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“It is not the strongest of the species that survives, 
nor the most intelligent that survives. It is the one 
that is the most adaptable to change.” 

Paraphrase of Charles Darwin 
by Leon C. Megginson 
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A ZULU VERSION OF THE LEGEND OF THE "ORIGIN 

OF DEATH" 
 
 
“GOD (Unknlunkulu) arose from beneath (the seat 
of the spiritual world, according to the Zulu idea), 
and created in the beginning men, animals, and all 
things. He then sent for the Chameleon, and said,  
 

Go, Chameleon, and tell Men that they 
shall not die.  
 

The Chameleon went, but it walked slowly, and 
loitered on the way, eating of a shrub called 
Bukwebezane. 
 
When it had been away some time, God sent the 
Salamander after it, ordering him to make haste 
and tell Men that they should die. The Salamander 
went on his way with this message, outran the 
Chameleon, and, arriving first where the Men 
were, told them that they must die.” 
 

 
James A. Honey 

South African Folk-tales  
Baker & Taylor Company, New York, 1910 
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review, or are destined to be published in the near future.  By preparing these chapters in 

this way, considerable repetition is found in Chapter 1 and the introduction of all papers 

(specifically regarding the study region and animals), which could not be avoided. Even 

though each article is to be published in different journals, for the purposes of consistency 

for this thesis, all have been formatted in the same way and share the a single referencing 

style. Full citations are compiled in a Reference List at the end. A modified version of the 

6th edition of the APA style was used to ensure that maximal information is provided for 

each reference in a clear format. Lastly, the first page of any thesis chapters that have been 

published are included in an appendix. Please note that page numbers of the appendix are 

per the original publications. 
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Abstract 

 
An important prerequisite for evolutionary change is variability in natural populations; 

however, when phenotypic and molecular rates of change differ, species delimitation is 

problematic. Such discordance has been identified in a recent radiation of dwarf 

chameleons (Bradypodion) from KwaZulu-Natal Province, South Africa. This radiation is 

comprised of several phenotypic forms, two of which have been classified taxonomically – 

Bradypodion melanocephalum and Bradypodion thamnobates. Early phylogenetic analysis 

did not support the forms primarily because geographic sampling and the set of molecular 

markers used were appropriate for detecting deep divergences and, therefore, less effective 

for understanding species boundaries within a recent radiation. In this radiation, the forms 

are allopatric, occupy different habitats, and vary in size and colouration, suggesting local 

adaptation and ecological speciation. To test this hypothesis, morphometric and habitat 

data were collected for each form to examine ecologically relevant morphological 

differences that reflect differential habitat use. Morphological differences were then 

associated with functional adaptations by testing locomotor performance and bite force. 

Next, fine-scale genetic sampling was used to examine lineage diversification using a 

combination of mitochondrial DNA and microsatellites. Spatial information was 

incorporated into these analyses to quantify the genetic effects of landscape barriers on 

genetic structure. Finally, ecological niche modelling was used to examine the abiotic 

factors involved in shaping the climatic niches of these chameleons, and to gain insight 

into their biogeographic history. Results show morphological distinctions between 

phenotypic forms, with corresponding differences in performance, indicating functional 

adaptations to habitats, which can be broadly classified as either open- or closed-canopy 

vegetation. Specifically, chameleons in open-canopy habitats have proportionally smaller 
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heads and feet than their closed-canopy counterparts, and correspondingly weaker bite 

forces and forefoot grip strengths. Varying degrees of sexual dimorphism were detected, 

with the closed-canopy forms being more dimorphic than the open-canopy forms. This 

suggests that sexual selection is the predominant force within the closed-canopy habitat, 

which are more protected from aerial predators, thereby enabling them to invest in 

dimorphic traits for communication; while, in open-canopy habitats, natural selection is the 

predominant force, ultimately enforcing their overall diminutive body size and 

constraining performance. Genetic structure was observed, with the mitochondrial DNA 

revealing three genetic clusters and the microsatellites revealing seven. This likely reflects 

the different mutation rates and modes of inheritance between these two markers. Three of 

the microsatellite clusters were supported by morphological and ecological data and 

should, therefore, be recognised as separate species. The remaining microsatellite clusters 

showed discordance with the ecomorphological data; however, given their genetic 

distinctiveness, they should be recognized as separate conservation units. The climatic 

niches of the three proposed species showed high to moderate levels of climatic stability, 

while the four proposed conservation units showed low climatic stability.  These results 

indicate that this species complex is affected by both climatic niche conservatism and 

lability, which could explain the observed patterns of morphological and genetic diversity. 

In summary, these results support the hypothesis of ecological speciation within this 

radiation.  
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Opsomming 

 

'n Belangrike voorvereiste vir evolusionêre verandering is variasie in natuurlike 

bevolkings, maar wanneer fenotipiese en molekulêre tempo van verandering verskil, is 

spesies definieering problematies. Sulke onenigheid is geïdentifiseer in ‘n onlangse 

radiasie van dwerg verkleurmannetjies (Bradypodion) van die KwaZulu-Natal Provinsie, 

Suid-Afrika. Hierdie radiasie bestaan uit verskeie fenotipiese vorms, waarvan twee 

taksonomies geklassifiseer is – Bradypodion melanocephalum en Bradypodion 

thamnobates. Vroeë filogenetiese analise het nie die vorms ondersteun nie, hoofsaaklik 

omdat geografiese steekproefneming en die stel van molekulêre merkers gebruik geskik 

was vir die opsporing van diep afwykings, en dus minder effektief is vir die begrip van 

spesies grense binne 'n onlangse radiasie. In hierdie radiasie is die vorms allopatries, beset 

verskillende habitatte, en wissel in grootte en kleur, wat dui op plaaslike aanpassing en 

ekologiese spesiasie. Om hierdie hipotese te toets, is morfometriese en habitat gegewens 

ingesamel vir elke vorm om sodoende ekologies relevante morfologiese verskille te 

ondersoek wat verskil in habitat gebruik reflekteer. Morfologiese verskille is geassosieer 

met funksionele aanpassings deur lokomotoriese prestasie en byt krag te toets. Volgende is 

fyn-skaal genetiese steekproefneming gebruik om afkoms diversifikasie met behulp van 'n 

kombinasie van mitochondriale DNS en mikrosatelliete ondersoek. Ruimtelike inligting is 

geinkorporeer in die ontleding om sodoende genetiese gevolge van landskap hindernisse 

op genetiese struktuur te kwantifiseer. Ten slotte, is ekologiese nis modelle gebruik om die 

abiotiese faktore wat betrokke is by die vorming van klimaat- nisse van hierdie 

verkleurmannetjie te ondersoek en om insig te verkry oor hul biografiese geskiedenis. 

Resultate toon morfologiese onderskeid tussen fenotipiese vorms, met saameenlopende 

verskille in prestasie, wat dui op funksionele aanpassings tot habitat, wat breedweg as oop- 
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of geslote-kap plantegroei geklassifiseer kan word. Spesifiek verkleurmannetjies in oop-

kap habitatte het proporsioneel kleiner koppe en voete as hul geslote-kap eweknieë, en 

ooreenkomstig swakker byt krag en voorvoet greep. Wisselende vlakke van seksuele 

dimorfisme is vasgestel, met geslote-kap vorms wat meer dimorfies is as oop-kap vorms. 

Dit dui daarop dat seksuele seleksie die oorheersende krag in geslote-kap habitatte is, wat 

meer beskerm is teen vlieënde roofdiere, wat hulle in staat stel om te belê in dimorfiese 

eienskappe vir kommunikasie, terwyl in oop-kap habitatte, is natuurlike seleksie die 

oorheersende krag, wat uiteindelik kleiner liggaam grootte en beperkte prestasie afdwing. 

Genetiese struktuur is waargeneem, met die onthulling van drie genetiese groeperings 

gebasseer op mitochondriale DNS en sewe gebasseer op mikrosatelliete. Dit weerspieël 

waarskynlik die verskil in mutasie tempo en manier van erfenis tussen hierdie twee 

merkers. Drie van die mikrosatelliet groeperings is ondersteun deur morfologiese en 

ekologiese gegewens en moet dus erken word as aparte spesies. Die oorblywende 

mikrosatelliet groeperings dui op onenigheid met eko-morfologiese data, maar, gegewe hul 

genetiese eiesoortigheid, moet hulle erken word as afsonderlike bewarings eenhede. Die 

klimaat-nisse van die drie voorgestelde spesies het hoë tot matige vlakke van die klimaat 

stabiliteit, terwyl die vier voorgestelde bewarings eenhede lae klimaat stabiliteit het. 

Hierdie resultate dui daarop dat hierdie spesie kompleks beïnvloed word deur beide 

klimaat nis konserwatisme en stabiliteit, wat die waargenome patrone van morfologiese en 

genetiese diversiteit kan verduidelik. In opsomming, hierdie resultate ondersteun die 

hipotese van ekologiese spesiasie binne hierdie radiasie. 
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Introduction 
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An important prerequisite for evolutionary change is variability in natural populations. 

Under natural selection this variability must be heritable and lead to differential rates of 

survival and reproduction (Darwin, 1859). It typically starts with phenotypic adaptation 

(variation in morphology, anatomy, physiology, and/or behaviour) in response to specific 

environmental pressures. Thus, individuals within a population are replaced by the progeny 

of parents that are better adapted to survive and reproduce in the environment in which 

natural selection took place. This process creates and preserves traits that are seemingly 

fitted for the functional roles they perform (Mayr, 1942; Simpson, 1944, 1953).  In most 

instances, these phenotypic changes occur alongside genetic changes, allowing the 

phenotype to easily identify genetically delineated taxa (Alexander, 2006). However, 

situations exist where the phenotypic rate of change exceeds that of the molecular and vice 

versa (Bromham et al., 2002) making species delimitation difficult. This is because each of 

the various species concepts in existence designate species boundaries according to 

different biological properties (de Queiroz, 2007).  Considering the species is the 

fundamental unit of biodiversity, such ill-defined boundaries have significant 

consequences for their management and conservation (see Rojas, 1992).  

Within the past two decades, DNA sequencing has significantly aided in the 

identification of morphologically cryptic, yet genetically diverse taxa (Bickford et al., 

2007) with species identified as the terminal branches of a phylogenetic tree (following the 

Phylogenetic Species Concept: Nixon & Wheeler, 1990). However, populations that are 

morphologically diverse yet seemingly genetically identical have been more difficult to 

decipher and may cause some to question their validity as species. This is because such 

variation may simply be a case of phenotypic plasticity or polymorphisms within a given 

species. However, a population might lack any detectable genetic diversity even if it is 

evolving separately because it is in the early stages of divergence (de Queiroz, 2007). Such 
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cases of rapid morphological diversification are commonly observed within adaptive 

radiations (Schluter, 2000) of which Darwin's finches (Freeland & Boag, 1999; Grant, 

Grant, & Petren, 2005; Petren et al., 2005), threespine sticklebacks (Kristjánsson, 2005), 

African cichlids (Seehausen, 2006; Salzburger, 2009), and Anolis lizards  (Losos et al., 

1998) are prime examples. Strong divergent natural selection causes populations to display 

morphological and behavioural differences that are functionally related to particular 

microhabitats, making the diversification adaptive (Mayr, 1942; Simpson, 1944, 1953; 

Givnish & Sytsma, 1997; Schluter, 2000; Salzburger, 2009).   

Even though adaptive radiations are characterised by phenotypic divergence, many 

also incorporate considerable repetition in the form of parallel phenotypic evolution – the 

independent evolution of the same phenotypic traits in ecologically similar environments 

amongst distantly related lineages (Futuyma, 1986). Allopatric populations or species 

displaying parallel evolution are termed ‘ecomorphs’, of which the Greater Antillean 

anoles are the archetype (Williams, 1972, 1983; Losos, 1990a, b). Each Anolis ecomorph is 

named after the microhabitat they usually occupy, such as grass-bush, trunk-ground, trunk, 

trunk-crown, crown giant, and twig (Williams, 1972, 1983), and the species that make up 

each ecomorph cluster together in a multidimensional morphospace defined by limb 

proportions, performance (running, jumping ability), and behaviour (Losos, 1990a). The 

existence of ecomorphs (open- versus closed-canopy habitat) has been proposed within 

South African dwarf chameleons (genus Bradypodion) stemming from climatic shifts 

during the Miocene and Pliocene which resulted in changes in vegetation type across the 

subcontinent (Tolley et al., 2006; Tolley, Chase, & Forest, 2008); however, until recently 

empirical evidence has been lacking to support this claim.  

Like all chameleons, Bradypodion species are highly reliant on vegetation for their 

survival – using crypsis and stealth to attain food and avoid predators (Tolley et al., 2006; 
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Stuart-Fox & Moussalli, 2007). Accordingly, changes to the structure of the vegetation in 

which they conceal themselves likely have direct consequences for their survival and, 

ultimately, their evolution (Purvis, Jones, & Mace, 2000). These consequences are 

expected to be manifested in their prehensile tails, clamp-like feet, uniquely positioned 

limbs, and their sometimes ornamented heads – traits thought to be ecologically relevant in 

their complex arboreal habitats (Gans, 1967; Peterson, 1984; Higham & Jayne, 2004; 

Fischer, Krause, & Lilje, 2010; Herrel et al., 2013). This hypothesis was recently tested on 

the Cape dwarf chameleon, Bradypodion pumilum (Measey, Hopkins, & Tolley, 2009; 

Herrel et al., 2011; Hopkins & Tolley, 2011) which is comprised of two phenotypic forms 

or morphotypes restricted to the south-western Western Cape Province of South Africa. 

The open-canopy habitat form is a small, dull coloured chameleon occupying fynbos 

habitats, whereas the closed-canopy habitat form is a larger, conspicuously ornamented 

and coloured chameleon found in forest fragments, riverine thicket, and bushy, exotic 

vegetation in urban settings (Branch, 1998; Tolley & Burger, 2007; Tilbury, 2010). In 

addition to the macrohabitat differences, structural differences in the microhabitats of each 

form were identified with the open-canopy habitat made up of narrow vertical perches, 

densely clustered in isolated clumps reaching no higher than 50 cm off the ground and the 

closed-canopy habitat comprised of mainly horizontal, less densely packed perches of 

varying diameters and reaching more than 1 m off the ground (Herrel et al., 2011). These 

ecological differences translated into functional morphological differences between forms, 

specifically pertaining to locomotor function and potentially signalling/fighting ability. 

Specifically, the open-canopy habitat B. pumilum possess proportionally smaller feet and 

tails which enable them to better grasp hold of their narrow perches, yet are less effective 

(weaker) on the broader perches available in the closed-canopy habitat. They also have 

longer limbs that may provide maximal reach to navigate across or over ground-covering 

Stellenbosch University  http://scholar.sun.ac.za



 

5 
 

vegetation, which is abundant in this habitat (Herrel et al., 2011), and wider heads but less 

ornamented casques (at least among males) with a correspondingly harder bite potentially 

for increased fighting ability. This may be because their reduced casques (believed to 

reduce predation risk from aerial predators: Stuart-Fox & Moussalli, 2008) make for less 

effective communication and there is the potential for a greater frequency of intra-sexual 

encounters (Measey et al., 2009). Conversely, the longer tails, larger feet and shorter legs 

of the closed B. pumilum afford them stronger grip and increased stability on the wider, 

more elevated perches found there, thus permitting them to move faster along horizontal 

branches (Herrel et al., 2011). Their higher casques likely allow for long-distance 

communication (Stuart-Fox & Moussalli, 2008; Measey et al., 2009), which might reduce 

the frequency of harmful conspecific encounters (Stuart-Fox et al., 2006a), thus explaining 

their proportionally weaker bites (Measey et al., 2009).  

 In addition to the ecomorphological differences uncovered between the two B. 

pumilum forms, varying degrees of sexual dimorphism were also detected further reflecting 

their differential habitats. In general, males were found to be proportionally larger than 

females; however, closed-canopy habitat males were larger in almost all traits examined, 

while in the open-canopy habitat, sexual dimorphism was restricted to tail and foot size 

(Hopkins & Tolley, 2011).  Male dwarf chameleons compete with other males for access to 

females to mate and use courtship displays to assess a female’s willingness to mate 

(Burrage, 1973; Stuart-Fox & Whiting, 2005; Stuart-Fox et al., 2006a; Tolley & Burger, 

2007; Tilbury, 2010), with larger casqued and brightly coloured males generally found to 

be more successful (Stuart-Fox et al., 2006a). Considering closed-canopy habitats offer 

increased shelter from predators, the closed-canopy habitat form of B. pumilum can invest 

in the development of these conspicuous secondary sexual characteristics resulting in 

increased sexual dimorphism; whereas, in the open-canopy habitat, such conspicuous 
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characters would increase the visibility of an individual to predators (Stuart-Fox et al., 

2003), likely explaining their reduced dimorphism. With this in mind, sexual dimorphism 

may be yet another ecomorphological trait used to test the existence of ecomorphs within 

this genus. 

 Similar open- and closed-canopy ecomorphological associations are believed to 

exist in a recent radiation of dwarf chameleons localized to southern KwaZulu-Natal 

(KZN) Province, South Africa (Tolley et al., 2004), which could validate the ecomorph 

hypothesis. The radiation is comprised of two described species (Bradypodion 

melanocephalum and Bradypodion thamnobates) and three additional phenotypic forms 

(Raw, 1995, 2001; Tolley & Burger, 2007; Tolley et al., 2008; Tilbury, 2010) herein 

referred to as Types A, B and C. Bradypodion melanocephalum (Gray, 1865) is small-

bodied with a subtle casque, minute gular lobes, homogeneous scales with a few small 

scattered tubercles on the flanks, and is a dull brown colour. In contrast, B. thamnobates 

(Raw, 1976) has a large heavy body with conspicuous tuberculated scales, a prominent 

casque, large gular lobes, a bright white gular region, and a rich green colour often with 

reddish or orange flanks. Type A appears most similar to B. melanocephalum in size and 

colour, leading many to classify it as another population of the species (Tolley et al., 2004; 

Tilbury, 2010); however, it can be distinguished from B. melanocephalum by faint green 

markings along its flanks and orange along its tail and dorsal crest. Type B is large in size 

with a prominent casque, is bright green in colour with a yellow gular region. Type C has 

morphological features outwardly similar to B. thamnobates (e.g., prominent casque and 

large gular lobes), although it lacks the striking coloration and heavy, tuberculated body of 

that species.  

All five forms are allopatric in distribution (Tolley & Burger, 2007; Tilbury, 2010), 

but mitochondrial markers show they lack the divergence expected at the species level 
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(Tolley et al., 2004; Tolley et al., 2008). In some species, such an outcome is the result of 

phenotypic plasticity (e.g., Losos et al., 2000; Buckley, Irschick, & Adolph, 2010); 

however, common garden experiments suggest this is not the case for these Bradypodion 

species (Miller & Alexander, 2009). Juveniles from both described species were raised 

under identical conditions and developed phenotypes similar to their original populations. 

As such, the lack of genetic divergence likely reflects the recent nature of the radiation, 

and given the short branch lengths within this clade reflected in their phylogeny (see 

Tolley et al., 2004; Tolley et al., 2008), it maybe be as recent as the late Pleistocene.  

Numerous drastic climatic changes arose during the Pleistocene, especially during 

the Last Glacial Maximum (Mucina et al., 2006), which brought upon significant changes 

in vegetation (Scott, 1993; Eeley, Lawes, & Piper, 1999; Tyson, 1999; Bond, Midgley, & 

Woodward, 2003; Mucina & Rutherford, 2006), particularly within the forest and 

grassland biomes (Lawes, 1990; Eeley et al., 1999; Mucina & Geldenhuys, 2006; Lawes et 

al., 2007), in which these chameleons inhabit (Tolley & Burger, 2007; Tilbury, 2010). 

These changes likely created distinct microhabitats (e.g., plant structure, perch size, canopy 

cover) within which each form had to adapt, possibly explaining the striking phenotypic 

diversity among them.  Specifically, B. melanocephalum is found along the coast of 

southern KZN (0-150 m a.s.l.) in grasses and lowland coastal vegetation, whereas  

B. thamnobates is found inland in the KZN Midlands (850–1600 m a.s.l.), most often in 

transformed landscapes (exotic trees, bushy shrubs and urban gardens), although their 

primary habitat is indigenous forest which is now highly fragmented. Types A and C are 

also localized to the KZN Midlands; however, they are peripatric to B. thamnobates and 

each other. Type A is often found in grasslands and around transformed vegetation 

(including plantations), whereas Type C is restricted to Afrotemperate forest in the 

Karkloof area. Lastly, Type B can be found along the southern Drakensberg mountain 

Stellenbosch University  http://scholar.sun.ac.za



 

8 
 

range up to 2000 m a.s.l., mainly in indigenous Afrotemperate forests and along river 

courses populated with bushes and trees; however they are occassionaly found in 

grasslands.  

If similar open- and closed-canopy ecomorphs exist within this radiation as has 

been documented in B. pumilum then B. melanocephalum and Type A are expected to 

possess comparable ecomorphological features and functions as the open-canopy habitat  

B. pumilum, while B. thamnobates and Types B and C are expected to ressemble the closed 

B. pumilum in form and function. However, before any conclusions can be made, concrete 

evidence is required, which this thesis sets out to attain. First, morphometrics in 

conjunction with micro- and macrohabitat surveys are used to determine whether more 

tangible morphological differences exist between the five phenotypic forms and sexes 

apart from overall colour and size, and whether these differences are correlated to habitat 

structure (Chapter 2: da Silva & Tolley, 2013). Second, the functional significance of any 

ecomorphological differences detected is tested by comparing the performance of each 

form.  Specifically, locomotor performance traits (running and gripping, Chapter 3: da 

Silva et al., 2014a) and bite force (Chapter 4: da Silva et al., 2014b ) are investigated as 

they are thought to be most relevant to their survival (e.g., Losos, Walton, & Bennett, 

1993; Measey et al., 2009). Since an individual’s phenotype will determine the limits of its 

performance, and limitations on performance will constrain the range of environmental 

resources it can exploit (Arnold, 1983; Wainwright, 1994), such performance testing is 

imperative to establishing and understanding the adaptive nature of this radiation (Schluter, 

2000). Third, comprehensive population genetic techniques are used to test for the 

presence of lineage diversification in this radiation (Chapter 5). Even though previous 

phylogenetic studies found no significant genetic differentiation among these chameleons 

(Tolley et al., 2004; Tolley et al., 2006), sampling was extremely limited incorporating 
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only one or two individuals from what was assumed to be a representative locality of each 

form, and the genetic markers used (ND2 and 16S) were limited to the mitochondrial 

genome may be ineffective at detecting genetic structure in recent diversifications or below 

the species level. Accordingly, this study incorporates more extensive genetic sampling 

representing a variety of populations per form throughout southern KZN, as well as both 

mitochondrial DNA (mtDNA) and fast-evovling nuclear markers (microsatellites) to test 

for any recent genetic structuring within and between forms. Detailed spatial information is 

also incorporated into the population genetic analysis to help quantify the genetic effects of 

habitat and geographic barriers (e.g., Manel et al., 2003; Spear et al., 2005; Storfer et al., 

2007; Moore et al., 2008).  Using these data, patterns of ecomorphological and genetic 

variation will be examined in order to make inferences regarding the classification of 

species or taxon status at any rank (e.g., evolutionarily significant units, conservation 

units). Finally, ecological niche modelling (ENM) is used to examine the abiotic factors 

involved in shaping the ecological and evolutionary relationships within this species 

complex (Chapter 6). The current and past climatic niches of each of the biological units 

identified from the cumulative knowledge gained from Chapters 2 through 5 are projected 

to assess the climatic stability of southern KZN and provide insight into the demographic 

events that likely shaped the genetic and morphological diversity within this species 

complex. In cases where closely related taxa occupy divergent niches, ENM has been 

instrumental in delimiting species and identifying the mechanisms of speciation (e.g., 

Losos et al., 2003; Raxworthy et al., 2007; Jakob et al., 2010; Hawlitschek et al., 2011). 

This is especially so for groups exhibiting low vagility  (Raxworthy et al., 2007; Franklin, 

2009), which is an attribute of Bradypodion species.  As such, ENM may provide support 

(along with morphological and/or genetic data) for the reclassification of species in the 

KZN radiation.   
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Chapter 2 
 
 

Paper I:  
Ecomorphological variation and sexual dimorphism  

in a recent radiation of dwarf chameleons (Bradypodion)* 

 
 
 
 
 
 
 
 

  

                                                 
* Published as: da Silva, J.M. & Tolley, K.A. (2013). Ecomorphological variation and sexual dimorphism in a 

recent radiation of dwarf chameleons (Bradypodion). Biological Journal of the Linnean Society 19 (1): 113-

130. DOI: 10.1111/bij.12045. 
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ABSTRACT 
 
Natural selection tends to favour optimal phenotypes either through directional or 

stabilizing selection; however, phenotypic variation in natural populations is common and 

arises from a combination of biotic and abiotic interactions. In these instances, rare 

phenotypes may possess a fitness advantage over the more common phenotypes in 

particular environments, which can lead to adaptation and ecological speciation. A recently 

radiated clade of dwarf chameleons (Bradypodion) restricted to southern KwaZulu-Natal 

Province, South Africa, is currently comprised of two species (Bradypodion 

melanocephalum and Bradypodion thamnobates), yet three other phenotypic forms exist, 

possibly indicating the clade is far more speciose. Very little genetic differentiation exists 

between these five phenotypic forms; however, all are allopatric in distribution, occupy 

different habitats and vary in overall size and coloration, which may indicate that these 

forms are adapting to their local environments and possibly undergoing ecological 

speciation. To test this, we collected morphometric and habitat data from each form and 

examined whether ecological relevant morphological differences exist between them that 

reflect their differential habitat use. Sexual dimorphism was detected in four of the five 

forms. Yet, the degree and number of dimorphic characters was different between them, 

with size-adjusted male-biased dimorphism being much more pronounced in  

B. thamnobates. Habitat differences also existed between sexes, with males occupying 

higher perches in more closed-canopy (forested) habitats than females. Clear 

morphological distinctions were detected between four of the five forms, with the head 

explaining the vast majority of the variation. Chameleons occupying forested habitats 

tended to possess proportionally larger heads and feet but shorter limbs than those in open-

canopy habitats (i.e., grassland). These results show that this species complex of 

Bradypodion is morphologically variable for traits that are ecologically relevant for 
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chameleons, and that the variation among the five phenotypic forms is associated with 

habitat type, suggesting that this species complex is in the early stages of ecological 

speciation. 

 

INTRODUCTION 

Phenotypic variation in natural populations is intriguing from an evolutionary perspective 

because natural selection is assumed to favour one optimal phenotype either through 

directional or stabilizing selection. Consequently, a major goal of evolutionary biology is 

to identify processes that create and maintain phenotypic variation in natural populations. 

One possibility is that diversity is maintained by disruptive selection, which is driven by 

negative frequency dependent selection (Mather, 1955; Rueffler et al., 2006) arising from 

biotic (e.g., competition for resources: Benkman, 1996; Swanson et al., 2003) and/or 

abiotic interactions (e.g., temperature and climate: Davis & Shaw, 2001; Norberg et al., 

2001). In such instances, rare phenotypes possess a fitness advantage over the more 

common phenotypes in particular environments, which can lead to local adaptations, 

sometimes followed by ecological speciation. The most common outcome of such 

diversification is interspecific character displacement, in which coexisting populations 

diverge in resource use to mitigate the effects of competition (Grant, 1972).  

Caribbean Anolis lizards provide one of the best examples of the rapid evolution of 

character displacement, where populations of Anolis lizards have diverged to occupy 

different ecological niches (e.g., crown of trees, trunk, twigs) that differ in microhabitat 

structure (e.g., perch diameter and height, light intensity), leading to morphological 

adaptations that enable them to better utilize their habitat (Losos & Sinervo, 1989; Losos, 

1990b; Losos & Irschick, 1996; Losos et al., 1998; Leal & Fleishman, 2002; Elstrott & 

Irschick, 2004). For example, shorter-limbed anoles that perch high in the canopy on thin 
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substrates have slower running speeds than longer-limbed anoles that utilize broader 

perches closer to the ground (Losos & Irschick, 1996). This has been attributed to a trade-

off between stability and speed, with the shorter-limbed lizards, which rarely run, requiring 

greater stability in their more elevated habitats (Losos, 2001). Similarly, Anolis species 

perching high in the canopy also possess proportionally larger toe pads that confer greater 

clinging ability compared to species lower in the canopy (Elstrott & Irschick, 2004). 

Because chameleons are highly dependent on vegetation to provide camouflage, 

avoid predators, and obtain food (Tolley et al., 2006; Stuart-Fox & Moussalli, 2007), 

changes to the structure of the vegetation in which they conceal themselves likely have 

direct consequences for their survival and, ultimately, their evolution (Purvis et al., 2000). 

Chameleons therefore represent ideal candidates for examining causal relationships 

between habitat and morphology (Losos et al., 1993; Bickel & Losos, 2002; Hopkins & 

Tolley, 2011). Recent studies on the Cape Dwarf Chameleon (Bradypodion pumilum) 

show that chameleons from different habitats [open-canopy (e.g., fynbos) versus closed-

canopy (e.g., fragments of forest, riverine thicket, and bushy, exotic vegetation in urban 

settings)] exhibit different body shapes (Hopkins & Tolley, 2011), enabling them to better 

utilize their environments (Measey et al., 2009; Herrel et al., 2011; Measey et al., 2011). 

Similar associations are assumed to exist in other Bradypodion species, particularly within 

a recent radiation from KwaZulu-Natal (KZN) Province, South Africa (Tolley et al., 2004). 

The KZN region has the highest alpha diversity of chameleons in southern Africa (Tolley 

et al., 2008; Tilbury & Tolley, 2009), with seven of the 17 described Bradypodion species 

(Tilbury, 2010; Uetz, 2012); all situated within the Maputaland-Pondoland-Albany 

biodiversity hotspot (Mittermeier et al., 2004). The majority of these species are found in 

Afrotemperate forest, and are separated by deep divergences dating back to the Late 

Miocene. However, one species complex, comprised of two described species 
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(Bradypodion melanocephalum and Bradypodion thamnobates) and three additional 

phenotypic forms (herein referred to as Types A, B and C), appears to have recently 

radiated (Raw, 1995, 2001; Tolley & Burger, 2007; Tolley et al., 2008; Tilbury, 2010). 

This radiation may be so recent that it lacks the genetic divergence in mitochondrial 

markers expected at the species level (Tolley et al., 2004; Tolley et al., 2008), which is an 

outcome increasingly observed in species complexes as a result of insufficient time having 

passed for phenotypic differences to be detected in the genic regions routinely used in 

molecular phylogenetics (e.g., birds: Petren et al., 2005; Grant & Grant, 2008; mammals: 

Tishkoff et al., 2009; Vonholdt et al., 2010; Wolf et al., 2010; Rheindt et al., 2011; plants: 

Bateman, James, & Rudall, 2012). Under some species concepts, this lack of (or limited) 

genetic differentiation would call into question the validity of the two described chameleon 

species (de Queiroz, 2007), leading some to deduce that the complex is simply comprised 

of phenotypically plastic forms of a single species. This hypothesis was recently disproven 

using a common garden experiment, where juveniles from both described species were 

raised under identical conditions and developed phenotypes similar to their original 

populations (Miller & Alexander, 2009). 

The extent of phenotypic divergence within the B. melanocephalum- 

B. thamnobates species complex is striking (Fig. 2.1). Bradypodion melanocephalum 

(Gray, 1865) is small-bodied with a subtle casque, minute gular lobes, homogeneous scales 

with a few small scattered tubercles on the flanks, and is a dull brown colour. By contrast,  

B. thamnobates (Raw, 1976) has a large heavy body with conspicuous tuberculated scales, 

a prominent casque, large gular lobes, a bright white gular region, and a rich green colour 

often with reddish or orange flanks. The other three phenotypic forms have not been 

confidently assigned to either of these species because of ill-defined genetic and 

phenotypic boundaries (Tolley & Burger, 2007). Type A appears most similar to  
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B. melanocephalum in size and colour, leading many to classify it as another population of 

the species (Tolley et al., 2004; Tilbury, 2010); however, it can be distinguished from  

B. melanocephalum by faint green markings along its flanks and orange along its tail and 

dorsal crest. Genetically, it has been found to be most similar to B. thamnobates (Tolley et 

al., 2004: fig. 2, samples CT16 & CT17). Type B is large in size with a prominent casque, 

is bright green in colour with a yellow gular region, and also groups with B. thamnobates 

genetically (Tolley et al., 2004). Type C has morphological features outwardly similar to 

B. thamnobates (e.g., prominent casque and large gular lobes), although it lacks the 

striking coloration and heavy, tuberculated body of that species. 

The phenotypic diversity within this complex is likely to have arisen from the 

numerous drastic climatic changes during the Pleistocene, especially during the Last 

Glacial Maximum (Mucina et al., 2006), which brought upon significant changes in 

vegetation (Scott, 1993; Eeley et al., 1999; Tyson, 1999; Bond et al., 2003; Mucina & 

Rutherford, 2006), especially within the forest and grassland biomes (Lawes, 1990; Eeley 

et al., 1999; Mucina & Geldenhuys, 2006; Rebelo et al., 2006; Lawes et al., 2007). These 

changes likely created distinct microhabitats (e.g., plant structure, perch size, canopy 

cover) within which each form had to adapt. Indeed, all five phenotypic forms are 

allopatric in distribution (Fig. 1.2) and occupy different habitat types (Tolley & Burger, 

2007; Tilbury, 2010). Bradypodion melanocephalum is found along the coast of southern 

KZN (0-150 m a.s.l.) in grasses and lowland coastal vegetation, whereas B. thamnobates is 

found inland in the KZN Midlands (850-1600 m a.s.l.), most often in transformed 

landscapes (exotic trees, bushy shrubs and urban gardens), although their primary habitat is 

indigenous forest. Types A and C are also localized to the KZN Midlands; however, they 

are peripatric to B. thamnobates and each other. They also occupy different habitat types. 

Type A is often found in grasslands and around transformed vegetation (including 

Stellenbosch University  http://scholar.sun.ac.za



 

16 
 

plantations), whereas Type C is restricted to the Karkloof forest. Lastly, Type B can be 

found along the southern Drakensberg mountain range up to 2000 m a.s.l. in both 

indigenous forest and grasslands. 

 

 

Figure 2.1 Photographs of female (left) and male (right) dwarf chameleons within the  

B. melanocephalum- B. thamnobates complex. Photos by K. A. Tolley.  
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Figure 2.2 Map illustrating the general distributions of the five phenotypic forms within the  

B. melanocephalum-B. thamnobates species complex (two species, three morphotypes) and the 20 

sampling sites within southern KZN, South Africa. 1-Durban; 2-Pennington; 3-Umtamvuna;  

4-Ixopo; 5-Bryne Valley; 6-Stirling Farm; 7-Hilton; 8-Howick; 9-Karkloof; 10-Boschhoek;  

11-Mooi River; 12-Nottingham Road; 13-Dargle; 14-Boston; 15-Bulwer;16-Sani Pass; 17-Lotheni; 

18-Kamberg; 19-Giant’s Castle; 20-Highmoor. Stars represent the type localities for the two 

described species. Contour line to the left of Lesotho delimits the Drakensberg mountain range.  
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To test whether habitat structure is a likely driving force of morphological variation 

in the B. melanocephalum-B. thamnobates species complex, we investigated whether 

tangible morphological differences exist between the five phenotypic forms (apart from 

overall colour and size) by comparing ecologically relevant morphological traits (i.e., limb 

and tail length, foot size, head shape). We also aimed to quantify and compare the 

microhabitat structure of each form and investigate whether the structure of vegetation 

reflects differences in their morphology. We hypothesize that any of the forms occupying 

significantly different microhabitats (i.e., perch dimensions) will show corresponding 

differences for traits that are ecologically relevant for chameleons (Herrel et al., 2011; 

Herrel et al., 2013).  

 

MATERIAL AND METHODS 

STUDY SITES AND SAMPLING PROCEDURES 

A total of 351 dwarf chameleons within the B. melanocephalum-B. thamnobates complex 

were sampled from 20 sites throughout southern KZN (Fig. 2.2) in 2009 and 2010. Tail 

clips were collected as DNA samples for a separate study and served as batch marks to 

ensure that no individual would be sampled twice. Males were identified by the presence 

of hemipenal bulges or by the eversion of hemipenes. The snout–vent length (SVL) for 

each was recorded and the smallest SVL was noted for each phenotypic form (Table 2.1). 

Chameleons were identified as female if they were larger than the smallest male for that 

form and showed no sign of hemipenes. Individuals smaller than this with no sign of 

hemipenes were classified as juveniles and therefore left out of the study. Once all 

morphometric measurements were taken, chameleons were released at the exact point of 

capture. 
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Table 2.1 Measures of snout-vent length (SVL) for males within each phenotypic form. 

  SVL (mm)  

Morph Minimum Maximum Mean 

B. melanocephalum 37.82 60.22 48.76 

B. thamnobates 40.80 84.02 62.63 

Type A 38.07 60.72 48.65 

Type B 45.13 80.60 68.10 

Type C 38.23 65.74 50.63 

 

 

MORPHOMETRIC ANALYSIS 

All chameleons were measured to the nearest 0.01 mm using digital callipers for 11 body 

and nine head measurements (Fig. 2.3): Body – SVL, interlimb length (ILL), tail length 

(TL), thigh length (ThL), crus length (CL), brachium length (BL), antebrachium length 

(AL), medial forefoot pad length (MF), lateral forefoot pad length (LF), medial hindfoot 

pad length (MH), and lateral hindfoot pad length (LH); Head – lower jaw length (LJL), 

head length (HL), casque head length (CHL), head width (HW), head height (HH), casque 

head height, casque height, coronoid process of mandible to snout tip (CT), and posterior 

surface of quadrate to snout tip (QT). Measurements were taken on the right side of the 

head and body for consistency. If this was not possible because of injury or disfigurement, 

the left side was used and noted. The mass of each chameleon was also measured using a 

Pesola micro-line spring scale (model 93010). 
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Figure 2.3 Twenty measurements recorded for each chameleon. Nine head measurements:  

CHL (casque head length), HL (head length), head height (HH), CHH (casque head height),  

CH (casque height), LJL (lower jaw length), CT (coronoid process of mandible to snout tip),  

QT (posterior surface of quadrate to snout tip), and HW (head width). Eleven body measurements: 

SVL (snout-vent length), TL (tail length), ILL (interlimb length), BL (brachium length),  

AL (antebrachium length), MF (medial forefoot pad length), LF (lateral forefoot pad length),  

ThL (thigh length), CL (crus length), MH (medial hindfoot pad length), and LH (lateral hindfoot 

pad length). 

 

All analyses were carried out using SPSS, version 9.0 (SPSS Inc.). All data were 

log10 transformed prior to analysis to fulfil assumptions of normality and homoscedascity. 

To separate differences in shape from differences in body size, all data were size-corrected 

against log10SVL and the unstandardized residuals were saved for use in subsequent 
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analyses. The appropriateness of SVL as a common estimate of overall body size was 

tested using a principal component analysis (PCA) on all log10-transformed data and a 

linear regression comparing the ratio of logILL and logLJL (both components of SVL) 

against logSVL. The PCA was used to examine whether variables could be accurately 

described using a single common measure of size (Kratochvíl et al., 2003; McCoy et al., 

2006) and the regression was used to test whether the head and body experienced different 

growth trajectories between sexes (Braña, 1996). All variables fell within one principal 

component (PC), and the linear regression showed that head and body measurements 

followed similar trajectories, thereby validating the use of log10SVL as a suitable covariate 

for all measurements. 

 

Sexual dimorphism 

A multivariate analysis of covariance (MANCOVA) using a custom general linear 

mode was carried out to test the equality of slopes between sexes and forms. The full 

model specified Sex and Form as fixed factors, Sex x Form as the interaction, log10SVL as 

the covariate, and all other log10-tranformed variables as the dependent variables 

(excluding LJL and ILL since they are components of SVL). A significant interaction 

between Sex and Form implies that slopes are intersecting (unequal) and the effect of size 

is sex dependent across phenotypic forms; therefore, no further analyses could be 

conducted to test the hypotheses as the results would not be comparable. A significant Sex 

effect suggests that sexes are different and should be analysed separately. For variables 

detected as being sexually dimorphic (see Results), a second MANCOVA based on a full 

factorial model was run separately by form to examine the sexually dimorphic differences 

between them. All P-values were subjected to Holm’s sequential Bonferroni (Holm, 1979) 

correction to minimize the possibility of Type I errors (Rice, 1989).  
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Differences between and within phenotypic forms 

To examine differences between the five phenotypic forms within the  

B. melanocephalum-B. thamnobates complex, a PCA on the unstandardized residuals for 

each variable was conducted. This was conducted on group linear combinations (correlated 

sets) of the original variables for ease of use in the subsequent analysis. The Kaiser-Meyer-

Olkin (KMO) measure of sampling adequacy and Bartlett’s test of sphericity were run to 

determine the appropriateness of the PCA. The strength of the relationships detected in the 

PCA are considered strong when the KMO score is greater than 0.6 and Bartlett’s test is 

significant, rejecting the hypothesis of an identity matrix. PC scores were saved so that the 

magnitude and direction of the eigenvector describing the differences between forms could 

be illustrated. Only PCs with eigenvalues larger than one were extracted, and the varimax 

rotation was used to minimize the number of variables with high loadings on each factor. 

