND-100 (Nanodrop Technologies Inc., 

Delaware, USA) was used to determine the concentration of the purified product by measuring the 

absorbance at 260 nm and the appropriate dilutions for the sequencing reaction were prepared. 

Sequencing reactions utilised Big Dye v3.1 sequencing chemistry with the addition of Half Dye Mix 

(Bioline, UK) according to the manufacturer’s recommendations. The sequencing cycle reactions 

were performed as follows: initial denaturation of 94°C for 5 min, followed by 25 cycles of 

denaturation at 94°C for 10 min, annealing at 55°C for 10 min and extension at 60°C for 4 min. After 

the sequencing reaction was complete, a purification cycle of 98°C for 5 min and 25°C for 10 min was 

performed by means of the addition of 0.2% (w/v) SDS. Subsequent capillary electrophoresis was 

performed by the Central Analytical Facility of Stellenbosch University on a 3130Xl Genetic Analyzer, 

according to the manufacturer’s protocol (Applied BiosystemsTM, California, USA). The resulting 

sequence data was aligned to the reference sequence of interest using BioEdit v7.0.9.0 [423] in order 

to verify the presence of the variant of interest. 
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Table S 7: Primer sequences for amplification of regions containing the variants that were not 

genotyped by the Illumina BeadXpress Assay 

Gene Region Primer Name Primer Sequence (5’-3’) Tm (°C) Product Size (bp) 

ADO Exon 1 
ADOF CGC GTG GCT GCT GAG GTT GGC GG 

68 305 
ADOmR AAG CCC GGC TGC ATC GGC GCC cCC 

GRPIN2 Exon 1 
GRPIN2F

1
 CCT GGC TCC TGA GGA TGA GAC TTC 

60 443 
GPRIN2R

1
 CCA AGT CAT TGG CTG AGG TCA TGG TCC 

GRPIN2 Exon 1 GRPIN2F 

GPRIN2mR 

CCT GGC TCC TGA GGA TGA GAC TTC 
55 229 

AGG TAG GGC ATG GCA GCA GCC tgC A 

KRT5 Exon 2 
KRT5mF GCA GGA GCA GGG CAC CAc GAC T 

68 283 
KRT5R GTC CAT GGA AGG TAT ATC CTC CCA GCC CC 

N4BP3 Exon 2 
N4BP3F TGT GAG AGC ATC AGG AGG TAG AGC A 

58 638 
N4BP3R TGA GGC ACA GAA CAG GAC TCC A 

NOV Exon 2 
NOVF

2
 CGA GCA GTG CCA ATC TAC AGC G 

68 548 
NOVR

2
 CTT AGC TGC AGG AGA AGA GGT CAA AC 

NOV Exon 2 
NOVmF

3
 AGC GCT GCC CTC CCC AGT GCC CGG aCC 

68 259 
NOVR

3
 CTT AGC TGC AGG AGA AGA GGT CAA AC 

SIPA1L2 Exon 14 
SIPA1L2F CAG CAG CAA CAC GCT CTC CAG CAA CAC C 

58 320 
SIPA1L2mR TTC CGC AGC ACT GCC GGC caA GAT G 

SLC39A4 Exon 6 
SLC39A4F ACT ACA TCC TGC AGA CCT TCC TGA G 

65 350 
SLC39A4R AGG TTC TCA AAC AGG AAG AAG GCG 

F: Forward primer; R: Reverse primer; m: Mutagenic primer; Lowercase bold letters: Mutagenic bases; 1: External primers used for 

Sanger sequencing; 2:External primers for nested PCR; 3: Internal primers for nested PCR 

 

Restriction fragment length polymorphism analyses 
All variants whose presence was verified by Sanger sequencing confirmation underwent RFLP 

genotyping analyses, with the exception of rs3812082 in N4BP3 which was genotyped using Sanger 

sequencing as described above. The relevant restriction enzymes were identified with the use of 

