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ABSTRACT 

Many learners, even at high school level, have difficulty with fractions and computations 

involving fractions. A report from the Department of Basic Education (DBE, 2012c: 15) has 

highlighted that the lack in basic fraction sense was one of the areas of concern that contributed 

to the low achievement in matriculation mathematics examinations in 2012. Fractions play an 

important role in our ever-advancing technological society. Many occupations today rely 

heavily on the ability to compute accurately, proficiently, and insightfully with fractions. High 

school learners’ understanding or the lack thereof is carried over to their tertiary studies and 

workplaces. It is for that reason that in this dissertation, the learning and understanding of 

fractions and their role in the high school curriculum are studied through a critical literature 

review. Fractions are compound constructs and can therefore be interpreted in many different 

ways, depending on the area of study within mathematics. The concept of fractions consists of 

five sub-constructs, namely, part-whole, ratio, operator, quotient, and measure (Behr, Lesh, 

Post, & Silver, 1983; Kieren, 1980). This thesis starts with discussion of the background of the 

study and its importance. Thereafter the elements that assist in the understanding of the fraction 

concept is discussed. Then, the five different sub-constructs are elaborated on, and how these 

different sub-constructs are used in the high school curriculum is demonstrated. The conclusion 

offers some implications for classroom teaching and mathematics teachers’ professional 

development.  
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OPSOMMING 

Talle leerders, tot op hoërskool vlak, ervaar probleme met breuke en berekeninge met breuke 

nie. ‘n Verslag van die Departement van Basiese Onderwys (DBE, 2012c: 15) het beklemtoon 

dat die gebrek aan basiese breuk vaardighede een van die oorsake was wat daartoe gely het dat 

die prestasie in die 2012 matriek wiskunde eksamen so laag was. Breuke speel ‘n belangrike 

rol in ons voortdurende tegnologiese voor uitgaande samelewing. Talle beroepe vandag is 

grootliks afhanklik van die akkurate, bekwame en insiggewende berekeninge van breuke. 

Hoërskool leerders se begrip, of die gebrek daaraan word oorgedra na hul tersiêre studies en 

werksplekke. Dit is vir dié rede dat hierdie tesis die leer en begrip van breuke en hul rol in die 

hoërskool kurrikulum bestudeer deur middel van ‘n kritiese literatuur studie. Breuke is ‘n 

saamgestelde konsep en kan vir hierdie rede op verskillende wyses geïnterpreteer word, 

afhangende van die area van studie in wiskunde. Die konsep van ‘n breuk bestaan uit vyf sub-

konstrukte, naamlik deel-van-‘n-geheel, ‘n verhouding, operateur, kwosiënt en meting (Behr, 

Lesh, Post, & Silver, 1983; Kieren, 1980). Hierdie tesis begin met ‘n bespreking oor die 

agtergrond van hierdie studie en die belangrikheid daarvan. Daarna word die faktore wat bydra 

tot die verstaan van die breuk konsep. Dit word gevolg deur ‘n uitbreiding op die vyf 

verskillende sub-konstrukte en waar hierdie verskillende sub-konstrukte in die hoërskool 

kurrikulum voorkom. Die bevinding bied ‘n paar implikasies vir onderrig. Hierdie studie fokus 

nie op die ontwerp van enige take of ander leermateriaal vir ‘n intervensie program nie, maar 

konsentreer op die belangrike kwessies rondom breuke. My hoop is dat die bevindinge van 

hierdie studie implikasies inhou vir wiskunde onderwysers se professionele ontwikkeling deur 

hul te motiveer om nuwe leerondersteuningsmateriaal te ontwikkel en die aanbieding van 

breuke in klaskamers aan te pas sodat die begrip van breuke by leerders ten volle ontwikkel 

kan word. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

In this increasingly technical world, financial and educational success in contemporary global 

culture depends heavily on knowledge of mathematics. It is therefore critical that learner achievement 

in high school mathematics improves as this affects attainment at tertiary level (Siegler, Duncan, 

Davis-Kean, Duckworth, Claessens, Engel, et al., 2012). 

In light of this, the South African Government has constructed a plan of action to ensure that the 

quality of education, specifically in mathematics and languages, in the country improve. The 

Department of Basic Education (DBE) plays a vital role in ensuring that the goals set by the National 

Government are achieved. The Annual National Assessments (ANA) was introduced for the first time 

for Grade 9 learners in 2012. ANA monitors the performance of learners in numeracy and literacy. 

All schools are required to write tests in mathematics and language (DBE, 2012a: 2). The ANA results 

for the last two years are of great concern because only 2.3% of learners in Grade 9 achieved above 

50% for the mathematics test (DBE, 2012b: 6). This is unfortunately also true for the National Senior 

Certificate examination of 2012. Of the total number of candidates who wrote the examinations, only 

44% wrote mathematics and 46% of these candidates did not achieve at least 30% to pass the subject 

at the end of Grade 12 (DBE, 2012b). These results are not isolated, as a study done by Steen (2007) 

in the United States shows similar concerns. In particular, “much contention occurs near the ends of 

elementary and secondary education, where students encounter topics that many find difficult and 

some find incomprehensible” (Steen, 2007: 9).  

Areas of concern were fractions and ratios as learners found it difficult to comprehend these 

concepts (DBE, 2012c: 15). A study by the National Assessment of Educational Progress (NAEP), 

indicates that “students of age seventeen recurrently demonstrated a lack of proficiency with fraction 

concepts” (cited in Brown & Quinn, 2006: 28). In a study by Mullis, Dossey, Owen, and Phillips 

(cited in Brown & Quinn, 2006: 28), only 46% of high school learners understood the concept of 

fractions. Although this study was done in the United States, work done by Newstead and Murray 

(1999) suggests that the case is the same in South Africa. NAEP results (cited in Niemi, 1996: 6) 

indicate that many students “see fractions as purely symbolic entities not linked to concepts or 

principles". Hecht and Vagi (2010: 843) stated that “one of the most persistent problems for children 

with mathematical difficulties in solving problems involved fractions.” According to Kieren (cited in 

Niemi, 1996: 6), fraction knowledge forms a basis for understanding a wide range of related concepts, 

including ratio, proportion, decimals, percentages, and rational numbers.  
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The basic understanding of fractions is critical for any learner to be capable of coping with more 

advanced topics in the high school curriculum (Niemi, 1996: 6). Fractions are an integral part of 

school mathematics curriculum. Fractions have rich meaning and feature in mathematical areas such 

as algebra, geometry, probability and trigonometry. If learners have difficulty in understanding the 

many meanings of fractions, it is likely that they will also have difficulty in procedural competency 

in these areas. Consequently, it is our duty as teachers to ensure that we make a concerted effort to 

bring to light, through our teaching, the many different interpretations of fractions and the role they 

play in the mathematics curriculum. We are confronted with fractions on a daily basis, for example, 

weather reports, financial indicators, crime rates or the percentage gained in a class test. Despite these 

daily encounters with fractions, learners still have misunderstandings about the meaning of fractions. 

In my own teaching experience, I have come across multiple situations where learners cannot work 

with fractions. This gives me the impression that in these specific situations, the learners have some 

misguided idea of what fractions really are and how to solve problems involving fractions. 

The concept of fractions consists of five sub-constructs, namely, part-whole, ratio, operator, 

quotient or measure (Behr, Lesh, Post, & Silver, 1983; Kieren, 1980). Associated with these sub-

constructs are the computations (+, −,×,÷). If learners are taught about what are called the sub-

constructs and how these relate to computations of fractions, there may be less confusion and more 

understanding of the meanings of fractions. The teacher’s role in developing the concept of fractions 

and the understanding thereof in the early stages of a child’s life (i.e. lower grades) is crucial because 

of their significance in the school curriculum from secondary through tertiary education.  

1.2  Problem statement 

Soon after I started teaching high school mathematics in 2009, I  realised that my learners had 

great difficulty in comprehending fractions and operations involving fractions. It seemed to me that 

an inward fear or a mental block arose when the word fractions was mentioned or even when a sum 

containing a fraction was written on the board. This impression still pertains. The immediate reaction 

is almost always, “Oh! Why must everything always be so difficult?” I could never understand why 

this would be their response. I suspect that the root of the problems or difficulties with fractions lies 

in the rich meanings associated with fractions. Learners’ difficulties with fractions stem from the 

different meanings or interpretations that fractions hold, depending on the tasks wherein the fractions 

appear and the teaching methods employed. It is therefore imperative that educators should, 

themselves, have a solid understanding of fractions and their meanings and the different areas in 

mathematics where they are used. Only then will the teacher be able to present fractions in context 

and develop a better conceptual understanding of fractions amongst learners. Addressing these issues 
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in this study will shed light on why high school (FET) learners struggle with fractions and will, it is 

hoped, provide insight on the larger challenges concerning mathematics competency. 

1.3 Aim and rationale 

The overarching question posed in this thesis is “Why do learners in high school (grades 10-12: 

FET phase) struggle with fractions?” Specifically, I aim to enhance my own professional 

development as a mathematics teacher, as a deeper understanding of the content may improve my 

own understanding of fractions. To do this, I need to know the many meanings of fractions and the 

different areas in mathematics where they are used. In addition, I need to know why learners have 

difficulty with fractions and operations involving fractions. One way to discover this is to explore the 

literature that focuses on high school learners’ difficulties with fractions.  

I will investigate what factors contribute to learner’s understanding of fractions and the limiting 

constructs. The lack of understanding of fractions by learners can be attributed to many factors. One 

of the most important is probably mathematical knowledge for teaching (MKT). There is some 

fundamental mathematical knowledge teachers should have and develop to improve their way of 

teaching so that it can have a positive effect on learners’ understanding of fractions. 

Lastly, an analysis will be done to explore the meanings of fractions in topics like algebra, 

geometry, probability, and trigonometry. This may assist the way in which fractions are represented 

so that fractions in these respective topics become more meaningful, which may lead to improve 

understanding of fractions by learners. After presenting a critical review on the research literature 

concerning what is called sub-constructs of fractions, I will suggest some ways in which fractions 

can be taught or represented. By doing this, I hope to make teachers, including me, aware of the 

different sub-constructs, where we use them, why we use them, and how they can be represented, 

which will help with our understanding of why learners have difficulty with fractions. 

Although my study is not specifically focused on how teachers can better their teaching of 

fractions, the findings of this study may have implications for the professional development of 

mathematics teachers. The hope is that a better presentation of fractions will lead to better 

understanding and ultimately more effective learning in the mathematics classroom. 

1.4  Framework for learning mathematics 

In order to understand learners’ misconception of fractions, a framework for learning 

mathematics needs to be established first. Olivier (1989:9) explained the importance of theory and 

compared it to a “lens through which one views the facts”. The fact is that learners make mistakes in 

mathematics, but as Olivier stressed, if we do not know “why they make these mistakes, we are unable 

to do something about it” (1989:9). If we want to provide reasons for learners’ mistakes, we need to 
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look through a “lens” defined by a learning theory. There are two ways in which teachers can 

approach leaners’ misconceptions: behaviouristic or constructivist. 

Behaviourism assumes that a learner learns through a passive state, by which knowledge is being 

transferred from the knowledgeable/expert (teacher) to the clean slate (tabula rasa), that is the child 

(Olivier, 1989). Behaviourists therefore believe that external stimuli shape and construct knowledge 

within the child and that the child’s current knowledge is obsolete and does not contribute to learning. 

Appropriate responses to stimuli are rewarded (positive reinforcement) and thus strengthened, 

whereas inappropriate responses are punished (negative reinforcement), which weakens the bonds. 

Learning is seen as a change in learners’ behaviour. From this view, misconceptions or mistakes are 

insignificant and are ‘punished’ so they it will be wiped out of memory and in turn make space for 

the correct ones.  

Constructivism assumes that learning takes place when a person interacts with his/her 

environment to construct his/her own knowledge. With constructivism, the learner is not a passive 

receiver of “ready-made” knowledge but an “active participant in the construction of his own 

knowledge” (Olivier, 1989, 2). A learner makes sense of (interprets/understands) new knowledge 

through existing knowledge. Constructivists often refer to the term schemata, which describes the 

child’s previously constructed constructs, which are all interrelated. Learning is not viewed as a 

change in behaviour but as a change in learners’ schemata. In the constructivist view, misconceptions 

are significant because learners make sense of new knowledge by tapping into existing knowledge. 

The danger here is that this can interfere with the construction of new knowledge and produce 

misconceptions, as I will discuss later in this thesis.  

I personally lean towards the constructivist approach for learning mathematics, but acknowledge 

that rewarding good behaviour does motivate learners in some sense and they then are more willing 

to engage in the learning process.  

1.5  Outline 

To address the concerns raised above, a systematic non-empirical critical literature review of 

research studies on teaching and learning fractions in the case of high school curriculum, Grades 10-

12, that is, the Further Education and training (FET) phase will be done. To do this, I will structure 

the rest of my thesis in two distinct chapters. One will concern discussing fractions in school 

mathematics and the other fractions in the school curriculum. 

The next chapter contains a discussion on fractions in school mathematics in which I will 

evaluate how mathematics as a subject is viewed in the South African curriculum. From there, I 

investigate the importance of teachers’ mathematical knowledge for teaching fractions and, 

furthermore, the factors contributing to the difficulty in learning fractions. This is followed by a 
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analysis of where fractions fit into the set of real numbers, their importance, and the different ways 

in which fractions can be interpreted. 