Variables with communality values less than 0.5 where ignored from the analysis because 

low values indicate those variables are uninformative (Tabachnick & Fidell, 2007). The 

saved PC scores were then entered as the dependent variables in a MANOVA, with Form 

as the fixed factor. Bonferroni post-hoc tests were run to determine which forms differed 

for each PC. To ensure differences (or the lack thereof) between forms were genuine and 

not influenced by population level differences within them, data were split by Sex and 

Form and then a MANOVA, with Site (i.e., individual field sites) as the fixed factor and all 

size-corrected variables as the dependant variables, was carried out. For significant Site 

effects, a sequential Bonferroni correction was applied to all variables. 

 

HABITAT ANALYSIS 

Because the vegetation varied considerably throughout the study area, an examination of 

the micro- and macrohabitat structure available to chameleons was carried out. Although 
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all chameleon sampling was conducted at night as a result of an ease of locating them, it 

was assumed that night-time perches reflect day-time habitat use because this has been 

found in preliminary radio-tracking data on B. pumilum (K. Tolley & E. Katz, unpub. 

data). Therefore, the habitat at each sampling site was surveyed the subsequent day. 

Macrohabitat type and percent canopy cover were measured within a 2 m diameter circle 

around where each chameleon was found. Percentage canopy cover was measured at 

ground level using a spherical densiometer, and arranged into one of five categories:  

(1) 0–10%, (2) 11–25%, (3) 26–50%, (4) 51–75%, and (5) 76–100%. Category 1 is 

representative of grassland habitats with a very open or no canopy; whereas category 5 

would be considered dense forest. From the plant on which each chameleon was found, 

plant type, perch height, and perch diameter were recorded in order to quantify 

microhabitat. Once the mean perch heights were determined for each form, field sites were 

re-visited to assess the density of available perches in each habitat and whether actual 

microhabitat use differed from microhabitat that is randomly available to the chameleons. 

Two 99 m transects were laid out, each made up of ten 1 m long segments separated at  

10 m intervals, and the numbers and diameters of all perches that touched a 1 m long stick 

at the determined mean height were recorded (Herrel et al., 2011). Although the two 

transects per sample site do not cover the entire distributional range of a given form, they 

are representative of the areas from which the chameleons were sampled.  

Differences between forms in the categorical variables (i.e., habitat type, percent 

canopy cover and plant type) were explored using bar plots. Data for perch height and 

diameter were log10 transformed to fulfil assumptions of normality and homoscedascity. 

Data were then compared using two-sampled Kolmogorov–Smirnov nonparametric tests or 

analyses of variance (ANOVA). In the ANOVAs, Bonferroni post-hoc tests were run 

concurrently to highlight any pairwise differences. 
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RESULTS 

The initial MANCOVA showed significant morphological differences between sexes 

(Wilks’ λ = 0.585, F18,72 = 12.725, P < 0.0001) and forms (Wilks’ λ = 0.731, F18,72 = 1.464, 

P < 0.0001). Although the interaction effect was found to be significant (Wilks’ λ = 0.737, 

F18,72 = 1.386, P = 0.008), an examination of the between-subjects effects, after sequential 

Bonferroni correction, revealed no significant differences for any variables within the 

interaction. Accordingly, the assumption of equal slopes was not violated and any 

differences between sexes and forms could be compared in subsequent analyses.  

 

SEXUAL DIMORPHISM 

Overall, females exceeded males in mass and SVL (Table 2.2); however, when all 

variables were corrected for size, sexual dimorphism was detected in ten variables (Body: 

TL, MF, LF, MH, LH; Head: CHL, HL, HH, QT, CT) with males relatively larger than 

females. The degree of dimorphism differed between the five forms, with B. thamnobates 

being dimorphic for all ten variables and Type B exhibiting no detectable dimorphism 

(Table 2.3). All four dimorphic forms showed dimorphism for TL, with HH and MH also 

exhibiting dimorphism for B. melanocephalum and Type A, respectively. Because sexual 

dimorphism was detected within the B. melanocephalum-B. thamnobates complex, all 

subsequent analyses were conducted separately by sex. 
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Table 2.2 Mean morphological and habitat data for male (M) and female (F) dwarf chameleons 

used in this study, grouped by phenotypic form. Standard error shown in brackets. 

 B. melanocephalum Type A B. thamnobates Type B Type C 
 M F M F M F M F M F 

Ecology 
N 35 29 32 35 38 65 16 16 9 12 
Perch height 
(m) 

1.39 
(0.19) 

0.75 
(0.09) 

1.63 
(0.12) 

1.51 
(0.06) 

2.35 
(0.32) 

2.35 
(0.21) 

3.9 
(0.40) 

1.35 
(0.22) 

2.33 
(0.17) 

2.45 
(0.15) 

Perch  
diameter (mm) 

1.68 
(0.12) 2.05 (0.15) 1.59 

(0.15) 
1.88 

(0.15) 
2.21 

(0.14) 
1.98 

(0.10) 
2.39 

(0.17) 
2.05 

(0.21) 
1.55 

(0.20) 
1.76 

(0.20) 
Morphology 

N 46 29 32 46 57 87 22 16 9 12 

Mass (g) 2.15 
(0.08) 

4.39  
(0.22) 

2.54 
(0.14) 

3.5 
(0.32) 

6.73 
(0.45) 

8.65 
(0.61) 

7.82 
(0.57) 

11.4 
(1.47) 

3.27 
(0.64) 

4.28 
(0.92) 

SVL (mm) 48.76 
(0.75) 

56.29  
(0.78) 

48.65 
(1.09) 

50.86 
(1.39)  

62.63 
(1.57) 

66.50 
(1.62) 

68.10 
(1.31) 

71.55 
(3.46) 

50.63 
(3.70) 

51.5 
(3.72) 

TL (mm) 54.01 
(0.96) 

52.83  
(0.88) 

53.77 
(1.29) 

49.08 
(1.09) 

68.61 
(1.90) 

64.59 
(1.75) 

77.78 
(2.02) 

77.80 
(4.47) 

56.08 
(4.43) 

49.84 
(3.38) 

ILL (mm) 28.16 
(0.73) 

33.28  
(0.60) 

28.03 
(0.93) 

30.27 
(1.08) 

37.20 
(2.20) 

42.57 
(2.02) 

43.64 
(1.00) 

48.83 
(3.96) 

29.48 
(1.01) 

30.54 
(3.13) 

BL (mm) 9.15 
(0.18) 

9.94  
(0.16) 

9.32 
(0.24) 

9.57 
(0.26) 

11.49 
(0.34) 

11.69 
(0.33) 

13.77 
(0.42) 

13.84 
(0.83) 

8.84 
(0.50) 

9.54  
(0.68) 

AL (mm) 7.71 
(0.15) 

8.38  
(0.12) 

8.03 
(0.21) 

8.23 
(0.20) 

10.29 
(0.31) 

10.29 
(0.26) 

11.50 
(0.24) 

11.92 
(0.63) 

7.60 
(0.50) 

7.86 
(0.66) 

MF (mm) 4.29 
(0.10) 

4.73  
(0.10) 

4.56 
(0.12) 

4.65  
(0.11) 

6.30 
(0.17) 

6.11 
(0.16) 

7.03 
(0.14) 

7.11 
(0.41) 

5.31 
(0.43) 

4.79 
(0.31) 

LF (mm) 5.22 
(0.11) 

5.50 
(0.11) 

5.44 
(0.10) 

5.47 
(0.11) 

7.43 
(0.22) 

7.35 
(0.19) 

8.39 
(0.29) 

8.43 
(0.43) 

5.91 
(0.45) 

5.50 
(0.33) 

ThL (mm) 8.82 
(0.15) 

9.54 
(0.18) 

9.22 
(0.24) 

9.60  
(0.26) 

10.98 
(0.32) 

11.35 
(0.31) 

12.96 
(0.38) 

13.69 
(0.76) 

8.96 
(0.80) 

8.88 
(0.59) 

CL (mm) 7.50 
(0.11) 

8.35 
(0.12) 

7.83 
(0.20) 

8.16 
(0.23) 

10.00 
(0.19) 

10.14 
(0.28) 

11.17 
(0.24) 

11.52 
(0.56) 

7.79 
(0.60) 

7.76  
(0.52) 

MH (mm) 4.06 
(0.08) 

4.44 
(0.09) 

4.47 
(0.12) 

4.23 
(0.11) 

6.01 
(0.19) 

6.04 
(0.16) 

6.77 
(0.17) 

7.11 
(0.48) 

4.69 
(0.38) 

4.22 
(0.33) 

LH (mm) 5.48 
(0.09) 

5.67 
(0.11) 

5.48 
(0.14) 

5.62 
(0.14) 

7.58 
(0.23) 

7.59 
(0.20) 

8.74 
(0.25) 

8.82 
(0.55) 

5.85 
(0.47) 

5.65 
(0.30) 

LJL (mm) 10.87 
(0.15) 

11.86  
(0.15) 

11.06 
(0.20) 

11.35 
(0.24) 

14.26 
(0.31) 

14.25 
(0.28) 

15.01 
(0.28) 

15.13 
(0.68) 

11.69 
(0.72) 

11.95 
(0.83) 

CHL (mm) 16.14 
(0.24) 

17.14  
(0.23) 

16.30 
(0.29) 

16.72 
(0.34) 

22.18 
(0.49) 

21.82 
(0.45) 

22.49 
(0.46) 

22.72 
(1.06) 

17.35 
(1.16) 

17.12 
(1.24) 

HL (mm) 11.50 
(0.17) 

12.02  
(0.19) 

11.53 
(0.19) 

11.81 
(0.22) 

14.28 
(0.30) 

14.21  
(0.30) 

14.27 
(0.28) 

14.69 
(0.58) 

12.12 
(0.56) 

11.83 
(0.75) 

CHH (mm) 9.34 
(0.15) 

10.41  
(0.21) 

9.80 
(0.20) 

10.09 
(0.25) 

14.62 
(0.41) 

14.55 
(0.36) 

15.09 
(0.40) 

15.69 
(0.92) 

10.51 
(0.77) 

11.04 
(0.98) 

HH (mm) 6.68 
(0.10) 

6.93  
(0.13) 

7.06 
(0.11) 

7.09 
(0.16) 

9.07 
(0.20) 

8.90 
(0.18) 

9.59 
(0.20) 

9.79 
(0.43) 

7.37 
(0.48) 

7.19 
(0.46) 

HW (mm) 7.19 
(0.08) 

7.66  
(0.12) 

7.30 
(0.13) 

7.61 
(0.16) 

10.27 
(0.26) 

10.14 
(0.22) 

10.66 
(0.26) 

10.88 
(0.52) 

8.19 
(0.61) 

8.32 
(0.55) 

CH (mm) 4.31 
(0.12) 

4.98 
(0.12) 

4.80 
(0.14) 

4.95 
(1.75) 

7.97 
(0.25) 

7.89 
(0.21) 

7.78 
(0.24) 

8.58 
(0.49) 

5.40 
(0.50) 

5.42 
(0.55) 

CT (mm) 8.48 
(0.11) 

9.32 
(0.11) 

8.73 
(0.15) 

8.93 
(0.19) 

11.08 
(0.24) 

11.03 
(0.21) 

11.55 
(0.19) 

11.52 
(0.50) 

9.09 
(0.49) 

9.18 
(0.52) 

QT (mm) 9.76 
(0.13) 

10.58  
(0.14) 

9.97 
(0.18) 

10.07 
(0.24) 

12.98 
(0.30) 

12.92 
(0.26) 

13.51 
(0.24) 

13.54 
(0.55) 

10.38 
(0.82) 

10.52 
(0.64) 

 

 
SVL, snout-vent length; TL, tail length; ILL, interlimb length; BL, brachium length; AL, antebrachium 
length; MF, medial forefoot pad length; LF, lateral forefoot pad length; ThL, thigh length; CL, crus length; 
MH, medial hindfoot pad length; LH, lateral hindfoot pad length; LJL, lower jaw length; CHL, casque head 
length; HL, head length; CHH, casque head height; HH, head height; HW, head width; CH, casque height; 
CT, coronoid process of mandible to snout tip;  QT, posterior surface of quadrate to snout tip  
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Table 2.3 F-values resulting from MANCOVA for sexual dimorphism in morphology for all five 

forms in the B. melanocephalum-B. thamnobates complex. Significance levels after sequential 

Bonferroni correction:  ***P < 0.0001, ** P < 0.01, *P < 0.05. 

  F-value 
  B. melanocephalum B. thamnobates Type A Type B Type C 

B
od

y 

TL 73.254*** 147.058*** 62.463*** 6.950 22.254*** 
MH 0.229 4.524* 9.664** 0.997 7.707 
LH 5.370 8.401** 0.015 2.366 1.291 
MF 0.304 20.170*** 0.027 2.416 5.208 
LF 5.713 10.656** 0.572 2.158 3.170 

H
ea

d 

CHL 5.894 36.077*** 0.033 4.021 1.132 
HL 2.533 9.004** 0.001 0.005 1.816 
HH 16.523*** 26.602*** 3.775 1.202 1.438 
CT 0.030 19.317*** 0.280 5.606 0.052 
QT 2.099 28.031*** 3.040 3.251 0.110 

 

TL, tail length; MH, medial hindfoot pad length; LH, lateral hindfoot pad length; MF, medial 

forefoot pad length; LF, lateral forefoot pad length; CHL, casque head length; HL, head length; 

HH, head height; CT, coronoid process of mandible to snout tip;  QT, posterior surface of quadrate 

to snout tip 

 
 

MULTIVARIATE ANALYSIS OF FORMS 

Differences between phenotypic forms  

The PCA was found to be appropriate for both sexes (KMO > 0.85; Bartlett’s test: 

P < 0.0001), with four PCs extracted for each sex (Table 2.4). These PCs accounted for 

68% and 64% of the total variance between forms for females and males, respectively, of 

which the head (including casque) made up the majority (females: 41.02%; males: 

51.37%). 

For females, PC1 correlated highly with head dimensions, PC2 feet and tail, PC3 

limbs, and PC4 with head length (Fig. 2.4, left). MANOVA revealed PCs 1–3 to be 

significantly different between forms (F = 10.032–17.123, P < 0.0001). Bradypodion 

melanocephalum was typically found to have the smallest features for all PCs, whereas  

B. thamnobates possessed a relatively larger head (including casque) and Type B, 
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proportionally, the longest limbs and tail, as well as the largest feet. Types A and B 

showed similarities in head and limb shape. The three Midlands forms (B. thamnobates, 

Types A and C) were very similar in morphology. Indeed, no differences were observed 

between the females of B. thamnobates and Type C for all PCs. However, some 

morphological distinctions were found with respect to Type A and the other Midlands 

forms, with Type A having a smaller head and longer limbs. 

For males, TB and RD were excluded because they were uninformative as 

indicated by their communality values. PC1 possessed positive loadings for casque 

measurements, PC2 for the remaining head measurements, PC3 for feet, and PC4 for the 

remaining limb measurements and tail length (Fig. 2.4, right). All four PCs showed 

significant differences between forms (F = 7.358–11.941, P < 0.0001). Males displayed a 

similar pattern to the females, with B. melanocephalum turning out to have the smallest 

features for all but one PC (PC4), B. thamnobates having the largest casque and head, and 

Type B having the largest body (feet, limbs and tail). Bradypodion melanocephalum and 

Types A and B were found to possess similarly small casques, yet large limbs and tails. 

Type C proved to be fairly intermediate in head and casque shape, showing no significant 

differences between it and the other forms, although it did possess significantly larger feet 

than B. melanocephalum and had the shortest limbs and tail overall. 

 

Site differences within forms 

Type C comprised individuals from a single site; therefore, it was not included in 

this analysis. Of the four remaining forms, only B. thamnobates was found to have site-

specific differences for both sexes (females: Wilks’ λ = 0.116, F5,85 = 2.104, P < 0.0001; 

males: Wilks’ λ = 0.037, F5,85 = 1.946, P < 0.0001), all involving head shape. Females 

were found to differ in HW and HH, and males in HL and HH. For both sexes, differences 
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in HH involved two sites [Boston (site 14: Fig. 2.2) and Bulwer (site 15: Fig. 2.2)], with 

individuals from these localities typically having shorter heads than the other B. 

thamnobates sites. Female dwarf chameleons from Boston were also found to have 

narrower heads, whereas Boston males possessed longer head lengths compared to the 

other sites. 

 

Table 2.4 Results examining differences between forms for both sexes.  PC loadings displayed 

according to size with the percentage of variance explained by each component. Bold values 

highlight variables representing a particular PC. F- and P- values calculated from MANOVA on 

PC scores.  

 Females   Males 
 PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 
QT 0.812 -0.000 0.083 0.073  CHL 0.850 0.334 0.226 0.061 
CT 0.755 0.049 0.195 0.033  HL 0.779 -0.030 0.015 0.182 
CHL 0.752 0.219 0.041 0.504  CHH 0.760 0.302 0.271 0.038 
CH 0.732 0.354 -0.162 0.049  CH 0.755 0.355 0.201 -0.106 
HW 0.715 0.306 0.163 0.042  HW 0.539 0.539 0.254 0.019 
HH 0.707 0.230 0.284 0.028  CT 0.295 0.732 0.152 0.022 
CHH 0.703 0.435 -0.016 0.241  QT 0.351 0.721 0.161 0.060 
LF 0.325 0.756 0.130 0.082  HH 0.418 0.578 0.316 -0.037 
MF 0.113 0.748 0.156 0.079  MF 0.128 0.264 0.794 0.040 
LH 0.321 0.696 0.263 0.031  LF 0.193 0.134 0.727 0.145 
MH 0.402 0.613 0.254 0.009  MH 0.155 0.180 0.655 0.234 
TL -0.000 0.545 0.376 0.260  LH 0.263 0.071 0.567 0.492 
CL 0.276 0.112 0.787 -0.133  BL 0.042 -0.125 0.236 0.784 
ThL -0.056 0.284 0.749 0.207  ThL 0.006 -0.073 0.166 0.754 
AL 0.306 0.194 0.739 0.074  TL 0.100 0.210 -0.068 0.630 
BL -0.149 0.376 0.566 0.409       
HL 0.279 0.103 0.126 0.862       
% 
variance 41.02 13.79 6.87 6.04  % 

variance 37.10 14.27 6.55 6.19 

F 50.72 33.54 49.89 1.44  F 37.75 33.41 36.53 25.50 
P <0.001 <0.001 <0.001 0.841  P <0.001 <0.001 <0.001 <0.001 
 

TL, tail length; BL, brachium length; AL, antebrachium length; MF, medial forefoot pad length; 

LF, lateral forefoot pad length; ThL, thigh length; CL, crus length; MH, medial hindfoot pad 

length; LH, lateral hindfoot pad length; CHL, casque head length; HL, head length; CHH, casque 

head height; HH, head height; HW, head width; CH, casque height; CT, coronoid process of 

mandible to snout tip;  QT, posterior surface of quadrate to snout tip 
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Figure 2.4 Matrix plots of average principal component (PC) scores for female and male dwarf chameleons within the B. melanocephalum-B. thamnobates 

complex. The 17 size-corrected morphometric variables were assigned to three principal components for females, and four for males. Note: PC1 for females 

also includes casque. 

Stellenbosch University  http://scholar.sun.ac.za



 

30 
 

HABITAT ASSOCIATIONS 

Differences between sexes and forms were observed in a variety of habitat variables. In the 

categorical variables percent canopy cover, plant type, and habitat type (Fig. 2.5), females 

tended to occupy more open-canopy habitats compared to males for all five forms, often 

perching on grass and herbaceous plants. Between forms, B. melanocephalum and Type A 

were more readily found in open-canopy habitats compared to the others. Bradypodion 

melanocephalum was typically found in degraded grasslands; however, some individuals 

were located in and around coastal forests. Type A was typically found along the edges of 

exotic plantations (primarily Eucalyptus spp.) on both trees and grasses and in degraded 

grasslands. Types B and C tended to occupy denser canopied habitats, often found in trees 

or shrubs within forests and gardens for Type B or along road verges for Type C. The 

presence of Type C only along road verges is likely the result of sampling bias because of 

difficulty accessing the forest. Bradypodion thamnobates was more variable in its cover 

and plant choice, likely as a result of the majority of individuals sampled being found in 

trees and shrubs in urban or semi-urban settings. 

 The number of random perches was found to differ between macrohabitats  

(F = 16.097, P < 0.0001), with the habitats of B. melanocephalum and Type A being far 

denser than the other three forms (Table 2.5). When examining microhabitat, the 

associated perch diameters from each habitat also differed (F = 61.501, P < 0.0001), with 

the perches in the B. melanocephalum habitat being much narrower (1.77 ± 1.96 mm) and 

those in the habitat of Type B being notably wider (4.04 ± 1.53 mm) than the other 

habitats. Within a habitat, the random perch diameters from the two transects differed only 

for the habitat of Type B (Transect 1: 3.57 ± 1.47 mm; Transect 2: 4.48 ± 1.47 mm; 

 Z = 2.149, P < 0.0001). When comparing the random versus the actual perches used by 

each phenotypic form, B. thamnobates and Type C were found to use their microhabitats in 
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a random fashion (B. thamnobates: F = 0.000, P = 0.986; Type C: F = 3.257, P = 0.072), 

whereas B. melanocephalum chose wider perches than randomly available (F = 9.055,  

P = 0.003) and Types A and B narrower perches on average (Type A: F = 6.199,  

P = 0.014; Type B: F = 3.261, P < 0.0001). When comparing the actual perch diameters 

used by each form, no sex-specific differences were found (F = 0.378, P = 0.536); 

however, significant differences between forms were discovered (F = 4.868, P = 0.001), 

which were attributed to Type A using narrower perches than B. thamnobates and Type B. 

Differences in perch height were detected between forms (F = 16.126, P < 0.0001) and 

sexes (F = 5.885, P = 0.017), with B. melanocephalum occupying significantly lower 

perches compared to the other forms, and the males of each form perching higher than 

females; however, this was only significant within B. melanocephalum (F = 4.769, P = 

0.036) and Type B (F = 37.031, P < 0.0001). 

 

 

Table 2.5 Number of available perches in each of the two transects laid out within the habitats of 

each phenotypic form. 

 Transect Average 
per meter Phenotypic form 1 2 

B. melanocephalum 165 141 15.45 
B. thamnobates 99 105 10.20 
Type A 136 147 14.15 
Type B 87 92 8.95 
Type C 95 119 10.7 
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Figure 2.5 Barplots illustrating the proportion of (a) percent canopy cover, (b) plant type and 

(c) habitat type utilised by female and male dwarf chameleons within the B. melanocephalum- 

B. thamnobates complex. Bmel, B. melanocephalum; A, Type A; Btham, B. thamnobates; B, Type 

B; C, Type C.  
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DISCUSSION 

Chameleons from the morphologically diverse clade of Bradypodion in KwaZulu-Natal 

Province have five distinct morphological forms, despite a lack of genetic differentiation 

for mitochondrial markers (Tolley et al., 2004; Tolley et al., 2008). The forms differ for 

ecologically relevant traits associated with microhabitat structure (perch dimensions), 

particularly with respect to hand/foot size, limbs, and tail. It is likely that differences in 

morphology between the forms are a result of a balancing of selection pressures (natural 

and sexual) closely associated with their microhabitat, suggesting that this is at least one 

mechanism that triggers phenotypic divergence, despite a lack of genetic divergence. 

 

SEXUAL SIZE AND SHAPE DIMORPHISM 

Overall, females were found to be larger than males in mass and body length for all five 

forms, which is not unexpected given that female-biased sexual size dimorphism has been 

documented in other chameleon species (Hebrard & Madsen, 1984; Reaney et al., 2012), 

including Bradypodion (Stuart-Fox et al., 2006a; Stuart-Fox, 2009; Hopkins & Tolley, 

2011). In reptiles, sexual dimorphism is often attributed to sexual selection, resource 

partitioning and/or fecundity advantage (Shine, 1979; Fitch, 1981; Shine, 1988; Olsson et 

al., 2002). Considering male dwarf chameleons display to females to entice mating and not 

vice versa (Stuart-Fox & Whiting, 2005; Tolley & Burger, 2007; Stuart-Fox & Moussalli, 

2008), sexual selection in the form of female competition for males is unlikely to explain 

female-biased sexual size dimorphism in this species complex. However, larger female 

dwarf chameleons do have more offspring than smaller ones likely as a result of their 

larger abdominal cavity (Burrage, 1973), and the high energy demands of reproduction 

often require female lizards to consume more and/or different prey than males (Shine, 
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1989), making fecundity advantage and resource partitioning, respectively, probable 

explanations. 

Once size was removed from all comparisons between sexes, males were relatively 

larger for many of the characters examined, in four of the five forms. Bradypodion 

thamnobates exhibited the largest relative differences, possibly indicating greater male-

male competition. Tail length was found to differ in all sexually dimorphic forms, with the 

males having longer tails than females; typical of reptiles and of other chameleon species 

(Fitch, 1981; Tilbury, 2010; Hopkins & Tolley, 2011). Some possible explanations for this 

dimorphism include female mate choice (relative tail length may attest to a male’s overall 

fitness), longer mating times (longer tails may allow males to better grasp their perches or 

females when mating, thereby enabling them to mate longer and deliver more sperm, 

ultimately allowing them to sire more offspring: Hofmann & Henle, 2006), and/or males 

simply requiring longer tails to accommodate their hemipenes (Shine et al., 1999). To 

resolve which is the most likely explanation, a broad comparative study of the relationship 

between mating patterns, effective reproductive output, sexual dimorphism in tail length 

(and possibly width), and performance capability of the tail should be conducted. 

Considering sexual selection and niche divergence are the primary explanations for 

sexual dimorphism in organisms (Shine, 1989), its absence may be equally associated. As 

such, the sexes of Type B may experience little to no sexual selection or niche divergence. 

However, differences in habitat structure were detected in this form, with males perching 

higher and occupying more closed-canopy habitats than females. If these differences are 

sufficiently substantial, then reduced sexual selection may be an explanation. An 

alternative explanation is that the number of individuals sampled is too low to allow 

detection of any significant differences between sexes (ß = 68%), making it difficult to 

draw any solid conclusions regarding the lack of sexual dimorphism in this form. 
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ECOMORPHOLOGICAL VARIATION 

Head shape explained the vast majority of variation between forms, with casque 

dimensions being the predominant distinction between male forms. As with many lizards, 

chameleons use their heads to signal to rivals, be they conspecifics or predators, indicating 

that conflicts can be harmful and, on occasion, fatal. Considering B. thamnobates was the 

most ornamented for both males and females (i.e., having proportionally larger head and 

casque dimensions), the need to communicate with conspecifics is likely strongest in this 

form, followed closely by Type C. Accordingly, the diminutive head features of B. 

melanocephalum and Type A, coupled with their habitats being more visually open to 

predators (at least avian predators), likely indicates that the need to communicate to 

conspecifics is outweighed by the need to avoid predation. Surprisingly, the casque of 

Type B males was proportionally comparable to the open-canopy forms, yet these 

chameleons were found in forested environments, where detection from predators is 

assumed to be minimal and communication with conspecifics is key. As noted above, this 

result may be a consequence of limited sample size, or the reduced casque may indicate 

that they too utilize open-canopy environments and thus are subject to increased predation 

pressure. A typical forest patch in the southern Drakensberg is surrounded by vast 

grasslands and, although nothing is known about their movements, an individual would 

need to traverse the grasslands to reach the next forest patch. This association between 

open- and closed- canopy habitats and the balancing of selection pressures (i.e., natural: to 

avoid predation; sexual: to signal and acquire mates), has also been suggested in two 

phenotypic forms of the Cape dwarf chameleon, B. pumilum (Hopkins & Tolley, 2011), 

and lends support to the hypothesis that these chameleons are adapting to their 

microhabitats. 
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Further evidence that these chameleons are adapting to their microhabitats can be 

gleaned from their feet and tail. These traits were also found to be variable between forms 

and closely associated with microhabitat structure, with the smaller-footed B. 

melanocephalum utilizing the narrowest perches of all forms, and the larger-footed Type B 

utilizing the widest perches. They are considered ecologically relevant because they 

provide stability and support to chameleons when navigating through their arboreal 

habitats (Fischer et al., 2010; Herrel et al., 2011). Stability becomes especially important 

during confrontations with conspecifics, for example, which often result in fierce fighting 

(Stuart-Fox et al., 2006a; Tolley & Burger, 2007). 

Limb length is often associated with the running, and hence escape, ability of 

lizards, with animals that have longer limbs being able to run faster (Losos & Sinervo, 

1989; Sinervo & Losos, 1991; Macrini & Irschick, 1998; Melville & Swain, 2000; 

Vanhooydonck & Van Damme, 2001; Calsbeek & Irschick, 2007; Herrel et al., 2011). 

However, because chameleons run relatively infrequently and are fundamentally different 

from other lizards in their locomotor behaviour (Bickel & Losos, 2002; Herrel et al., 

2013), selection for running speed may not be high. Selection for maximal reach, on the 

other hand, might be high, enabling them to bridge gaps (Herrel et al., 2011). The 

grassland chameleons (B. melanocephalum and Type A) were found to occupy habitats far 

denser than those of the other phenotypic forms and thus would not need to reach very far 

to grasp hold of the next available perch. Accordingly, they would be expected to have the 

shortest limbs of all phenotypic forms. Correspondingly, the more closed-canopy 

chameleons (B. thamnobates, Types B and C) should possess proportionally longer limbs 

to traverse the larger gaps found in their habitats. However, the three KZN Midlands forms 

(B. thamnobates, Types A and C) did not follow this pattern. Instead, B. thamnobates and 

Type C possessed proportionally small limbs and Type A long limbs. This discrepancy 
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may suggest that microhabitat openness (i.e., the density of perches) may not be the sole or 

primary factor influencing limb length in this dwarf chameleon species complex, or 

possibly that the habitat structure in the Midlands is far more variable. Although climatic 

changes during the Pleistocene brought about significant changes in vegetation throughout 

KZN (Eeley et al., 1999; Mucina & Rutherford, 2006), which likely set off the phenotypic 

divergence within this species complex (Tolley et al., 2004), more recent factors may also 

have contributed. Within the past 2000 years, the KZN Midlands has been almost 

completely transformed, largely because of anthropogenic influences such as Iron Age 

farming and herding (Hall, 1980; Bousman, 1998; Huffman, 2007) and, more recently 

(approximately 200 years), urbanization, comprising factors that are considered to have 

overshadowed any climatic changes during this time (Neumann et al., 2010). These factors 

significantly changed the structure and composition of vegetation in the area, which in 

turn, may have forced the chameleons to rapidly adapt to their ‘new’ habitats with respect 

to limb morphology. Despite the short time scale, lizards have been shown to adapt to 

novel or changed environments in far shorter time periods (e.g., 36 years in Podarcis 

sicula: Herrel et al., 2008).  

Type C was the most puzzling of the five forms, possessing a blend of features 

from both open- and closed-canopy habitats, often resulting in it showing no significant 

differences between forms (e.g., dull coloration: open-canopy forms; prominent casque, 

large gular lobes: closed-canopy forms). This could signify that it might have been initially 

part of an open-canopy habitat form (such as Type A) and is in the process of adapting to a 

forested environment. However, considering forests are the ancestral habitat type for KZN 

chameleons (Tolley et al., 2008: fig. 1, nodes 1-8), Type C has most probably not changed 

habitats but, instead, particular aspects of its habitat may have changed, requiring it to 

adapt. Given that the Karkloof forest, where these chameleons reside, has experienced 
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approximately a 75% reduction in size from 1880 to 1940 (Lawes, Macfarlane, & Eeley, 

2004), the structure (e.g., canopy openness) and composition of the vegetation that they 

utilize has likely changed. Alternatively, the dataset for this phenotypic form may be 

biased. Access to the forest was so limited for this form (as a result of a dense upper 

canopy with no visibility for sampling) that chameleons were only found along road verges 

adjacent to the forest. Considering other studies have reported size dependent dispersal in 

chameleons, with smaller animals tolerating more marginal, sub-optimal habitat (Keren-

Rotem, Bouskila, & Geffen, 2006; Tolley et al., 2010), it is possible that larger Type C 

chameleons exist in the forest, which we were unable to sample. 

Morphological differences within forms were isolated to B. thamnobates. 

Individuals from Boston, and to a lesser extent Bulwer, were found to possess different 

head shapes compared to the other B. thamnobates populations, which might be attributed 

to these sites being at the southern extent of the distribution where the landscape has a 

different geomorphology and appears more fragmented. An escarpment surrounds the 

Boston and Bulwer region, with a river valley dividing the two towns. In the past, forests 

likely covered the slopes of this escarpment down to the river and probably linked up with 

other forests in the KZN Midlands, such as the Dargle forest to the north (site 13; Fig. 2.2). 

With extensive deforestation and urbanization, only a few very small forest fragments 

remain. This land transformation is likely acting as a barrier to dispersal, which the 

escarpment is intensifying. Fragmentation has been shown to bring about morphological 

changes in populations by altering microclimates and potentially selection regimes 

(Sumner, Moritz, & Shine, 1999). Physical fluxes, such as wind, radiation, and water, 

change across the landscape, affecting the vegetation (Saunders, Hobbs, & Margules, 

1991) and, in turn, prey availability. This potential change in prey might have brought 

about the observed differences in head shape, especially considering that head width, 
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height, and length are the traits often correlated with bite force and prey hardness, and bite 

force is a common performance trait used to assess the adaptive significance of differences 

in head morphology (Herrel et al., 2001a; Verwaijen, Van Damme, & Herrel, 2002; 

Measey et al., 2009; Measey et al., 2011). To help determine whether this subset of 

chameleons is adapting to their environment (i.e., on their own evolutionary trajectory) and 

should be considered a cryptic form of B. thamnobates and yet another form within the  

B. melanocephalum-B. thamnobates complex, bite performance and prey type between 

populations should be compared. The extent of gene flow and population structure between 

these chameleons and the other B. thamnobates populations should also be determined. If 

no differentiation is found, the head shape of these chameleons might simply be a result of 

founder effects genetic drift in these small populations. 

The present study has identified clear correlations between morphology and habitat 

in this species complex, and a variety of selection pressures have been proposed to explain 

how and why they arose; however, what does it all mean for the management and 

conservation of these chameleons? Is it suggestive of separate species or simply 

morphologically variable populations of the same species? These questions are valid but, 

before they can be answered, evidence that the differing morphological traits are indeed 

ecologically relevant is required to establish a fit between phenotype and environment. 

This is typically accomplished by testing whether traits associated with particular 

environments consistently enhance performance in that environment. If such a fit can be 

fulfilled, morphologies are said to be adaptive and ecological speciation might be taking 

place, in which case the observed forms should be managed as unique entities on their own 

evolutionary trajectory (e.g., evolutionarily significant units: Ryder, 1986; Crandall et al., 

2000). A fine-scale genetic assessment using nuclear microsatellites is also needed to 

determine how these forms relate to one another by clarifying the effects that habitat 
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fragmentation has had on gene flow, population structure, and genetic diversity. Additional 

research on the behaviour, physiology, reproduction, and historic distributions of each 

form should also help develop a more complete understanding of the underlying processes 

involved in shaping the observed patterns of morphological variation. 
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Chapter 3 
 

 
Paper II: 

Linking microhabitat structure, morphology and locomotor 

performance traits in a recent radiation of dwarf chameleons 

(Bradypodion)* 

 

 
 
 
  

                                                 
* Published as: da Silva, J.M., Herrel, A., Measey, G. J., Vanhooydonck, B. & Tolley, K.A. (2014). Linking 

microhabitat structure, morphology and locomotor performance traits in a recent radiation of dwarf 

chameleons (Bradypodion). Functional Ecology. DOI: 10.1111/1365-2435.12210. 
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ABSTRACT 

Evidence that morphological traits associated with particular environments are functionally 

adapted to those environments is a key component to determining the adaptive nature of 

radiations. Adaptation is often measured by testing how organisms perform in diverse 

habitats, with performance traits associated with locomotion thought to be amongst the 

most ecologically relevant. We therefore explored whether there are relationships between 

morphology, locomotor performance traits (sprint speed, forefoot and tail grip strength on 

broad and narrow dowels) and microhabitat use in five phenotypic forms of a recent 

radiation of dwarf chameleon – the Bradypodion melanocephalum-Bradypodion 

thamnobates species complex – to determine whether morphological differences 

previously identified between the forms are associated with functional adaptations to their 

respective habitats, which can be broadly categorised as open or closed-canopy vegetation. 

The results showed significant differences in both absolute and relative performance values 

between the phenotypic forms. Absolute performance suggests there are two phenotypic 

groups – strong (B. thamnobates and Type B) and weak (B. melanocephalum and Types A 

and C). Relative performance differences highlighted the significance of forefoot grip 

strength among these chameleons, with the closed-canopy forms (B. thamnobates, Types B 

and C) exceeding their open-canopy counterparts (B. melanocephalum, Type A). Little to 

no differences were detected between forms with respect to sprint speed and tail strength. 

These results indicate that strong selection is acting upon forefoot grip strength and has 

resulted in morphological adaptions that enable each phenotypic form to conform with the 

demands of its habitat. This study provides evidence for the parallel evolution of forefoot 

grip strength among dwarf chameleons, consistent with the recognition of open- and 

closed-canopy ecomorphs within the genus Bradypodion.   
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INTRODUCTION  

Trait utility – evidence that morphological traits associated with particular environments 

are indeed ecologically pertinent – is a key component for assessing the adaptive nature of 

radiations, as well as for understanding the underlying mechanisms involved in 

evolutionary adaptations (Schluter, 2000). Trait utility is often measured by testing how 

organisms perform ecologically relevant functions in diverse habitats. Because locomotion 

is essential for the survival (e.g., to escape predation, find food) and reproduction (to find 

mates, defend territories) of many animals, performance traits associated with locomotion 

are thought to be amongst the most ecologically relevant (Huey & Stevenson, 1979; 

Arnold, 1983; Aerts et al., 2000).  

Many animals rely on a broad repertoire of locomotor capabilities, such as 

running/sprinting, jumping, clinging, and climbing, to carry out functions relevant to 

survival; however, optimisation of one performance trait often results in a trade-off in 

another (e.g., Lewontin, 1978; Stearns, 1992; Irschick & Losos, 1999). This is because 

different performance traits may require very different organismal configurations (e.g., 

muscle fibre type, skeletal structure) which are beneficial in different environments (e.g., 

Arnold, 1983; Abu-Ghalyun et al., 1988; Losos, 1990c; Aerts et al., 2000). Such trade-offs 

have been well documented for lizards. For example, a trade-off is commonly observed 

between speed and stability in cases in which terrestrial and arboreal species are compared. 

Open-canopy, terrestrial environments, in which organisms tend to be more visible to 

predators, typically harbour long-legged lizards capable of running rapidly along the 

ground (i.e., broad substrate) to avoid predation. Conversely, lizards in closed, arboreal 

habitats tend to have shorter limbs, which often results in them having relatively slower 

running speeds, but increased stability on the narrow, sometimes vertical, substrates due to 

the reduced distance between their centre of mass and the surface, which minimizes 
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sideways torque (e.g., Pounds, 1988; Losos & Sinervo, 1989; Losos, 1990b; Sinervo & 

Losos, 1991; Losos et al., 1993; Losos & Irschick, 1996; Arnold, 1998; Macrini & 

Irschick, 1998; Melville & Swain, 2000; Vanhooydonck, Herrel, & Irschick, 2006). 

Chameleons, unlike most lizards, move slowly on all substrates. They are thought 

to be cruise foragers (Butler, 2005) that use their ballistic tongue to capture prey (Zoond, 

1933; Wainwright, Kraklau, & Bennett, 1991; Wainwright & Bennett, 1992a, b; Herrel et 

al., 2001b). To avoid predation, chameleons rely upon crypsis and, in the case of arboreal 

chameleons, dropping from branches (Brain, 1961; Burrage, 1973; Tolley & Burger, 

2007). Although there are a number of primarily terrestrial chameleon clades that utilise 

low perches at night to decrease predation risk, the majority of Chamaeleonidae radiated 

during the Eocene into a fully arboreal niche (Tolley, Townsend, & Vences, 2013). They 

have specialised adaptations for such habitats, including a prehensile tail and hands/feet, 

which allow them to grasp perches in a fully arboreal environment (Burrage, 1973; 

Peterson, 1984; Tilbury, 2010; Chapter 2). These features are particularly useful for 

clinging and holding onto relatively narrow substrates (Peterson, 1984; Higham & Jayne, 

2004). Because of their vastly different locomotor adaptations and cryptic strategies 

compared to other lizards (Peterson, 1984), the typical performance predictions may not 

apply to chameleons (i.e., Herrel et al., 2011). Nevertheless, chameleon morphology has 

been shown to correlate with performance in particular habitats. For example, chameleons 

in closed-canopy habitats, such as forests and woodlands, tend to possess relatively longer 

tails and larger feet than do chameleons in open-canopy habitats like grasslands and 

heathlands (Hopkins & Tolley, 2011; Herrel et al., 2013). This may enable them to grip 

harder on the broader perches found there (Losos et al., 1993; Herrel et al., 2011; Herrel et 

al., 2013). The closed-canopy species within the genus Bradypodion (dwarf chameleons) 

also run faster than do their open-canopy counterparts, likely owing to their relatively 
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longer limbs (Herrel et al., 2011; Herrel et al., 2013). It has been suggested that closed-

canopy habitats are less cluttered, and in essence more ‘open’ at the microhabitat level, 

with fewer available perches for a chameleon to grasp, compared to open-canopy habitats, 

which are structurally cluttered at the microhabitat level (Herrel et al., 2011; Chapter 2). 

