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Abstract

The generator maintenance scheduling (GMS) problem is the difficult combinatorial optimisation problem
of finding a schedule for the planned maintenance outages of generating units in a power system. The
GMS model considered in this paper is formulated as a mixed integer program, with a reliability optimal-
ity criterion, subject to a number of constraints. A new version of the simulated annealing (SA) method for
solving the GMS problem is presented. Four cooling schedules (the geometric and three adaptive sched-
ules), two neighbourhood move operators (an elementary move and an ejection chain move operator),
and a hybrid local search heuristic/SA algorithm are compared. To our knowledge, this is the first study
considering a different SA cooling schedule and move operator in a GMS context. A new 32-unit GMS test
system is established and used in conjunction with a benchmark test system from the literature in this
investigation. It is found that choosinga different cooling schedule and an ejection chain move operator
yield improved results to that of the SA algorithm currently employed in the GMS literature. The hybrid
SA algorithm performs very well compared to other methods on the benchmark test system from the lit-
erature, and an improved lower bound on the objective function value is presented for this test system.

1. Introduction

A key focus area for an electricity utility is the planned preventative
maintenance of the power generating units in its generation system.
Regular preventative maintenance of generating units is required in or-
der to prolong the life-expectency of the generating units so as to en-
sure safe operating conditions, and most importantly to reduce the
risk of unplanned outages caused by generating unit failures. In this pa-
per, the problem of finding a schedule for the planned maintenance
outages of generating units in a power system, known as the generator
maintenance scheduling (GMS) problem, is considered. As power sys-
tems become larger and the demand for electricity increases continu-
ally, the difficulty of finding maintenance schedules increases in
complexity, especially in highly constrained systems.

Due to the large combinatorial nature of the problem, exact
solution approaches are not very effective within a reasonable
computational time-scale, resulting in an increasing prevalence
of approximate solution methodologies, such as heuristic and
metaheuristic techniques. An exact solution approach guarantees
a globally optimal solution to a problem, given sufficient computa-
tion time, whereas a solution produced by an approximate solution
approach may or may not be (globally or even locally) optimal, but
requires significantly less computation time.

In this paper, we consider the metaheuristic technique of simu-
lated annealing (SA) for solving the GMS problem. Although SA has
been adopted a number of times in the GMS literature, we could
find no reference to experimentation with respect to improving
the SA algorithm’s effectiveness in the GMS context — a single cool-
ing schedule (geometric) and a single elementary neighbourhood
move operator (a random unit’s maintenance starting time is chan-
ged to a random new time) are utilised throughout the literature
[1-7]. In this paper, three adaptive cooling schedules and a new
compound neighbourhood move operator are introduced in the
context of GMS and compared to the schedules currently suggested
in the literature. Additionally, a local search heuristic is introduced
into the SA algorithm and the effectiveness of this hybrid solution
technique is investigated. A new GMS test system is established
and is used for comparison purposes along with a benchmark test
system from the literature. It was found that choosing a different
cooling schedule and the compound neighbourhood move operator
yield improved results to that of the SA algorithm currently em-
ployed in the GMS literature. The hybrid SA algorithm performs
very well compared to other methods on the benchmark test sys-
tem from the literature, and an improved lower bound on the
objective function value is presented for this system.

1.1. GMS model considerations

The optimality criteria for the GMS problem most often found in
the literature may be grouped into three categories, namely



economic criteria, reliability criteria and convenience criteria [8].
These categories present conflicting requirements, ultimately mak
ing the GMS problem multiobjective in nature. However, both sin
gle and multiobjective approaches have been pursued in the
literature.

The objective most commonly chosen within the category of
economic criteria, is the minimisation of operating cost typically
comprising production cost and maintenance cost. Single objective
formulations containing such an objective are wide spread [9,10].
Another economic objective that has recently surfaced due to the
emergence of competitive market environments, is the maximisa
tion of profit [11]. In the category of reliability criteria, the objec
tive is usually chosen as the levelling of the reserve load over the
planning period. This is typically achieved by minimising the
sum of the squares of the reserve loads; an approach successfully
adopted in the single objective formulations found in [4,5,12].
The category of convenience criteria is the least used and we could
not find any reference in the literature to single objective formula
tions in this category. However, objectives from this category ap
pear in multiobjective formulations [13,14]. Objectives within
this category include minimising the degree of constraint viola
tions or minimising possible disruptions to the existing schedule.
Finally, objectives from any of these categories may be combined
in a multiobjective modelling approach [13 16].

