
The Design and Implementation of a
Security and Containment Platform for

Peer-to-Peer
 Media Distribution

Quiran Storey

Thesis presented in partial fulfilment of the requirements for the degree
 Master of Science in Engineering 

in the Faculty of Engineering at Stellenbosch University

Supervisor: Prof. G-J. van Rooyen
Department of Electrical and Electronic Engineering

December 2013



Declaration

By submitting this thesis electronically, I declare that the entirety of the work 
contained therein is my own, original work, that I am the sole author thereof 
(save to the extent explicitly otherwise stated), that reproduction and 
publication thereof by Stellenbosch University will not infringe any third 
party rights and that I have not previously in its entirety or in part submitted 
it for obtaining any qualification.

December 2013Date:

Copyright © 2013 Stellenbosch University
All rights reserved.

i

Stellenbosch University  http://scholar.sun.ac.za



Abstract

The Design and Implementation of a

Security and Containment Platform for Peer-to-Peer

Media Distribution

Q. Storey

Department of Electrical and Electronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MScEng

December 2013

The way in which people consume video is changing with the adoption of 
new technologies such as tablet computers and smart televisions. These new 
technologies, along with the Internet, are moving video distribution away from 
satellite and terrestrial broadcast to distribution over the Internet. Services 
online now offer the same content that originally was only available on satellite 
broadcast television. However, these services are only viable in countries with 
high speed, inexpensive Internet bandwidth. The need therefore exists for 
alternative services to deliver content in countries where bandwidth is still 
expensive and slow. These include many of the developing nations of Africa. 
In this thesis we design and develop a video distribution platform that 

relies on peer-to-peer networking to deliver high quality video content. We use 
an existing video streaming peer-to-peer protocol as the primary distribution 
mechanism, but allow users to share video over other protocols and services. 
These can include BitTorrent, DC++ and users sharing hard drives with one 
another. In order to protect the video content, we design and implement a 
security scheme that prevents users from pirating video content, while allowing

ii

Stellenbosch University  http://scholar.sun.ac.za



ABSTRACT iii

easy distribution of video data. The core of the security scheme requires a low
bandwidth Internet connection to a server that streams keys to unlock the
video content. The project also includes the development of a custom video
player application to integrate with the security scheme.

The platform is not limited to, but is aimed at high speed local area net-
works where bandwidth is free. In order for the platform to support feasible
business models, we provision additional services, such as video cataloging
and search, video usage monitoring and platform administration. The thesis
includes a literature study on techniques and solutions to secure video enter-
tainment, specifically in a peer-to-peer environment.

Stellenbosch University  http://scholar.sun.ac.za



Uittreksel

Die ontwerp en implimentasie van ’n

sekure en begeslote platvorm

vir portuurnetwerk mediaverspreiding

Q. Storey

Departement Elektriese en Elektroniese Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MScIng

Desember 2013

Die wyse waarvolgens mense video verbruik is aan die verander met die inge-
bruikneming van nuwe tegnologie soos tabletrekenaars en slim televisiestelle.
Hierdie nuwe tegnologie tesame met die Internet maak dat die verspreiding
van video al hoe minder plaasvind deur middel van satellietuitsendings en al
hoe meer versprei word deur die Internet. Aanlyn-Internetdienste bied dees-
dae dieselfde inhoud aan as wat voorheen slegs deur beeldsending versprei is.
Hierdie dienste is egter slegs lewensvatbaar in lande met hoëspoed- en goed-
koop Internetbandwydte. Daar is dus ’n behoefte aan alternatiewe tot hierdie
dienste in lande waar bandwydte steeds duur en stadig is. Baie lande in Afrika
kan in hierdie kategorie ingesluit word.

In hierdie tesis word ’n videoverspreidingsplatform ontwerp en ontwikkel,
wat van portuurnetwerke gebruik maak om hoëkwaliteit-beeldmateriaal te ver-
sprei. Die stelsel gebruik ’n bestaande portuurnetwerk-datavloeiprotokol as
die premêre verspreidingsmeganisme, maar laat gebruikers ook toe om video-
inhoud direk met ander gebruikers en dienste te deel. BitTorrent, DC++ en
gebruikers wat hardeskywe met mekaar deel word hierby ingesluit. Ten einde

iv

Stellenbosch University  http://scholar.sun.ac.za



UITTREKSEL v

die videoinhoud te beskerm ontwerp en implimenteer ons ’n sekuriteitstelsel
wat verhoed dat gebruikers die videoinhoud onregmatig kan toe-eien, maar
wat terselfdertyd die verspreiding van die data vergemaklik. Hierdie sluit die
ontwikkeling van ’n pasgemaakte videospeler in. Die kern van die sekuriteit-
stelsel benodig ’n lae-bandwydte-Internetverbinding na ’n bediener wat sleutels
uitsaai om die videoinhoud te ontsluit.

Alhoewel nie daartoe beperk nie, is die platform gemik op hoëspoed-plaas-
likegebiedsnetwerke met gratis bandwydte. Om die platvorm aan ’n haalbare
sakemodel te laat voldoen het ons vir addisionele dienste soos videokatalogi-
sering met soekfunksies, videoverbruikersmonitering en platvormadministrasie
voorsiening gemaak. Die tesis sluit ’n literatuurstudie oor tegnieke en op-
lossings vir die beskerming van video data, spesifiek in die portuurnetwerke
omgeving, in.

Stellenbosch University  http://scholar.sun.ac.za



Acknowledgements

I would like to express my sincere gratitude to the following people and organ-
isations:

1. My family and friends for their support throughout this project;

2. Everyone at the MIH Media Lab who created a creative space to try new
ideas;

3. MIH for the funding of my research;

4. Jacques Bruwer for his work on the underlying Jax.TV protocol; and

5. My supervisor Professor Gert-Jan van Rooyen.

vi

Stellenbosch University  http://scholar.sun.ac.za



Terms of Reference

This project was commissioned by the MIH Media Lab and MIH, and the
following specific objectives were placed on the project:

• Evaluate current video encryption techniques and existing DRM solu-
tions.

• Design and implement a security mechanism for peer-to-peer media dis-
tribution.

• Create a working test environment which includes an operating version
of Jax.TV (a protocol technology demonstrator).

• Design and implement a complete peer-to-peer video-on-demand plat-
form by extending Jax.TV, as the primary distribution mechanism.

vii

Stellenbosch University  http://scholar.sun.ac.za



Contents

Declaration i

Abstract ii

Uittreksel iv

Acknowledgements vi

Terms of Reference vii

Contents viii

List of Figures xii

List of Tables xiv

Nomenclature xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Study 7
2.1 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 BitTorrent . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 GoalBit . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 HTTP Secure . . . . . . . . . . . . . . . . . . . . . . . . 10

viii

Stellenbosch University  http://scholar.sun.ac.za



CONTENTS ix

2.1.4 Jax.TV . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Content Security . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Video Standards . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 MPEG Encryption Techniques . . . . . . . . . . . . . . . 15
2.3.2 Pseudorandomness . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 One-Time Pad . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 A Streaming Encryption Example . . . . . . . . . . . . . 17

2.4 Digital Rights Management . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Microsoft PlayReady . . . . . . . . . . . . . . . . . . . . 19
2.4.2 UltraViolet . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Irdeto ActiveCloak for Media . . . . . . . . . . . . . . . 20

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Platform Design 22
3.1 Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Platform Overview . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 System-wide Design Decisions . . . . . . . . . . . . . . . . . . . 25

3.3.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Programming Language . . . . . . . . . . . . . . . . . . 27
3.3.3 Software Standards . . . . . . . . . . . . . . . . . . . . . 28

3.4 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Platform Communication . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Video Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Server Implementation 35
4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Django Models . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Django Views . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Encryption Module . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Encryption Procedure . . . . . . . . . . . . . . . . . . . 48

Stellenbosch University  http://scholar.sun.ac.za



CONTENTS x

4.4 Jax.TV Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Super-Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Video Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6.2 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Usage Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8 Central Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Admin Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Client Application 60
5.1 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Login Screen . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Video Player Screen . . . . . . . . . . . . . . . . . . . . 62

5.2 Playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.1 Implementation Issues . . . . . . . . . . . . . . . . . . . 66
5.2.2 Compromise . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Playback Manager . . . . . . . . . . . . . . . . . . . . . 68
5.2.4 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 Network Interface . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Upload Handler . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.3 Remote Logging . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Platform Evaluation 75
6.1 Test SetUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Component Testing . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Erasing Decrypted Data . . . . . . . . . . . . . . . . . . 77
6.2.2 Video Search . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.3 Cross-Platform Support . . . . . . . . . . . . . . . . . . 81
6.2.4 Codec Support . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.5 Playlist Caching . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.6 Decryption Performance . . . . . . . . . . . . . . . . . . 85

Stellenbosch University  http://scholar.sun.ac.za



CONTENTS xi

6.2.7 Network Performance . . . . . . . . . . . . . . . . . . . . 88
6.3 Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Video Playback . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.2 Video Search and Download . . . . . . . . . . . . . . . . 90
6.3.3 Alternative Video Downloading . . . . . . . . . . . . . . 92
6.3.4 Usage Tracking . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.5 Central Logging . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.6 Modifying Video Information . . . . . . . . . . . . . . . 94

6.4 Platform Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusion 102
7.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 105

Appendices 113

A Software 114
A.1 Primary Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2 Monitoring Server . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3 Client Application . . . . . . . . . . . . . . . . . . . . . . . . . 115

B Configuration 116
B.1 Apache Web Server . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.2 Sphinx Full Text Search Server . . . . . . . . . . . . . . . . . . 118
B.3 Logstash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Stellenbosch University  http://scholar.sun.ac.za



List of Figures

2.1 One-time pad example. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 High level component overview of the platform. . . . . . . . . . . . 24
3.2 UML use case diagram for the platform. . . . . . . . . . . . . . . . 29
3.3 REST interface design. . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Platform security stack. . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Design of the video encryption scheme. . . . . . . . . . . . . . . . . 32

4.1 Component overview of the server infrastructure. . . . . . . . . . . 35
4.2 UML class diagram of all the Django models. . . . . . . . . . . . . 38
4.3 A typical JSON formatted HTTP response. . . . . . . . . . . . . . 40
4.4 Django URLs that match to corresponding Django views. Each

view returns an HTTP 200 status code on a successful request. . . . 41
4.5 User agent whitelisting check. . . . . . . . . . . . . . . . . . . . . . 44
4.6 Encryption module flow diagram. . . . . . . . . . . . . . . . . . . . 45
4.7 Flow diagram detailing the implementation of the encryption pro-

cedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 The SQL statement used by Sphinx to index the database. . . . . . 51
4.9 The typical output of search results produced by the Sphinx API. . 52
4.10 The structure of documents within the MongoDB collections. . . . 54
4.11 An overview of the central logging system. . . . . . . . . . . . . . . 55
4.12 An overview of the RabbitMQ queuing system. . . . . . . . . . . . 56
4.13 JSON encoded log message. . . . . . . . . . . . . . . . . . . . . . . 56
4.14 A screen shot of the admin portal. . . . . . . . . . . . . . . . . . . 57

5.1 Component overview of the client application. . . . . . . . . . . . . 61
5.2 A screenshot of the application’s login screen running on Mac OS

X 10.7.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii

Stellenbosch University  http://scholar.sun.ac.za



LIST OF FIGURES xiii

5.3 A screenshot of the application’s main screen running on Mac OS
X 10.7.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Qt component sketch of the video player. . . . . . . . . . . . . . . . 63
5.5 An entry in the JSON formatted video cache file. . . . . . . . . . . 65
5.6 A visual representation of indices used to manage playback. . . . . 69

6.1 A graphical representation of the erase test procedure. . . . . . . . 78
6.2 Probability of zero sequences vs the bit sequence length. . . . . . . 79
6.3 System resource usage during video playback. . . . . . . . . . . . . 87
6.4 Downloading performance of three different file sizes when adding

peers to the network. . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 A screen shot of adding a user through the Django administration

panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Real-time information about users logged onto the platform. . . . . 96
6.7 Real-time information about video data cached by clients on the

platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.8 Real-time information about videos currently being played on the

platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.9 MySQL shell being used to access video searches performed by users. 97
6.10 Graylog2 web interface displaying the log message stream. . . . . . 98
6.11 Graylog2 web interface displaying the log message analytics with

the test period indicated at (a). . . . . . . . . . . . . . . . . . . . . 98
6.12 Munin displaying Apache volumes during the test period indicated

at (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.13 Munin displaying CPU usage during the period indicated at (a). . . 100
6.14 Munin displaying memory usage during the test period indicated

at (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.15 Munin displaying network traffic during the test period indicated

at (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Stellenbosch University  http://scholar.sun.ac.za



List of Tables

2.1 Comparison of MPEG encryption techniques (reproduced from [43]). 16

6.1 Comparison of Sphinx search performance vs database size. . . . . . 80
6.2 Phonon backend support on the different operating systems. . . . . 81
6.3 Video player codec support. . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Comparison between ‘cold start’ and cached start playlist population. 84
6.5 Decryption real-time factor performance versus bitrate. . . . . . . . 87
6.6 Network traffic summary. . . . . . . . . . . . . . . . . . . . . . . . 89

xiv

Stellenbosch University  http://scholar.sun.ac.za



Nomenclature

Acronyms

AAC Advanced Audio Codec

AMQP Advanced Message Queueing Protocol

API Application Programming Interface

ATM Asynchronous Transfer Mode

AVC Advanced Video Codec

CLI Command-Line Interface

DECE Digital Entertainment Content Ecosystem

DRM Digital Rights Management

DSM Digital Storage Media

DVB Digital Video Broadcasting

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HTML Hypertext Markup Language

HD High Definition

IP Intellectual Property

IPTV Internet Protocol Television

JSON JavaScript Object Notation

LAN Local Area Network

MAN Metropolitan Area Network

MPEG Moving Pictures Expert Group

MVC Model-View-Controller

xv

Stellenbosch University  http://scholar.sun.ac.za



NOMENCLATURE xvi

PRNG Pseudorandom Number Generator

PVR Personal Video Recorder

RAM Random Access Memory

REST Representational State Transfer

RDBMS Relational Database Management System

TCP Transmission Control Protocol

SD Standard Definition

SDK Software Development Kit

SSL Secure Sockets Layer

URL Uniform Resource Locator

Abbreviations

Kbps kilobits per second

MB megabyte

Mbps megabits per second

MBps megabytes per second

TV television

XOR exclusive OR

Stellenbosch University  http://scholar.sun.ac.za



Chapter 1

Introduction

Content providers are adopting new technologies for the distribution of their
content. Recently, Netflix [1], an online streaming video service, acquired
exclusive American television (TV) subscription rights to feature films released
by Walt Disney Studios [2]. This is the first time a major Hollywood studio
is opting for digital distribution over traditional TV [3]. It is clear that there
is a shift to new digital distribution technologies, but most of these require
high capacity Internet bandwidth to operate. A solution is required for regions
where Internet bandwidth is either expensive or low in capacity. A peer-to-peer
media distribution system was developed at Stellenbosch University as prior
work to address this requirement, but needs to be extended to a functional
platform with video security and the necessary platform services to support
feasible business models.

In this thesis we develop a video platform with a security scheme to prevent
users from pirating media from the platform. This security scheme is designed
specifically for peer-to-peer media distribution, to allow users to freely dis-
tribute media through a variety of ways. The video platform includes the
following services: video search, download, playback, catalogue services, usage
tracking and user-based authentication. These services are developed along
with a client application and servers to support the different services offered
by the platform. The client application allows users to watch video content
from the platform and requires a low bandwidth real-time connection with
servers on the platform.

The remainder of this chapter provides the background and objectives of
this thesis.

1

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 2

1.1 Background

During the 20th century television as a content delivery platform, was the
only source of video entertainment available to consumers in their homes. TV
did this by making programming available through technologies such as TV
receivers, decoders (set-top boxes), video cassette and DVD players. While
the TV receiver, decoder and DVD are still widely used, desktops, laptops,
smartphones and tablets are now able to deliver the same video content to
consumers that was previously only available via TV receivers, decoders and
DVDs.

Along with these devices and terrestrial and satellite broadcast TV, the
Internet now provides another means of accessing video entertainment. This
happens both legally and illegally. Some of these legal services include Net-
flix [1], YouTube [4], Apple’s iTunes Store [5] and DSTV on Demand [6].

Netflix is a subscription service that allows users to watch an unlimited
number of movies and TV shows each month and is charged for at a flat rate of
$7.99 per month. Netflix streams the video data directly to the device used to
play the video. These include the computer, Nintendo Wii, Sony Playstation 3
and Microsoft XBOX 360. Netflix is currently available in 40 countries around
the world [1].

YouTube is a platform that was launched in 2005 that allows users to
discover, watch and share videos online [7]. YouTube is a free service to users
watching and sharing videos, while allowing businesses to advertise on the
platform. Advertisements can be text that is overlaid on the video or in-
stream advertisements similar to traditional TV advertisements [8]. As of
2010, YouTube includes a rental service (although it is still in beta) and has
started video streaming live events [9]. In 2012 the London Olympic games
were broadcast live, for free, on YouTube using the International Olympic
Committee’s YouTube channel [10]. YouTube, like Netflix, streams all the
video content to the user and does not offer video downloads.

Apple has the iTunes Store where users can purchase TV shows (that are
free of advertisements) and purchase or rent movies [5]. Apple currently sup-
ports playback on computers and their devices. Apple provides the user with
the means by which to discover new content through browsing, search and
recommendations. Apple only streams video data to the Apple TV, while on

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

the other devices the service requires that the user download the file before
viewing it (unlike YouTube and Netflix).

DStv, a South African satellite pay TV operator, launched DStv on De-
mand in 2010 [6]. This service provides existing DStv customers with the
ability to watch series, movies or sport highlights that have already been
broadcast on DStv [11]. DStv on Demand allows the user to either stream
the video data or download the video before watching it. DStv BoxOffice is
another service from DStv that allows users to rent newly released and classic
movies online [12].

1.2 Previous Work

The live streaming and on-demand video services listed above are ideal in
countries served by cheap, high speed Internet, but for example, are not fea-
sible in the developing nations of Africa. Here Internet bandwidth is scarce
and costs are usually thousands of times higher than that of the developed
world [13]. According to statistics from the International Telecommunications
Union (ITU), users in Europe have 25 times more international Internet capac-
ity than users in Africa [14]. We can speculate that the poor fixed broadband
penetration of 0.2% [14] attributes to this lack of Internet capacity. A solution
is required that is specifically suited for these regions.

In 2009, the MIH Media Lab commissioned a project to design and imple-
ment a peer-to-peer video-on-demand system that would allow users to view
real-time and delay-tolerant media, as well as provide a system for a third
party to inject content into the system and monitor viewership. The project
chose to implement the GoalBit platform [15] for the under lying transporta-
tion mechanism and the project was named Jax.TV [16].

Jax.TV uses a peer-to-peer architecture but focuses on high speed local area
networks (LANs), instead of the Internet. The details of Jax.TV are covered
in Chapter 2 as part of the literature study. Jax.TV is primarily targeted at
campus-wide networks, gated communities and wireless user groups (WUGs).

Campus-wide networks are typically high speed LANs in buildings or resi-
dences that are interconnected using a combination of ethernet and fiber optic
networks. Some campuses have buildings that span the greater part of a city
and this is an example of a metropolitan area network (MAN).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 4

Gated communities (also known as security villages) are residential areas
that are walled or fenced off with access control. Gated communities are
becoming more and more popular [17] in South Africa and these communities
allow for companies to offer multi-play services, such as TV, Internet, telephony
and security. Although configuration is unique for each community, typical
configuration comprises of a fiber optic network installed within the gated
community with a terminal device installed in each household. A data center
is installed on the network and acts as the gateway to the community. The
data center receives Internet, telephony and TV and distributes these services
to the homes within the community.

Wireless user groups (WUGs) use standard WiFi equipment to create in-
frastructure to exchange information and data [18], but do not necessarily
have to offer Internet access. WUGs typically span entire cities, such as Cape
Town [19] and Pretoria [20]. WUGs can be operated as darknets, whereby the
users are connected by high-bandwidth connections and are able to distribute
content over this network [21].

1.3 Problem Statement

Jax.TV is ideal for the deployment on campus-wide networks, gated communi-
ties networks and darknets, and provides bandwidth intensive video streaming
and downloads to operate in regions where Internet bandwidth is either not
cheap or not available in a high capacity.

Jax.TV in its current implementation has no content security built into the
platform and is only a distribution platform. The very feature that makes digi-
tal content ideal for distribution, also makes it really easy to pirate. Unlike ana-
logue content, digital content can be duplicated perfectly with almost no cost
or effort to the consumer [22]. This is a major concern for content providers
as they require systems that are secure against copyright violation [22].

Digital rights management (DRM) provides a method for securing against
copyright violation, but as Jamkhedkar and Heileman [22] explain, the field of
DRM is still in the early stages of development. The Jax.TV platform requires
a security system specifically designed for the peer-to-peer distribution nature
of the platform.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 5

1.4 Objectives

The goal of this project is to create a platform that allows users to watch high
quality video content across multiple devices. The platform will use Jax.TV
as the primary video distribution mechanism on high speed networks, but the
platform will not be limited to high speed networks and will allow users to
transfer the video data through other mechanisms. These can include existing
file sharing networks such as BitTorrent [23] and DC++ [24] or even portable
hard disk drives.

A security system is to be designed to allow this freedom of media distri-
bution while preventing piracy and allowing the content providers to monitor
usage and statistics of video usage on the platform. In addition to the security
system, a prototype video player must be implemented along with the services
necessary to provide the user with a feature rich experience.