As such, longer limbs may be essential within closed-canopy habitats to facilitate gap 

bridging between perches. The associated differences in sprint speed may simply be a by-

product of their limb length (e.g., longer limbs allow longer strides to be taken without 

necessarily increasing stride frequency: Bauwens et al., 1995; Bonine & Garland, 1999; 

Vanhooydonck, Van Damme, & Aerts, 2002). These correlations demonstrate local 

adaptations to microhabitat, and thus trait utility. In the case of Bradypodion pumilum (the 

Cape dwarf chameleon), these adaptations led to the suggestion that open- and closed-

canopy forms should be considered ecomorphs (Measey et al., 2009; Herrel et al., 2011). 

However, an essential component of the ecomorph concept is the parallel evolution in 

multiple lineages of correlations between morphology and ecology (sensu Williams, 1972). 

An assessment of trait utility in another Bradypodion clade – the Bradypodion 

melanocephalum-Bradypodion thamnobates species complex – may thus prove beneficial 

for the classification of dwarf chameleons as ecomorphs. 

The B. melanocephalum-B. thamnobates species complex is a recent radiation of 

dwarf chameleons from KwaZulu-Natal (KZN) Province, South Africa (Tolley et al., 

2008) that is classified as being taxonomically problematic due to discordance between 

phylogeny and morphology (Tolley et al., 2004). The complex is comprised of five 

recognisable phenotypic forms (Fig. 3.1), all with distinct differences in ecology and 

distribution (Chapter 2). Two forms are classified taxonomically – B. melanocephalum 

(Gray, 1865) and B. thamnobates (Raw, 1976) – and the remaining three (regarded as 

Types A, B and C in Chapter 2) designated as morphotypes (Tolley & Burger, 2007; 
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Tilbury, 2010). Type A appears most similar to B. melanocephalum in size and colour, 

leading many to classify it as another population of the species (Tolley et al., 2004; 

Tilbury, 2010); however, it has been found to be most similar to B. thamnobates 

genetically (Tolley et al., 2004: fig. 2, samples CT16 & CT17). Types B and C have 

morphological features outwardly similar to B. thamnobates (e.g., prominent casque and 

large gular lobes), yet differ in size and colouration. Mitochondrial DNA has grouped Type 

B with B. thamnobates (Tolley et al., 2004: fig. 2, sample CT71), while Type C has been 

found to group with both B. melanocephalum and B. thamnobates (Tolley et al., 2004:  

fig. 2, samples B304 & B305).  

 

 

Figure 3.1 Photographs and general distributions of the five dwarf chameleon forms within the 

 B. melanocephalum-B. thamnobates species complex from southern KwaZulu-Natal Province, 

South Africa. Only male forms are shown, although females resemble males in overall colouration 

(refer to fig. 2.1 in Chapter 2). Numbers indicate field sites sampled in this study: 1, Durban;  

2, Hilton; 3, Karkloof; 4, Howick; 5, Dargle; 6, Nottingham Road; 7, Kamberg Nature Reserve. 
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Similar to their congener B. pumilum (Herrel et al., 2011), these forms appear to 

fall into two broad habitat categories – either open (B. melanocephalum and Type A) or 

closed-canopy (B. thamnobates, Types B and C) – and have morphological features that 

appear to reflect adaptations to these habitats (see Chapter 2). However, some 

morphological features, particularly the limbs and tail, do not always correlate with these 

broad habitat categories (Chapter 2), potentially reflecting differences at the microhabitat 

level and/or the recent divergence of this radiation. 

To understand whether or not the phenotypic differences in this group of 

chameleons are adaptive, we examined whether performance could be predicted by 

morphology and/or microhabitat. We expected similar patterns to be revealed as have been 

observed with other Bradypodion species (Herrel et al., 2011; Herrel et al., 2013). 

Therefore, we hypothesised that absolute differences in performance will be correlated to 

overall body size, but that the phenotypic forms would exhibit functional adaptations (i.e., 

relative differences in maximal sprint speed, forefoot and tail grip strength) associated with 

their microhabitats. In particular, we predicted that 1) relative sprint speed would be 

determined by limb length; 2) closed-canopy habitat chameleons, which possess 

proportionally larger feet (Chapter 2), would have a relatively stronger grip on both wide 

and narrow perches than do the shorter-footed open-canopy chameleons; 3) closed-canopy 

chameleons would possess a proportionally stronger tail grip on wide perches because their 

longer tails can wrap more coils around a thick substrate compared to the smaller tails of 

the open-canopy chameleons, increasing the contact area and creating more friction, 

thereby allowing for a stronger grip (Herrel et al., 2013), while on narrow perches, all 

forms would be expected to perform comparably; and 4) morphological traits that correlate 

well with grip strength, will also show strong correlations to microhabitat (perch diameter). 

Confirmation of these predictions would corroborate the parallel evolution of open- and 
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closed-canopy ecomorphs within the B. melanocephalum-B. thamnobates species complex, 

as well as the genus.  

 

MATERIALS AND METHODS 

STUDY SITES AND SAMPLING PROCEDURES 

A total of 171 dwarf chameleons (85 females; 86 males) representing the five phenotypic 

forms (see Chapter 2) within the B. melanocephalum-B. thamnobates species complex 

were sampled from seven sites within southern KZN (Fig. 3.1) in January and February 

2010. To obtain an adequate sample size, B. thamnobates was sampled from three sites; 

whereas the remaining four forms were sampled from a single site each. Animals were 

collected at night and geo-referenced using GPS coordinates recorded at the location each 

chameleon was found. Marked flagging tape was placed on the perch of each chameleon to 

indicate the exact location at which each chameleon was found. Each chameleon, along 

with a section of their perch, was then placed in a separate cloth bag and brought back to 

the field base overnight, where they were measured and their performance tested the 

subsequent day. The diameter of the perch was measured to the nearest 0.01 mm using 

digital callipers. Once all data were collected, animals were released at their exact point of 

capture.  

 

MORPHOMETRICS 

All chameleons were measured to the nearest 0.1 mm using digital callipers (Fig. 3.2): 

snout-vent length (SVL), interlimb length (ILL), tail length (TL), thigh length (ThL), crus 

length (CL), medial hindfoot pad length (MH), lateral hindfoot pad length (LH), proximal 

hindfoot pad length (PH), brachium length (BL), antebrachium length (AL), medial 

forefoot pad length (MF), lateral forefoot pad length (LF), and proximal forefoot pad 
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length (PF). Because we worked with live animals, measurements were made externally 

and are, therefore, the best approximations for the actual skeletal components listed above. 

The limits of each component were determined by gently moving the limbs and feet at the 

joints and positioning each end of the callipers at either end of the bony segment. For 

consistency, these measurements were taken on the left side of the body. Each 

measurement was taken once because preliminary precision trials conducted on 10  

B. thamnobates chameleons and based on three measurements of each variable found little 

error between the three recordings (± 0.77%). The mass of each chameleon was also 

measured using a Pesola® micro-line spring scale (model 93010: 30 g x 0.25 g ± 0.3%). 

 

Figure 3.2 Thirteen measurements recorded for each chameleon. SVL (snout-vent length ), TL (tail 

length), ILL (interlimb length), ThL (thigh length), CL (crus length), MH (medial hindfoot pad 

length), LH (lateral hindfoot pad length), PH (proximal hindfoot pad length), BL (brachium 

length), AL (antebrachium length), MF (medial forefoot pad length), LF (lateral forefoot pad 

length), and PF (proximal forefoot pad length).   
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PERFORMANCE 

Chameleons were first allowed to thermoregulate in a sun/shade setting to attain their 

preferred body temperature (between 28-32˚C; see Segall et al., 2013). All performance 

trials were then performed at ambient temperature. A minimum rest period of 1hr was 

allowed for each chameleon during the transition between sprinting and gripping tests. 

Sprint speed was tested by running chameleons along a flat 1 m long track marked at 25 

cm intervals. Considering chameleons move very slowly in their regular (perched) habitat 

and probably do not rely on running to avoid predation in their arboreal habitat (Brain, 

1961; Burrage, 1973; Tolley & Burger, 2007), selection related to sprint speed might occur 

when animals are moving along the ground (Herrel et al., 2011). Previous studies of 

chameleons have also shown that sprint speed is highest on a flat substrate (Abu-Ghalyun 

et al., 1988; Losos et al., 1993); therefore, sprinting performance was tested by chasing 

chameleons along a flat track. The times at which animals crossed the 25 cm markers were 

recorded using a stopwatch. For dwarf chameleons, these manual recordings were found to 

be comparable to readings provided electronically using infrared photocells (Herrel et al., 

2011). The speed in centimetres per second over the fastest interval was calculated and 

retained for further analysis.  

Grip strength was tested using two different sized horizontal dowels (broad:  

9.25 mm; narrow: 4 mm) mounted separately on a piezo-electric force platform (Kistler 

Squirrel force plate, ± 0.1N: see Herrel et al., 2012), which was connected to a Kistler 

charge amplifier (type 9865). The dowel sizes were chosen as they are representative of 

branch diameters available to these chameleons (Chapter 2), and hence, might reflect the 

limit of what they perch on. Moreover, they resemble the dowel sizes used in other dwarf 

chameleon performance studies (Herrel et al., 2011; Herrel et al., 2013). Forces were 

obtained during a 60 second recording session and recorded at 1000Hz. During the session, 
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chameleons voluntarily gripped the dowel with their tail and forefeet repeatedly (typically, 

2-4 grips each per session), and were then pulled until they released the dowel. Animals 

were pulled in the vertical direction to measure tail force and in the horizontal direction to 

measure forefoot grip strength. Even though structural differences exist between 

chameleon fore- and hindfeet, which might affect their performance, such as the reverse 

arrangement of fused toes between the medial and lateral segments (Burrage, 1973; 

Peterson, 1984), we only investigated forefoot performance because it allowed for 

comparisons to other species in the genus (B. pumilum: Herrel et al., 2011; Bradypodion 

damaranum: Herrel et al., 2013; Potgieter, 2013; Bradypodion occidentale: Herrel et al., 

2013) and, principally, because the forefoot is much easier to measure, resulting in greater 

precision. Furthermore, the morphometric data show strong correlations between fore- and 

hind-foot sizes (Chapter 2). Accordingly, the forefoot performance results are expected to 

hold for the hindfoot as well. Each chameleon was tested in three separate recording 

sessions for each dowel, with at least 30 min rest between sessions involving the same 

dowel, and at least one hour of rest between sessions when changing dowels. The peak 

forces (Z, tail; Y, forefeet) were recorded and extracted using Bioware software (Kistler), 

and the highest tail and forefeet grip values per individual per dowel were retained for 

subsequent analysis.  

 

STATISTICAL ANALYSES 

All analyses were carried out using SPSS version 17.0 (2008). All data were log10 

transformed prior to analysis to fulfil assumptions of normality and homoscedasticity. 

Ordinary least squares regressions were then conducted to verify that the assumptions were 

met. Each log10 transformed variable was entered as the dependent variable, separately, and 

a plot of the z-predicted (x-axis) against z-residual (y-axis) values was constructed. All 
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plots showed that the error variance (z-residual) is consistent with the varying values in the 

predicted variables (z-predicted), confirming homoscedasticity. To remove the effect of 

body size on performance, all data were size-corrected using a linear regression executed 

on all individuals, and the unstandardized residuals saved for use in subsequent analyses. 

The regression and a principal component analysis (PCA) indicated that all body and 

performance measurements followed similar trajectories and fit within a single principal 

component, with log SVL possessing the highest component score (Braña 1996; Kratochvíl 

et al., 2003; McCoy et al., 2006). Accordingly, all measurements were size-corrected using 

logSVL.  

Although a previous study revealed significant morphometric differences between 

the five phenotypic forms and sexes examined in this study (Chapter 2), a multivariate 

analysis of variance (MANOVA) using a general linear model (GLM) was carried out to 

verify that the subset of data, which included only individuals used in the performance 

tests used here, would reproduce those results. The full model specified SEX and FORM as 

fixed factors, SEX x FORM as the interaction, and all size-corrected variables as the 

dependent variables. All P-values were subjected to Holm’s sequential Bonferroni (Holm 

1979) correction to minimize the possibility of Type I errors (Rice, 1989). 

 

Performance 

For grip strength tests, repeated-measures ANOVAs were carried out to assess 

whether performance was dependent on dowel size for each phenotypic form and both 

sexes. MANOVAs were then conducted on each of the five performance variables using 

both absolute (log10 transformed) and relative (size-corrected) values to test for differences 

between forms. As above, all P-values were subjected to Holm’s sequential Bonferroni 

correction. To explore which morphological variables best explained the variation in sprint 
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speed and forefoot grip strength on both dowels for each chameleon form, separately, 

multiple linear regression models were carried out on size-corrected variables. The same 

models were run for each phenotypic form and sex. Specifically, the three performance 

variables were entered separately as the dependent variable in a linear regression, with all 

size-corrected variables used as the independent variables. Akaike’s information criterion 

(AIC) was calculated using the residual sum of squares from each model, and the 

difference between the lowest AIC and all others (∆i) was determined. Akaike’s weights 

(wi) were then calculated for each model, with the one exhibiting the highest wi 

acknowledged as the best model (Burnham & Anderson, 2002). Because tail length was 

the only tail variable measured in this study, a linear regression was conducted simply to 

assess the degree of correlation between it and tail grip strength on both dowels.  

 

Habitat 

To determine whether the perch diameter used by chameleons (i.e., microhabitat) is 

correlated with their morphology, linear regression analyses were run on log10 transformed 

data using perch diameter as the independent variable and variables making up the 

forefoot, hindfoot and tail (MF, LF, PF, MH, LH, PH, TL) as the dependent variables. 

Only these morphometric variables were included because they are directly involved in 

gripping perches. As above, AIC and wi were calculated for each model. 

  

RESULTS 

The initial MANOVA revealed morphological differences between the five phenotypic 

forms (Wilks’ λ = 0.267, F4,169 = 4.899, P < 0.001) and sexes (Wilks’ λ = 0.539,  

F1,169 = 10.959, P < 0.001), confirming previous results for this species complex (Chapter 
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2; refer to Table 3.1 for raw data). Given the significant sex effect, all subsequent analyses 

were carried out separately by sex. 

 

Table 3.1 Summary of mean microhabitat, morphological, and performance data for male (M) and 

female (F) dwarf chameleons used in this study, grouped by phenotypic form.  Standard deviation 

shown in brackets.  

 B. melanocephalum B. thamnobates Type A Type B Type C 
 M F M F M F M F M F 

Microhabitat 
N 25 16 17 23 19 23 14 10 7 9 
Perch diameter 
(mm) 

1.77 
(0.95) 

2.06  
(0.94) 

2.38 
(0.87) 

2.18 
(1.47) 

1.55 
(0.76) 

2.18 
(1.00) 

2.80 
(1.58) 

2.24 
(1.00) 

1.58 
(0.58) 

1.78 
(0.73) 

Morphology 
N 25 15 20 25 20 25 14 12 6 7 

Mass (g) 2.1 
(0.5) 

4.4  
(0.9) 

6.2 
(3.8) 

8.8 
(5.9) 

2.6 
(0.9) 

2.2 
(0.7) 

8.4 
(1.9) 

13.4 
(4.5) 

1.8 
(0.3) 

1.9 
(0.5) 

SVL (mm) 49.1 
(4.4) 

56.8 
(2.9) 

60.0 
(14.6) 

66.4 
(16.6) 

48.3 
(7.3) 

44.5 
(5.4) 

69.5 
(4.3) 

77.5 
(6.8) 

40.6 
(3.2) 

41.6 
(3.9) 

TL (mm) 54.7 
(5.4) 

51.7 
 (3.7) 

66.7 
(17.9) 

65.5 
(18.1) 

52.5 
(7.9) 

44.8 
(4.1) 

79.4 
(7.9) 

85.5 
(10.7) 

44.8 
(3.3) 

41.3 
(4.1) 

ILL (mm) 27.6 
(3.2) 

33.4  
(2.0) 

32.9 
(8.4) 

37.9 
(10.6) 

25.5 
(4.1) 

24.2 
(3.6) 

38.0 
(3.8) 

44.8 
(5.8) 

20.8 
(2.4) 

21.1 
(1.4) 

BL (mm) 9.3 
(1.1) 

10.0  
(0.7) 

11.9 
(3.1) 

12.7 
(3.5) 

9.5 
(1.6) 

8.9 
(1.3) 

14.7 
(1.1) 

15.4 
(1.5) 

7.7 
(0.3) 

7.9 
(0.7) 

AL (mm) 7.8 
(0.9) 

8.4  
(0.5) 

9.9 
(2.8) 

10.5 
(2.9) 

8.1 
(1.5) 

7.35 
(0.9) 

11.9 
(0.7) 

12.9 
(1.3) 

6.4 
(0.5) 

6.2 
(0.5) 

MF (mm) 4.4 
(0.5) 

4.9  
(0.4) 

6.1 
(1.5) 

6.4 
(1.6) 

4.7 
(0.7) 

4.3 
(0.5) 

7.1 
(0.4) 

7.9 
(08) 

4.2 
(0.4) 

4.1 
(0.3) 

LF (mm) 5.3 
(0.5) 

5.7 
(0.5) 

7.3 
(1.9) 

7.8 
(1.8) 

5.5 
(0.7) 

5.1 
(0.5) 

8.9 
(0.5) 

9.2 
(0.8) 

4.9 
(0.6) 

4.7 
(0.6) 

PF (mm) 1.9 
(0.2) 

2.0 
(0.2) 

2.9 
(0.8) 

3.0 
(0.9) 

1.9 
(0.3) 

1.9 
(0.3) 

3.6 
(0.5) 

3.8 
(0.4) 

1.6 
(0.1) 

1.8 
(0.3) 

ThL (mm) 9.1 
(0.9) 

9.6 
(0.6) 

11.3 
(3.4) 

11.8 
(3.3) 

9.4 
(1.6) 

8.7 
(1.1) 

13.4 
(1.1) 

15.1 
(1.50) 

7.1 
(0.6) 

7.4 
(0.7) 

CL (mm) 7.7 
(0.6) 

8.4 
(0.5) 

9.5 
(2.5) 

10.3 
(2.8) 

7.8 
(1.3) 

7.3 
(0.9) 

11.3 
(0.6) 

12.5 
(1.1) 

6.3 
(0.6) 

6.3  
(0.4) 

MH (mm) 4.2 
(0.3) 

4.5 
(0.4) 

6.0 
(1.8) 

6.4 
(1.7) 

4.5 
(0.8) 

3.9 
(0.4) 

7.0 
(0.7) 

8.0 
(1.0) 

3.7 
(0.5) 

3.4 
(0.4) 

LH (mm) 5.6 
(0.5) 

5.8 
(0.5) 

7.7 
(2.0) 

8.0 
(2.1) 

5.7 
(0.9) 

5.1 
(0.8) 

9.2 
(1.1) 

9.8 
(1.4) 

4.7 
(0.4) 

4.9 
(0.4) 

PH (mm) 2.1 
(0.3) 

2.2 
(0.3) 

3.3 
(1.1) 

3.3 
(1.2) 

2.3 
(0.5) 

1.9 
(0.4) 

3.6 
(0.6) 

4.2 
(0.7) 

7.7 
(0.3) 

2.1 
(0.3) 
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Table 3.1 continued. 

 B. melanocephalum B. thamnobates Type A Type B Type C 
 M F M F M F M F M F 

Performance 
N 23 15 20 25 20 25 13 12 5 7 

Speed (cm s-1) 6.30 
(1.60) 

5.94 
(1.31) 

7.48 
(3.51) 

7.79 
(1.85) 

5.99 
(1.92) 

5.21 
(1.29) 

9.96 
(2.06) 

9.13 
(1.84) 

4.52 
(1.27) 

4.04 
(0.84) 

Max. forefoot grip 
force (N) 

          

Broad 0.08 
(0.03) 

0.07 
(0.03) 

0.18 
(0.14) 

0.17 
(0.09) 

0.05 
(0.03) 

0.05 
(0.02) 

0.19 
(0.12) 

0.21 
(0.16) 

0.06 
(0.02) 

0.05 
(0.02) 

Narrow 0.47 
(0.11) 

0.55 
(0.13) 

1.16 
(0.90) 

1.13 
(0.68) 

0.39 
(0.19) 

0.30 
(0.12) 

1.49 
(0.41) 

1.70 
(0.53) 

0.28 
(0.09) 

0.26 
(0.06) 

Max. tail grip 
force (N) 

          

Broad 0.82 
(0.31) 

0.68 
(0.31) 

1.36 
(0.87) 

1.52 
(1.00) 

0.60 
(0.36) 

0.62 
(0.25) 

2.23 
(1.27) 

2.17 
(1.12) 

0.44 
(0.10) 

0.50 
(0.16) 

Narrow 0.95 
(0.42) 

0.62 
(0.24) 

1.34 
(0.99) 

1.65 
(1.34) 

0.78 
(0.39) 

0.56 
(0.27) 

2.17 
(0.94) 

2.19 
(1.45) 

0.40 
(0.11) 

0.38 
(0.15) 

 

SVL, snout-vent length; TL, tail length; ILL , interlimb length; ThL , thigh length; CL , crus length; MH , 

medial hindfoot pad length; LH , lateral hindfoot pad length; PH , proximal hindfoot pad length; BL , 

brachium length; AL , antebrachium length; MF , medial forefoot pad length; LF , lateral forefoot pad length; 

PF , proximal forefoot pad length.   

 

PERFORMANCE 

The effect of dowel size on forefoot grip strength was significant for both sexes in all five 

phenotypic forms (Table 3.2), with animals exerting higher forces on the narrow dowel 

compared to the broad dowel (Table 3.1). In contrast, only Type A males from the KZN 

Midlands showed a significant difference in tail performance between the two dowels 

(Table 3.2), with these animals also showing a stronger grip on the narrow dowel (Narrow: 

0.78 ± 0.36 N; Broad: 0.60 ± 0.36 N). Overall, chameleons exhibited stronger grip forces 

with their tails than with their forefeet (Table 3.1). 
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Table 3.2 Repeated measures ANOVA assessing the dependence of grip strength on dowel size 

within both sexes of each phenotypic form.  

Morph Sex n Max. Forefoot grip strength Max. Tail grip strength 
 F P F P 

B. melanocephalum M 23 271.81 < 0.001 0.24 0.631 
F 15 257.37 < 0.001 0.64 0.435 

B. thamnobates M 20 550.56 < 0.001 0.22 0.647 
F 25 521.00 < 0.001 0.01 0.910 

Type A M 20 396.04 < 0.001 12.15 0.003 
F 25 259.66 < 0.001 1.04 0.320 

Type B M 13 449.59 < 0.001 1.09 0.315 
F 12 230.94 < 0.001 0.18 0.682 

Type C M 5 159.31 0.001 1.918 0.225 
F 7 212.71 < 0.001 0.44 0.531 

M, male; F, female; n, sample size; F, test value; P, significance value. 

 

Absolute and relative performance differences were uncovered between forms for 

both males and females, albeit to varying degrees (Table 3.3). Both sexes showed the same 

pattern in terms of absolute differences, typically with the largest forms being the strongest 

(i.e., B. thamnobates and Type B). In addition, these two largest forms showed similar 

performance levels between them, for almost all traits (Table 3.3). Similarly, the smaller 

forms (B. melanocephalum and Types A and C) were comparable to each other for most 

performance traits.       

Relative performance values showed fewer differences between forms and sexes.   

After Bonferroni correction, female forms were only found to differ from each other in 

forefoot grip strength on the broad dowel (Table 3.3; Fig. 3.3). This was attributed to  

B. thamnobates having a substantially stronger grip than B. melanocephalum and Type A. 

Male forms differed from each other in forefoot grip strength on both dowels, as well as 

tail grip strength on the broad dowel (Fig. 3.3). These differences were also attributed to 

the stronger gripping ability of B. thamnobates, particularly for forefoot strength, and  

B. melanocephalum and Type B for tail grip strength. 

Stellenbosch University  http://scholar.sun.ac.za



 

57 
 

 

 

 

Table 3.3 MANOVA results investigating absolute and relative performance differences between phenotypic forms.  

Performance  Males (n=86)  Females (n=85) 

  Absolute  Relative  Absolute  Relative 
  F P  F P  F P  F P 
Sprint speed (cm s-1)  10.406 < 0.001*  1.331 0.266  8.069 < 0.001*  1.139 0.344 
Max. forefoot grip force (N)             

Broad  18.509 < 0.001*  4.669 0.002*  22.585 < 0.001*  3.961 0.006* 
Narrow  26.643 < 0.001*  5.187 0.001*  27.066 < 0.001*  2.227 0.073 

Max. tail grip force (N)             
Broad  14.910 < 0.001*  3.636 0.009*  14.207 < 0.001*  2.510 0.048 

Narrow  14.932 < 0.001*  1.972 0.107  14.410 < 0.001*  1.874 0.123 

F, test value; P, significance value; * Significant after Bonferroni correction. 
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Figure 3.3 Error plots of mean absolute values (left) and mean relative values (right) for the five 

performance variables tested for the B. melanocephalum-B. thamnobates species complex. Error 

bars represent standard error. Absolute force equates to log10-transformed values, whereas relative 

force depicts size-corrected values. Solid circles represent males; empty circles, females.  
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Model selection using linear regression to find the morphological variables that 

best explain performance did not show a pattern that could be generalised to fit all forms 

(Table 3.4). In some cases, several candidate models, often involving multiple 

morphological variables, exhibited significant correlations with performance (Tables S3.1-

S3.3); however, the best fitting models tended to include a single morphological variable 

(Table 3.4).  Of the three performance variables that underwent model selection (sprint 

speed and forefoot grip strength on broad and narrow dowels), forefoot grip strength on the 

narrow dowel showed significant correlations for almost all forms and sexes (Table 3.4). 

As forefoot size increased (particularly the medial and proximal forefoot), so did the grip 

strength of both sexes of the open-canopy forms, B. thamnobates females, and Type B 

males. In contrast, antebrachium length, not forefoot size, was the best predictor of grip 

strength on the narrow dowel for B. thamnobates from the closed-canopy habitat. On the 

broad dowel, forefoot size and grip strength were not correlated for most forms; and in two 

cases, correlations were negative, suggesting overall that chameleons do not perform well 

on the broad surface and, in some cases, performance drops significantly. Sprint speed 

exhibited the greatest variation among forms and sexes, with the best model generally 

incorporating a combination of fore- and hindlimbs and feet. Only three groups showed 

significant correlations between tail length and grip strength (Broad dowel:  

B. melanocephalum females; Narrow dowel: Type B females and Type C males). No 

performance-morphology associations were uncovered for Types B and C females for any 

of the five performance traits, which could potentially be attributed to their low sample 

sizes (n = 11 and 8, respectively).  
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HABITAT 

Model selection examining the best morphological correlates of perch diameter found 

significant correlations for all but Type C chameleons (Table S3.4), and was particularly 

strong for females of the closed-canopy habitat form, B. thamnobates. Of the best fitting 

models, proximal hindfoot pad length was correlated to perch diameter in females; 

although in males, no consistent pattern was observed (Table 3.5). Overall, different 

morphological variables were found to associate with perch diameter (Table 3.5) compared 

to those that associated with grip strength (Table 3.4). 

 

Table 3.4 Results of regression analyses on the morphological variables found to best reflect the 

five performance variables under investigation. 

Performance 
variable Phenotypic form 

Males  Females 
Model ß R2 P  Model ß R2 P 

Sprint Speed 

B. melanocephalum AL 0.412 0.169 0.041  CL -0.683 0.612 0.002 
MF 0.657 

B. thamnobates ThL 0.652 0.425 0.002  PH -0.314 0.197 0.089 
AL 0.394 

Type A MF 0.377 0.142 0.112  LH 0.375 0.309 0.030 
AL 0.357 

Type B MF 0.627 0.505 0.015  LH 0.570 0.325 0.053 
BL 0.378 

Type C MH 0.244 0.001 0.001  ThL -0.371 0.138 0.326 
PH 0.732 
AL 0.436 

Maximum 
Forefoot 
Grip 
Strength 
(Broad 
dowel) 

B. melanocephalum AL 0.378 0.143 0.135  MH -0.317 0.100 0.025 
B. thamnobates BL 0.395 0.156 0.084  LF 0.295 0.087 0.153 
Type A MF 0.363 0.131 0.127  MF 0.341 0.116 0.111 
Type B PF 0.524 0.275 0.045  AL -0.500 0.25 0.098 
Type C MF -0.780 0.608 0.038  MF 0.636 0.404 0.066 

Maximum 
Forefoot 
Grip 
Strength 
(Narrow 
dowel) 

B. melanocephalum MF 0.411 0.168 0.042  PF 0.561 0.315 0.024 
B. thamnobates AL 0.486 0.219 0.038  AL 0.383 0.304 0.018 

MF 0.307 
Type A AL -0.493 0.351 0.031  MF 0.716 0.513 <0.001 

PF 0.489 
Type B PF 0.612 0.374 0.015  PF 0.402 0.161 0.196 
Type C MF -0.509 0.259 0.244  MF 0.077 0.154 0.296 

 

Table 3.4 continued.  
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Performance 
variable Phenotypic form 

Males  Females 
Model ß R2 P  Model ß R2 P 

Maximum 
Tail Grip 
Strength 
(Broad 
dowel) 

B. melanocephalum 

TL 

0.248 0.061 0.233  

TL 

0.539 0.291 0.031 
B. thamnobates 0.342 0.117 0.140  -0.177 0.031 0.397 
Type A 0.058 0.003 0.814  0.228 0.052 0.296 
Type B -0.069 0.005 0.807  0.233 0.050 0.486 
Type C 0.260 0.067 0.574  0.252 0.064 0.513 

Maximum 
Tail Grip 
Strength 
(Narrow 
dowel) 

B. melanocephalum 

TL 

-0.035 0.001 0.867  

TL 

0.107 0.011 0.694 
B. thamnobates -0.018 0.000 0.939  0.432 0.187 0.031 
Type A 0.105 0.011 0.669  0.071 0.005 0.748 

Type B -0.040 0.002 0.888  0.608 0.370 0.036 
Type C 0.822 0.675 0.023  0.254 0.065 0.509 

 

R2, coefficient of determination; ß, Beta coefficient depicting direction of correlation; P, significance value;  

BL, brachium length; AL, antebrachium length; ThL, thigh length; CL, crus length; MF, medial forefoot pad 

length; LF, lateral forefoot pad length; PF, proximal forefoot length; MH, medial hindfoot pad length;  

LH,  lateral hindfoot pad length; PH, proximal hindfoot pad length; TL, tail length.  Text in bold highlights 

significant morphology-performance correlations.  Refer to Table 3.1 for sample sizes. 

 

Table 3.5 Morphological variables found to best reflect perch diameter across all phenotypic forms 

and sexes.  

Phenotypic form 
Males  Females 

n Model ß R2 P  n Model ß R2 P 
B. 
melanocephalum 

25 PF 0.429 0.184 0.032  15 PH 0.537 
0.478 

0.653 0.001 
  TL  

B. thamnobates 17 PF 0.513 0.263 0.035  23 MF -
1.195 
1.177 

0.712 0.000 
  PH  

Type A 19 LH -
0.274 

0.075 0.256  23 PH -
0.417 

0.174 0.049 

Type B 14 MH 1.022 0.659 0.011  10 PF -
1.285 
1.353 

 

0.421 0.195 
  PH -

0.441 
 MF  

  TL -
0.511 

   

Type C 6 LF 0.471 0.221 0.287  7 LH 0.308 0.095 0.371 
 

n, sample size; ß, Beta coefficient depicting direction of correlation; R2, coefficient of 

determination; P, significance value; TL, tail length; MF,  medial forefoot pad length; LF, lateral 

forefoot pad length; PF, proximal forefoot length; MH,  medial hindfoot pad length; LH,  lateral 

hindfoot pad length; PH, proximal hindfoot pad length.   Text in bold highlights significant 

correlations between morphology and perch diameter.  
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DISCUSSION 

Chameleons within the B. melanocephalum-B. thamnobates species complex possess 

functional adaptations in forefoot size and performance that correspond to their use of 

either open- or closed-canopy habitats. These results reflect those observed for other 

Bradypodion species (Herrel et al., 2011; Herrel et al., 2013; Potgieter, 2013), providing 

additional support for the existence of open- and closed-canopy ecomorphs within the 

genus. No habitat-specific correlations were uncovered between limb length and sprint 

speed, or between tail length and tail strength, indicating that selection is not acting upon 

these traits in terms of the habitat associations and measurements made. 

As expected, the absolute differences detected between the five chameleon forms 

followed the same pattern for each performance trait investigated, demonstrating the effect 

of overall body size on performance. Forms that utilise closed-canopy habitats are stronger 

and faster than those that use open-canopy habitats. Indeed, the forms generally fit into one 

of two absolute performance categories – strong (Type B and B. thamnobates) and weak 

(B. melanocephalum, Types A and C). For many animals, body size is highly heritable 

(Peters, 1983) and has been shown to be influenced by habitat use (e.g., Asplund, 1974; 

Fleming, 1991), which might also be the case here. Moreover, each form reaches different 

absolute body sizes (Chapter 2), which is not a consequence of phenotypic plasticity, as 

demonstrated by a common garden experiment on B. thamnobates and B. melanocephalum 

(Miller & Alexander, 2009). Accordingly, the differences in absolute performance are 

likely indicative of ecological differences between them. The one exception might be with 

the Type C chameleons. These chameleons are the smallest (in absolute terms) of all the 

forms in this study, yet their primary habitat is forest. If they were to follow the other 

forest forms, they should be amongst the larger chameleons. Considering that the 

individuals sampled in this study were collected in secondary vegetation along the forest 
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edge, and not in the forest itself due to accessibility problems (Chapter 2), they may not be 

representative of mature adults, but rather sub-adults, thus biasing the data.  

In addition to absolute differences, relative performance differences were detected 

in forefoot grip strength on both sized dowels and tail grip strength on the broad dowel, 

indicating that selection may be acting upon these performance traits, and their associated 

morphological traits, in response to habitat. As expected, forefoot grip strength produced 

the same pattern on either dowel, with the closed-canopy forms (including Type C) 

exerting greater forces for their size than the open-canopy forms. The widest perches in the 

open-canopy habitats do not exceed 6 mm, and average around 2 mm; whereas, the widest 

perches in the closed-canopy habitats can reach close to 20 mm, and average between 2.50-

4.50 mm (Chapter 2). Both dowels appear to be too large for the smaller-footed open-

canopy habitat chameleons to adequately grasp. Conducting similar tests using dowels that 

better represent perch diameters more commonly available in open-canopy habitats, and 

thus that are more representative of the actual perches used by those chameleons (e.g., 1.5-

2 mm or narrower), may prove useful for testing the effectiveness of foot size on narrow 

perches.  

The greater forefoot grip strength of the closed-canopy habitat chameleons likely 

emphasizes the importance of stability and balance within this habitat. It could be 

especially important during intra-specific encounters, which often result in intense fighting. 

These fights generally involve intense swaying, open-mouthed threat displays, chasing and 

biting (Burrage, 1973; Stuart-Fox et al., 2006; Tolley & Burger, 2007), with both 

combatants grasping the branch to maintain balance and support. In open-canopy habitats, 

where the average plant and perch height is between 0.75 m and 1.75 m and the perches 

are densely clustered in a vertical orientation (Chapter 2), the risk of displacement is far 

less compared to closed-canopy habitats where perches are less densely arranged and perch 
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heights average 1.6-4.5 m (Chapter 2). This may explain why grip strength showed 

correlations to both limb and foot variables (Tables 3.4, S3.2 & S3.3). Grip strength is 

created by the flexor muscles, which extend from the limbs into the feet, and the extensor 

muscles in the limbs stabilize the wrist and provide leverage. As such, they cannot function 

in isolation. 

As expected, the tails of each form were found to perform similarly on the narrow 

dowel, suggesting they are equally suited for grasping narrow perches. On the broad 

dowel, unexpected differences in tail performance were identified for males. Instead of the 

closed-canopy chameleons having a proportionally stronger grip owing to their relatively 

longer tails (see Herrel et al., 2013), the tail grip of the open-canopy B. melanocephalum 

was among the strongest for males. This result is especially surprising considering that the 

other open-canopy form, Type A, which possesses a comparable tail length to  

B. melanocephalum (Chapter 2), was the weakest.  The much weaker tail grip of Type A 

males is unlikely to be a consequence of microhabitat, because females from this habitat 

did not show the same outcome, yet they utilised the same size perches. Moreover, males 

have longer tails than females, so it would be expected that they would be better able to 

wrap their tails around the broad dowel, and hence be able to exert a proportionally 

stronger force; yet this was not observed. Given that tail length alone could not adequately 

explain tail performance for most forms, other morphological features or adaptations which 

were not measured here may be involved, such as the length of the distal end of the tail 

which is used in prehensile activities and the length of the hypaxial muscles  

(M. ischiocaudalis and M. inferocaudalis) which work to curl the tail (Zippel, Glor, & 

Bertram, 1999; Bergmann, Lessard, & Russell, 2003). As such, identification of the 

morphological components involved in tail performance, and whether these differ between 

forms, may further our understanding. However, if this result is a sampling artefact, then 
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the overall generalisation is that all these form are well suited for grasping onto both broad 

and narrow dowels with their tails. This would then mirror results found for open- and 

closed-canopy forms of the congeners B. pumilum and B. damaranum (Herrel et al., 2011, 

Herrel et al., 2013). Considering all forms were able to exert greater forces with their tails 

compared to their forefeet,  the importance of the tail for stability and support in each 

habitat is likely to be high. Indeed, chameleons are known to pull themselves onto 

branches solely using their tails (Tolley & Burger, 2007). This ability allows them to move 

effectively both horizontally and vertically throughout their habitats (Higham & Jayne, 

2004; Tolley & Burger, 2007; Tilbury, 2010; Herrel et al., 2011), allowing them to reach 

or extend further to traverse large gaps. These abilities may be particularly important when 

added stability or an escape route is required, such as during aggressive confrontations 

with conspecifics (Herrel et al., 2011) and, possibly, predators. 

Sprint speed also showed no relative differences between forms, indicating that the 

direction and strength of selection on this performance trait may be the same within each 

habitat. This finding is not altogether surprising considering chameleons move extremely 

slowly and tend to use crypsis instead of running to avoid predation (Brain, 1961; Burrage, 

1973; Tolley & Burger, 2007). These results also indicate that sprint speed is not just a by-

product of limb length, as suggested as a possible explanation for performance differences 

between open- and closed-canopy B. pumilum forms (Herrel et al., 2011). Indeed, the 

combination of limbs and feet correlated best with sprint speed for each form, but this 

appears to be simply a function of body size. Types A and B – the forms with, 

proportionally, the longest limbs – did not run faster than the other forms, again supporting 

the hypothesis that limb length may be more important for bridging gaps rather than 

increasing speed. 
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Hindfoot size (especially proximal hindfoot pad length) was found to correlate best 

with perch diameter in almost all forms and sexes; however, this feature was not tested for 

performance in the present study. Consequently, it is not possible to infer whether grip 

performance is driven by perch size for the hindfoot. However, considering the 

associations between the fore- and hind-foot mentioned in the Materials and Methods, and 

the fact that forefoot size did show strong correlations to perch diameter in two forms the 

forefoot performance results are expected to hold for the hindfoot as well. As such, these 

results indicate that microhabitat structure (i.e., the size of perches along which 

chameleons move) has an effect on dwarf chameleon morphology and has likely 

contributed to the observed differences in trait utility between forms within this species 

complex. Although future studies of other species and forms that have radiated into 

different habitats are needed to test the generality of these observations, these data provide 

the first evidence of the potential existence of ecomorphs in chameleons. 
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Table S3.1 Regression models exploring the best morphological correlate of sprint speed for each 

of the five phenotypic forms of the B. melanocephalum-B. thamnobates species complex.  

Phenotypic form Males Females 
Model AIC wi Model AIC wi 

B. melanocephalum 
 

ThL -94.473 0.035 ThL -70.05 0.002 
CL -95.966 0.074 CL -72.86 0.008 
MH -94.979 0.045 MH -69.46 0.001 
LH -93.977 0.028 LH -53.37 0.000 
PH -94.640 0.038 PH -68.01 0.001 
BrL -93.922 0.027 BrL -69.22 0.001 
AL -98.265 0.235* AL -70.18 0.002 
MF -94.086 0.029 MF -72.29 0.006 
LF -94.306 0.032 LF -70.42 0.002 
PF -93.868 0.026 PF -69.11 0.001 

AL+BrL -97.745 0.149 MF+CL -81.26 0.384* 
AL+BrL+CL -98.693 0.175* CL+BrL+MF -81.82 0.281* 

CL+AL+BrL+MF -98.065 0.081 THL+CL+BrL+MF -83.34 0.242* 
CL+PH+AL+BrL+MF -96.824 0.024 THL+CL+BrL+MF+LF -83.22 0.060* 

   THL+CL+BrL+AL+MF+LF -82.80 0.007* 
B. thamnobates ThL -89.863 0.513* ThL -101.92 0.046 
 CL -81.868 0.009 CL -102.23 0.053 
 MH -81.060 0.006 MH -102.85 0.073 
 LH -79.685 0.003 LH -101.85 0.044 
 PH -80.668 0.005 PH -103.09 0.082 

 BrL -79.982 0.004 BrL -101.92 0.046 
 AL -79.759 0.003 AL -104.48 0.164 
 MF -79.982 0.004 MF -101.85 0.044 
 LF -79.466 0.003 LF -102.15 0.051 
 PF -79.321 0.000 PF -101.92 0.046 

 ThL+LF -89.165 0.280* AL+PH -105.16 0.190 
 ThL+LH+LF -88.418 0.130* CL+PH+AL -104.23 0.087 
 ThL+MH+LH+LF -87.454 0.040* MH+PH+AL -103.93 0.075 
 ThL+MH+LH+PH+LF -85.915 0.010*    
 ThL+MH+LH+PH+AL+LF -84.072 0.000    
Type A ThL -77.528 0.051 ThL -86.46 0.019 
 CL -77.363 0.047 CL -85.99 0.015 
 MH -78.204 0.071 MH -86.94 0.024 
 LH -77.528 0.051 LH -90.30 0.128* 
 PH -77.948 0.063 PH -88.00 0.040 
 BrL -75.125 0.015 BrL -88.67 0.056 
 AL -77.695 0.055 AL -90.06 0.113* 
 MF -80.110 0.185 MF -88.30 0.047 
 LF -77.863 0.060 LF -85.93 0.014 
 PF -77.611 0.053 PF -86.39 0.018 
 MF+LF -80.351 0.158 LH+AL -91.92 0.228* 
 AL+MF+LF -81.035 0.141 LH+PH+AL -91.21 0.110* 

 AL+MF+LF+PF -80.340 0.050 LH+PH+AL+PF -92.18 0.104* 
 PH+AL+MF+LF+PF -81.758 0.039 MH+LH+PH+AL+PF -92.82 0.067* 
    MH+LH+PH+AL+LF+PF -91.91 0.016 
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Table S3.1 continued. 