The GMS problem may be subjected to various constraints,
depending on the complexity of the model, assumptions and the
requirements of the utility. In its simplest form, the GMS problem
incorporates maintenance window constraints and load con
straints in order to ensure, respectively, that each unit is scheduled
for maintenance between an earliest and latest date, and that the
system load demand is met for each time period. Additional con
straints may be added as required. An alternative approach is to in
clude constraints from the unit commitment and economic
dispatch problems into the GMS problem [17]. The unit commit
ment and economic dispatch problems are short term scheduling
problems (e.g. day to day or week to week) that determine which
generating units should be in service during each time period, and
the allocation of the load demand among those generating units
during each time period, respectively [18 20].

1.2. Typical solution techniques

A wide variety of solution techniques for the GMS problem have
been employed in the literature. Heuristic techniques are typically
simple to understand and require very little computation time.
Usually, generating units are scheduled for maintenance in a
unit by unit manner with possible corrections made according to
some externally defined scheduling order. Modern exact software
suites capable of solving mathematical programs generally use
branch and bound methods for solving integer problems. A
decomposition method, known as Benders’ decomposition, has
also recently been employed in [9,10] to solve the typically
large scale GMS problem. A considerable amount of research has
gone into the application of metaheuristic techniques for solving
the GMS problem approximately. Different metaheuristics, includ
ing genetic algorithms in [1,4,21], simulated annealing in [1,4,6,7],
tabu searches in [1,22], ant colony optimisation in [12,23] and par
ticle swarm optimisation in [24], have successfully been applied to
the GMS problem. Hybrid metaheuristic techniques have been em
ployed in [1,5,25] to solve the GMS problem, achieving improved
results in some cases compared to those obtained by the separate
metaheuristic approaches. A relatively new modelling and solution
approach to the GMS problem is the application of fuzzy set theory
in order to address multiple objectives and uncertainties in the
constraints. A fuzzy dynamic programming technique is employed
in [15] and fuzzy metaheuristic techniques are employed in [26].

Finally, expert systems incorporate the many years of experience
of field experts into a solution methodology [27].

2. Mathematical problem formulation

The structure of the GMS problem naturally calls for a mathe
matical programming modelling approach: a schedule must be ob
tained that optimises some objective, subject to restrictions on the
schedule. Therefore, the mathematical model for the GMS problem
considered in this paper takes the form of an integer program
according to [28]. Reliability is chosen as the optimality criterion,
with the goal of levelling the reserve load over the planning hori
zon, where the reserve load is defined as the available generating
capacity less the system load demand. The objective function cho
sen to achieve this goal is to minimise the sum of the squares of the
reserve loads. The constraints present in the model consist of the
specification of maintenance windows for each unit, the system
meeting the load demand together with a safety margin, adherence
to the availability of maintenance crew and respecting general
exclusion constraints.

Suppose there are n generating units in the power system and m
time periods in the planning horizon. Let Z {1,...,n} index the
set of generating units and let 7 {1,...,m} index the set of time
periods in the planning horizon. Let the binary decision variable x;;
take the value 1 if maintenance of generating unit i € Z com
mences during time period j € 7, or zero otherwise. Furthermore,
define y;; as a binary auxiliary variable taking the value 1 if gener
ating unit i € 7 is in maintenance during time period j € 7, or zero
otherwise.

Let e; and ¢; denote the earliest and latest time periods, respec
tively, during which maintenance of generating unit i € Z may
start. Since maintenance is allowed only once during a time win
dow, the maintenance window constraint set may be formulated
as

li
dxg 1, i€l (1)

e

It is known that a unit will not be in maintenance outside its main
tenance window. Therefore, the explicit constraints

Xj 0, j<eorj>4, iel, (2)

Vij 0, j<eorj>fi+di 1, iel, 3)
may be included in the model to reduce the number of free decision
variables, where d; denotes the maintenance duration of generating
unit i € Z. Since the maintenance of each unit must last for a given

duration, the maintenance duration constraint set

b+d; 1

Z Yij  di,

j e

ier, (4)

is included. Since the maintenance of a generating unit must occur
over consecutive time periods, a non stop maintenance constraint
set of the form

Yij Yij1<xj 1€, jeJ\{1},

Vi1 <Xi1, 1€Z,

)

is also included.

