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ABSTRACT 

A wide variety of traditionally and commercially fermented milks are commonly 

consumed in various countries of Sub-Saharan Africa.  Commercially fermented milk is 

produced on an industrial scale according to well-managed, standardised production 

processes and starters are used to initiate fermentation.  Traditionally fermented milk is 

prepared domestically and fermentation occurs spontaneously at ambient temperatures.  

Lactic acid bacteria (LAB) are responsible for milk fermentation during which they 

convert the milk carbohydrates to lactic acid, carbon dioxide, alcohol and other organic 

metabolites.  Acetic acid bacteria (AAB), yeasts and mycelial fungi have also been 

isolated from fermented milks.   

In this study the microbial consortium present in three traditionally fermented 

milks, namely omashikwa from Namibia, masse from Mozambique and chekapmkaika 

from Uganda and two commercially fermented milks, namely chambiko from Malawi and 

omaere from Namibia, were isolated and enumerated on six different selective media 

that included MSR + C (specific for lactobacilli), KCA + TTC (specific for lactococci), 

KCA + V (specific for leuconostocs), MRS + E (specific for AAB), MEA (specific for 

mycelial fungi) and YPD (specific for yeasts).   

No significant differences were found between the enumeration values obtained 

for the three chambiko samples, as well as for enumeration values obtained for the two 

omaere samples on each of the selective media, indicating low sample variance.  

Significant differences between enumeration values obtained for the three omashikwa 

samples were found on all six selective media.  Significant differences between 

enumeration values of the three masse samples and both the chekapmkaika samples 

were also observed on the selective media.  In addition to this, significant differences 

were observed between average enumeration values obtained for each media between 

the masse and chekapmkaika, the chambiko and omaere, as well as when the 

traditional and commercial milks were compared.  According to the average 

enumeration values obtained on each media selective for LAB, the highest bacterial 

counts were detected on KCA + TTC medium for omaere (2.3 x 106 cfu.ml-1), KCA + V 

for chambiko (1.8 x 105 cfu.ml-1), KCA + TTC for omashikwa and MRS + C for masse 

and chekapmkaika (6.2 x 106 and 2.0 x 103 cfu.ml-1, respectively). 

After isolation and enumeration of the microbes present in each milk, bacterial 

isolates on the media selective for LAB and AAB were obtained according to the 

Harrison Disk method.  These isolates were identified by amplifying a 1.5 kilobase (kb) 
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part of the 16S ribosomal RNA (rRNA) gene using the polymerase chain reaction 

(PCR), followed by DNA sequencing.  The isolates were identified by comparing the 

sequences obtained to sequences listed in the NCBI database using the BLAST 

algorithm and searching for the closest relative. 

The main LAB group present in the omaere was lactococci (94%), in chambiko 

and chekapmkaika it was lactobacilli (30% and 45%, respectively), in omashikwa it was 

enterococci (43%) and in masse it was leuconostocs (68%).  The same microbial 

species were present on a number of the selective media used in this study.  

Lactococcus spp., Enterococcus spp. and Lactobacillus spp. were isolated from MRS + 

C, KCA + TTC, KCA + V and MRS + E and Leuconostoc spp. were isolated from MRS + 

C, MRS + E and KCA + V.  Hygienic standards during traditional milk fermentation is 

often poor and, therefore, microbial contaminants were isolated from the traditional milk 

and these included Acinetobacter johnsonii and Klebsiella pneumoniae from KCA + V, 

Mesorhizobium loti, Acinetobacter radioresistens, Escherichia coli, Staphylococcus 

spp., Kluyvera georgiana, Enterobacter spp. and Klebsiella oxytoca from KCA + TTC, 

Staphylococcus spp. from MRS + C and Bacillus spp. from MRS + E.  Since the media 

used for the isolation of the LAB and AAB in this study were not selective further 

identification of the enumerated microbes is of importance for the identification of the 

microbial groups present in each fermented milk. 

The data obtained in this study clearly shows that fermented milks from Sub-

Saharan Africa vary significantly from each other in terms of microbial numbers, 

microbial diversity and the dominant microbial groups present.  The microbial diversity 

of the traditionally fermented milks was more diverse than the microbial diversity of the 

commercially fermented milks.  LAB strains isolated from these traditionally fermented 

milks can be used to develop novel starters and as a result new commercially 

fermented dairy products with unique aromas, tastes and characteristics can be 

produced. 
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UITTREKSEL 

„n Wye verskeidenheid tradisioneel en kommersieel gefermenteerde melk produkte 

word algeneem verbruik in verskeie lande van Sub-Sahara Afrika.  Kommersieel 

gefermenteerde melk word geproduseer op groot skaal, deur deeglik bestuurde 

gestandardiseerde produksieprosesse en „n beginkultuur word gebruik om fermentasie 

te inisieer.  Tradisioneel gefermenteerde melk word tuis gemaak en fermentasie gebeur 

spontaan by kamertemperatuur.  Melksuurbakterieë (MSB) is verantwoordelik vir 

melkfermentasie waartydens die bakterieë koolhidrate omskakel na melksuur, 

koolstofdioksied, alkohol en ander organiese sure.  Asetaatsuurbakterieë (ASB), giste 

en miseliale fungi is ook al van gefermenteerde melk geïsoleer.   