In order to achieve this goal, the following objectives were set for the
project:

• Perform a literature study of video encryption techniques and existing
Digital Rights Management (DRM) solutions;

• Design a security system to prevent media being played outside of the
platform;

• Design and implement additional services that will assist the platform in
supporting a feasible business model;

• Prototype a client application that is able to play video content and that
ties into the additional services mentioned above;

• Implement the platform as a modular extension of Jax.TV.

1.5 Overview

Chapter 2 is the literature study that was undertaken for the project. The
chapter begins by introducing a background to networking and specifically
peer-to-peer technologies, before looking into video encryption techniques and
existing DRM solutions.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 6

Chapter 3 details the design of the project by dividing the platform into
essentially two components, namely the clients and the server. The design also
includes the specifications and use cases.

Chapter 4 details the implementation of the individual components that
make up the server, as well as the implementation of the server as single entity.
This chapter also details the encryption procedure that is used to secure the
video content on the platform.

Chapter 5 covers the implementation of the client application, specifically
the user interaction and the security of decrypted video data. This chapter
also addresses the issues encountered in implementing a secure video player.

Chapter 6 puts the platform through its paces and describes the evaluation
procedure and the results that were obtained.

Chapter 7 concludes by reviewing the objectives set out by the thesis and
makes recommendations for future work.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 2

Literature Study

This chapter introduces the necessary information to provide a background
on peer-to-peer networking and the Jax.TV platform. This is followed by the
research on securing digital video information through encryption and existing
digital rights management solutions that are currently available. In the process
video coding standards are also introduced.

2.1 Networking

In order to discuss Jax.TV, a strong understanding of networking and peer-
to-peer technologies is needed. Tanenbaum [25] defines the following terms in
networking:

layers: A network is organised by layers that create a hierarchy.

service: A service provides an interface to the layer above, providing the layer
with a set of operations.

protocol: A set of rules that define the format of messages exchanged on a
layer (implementation of the service).

protocol stack: The system that is made up of one protocol per layer.

architecture: The set of layers and protocols.

7

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 8

2.1.1 BitTorrent

Networking relies on various architectures but we focus primarily on two ar-
chitectures, namely client-server and peer-to-peer [26]. In a client-server archi-
tecture, a central server is responsible for uploading the data and has to carry
the combined capacity of each client’s download. Examples of these include
Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP). A
peer-to-peer architecture is a distributed architecture whereby each peer dis-
tributes data among the other peers and these peers are considered equal in
bandwidth capacity [26]. The peer-to-peer architecture offers many advan-
tages over the client-server architecture, such as load balancing, distribution,
dynamic scaling, redundant data and fault tolerance. But perhaps the most
important advantage that peer-to-peer offers over client-server, particularly
for video distribution, is the fact there isn’t a server that has to carry the
combined capacity of the downloading nodes. An example that uses the peer-
to-peer architecture is the BitTorrent protocol.

BitTorrent is a protocol for distributing files, that is designed for seamless
integration with Hypertext Transfer Protocol (HTTP) and the Internet [27].
Instead of all the data being transferred via HTTP, BitTorrent only uses HTTP
to transfer small files (a few kilobytes) that contain metadata about the file
that is to be downloaded. Once the peer has this metadata it can perform
the transfer of data using BitTorrent’s peer protocol that operates above the
Transmission Control Protocol (TCP). The following entities are used in the
BitTorrent protocol: a web server, a metadata file (.torrent), a BitTorrent
tracker, a web browser and a BitTorrent download application.

A web server is used to host metadata files for users to access and download
using a web browser. It is also possible to include a search engine on the web
server to help users more easily discover metadata files. Once the user has
downloaded the metadata file, it can be used along with a BitTorrent download
application to download the data file and act as a peer in the network. Peers
are the nodes in the network that are uploading and downloading data from
one another.

Trackers provide a means for peers to locate each other. This communi-
cation between the tracker and peers is done on the application layer that
is layered above the HTTP protocol [28]. The peers use this communication
channel to announce themselves and information about the files they have

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 9

available to upload (seed) and files they wish to download. Each file is divided
into pieces of equal size [15]. All pieces of a file have a SHA1 hash and are
included in the .torrent metadata file. These pieces are downloaded by the
peers and then seeded back into the network once they are completely down-
loaded and their SHA1 hash has been confirmed. Each peer, through use of
the tracker, knows at any time which peers are downloading the same file.
This collection of peers is called a swarm.

In order to achieve good download performance, the following piece selec-
tion modes are available [28]:

• strict priority,

• rarest first,

• random first piece; and

• endgame mode.

Each piece selection mode has its own piece selection algorithm and is best
suited for the different stages of the download process.

Although peer-to-peer networks like that of BitTorrent have revolutionised
the way data can be distributed [29], BitTorrent is of no use to live video
streaming.

2.1.2 GoalBit

GoalBit is the first free and open source peer-to-peer system for distributing
real-time video streams [15]. The GoalBit platform uses a peer-to-peer protocol
like that of BitTorrent but is optimised for live video streaming. The difficulty
with a peer-to-peer architecture is that the nodes are highly dynamic, allowing
them to join and leave the network at any point. Live video streaming using a
peer-to-peer architecture therefore has to meet far stricter requirements than
regular peer-to-peer file sharing, as the selection modes have to satisfy real-
time streaming. However, the advantage of a peer-to-peer architecture is the
abundance of unused resources that the peers have to offer. The GoalBit
platform consists of the following network components:

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 10

Broadcaster: Introduces content onto the platform from the source . This
can be a capture card, webcam or another HTTP, Microsoft Media Server
(MMS) or Real-time Transport Protocol (RTP) stream.

Peers: Clients that connect to a stream in order to view it and upload video
data.

Super-Peers: Regular peers with the exception of having a large amount of
uploading capacity.

Tracker: Responsible for the management of the peers (same role as a tracker
in a BitTorrent network)

GoalBit uses a .goalbit metadata file which contains the necessary config-
uration data for the channel to which users wish to connect. All communi-
cation between the peers and the tracker occur over HTTP or HTTPS, while
the communication among peers happens over the transmission control pro-
tocol (TCP). GoalBit takes various video compression algorithms (codecs) as
input and multiplexes (muxes) these codecs into different video containers.
The muxed stream is used to generate fixed sized pieces called chunks. The
encapsulation of video data into pieces is defined as the GoalBit Packetized
Stream [15].

2.1.3 HTTP Secure

Often it is necessary to encrypt information transferred over a network connec-
tion to prevent people other than the sender and receiver from accessing the
information. Information that is exchanged over an HTTP connection is sent
in plaintext and is susceptible to two types of intrusion by third parties to the
conversation: passive and active intrusion. Passive intrusion occurs when the
intruder listens in on network traffic (packet sniffing), whereas active intru-
sion means the intruder is able to modify network traffic (man-in-the-middle
attacks among otheres) or perform replay attacks [25]. To prevent packet sniff-
ing and man-in-the-middle attacks, HTTP traffic can be used over a Secure
Sockets Layer (SSL) connection using the standard port 443. This is known
as HTTP secure or HTTPS.

SSL occurs between the transport layer and the application layer and adds
overhead due to the handshaking procedure and encryption process, but pre-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 11

vents other parties from accessing the sensitive data. It is important to note
that a connection is secure only as long as the private keys are kept secret.

2.1.4 Jax.TV

Currently the Jax.TV [16] implementation of GoalBit is written in the Python
programming language [30] and consists of a tracker and peers. The tracker op-
erates in the same way as the tracker of GoalBit does and is implemented using
Python’s built-in HTTP server. The peers are invoked using the command-line
interface (CLI) and are able to upload and download video data. There is at
present no user interface or any video playback functionality.

Jax.TV makes use of a .jaxtv metadata file for the peer to obtain informa-
tion about the video. The metadata file is JSON [31] encoded and contains
the following information:

File Name: The name of the video file.

Sliding Window Length: The sliding window represents the pieces that the
video player must consume in a sequential manner to reproduce the video.

Name: The title of the video.

Info Hash: An MD5 hash sum of the video data file that is used as the
identifier for the video and hereon referred to as the video ID.

Chunk Size: File pieces are referred to as chunks and this parameter contains
the piece size for the video.

2.2 Content Security

Digital content protection plays an important role for content providers. So
much so, that a digital rights system called UltraViolet was unveiled by the
Digital Entertainment Content Ecosystem (DECE) on July 20th 2010 [32].
The DECE consortium consists of major Hollywood studios, DRM vendors
and other partners. Disney also has a similar approach to digital distribution
called Keychest [33]. It is evident that content security is important to the
content providers and in order to secure the Jax.TV platform, an assessment

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 12

on video encryption techniques and the current solutions available is required
to secure content for the platform.

Liu and Koenig [34] divide video applications into two categories: sensitive
video applications and entertainment applications.

Sensitive video applications usually require strict security requirements
that are very similar to that of text encryption. A typical example of this is
video conferencing in a corporate or government environment. Sensitive video
applications must be able to withstand traditional cryptographic attacks, as
well as perceptual attacks. Perceptual attacks are aimed at the visible informa-
tion in the video data and attempt to reconstruct the video from the encrypted
data. Two ways exist in which these perceptual attacks can be executed [34].
The first is to treat encrypted parts of the video stream as damaged sequences
that are caused by packet loss or bit errors. The attacker attempts to then
reconstruct the original video by using error concealment techniques that rely
on statistical information about the video [35]. In the second technique the at-
tacker attempts to replace encrypted parts with random data and test whether
the video data becomes visible. Both these attacks are only applicable on se-
lective encryption algorithms where the only a select amount of video data is
encrypted.

In comparison with sensitive video applications, entertainment has a lower
level of security. One could speculate that content providers may be skeptical
to try alternative forms of broadcasting when entertainment video applications
are approached with a lower level of security.

Liu and Koenig [34] also believe that encryption for entertainment appli-
cations can be considered secure if the following is true:

1. the cost involved in breaking the algorithm is higher than the license fee
for the content; or

2. the time required to break the encryption is longer than the time that
the content is considered valuable.

The value of content in an entertainment application is directly related to
the quality of the content and the time at which it is made available. The
value of a movie, for example, drops exponentially as time passes [34].

Iwata et al. [36] list the features of content sharing in a peer-to-peer envi-
ronment:

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 13

• The content itself is transported directly between users, so there is no
intermediary.

• Content can be registered by any user.

• It is difficult to gauge how many users will have access to the content.

These points are important when implementing a security platform for video
content.

2.2.1 Video Standards

Before discussing encryption, an understanding of the video standards used
for video coding and the various iterations of the standards is required.

The MPEG-1 video coding standard was designed for digital storage media
(DSM) such as compact disks, that did not suffer from high bit errors. Because
the standard was not designed to be robust against bit errors, it was not
suitable for broadcast transmission [37].

The MPEG-2 standard was designed as a generic standard, intended for
a variety of audio visual coding applications [37] and adopted for digital TV
and HDTV. MPEG-2 is similar to MPEG-1 in terms of compression, while
providing support for higher resolutions, frame rates, bit rates and support
and compression of interlaced video [38]. However, MPEG-2 was designed with
transmission in mind, having the requirement to support asynchronous transfer
mode (ATM) networks. MPEG-2 defined two types of streams; the Program
Stream, similar to the MPEG-1 for compatibility (another requirement) and
the Transport Stream, designed for noisy channels [37]. MPEG-2 compression
of progressive video is achieved through the encoding of three different types
of pictures within the media stream:

• Intra-pictures (I-Pictures) are coded without reference to preceding and
succeeding pictures (intra-coded).

• Predicted pictures (P-Pictures) are encoded with reference to other pic-
tures (inter-coded)

• Bidirectionally predicted pictures (B-Pictures)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 14

One video coding standard that is ready for wide adoption is the
H.264/MPEG-4 part 101 standard, also known as H.264/Advanced Video Cod-
ing (AVC) [39]. H.264/AVC was designed to improve coding efficiency and
error robustness over the previous stands like MPEG-2, H.263 and MPEG-4
part 2 [40]. H.264 is used in high definition (HD) and standard definition (SD)
digital television, HD DVD formats and Digital Video Broadcasting (DVB).

2.3 Encryption

Encryption is the process of transforming a message into cipher code using
an encryption algorithm, in order to prevent unauthorised access to the mes-
sage [41]. Encryption can be used to provide end-to-end security and with the
help of watermarking, copyright protection can be enforced [38].

The problem encountered when encrypting video data with traditional text-
based (naive) encryption techniques, is the massive volume of data contained
in the video content. It is primarily for this reason that other techniques are
required to meet the demands of video consumption in a real-time environment.
The following considerations need to be made when encrypting video data [38]:

• the compromise between large amounts of data and encryption speed;

• the compromise between compression efficiency and encryption perfor-
mance;

• the dependence of the encryption technique on the compression algorithm
of the video;

• the conditions that do not allow lossy compression; and

• the requirement for special features such as format compliance, scalabil-
ity and fault tolerance.

H.264 video has various encryption techniques such as pre-compression
encryption, post-compression encryption and joint compression and encryp-
tion [38].

For MPEG video data, Angelides and Agius [38] propose four levels of
encryption:

1ITU-T H.264 and ISO/IEC MPEG-4 AVC.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 15

1. encrypting all headers;

2. encrypting all headers and I-frames;

3. encrypting all I-frames and all blocks in P and B frames; or

4. encrypting all frames.

When encrypting video there are two levels of video security available [38]:

1. The encrypted images have a low image quality, but the user can still
see the original video.

2. The image is fully encrypted and the picture is not comprehensible to
the user.

An encryption scheme that is secure against an adversary with an infinite
amount of computational power is considered a perfectly secret encryption
scheme. Unlike perfect security, computational security schemes can be broken
with enough time and computing power. However, under certain assumptions,
it would take many lifetimes to break these schemes and this level of security
is adequate for most applications.

Kerckhoff’s principle states that the cipher method must not be required
to be secret, and it must be able to fall into the hands of the enemy without
inconvenience [42]. Replacing a key is far easier than replacing the encryption
algorithm. Katz and Lindell [42] clearly state that security through obscurity
is a dangerous practice.

According to the sufficient key space principle, a secure encryption scheme
must have a key space that is not vulnerable to exhaustive search [42]. This
principle is however, only true when the number of values the key can attain
is smaller than the number of values the message can attain.

2.3.1 MPEG Encryption Techniques

Qiao and Nahrstedt [43] performed a comparison of MPEG encryption algo-
rithms using the encryption speed, security level and stream size as metrics
for performance. The following algorithms were evaluated in their article:

Naive: Encryption of the entire MPEG stream using traditional text-based
encryption schemes like DES.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 16

Selective: Encryption of the only I Frames in the MPEG stream. P and
B frames are meaningless without the corresponding I frame, therefore
encrypting the P and B frames would be irrelevant.

ZigZag-Permutation: Encryption becomes part of the the compression pro-
cess of MPEG video.

Video Encryption: The Video Encryption Algorithm (VEA) relies on the
different statistical behaviour of compressed video for encryption

Pure Permutation The Permutation Algorithm encrypts the video byte
stream by permutation.

Table 2.1: Comparison of MPEG encryption techniques (reproduced from [43]).

Algorithm Security Speed Size
Naive High Slow No change
Selective Moderate Fast Increase
ZigZag Permutation Very Low Very Fast Big Increase
Video Encryption High Fast No Change
Pure Permutation Low Super Fast No Change

From Table 2.1 it would appear that naive encryption is not the best choice
because of the slow speed. However, naive encryption has the benefit that it is
not codec dependent when encrypting on the byte level of the video file. What
is lost in speed, is gained in compatibility resulting in an encryption algorithm
that has excellent security and no change in file size.

2.3.2 Pseudorandomness

The one-time pad, discussed in Section 2.3.3, requires pseudorandom number
generation and therefore a basic background to pseudorandomness is explained.
A distribution D is pseudorandomly distributed over strings of length ` if D
is indistinguishable from the uniform distribution of length ` [42]. Stated
more loosely, a distribution is said to be pseudorandom if it appears to have a
uniform distribution.

Although pseudorandomness is not true randomness, it does have a few
advantages. Firstly, if ciphertext appears random to the adversary, then the

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 17

the adversary has no information about the plaintext. Secondly, a long pseu-
dorandom string can be recreated using a short seed. However, this seed must
be chosen at random.

2.3.3 One-Time Pad

Originally patented by Vernam in 1917, Vernam’s Cipher (better known today
as the one-time pad) is a cipher that is able to obtain perfect secrecy [42]. Being
a symmetric-key encryption scheme, the same key used to encrypt is also used
to decrypt. The one-time pad performs a bitwise exclusive OR (XOR) of each
bit from the message with each bit of the key (also known as the pad). The
result from the XOR operation is the cipher text. An example of a bitwise
XOR is given in Figure 2.1. The XOR operation can be replaced with other
operations like modular addition or multiplication, but the XOR operation
has become associated with the one-time pad [42]. The benefit that the XOR
operation has over other operations is the speed with which it encrypts and
decrypts data.

1 0 1 1
0 1 0 1
1 1 1 0
0 1 0 1
1 0 1 1

message:
key:
cipher:
key:
message:

Figure 2.1: One-time pad example.

The one-time pad is not without disadvantages. Firstly, the key has to
have a minimum length of that of the message. Having long keys makes it
difficult to the store the keys. Often, the length of the message is not known
in advance and there is no upper bound. Lastly, the one-time pad is only
secure if the key is used only once.

2.3.4 A Streaming Encryption Example

Text based encryption techniques are not suitable for the high volume of data
associated with video [44]. Lan et al. [44] proposed a peer-to-peer architecture
for live streaming with DRM. There they chose to use a selective chaotic
encryption algorithm [45].

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 18

A portion of important data is selected from the video, such as the quanti-
sation step, then a sequence is generated through the logistic chaotic mapping
sequence:

xn+1 = µ · xn(1− xn) (2.3.1)

where xn ∈ (0, 1) and µ ∈ (0, 4). The initial values x0 and µ are the secret
keys. The sequence that is generated in (2.3.1) is then similar to that of a
stream cipher and is XORed with the data selected in the beginning. The
XOR is a native machine instruction and therefor performed extremely fast.
This encrypted data is then fed into the streaming feed.

Chaotic systems are extremely sensitive to disruption and slight variances
in initial values cause the values to differ greatly [46].

2.4 Digital Rights Management

Digital Rights Management (DRM) refers to a technique which enforces poli-
cies to protect content throughout the distribution and consumption process.
DRM imposes restrictions based on the usage rights assigned to the content.
Cohen [47] states that “At the simplest form, DRM systems impose direct re-
strictions on what individuals can do in the privacy of their own homes with
the copies of works they’ve paid for”. Examples of these restrictions include an
expiration date, a date before which the content cannot be played, the number
of playback times, operations that may be performed on the media and device
restrictions. A well known application of DRM is the OMA DRM system that
Nokia implements on their Symbian Series 60 handsets for content purchased
from the Nokia OVI store [48].

DRM functionality typically includes [49]:

• controlling tracking and distribution;

• protecting content against tampering during transmission;

• protection against unauthorised use;

• defining ways in which the content is consumed;

• facilitating the distribution of content across different paths, both offline
(CDs, DVDs) and online (internet, peer-to-peer networks);

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 19

• monitoring content usage; and

• support for payment gateways.

DRM aims to be resistant against break-once, break everywhere (BOBE) [21].
If an attacker is able to circumvent security of a client in a DRM system and
the same attack is applicable to other clients in the system, then the system
is referred to break-once, break everywhere. DRM provides a maximum set of
features that can ensure content protection. However, analogue signals always
provide the final loophole for content piracy.

2.4.1 Microsoft PlayReady

Microsoft PlayReady is a DRM platform that applies business models to the
distribution and use of digital content. PlayReady is able to protect music,
video, ringtones, images and games, through purchase, subscription, rental,
pay-per-view and preview [50]. PlayReady is backward compatible with Mi-
crosoft Windows Media DRM.

Entities in the PlayReady platform include content packaging servers, dis-
tribution servers, license servers, domain controllers and metering servers.

2.4.2 UltraViolet

On 20 July 2010, the Digital Entertainment Content Ecosystem announced
UltraViolet, a platform for digital video content [32]. Hollywood movie studios
are seeing a decline in sale of physical media (for example DVD and Blu-Ray)
as consumers are moving to video-on-demand solutions [51].

Instead of a DRM, vendor or platform lock-in, UltraViolet is offering a
platform that is open to various retailers, devices and DRM solutions. The
purchase of any content that supports UltraViolet is stored in the digital library
and gives the consumer rights to the content. The consumer is then able to
either download this content or stream it from the UltraViolet digital library.

The UltraViolet platform consists of, the UltraViolet digital library, Ul-
traViolet retailers, devices that are compatible with UltraViolet and the con-
sumers [51].

UltraViolet also defined a file format for the platform called Common File
Format and supports any of the DRM systems that are compatible with Ultra-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 20

Violet. UltraViolet does not serve as a new DRM system to protect content,
but rather provides a platform which supports multiple devices, DRM solu-
tions and retailers, with the aim of giving consumers more freedom in how
they purchase and consume media.

2.4.3 Irdeto ActiveCloak for Media

Irdeto [52], a company which develops content security for pay media com-
panies, released ActiveCloak for Media in March 2011 [53]. ActiveCloak is a
security solution that is based on Irdeto’s core Cloakware technology which is
used to combat software piracy.

Hackers typically have two approaches to circumvent software-based video
security [54]. The first approach is to reverse engineer the source code in
order to obtain sensitive information. This sensitive information can include
cryptographic keys or certificates. The second approach is to tamper with the
source code to modify the behaviour of the software with the outcome having
access to the secured content.