Phenotypic form Males Females 
Model AIC wi Model AIC wi 

Type B ThL -67.901 0.021 ThL -50.99 0.155 
 CL -66.769 0.012 CL -46.65 0.018 
 MH -73.000 0.274* MH -47.16 0.023 
 LH -69.295 0.043 LH -47.34 0.025 
 PH -66.769 0.012 PH -46.90 0.020 
 BrL -68.350 0.027 BrL -46.90 0.020 
 AL -67.466 0.017 AL -46.99 0.021 
 MF -68.199 0.025 MF -46.65 0.018 
 LF -66.906 0.013 LF -50.99 0.155 
 PF -66.769 0.012 PF -41.16 0.001 
 MH+BRL -74.610 0.419* ThL+LF -54.30 0.478 
 CL+MH+BRL -73.170 0.106* LH+MF+LF+PF -54.95 0.050 
 CL+MH+BrL+MF -71.459 0.016 LH+PH+MF+LF+PF -57.97 0.016 
Type C ThL -26.153 0.010 ThL -46.77 0.119 
 CL -25.732 0.008 CL -46.34 0.096 

 MH -24.134 0.003 MH -45.93 0.078 
 LH -25.151 0.006 LH -47.23 0.150 
 PH -29.790 0.059 PH -45.93 0.078 
 BrL -23.757 0.003 BrL -46.34 0.096 
 AL -27.771 0.021 AL -45.93 0.078 
 MF -24.292 0.004 MF -45.93 0.078 
 LF -23.980 0.003 LF -45.93 0.078 
 PF -23.402 0.002 PF -45.93 0.078 
 BrL+MF -27.790 0.005 THL+LH -45.72 0.030 

 MH+PH+AL -46.197 0.876* THL+BrL -46.23 0.038 
 

AIC, Akaike’s information criterion; wi, Akaike’s weight; ThL, thigh length; CL, crus length;  

MH, medial hindfoot pad length; LH, lateral hindfoot pad length; PH, proximal hindfoot pad 

length; BrL, brachium length; AL, antebrachium length; MF, medial forefoot pad length; 

 LF, lateral forefoot pad length; PF, proximal forefoot pad length; *, P < 0.05. Multi-trait models 

with wi less than 0.01are not shown here. Text in bold highlights the best fitting model. 
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Table S3.2 Regression models exploring the best morphological correlate of maximum forefoot 

grip strength on the broad dowel for each of the five phenotypic forms of the B. melanocephalum- 

B. thamnobates species complex.  

Phenotypic form Males Females 
Model AIC wi Model AIC Wi 

B. melanocephalum 
 

BrL -81.958 0.217* BrL -49.26 0.119 
AL -82.191 0.243* AL -48.99 0.104 
MF -81.146 0.144* MF -50.70 0.245 
LF -75.835 0.010 LF -48.87 0.098 
PF -78.458 0.038 PF -49.95 0.168 

BrL+AL -81.885 0.172* MF+PF -50.98 0.199 
BrL+AL+LF -81.863 0.124* MF+LF+ PF -49.99 0.067 

BrL+AL+MF+LF -81.018 0.052*    
B. thamnobates BrL -63.430 0.380 BrL -90.15 0.095 

 AL -61.753 0.164 AL -91.01 0.145 
 MF -60.265 0.078 MF -91.79 0.215 
 LF -60.559 0.091 LF -92.19 0.263 
 PF -60.613 0.093 PF -91.05 0.149 

 BrL+MF -62.591 0.193 AL+LF -91.23 0.133 
Type A BrL -60.431 0.015 BrL -65.85 0.087 
 AL -60.208 0.013 AL -67.51 0.199 
 MF -68.567 0.891 MF -68.57 0.338 
 LF -62.539 0.043 LF -66.92 0.149 
 PF -60.367 0.014 PF -66.34 0.111 
 MF+LF -61.926 0.024 AL+MF -66.89 0.118 
Type B BrL -47.092 0.041 BrL -30.85 0.081 
 AL -47.705 0.056 AL -34.00 0.392 
 MF -43.994 0.009 MF -31.85 0.134 
 LF -48.641 0.090 LF -31.49 0.112 
 PF -51.525 0.379* PF -32.29 0.167 
 AL+PF -51.539 0.261 AL+PF -32.59 0.115 
 AL+MF+PF -51.522 0.135    
 AL+MF+LF+PF -50.466 0.029    
Type C BrL -21.227 0.027 BrL -29.50 0.132 
 AL -22.160 0.043 AL -28.27 0.071 
 MF -26.846 0.445* MF -32.29 0.534 
 LF -22.874 0.061 LF -28.44 0.078 
 PF -21.522 0.031 PF -28.18 0.068 
 BrL+PF -29.384 0.353* PF+MF -30.98 0.116 

 BrL+AL+PF -33.014 0.040    
 

AIC, Akaike’s information criterion; wi, Akaike’s weight; BrL, brachium length;  

AL, antebrachium length; MF, medial forefoot pad length; LF, lateral forefoot pad length;  

PF, proximal forefoot pad length; *, P < 0.05. Multi-trait models with wi less than 0.01are not 

shown here. Text in bold highlights the best fitting model. 
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Table S3.3 Regression models exploring the best morphological correlate of maximum forefoot 

grip strength on the narrow dowel for each of the five phenotypic forms of the B. melanocephalum- 

B. thamnobates species complex.  

Phenotypic form Males Females 
Model AIC wi Model AIC wi 

B. melanocephalum 
 

BrL -68.66 0.070 BrL -68.66 0.024 
AL -70.30 0.057 AL -70.30 0.056 
MF -68.66 0.495* MF -68.66 0.024 
LF -70.05 0.083 LF -70.05 0.049 
PF -74.41 0.083 PF -74.41 0.434* 

MF+LF -74.32 0.213 AL+PF -74.32 0.294* 
    AL+MF+PF -73.68 0.118 

B. thamnobates BrL -86.53 0.259 BrL -122.51 0.021 
 AL -87.28 0.377* AL -127.69 0.281* 

 MF -84.24 0.083 MF -126.18 0.132* 
 LF -82.97 0.044 LF -123.80 0.040 
 PF -82.63 0.037 PF -122.87 0.025 

 BrL+AL -86.53 0.200 AL+MF -128.52 0.350* 
    AL+MF+LF -127.02 0.121* 
    BRL+AL+MF+LF -125.02 0.028 

Type A BrL -72.31 0.075 BrL -94.97 0.000 
 AL -73.07 0.109 AL -96.95 0.001 
 MF -71.11 0.041 MF -110.06 0.516* 
 LF -70.93 0.038 LF -94.32 0.000 
 PF -73.00 0.106 PF -94.97 0.000 
 AL+PF -76.38 0.434* MF+LF -109.58 0.327* 
 AL+MF+PF -75.27 0.158 MF+LF+PF -108.29 0.121* 
 BrL+AL+MF+PF -73.83 0.039 AL+MF+LF+PF -106.47 0.029* 

Type B BrL -62.27 0.033 BrL -43.36 0.131 
 AL -61.88 0.027 AL -43.18 0.120 
 MF -61.69 0.025 MF -44.33 0.213 
 LF -62.98 0.047 LF -43.61 0.149 
 PF -68.20 0.641* PF -45.10 0.313 
 BrL+PF -66.50 0.188 AL+PF -43.25 0.073 
 BrL+MF+PF -64.66 0.039    
Type C BrL -23.265 0.157 BrL -33.81 0.146 
 AL -24.057 0.233 AL -33.99 0.159 
 MF -24.213 0.251 MF -35.15 0.285 
 LF -22.566 0.110 LF -34.36 0.192 
 PF -22.447 0.104 PF -33.81 0.146 
 AL+PF -22.213 0.021 BrL+MF -34.14 0.072 
 MF+PF -22.621 0.025    
 AL+MF+LF+PF -25.357 0.099    

 

AIC, Akaike’s information criterion; wi, Akaike’s weight; BrL, brachium length;  

AL, antebrachium length; MF, medial forefoot pad length; LF, lateral forefoot pad length;  

PF, proximal forefoot pad length; *, P < 0.05. Multi-trait models with wi less than 0.01are not 

shown here. Text in bold highlights the best fitting model. 
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Table S3.4 Regression models exploring the best morphological correlate of perch diameter for 

each of the five phenotypic forms.  

Phenotypic Form 
Log10Perch Diameter 

Males  Females 
Model AIC wi  Model AIC Wi 

B. melanocephalum TL -72.183 0.226  TL -51.56 0.035* 
MH -71.942 0.051  MH -45.94 0.002 
LH -71.446 0.045  LH -45.50 0.002 
PH -71.769 0.035  PH -53.02 0.073* 
MF -71.468 0.041  MF -45.20 0.001 
LF -71.489 0.035  LF -45.67 0.002 
PF -76.327 0.403*  PF -45.99 0.002 

PF+MF -75.560 0.226  PH+TL -58.15 0.671* 
PF+TL -74.431 0.128  PF+PH+TL -56.60 0.171* 

    PF+TL+PH+LH -55.26 0.035* 
B. thamnobates TL -61.572 0.180*  TL -57.80 0.000* 

 MH -59.204 0.055  MH -56.68 0.000* 
 LH -59.482 0.063  LH -56.75 0.000* 
 PH -60.743 0.119  PH -52.31 0.000* 
 MF -59.812 0.074  MF -61.96 0.002* 
 LF 49.527 0.000  LF -57.39 0.000* 
 PF -61.948 0.217*  PF -54.10 0.000* 
 PF+TL -52.138 0.000  PF+TL -56.41 0.000* 

 PF+MH -61.976 0.160*  MF+PH -73.58 0.664* 
 PF+PH+MH -62.371 0.113  MF+PH+TL -72.38 0.256* 
 PF+PH+MF+MH -60.443 0.020  MF+PH+TL+MH -70.56 0.062* 
     MF+PH+TL+MH+PF -68.70 0.012* 

Type A TL -45.332 0.154  TL -50.91 0.007 
 MH -45.485 0.167  MH -52.23 0.097 
 LH -45.824 0.198  LH -50.78 0.007 
 PH -44.638 0.109  PH -54.91 0.054* 
 MF -44.678 0.111  MF -51.44 0.010 
 LF -44.651 0.110  LF -50.71 0.007 
 PF -44.572 0.106  PF -50.94 0.007 
 TL+PF -43.415 0.045  PF+PH -53.91 0.027 
     PF+PH+MH -52.92 0.011 
Type B TL -36.925 0.015  TL -29.65 0.108 
 MH -41.988 0.186*  MH -29.71 0.111 
 LH -37.920 0.024  LH -29.81 0.117 
 PH -36.785 0.014  PH -29.76 0.114 
 MF -36.766 0.014  MF -29.76 0.114 
 LF -36.925 0.015  LF -29.76 0.114 
 PF -36.805 0.014  PF -30.08 0.134 
 TL+PF -34.925 0.000  PF+MF -32.08 0.152 
 MH+TL -44.036 0.250*  PF+TL -28.77 0.029 
 MH+PH+TL -46.736 0.633*  PF+MH+MF -30.17 0.010 
 MH+TL+PH+LF -44.852 0.077*     
 MH+TL+PH+LF+MF -42.969 0.010     
Type C TL -20.093 0.112  TL -26.02 0.106 
 MH -20.462 0.135  MH -26.15 0.113 
 LH -20.505 0.138  LH -26.86 0.161 
 PH -19.937 0.104  PH -26.46 0.132 
 MF -19.937 0.104  MF -26.64 0.145 
 LF -21.422 0.218  LF -26.64 0.145 
 PF -20.133 0.114  PF -26.46 0.132 
 PF+TL -18.378 0.011  LF+TL -25.84 0.041 
 MH+TL -21.980 0.064  PF+TL -24.79 0.024 
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AIC, Akaike’s information criterion; wi, Akaike’s weight; TL, tail length; MH, medial hindfoot 

pad length; LH, lateral hindfoot pad length; PH, proximal hindfoot pad length; MF, medial forefoot 

pad length; LF, lateral forefoot pad length; PF, proximal forefoot pad length; *, P < 0.05. Multi-

trait models with wi less than 0.01are not shown here. Text in bold highlights the best fitting model.  
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Paper III: 

Sexual dimorphism in bite performance drives  

morphological variation in chameleons* 

 
 

                                                 
*Published as: da Silva, J. M., Herrel, A., Measey, G. J. & Tolley, K.A. (2014) Sexual dimorphism in bite 

performance drives morphological variation in chameleons. PLOS One, 9(1): e86846. DOI: 

10.1371/journal.pone.0086846. 
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ABSTRACT 

Phenotypic performance in different environments is central to understanding the 

evolutionary and ecological processes that drive adaptive divergence and, ultimately, 

speciation. Because habitat structure can affect an animal’s foraging behaviour, anti-

predator defences, and communication behaviour, it can influence both natural and sexual 

selection pressures. These selective pressures, in turn, act upon morphological traits to 

maximize an animal’s performance. For performance traits involved in both social and 

ecological activities, such as bite force, natural and sexual selection often interact in 

complex ways, providing an opportunity to understand the adaptive significance of 

morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion 

melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic 

forms, each with a specific head morphology that could reflect its use of either open or 

closed-canopy habitats. To determine whether these morphological differences represent 

adaptations to their habitats, we tested for differences in both absolute and relative bite 

performance. Only absolute differences were found between forms, with the closed-canopy 

forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism 

was found for both absolute and relative bite force, but the relative differences were 

limited to the closed-canopy forms. These results indicate that both natural and sexual 

selection are acting within both habitat types, but to varying degrees. Sexual selection 

seems to be the predominant force within the closed-canopy habitats, which are more 

protected from aerial predators, enabling chameleons to invest more in ornamentation for 

communication. In contrast, natural selection is likely to be the predominant force in the 

open-canopy habitats, inhibiting the development of conspicuous secondary sexual 

characteristics and, ultimately, enforcing their overall diminutive body size and 

constraining performance.  
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INTRODUCTION 

Evolutionary and ecological processes that drive adaptive divergence and, ultimately, 

speciation can be influenced by phenotypic performance in different environments. As new 

environmental niches become available for populations to exploit, morphological and 

physiological adaptations arise, often resulting in enhanced performance in the novel 

habitat (Schluter, 2000). Evidence for these adaptations can be found in the improved 

performance of animals in their new environment (Schluter, 2000). For example, habitat 

structure or complexity is known to influence a range of lizard behaviours, including 

communication and anti-predator defences. Densely vegetated, structurally complex 

habitats may afford lizards greater cover from predators, thereby enabling them to invest 

more in conspicuous features, such as ornamentation and bright colouration, for increased 

detectability to conspecifics in those habitats; whereas, the converse is true in less 

vegetated habitats, where visibility to predators is high, thereby increasing the need for 

crypsis (e.g., Leal & Fleishman, 2004; Stuart-Fox & Moussalli, 2008). Because the head is 

involved in many ecologically and socially relevant activities, such as feeding, mating and 

aggressive interactions, its morphology and association to bite performance and habitat 

have been widely investigated to better understand the adaptive significance and the 

underlying processes shaping phenotypic variation within and between species (e.g., Herrel 

et al., 1999; Herrel et al., 2001a; Husak et al., 2006; Huyghe et al., 2006; Lappin, 

Hamilton, & Sullivan, 2006; Herrel, McBrayer, & Larson, 2007; Lailvaux & Irschick, 

2007; Measey et al., 2009; Herrel et al., 2010; Vanhooydonck et al., 2010; 

Kaliontzopoulou et al., 2012). Many of these studies have shown that bite force is 

influenced by both natural and sexual selection, yet the relative contribution of these 

selective pressures remains difficult to unravel as they often interact in complex ways. 

Moreover, sexual and natural selection can act in opposition, with sexual selection 
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favouring conspicuous coloration or ornamentation for effective communication and 

natural selection favouring cryptic coloration and reduced ornamentation to avoid injury 

from predation or intraspecific encounters (Andersson, 1982; Endler, 1983). This results in 

a trade-off between the two selective pressures, with the relative strength of natural and 

sexual selection on particular head traits being partly dependent on the environment (e.g., 

Herrel, Vanhooydonck, & Van Damme, 2004; Measey et al., 2011; Vanhooydonck et al., 

2011).  This complex interaction often results in interspecific variation; however, it can 

also lead to intraspecific variation in the form of varying degrees of sexual dimorphism 

(e.g., Butler & Losos, 2002; Butler, Sawyer, & Losos, 2007; Stuart-Fox & Moussalli, 

2007; Kaliontzopoulou, Carretero, & Llorente, 2010), both of which have been shown to 

contribute significantly to adaptive radiations (Schluter, 2000; Butler et al., 2007). 

Chameleons have radiated into multiple habitats, including forests, grasslands, 

heathlands, savannah, and desert; and their colonisation of these different niches 

corresponds with the emergence of these biomes on the landscape (Tolley et al., 2013).  

Indeed, chameleon morphology may be under rapid directional selection in instances 

where novel habitats are colonised (Tolley et al., 2004; Tolley et al., 2006; Tolley et al., 

2008), and this process may be well illustrated by a radiation of dwarf chameleons 

(Bradypodion) from KwaZulu-Natal (KZN) Province, South Africa. The species complex 

is comprised of five phenotypic forms, two of which are described species (Bradypodion 

melanocephalum, Bradypodion thamnobates) and the remaining three (Types A, B and C) 

designated as morphotypes (Gray, 1865; Raw, 1976; Tolley & Burger, 2007; Tilbury, 

2010; Chapter 2) (Fig. 4.1). All forms are allopatric in distribution, but mitochondrial 

markers show they lack the divergence expected at the species level, which reflects the 

recent nature of the radiation (Tolley et al., 2004; Tolley et al., 2008). However, it is likely 

that, at present, no gene flow takes place between forms given that the habitats in which 
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they occur are fragmented and isolated. There are also ecological differences between their 

macro- and micro-habitats, with B. melanocephalum and Type A occupying more open-

canopy habitats (e.g., grasslands), which contain densely clustered, vertically-oriented 

vegetation for chameleons to perch upon; while B. thamnobates and Types B and C occupy 

closed-canopy habitats (e.g., forests, transformed landscapes) that contain broader perching 

substrates arranged both vertically and horizontally (Chapter 2). These ecological 

differences were found to correlate to functional differences in forefoot grip strength, 

suggesting that the forms are adapted morphologically to their different environments 

(Chapter 3). However, variation in head size and shape was found to be the most important 

component in differentiating between phenotypic forms in this radiation, accounting for 

approximately half of the total variation in both sexes (Chapter 2). Moreover, the degree of 

sexual dimorphism varied between forms, with little to no dimorphism in head size and 

shape detected among open-canopy habitat chameleons, yet extensive dimorphism among 

the closed-canopy B. thamnobates (Chapter 2). As such, it is expected that considerable 

sexual and interspecific (interform) variation will be uncovered in bite performance, 

lending further support for the designation of this radiation as adaptive.  

Like most lizards, dwarf chameleons use their heads in intraspecific 

communication signalling to rivals that confrontations can be harmful, and displaying to 

females to assess their willingness to mate (Rand, 1961; Burrage, 1973; Bickel & Losos, 

2002; Stuart-Fox & Whiting, 2005; Stuart-Fox et al., 2006a; Tolley & Burger, 2007; 

Tilbury, 2010). Considering that different structural habitats can select for different types 

of communication behaviour (Waser & Brown, 1984; Fleishman, 1992; Leal & Fleishman, 

2004; Stuart-Fox & Moussalli, 2008), the effectiveness of a particular head design may 

depend upon the environment. Given that closed-canopy habitats can constrain the 

effectiveness of aerial predators, sexual selection may be the predominant force within 
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these habitats, enabling chameleons, especially males, to invest more in ornamentation, 

such as the casque, for communication; while, in the open-canopy habitats, natural 

selection may outweigh sexual selection to increase crypsis (Stuart-Fox et al., 2003; Stuart-

Fox et al., 2006a; Stuart-Fox & Moussalli, 2007). This likely explains why chameleons 

with large heads and ornaments (B. thamnobates and Types B and C) occupy closed-

canopy habitats, while those with proportionally smaller heads and ornaments (B. 

melanocephalum and Type A) typically occupy more open-canopy habitats (Tolley & 

Burger, 2007; Chapter 2). If differential degrees of natural and sexual selection are, in fact, 

influencing chameleon head morphology between and within these habitats, this should be 

reflected in their bite performance and in the morphological features used to produce it.  

Accordingly, if ornaments are honest signals, in closed-canopy habitats, bite force should 

correlate best to ornamentation, especially in males. The result would be high levels of 

sexual dimorphism, with males generating a greater force to assist them during intrasexual 

competitions. In contrast, in open-canopy habitats, bite force is expected to correlate with 

non-ornamented, functional characters, with the proportionally larger headed chameleons 

producing a greater force, irrespective of sex. Regardless of the degree of natural selection 

within each habitat, its influence between habitats is expected to be strong enough to 

ensure that larger headed chameleons possess a harder bite, which in this radiation would 

be the closed-canopy forms.  

To test these predictions and gain insight into the adaptive nature of the chameleon 

head within this recent radiation, we use a combination of morphometric and bite force 

data for multiple phenotypic forms. Specifically, we investigate whether the heads of the 

phenotypic forms and sexes are morphologically and functionally differentiated with 

respect to habitat structure, and which morphological variables are most closely associated 
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with bite force within each form. The latter allows for inferences to be made regarding 

ornamental features and behaviour.  

 

 

Figure 4.1 Photographs of the five dwarf chameleon forms within the B. melanocephalum- 

B. thamnobates species complex from southern KwaZulu-Natal Province, South Africa. Figure 

taken from Chapter 2 (fig. 2.1).  
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MATERIALS AND METHODS 

ETHICS STATEMENT 

Ethics clearance was obtained from Stellenbosch University (Clearance No. 2009B01007) 

and the South African National Biodiversity Research (Clearance no. 0010/08), and 

permits for scientific research and collections were obtained from Ezemvelo KZN Wildlife 

(OP 3538/2009; OP 4351/2009; OP 4596/2010), permitting the collection and handling of 

the lizards.  

 

STUDY SITES AND SAMPLING PROCEDURE 

Dwarf chameleons representing four of the five phenotypic forms of the B. 

melanocephalum-B. thamnobates species complex were sampled from six field sites within 

southern KZN (Fig. 4.2) between January and February 2010. Although sampled, Type C 

was not included due to insufficient sample sizes. Animals were collected at night and geo-

referenced at the exact location each chameleon was found. They were placed in separate 

cloth bags then brought back to the field base overnight, where they were measured and 

their bite force tested the subsequent day.  Once all data were collected, animals were 

released at the exact site of capture. 

 

MORPHOMETRICS 

For all chameleons, snout-vent length (SVL) and nine head measurements (ornamented or 

non-ornamented) were measured to the nearest 0.01 mm using digital callipers (Table 4.1, 

Fig. 4.3). The non-ornamented measurements included lower jaw length (LJL), head length 

(HL), head width (HW), head height (HH), the distance from the coronoid process of the 

mandible to snout tip (i.e., snout length, CT), and posterior surface of quadrate to snout tip 

(QT); and the ornamented measurements include casque head length (CHL), casque head 
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height (CHH), and casque height (CH). The mass of each chameleon was also measured 

using a Pesola® micro-line spring scale (model 93010). 

 

 

Figure 4.2 Distributions of four of the five phenotypic forms of the B. melanocephalum- 

B. thamnobates species complex. Numbers indicate field sites sampled in this study: 1, Durban;  

2, Hilton; 3, Karkloof; 4, Howick; 5, Dargle; 6, Nottingham Road; 7, Kamberg Nature Reserve.  
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Table 4.1 Summary of morphological and bite performance data for male (M) and female (F) 

dwarf chameleons used in this study, grouped by phenotypic form.  Standard deviation shown in 

brackets.  

 B. melanocephalum Type A B. thamnobates Type B 
 M F M F M F M F 

Morphology 
n 25 16 19 23 20 25 15 12 

SVL (mm) 49.14 
(0.88) 

57.47 
(0.95) 

48.23 
(1.68) 

45.34 
(1.37) 

60.00 
(3.27) 

66.42 
(3.32) 

68.97 
(1.20) 

77.49 
(1.98) 

Non-ornamented 

LJL (mm) 11.55 
(0.84) 

11.05  
(0.86) 

13.27 
(3.15) 

14.29 
(2.29) 

14.39 
(3.19) 

13.56 
(3.06) 

11.06 
(2.27) 

11.65 
(2.56) 

HL (mm) 11.68 
(0.72) 

11.23  
(0.85) 

13.08 
(2.41) 

13.96 
(2.18) 

14.47 
(2.56) 

14.17  
(2.76) 

11.12 
(1.89) 

12.72 
(2.60) 

HH (mm) 6.98 
(0.67) 

6.89  
(0.47) 

8.44 
(2.24) 

9.08 
(1.65) 

9.00 
(1.96) 

8.73 
(2.10) 

6.81 
(1.41) 

7.42 
(1.45) 

HW (mm) 7.54 
(0.48) 

7.33  
(0.59) 

9.28 
(2.59) 

9.87 
(2.10) 

10.41 
(2.50) 

9.84  
(2.60) 

7.51 
(1.19) 

7.87 
(1.71) 

CT (mm) 9.05 
(0.67) 

8.82 
(0.80) 

10.22 
(2.29) 

10.94 
(1.71) 

10.84 
(2.32) 

10.57 
(2.41) 

8.48 
(1.44) 

9.07 
(1.64) 

QT (mm) 10.29 
(0.68) 

9.79 
 (0.87) 

11.82 
(3.00) 

12.50 
(2.05) 

13.08 
(2.93) 

12.18 
(3.00) 

9.51 
(1.86) 

10.36 
(2.15) 

Ornamented 

CH (mm) 4.66 
(0.84) 

4.44 
(0.70) 

7.04 
(2.86) 

7.23 
(1.84) 

7.85 
(2.42) 

7.49  
(2.42) 

5.12 
(1.41) 

5.48 
(2.05) 

CHL (mm) 16.75 
(1.12) 

16.18 
(1.20) 

19.90 
(4.79) 

21.46 
(3.90) 

22.28 
(4.83) 

21.25 
(5.12) 

15.75 
(3.17) 

17.44 
(3.94) 

CHH (mm) 9.85 
(1.29) 

9.57  
(1.04) 

13.29 
(4.68) 

14.41 
(3.03) 

14.69 
(4.09) 

14.53 
(4.23) 

10.11 
(2.45) 

11.25 
(3.29) 

Performance 
n 23 15 19 20 20 25 13 12 
Bite force 
(N) 

10.37 
(3.11) 

13.88 
(4.11) 

11.77 
(5.55) 

9.05 
(5.23) 

23.57 
(17.89) 

24.74 
(16.35) 

30.40 
(7.58) 

34.25 
(13.04) 

  
LJL, lower jaw length; HL, head length; HH, head height; HW, head width; CT, coronoid process 

of mandible to snout tip; QT, posterior surface of quadrate to snout tip; CH, casque height;  

CHL, casque head length; CHH, casque head height. 
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Figure 4.3 Nine head measurements recorded for each chameleon. Images on the left are based on 

a µCT-scan, courtesy of R. Boistel, Université de Poitiers.  CT, coronoid process of mandible to 

snout tip; QT, posterior surface of quadrate to snout tip; HW, head width. 

 

BITE FORCE 

Chameleons were allowed to thermoregulate in a sun/shade setting to obtain their preferred 

body temperature (between 28-32˚C: Segall et al., 2013). In vivo bite force was then 

measured in Newtons (N) at ambient temperature using an isometric force transducer 

(Kistler type 9203, ±500 N) connected to a bite plate and a Kistler charge amplifier (type  
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5995A, Kistler Inc., Winterthur, Switzerland) (Herrel et al., 1999; Stuart-Fox & Moussalli, 

2008).  The bite plate was then placed between the jaws of the chameleon, which typically 

resulted in the chameleon biting down on the plate repeatedly. When necessary, 

chameleons were induced to bite by gently tapping the sides of their jaws. Five 

independent measures were recorded per chameleon and the highest value retained for 

analysis.   

 

STATISTICAL ANALYSES 

All analyses were carried out using SPSS version 17.0 (2008).  All data were log10 

transformed prior to analysis to fulfil assumptions of normality and homoscedascity. To 

separate differences in shape and performance from differences in body size, all data were 

size-corrected against log10SVL and the unstandardized residuals saved for use in 

subsequent analyses. Although studies have shown that the head can develop at a different 

rate than overall body size (e.g., Braña, 1996; Kratochvíl et al., 2003), this was not found 

to be the case for these chameleons. After applying the methods of Braña (1996) and 

McCoy and colleagues (2006) across all phenotypic forms and sexes, all morphometric 

variables were found to share a common growth axis and follow similar trajectories, and 

SVL was recognized as having the highest principal component loading validating its use 

as a suitable covariate for all measurements. 

Although a previous study showed significant differences in head morphology 

between the four phenotypic forms and sexes in this study (Chapter 2), a multivariate 

analysis of covariance (MANCOVA) using a general linear model (GLM), and a principal 

component analysis (PCA) were conducted to verify those results on this dataset, which is 

a subset from Chapter 2.  The full GLM model specified SEX and FORM as fixed factors, 

SEX x FORM as the interaction, log10SVLas the covariate, and all log10-tranformed head 
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variables as the dependent variables. The unstandardized residuals for the nine head 

variables were then entered into a PCA and the principal component (PC) scores were 

saved so that the magnitude and direction of the eigenvector describing the differences 

between forms could be illustrated. Only PCs with eigenvalues larger than one were 

extracted, and the varimax rotation was used to minimize the number of variables with 

high loadings on each factor.  Variables with communality values less than 0.5 were 

omitted from the analysis, as low values indicate those variables are uninformative 

(Tabachnick & Fidell, 2007). The saved PC scores were then entered as the dependent 

variables in analyses if variance (ANOVAs), with FORM as the fixed factor to assess more 

fine-scale differences in head morphology between forms. Bonferroni post-hoc tests were 

run to determine which forms differed for each principal component. Next, additional 

ANOVAs were conducted on both absolute (log10-transformed) and relative (size-

corrected) bite force to test for differences in performance between forms. All P-values 

were subjected to Holm’s sequential Bonferroni correction. 

Because the morphological variables found to be most relevant to bite performance 

differ between species (e.g., Herrel, De Grauw, & Lemos-Espinal, 2001c; Lappin et al., 

2006; Measey et al., 2009; Vanhooydonck et al., 2011), multiple regression models were 

carried out on size-corrected variables to explore which ones best explained the variation 

in bite force within each form. Akaike’s information criterion (AIC) was calculated using 

the residual sum of squares from each model, and the difference between the lowest AIC 

and all others (∆i) was determined. Akaike’s weights (wi) were then calculated for each 

model, with the one exhibiting the highest wi acknowledged as the best fitting model 

(Burnham & Anderson, 2002).  
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RESULTS 

Morphological and performance data were gathered from 155 dwarf chameleons within the 

B. melanocephalum-B. thamnobates species complex (Table 4.1). A MANCOVA revealed 

differences in head morphology between the four phenotypic forms (Wilks’ λ = 0.363, 

F3,36 = 4.890, P < 0.001) and sexes (Wilks’ λ = 0.859, F1,9 = 2.745, P = 0.005), with the 

PCA and subsequent ANOVA indicating that B. melanocephalum had proportionally the 

smallest head in both sexes, B. thamnobates the biggest, and Types A and B being 

intermediate in head size, confirming that this subset of data shows the same pattern as the 

previous study (Chapter 2).  

Bite force was found to correlate positively with body size (SVL) in all phenotypic 

forms and sexes (Fig. 4.4). A comparison of bite performance between the sexes revealed 

different patterns in absolute and relative forces (Table 4.2). Females tended to have a 

stronger absolute bite force than males (Table 4.1), with the most pronounced difference 

detected in B. melanocephalum (F = 8.283, P = 0.006; see Fig. 4.5). However, once bite 

force was corrected for body size, B. thamnobates and Type B males were found to bite 

proportionally harder than females (B. thamnobates: F = 9.437, P = 0.004; Type B:  

F = 10.770, P = 0.003; see Fig. 4.6). The open-canopy habitat forms showed no sexual 

variation in bite performance (B. melanocephalum: F = 2.660, P = 0.111; Type A:  

F = 0.870, P = 0.357).  

When examining bite force between forms, differences were only found for 

absolute (Males: F3,78 = 19.431, P < 0.0001; Females: F3,75 = 13.716, P < 0.0001) and not 

relative bite forces (Males: F3,78 = 1.437, P = 0.229; Females: F3,75 = 1.575, P = 0.189). 

Similar patterns were detected for both sexes, with the four phenotypic forms fitting into 

one of two strength categories: weak (B. melanocephalum, Type A) or strong  
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(B. thamnobates and Type B) (Fig. 4.5). In males, Type B further differentiated from  

B. thamnobates by possessing a significantly stronger bite.  

Model selection using linear regression to find the morphological variables that 

best explain bite force found different correlations between the four phenotypic forms and 

sexes (Table 4.3). Bradypodion thamnobates was the sole form whose performance could 

only be explained by a single model (Table S4.1), and this model was the same for both 

sexes (HH+CT). For the other forms, several candidate models displayed significant 

correlations to bite performance (Table S4.1). Apart from B. thamnobates, different parts 

of the casque were identified as contributing to bite force in males; however, the 

contribution was only significant for B. melanocephalum (CHL) and Type B (CH, CHH). 

In comparison, non-ornamented features (HH, HL, CT, QT) explained bite force in females 

(Table 4.3).  

 

Table 4.3 Regression models (i.e., morphological variables) found to best reflect bite force within 

each phenotypic form and sex. All variables were size-corrected prior to analysis. Bold values 

represent significant correlations. 

Phenotypic Form Males Females 
Model AIC wi R2 P Model AIC wi R2 P 

B. melanocephalum CHL -117.81 0.399 0.391 0.001 QT -68.14 0.269 0.345 0.017 
           
B. thamnobates CT -85.95 0.562 0.334 0.031 CT -113.13 0.378 0.247 0.044 
 HH     HH     
           
Type A CH -88.85 0.189 0.245 0.105 HH -83.89 0.370 0.362 0.033 
 LJL     HL     
      QT     
           
Type B CH -76.49 0.195 0.735 0.031 CT -60.59 0.507 0.594 0.017 
 CHH     QT     
 HH          
 LJL          
 CT          
 

ß, Beta coefficient; AIC, Akaike’s information criterion; wi, Akaike’s weight; R2, coefficient of 

determination; ß, Beta coefficient; P, significance value; CHL, casque head length, CHH, casque head 

height; CH, casque height; HL, head length;  HW, head width; HH, head height; LJL, lower jaw length;  

CT, coronoid process of mandible to snout tip; QT, posterior surface of quadrate to snout tip. 
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Figure 4.4 Regression plots illustrating the correlation between SVL and bite force within the B. melanocephalum-B. thamnobates species complex.
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Figure 4.5 Error plots depicting mean absolute bite force for the five phenotypic forms. Absolute 

force equates to log10-transformed bite force. Solid circles represent males; empty circles, females. 

 

 

Figure 4.6 Error plots depicting mean relative bite force for the five phenotypic forms. Relative 

forces represent the residual values from regressing log10Bite Force against log10SVL. Solid circles 

represent males; empty circles, females. 
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DISCUSSION 

Head morphology and bite performance within the B. melanocephalum-B. thamnobates 

species complex is influenced by varying degrees of natural and sexual selection, and the 

intensity of each appears to depend, at least partly, on the structure of the habitat. For all 

forms, bite force was found to correlate to overall body size, with the larger, closed-canopy 

forms possessing a stronger bite, as predicted under natural selection. Moreover, the degree 

of sexual dimorphism in head shape resulted in comparable levels of dimorphism in bite 

performance, with closed-canopy males biting proportionally harder than females, as 

predicted under sexual selection, and no dimorphism in bite performance within the open-

canopy forms, possibly due to natural selection curbing sexual dimorphism for increased 

crypsis. 

The influence of selective forces on performance is typically assessed through an 

examination of the proportional (size-corrected) differences between groups because 

morphological traits, and their associated performance, typically scale with an organism’s 

overall body size. Consequently, differences in trait values among individuals within 

populations, and between populations and species, will often arise simply because 

individuals or populations differ in body size. With this in mind, the lack of proportional 

differences in bite force between phenotypic forms might suggest that natural selection is 

weak or not acting upon this performance measure, possibly indicating that their 

differential head morphologies may be a consequence of some other factor, such as 

founder effects. However, the absolute differences detected between open- and closed-

canopy forms may be of significance considering, for many animals, body size is highly 

heritable (Peters, 1983) and has been shown to be influenced by habitat use (e.g., Asplund, 

1974; Fleming, 1991). Each form approaches different body sizes (Chapter 2), so the 

detected differences in absolute bite force are likely indicative of ecological differences 
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between them, such as differences in diet (e.g., Verwaijen et al., 2002; Herrel & Holanova, 

2008) or how they conduct their social interactions.  

The snout length (CT) was the common variable found to explain bite force 

amongst both sexes of B. thamnobates and Type B – in absolute terms, the two strongest 

forms.  The muscles attaching to the coronoid (see Rieppel, 1981 for details) aid in bite 

force generation. Bite force has been associated with prey size and hardness in lizards, with 

animals possessing greater bite forces capable of consuming larger and/or harder prey 

(e.g., Verwaijen et al., 2002; Herrel & O'Reilly, 2006; Measey et al., 2011). If similar 

correlations exist here, then these results suggest that B. thamnobates and Type B are likely 

to consume larger and/or harder prey items than B. melanocephalum and Type A.  

Absolute bite force might also reveal something about the social system in place 

within each habitat. In closed-canopy habitats, larger body sizes are advantageous because 

they provide an honest signal of bite force, enabling chameleons to display their potential 

threat from farther distances through the use of their ornamentation and, if necessary, 

engage in combat (see Cuadrado, 2001; Stuart-Fox & Whiting, 2005). Chameleons in the 

open-canopy habitat, however, have experienced a reduction in their secondary sexual 

characteristics, suggesting they might be better at communicating in close proximity 

(Measey et al., 2009).  The casque of B. melanocephalum and Type A males was found to 

contribute to bite performance; therefore, despite its reduced size, it may be effective 

enough to ward off unwanted encounters at close range.  

Much like between forms, absolute differences in bite performance were also 

detected between the sexes.  The general trend showed that females bite harder than males, 

because they are on average, larger in body size. Even though this relationship was only 

significant for B. melanocephalum, it is possibly present within other forms, yet could not 

be detected due to the reduced power (ß < 0.2) brought on by limited sample sizes. 
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Accordingly, the greater absolute bite forces of females may reduce niche overlap 

(Schoener, 1967) as has been suggested for other lizards (Herrel et al., 1999; Herrel et al., 

2001a; Verwaijen et al., 2002; Herrel et al., 2006). For these chameleons, the bite of 

females was dictated by non-ornamented features, namely QT which, along with CT 

represents the out-lever for jaw closing.  Due to the high energy demands of reproduction, 

females often need to consume more and/or different prey items than males (Shine, 1989). 

Considering that insect abundance and diversity can vary in vertical (canopy versus 

understory) and horizontal (between habitats) stratification (Rivers-Moore & Samways, 

1996; Samways, Caldwell, & Osborn, 1996; Clark & Samways, 1997; DeVries, Murray, & 

Lande, 1997; DeVries, Walla, & Greeney, 1999; Kotze & Samways, 1999; Lawrence & 

Samways, 2002; Pryke & Samways, 2003; Grimbacher & Stork, 2007), and females within 

the B. melanocephalum-B. thamnobates species complex have been found to perch lower 

and occupy more open-canopy habitats than males for all forms (Chapter 2), the observed 

differences in bite performance between the sexes may allow for differences in dietary 

exploitation. However, a thorough dietary analysis needs to be undertaken to test this 

hypothesis.  

The stronger bite of females may also provide them with an advantage during 

female-male interactions. In female dwarf chameleons, the need to mate after each litter is 

reduced because they have relatively long gestation periods for their body size (~ three 

months) and are able to store sperm, which enables them to have asynchronous 

reproduction (Burrage, 1973; Tolley & Burger, 2007; Tilbury, 2010). Consequently, 40-

80% of females are gravid at a given time (Burrage, 1973).  Moreover, female dwarf 

chameleons do not change colour to illustrate their receptive or gravid state (Burrage, 

1973); therefore, the chances of males encountering a receptive female are rare. 