In hierdie studie is die mikrobiese konsortium teenwoordig in drie soorte 

tradisioneel gefermenteerde melk, naamlik omashikwa van Namibië, masse van 

Mosambiek en chekapmkaika van Uganda en twee soorte kommersieel gefermenteerde 

melk, naamlik chambiko van Malawi en omaere van Namibië, geïsoleer en getel op ses 

verskillende selektiewe groeimedia insluitend MRS + C (spesifiek vir lactobacilli), KCA + 

TTC (spesifiek vir lactococci), KCA + V (spesifiek vir leuconostocs), MRS + E (spesifiek 

vir ASB), MEA (spesifiek vir miseliale fungi) en YPD (spesifiek vir giste).   

Geen betekenisvolle verskille is gevind tussen die mikrobiese tellings verkry vir die 

drie chambiko monsters nie, sowel as tussen die mikrobiese tellings verkry vir die twee 

omaere monsters, op elk van die selektiewe groeimedia, wat dui op lae monster 

variansie.  Betekenisvolle verskille is gevind tussen die mikrobiese tellings verkry vir die 

drie omashikwa monsters op al ses selektiewe groeimedia.  Betekenisvolle verskille is 

ook waargeneem tussen die mikrobiese tellings van die drie masse monsters en beide 

die chekapmkaika monsters op die selektiewe groeimedia.  Daarbenewens is 

betekenisvolle verskille waargeneem tussen gemiddelde mikrobiese tellings verkry vir 

elke groeimedium tussen die masse en chekapmkaika, die chambiko en omaere asook 

toe die tradisionele en kommersiële melk produkte met mekaar vergelyk is.  Volgens die 

gemiddelde mikrobiese tellings verkry op elk van die groeimedia selektief vir MSB, is die 

hoogste mikrobiese telling waargeneem op KCA + TTC medium vir omaere (2.3 x 106 

kve.ml-1), KCA + V vir chambiko (1.8 x 105 kve.ml-1), KCA + TTC vir omashikwa en MRS 

+ C vir masse en chekapmkaika (6.2 x 106 en 2.0 x 103 kve.ml-1, respektiewelik).   

Na die isolasie en tel van die mikrobes teenwoordig in elke melk is bakteriese 

isolate op die media selektief vir MSB en ASB verkry volgends die Harrison Disk 

metode.  Hierdie isolate is geïdentifiseer deur amplifikasie van „n 1.5 kilobasis (kb) 
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gedeelte van die 16S ribosomale RNS (rRNS) geen deur gebruik te maak van die 

polimerase kettingreaksie gevolg deur DNS klonering.  Die isolate is geïdentifiseer deur 

die gekloneerde insetsels se volgordes te vergelyk met volgordes beskikbaar op die 

NCBI webwerf deur van die BLAST algoritme gebruik te maak en die naas verwante 

insetsel op te spoor.   

Die hoof MSB groep teenwoordig in die omaere was lactococci (94%), in 

chambiko en chekapmkaika was dit lactobacilli (30% en 45%, respektiewelik), in die 

omashikwa was dit enterococci (43%) en in die masse was dit leuconostocs (68%).  

Dieselfde mikrobiese spesies was teenwoordig op verskeie van die selektiewe 

groeimedia gebruik in hierdie studie.  Lactococcus spp., Enterococcus spp. en 

Lactobacillus spp. is geïsoleer van MRS + C, KCA + TTC, KCA + V en MRS + E en 

Leuconostoc spp. is geïsoleer van MRS + C, MRS + E en KCA + V.  Higiëniese 

standaarde tydens tradisionele melkfermentasie is dikwels swak en dus is mikrobiese 

kontaminante geïsoleer van die tradisionele melk produkte insluitend Acinetobacter 

johnsonii en Klebsiella pneumoniae van KCA + V, Mesorhizobium loti, Acinetobacter 

radioresistens, Escherichia coli, Staphylococcus spp., Kluyvera georgiana, Enterobacter 

spp. en Klebsiella oxytoca van KCA + TTC, Staphylococcus spp. van MRS + C en 

Bacillus spp. van MRS + E.  Aangesien die media wat gebruik is vir die isolasie van die 

MSB en ASB in hierdie studie nie selektief was nie, is verdere identifikasie van die 

getelde mikrobes belangrik vir die identifikasie van die mikrobiese groepe teenwoordig 

in elke melk.    