The load demand constraints restrict the maintenance schedule
so that the total demand for electricity is at least met during every
time period. Let g;; denote the power generating capacity of unit
i € 7 during time period j € 7 and let D; denote the load demand
during time period j € J. A safety margin, denoted by S, and mea
sured as a proportion of the demand for the power system, is also



introduced. The load demand constraint set may then be formu
lated as

Zgi.j(] i) DiA+S)+rm, jeJ, (6)
i1

where 1; is the reserve level variable, defined as the unused power
during time period j € 7, excluding the safety margin.

The maintenance crew constraints deal with the availability of
manpower for maintenance work. Let m,;; denote the required
manpower for unit i € Z when in maintenance during time period
j € J if maintenance of this unit were to commence during time
period p. If mf denotes the required manpower for unit i € 7 in
its kth period of maintenance, the parameters m,;; are calculated
as

oo [mifj p<d,
pij .
0 otherwise.

The maintenance crew constraint set may be formulated as

n_ J
sz;),i.jxip <M, jed, (7)
ilp1
where M; denotes the available manpower during time period j € J.
Exclusion constraints prevent certain units from being in a state
of simultaneous maintenance. Consider a more general exclusion
constraint where at most some specified number of units, within
some subset of units, are allowed to be in a state of simultaneous
maintenance. Let X denote the set of indices of generating unit
exclusion subsets. If there are K subsets, then £ {1,...,K}. De
fine 7, C 7 as the kth subset of generating units that form an exclu
sion set with ke K. The exclusion constraint set may be
formulated as

dSyiy<Ki jeJ, kek, (8)

ieTy

where K denotes the maximum number of units within subset 7
that are allowed to be in simultaneous maintenance during any
time period.

Finally, the constraint sets that specify the nature of the vari
ables are

xj€{0,1}, ieZ, jeJ, 9)
yi;€{0,1}, ieZ, jeJ, (10
=0 jeJ. (11)

The objective, namely to minimise the sum of the squares of the
reserve loads, may be written as

minimise Y "(D;S +17)%, (12)
j1

subject to the constraint sets in Egs. (1) (11). The model Egs. (1)
(12) is a mixed integer quadratic program formulation of the GMS
problem.

3. Simulated annealing solution approach

An SA solution approach is adopted due to its ease of implemen
tation, its observed capability of producing good quality solutions
for a wide variety of combinatorial optimisation problems [29],
the proven existence of a theoretical cooling schedule that guaran
tees convergence to a global optimum [30], and its previously suc
cessful application to the GMS problem in the literature, as
mentioned in Section 1. However, as mentioned before, we could

find no reference to experimentation with respect to improving
the basic SA algorithm’s effectiveness in the GMS context and thus
identified an opportunity for the research reported in this paper. In
this section, some information on the basic SA algorithm is pre
sented, followed by the specific SA implementation adopted in this
paper.

3.1. Introduction to simulated annealing

The SA method is a metaheuristic technique for solving combi
natorial optimisation problems and is based on the physical phe
nomenon of annealing. It was first proposed by Kirkpatrick et al.
[31] in 1983. The method solves a combinatorial optimisation
problem in a manner that is analogous to the process of annealing
and is based on two results from statistical physics, namely the
probability of a system having a given energy E at thermodynamic
balance, and the so called Metropolis algorithm which may be
used to simulate the evolution of a system towards thermody
namic balance at a given temperature. A control parameter is intro
duced to mimic the temperature of a system. The temperature
controls the number of accessible energy states and should lead
to a locally/globally optimal state when lowered gradually. The en
ergy in the system corresponds to the objective function value in a
minimisation problem, while a feasible solution corresponds to a
certain state of the system. The final solution corresponds to the
system being frozen in its ground state.

The SA method starts with an initial solution at an initial temper
ature T. A small modification is applied to the solution (i.e. a neigh
bouring solution is selected according to some neighbourhood move
operator). If the modification results in a decrease in objective func
tion value (energy), the modified solution is accepted as the new
solution with probability 1 (i.e. with certainty). However, a modifi
cation causing an increase AE in objective function value (energy)
is only accepted with a probability of exp( AE/T). By allowing an
occasional increase in objective function value, the system may
avoid becoming trapped in local minima. Repeated iterations of this
modification process (the Metropolis algorithm) leads to the system
approaching thermodynamic balance at a given temperature. The
temperature determines how many worsening solutions are ac
cepted: at high temperatures, the factor exp( AE/T) is close to 1,
causing an acceptance of the majority of solutions, whereas lower
temperatures result in the factor exp( AE/T) being close to 0, caus
ing a rejection of the majority of worsening solutions. Therefore, the
SA method should start at a high temperature in order to consider as
many solutions as possible in a bid to explore the solution space,
after which the temperature is gradually lowered according to a
cooling schedule in order to converge to a solution achieving a lo
cally (possibly globally) minimum objective function value (frozen
energy state). There are different approaches in SA with respect to
choosing an initial temperature, cooling schedule, neighbourhood
move operator and termination criteria.