In the final chapter, an analysis is done to determine where fractions are used in the school 

curriculum. Fractions are found in algebra, geometry, probability and trigonometry. I investigate the 

link between fractions in the adding of like terms and linear equations in algebra. I go on to investigate 

the role that fractions play as a quotient in geometric similarity, before moving on to probability and, 

lastly, trigonometry. This thesis concludes with implications for school mathematics teaching.    
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CHAPTER 2: UNDERSTANDING THE FRACTION CONCEPT 

2.1  Mathematical proficiency 

Before I can explore the possible reasons for learners’ misconceptions of fractions, I should first 

define what I view as being mathematically proficient, especially when working with fractions. To 

do this, I rely on the work done by the National Research Council (NRC), reported in Adding it Up. 

In this report, Kilpatrick, Swafford, and Findell described what they call “the five strands of 

mathematical proficiency” (NRC, 2001: 116). They believe that these five strands are “necessary for 

anyone to learn mathematics successfully” (NRC, 2001: 116). The five strands, namely, conceptual 

understanding, procedural fluency, strategic competence, adaptive reasoning and productive 

disposition, are “interwoven and interdependent in the development of proficiency in mathematics” 

(NRC, 2001: 116).  

Conceptual understanding describes learners’ comprehension of mathematical ideas, that is, 

fractions, operations, and relationships (NRC, 2001: 118). A learner is said to have conceptual 

understanding of fractions if s/he knows more than isolated facts and methods. Learners should not 

only be able to point out where the numerator and denominator are, but also what they represent in a 

fraction. Solving problems involving fractions (addition, subtraction, multiplication, and division) 

should be done without any formal knowledge (pre-set methods) given to learners through teaching. 

A learner with a good conceptual understanding of fractions is able to solve problems using multiple 

representations and understand which context is the most useful: “They may [even] attempt to explain 

the method” (NRC, 2001: 118). Carpenter and Lehrer called this “articulating what one knows” 

(1999: 22) and claimed that this is the “benchmark of understanding”. Conceptual understanding is 

honed by applying teaching strategies and a meticulously designed sequence of activities that are 

inclusive and is aligned with the learning ability of the child.  

Procedural fluency is defined as the “skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately” (NRC, 2001: 121). Procedural fluency does not stand opposed to 

conceptual understanding but they should support each other. To be fluent in a procedure, one should 

have a good conceptual understanding. Higher level concepts are better understood if the basic 

concepts are thoroughly grasped and practiced to such an extent that it is almost done automatically. 

The brain is a mysterious organ and can only work on a certain number of concepts at a time. The 

less effort is spent on basic elements of a problem, the more “brain power” is available for solving 

higher order problems. With procedural fluency, learners have the ability to recognise important 

aspects needed to solve problems in a logical and effective manner, and sometimes in a variety of 

ways. These alternative strategies for solving problems also provide another way to check their 
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answers. To illustrate this, I will take an example from the Mathematics Learning and Teaching 

Initiative (MALATI) fractions materials called “Lisa Shares Chocolate” (Newstead, Van Niekerk, 

Lukhele, & Lebethe, 1999: 1). Lisa and Mary share seven chocolate bars equally amongst them and 

learners are asked to help them do it. This problem can be solved purely numerically, or learners can 

sketch the elements of the problem and share the whole chocolate bars,  then divide the remaining 

between the two, or they can divide all the bars into two equal parts and share the pieces. If the 

learners work correctly (and with enough practice) they will arrive at an answer of three and a half 

chocolate bars. 

The third strand, called strategic competence, is the ability to formulate, represent, and solve 

mathematical problems (NRC, 2001: 124). Kilpatrick and his colleagues stated that “this strand is 

similar to what is called problem solving” (NRC, 2001: 124). It is not enough for learners to merely 

solve problems but they should also be able to formulate their own. By doing this, learners 

demonstrate their knowledge of the topic. Learners gain enough exposure to a variety of different 

problems so they can create their own strategies to solve them as well as develop the skill to identify 

which strategy is the most useful in solving a specific problem. During the development of a range 

of problem-solving strategies, learners’ procedural fluency also improves. An example of strategic 

competence is to ask leaners to represent fractions as part of a whole, using different representation 

models. Leaners should also be asked to create their own word problems and swop them with their 

peers to try and solve them.  

Adaptive reasoning is the capacity for logical thought, reflection, explanation, and justification 

(NRC, 2001: 129). The importance of this is that as learners explain why they solve a specific problem 

in a certain way; they are demonstrating their understanding of the different representation models 

and that they feel at ease using it. One knows that a learner can reason adaptively if he/she is able to 

explain or “justify” his/her own thinking when solving problems involving, for example, fractions 

(NRC, 2001: 130). To return to “Lisa Shares Chocolate” again (Newstead et al., 1999:1): If Lisa and 

Mary share 7 chocolate bars and Lisa, Mary and Bingo share 7 chocolate bars, who will get the most 

and explain why? The answer one wishes to obtain from learners is that Lisa and Mary will get a 

bigger piece, not because it looks bigger when drawing a diagram, but rather that the same number 

of chocolate bars is divided between fewer people (2). The concept of a larger denominator creating 

smaller parts is tested. It is important for learners to reach this level of reasoning to enable them to 

move on to more challenging problems.  

Productive disposition is the inclination to see mathematics as sensible, useful, and worthwhile, 

coupled with a belief in diligence and one’s own efficacy (NRC, 2001: 131). In short, productive 

disposition is the ability to see mathematics as meaningful. We, as mathematics teachers, know the 
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negativity surrounding our subject, so it is our responsibility to instil into our leaners the motivation 

to study, sensibility towards and the importance, reality, and most importantly fun of mathematics in 

their daily lives. “The teacher of mathematics plays a critical role in encouraging students to maintain 

positive attitudes toward mathematics” (NRC, 2001:132).  

In summary, let me emphasise some important facts of mathematical proficiency as a whole. 

Most important is that the strands of proficiency are interwoven and support one another (NRC, 2001: 

133). All five strands must be used in collaboration with one another for successful learning to take 

place. (NRC, 2001: 133). Kilpatrick et al. also stated that proficiency is not simply all or nothing 

(present or absent) because mathematical ideas are understood at different levels and in different ways 

(NRC, 2001: 135). They went on to say that mathematical proficiency develops over time throughout 

learners’ school careers, and they “need to engage in activities around a specific mathematical topic 

if they are to become proficient in it” (NRC, 2001: 135). I would like to encourage the reader, while 

reading this thesis, to constantly try to relate what is being discussed to the five strands of 

mathematical proficiency identified here. In the next section, I will be discussing the concept of 

fractions in more detail. 

2.2  Overview of fractions 

The notion of a fraction being a compound concept consisting of different forms that are 

interlinked was first recognised by Kieren (cited in Charalambous & Pitta-Pantazi, 2007: 293). Naik 

and Subramaniam (2008: 1) referred to a fraction as being “complex since it consists of multiple sub-

constructs.” Kieren (cited in Charalambous & Pitta-Pantazi, 2007:295) “proposed that the concept of 

fractions consists of four interrelated sub-constructs: a ratio (comparison of two quantities), an 

operator performed on a quantity, a quotient [the answer when one value is divided by another] and 

a unit of measure.” Kieren did not recognise the part-whole as a fifth sub-construct, but Behr (cited 

in Charalambous & Pitta-Pantazi, 2007: 295) later argued that the part-whole sub-construct is an 

essential part in understanding the other four sub-constructs. In the light of the above, I distinguish 

five sub-constructs of fractions: part-whole/partitioning, ratio, operator, quotient, and measure. Later 

in this chapter, I will discuss these sub-constructs or interpretations of fractions and their importance 

in more depth. 

Fractions, in all their “forms” or sub-constructs, are essential concepts in the school curriculum 

and can be interpreted differently depending on the context in which they are used. Fractions are not 

only used in dividing the usual pizza into pieces. In trigonometry, fractions appear as ratios between 

sides of a right-angled triangle. In probability, fractions represent the possible outcomes. For learners 

to be successful in mathematics in higher grades, that is, understand the different meanings of 
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fractions in topics like probability and trigonometry (conceptual knowledge), teachers should not 

overemphasise the part/whole construct or teach rules to solve problems involving fractions without 

first ensuring complete comprehension. 

Teaching learners how to apply rules to solve fractions problems, without a sound understanding 

of why we are allowed to apply a certain rule, is detrimental. Instead of honing fraction proficiency, 

learners are taught to memorise and recall where necessary. Resnick (cited in Litwiller & Bright, 

2002: 1) observed that many learners who once believed that they could make sense of mathematics 

in lower grades lose this belief as they progress to higher grades. This is especially true in the case of 

fractions. Far more beneficial for learners is that teachers model the fraction problems before the rules 

are taught. For instance, 
1

2
 𝑜𝑓 

3

4
 can very easily be given the rule, “Top times top, over bottom times 

bottom”, which will yield the correct result of 
3

8
 , but why? This problem can be modelled by making 

a sketch of a rectangle and dividing it into four equal parts; each part will be a 
1

4
. Three 

1

4
 pieces are 

then shaded. To establish what a half of 
3

4
 is, each 

1

4
 block must be divided into two, resulting in a 

1

8
. 

The shaded part then represents 
3

4
, and half of the shaded part will be 

3

8
. (see Figure 1 below: 

 

Figure 1: Model for multiplying with fractions 

(Source: Izsak, 2006: 367) 

By placing the problem in context, teachers can promote problem-solving skills. Let us consider 

the same problem of 
1

2
 𝑜𝑓 

3

4
. This can be demonstrated as follows: 

Peter has a chocolate that is divided into four parts. He has already eaten 

one of the parts. How much does he have left? Susan comes along and 

Peter decides he wants to share his chocolate by giving her half of what is 

left. How much did Susan get of the whole chocolate?  

The learner must be able to set up an algorithm so solve the problem of 
1

2
 𝑜𝑓 

3

4
. To merely offer 

a rule will not help in promoting comprehension. The illustration above can potentially assist in 

solving this problem. Learners can relate to such an example because, during school interval, this is 
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often a reality for many friends sharing meals amongst each other. That is why rules without 

comprehension make mathematics, and specifically the topic of fractions, too abstract and difficult 

for many learners. That teachers choose to give rules rather than making use of mathematical 

modelling may be a result of the way in which mathematics as a subject (content and instruction) is 

viewed in the South African curriculum. 

2.3  How is mathematics as a subject viewed in the South African curriculum? 

One of the many reasons why learners struggle with fractions may be the way in which 

mathematics, as a subject, is viewed in the South African curriculum, that is, with the aim to create 

learners with mathematical knowledge for application and not necessarily to train mathematicians. 

Thus, “textbook-based teaching and rule-bound learning styles” (Adler, 1994: 104) are generally 

applied. In this section, I shall comment on the possible effect that this view has on instruction in the 

classroom and in the end on learners’ understanding of fractions. 

Educational transformation in South Africa has been at the forefront of academic and societal 

debate since 1994. This focus on educational transformation has had an impact on the way in which 

mathematics as a subject is viewed in the South African curriculum. The general aim of the South 

African Curriculum is “to ensure that children acquire and apply knowledge and skills” (DBE, 

2011:4). It also stresses specific aims and skills, in a mathematical context, for learners to obtain 

before exiting school.  

One must ask why the change in curriculum policy was needed after 1994 and whether it is doing 

justice to our current learners. The curriculum devised during the apartheid era has been widely 

criticised by scholars. For example, Adler (1994:102) described the apartheid-era curriculum as “a 

system fundamentally scarred by racial inequality, absurd levels of fragmentation, authoritarianism, 

and a low skills-base”. After the African National Congress was elected as the ruling party in 1994, 

the education policy was reshaped to suit the “needs” of the country. This curriculum change also 

brought about changes in how mathematics is viewed as a subject. Critical learning through active 

participation, social transformation, and the development of skills were the focus of the National 

Curriculum Statement (NCS) (DBE, 2011: 4). The NCS was revised later (RNCS) and changes 

included some content and assessment strategies, but the predominant method of teaching stayed 

textbook based and assessment strategies mostly remained formal tests. In 2011, the Curriculum and 

Assessment Policy Statement (CAPS) was introduced, and its implementation started in 2012. CAPS 

is a single “comprehensive document that was developed for each subject to replace Subject 

Statements, Learning Programme Guidelines and Subject Assessment Guidelines.” (DBE, 2011: 3). 

However, CAPS was not to replace how the NCS or RNCS viewed mathematics as a subject in South 

Africa but rather to merely amend it. 
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CAPS defines mathematics “as a language that describes numerical, geometric and graphical 

relationships” (DBE, 2011: 8). It envisages specific aims and skills that mathematics learners should 

obtain in the Further Education and Training (FET) phase before moving on to the Higher/Tertiary 

Education phase (Department of Basic Education, 2011: 8-10). The ultimate goal is for learners taking 

mathematics as a subject at school, specifically in the FET phase, to “acquire a functioning knowledge 

of the Mathematics that empowers them to make sense of society and to ensure access to an extended 

study of the mathematical sciences and a variety of career paths” (DBE, 2011: 10). 

Mathematics was thus reshaped from the apartheid-era curriculum to the CAPS vision, to 

enhance learners’ understanding and application thereof. The reason for this was that education 

specialists believed the system at that time did not serve the learners adequately. The aim of the 

current education curriculum is to create learners with mathematical knowledge for application and 

not necessarily to produce mathematicians. Thus, understanding fractions and the different ways of 

interpreting them would be more beneficial to learners than having to solve highly abstract problems 

(involving fractions) outside of context and application. It is therefore important to note that the way 

in which school mathematics is viewed as a subject in the South African curriculum is somewhat 

different to the way mathematics is viewed in mathematics scholarly circles around the world. 