Die data verkry in hierdie studie dui aan dat gefermenteerde melk produkte van 

Sub-Sahara Afrika betekenisvol van mekaar verskil in terme van mikrobiese getalle, 

mikrobiese diversiteit en die dominante mikrobiese groepe teenwoordig.  Die mikrobiese 

diversiteit van die tradisioneel gefermenteerde melk produkte was meer divers as die 

mikrobiese diversiteit van die kommersieel gefermenteerde melk produkte.  MSB 

spesies geïsoleer van hierdie tradisioneel gefermenteerde melk produkte kan gebruik 

word om nuwe beginkulture te ontwikkel en gevolglik kan nuwe kommersieel 

gefermenteerde suiwelprodukte met unieke aromas, smake en eienskappe geproduseer 

word. 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



vii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family and friends, for their love and inspiration 

 

 

Stellenbosch University http://scholar.sun.ac.za



viii 
 

 

From left to right at the back: Laisve Lideikyte, Corli Witthuhn, MichelleCameron and Custodia Macuamule. 

From left to right in front: Amy Strydom, Lionie Schutte and Donna Cawthorn. 

 

 

 

 

“Education is the most powerful weapon which you can use to change the world.” 

 

-Nelson Mandela-  

 

 

 

“The function of education is to teach one to think intensively and to think critically. 

Intelligence plus character - that is the goal of true education.”  

 

-Martin Luther King, Jr.- 

 

 

 

Stellenbosch University http://scholar.sun.ac.za

http://www.brainyquote.com/quotes/quotes/m/martinluth402936.html


ix 
 

ACKNOWLEDGEMENTS 

I would like to thank the following people and institutions for their important and valuable 

contribution during completion of this research:    

Professor R.C. Witthuhn, Study leader and Vice-Dean of the Faculty of Natural and 

Agricultural Sciences, University of the Free State, for her endless support and 

extraordinary guidance during the course of my research and fulfilment of my 

thesis;  

Dr. M. Cameron, post-doctoral fellow, department of Food Science, University of 

Stellenbosch, for her valuable advice and technical assistance during the planning 

and execution of the experiments; 

SAMPRO, FoodBevSeta, MilkSA, SAAFOST, the University of Stellenbosch and the 

J.H. Neethling Trust for financial support;   

Ms. C. Macuamule, Dr. P.G. Bille, Mr. M. Matovu, Mr. U. Ndolo for their donation of 

fermented milk from Mozambique, Namibia, Uganda and Malawi, respectively; 

Mr. M. Von Maltitz, Department of Mathematical statistics, University of the Free State, 

who assisted me with the statistical analysis of the data; 

Staff of the Department of Food Science for their professional and enthusiastic 

approach to research; and 

My fellow post-graduate students for all their advice, support and optimism during my 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



x 
 

CONTENTS 

                                                                                                                               Page 

ABSTRACT           iii 

UITTREKSEL           v 

ACKNOWLEDGEMENTS         ix 

CHAPTER 1: INTRODUCTION        1 

CHAPTER 2: LITERATURE REVIEW       5 

A. Background          5 

B. Fermentation         6 

Antimicrobial activity of fermented foods     13 

Organic acids        14 

Hydrogen peroxide       15 

Carbon dioxide       15 

Diacetyl         16 

Bacteriocins        16 

Health benefits        17 

C. Fermented milks from Sub-Saharan Africa     18 

Chekapmkaika and kwerionik      19 

Masse and homemade yoghurt      19 

Omashikwa         19 

Other fermented milks       20 

D. Microbes responsible for milk fermentation     22 

Lactic acid bacteria        22 

Lactobacillus and Streptococcus     25 

Lactococcus        29 

Leuconostoc        30 

Enterococcus        31 

Pediococcus        33 

Acetic acid bacteria        33 

Yeasts and mycelial fungi       34 

E. Conclusions         36 

F. References          36 

 

Stellenbosch University http://scholar.sun.ac.za



xi 
 

CHAPTER 3: ENUMERATION OF THE MICROBIAL CONSORTIUM PRESENT 

                       IN FERMENTED MILKS FROM SUB-SAHARAN AFRICA  50 

Abstract          50 

Introduction          50 

Materials and methods         52 

Sample collection        52 

Isolation and enumeration of the microbial consortium   53 

Statistical analysis        53 

Results and discussion        55 

Enumeration values        55 

 Enumeration values of commercial chambiko and omaere 55 

      Enumeration values of traditional omashikwa, masse and  

      Chekapmkaika       59 

Conclusions          68 

References          68 

CHAPTER 4: SELECTION AND IDENTIFICATION OF THE BACTERIAL    

                       CONSORTIUM PRESENT IN FERMENTED MILKS FROM  

                       SUB-SAHARAN AFRICA       72 

Abstract          72 

Introduction          72 

Materials and methods         74 

Strain selection and cultivation      74 

DNA extraction         74 

PCR amplification        76 

DNA sequencing and identification      76 

Results and discussion        76 

Identification of isolates from commercial chambiko and omaere  76 

Identification of isolates from traditional omashikwa, masse and 

Chekapmkaika         78 

Distribution frequencies       86 

Conclusions          89 

References          91 

CHAPTER 5: GENERAL DISCUSSION AND CONCLUSIONS   96 

Background          96 

 