Consequently, males use courtship displays to assess a female’s willingness to mate, with 
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females often responding with aggressive rejection behaviours (Burrage, 1973; Stuart-Fox 

& Whiting, 2005; Tolley & Burger, 2007; Tilbury, 2010), including biting (Stuart-Fox & 

Whiting, 2005). As a result, males tend to court smaller females, which are less able to 

dominate or inflict injury (Stuart-Fox & Whiting, 2005). Considering that our study has 

shown that large females possess a stronger bite than small females, the aggressive 

behaviour of females is potentially an honest signal of their ability to ward off unwanted 

encounters.   

In addition to sexual dimorphism in absolute bite force, relative differences were 

also detected with closed-canopy males biting harder than females of the same size. A 

likely explanation is that closed-canopy habitats allow for increased competition between 

males for access to females, (as was found with increased colour change within these 

habitats: Stuart-Fox & Moussalli, 2008), resulting in a greater investment in the jaw 

muscle in males, which is also reflected in their proportionally higher and longer heads. 

Indeed, snout length and head height were found to best explain male bite performance, 

possibly by increasing the available space for jaw adductor muscles, resulting in a higher 

physiological cross-section and hence bite force (Herrel et al., 1999; Herrel et al., 2001c; 

Huyghe et al., 2009).This is particularly relevant because altercations between males can 

be aggressive and often involve biting (Stuart-Fox et al., 2006a; Tolley & Burger, 2007). 

Within Type B males, the casque (CH, CHH) was also found to contribute to bite 

performance, and is almost certainly used as an honest visual signal, notifying other males 

of the potential cost of fighting. Even though the casque did not explain bite force in  

B. thamnobates, it still appears to be an honest signal of bite performance, as larger bodied 

males possess larger casques and have a correspondingly harder bite.  

Within the open-canopy forms (B. melanocephalum and Type A), little to no sexual 

dimorphism in head morphology was uncovered, which resulted in a lack of dimorphism in 
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bite performance. The comparable bite forces between the sexes suggests that within more 

open-canopy habitats there is either reduced direct competition between males for access to 

females or the need for increased crypsis is so strong it outweighs intrasexual selection. 

While there is no evidence to support the former, the trade-off  between crypsis and 

communication/signalling ability in dwarf chameleons has been studied extensively 

(Stuart-Fox, Whiting, & Moussalli, 2006b; Stuart-Fox, Moussalli, & Whiting, 2007; 

Stuart-Fox & Moussalli, 2008; Measey et al., 2009).  For example, the spectral properties 

of chameleon signals varies predictably with habitat structure, with the display colours of 

open-canopy chameleons having lower UV reflectance than that of closed-canopy 

chameleons (Stuart-Fox et al., 2007). High UV reflectance has been found to increase an 

animal’s detectability (Fleishman, 2000); and, although, the low reflectance of open-

canopy chameleons decreases their detectability to conspecifics, it is also thought to 

protect them from UV-sensitive avian predators (Stuart-Fox & Moussalli, 2008).  

Accordingly, natural selection is likely to be the predominant force in open-canopy 

habitats, inhibiting the development of conspicuous secondary sexual characteristics and, 

ultimately, enforcing their overall diminutive body size and constraining performance. 

However, the casque was found to contribute to bite force in the open-canopy habitat 

forms (B. melanocephalum: CHL; Type A: CH) and likely acts as an honest signal of 

performance, indicating that sexual selection might also be influencing performance in 

these chameleons. In fact, both selective forces are certainly operating simultaneously, but 

to varying degrees in each habitat.  

Similar habitat-specific sexual differences have helped explain the 

ecomorphological diversity produced by the adaptive radiations of West Indian Anolis 

lizards (Schoener, 1967; Butler, Schoener, & Losos, 2000; Butler & Losos, 2002; Butler et 

al., 2007). In general, anoles in low-visibility microhabitats, such as the tree crown which 
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has dense branches and leaves, tend to have low dimorphism; whereas those in high-

visibility microhabitats, such as the tree trunk or open ground, have high dimorphism 

(Butler et al., 2000; Butler & Losos, 2002).  This relationship is similar to that found with 

the KZN dwarf chameleons given that the microhabitats of the open-canopy forms were 

actually found to have a higher density of perches and, hence, are more likely to have low-

visibility, and vice versa in the closed-canopy habitats  (Chapter 2). The overall extent of 

sexual variation in anoles can be so great, in fact, that it can exceed interspecific variation 

(Butler et al., 2007). Consequently, overlooking sexual dimorphism could underestimate 

the adaptive component of an evolutionary radiation (Butler et al., 2007). In light of this, 

sexual dimorphism should be deemed yet another ecomorphological trait used to assess 

divergence within a radiation or species complex. Accordingly, this study, coupled with 

the functional differences in forefoot grip strength already detected between open- and 

closed-canopy forms in this species complex (Chapter 3), proves that these five phenotypic 

forms have adapted morphologically to their different environments.   
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Table S4.1 Regression models exploring the best morphological correlate of bite force for each of the five phenotypic forms of the  
B. melanocephalum-B. thamnobates species complex.  

Phenotypic form Males Females 
 Model AIC wi Model AIC   wi 
B. melanocephalum HL -110.395 0.010 HL -56.730 0.022 
 HW -116.242 0.182* HW -60.216 0.123* 
 HH -111.388 0.016* HH -52.630 0.003 
 LJL -113.507 0.046* LJL -56.882 0.023 
 CT -110.287 0.009* CT -59.118 0.071 
 QT -115.697 0.139* QT -61.539 0.239* 
 CH -109.546 0.006 CH -53.987 0.005 
 CHH -107.544 0.002 CHH -56.188 0.016 
 CHL -117.809 0.399* CHL -55.480 0.012 
 HW+CT+QT -114.557 0.047* HL+HW+QT+CH+ CHL -68.136 0.269* 
 HW+QT -115.084 0.084* HW+CT+QT -59.932 0.042 
 HW+CH -114.380 0.059* HW+QT -61.611 0.175* 
       
B. thamnobates HL -80.437 0.046 HL -109.546 0.058 

 HW -80.437 0.046 HW -110.18 0.079 
 HH -80.981 0.061 HH -109.967 0.071 
 LJL -80.208 0.041 LJL -109.755 0.064 
 CT -80.208 0.041 CT -109.132 0.047 
 QT -80.437 0.046 QT -109.441 0.055 
 CH -80.981 0.061 CH -109.234 0.049 
 CHH -80.513 0.048 CHH -109.755 0.064 
 CHL -80.513 0.048 CHL -109.546 0.058 
 HH+CT -85.950 0.562* HH+CT -113.697 0.378* 
    HW+CT+QT -111.163 0.078 
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Table S4.1 continued. 

Phenotypic 
form 

Males Females 

 Model AIC    wi Model AIC    wi 
Type A HL -86.751 0.058 HL -80.012 0.048 
 HW -86.751 0.058 HW -79.805 0.043 
 HH -86.613 0.054 HH -80.990 0.078 
 LJL -86.751 0.058 LJL -79.518 0.038 
 CT -86.890 0.062 CT -80.053 0.049 
 QT -86.751 0.058 QT -79.518 0.038 
 CH -86.751 0.058 CH -81.121 0.084 
 CHH -86.613 0.054 CHH -80.903 0.075 
 CHL -86.751 0.058 CHL -80.860 0.074 
 LJL+CH -89.654 0.189 HL+HH+QT -85.225 0.370* 
 HH+LJL+ CH -89.171 0.094 HW+HH+CT+QT+CHH -85.085 0.103* 
 LJL+QT+CH -89.774 0.127    
 LJL +CT+QT+CH -89.946 0.070    
       
Type B HL -74.335 0.060 HL -52.580 0.016 
 HW -73.431 0.039 HW -52.580 0.016 
 HH -73.651 0.043 HH -52.580 0.016 
 LJL -72.582 0.025 LJL -52.580 0.016 
 CT -72.378 0.023 CT -52.724 0.017 
 QT -73.214 0.035 QT -52.724 0.017 
 CH -74.103 0.054 CH -52.724 0.017 
 CHH -72.582 0.025 CHH -53.017 0.020 
 CHL -72.378 0.023 CHL -52.580 0.016 
 HH+HW -76.677 0.134 CT+QT -60.588 0.508 
 LJL+CT+CH -70.335 0.003 HW+CT+QT -58.588 0.071 
 HH+HL+ QT -76.011 0.050 CT+QT+CH -60.955 0.233* 
 HL+HW+CHH -76.011 0.059 HL+QT+CT+CH+CHL -65.985 0.040* 
 HH+HW+LJL+CT+CH+CHH -88.085 0.171*    
 HH+LJL+ CT+CH+CHH -83.990 0.210*    
 HL+HW+HH +LJL+CT+CH+CHH+CHL -102.275 0.046*    
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Table S4.1 continued. 

Phenotypic form Males Females 
 Model AIC   wi Model AIC   wi 
Type C HL -17.263 0.104 HL -21.113 0.002 
 HW -17.414 0.112 HW -22.026 0.003 
 HH -17.214 0.101 HH -21.167 0.002 
 LJL -17.288 0.105 LJL -22.943 0.005 
 CT -17.288 0.105 CT -22.026 0.003 
 QT -17.239 0.102 QT -21.946 0.003 
 CH -17.517 0.118 CH -27.591 0.051* 
 CHH -17.239 0.102 CHH -33.300 0.879* 
 CHL -17.214 0.101 CHL -23.196 0.006 
 CH+CHL -18.765 0.049 HH+CH -25.632 0.008 
    CT+CH -26.764 0.014* 
    HW+CH -25.838 0.009 
    CH+CHL -26.954 0.015* 

 

AIC, Akaike’s information criterion; wi, Akaike’s weight; CHL, casque head length, CHH, casque head height; CH, casque height; HL, head length;  

HW, head width; HH, head height; LJL, lower jaw length; CT, coronoid process of mandible to snout tip; QT, posterior surface of quadrate to snout 

tip; *, P < 0.05. Text in bold highlights the best fitting model. 
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Chapter 5 
 
 

Paper IV: 

Isolation of novel microsatellite loci in dwarf chameleons from 

KwaZulu-Natal province, South Africa and their cross-amplification in 

other Bradypodion species*  

 

 

  

                                                 
* Published as: Feldheim, K., da Silva, J.M. & Tolley, K.A. (2012). Isolation of novel microsatellite loci in 

dwarf chameleons from KwaZulu-Natal province, South Africa and their cross-amplification in other 

Bradypodion species. Conservation Genetics Resources 4(1): 205-211. DOI: 10.1007/s12686-011-9472-x. 
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ABSTRACT  

A recently radiated clade of dwarf chameleon (genus Bradypodion) localised to central-

southern KwaZulu-Natal province, South Africa is considered taxonomically problematic 

due to the observed discordance between morphology and genetics within and between its 

species. The clade is made up of two described species (Bradypodion melanocephalum- 

Bradypodion thamnobates) and possibly others—all of which are experiencing significant 

reductions in the quality and quantity of available habitat due to natural and anthropogenic 

factors. To better understand the effects past and present habitat fragmentation has had on 

gene flow, population structure, and genetic diversity within this clade, we developed 

seven new microsatellite markers for the B. melanocephalum-B. thamnobates complex, 

plus two markers for B. pumilum using an enrichment protocol. We tested these nine 

markers, along with eight markers previously designed for B. pumilum, for cross-species 

transferability across five species within the genus Bradypodion (B. melanocephalum,  

B. thamnobates, Bradypodion dracomontanum, Bradypodion sp. and Bradypodion 

pumilum). The number of alleles ranged from 1 to 29 with observed heterozygosities 

ranging from 0.00 to 1.00. Several loci did not meet HW expectations, but this may be a 

result of extreme demographic fluctuations that have been noted for these species. Ten loci 

were found to be polymorphic across all species examined, making them ideal for studies 

examining the population genetics of dwarf chameleons.    

 

INTRODUCTION  

Dwarf chameleons (genus Bradypodion) distributed in central-to-southern KwaZulu-Natal 

(KZN) province, South Africa, are considered taxonomically problematic given 

discordance between morphology and genetics (Alexander, 2006; Tolley & Burger, 2007; 

Tolley et al., 2008). The clade encompasses two species, Bradypodion melanocephalum 
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(the KwaZulu-Natal dwarf chameleon) and Bradypodion thamnobates (the Natal Midlands 

dwarf chameleon), which show substantial morphological distinctness (in size, colour, and 

skull shape) and habitat partitioning (Branch, 1998; Tolley & Burger, 2007), yet they are 

not reciprocally monophyletic for mitochondrial markers – ND2 and 16S (Tolley et al., 

2004; Tolley et al., 2006). Explanations for this range from shared ancestral polymorphism 

as a result of recent radiation, selective sweeps on mitochondrial genes, strong selection on 

the phenotype as a result of environmental pressure, and phenotypic plasticity. The latter 

explanation can be ruled out, as common garden experiments have shown this is unlikely 

(Miller & Alexander, 2009). Comprehensive field surveys within the distribution of  

B. thamnobates-B. melanocephalum have uncovered other dwarf chameleon populations 

that appear to vary in appearance and/or habitat utilisation compared to the two described 

species, leading some to believe that this clade may be a more species rich than currently 

accepted.  

The conservation status of B. thamnobates is Near Threatened (IUCN, 2010) 

primarily due to a small area of occupancy, increasing habitat fragmentation, and loss of 

habitat quality. It is found in fragmented forests in both rural and urban areas, as well as 

transformed areas (road verges and urban gardens). The status of B. melanocephalum has 

not been assessed; however, it is distributed in a highly fragmented, critically endangered 

grassland ecosystem. Some populations are found in small fragments of exotic vegetation 

along roads in highly transformed areas. Given the threatened status of their forest and 

grassland habitats (Driver et al., 2005; Mucina & Rutherford, 2006) and the increasing 

pressures from anthropogenically induced habitat change (Houniet, 2007; Armstrong, 

2008), there is a high likelihood these chameleons will continue to experience significant 

threats, as has been shown in a range of studies across both terrestrial and marine 

environments (Pimm et al., 1995; Vitousek et al., 1997; Kotze & O'Hara, 2003; Munday, 
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2004; Thomas et al., 2004). Determining the underlying processes of speciation and 

morphological variation within this clade is essential before adequate conservation action 

can be considered and implemented. To do this, an understanding of each species 

population structure and genetic diversity is required. Nuclear microsatellite markers are 

currently considered one of the most popular types of genetic markers for such studies 

(Barbará et al., 2007). Here, we describe nine newly developed markers developed for  

B. thamnobates, B. melanocephalum, and their congener Bradypodion pumilum and 

examine whether cross-species amplification of these new and several existing 

microsatellite markers (Feldheim et al., 2010) is possible within the genus Bradypodion. 

Cross-amplification success is useful information, as conflict between morphology and 

molecules exists in other Bradypodion clades (Tolley et al., 2006). Cross-species 

transferability of microsatellite loci can facilitate comparisons among closely related taxa 

for addressing the processes involved in population divergence and speciation (Noor & 

Feder, 2006), while under strict time and financial constraints, in a cost-effective manner. 

However, cross-species amplification is only effective if primer sequences are conserved 

between species. Even though there are cases showing extreme conservation of loci 

between species (e.g., Schlӧtterer, Amos, & Tautz, 1991; FitzSimmons, Moritz, & Moore, 

1995; Rico, Rico, & Hewitt, 1996), the number of polymorphic loci successfully amplified 

tends to decrease with increasing divergence between species (e.g., Primmer, Møller, & 

Ellegren, 1996; Peakall et al., 1998; Primmer et al., 2005). With this in mind, we examined 

cross-amplification success between diverse Bradypodion species using the existing 

(Feldheim et al., 2010) and new markers developed. In addition to B. thamnobates and  

B. melanocephalum, we included B. pumilum, Bradypodion dracomontanum, and 

Bradypodion sp., all of which diverged at different times from the B. melanocephalum- 

B. thamnobates clade; 10, 5, and < 1 Myr, respectively (Tolley et al., 2008).  
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MATERIALS AND METHODS 

Chameleons were sampled from diverse regions within their distributions in KZN and 

Western Cape provinces (Fig. 1), namely KZN Midlands (B. thamnobates), southern coast 

of KZN (B. melanocephalum), Drakensberg Mountains (B. dracomontanum), central KZN 

(B. sp.), and Cape Town (B. pumilum). Two millimetre tail clips were taken from each 

chameleon and stored in 99% ethanol until subsequent DNA extraction.  

 

Figure 5.1 Map showing sampling sites/species distributions for each of the five Bradypodion 

species screened. Overall sampling regions for each species are defined as: 1, B. thamnobates 

(KZN Midlands); 2, B. melanocephalum (southern KZN coast); 3, B. dracomontanum 

(Drakensberg); 4, B. sp. (central KZN); 5, B. pumilum (Cape Town, Western Cape). 

 

We developed seven new microsatellite markers for the B. melanocephalum (Bme)-

B. thamnobates (Bth) complex, plus two new markers for B. pumilum (Bpu) (Table 5.1), 

using an enrichment protocol (Glenn & Schable, 2005). Genomic DNA (gDNA) from one 
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individual was digested with RsaI and XmnI, and SuperSNX24 linkers were ligated onto 

the ends of gDNA fragments. Linkers act as priming sites for polymerase chain reactions 

(PCR) in subsequent steps. Five tetranucleotide [(AAAT)8, (AACT)8, (AAGT)8, (ACAT)8, 

(AGAT)8] and biotinylated probes were hybridized to gDNA. Probe-gDNA complexes 

were added to streptavidin-coated magnetic beads (Dynabeads® M-280 Invitrogen, 

Carlsbad, California). This mixture was washed twice with 29 SSC, 0.1% SDS and four 

times with 29 SSC, 0.1% SDS at 52˚C. Between washes, a magnetic particle collecting unit 

was used to capture the magnetic beads which are bound to the biotin-gDNA complex. 

This allows us to capture gDNA containing repeats while other fragments (i.e. those not 

containing repeats) are washed away. Enriched fragments were removed from the 

biotinylated probes by denaturing at 95˚C and precipitated with 3M sodium acetate and 

95% ethanol. To increase the amount of fragments, a ‘‘recovery’’ PCR was performed in a 

25 µl reaction containing 1 x PCR buffer (10 mM Tris-HCl, 50 mM KCl, pH 8.3), 1.5 mM 

MgCl2, 0.16 mM of each dNTP, 0.52 µM of the SuperSNX24 forward primer, 10 x BSA, 

1U Taq DNA polymerase, and approximately 25 ng enriched gDNA fragments. Thermal 

cycling, performed in an MJ Research DYAD, was as follows: 95˚C for 2 min followed by 

25 cycles of 95˚C for 20 s, 60˚C for 20 s, and 72˚C for 90 s, and a final elongation step of 

72˚C for 30 min. Subsequent PCR fragments were cloned using the TOPO-TA Cloning® 

kit following the manufacturer’s protocol (Invitrogen). Bacterial colonies containing a 

vector with gDNA (i.e. white colonies) were used as a template for subsequent PCR. PCR 

products were then cleaned using Exonuclease I and Shrimp Alkaline Phosphatase 

according to the manufacturer’s protocol (Affymetrix, Santa Clara, California). DNA 

sequencing was performed using the BigDye® Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, Foster City, California). Sequencing reactions were precipitated with 

125 mM EDTA and ethanol and run on an ABI 3730 DNA Analyzer.  
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Primer3 (http:// frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) was used to develop 

microsatellite PCR primers. 

Optimisation of the nine markers was carried out in a 10 µl reaction volume 

containing approximately 5–50 ng of DNA template, 0.6259 Colourless GoTaq Flexi 

Buffer, 80 µM of dNTPs, 0.2 µM of each primer, and 0.5 U of Promega GoTaq® DNA 

Polymerase (Promega: Madison, Wisconsin, USA). MgCl2 concentrations and annealing 

temperatures (Ta) varied between loci and species (Table 5.1). Thermal cycling parameters 

were as follows: 95˚C for 4 min, followed by 40 cycles at 95˚C for 30 s, Ta for 30 s, 72˚C 

for 45 s and a final extension at 72˚C for 5–10 min. PCR products were combined in a 

multiplex format of no more than two primers. Samples were run on a 50 cm capillary on 

the ABI 3130XL Genetic Analyzer (16 capillaries) using Rox 500 as the internal size 

standard and POP-7 as the polymer, as per manufacturer’s recommendations.  

 

RESULTS AND DISCUSSION 

Seven loci were found to be polymorphic across all species with the number of alleles 

ranging from 2 to 29 (Tables 5.2, 5.3). Bth76 was found to be polymorphic for all but one 

species (B. dracomontanum), but this could be a result of the small sample size (n = 4). 

Bpu535 was not polymorphic for any species except the one that was used to develop this 

locus (i.e. B. pumilum: Table 5.3).  

Of the eight primers previously developed for B. pumilum (Feldheim et al., 2010), 

only two (Bpu94 and Bpu557) cross-amplified consistently for all species (Tables 5.2 & 

5.3). Bpu238 did not amplify for B. dracomontanum, yet clear products were achieved for 

all other species; however, only B. sp. and B. pumilum were polymorphic. Bpu557 was 

polymorphic for all, except B. dracomontanum, likely due to the small sample size. Bpu94 

was the only polymorphic locus for all species.  
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Table 5.1 Characteristics of microsatellite loci and primers developed for B. melanocephalum (Bme), B. thamnobates (Bth) and B. pumilum (Bpu). 

Locus Repeat Motif Primer Sequence (5’ – 3’) Label Genebank 
Access. No. 

B. melanocephalum 
&  

B. thamnobates 

    B. pumilum 

     Ta   
(⁰C) 

MgCl2 
(mM) 

Ta  
(⁰C) 

MgCl2  
(mM) 

Bme45 (ATAC)20 F: GAT TGG GCG GAA TAC AAG TC 
R: TCC CTG CCA GTT ATT GTT GC 

6Fam JN086456 59 1.0-1.5 59 1.0 

Bme58 (AG)32 F: TTG AAG CAA TGC ACA CAC AC 
R: GCA CCG GTT CTT TAG CTT TG 

Hex JN086457 59 0.75-1.25 59 0.75 

Bme128 (AC)28 F: TCT GTT CTG TTG CTT TTC CTC 
R: CCC CAA TGA TCT CTC AAT GT 

6Fam JN086458 59 1.0-1.25 59 1.25 

Bth10 (TC)3(AC)5(TC)14(
AC)26 

F: TGG AGT AGA GAC TGC GCT TG  
R: TGT GGA TAC CCA TTT CAC CA 

Hex JN086459 59-62 0.75-1.0 59 0.75 

Bth76 (ATAG)37 F: TTG TGG TTA GAG GGG CAT TG Hex JN086460 56 1.0-1.5 56 1.0 
  R: CCC CAA TCT CGT TGT TCT GT       
Bth93 (ATAG)24 F: AAG GGC ACA TCA CTG AAT CC 6Fam JN086461 59 1.0-1.5 59 1.0 
  R: CGC CAG AGA TGA TGG AAT TT        
Bth161 (ATCT)31 F: CCC CAA TCT CGT TGT TCT GT 

R: TCC AAT GCA CAC ACG TTA GC 
Hex JN086462 59 1.0-1.5 59 1.0 

Bpu26* (TTAC)26 F: TGA AAT CTC GCT ATC CTT GT Hex GU066308 — — 63 6.0 
  R: CTT TCG AGT AAG GGA GAC CT       
Bpu28* (TATC)30 F: CTGGAAACCTCCCTGCCTAT Hex GU066310 ?  58 1.0 
  R: TGGACTTATAGTCCGCCTTCC       
Bpu94* (GTT)17 F: CAG CTT TGG CGT CTT ACA CA 

R: GCC TTA AAG GAA GGA AAG TGG 
Hex GU066305 48-58 1.0-2.0 48 1.25 

Bpu115* (TAGA)14 F: GCT GTG ATA TGT AAA TTC AGG G Hex GU066306 ?  55 1.0 
  R: CAC TTT GTT TTG GTC TCC CAC T       
Bpu132* (TATG)27 F: CGC TAT TTC CCC TCA AAA TC 6Fam GU066309 ?  48 0.75 
  R: TGG CTC CAT ATA GCA ACA CG       
Bpu238* (TATC)26 F: CCC CAA TCT CGT TGT TCT GT 

R: CTC ATT TCC TCC TCC CCA TT 
6Fam GU066307 58 1.0 58 1.0 
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Table 5.1 continued. 

Locus Repeat Motif Primer Sequence (5’ – 3’) Label Genebank 
Access. No. 

B. melanocephalum 
&  

B. thamnobates 

    B. pumilum 

     Ta   
(⁰C) 

MgCl2 
(mM) 

Ta  
(⁰C) 

MgCl2  
(mM) 

Bpu507 (TG)23 F: AAT CCC TCA CCT TCA CAT GC 
R: CCA GGT TCA AAA TCC CAT CA 

6Fam JN086463 53 1.0-1.25 53 1.0 

Bpu535 (AG)17 F: ACC AGC TCC TTT GCA TGC TC 
R: GTC CAG AAC AAA CTG GAC TGC 

Hex JN086464 53 1.5 53 1.5 

Bpu557* (GT)8 F: GGC ACT GGC ATC CCT AAA TA 
R: GAC TTG CTG AGG GAT ATT AC 

6Fam GU066303 48 1.0 48 1.25 

Bpu571* (GA)11 F: CAA TAT GCC ACC TAA CCA TC 6Fam GU066304 — — 57 6.0 
  R:CCA TGA CAA ATT ACA CAA ACC TC       

 
* = primers previously published (Feldheim et al., 2010); — = amplification failed; ? = equivocal output.
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Table 5.2 Testing the cross-amplification of Bradypodion microsatellite loci.   

 

Loci Species 
B. melanocephalum B. thamnobates B. pumilum B. dracomontanum B. sp. 

Bth10 p p p p p 

Bth76 p p p p P 

Bth93 p p p p P 

Bth161 p p p p p 

Bme45 p p p p P 

Bme58 p p p p p 

Bme128 p p p p p 

Bpu26 — — p — — 

Bpu28 ± ± p — — 

Bpu94 p p p m p 

Bpu115 — — p — — 

Bpu132 ± ± p — — 

Bpu238 m m p — p 

Bpu507 p p p p p 

Bpu535 m m m m m 

Bpu557 p p p m p 

Bpu571 — — p — — 

 
—: no PCR product; ±: equivocal output - unclear, weak or inconsistent PCR product; m: 

monomorphic locus in the tested set of isolates; p: polymorphic locus in the tested set of isolates  
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Table 5.3  Descriptive statistics of genetic variability for 12 microsatellite loci across five Bradypodion species. 

Locus B. melanocephalum (n = 50)  B. thamnobates  (n = 38)   B. pumilum (n = 29) 
 NA S HO HE HWe  NA S HO HE HWE  NA S HO HE HWE 
Bth10 29 141-229 0.61 0.95 0.0000   21 167-223 0.71 0.95 0.0000  8 149-177 0.62 0.72 0.0864 
Bth76 19 100-228 0.61 0.72 0.0634  18 100-236 0.79 0.92 0.0014  15 104-244 0.76 0.92 0.0227 
Bth93 17 64-192 0.60 0.93 0.0000  15 128-188 0.86 0.91 0.0863  8 136-204 0.14 0.81 0.0000  
Bth161 21 157-265 0.51 0.93 0.0000   23 173-285 0.81 0.93 0.0183  13 209-265 0.66 0.83 0.0032 
Bme45 25 86-186 0.68 0.94 0.0000   19 90-198 0.86 0.93 0.1545  11 142-206 0.83 0.88 0.2182 
Bme58 16 131-231 0.39 0.90 0.0000   11 131-163 0.55 0.80 0.0000  14 131-181 0.46 0.90 0.0000   
Bme128 27 137-217 0.69 0.94 0.0000   12 135-205 0.55 0.72 0.0016  3 135-143 0.00 0.14 0.0005 
Bpu94 10 109-199 0.52 0.76 0.0000   7  115-205 0.19 0.90 0.0000  7 160-193 0.50 0.75 0.0024 
Bpu238 1 106 - - -  1 106 - - -  18 155-239 0.82 0.91 0.4560   
Bpu507 10 182-204 0.70 0.87 0.0004  9 182-262 0.53 0.83 0.0000  16 202-262 0.90 0.92 0. 0208  
Bpu535 1 254 - - -  1 254 - - -  1 256 - - - 
Bpu557 3 104-108 0.40 0.51 0.1354  3 90-106 0.09 0.09 1.0000  5 104-116 0.24 0.49 0.0000 
Locus B. dracomontanum (n = 4)  B. sp. Greytown  (n = 19)   
 NA S HO HE HWE  NA S HO HE HWE 
Bth10 3 153-159 0.75 0.82 0.7709  13 157-233 0.67 0.86 0.0129 
Bth76 1 100 - -   2 100-204 0.11 0.10 1.0000 
Bth93 5 100-176 1.00 0.93 1.0000    11 108-160 1.00 0.88 0.9355   
Bth161 6 177-209 1.00 0.96 1.0000    8 185-233 0.63 0.82 0.0553 
Bme45 3 134-150 0.75 0.64 1.0000    10 110-190 0.89 0.90 0.7753 
Bme58 4 163-187 0.75 0.86 0.6541  7 133-147 0.78 0.82 0.0000 
Bme128 5 151-193 0.50 0.86 0.0831  14 141-205 0.84 0.90 0.1809 
Bpu94 3 121-160 0.50 0.50 1.0000    7 121-217 0.44 0.80 0.0025 
Bpu238 0 - - - -  3 102-110 1.00 0.67 1.0000 
Bpu507 2 196-200 0.50 0.57 1.0000    7 184-202 0.63 0.81 0.0185 
Bpu535 1 254 - - -  1 254 - - - 
Bpu557 1 104 - - -  2 104-108 0.00 0.34 0.0001 

 
NA, Number of observed alleles; S, allele size range; HO, observed heterozygosity; HE, expected heterozygosity; HWE, Chi-square tests for Hardy-

Weinberg equilibrium after Bonferroni correction.

Stellenbosch University  http://scholar.sun.ac.za



 

112 
 

Levels of expected and observed heterozygosities were estimated, and tests for 

deviations from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) at 

each locus were performed using ARLEQUIN v.3.11 (Excoffier, Laval, & Schneider, 

2005). Tests for linkage and Hardy-Weinberg disequilibria were corrected for multiple 

comparisons by applying sequential Bonferroni corrections (Rice, 1989). No significant 

linkage disequilibrium was detected for any of the loci. There were a number of significant 

deviations from HWE depending on the species examined, except for B. dracomontanum 

which showed all loci to be in HWE (Table 5.3).  

The resulting deviations from HWE are all due to homozygote excess, which can 

be a consequence of null alleles or of biological factors such as the Wahlund effect or 

inbreeding (Chakraborty et al., 1992). Multilocus analyses can normally distinguish these 

causes because such factors should register more or less concordantly across loci, whereas 

the effects of null alleles are locus-specific. The presence of null alleles for each locus was 

examined in Micro-checker version 2.2.3 (Van Oosterhout et al., 2004), and three were 

found to shown signs of null alleles: Bpu94, Bpu557, and Bth10. The homozygote excess 

at the remaining loci could be due to the Wahlund effect (e.g., Johnson & Black, 1984). 

Given the highly fragmented nature of Bradypodion habitat coupled to an expectation of 

low vagility (Tolley et al., 2010), non-random mating across larger distribution is a 

potential explanation, despite random mating within a small locale. In this case, small 

populations could become fixed for diverse alleles, reducing the observed heterozygosity 

across the entire sample, as globally ‘‘expected’’ heterozygotes will not occur in the 

population. Indeed, Bradypodion could also be subject to large demographic fluctuations, 

with repeated founder events in small populations (Tolley et al., 2010), which would have 

an effect on HWE.  
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In conclusion, seven new polymorphic microsatellite markers are optimised for the 

B. melanocephalum-B. thamnobates complex and two additional polymorphic markers 

optimised for B. pumilum. These markers cross-amplify in other species in the same genus 

without a drastic reduction in allelic diversity in non-target species for most loci. These 

markers likely have conserved primer sequences for the genus as a whole, thus proving 

useful for the evaluation of population genetic diversity, construction of genetic linkage 

maps, and mapping of quantitative trait loci in the B. melanocephalum-B. thamnobates 

complex, as well as other related species. 
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ABSTRACT 

Species are the fundamental units of biodiversity, yet how to delimit them remains one of 

the most contentious debates in the fields of systematics, evolution, ecology and 

conservation; thus explaining the numerous species concepts currently used by biologists.  

The main difference between concepts is how far evolutionary population differentiation 

needs to proceed before populations should be considered distinct species. A lineage might 

lack support from one or more lines of evidence even if it is evolving separately because it 

is in the early stages of divergence. This is commonly observed in adaptive radiations with 

species identified based on distinct ecomorphological evidence, yet show little to no 

genetic divergence. Such discordance between morphology and genetics has been reported 

in a phenotypically diverse group of dwarf chameleons restricted to southern KwaZulu-

Natal Province, South Africa – the Bradypodion melanocephalum-Bradypodion 

thamnobates species complex. However, the lack of genetic differentiation may be 

attributed to too few samples and a limited number of genetic markers used in the initial 

phylogenetic studies.  Accordingly, in this study we incorporated extensive genetic 

sampling and utilised both mtDNA and fast-evolving nuclear microsatellite markers to 

identify genetic structure and assess levels of genetic diversity and gene flow between 

chameleons. We also incorporated detailed spatial information into the analyses to quantify 

the effects of landscape and geographic barriers on their genetic structure. The 

mitochondrial and microsatellite data revealed three and seven genetic clusters, 

respectively, likely reflecting the evolution of southern KZN dwarf chameleons in response 

to forest extent. Based on these results, we are able to recognise four distinct species and, 

at least, five adaptively distinct conservation units within the B. melanocephalum- 

B. thamnobates species complex. 
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INTRODUCTION 

Species are the fundamental units of biodiversity and central to our understanding of many 

evolutionary processes. Consequently, over- or under-resolving species boundaries will 

confound studies aimed at understanding these processes (Sites & Marshall, 2003, 2004), 

yet how to delimit them remains one of the most contentious debates in the fields of 

systematics, evolution, ecology and conservation, which is evident in the numerous species 

concepts currently used by biologists (see Wilkins, 2009; Hausdorf, 2011). These debates 

typically involve the philosophy over what constitutes a species, temporal scale considered 

(years, decades, centuries, etc.), perspective followed (i.e., looking at possible future 

divergences versus looking to past divergences), reliability of methods used, and relevance 

of the data (de Queiroz, 2007). Traditionally, taxonomists used a variety of morphological 

characters and measurements to identify and classify species. Systematists expanded upon 

this work by investigating the evolutionary histories of species and their environmental 

adaptations, which, in the last decades, has been greatly influenced by molecular data. 

Today, DNA sequencing, both nuclear (nDNA) and mitochondrial (mtDNA), are integral 

tools in delimiting species (e.g., Avise et al., 1987; Moritz, Dowling, & Brown, 1987; 

Doyle, 1992; Pitra et al., 2006; Thomé et al., 2012; Krück et al., 2013), with species often 

identified as the terminal branches of a phylogenetic tree (following the genealogical basis 

of the phylogenetic species concept [PSC]: see Avise & Ball, 1990; Baum & Shaw, 1995). 

However, complications arise when described species previously classified by other means 

(e.g., morphology, ecology) are not accurately reflected in these gene trees (Pamilo & Nei, 

1988; Doyle, 1992; Maddison, 1997; Maddison & Knowles, 2006). This is a fairly 

common occurrence often attributed to hybridization, incomplete lineage sorting (shared 

polymorphisms inherited from a common ancestor) or gene duplication (Nei, 1987; Doyle, 

1992; Maddison, 1997). Even discrepancies between nDNA and mtDNA are common due 
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to their different modes of inheritance and rates of mutation (e.g., Shaw, 2002; Wake, 

2006; Egger et al., 2007; Leaché & Cole, 2007; Yang & Kenagy, 2009).  Such discordance 

may call into question the validity of the proposed species under some species concepts; 

however, the absence of conformity should not constitute the rejection of possible lineage 

separation (de Queiroz, 2007). Many species concepts are actually similar in that they 

classify a species as a cohesive group of individuals that have at least partially different 

evolutionary paths representing different lineages (de Queiroz, 2005, 2007; Hausdorf, 

2011). The main difference between them is how far evolutionary population 

differentiation needs to proceed before populations should be considered distinct species 

(de Queiroz, 2005, 2007). Accordingly, a lineage might lack support from one or more 

lines of evidence even if it is evolving separately because it is in the early stages of 

divergence. This has been well documented in adaptive radiations, such as Darwin's 

finches (Freeland & Boag, 1999; Grant et al., 2005; Petren et al., 2005), African cichlids 

(e.g., Verheyen et al., 2003; Salzburger & Meyer, 2004; Seehausen, 2004), threespine 

sticklebacks (e.g., Taylor & McPhail, 1999; Kristjánsson, 2005) and Anolis lizards (e.g., 

Losos et al., 1998). Corroboration from multiple lines of evidence should therefore be 

sought after, which an increasing number of studies are adopting by incorporating 

morphological, behavioural, ecological and genetic data (e.g., Rees et al., 2001; Leaché et 

al., 2010; Evin, Horacek, & Hulva, 2011; Taylor et al., 2011; Carrasco et al., 2012). 

Discordance between morphology and genetics has been reported in a 

phenotypically diverse group of dwarf chameleons (Bradypodion) restricted to southern 

KwaZulu-Natal Province (KZN), South Africa (Tolley et al., 2004).  The group is 

comprised of five phenotypic forms, two of which are classified taxonomically – 

Bradypodion melanocephalum (Gray, 1865) and Bradypodion thamnobates (Raw, 1976) – 

and the remaining three (regarded as Types A, B and C in Chapter 2) designated as 
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morphotypes (Tolley & Burger, 2007; Tilbury, 2010). All are allopatric in distribution and 

occupy different macro- and micro-habitats, which can be broadly classified as either 

open- or closed-canopy (Chapter 2). Yet, despite these morphological and ecological 

differences, initial phylogenetic and phylogeographic studies using mitochondrial markers 

(ND2 and 16S) found very little, if any, genetic differentiation between them (Tolley et al., 

2004; Tolley et al., 2008). Thus, under the genealogical PSC, this lack of genetic 

resolution would result in their collapse into a single species. However, this was not a 

satisfactory solution given that common garden experiments ruled out the possibility of 

phenotypic plasticity within this group, at least for B. melanocephalum and B. thamnobates 

(Miller & Alexander, 2009), and detailed ecomorphological studies showed that each form 

possessed functional adaptations to their specific habitats (Chapters 2-4). Consequently, 

the morphological variation between forms represents true ecological or evolutionary 

differences between them, lending support for their classification as separate lineages and 

the designation of the group as an adaptive radiation.  

In some cases, phylogenetic studies fail to recognise divergence between species, 

when in fact it existed (see Shaffer & Thomson, 2007 for examples). This has been 

attributed to the incorporation of too few samples from what was assumed to be 

representative localities of each lineage, the reliance on particular genomic regions which 

might show sufficient variation, the use of a limited number of genetic markers, and the 

paucity of appropriate methods used to detect differences. To eliminate these as possible 

explanations for the discordance observed between genetics and morphology within this 

species complex, we incorporated extensive genetic sampling and utilised both mtDNA 

and fast-evolving nuclear microsatellite markers to identify genetic structure and assess 

levels of genetic diversity and gene flow between chameleons. We also incorporated 

detailed spatial information into the analyses to quantify the genetic effects of habitat and 
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geographic barriers (e.g., Manel et al., 2003; Spear et al., 2005; Selkoe & Toonen, 2006; 

Storfer et al., 2007; Moore et al., 2008).  This approach allows for the examination of the 

hypothesis that the phenotypic forms previously identified in the B. melanocephalum- 

B. thamnobates species complex are reflected in their genetics. Based on the currently 

available data, there are four species concepts most applicable to this chameleon complex: 

the morphological species concept (MSC: Mayr, 1982), the phylogenetic species concept 

(PSC: Eldredge & Cracraft, 1980; Cracraft, 1997), the genotypic cluster species concept 

(GSC: Mallet, 1995), and the ecological species concept (ESC: Van Valen, 1976). The 

MSC was widely used historically; whereas, today, the PSC is one of the most widely used 

concept, and the GSC and ESC are often adopted for the classification of species 

undergoing adaptive radiations.   If discordance between the data persists, then depending 

on the line of evidence one deems most important for delimiting species, the number of 

dwarf chameleons will vary drastically. This has significant implications for their 

conservation and management, affecting factors, such as area of occupancy, which are 

necessary in assessing a species’ risk of extinction.   

 

MATERIALS AND METHODS 

SAMPLE COLLECTION 

Chameleons within the B. melanocephalum-B. thamnobates species complex were sampled 

from multiple localities throughout southern KZN, focussing on three zones where the five 

forms occur: southern Drakensberg (Type B), KZN Midlands (B. thamnobates, Types A 

and C), and the south coast (B. melanocephalum) (Fig. 5.2).  All individuals were geo-

referenced (+/- 5 m) at the exact location each chameleon was found. Two to three 

millimetre tail clips were taken from each chameleon and stored in 99% ethanol.  Although 

chameleons use their tails as a prehensile organ to navigate through their environments 
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(Tolley & Burger, 2007; Tolley et al., 2010), tail clipping has been shown to have no 

significant effect on their performance ability (Herrel et al., 2012). 