Moreover, teachers have a responsibility to ensure that through their teaching, they promote the 

different interpretations of fractions. By doing this, they will help to develop a better sense of the 

meaning of fractions and the role they play in learners’ understanding in algebra, geometry, 

probability, and trigonometry and their real-life application. 

School mathematics is a “special kind of mathematics” and should be viewed separately from 

the discipline of mathematics, according to Watson (2008: 3). She argued that school mathematics 

has “different warrants, authorities, forms of reasoning, core activities, purposes and unifying 

concepts, and necessarily truncates mathematical activity in ways that are different from those of the 

discipline” (Watson, 2008: 3). Watson’s argument is strengthened by Julie’s statement that “The 

mathematics occupying the minds of mathematics educators is not the same as that which occupies 

the mind of the mathematician” (Julie, 2002: 30). Julie went on to say that “school mathematics is 

structured by insights from learning theories, pedagogy, philosophy and history of mathematics” 

(Julie, 2002: 30). Teachers predominantly engage with reduced and summarised versions of 

mathematics and “seldom use original pieces of mathematics as the basis for their work” (Julie, 2002: 

30). For this reason, “textbook-based teaching and rule-bound learning styles constitute learners’ 

mathematical diet” (Adler, 1994: 104). “Tell and drill”, as Adler (1994:104) called it, or “cognitive 

bullying” as Watson (2008: 3) referred to it, remains the most dominant teaching style in mathematics 

classrooms today. Julie (2002: 37) concluded that even though there is a “call for applications and 
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modelling of mathematics” in school curriculum transition (Adler, 1994:101), mathematics teachers 

in South Africa are unacquainted with the fundamentals of mathematical modelling and, thus, this 

lack of mathematical knowledge “governs, guides and structures their way of working” (Julie, 2002: 

37). This form of teaching does not develop nor stimulate an inquisitive, problem-solving attitude in 

learners. It is becoming increasingly apparent that teachers need to shift from these outdated practices 

and place more emphasis on application, skills, critical thinking and problem solving. As teachers, 

we should enhance our own understanding of fractions and modify our practices by which we present 

(instruction) them to our learners. This may result in learners having a better understanding of the 

concepts of fractions that will lead to better application.  

2.4  Mathematical knowledge for teaching (MKT) 

The only way in which teachers will be able to enrich instruction of fractions is if they broaden 

their own understanding thereof. Fractions are more complex than initially perceived, and therefore 

the teaching of fractions should also receive special attention. If teachers do not understand the 

intricacies of fractions themselves, they cannot effectively support the development of learners’ 

understanding thereof (Izsák, 2008: 365). The hope is that a better presentation of fractions will lead 

to better understanding of fractions by learners. Hence, it is imperative that teachers should improve 

their ‘mathematical knowledge for teaching’.  

Before examining the concept of MKT, we need to look at the framework for “teaching 

knowledge”. A framework for teaching knowledge refers to the background, experiences and content 

knowledge teachers draw upon when presenting a topic like fractions in the classroom (Ball, Thames, 

& Phelps, 2008). A study done by Lehrer and Franke (1992) found that a teacher with a rich teaching 

knowledge teaches “better” because problems are presented in context. Similarly, the results of many 

other studies (Heaton, 1992; Heid, Blume, Zbiek, & Edwards, 1999; Hill, Blunk, Charalambous, 

Lewis, Phelps, & Sleep, 2008) support the notion that there is a correlation between teachers’ teaching 

knowledge and learner achievement (positive or negative). If teachers have a rich teaching knowledge 

about fractions, the concept of fractions can be taught more meaningfully to learners, who thus 

develop better conceptual understanding. Ben-Peretz (2011) claimed that teaching knowledge enables 

teachers to teach subject matter (e.g., fractions) using appropriate didactic principles and skills. 

Shulman (1986: 9) identified three types of teaching knowledge: (a) subject matter content 

knowledge, (b) pedagogical content knowledge, and (c) curriculum knowledge. These different 

knowledge types should help teachers to teach the sub-constructs of fractions in a variety of ways that 

can support learners in developing a better understanding of fractions. Incorporated into the notion of 

a framework of teaching knowledge is the concept of mathematical knowledge for teaching (MKT). 
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To offer a deeper understanding of what MKT entails, I will briefly refer to three knowledge 

types, as described by Shulman (1986:9): subject matter content knowledge, pedagogical content 

knowledge, and curriculum knowledge. Firstly, content knowledge refers to what the teacher knows 

about the content/topic, such as fractions, why we study fractions, and their importance. This has 

significance for learners. If the teacher cannot give a reason for why it is important to study fractions 

and their uses, learners may not have any interest in learning about fractions at all. Secondly, 

pedagogical content knowledge (PCK) involves going further than the subject matter itself. PCK 

involves the activity of teaching by making use of educational instructional methods. Feuerstein’s 

theory describes this activity (i.e. teaching) as mediation, where the teacher selects and organises 

stimuli “considered most suitable to promote learning.” (Guiying, 2005: 38). Ball et al. (2008: 3) 

describe PCK as knowledge that “bridges content knowledge and the practice of teaching”. When 

applying PCK, the teacher decides on the most suitable way to present a specific topic (e.g., fractions) 

including what examples, diagrams and explanations to use. If teachers are successful at using PCK, 

they can potentially provide learners with a wide range/variety of ways to make sense of, in this case, 

fractions, because no two learners understand everything in the same way. Lastly, when a teacher 

possesses curriculum knowledge, s/he knows the requirements of the courses. Curriculum knowledge 

involves all aspects of the curriculum, for example, curriculum design and layout, the different topics, 

levels, range of learning and teaching support material (LTSM) available and which of these LTSMs 

are most suitable to use at a specific time (Shulman, 1986). Learners may benefit from having teachers 

with a better curriculum knowledge and become overwhelmed with facts but rather master the content 

gradually because the teachers organise their lessons in such a way that they build on each other and 

concepts are introduced at critical time slots and examined in depth. In this way, fractions can easily 

be understood and incorporated into all other areas in mathematics. 

In the light of what has been discussed above, it is clear that MKT is a special type or subcategory 

of knowledge that is needed by teachers to perform their task of teaching mathematics (Ball et al., 

2008: 5). MKT encapsulates the knowledge of the content matter, how it is presented, how it is 

perceived by learners (learning), and its effect on learner achievement. MKT “is the knowledge used 

to carry out the work of teaching mathematics” (Hill, Rowan, & Ball, 2005: 373) or put differently, 

MKT is the “mathematical knowledge that teachers need to carry out their work as teachers of 

mathematics” (Ball et al., 2008: 4). MKT also refers to the nature, depth and organisation of teacher 

knowledge that influences how, in this case, fractions are presented, the ability of teachers to answer 

any questions learners might have regarding fractions, and how skilfully pictures and diagrams are 

used to bring across the concept of fractions and procedures when doing calculations with them 

(Steele & Rogers, 2012: 159-160). A broader MKT knowledge base ultimately leads to better content 
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knowledge and the necessary skills to effectively transfer that knowledge to learners (Leung & Park, 

2002), which results in better learner achievement. 

Studies investigating the relationship of teacher mathematical content knowledge on learner 

achievement are summarised in the volume Knowledge Management and Dissemination (2010). A 

study done by Hill, Rowan and Ball (2005) showed that student achievement correlates positively 

with their teachers’ mathematical content knowledge. It is thus important for teachers to develop 

mathematical knowledge for teaching (MKT) fractions to ensure that when teaching learners they 

present fractions in a more meaningful way. This may have a positive impact on their teaching and 

consequently may lead to better understanding of fraction concepts in learners.  

In summary, teaching involves a thorough knowledge of the content and how to teach that 

content, such as fractions, in such a way that it promotes a better understanding of fraction concepts 

by learners. To substantiate this claim, I return to the example used earlier, 
1

2
 𝑜𝑓 

3

4
. First of all, the 

teacher must be able to carry out this calculation. He or she must also be able to place this problem 

in context and answer any questions that learners might ask (content knowledge). Together with this, 

the teacher should be able to choose the best time to introduce a problem like this and how to structure 

the series of lessons to create a base of learner knowledge from which to address this problem 

(curriculum knowledge) and also what type of diagram or model can possibly be used to support the 

understanding of this type of problem (pedagogical content knowledge). As can be seen, MKT is not 

a single activity but involves various other knowledge types to assist the teacher in conveying a 

particular concept, for example, fractions. MKT is but one factor contributing to learners’ 

understanding of fractions. 

Other factors also contribute to learners’ understanding of fractions in the mathematics 

classroom, for example, learner thinking and learning and learner informal knowledge, amongst 

others. In the next section, I will be looking at what factors contribute in the learning and 

understanding of fractions in learners.  

2.5 Limiting constructions 

Difficulties in understanding fractions do not solely lie in their compound construct nature, nor 

in the way mathematics teachers present fractions. There are many causes why learners have 

difficulties in learning fractions. A special kind of misconception of fractions amongst learners is 

called limiting constructions. 

Knowledge is constructed from personal experiences. If these experiences provide learners with 

only a limited view of a particular concept, for instance, fractions, it may hinder further understanding 

of that concept (Murray & Le Roux, n.d.: 92). These “limited experiences have resulted in limiting 
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constructions” (Murray & Le Roux, n.d.: 92). Lukhele, Murray and Olivier described limiting 

constructions as “ones’ prior exposure to situations which give the learner a narrow view of the 

concept which hampers further thinking” (1999: 87).  

Inevitably, classroom instruction, activities, and tasks are the cause for some of these limiting 

constructions but cannot always be prevented. Learners should be exposed to multiple problems 

involving various experiences and views to try and minimise these limiting views of fraction concepts 

(Murray & Le Roux, n.d.: 93). The following four limiting constructions are described in the literature 

consulted and have been identified by the research done by Pitkethly and Hunting (1996), Murray et 

al. (1996), and the Malati group in 1997-1999: whole number schemes, limited part-whole contexts, 

knowledge of half, and perceptual and visual representations. 

2.5.1 Whole number schemes 

The concept of whole numbers can interfere with learners’ attempt to learn fractions (Pitkethly 

& Hunting, 1996: 10). Siegler, Fazio, Bailey, and Zhou (2013:15) agreed and reported that “children 

often view fractions exclusively in terms of part/whole relations” Learners perceive fraction symbols 

(
𝑎

𝑏
) as two distinct whole numbers written on top of each other (Murray & Le Roux, n.d.: 103). This 

was evident in the responses in a pre-test given to learners during the MALATI programme, where, 

in one example, 
7

8
+

7

8
=

14

16
 (Lukhele et al., 1999: 91), it was clear that the learners tried to solve this 

problem from a whole number perspective. The fraction is seen as two separate numbers on which 

whole number strategies are performed. This kind of error is common amongst leaners and well 

documented among researchers, for example, Hart (1989), Carpenter, Coburn, Reys, & Wilson 

(1976), Howard (1991), Streefland (1991), and Pitkethly and Hunting (1996). Carpenter et al. 

(1976:139) ascribed this to the “top times top over bottom times bottom” rule that is taught to learners 

when they are introduced to the multiplication of fractions. 

2.5.2 Limited part-whole contexts 

A very popular belief amongst learners is that fractions are only part of a whole. Similarly, they 

also believe that only circles or rectangles can be divided into equal parts. Learners struggle to come 

to grips with a problem such as sharing five pizzas among eight people or how to calculate a fraction 

of a collection of objects, for example 
2

3
 of a box of Smarties containing 48 Smarties (Murray & Le 

Roux, n.d.: 104). According to Pitkethly and Hunting (1996: 11), there is an “overreliance on the 

continuous part-whole model which inhibits children’s thinking of fractions as numbers and the 

development of other fraction interpretations”. 

2.5.3  Knowledge of half 
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A good example of this is a simple fraction bar or folding a piece of paper. The whole is 

repeatedly halved to make smaller fractions. The result is that the denominators increase 

exponentially (i.e., 2, 4, 8, 16, etc.). This type of halving creates the impression that uneven 

denominators cannot be created. Learners struggle to see how a whole can be subdivided into thirds, 

fifths, sixths, sevenths, and so on: “This powerful strategy inhibits the child's ability to develop 

partitioning schemes to create fractions that have odd number denominators, for example thirds” 

(Pitkethly & Hunting, 1996: 11). It is for this reason that that early experiences of equal-sharing 

activities should include other fractional parts like thirds and fifths. 

2.5.4 Perceptual and visual representations 

These is a widespread belief among teachers that fractions should be introduced using pictures 

and physical material (i.e., real chocolate bars or A4 size cardboard). This approach is problematic 

because it is mainly perceptual and figurative and learners do not learn to reason about fractions. It 

would be wiser for the teacher to give learners realistic problems, in which they are forced to create 

their own need for fractions. The context of the problem should demand of the learner to cut a whole 

into parts to be able to solve it, for example, dividing three chocolate bars between two friends. The 

concept of a fraction is then formed as a result of the learners’ own reasoning. 

2.6 Other factors contributing to learners’ understanding of fractions 

Siegler et al. (2013:15) identified a number of other factors that may contribute to learners’ 

understanding or misunderstanding of fractions. Firstly, learners’ knowledge of whole numbers 

“interferes” with their knowledge and understanding of fractions (Booth & Newton, 2012; Siegler et 

al., 2013; Vamvakoussi & Vosniadou, 2004). Secondly, the factors most commonly mentioned 

amongst researchers as influencing learners are the knowledge of concept (or conceptual knowledge), 

knowledge of procedures, factual knowledge and prior knowledge (Booth & Newton, 2012; Hecht, 

Close, & Santisi, 2003; Osana & Pitsolantis, 2011; Siegler et al., 2013; Vamvakoussi & Vasnaidou, 

2004; ). Lastly, Hecht et al. (2003: 278) mentioned a common factor overlooked by many. They 

maintained that misunderstanding of fractions is not only cognitive in nature but that “behaviour 

characteristics” also impact negatively on a learner’s understanding of mathematics and, more 

specifically, fractions (Hecht et al. 2003: 278). I acknowledge that most of these studies were based 

on learners in earlier grades and my study is on why learners in the FET phase misunderstand 

fractions, but I believe the root of their misconceptions of fractions stems from their childhood. Thus, 

these studies are worth reviewing.  