Stellenbosch University http://scholar.sun.ac.za



xii 
 

Enumeration of the commercial and traditional Sub-Sahara African 

fermented milks         96 

Selection and identification of the commercial and traditional Sub- 

Sahara African fermented milks       98 

Concluding Remarks        99 

References          100 

 

LIST OF FIGURES 

 

CHAPTER 2 

Figure 1  Glucose fermentation in homofermentative LAB through 

                Glycolysis (A) and glucose fermentation in heterofermentative  

                LAB through the Embden-Meyerhof-Parnas pathway   24 

CHAPTER 3 

Figure 1  The microbial levels in three samples of commercial chambiko  

                analysed in duplicate on six different selective media and  

                deviation bars indicating the maximum and minimum enumeration 

                value obtained per medium       58 

Figure 2  The microbial levels in three samples of commercial omaere 

                analysed in duplicate on six different selective media and deviation 

                bars indicating the maximum and minimum enumeration value 

                obtained per medium       58 

Figure 3  The microbial levels in three samples of traditional masse analysed  

                in duplicate on six different selective media and deviation bars 

                indicating the maximum and minimum enumeration value 

                obtained per medium       64 

Figure 4  The microbial levels in three samples of traditional chekapmkaika  

                analysed in duplicate on six different selective media and deviation  

                bars indicating the maximum and minimum enumeration value  

                obtained per medium       67 

CHAPTER 4 

Figure 1  Distribution frequency of the prevalent microbial species in  

                commercial chambiko       87 

Figure 2  Distribution frequency of the prevalent microbial species in  

                commercial omaere        87 

Stellenbosch University http://scholar.sun.ac.za



xiii 
 

Figure 3  Distribution frequency of the prevalent microbial species in  

                traditional omashikwa       88 

Figure 4  Distribution frequency of the prevalent microbial species in  

                traditional masse        88 

Figure 5  Distribution frequency of the prevalent microbial species in  

                traditional chekapmkaika       90 

 

LIST OF TABLES 

 

CHAPTER 2 

Table 1  Fermented foods prepared and consumed in Africa   9 

Table 2  Prevalent lactic acid bacteria genera responsible for the fermentation 

              of various types of food        23 

Table 3  Lactobacilli associated with dairy products divided into three major  

               groups based on their sugar fermentation     26 

CHAPTER 3 

Table 1  Selective media used for the isolation and enumeration of the 

               microbes present in the five different fermented milks from  

               Sub-Saharan Africa        54 

Table 2  Enumeration values (cfu.ml-1) obtained for commercial chambiko 56 

Table 3  Enumeration values (cfu.ml-1) obtained for commercial omaere  56 

Table 4  Enumeration values (cfu.ml-1) obtained for traditional omashikwa 60 

Table 5  Enumeration values (cfu.ml-1) obtained for traditional masse  62 

Table 6  Enumeration values (cfu.ml-1) obtained for traditional 

              chekapmkaika         65 

CHAPTER 4 

Table 1  Selective media used for the isolation and selection of the 

               microbes present in the five different fermented milks from  

               Sub-Saharan Africa        75 

Table 2  Identification of the microbial strains isolated from the chambiko 77 

Table 3  Identification of the microbial strains isolated from the omaere  79 

Table 4  Identification of the microbial strains isolated from the omashikwa 80 

Table 5  Identification of the microbial strains isolated from the masse  82 

Table 6  Identification of the microbial strains isolated from the  

              chekapmkaika         85 

Stellenbosch University http://scholar.sun.ac.za



xiv 
 

LIST OF ABBREVIATIONS 

 

AAB – acetic acid bacteria 

ANOVA – analysis of variance 

BFAP – Bureau for Food and Agricultural Policy 

DSMZ – Deutche Sammlung von Mikroorganismen und Zellkulturen 

FAO/WHO – Food and Agriculture Organization/World Health Organization 

GMP – Good Manufacturing Practice  

KCA + TTC – potassium carboxymethyl cellulose agar and triphenyltetrazolium chloride 