ActiveCloak for Media protects against these attacks through a three step
process. The first step is to provide a strong initial resistance, and this
is achieved through techniques that attempt to protect and obfuscate code
against reverse engineering. In the event of a breach the magnitude of the
breach is reduced by diversifying the software. Irdeto implements this by de-
veloping software that is functionally identical but structurally different. Re-
leasing diverse software means breaches only impact small selection of users,
as apposed to the entire user base. Finally, if a security breach occurs, Active-
Cloak for Media is able to recover from this and patch the software.

ActiveCloak for Media allows the developers to focus on the application
and lets Irdeto handle the security. Furthermore, ActiveCloak for Media al-
lows the developer to use other DRM solutions with ActiveCloak for Media.
ActiveCloak for Media secures the content in a secure store and provides a
single API to access it [55].

ActiveCloak for Media focuses on the application security, not only the
content security. This is different to DRM which assigns rights to the usage of
the content.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 21

2.5 Summary

In a white paper published by the Convergence Culture Consortium at the
Massachusetts Institute of Technology, de Kosnik [56] states that no legal site
makes all popular TV shows available. She goes further to state that pirating
TV shows has the following advantages over the legal alternative:

• a single point for searching;

• simple sorting;

• a single application and interface to learn;

• file portability;

• access to a global base of TV shows;

• personal archives; and

• low cost and free of commercials.

She finishes off to say that most individuals choose to pirate, not because it
is free, but because it is the easiest manner in which TV shows can be watched
online, with added features.

This should be kept in the back of our minds as we discuss the system and
detailed design in the next few chapters. Although this platform is for legal
purposes, it should encompass as many of the benefits that piracy offer. By
doing this you provide a platform that, to the user, is as easy and feature rich
as pirating but remains fully legal. This project does not set out to design the
business case for the platform, but it does need to provide security to support
a viable business case to operate the platform.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3

Platform Design

The previous chapter described the background research required to design a
security and containment platform for peer-to-peer media distribution. This
chapter details the approach to designing this platform. The chapter provides
an overview of the platform and lists the components that make up the plat-
form, before detailing the design of each component and the design decisions
that were made.

3.1 Design Approach

When designing a platform of this nature, we believe it is best to make the
video object an integral part of the platform with the security and services
wrapped around the video object.

The design of the security tries to find a balance between security and
usage restrictions placed on the user. Two points to consider when designing
the security are the following: firstly the video that is rendered on the screen
will always provide a means for users to capture the analogue image, and
secondly it can be assumed that it is easier for a user to obtain an illegal copy
of the video from a video piracy service, than what it is to attack the video
encryption scheme that this project proposes. Hence it is not feasible to create
a security system that is impossible to break. As with sufficient security we
can discourage almost all users of the platform from attacking the system’s
security.

We define a security system that fully (naively) encrypts the video file and
allows the file to be distributed on and off the platform. By fully encrypting

22

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 23

the video file we sacrifice efficiency and performance for the best security1 and
are resistant against perceptual attacks2. In order to decrypt the video file, the
video file must be opened with the platform application and connected to the
platform servers. With the user authenticated, the keys can be streamed over
a low bandwidth Internet connection to the application and allow the video
to be decrypted for playback in real time. Each key decrypts a segment of the
video and requires a connection to a key server for the duration of the video
playback. It is possible to place a server on a local network where no Internet
connection is available and where is it feasible to do so. An example of this
would be darknets.

3.2 Platform Overview

The platform can be divided into two components, the client-side applications
and the servers. The client-side application is the application that the end
user will interact with, through the use of the graphical user interface (GUI).
The servers provide functionality to the client applications and are used to
monitor the platform. An example of this functionally is the usage tracking
server which is responsible for monitoring video playback on the platform. In
Figure 3.1 an overview of the platform is illustrated with the various high
level components. Although the various servers are shown as separate logical
entities, they may reside on the same physical server. This is described in
further detail in Chapter 4.

User

The “user” component in Figure 3.1 represents the client application that the
end user will make use of to; search for downloadable content available on the
platform, start downloads and play encrypted video content.

Peer

The “peer” components in Figure 3.1 represent other users on the platform that
are possibly watching videos, downloading videos, as well as seeding media onto
the local network.

1Refer to Table 2.1
2Refer to Section 2.2.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 24

Key Server Catalogue Service Central Logging

Jax.TV Tracker User Usage Tracking

Peer Peer Peer

Figure 3.1: High level component overview of the platform.

Catalogue

The catalogue service maintains a collection of metadata about the videos
on the platform. Typical metadata includes the title, rating and duration of
the video. The catalogue server aids the user in discovering content on the
platform. Additional information (that is not available to the user) is also
stored on the catalogue server for use by the client application.

Central Logging

When working with a distributed platform such as this, debugging becomes
tedious with the multiple remote client applications. The traditional manner
of monitoring log files on various machines is replaced with a central logging
service. If logging is required on one or multiple client applications, their logs
are sent to a central server that is able to analyse, filter and aggregate the logs.
This service is primarily for the development and testing phases of the project
and therefore will only be used for informative log messages during production
phase.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 25

Usage Tracking

The usage tracking service collects information from the platform and separates
it into two categories; statistical data that is collected over a long period of
time and real-time information. The statistical data that is stored over a long
period of time includes user login, playback and search information. The real-
time information collected provides administrators with the ability to monitor,
in real-time, which users are logged in, what videos the users are watching,
and which videos the users have cached on their devices.

Jax.TV Tracker

The “tracker” component in Figure 3.1 is the tracker service developed as
part of the Jax.TV implementation [16]. As described in Section 2.1.4, it is
responsible for tracking which peers are seeding media onto the network and
providing downloading peers with a list of peers that are seeding the files being
requested for download.

Key Server

The key server is responsible for streaming the keys to the client application in
order for the application to decrypt the encrypted video. All communication
to this server has to be encrypted to prevent eavesdropping and secured to
prevent unauthorised access to the keys.

3.3 System-wide Design Decisions

A set of system-wide design considerations were defined at the outset of the
project. These include systems specifications, programming language and soft-
ware standards.

3.3.1 Specifications

The following specifications were set out for the platform:

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 26

Modular in Design

The software design of the platform is intended to be orthogonal by decoupling
the various modules. This means changes in future do not require a complete
platform redesign.

Cross-platform

The client application must be designed to be cross-platform. The platform is
targeted at the mainstream desktop operating systems; Microsoft Windows 7,
Ubuntu Linux and Mac OS X.

Codec Independence

The platform should be designed to be video codec independent with relation
to the encryption scheme. More specifically any codec can be used, provided
that the application video player can support the codec.

Real-Time Tracking

The platform must be designed to track, in real time, the video content that
is being consumed by the end users. This feature needs to provde platform
managers the ability to monitor the acceptance of new media by the users,
provide auditing and allocate license fees. The platform cannot support any
business models without real-time tracking.

Multiple Distribution Modes

Although Jax.TV provides the primary mechanism of video file distribution
on the platform, the platform is designed for African countries where Internet
bandwidth is expensive. For this reason the platform should allow multiple
distribution mechanisms, and be specifically designed to allow media to be
distributed through flash drives and external hard drives. This takes full ad-
vantage of the benefits that piracy offers, such as file portability and personal
archives [56].

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 27

DRM Avoidance

The platform should be designed not to use any existing DRM techniques, but
rather be an alternative to DRM.

Data Security

The most important asset on the platform is the video content. Although it
is listed last, securing the video content is the most important specification
for the platform. During distribution, encrypted content is secure from the
user. However, during playback the video has to be decrypted in order for the
video playing application to render the audio and image sequences. Playback
and the decryption of the video is therefore the weakest point in the platform.
Attention has to be given to preventing the user from gaining access to the
decrypted video data. With the video data in a decrypted form, the user is
not restricted to the platform client application to view it and can distribute
the video in its decrypted form. The user must thus be prevented from gaining
access to the decrypted video data. It is because in this form, the user is free
do with the video content as they please. This platform intends to provide a
legitimate commercially viable alternative to piracy, not an aid.

3.3.2 Programming Language

Python [30] was chosen as the programming language to facilitate Jax.TV
integration, to enable rapid prototyping and for its cross-platform capabilities.
JaxTV was written in Python and using the same language for this platform
makes integration easier. Python is well documented and widely supported,
and because of this there are many libraries available on the Internet, making
Python a prime candidate for rapid prototyping. Python is cross-platform and
runs on Microsoft Windows, Linux and Mac OS X [57].

The disadvantage of Python is its speed, because it is considerably slower
than other high level languages, such as Java, and cannot compete with C and
other lower-level languages. However, it is possible to extend Python with C
and C++, if necessary.

In addition to Python, the Qt framework was chosen to develop the GUI
and, in particular, the video player. Qt (not to be confused with Apple Quick-
Time or QT) is a cross-platform application and UI framework that includes

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 28

bindings for a wide range of programming languages including Python [58].
The Qt framework is primarily developed by Nokia and is used for the devel-
opment of applications for Symbian phones, but is also used to develop applica-
tions for desktop operating systems, including Microsoft Windows, Linux and
Mac OS X. Through the use of the PyQt Python bindings, the Qt framework
can be used with Python. Because of the number of operating systems that
Qt supports, we believe it is most suited for this project. The Qt framework
is designed with rapid prototyping in mind, therefore the Software Develop-
ment Kit (SDK) includes an IDE and drag-and-drop UI designer. Qt includes
various modules, such as a GUI module, networking module, SQL module, to
name a few.

When selecting programming languages and frameworks, it is important
to look for active development. Both Python and Qt are actively developed
at present, which results in improvements and bug fixes to the language and
framework.

3.3.3 Software Standards

Git [59] was chosen for distributed version control of the source code and con-
figuration files, with a remote repository on GitHub.com. Data representation
for both object parameters and stored files, was done using JavaScript Ob-
ject Notation (JSON) where possible [31]. Python Fabric [60] was used to
distribute the source code to the server and the clients.

3.4 Use Cases

A use case diagram for the platform is shown in Figure 3.2. Here the roles of
two actors are defined: the administrator and the end user. The administra-
tor is able to add new media to the platform through the encryption service;
add, remove and edit metadata, revoke media from the platform and monitor
the platform. The end user is able to search, download, watch and share me-
dia. Although the platform provides a search and download mechanism, users
are able to directly share media with each other using any other distribution
mechanism, such as flash drives and external hard drives. An important point

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 29

to note is that the users can only decrypt and watch the video through the
platform application.

Encrypt new
media

Add/Edit/
Remove metadata

Remove media

Monitor
the platform

AdministratorEnd User

Search for
media

Download

Watch

Share

Platform

Figure 3.2: UML use case diagram for the platform.

3.5 Platform Communication

In order to integrate the various modules on the platform, a standard commu-
nication protocol is required. Representational State Transfer or better known
as the RESTful style of architecture for networking systems [61], is best suited
for the platform, instead of designing a protocol from scratch. REST is not
a standard but rather a style, even though it does make use of various Inter-
net standards, such as HTTP, URL and HTML. The REST interface provides
a standard channel with which the clients can communicate with the server.
This design allows for standard communication between the client and REST
server, and allows the REST server to interface on various other protocols with
the other server side services. These include the MySQL database, MongoDB
database and Sphinx search engine. This is illustrated in Figure 3.3. The other
advantage of this is that the REST server can standardise the presentation of
data to the clients. JSON was chosen as the format to represent data when
communicating between different components.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 30

MongoDB

MySQL

Sphinx

REST interface

User

User

Figure 3.3: REST interface design.

An important attribute of the REST style architecture is that it is a state-
less architecture, therefore the server does not maintain information about the
clients that it is serving. The clients are responsible for sending all the neces-
sary information for the server to process the request. REST also allows proxy
servers, cache servers and gateways to be placed in between the client and the
server to improve security and performance [62].

Django [63] was chosen for the REST interface, as it subscribes to the
model-view-controller (MVC) software architecture. Other MVC frameworks
are available, such as Ruby [64], however selecting Django allows the code base
to remain in Python.

Security

One of the disadvantages of REST is that the Django server will respond to
any valid HTTP requests, much like a request from a web browser. Traffic to
the web server needs to be restricted to that of the application. The other dis-
advantage of this communication is that everything is transmitted in plaintext.
To address these issues, the following security measures are put in place.

Firstly, all communication is encrypted with a Secure Sockets Layer (SSL)
connection (HTTPS). This solves the problem of eavesdropping and man-in-
the-middle attacks, but does not prevent anybody from anonymously accessing

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 31

the web server. This is where user based authentication plays a role in pre-
venting anonymous requests to the server. The user has to be registered with
the platform in order to login in and access information. The problem with
REST service and user based authentication is that the user is able to view the
page information on the web server through their browser using their known
credentials. The user would be able to view the web page that displays the
video keys with their browser and obtain the keys to the video. In order to
prevent this, a custom user agent string is created for the application.

A user agent string is included in the header of a HTTP request, that is
used by the server to identify the web browser. Typically in HTTP traffic the
user-agent includes the operating system of the browser, as well as the version
of the browser. There are many user agents as different devices are running
different browsers, and those running the same browser are often running at
different versions or on different operating systems.

The web server of the platform is designed to only accept requests con-
taining the user agents in a whitelist. The client application uses a unique
user agent and the web server accepts every request it receives, checks the user
agent in the header and rejects those not on the whitelist. In HTTPS, every-
thing transmitted is encrypted, including the user agent, so it is not possible
to view the raw network packets in an attempt to obtain the user agent. An
overview of the communication security stack is shown in Figure 3.4.

Application Server

User Authentication

HTTPS

HTTP User Agent

Application Authentication

Figure 3.4: Platform security stack.

If the user agent is compromised, an update can be applied to the client
applications to update the user agent, thereby preventing the Break Once,
Break Everywhere problem [21]. Out-of-date versions of the application will
be forced to update their user-agents to access the server.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 32

3.6 Encryption

The encryption scheme is based upon the one-time pad, with the pad gener-
ated by a pseudorandom number generator, that closely resembles that of the
unsynchronised mode stream cipher.

The original unencrypted video file is divided into blocks of identical size
(with the exception of the last block that makes up the remainder of the file).
Each block is treated as the plaintext message data in the encryption scheme.
A seed is supplied to the pseudorandom number generator (PRNG) which
produces a sequence that is the same length as the block. The seed is the key
for the block and the sequence is the pad used to encrypt the plaintext.

The plaintext message data in the block is XORed with the one-time pad
to produce the cipher text. The cipher text block is stored in a new file, but
at the same position of the block in the original file. By repeating this process
for each block in the original file, a complete encrypted file can be produced
from the original. This encryption process is illustrated in Figure 3.5.

Block Video File

Array

PRNG Sequence

XOR

Encrypted Array

Encrypted Video FileBlock

PRNG

Figure 3.5: Design of the video encryption scheme.

Although this approach is seen as a naive form of video encryption, it has
various advantages:

• The first is that the XOR is a native machine instruction on most pro-
cessors, and this allows the XOR to be calculated quickly.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 33

• The bandwidth required to stream the keys is minimal in comparison to
streaming the entire video.

• This approach encrypts the binary data of the video file, therefore it does
not restrict encryption to a specific video codec.

• The video is fully encrypted so that it is not comprehensible if played
back to the user.

• The entire video file is encrypted, not just the header or I-frames, there-
fore the approach is robust against perceptual attacks3.

This design meets the requirements set out by the project.

3.7 Video Player

The video player is the weakest point in the security design as this point
requires the content to be decrypted in order for it to be rendered. Various
approaches are available in designing the video player and are briefly described
here.

It is possible to stream video on the local host using VLC media player [65].
Unfortunately, any data streamed on the local host is accessible by any pro-
gram running on that host computer.

Another approach using VLC is to feed decrypted video data to VLC
through a Unix named pipe. The problem with this approach is that the
decrypted data is not secured but rather obscured. Also, Unix named pipes,
as the name suggests, are only available on Unix-based platforms. Although
Windows supports named pipes, using this approach would inherently mean
having to develop software for Unix and Windows operating systems with dif-
ferent code bases. This would make the cross-platform functionality harder to
implement and difficult to implement within the time frame of the project.

A higher level approach is to use third party libraries like PyMedia [66],
pyglet [67] and ffvideo [68]. Because these libraries are high level interfaces, it
is not possible to manipulate the video data before it is played back. Only a
source can be specified for these libraries and the data needs to be accessible
in order to decrypt it before it can be played.

3This is described in Section 2.2

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. PLATFORM DESIGN 34

A more complex approach would be to decrypt the video data in a parent
process, and pipe the decrypted data to FFmpeg [69] running in a subprocess.
This approach has many complexities and does not guarantee security through
standard input and standard output.

One approach is to develop video player from scratch using OpenGL. Un-
fortunately, the time frame for this project did now allow this, even though
it would allow for the maximum amount of security to be built into the video
player. Using OpenGL, it is possible to create a custom video player that can
decrypt the video data for playback in memory. By decrypting the video in
memory, it is significantly harder for an attacker to obtain the raw video data.

Finally, Qt [58] was decided upon because of its support for rapid proto-
typing and the ability to manipulate data in memory. However, at the time of
choosing Qt it was not known that Qt does not allow direct access to the media
being played by the video player. This is discussed in detail in Section 5.2.
It is important to remember in making this decision that the nature of the
project is to develop a prototype and not a full scale production application.

3.8 Summary

This chapter described the platform and the typical use cases for it, as well as
the design decisions that were made up front. It further detailed the designs of
the core components, namely the server, the encryption scheme and the video
player. Before continuing to the implementation of the project, it is important
to note that the object is to develop a working prototype and not a full scale
production platform with native applications for every operating system and
device.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4

Server Implementation

This chapter describes the implementation of the server and all the services
required to operate the platform. The server can be subdivided into six com-
ponents and these are illustrated Figure 4.1.

Ubuntu Linux

Sphinx

Search

Jax.TV Tracker

Core

Apache

Django

MySQL

MongoDB

Monitoring

Munin

Encryption

Logging

RabbitMQ

Logstash

Graylog2

Figure 4.1: Component overview of the server infrastructure.

35

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 36

4.1 Hardware

The server used for the prototyping is running Ubuntu Linux Server [70] as a
guest operating system on VMware vSphere [71]. vSphere is a cloud comput-
ing virtualisation operating system, that allows for multiple guest operating
systems to share the same hardware resources. The guest operating system
is equipped with a 2,3 GHz vCPU and 1024MB of RAM. For the purposes of
prototyping all the services such as Django, the encryption and central logging
are hosted on this virtual machine. This greatly simplified the implementation
phase of the project, instead of hosting each service individually.

4.2 Core

The core of the server is made up of two components, the REST interface and
the database systems. The REST interface is responsible for client communica-
tion with the server, while the database systems are used to store information
for the operation of the platform (excluding the video data).

The RESTful interface is implemented with Django [63], which is hosted on
Apache web server [72]. Django is served over an HTTPS Secure Sockets Layer
(SSL) connection which prevents man-in-the-middle attacks, as well as pre-
venting third parties from viewing the communication between the client and
the server. As stated earlier, Django subscribes to the model-view-controller
(MVC) software architecture, so the models defined are translated into entries
in the backend database. The data is stored on MySQL server, using the
Django MySQL backend engine. Django provides various database engines,
and interfaces directly with the database. This allows the programmer’s focus
to remain on the Django models and not the actual SQL statements. MySQL
can easily be replaced with another database server. In addition to MySQL,
MongoDB is used to store real-time data for usage tracking. This is explained
in detail in Section 4.7.

The core of the server has two roles on the platform; to provide a commu-
nication channel for the client application and for storing information about
the videos. Information that is stored in the database is used by the client
application to play back the video and to create a catalogue of video metadata.
All this information is stored using Django models and is explained below.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 37

4.2.1 Django Models

The Django model is a Python class that is created to represent the data, and
each model’s data is stored in its own table within the database. The model
contains attributes and methods, while Django provides the following to the
model:

• a subclass of the Django Model class;

• a database column for each attribute of the model; and

• an automatically generated API to access the database.

Even though Django creates an API for the models through which data is
modified in the database, it is possible to directly interface with the database
and modify rows. When Django then uses the API, the modified data is
retrieved. Figure 4.2 shows the model classes and each is discussed below:

Video

The Video model is used to represent each video on the platform and stored
in the table_videos table on the MySQL server. The attributes for the Video
model include the name, availability, file name, video ID (info_hash), sliding
window length, chunk size, number of blocks and the timer synchronization1

of the video. The info hash attribute is the primary key for the Video model
and is used as the identifier for videos on the platform.

VideoKey

The VideoKey model represents each encryption key stored in the database.
The attributes for the model include the ID, the key itself, the index and the
corresponding video ID. The index corresponds to the block number that the
key was used to encrypt.

SphinxId

The SphinxId model stores an ID related to a video ID. Sphinx requires a
primary key identifier field for each item it is required to index2. Because the

1Discussed in Section 5.2
2Sphinx is described in detail in Section 4.6

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 38

id
name
surname
email

User
info_hash
name
available
file_name
sw_length
chunk_size
no_of_blocks
timer_sync

Video

item_id
title
year
director
duration
genre
rating
info_hash

MovieMetaitem_id
title
series_name
season
episode
duration
genre
rating
info_hash

TVMeta

id
info_hash

SphinxID

key_id
key
key_index
info_hash

VideoKey
play_id
datetime
ip
info_hash
user

VideoPlay
login_id
datetime
ip
user

UserLogin

search_id
datetime
ip
search_term
user

VideoSearch
logout_id
datetime
ip
user

UserLogout

Figure 4.2: UML class diagram of all the Django models.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 39

Video model already has a primary key in the form of the video ID, a separate
model is created for the Sphinx ID. Creating a separate model for the Sphinx
keeps the design modular and allows for Sphinx to be replaced with another
search engine without affecting the Video model.