Hecht and his colleagues noted that “behavioural characteristics” also play a part in learning of 

fractions (Hecht et al., 2003: 278). Learners should be given ample time to practice fraction problems 
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inside the class but, more importantly, at home. This encourages an intrinsic motivation for learners 

to want to work on their own. Inside the classroom, a class exercise can be well facilitated by a teacher 

if it is done by the learner. Take-home exercises are based on work done in class to hone their fraction 

skills (Hecht et al., 2003: 279). Here, classroom management, discipline, and culture of learning 

(positive learning environment/atmosphere) are important factors for which teachers are responsible, 

to promote learning. Teachers should make it easier for the learner to want to learn. 

One of the factors mentioned by Siegler et al. (2003:15) concerning why learners have difficulty 

in understanding fractions is that learners make the “erroneous assumption that all properties of whole 

numbers are properties of all rational numbers” (Siegler et al., 2003: 15). Booth and Newton (2012: 

248) confirmed this by stating that “children relate fractions to their knowledge of whole numbers”. 

They go on to say that prior knowledge (such as of  whole numbers) can in some cases “interfere” 

with learners’ understanding of fractions (Booth & Newton, 2012: 249). Similarly, Vamvakoussi and 

Vosniadou (2004:456) posited that “prior knowledge of natural numbers stands in the way of 

understanding rational numbers.” An example given by Vamvakoussi and Vosniadou to substantiate 

their claim is the idea that “the more digits a number has makes it bigger” and “multiplication always 

makes bigger” (2004: 456). 

Obviously, both of these contentions are untrue because the more digits a decimal has, the 

smaller the number becomes and multiplying with a fraction (or scale factor) can create smaller 

quantities. The latter will be discussed in more depth later in this chapter. It is important to note that 

prior knowledge about whole numbers is not the enemy. Learners will always draw on prior 

knowledge to try and make sense of new concepts, but it the teacher’s responsibility to facilitate and 

guide learners’ thoughts and, through their own MKT, to help clarify misconceptions. Knowledge 

types also play an important role in the learning of fractions. I have already discussed the role that 

prior knowledge plays in the learning of fractions. The other knowledge type is known as factional 

knowledge. 

Factional knowledge is also referred to as “simple arithmetic knowledge” by Hecht et al. (2003: 

278). Here, the learner will retrieve “memorised facts involving arithmetic relations amongst numbers 

(Hecht et al., 2003: 278). An example of this is the multiplication table. Learners can apply this 

arithmetic knowledge when multiplying with fractions, to name just one. The last two knowledge 

types are conceptual and procedural. 

Conceptual knowledge involves learners’ understanding pertaining to the principles involved in 

fractions. If one looks at the different constructs of fractions, one can say that a learner has conceptual 

knowledge when he/she has the “understandings concerning what rational quantities represent” 

(Hecht et al., 2003: 278). Fractions can take different meanings, depending on the scenario: part-
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whole, ratio (magnitude), operator, quotient or measure (Kieren, 1980). So, if learners have acquired 

the concept of 
3

4
 as a whole being divided into parts or the comparison of the number of boys to girls 

in a classroom, the ratio concept is being used (Osana & Pitsolantit, 2013: 30). Teachers should be 

careful not to overemphasise the part/whole construct in class as this also leads to learners’ difficulty 

in learning fractions (Siegler et al., 2013: 15). 

Procedural knowledge is the ability to recognise and use mathematical symbols correctly and the 

skill to “execute step-by-step action sequences to solve problems” (Osana & Pitsolantit, 2013: 30). 

An example given by Osana and Pitsolantis (2013:30) to explain procedural knowledge is the 

common way to find the equivalent fractions, that is, to multiply the numerator and the denominator 

by the same natural number. Factual knowledge is sometimes misused in applying procedural 

knowledge when solving problems. Learners confuse themselves by muddling fraction arithmetic 

procedures withsimple arithmetic knowledge. When calculating 
2

5
+

1

2
, many leaners will write down 

3

7
 and not 

9

10
. The same happens with 

1

2
÷

1

4
=

1

2
 instead of2, because they immediately access simple 

arithmetic knowledge (factual knowledge) instead of applying fraction arithmetic procedures (Siegler 

et al. 2013: 15).  

As can be seen, many factors other than MKT contribute to the learning and ultimate 

understanding of fractions. Before continuing with the different constructs fractions can take, a 

general idea of where fractions fit into the larger set of real numbers is needed. 

2.7 Fractions with respect to the set of real numbers. 

In mathematics, numbers can be classified and defined in many ways. Knowing these different 

definitions and classifications is useful when it comes to fractions. A fraction in itself has no physical 

meaning without proper classification and definition. It is important to know what numbers constitute 

a fraction. By doing this, we are one step closer in making sense of the different sub-constructs of 

fractions (part-whole, ratio, operator, quotient and measure). The diagram below shows how numbers 

can be classified; the discussion follows.  
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Figure 2: Classifying Numbers  

(Source: Dorr, 2010:2) 

Real numbers can briefly and simply be defined as all numbers on the number line. Within the 

real number set, we find natural, whole/counting numbers, integers (which includes positive whole 

numbers: 1, 2, 3…, zero: 0 and negative whole numbers: -1, -2, -3…) rational and irrational numbers. 

The rational number subset is of particular interest because, in the literature, these two words are used 

interchangeably. I, however, will throughout this thesis refer to “fraction” rather than “rational 

numbers” and in so doing, I am acknowledging that there are mathematical differences between the 

two, as I will explain later. Another term commonly associated with fractions is quotient.  

A quotient is the result of a division problem. If a whole numbers (integer) is divided into 

another, the result is referred to as the quotient (Note that the divisor cannot be equal to zero). For 

example, 
10

2
= 5, 

10

2
 is the division problem of two integers (10 and 2). The result, 5, is referred to as 

the quotient of 10 and 2. Therefore, one is able to write a fraction as the result of a division sum 

(quotient) of two whole numbers (integers), where the denominator is not equal to zero, as in 
3

5
 ,

1

4
 and 

so on. 

A fraction is defined as a number that expresses part of a whole as a quotient of integers (where 

the denominator is not zero). Another way to describe a fraction is as a division expression where 

both the dividend or numerator (top number) and the divisor or denominator (bottom number) are 

integers, and the divisor (denominator) is not zero. We prefer using the terms numerator and 

denominator instead of divisor and dividend as this often confuses learners. Fractions can be written 

in different ways. 

Proper, improper, mixed, equivalent, or complex fractions are all different forms that fractions 

can take. A fraction is proper when the value of the numerator is less than the value of the 

denominator, for example, 
1

2
. When the numerator is greater than the denominator (e.g.,

3

2
), the fraction 
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is called improper. A mixed fraction contains both whole numbers (positive or negative) and a proper 

fraction (e.g., 2
3

4
). These are all thought of as simple fractions as opposed to complex fractions. Two 

fractions are equivalent when the ratio of the numerator to the denominator is the same for both of 

them. Both 
2

5
 and 

8

20
 are equivalent because 

2×4

5×4
=

8

20
. There are infinite equivalent fractions because 

the ratio is preserved when multiplying the denominator and numerator with the same number (value). 

Complex fractions are also referred to as compound fractions because the numerator and denominator 

contain a fraction e.g. 

2

3
5

7

. 

The result of a division sum (where the denominator is not zero) of two integers will always be 

classified as a rational number, even if it results in a repeating or terminating decimal. In other words, 

any rational number can be written as a quotient of two integers. The first part of this definition 

describes any fraction. Every fraction is considered a rational number; however, not every rational 

number is a fraction.  

All integers are rational numbers because they can be written as the “answer of a division sum” 

(a quotient), for example, 4 =
20

5
, 1 =

5

5
, 0,75 =

3

4
 and 0, 2̅ =

2

9
. However, not all integers are 

fractions.  Although an integer may be written as a quotient, it is not a fraction. Our definition of a 

fraction states that it expresses part of a whole. An integer does not; it expresses the whole. A visual 

to help in understanding this is as follows: 

The rectangle below is divided into four equal parts. Each piece is a 
1

4
 (quarter) of the whole, 

written as 
1

4
. If one were to remove one piece, there will be 

3

4
 (three quarter) parts left. Therefore, each 

piece of the rectangle is a fraction. On the other hand, if one has all the pieces, it is one whole 

(
1

4
+

1

4
+

1

4
+

1

4
=

4

4
= 1).       

1

4
 

1

4
 

1

4
 

1

4
 

Similarly, 1 can be written as 
8

8
, but I still have all the pieces and not just some parts of the whole. 

1

8
 

1

8
 

1

8
 

1

8
 

1

8
 

1

8
 

1

8
 

1

8
 

In summary, fractions do not contain integers and rational numbers do. Therefore, fractions form 

a subcategory of rational numbers, but not all rational numbers are classified as fractions. 

2.8 Are fractions important? 
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Almost every learner asks the question “Are fractions important and why?” The answer is very 

simply “Yes!” Siegler et al. (2012) concluded that: “Secondary school pupils' mathematics 

performance could be substantially improved if children gained a better understanding of fractions”. 

Fields such as architecture, medicine, chemistry, engineering, or technology all involve precise and 

accurate calculations. This means that understanding of the different meanings of fractions, including 

computations with fractions, is critical. 

Learners experience fractions informally, for example, the sharing of sweets, dealing cards for a 

card game or when baking/cooking (using recipes). Even though learners are confronted with 

fractions in their everyday life, they only really experience abstract thinking when they are introduced 

to fractions in primary school. Basic arithmetic like addition, subtraction, multiplication and division 

of whole numbers is the main focus in lower grades to develop basic mathematics skills. In higher 

grades, fractions are found in topics such as algebra, geometry, probability, and trigonometry.  

Fractions appear widely within the school curriculum, ranging from primary to high school. It is 

thus essential for learners to have a good understanding of the meanings of fractions if they wish to 

achieve well in higher grades. The only way in which learners will gain a better understanding of 

fractions is if they are exposed to them though instruction. Consequently, it is necessary for teachers 

to develop their own understanding of the rich meanings associated with fractions before teaching 

them to learners. The problem, however, is that many teachers are uncomfortable when having to 

teach fractions. The main reason for this, research suggests, is because of teachers’ lack of 

understanding of the multifaceted and interrelated sub-constructs of fractions. This directly influences 

their view of fractions and the way they teach them to learners. Even though some teachers feel 

threatened by fractions, they need to acknowledge their importance in making sense of the concepts 

associated with rational numbers in high school (and beyond). The mathematics curriculum is 

permeated by the idea of part-whole or partitioning. Algebra, geometry, trigonometry and probability 

all require a thorough understanding of the function of fractions in mathematics. Misunderstanding 

fractions does not only lead to poor thinking skills but also affects learners’ understanding and 

performance in all other areas in mathematics. It is clear that teachers themselves should first gain a 

better understanding of the different meanings of fractions and how they can be interpreted before 

attempting to present them to learners.  
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CHAPTER 3: FRACTIONS IN THE SCHOOL CURRICULUM 

3.1 The different interpretations of fractions 

As discussed earlier, MKT is the mathematical knowledge of teachers and has an impact on 

classroom instruction. A broader MKT knowledge base ultimately leads to better content knowledge 

and the necessary skills to effectively transfer that knowledge to learners (Leung & Park, 2002). MKT 

also “positively predicts student gains in mathematics achievement” (Hill, Rowan, & Ball, 2005: 

399). One of the ways in which teachers can broaden their MKT is by studying the different 

interpretations (or sub-constructs) of fractions. The concept of fractions consists of five sub-

constructs, namely, part-whole, ratio, operator, quotient, and measure (Kieren, 1980). Associated 

with these sub-constructs are the computations (+, −,×, ÷).  

It has been well documented (Ross & Bruce, 2009: 714), and observed in my own experience as 

a mathematics teacher, that learners struggle with mathematics, especially when it comes to fractions. 

This is supported by Charalambous and Pitta-Pantazi (2007), who noted that “fractions are among 

the most complex mathematical concepts that children encounter” The notion of a fraction being a 

compound concept, consisting of five interlinked sub-constructs (part-whole, ratio, operator, quotient, 

and measure), is one of the main reasons why fractions are seen as being complex. Kieren (cited in 

Behr et al., 1983: 92) argued that if one wants a complete understanding of fractions, one must also 

understand the sub-constructs and how they are interlinked. A fraction should not be viewed as a 

single concept but should rather be seen in all its meanings or forms, for instance, its relationship 

between the part and the whole, as the answer of a division sum (quotient), as an operation performed 

on a quantity, as a ratio, or as a unit of measure. 

Kieren was the first to establish this notion of several interrelated sub-constructs, but originally 

he did not see part-whole as a distinct construct because he believed that the part-whole is the 

foundation of the other four (ratio, operator, quotient, and measure). Behr et al. (1983), however, 

“redefined” Kieren’s work by placing part-whole as a separate “fundamental construct” and coupled 

partitioning with it, claiming that these two “are basic to learning other sub-constructs” (Behr et al., 

1983: 99). Behr et al. (1983) went even further by “linking different interpretations of fractions to 

basic operations” (cited in Charalambous & Pitta-Pantazi, 2007: 295). They linked ratio to 

equivalence, stating that it is the “most natural” way to develop better understanding of the concept. 