KCA + V – potassium carboxymethyl cellulose agar and vancomycin 

LAB – lactic acid bacteria 

LDH – lactate dehydrogenase 

LPSN – List of Prokaryotic names with Standing in Nomenclature 

MEA – malt extract agar 

MIC – minimum inhibitory concentration  

MRS + C – deMan Rogosa and Sharp-medium and cycloheximide 

MRS + E – deMan Rogosa and Sharp-medium and ethanol 

NC – no counts 

NSLAB – non starter lactic acid bacteria 

PCR – polymerase chain reaction 

rRNA – ribosomal RNA 

YPD – yeast peptone dextrose agar 

 

 

 

 

 

 

 

 

Language and style used in this thesis are in accordance with the requirements of the 

International Journal of Food Science and Technology.  This thesis represents a 

compilation of manuscripts where each chapter is an individual entity and  

some repetition between chapters has, therefore, been unavoidable. 

Stellenbosch University http://scholar.sun.ac.za



1 
 

CHAPTER 1 

INTRODUCTION 

A large variety of fermented food products are produced and consumed around the 

world.  Fermentation serves to preserve raw foods and increases the diversity of 

available food products (Motarjemi, 2002; Ross et al., 2002).  Cereals, oil seeds, milk, 

fish, meat and vegetables are raw foods that are fermented world-wide (Iwuoha & Eke, 

1996; Lee, 1997).  As part of the human diet, fermented foods can play an important 

role in maintaining a healthy intestinal tract and increase the acceptability of dairy 

products to lactose intolerant individuals (Bernardeau et al., 2008; Brown-Esters et al., 

2012).  In Africa, food fermentation is especially helpful to prevent malnutrition among 

infants and also to detoxify raw foods such as cassava which contain harmful chemicals 

(Edijala et al., 1999; Holzapfel, 2002).   

Today most fermented food products in developed countries are produced 

commercially in large quantities though standardised and well controlled production 

processes.  This usually occurs through fermentation which is initiated by adding 

defined starter cultures and results in high quality end-products which are consistently 

safe for consumption (Caplice & Fitzgerald, 1999).  However, in Africa fermented foods 

are still frequently prepared in small quantities using traditional methods by rural 

communities through spontaneous fermentation or by adding a small amount of 

previously fermented product as a starter (Oyewole, 1997).  Spontaneous fermentation 

can occur due to microbes inherent in the raw milk or by microbes from the environment 

or preparation equipment (Oyewole, 1997; Kebede et al., 2007).  The characteristics of 

these products are influenced by the quality and the type of raw milk used, the 

production methods followed and the regional climatic conditions (Mensah, 1997; 

Wouters et al., 2002).  During the preparation of traditionally fermented milks, good 

hygienic practises are often neglected and, therefore, these products are often of poor 

quality and spoilage microbes can be present (Bille et al., 2007; Aloys & Angeline, 

2009).  The microbial consortium present in traditionally fermented milk products is 

generally diverse which results in varied product quality with unique organoleptic 

properties (Holzapfel, 1997; Ross et al., 2002; Leroy & De Vuyst, 2004).  Some of these 

traditionally fermented milks include sethemi (South Africa), omashikwa (Namibia), rob 

(Sudan) and ergo (Ethopia) (Abdelgadir, et al., 2001; Gonfa et al., 2001; Bille et al., 

2007; Kebede et al., 2007).  Amasi from South Africa and madila from Botswana are 

Stellenbosch University http://scholar.sun.ac.za



2 
 

both traditionally and commercially produced (Ohiokpehai, 2003; McMaster et al., 

2005). 

A wide variety of microbes can be responsible for the fermentation of milk 

including lactic acid bacteria (LAB), acetic acid bacteria (AAB), yeasts and mycelial 

fungi.  The LAB genera generally present in fermented milk products are Lactobacillus, 

Lactococcus, Leuconostoc, Streptococcus, Enterococcus and Pediococcus 

(Temmerman et al., 2004; Zamfir et al., 2006).  LAB initiate the process of fermentation 

whereby carbohydrates in the milk are oxidised into predominantly lactic acid, but 

alcohol, carbon dioxide and several other compounds can also be produced depending 

on the LAB strains present (Caplice & Fitzgerald, 1999; Ross et al., 2002).  AAB have 

been isolated from kefir grains used to prepare traditionally fermented milk known as 

kefir (Witthuhn et al., 2005).  AAB are also present in some commercial starters such as 

Acetobacter orientalis which is used in combination with Lactococcus lactis subsp. 

cremoris to produce fermented milk in Japan (Nakasaki et al., 2008).  Yeasts present in 

fermented milk products generally enter the raw milk or cheese from the environment 

and their presence results in end-products with different physico-chemical 

characteristics in comparison to products where only LAB is present.   