TVMeta

In order to store metadata for the videos two models were created, one for TV
shows and one for movies. The TVMeta model includes the typical metadata
representing a television show, that is, the title, series name, season number,
episode number, duration of the show, genre and rating. The model also
includes an identifier and the corresponding video ID.

MovieMeta

The movie metadata is similar to the TV metadata and includes the title, year,
director, duration, genre and rating. Additionally an index and video ID are
included in the model.

VideoPlay

This model stores information for each video that is played on the platform as
part of the usage tracking. An identifier is created and stored along with the
date and time, IP address where the video was viewed, the video ID, as well
as the identifier of the user who watched the video.

VideoSearch

This Django model stores information for each search that is performed by a
user on the platform. An identifier is created and stored along with the date
and time, the IP address where the search was performed, the search term and
the user that performed the search.

User

The user model is built into the Django framework and is used here to represent
users on the platform.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 40

UserLogin and UserLogout

These two models are used to store login and logout information of the users
on the platform, respectively. A login or logout identifier is created and stored
along with the date and time, IP address of the action and the user identifier.

4.2.2 Django Views

Django views, which make up the view in MVC, are responsible for return-
ing an HTTP response to the requesting client. A list of URLs are defined
and associated with a view. The view is a function that performs an op-
eration and returns an HTTP response. The client application accesses the
various views through the appropriate URL. For example, a GET request to
https://q.ml.sun.ac.za/videos/ lists all the videos on the platform by ac-
cessing the Video model API, building a list, formatting the list as JSON and
returning an HTTP response. Although browsers may be the type of user
agent most familiar to users, HTTP was designed to transport any type of
resource that contains information and uses the Content-Type HTTP header
identify the information format [62]. Because HTTP is not only limited to
HTML, it was decided to use JSON to transmit information between client
and server as set out in the system-wide design decisions in Section 3.3.

{
"valid": true ,
"data": {

"matches": 1,
"videos": [

{
"name": "Family Guy 605",
"file_name": "familyguy_605.mov",
"sw_length": 10128 ,
"info_hash": "f168eb05e64b2c93a3ec1f0c84d849e4"

,
"no_of_blocks": 64,
"timer_sync": 40288 ,
"chunk_size": 65536

}
]

}
}

Figure 4.3: A typical JSON formatted HTTP response.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 41

The advantage of a REST interface is that information can be presented
to the client in standard format, regardless of the service being accessed. The
views are designed to present standard JSON format for all requests. A typical
response for a video search is illustrated in Figure 4.3. Each response has a
valid field. The views are implemented in such a manner that the valid member
is always present in the response. If no valid data can be returned then the only
member present is the valid pair with the value false. If however, valid data is
returned the pair’s value is true and the following member will be the actual
data returned. Although HTTP error codes could be used to signal invalid
data, this approach is more flexible because it allows the invalid response to
be extended with additional information in future.

Figure 4.4 maps the available URLs to the corresponding views and a brief
description of each view is given:

https://<host_name>/
https://<host_name>/admin/
https://<host_name>/login/
https://<host_name>/logout/
https://<host_name>/info_hash/<info_hash>/
https://<host_name>/videos/
https://<host_name>/videos/<info_hash>/
https://<host_name>/videos/<info_hash>/keys/
https://<host_name>/videos/<info_hash>/keys/<key_index>/
https://<host_name>/videos/<info_hash>/meta/
https://<host_name>/videos/?search=<search_term>
https://<host_name>/tracking/login/
https://<host_name>/tracking/logout/
https://<host_name>/tracking/play/
https://<host_name>/tracking/stop/
https://<host_name>/tracking/search/
https://<host_name>/tracking/cache_add/
https://<host_name>/tracking/cache_remove/
https://<host_name>/tracking/download/

index
admin
login
logout
info_hash_query
videos_index
info_hash_index
keys_index
key_lookup
info_hash_meta
video_search
tracking_login
tracking_logout
tracking_play
tracking_stop
tracking_search
tracking_cache_add
tracking_cache_remove
tracking_download

ViewsURLs

Figure 4.4: Django URLs that match to corresponding Django views. Each view
returns an HTTP 200 status code on a successful request.

index
The index view for the server that displays the date and time. After a
successful login, a request is forwarded to this view.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 42

admin
This is the built-in admin view from Django as described in Section 4.9.

login
This view uses an HTML template to produce a page for user to log in.

logout
This view uses an HTML template to log the user out.

info_hash_query
This view returns a valid:true if the video ID is available. Note that even
if the queried video ID is valid on the platform, the video needs to be
marked as available for the valid field to be returned as true.

videos_index
This view returns all the videos stored in the database but is only used
for debugging.

info_hash_index
This view returns the Video model’s data for the specified video ID.

keys_index
This view lists all keys, as well as the indexes for a specific video. It is
only used for development.

key_lookup
This view returns the key as well as the index for the specified index of
a video.

info_hash_meta
This view returns all the metadata for the specified video. The metadata
can be either for a TV show or a movie, and this is determined by the
view.

video_search
This view returns the results from a Sphinx search on the specified search
term. Sphinx is explained in Section 4.6.

tracking_login
This view is used in conjunction with a POST request to store tracking
information for a user login.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 43

tracking_logout
This view is used in conjunction with a POST request to store tracking
information for a user logout.

tracking_play
This submitting a POST request to this view, the tracking system is able
to track video playback on the platform.

tracking_stop
This view is similar to the view above but is used to track when video
playback stops.

tracking_search
This view is used to track search queries that are performed by the
users. The client application submits a POST request to the view with
the search query.

tracking_cache_add
When a client application completes a download, it submits a POST
request to this view in order for the system to track where video files are
cached on the platform.

tracking_cache_remove
This view is used to track when a video file is no longer cached by a
client application on the platform.

tracking_download
Every time a client application starts downloading a video file, then the
client application submits a POST request to this view in order for the
tracking system to track a new video download.

4.2.3 Security

In order to meet the security design3 an SSL connection needed to be guaran-
teed, user authentication implemented and a white list for user agents created.

In order to guarantee an HTTPS connection to the REST interface, Apache
Web Server is configured to only serve the Django web framework over port 443

3Refer to Section 3.5.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 44

(the default HTTPS port) with the SSL engine enabled. Refer to Chapter B.1
for full configuration details of Apache.

Django has a built-in authentication system for handling users, groups,
permissions and session cookies. Enabling this system in Django provides an
integrated approach to user authentication and management on the platform.
By placing the @login_required decorator before each view, Django will request
authentication before responding to the client’s request. If the user has already
authenticated and the session cookie has not expired, re-authentication will not
be required. The expiration time for the session cookie is set to 10 minutes.

For user-agent white-listing, a list is created in the constants.py file that
contains the global constants and settings for the server. Each view receives
the HTTP request as an object. This object contains a meta dictionary in
which the HTTP user agent string is stored. The view checks if the user-
agent exists in the global white-list. If not, a JSON response along with an
HTTP 200 status code is returned. The user-agent testing is demonstrated in
Figure 4.5.

if request.META [’HTTP_USER_AGENT ’] in Constants.
JAXTV_USER_AGENT:

Figure 4.5: User agent whitelisting check.

4.3 Encryption

The encryption module is the entry point for new media onto the platform.
This module allows platform administrators to load new video content onto the
platform and enters metadata about the video into the database. This meta-
data is necessary for client application to know how to decrypt the file. This
section looks at the entire encryption module before detailing the encryption
procedure.

4.3.1 Encryption Module

The encryption module (encryption.py) performs many operations, one of
which is the actual encryption of the original video file. Figure 4.6 is a flow

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 45

Start

Scan for files

NoAvailable
file?

Yes

Fetch metadata

Fetch file size

Calculate number
of blocks

Calculate timer
synchronisation

Generate keys

Encrypt file

Calculate info_hash

Calculate sliding
window length

Store keys

Generate Jax.TV
metadata file

Remove original file

End

Figure 4.6: Encryption module flow diagram.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 46

diagram of the steps that the encryption module executes.
The encryption process begins by the platform administrator copying the

videos into the unencrypted folder. By creating a duplicate of the video, it is
possible to revoke the video from the platform, re-encrypt it with new keys and
distribute it back onto the platform. The encryption module starts by scanning
for unencrypted video files in the unencrypted folder. After this, the procedure
starts for each file in the directory iteratively. For each file the metadata
information is determined, this includes the file name and length of the original
video, the chunk size (which is set to platform specification, as listed in the
server constants file). Next, the file size and number of encryption blocks are
determined. By dividing the file size by the encryption block length, it is
possible to calculate the number of encryptions blocks required to encrypt the
file. This encryption block length is fixed for the platform and also specified in
the constants file. Finally the timer synchronisation for playback4 is calculated
by analysing the metadata of the video and retrieving the total length of the
video clip in seconds. This is multiplied by 1000 and divided by the number
of encryption blocks to provide a timer synchronization in milliseconds.

A key is then generated for each block of the video and with all the infor-
mation above determined, the actual encryption can proceed and is detailed
in full in Section 4.3.2. Once the encryption of the file is complete, the MD5
hash sum can be calculated on the encrypted video file. This hash sum will
be stored as the video ID (info_hash) and serve as the identifier of the video
on the platform. This makes it easy for any device to validate a video on the
system by calculating the MD5 hash sum and querying the server with the
video ID. The last attribute to calculated is the sliding window length. This
is done according to the GoalBit specification.

With all the additional information calculated, the information along with
the keys can be securely stored in the database and the Jax.TV metadata
file can be created for the uploader. All information that is written into the
database makes use of the Django model API. Finally, the video file in the
unencrypted folder is erased from the server.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 47

No

Start

Open original file

Open new file

Create file array

Create OTP array

Create PRNG

Block 
remaining?

Seed PRNG

Yes

Generate OTP

Cast array to 8-bit
unsigned integer

Last 
block?

Read remainder
from file

Read block
from file

YesNo

XORXOR

Write to file Write to file

Close
files End

Figure 4.7: Flow diagram detailing the implementation of the encryption proce-
dure.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 48

4.3.2 Encryption Procedure

The encryption procedure relies heavily on the NumPy Python library [73].
NumPy is a package for scientific computing on Python with a powerful toolkit
of numeric operations. Numpy features an N-dimensional array object, al-
though for the requirements of the project it will only be used as a one-
dimensional array.

NumPy’s random sampling routines include a random number generator
that uses a Mersenne Twister [74] pseudorandom number generator (PRNG).
Although the Mersenne Twister is not cryptographically secure [75], it is faster
than other PRNGs. The Mersenne Twister produces a linear recurring se-
quence, and allows the present state of the Mersenne Twister to be determined
by monitoring a sufficiently large output [74]. For the purposes of the platform
and way in which the Mersenne Twister is used, it does not create a security
vulnerability. This is valid for the following two reasons: firstly, the key used
to seed the Mersenne Twister is encrypted and not accessible by the user, sec-
ondly, the pad produced by the Mersenne Twister, as well as the original video
is not accessible to the user. With only the encrypted video content, the user
is unable to reproduce to the pad or the original video.

Figure 4.7 shows the flow diagram for the encryption procedure. Two files
are opened, the original video file (in binary read-only mode) and the new file
that is to be encrypted (in binary write mode). This is followed by the creation
of two zero-filled NumPy arrays, each the length of the encryption block and
using the 8-bit unsigned integer data type. Next, the Mersenne Twister PRNG
object is created and from this point the encryption procedure steps through
iteratively until the last block. For each block the PRNG is seeded with the
key for the block.

With the PRNG seeded, the PRNG produces an array of random numbers
between 0 and 255. This range is chosen to represent a byte value, in order
to perform a bitwise XOR with the corresponding byte from the original file.
The length of the array produced is that of the encryption block except for
the last block, here it is remaining length of the final block of the file. With
the array produced it has to be cast from a 32-bit unsigned integers to 8-bit
unsigned integers. The encryption block from the original file is read into
an array as 8-bit unsigned integers. With the data in both arrays, NumPy

4Discussed in Section 5.2

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 49

performs a bitwise XOR operation on both arrays and writes the result to the
corresponding location in the encrypted file.

The NumPy PRNG can be seeded with a 32-bit unsigned integer and this
is then stored as the key for the specific encryption block in the video file.

4.4 Jax.TV Tracker

The Jax.TV tracker has two roles on the network. The first is to maintain a
list of peers along with each video that the respective peers is seeding onto the
network. The second role is to provide a new downloader with a list of peers
that are available to upload the requested video.

When a peer starts uploading content onto the network it announces itself
to the tracker. During this communication the peer sends its unique client
identifier, as well as the video ID of each video it has available to upload.

The client identifier is made up two characters for the client identifier,
four digits for the version number and followed by random numbers. The
client identified is unique for each client and an example of one is JT0001-
619197444203.

The Jax.TV tracker (jax-tracker.py) is implemented using the Python basic
HTTP server and is executed from the command line.

4.5 Super-Peer

The super-peer is a regular peer with the exception of having a high upload
bandwidth and is responsible for seeding the newly encrypted video content
onto the network. After the video is encrypted by the encryption server, the
encrypted video data, along with the Jax.TV metadata files must be copied to
the super-peer. The super-peer is running Jax.TV client in uploading mode
only. The Jax.TV announces the newly encrypted video files to the tracker
and is able to immediately start seeding the new video files onto the network.

The Jax.TV client is invoked by running the jaxtv.py command-line in-
terface (CLI) application. Upon launching the CLI application, it scans the
metadata folder for Jax.TV metadata files. These are used by the Jax.TV
client to indicate the presence of the video file and the video ID is then an-
nounced to the tracker.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 50

4.6 Video Search

Video discovery is said to be an important feature for users on a video enter-
tainment platform. Netflix attributes 75% of videos watched on their platform
to their video recommendations [76]. Torrents make use of a website that allow
users to search for torrents [27], and DC++ clients have the ability to search
for files within the application [77]. The same applies to legal services like the
iTunes store or Netflix. Without a way in which the user can discover new
videos, the user will have to solely rely on friends to share videos from the
platform. For this reason the platform requires a full text search server.

Sphinx [78] is as a full text search server that is supported on various
platforms and is open source. Sphinx can run on the mainstream operating
systems such as Linux (Ubuntu and Red Hat), Windows and Mac OS X, as
well as FreeBSD and Solaris. Sphinx has many features that make it the ideal
choice for the platform. Sphinx is able to index and search data both on the
fly or data that is stored in databases. Sphinx is also not limited to SQL
databases and can search and index NoSQL storage as well. Sphinx allows
searches to be limited to a single field or a subset of fields in a database table.

Sphinx supplies three Application Programming Interfaces (APIs),
SphinxAPI, SphinxSE and SphinxQL. SphinxAPI includes a set of the client
API libraries for languages like Python, Ruby and PHP in order to access the
Sphinx search daemon. SphinxQL allows the client to query Sphinx directly
with MySQL statements. The Python libraries are ideal for the integration
with Django.

4.6.1 Configuration

Sphinx is configured to index the data directly in the database where Django
stores the model data. In order for Sphinx to index a table, it requires that
first column contain the primary key ID field. Because the Django video model
already contains a primary key (the video ID), a separate Django model was
created for the Sphinx ID. This model only contains the ID primary key in
the first column and the video ID with a one-to-one relationship with the
video model. By separating the Sphinx ID from the Video model, it allows
the platform to be modified later by replacing Sphinx with another search
engine if the need would arise. Because of the modular approach, removing

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 51

Sphinx would have no impact on the Video model. In order to create a SQL
fetch query for Sphinx with a split table design, a join operation is done on
table_ids and table_videos.

In Figure 4.8 the main fetch query for Sphinx is defined. Sphinx is config-
ured to only indexes the name column in the Video model. For the complete
configuration refer to Appendix B.2.

SELECT ‘table_ids ‘.‘id ‘, ‘table_videos ‘.‘name ‘ FROM ‘
table_videos ‘ INNER JOIN ‘table_ids ‘ ON ‘table_videos
‘.‘info_hash ‘=‘table_ids ‘.‘info_hash ‘

Figure 4.8: The SQL statement used by Sphinx to index the database.

4.6.2 Searching

A wrapper class (SphinxClass) was created for the extensive Sphinx API. This
class is stored in sphinxwrapper.py within the db sub directory. The wrapper
configures and makes use of only the necessary components within the Sphinx
API and includes additional functionality required to integrate with Django.

The output from the Sphinx API is given in Figure 4.9 and inspection
of the results will show that the only video data returned is the ID and the
fields that were indexed. No additional video data is returned in the search
results. Sphinx can be configured to allow additional column data to be re-
turned but this is strongly discouraged for performance reasons. Instead, the
Sphinx manual recommends that an additional SQL lookup be done with the
row identifiers. The wrapper class uses the returned identifiers to lookup the
video data on each identifier returned. This information is structured and
returned as JSON to the calling function.

In order to perform a full text search on the query, the client makes a
request to the video_search Django view. The Django view uses the wrapper
class and returns the data, in JSON format, to the requesting client.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 52

{
’status ’: 0,
’matches ’:

[
{

’id’: 2,
’weight ’: 1,
’attrs ’: {}

}
],

’fields ’:
[

’name’
],

’time’: ’0.000’,
’total_found ’: 1,
’warning ’: ’’,
’attrs ’: [],
’words ’:

[
{

’docs’: 1,
’hits’: 1,
’word’: ’family ’

}
],

’error ’: ’’,
’total ’: 1

}

Figure 4.9: The typical output of search results produced by the Sphinx API.

4.7 Usage Tracking

Usage tracking is an important part of the platform for both content providers
and system administrators. It provides system administrators with a gauge
to measure usage on the platform and it enables content providers to monitor
video consumption and the adoption of new videos. It also allows billing
systems to later be integrated into the system.

For the specific tracking that was required by the platform, no off-the-shelf
solutions were available. A custom tracking system needed to be developed.
Tracking on the platform is divided into two categories, namely real-time statis-
tics and long-term statistics.

Tracking is performed by the client making the HTTP POST request to the
REST interface using the tracking URLs defined in Section 4.2.2. Every time

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 53

the client application performs an action that needs to be tracked it accesses
the respective view on the REST server. The client application does not expect
any response, but through using an HTTP POST request, the server is able
to track a specific action.

Real-Time Statistics

Real-time statistics represents information at any point in time on the plat-
form. Real-time data tracks users that are logged onto the platform, videos
that are currently playing and video files that are cached on the network.

All real-time statistics are stored in collections within MongoDB. Mon-
goDB is a high performance, scalable, NoSQL database that is open source [79].
MongoDB stores JSON-style documents in collections. For the platform, three
collections exist, logged_in, playing, and cache. When there is no available in-
formation, e.g. no users are logged in, then the collection will be empty.

Each entry in the logged_in collection is associated to a user, and includes a
list of IP addresses where the user is currently logged in. An entry in the play-
ing collection is associated to a video ID and includes a list of users currently
watching that video. Finally, each entry in the cache collection is associated
to a video ID and includes a list of all the IP addresses where the video file is
cached.

All the statistics listed above are available through the MongoDB shell
accessible via the MongoDB server. If a document has no valid data in it then
it is removed from the collection. For example, if user1 is not logged into the
platform then there will be no document for user1 in the logged_in collection.
An example of the MongoDB collections is given in Figure 4.10.

Long-term Statistics

Certain statistics are required to last for long durations, even though some
of these are included in the real-time statistics. These statistics include user
login and logouts, video playback, searches performed by users and video files
that are downloaded by users.

All long-term statistics are stored in MySQL with the help of Django mod-
els (described in Section 4.2.1). Unlike the real-time statistics which are con-
cerned with the number of users logged in, the long-term statistics track the

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 54

logged_in
{user: "user1", ip: ["10.10.11.1"]}
{user: "user2", ip: ["10.10.11.2", "10.10.11.3"]}

playing
{info_hash: "abcd1234", user: ["user1", "user2"]}
{info_hash: "efgh5678", user: ["user3"]}

cache
{info_hash: "abcd1234", ip: ["10.10.11.1"]}
{info_hash: "efgh5678", ip: ["10.10.11.1", "10.10.11.2"]}

Figure 4.10: The structure of documents within the MongoDB collections.

date, time and the IP address where the user logged in. These records accu-
mulate over time as videos are played or users log in and out of the system.

The statistics gathered of videos that are searched for and videos that are
downloaded, enable content providers the ability to monitor the popularity
and demand for video content on the platform.

4.8 Central Logging

A central logging system is important when developing a platform that has
applications executing on multiple hosts. Logging is not only useful debugging
information when developing software, but also for applications that are being
executed on servers. Having a central point to monitor logs means that it
is not necessary to log in remotely to hosts and monitor individual log files.
Instead, logs can be collected centrally and allow for filtering and alerts to be
placed on the items, improving efficiency in development.

In order to design a central logging system, a combination of various tech-
nologies are required to achieve the overall central logging system. The design
uses RabbitMQ message queueing, Logstash and Graylog2. The central log-
ging design is illustrated in Figure 4.11.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 55

RabbitMQ Logstash Graylog2

Peer

Peer

Peer

Figure 4.11: An overview of the central logging system.