The operator construct is viewed as helpful in developing understanding in multiplication of fractions. 

The measure construct is required to build proficiency in addition of fractions. Understanding all five 

sub-constructs is imperative in order to solve problems involving fractions. Below is a brief definition 

of each of the five sub-constructs: 
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Figure 3: The theoretical model linking the five sub-constructs of fractions to different 

operations of fraction and to problem solving 

(Source: Behr et al., 1983) 

3.1.1 Fractions as a relationship between the part and the whole 

The part-whole sub-construct of fractions is created when an object or a set of discrete objects 

are partitioned or divided into parts of equal size (Lamon, 1999; Marshall, 1993). This method is one 

of the most over-utilised in the school curriculum. For many leaners (and teachers), this is where it 

stops. The problem, though, is that part-whole and partitioning is supposed, by Kieren, to be the 

foundation to understanding the other sub-constructs. As defined here, the fraction represents an 

object cut into equal pieces and the numerator refers to how  parts of the partitioned unit there are, 

whereas the denominator refers to the size of the pieces (parts in which the unit is partitioned). The 

bigger the denominator, the smaller the parts one is cutting the object into, resulting in more pieces. 

Here, it is important that the learner understands the relationship and meaning of the bottom number 

(denominator or divisor) and the top number (numerator or dividend). If teachers give learners 

problems involving fractions as a part-whole relationship, they need to mention that learners should 

first ask themselves, "What is the whole (shape or set)?” and "What is the part (of the shape or set)?". 

The result of the relationship is called the quotient; for example, 
3

4
 shows that an object (whole unit) 

has been divided or cut into four equal parts and three of those parts are being considered. From this 

viewpoint, the numerator must be less than or equal to the denominator. Many models have been 

created to assist learners in the mastering of the part-whole sub-constructs.  
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Figure 4: Using a model to demonstrate part-whole understanding of fractions 

Note: When using a model to demonstrate part-whole understanding of fractions, we can say the rectangle is three-

quarters shaded because there are four equal-sized parts and three of them are shaded. In the fraction "three-quarters ", 

the three shaded parts are referred to as the numerator and four of these equal-sized parts make up the whole shape, 

referred to as the denominator. The equal-sized parts could be called "quarters" (Wong & Evans., 2008: 598). 

3.1.2 Fractions as ratios 

Behr et al. (1983:94) had this to say about fractions as ratios: 

Ratio is a relation that conveys the notion of relative magnitude. 

Therefore, it is more correctly considered as a comparative index rather 

than as a number. When two ratios are equal they are said to be in 

proportion to one another. A proportion is simply a statement equating 

two ratios. 

There might be some confusion between the differences between ratios, rates and proportions as 

they are dealt with at the same time in a single chapter at school. So, to clarify, if two quantities of 

the same unit are compared, it is called a ratio, whereas a rate is used to compare two quantities with 

different units. A proportion is composed of two equal ratios. Two quantities will be in proportion if 

the quantities are related in such a way that the size of one of the quantities affects the size of the 

other quantity. There is a direct proportion between two quantities if the both quantities increase or 

decrease at the same time in the same proportion. Two quantities are said to be in indirect proportion 

if when one quantity increases, the other decreases by the same proportion, or vice versa.  

A ratio can be written in three different ways. A ratio must always be reduced to its simplest 

form but can have more than two numbers. However, usually only two quantities are compared. For 

example, if we want to compare the number 4 to the number 7, we would write it one of the following 

ways: 

i. 4 to 7 

ii. 4:7 

iii. 4

7
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Below is an example of an application (problem-solving) on rate, ratios, and proportion from the 

Curriculum and Assessment Policy Statement for Grade 9: 

 

Figure 5: Rate, ratios and proportion 

(Source: DBE, 2011: 120) 

Fractions as ratios are regarded as “necessary for the development of the idea of fraction 

equivalence” (Marshell, 1993, cited in Charalambous & Pitta-Pantazi, 2007: 297). 

3.1.3 Fractions as operators 

In using fractions as operators, the rational numbers are “regarded as functions applied to some 

number, object, or set” (Behr et al., 1983; Marshall, 1993). Here a fraction multiplies a quantity and 

either increases it or decreases it. Behr et al. (1983: 96) referred to this as a “stretcher/shrinker”. A 

function is applied to a quantity (number, object, or set) when trying to find a fraction of it. A new 

value is formed when the operation shrinks (reduces) or stretches (enlarges) the quantity (number, 

object or set). This operation is a combination of multiplication and division. For example, finding 
3

4
 

of a number, on a set of things, on a segment, or on a geometrical picture, the operation will be to 

divide by four and then to multiply by three, or to multiply by three and divide by four. The function 

transforms the discrete set into another set with fewer or more elements. Calculating  
3

4
 𝑜𝑓 16 (sweets, 

centimetres, books, rands) can be done visually or numerically. Numerically, one would multiply 16 
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by 3 and then divide by 4: (16 × 3) ÷ 4 = 12 (sweets, centimetres, books, rands). Alternatively, one 

can also calculate this by means of a visual representation: 

 

Figure 6: Fractions as operators applied to a set  

(Source: Charalambous & Pitta-Pantazi: 2007) 
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The fraction-as-operator sub-construct is thought of as a function that dilates (transforms) a 

geometric shape to another that is similar. When a rectangle, with dimensions 2 x 6 units, is dilated 

by a scale factor of 
1

2
 , it “shrinks” the object. On the other hand, when the same shape is dilated by 

a scale factor of 
3

2
  , it “stretches”. 

 

Figure 7: Fractions as operators applied to a geometrical shape. 

(Source: Charalambous & Pitta-Pantazi, 2007) 

The line segment below has a length of 10 units. This line segment is considered as a continuous 

object on which an operation will be performed. If one takes 
2

5
 of the line, it is stretched to twice its 

original length. It is then shrunk by a scale factor of 5. Each piece is now equal to 4 units. 

 

Figure 8: Fractions as operators applied to a line segment 

(Source: Charalambous & Pitta-Pantazi: 2007) 
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When interpreting fractions as operators, it is useful to study them in the context of multiplication 

as ‘operation and fraction equivalence’. Fractions are used in this way in everyday life, for instance, 

in calculating the discount on merchandise, doubling a cake recipe to serve more people, and in 

replicas of scaled models of airplanes, boats, buildings, and so on. 

3.1.4 Fractions as quotients 

Fractions as the result of division are called the quotients. The quotient sub-constructs hold the 

idea that any fraction is the answer of a division sum. For example, 
𝑥

𝑦
 is the “fair share” of each person 

when a pizza, 𝑥, is shared amongst 𝑦 people, where both 𝑥 and 𝑦 are whole numbers (Streefland, 

1993). The fraction 
𝑥

𝑦
 can also be considered as 𝑥 ÷ 𝑦. This interpretation also comes from a 

partitioning situation. In the quotient sub-constructs, unlike part-whole/partitioning, the numerator 

can be smaller than, bigger than, or equal to the denominator. Also the answer (quotient) after equal 

sharing may be smaller than, bigger than, or equal to the whole (unit). The reason for this is because 

two different measured spaces are considered, for instance, pizzas and people, and therefore the 

outcome obtained “refers to a numerical value and not the parts obtained by fair-sharing” 

(Charalambous & Pitta-Pantazi, 2007: 299). To place this idea in a South African context, I adapted 

the model used by Charalambous and Pitta-Pantazi by using South African currency rather than the 

usual pizza model. If one has R4,00 and wants to share it amongst 5 people, one could represent this 

mathematically by 4 ÷ 5 or 
4

5
 .Better yet is to represent this by means of a model: 

 

Figure 9: Model to demonstrate division of disproportionate items 
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Note: Subdivide each R1 coin into five equal parts. Then share each set equally amongst the five people. Each person 

will get four 20c pieces; therefore, each person will receive 80c when R4 is divided between five people. Similarly, each 

R1 coin can be subdivided into 10 equal parts. Each person will then get eight 10c pieces, making 80c. The second 

example illustrates how equivalence is represented in this model by sub-constructs (Adapted from Charalambous & Pitta-

Pantazi, 2007). 

Making use of fractions as quotients involves a certain level of complexity. A learner must be 

able to see the division results in establishing equivalence as in this case, 4 ÷ 5 =
4

5
=

400

500
=

80

100
=

0,8, or 80𝑐, in our case. However, as Behr et al., (1983: 95) pointed out, “This level of sophistication 

generally requires intellectual structures not available to middle school children because it relates 

rational numbers to abstract algebraic systems”. 

3.1.5 Fractions as measurement 

In the measurement sub-constructs, a fraction is thought of as a number, carrying with it a 

quantitative nature, that is, how big the fraction is in relation to other numbers on the number line. In 

using fractions as a measure, a length model is used. Here, we can compare number lines and physical 

materials on the basis of length. Hart (1981) observed that fractions as a measure can be used to 

extend the whole number system. If a standard object or unit of measure is subdivided into smaller 

equal parts, the parts are considered to be fractional units: “Geometric regions, sets of discrete objects, 

and the number line are the models most commonly used to represent fractions” (Behr, 1983: 93). 

When interpreting fractions as measure, or showing their quantitative nature, number lines are used 

as a mathematical model. Many learners have difficulty in finding fractions on number lines. The 

reasons for this may be because of a lack in understanding fractions as part-whole constructs and that 

learners are also unable to place fractions in the correct order of size to compare them. A number line 

is used by many learners as a tool to help them to visualise the size of a fraction, which also aids them 

in the representation and comparison of fractions. Fraction strips can help to develop the idea of 

equivalent fractions, while addition and subtraction of fractions can be visually represented by means 

of number lines.  

There are two distinct skills learners should acquire when working with fractions using a number 

line. The first is filling in blank, prepositioned boxes along a number line. By doing this, learners get 

a sense of which fractions are smaller or bigger than others and they can also illustrate how a number 

line can be used to represent fractions of distance or length. The second is writing fractions in on a 

blank number line. This involves being able to measure (length) and to decide where to place a 

particular fraction in proportion to the length or distance marked. 
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Figure 10: Adding fractions to subdivide each area of a geometric shape in equal parts 

Note: The purpose is to write down how many one has (numerator) of that particular size (denominator). (Charalambous 

& Pitta-Pantazi, 2007) 

According to Lamon (1999), while the fraction symbol is lacking in physical meaning and 

context, it has many interpretations, including part/whole, quotient, measure, ratio, and operator. The 

different interpretations should not be seen independently. The different interpretations help in seeing 

fractions from different perspectives, in making sense of them and in gaining a better understanding 

of the role of fractions in mathematics and in real-life situations (Kieren, 1980). 

In this study, I have considered fractions as numbers, being a subset of rational numbers. 

However the terms rational numbers and fractions are used interchangeably in the literature. I refer 

to fraction rather than rational number for the simple reason that all fractions are rational numbers 

but not all rational numbers are fractions. Misunderstanding fractions does not only lead to poor 

thinking skills, but also affects learners’ understanding in algebra, geometry, trigonometry and 

probability. Commenting on the results of a research study, Siegler et al., (2012) noted that “high 

school students’ knowledge of fractions did correlate very strongly with their overall mathematics 

achievement.”. A contributing factor to this, contradictory to what the South African curriculum for 

mathematics has envisaged for all learners, is that authorities look at the mass production of learners 

passing mathematics in matric without looking at the quality of their passes. Finally, learners’ 

difficulty with fractions is also based on the notion proposed by Kieren (1980) of several interrelated 

sub-constructs. The way in which fractions can be interpreted is summarised by Clarke, Roche, and 

Mitchell (2007:208) in the following way: 

Stellenbosch University  http://scholar.sun.ac.za



31 

 

 The part-whole interpretation depends on the ability to partition either a continuous quantity 

(including area, length, and volume models) or a set of discrete objects into equal sized subparts 

or sets. 

 A fraction can represent a measure of a quantity relative to one unit of that quantity. 

 A fraction (
𝑎

𝑏
) may also represent the operation of division or the result of a division, such that 

3 ÷ 5 =  
3

5
. 

 A fraction can be used as an operator to shrink and stretch a number such as 
3

4
 ×  12 =  9 or 

5

4
 ×

 8 =  10. The misconception that multiplication always ‘makes bigger’ and division always 

‘makes smaller’ is common. 

 Fractions can be used as a method of comparing the sizes of two sets or two measurements such 

as “the number of girls in the class is 3: 5 or 
𝟑

𝟓
 the number of boys”, that is,, a ratio. 

3.2 Examples from the high school curriculum 

3.2.1 Fractions in algebra 

Algebra is one of the very first concepts a child learns in high school. Every other topic that 

follows has its roots in algebra. If learners can grasp algebraic concepts, and more so the role of 

fractions, their understanding of fractions in geometric similarity, probability and trigonometry will 

be improved. For this reason, I chose to start this chapter with fractions in algebra. 