RestrictionMapper [424] and in cases where no suitable restriction enzyme were available, 

mutagenic primers were designed to introduce appropriate restriction enzyme recognition sites. To 

ensure that the restriction enzyme digestions were reliable, positive controls from the exome 

sequence data were utilised. After amplification reactions were complete, all restriction enzyme 

digest reactions were prepared to a final volume of 20 µl and the reaction mix was prepared 

according to the manufacturers protocol utilising 10 µl of PCR product (refer to Table S8 for RFLP 

specifications). The fragments from the resulting digests were then examined by loading 10 μl of 

restriction enzyme digest and cresol loading buffer each into 3% (w/v) ethidium bromide-stained 

agarose gels, which then underwent gel electrophoresis in 1X TBE gel electrophoresis buffer, at 80 V. 

The products were subsequently analysed under UV light at A260 nm and HyperLadder V (Bioline, 

UK) was used as a molecular weight marker.  
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TaqMan® SNP genotyping  
Genotyping of rs11368509 in UPP2 was performed by means of a custom TaqMan SNP genotyping 

assay (Applied BiosystemsTM, California, USA). The genotyping was performed using a reaction mix 

containing 1x TaqMan Genotyping Master Mix, 1x custom TaqMan SNP assay and 15 ng of gDNA, 

prepared to a final volume of 10 µl. The amplification was performed in a StepOnePlus™ Real-Time 

PCR System (Applied BiosystemsTM, California, USA) utilising a reaction cycle which consisted of an 

initial denaturation of 95°C for 10 min; followed by 40 cycles of denaturation at 95°C for 15 sec and 

annealing and extension at 60°C for 1 min. After amplification, allelic discrimination was performed 

using the Sequence Detection System Software (Applied BiosystemsTM, California, USA) as described 

in the manufacturer’s protocol. 

Illumina BeadXpress Assay genotyping  
All samples were obtained from whole blood and gDNA was previously extracted using the Miller et 

al. [354] protocol. The concentrations of the gDNA samples were determined with the use of a 

NanoDrop® ND-100 (Nanodrop Technologies Inc., Delaware, USA) at an absorbance of 260 nm. The 

samples were subsequently diluted to 50 ng/µl in TE. A final volume of 10 µl was pipetted into four 

96-well plates, which were sealed with optical adhesive film and frozen in preparation for shipping. 

The samples were subsequently shipped (as previously described for the gDNA samples utilised for 

the exome sequencing) to the University of Utah genomics core research facility [425] for genotyping 

with the VeraCode® technology. The Illumina BeadXpress GoldenGate® assay was ordered from 

Illumina and sent directly to the University of Utah Genomics Core Research Facility. 
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Table S 8: RFLP specifications 

Enzymes, buffers and additives were supplied by New England Biolabs Inc., Beverly, USA 

Gene Variant Chromosome Position Restriction Enzyme 
Temperature (°C) 

and Additives 

Incubation Time 

(hours) 
Genotype Size of Fragments (bp) Primer set   

ADO rs2236295 10 64564892 PvuII 37 2 

GG 305 
ADOF 

ADOmR 
GT 305, 236, 69 

TT 236, 69 

ADO rs10995311 10 64564934 SmaI 25 2 

CC 206, 75, 24 
ADOF 

ADOmR 
CG 230, 206, 75, 24 

GG 230, 75 

N4BP3 rs3812082* 5 177547336 NA NA NA NA NA 
N4BP3F 

N4BP3R 

NOV rs2279112 8 120429024 AgeI 25, BSA 16 

AA 259 
NOVmF 

NOVR 
AG 259, 234, 25 

GG 234, 25 

SIPA1L2 rs2275307 1 232574921 BstXI 37 2 

AA 298, 22 
SIPA1L2F 

SIPA1L2mR 
AG 320, 298, 22 

GG 320 

SLC39A4 rs75920625 8 145639654 HaeII 37, BSA 2 

AA 230, 70, 50 
SLC39A4F 

SLC39A4R 
AG 230, 158, 72, 70, 50 

GG 158, 72, 70, 50 

*: This variant was genotyped using Sanger sequencing, F: Forward primer, R: Reverse primer, m: Mutagenic primer 
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APPENDIX 9: Genotyping results for prioritised variants