RabbitMQ

The first objective is to provide a central point where messages can be sent
to. Here RabbitMQ [80] provides the equivalent of a post office, allowing the
remote applications to send their logs to a central point, from which it can
be routed. RabbitMQ is an open source message broker service that uses the
Advanced Message Queueing Protocol (AMQP) [81]. RabbitMQ consists of
the following components: a producer which creates the message and sends
it to the designated exchange, the exchange which uses routing keys provided
with the messages to route the message to the correct message queue, the
message queue which implements a first in, first out (FIFO) process, whereby
consumers remove items one-by-one from the message queue. This is illustrated
in Figure 4.12

The logs are sent as JSON encoded messages containing the host name of
the remote machine, the IP address and the actual log message as illustrated
in Figure 4.13.

Logstash

Logstash is used as as a RabbitMQ consumer to collect messages off the Rab-
bitMQ queue. Logstash [82] is used to manage logs through parsing and storing
the log events. Although Logstash can search and display logs, the user in-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 56

XP

P

P

C
Logstash exchange general logging queue

Figure 4.12: An overview of the RabbitMQ queuing system.

{
"machine": "host name",
"ip_address": "ip address",
"message": "the actual log message"",

}

Figure 4.13: JSON encoded log message.

terface is simplistic and has very few features, therefore Logstash is only used
to parse and mutate the logs. The visual representation will be performed by
Graylog2. Logstash is able to take multiple inputs, like AMQP, stdin and files,
perform various filters on the various inputs and output the logs to multiple
outputs5. Logstash outputs the logs to Graylog2 on the platform but it can be
extended to other log visualisation tools like Graphite or stored in MongoDB.
The configuration for Logstash is given in Section B.3

Graylog2

Graylog2 is a tool used for analytics, alerts and monitoring through the use
of logs [83], with the ability to search through logs. Graylog2 receives the log
entries from Logstash and stores them in a MongoDB collection and makes
the logs available through a web interface. Graylog2 allows the creation of
streams by defining rules for which Graylog2 filters the main stream of logs.
Various streams are configured in Graylog2 and these include the Jax.TV

5Refer to the documentation on the Logstash website for all the inputs, filters and
outputs.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 57

tracker log, the Django info log, the Apache error log, the encryption log
and most importantly the logs of the client applications.

4.9 Admin Portal

With all these server side services running, a convenient landing page was cre-
ated to help redirect administrators to the various administration and moni-
toring tools. For security, all the administration and monitoring tools (with
the exception of Logstash) require administrator authentication. A screen shot
of the admin portal is shown in Figure 4.14.

Figure 4.14: A screen shot of the admin portal.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 58

Django Admin Panel

Administrators on the platform are able to login to the Django administration
panel. Here administrators can add and remove users, video meta data, videos
and make videos available and unavailable on the platform.

Graylog2

The Graylog2 dashboard is used to monitor logs, streams and alerts. This
page is password protected and allows for multiple users to be created for
it. Graylog2 provides real-time analytics and server health, through visual
indicators such as the current message throughout and queue lengths.

Logstash

Although Logstash is used for filtering and mutation, it too has a search engine
that allows searches to be performed on the logs. Logstash does not store logs,
it is only an intermediary. Graylog2 is responsible for storing the logs in
MongoDB database. Therefore searches can only be done on Logstash since
the last downtime.

Webmin

Webmin is a web interface for system administration on Unix based operating
systems. Webmin provides an alternative to the command line interface of
Ubuntu Server.

RabbitMQ

RabbitMQ provides a web-based user interface to manage connections, queues,
exchanges and monitor throughput on the system. The web-interface also re-
quires user authentication in order provide access to only the platform admin-
istrators.

4.10 Summary

This chapter described the implementation of the design decisions what were
made in Chapter 3. The server implementation that was developed met the

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. SERVER IMPLEMENTATION 59

requirements that were set out by the design. Importantly, even though im-
plementation is developed on one server, the design and modular construction
of the server allows it to be segmented onto separate servers if the need is
requirement in a production environment. It should be evident that the server
can be further extended if more features are required for the platform.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 5

Client Application

The client application is used by the end user to gain access to the platform.
Through the application, the user is able log on to the platform, search for
available media on the platform, and download and watch video content.

The client application is responsible for decrypting the video data in real-
time and presenting it to the user without compromising security. At the same
time the client application has background tasks, such as seeding downloaded
video content, tracking video usage and logging application behaviour.

This chapter details the implementation of the client application and in-
cludes the challenges that were faced during the implementation of the video
player. An overview of the high level components that make up the client
application are illustrated in Figure 5.1.

5.1 Graphical User Interface

Before looking at the components in the background, we inspect the user
interface. This is the primary point of interaction that the user has with
the application. The GUI is written in PyQt using the Qt framework. The
QtGui module is extensively used for the GUI implementation and the Phonon
module is used for the video playback.

5.1.1 Login Screen

When the application starts, the user is presented with a login screen (Fig-
ure 5.2). Here the user is required to enter their credentials correctly in order

60

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 61

Client Application

GUI

Video Player

Playlist

Video Search

Playback

Playback
Manager

Decryption Upload Handler

Download
Manager

Networking

Remote Logging

Usage Tracking

Network
Interface

Figure 5.1: Component overview of the client application.

Figure 5.2: A screenshot of the application’s login screen running on Mac OS X
10.7.4.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 62

to progress to the video player screen.

5.1.2 Video Player Screen

Once the user has successfully logged in, he or she is presented with the video
player screen as illustrated in Figure 5.3. The player screen is essentially the
main screen of the application. It contains the video player (most of the screen
space) and the tabbed widgets on the right hand side. By default the playlist
tab is displayed, but the search results tab displays when a search is performed
and the downloads tab is displayed when a video is added to the download
queue.

Figure 5.3: A screenshot of the application’s main screen running on Mac OS X
10.7.4.

Video Player

The video player includes the basic functionality, such as play, pause, volume
control, mute and fullscreen, as well as displaying time and position of play-
back. Unfortunately, the Phonon VideoWidget by default does not enter or
exit fullscreen on the mouse double click events. This has become a standard
feature amongst most video players and needed to be implemented in order

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 63

to provide the same feature rich experience as seen in current video players.
The Phonon VideoWidget was extended with the CustomVideoWidget class
to provide this feature. The class also ensures that the video widget displays
with an aspect ratio of 16:9. The QtGUI and Phonon module objects are
illustrated in Figure 5.4.

QPushButtonQPushButton

QGroupBox
Custom Video Widget

QWidget SeekSlider QLabel VolumeSlider

Figure 5.4: Qt component sketch of the video player.

Playlist

The playlist displays media that is available for playback, as well as the meta-
information about the media. The meta-information is displayed as a tooltip
by hovering the mouse over the item. Playback of any item in the list is
achieved by double clicking on the entry in the playlist.

The PlaylistUpdater class is responsible for populating the playlist by
checking for files in the media folder. This is done by calculating the MD5
hash sum of all the files in the folder and these MD5 hash sums are queried
against the server for video ID validity. Files that have been downloaded com-
pletely will have a valid video ID (info_hash). A file that is not complete will
not provide a valid video ID, and neither would any files that are not part of

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 64

the platform. This means that the application will not play any content other
than the content provided on the platform. This discourages the use of pirated
content by restricting playback to legal content from the platform. Rejecting
invalid videos from the application also provides video integrity within the
platform and prevents users replacing video files with inappropriate or explicit
material. Kohl et al. [84] list integrity as a tool to safeguard users with digital
content libraries.

The application must be responsive to new content added, be that through
downloads or from file sharing from another user. In order to achieve this, the
application regularly updates the playlist, removing entries that are no longer
present and adding entries that have recently been acquired. The main window
class is responsible for requesting the PlaylistUpdater to perform updates on
a regular interval. This interval is defined in the application’s configuration
file as PLAYLIST_UPDATE_PERIOD. The PlaylistUpdater class runs in its
own thread and performs the first scan as soon as the application starts. This
is to improve responsiveness of application, both through running in a separate
thread and populating the list before the user is logged in.

The problem with performing video ID lookups on the server before the user
is authenticated, is that the application’s request will be denied by the server.
To overcome this, the application is given a user account on the platform.
Every request made to the server that queries the validity of a video ID uses this
user to authenticate. The username and password is stored in the constants.py
file along with the other configuration information. All the client applications
share this user name.

The second problem with calculating the MD5 hash sum of a file is that
the operation is hard disk intensive. A typical SD movie video file exceeds
700MB, and having to scan these multiple times is inefficient and creates a
bottleneck during playback (which is also hard disk intensive). To overcome
this, two solutions are implemented:

During playback the playlist cannot be updated. The main window class
checks to see if video playback is occurring; if so, the update is skipped. In
order to solve rescanning files, a cache file is created. If a valid video file is
discovered, it is entered into the cache using the file name, along with the video
ID and the last modified time of the file. The cache file is written to disk and
stored as JSON format. A typical entry is given in Figure 5.5. If the file is

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 65

scanned again it is first determined whether the file is in the cache. If so, the
modification time of the file is checked and matched against the time stored
in the cache. This is to ensure that although the file name has remained the
same, the file has not been modified, or that another file has replaced it with
the same name. The PlaylistUpdater class also checks for files that are no
longer present or that have been modified, and removes them from the cache.
Once changes are made to the cache it is written to the hard disk. The benefit
of this is that, when the application is opened again, files that were previously
hashed do not need to be hashed again.

{
"sonyhddemo.mov": {

"info_hash": "ab8564d200d870993d217d27be494087",
"mtime": 1342100320.0

}
}

Figure 5.5: An entry in the JSON formatted video cache file.

Search Functionality

Video search is provided through the search field above the playlist. Here the
user is able to search for any video available on the platform. The user enters
the search term into the search field and clicks on “search”. The tabbed widget
automatically switches over to the search tab and displays results received
from the server. Video meta-information is displayed in the same way as the
playlist through the use of tooltips. It is important to note that only videos
marked as available in the Django admin panel, are returned to the client.

Download Manager

The client application contains a download manager that queues download
requests made by the user. The user is able to use the search functionality
of the client application to query the server and start a download by double-
clicking on the entry in the search list. This entry is placed on the download
manager’s queue and the tabbed widget automatically switches over to the
downloads tab. Here the queue is displayed with the order in which each video
will be downloaded. The download manager sequentially downloads each item

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 66

from the queue, and removes the item from the queue when the download has
finished.

5.2 Playback

Video playback is by far the most complex procedure on the platform, unlike
the encryption phase which does not need to be completed by a hard deadline.
Decryption, on the other hand needs to occur quickly enough so that the video
player does not play through unencrypted data faster than the rate at which
data can be decrypted. Along with this, it needs to be ensured that the user
cannot access the decrypted video data.

The initial implementation was met with issues and required a reimple-
mentation. The rest of this section describes the issues and how they were
overcome.

5.2.1 Implementation Issues

Using Qt’s Phonon module and the MediaSource class, it is possible to use
any class that inherits the QIODevice interface class as a media source. These
sources include local and remote file access, network streams and memory
storage. The choice was made to use the QBuffer class to store the decrypted
video data for playback. The QBuffer provides a QIODevice interface to the
QByteArray in memory. Using this class, the decrypted data is never written
to the hard drive. This makes the decrypted video data out of reach of the
end user.

The problem with using memory storage for decrypted video data, is that it
is not feasible to store the entire video in memory (in particular HD content).
In order to resolve this, the video data is decrypted block by block during
video playback and written to the QByteArray, storing only a few blocks in
memory. Unfortunately, once a QBuffer is set as a video source, any data
written to the QBuffer (or directly to the QByteArray) after that point is not
played. Let us for example say you load 5% of the decrypted video data in the
QBuffer, you set this QBuffer as the video source, start playback, and then
load more decrypted video into the QBuffer. In this case, the video player will
stop playback when the 5% mark is reached. This problem is not documented

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 67

by Qt and after investigation on various forums online it was established that
the problem is attributed to the various backends Qt uses for playback on the
different operating systems.

To circumvent this issue, the blocks in the original file were converted into
individual video files of approximately the same size. These individual video
files, each with their own header information, were used together to form a
playlist. These files were each decrypted separately and loaded into individual
QBuffers, and the QBuffers added to a playlist with a transition time of zero.
This was in order to implement seamless playback between the QBuffers.

Although this implementation looked promising, there were noticeable ar-
tifacts on the audio when transitioning between QBuffers. These artifacts
presented themselves as dropouts in the audio, even though the transition
time was set to zero. This was especially noticeable when the video contained
music and these audio artifacts are not acceptable for a video player.

5.2.2 Compromise

With the above mentioned implementations unable to offer a usable video
service, another implementation was required. Although, maximum security
is always the aim, by sacrificing a tolerable amount of security, we are able to
achieve a secure prototype system for the specified criteria.

Instead of decrypting the video file in memory, a duplicate temporary file is
created on the hard drive. This temporary file allows the encrypted video data
to be decrypted in place within the file in small amounts to allow playback.
Once decrypted data is used for playback it is erased with random data and
at the end of playback the temporary file is removed from the hard drive. For
the duration of playback, the file size remains the same and makes it difficult
for the attacker to monitor changes to the file.

In the next two subsections, the playback and decryption procedures are
explained in detail. Two classes are created for handling playback. The first
is the PlaybackManager class which the main GUI thread uses to control the
video playback. The second is the ThreadedDecryption class which is respon-
sible for the decryption of encrypted video data and the erasing of decrypted
video data.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 68

5.2.3 Playback Manager

The playback manager provides controls to the main GUI thread to start,
pause and resume video playback. When a video entry in the playlist is double
clicked, a playback manager is created for that video. The playback manager
is responsible for triggering the decryption class.

The playback manager uses the timer synchronisation value (timer_sync
in the video metadata) to initialise a timer. The timer synchronisation is the
time required to play out a block of video data. The Phonon module in Qt
has events for video playback, unfortunately these events (start, stop, nearing
the end of the video) are associated with the entire video file. Because the
the playback manager is working with blocks within the video file, it requires
events to notify the decryption class to decrypt the next block. The timer
synchronisation aids the playback manager with this information. When the
timer times out, the playback manager signals for the next block in the video
to be decrypted.

Unfortunately, the QTimer in Qt does not support pausing. Therefore,
starting the timer resets the timer to the initialised value. This is a problem
for video playback where the user often needs to pause playback. To allow for
this, the playback manager extends the functionality of the QTimer class to
allow for pausing and resuming.

5.2.4 Decryption

The decryption of the video file proceeds in iterations through the blocks in the
encrypted video file. When the procedure starts, a copy of the encrypted file is
created in the temporary storage directory. All operations are then carried out
on the duplicate file by seeking to the position of the file where the operation
must occur. Initially the first two blocks of the file are decrypted. This is the
preloading stage and the amount of blocks that are preloaded is specified by
the preloadIndex. The preloading creates a buffer between the loading block
and the playback block in case that the timer is delayed. For each block the
key is fetched from the server (using the NetworkInterface class explained in
Section 5.3) and then using the load method the video data is decrypted. The
decryption is the same procedure as that of the encryption, the only difference
is the pad that is generated from the key, is XORed with the encrypted data.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 69

Once the preloading stage is completed the, ThreadedDecryption class no-
tifies the PlaybackManager class that preloading has finished and playback can
begin. The playbackIndex maintains the index of the block that is currently
playing out and the loadIndex maintains the index of the block that is being
loaded. The key is fetched a block ahead of the loadIndex and maintained
with the keyIndex. The entire process is visually described in Figure 5.6

Because the temporary file is potentially accessible by the end user, the
ThreadedDecryption class erases blocks that have already been played. Ran-
dom data is written into blocks that have already been played and the erasing
position is the maintained by the eraseIndex. Random data is written into the
file instead of zero blocks because it does not provide a trail for attackers to
monitor.

The ThreadedDecryption class runs in its own thread and is managed by
the PlaybackManager class.

playbackIndex

0(a)

preloadIndex

1

loadIndex

2

keyIndex

3 4 5 6 7 8 9 10 11

(b) 0 1

preloadIndex

2 3 4 5

eraseIndex

playbackIndex loadIndex

6 7 8 9

keyIndex

10 11

Figure 5.6: A visual representation of indices used to manage playback.

5.2.5 Future Work

Although the first implementation offered higher security, it lacked usability
and another approach was required. This approach does strike a suitable

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 70

compromise but lowers the security of the platform. However, this is suitable
for a prototype application for this platform. Despite the implementation
issues, the design of the system remains valid and requires future work to be
done on implementing a client application that decrypts and stores video data
in memory.

This will most likely require the client applications to be written natively
for each operating system from the ground up. This is simply not feasible
within the time frame of this project and must be left for future work.

5.3 Networking

The client application consists of various networking modules to complete the
functions that the application offers. Each module is explained in detail below.

5.3.1 Network Interface

The NetworkInterface class is responsible for all communication to the REST
server. The class maintains the base URL for requests, that is the
https://<host_name>/ portion of the URL. The host name of the REST
server is located in the constants.py file as REST_HOST. The class also con-
tains a cookie processor, as well as the user’s credentials. The server uses
cookies to maintain a session with the client application and the cookie pro-
cessor is used to maintain the cookie. The session cookies allow the user to
login once and use the session cookies to prove identity until the cookie expires.

The NetworkInterface includes the custom application HTTP user agent
string in all the requests and automatically performs a login if the session has
expired with the server, whilst the user is still logged into the application. All
the requests that are made to the server are HTTPS GET requests with the
information encoded in the URL. The NetworkInterface class has the following
methods:

authenticate

The method sets the user name and password for the communication.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 71

login

This method performs the actual login of the user on the server. The method
performs the login and handles the Cross-site request forgery prevention that
Django enforces. The HTTPS request is made to the login template.

listVideos

The listVideos method lists all the videos on the server by accessing the
videos_index view. It is only used for development.

queryInfoHash

This method collects the information about the specified video. The HTTPS
request is made to the info_hash_query view and the video ID is encoded in
the URL.

listKeys

The listKeys method displays all the keys for the specified video and is only
used for development purposes.

queryKey

This method is used by the ThreadedDecryption class to request the key from
the server. The video ID and the index of the key need to be specified for the
request to be made.

videoSearch

This method is used by the search list to look up videos on the video catalogue
for the specified search term. The request is made to the video_search view
on the server to perform a look up using the Sphinx search engine.

videoValidTest

The videoValidTest method is used by the PlaylistUpdater class to check if
the videos in the media directory are valid. If the MD5 hash sum is valid, the
server will respond with true.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 72

fetchMetaData

This method collects the meta data for the video to be used with either the
playlist or the search list.

5.3.2 Upload Handler

The upload handler is responsible for seeding available video content onto the
network. The upload handler is a component of the original Jax.TV imple-
mentation and designed to search for .jaxtv metadata files. The presence of
the meta file indicates to the upload handler that the the video file is available
for uploading. Once the uploader handler is aware of all the available files to
upload, it announces the client to the tracker.

The playlist updater creates metadata files in the metadata directory when
new entries are created in the playlist. After the playlist is populated for the
first time, the uploader handler thread is started. Every time the playlist is
updated, the uploader handler rescans the metadata directory and announces
the client to the tracker again. This way the tracker remains up to date with
the clients on the platform.

5.3.3 Remote Logging

The remote logging module is responsible for transmitting the log messages to
Graylog2 via the RabbitMQ server. The module consists of two classes, the
RabbitMQProducer and the RabbitMQLogHandler.

The RabbitMQProducer class runs in its own thread and maintains a con-
nection with the RabbitMQ server. The class is a producer for the RabbitMQ
server, as illustrated in Figure 4.12. The RabbitMQProducer class uses the
python Queue class and sends any message placed on the queue to the Rabbit-
MQServer. The connection to RabbitMQ is closed when the thread is deleted.

The RabbitMQLogHandler class allows the components within the appli-
cation to send log messages to the logging server. The RabbitMQLogHandler
class is a logging handler for the Python logging library and extends the Python
logging Handler class. Each log is a JSON object with the log message, the
local IP address and the host name of the client. The RabbitMQLogHandler
places this JSON object on the queue as a message for the RabbitMQProducer.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 73

A logger instance general_logger is created in the main GUI thread, along
with the logging level set in constants.py. The RabbitMQLogHandler is then
added to the logger instance as a handler. This instance is used in all the
modules to send log messages to the Graylog2 server.

5.3.4 Tracking

Tracking allows system administrators and content providers to monitor the
platform through the collection of usage statistics. The tracking module con-
sists of two classes, the TrackingBroadcaster and the TrackingHandler.

The TrackingBroadcaster class is used to transmit tracking instructions
to the REST interface. Each tracking instruction is achieved by creating a
HTTPS POST request to the REST interface. The TrackingBroadcaster im-
plements a queue system and removes each entry off the queue, determines the
type of tracking instruction and creates the POST request.

Each type of tracking instruction has a unique URL. For example, to track
a user login, a POST request is made to https://<host_name>/tracking/login
with POST data. It would be possible to use one URL and include the specific
tracking instruction within the POST data and allow the server to decide.
This route will not scale well as network traffic increases. By distributing the
decision making (albeit small) to the peers, the load of the server is reduced
and maintains the peer-to-peer architecture of the platform.

The TrackingHandler provides a logging handler for the Python logging
system by extending Python logging Handler class. The TrackingHandler can
be used by any module to provide tracking and constructs a dictionary entry
which consists of the tracking instruction, IP address, the user that is logged
in, as well as the date and time. The TrackingHandler places this on the queue
in the TrackingBroadcaster.

5.4 Summary

This chapter described the client implementation with regards to the design of
the platform. Although implementation issues were encountered because of a
problem with the Qt framework, a workaround was created that still meets the
design brief. This workaround is acceptable for a prototype application, how-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. CLIENT APPLICATION 74

ever for a production environment it would be best for the client applications
to be developed natively for their respective operating systems.