Fractions and algebra are two topics in school mathematics that are considered critical to the 

curriculum but difficult to learn (National Council of Teachers of Mathematics, 2000). Teachers know 

well that learners have difficulties when working with fractions and basic algebra. Empson and Levi 

(2010) blamed this poor performance in algebra on learners’ misunderstanding of fractions. Wu 

(2001:1) backed this claim by stating that “the proper study of fractions provides a ramp that leads 

students gently from arithmetic to algebra.” He went on to say that if there is a lack in understanding 

fraction concepts, “the ramp will collapse” (Wu, 2001: 1) and learning of algebra will suffer. In 

algebra, arithmetic is generalised and goes beyond the specific case, where, for example, 5 + 2 = 7, 

to equations that are true for all numbers all the time. Nevertheless, “Elementary algebra is built on a 

foundation of fundamental arithmetic concepts” (Brown & Quinn, 2007: 8). Therefore, if fraction 

algorithms are loosely defined and the overreliance on shortcuts and a list of step-by-step ‘how to’s’ 

are forced on learners without real understanding, it will ultimately lead to vague algebraic concepts 

and procedures that will hinder performance in algebra (Brown & Quinn, 2007: 8). 

Much of the content in basic algebra relies on the understanding of fractional concepts. For 

instance, combining like terms is a concept used while learning addition and subtraction of fractions. 
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Important to note at this stage is that it is very difficult for a first-time algebra learner to grasp the 

fact that variables are ‘placeholders’ for numbers in mathematics. At first glance, this notation looks 

foreign and, psychologically, the connection is still letters-to-words and not letters-to-variables 

(placeholders). Only when this bridge is built, can one work with algebra. In an algebraic expressions, 

like terms are defined as terms that contain the same variables raised to the same power. Only the 

coefficients of like terms are different. Only if those conditions are met, is one allowed to simplify 

the expression by adding them. If we look at the expression 3𝑥 + 4𝑥, the answer is simply 7𝑥. This 

should not be new, because in primary school we learnt that if I have three lollypops and I get another 

four lollypops, I have seven lollypops in total. The connections with an expression like that and 
3

10
+

2

5
 which equals to 

7

10
 is this: When adding fractions, the concept of “equal parts” is used. As in the 

algebraic expression above, the learner must keep in mind that the “𝑥’s” are the “same”. Perhaps the 

figure below will help to demonstrate my point better. 

 

Figure 11: Adding the elements that are alike. 

Note: In the case of the fractions, one must first make the parts the same size (2/5=4/10) before adding. In total, there are 

seven pieces, each the size of one-tenth. (Empson & Levi, 2010) 

Brown and Quinn (2007: 9) claimed that “multiplying an equation by a constant to clear the 

denominators employs understanding of fraction concepts” and that “proportional equations use 

constructs that have their basis in equivalent fractions”. Solving a proportion means that one part of 

one of the fractions is missing, and one needs to solve for that missing value. Wu (2001: 5) referred 

to this as the “cross-multiplication algorithm” and gave the example of 
𝑎

𝑏
=

𝑐

𝑑
↔ 𝑎𝑑 = 𝑏𝑐. The benefit 

of teaching fractions correctly, Wu (2009:18) claimed, is that learners will learn to prove this theorem 

and learn about a property true for all fractions. By carelessly cross multiplying, the process of 
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reasoning is concealed (Thomas, 2010: 18). Instead, the learner who uses fraction reasoning to move 

from 

𝑎

𝑏
=

𝑐

𝑑
 

(where 𝑎, 𝑏, 𝑐, 𝑑 are whole numbers) 

to conclude that 

𝑎𝑑 = 𝑏𝑐 

is applying simple reasoning: By equivalence of fractions, we have 

𝑎𝑑

𝑏𝑑
=

𝑏𝑐

𝑏𝑑
 

and because the denominators are the same, 𝑎𝑑 = 𝑏𝑐. 

Wu (2001: 5) illustrates a good application of this algorithm by proving (in proportional 

equations): 

𝑎𝑑

𝑏𝑑
=

𝑏𝑐

𝑏𝑑
  is the same as 

𝑎

𝑎+𝑏
=

𝑐

𝑐+𝑑
 

Problem: If the ratio of boys to girls in an assembly of 224 students is 3:4, how many are boys 

and how many are girls? Given data that the ratio of boys to girls is 3:4 and if B is used to denote the 

number of boys and G to denote the number of girls in the audience, then: 

𝐵

𝐺
=

3

4
 

From 
𝑎

𝑎+𝑏
=

𝑐

𝑐+𝑑
 we know that 

𝐵

𝐵+𝐺
=

3

3+4
. We know that the total of boys and girls is 224 (𝐵 +

𝐺 = 224), and 3 + 4 = 7. Therefore: 

𝐵

224
=

3

7
 

By either multiplying the equation by a constant to clear the denominators or by the cross-

multiplication algorithm, 𝐵 = 96 and  G = 128 (𝐺 = 224 − 𝐵). Providing the proof of a statement 

such as 
𝑎

𝑎+𝑏
=

𝑐

𝑐+𝑑
 is the kind of lesson that should be a regular part of the teaching of fractions. It is 

not just a useful but also exposes the learner to symbolic computation (Wu, 2001: 6).  

A large portion of high school algebra deals with the solving of equations. This requires the 

ability to confidently compute with fractions (Wu, 2008: 4). Solving systems of linear equations is 

dependent on the ability to form equivalent equations and manipulate fractions, which often are part 

of the solution (Wu, 2007: 9). For example, to solve the equation (assuming that there is a solution 

for x that will satisfy the equation): 

8

11
𝑥 − 2 =

1

2
𝑥 + 68 
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So by adding −
1

2
𝑥 and 2 to both sides, we isolate the 𝑥 terms on the left and the constants on 

the right and find that 

8

11
𝑥 −

1

2
𝑥 = 68 + 2 

By applying the distributive law that states that one arrives at the same answer when one 

multiplies a number by a group of numbers added together as one does when doing each 

multiplication separately, that is, 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐, so to apply the above example, we are left 

with 

(
8

11
−

1

2
) 𝑥 = 70 

5

22
𝑥 = 70 

Multiplying both sides by 
22

5
 gives 

𝑥 =
22

5
× 70 

𝑥 = 308 

(Wu, 2009: 43) 

By solving this equation step-by-step, as above, we have shown, successfully, that learners need 

to be comfortable with the arithmetic of positive and negative fractions in solving equations. 

Therefore, without the ability to compute fluently with fractions, learners have no hope of learning 

algebra (Wu, 2008: 4). 

Finally, the entire study of linear equations is dependent on the slope of a line, a fraction 

representing the rate of change (Brown & Quinn, 2007: 9). The set of all solutions is a line. The set 

of all solutions of a graph or function is an ordered pair that satisfies the function. The solution set 

points of an equation is equivalent to the graph of an equation. In most cases, in school classes, the 

reason for this is never explained. The first reason is because teachers fail to define the gradient or 

slope of a line correctly. The gradient or slope (denoted as 𝑚) of a straight line is the rate at which 

the line rises (or falls) vertically for every unit across to the right. That is: 

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  
𝑅𝑖𝑠𝑒

𝑅𝑢𝑛
 

𝑚 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑦

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥
 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
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Given that the line is defined as 𝑓(𝑥) = 𝑚𝑥 + 𝑐, let 𝑃(𝑝𝑥; 𝑝𝑦), 𝑄(𝑞𝑥; 𝑞𝑦), be distinct points on 

the line.  

 

Figure 12: The slope of a line as linear equations and similarity concepts. 

(Source: Wu, 2008) 

The slope of the line is the defined as 

𝑝𝑦 − 𝑞𝑦

𝑝𝑥 − 𝑞𝑥
(=

𝑃𝑅

𝑄𝑅
) 

Likewise, if we were to place points 𝐴(𝑎𝑥; 𝑎𝑦), 𝐵(𝑏𝑥; 𝑏𝑦) anywhere on the line (seeing that 

lines consists of an infinite number of points), we now find that the slope can also be defined as 

𝑎𝑦 − 𝑏𝑦

𝑎𝑥 − 𝑏𝑥
(=

𝐴𝐶

𝐵𝐶
) 

By proving 
𝑝𝑦−𝑞𝑦

𝑝𝑥−𝑞𝑥
=

𝑎𝑦−𝑏𝑦

𝑎𝑥−𝑏𝑥
 we conclude that 

𝑃𝑅

𝑄𝑅
=

𝐴𝐶

𝐵𝐶
. The reason for this is because 

∆𝑃𝑄𝑅|||∆𝐴𝐵𝐶. To prove this requires similarity concepts, which are seldom taught properly in lower 

grades. Learners are simply told to memorise all the different “varieties” of the equation of a straight 

line: two-point form [(𝑦 − 𝑦1) =
𝑦2−𝑦1

𝑥2−𝑥1
(𝑥 − 𝑥1)], point-slope form [(𝑦 − 𝑦1) = 𝑚(𝑥 − 𝑥1)], slope 

intercept form [𝑦 = 𝑚𝑥 + 𝑐] and the standard form. Learners do not know that moving these points 

does not change the slope. This rote learning of topics in algebra has serious consequences in 

mathematics later on in its development. If we just look at the proof that 
𝑝𝑦−𝑞𝑦

𝑝𝑥−𝑞𝑥
=

𝑎𝑦−𝑏𝑦

𝑎𝑥−𝑏𝑥
 𝑜𝑟 

𝑃𝑅

𝑄𝑅
=

𝐴𝐶

𝐵𝐶
 

we can calculate the equation of any line, provided  that a minimum of either two points that satisfy 

the function are given or the gradient is given with one other point that satisfies the function. Study 

the sketch below. For convenience, I chose to use 𝐵(0; 5) and 𝑄(−10; 0) to be intercepts of the line 

𝑔(𝑥) = 𝑚𝑥 + 𝑐 and  𝐵 = 𝑃. 𝐴(𝑥; 𝑦) is any random point on the graph. 
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Figure 13: Using co-ordinates to prove similarity. 

(Source: Wu, 2008) 

Now, 

𝑎𝑦−𝑏𝑦

𝑎𝑥−𝑏𝑥
=

𝑦−5

𝑥−0
=

𝑦−5

𝑥
=

𝐴𝐶

𝐵𝐶
  and   

𝑝𝑦−𝑞𝑦

𝑝𝑥−𝑞𝑥
=

5−0

0−(−10)
=

5

10
=

𝑃𝑅

𝑄𝑅
 

Remembering that 

𝑃𝑅

𝑄𝑅
=

𝐴𝐶

𝐵𝐶
 

we find  

5

10
=

𝑦 − 5

𝑥
 

5𝑥 = 10𝑦 − 50 

−10𝑦 = −5𝑥 − 50 

𝑦 =
1

2
𝑥 + 5 

Alternatively,  if given that the gradient is equal to 
1

2
 and only one point is given, say 𝐵(0; 5), we can 

still plot any random point 𝐴(𝑥; 𝑦) and solve the equation as follows: 

1

2
=

𝑦 − 5

𝑥 − 0
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1

2
=

𝑦 − 5

𝑥
 

𝑥 = 2𝑦 − 10 

−2𝑦 = −𝑥 − 10 

𝑦 =
1

2
𝑥 − 5 

As can be seen, in this case, the y-intercept was given and I used it as a point, to illustrate that this 

method will work for any given point that will satisfy the function. 

As is apparent, fractions play a very large role in the developing of concepts relating to algebra. 

Unfortunately, because many teachers take shortcuts when teaching fraction, generally because of 

contextual factors in our schools, learners learn major topics by rote. As Wu (2008:6) warned, “If we 

want learners to achieve in algebra, we cannot allow fractions to presented, as it is commonly done, 

as a collection of factoids held together only by hands-on activities and manipulatives” (Wu, 2008: 

6). 

3.2.2 Fractions in similarity. 

If two quantities are compared, the result is a ratio. A ratio is the comparison of two numbers 

using division. The ratio of x to y can be written as a quotient 
𝑥

𝑦
. Ratios are usually expressed in their 

simplest form. A statement that two ratios are equal is called a proportion. A proportion can be written 

as 
𝑎

𝑏
=

𝑐

𝑑
. When two objects have the same shape, then the two objects are said to be geometrically 

similar and the ratio of any two linear dimensions of one object is similar for any geometrically similar 

objects. The ratio of similarity between any two similar figures is the ratio of any pair of 

corresponding sides. Simply stated, once it is determined that two figures are similar; all of their pairs 

of corresponding sides have the same ratio. For example: 
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This will be true for irregular shapes to as long as the corresponding sides have the same ratio, 

for instance, as shown in Figure 14 below: 

 

Figure 14: Similarity in geometric shapes 

(Source: Master Maths, 2012) 

The intercept theorem is closely related to similarity. In fact, it is equivalent to the concept of 

similar triangles, that is, it can be used to prove the properties of similar triangles, and similar triangles 

can be used to prove the intercept theorem. By matching identical angles, one can always place two 

similar triangles in one another, so that one gets the configuration in which the intercepts applies and 

vice versa the intercept theorem configuration always contains two similar triangles. The intercept 

theorem is important in high school geometry when dealing with the ratios of various line segments, 

which are created if two intersecting lines are intercepted by a pair of parallels. It is equivalent to the 

theorem about ratios in similar triangles. Traditionally, it is attributed to Greek mathematician Thales, 

which is the reason why it is named the Theorem of Thales in some languages. 

 

 

Figure 15: Midpoint Theorem 
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(Source: Master Maths, 2012) 

Learners are frequently confronted with the following (shown above). Given is ∆𝐴𝐵𝐶, such that 

PQ is parallel to BC. Two triangles are created, ∆𝐴𝐵𝐶 and ∆𝐴𝑃𝑄. We can study the two triangles 

separately or we can apply the Intercept Theorem (Theorem of Thales). 

Firstly, if we consider the two triangles separately, ∆𝐴𝐵𝐶 and ∆𝐴𝑃𝑄  will be similar. One way 

learners can solve this problem is to separate the two triangles and use proportions to solve for sides 

that are unknown. Using this method is beneficial because it can be applied to all of the three sides 

of the triangle. Learners should take caution when determining the length of the sides of the larger 

triangle as the original sketch may label it as two separate segments. Learners will have to add the 

two segments to get the total length. 

