PUBLIC TRANSPORT SECTOR DRIVER BEHAVIOUR:
Measuring recklessness using speed and acceleration

AS Zeeman and MJ Booysen
Department of Electrical and Electronic Engineering
Faculty of Engineering
University of Stellenbosch
Public Transport in sub-Saharan Africa

- Minibus taxi sector dominates the informal public transportation system
- South Africa has more than 200,000 minibus taxis
- Most available and affordable to public
- Accounts for 65% of all public transport in SA (14 million passengers every day)
- SSA has some of the world’s highest road traffic fatalities
- 32 deaths per 100,000 population annually
- 9th leading cause of death in Africa

Safety – public transport is considered to be a dangerous option in SSA
Reckless driving detection system

• Numerous studies completed on driving behaviour
 • Differences are in the specific application area and the sensing method employed
 • Shortcomings in the research field: the lack of an algorithm where relations between speed and acceleration are simultaneously taken to identify reckless driving

• Sudden changes of direction, travelling at high speed around curves, or braking and acceleration – results in forces acting on the vehicle
• High levels of acceleration associated with reckless events
• Accelerometer measures inertial g-force
• GPS device measures speed
Design of the reckless driving detection system

- Roads designed to optimize efficiency and safety, whilst minimizing cost and environmental damage
- Friction coefficient – relationship between vehicle’s tyres and road surface
- Correlation between friction coefficient and in-vehicle inertial acceleration utilised to enable reckless driving detection
- Curve radius is key determinant of safeness of road curvature
- Centrifugal force countered by centripetal force

\[F_c = \frac{W a_c}{g} = \frac{W u^2}{g r} \]

\[\frac{a_c}{g} = f_s = 0.21 - 0.001U \]
Results

- Acceleration and speed data collected in minibus taxis in South Africa and Uganda
- More than 36 hours of data from, 41 different minibus taxis
- 25% Urban data, and 75% highway data
Results
Results

- EMA filtered acceleration – removes high frequency noise
- Left turns – negative acceleration values
- Right turns – positive acceleration values
Results

- Determine rate of change of acceleration: Jerk
- Summation of jerk values
- High concentrations of acceleration relate to erratic events
- Measured acceleration compared to threshold (from road design principles)
Online platform

- Real-time information
- GSM network
- http://smart.trintel.co.za
Conclusion

- Presented a reckless driving detection system, which was validated in minibus taxis on South African and Ugandan roads
- Acceleration and speed results are used as a measure of recklessness
- Augmenting acceleration data with vehicle speed information
- Designed model is based on principles used in road design
 - Relationship between a vehicle’s tyres and the road surface
- Reckless driving detection system was successfully developed and tested
- Could be used to make public transport in Sub-Saharan Africa safer
Thank you for your attention