Information on starter cultures used in Sub-Saharan Africa is limited and very few 

of the microbial consortiums present in these traditionally fermented milks have been 

investigated.  LAB strains isolated from the traditionally fermented milk can be used to 

construct new commercial starters and new fermented products with original 

characteristics can then be produced.  In this study the microbial consortiums of five 

different fermented milk products from different countries in Sub-Saharan Africa were 

enumerated and further identifications made were focused on the LAB and AAB present 

in the fermented milks.  These fermented milks include two commercially fermented 

milks, chambiko (Malawi) and omaere (Namibia) and three traditionally fermented milks, 

omashikwa (Namibia), masse (Mozambique) and chekapmkaika (Uganda). 
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CHAPTER 2 

LITERATURE REVIEW 

A.  Background 

 

Milk from various ruminant species play an essential role in human nutrition and health, 

either through direct consumption of milk or the consumption of various types of dairy 

products (Ceballos et al., 2009).  Milk is a source of important nutrients, including 

macronutrients such as sugars, lipids and proteins, as well as micronutrients, including 

various vitamins and minerals (Michaelidou, 2008; Ceballos et al., 2009; Fox, 2009).  

Other minor constituents also present in milk include enzymes, hormones and 

compounds such as alcohols, sulphides, diols and acrolein that are formed during the 

disintegration of macronutrients during milk processing (Fox, 2009; Huppertz et al., 

2009). 

Of the approximate 600 million tonnes per annum of milk produced in the world 

today, 85% is bovine milk, 11% is buffalo milk, 2% is caprine milk and 2% is ovine milk.  

Minimal amounts of milk are also produced from reindeer, camels, horses, yaks and 

donkeys (Fox, 2009).  Dairy products, produced from these different milks, include 

fermented milk products and cheeses that are produced on a commercial scale or 

traditionally within communities (Lee, 1997; Kebede et al., 2007).  The popularity of 

different dairy products and their consumption varies between countries and people‟s 

personal taste.  According to Milk South Africa, the South African commercial dairy 

market consisted of 40% concentrated and 60% liquid products in 2010.  Hard and 

semi-hard cheeses were the predominant concentrated products consumed, followed 

by other cheese varieties, milk powder, butter, whey powder, condensed milk and 

buttermilk powder.  The predominant liquid product consumed was pasteurised milk 

(52%), followed by UHT, sterilised milk, yoghurt, maas, buttermilk and flavoured milk.  In 

South Africa traditionally fermented dairy products are especially popular among rural 

communities and these fermented milks are commonly consumed as is or with cereal 

products (Narvhus & Gadaga, 2003; Kebede et al., 2007; Todorov et al., 2007).   

Countries with the largest amount of dairy farms include India (78 million), 

Pakistan (7.4 million), Russia (3.2 million), Uganda, Kenya, China, Uzbekistan and the 

Ukraine (between 1.7 and 2.2 million).  In more than 40% of countries globally, herds 

consists of an average of less than ten cows.  South Africa is the only African country of 

eleven countries globally which have dairy herds of more than 100 cows (Coetzee, 
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2012a).  A 0.5% or more annual decrease in the number of dairy farms, as has been 

observed around the world, has led to a decrease in milk production.  The decrease in 

the number of farms was countered by an increase in the total milk produced per farm.  

However, this is only true for a few countries including South Africa, where a 7.5% or 

higher increase has been observed (Coetzee, 2012a).  During the first ten months of 

2011 the production of milk in South Africa was only 0.3% higher than in the same 

period of the previous year, while milk consumption increased by 5%.  This trend is 

observed globally emphasising the pressure on milk production to support the high 

demand for dairy products (Anonymous, 2012a). 

According to the Bureau for Food and Agricultural Policy (BFAP) (2008) the 

increase in producer costs in South Africa led to an increase in milk production and a 

new record was set of 2.65 million tons of fluid milk produced.  In 2009 the annual milk 

production decreased to approximately 2.52 million tons, but an increase in production 

is predicted annually up to 2019 reaching approximately 2.75 million tons of milk.  Over 

the next ten years it is expected that the dairy industry is going to be one of the fastest 

developing agricultural industries, where milk production will increase with an average 

of more than 2% per year to satisfy the increasing demand for fresh milk in third world 

countries.  This correlates well with predictions of increasing dairy consumption in South 

Africa where by 2019 the average growth rate per year will be approximately 2.4% for 

cheese, 4.9% for skimmed milk powder and 5.9% for whole milk powder. 