3.2. Implementation of the simulated annealing algorithm

In the implementation of the SA algorithm adopted in this paper,
asolution to the GMS problemis denoted by a vector x = (x4,. . .,X,) of
length n where the element x; is an integer value representing the
time period during which the maintenance of uniti € Z commences.
If a candidate solution violates any of the constraints, a correspond
ing penalty is incurred and the total penalty value is added to the
objective function value associated with the candidate solution.

The total penalty value P is calculated as the weighted sum
P Wwa+W€Pé+WCPc+WePe (13)

where the values P, P, P. and P, are the constraint violations asso
ciated with the maintenance window, load demand, maintenance



crew and exclusion constraint sets, respectively, and the values w,,
w,, w. and w, the corresponding weights.

3.2.1. Initialisation

The initial solution is determined as follows. For each unit i, a
random maintenance starting time period x; is chosen between
its earliest (e;) and latest (¢;) starting time periods, according to a
uniform distribution. The feasibility of this random solution is
determined by calculating the constraint violations from the vector
x. If it is feasible, the penalty is set to zero, otherwise, the penalty is
calculated according to (13).

The initial temperature Ty is calculated according to a method
presented in [32] as T, AE®) /1n(y,), where yo is the initial
acceptance ratio and AE™) is the average increase in energy (wors
ening of the objective function value). The ratio y, is defined as the
number of accepted worsening solutions divided by the number of
attempted worsening solutions and may typically be set to a value
of 0.5, whereas the value of AE™) is estimated by executing a ran
dom walk over the solution space, using the initial solution as
starting point.

3.2.2. The cooling schedule

The only cooling schedule found in the literature that has been
used in the GMS context, is the well known geometric cooling
schedule. The updating rule for this schedule is

T5+'l aTﬁ (14)

where T; is the temperature at stage s of the search process and
o €(0,1) is a constant called the cooling parameter, typically taken
between 0.8 and 0.99. This cooling schedule is implemented here
along with three additional adaptive cooling schedules. The first
of these three schedules was proposed by Huang et al. [33] and
the updating rule is given by

S

/T
Te1 Tsexp< /a ), (15)

where /. € (0,1] is a constant with a typical value of 0.7 and o is the
standard deviation observed in the changing values of the objective
function when reaching stage s. The second schedule was proposed
by Van Laarhoven and Aarts [34] with an updating rule of

1

_—
1 + 111(31(;:0) Ts

Teq Ts (16)

where ¢ is a “small” real number. Finally, the third schedule was
proposed by Triki et al. [32] and the updating rule is given by

A
Ts+1 Ts (1 Ts _2>7 (17)
o5

where A is the expected decrease in the average objective function
value when reaching the next temperature stage of the search pro
cess. For details on the workings of and motivations behind these
cooling schedules, the reader is referred to [32].

During each temperature stage in the progression of the SA
algorithm, the number of iterations of the Metropolis algorithm
determines the time spent at that temperature. The suggested
scheme presented in [29] is implemented here and states that
the inner Metropolis loop should terminate when one of the fol
lowing two conditions is satisfied: a maximum of 12N solutions
are accepted, or a maximum of 100N solutions are attempted,
where N denotes the number of degrees of freedom of the problem.
In this case N=n.

3.2.3. The neighbourhood move operator
Only two neighbourhood move operators were found in the
GMS literature, the one being a simplification of the other. Accord

ing to the first of these move operators, hereafter referred to as the
classical operator, one unit is randomly selected according to a uni

form distribution and its maintenance starting time is then ran

domly changed to a new value within the allowed maintenance
window according to a uniform distribution. The classical operator
is implemented in the SA algorithm along with a new neighbour

hood move operator in the GMS context, known as an ejection chain
neighbourhood move operator. This operator includes more global
information on the entire maintenance schedule in order to ex

plore the solution space more effectively.