A second way of solving this is to use the Intercept Theorem (Theorem of Thales) to set up 

proportions, but there is the limitation that this cannot be used to find the lengths of the parallel 

segments. In an ideal situation learners must be able to identify the appropriate method to fit the 

situation given, and apply it. The will only be possible if learners gain enough experience with these 

types of problem. It is best to have learners use the ‘separate’ method at first, and then after they have 

worked a few exercises on their own, they can use the Intercept Theorem as a shortcut in the 

appropriate situations. Some applications for similarity are used in architecture and in photography.  

Example in architecture: 

A souvenir model of the pyramid over the entrance of the Louvre in Paris has faces in the shape 

of a triangle. Two sides are each 10cm long and the base is 13cm long. On the actual pyramid, each 

triangular face has two sides that are each 27m long. To calculate the length of the base of the actual 

pyramid, a diagram can help to visualise the problem. 

 

 

 

 

𝑆𝑖𝑑𝑒 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

𝑆𝑖𝑑𝑒 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑟𝑖𝑎𝑛𝑔𝑙𝑒
=

𝐵𝑎𝑠𝑒 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

𝐵𝑎𝑠𝑖𝑒 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒
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10𝑐𝑚

27𝑚
=

13𝑐𝑚

𝑥
 

10𝑥 = (2700𝑐𝑚)(13𝑐𝑚) 

10𝑥 = 35100𝑐𝑚 

𝑥 = 3510𝑐𝑚 

𝑥 = 35,1𝑚 

Figure 16: Similarity in real life 

(Source: Holt, Rinehart & Winston, 2013)  

In photography, to resize a 10𝑐𝑚 ×  13𝑐𝑚 long photograph so that it will fit into a space of 

5𝑐𝑚, the new size can be calculated as follows: 

13𝑐𝑚

𝑥
=

10𝑐𝑚

5𝑐𝑚
 

10𝑥 = (5𝑐𝑚)(13𝑐𝑚) 

10𝑥 = 65𝑐𝑚 

𝑥 = 6,5𝑐𝑚 

This relationship will also be true for the perimeter and area of a shape. This brings us back to 

solving of equations, as explained in the section above, which has its own challenges, as previously 

mentioned.  

3.2.3 Fractions in probability. 

Probability refers to how likely something is to happen. A common term is chance. Probability 

can be expressed in fractions, decimals or percentages, or on a probability scale. Writing a probability 

as a fraction, decimal or a percentage does not change it. Percentages and decimals are just other ways 

to write fractions. A probability scale places the chance of an event happening alongside a scale of 

between 0 (impossible) and 1 (certain). If something has a low probability, it is unlikely to happen. 

If something has a high probability, it is likely to happen. 

Teaching probability and statistics is important because of the popularity of the various 

applications of these subjects in our daily lives and is regarded as a particularly difficult concept as, 

unlike most areas of school mathematics, it deals with uncertainty. Using a fraction is the easiest way 

to express probability and this can be done by using the following formula: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
 

𝑃(𝐸) =
𝑛(𝐸)

𝑛(𝑆)
 

Some examples would be the following: 
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(1) A bag contains 4 red balls, 7 blue balls, and 5 green balls. Write down the probability of 

picking a green ball from the bag. The number of successful outcomes is 5 (as you are taking 

a green ball), the total number of outcomes 4 + 7 + 5 = 16 (as this is the total number of balls 

in the bag). Therefore, the probability of picking a green ball is 
5

16
 or 0, 3125 or 31, 25%. 

(2) Jason rolls a standard, six-sided die and Rachel spins a spinner with three equal sections. 

What is the probability of rolling an even number (E) and spinning a B?  

For the die: 𝑃(𝐸) =
3

6
 

For the spinner: 𝑃(𝐵) =
1

3
 

𝑃(𝐸 ∩ 𝐵) = 𝑃(𝐸) × 𝑃(𝐵) 

=
3

6
×

1

3
 

=
3

18
 

This might be a bit confusing, so needs further analysis before moving on. This problem can be 

represented by either a table or a tree diagram.  

Spinner 
Even number on die 

1 2 3 4 5 6 

A A, 1 A, 2 A, 3 A, 4 A, 5 A, 6 

B B, 1 B, 2 B, 3 B, 4 B, 5 B, 6 

C B, 1 C, 2 C, 3 C, 4 C, 5 C, 6 

Using a tree diagram: 
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Figure 17: Probability presented in table or a tree diagram  

(Source: McGraw-Hill Ryerson, 2013)  

From the above, one can see that there are 18 possible outcomes, but only three of them “fit” the 

requirement of being even and B. Therefore the probability of rolling a B and an even number is 

3

18
 or 0,16̅ or 16, 66̅̅̅̅ %. 

Probability and data handling were characterised by Shaughnessy, Garfield, and Greer (1996) as 

“systematic study of uncertainty”. They went on to say that it is “exactly this uncertainty which makes 

the study of statistics difficult but also important as it encourages the use of different kinds of 

reasoning and tools which are essential in mathematical modelling”. Garfield and Ahlgren (1988: 47) 

identified poor learner understanding of ratios as one of the main underlying causes of poor learner 

performance when dealing with probability in schools. 

3.2.4 Fractions in trigonometry. 

Trigonometry is an important topic in the high school curriculum. Trigonometry developed from 

a need to calculate distances and to measure angles, especially in map making, surveying, and 

architecture, amongst others. Today, trigonometry is an indispensable tool in many applied problems 

in both science and technology. Trigonometry is one of the earliest mathematical topics that link 
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algebraic, geometric, and graphical reasoning and therefore can serve as an important forerunner in 

the understanding of calculus (Weber, 2005: 1). Because trigonometry requires learners to relate 

pictures of triangles to numerical relationships and work with ratios, learning trigonometry can be 

difficult (Blackett & Tall, 1991: 1).  

The word trigonometry is derived from the Greek words trigono, which means “triangle,” and 

metron, which means “measurement”. Thus, trigonometry is the “measurement of triangles”. 

Trigonometry is normally taught using five key representations. The first three are the right-angled 

triangle, the fourth is the unit circle, and the fifth is function representation. The unit circle combines 

with the function form to give the graphic representation. Lastly, the vector representation is a 

combination of the first three. I will briefly discuss the first three. 

The definition of trigonometric functions in a right-angled triangle is based on properties of 

similar triangles. Earlier, we saw that corresponding sides of similar triangles are proportional. 

Consequently, in two similar triangles, the ratio of one side to another in one triangle will be the same 

as the ratio of the corresponding sides in the second triangle. According to Hart (cited in Blackett & 

Tall, 1991: 1), “Ratios prove to be extremely difficult for children to comprehend”. This gives us 

some insight into why learners have difficulties in understanding trigonometry. Another reason is 

given by Weber (2005: 1), who claimed that “Trigonometric functions are operations that cannot be 

expressed as algebraic formulae involving arithmetical procedures, and students have trouble 

reasoning about such operations and viewing these operations as functions”. 

In a right-angled triangle, the hypotenuse is opposite the right angle and is the longest side. The 

other two sides are the opposite and the adjacent sides to their position from the acute angle θ in the 

triangle. The six trigonometric functions are sine (sin), cosine (cos), tangent (tan) and their inverses 

cosecant (cosec), secant (sec) and cotangent (cot), respectively. The sin and cos are the two most 

prominent trigonometric functions. All other trigonometric functions can be expressed in terms of sin 

and cos. In fact, sin and cos can be expressed in terms of each other. In the trigonometry of a right-

angled triangle, sin and cos are the two ratios that involve the hypotenuse, whereas the tan involves 

the opposite and adjacent sides of the acute angle θ in the triangle.  
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Figure 18: Trigonometric ratios 

(Source: Fourie, 2012).  

Consider the following sketch. Three right-angled triangles are drawn to coincide at vertex A. 

Since each triangle contains a right angle and angle A is common, the third angles (C, E, and G) will 

all be the same size (interior angles of a triangle). When three angles of a triangle are equal, the 

triangles are similar. The corresponding sides of similar triangles are in proportion Therefore 

𝐶𝐵

𝐵𝐴
=

𝐸𝐷

𝐷𝐴
=

𝐺𝐹

𝐹𝐴
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Figure 19: Similar triangles 

(Source: Phillips, Basson & Botha, 2009a)  

Many learners have difficulty rotating shapes in their minds or seeing individual polygons when 

they are overlapping. It is helpful to draw the triangles separately and orient them in the same 

direction. Blackett and Tall (1991: 1) believed that a child should conceptualise what happens as the 

right-angled triangle is enlarged (all three sides by the same scale factor) and the size of the angles 

remain the same. 

 

Figure 20: Similar triangles web-separated 

(Source: Phillips, Basson & Botha, 2009a) 
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Right-angled triangles are very useful for exploring the trigonometric functions, but they have a 

very serious limitation: only acute angles can be put into right-angled triangles, but there are many 

angles that are not acute. To be able to work with the trigonometric functions of any angle, 

trigonometric functions can be defined by using the unit circle. The unit circle is a circle with its 

centre at the origin and a radius of 1. Being so simple, it is an ideal tool in learning and talking about 

lengths and angles. Its equation is 𝑥2 + 𝑦2 = 1. Trigonometric functions are defined in terms of co-

ordinates of points on the unit circle. The point 𝐴(1, 0) is called the initial point. 𝑃(𝑥, 𝑦) is called the 

terminal point and is the point on the unit circle as it moves in an anti-clockwise direction from the 

positive x-axis. As a position point moves around the unit circle, one needs to visualise a triangle 

moving along with it. If 𝑃(𝑥; 𝑦) is not on one of the axes, a line is dropped from 𝑃(𝑥; 𝑦), 

perpendicular to the x-axis, to form a right-angled triangle with the hypotenuse of the unit radius OP 

(1unit). The triangle thus formed is called a reference triangle for θ. The unit circle is an easy way to 

show the trigonometric ratios for sin, cos and tan at 30°, 45°, 60° and 90° (aka special triangles). The 

unit circle is also an easy way to show what happens to the trigonometric ratios when the reference 

angle is obtuse (from where the ‘reduction formulae’ are derived). When working with the unit circle, 

it is important to note that learners do not recognise that 
1

√2
=

√2

2
. Rationalising the denominators is 

only done in Grade 12 and therefore Grade 10 and Grade 11 learners lack this knowledge. This can 

be a stumbling block in the understanding of trigonometric functions, seeing that calculators are 

overused in classrooms and that they automatically rationalise the denominator for the learners. 

Learners will think they have made a mistake, when in fact they have not.  

 

 

Figure 21: The unit circle 

(Source: Heal, 2010) 

The trigonometric functions can be extended beyond the unit circle and indeed to every point in 

the plane except the origin. Here 𝑟 = √𝑥2 + 𝑦2 is the distance to the origin and will always be 
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positive. The trigonometric functions are defined in terms of 𝑥, 𝑦 and 𝑟. This is called the function 

representation and is notated as shown below: 

 

 

Figure 22: Trigonometric ratios on a Cartesian plane 

(Source: Phillips, Basson & Botha, 2009b). 

Some other problems that learners experience with the abovementioned representations are as 

follows:   

1. Learners will sometimes try to take the sine, cosine or tangent of the 90° angle in the 

right-angled triangle. They should soon see that something is wrong since the opposite 

side is the hypotenuse. Teachers should emphasise that the reference angle used in these 

cases to define trigonometric functions are between 0° and 90°. To explain angles equal 

or larger than 90°, it is better to use the unit circle. 

2. The sine, cosine, and tangent are ratios that are associated with a specific angle. It is 

important to stress that there is a relationship between the reference angle and 

accompanying side lengths. Sine, cosine, and tangent are best described as functions. If 

there is a misunderstanding by learners about functions, there will also be a 

misunderstanding of the full function definition. On the other hand, if learners understand 
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this, they will have an easier time using the notation and understanding that the sine, 

cosine, and tangent for a specific angle are the same, no matter what right-angled triangle 

it is being used, because all right-angled triangles with that angle will be similar. 

3. Many learners have trouble understanding that the sine, cosine, and tangent ratios is not 

depended on the size of the right-angled triangle. If it’s proven that two triangles are 

similar, it can be deduced that the sides are in proportion. The ratios are written using 

two sides of one triangle and compared to the ratios of the corresponding sides in the 

other triangle. This is different but equivalent to the ratios that the students probably used 

to find missing sides of similar triangles in previous sections. 

4. The application of trigonometric ratios sometimes involves the setting up of equations. 

As seen in the previous section, equations involving fractions come with their own 

challenges. However, learners can easily make small mistakes and not realise their errors. 

When solving an equation, the answer can be substituted back into the original equation, 

to be checked. The sine and cosine for acute angles fall within the range of -1 to 1, and 

thus are not very wide. It is extremely easy to mistakenly use the sine instead of the cosine 

in real-world problems. 

IMPLICATIONS FOR TEACHING 

My study of the various strands of literature related to my topic “Learning about and 

understanding fractions and their role in the high school curriculum” has a number of implications 

for teaching. I will organise these implications as follows and discuss each: 

1. Commitment of teachers to their field 

2. Attitude towards teaching 

3. Requirements for applying to study teaching at universities 

4. Acquiring high-calibre teacher-training students 

5. Further learning and self-study for teachers 

6. Approach to hands-on teaching 

7. Developing the different sub-construct of fractions by learners 

I will argue that all of the above are related to improving classroom teaching, where different 

interpretations of fractions come into play. 