B.  Fermentation  

 

Fermentation as a food processing technology dates as far back as 6000 BC, where it 

spread from its origin in the Middle East during the start of domestication of animals to 

the rest of the world (Caplice & Fitzgerald, 1999; Ross et al., 2002).  Fermented food 

products originated through natural fermentation by the microbes present in the raw 

foods and these products became popular amongst the indigenous communities (Ross 

et al., 2002).  Traditional fermentation methods were passed on from one generation to 

the next by using a relatively small amount of the previously fermented product as a 

starter culture for the following fermentation (Sanni, 1993).  The latter process, also 

known as backslopping of the fermented product, resulted in the reduction of 

fermentation failure and conservation of the unique organoleptic properties (Caplice & 

Fitzgerald, 1999; Leroy & De Vuyst, 2004).  Today most fermented products are 

produced on a commercial scale through highly developed equipment and industrial 
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processes where fermentation is initiated by defined starter cultures (Caplice & 

Fitzgerald, 1999). 

In 1890 the first „pure‟ starter (Lactococcus lactis) was used for the production of 

fermented milk and cheese in Germany and Denmark (Holzapfel, 1997).  A starter 

culture is a product with high viable microbial counts and when added to certain foods, it 

accelerates fermentation leading to a final product with a desirable alteration in the 

aroma, texture and flavour profile (Holzapfel, 1997; 2002).  Initially, starters were 

selected primarily according to the acidification rate and phage resistance.  A better 

understanding of the metabolism and genomics of fermentation microbes led to 

improved strain selection to ensure product uniqueness (Leroy & De Vuyst, 2004).  

Although commercial starter cultures can ensure end-product safety and quality, 

traditional starters result in a fermented product with diverse sensory attributes due to 

the wide variety of microbes present (Holzapfel, 1997; Ross et al., 2002; Leroy & De 

Vuyst, 2004). 

In most third world countries such as Africa, foods are still frequently fermented on 

house hold scale through spontaneous fermentations at ambient temperatures (Iwuoha 

& Eke, 1996; Oyewole, 1997).  The quality of these traditionally prepared fermented 

foods is often poor.  This is a result of neglected hygienic practises during preparation 

which leads to the presence of spoilage microbes, dirt and insects in the final product 

resulting in shortening of the shelf-life (Bille et al., 2007; Aloys & Angeline, 2009).  

Several aspects must be taken into account when a starter is selected for improving the 

product quality of traditional fermentations made on small scale in developing countries.  

Firstly, the production process must be managed to meet the desirable growth 

conditions for the starter bacteria to ensure fermentation and prevent contamination.  

This can be achieved by implementing the fundamental principles of Good 

Manufacturing Practice (GMP).  Secondly, the sensory characteristics of the fermented 

food must meet the dietary habits and preferences of the target consumer communities.  

Thirdly, the starter strains must have the ability to utilise the carbohydrates in a specific 

raw food to produce the desired final product.  And finally, the starter strain(s) must be 

able to reduce toxicological risks of foods if the raw product contains mycotoxins and 

toxic chemical compound (Edijala et al., 1999; Holzapfel, 2002; Aloys & Angeline, 

2009).  When selecting a starter the efficiency is dependent on the quality of the raw 

food, the culture age, storage and management procedures, such as temperature 

control at incubation and the presence of inhibitors.  The presence of bacteriophages 
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can also affect starter culture efficiency, which can result in unsuccessful fermentation 

and final product losses (Giraffa et al., 2010). 

In Africa, the most popular raw foods to be fermented are crops, cereals, oil seeds, 

roots and milk (Table 1) (Oyewole, 1997).  Fish, meat and vegetables are also 

fermented in Africa, but not as frequently as in Europe and Asia (Lee, 1997; Oyewole, 

1997).  Recipes followed for the preparation of various traditionally fermented products 

vary and are influenced by the food type, cultural traditions and geographical regions 

(Mensah, 1997). 

During fermentation, carbohydrates are oxidised (aerobically or anaerobically) by 

microbes, predominantly lactic acid bacteria (LAB).  The end-products produced mainly 

include lactic acid, but also carbon dioxide and alcohol (Caplice & Fitzgerald, 1999; 

Ross et al., 2002).  These microbes may also produce other organic acids such as 

acetic, propionic, formic and butyric acids, as well as enzymes, bacteriocins, aroma 

compounds and exopolysaccharides (Caplice & Fitzgerald, 1999; Leroy & De Vuyst, 

2004).  As a result, raw materials are converted to a safe product with a reduced pH 

and unique sensory characteristics (Sanni, 1993; Leroy & De Vuyst, 2004).  Since only 

partial oxidation occurs, the fermented product still contains some carbohydrates and is, 

therefore, of nutritional value in the human diet (Caplice & Fitzgerald, 1999). 