The ejection chain operator generates a list of units whose
maintenance starting times are randomly altered with the prop
erty that adjacent units in the list are connected in such a way that
the preceding unit’s new maintenance starting time is the same as
the succeeding unit’s old maintenance starting time. The list is cre
ated as follows and where any reference to a random selection is
made, it is assumed to be performed according to a uniform distri
bution. An initial unit is selected at random and its maintenance
starting time is randomly changed to a new starting time within
its allowed maintenance window. Now, a unit whose maintenance
starts during this newly selected time is chosen at random, and its
maintenance starting time is randomly changed to a new starting
time within its allowed maintenance window. This process is re
peated until the newly selected starting time corresponds to the
initial maintenance starting time of the initial unit that was se
lected, or the process is repeated until no unit is found for which
maintenance starts during the newly selected time.

3.2.4. Termination criteria

The SA algorithm terminates when the temperature loop termi
nates according to pre specified criteria. The following two termi
nation criteria are implemented here: the temperature at the
current stage reaches a pre specified minimum temperature T,
or a pre specified number, Qen, Of successive temperature stages
occur without the occurence of any acceptance. A modification to
the standard SA algorithm is implemented whereby the best solu
tion found so far, called the incumbent solution, is stored. On com
pletion of the SA algorithm, this incumbent solution is returned as
an approximate solution to the GMS problem instance.

3.2.5. Hybridisation by means of a local search heuristic

A hybridisation of the SA algorithm is achieved by introducing a
local search heuristic into the algorithm. The implementation of
the local search heuristic adopts the classical neighbourhood move
operator. The heuristic receives some solution as an initial solution
and its full neighbourhood (with a maximum size of nm) is
searched in order to find the best neighbour. If the best neighbour
improves the current solution, it is set as the new current solution
and the process is repeated. The search terminates if no further
improvement can be made (i.e. the search follows a steepest des
cent hill climbing approach).

In the hybridisation, the heuristic is applied to the incumbent
solution each time a new incumbent solution is encountered dur
ing the SA algorithm’s execution. Only the incumbent solution is
updated by means of the heuristic, the current solution remains
unaffected in order to prevent premature convergence. The hybrid
SA algorithm is compared to the standard SA algorithm in order to
investigate its effectiveness in improving the solution quality.

4. Experimental results

Two GMS test systems were used as benchmarks in order to
investigate the effectiveness of the different cooling schedules,
the new ejection chain neighbourhood move operator and the
hybridisation. An extensive parameter optimisation process was
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Fig. 1.

performed in order to find the most suitable values for each of the
different cooling schedule parameters for each test system [28].
The penalty weight values of the constraints for each of the test
systems were calculated empirically, prior to the comparative
study, in order to have equally scaled penalty values in the objec

tive function [28]. A total of 50 computational runs of each test sys

tem was solved by each variation of the SA algorithm (i.e. using
different random initial solutions). Note that the same set of 50
random initial solutions was used for each SA variation and the
set is available from the authors, on request.

All the computational evaluations were performed on a per
sonal computer with a 3.0 GHz Intel® Core™2 Duo E8400 processor
and 3.25 GB RAM, running on Microsoft Windows XP Professional.
The SA algorithm was implemented in the MathWorks software
suite MATLAB, version R2009a.

4.1. The test systems

The first test system is the 21 unit GMS benchmark established
by Dahal and McDonald [35] in which reliability is assumed as the
optimality criterion. The objective is to minimise the sum of the
squares of the reserve loads over the planning period, while the
constraints of the problem are restricted to the adherence of main
tenance windows for each unit, the system meeting the load de
mand and the availability of maintenance crew. The test system
is highly constrained by its maintenance crew constraint set. A the
oretical lower bound for the objective function value is
11 861 100 MW?, as calculated from the average reserve level. This
test system has previously been studied in the literature
[4,5,23,26] and its system specifications may be found in [5].
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Comparison of the cooling schedules and neighbourhood operators via incumbent objective function values.

In order to further investigate the efficiency and effectiveness of
the SA algorithm and its variations, a new 32 unit GMS test system
containing all the constraint sets in our model formulation was
created. This test system may serve as a new GMS benchmark for
use by researchers and was derived from the load model and gen
eration system in the 1979 IEEE Reliability Test System [36] with
additional constraints and parameter values. The objective is also
to minimise the sum of the squares of the reserve loads over the
planning period, while the constraints of the system comprise
the specification of maintenance windows, the meeting of the load
demand together with a safety margin, adhering to the availability
of maintenance crew and respecting exclusion constraints. The test
system is highly constrained by both its load demand and mainte
nance crew constraint sets. A theoretical lower bound for the
objective function value is 33 363 252 MW2, The test system spec
ifications may be found in the appendix at the end of the paper.