Of great concern to (high school) mathematics teachers is that only approximately 50% of Grade 

12 learners who wrote Mathematics in 2012 could achieve the required 30% to pass the subject. The 

importance of Mathematics, and in particular fractions, for higher education areas of study such as 

engineering, chemistry, biology and medicine are indubitably a critical factor for graduating in these 
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respective fields. It is time that we as teachers commit ourselves and realise that we cannot stay silent 

for much longer and that we will have become active if we want to give leaners the best possible 

education and provide them with an advantage in this competitive world. As mentioned, this study 

did not focus specifically on how teachers can improve their teaching of fractions, but I think it is 

important to suggest some ways in which we as teacher can improve our teaching on fractions.  

If teachers do not have a passion for teaching, they will struggle to persuade their learners to 

become motivated and interested in mathematics. In addition to this, teachers will need to be 

supported financially or through other types of incentives to take time out of their busy teaching 

schedules to attend workshops, conferences, training, talks, seminars, and, meetings that focus on 

mathematics teaching for purposes of professional development and to the benefit of our learners. 

For example, I enriched my understanding of fractions through writing this mini-thesis and through 

networking with other mathematics educators at a recent national conference. The current state of the 

South African education system in is in need of teachers who are hardworking, motivated, and 

committed to making a positive impact in our schools. How this is to be achieved leads into the next 

point: the requirements for applying to study for a bachelor’s degree in education. 

It is a concern that when applying for a medical degree, a candidate needs to obtain an aggregate 

of almost 80%, but to apply for an education degree, a mere aggregate of 55% is required. If we want 

to improve our quality of education in South Africa, we should have higher requirements for those 

who want to study education for the purposes of becoming high school mathematics teachers. In order 

to improve the quality of teacher training at tertiary institutions, those in authority must attract 

learners who attain high results in high school. I mention the above issues because they impact 

directly on the suggestions I make about how teachers can improve their teaching of fractions, 

stemming from my review of the various interpretations of fractions which can be related to different 

grade levels and to various topics in school mathematics.  

In order for teachers to improve their teaching of fractions, they should analyse themselves in 

terms of their views on learning. For example, teachers can approach learners’ misconceptions of 

fractions in two ways: behaviouristic or constructivist. The constructivist “lens”, as Olivier (1989) 

puts it, should shape the way in which teachers teach. There are valid arguments for both views. I 

prefer a constructivist approach to teaching fractions but believe that there are merits in approaching 

some cases from a behaviourist perspective. 

In order to enhance learners’ proficiency in fractions, teachers should be given opportunities to 

learn how to design their teaching, design their series of lessons, lesson activities and tests to embrace 

all the five strands of mathematical proficiency (Kilpatrick et al., in NRC, 2001: 116). It important to 

stress again that the five strands are interwoven and that they support one another in assisting in 
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successful learning of fractions. It is therefore vital that teachers expand their own understanding of 

fractions as a compound concept, for example, 
3

5
 can be a single chocolate bar divided in five equal 

parts of which I only have 3 pieces (part-whole construct), or it can be a relationship between two 

sides of a triangle (ratio construct). To develop such interpretations of fractions, teachers should 

develop their ‘mathematical knowledge for teaching’ (MKT) through adequate support from 

education authorities and other organisations concerned with the professional development of 

mathematics teachers. 

I shall now expand on MKT, with special reference to fractions. MKT encompasses all three 

knowledge types described by Shulman (1983):(a) subject matter content knowledge, (b) pedagogical 

content knowledge, and (c) curriculum knowledge. A more recent study done by Copur-Gencturk 

(2012: 224) in which she examined the relationships between teachers’ mathematical content 

knowledge, classroom teaching and the effect these have on learners’ achievement, confirms what is 

echoed throughout the literature, viz., the importance of teachers’ mathematical knowledge on the 

quality of lessons and its impact on learners’ understanding of concepts such as fractions. She went 

on to say that “when teachers’ mathematical knowledge increased, the teachers appeared to create an 

environment in which their students could make more sense of the concept being taught.” (Copur-

Gencturk, 2012: 224). Yasemin Copur-Gencturk is an advisor in the Degree Granting Institution, 

University of Illinois at Urbana-Champaign and the post-doctoral researcher for the Rice University 

School Mathematics Project, Houston, Texas. 

I believe that many issues involving misconceptions of fractions can be dealt with if teachers 

comes to grip with, and master, these misconceptions themselves. For example, there are the 

following misconceptions. The bigger the denominator the bigger the fraction. Many learners think 

that 
1

8
 is smaller than 

1

16
. Another common misconception is when learners add fractions. They apply 

the ‘multiplication rule’ of fractions and then add the numerators together over the sum of the 

denominators. Many of these misconceptions and limiting constructs were discussed earlier.  

It is quite important that every mathematics teacher engage in self-study through doing research 

and reading journal articles and mathematical magazines and publications, for the purposes of 

expanding their MKT with respect to fractions. Even if they teach lower grades, teachers should read 

up on how the work they are covering in that specific grade unfolds in the higher grades. More 

importantly, it is a good idea to become a member of a mathematics education association and to 

regularly attend talks and seminars or register for professional development courses offered. Another 

way in which teachers can improve their MKT is by attending local workshops and training held by 

the Education Department and nearby schools. Sometimes, these workshops cover content that the 
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teacher may be familiar with, but she or he might find a different and more effective strategy to 

present it. Finding an informed mentor who can assist one is always a good idea. This person does 

not always have to be someone older or even more experienced. It needs to be a person dedicated and 

well informed in the field of mathematics education and to whom one can turn for assistance. I believe 

there is a major gap in the number of mathematical forums for teachers in South Africa. Teachers 

need to become more involved with one another and share ideas, learning material, and assessment 

tasks. Collaborations with university partners and other professional development forums provide for 

a greater understanding of continuous changing perspectives on important issues regarding the 

teaching and learning of mathematics, in particular in the area of fractions. These can contribute 

considerably to mathematics teaching and the improvement thereof.  

The abovementioned suggestions are all very practical ways in which teachers can enhance their 

MKT. Papick maintains that ”mathematics teachers should deeply understand the mathematical ideas 

(concepts, procedures, and reasoning skills) that are central to the grade levels” (2011: 389). Papick 

is professor of mathematics at the University of Nebraska-Lincoln where he is involved in developing 

material and courses for teachers and prospective teachers that illustrate and demonstrate the critical 

linking of mathematical ideas to important concepts in the school mathematics curriculum. If teachers 

have a deep and rich understanding of mathematical concepts such as fractions, they are likely to 

understand how learners reason and how to address any misconceptions learners may have (Papick, 

2011:389). 

Finally, I will briefly discuss what activities or tasks might assist in the development of the 

interpretations or sub-constructs of fractions. When a single object, or a set of objects, is divided into 

equal parts, we refer to this as the part-whole sub-construct of fractions. Tasks to develop this sub-

construct of fractions particularly involve sharing activities. The use of sharing situations amongst 

friends is the most commonly used; others include the fraction pie, shading of part-whole diagrams 

and fraction strips. Fractions strips are often used to introduce equivalent fractions or fractions as part 

of a collection or set of objects. The most common mistake teachers make when using fraction strips 

is that they are always arranged in ascending order. This is dangerous as the learners’ knowledge of 

whole numbers can interfere with the counting of these strips. The concept that a bigger denominator 

makes a smaller fraction is lost and a counting principle is enforced. To avoid this I suggest that when 

teachers use counting strips, they make sure that fraction parts are ‘mixed up’ or arranged randomly. 

It is important that when introducing the equal sharing principle, teachers not only make use of 

situations where one object is divided amongst friends, but also that sets are used.  

A fraction as ratio is a relationship between two numbers of the same kind for example, 

learners or sweets. It is a comparison of two quantities of the same type that cannot be written as 
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a single value. For learners to understand the concept of a ratio, they need to wrestle with the 

notion of relative, which means that the two values in the ratio change together, becoming either 

bigger or smaller, if they are multiplied with the same number (that is not equal to zero). This 

means that the value of the ratio stays the same. Activities normally include word sums involving 

recipes, ratios between different shapes’ perimeter, ratio between the length of the sides of the 

same shape, going to the supermarket and other real-world situations. Here, it is important to 

first develop the notion of ratios using the sides of two or more different shapes and ratio of sides 

within the same shape, after which one can go on to introducing the notation of ratios as fractions. 

From there, a series of activities containing the reduction of ratios, equivalent ratios, comparison 

of ratios, and writing statements (sentences) as ratios (fractions) can be applied. For example, in 

the high school curriculum there are connections to trigonometric ratios. Problem-solving 

activities involve the setting up of an equation (proportion) to solve missing numbers to solve 

‘real-world’ or everyday problems. 

A fraction can act as an operator when it is applied to a shape, object or set by either 

increasing or decreasing it after multiplication. Initially when learners are introduced to this sub-

construct their thinking and modelling is based on the part-whole sub-construct. Designing tasks 

should start with using a single object and move on to groups or sets of discrete objects. Drawing 

a grid around these objects provides a link between the discrete model and the area model. The 

area model supports the multiplicative thinking needed, using fractions as operators. 

Other tasks, and probably the most popular, are dilation of a geometric shape 

(transformation geometry) by either enlarging, duplicating or reducing its dimensions and 

consequently its area, depending on the scale factor. It is best to use a grid to enlarge or reduce 

shapes as it makes it easier for leaners to see by means of counting the number of blocks for the 

perimeter and area form the object to the dilated image. From there, one can introduce 

multiplication as another way to arrive at the same answer. For example, the above can be used 

to show that fractions as operators can also be applied to line segments. 

A quotient is the result of division exercise i.e. the division of two quantities such as two 

volumes, two areas or two numbers. The quotient sub-construct is similar to the part-whole sub-

construct as the notion of fair sharing or dividing into equal parts is applicable here too. The 

difference, however, is that the quotient sub-construct embodies the idea of sharing of objects or 

sets of uneven quantity amongst even number of friends, people, and so on. Activities assessing 

whether learners understand this concept include those of the part-whole construct where 

learners are required to share objects amongst an even number of children to obtain a ‘perfect’ 

answer. For example, when 10 marbles are shared between 2 boys; 
10

2
= 5 marbles for each boy. 
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The quotient construct yields answers that are not ‘perfect’; they can sometimes be fractions 

themselves or mixed numbers. An example of this is when 7 chocolate bars are shared between 

3 friends. Each friend will get 2
1

3
 of a chocolate bar. 

The measurement understanding of fractions is the ability to identify the unit of measure 

as a distance from the start to the endpoint. Usually a unit of measure and an instrument are used, 

for example, centimetres on a ruler or meters on a measuring tape. It is a good idea to think of a 

fraction in terms of a number line, where the distance between zero and one can be divided into 

equal lengths. For instance, dividing it into six parts creates a unit of measure called one-sixth. 

Labelling the line starting at 
0

6
 to 

6

6
 means that each point is 0, 1, 2, 3, 4, 5, 6 units from zero, 

respectively. Activities designed using number lines help with finding fractions on a number 

line, equivalent fractions (when dividing the same number line into different unit of measure for 

example thirds or quarters), as well as reinforcing the understanding that a fraction is a number 

that has a value and can be located on a number line in relation to other numbers. 

I conclude by stressing that the focus of this study was not on how teachers can improve 

their teaching of fractions, but I hope that through the study and its findings, the suggestions I 

make will motivate mathematics teachers to become involved in personal development 

programmes and design their own activities that will develop learners’ understanding of fraction 

constructs in its entirety, as I intend to do. 

 

CONCLUSION 

It is clear that a deep understanding of fractions in all their ‘forms’ or constructs is important for 

achievement in mathematics in high school and also at tertiary level. A report by the Department of 

Basic Education (DBE) shows a decline from 53% (2009) to 44% (2012) in candidates registered to 

write mathematics (DBE, 2012b). This means that 64% of candidates could not achieve a mere 40% 

in the subject. One area of concern was basic number operations, namely, addition, subtraction, 

multiplication, and division, which include working with fractions, percentages, equations involving 

fractions, and ratios. A suggestion made by the DBE was that teachers should strengthen learners’ 

ability to do the calculations that deal with percentages, fractions, and ratios by making use of self-

designed worksheets and other formative assessment tasks. In light of the above, it is evident that 

high school learners’ mathematics performance could noticeably improve if they were to gain a better 

understanding of fractions. It is for that reason that I decided to investigate the learning and 

understanding of fractions and their role in the high school curriculum.  
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This study has some limitations worth noting. Firstly, there was no original data as this was a 

systematic non-empirical critical literature review. Secondly, I discussed the different sub-constructs 

of fractions and made some suggestions, with a few examples of actual activities, but how to 

investigate these by means of activities will need to be investigated in further research. A number of 

studies have been done in primary schools, but few address the problem of fraction understanding 

and how to address it in high school in South Africa. Most mathematical concepts are formed in the 

middle grades in primary school but the question of how to address the misconceptions that may still 

exist in high school needs to be addressed. 

It is hoped that this study might help to draw attention to the multifaceted construct of fractions 

and its various interpretations, to gain a deeper understanding thereof, and by doing so, to alter the 

way in which teachers present the fractions in various areas throughout the school curriculum. Other 

important aspects addressed in this study concerned the mathematical knowledge needed in order to 

present fractions in a meaningful way and the factors contributing to learners’ understanding of 

fractions. Furthermore, limiting constructs contributing to learners’ misconceptions of fractions, the 

importance of fractions, and the role that fractions play in the high school curriculum were discussed. 

Finally, I am hoping that the findings of this study may inform teachers about which 

instructional practices, activities, and tasks are best suited to develop each of the sub-constructs of 

fractions. 
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