Importantly, the prototype application served as a proof of concept and
confirms that the design of the platform is solid with respect to encryption
and video playback.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 6

Platform Evaluation

This chapter documents the evaluation of the platform, beginning with the
individual tests before proceeding to the integration tests and finally the plat-
form test. For each test the objective, protocol, results and discussion is given.
The chapter also details the set up used to conduct the tests.

6.1 Test SetUp

A standard configuration was used for the majority of the tests performed
during the platform evaluation. The standard configuration consists of the
various hardware, operating systems, applications and software libraries. Each
of these are detailed below:

Primary Server

The primary server is used to host the REST interface (Apache, Django,
MySQL), central logging system (RabbitMQ, Logstash, Graylog2), the video
encryption module, the Jax.TV tracker and the usage tracking (MongoDB
along with the REST interface). The server consists of a virtual machine run-
ning on VMware vSphere, using Ubuntu Linux Server as a guest operating
system. The virtual machine is equipped with a single 2,3 GHz vCPU and
1024 MB of RAM. A comprehensive list details the server in Section A.1.

This server is hosted on the same LAN as the client devices, and in order
to simulate low bandwidth Internet conditions, Apache is configured to limit
each connecting client to 512 Kbps. All traffic on the LAN is unaffected except

75

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 76

the traffic to the REST interface. For more detail on the Apache configuration
refer to Appendix B.1.

Monitoring Server

The monitoring server is used to monitor the primary server and a client
device. Additionally, the server is also acting as a super-peer on the network.
The server consists of a virtual machine running on the same VMware vSphere
host as the primary server, with Ubuntu Linux as the guest operating system.
The virtual machine is equipped with a single core 2,3 GHz vCPU and 4096
MB of RAM. Again, a complete list of details is given in Section A.2

Macintosh Client

A 13 inch 2010 Apple Macbook Pro was used as development device, as well
as the device used for the majority of the tests listed below. The Macbook
Pro includes a 2,4 GHz Intel Core 2 Duo CPU, with 8 GB of DDR3 memory,
a NVIDIA GeForce 320M graphics card with 256 MB of memory and 7200
RPM hard disk drive. The operating system used is Mac OS X Lion 10.7.3.

Linux Client

The Linux client environment is running Ubuntu Linux 12.04 in a virtualised
environment with 1024 MB of RAM.

Windows Client

The Windows client environment is running Microsoft Windows 7 64-bit, and
is also in a virtualised environment with 1024 MB of RAM.

6.2 Component Testing

This section details the tests of the individual components that make up the
platform.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 77

6.2.1 Erasing Decrypted Data

Objective

The objective of this test is to ensure that the video data that is decrypted for
playback (in the temporary file) is properly erased during playback. Although
the implementation uses programming libraries to achieve this, it still needs
to be validated.

In order to validate that the decrypted data is properly erased, a compari-
son between the erased file and original unencrypted file is required. Unfortu-
nately, available comparison tools are mostly aimed at short-length text files.
In order to compare these two files, we created a test to measure if sections of
the file contain unencrypted video data.

As stated in Section 5.2.4, the decrypted video data in a block is XORed
with a pseudorandom binary sequence of the same length and produces a new
array (erasure sequence) which is written to the same position in the temporary
file. We know that XORing a statistically independent pseudorandom binary
sequence with any other binary sequence will produce a new statistically inde-
pendent pseudorandom binary sequence of 1’s and 0’s. In this sequence, the
probability of a one occurring is the same as the probability of a zero occur-
ring: P (0) = 0.5 and P (1) = 0.5. Furthermore, all symbols are statistically
independent of each other so: P (0)N = 0.5N and P (1)N = 0.5N where N is
the number of sequential symbols.

With the knowledge of what to expect in the erased file, we XOR the erased
file with the original unencrypted video file. This procedure is illustrated in
Figure 6.1. If the erasure process should fail, the imperfectly erased file will
contain blocks of content that are statistically dependent on the original file
(typically containing blocks filled with original video data). When this file is
XORed with the original unencrypted video file, corresponding blocks (where
erasure failed) will contain sequences of 0’s.

As described in the client implementation Section 5.2.4, when the video
playback stops the temporary file is removed from the hard drive and the for
that reason the last block is not erased. For this test, the client application is
modified not to remove the file at the end of playback. Because the last block
is not erased, the last block is not used in the test.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 78

Decrypted Sequence

Pseudorandom Binary Sequence

Erasure Sequence

Original Unencrypted Sequence

Test Sequence

XOR

XOR
Te

st
 P

ro
ce

ss
Er

as
e 

Pr
oc

es
s

Figure 6.1: A graphical representation of the erase test procedure.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Modify the client application not to remove the file after playback.

3. Play a video using the client application.

4. Remove the last block from both the original unencrypted file and the
temporary file, then perform a bitwise XOR of the two files.

5. Tally the frequency of the different zero length sequences produced from
the XOR in the previous step.

Results

Figure 6.2 plots the probability of a sequence of zeros occurring versus the
length of that sequence.

Discussion

The file used for the test is 49,6 MB H.264 encoded nine minute and fifteen
seconds video. With a bit rate of 714 Kbps, a sequence of zeros that exceeds
714000 in length with result in at least one second of video data that is not
erased.

From the Figure 6.2 it is clear that the erasing procedure is successful as
the longest sequence of zero bits that occurred is 25 sequential bits. This is

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 79

0 5 10 15 20 25
10−9

10−7

10−5

10−3

10−1

Bit sequence length

P
ro
ba

bi
lit
y

Pseudorandom sequence
Result sequence

Figure 6.2: Probability of zero sequences vs the bit sequence length.

much lower than the sequence length of 714000 required to view one second
of video. Additionally, the probability determined from the erased file closely
matches probability of a pseudorandom sequence, as we expected with the
erasing procedure.

6.2.2 Video Search

Objective

The objective of this test is to evaluate the effectiveness of the full text search
server. Both the accuracy of the results, as well as the speed with which the
results are returned, will be measured. The test will require a large collection
of video entries to be indexed by Sphinx for meaningful results. In order to
achieve this, the database was populated with a maximum of 1 million entries
randomly selected from IMDB’s database. IMDB [85] is an online database
containing information about movies, TV series and actors, that is gathered
from the studios and also submitted by users visiting the website.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Define a list of all the videos indexed by Sphinx.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 80

3. Iterate through the list using each entry as a query for Sphinx and collect
the results for each query, as well the time taken to receive the results.

4. Check to see if each query was listed in the returned results and compare
the latency.

Results

The results from the test are tabulated in Table 6.1. Each row represents
the number of entries within the indexed database, the average time it took
to perform a query with Sphinx, the average number of results each query
returned and the number of errors or invalid results that are returned.

Table 6.1: Comparison of Sphinx search performance vs database size.

Database size Average time Average Results Errors
1,000 38.81ms 1.549 0
10,000 42.66ms 7.915 0
100,000 50.6ms 24.478 0
1,000,000 79.06ms 90.613 1

Discussion

From the results it is clear that Sphinx performs well in a development en-
vironment where the resources are shared amongst other services such as the
centralised logging. Sphinx almost always returns meaningful results, with the
exception of one query. During the test with a database containing 1 million
entries one error occurred. The queried term ‘<–->’, which is possibly a mis-
take in IMDB’s collection, caused Sphinx to generate a server side error. This
happened despite escaping all queries using the Sphinx API. Although an error
did occur, it is one query out of a million and does contain unusual characters
for a video title. The average time to perform searches scales impressively as
the database size increases.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 81

6.2.3 Cross-Platform Support

Objective

The object of this experiment is to test cross-platform capabilities of the client
application. Video playback within the client application relies on the Phonon
module within the Qt framework. Phonon itself relies on various backends for
the different operating systems. For this experiment the client application will
be tested on Microsoft Windows 7, Ubuntu Linux 12.04 and Mac OS X 10.7.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Determine the default Phonon backend on each operating system.

3. Using the client application, test the video playback on each operating
system.

Results

Table 6.2 lists the backends that are used by default for the different operating
systems, as well as playback support using that backend.

Table 6.2: Phonon backend support on the different operating systems.

Operating System Backend Playback
Windows DirectShow 5

Ubuntu GStreamer 3

OS X QuickTime 3

Discussion

The client application is only able to provide video playback on Mac OS X
and Ubuntu Linux. Using Windows Media Player it is possible to playback
video using the H.264 codec that is used for the test. Unfortunately, because of
problems with the DirectShow Phonon backend on Windows, it is not possible
achieve video playback through the client application. It is possible to achieve
playback on Windows by installing K-Lite Codec Pack [86], a third party
codec utility for Windows, however the application aims to achieve native

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 82

codec support without the need for additional utilities. In order to resolve this
issue, native applications must be created for each operating system on which
the client application needs to run.

6.2.4 Codec Support

Objective

One of the specifications of the platform is to be video codec independent. The
platform design allows for this; however, we need to test whether the prototype
application meets this specification. Although third party utilities allow for
additional codecs to be supported, this test focuses on the codecs that work
with the Qt framework and Mac OS X natively. This test will be performed
on the Macintosh client, as the majority of the development was performed on
this client.

Protocol

A variety of video codecs were required to test the application. Fortunately,
MPlayer [87], which is an open source video player, makes a collection of videos
of a variety of codecs available on their website. These videos contain codecs
that are common and videos that have obscure codecs or are purposefully
damaged (such as missing frames). Ninety videos were selected from the web-
site and analysed using VideoSpec [88] for compatibility with Mac OS X. The
remaining steps are detailed below:

1. Perform the standard set up described in Section 6.1.

2. Analyse each video using VideoSpec to determine the bitrate, codec and
container.

3. Using standard file playback, attempt to play the video using the Qt
video widget.

4. Encrypt each video that successfully plays on the Qt video widget.

5. Test the compatibility of each video on the platform application.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 83

Results

Table 6.3 tabulates the results for this test but only lists the videos that were
able to play on the Qt video widget. For each video, the number, container and
codec is given. Along with this the compatibility with the Qt video widget,
the platform encryption method and the platform application is given.

Only video number 76 failed to be encrypted. The reason for this is that the
encryption method uses the Hachoir Python library to determine the duration
of the video, and was unable to determine the duration of the video. Without
the video duration it is not possible for the encryption module to calculate the
timer synchronisation.

Table 6.3: Video player codec support.

No. Container Codec Qt Encryption Jax.TV
13 MP4 H.264/MPEG-4 AVC 3 3 5

16 MOV DV (PAL) 3 3 5

18 MOV DVCPRO (PAL) 3 3 5

19 MOV DVCPRO 50 (PAL) 3 3 5

22 MOV Photo - JPEG 3 3 5

27 MOV Apple ProRes 422(HD) 3 3 5

76 MOV Component Video - YUV422 3 5 n/a
88 MP4 MPEG-4 Video 3 3 3

97 MOV H.264/MPEG-4 AVC 3 3 3

Discussion

From Table 6.3 we can see that using standard file based playback with the
Qt video widget is supported (on Mac OS X) for all the videos that are listed.
However, once the videos are encrypted and played back using the platform
application (that makes use of the Qt video widget), only two codecs are
supported.

A possible explanation for this is that the Qt video widget might require
information from the entire file or from more than the two blocks that are
decrypted any any one given moment. This reiterates the need for a native
application.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 84

6.2.5 Playlist Caching

Objective

Playlist caching is put in place to improve the performance of populating the
playlist because of the disk intensive MD5 hash sums that are calculated for
each video. The objective of this test is to measure the performance increase
that the cache provides when populating the playlist.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Launch the client application on the Macintosh client, populate the
playlist with no previous cache and measure the time.

3. Launch the client application and populate the playlist again, this time
using the cache created in the previous iteration and measure the time.

4. This process is repeated for playlists with 10, 20, 30, 40 and 50 videos.

5. Compare the difference between a ‘cold start’ and cached start.

Results

The results of the test are given in Table 6.4 where each row in the table
represents an iteration with a particular playlist size. The size of the playlist
is given along with the cold start duration and cached start duration in minutes
and seconds. The smallest test of 10 videos contains 16.2 GB of video, while
the largest test used a video collection of 80.98 GB.

Table 6.4: Comparison between ‘cold start’ and cached start playlist population.

Entries Size Cold start Cached start
10 16.2 GB 02:51 00:02
20 32.39 GB 05:17 00:12
30 48.59 GB 08:43 00:24
40 64.78 GB 11:51 00:28
50 80.98 GB 14:47 00:30

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 85

Discussion

It is evident from the results that the playlist caching mechanism makes an
enormous difference in the time it takes to populate the playlist. As we ex-
pected, the MD5 hash sum is hard drive IO intensive, as the Macintosh client
reported an average data read of 90 Mbps.

The caching helps keep time to populate a playlist well under one minute
for a decent amount of video data. Since some video collections can be far
larger than 500 GB, this caching will scale well as the collection size increases.

6.2.6 Decryption Performance

Objective

Decryption performance is an important aspect of video playback as it en-
forces a real-time constraint on the procedure. Even though both encryption
and decryption procedures are similar in relying on the XOR operation, the
encryption process has no real-time constraint.

Two tests are carried out with the objective of evaluating the performance
of the decryption procedure. The first test evaluates the performance against
different bitrate videos. Here the encrypted video data needs to be decrypted
in a time frame that is shorter than the time needed to watch the video. The
second test compares the overall load between playing an encrypted video and
the original unencrypted video through the application.

The first test determines time required to encrypt a video file. This is
measured by the real time factor. The real time factor is given as

RTF =
P

I
(6.2.1)

where P is the time required to process the encryption and I is the duration
of the video clip. In an ideal situation a RTF greater than 1 will result in the
decryption lagging behind the playback of the video. Because resources have
to be shared on the computer, it would be safe to assume that a RTF smaller
than 0.8 will not result in any video lagging. This provides a buffer of 20% for
other processes to share the system resources. The resolutions and bit rates
used for the test are listed in the Table 6.5.

The second test is conducted by modifying the video player to play un-
encrypted video files and compare the system resource usage with that of

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 86

encrypted video playback. The video used for this test is an H.264/MPEG-4
AVC encoded video with a bitrate of 10.3 Mbps and a resolution of 1920x1080
(HD). The system resources are monitored with a cloud based monitoring ser-
vice called Datadog [89] that is installed on the Macintosh client.

Protocol

Test 1: Decryption speed:

1. Create a collection of encrypted files at different bitrates and store the
keys on testing device.

2. Record the time required to decrypt each encrypted video.

3. Compare the RTF of each video.

Test 2: System resource usage:

1. Perform the standard set up described in Section 6.1.

2. Monitor the system resource usage using Datadag.

3. Modify the application to play regular video files.

4. Compare the resource usage.

Results

Table 6.5 lists the real-time factor for decrypting videos of different bitrates.
Figure 6.3 shows the CPU usage and memory usage of the Macintosh client for
playing unencrypted video content and playing video content that is decrypted
in real-time. The test for playing unencrypted video starts at 14:10 in the
figure, while the test for playing encrypted video content begins just after
14:20.

Discussion

For the first test it is important to bear in mind when looking at the results
that these values only factor in the actual decryption procedure of reading in
the data from the file, generating the sequence for the one time pad, performing

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 87

Table 6.5: Decryption real-time factor performance versus bitrate.

Bitrate RTF
997 Mbps 9.026
96.1 Mbps 0.960
70.8 Mbps 0.707
46.7 Mbps 0.469
22.7 Mbps 0.227
18 Mbps 0.180
13.3 Mbps 0.134
8850 Kbps 0.098
4530 Kbps 0.049
1899 Kbps 0.020
893 Kbps 0.008
386 Kbps 0.006

Figure 6.3: System resource usage during video playback.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 88

the XOR and saving the data to file again. However, the results do provide an
indication of the maximum bitrate that is possible to decrypt in real-time.

In test two, we see that the application, when modified to play unencrypted
video, has an average CPU usage of 40%. When encrypted video content is
played, the graph remains around 40% but contains small spikes in CPU usage.
This is attributed to the decryption process that is decrypting new blocks and
erasing played blocks of video data in set intervals.

6.2.7 Network Performance

Objective

This test performs an evaluation of the network traffic transmitted between
the client and server. The objective of the test is to measure the network
traffic (excluding the video data) and to ensure that communication between
the client and the REST interface is secured. Network packet sniffing software
is used to perform this test and if the network traffic is secured, then the
packet sniffing software will reveal no information about the network traffic
other than the source and destination.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Set up the Wireshark [90] network protocol analyser on the client to
monitor traffic between the client and the server.

3. Launch the client application and play a video from start to finish.

4. Analyse the results from Wireshark.

Results

Table 6.6 provides a summary of the network traffic recorded on Wireshark.
All TCP traffic between the client and the server consisted of three protocols:
HTTPS (port 443), the Jax.TV transfer protocol (port 3001) and the AMQP
protocol for RabbitMQ (port 5672). It is important to note that the logging
traffic over the AMQP protocol is not secured. This is an acceptable design

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 89

decision, as no sensitive information such as user passwords or video keys are
present in the log data.

By analysing individual HTTPS packets, Wireshark revealed that transport
layer security (TLS) version 1 is used for the encryption and the entire payload
is encrypted. Both traffic sent to and received from the REST interface is
encrypted.

Table 6.6: Network traffic summary.

Packets 1167
Bytes 211961
Average traffic 0.007 Mbps
Average packet size 181.629 Bytes
TCP ports used 443, 3001, 5672

Discussion

Using Wireshark and filtering all the packets sent and received between the
client and the server, we are able to determine all packets are sent using the
HTTPS protocol. Because the packets are encrypted using TLSv1, all the
traffic to the REST interface is secured and will not be vulnerable to packet
sniffing and man-in-the-middle attacks. A second and very positive result from
this test reveals that the bandwidth required between the client and the server
is very low. With an internet connection of 1Mbps, the key streaming would
result in a 0.007% utilisation. This indicates that the low Internet bandwidth
requirement set out by the design criteria is met.

6.3 Integration Testing

The tests in this section evaluate the integration of the individual compo-
nents and the platform as whole, highlighting important features. This test
will comprise of the primary server, the monitoring server and a number of
client applications running on a variety of operating systems. These operat-
ing systems include Mac OS X and virtualised Windows and Linux operating
systems. Although these client applications will be running concurrently with
users testing them, specific tests are performed during the platform test on a
single Macintosh client.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 90

6.3.1 Video Playback

Objective

Video playback is the primary function of the client application and the ob-
jective of this test is to evaluate the playback environment for the user.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Log in to the client application.

3. Start playing a video.

Results

The client application allows any video in the playlist to be played, and pro-
vides volume control, play, pause, mute and full screen functionality. The
application indicates progress with the seek slider and video time display.

One cause for concern introduced by file playback is the delay when starting
to play a video. The video player must create a temporary (duplicate) file
before playback can begin. This process varies by the size of the video file but
can take up to 25 seconds for a 540 MB file.

6.3.2 Video Search and Download

Objective

The objective of this test is to evaluate video search and download on the client
application. The test also describes the procedure in which the user performs
a search and download.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Log in to the client application.

3. In the search field enter the search query and click search.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 91

4. The tabbed widget will switch to the video search tab and list the results.
Double click on a video to start downloading.

5. Monitor network throughput during the download.

6. Wait for the download to complete and repeat steps 3 through 5 with
different video files sizes.

7. Repeat steps 3 through 6 adding an additional seeding peer on each
iteration.

Results

Figure 6.4 graphs the results for the download test. The figure compares the
average download rates of three different files by adding peers to the network.
The speeds listed in the figure are given in megabytes per second [MBps].

1 Peer 2 Peers 3 Peers

2

4

6

8

10

4,17

7,3

9,73

3,66

4,94

7,25

3,04

4,13
4,93

D
ow

nl
oa
d
ra
te

[M
B
ps
]

30,6 MB 341,9 MB 775,1 MB

Figure 6.4: Downloading performance of three different file sizes when adding peers
to the network.

Discussion

The test is performed on a gigabit local area network and the performance of
the underlying Jax.TV protocol performs as expected and increases as addi-
tional seeding peers are added to the network. During a video download from
one peer the download rate is significantly lower than with multiple peers.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 92

This can be attributed to the overhead in the peer-to-peer protocol that is op-
erating in a mode that is actually client-server based. The performance does
decrease slightly as the file size increases but can be fixed with updates to the
underlying Jax.TV protocol. It is important to remember when looking at the
results that Jax.TV is protocol technology demonstrator and not production
ready.

The download manager of the client application executed as expected,
queueing video downloads and providing the user with an indication of which
videos are still in the queue to be downloaded. The videos that finish down-
loading appear in the playlist after the playlist is refreshed every 30 seconds.

6.3.3 Alternative Video Downloading

Objective

One of the specifications of the project is to allow videos to be downloaded
through other transport mechanisms such as USB flash drives or external hard
drives. For this test, the client application is tested to see whether is allows
videos to be loaded from other sources.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Log in to the client application.

3. Allow the playlist to populate with existing video content on the com-
puter.

4. Once the playlist is populated, copy a video that is cached on one peer
to this peer using a USB flash drive. The video must be copied into the
media directory.

5. Wait for application to include the video as part of the playlist.

Results

This functionality of the application worked exactly as prescribed. Thirty
seconds after the playlist was initially populated and the downloaded video
was added, it appeared in the playlist.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 93

6.3.4 Usage Tracking

Objective

Usage tracking is a specification of the platform that allow business models to
be applied to the platform. This objective of this test ensure that the both
real-time and long-term statistics are tracked accurately.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Log in to the client application.