PCR-RFLP and TaqMan Genotyping
Sanger sequence verification revealed that two variants (a novel frameshift variant in 

rs147498164 in KRT5) were not present and were 

sequencing artefacts. The presence of the remaining variants was confirmed and RFLP or TaqMan 

SNP genotyping was successfully performed for the genotyping of the remaining samples

and Figure S6).  
 

Table S 9: Sanger sequencing conformation and PCR

genotyped with the Illumina BeadXpress 

 

GRPIN2 

Novel, Frameshift 

 

 

Not present 

 

N4BP3 

rs3812082, R163G 

 

 

 

Genotyped with Sanger 

sequencing 
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enotyping results for prioritised variants

RFLP and TaqMan Genotyping 
Sanger sequence verification revealed that two variants (a novel frameshift variant in 

) were not present and were thus detected in the exome data 

sequencing artefacts. The presence of the remaining variants was confirmed and RFLP or TaqMan 

ly performed for the genotyping of the remaining samples

Sanger sequencing conformation and PCR-RFLP genotyping of variants that were not 

genotyped with the Illumina BeadXpress Assay 

ADO ADO 

rs2236295, G25T rs10995311, P39A 

 

 

 

 

 

 
PvuII 

 

 
SmaI 

NOV SIPA1L2 

rs2279112, R42G rs2275307, T1322A 

 

 

 

 

 

 
AgeI 

 

 
BstXI 

HLV   TT   GT  GG   HLV  CG  CC   GG  

305bp 

236bp 206
230

   HLV  GA  AA  GG  HLV   AA   AG   GG    

259bp 
234bp 

GENOTYPING RESULTS 

enotyping results for prioritised variants 

Sanger sequence verification revealed that two variants (a novel frameshift variant in GPRIN2 and 

exome data as a result of 

sequencing artefacts. The presence of the remaining variants was confirmed and RFLP or TaqMan 

ly performed for the genotyping of the remaining samples (Table S9 

RFLP genotyping of variants that were not 

KRT5 

rs147498164, V211M 

 

 

 

 

 

Not present 

SLC39A4 

rs75920625, T356A 

 

 

 

 
HaeII 

206bp 
230bp 

    HLV  GG AA AG 

319bp 
298bp 

158bp 
230bp 
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Figure S 6: TaqMan SNP genotyping results for rs11368509 in UPP2 

 

Illumina BeadXpress genotyping results 
The generated genotyping results were critically examined in GenomeStudio (Illumina, California, 

USA) to determine which variants should be excluded from the statistical analyses. Table S10 lists all 

the SNPs that were excluded from the analyses and the corresponding exclusion criteria, while 

Figure S7 provides examples of the clusters viewed in GenomeStudio. 
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Table S 10: SNPs that failed the Illumina BeadXpress genotyping 