4.2. The cooling schedules

The four cooling schedules described in Section 3.2.2, were
compared in order to determine which schedule has the potential
of performing best in the GMS context. The cooling schedules may
be compared over four experimental cases the two test systems
mentioned above, each with two neighbourhood structures (the
classical and ejection chain operators). The results of the experi
ments are shown in Fig. 1. The graphs in the figure represent the
minimum and average incumbent objective function values ob
tained for each test system over all four cooling schedules, for each
neighbourhood structure. Table 1 contains the average solution



Table 1

Comparison of the cooling schedules and neighbourhood operators via average solution times.

System Schedule Classical Ejection chain
Average time (s) Standard deviation Average time (s) Standard deviation
21-unit Geo 48.35 0.19 59.1 7.13
Huang 2.98 0.33 7.19 0.76
VanL 23.84 1.52 66.74 4.66
Triki 17.61 24.93 59.79 119.97
32-unit Geo 78.95 3.49 131.9 9.45
Huang 13.78 1.19 373 2.72
VanL 119.89 6.74 151.25 7.3
Triki 286.01 1008.9 170.2 187.35
Table 2
Performance analysis of the hybridisation with respect to the standard SA algorithm.
System Schedule Classical neighbourhood Ejection chain neighbourhood
# Solutions Average Maximum # Solutions Average Maximum
improved improvement (%) improvement (%) improved improvement (%) improvement (%)
21-unit Geo 19/50 0.49 1.27 9/50 0.50 1.48
Huang 23/50 1.25 3.94 31/50 0.82 3.49
VanL 27/50 0.73 2.59 16/50 0.43 1.39
Triki 21/50 0.80 2.86 22/50 0.87 2.90
32-unit Geo 27/50 0.03 0.22 50/50 0.02 0.08
Huang 28/50 0.05 0.42 50/50 0.05 0.34
VanL 41/50 0.03 0.18 50/50 0.03 0.16
Triki 29/50 0.09 0.75 49/50 0.03 0.23

times (and standard deviations) required to achieve the objective
function values in Fig. 1.

The cooling schedule proposed by Huang et al. [33] performs
the worst in each test system for the minimum, as well as for the
average incumbent objective function values. However, in each
experimental case, the minimum objective function value is very
close to those of the other schedules (within 1% for both test sys
tems). The schedule achieves by far the best (fastest) average solu
tion time in all cases at speeds approximately 10 times faster than
that of the other schedules. Therefore, the schedule proposed by
Huang et al. [33] may be favourable when a quick, relatively good
solution is required for a GMS problem instance. However, in this
case it is advisable to solve the instance a number of times. The
cooling schedule proposed by Triki et al. [32] results in an average
solution time with a very large standard deviation, thereby having
the potential of highly fluctuating solutions times a phenomenon
best avoided. Furthermore, its minimum and average incumbent
objective function value levels are second to worst. Due to its
unpredictable (and potentially long) solution times and not achiev
ing any real solution quality advantage above the other cooling
schedules, the schedule proposed by Triki et al. [32] is not recom
mended as a cooling schedule in the GMS context.

The cooling schedule proposed by Van Laarhoven and Aarts [34]
achieves the best solution quality over all the test systems in
three of the four cases it attains the lowest minimum and average
incumbent objective function values, and it achieves very consis
tent solution times (according to the standard deviations). How
ever, a drawback is its longer average solution time, requiring
slightly more time than the geometric cooling schedule. The geo
metric schedule achieves the second to best solution quality it at
tains the lowest minimum and average incumbent objective
function values in one of the cases. Its solution times are also very
consistent. Therefore, the schedule proposed by Van Laarhoven and
Aarts [34] is concluded to be the most favourable schedule when
solving a GMS problem instance that is not limited by stringent
time constraints. It produces superior solution quality to that of

the geometric schedule within a computational time being of the
same order of magnitude.

4.3. The new neighbourhood move operator

A similar analysis to the one above was performed in order to
compare the new ejection chain neighbourhood move operator
to the classical operator. The minimum and average incumbent
objective function values, as well as average solution times ob
tained using the four coolings schedules, for each of the two test
systems, are considered for the comparison thus resulting in
eight experimental cases. The results of the experiments are also
contained in Fig. 1 and Table 1.