 

 

Figure 5.2 Map depicting the 25 sampling sites within southern KZN, South Africa. A- south 

coast: 1-Durban; 2-Illovo; 3-Pennington; 4-Umtamvuna; 5-Oribi Gorge.  B- KZN Midlands:  

6-Weza; 7-Ixopo; 8-Bryne Valley; 9-Stirling Farm; 10-Hilton; 11-Karkloof; 12-Gilboa Plantation; 

13-Mooi River; 14-Gowrie Village; 15-Boschhoek Golf Course; 16-Notthingham Road; 17-Dargle; 

18-Howick; 19-Boston; 20-Bulwer.  C- southern Drakensberg: 21-Sani Pass; 22-Lotheni;  

23-Kamberg; 24-Giant’s Castle; 25-Highmoor.   

 

DNA EXTRACTION, MICROSATELLITE GENOTYPING AND MTDNA SEQUENCING  

DNA extractions were performed using a standard salt extraction protocol 

(Aljanabi & Martinez, 1997). Seven microsatellite markers developed for the B. 

melanocephalum-B. thamnobates species complex, plus three additional markers 

developed for the congener Bradypodion pumilum were used to amplify microsatellites 
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(Paper IV: Chapter 5).  Optimisation of the ten markers was carried out in a 10 µl reaction 

volume according to protocols in Paper IV. PCR products were combined in a multiplex 

format of no more than two primer pairs. Samples were run on a 50 cm capillary on the 

ABI 3130XL Genetic Analyzer (16 capillaries) using Rox 500 as the internal size standard 

and POP-7 as the polymer, as per manufacturer’s recommendations. PCR profiles were 

analysed using Peak Scanner™ Software, Version 1.0. We used the program Micro-

Checker version 2.2.3 (Van Oosterhout et al., 2004) to test for the presence of genotyping 

errors, null alleles, and heterozygote deficiencies.  

One mtDNA marker – NADH dehydrogenase 4 (ND4) – was used to generate 

sequences for a subsample of individuals from each sampling site. For amplification, 20-50 

ng genomic DNA were added to a 25µL reaction containing a thermophilic buffer (20 mM 

Tris-HCl (pH 8.0), 100 mM NaCl, 0.1 mM EDTA, 1 mM DTT), 1.5 mM MgCl2, 0.08 µM 

of each primer, 0.2 µM dNTPs, and 0.3 U/µl SuperTherm Taq DNA polymerase. 

Sufficient PCR product for direct sequencing was generated after 35 cycles (94 °C for 30 s, 

57 °C for 30 s, 72 °C for 45 s). These products were run on an ABI 3730XL DNA 

Analyzer, and the sequences aligned and edited using SEQUENCHER v. 4.1.  

 

MICROSATELLITE STATISTICAL ANALYSES 

For each locus, the number of alleles, allelic size range, observed (Ho) and expected (He) 

heterozygosities  (Nei, 1987), and deviations from Hardy-Weinberg equilibrium (HWE) 

were calculated for all sampling locations using the program ARLEQUIN version 3.5.1.2 

(Excoffier & Lischer, 2010). HWE was calculated based on a procedure described by Guo 

and Thompson (1992) using a test analogous to Fisher’s exact test, but it employs a 

triangular contingency table based on a modified version of the Markov-chain random 
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walk algorithm.  The test was run using 1.0 x106 Markov chains and 100 000 

dememorization steps. 

GENEPOP on the web (Raymond & Rousset, 1995; Rousset, 2008) and the 

program LinkDos (Garnier-Gere & Dillmann, 1992) were used to test for linkage 

disequilibrium (LD) between pairs of microsatellite loci within and between sampling 

sites.  Standard pairwise measures of LD between loci were calculated according 

Cockerham and Weir’s (1977) definition based on genotypic data. A MCMC 

dememorization of 1 000 were used for 100 batch runs of 1 000 iterations. LinkDos was 

used to compute three variance components of LD – DIS, DST, DIT  – devised by Ohta 

(1982), which are similar to Wright’s (1940) partitioning of deviations from HWE 

frequencies. DIS is the average disequilibrium within sampling sites, DST is the contribution 

to the overall disequilibrium caused by differences in allele frequencies among sampling 

sites, and DIT is classified as the total variance of disequilibrium. Ohta (1982) further 

classified two other components: D’IS is the variance of disequilibrium of in a 

subpopulation relative to the total population; and, D’ST is the variance of disequilibrium of 

the total population. This partitioning of LD  is important in investigating the possible 

factors responsible for differences in LD, such as natural selection, genetic drift, 

bottlenecks, inbreeding, inversions and gene conversions (Slatkin, 2008). For example, 

Ohta (1982) found that when D’IS > D’ST and DST > DIS, limited migration is likely the 

main reason for the observed LD; whereas, when the reverse relationships arise, epistatic 

natural selection is likely to be the underlying factor since loci with favourable 

combinations of alleles would increase in every sampling site. 

Two Bayesian model-based clustering algorithms were used to infer population 

structure using the microsatellite data and to probabilistically assign individuals to clusters 

based on multi-locus genetic data without a priori knowledge of population units and 
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limits. For all algorithms, subdivision of the data into clusters was done by maximising 

HWE and minimising LD. The first algorithm, implemented in STRUCTURE version 

2.3.3 (Pritchard, Stephens, & Donnelly, 2000; Falush, Stephens, & Pritchard, 2003), bases 

its inference on genetic data alone; whereas, the second algorithm used in GENELAND 

version 3.3.0 (Guillot, 2005; Guillot, Mortier, & Estoup, 2005a; Guedj & Guillot, 2011; 

Guillot, Santos, & Estoup, 2011) incorporates spatial information. For both programs, no 

prior assumptions regarding the model that would best fit the data were made. Instead, 

simulations were conducted under each model available (e.g., no admixture/admixture; 

correlated/uncorrelated) with long Markov chain Monte Carlo (MCMC) runs to ensure 

convergence of the chain. For each program, Kmax was set to 30 as it is larger than the 

actual number of field sites sampled; hence the true K will fall within this range. Kmin was 

set to 1.  

For STRUCTURE, 10 independent runs were carried out for each fixed K between 

Kmin and Kmax, with a MCMC of 500 000 iterations following a burn-in of 50 000 for each 

model combination (four in total).  STRUCTURE HARVESTER Web v0.6.92 (Earl & 

vonHoldt, 2012) was then used to apply the ad hoc statistic developed by Evanno et al. 

(2005) to calculate ΔK – the rate of change in the estimated log probability of data between 

successive K values.  The modal value of ΔK is considered to be the ‘true’ K or the 

uppermost hierarchical level of population structure that best describes the data (Evanno et 

al., 2005). The10 runs associated with the modal ΔK were further processed in CLUMPP 

version 1.1.2 (Jakobssen & Rosenberg, 2007) using the Greedy algorithm (M = 2). This 

was done to correct for possible label switching or genuine multimodality issues (Pritchard 

et al., 2000). Label switching refers to a scenario in which different runs obtain the same 

membership coefficient estimates, except with a different permutation of the cluster 

(Stephens, 2000). Genuine multimodality refers to different runs producing substantially 
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different answers, which increasing the run length cannot fix (Pritchard et al., 2000; 

Jakobssen & Rosenberg, 2007). CLUMPP outputs cluster membership coefficient 

matrices, transformed so that the cluster labels across the different runs align and all 

replicates have as close a match as possible. DISTRUCT version 1.1 (Rosenberg, 2004) 

was then used to visualise the results as barplots of individual cluster membership. We 

assigned each individual to the cluster with the greatest proportion of membership, and 

each site to the cluster to which the majority of individuals at that site were assigned.  

For GENELAND, data were analysed under both correlated and uncorrelated allele 

frequency models using spatial parameters. Estimates of posterior probabilities of each K 

(between Kmin and Kmax) occur via a reversible jump algorithm within a single run (Guillot 

et al., 2005b). For each simulation, parameters were set to 10 independent runs with 500 

000 MCMC iterations, thinning of 50, no filtering of null alleles, and the delta coordinate 

(representing the potential error for spatial coordinates) set at 0. This delta coordinate was 

considered appropriate given that each sample possessed its own geographic coordinates 

and these chameleons are believed to have low very vagility; therefore, the location of 

capture is expected to be representative of their home range. All other parameters were set 

to default values. The 10 runs were post-processed with a burn-in of 100 iterations in order 

to obtain posterior probabilities of population membership for each individual and each 

pixel of the spatial domain (200 pixels along the X and Y axes). The consistency of the 

results across the 10 runs was checked visually. Because post-processing in GENELAND 

already corrects for label-switching, CLUMPP was not required. However, DISTRUCT 

was used to create barplots of cluster membership.  

Although comparing outputs of different models and different programs is a 

difficult statistical exercise, a method by Guillot et al. (2011) was employed to help select 

the model that best represented the data. The patterns obtained from the different models in 
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each program were checked for consistency over several runs and to make sure that the 

inferred clusters complied with model assumptions. If these preliminary checks were held, 

ARLEQUIN and GENEPOP on the web were used to examine whether the inferred 

clusters were in HWE and if there was LD between loci, respectively. If an inferred pattern 

passed these checks, there was a good chance it was not an artefact of the model algorithm.  

Once the number of clusters was identified, a comprehensive examination of each 

cluster’s genetic diversity and structure was undertaken in ARLEQUIN.  To better 

understand the connectivity and gene flow among clusters and sites, hierarchical AMOVAs 

were conducted using 10 000 permutations and pairwise genetic distance matrices 

calculated using Slatkin’s (1995) RST for microsatellite data. This statistic was used instead 

of FST  because it relies on a stepwise mutation model which is better suited for the high 

mutation rates and memory dependent allele mutations found within microsatellite loci (Di 

Rienzo et al., 1994; Slatkin, 1995). In contrast, FST relies upon the infinite allele model, 

which assumes low mutation rates and a mutation process independent of the prior allelic 

state (Weber & Wong, 1993; Slatkin, 1995).  

To gain perspective on the extent of genetic differentiation between clusters, 

microsatellite data from B. pumilum, Bradypodion dracomontanum¸ and Bradypodion 

nemorale (Greytown population) from Paper IV were included in the analysis. These 

species were chosen as they vary in the degree of genetic divergence and geographic 

proximity to chameleons in the B. melanocephalum-B. thamnobates species complex.  

Bradypodion pumilum is the most distant, both genetically and geographically; whereas,  

B. dracomontanum and B. nemorale are sister taxa to the complex and occur in central 

KZN (Tolley & Burger, 2007; Tolley et al., 2008; Tilbury, 2010).  The function hclust in R 

(R Development Core Team, 2011) was then used to illustrate the hierarchical structuring 

of the microsatellite clusters identified.  
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We tested for signatures of genetic bottlenecks in all seven clusters using two 

methods. First, heterozygosity excess was tested using the program BOTTLENECK 1.2.02 

(Piry, Luikart, & Cornuet, 1999). BOTTLENECK incorporates the method developed by 

Cornuet and Luikart (1996), which uses a single population sample to test whether there 

has been a recent reduction in allelic variation. Specifically, heterozygosity excess is 

defined as He (Hardy-Weinberg heterozygosity) minus Heq (equilibrium heterozygosity at 

mutation-drift equilibrium) (see Piry et al., 1999). Studies have found this method to be 

most effective at accurately detecting recent, low-magnitude declines in effective 

population size (Ne) (Cornuet & Luikart, 1996; Beebee & Rowe, 2001; Williamson-

Natesan, 2005; Goossens et al., 2006; Spear et al., 2006; Funk et al., 2010). The stepwise 

mutation model (SMM) and the two-phase mutation model (TPM) were used to generate 

null distributions under mutation-drift equilibrium, as these are considered the most 

appropriate models for microsatellites (Di Rienzo et al., 1994; Garza & Williamson, 2001). 

A wide range of values was used for the percent multi-step mutations (2, 5, 10, 20, and 

30%), which represent values most commonly tested in the literature (e.g., Piry et al., 

1999; Busch, Waser, & DeWoody, 2007; Funk et al., 2010; Peery et al., 2012). The 

variance among multiple steps was set to 12, as recommended by Piry et al. (1999). The 

significance of heterozygosity excess across all loci was determined with a one-tailed 

Wilcoxon sign rank test. Second, we used ARLEQUIN to estimate the M-ratio according 

to the equation M = k / R+1, where k represents the number of alleles at a locus and R is the 

associated allelic range (Garza & Williamson, 2001).  Populations that have experienced a 

reduction in their effective population size exhibit a larger reduction in allele numbers than 

range (Excoffier & Lischer, 2010). Accordingly, an M-ratio less than 0.68 (value derived 

from stable wild populations) would indicate that the population has been through a 

bottleneck at the locus under examination, whereas a value closer to one is indicative of 
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stationary/stable populations (Garza & Williamson, 2001; Peery et al., 2012). Studies have 

found that the M-ratio is most effective at detecting older, more severe declines (Spear et 

al., 2006; Funk et al., 2010) compared to BOTTLENECK, which is better at uncovering 

more recent reductions in allelic variation. 

To test whether populations form a genetic cline or whether their gene flow is 

limited by environmental barriers, we analysed the pattern of isolation by distance (IBD) 

using two approaches: an individual-based approach carried out in ALLELES IN SPACE 

(AIS: Miller, 2005)  and a cluster-based approach implemented in MANTEL for Windows, 

version 1.15 (Cavalcanti, 2002). The genetic distance implemented in AIS is an analogue 

of Nei's distance (Nei, Tajima, & Tateno, 1983) applied to pairs of individuals; whereas, 

MANTEL incorporated Slatkin’s (1995) RST pairwise genetic distances calculated in 

ARLEQUIN. Mantel tests used 10 000 permutations to evaluate the significance between 

genetic and log10-transformed geographic distances. A spatial autocorrelation analysis was 

also conducted in AIS as an alternative measure of spatial genetic patterns. It has the 

advantage over Mantel testing by providing results on the shape of the spatial relationship 

(Stow et al., 2001). The analysis was run using 10 distance classes and 10 000 

permutations. The shape of the genetic landscape was subsequently interpolated using AIS 

to identify genetic discontinuities or landscape regions where relatively high or low genetic 

distances (or diversity) exist. The procedure was performed by initially generating a 

Delaunay triangulation-based connectivity network of sampling locations. Given that there 

was variation in the geographical distances between sampling locations (see Fig. 5.2), 

residual genetic distances were used. These distances were derived from the linear 

regression of pairwise genetic distances versus the natural logarithm of geographical 

distances in analyses. This approach accounted for correlations between genetic and 

geographical distances that may be present and ensured that large interpolation peaks were 
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not resolved solely due to the fact that one or a few sampling areas were geographically 

isolated (Manni, Guérard, & Heyer, 2004). The plot surface was calculated based on the 

midpoints of pairwise distances of all observations throughout the remainder of the 

interpolation procedure, and the final interpolated surface was produced using a 50 × 50 

grid and a distance weighting value of 0.25. Areas of high genetic diversity are represented 

by high peaks.  

 

MTDNA ANALYSES 

A spatial analysis of molecular variance (SAMOVA) was conducted to define the 

population structure found within the mtDNA sequences. Populations that are 

geographically homogeneous and maximally differentiated from each other were clustered 

using SAMOVA 1.0 (Dupanloup, Schneider, & Excoffier, 2002). Mitochondrial DNA data 

were analysed according to field site and the central geographic coordinates of each site 

were used for the spatial layer. The number of proposed clusters (K) ranged from 2 to 30 

with an annealing time of 100 simulations. Once all simulations were complete for all 

values of K, the output files were run in ARLEQUIN. AMOVAs (10,000 permutations) 

employing Wright’s (1951) FST were then conducted to partition the genetic variation 

among the different hierarchical levels of structure. The resulting FCT  values (variance 

explained among clusters) were recorded and the difference in FCT between subsequent K’s 

(ΔFCT) was plotted. The K displaying the largest ΔFCT was considered to be the optimal K. 

Standard genetic diversity estimates, including haplotype (h) and nucleotide (π) diversities 

were subsequently calculated for each cluster in ARLEQUIN, and the relationships among 

haplotypes examined with a median-joining network using NETWORK version 4.6.1.1 

(Bandelt, Forster, & Röhl, 1999). A Mantel test, spatial autocorrelation and interpolated 
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genetic landscape were analysed using the same parameters and conditions as the 

microsatellite genotypes. 

Estimates of net evolutionary divergence between inferred populations were 

determined using the p-distance method in MEGA5 (Tamura et al., 2011) to assess the 

level of sequence divergence in comparison to distinct evolutionary lineages (i.e., species). 

Three grouping scenarios were considered: 1) the SAMOVA clusters identified, 2) the two 

currently recognized species, inclusive of the other forms; and 3) the five phenotypic 

forms. For comparison, four other Bradypodion species (obtained from Tolley et al., 2013) 

were included in the analysis: Bradypodion gutturale, Bradypodion occidentale,  

B. dracomontanum, and B. nemorale. Bradypodion gutturale and B. occidentale are within 

the sister clade to all KZN dwarf chameleons (Tolley et al., 2004; Tolley & Burger, 2007; 

Tolley et al., 2008) and divergence between them dates to 4 and 10 Ma, respectively 

(Tolley et al., 2008). Using the node age estimates from a dated Bradypodion phylogeny 

that included these four species (obtained from Tolley et al., 2008), we were able to obtain 

rough estimates of ND4 mutation rates and to approximate divergence times within this 

species complex. 

 

RESULTS 

MICROSATELLITE GENOTYPE ANALYSIS 

Genotypes were generated for 279 individuals from 25 sampling sites based on 10 

microsatellite loci. No null alleles or genotyping errors were detected for these loci. 

Heterozygote deficiencies were found for most sites and loci, with the observed levels up 

to four times lower than expected (Table S5.1). Nine of the 25 sites showed deviations 

from HWE (after Bonferroni correction) at one to six loci; whereas locus Bme58 deviated 

from HWE for all nine sites (Table S5.1). Only five pairwise comparisons of loci showed 

Stellenbosch University  http://scholar.sun.ac.za



 

130 
 

significant linkage disequilibrium (Bonferroni corrected: P < 0.005); however, none of 

these pairs showed significant non-random associations at more than one locality, and no 

loci showed evidence of LD across all sites. An examination of the variance components of 

LD found DST to be greater than DIS in 78% of the pairwise comparisons of loci, and D’ST 

to be greater than D’IS in approximately 50% of cases, suggesting that the observed LD has 

been influenced by limited migration between sampling sites.   

The two clustering programs, STRUCTURE and GENELAND, identified two and 

seven genetic clusters, respectively (Fig.5.3). Regardless of the model chosen in 

STRUCTURE, the same two clusters were found to best fit the data with the two described 

species placed in separate clusters. Sites 1-12, comprising all south coast sites and seven 

KZN Midland sites, represented the ‘B. melanocephalum cluster’, while sites 13-25, 

including all Drakensberg sites and the remaining KZN Midland sites, made up the  

‘B. thamnobates cluster’ (refer to Fig. 5.2). Both clusters were found to deviate from HWE 

at nine and 10 loci, respectively; and four loci were found to be significant for LD (Table 

5.4). In GENELAND, the spatial uncorrelated model delimited seven clusters (1: northern 

south coast & north-eastern Midlands – herein classified as the B. melanocephalum cluster 

due to the inclusion of its type locality; 2: central south coast & central eastern Midlands; 

3: southern south coast & southern Midlands; 4: Karkloof; 5: Boston – site 19; 6: KZN 

Midlands – herein classified as the B. thamnobates cluster due to the inclusion of its type 

locality; 7: Drakensberg. These seven clusters showed no significant LD for any locus and 

the fewest deviations from HWE (Table 5.4). Using the method recommended by Guillot 

et al. (2011) of comparing the HWE and LD results of each model, we find that the model 

produced by GENELAND to be more representative, highlighting the importance of spatial 

data in assessing the population structure of these low vagility animals. 
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Figure 5.3 Barplots of estimated population structure from (a) STRUCTURE and (b) GENELAND 

analyses. Each individual is represented by a thin horizontal line divided into K coloured segments 

that represent the individual's estimated membership. Black lines separate individuals from different 

field sites arranged from the east (top) to west (bottom) (refer to Fig. 5.2).  NR = Nature Reserve. 
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Table 5.4 Descriptive statistics for the clusters identified by STRUCTURE and GENELAND. Bold 

values indicate deviations from HWE based on a Bonferroni significance value of 0.005 (P < 0.05/10).  
 

STRUCTURE clusters 
Site B. melanocephalum cluster (n = 162)  B. thamnobates cluster (n = 117) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 13 109-205 0.45 0.68 0.0000  9 115-205 0.21 0.64 0.0000 
Bpu557 5 90-108 0.41 0.48 0.0423  5 90-106 0.14 0.20 0.0008 
Bpu507 16 164-254 0.70 0.87 0.0000  22 164-266 0.53 0.88 0.0000 
Bth10 35 141-243 0.65 0.91 0.0000  30 167-227 0.72 0.95 0.0000 
Bth76 27 96-228 0.52 0.62 0.0000  27 100-256 0.78 0.93 0.0000 
Bth93 23 68-192 0.63 0.92 0.0000  20 72-220 0.84 0.93 0.0006 
Bth161 27 129-265 0.68 0.94 0.0000  28 173-285 0.80 0.95 0.0000 
Bme45 33 86-270 0.81 0.95 0.0000  26 90-198 0.82 0.94 0.0000 
Bme58 25 129-245 0.37 0.93 0.0000  15 129-168 0.31 0.82 0.0000 
Bme128 36 133-217 0.66 0.93 0.0000  15 131-171 0.56 0.74 0.0000 

GENELAND clusters 
Site Cluster 1. B. melanocephalum (n = 91)  Cluster 2 (n = 19) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 11 109-205 0.52 0.71 0.0000  4 121-199 0.13 0.62 0.0000 
Bpu557 4 90-108 0.39 0.44 0.3989  3 104-108 0.61 0.67 0.6734 
Bpu507 12 164-242 0.69 0.83 0.0000  8 184-210 0.82 0.82 0.8568 
Bth10 32 149-229 0.69 0.92 0.0000  11 141-227 0.31 0.89 0.0000 
Bth76 19 100-228 0.44 0.54 0.0380  8 96-192 0.32 0.46 0.0101 
Bth93 19 72-192 0.70 0.91 0.0000  11 64-160 0.68 0.92 0.0125 
Bth161 26 157-273 0.66 0.94 0.0000  15 129-257 0.63 0.92 0.0003 
Bme45 25 86-194 0.81 0.95 0.0023  13 86-170 0.84 0.94 0.4707 
Bme58 19 129-245 0.38 0.88 0.0000  8 129-181 0.37 0.89 0.0000 
Bme128 27 137-211 0.70 0.90 0.0000  12 141-217 0.56 0.91 0.0000 
Site Cluster 3 (n = 24)  Cluster 4 (n = 28) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 4 121-190 0.60 0.65 0.0572  2 154-157 0.33 0.28 1.0000 
Bpu557 4 98-108 0.50 0.51 0.6123  2 104-106 0.27 0.29 1.0000 
Bpu507 8 184-254 0.67 0.80 0.1347  7 184-202 0.68 0.79 0.0696 
Bth10 15 165-243 0.70 0.93 0.0000  9 175-209 0.68 0.69 0.6025 
Bth76 12 100-196 0.71 0.80 0.0436  8 100-220 0.77 0.75 0.3742 
Bth93 4 68-144 0.08 0.41 0.0000  11 84-172 0.82 0.86 0.9279 
Bth161 12 189-253 0.71 0.89 0.0018  15 197-265 0.73 0.89 0.0073 
Bme45 14 118-178 0.73 0.90 0.0000  19 110-270 0.85 0.94 0.0544 
Bme58 11 145-171 0.50 0.87 0.0000  7 133-161 0.22 0.83 0.0000 
Bme128 14 137-201 0.70 0.83 0.0032  18 141-219 0.56 0.93 0.0000 
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Table 5.4 continued. 

GENELAND clusters 
Site Cluster 5 (n = 12)  Cluster 6. B. thamnobates (n = 66) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 4 121-190 0.33 0.40 0.3380  8 115-205 0.25 0.71 0.0000 
Bpu557 2 104-106 0.08 0.08 1.0000  4 90-106 0.19 0.29 0.0007 
Bpu507 4 182-260 0.42 0.43 0.5659  15 164-262 0.55 0.82 0.0000 
Bth10 3 173-221 0.33 0.62 0.0693  26 167-227 0.74 0.94 0.0000 
Bth76 5 100-228 0.83 0.68 0.0168  24 100-256 0.74 0.94 0.0000 
Bth93 9 72-172 0.75 0.84 0.6307  16 128-192 0.83 0.92 0.0050 
Bth161 4 189-273 0.58 0.66 0.4493  25 173-285 0.81 0.95 0.0057 
Bme45 5 110-186 0.75 0.69 0.6924  26 90-198 0.84 0.95 0.0001 
Bme58 6 139-163 0.25 0.83 0.0000  14 131-163 0.38 0.78 0.0000 
Bme128 6 141-181 0.45 0.59 0.3428  14 135-205 0.55 0.69 0.0000 
Site Cluster 7 (n = 39) 
Locus NA S HO HE HWE 
Bpu94 5 154-172 0.05 0.40 0.0000 
Bpu557 2 98-104 0.06 0.06 1.0000 
Bpu507 16 164-266 0.51 0.84 0.0000 
Bth10 22 167-227 0.78 0.93 0.0077 
Bth76 15 164-244 0.85 0.90 0.8365 
Bth93 16 128-220 0.89 0.91 0.0533 
Bth161 19 185-281 0.85 0.93 0.1109 
Bme45 12 110-190 0.82 0.89 0.1155 
Bme58 9 129-163 0.21 0.78 0.0000 
Bme128 4 141-171 0.61 0.54 0.0945 

 

A hierarchical AMOVA of the GENELAND clusters revealed most of the genetic 

variation to be partitioned among individuals within sites (56.30%, FST = 0.44, P < 0.001) 

and among clusters (37.15%, FCT = 0.37, P < 0.001). Very little variation could be 

explained among sites within clusters (6.54%, FSC = 0.10, P < 0.001). Pairwise RST values 

were found to be significant across all the seven clusters (Table 5.5), with Cluster 3 being 

the most genetically distant (Fig. 5.4). When comparing RST values against the three other 

Bradypodion species, significant differences were detected between all pairings, except 

between Cluster 2 (the central B. melanocephalum group) and the KZN species,  

B. dracomontanum and B. nemorale, despite reasonably large RST values. This low 

statistical power is likely brought on by the limited sample sizes for the comparison species 

(Table 5.5). 
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Table 5.5. Pairwise genetic distances (RST) between each of the seven GENELAND clusters and three Bradypodion species. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Bpu Bdr Bnem 
Cluster 1 ―          
Cluster 2 0.030* ―         
Cluster 3 0.360** 0.291** ―        
Cluster 4 0.117** 0.138** 0.327** ―       
Cluster 5 0.477** 0.548** 0.664** 0.403** ―      
Cluster 6 0.403** 0.491** 0.586** 0.338** 0.065* ―     
Cluster 7 0.503** 0.599** 0.712** 0.457** 0.110* 0.074** ―    
Bpu 0.547** 0.644** 0.711** 0.518** 0.505** 0.395** 0.376** ―   
Bdr 0.211* 0.118 0.485** 0.336* 0.734* 0.640** 0.739** 0.772** ―  
Bnem 0.063* 0.040 0.379** 0.120** 0.605** 0.507** 0.614** 0.654** 0.218*  ―  
 
Bpu, B. pumilum; Bdr, B. dracomontanum; Bnem, B. nemorale; *, P < 0.05; **, P < 0.001
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Figure 5.4 Hierarchical dendrogram and map depicting the seven microsatellite clusters identified by GENELAND. Dendrogram 

is based on RST values calculated in ARLEQUIN. Numbers 1-25 on map refer to field sites (see Fig. 5.2). 

Stellenbosch University  http://scholar.sun.ac.za



 

136 
 

Bottlenecks were not detected using the Cornuet and Luikart (1996) method for any 

of the GENELAND clusters regardless of mutation model or parameters tested; however, 

significant signatures were detected for all clusters using Garza and Williamson’s M-ratio 

test (Table 5.6). Mean M values ranged from 0.19 to 0.28, falling well below the critical 

M-value of 0.68, indicating that each cluster is likely to have experienced a population 

bottleneck with a prolonged recovery time. 

Mantel tests revealed modest, but significant IBD between individuals (AIS: 

 r = 0.323, P(random correlation ≥ observed correlation) < 0.001) and clusters (MANTEL: r = 0.566,  

P(random ≥ observed) = 0.010). Likewise, spatial autocorrelations illustrated that pairwise genetic 

distances were significantly smaller than average over shorter distances (P < 0.003 for two 

distance classes) and larger than average over greater distances (P < 0.009 for seven 

distance classes), suggesting a strong genetic cline. Visualizations of the genetic landscape 

revealed higher peaks in the west, which reflect higher genetic diversity areas across the 

landscape in that area (Fig. 4). The highest peaks were observed in the western Midlands, 

and the lowest within the eastern Midlands and along the coast. 

 

Table 5.6 Results from the two bottleneck tests for the seven GENELAND clusters. For the 

heterozygosity excess tests, values listed are P-values from the one-tailed Wilcoxon sign rank tests. 

 M-ratio tests*  Heterozygosity excess tests 
    SMM TPM 
 θ M  2%† 5%†‡ 10%†Ψ 20%† 30%† 
Cluster 1 2.65 0.22  0.99 0.99 0.99 0.99 0.98 0.93 
Cluster 2 2.67 0.19  0.28 0.22 0.12 0.10 0.10 0.05 
Cluster 3 2.25 0.19  0.78 0.65 0.62 0.54 0.50 0.50 
Cluster 4 2.02 0.28  0.86 0.88 0.78 0.68 0.62 0.46 
Cluster 5 1.56 0.19  0.99 0.99 0.99 0.99 0.93 0.88 
Cluster 6 2.60 0.24  0.92 0.92 0.90 0.84 0.72 0.69 
Cluster 7 1.97 0.22  0.99 0.99 0.95 0.88 0.65 0.62 
 
SMM, stepwise mutation model; TPM, two-phase mutation model; θ, 4Neµ. *Critical M is 0.68, 
below which M is significant at α = 0.05. Bold values indicate significant relationships. †Percent 
multi-step mutations under the two-phased mutation model. ‡Parameters recommended by Di 
Rienzo et al. (1994).  ΨParameters recommended by Piry et al. (1999).  
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Figure 5.5 Genetic landscape for the B. melanocephalum-B. thamnobates species complex based 

on microsatellite genotypes. Landscapes were standardised to a grid of 50 x 50 cells across a 

geographic block encompassing all samples in the southern KZN.  Dark blue shading and higher 

peaks show areas of greater genetic diversity. 

 

 

MTDNA SEQUENCE ANALYSIS 

A 477 base pair region of ND4 showed 15 haplotypes from 130 individuals from the 25 

sampling sites. Of the 19 possible cluster arrangements identified by SAMOVA (K = 2-

20), K = 3 was found to best fit the data (i.e., largest ∆FCT), with Cluster A made up of all 

coastal populations and three Midlands populations, Cluster B comprised of six eastern 

Midlands populations, and Cluster C the remaining Midlands populations and all southern  
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Drakensberg populations  (Fig. 5.6, top). Pairwise FST values show that the three clusters 

differ significantly from each other (Table 5.7), and it is these differences that explain the 

majority of the mtDNA variation in this species complex (AMOVA: 61.26%, FCT = 0.61, 

P < 0.001). This is clearly illustrated by the median-joining network, which shows no 

shared haplotypes between clusters (Fig. 5.6, bottom).  To a lesser degree, genetic variation 

was also detected among sites within clusters (27.49%, FSC = 0.71, P < 0.001). This is 

most likely attributed to Cluster A because it has very high levels of genetic and nucleotide 

diversity, as well as the greatest number of haplotypes, which show strong geographic 

structure (Table 5.8; Fig. 5.6). The differential levels of genetic diversity are especially 

evident when looking at the mtDNA genetic distance landscape (Fig. 5.7). Given that more 

than three clusters are required to conduct a cluster-based IBD analysis, only the 

individual-based approach was performed using AIS. The greatest distances were observed 

among individuals in Cluster A (Fig. 5.7, blue area), while individuals in the KZN 

Midlands show very little variation (Fig. 5.7, yellow area), contradictory to what was 

found with the microsatellite data (Fig. 5.5). Similar to the microsatellite data, however, 

moderate but significant IBD was detected between individuals (AIS: r = 0.493;  

P(random correlation ≥ observed correlation) < 0.001) with pairwise genetic distances being significantly 

smaller than average over shorter distances (P < 0.001 for two distance classes) and larger 

than average over greater distances (P < 0.03 for eight distance classes), suggesting a 

strong genetic cline.  
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Figure 5.6 Map and median-joining haplotype network colour-coded to represent the three mtDNA 

clusters. The haplotypes of Cluster A can be further subdivided into three geographic segments  

(I, II and III). Numbers 1-25 on map refer to field sites (see Fig. 5.2).The sizes of the circles in the 

network indicate the frequency of the haplotypes and the branch lengths indicate genetic distance 
between haplotypes as determined by the number of basepair mutations (designated by dashes).  
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Table 5.7 Pairwise genetic distances (FST) between the three SAMOVA clusters.  

 Cluster A Cluster B Cluster C 
Cluster A       ―   

Cluster B 0.4736*       ―  

Cluster C 0.4835* 0.7761*       ― 

 
* P < 0.001 

 

 

 

Table 5.8 Genetic diversity measures for the three mtDNA clusters of the B. melanocephalum- 

B. thamnobates species complex identified by SAMOVA.   

  n (a) H h π Tajima’s D 
Cluster       

A  49 (8) 10 0.79 (0.75 – 0.84) 0.0079 (0.0034 – 0.0123)  0.3483 
B  44 (6) 3 0.25 (0.17 – 0.33) 0.0011 (0.0001 – 0.0022) -0.5007 
C  37 (11) 2 0.20 (0.12 – 0.28) 0.0017 (0.0003 – 0.0030) -0.4199 

 
The number of individuals (n), number of sites sampled (a), number of haplotypes (H), haplotype 
diversity (h), and nucleotide diversity (π) with 95% confidence intervals in parentheses. 
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Figure 5.7 Genetic landscape for the B. melanocephalum-B. thamnobates species complex based 

on mtDNA haplotypes. Landscapes were standardised to a grid of 50 x 50 cells across a 

geographic block encompassing all samples in the southern KZN.  Dark blue shading and higher 

peaks show areas of greater genetic diversity.   
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Table 5.9 Estimates of net evolutionary divergence (p-distances) between groups of sequences. Data is partitioned according to three scenarios: 1, the 

SAMOVA clusters identified in this study; 2, the two currently recognized species; and 3, the five phenotypic forms that show functional adaptations to their 

respective habitats. 

Scenarios  1 2 3 
Bgu Bocc Bdr Bnem Cluster A Cluster B Cluster C Bmel Btham Bmel† Type A Btham† Type B Type C 

 

Bgu 0.027              
Bocc 0.063 0.015             
Bdr 0.048 0.054 0.031            
Bnem 0.047 0.061 0.034 0.007           

1 
Cluster A 0.069 0.084 0.051 0.060 0.009          
Cluster B 0.071 0.091 0.058 0.067 0.014 0.001         
Cluster C 0.071 0.092 0.060 0.069 0.011 0.009 0.001        

2 Bmel 0.067 0.085 0.053 0.061    0.008       
Btham 0.068 0.088 0.055 0.065    0.006 0.009      

3 

Bmel 0.068 0.085 0.051 0.061      0.009     
Type A 0.069 0.087 0.056 0.064      0.006 0.007    
Btham 0.068 0.088 0.054 0.065      0.006 0.007 0.008   
Type B 0.070 0.089 0.058 0.067      0.010 0.009 0.000 0.003  
Type C 0.070 0.087 0.056 0.062      0.004 0.003 0.007 0.011 0.003 

 

Bgu, Bradypodion gutturale; Bocc, B. occidentale; Bdr, B. dracomontanum; Bnem, B. nemorale; Bmel, B. melanocephalum; Btham, B. thamnobates. Bmel† 
and Btham† depict the B. melanocephalum and B. thamnobates phenotypic forms, respectively, as identified in Chapter 2. Grey cells contain within group 
divergence. 
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Table 5.10 Node age estimates (million years ago, Ma) for the three SAMOVA clusters based on 

estimates of ND4 net sequence divergence (p-distances). The ages were calculated using an 

average mutation rate and corresponding 95% credibility intervals (lower, upper) of 0.55% (0.63, 

0.32)†.  Grey cells contain within group divergence. 

 
Node age estimates‡ 

(million years ago, Ma) 

   Cluster A Cluster B Cluster C 

N
D

4 
p-

di
st

an
ce

  

Cluster A 

1.6 
(1.4,2.8) 2.5 

(2.2,4.4) 
2.0 

(1.7,3.4)   
0.009 

Cluster B 0.014 

0.18 
1.6  

(1.4,2.8) 
(0.16,0.31) 

  
0.001 

Cluster C 0.011 0.009 

0.18 
(0.16,0.31) 

  
0.001 

 

† Calibrated from the B. nemorale-B. dracomontanum ND2 node age of 5.4-10.5 Ma (as determined 

by Tolley et al., 2008). ‡ Node age = ND4 p-distance / (Mutation Rate percentages†/100%). 

 

A comparison of net divergence (uncorrected p-distances) revealed low values 

between populations in the B. melanocephalum-B. thamnobates species complex, 

regardless of the population structure scenario considered (Table 5.9). Of the three 

scenarios, the greatest divergence between populations was found with scenario 1 (i.e., the 

SAMOVA clusters), with between 1.1-1.4% divergence. Nevertheless, these differences 

were substantially less than those typically found between species, as illustrated by the 3.4-

6.3% sequence divergence among the comparison Bradypodion species.  If we take the 

pair among these with the lowest p-distance (B. dracomontanum and B. nemorale: 0.034; 

Table 5.9), as the lower limit for recognizing species, then species are estimated to diverge 

between 5.4 and 10.5 Ma (refer to table S3 in Tolley et al., 2008); which corresponds to a 
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ND4 mutation rate between 0.63% and 0.32%, respectively. If we apply these rough 

estimates of mutation rates to the scenario with the greatest among group divergence 

(scenario 1: the three SAMOVA clusters), clusters are estimated to have diverged between 

1.4 and 4.4 million years ago (Ma) (Table 5.10). 

 

DISCUSSION 

Recent phylogenetic analyses have shown that described species within this southern KZN 

species complex are not reciprocally monophyletic for mitochondrial markers (Tolley et 

al., 2004; Tolley et al., 2008), but the use of more sensitive nuclear markers and fine-scale 

sampling has uncovered geographic structure, revealing seven different evolutionary units.  

Depending on the molecular marker considered, varying degrees of genetic structure were 

observed. However, the different genetic patterns between microsatellites and mtDNA are 

not surprising considering microsatellites have relatively high mutation rates compared to 

mtDNA, making them suitable for the examination of species complexes that are not well-

resolved through conventional phylogenetic techniques. Nevertheless, commonalities do 

exist between the results provided by the two markers and, taken together, these data 

provide valuable insights into the evolution of southern KZN dwarf chameleons.  

 The seven clusters have low sequence divergence among them, as compared to 

typical species-level mtDNA sequence divergence usually found for chameleons. This is 

especially apparent when looking at scenario 2 (the two currently recognised species), 

which has greater within-group sequence divergence compared to that between groups 

(Table 5.9), which is in agreement with phylogenetic analyses (Tolley et al., 2004; Tolley 

et al., 2008). Thus, the application of the genealogical PSC would collapse the two species 

into a single species.  However, there is evidence to suggest that the southern KZN dwarf 

chameleons may be in the early stages of divergence, and on different evolutionary 
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trajectories despite the low genetic divergence values. We have dated the divergence of 

clusters within Scenario 1, which has the greatest among group divergence, to be 1.4 to 4.4 

Ma, which is much more recent than most other Bradypodion species. Yet, these clusters 

have no shared haplotypes and fairly high fixation indices (RST & FST > 0.15: Frankham, 

Ballou, & Briscoe, 2012), suggesting that they are indeed isolated from each other and 

undergoing allopatric speciation. The low dispersal ability of these chameleons and their 

naturally fragmented habitats make it unlikely that any migration currently occurs between 

clusters. As such, any shared genetic signatures are most likely due to shared ancestral 

polymorphisms, resulting from relatively recent isolation.  

The divergence estimates for the three clusters fall within the Plio-Pleistocene, 

which was a period of gradual, but prolonged long-term atmospheric cooling (Lisiecki & 

Raymo, 2005). These climatic conditions allowed for the expansion of grasslands, which 

transitioned from C3 to C4 grasses (Poaceae) in the summer rainfall regions of South Africa 

(Vogel, Fuls, & Ellis, 1978; Hopley et al., 2007). The associated regression of forests 

during this period, may have led to the fragmentation of Scarp and southern Mistbelt 

forests (Mucina & Geldenhuys, 2006), isolating Cluster A from Clusters B and C; and, 

subsequently, further fragmentation within each forest type, separating Cluster B from C, 

and dividing Cluster A into three segments that appear to follow major water catchments.  

The fragmented forests surviving this period would have provided suitable habitats for 

chameleons to persist; however, their extent would have been considerably reduced, 

isolating chameleon populations.  