3. Perform a search for a video.

4. Download a video from the search results.

5. Wait for the download to complete and play the video.

6. Logout of the client application.

7. During each one of steps monitor usage tracking.

Results

No user interface is available for the usage tracking and requires use of the
command line facilities for both MonogoDB and MySQL. For the long-term
and the real-time statistics, each step mentioned above was accurately recorded
in the respective databases.

One issue that did arise within the statistics was date and time synchro-
nisation between clients. In order to move as much processing as possible to
clients, the date and time acquisitions are done on the client. This is posted as
an entire message to the REST interface and saved directly into the database.
During the test, one of the clients was accidentally configured for an incorrect
time zone. For the this reason the information sent to the REST interface was
off by two hours.

It is also possible that the date and time on clients may not be accurate.
In order to address these issues, the REST interface must be used to acquire
the date and time, as the REST interface can be configured to synchronise to
time servers.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 94

6.3.5 Central Logging

Objective

One of the key features of the platform is the ability to central view logs from
servers and clients. The objective of this test to evaluate the functionality of
this feature.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Monitor the logs on Graylog2 during the integration test.

Results

Graylog2 is configured on the platform to split the logs into different streams.
Streams are created for the all the logs sent by the client applications, Django
error logs, Django debugging logs, the Jax.TV tracker and the encryption logs.

6.3.6 Modifying Video Information

Objective

An important feature for platform administrators is the ability to modify video
information and mark the availability of videos. The objective of this test is
to test this functionality.

Protocol

1. Perform the standard set up described in Section 6.1.

2. Log in to the client application.

3. Search for a video that is not marked as available.

4. Mark the item as available in the Django admin panel and repeat the
search on the client application.

5. The process but mark the video as available directly from the MySQL
database.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 95

Figure 6.5: A screen shot of adding a user through the Django administration
panel.

Results

The video information that is modified through both the Django admin panel
and the database directly, reflects immediately on the client application. This
applies to the video metadata information as well.

6.4 Platform Testing

The final test performs a qualitative test in order to provide an overview of all
the components of the project operating together as the entire platform. The
test starts off by looking at the client application, before demonstrating the
administrative features of the platform. This section includes screen shots of
the administrative interface and the client application, however, it is difficult
to provide a complete picture of the platform. For this reason a video screen
recording is available on YouTube at http://youtu.be/4U_tbCBCWKI. Addi-
tionally, the source code for the project has been made available on Dropbox
at https://www.dropbox.com/sh/nhb5rz67ypi6jgd/5oYW2X87Q1.

The test set up follows the procedure detailed in Section 6.1 and includes
two Macintosh clients and one Linux client. The first requirement for the test
is to create users for each client via the Django Admin Panel. A screenshot of
adding a user is given in Figure 6.5.

With all the users created, the next step is to launch the client application
and log the users into the three applications. Once the users are logged in,
they are presented with an empty playlist. In order to download video content,
a search is performed using the application and the results are listed in the
search tab. Double clicking on any entry in the search results, places the

Stellenbosch University  http://scholar.sun.ac.za

http://youtu.be/4U_tbCBCWKI
https://www.dropbox.com/sh/nhb5rz67ypi6jgd/5oYW2X87Q1


CHAPTER 6. PLATFORM EVALUATION 96

Figure 6.6: Real-time information about users logged onto the platform.

video on the download queue. Once a few videos are placed on the download
queue, each video remains listed on the downloads queue until the download is
completed. The user also has the option of downloading a video, that belongs
to the platform, using alternative distribution mechanisms. Examples of these
include; copying videos using flash drives, or downloading videos from other
users using FTP or HTTP downloads. These videos need to be placed in the
media directory in order to be scanned and listed in the playlist.

The downloaded videos appear in the playlist after they have finished down-
loading and the playlist is updated. Now the videos are ready for playback by
the user and the user can play any video that is listed in the playlist. During
playback the user has the option to pause and resume playback, enter and exit
full screen mode and adjust or mute the volume of the video. Additionally, all
videos that are listed in the playlist are made available for uploading to other
peers on the network.

In order to monitor real-time activity of the clients, the MongoDB shell is
used. All the real-time information is stored under one database using multiple
collections. Listing all entries in the logged_in collection reveals all the users
that are currently logged onto the platform and is illustrated in Figure 6.6.

Figure 6.7 provides the real-time information about the video data that
is cached by the clients on the network. This information is stored in the
cache collection within MongoDB, while the real-time information about users
watching videos is stored in the playing collection. Figure 6.8 indicates that
at the point of the screen shot during the test, two users were watching the
same video, while a third was watching a different video.

MySQL is used for gathering and retrieving information stored over a long
period of time. Figure 6.9 shows the MySQL shell being used on the primary
server to access video searches that have been performed by users on platform,
stored in the table_video_searches table within the database.

In order to view the centralised logging system, Graylog2 can be accessed

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 97

Figure 6.7: Real-time information about video data cached by clients on the plat-
form.

Figure 6.8: Real-time information about videos currently being played on the
platform.

Figure 6.9: MySQL shell being used to access video searches performed by users.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 98

Figure 6.10: Graylog2 web interface displaying the log message stream.

Figure 6.11: Graylog2 web interface displaying the log message analytics with the
test period indicated at (a).

via the admin portal. Graylog2 provides a authenticated, graphical interface
to view and categorise log messages. All log messages are filtered into streams
by Graylog2 according to their categories. The streams are visible on the right
of Figure 6.10 and includes streams for all the client log messages, the Django
error log messages, the Django informative log messages, the Jax.TV tracker
log messages and the log messages produced by the video encryption module.
Graylog2 also provides analytics with regard to message throughput on the
service and this is given in Figure 6.11.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 99

Munin was used to monitor the primary server during the final test. The
graphs that Munin produces include, Apache web server volume (Figure 6.12),
the CPU usage (Figure 6.13), the memory usage (Figure 6.14), and the pri-
mary server’s network traffic (Figure 6.15). Although the primary server is a
virtualised operating system and hosts various services on the same system,
the network traffic and load on the server is very low during the test.

Figure 6.12: Munin displaying Apache volumes during the test period indicated at
(a).

6.5 Summary

This chapter presented the results found in evaluating the core components of
the platform and the prototype application. Most importantly, the security
aspects of the platform design performed as expected. We are able to fully
encrypt a video file, decrypt blocks of the file in real-time for playback and
erase decrypted data. Furthermore, an evaluation procedure was developed to
test if data is correctly erased with random data.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 100

Figure 6.13: Munin displaying CPU usage during the period indicated at (a).

Figure 6.14: Munin displaying memory usage during the test period indicated at
(a).

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6. PLATFORM EVALUATION 101

Figure 6.15: Munin displaying network traffic during the test period indicated at
(a).

Stellenbosch University  http://scholar.sun.ac.za



Chapter 7

Conclusion

The aim of this project was to design and implement a video entertainment
platform that allows users to watch high quality video content across multiple
devices. The outcome is a platform that relies on peer-to-peer sharing and a
security scheme that allows this peer-to-peer nature of sharing while preventing
piracy and allowing the monitoring of video usage.

7.1 Evaluation

We designed and implemented a platform that contains a peer-to-peer dis-
tribution mechanism that is based on the GoalBit platform but is also free
to allow the exchange of video data through other distribution mechanisms.
These can include BitTorrent and users sharing video files using external hard
drives or USB flash drives.

In order to secure the video content, we created an encryption scheme that
is based on the one-time pad to encrypt the video data on a bit level and uses a
low bandwidth connection to a key server so that the keys can be used to unlock
the video file. The encryption scheme breaks the file into blocks and encrypts
each block individually. This way, if an attacker is able to crack a block or
guess a key, the whole video file is not compromised. Because the platform
allows the video content to freely be distributed, a real-time connection to the
key server prevents the content from being unlocked and watched outside of
the platform.

In order to play back encrypted content, we created a prototype client
application to demonstrate video playback and additional services like search

102

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 7. CONCLUSION 103

and video download. The client application provides the only means for a
registered user on the platform to watch an encrypted video. The prototype
application allows the user to search for available videos and download these
videos. The client application also seeds video data back onto the network for
other users to download.

For feasible business models to be applied to the platform, we created a
way for platform administrators to manage the content on the platform and
monitor the usage and adoption of video content amongst users. Platform
administrators have the ability to add or revoke content from the platform.
Platform administrators are also able to view real-time statistics about users
logged into the platform, videos being played and video files that are cached
on users’ devices. Furthermore, long-term statistics are gathered about user
logins, as well as video searches, downloads and plays.

Finally, the platform serves as a modular extension of Jax.TV and uses
existing technologies and products (where available) to achieve this. Where
existing solutions were not readily available, such as support for real-time
monitoring, they were created specifically for the platform.

7.2 Contributions

This project uses existing technologies and solutions to create a video enter-
tainment platform that:

• uses peer-to-peer to distribute video data;

• offers an alternative to existing DRM solutions;

• that is able to support business models;

• offers a video encryption scheme that is video codec independent; and

• creates a platform that addresses the need for high quality video distri-
bution in Internet bandwidth restricted regions.

7.3 Recommendations

Although this project only focused on downloaded video using Jax.TV, future
work can allow the security implementation to be extended to real-time video

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 7. CONCLUSION 104

streaming on Jax.TV. This would require additional functionality, such as
real-time video encryption capabilities on the streaming devices and real-time
video decryption on the client application. Due to the design proposed in
this project, a redesign of the encryption scheme is not required to implement
real-time video streaming.

We also recommend that research be done into advertising mechanisms for
the platform as a revenue stream. Finally, recommendation systems should
be incorporated with network management to automatically download recom-
mended videos for users when the network is idle.

7.4 Summary

The platform developed in this project provides an alternative to users in
bandwidth restricted areas to high quality video that would otherwise only be
able to users with high capacity Internet bandwidth. The platform provides
a base to be customised and extended with features where required by the
individual deployment.

Stellenbosch University  http://scholar.sun.ac.za



Bibliography

[1] Netflix Inc.: Netflix - Watch TV Shows Online, Watch Movies Online. Available:
http://www.netflix.com/, 2011. [Online: Accessed 12 March 2011].

[2] Disney: The Walt Disney Studios. Available: http://www.

waltdisneystudios.com, 2012. [Online: Accessed 05 December 2012].

[3] Farivar, C.: Disney anoints Netflix as its exclusive distributor in 2016.
Available: http://arstechnica.com/business/2012/12/disney-anoints-

netflix-as-its-exclusive-distributor-starting-in-2016/, 2012. [On-
line: Accessed 05 December 2012].

[4] YouTube LLC: YouTube - Broadcast Yourself. Available: http://www.

youtube.com/, 2011. [Online: Accessed: 12 March 2011].

[5] Apple Inc.: Apple - iTunes. Available: http://www.apple.com/itunes/what-
is/, 2012. [Online: Accessed 05 October 2012].

[6] MultiChoice Africa (Pty) Ltd: Multichoice | History. Available: http:

//www.multichoice.co.za/multichoice/view/multichoice/en/page44122,
2012. [Online: Accessed 05 October 2012].

[7] YouTube LLC: About YouTube. Available: http://www.youtube.com/t/

about_youtube, 2012. [Online: Accessed 05 October 2012].

[8] YouTube LLC: Our Solutions - YouTube. Available: http://www.youtube.

com/yt/advertise/our-solutions.html, 2012. [Online: Accessed: 28 October
2012].

[9] YouTube LLC: YouTube Timeline. Available: http://www.youtube.com/t/

press_timeline, 2012. [Online: Accessed 05 October 2012].

[10] IOC: IOC to live stream London 2012 in 64 territories on its YouTube
channel. Available: http://www.olympic.org/news/ioc-to-live-stream-

105

Stellenbosch University  http://scholar.sun.ac.za

http://www.netflix.com/
http://www.waltdisneystudios.com
http://www.waltdisneystudios.com
http://arstechnica.com/business/2012/12/disney-anoints-netflix-as-its-exclusive-distributor-starting-in-2016/
http://arstechnica.com/business/2012/12/disney-anoints-netflix-as-its-exclusive-distributor-starting-in-2016/
http://www.youtube.com/
http://www.youtube.com/
http://www.apple.com/itunes/what-is/
http://www.apple.com/itunes/what-is/
http://www.multichoice.co.za/multichoice/view/multichoice/en/page44122
http://www.multichoice.co.za/multichoice/view/multichoice/en/page44122
http://www.youtube.com/t/about_youtube
http://www.youtube.com/t/about_youtube
http://www.youtube.com/yt/advertise/our-solutions.html
http://www.youtube.com/yt/advertise/our-solutions.html
http://www.youtube.com/t/press_timeline
http://www.youtube.com/t/press_timeline
http://www.olympic.org/news/ioc-to-live-stream-london-2012-in-64-territories-on-its-youtube-channel/166482
http://www.olympic.org/news/ioc-to-live-stream-london-2012-in-64-territories-on-its-youtube-channel/166482


BIBLIOGRAPHY 106

london-2012-in-64-territories-on-its-youtube-channel/166482, 2012.
[Online: Accessed 19 September 2012].

[11] MultiChoice Africa (Pty) Ltd: Video on Demand - DStv on Demand. Avail-
able: http://ondemand.dstv.com/find-out-more, 2012. [Online: Accessed 05
October2012].

[12] MultiChoice Africa (Pty) Ltd: BoxOffice | Frequently asked questions. Avail-
able: http://boxoffice.dstv.com/help, 2012. [Online: Accessed 05 October
2012].

[13] Jensen, M.: Lowering the costs of international bandwidth in Africa. Association
for Progressive Communications, San Francisco, 2006.

[14] International Telecommunication Union: Key statistical highlights: ITU data
release June 2012. Available: http://www.itu.int/ITU-D/ict/statistics/

material/pdf/2011Statisticalhighlights_June_2012.pdf, 2012. [Online:
Accessed 06 October 2012].

[15] Bertinat, M.E., De Vera, D., Padula, D., Amoza, F.R., Rodríguez-Bocca, P.,
Romero, P. and Rubino, G.: GoalBit. In: Proceedings of the 5th International
Latin American Networking Conference on - LANC ’09, p. 49. ACM Press, New
York, New York, USA, 2009. ISBN 9781605587752.

[16] Bruwer, J.: Peer-to-peer video streaming over fast local networks. Unpublished.

[17] City of Cape Town: Gated development policy. Available: http:

//www.capetown.gov.za/en/planningandbuilding/Publications/

LandUseManagement/Documents/GatedDevelopmentPolicy.pdf, November
2007. [Online: Accessed 07 October 2012].

[18] Wireless User Groups South Africa. Available: http://www.wug.za.net, 2012.
[Online: Accessed 07 October 2012].

[19] Cape Town Wireless User Group. Available: http://www.ctwug.za.net/

content.php, 2012. [Online: Accessed 09 October 2012].

[20] Pretoria Wireless User Group. Available: http://www.ptawug.co.za, 2012.
[Online: Accessed 09 October 2012].

[21] Biddle, P., England, P., Peinado, M. and Willman, B.: The darknet and the fu-
ture of content distribution. In: ACM Workshop on Digital Rights Management,
vol. 6, p. 54. 2002.

Stellenbosch University  http://scholar.sun.ac.za

http://www.olympic.org/news/ioc-to-live-stream-london-2012-in-64-territories-on-its-youtube-channel/166482
http://www.olympic.org/news/ioc-to-live-stream-london-2012-in-64-territories-on-its-youtube-channel/166482
http://www.olympic.org/news/ioc-to-live-stream-london-2012-in-64-territories-on-its-youtube-channel/166482
http://ondemand.dstv.com/find-out-more
http://boxoffice.dstv.com/help
http://www.itu.int/ITU-D/ict/statistics/material/pdf/2011 Statistical highlights_June_2012.pdf
http://www.itu.int/ITU-D/ict/statistics/material/pdf/2011 Statistical highlights_June_2012.pdf
http://www.capetown.gov.za/en/planningandbuilding/Publications/LandUseManagement/Documents/Gated Development Policy.pdf
http://www.capetown.gov.za/en/planningandbuilding/Publications/LandUseManagement/Documents/Gated Development Policy.pdf
http://www.capetown.gov.za/en/planningandbuilding/Publications/LandUseManagement/Documents/Gated Development Policy.pdf
http://www.wug.za.net
http://www.ctwug.za.net/content.php
http://www.ctwug.za.net/content.php
http://www.ptawug.co.za


BIBLIOGRAPHY 107

[22] Jamkhedkar, P. and Heileman, G.: Digital rights management architectures.
Computers & Electrical Engineering, vol. 35, no. 2, pp. 376–394, 2009.

[23] BitTorrent.org: The BitTorrent Protocol Specification. Available: http://www.
bittorrent.org, 2008. [Online: Accessed 14 February 2012].

[24] DC++ your files, your way, no limits. Available: http://dcplusplus.

sourceforge.net, 2012. [Online: Accessed 15 October 2012].

[25] Tanenbaum, A.S.: Computer Networks. 4th edn. 2005. ISBN 0-13-038488-7.

[26] Parameswaran, M., Susarla, A. and Whinston, A.: P2P networking: an infor-
mation sharing alternative. Computer, vol. 34, no. 7, pp. 31–38, 2001.

[27] Cohen, B.: BitTorrent Protocol Specification. Available: http://bittorrent.
org/beps/bep_0003.html, 2008. [Online: Accessed 05 August 2012].

[28] Cohen, B.: Incentives build robustness in BitTorrent. In: Workshop on Eco-
nomics of Peer-to-Peer systems, vol. 6, pp. 68–72. 2003.

[29] Li, J., Cui, Y. and Chang, B.: Peerstreaming: design and implementation of
an on-demand distributed streaming system with digital rights management
capabilities. Multimedia Systems, vol. 13, no. 3, pp. 173–190, 2007.

[30] Python Programming Language. Available: http://www.python.org, 2012.
[Online: Accessed 16 October 2012].

[31] Crockford, D.: The application/json Media Type for JavaScript Object Nota-
tion (JSON). RFC 4627, RFC Editor, July 2006.
Available at: http://www.rfc-editor.org/rfc/rfc4627.txt

[32] DECE LLC: Digital Entertainment Content Ecosystem Unveils UltraViolet
Brand. Available: http://www.uvvu.com/press/UltraViolet_Brand_Launch_
Release_07_20_2010_FINAL.pdf, 2010. [Online: Accessed 23 September 2012].

[33] Smith, E.: Disney Touts a Way to Ditch the DVD. Available: http://online.
wsj.com/article/SB20001424052748703816204574485650026945222.html,
2009. [Online: Accessed 23 September 2012].

[34] Liu, F. and Koenig, H.: A survey of video encryption algorithms. Computers &
Security, vol. 29, no. 1, pp. 3–15, February 2010. ISSN 01674048.

Stellenbosch University  http://scholar.sun.ac.za

http://www.bittorrent.org
http://www.bittorrent.org
http://dcplusplus.sourceforge.net
http://dcplusplus.sourceforge.net
http://bittorrent.org/beps/bep_0003.html
http://bittorrent.org/beps/bep_0003.html
http://www.python.org
http://www.rfc-editor.org/rfc/rfc4627.txt
http://www.uvvu.com/press/UltraViolet_Brand_Launch_Release_07_20_2010_FINAL.pdf
http://www.uvvu.com/press/UltraViolet_Brand_Launch_Release_07_20_2010_FINAL.pdf
http://online.wsj.com/article/SB20001424052748703816204574485650026945222.html
http://online.wsj.com/article/SB20001424052748703816204574485650026945222.html


BIBLIOGRAPHY 108

[35] Wen, J., Severa, M., Zeng, W., Luttrell, M. and Jin, W.: A format-compliant
configurable encryption framework for access control of video. Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 12, no. 6, pp. 545–
557, 2002.

[36] Iwata, T., Abe, T., Ueda, K. and Sunaga, H.: A DRM system suitable for
P2P content delivery and the study on its implementation. In: 9th Asia-Pacific
Conference on Communications (IEEE Cat. No.03EX732), vol. 2, pp. 806–811.
IEEE, IEEE, 2003. ISBN 0-7803-8114-9.

[37] Haskell, B., Puri, A. and Netravali, A.: Digital video: an introduction to MPEG-
2. Springer, 1996. ISBN 0412084112.

[38] Angelides, M.C. and Agius, H.: The Handbook of MPEG Applications. John
Wiley & Sons, Ltd, Chichester, UK, November 2010. ISBN 9780470974582.

[39] MacAulay, A., Felts, B. and Fisher, Y.: WHITEPAPER–IP Streaming of
MPEG-4: Native RTP vs MPEG-2 Transport Stream. 2005.

[40] Kwon, S., Tamhankar, A. and Rao, K.: Overview of H.264/MPEG-4 part 10.
Journal of Visual Communication and Image Representation, vol. 17, no. 2, pp.
186–216, April 2006. ISSN 10473203.

[41] Kaliski, B.: A survey of encryption standards. Micro, IEEE, vol. 13, no. 6, pp.
74–81, 1993.

[42] Katz, J. and Lindell, Y.: Introduction to Modern Cryptography, vol. 3. Chapman
& Hall/CRC, 2007.

[43] Qiao, L. and Nahrstedt, K.: Comparison of MPEG encryption algorithms. Com-
puters & Graphics, vol. 22, no. 4, pp. 437–448, 1998.

[44] Lan, X., Xue, J., Tian, L., Hu, W., Xu, T. and Zheng, N.: A Peer-to-Peer
Architecture for Live Streaming with DRM. January 2009.
Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4784956

[45] Matthews, R.: On the derivation of a “chaotic” encryption algorithm. Cryptolo-
gia, vol. 13, no. 1, pp. 29–42, 1989.

[46] Filippini, a., Bergamo, P. and Mazzini, G.: Security issues based on chaotic
systems. In: Global Telecommunications Conference, 2002. GLOBECOM ’02.
IEEE, vol. 1, pp. 148–152. IEEE, 2002.