The ejection chain operator performs superior to the classical
operator in seven of the eight cases, when considering the mini
mum incumbent objective function value, and in all eight cases
when considering the average incumbent objective function value.
The solution time of the ejection chain operator will necessarily be
longer than that of the classical operator, as reflected by the aver
age times in Table 1 when ignoring the fluctuating behaviour of the
cooling schedule proposed by Triki et al. [32]. The difference be
tween the average solution times of the two neighbourhood struc
tures range between 22% and 180%. These results clearly illustrate
the superiority in solution quality of the ejection chain neighbour
hood move operator over that of the classical neighbourhood oper
ator; however, at the cost of potentially requiring significantly
more solution time.

4.4. The hybridisation

The results obtained by the hybridisation were compared to the
results obtained by the unmodified SA algorithm for each cooling
schedule, within each test system, using both neighbourhood
structures, thus yielding 16 experimental cases. Recall that 50
computational runs were performed on each test system
using each solution variation. The results of the experiments are
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Fig. 2. Comparison of results.

presented in Table 2 and indicate that the hybridisation has the po

tential of achieving a significant improvement over the SA algo

rithm. This may be seen in the significant number of final
incumbent solutions, uncovered by both neighbourhood operators
in both test systems, that were improved upon by the hybridisa

tion. In 10 of the 16 cases more than half of the incumbent solu

tions were improved upon. While the average improvement may
not seem significant, individual improvements are up to 3.94% bet

ter. Since the hybridisation achieves such a frequent improvement
in incumbent solutions, it may be included in the SA algorithm as
an efficient method for improving solution quality at a negligible
cost of increased computational time.

4.5. Comparison with other methods

Given the positive results obtained by the investigation into dif
ferent cooling schedules, a different neighbourhood move opera
tor, and a hybridisation, we used the hybrid SA algorithm
utilising the ejection chain neighbourhood move operator and
the cooling schedule proposed by Van Laarhoven and Aarts [34]
in order to compare our results with those of other methods in
the literature. Furthermore, we may also compare our (and the lit
erature’s) approximate solution approaches with an exact solution
approach. We implemented the GMS model in LINDO Systems’
optimisation software suite, LINGO, version 9.0 with a cut off time
set to 12 h.

The objective function values corresponding to the best solu
tions that we found for the 21 unit system via LINGO after 12 h,
via the standard SA algorithm (geometric cooling and classical
neighbourhood operator) and via the hybrid SA algorithm de
scribed above are presented in Fig. 2. These values are compared
to those of the best solutions found in the literature via a genetic
algorithm (GA) and a genetic algorithm/simulated annealing hy
brid (GA/SA hybrid) by Dahal and Chakpitak [5], and via an ant col
ony optimisation (ACO) algorithm by Foong [37]. Note that the
results obtained by Foong [37] were the best known results for
the 21 unit system to date. Clearly, our hybrid SA algorithm
outperforms the GA and GA/SA hybrid algorithms and we were
able to match the best known objective function value of
13 665 000 MW?; however, we were unable to match/improve
the best known average incumbent solution quality. All the
approximate solution approach methods were able to obtain a bet
ter solution than the local optimum obtained by LINGO after 12 h,

thereby validating the use of approximate solution approaches to
solve the GMS problem. It also demonstrates the difficulty of solv

ing a GMS problem exactly within a reasonable computational
time scale. Furthermore, an improved lower bound (as calculated
by LINGO after 12 h) on the objective function value for the 21 unit
system is presented here for the first time. The value of this im

proved lower bound is 11 977 600 MW? and indicated in the graph
by the vertical line.

Since the 32 unit system is new (presented for the first time in
this paper), the best results that we obtained are stated here. LIN
GO was able to obtain a best objective function value of
33904 230 MW?, while a lower bound was calculated as
33479 440 MW?2, Our hybrid SA algorithm obtained a best objec
tive function value of 33 627292 MW? (only 0.44% away from
the lower bound) and an average objective function value of
33699 566 MW?2,