To a large extent, the three subsets of Cluster A are represented in the microsatellite 

data as Clusters 1-3 (Fig. 5.4). The main discrepancies between the mtDNA and 

microsatellite data occur within the KZN Midlands, involving sites 8-10.  The merging of 

Cluster A with the lower part of Cluster B may have been precipitated by the climatic 
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conditions during the Mid-Pleistocene, especially during marine isotope stage (MIS) 7, 

which is characterized by considerable climatic variability (Desprat et al., 2006). During 

the warm phases of MIS 7 (i.e., MIS 7a, c & e),  grasslands were at their maximum, while 

Podocarpus (yellowwood) forests regressed (Dupont et al., 2011), likely isolating sites 8-

10 from sites 11 and 12 (see Figs 5.4 & 5.6).  The timing of this internal split can be 

validated by Cluster B’s within group divergence estimated between approximately 160 

and 310 thousand years (ka) ago (Table 5.10, grey cells). Following these warm periods, 

were cooler conditions (i.e., MIS 7b & d), which allowed forests to re-expand and 

eventually reach their maximum (Dupont et al., 2011). This may have precipitated the 

mixing of Mistbelt and Coastal forests along a Scarp forest belt; thereby providing a 

corridor for chameleons from these different habitats to move and interact, resulting in 

introgressive hybridization forming Cluster 1. 

The evolution of chameleon populations in response to forest extent can also be 

illustrated in the discrepancies between the mtDNA and microsatellite patterns involving 

Cluster C. This cluster’s within group divergence is also estimated between 160 and 310 

ka, suggesting a Mid-Pleistocene split between Afrotemperate and Mistbelt forests 

influenced the separation of Cluster C into Clusters 6 and 7 (see Figs 5.4 & 5.6). However, 

the placement of chameleons from site 21 (Sani Pass) into Cluster 6 was unexpected given 

their overall appearance and morphological similarities to the other southern Drakensberg 

chameleons in Cluster 7 (Chapter 2). These results may also indicate a period of 

hybridization following the warmer phases of MIS 7 when Afrotemperate and Mistbelt 

forests may have overlapped. This overlap might have been more extensive at the southern 

extent of the Drakensberg, permitting gene flow between the Afrotemperate and western 

Mistbelt chameleons.  
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Another discrepancy between microsatellite and mtDNA patterns involves the 

origins of chameleons from sites 19 (Boston) and 20 (Bulwer).  The mtDNA groups them 

with B. melanocephalum, but their microsatellite genotypes show a closer relationship with 

B. thamnobates. Moreover, chameleons from these sites have the same overall body design 

(size, shape and colouration) as B. thamnobates (Chapter 2). As above, these results likely 

indicate the introgressive hybridization of Boston and Bulwer chameleons into the  

B. thamnobates cluster. The subsequent separation of Boston chameleons may represent 

another period of forest regression, possibly during the Last Glacial Maximum (~18 ka: 

Eeley et al., 1999) 

All of the main discrepancies between mtDNA and microsatellite patterns indicate 

a cycling of population bottlenecks in association with forest regression and expansion, 

which are reflected in the low M-ratio values uncovered for each cluster, and substantial 

amounts of gene flow through hybridization as forests re-expanded. Gene flow will 

typically diminish divergence; however, it can also facilitate it by introducing novel 

genetic variation, especially after a bottleneck, which natural or sexual selection can then 

act upon, resulting in populations becoming isolated (Grant & Grant, 1992; Seehausen, 

2004; Barrett & Schluter, 2008; Keller et al., 2013). This has been suggested as the most 

probable explanation for the numerous East African cichlid radiations (e.g., Keller et al., 

2013) and could help explain the considerable levels of phenotypic diversity observed 

within this complex. 

 Overall, current ecomorphological evidence supports the structure defined by 

microsatellite data and provides evidence of more recent structuring (Chapters 2-4; Fig. 

5.8). In particular, three of the microsatellite clusters (4, 6, and 7) coincide directly with the 

three closed-canopy habitat phenotypic forms (Type C, B. thamnobates and Type B, 

respectively). Moreover, the Boston chameleons (Cluster 5) were identified as a distinct 
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morphological population within B. thamnobates (Fig. 5.8A; Chapter 2). At first glance, 

some inconsistencies stand out between the microsatellite Clusters 1-3 compared to the 

open-canopy habitat phenotypic forms, B. melanocephalum and Type A, even though the 

same individuals were included in both datasets. The microsatellite pattern groups these 

chameleons on an east-west axis, from the coast into the Midlands, with major water 

catchments acting as a barrier between clusters; whereas, the distributions of B. 

melanocephalum and Type A are arranged on a north-south axis, with a clear disjunction 

between them, which corresponds well with the distribution of Scarp forests (see fig. 12.3 

in Mucina & Geldenhuys, 2006). However, functional traits differentiating these two 

phenotypic forms have not been investigated (Chapters 3 and 4). Only chameleons from 

sites 1 and 10 (Fig. 5.2) were tested; hence, any functional distinctions made between B. 

melanocephalum and Type A can only really hold for the northern extent of these forms, 

which corresponds to Cluster 1 (see Fig. 5.8 A,B). If the same ecomorphological patterns 

exist along the full extent of these two phenotypic forms (i.e., within Clusters 2 and 3), 

then there might actually be 10 distinct chameleon groups within the B. melanocephalum-

B. thamnobates species complex (Fig. 5.8C). To confirm this, however, additional 

functional and ecomorphological work is needed on chameleons from sites 3-7.   
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Figure 5.8 Population clustering scenarios for chameleons within the B. melanocephalum-B. thamnobates species complex based on morphological data 

(A: Chapter 2), microsatellite genotyping (B), and a combination of the two (C).  Closed-canopy habitat phenotypic forms (B. thamnobates and Types B 

and C) are represented by microsatellite clusters 4-7. The dashed box in scenario A depicts the morphologically distinct B. thamnobates chameleons from 

Boston, which are referred to as cluster 5 in scenarios B and C. Open-canopy habitat forms (B. melanocephalum and Type A) are represented as 

microsatellite clusters 1-3. In scenario C, ‘a’ denotes coastal populations of open-canopy forms, while ‘b’ denotes the Midlands populations. 
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SPECIES CONCEPTS AND DELIMITATION 

Of the four species concepts initially identified as being the most applicable to this species 

concept, the genealogical PSC is the one that requires the greatest genetic differentiation.  

Based on the results presented here, there is insufficient genetic divergence between 

groups of chameleons, despite more intensive sampling, confirming the findings by Tolley 

et al. (2004; 2008). As such, the genealogical PSC would warrant the collapse of the two 

currently recognized species and all the morphological forms into synonymy. However, 

applying this species concept would ignore all morphological, adaptive, and ecological 

evidence that these are independently evolving lineages (Chapters 2-4). As such, we should 

not apply a strict molecular-based PSC to this species complex.  

Under the three remaining species concepts, multiple species can be recognized. 

Applying the genotypic cluster species concept (GSC), seven species would be recognised, 

corresponding to the seven genetic clusters indicated by the spatial genetic analysis. Three 

of these (Clusters 4, 6 and 7) are also supported by morphological and ecological data, and 

would also be recognised within the morphological and ecological species concepts 

framework. The four remaining ‘GSC species’ (Clusters 1, 2, 3 and 5) show discrepancies 

between genetic and ecomorphological data. Cluster 1 might be comprised of one or two 

species and a conservative approach would be to retain this as a single species  

(B. melanocephalum). However, because of the adaptive morphological distinctiveness 

between the coastal and Midland chameleons (Chapters 3 & 4), the Midlands cluster  

(i.e., Cluster 1b: Fig. 5.8C) should be classified as a separate ecologically distinct 

population conservation unit; thereby allowing management efforts to be aimed at 

preserving the adaptive diversity and evolutionary processes within it. This is particularly 

important considering the already narrow distributions of these chameleons are being 

threatened by extensive deforestation, agriculture, and urbanization (van Wyk, 1998; 
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Driver et al., 2005; Mucina & Rutherford, 2006; Driver et al., 2012), as well as increased 

pressures from natural climatic fluctuations (Houniet, 2007; Armstrong, 2008). Such 

instances of niche narrowness, accompanied by the low dispersal ability of these 

chameleons, can greatly increase their risk of extinction (Lawton et al., 1994; McKinney, 

1997). Although Clusters 2, 3 and 5 would be considered separate species under the GSC, 

there is insufficient ecomorphological evidence to confidently assign each as species 

according to the MSC and ESC. Each of these clusters is based on a very limited sampling 

area, which may not be representative of their full distribution, potentially biasing the 

results. Moreover, the functional performance of their morphology was not examined. 

Consequently, the adaptive nature of any morphological differences between and within 

each of these clusters compared to all others is unknown. Until this has been established, 

we recommend Clusters 2 and 3 be designated as separate genetic conservation units of  

B. melanocephalum, and Cluster 5 a genetic conservation unit of B. thamnobates, in an 

attempt to preserve the genetic integrity of these populations.  In total, this study 

recognizes four species (B. melanocephalum, B. thamnobates, B. ‘southern Drakensberg’ 

sp., and B. ‘Karkloof’ sp.) and four conservation units within the B. melanocephalum- 

B. thamnobates species complex.  
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Table S5.1 Standard genetic diversity measures for each microsatellite locus at each field site.  
 

Site Nottingham Road (n = 9)  Mooi River  (n = 2) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 4 154-205 0.14 0.49 0.0063  1 154 — — — 
Bpu557 1 104 — — —  1 104 — — — 
Bpu507 5 184-202 0.44 0.81 0.0071  3 186-252 1.00 0.83 1.0000 
Bth10 13 167-223 0.89 0.97 0.3291  2 177-203 1.00 1.00 1.0000 
Bth76 12 104-228 0.75 0.94 0.0116  3 172-208 0.50 0.83 0.3333 
Bth93 8 132-176 0.89 0.88 0.2438  3 132-160 0.50 0.83 0.3322 
Bth161 9 189-269 0.75 0.92 0.2608  4 201-261 1.00 1.00 1.0000 
Bme45 10 98-170 0.89 0.93 0.2299  2 130-150 1.00 1.00 1.0000 
Bme58 5 131-139 0.44 0.67 0.0343  2 133-139 0.50 0.50 1.0000 
Bme128 4 135-165 0.56 0.63 0.5184  1 167 — — — 
Site Gowrie (n = 10)  Dargle  (n = 13) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 3 154-190 0.22 0.45 0.0596  6 115-190 0.20 0.80 0.0000 
Bpu557 2 90-104 0.10 0.10 1.0000  3 90-106 0.38 0.53 0.0433 
Bpu507 4 186-202 0.60 0.68 0.7403  6 164-202 0.23 052 0.0029 
Bth10 8 167-219 0.60 0.90 0.0728  11 169-215 0.77 0.88 0.1227 
Bth76 7 100-256 0.63 0.87 0.0725  11 100-236 0.58 0.90 0.0091 
Bth93 8 132-180 0.80 0.88 0.7770  9 128-184 0.91 0.89 0.4339 
Bth161 9 189-265 0.50 0.87 0.0087  14 181-277 1.00 0.94 0.7720 
Bme45 8 90-194 0.75 0.84 0.3006  15 102-190 0.92 0.94 0.7486 
Bme58 3 133-147 0.40 0.61 0.0851  8 131-157 0.33 0.84 0.0006 
Bme128 6 135-171 0.50 0.64 0.3361  4 141-179 0.25 0.59 0.0117 
Site Boschhoek (n = 3)  Howick  (n = 7) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 4 121-160 0.67 0.80 0.6000  2 121-154 0.20 0.20 1.0000 
Bpu557 3 90-106 1.00 0.73 1.0000  2 90-104 0.14 0.14 1.0000 
Bpu507 3 186-200 1.00 0.83 1.0000  7 182-262 1.00 0.88 0.8791 
Bth10 4 199-219 1.00 0.87 0.4666  9 167-213 0.83 0.94 0.3876 
Bth76 3 104-192 0.33 0.73 0.1993  6 100-228 0.83 0.80 0.6192 
Bth93 4 136-188 0.67 0.87 0.4682  7 140-188 0.86 0.82 0.1155 
Bth161 4 209-249 1.00 1.00 1.0000  8 173-265 0.86 0.91 0.2149 
Bme45 5 114-186 1.00 0.93 1.0000  7 110-174 0.71 0.87 0.4921 
Bme58 4 135-153 1.00 0.80 1.0000  3 135-139 0.71 0.65 0.7199 
Bme128 4 135-169 1.00 0.87 0.4670  4 141-205 0.71 0.63 0.7797 
Site Bulwer (n = 10)  Boston (n = 20) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 3 121-157 0.38 0.64 0.1440  5 121-190 0.25 0.61 0.0006 
Bpu557 2 104-106 0.20 0.44 0.1328  2 104-106 0.05 0.05 1.0000 
Bpu507 5 184-208 0.50 0.51 0.5208  7 182-260 0.45 0.75 0.0005 
Bth10 12 173-227 0.90 0.95 0.5577  10 173-221 0.44 0.84 0.0001 
Bth76 8 180-248 0.90 0.89 0.1037  10 100-228 0.85 0.86 0.0001 
Bth93 10 148-192 1.00 0.93 0.0929  11 72-172 0.65 0.89 0.0066 
Bth161 12 201-285 1.00 0.95 1.0000  10 189-273 0.65 0.84 0.0014 
Bme45 10 110-198 1.00 0.92 1.0000  12 110-186 0.79 0.86 0.0500 
Bme58 3 139-143 0.30 0.58 0.0018  8 139-163 0.2 0.85 0.0000 
Bme128 6 135-165 0.70 0.78 0.6609  9 141-181 0.67 0.74 0.0290 
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Table S5.1 continued.  
 

Site Kamberg Nature Reserve  (n = 34)  Sani Pass (n = 4) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 4 154-163 0.06 0.37 0.0001  2 157-163 0.33 0.60 1.0000 
Bpu557 2 98-104 0.07 0.07 1.0000  1 104 — — — 
Bpu507 12 164-266 0.50 0.81 0.0000  5 182-254 0.75 0.86 0.6636 
Bth10 20 165-227 0.78 0.92 0.0111  3 195-205 0.25 0.68 0.0844 
Bth76 14 168-244 0.83 0.89 0.8699  6 200-240 1.00 0.93 1.0000 
Bth93 13 128-220 0.94 0.90 0.1671  4 140-160 1.00 0.80 1.0000 
Bth161 17 185-281 0.85 0.92 0.1676  2 209-229 0.33 0.60 1.0000 
Bme45 12 110-190 0.85 0.87 0.3561  2 110-154 0.25 0.25 1.0000 
Bme58 6 129-147 0.21 0.76 0.0000  1 133 — — — 
Bme128 4 141-169 0.62 0.50 0.0120  1 141 — — — 
Site Lotheni Nature Reserve (n = 2)  Highmoor Nature Reserve  (n = 2) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 1 157 — — —  1 172 — — — 
Bpu557 1 104 — — —  1 104 — — — 
Bpu507 4 182-246 0.50 0.83 0.3313  3 240-256 1.00 0.83 1.0000 
Bth10 2 197-203 1.00 1.00 1.0000  4 177-209 1.00 1.00 1.0000 
Bth76 2 208-220 1.00 1.00 1.0000  4 164-220 1.00 1.00 1.0000 
Bth93 4 144-172 0.50 0.83 0.3364  4 128-180 1.00 1.00 1.0000 
Bth161 4 185-241 0.50 0.83 0.3349  4 193-281 1.00 1.00 1.0000 
Bme45 1 150 — — —  3 146-158 1.00 0.83 1.0000 
Bme58 4 133-163 0.50 0.83 0.3348  2 133-139 0.00 0.67 0.3325 
Bme128 1 141 — — —  2 141-167 1.00 1.00 1.0000 
Site Giant’s Castle (n = 1)  Karkloof (n = 28) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 — — — — —  2 154-157 0.37 0.31 1.0000 
Bpu557 1 104 — — —  2 104-106 0.22 0.20 1.0000 
Bpu507 1 200 — — —  5 184-200 0.68 0.77 0.1770 
Bth10 1 191 — — —  8 175-209 0.64 0.67 0.3872 
Bth76 2 192-212 1.00 1.00 1.0000  7 100-220 0.78 0.75 0.6115 
Bth93 1 148 — — —  10 84-156 0.80 0.86 0.8976 
Bth161 2 225-249 1.00 1.00 1.0000  15 197-265 0.75 0.89 0.0289 
Bme45 2 134-146 1.00 1.00 1.0000  18 110-270 0.92 0.94 0.2263 
Bme58 1 139 — — —  7 133-161 0.23 0.83 0.0000 
Bme128 2 141-171 1.00 1.00 1.0000  17 141-219 0.56 0.93 0.0000 
Site Gilboa (n = 3)  Stirling (n = 12) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 1 157 — — —  5 121-166 0.40 0.74 0.0059 
Bpu557 2 104-106 0.67 0.53 1.0000  4 90-108 0.50 0.51 1.0000 
Bpu507 3 186-202 0.67 0.73 1.0000  8 164-242 0.50 0.80 0.0025 
Bth10 3 177-197 1.00 0.73 1.0000  7 159-197 0.64 0.81 0.2545 
Bth76 3 100-208 0.67 0.73 1.0000  6 100-208 0.64 0.69 0.3926 
Bth93 4 112-172 1.00 0.87 1.0000  11 72-156 0.82 0.90 0.6377 
Bth161 3 213-245 0.50 0.83 0.3323  12 181-253 0.73 0.94 0.0630 
Bme45 4 110-142 0.33 0.87 0.0644  11 90-174 0.82 0.93 0.4097 
Bme58 1 157 — — —  6 135-213 0.25 0.85 0.0003 
Bme128 3 157-177 0.50 0.83 0.3309  11 137-181 0.75 0.87 0.3261 
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Table S5.1 continued.  
 

Site Hilton  (n = 34)  Byrne Valley (n = 10) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 6 109-184 0.50 0.65 0.0000  4 154-163 0.33 0.63 0.0360 
Bpu557 3 104-108 0.36 0.42 0.0794  3 104-108 0.20 0.35 0.3078 
Bpu507 9 164-202 0.70 0.79 0.0009  5 182-200 0.80 0.71 0.7634 
Bth10 16 159-207 0.72 0.85 0.3117  11 157-229 0.60 0.93 0.0109 
Bth76 10 100-204 0.48 0.53 0.3866  7 100-216 0.50 0.58 0.2797 
Bth93 14 72-180 0.63 0.86 0.0017  8 72-180 0.80 0.87 0.3886 
Bth161 20 157-273 0.73 0.92 0.0000  7 173-245 0.40 0.85 0.0011 
Bme45 22 94-186 0.88 0.96 0.3487  10 90-170 0.80 0.91 0.4733 
Bme58 11 129-245 0.42 0.87 0.0000  7 137-163 0.50 0.88 0.0024 
Bme128 16 141-203 0.62 0.83 0.0000  9 139-191 1.00 0.91 0.8905 
Site Durban (n = 28)  Illovo (n = 7) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 5 137-205 0.62 0.73 0.0540  4 121-205 1.00 0.73 0.0344 
Bpu557 3 104-108 0.44 0.51 0.7575  2 104-106 0.43 0.36 1.0000 
Bpu507 8 182-218 0.73 0.79 0.1134  5 182-200 0.67 0.83 0.5599 
Bth10 18 149-227 0.76 0.94 0.0016  6 155-197 0.50 0.68 0.1486 
Bth76 8 100-228 0.35 0.44 0.1851  4 100-212 0.14 0.58 0.0068 
Bth93 14 112-176 0.70 0.84 0.0531  5 128-192 0.71 0.74 0.4043 
Bth161 13 177-265 0.67 0.86 0.0012  7 193-245 0.57 0.85 0.0484 
Bme45 17 102-158 0.82 0.94 0.1044  4 86-174 0.43 0.71 0.1212 
Bme58 10 137-177 0.29 0.83 0.0000  6 139-163 0.50 0.86 0.0873 
Bme128 11 121-163 0.68 0.86 0.0055  6 141-201 0.71 0.77 1.0000 
Site Umdoni Park, Pennington  (n = 7 )  Ixopo (n = 12) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 1 121 — — —  4 121-199 0.20 0.68 0.0021 
Bpu557 3 104-108 0.71 0.66 1.0000  4 98-108 0.58 0.71 0.4530 
Bpu507 5 184-198 1.00 0.79 1.0000  7 184-210 0.64 0.82 0.1104 
Bth10 6 141-229 0.57 0.77 0.2777  9 163-215 0.20 0.88 0.0000 
Bth76 4 100-116 0.57 0.65 0.6287  7 96-192 0.23 0.42 0.0016 
Bth93 6 72-160 0.86 0.85 0.6463  10 64-160 0.54 0.90 0.0061 
Bth161 5 157-225 0.57 0.80 0.2026  14 129-257 0.62 0.92 0.0010 
Bme45 8 114-170 0.86 0.91 0.6666  11 86-170 0.77 0.93 0.0747 
Bme58 3 157-181 0.29 0.65 0.0540  6 129-155 0.38 0.85 0.0000 
Bme128 5 141-217 0.71 0.73 0.3472  9 143-181 0.50 0.89 0.0048 
Site Weza (n = 5)  Umtamvuna Nature Reserve (n = 15) 
Locus NA S HO HE HWE  NA S HO HE HWE 
Bpu94 3 121-190 0.33 0.73 0.2020  3 121-160 0.71 0.54 0.2670 
Bpu557 2 104-106 0.25 0.25 1.0000  3 104-108 0.60 0.48 0.7416 
Bpu507 4 186-254 0.50 0.75 0.0877  6 184-200 0.73 0.84 0.4527 
Bth10 3 183-211 0.75 0.75 0.0568  12 165-243 0.60 0.91 0.0101 
Bth76 4 100-124 1.00 0.86 0.2384  8 100-196 0.64 0.75 0.2644 
Bth93 2 68-144 0.00 0.43 0.1425  3 72-144 0.13 0.13 1.0000 
Bth161 2 205-221 0.25 0.25 1.0000  10 189-253 0.80 0.89 0.2338 
Bme45 2 142-174 0.25 0.25 1.0000  13 122-178 0.87 0.89 0.0367 
Bme58 2 155-157 0.00 0.43 0.1427  9 145-167 0.67 0.88 0.1912 
Bme128 4 143-167 1.00 0.82 0.7720  11 137-201 0.64 0.80 0.0348 
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Table S5.1 continued.  

 
Site Oribi Gorge Nature Reserve  (n = 4) 
Locus NA S HO HE HWE 
Bpu94 3 121-190 0.33 0.73 0.2009 
Bpu557 2 104-108 0.25 0.54 0.4284 
Bpu507 5 184-202 0.75 0.79 0.7680 
Bth10 5 165-215 1.00 0.93 1.0000 
Bth76 3 100-164 0.50 0.83 0.3361 
Bth93 1 72 — — — 
Bth161 7 205-253 1.00 0.96 1.0000 
Bme45 3 118-134 1.00 0.83 1.0000 
Bme58 2 149-171 0.50 0.43 1.0000 
Bme128 2 143-147 0.50 0.43 1.0000 

 

NA, number of alleles; S, allelic size range;  HO, observed heterozygosity; HE, expected 

heterozygosity. Bold values indicate deviations from HWE based on a Bonferroni significance 

value of 0.005 (P < 0.05/10). 
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Table S5.2 ND4 mutation rates calibrated from the node age estimates (million years ago, Ma) of 

five Bradypodion species based on ND2 net sequence divergence (Tolley et al. 2008). The Ages 

were obtained using a Bayesian relaxed clock and corresponding Bayesian 95% credibility 

intervals (lower, upper).  

  Node age estimates (million years ago, Ma) 
  Bgu Bocc Bdr Bnem Btham 

N
D

4 
M

ut
at

io
n 

ra
te

† 
(%

) Bgu  
10.1 

(5.5,16.7) 
12.2 

(7.0,19.4) 
12.2 

(7.0,19.4) 
12.2 

(7.0,19.4) 

Bocc 0.62 
(0.38,1.15)  

12.2 
(7.0,19.4) 

12.2 
(7.0,19.4) 

12.2 
(7.0,19.4) 

Bdr 0.39 
(0.25,0.69) 

0.44 
(0.28,0.77)  

6.2 
(5.4,10.5) 

9.0 
(5.1,14.7) 

Bnem 0.39 
(0.24,0.67) 

0.50 
(0.31,0.87) 

0.55 
(0.32,0.63)  9.0 

(5.1,14.7) 

Btham 0.56 
(0.35,0.97) 

0.72 
(0.45,1.26) 

0.61 
(0.37,1.08) 

0.72 
(0.44,1.27)  

 

Bgu, Bradypodion gutturale; Bocc, B. occidentale; Bdr, B. dracomontanum; Bnem, B. nemorale; 

Btham, B. thamnobates. †Mutation rate = ((ND4 p-distance‡)/node age)*100%. ‡Refer to Table 5.9 

for ND4 p-distances. 
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Chapter 6 
 
 

Paper VI: 
Reconstructing the Pleistocene geography of the 

Bradypodion melanocephalum-Bradypodion thamnobates species complex* 
  

                                                 
* To be submitted for publication as: da Silva, J. M. & Tolley, K.A. Reconstructing the Pleistocene 

geography of the Bradypodion melanocephalum-Bradypodion thamnobates species complex. Journal of 

Biogeography. 
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ABSTRACT 

Morphological, ecological and genetic data have been used to investigate the ecology and 

evolution of chameleons within the Bradypodion melanocephalum-Bradypodion 

thamnobates species complex. These data have greatly improved our understanding of the 

biotic factors involved in shaping the present-day chameleon diversity. However, given 

that these chameleons are greatly affected by their environment, an examination of abiotic 

factors is needed to obtain a complete understanding of their evolution. In particular, an 

investigation of their past climatic niches would greatly improve our understanding of their 

biogeographic history and the speciation mechanisms involved in their diversity and 

distribution. We hypothesize that the distribution of chameleons within this species 

complex is closely linked with that of their respective forests, each of which has its own 

evolutionary history. Accordingly, we expect corresponding patterns of paleoclimatic 

change. Afrotemperate and Mistbelt forests are more ancient and typically support highly 

resilient species due to their experience with paleoclimatic extinction filters. As such, 

chameleons within these environments are expected to show high climatic stability. In 

contrast, Coastal forests have been more recently established and typically have less 

resilient species; and, therefore, chameleons in these habitats are expected to show climatic 

niche.  To test this, we used ecological niche models to project the past climatic niches of 

these chameleons during the Last Interglacial and the Last Glacial Maximum. Their 

climatic niches were found to correlate to different climatic variables and a climatic niche 

stability gradient was uncovered across southern KZN, with the highest climatic stability 

associated with Afrotemperate forests in the west and the lowest stability with Coastal 

forests to the east, as predicted. These results help explain the observed patterns of 

morphological and genetic variation within this species complex, with chameleons in areas 

of high climatic niche stability tending to show accordance between morphological and 
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genetic data, while chameleons in climatically labile areas show discordance between these 

data. 

 

INTRODUCTION 

Predicting the past distributions of species’ climatic niches has greatly improved our 

understanding of a variety of evolutionary questions, such as speciation mechanisms (e.g., 

Peterson & Nyári, 2008), ecological niche conservatism (e.g., Martínez-Meyer, Townsend 

Peterson, & Hargrove, 2004; Peterson & Nyári, 2008), species extinctions (e.g., Martínez-

Meyer et al., 2004; Nogués-Bravo et al., 2008), and historical migration pathways (e.g., 

Ruegg, Hijmans, & Moritz, 2006; Carstens & Richards, 2007).  Ecological niche 

modelling, coupled with molecular and phylogeographic data, have also provided great 

insight into the biogeographic history of species and communities (e.g., Knowles, Carstens, 

& Keat, 2007; Waltari et al., 2007; Araújo et al., 2008; Peterson & Ammann, 2013). Many 

of these studies have focused on the role Pleistocene climatic fluctuations have had in the 

generation of modern biodiversity (Hewitt, 2000). This is because the Pleistocene is either 

the period in which much of the present diversity was generated, or in which biodiversity 

generated earlier had to respond to dramatically changing conditions involving severe 

glacial-interglacial cycles (e.g., Klicka & Zink, 1997; Avise & Walker, 1998; Dynesius & 

Jansson, 2000; Weir & Schluter, 2004; Tolley et al., 2008).  

 Despite the lack of glaciation on the African continent, the glacial-interglacial 

fluctuations of the Pleistocene greatly affected the distribution of biomes (Deacon, 1983; 

Hamilton & Taylor, 1991; Scott, Homgren, & Partridge, 2008; Potts et al., 2013). The 

forest biome, for example, predominated during the warmer, humid interglacials; while 

during the glacials, forests became fragmented and open vegetation, such as grasslands, 

expanded (Scott, Anderson, & Anderson, 1997; Eeley et al., 1999; Dupont et al., 2001). 
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This is referred to as the expansion-contraction model of Pleistocene biogeography (e.g., 

Provan & Bennett, 2008; Bagley et al., 2013; Potts et al., 2013). During the glacials, the 

fragmented forests could either act as refugia for forest specialists, enabling them to persist 

during these unfavourable climatic periods or isolating populations further, providing 

opportunities for speciation (Haffer, 1969). This hypothesis has been proposed for the 

diversity and distribution of dwarf chameleons (Bradypodion) within KwaZulu-Natal 

(KZN) Province, South Africa (Tolley et al., 2008).   

 Dwarf chameleons, like the majority of Chamaeleonidae, are fully arboreal species 

(Tolley, Townsend & Vences 2013) and, thus, are highly reliant on vegetation for their 

survival (Tolley et al., 2006; Stuart-Fox & Moussalli, 2007). Most Bradypodion within 

KZN reside predominantly in forests (Tolley et al., 2008); consequently, their histories are 

expected to be intrinsically linked. Several studies have suggested that most northern KZN 

forests are refugia (Eeley et al., 1999; Mazus, 2000; Lawes et al., 2007) and their 

contraction during glacial periods produced localized faunal extinctions (Lawes et al., 

2007). This has been validated by several dwarf chameleon lineages separated by deep 

genetic divergences and known only from a single forest each (Tolley et al., 2008; Tilbury 

& Tolley, 2009). However, a recent radiation of dwarf chameleons from southern KZN 

appears to have been affected by different historical processes during these climatic cycles, 

with environmental changes likely eliciting rapid morphological adaptation to novel 

habitats, without significant genetic evolution (Chapters 2-5).  

The Bradypodion melanocephalum-Bradypodion thamnobates species complex is a 

phenotypically diverse group of dwarf chameleons currently comprised of two 

taxonomically classified species – B. melanocephalum (Gray, 1865) and B. thamnobates 

(Raw, 1976); however, at least two other species and up to six conservation units have 

been proposed based on a combination of ecomorphological and population genetic 
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information (Chapters 2-5; see Fig. 6.1). In this chapter, these proposed species and 

conservation units will be referred to as evolutionarily significant units (ESUs) following 

the adaptive evolutionary conservation framework of Fraser and Bernatchez (2001). This 

framework defines an ESU as a species, group, or population that maintains and sustains 

itself over time in a definable area with highly restricted gene flow. The 10 distinct ESUs 

in this species complex are allopatric in distribution and occupy different macro- and 

micro-habitats (Chapters 2), yet their genetics suggests they have only recently diverged, 

possibly starting with the arrival and expansion of C4 grasses, and the corresponding 

regression of Podocarpus forests during the Plio-Pleistocene transition (Chapter 5). Since 

then, the numerous glacial phases of the Pleistocene are thought to have further isolated 

chameleons, while the subsequent interglacials may have provided multiple contact events 

between forests, enabling them to radiate into new habitats (Chapter 5). Today, each ESU 

is known from one of four forest types: Afrotemperate, Mistbelt, Scarp, and Coastal 

forests. The montane Afrotemperate and Scarp forests each contain a single ESU (the 

southern Drakensberg and southern Coastal B. melanocephalum ESUs, respectively 

[Clusters 7 & 3a: Fig. 6.1]). In contrast, six ESUs are known from the Midlands’ Mistbelt 

forests (both B. thamnobates ESUs [Cluster 5 & 6: Fig. 6.1], the Karkloof ESU [Cluster 4: 

Fig. 1], the three Midlands B. melanocephalum ESUs [Clusters 1b, 2b, 3b: Fig. 6.1]) and 

two from the Coastal forests (the northern and central Coastal B. melanocephalum ESUs 

[Clusters 1a & 2a: Fig. 6.1). Each forest type has its own evolutionary history, with 

Afrotemperate and Mistbelt forests being more ancient and typically supporting highly 

resilient species due to their experience with paleoclimatic extinction filters; whereas, 

Coastal forests being more recently established (within the past 8,000 years), have less 

resilient species (Eeley et al., 1999; Lawes, Eeley, & Piper, 2000; Mucina & Geldenhuys, 

2006; Lawes et al., 2007). If the distribution of chameleons within this complex is closely 
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linked with that of their respective forests, we expect corresponding patterns of 

paleoclimatic change. Accordingly, we hypothesize that Afrotemperate and Mistbelt ESUs 

were highly resilient through the glacial-interglacial cycles of the Pleistocene, while the 

Scarp and Coastal ESUs were less stable, showing drastic changes in distribution in 

response to relict Scarp populations taking advantage of the new Coastal forest.  

 

 

Figure 6.1 Schematic of the approximate distributions of the 10 proposed chameleon ESUs within 

the B. melanocephalum-B. thamnobates species complex. Cluster 1 = B. melanocephalum north; 

Cluster 2 = B. melanocephalum central; Cluster 3 = B. melanocephalum south; Cluster 4 = 

Karkloof; Cluster 5 = B. thamnobates (Boston population); Cluster 6 = B. thamnobates; Cluster 7 = 

southern Drakensberg. For the B. melanocephalum ESUs (Clusters 1-3), ‘a’ denotes Coastal 

populations, while ‘b’ denotes Midland populations. * = type localities of described species. 
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To test these hypotheses, we used bioclimatic analyses and niche modelling to 

project the past climatic niches of each ESU during the Last Glacial Maximum (LGM) and 

the Last Interglacial (LIG: ~120,000-140,000 years BP). These climatic periods were 

selected because they represent the most extreme climatic conditions during the 

Pleistocene (Deacon, 1983; Tyson, 1986); thereby, enabling us to gain insight into the 

climatic niche of these ESUs during the other glacial-interglacial cycles within this 

geological epoch. Because niche models utilize associations between environmental 

variables and known species or population occurrence data to define the abiotic conditions 

within which populations can be maintained (Guisan & Thuiller, 2005), the modeled 

climatic niche is thought to approximate a set of physical variables of Hutchinson’s (1957) 

fundamental niche  (Soberón & Peterson, 2005). This, of course, does not necessarily 

equate to a population’s actual geographic distribution or realized niche, which is 

influenced by a variety of biotic interactions, such as competition and predator/prey 

interactions (Hutchinson, 1957; Austin, Nicholls, & Margules, 1990; Malanson, Westman, 

& Yan, 1992; Guisan & Zimmermann, 2000). However, considering chameleons are 

highly reliant on crypsis, and hence vegetation, for their survival, they are vulnerable to 

climatic shifts that lead to shifts in vegetation structure and composition (Tolley et al., 

2006; Tolley et al., 2008). In fact, habitat shifts in connection with climatic fluctuations 

have been shown to impact the phylogenetic patterns in this genus (Tolley et al., 2008). 

Accordingly, the results presented here are expected to correspond closely with the actual 

distributions of chameleons within the B. melanocephalum-B. thamnobates species 

complex through time.  These analyses should, therefore, help us identify the location of 

past refugia and the ranges of chameleon ESUs within this species complex. 
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MATERIALS AND METHODS 

STUDY AREA AND DATA COLLECTION 

A total of 464 occurrence records for chameleons within the B. melanocephalum- 

B. thamnobates complex were obtained from southern KZN. These records are from the 

same individuals used in the genetic analysis, and therefore represent the 10 proposed 

genetic clusters (Chapter 5). All individuals were geo-referenced using GPS coordinates 

recorded at the precise moment and location of capture (+/- 5 m). Given that other 

Bradypodion species have small home ranges (i.e., a few hundred metres: Katz, 2012), 

these GPS readings are considered representative of the geographic extent of each 

chameleon.  

 

NICHE MODELLING 

Current climatic niche  

Niche modelling was carried out in the program MAXENT version 3.3.3 (Phillips, 

Anderson, & Schapire, 2006; Phillips & Dudik, 2008). Input files consisted of all records 

available, plus 24 environmental variables from the 2009 Idrisis predictive variable 

modelling suite (Table 6.1: Ezemvelo KZN Wildlife, Biodiversity Conservation Planning 

Division, unpublished data) scaled at a resolution of approximately 200m (~6-arc seconds). 

This modelling suite was chosen because it represents the most accurate and current 

biological information for KZN and covers a finer scale and greater geographic extent of 

the province compared to the 19 bioclimatic (Bioclim) variables provided by WorldClim 

(Hijmans et al., 2005), which are commonly used in niche modelling. Bioclim variables 

are averaged over a 50-year time period (1950-2000), at a resolution of approximately 1 

km (30-arc seconds) and are limited to temperature and precipitation in defining the 

climatic niche of organisms.   
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Table 6.1 2009 Idrisis predictive modelling suite variables included in MAXENT models. 

Variable 
Total Annual Rain Days ≥ 2mm 

Total Annual Rain Days ≥ 10mm 

Aspect (˚) 

Clay  

Elevation (m) 

Geology 

Mean Annual Precipitation (mm) 

Mean Evaporation: A-Pan Equivalent (mm) 

Median Rainfall for February (mm) 

Median Rainfall for July (mm) 

Monthly Mean Daily Minimum Relative Humidity for February (%) 

February Means of Daily Minimum Temperature (˚C) 

Monthly Mean Daily Maximum Relative Humidity for February (%) 

February Means of Maximum Daily Temperature (˚C) 

Monthly Mean Daily Minimum Relative Humidity for July (%) 

July Means of Minimum Daily Temperature (˚C) 

Monthly Mean Daily Maximum Relative Humidity for July (%) 

July Means of Maximum Daily Temperature (˚C) 

Total Profile Plant Available Water (mm) 

Slope (˚) 

Consolidated Land Types 

Soil Potential 

Solar Radiation for January (mJ/m2) 

Solar Radiation for July (mJ/m2) 

 

 

Preliminary models were run to assess which variables most influenced the climatic 

niche of each of the 10 chameleon ESUs. Default settings in MAXENT were used except 

that the maximum iterations were increased to 2,000 to allow the models to converge. Ten 

replicates of each were run; each replicate with a random subsample of 25% of the data to 
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determine the model dependence on the locations used. The averaged results from the 10 

runs was examined noting the area under the curve (AUC) statistic of the receiver 

operating characteristic (ROC) plots, the table of variable contributions, and the three 

jackknife tests (regularized training gain, test gain, and AUC). Variables that contributed  

< 1% to the model and permutation importance and/or whose presence resulted in no gain 

or a decline in the predictive performance of the model according to at least one of the 

jackknife tests were discarded. The model was then re-run on the reduced variable-set 

following the same procedure. This continued until all remaining variables improved the 

predictive power of the model according to all three jackknife tests. A final model of 10 

replicates was then run for each ESU using all coordinate data (i.e., 0% test data).  

Next, ArcGIS Desktop 10.1 was used to identify suitable and non-suitable habitat 

of each ESU. This was done by using a 10% training presence logistic threshold provided 

by MAXENT. This threshold considers 10% of the presence locations used to develop the 

model (training data) to be misclassified. Although this metric is less conservative than the 

minimum training presence threshold where all training locations would be correctly 

classified, the 10% threshold is less sensitive to outliers (i.e., over-predictions).  The 2008 

KZN Province land cover dataset (Ezemvelo KZN Wildlife, 2010) was then overlaid on 

each of the final models to get a better indication of their distributions. Although 

chameleons may be able to withstand some level of disturbance or transformation (e.g., 

along roadsides, in gardens, surrounding plantations: Tolley & Burger, 2007; Tilbury, 

2010; Chapter 2), ground-truthing has revealed that they do not occupy completely 

transformed areas (such as sugarcane or other crops, and dense invasions by alien plants) 

and areas that are intensively grazed and frequently burnt (Tolley & Measey, 2007; 

Armstrong, 2009); therefore, these areas were excluded from the final MAXENT models.   
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Past climatic niche 

Paleoclimatic data for the LIG and LGM were obtained from Worldclim (LIG - 

Otto-Bliesner et al., 2006; LGM - Paleoclimate Modelling Intercomparison Project Phase 

II [PMIP2]: Braconnot et al., 2007). Because the same climatic variables are required for 

each time series in order to hindcast the climatic niches of organisms, and because no 

paleoclimatic data is available for the Idrisis dataset, the current climatic niche of each 

ESU was reassessed using the 19 Bioclim variables (Table S6.1), following the same 

procedure as above (Hijmans et al., 2005). The suitable climatic niches for each ESU 

during the LIG and LGM were then predicted by projecting the chosen Bioclim variables. 

LIG variables were available at a resolution of 30-arc seconds (~1 km) (Otto-Bliesner et 

al., 2006), while the LGM variables were at a lower resolution of 2.5-arc minutes (~25 km) 

(Braconnot et al., 2007). As with the present distributions, a 10% training presence logistic 

threshold was incorporated to identify suitable and non-suitable habitat. 