SNP Exclusion criteria Type of SNP Gene 

seq-rs2919308 Less than 90% success AIM NA 

seq-rs10194455 Less than 90% success AIM NA 

seq-rs10856819 Less than 90% success AIM NA 

seq-rs12132696 Less than 90% success AIM NA 

seq-rs7584977 Overlapping clusters AIM NA 

seq-rs114298106 Less than 90% success Frequency C7orf71 

seq-rs17561 Less than 90% success Frequency IL1A 

seq-rs61732484 Less than 90% success Frequency OR2T10 

seq-rs6710480 Less than 90% success Frequency UPP2 

seq-rs74730740 Less than 90% success Frequency OR4D2 

seq-rs28664620 Less than 90% success Frequency OR2T10 

DNMBP Monomorphic Frequency DNMBP 

seq-rs3795789 Monomorphic Frequency OBSCN 

seq-rs7968606 Less than 90% success GWAS NA 

seq-rs888219 Overlapping clusters GWAS NA 

seq-rs8009244 Overlapping clusters LD VAAST with rs2274271 DLGAP5 

seq-rs77099184 Less than 90% success LD VAAST with rs61729867 FREM3 

seq-rs3127821 Less than 90% success LD VAAST with rs67531787 GPRIN2 

seq-rs3127823 Less than 90% success LD VAAST with rs67531787 GPRIN2 

HTR2C Less than 90% success PubMed Exome HTR2C 

seq-rs1049056 Less than 90% success PubMed Exome HLA-DQB1 

seq-rs1049066 Less than 90% success PubMed Exome HLA-DQB1 

seq-rs1130432 Less than 90% success PubMed Exome HLA-DQB1 

seq-rs1140318 Less than 90% success PubMed Exome HLA-DQB1 

seq-rs41544112 Less than 90% success PubMed Exome HLA-DQB1 

seq-rs61733142 Less than 90% success PubMed Exome HTR6 

seq-rs9274395 Less than 90% success PubMed Exome HLA-DQB1 

HTT Monomorphic PubMed Exome HTT 

seq-rs5442 Overlapping clusters PubMed Exome GNB3 

seq-rs701564 Overlapping clusters PubMed Exome HLA-DQB1 

rs1800629 Less than 90% success PubMed Known TNF-alpha 

DLGAP5 Less than 90% success VAAST DLGAP5 

seq-rs1281013 Less than 90% success VAAST C1orf127 

seq-rs9892256 Less than 90% success VAAST DNAH9 

seq-rs78610683 Less than 90% success VAAST PLEKHG3 

EHMT2_2 Less than 90% success VAAST EHMT2 

N4BP3 Less than 90% success VAAST N4BP3 

seq-rs3796100 Less than 90% success VAAST ANKRD53 

seq-rs71520524 Less than 90% success VAAST ZC3H3 

seq-rs72780221 Less than 90% success VAAST GPRIN2 

DNHD1_2 Less than 90% success VAAST DNHD1 

GPRIN2 Monomorphic VAAST GPRIN2 
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seq-rs34110867 Monomorphic

RBMXL3_1 Overlapping clusters

seq-rs11204658 Overlapping clusters

seq-rs1770984 Overlapping clusters

seq-rs4926046 Overlapping clusters

COL23A1 Overlapping clusters

rs147245242 Less than 90% success

 

Figure S 7: BeadXpress genotyping clusters visualised in GenomeStudio. 

variant. B: A variant that failed genotyping due to a less than 90%

failed genotyping due to overlapping clusters. 

due to its absence in the cohorts of interest.
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Monomorphic VAAST 

Overlapping clusters VAAST 

Overlapping clusters VAAST 

Overlapping clusters VAAST 

Overlapping clusters VAAST 

Overlapping clusters VAAST 

than 90% success VAAST, LD VAAST with rs66961966 

BeadXpress genotyping clusters visualised in GenomeStudio. A: A successfully genotyped 

A variant that failed genotyping due to a less than 90% success rate. 

failed genotyping due to overlapping clusters. D: A variant that could not be included in the analyses 

due to its absence in the cohorts of interest. 

GENOTYPING RESULTS 

SIPA1L2 

LRCH2,RBMXL3 

GPRIN2 

ASPG 

GPRIN2 

COL23A1 

SLC38A10 

 

A successfully genotyped 

success rate. C: A variant that 

A variant that could not be included in the analyses 
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APPENDIX 10: Statistical analyses 
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Figure S 8: Observed trait values represented as box plots (left) and corresponding 

percentage change from baseline in trait values (right), observed per week for each of the 

significantly associated variants. In the case of the box plots, the distribution of the PANSS 

scores recorded at each visit is displayed for each genotype class and the width of the box 

plots correlates to the number of individuals observed in each of these classes.  
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