5. Conclusion

A general model for the GMS problem was presented in this pa
per in the form of a mixed integer program with reliability as
objective, subject to the constraints of maintenance windows, the
meeting of the load demand together with a safety margin, the
adherence to the availability of maintenance crew, and respecting
exclusion constraints. The effectiveness of a simulated annealing
solution approach towards solving the GMS problem was investi
gated. A comparative study was performed, comprising four differ
ent cooling schedules (three were newly introduced in the GMS
context), two neighbourhood move operators (one was newly
introduced in the GMS context), and a hybrid local search heuris
tic/SA algorithm. It was found that the standard implementation
of the SA algorithm in the GMS context, comprising the geometric
cooling schedule and an elementary neighourhood move operator,
may be improved by adopting the schedule proposed by Van Laa
rhoven and Aarts [34] and/or adopting an ejection chain neigh
bourhood move operator. Furthermore, in situations where
computational time may be limited, the schedule proposed by
Huang et al. [33] may be adopted to obtain a runtime improvement
of approximately 10 times with similar minimum incumbent solu
tion quality. Very large GMS problems would particularly benefit
from this variation. An additional benefit in solution quality may
also be achieved by introducing a local search heuristic to form
the SA hybrid algorithm described in this paper. The SA hybrid



with improved cooling schedule and neighbourhood move opera
tor performed very well when compared to other techniques with
respect to the 21 unit GMS benchmark system in the literature. It
outperformed a genetic algorithm and genetic algorithm/simulated
annealing hybrid, and matched the best known solution present in
the literature, obtained via an ant colony optimisation algorithm.
An improved lower bound for the benchmark was also established
via the LINGO software suite. Finally, a new 32 unit GMS test sys
tem was established which may aid GMS research as a future
benchmark.

Appendix A. The new 32-unit test system

A total of n=32 generating units have to be in maintenance
over a planning period of m = 52 weeks. The objective of the prob
lem is to minimise the sum of the squares of the reserve loads over
the planning period. The specifications of the generation system
are presented in Tables A.1 and A.2. The generating capacity of

Table A.1
Data for the new 32-unit test system.
g e 6 d mk g e 64 d mk
1 20 1252 7,7 17 12 1 51 2 4,4
2 20 1252 7,7 18 12 1 51 2 4,4
3 76 124 3 12,10,10 19 12 1 51 2 4,4
4 76 27 50 3 12,10,10 20 155 1 23 4 5,15,10,10
5 20 1252 7,7 21 155 27 49 4 5,15,10,10
6 20 27 51 2 7,7 22 400 1 21 6 15,10,10,10,10,5
7 76 1 24 3 12,10,10 23 400 27 47 6 15,10,10,10, 10,5
8 76 27 50 3 12,10,10 24 50 1 51 2 6,6
9 100 1 50 3 10,10,15 25 50 1 51 2 6,6
10 100 1 50 3 10,10,15 26 50 1 51 2 6,6
11 100 1 50 3 15,10,10 27 50 1 51 2 6,6
12 197 1 23 4 8,10,10,8 28 50 1 51 2 6,6
13 197 1 23 4 8,10,10,8 29 50 1 51 2 6,6
14 197 27 49 4 8,10,10,8 30 155 1 23 4 12,12,8,8
15 12 1 51 2 4,4 31 155 1 49 4 12,12,8,8
16 12 1 51 2 4,4 32 350 1 48 5 5,10,15,15,5
Table A.2
Exclusion data for the new 32-unit test system.
Exclusion set k Units i within Z; Ky
1 1,2,3,4 2
2 56,7, 8 2
3 9,10, 11 1
4 12,13,14 1
5 15, 16, 17, 18,19, 20 3
6 24, 25, 26, 27, 28, 29 3
7 30, 31, 32 1
Table A.3
The weekly peak load demands (MW) for the new 32-unit test system.
j D; j D; j D; j D;
1 2457 14 2138 27 2152 40 2063
2 2565 15 2055 28 2326 41 2118
3 2502 16 2280 29 2283 42 2120
4 2377 17 2149 30 2508 43 2280
5 2508 18 2385 31 2058 44 2511
6 2397 19 2480 32 2212 45 2522
7 2371 20 2508 33 2280 46 2591
8 2297 21 2440 34 2078 47 2679
9 2109 22 2311 35 2069 48 2537
10 2100 23 2565 36 2009 49 2685
11 2038 24 2528 37 2223 50 2765
12 2072 25 2554 38 1981 51 2850
13 2006 26 2454 39 2063 52 2713

each unit remains constant over the planning period, thus g;; = g;
and a maximum of M;=25 maintenance personnel are available
for maintenance work during each week. The weekly peak load de
mands of the power system are presented in Table A.3 and a safety
margin of S=15% has to be maintained throughout the planning
period. The daily, as well as hourly, peak load demands of the
power system may be found in the original 1979 IEEE RTS system
[36], if required.
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