 

NICHE OVERLAP AND CLIMATIC STABILITY 

For each climatic period, the extent of climatic niche overlap between ESUs was calculated 

by adding all suitable and non-suitable habitat classifications together in ArcGIS. ArcGIS 

was also used to determine climatic stability of each ESU by comparing the persistence of 

a climatic niche between the three time slices (LIG, LGM, present). It is hypothesized that 

climate stability allows the persistence of populations (Hugall et al., 2002; Carnaval et al., 

2009) or, in this case, ESUs. If suitable climate is ‘present’ in a grid cell across multiple 

time slices, then that grid cell has high climatic stability. Conversely, if suitable climate is 

not present across multiple time slices, then that grid cell has low stability.  
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RESULTS 

The central and southern Midlands B. melanocephalum ESUs (see Fig. 6.1, clusters 2b and 

3b) were excluded from all analyses because there was insufficient locality data (n = 4 and 

1, respectively) to obtain any measure of climatic influence (all variables showed 0% 

contribution). MAXENT has produced good models using limited samples (for example,  

n = 5: Hernandez et al., 2006; Pearson et al., 2007); however, some researchers have found 

that models using less than 30 points are inconsistent (Wisz et al., 2008) and that robust 

models tend to be achieved with n > 50 (Stockwell & Peterson, 2002). Accordingly, 

caution will be taken in the interpretation of the central and southern Coastal  

B. melanocephalum ESUs (Fig. 6.1, clusters 2a and 3a; n = 7 and 17, respectively). 

 

NICHE MODELLING 

Current climatic niche  

Of the 24 Idrisis variables considered, 14 were found to correlate highly with the 

present distributions of chameleons within the B. melanocephalum-B. thamnobates species 

complex (Table 6.2). Two variables, in particular, were found to correlate with the climatic 

niches of four of the eight ESUs examined: February’s (summer) mean daily maximum 

relative humidity and July’s (winter) mean minimum daily temperature.  Each ESU 

appears to have a geographically restricted climatic niche, with considerable fragmentation 

(Fig. 6.2), and a clear divide in suitable climatic niche is apparent between the interior (i.e., 

Midlands & Drakensberg) and Coastal ESUs, with no climatic niche overlap between them 

geographically (Fig. 6.3). Within each of the two regions, however, extensive geographic 

overlap is detected. Along the coast, the predicted climatic niche of the central  

B. melanocephalum ESU is completely overlapped by the northern and southern  

Stellenbosch University  http://scholar.sun.ac.za



 

170 
 

B. melanocephalum ESUs (i.e., 84% overlapped with northern; 16% overlapped with 

southern); and, approximately 20% of the predicted niches the northern and southern 

Coastal B. melanocephalum ESUs are shared. In terms of area, the most extensive overlap 

was found within the KZN Midlands, involving B. thamnobates, the Karkloof ESU and the 

northern Midlands B. melanocephalum ESU. Approximately 30% and 80% of the potential 

ESU ranges are overlapped by the other, respectively. Bradypodion thamnobates and the 

southern Drakensberg ESU also show considerable overlap, with 24% of the climatic niche 

of the southern Drakensberg ESU shared with B. thamnobates, and 13% of B. thamnobates 

with the southern Drakensberg ESU. At present, the only ESU not showing geographic 

overlap of climate niches is Karkloof.  

 

Table 6.2 Variables found to best represent each ESU’s climatic niche.  

ESU Variable % Contribution*  

Northern Coastal  
B. melanocephalum 

July Means of Minimum Daily Temperature 

Solar Radiation for January 

Elevation 

31.5 (43.9) 

11.5 (12.9) 

57.0 (43.2) +/++ 

Northern Midlands 
B. melanocephalum 

February’s Mean Daily Minimum Relative 

Humidity 

July Means of Minimum Daily Temperature 

February’s Mean Daily Maximum Relative 

Humidity 

48.6 (46.9) ++ 

35.4 (42.7) 

16.0 (10.4) + 

Central Coastal 
B. melanocephalum 

Total Annual Rain Days ≥ 2mm  

February’s Mean Daily Maximum Relative 

Humidity 

February’s Mean Daily Minimum Temperature 

July’s Mean Daily Maximum Relative Humidity 

23.9 (27.3) 

6.6 (2.2) 

30.2 (60.3) ++ 

39.3 (10.2) + 

Southern Coastal 
B. melanocephalum 

Total Annual Rain Days ≥ 2mm  

February’s Mean Daily Maximum Relative 

Humidity  

July Means of Minimum Daily Temperature 

Solar Radiation for July 

29.2 (19.6) 

11.9 (3.7) ++ 

33.3 (76.0) + 

25.6 (0.6) 
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Table 6.2 continued. 

ESU Variable % Contribution* 

Karkloof 

Median Rainfall for February  

Median Rainfall for July  

February’s Mean Daily Maximum Relative 

Humidity  

Consolidated Land Types 

50.4   (3.3) + 

14.8 (10.0) ++ 

12.3 (71.7) 

22.4 (15.0) 

B. thamnobates 
(Boston) 

Geology  

February’s Mean Daily Minimum Relative 

Humidity 

 Solar Radiation for July 

65.9 (80.1) +/++ 

18.9 (16.7) 

15.2  (0.1) 

B. thamnobates 

February’s Mean Daily Minimum Relative 

Humidity 

July Means of Minimum Daily Temperature  

54.1 (46.5) +/++ 

45.9 (53.5) 

Southern  
Drakensberg 

Geology  

February Means of Maximum Daily Temperature 

July’s Mean Daily Maximum Relative Humidity  

28.9  (53.8) ++ 

14.8  (37.4)  

56.2  (8.8) + 

 

* Percent contribution of each variable depends on the path used to obtain the optimal solution. 

Numbers in parentheses indicate the variable’s permutation importance to the final model, not the 

path used to obtain it. + Highest gain in model’s predictive power when used in isolation.  

++ Greatest decline when omitted from model. Bold highlights most common variable. 
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Figure 6.2 Current climatic niches predicted for eight ESUs within the  

B. melanocephalum-B. thamnobates species complex according to the Idrisis dataset.  
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Figure 6.3 Map depicting the current climatic niches of eight ESUs within the B. melanocephalum-

B. thamnobates species complex from southern KZN Province, South Africa, as well as their 

predicted overlap. Legend number codes correspond to ESUs as depicted in Fig. 1: Cluster 1b = 

northern Midlands B. melanocephalum ESU; Cluster 2a = central Coastal B. melanocephalum 

ESU; Cluster 3a = southern Coastal B. melanocephalum ESU; Cluster 4 = Karkloof ESU; Cluster 6 

= B. thamnobates ESU; Cluster 7 = southern Drakensberg ESU. Area of niche overlap (black) 

predominantly involves Clusters 1b and 6. 

 

Past climatic niche and climatic stability 

Eleven of the 19 Bioclim variables were found to correlate to the present 

distributions of chameleons within the B. melanocephalum-B. thamnobates species 

complex (Table S6.2). Compared to the Idrisis models, these models were found to over-

predict the present climatic niches of five ESUs by approximately 77% (ranging from 55-

92% per ESU); while, the northern and southern Coastal B. melanocephalum ESUs were 

under-predicted by approximately 11% and 52%, respectively (Fig. S6.1). Consequently, 
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the extent of suitable paleoclimatic niches may also be over- and under-predicted, 

respectively. Inconclusive results were obtained for the present Bioclim distribution of the 

Boston ESU (Cluster 5: Fig. 6.1); hence, it was omitted from these analyses. 

The paleoclimatic models of each ESU revealed considerable differences in their 

potential distributions (Figs 6.4 & 6.5) compared to present (Fig. 6.2). The projected 

climate during the LIG suggests that suitable niches were only available for  

B. thamnobates, the southern Drakensberg ESU, and the central and southern Coastal  

B. melanocephalum ESUs, with no overlap between them (Fig. 6.4a). During the LGM,  

B. thamnobates and the southern Drakensberg ESU persist, while the climatic niches of the 

Coastal B. melanocephalum ESUs are not predicted by the model (Figs 6.4b & 6.5). 

Moreover, the climatic niches of the northern Midlands B. melanocephalum and Karkloof 

ESUs emerge, overlapping extensively with each other and that of B. thamnobates, 

resulting in approximately 50% of the projected niches of the former two clusters being 

shared, and 36% of B. thamnobates shared (Fig. 6.4b). The absence of suitable climatic 

niches for the northern Coastal B. melanocephalum ESU from the LIG and LGM (Fig. 6.5) 

suggests its climatic niche has only recently become available (within the past 20,000 

years). Since the LGM, the climatic niches of the other Coastal ESUs have also re-

emerged, while that of the northern Midlands B. melanocephalum ESU has experienced a 

considerable decline, and that of B. thamnobates, a westward shift. The niches of the 

Karkloof and southern Drakensberg ESUs appear to have remained stable within the past 

20,000 years (Fig. 6.5b).  

Overall, the climate stability across southern KZN since the LIG has been low. 

However, some areas of high stability have been detected, predominantly in the southern 

Drakensberg and, to a lesser extent, within the climatic niche of B. thamnobates (Fig. 

6.5c).  
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Figure 6.4 Projected paleoclimatic niches and niche overlap for ESUs within the B. melanocephalum-B. thamnobates species complex dating back to the 

LGM and LIG. Resolution: LGM = 2.5-arc minutes; LIG = 30-arc seconds. Legend number codes correspond to ESUs as depicted in Fig. 1: Cluster 1b = 

northern Midlands B. melanocephalum ESU; Cluster 2a = central Coastal B. melanocephalum ESU; Cluster 3a = southern Coastal B. melanocephalum ESU; 

Cluster 4 = Karkloof ESU; Cluster 6 = B. thamnobates ESU; Cluster 7 = southern Drakensberg ESU. Area of niche overlap (black) predominantly involves 

Clusters 1b and 6.  
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Figure 6.5 Change in climatic niche from (a) LIG to LGM and (b) LGM to present and (c) the 

degree of climatic stability through time for seven ESUs within the B. melanocephalum- 

B. thamnobates species complex. High stability denotes climatic niches that have remained stable 

across the three time periods; moderate stability are areas that have remained stable for two 

periods; and low stability areas showed suitable climate niches in only one time period.  
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DISCUSSION 

Chameleons within the B. melanocephalum-B. thamnobates species complex are estimated 

to have diverged during the Early and Middle Pleistocene in response to the contraction 

and subsequent re-expansion of forests during glacial and interglacial cycles (Chapter 5) – 

much earlier than the Last Interglacial (LIG) and Last Glacial Maximum (LGM) periods 

modelled in this study. However, given that these periods represent examples of the most 

extreme climatic conditions during the Pleistocene (Deacon, 1983; Tyson, 1986), we 

consider the paleo-projections presented here to be conservative estimates of the cycling of 

climatic niches for these chameleons throughout the Pleistocene. Accordingly, the data 

provided here offer valuable insights into the potential distributions of these chameleons in 

response to changing climate, which may have affected their evolutionary history.   

The climatic niches of the seven ESUs examined were found to correlate to 

different climatic variables, which is not surprising considering species will likely manifest 

distinct, individualistic responses to climate change (Ackerly et al., 2010; Serra-Diaz et al., 

2013). A climatic niche stability gradient was uncovered across southern KZN, with the 

highest climatic stability associated with the southern Drakensberg mountain range in the 

west and the lowest stability along the coast to the east (Fig. 6.5c).  These results indicate 

that this species complex is affected by both climatic niche conservatism (the tendency of 

an organism to retain their ancestral ecological traits and environmental distributions: 

Wiens & Graham, 2005) and lability (the tendency of a niche to change over time: Losos et 

al., 2003), which could explain the observed patterns of morphological and genetic 

diversity between ESUs (refer to Chapter 2-5).  

 Since the LIG, the geographic extent of the climatic niche of the southern 

Drakensberg ESU has changed very little, indicating that it likely acted as a refugium for 
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these chameleons.  These results are in accordance with our hypothesis that the southern 

Drakensberg chameleons were highly resilient through the glacial-interglacial cycles of the 

Pleistocene, and that they reflect the evolutionary history of Afrotemperate forests in KZN 

(Eeley et al., 1999; Lawes et al., 2007). These high levels of climatic stability are reflected 

in the strong accordance observed between morphological and genetic lines of evidence, 

with the southern Drakensberg ESU having a very distinctive morphology compared to the 

other ESUs, both in overall size, colouration and in proportional anatomy (Chapters 2-4), 

and by being genetically well differentiated from them (Chapter 5).  

The Midlands’ Mistbelt ESUs, however, were also expected to be resilient and 

show high stability, yet only a few small fragments show stability since the LIG. These 

fragments are associated with the climatic niche of B. thamnobates (refer to Fig. 6.5c). For 

the most part, the KZN Midlands show moderate stability, with the major extent of the 

climatic niches of B. thamnobates, the Karkloof and northern Midlands  

B. melanocephalum ESUs arising during the LGM, and remaining fairly consistent through 

to present. The climatic niches of these Midlands chameleons are predicted to have 

overlapped extensively during the LGM (Fig. 6.4) and possibly during other glacial periods 

throughout the Pleistocene. However, the genetic data indicate that only the Karkloof and 

northern Midlands B. melanocephalum ESUs exchanged genes prior to the Mid-

Pleistocene (Chapter 5: fig. 5.6, table 5.10).  The genetic and morphological distinctiveness 

of B. thamnobates in the presence of climatic niche overlap with the two other Midlands 

ESUs suggests that resource partitioning may have isolated B. thamnobates from the others 

as far back as the Plio-Pleistocene transition, driving divergence in phenotypic traits and 

making them incompatible, thereby facilitating ecological speciation (Schluter, 2000, 

2001; Rundle & Nosil, 2005). More recently, the Karkloof and northern Midlands  

B. melanocephalum ESUs show both genetic and morphological differentiation (Chapters 
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2, 3 & 5), which might have been facilitated by the potential climatic niche lability of the 

Midlands B. melanocephalum ESUs and the present separation of their climatic niches 

(Fig. 6.3).  

Regarding the B. melanocephalum chameleons, climatic niche lability could 

explain why no climatic niche overlap is predicted to have existed between the Coastal and 

Midlands B. melanocephalum ESUs, while the genetic data indicate the presence of gene 

flow between them (Chapter 5). The Coastal ESUs may be more recent in origin, dating to 

the emergence of Scarp and Coastal forests approximately 8 ka (Eeley et al., 1999; Lawes 

et al., 2000; Mucina & Geldenhuys, 2006; Lawes et al., 2007), and resulting from one or 

more founder events from the Midlands B. melanocephalum ESUs. The Midlands 

chameleons may have gradually moved eastward, utilising the more widespread grasslands 

during the glacials and forests during the interglacials.  This could explain their 

intermediately sized head and feet (Chapter 2) – features found to correlate closely with 

habitat (Chapters 3 & 4). Chameleons occupying closed-canopy habitats typically possess 

larger heads and feet; whereas, in open-canopy habitats, chameleons are proportionally 

smaller (Chapters 2-4). These morphologies allow them to better utilize their respective 

habitats (Chapters 3 & 4). The intermediate features of the Midlands B. melanocephalum 

ESUs may be a consequence of their cyclical adaptation to open- and closed-canopy 

vegetation. Subsequently, within the past 8,000 years, the emergence of Scarp and Indian 

Ocean Coastal Belt forests created new habitats (Coastal forests and grasslands), as well as 

barriers (Scarp forests). The Midlands ESUs could have expanded their climatic and 

vegetative niches to utilise the Coastal vegetation and overall climatic conditions and, with 

time, directional selection may have acted to favour individuals able to tolerate these new 

conditions (Pearman et al., 2008). The Scarp forests eventually became a barrier, further 

isolating the Coastal chameleons from the founding Midlands populations. This would 
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explain the genetic similarity, as well as the morphological distinctiveness between the 

Coastal and Midlands ESUs (Chapters 2 &5), as well as the low levels of climatic niche 

stability predicted for the Coastal ESUs. Such instances of niche lability are often detected 

in adaptive radiations (Schluter, 2000), such as Anolis lizards (Losos et al., 2003; Knouft et 

al., 2006) and in species with limited dispersal ability (Ackerly, 2003; Franklin, 2009), 

which is believed to be an attribute of Bradypodion species. 

 

CONCLUSION 
 
Utilizing predictions from three bioclimatic time slices, we have made inferences about the 

potential geographic distributions and movements of chameleons within the  

B. melanocephalum-B. thamnobates species complex throughout the Pleistocene that could 

have produced the observed patterns of morphological and genetic variation we see today. 

Overall, chameleons in areas of high climatic niche stability (or climatic niche 

conservatism) tend to show accordance between their genetics and morphology, while 

chameleons in areas that are climatically labile tend to show discordance between these 

two lines of evidence. Although we consider the predictions made here to be valid, we 

recognize that more accurate assessments of the climatic stability within southern KZN 

would greatly improve our understanding of the evolution of these chameleons. Higher 

resolution (30-arc seconds for all time periods) datasets that incorporate additional 

biologically-relevant paleo-environmental layers, such as land cover (including vegetation 

type), solar radiation and humidity (variables found to correlate highly with chameleon 

distributions: Table 6.2) should be included in the paleoclimatic models to increase the 

quality of the predictions. Moreover, these datasets should extend beyond the LIG and 

LGM, in order to span the history of these chameleons. Accordingly, time slices covering 

the numerous Pleistocene glaciation events (both glacial and interglacial phases), and 
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going back into the Pliocene, as well as into the Holocene should be included, if possible. 

This would allow for a detailed examination of the changes in the paleo-distributions of 

these ESUs, and thus be greatly useful in understanding their historical biogeography. 
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Table S1 Bioclim variables included in the final MAXENT models. 

Variable Code Description 
BIO2   

BIO3   

BIO4   

BIO5   

BIO6   

BIO8  

BIO12   

BIO13   

BIO14   

BIO15   

BIO16   

BIO17   

BIO18   

BIO19   

Mean Diurnal Range [Mean of monthly (max temp - min temp)] 

Isothermality (BIO2/BIO7) (* 100) 

Temperature Seasonality (standard deviation *100) 

Max Temperature of Warmest Month 

Min Temperature of Coldest Month 

Mean Temperature of Wettest Quarter 

Annual Precipitation 

Precipitation of Wettest Month 

Precipitation of Driest Month 

Precipitation Seasonality (Coefficient of Variation) 

Precipitation of Wettest Quarter 

Precipitation of Driest Quarter 

Precipitation of Warmest Quarter 

Precipitation of Coldest Quarter 
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Table S2 Bioclim variables found to best represent each ESU’s current climatic niche.  

ESU Variable Code % Contribution*  

Northern Coastal  
B. melanocephalum 

BIO2 

BIO8 

BIO14 

73.5 (78.8) +/++ 

14.3 (18.1) 

12.2 (3.1) 

Northern Midlands 
B. melanocephalum 

BIO13 

BIO14 

BIO15 

13.2 (9.6) 

57.1 (47.3) +/++ 

29.7 (43.0) 

Central Coastal 
B. melanocephalum 

BIO2 100 (100) +/++ 

Southern Coastal 
B. melanocephalum 

BIO4 

BIO12 

51.4 (26.4) +/++ 

48.6 (73.6)  

Karkloof 
BIO13 

BIO18 

59.6 (34.0)  

40.4 (66.0) +/++ 

B. thamnobates 
(Boston) ----------------------------------------- 

B. thamnobates 

BIO6 

BIO12 

BIO15 

62.2 (77.7) +/++ 

21.4 (11.2) 

16.4 (11.2)  

Southern  
Drakensberg 

BIO5 

BIO12 

BIO19 

32.7 (0.3) + 

37.3 (35.7) ++ 

30.0 (64.0)  

 

* Percent contribution of each variable depends on the path used to obtain the optimal 

solution. Numbers in parentheses indicate the variable’s permutation importance to the 

final model, not the path used to obtain it. + Highest gain in model’s predictive power 

when used in isolation. ++ Greatest decline when omitted from model.  
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Figure S6.1 Comparing the current climatic niches predicted for each chameleon ESU 

using the Idrisis (left) and Bioclim (right) datasets.   
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Chapter 7 

 
Conclusion 

  

Stellenbosch University  http://scholar.sun.ac.za



 

187 
 

My primary aim in this dissertation was to investigate the underlying processes of 

speciation and morphological variation that have led to the observed discordance between 

morphology and genetics within the Bradypodion melanocephalum-Bradypodion 

thamnobates species complex – a recent radiation of dwarf chameleons from southern 

KwaZulu-Natal (KZN) Province, South Africa. Early studies recognised at least five 

phenotypic forms within this complex that differed in overall size, colouration and 

distribution (Raw, 2001; Tolley & Burger, 2007), yet showed little to no genetic 

differentiation (Tolley et al., 2004; Tolley et al., 2008). This could suggest that the 

different phenotypic forms are polymorphisms of a single species or that this species 

complex represents an adaptive radiation, with the different forms showing adaptations to 

their specific habitats and the lack of genetic divergence indicating that these chameleons 

are in the early stages of ecological speciation. However, because the adaptive significance 

of the different phenotypic forms had not been tested and because very few samples were 

included in both the morphological survey and genetic studies (i.e., 1-2 individuals per 

form), it was impossible to determine the actual explanation. Accordingly, my aim was to 

determine whether the previously recognised discordance was genuine or an artefact of 

inadequate sampling.  

I achieved this by first extensively sampling dwarf chameleons throughout southern 

KZN and analysing morphometric and habitat data for every individual (Chapter 2).  Clear 

distinctions in head, foot, limb and tail morphology were found between the five 

phenotypic forms, which appeared to correlate to their differential habitats, which can be 

broadly classified as either open or closed-canopy vegetation. Specifically, chameleons in 

open-canopy habitats have proportionally smaller features than their closed-canopy 

counterparts. Moreover, varying degrees of sexual dimorphism associated with these 

habitats were detected, with the closed-canopy forms being more sexually dimorphic than 
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the open-canopy forms. This indicated that sexual selection is likely to be a more 

predominant force within the closed-canopy habitats, which are more protected from aerial 

predators, thereby enabling them to invest more in communication; while, in open-canopy 

habitats, natural selection is likely to be the more predominant force, ultimately enforcing 

their overall diminutive body size.  

To determine whether the morphological differences identified were adaptive, and 

hence whether chameleons in this species complex constitute an adaptive radiation, I tested 

several locomotor performance traits (running speed, foot and tail grip strength: Chapter 3) 

and bite force (Chapter 4) – traits thought to be most relevant for their survival.  The 

phenotypic forms were found to differ in both absolute and relative forefoot grip strength 

and absolute bite force, with the proportionally smaller open-canopy forms possessing 

correspondingly weaker forefoot strengths and bite forces than the closed-canopy forms.  

Furthermore, sexual differences in both absolute and relative bite forces were also detected 

within the closed-canopy forms, with males generating a greater force than females. The 

lack of differentiation between forms for the other performance traits either indicates that 

these chameleons are equally well suited for grasping perches with their tails and running 

or that the tests were not representative of how they would perform in their environments. 

To clarify this, additional performance tests should be conducted that incorporate multiple 

perch sizes and orientations (horizontal and vertical) that are more representative of the 

actual perches used by chameleons. Irrespective of the outcomes, the performance results 

presented in this dissertation indicate that both natural and sexual selection are acting 

within both habitat types, but to varying degrees, as suggested in Chapter 2.  

In closed-canopy habitats, larger body sizes are advantageous because they provide 

an honest signal of performance, which is especially useful during intraspecific encounters, 

which can result in intense fighting. The proportionally larger heads of closed-canopy 
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chameleons enable them to display their potential threat from farther distances through the 

use of their ornamentation (prominent casques) and, if necessary, engage in combat, which 

generally involves chasing and biting (Burrage, 1973; Stuart-Fox et al., 2006a; Tolley & 

Burger, 2007).  In such instances, their greater forefoot grip strength provides them 

increased stability as they grasp hold of branches to maintain balance and support. In open-

canopy habitats, where the average plant and perch height is far lower and the perches are 

more densely clustered than in closed-canopy habitats (Chapter 2), the risk of injury from 

displacement is less, potentially explaining their proportionally weaker grip strength.  

The observed patterns of forefoot grip strength between open and closed-canopy 

dwarf chameleons are shared with another Bradypodion species, Bradypodion pumilum 

(Herrel et al., 2011). Accordingly, this dissertation provides initial evidence for the parallel 

evolution of this performance trait among dwarf chameleons in response to microhabitat 

structure, lending support for the existence of open and closed-canopy ecomorphs within 

the genus.  

To determine whether the ecomorphological patterns within this species complex 

were reflected in their genetics or whether this complex truly lacked genetic 

differentiation, I conducted a comprehensive population genetic study using a combination 

of mitochondrial and nuclear microsatellite DNA markers and incorporated detailed spatial 

information into the analyses to quantify the genetic effects of landscape and geographic 

barriers (Chapter 5). Compared to typical levels of genetic divergence used to discriminate 

between chameleon species, very little genetic differentiation was detected within this 

species complex, confirming the findings of previous phylogenetic studies (Tolley et al., 

2004; Tolley et al., 2008). However, there was evidence to suggest that the southern KZN 

dwarf chameleons are in in the early stages of divergence, and on different evolutionary 

trajectories despite the low levels of genetic differentiation.  
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Both mitochondrial and microsatellite markers were able to detect geographic 

structure, with three mitochondrial clusters and seven microsatellite clusters identified 

(Fig. 7.1: Maps A & B).  The differing genetic patterns between the two markers reflect 

their different mutation rates and modes of inheritance, with the microsatellite data 

depicting the more recent structuring and the mitochondrial structure showing shared 

ancestral polymorphisms.  Taken together, these molecular data inform the timing and 

mode of evolution within this species complex. The mitochondrial data estimate these 

chameleons to have first diverged between 1.4 and 4.4 million years ago during the Plio-

Pleistocene transition, which was characterized by the emergence and expansion of C4 

grasslands and the corresponding regression of the remaining forests patches in the region 

(Vogel et al., 1978; Mucina & Geldenhuys, 2006; Hopley et al., 2007). The molecular data 

also suggest repeated periods of fragmentation and gene flow between clusters during the 

Middle and Late Pleistocene, which helped shape the microsatellite structure. This cycling 

of genetic connectivity is also likely to have occurred in response to forest extent, which 

changed considerably throughout the glacial-interglacial cycles during this time (Eeley et 

al., 1999; Dupont et al., 2001; Dupont et al., 2011).  

The intimate link proposed between the genetics of this species complex and their 

habitat is supported by the ecomorphological evidence presented in this dissertation 

(Chapters 2-4), which closely resembles the structure defined by the microsatellite data. 

This is most evident for the three closed-canopy forms, which show strong accordance 

between their morphologies and genetics (Fig. 7.1: Maps B & C). Thus, under the 

morphological, ecological, and genotypic cluster species concepts (Van Valen, 1976; 

Mayr, 1982; Mallet, 1995), each of these closed-canopy forms should be recognized as 

separate species (i.e., B. thamnobates, Bradypodion ‘southern Drakensberg’ sp., and 

Bradypodion ‘Karkloof’ sp.: Chapter 5). The open-canopy forms, however, continue to 
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show discordance between their morphologies and genetics. Where the ecomorphological 

evidence identified two phenotypic forms along a north-south axis, the microsatellite data 

grouped these same chameleons into three clusters along an east-west axis (Fig. 7.1: Maps 

B & C). This suggests that similar ecological factors affect each of these microsatellite 

clusters.  The failure of this to be recognized in their genetics likely reflects the recentness 

of these morphological distinctions.  In fact, the two ecomorphological forms within each 

cluster correspond to two forest types within the Midlands and Coastal regions of southern 

KZN, specifically the Mistbelt and Indian Ocean Coastal Belt forests, respectively (refer to 

Mucina & Geldenhuys, 2006); the latter of which emerged only 8,000 years ago (Eeley et 

al., 1999; Lawes et al., 2000; Mucina & Geldenhuys, 2006; Lawes et al., 2007). Given the 

low dispersal ability of these chameleons and the present divide between Mistbelt and 

Coastal forests (Mucina & Geldenhuys, 2006), migration within any of the open-canopy 

microsatellite clusters is unlikely. Accordingly, these chameleons are likely in the early 

stages of ecological and/or allopatric speciation, and there may actually be six open-

canopy clusters (Fig. 7.1: Map D). However, ample data was only obtained for the northern 

open-canopy clusters (1a & 1b). For the central and southern open-canopy clusters, only a 

few individuals from limited localities were sampled for morphometric and genetic data, 

and no performance testing was conducted on these chameleons. As such, these clusters 

have simply been inferred. To validate their distinctiveness, increased sampling for 

morphometric and performance data should be conducted at multiple field sites, if possible. 

Until such time, these chameleons should be grouped according to their microsatellite 

clusters and managed as genetically distinct conservation units, while the two northern 

open-canopy clusters (1a & 1b) should, at the very least, be recognized as ecologically 

distinct populations or “adaptive evolutionary” conservation units (sensu Fraser & 

Bernatchez, 2001) of B. melanocephalum (Chapter 5). 
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Figure 7.1 Maps depicting the approximate geographical distributions of chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates 

species complex through time. Map A illustrates the ancestral structure recognised by mitochondrial DNA sequences dated approximately 1.4-4.4 million 

years ago (Chapter 5). Map B portrays the microsatellite structure estimated at approximately 160,000-310,000 years ago (Chapter 5). Map C depicts the 

structure based on morphological data (Chapter 2) and Map D represents the likely distribution of distinct chameleon clusters at present. Closed-canopy 

habitat phenotypic forms (B. thamnobates, Type B [southern Drakensberg] and Type C [Karkloof]) are represented by mtDNA clusters B and C, and 

microsatellite clusters 4-7. Open-canopy habitat forms (B. melanocephalum and Type A) are represented as mtDNA clusters A and B, and microsatellite 

clusters 1-3. In Map D, ‘a’ denotes coastal populations of open-canopy forms, while ‘b’ denotes the Midlands populations.   
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The data discussed thus far support a close association between the evolution of 

chameleons within this species complex and their habitat. To further explore this 

relationship, I used ecological niche modelling to identify the abiotic variables shaping the 

present distributions of chameleons and projected these variables backward in time to the 

Last Interglacial (LIG) and Last Glacial Maximum (LGM) (Chapter 6). These periods were 

chosen as they represent the most extreme climatic conditions during the Pleistocene 

(Deacon, 1983; Tyson, 1986); thereby, enabling me to gain insight into the potential 

climatic niches of these chameleon clusters throughout this epoch.  If the distributions of 

chameleons within this species complex are truly linked with that of their habitats, I 

expected corresponding patterns of paleoclimatic change. The climatic niches of the three 

proposed closed-canopy species showed moderate to high levels of stability since the LIG, 

mimicking that of their closed-canopy forested habitats (Eeley et al., 1999). The 

Afrotemperate and Mistbelt forests that these chameleons inhabit are more ancient and, 

consequently, have experience with paleoclimatic extinction filters (Eeley et al., 1999; 

Lawes et al., 2000; Mucina & Geldenhuys, 2006; Lawes et al., 2007), which has enabled 

them to act as refugia for these chameleons throughout the numerous glacial-interglacial 

cycles throughout the Pleistocene. These results suggest that these chameleons have very 

conservative climatic niches.  

The climatic niches of the open-canopy chameleons, however, were predicted to be 

far less stable and not fully reflective of the distributions of forests during the Pleistocene. 

In fact, the apparent gene flow between the open-canopy chameleons in the Midlands and 

the Coast as revealed by the microsatellite data (Fig. 7.1: Map B) suggest that these 

chameleons experienced climatic niche lability. The Midlands chameleons may have 

gradually moved eastward, utilising the more widespread grasslands during the glacials 

and forests during the interglacials, which could explain their proportionally smaller, open-
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canopy habitat features. With the emergence of Scarp and Indian Ocean coastal belt forests 

approximately 8,000 years ago (Eeley et al., 1999; Lawes et al., 2000; Mucina & 

Geldenhuys, 2006; Lawes et al., 2007), the Midlands chameleons could have expanded 

their climatic and vegetative niches to utilise the coastal climate and vegetation. 

Directional selection may have then acted to favour individuals able to tolerate these new 

conditions (Pearman et al., 2008). The Scarp forests eventually became a barrier between 

them, further isolating the Coastal chameleons from the founding Midlands chameleons. 

This would explain the apparent gene flow, yet morphological distinctiveness between the 

Coastal and Midlands chameleons (Chapters 2 &5), as well as the low levels of climatic 

niche stability predicted for these chameleons. 

Overall, this dissertation has shown that a combination of biotic and abiotic factors 

have influenced the evolution of dwarf chameleons within this adaptive radiation. The 

variable climate throughout the Pleistocene created unique, often isolated habitats in which 

these chameleons could persist and, through intraspecific competition, resource 

partitioning and predation, these chameleons became locally adapted to these habitats. 

These processes allowed for both ecological and allopatric speciation to occur, creating the 

observed patterns of morphological and genetic diversity. The different lines of evidence 

used in this thesis provide a timeline of this evolution, with the most recent structure 

believed to be represented by Map D of Figure 7.1. Even though particular clusters require 

further research, this thesis will contribute significantly to refining the taxonomic status of 

this species complex.   

The evolutionary and ecological knowledge gained in this dissertation will also 

prove valuable in informing conservation management decisions. The forest and grassland 

habitats in which these chameleons inhabit are amongst the most threatened ecosystems in 

South Africa (Driver et al., 2005; Driver et al., 2012) and, as such, there is a high 
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likelihood these chameleons are experiencing and will continue to experience significant 

threats to their survival and persistence. Thus, management efforts should be aimed at 

preserving the adaptive diversity and evolutionary processes across the geographic range 

of this species complex.  

Moreover, while this dissertation has focused specifically on the  

B. melanocephalum-B. thamnobates species complex, it has advanced our understanding of 

the evolutionary processes shaping the Bradypodion genus as a whole. It might also benefit 

similar studies looking at problematic taxa, especially those involving low mobility, 

specialty groups.   
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Natural selection tends to favour optimal phenotypes either through directional or stabilizing selection; however,
phenotypic variation in natural populations is common and arises from a combination of biotic and abiotic
interactions. In these instances, rare phenotypes may possess a fitness advantage over the more common
phenotypes in particular environments, which can lead to adaptation and ecological speciation. A recently radiated
clade of dwarf chameleons (Bradypodion) restricted to southern KwaZulu-Natal Province, South Africa, is currently
comprised of two species (Bradypodion melanocephalum and Bradypodion thamnobates), yet three other pheno-
typic forms exist, possibly indicating the clade is far more speciose. Very little genetic differentiation exists between
these five phenotypic forms; however, all are allopatric in distribution, occupy different habitats and vary in overall
size and coloration, which may indicate that these forms are adapting to their local environments and possibly
undergoing ecological speciation. To test this, we collected morphometric and habitat data from each form and
examined whether ecological relevant morphological differences exist between them that reflect their differential
habitat use. Sexual dimorphism was detected in four of the five forms. Yet, the degree and number of dimorphic
characters was different between them, with size-adjusted male-biased dimorphism being much more pronounced
in B. thamnobates. Habitat differences also existed between sexes, with males occupying higher perches in more
closed canopy (forested) habitats than females. Clear morphological distinctions were detected between four of the
five forms, with the head explaining the vast majority of the variation. Chameleons occupying forested habitats
tended to possess proportionally larger heads and feet but shorter limbs than those in open canopy habitats (i.e.
grassland). These results show that this species complex of Bradypodion is morphologically variable for traits that
are ecologically relevant for chameleons, and that the variation among the five phenotypic forms is associated with
habitat type, suggesting that this species complex is in the early stages of ecological speciation. © 2013 The
Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109, 113–130.

ADDITIONAL KEYWORDS: adaptation – habitat – lizards – morphology – South Africa – Squamata.

INTRODUCTION

Phenotypic variation in natural populations is
intriguing from an evolutionary perspective because
natural selection is assumed to favour one optimal
phenotype either through directional or stabilizing
selection. Consequently, a major goal of evolutionary

biology is to identify processes that create and main-
tain phenotypic variation in natural populations. One
possibility is that diversity is maintained by disrup-
tive selection, which is driven by negative frequency-
dependent selection (Mather, 1955; Rueffler et al.,
2006) arising from biotic (e.g. competition for
resources: Benkman, 1996; Swanson et al., 2003)
and/or abiotic interactions (e.g. temperature and
climate: Davis & Shaw, 2001; Norberg et al., 2001). In
such instances, rare phenotypes possess a fitness*Corresponding author. E-mail: jessica.m.dasilva@gmail.com
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Summary

1. Evidence that morphological traits associated with particular environments are functionally

adapted to those environments is a key component to determining the adaptive nature of radi-

ations. Adaptation is often measured by testing how organisms perform in diverse habitats,

with performance traits associated with locomotion thought to be among the most ecologically

relevant.

2. We therefore explored whether there are relationships between morphology, locomotor

performance traits (sprint speed, forefoot and tail grip strength on broad and narrow dowels)

and microhabitat use in five phenotypic forms of a recent radiation of dwarf chameleon – the

Bradypodion melanocephalum–Bradypodion thamnobates species complex – to determine

whether morphological differences previously identified between the forms are associated with

functional adaptations to their respective habitats, which can be broadly categorized as open

or closed-canopy vegetation.

3. The results showed significant differences in both absolute and relative performance values

between the phenotypic forms. Absolute performance suggests there are two phenotypic

groups – strong (B. thamnobates and Type B) and weak (B. melanocephalum and Types A and

C). Relative performance differences highlighted the significance of forefoot grip strength

among these chameleons, with the closed-canopy forms (B. thamnobates, Types B and C)

exceeding their open-canopy counterparts (B. melanocephalum, Type A). Little to no differ-

ences were detected between forms with respect to sprint speed and tail strength. These results

indicate that strong selection is acting upon forefoot grip strength and has resulted in

morphological adaptations that enable each phenotypic form to conform with the demands of

its habitat.

4. This study provides evidence for the parallel evolution of forefoot grip strength among

dwarf chameleons, consistent with the recognition of open and closed-canopy ecomorphs

within the genus Bradypodion.

Key-words: Chamaeleonidae, lizards, morphometrics, perch diameter, South Africa
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Abstract

Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes
that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal’s foraging
behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection
pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal’s performance. For
performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often
interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with
respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex
have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-
canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested
for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with
the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for
both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results
indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection
seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators,
enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the
predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual
characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance.
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Introduction

Evolutionary and ecological processes that drive adaptive

divergence and, ultimately, speciation can be influenced by

phenotypic performance in different environments. As new

environmental niches become available for populations to exploit,

morphological and physiological adaptations arise, often resulting

in enhanced performance in the novel habitat [1]. Evidence for

these adaptations can be found in the improved performance of

animals in their new environment [1]. For example, habitat

structure or complexity is known to influence a range of lizard

behaviours, including communication and anti-predator defences.

Densely vegetated, structurally complex habitats may afford

lizards greater cover from avian predators. If indeed predation

pressure is released in dense vegetation, chameleons may invest

more in conspicuous features, such as ornamentation and bright

colouration, for increased detectability to conspecifics. However,

in less vegetated habitats, where visibility to predators is high,

rather than being visible chameleons may need to be cryptic to

avoid detection (e.g., [2,3]). Because the head is involved in many

ecologically and socially relevant activities, such as feeding, mating

and aggressive interactions, its morphology and association to bite

performance and habitat have been widely investigated to better

understand the adaptive significance and the underlying processes

shaping phenotypic variation within and between species (e.g., [4–

15]). Many of these studies have shown that bite force is influenced

by both natural and sexual selection, yet the relative contribution

of these selective pressures remains difficult to unravel as they

often interact in complex ways. Moreover, sexual and natural

selection can act in opposite ways, with sexual selection favouring

conspicuous coloration or ornamentation for effective communi-

cation and conflict avoidance, and natural selection favouring
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Abstract A recently radiated clade of dwarf chameleon

(genus Bradypodion) localised to central-southern KwaZ-

ulu-Natal province, South Africa is considered taxonomi-

cally problematic due to the observed discordance between

morphology and genetics within and between its species.

The clade is made up of two described species (B. mela-

nocephalum–B. thamnobates) and possibly others—all of

which are experiencing significant reductions in the quality

and quantity of available habitat due to natural and

anthropogenic factors. To better understand the effects

past and present habitat fragmentation has had on gene

flow, population structure, and genetic diversity within this

clade, we developed seven new microsatellite markers for

the B. melanocephalum–B. thamnobates complex, plus two

markers for B. pumilum using an enrichment protocol. We

tested these nine markers, along with eight markers pre-

viously designed for B. pumilum, for cross-species trans-

ferability across five species within the genus Bradypodion

(B. melanocephalum, B. thamnobates, B. dracomonatum,

B. sp. and B. pumilum). The number of alleles ranged from

1 to 29 with observed heterozygosities ranging from 0.00 to

1.00. Several loci did not meet HW expectations, but this

may be a result of extreme demographic fluctuations that

have been noted for these species. Ten loci were found to

be polymorphic across all species examined, making them

ideal for studies examining the population genetics of

dwarf chameleons.

Keywords Reptiles � Chamaeleonidae � Africa �
Microsatellites

Dwarf chameleons (genus Bradypodion) distributed in

central-to-southern KwaZulu-Natal (KZN) province, South

Africa, are considered taxonomically problematic given

discordance between morphology and genetics (Alexander

2006; Tolley and Burger 2007; Tolley et al. 2008). The

clade encompasses two species, B. melanocephalum (the

KwaZulu-Natal dwarf chameleon) and B. thamnobates (the

Natal Midlands dwarf chameleon), which show substantial

morphological distinctness (in size, colour, and skull

shape) and habitat partitioning (Branch 1998; Tolley and

Burger 2007), yet they are not reciprocally monophyletic

for mitochondrial markers—ND2 and 16S (Tolley et al.

2004; Tolley et al. 2006). Explanations for this range from

shared ancestral polymorphism as a result of recent radia-

tion, selective sweeps on mitochondrial genes, strong

selection on the phenotype as a result of environmental

pressure, and phenotypic plasticity. The latter explanation

can be ruled out, as common garden experiments have

shown this is unlikely (Miller and Alexander 2009).

Comprehensive field surveys within the distribution of B.

thamnobates–B. melanocephalum have uncovered other
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