Stellenbosch University  http://scholar.sun.ac.za

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4784956
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4784956


BIBLIOGRAPHY 109

[47] Cohen, J.E.: DRM and privacy. Communications of the ACM, vol. 46, no. 4,
pp. 46–49, April 2003. ISSN 00010782.

[48] Nokia: Forum Nokia Library. Available: http://library.forum.nokia.

com/index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID-

C29F822D-640C-47F0-89C3-92D17DA31D49.html, 2009. [Online: Accessed 16
March 2011].

[49] Subramanya, S. and Yi, B.: Digital rights management. IEEE Potentials,
vol. 25, no. 2, pp. 31–34, March 2006. ISSN 0278-6648.

[50] Microsoft: Microsoft PlayReady Content Access Technology White Paper.
Available: http://download.microsoft.com/download/b/8/3/b8316f44-

e7a9-48ff-b03a-44fb92a73904/Microsoft%20PlayReady%20Content%

20Access%20Technology-Whitepaper.docx, 2008. [Online: Accessed 29
March 2011].

[51] Kalker, T., Samtani, R. and Wang, X.: UltraViolet: Redefining the Movie
Industry? MultiMedia, IEEE, pp. 7–11, 2012.

[52] Irdeto: About Irdeto. Available: http://irdeto.com/about-irdeto.html,
2012. [Online: Accessed 17 November 2012].

[53] Rosenblatt, B.: Irdeto Sets Next Level in Video Content Protection.
Available: http://copyrightandtechnology.com/2011/03/07/irdeto-sets-

next-level-in-video-content-protection/, 2011. [Online: Accessed 31
March 2011].

[54] Irdeto: Irdeto ActiveCloak for Media - Core Technology The Key to Effective
Content Protection. Available: http://irdeto.com/documents/so_ac_ct_en.
pdf, 2012. [Online: Accessed 05 November 2012].

[55] Irdeto: Irdeto ActiveCloak for Media - Dynamic security for any Over-the-
Top service. Available: http://irdeto.com/documents/OV_AC_OTT_EN_L.pdf,
2012. [Online: Accessed 05 November 2012].

[56] de Kosnik, A.: Piracy is the future of television. University of California,
Berkeley, 2010.

[57] Python Software Foundation: About | Python. Available: http://www.python.
org/about/, 2012. [Online: Accessed 09 November 2012].

Stellenbosch University  http://scholar.sun.ac.za

http://library.forum.nokia.com/index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID-C29F822D-640C-47F0-89C3-92D17DA31D49.html
http://library.forum.nokia.com/index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID-C29F822D-640C-47F0-89C3-92D17DA31D49.html
http://library.forum.nokia.com/index.jsp?topic=/S60_5th_Edition_Cpp_Developers_Library/GUID-C29F822D-640C-47F0-89C3-92D17DA31D49.html
http://download.microsoft.com/download/b/8/3/b8316f44-e7a9-48ff-b03a-44fb92a73904/Microsoft%20PlayReady%20Content%20Access%20Technology-Whitepaper.docx
http://download.microsoft.com/download/b/8/3/b8316f44-e7a9-48ff-b03a-44fb92a73904/Microsoft%20PlayReady%20Content%20Access%20Technology-Whitepaper.docx
http://download.microsoft.com/download/b/8/3/b8316f44-e7a9-48ff-b03a-44fb92a73904/Microsoft%20PlayReady%20Content%20Access%20Technology-Whitepaper.docx
http://irdeto.com/about-irdeto.html
http://copyrightandtechnology.com/2011/03/07/irdeto-sets-next-level-in-video-content-protection/
http://copyrightandtechnology.com/2011/03/07/irdeto-sets-next-level-in-video-content-protection/
http://irdeto.com/documents/so_ac_ct_en.pdf
http://irdeto.com/documents/so_ac_ct_en.pdf
http://irdeto.com/documents/OV_AC_OTT_EN_L.pdf
http://www.python.org/about/
http://www.python.org/about/


BIBLIOGRAPHY 110

[58] Qt - a cross-platform application and UI framework. Available: http://qt.

nokia.com/products/, 2012. [Online: Accessed 19 August 2012].

[59] Git: Git. Available: http://git-scm.com, 2012. [Online: Accessed 09 Novem-
ber 2012].

[60] Fabric. Available: http://docs.fabfile.org/en/1.4.3/index.html, 2012.
[Online: Accessed 25 September 2012].

[61] Costello, R.L.: Building Web Services the REST Way. Available: http://www.
xfront.com/REST-Web-Services.html. [Online: Accessed 09 March 2012].

[62] Fielding, R.: Architectural styles and the design of network-based software ar-
chitectures. Ph.D. thesis, University of California, 2000.

[63] Django Software Foundation: Django. Available: https://www.

djangoproject.com, 2012. [Online: Accessed 25 September 2012].

[64] Ruby on Rails. Available: http://rubyonrails.org, 2012. [Online: Accessed
09 November 2012].

[65] VideoLAN: VideoLAN. Available: http://www.videolan.org/index.html,
2012. [Online: Accessed 25 September 2012].

[66] PyMedia: PyMedia. Available: http://pymedia.org, 2004. [Online: Accessed
09 November 2012].

[67] pyglet. Available: http://www.pyglet.org, 2012. [Online: Accessed 09 Novem-
ber 2012].

[68] ffvideo - A python wrapper around ffmpeg. Available: http://code.google.

com/p/ffvideo/, 2010. [Online: Accessed 09 November 2012].

[69] FFmpeg. Available: http://ffmpeg.org, 2012. [Online: Accessed 25 September
2012].

[70] Canonical Ltd.: Server | Ubuntu. Available: http://www.ubuntu.com/

business/server/overview, 2012. [Online: Accessed 29 August 2012].

[71] VMware Inc.: VMware vSphere. Available: http://www.vmware.com/

products/datacenter-virtualization/vsphere/overview.html, 2012. [On-
line: Accessed 29 August 2012].

Stellenbosch University  http://scholar.sun.ac.za

http://qt.nokia.com/products/
http://qt.nokia.com/products/
http://git-scm.com
http://docs.fabfile.org/en/1.4.3/index.html
http://www.xfront.com/REST-Web-Services.html
http://www.xfront.com/REST-Web-Services.html
https://www.djangoproject.com
https://www.djangoproject.com
http://rubyonrails.org
http://www.videolan.org/index.html
http://pymedia.org
http://www.pyglet.org
http://code.google.com/p/ffvideo/
http://code.google.com/p/ffvideo/
http://ffmpeg.org
http://www.ubuntu.com/business/server/overview
http://www.ubuntu.com/business/server/overview
http://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
http://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html


BIBLIOGRAPHY 111

[72] Apache Software Foundation: The Apache HTTP Server Project. Available:
http://httpd.apache.org, 2012. [Online: Accessed 21 October 2012].

[73] Numpy: Scientific Computing Tools for Python - Numpy. Available: http:

//numpy.scipy.org, 2012. [Online: Accessed 10 September 2012].

[74] Matsumoto, M. and Nishimura, T.: Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3–30,
1998.

[75] Matsumoto, M. and Nishimura, T.: Cryptographic Mersenne Twister and
Fubuki stream/block cipher. Cryptographic ePrint Archive, pp. 1–17, 2005.

[76] Amatriain, X. and Basilico, J.: The Netflix Tech Blog: Netflix Recommen-
dations: Beyond the 5 stars (Part 1). Available: http://techblog.netflix.

com/2012/04/netflix-recommendations-beyond-5-stars.html, 2012. [On-
line: Accessed 05 October 2012].

[77] DC++ Features. Available: http://dcplusplus.sourceforge.net/features.
html, 2012. [Online: Accessed 19 November 2012].

[78] Sphinx Technologies Inc.: About | Sphinx. Available: http://sphinxsearch.

com/about/sphinx/, 2012. [Online: Accessed 27 February 2012].

[79] 10gen Inc: MongoDB. Available: http://www.mongodb.org, 2012. [Online:
Accessed 22 October 2012].

[80] VMware Inc.: RabbitMQ - Messaging that just works. Available: http://www.
rabbitmq.com, 2012. [Online: Accessed 22 August 2012].

[81] OASIS: Advanced Message Queuing Protocol. Available: http://www.amqp.

org, 2012. [Online: Accessed 19 November 2012].

[82] logstash - open source log management. Available: http://logstash.net, 2012.
[Online: Accessed 22 August 2012].

[83] Graylog2 - Free open source self-hosted log management and exception track-
ing. Available: http://www.graylog2.org, 2012. [Online: Accessed 22 August
2012].

[84] Kohl, U., Lotspiech, J. and Kaplan, M.: Safeguarding digital library contents
and users. D-lib Magazine, vol. 3, no. 9, 1997.

Stellenbosch University  http://scholar.sun.ac.za

http://httpd.apache.org
http://numpy.scipy.org
http://numpy.scipy.org
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://dcplusplus.sourceforge.net/features.html
http://dcplusplus.sourceforge.net/features.html
http://sphinxsearch.com/about/sphinx/
http://sphinxsearch.com/about/sphinx/
http://www.mongodb.org
http://www.rabbitmq.com
http://www.rabbitmq.com
http://www.amqp.org
http://www.amqp.org
http://logstash.net
http://www.graylog2.org


BIBLIOGRAPHY 112

[85] IMDB.com Inc.: IMDB. Available: http://www.imdb.com, 2012. [Online: Ac-
cessed 26 November 2012].

[86] Codec Guide: Codec Guide: K-Lite Codec Pack. Available: http://

codecguide.com, 2013. [Online: Accessed 09 January 2013].

[87] MPlayer. Available: http://www.mplayerhq.hu/, 2011. [Online: Accessed 29
November 2012].

[88] Houdini Software: VideoSpec. Available: http://videospec.free.fr/

english/, 2012. [Online: Accessed 29 November 2012].

[89] Datadog Inc.: Datadog. Available: http://www.datadoghq.com, 2012. [Online:
Accessed 29 November 2012].

[90] Wireshark Foundation: Wireshark. Available: http://www.wireshark.org/,
2012. [Online: Accessed 02 November 2012].

Stellenbosch University  http://scholar.sun.ac.za

http://www.imdb.com
http://codecguide.com
http://codecguide.com
http://www.mplayerhq.hu/
http://videospec.free.fr/english/
http://videospec.free.fr/english/
http://www.datadoghq.com
http://www.wireshark.org/


Appendices

113

Stellenbosch University  http://scholar.sun.ac.za



Appendix A

Software

This chapter lists the various software libraries, frameworks and operating
systems that were used to develop and evaluate the platform. The system
made use of two servers and three clients. These systems are documented
below.

A.1 Primary Server

The primary server is responsible for hosting the REST interface, the cen-
tralised logging, the database systems, Jax.TV tracker, the full text search
server, usage tracking, as well as handling the encryption.

Operating System

Ubuntu Linux Natty Narwhal (11.04) 64-bit.

Software Libraries and Applications

• Apache - v2.2.17

• Django - v1.4.0

• Graylog2 - v0.9.6

• Hachoir Python Library -v.1.3.3

• Logstash - v1.1.1

• MongoDB - v1.6.5

114

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX A. SOFTWARE 115

• MySQL - v5.1.63

• Numpy Python Library - v1.5.1

• Python -v2.7.1

• RabbitMQ - v2.8.5

• Sphinx -v0.9.9

• Webmin - v1.590

A.2 Monitoring Server

The monitoring server is used for the evaluation of the platform to monitor
the primary server, as well as the client devices.

Operating System

Ubuntu Linux Natty Narwhal (11.04) 64-bit.

Software Libraries and Applications

• Apache - v2.2.17

• Munin - v1.4.5

• Python -v2.7.1

A.3 Client Application

The section documents the client application software libraries.

• Numpy Python Library -v1.6.1

• Pika Python Library -v0.9.5

• PyQt - v4.9.1

• Requests Python Library -v0.14.1

Stellenbosch University  http://scholar.sun.ac.za



Appendix B

Configuration

This chapter provides the configuration settings for the services running on
the primary server. The configurations provided are for Apache web server,
Sphinx full text search server and Logstash log management.

B.1 Apache Web Server

# /etc/apache2/httpd.conf

# FOR DEVELOPMENT ONLY

#MaxRequestsPerChild 1

WSGIPythonPath /home/quiran/workspace/masters/src/server/

jaxtv

<VirtualHost _default_ :443>

ServerName q.ml.sun.ac.za:443

ServerAdmin qstorey@ml.sun.ac.za

DocumentRoot /home/quiran/www

# Turn on bandwidth limitation

BandwidthModule On

ForceBandWidthModule On

# 512 Kbps

Bandwidth all 524288

MinBandwidth all -1

116

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. CONFIGURATION 117

ErrorLog logs/q.ml.sun.ac.za-error_log

TransferLog logs/q.ml.sun.ac.za-access_log

SSLEngine on

SSLCertificateFile /etc/apache2/ssl.crt/BettyServer.

crt

SSLCertificateKeyFile /etc/apache2/ssl.key/BettyServer

.key

WSGIScriptAlias / /home/quiran/workspace/masters/src/

server/jaxtv/jaxtv_site/wsgi.py

Alias /static/admin/ /usr/local/lib/python2 .7/dist -

packages/django/contrib/admin/static/admin/

<Directory /home/quiran/workspace/masters/src/server/

jaxtv/jaxtv_site >

<Files wsgi.py>

Order deny ,allow

Allow from all

</Files >

</Directory >

</VirtualHost >

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. CONFIGURATION 118

B.2 Sphinx Full Text Search Server

#################################################

## data source definition

#################################################

source src_mysql

{

# data source type. mandatory , no default value

# known types are mysql , pgsql , mssql , xmlpipe , xmlpipe2

, odbc

type = mysql

#######################################################

## SQL settings (for ’mysql ’ and ’pgsql ’ types)

#######################################################

# some straightforward parameters for SQL source types

sql_host = localhost

sql_user = jaxtv

sql_pass = jaxtv

sql_db = jaxtv

sql_port = 3306 # optional , default is 3306

# UNIX socket name

# optional , default is empty (reuse client library

defaults)

# usually ’/var/lib/mysql/mysql.sock ’ on Linux

# usually ’/tmp/mysql.sock ’ on FreeBSD

sql_sock = /var/run/mysqld/mysqld.sock

# main document fetch query

# mandatory , integer document ID field MUST be the first

selected column

sql_query = \

SELECT ‘table_ids ‘.‘id‘, ‘table_videos ‘.‘name ‘

FROM ‘table_videos ‘ \

INNER JOIN ‘table_ids ‘ ON ‘table_videos ‘.‘

info_hash ‘=‘table_ids ‘.‘info_hash ‘

# document info query , ONLY for CLI search (ie. testing

and debugging)

# optional , default is empty

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. CONFIGURATION 119

# must contain $id macro and must fetch the document by

that id

sql_query_info = SELECT * FROM videos WHERE id=$id

}

#################################################

## index definition

#################################################

index index_jaxtv

{

# document source(s) to index

# multi -value , mandatory

# document IDs must be globally unique across all

sources

source = src_mysql

# index files path and file name , without extension

# mandatory , path must be writable , extensions will be

auto -appended

path = /var/lib/sphinxsearch/data/index_jaxtv

# document attribute values (docinfo) storage mode

# optional , default is ’extern ’

# known values are ’none ’, ’extern ’ and ’inline ’

docinfo = extern

# a list of morphology preprocessors to apply

# optional , default is empty

#

# builtin preprocessors are ’none ’, ’stem_en ’, ’stem_ru

’, ’stem_enru ’,

# ’soundex ’, and ’metaphone ’; additional preprocessors

available from

# libstemmer are ’libstemmer_XXX ’, where XXX is

algorithm code

# (see libstemmer_c/libstemmer/modules.txt)

#

# morphology = stem_en , stem_ru , soundex

# morphology = libstemmer_german

# morphology = libstemmer_sv

# morphology = none

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. CONFIGURATION 120

morphology = stem_en

# charset encoding type

# optional , default is ’sbcs ’

# known types are ’sbcs ’ (Single Byte CharSet) and ’utf

-8’

charset_type = sbcs

}

#################################################

## indexer settings

#################################################

indexer

{

# memory limit , in bytes , kiloytes (16384K) or megabytes

(256M)

# optional , default is 32M, max is 2047M, recommended is

256M to 1024M

mem_limit = 32M

}

#################################################

## searchd settings

#################################################

searchd

{

# hostname , port , or hostname:port , or /unix/socket/path

to listen on

# multi -value , multiple listen points are allowed

# optional , default is 0.0.0.0:9312 (listen on all

interfaces , port 9312)

#

# listen = 127.0.0.1

# listen = 192.168.0.1:9312

# listen = 9312

# listen = /var/run/searchd.sock

#listen = q.ml.sun.ac.za:9312

listen = localhost :9312

# log file , searchd run info is logged here

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. CONFIGURATION 121

# optional , default is ’searchd.log ’

log = /var/log/sphinxsearch/searchd.log

# query log file , all search queries are logged here

# optional , default is empty (do not log queries)

query_log = /var/log/sphinxsearch/query.log

# client read timeout , seconds

# optional , default is 5

read_timeout = 5

# request timeout , seconds

# optional , default is 5 minutes

client_timeout = 300

# PID file , searchd process ID file name

# mandatory

pid_file = /var/run/searchd.pid

# max amount of matches the daemon ever keeps in RAM ,

per -index

# WARNING , THERE ’S ALSO PER -QUERY LIMIT , SEE SetLimits ()

API CALL

# default is 1000 (just like Google)

max_matches = 1000

# seamless rotate , prevents rotate stalls if precaching

huge datasets

# optional , default is 1

seamless_rotate = 1

# whether to forcibly preopen all indexes on startup

# optional , default is 0 (do not preopen)

preopen_indexes = 0

# whether to unlink .old index copies on succesful

rotation.

# optional , default is 1 (do unlink)

unlink_old = 1

# MVA updates pool size

# shared between all instances of searchd , disables attr

flushes!

# optional , default size is 1M

mva_updates_pool = 1M

}

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. CONFIGURATION 122

B.3 Logstash

# Input

input {

amqp {

host => "127.0.0.1"

name => "general_logs_queue" # Name of the queue

exchange => "logstash_exchange"

key => "general_logs_key"

exclusive => false

durable => true

auto_delete => false

type => "general -logging -input"

format => "json"

}

file {

type => "apache_error"

path => [ "/home/quiran/workspace/masters/src/

server/jaxtv/logs/error.log"]

}

file {

type => "apache_log"

path => [ "/home/quiran/workspace/masters/src/

server/jaxtv/logs/jaxtv_django.log"]

}

file {

type => "jaxtv_tracker"

path => [ "/home/quiran/workspace/masters/src/

server/jaxtv/logs/tracker.log"]

}

file {

type => "encryption"

path => [ "/home/quiran/workspace/masters/src/

server/jaxtv/logs/encryption.log"]

}

}

# Filters

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. CONFIGURATION 123

# Output

output {

elasticsearch {

embedded => true

}

gelf {

facility => "Clients"

host => ’127.0.0.1 ’

type => "general -logging -input"

}

gelf {

facility => "Apache␣Log"

host => "127.0.0.1"

type => "apache_log"

}

gelf {

facility => "Apache␣Error␣Log"

host => "127.0.0.1"

type => "apache_error"

}

gelf {

facility => "Encryption␣Log"

host => "127.0.0.1"

type => "encryption"

}

gelf {

facility => "Jaxtv -Tracker␣Log"

host => "127.0.0.1"

type => "jaxtv_tracker"

}

}

Stellenbosch University  http://scholar.sun.ac.za


	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Terms of Reference
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Previous Work
	Problem Statement
	Objectives
	Overview

	Literature Study
	Networking
	BitTorrent
	GoalBit
	HTTP Secure
	Jax.TV

	Content Security
	Video Standards

	Encryption
	MPEG Encryption Techniques
	Pseudorandomness
	One-Time Pad
	A Streaming Encryption Example

	Digital Rights Management
	Microsoft PlayReady
	UltraViolet
	Irdeto ActiveCloak for Media

	Summary

	Platform Design
	Design Approach
	Platform Overview
	System-wide Design Decisions
	Specifications
	Programming Language
	Software Standards

	Use Cases
	Platform Communication
	Encryption
	Video Player
	Summary

	Server Implementation
	Hardware
	Core
	Django Models
	Django Views
	Security

	Encryption
	Encryption Module
	Encryption Procedure

	Jax.TV Tracker
	Super-Peer
	Video Search
	Configuration
	Searching

	Usage Tracking
	Central Logging
	Admin Portal
	Summary

	Client Application
	Graphical User Interface
	Login Screen
	Video Player Screen

	Playback
	Implementation Issues
	Compromise
	Playback Manager
	Decryption
	Future Work

	Networking
	Network Interface
	Upload Handler
	Remote Logging
	Tracking

	Summary

	Platform Evaluation
	Test SetUp
	Component Testing
	Erasing Decrypted Data
	Video Search
	Cross-Platform Support
	Codec Support
	Playlist Caching
	Decryption Performance
	Network Performance

	Integration Testing
	Video Playback
	Video Search and Download
	Alternative Video Downloading
	Usage Tracking
	Central Logging
	Modifying Video Information

	Platform Testing
	Summary

	Conclusion
	Evaluation
	Contributions
	Recommendations
	Summary

	Bibliography
	Appendices
	Software
	Primary Server
	Monitoring Server
	Client Application

	Configuration
	Apache Web Server
	Sphinx Full Text Search Server
	Logstash