The four major fermentation processes include acetic acid, alkali, alcohol and 

lactic acid fermentation (Mensah, 1997).  Vinegar, coffee, wine and cacoa are examples 

of fermented products where acetic acid fermentation takes place due to the presence 

of acetic acid bacteria (AAB) (De Vuyst et al., 2008; Sengun & Karabiyikli, 2011).  Alkali 

fermentation occurs during the preparation of stink fish, as well as seed based 

fermented products such as dawadawa/iru, ugba and ogiri.  The microbial species 

Bacillus subtilis is responsible for alkali fermentations (Sanni, 1993; Iwuoha & Eke, 

1996; Mensah, 1997; Steinkraus, 1997).  The fermentation process in these products is 

controlled by the ammonia produced during protein hydrolysis and the alkaline pH 

(Steinkraus, 1997).  In West Africa, plant seeds that are often fermented in this manner 

include African locust bean, castor oil bean, sesame and melon seeds (Sanni, 1993).  

Fermented seed products are prepared firstly by removing the seed coats and boiling 

the remaining cotyledons.  Salt is then added to the cooked seeds and placed on plant 

leaves in perforated calabashes or baskets.  The container is then covered and left to 

ferment for two to three days.  After the fermented product is dried it is ready to be used 

as a condiment with other dishes such as stews and soups (Mensah, 1997).  In 

products such as beer, wine and bread, alcoholic fermentation takes place due to the 

Stellenbosch University http://scholar.sun.ac.za



9 
 

Table 1  Fermented foods prepared and consumed in Africa (Oyewole, 1993; Sanni, 

                1993; Iwuoha & Eke, 1996; Lee, 1997; Mensah, 1997; Gadaga et al., 1999; 

                Blandino et al., 2003). 

Raw food categories Name of fermented 
products and raw food 

Nature of fermented 
product 

Country of 
preparation/
consumption 

Cereal based non-alcoholic Ogi (maize, millet or 
sorghum), Akamu (maize) 

Porridge Nigeria 

 Koko or Akasa (maize) Porridge Ghana 

 Kenkey, Banku (maize) Dumplings Ghana 

 Uji (maize, millet or sorghum) Porridge Kenya 

 Mawe (Maize) Porridge Benin 

 Kisra (sorghum) Bread Sudan 

 Mahewu/Magou (maize, 
wheat) 

Non-alcoholic 
beverage 

South Africa 

Cereal based alcoholic Bussa (maize, sorghum or 
millet) 

Alcoholic beverage Kenya 

 Sekete (maize) Beer Nigeria 

 Leting/Joala (maize or 
sorghum), Utshival amqomboti 
(sorghum) 

Beer South Africa 

 Bouza (millet, wheat) Alcoholic beverage Egypt 

 Otika (sorghum) Alcoholic beverage Nigeria 

 Burukutu (sorghum) Beer West Africa 

Starchy food non-alcoholic Gari (cassava) Flour West Africa 

 Agblima (cassava) Dumpling West Africa 

 Lafun (cassava) Flour West Africa 

 Fufu (cassava) Paste West Africa 

Vegetable proteins Ugba (oil been seed or 
sesame seed) 

Flavourant Nigeria 

 Dawadawa/Iru (African locust 
bean) 

Condiment West and 
Central Africa 

 Kawal (Cassia obtusifolla 
leaves) 

Meat substitute Sudan 

 Ogiri (melon seed) Condiment Nigeria 

Fruit juice alcoholic Makumbi/Marula wine or beer 
(marula fruit) 

Alcoholic beverage Zimbabwe 

 Mudetemwa (sand apple) Alcoholic beverage Zimbabwe 

Meat and seafood Afonnama (beef tripe) Condiment Nigeria 

 Azu-okpo (fish) Condiment Nigeria 

  Nsiko (crab) Condiment Nigeria 
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presence of yeasts which produces alcohol and carbon dioxide (Sicard & Legras, 2011).  

In Africa, a wide variety of traditionally prepared alcoholic beverages such as bussa, 

sekete, ogogoro, bouza, otika and bukurutu are produced from one type or a mixture of 

cereals including sorghum, wheat, maize and millet (Oyewole, 1993; Sanni, 1993; Lee, 

1997; Blandino et al., 2003).  Basic steps for the preparation of these beverages include 

germination of the cereal grains in water, followed by drying and milling into flour.  The 

flower is then mixed with water, boiled and left to ferment (Sanni, 1993; Iwuoha & Eke, 

1996; Blandino et al., 2003).  In Zimbabwe traditionally prepared wine- or beer-like 

alcoholic beverages are also produced from fruit and are generically known as Makumbi 

(Gadaga et al., 1999).  Fruits used for the preparation of these products include fruits 

from the marula tree (Sclerocarya birrea subsp. caffra), the buffalo thorn (Ziziphus 

mauritiana), the sand apple (Parinari curatellifolia) and the wild loquat (Uapaca kirkiana) 

(Gadaga et al., 1999; Mithӧfer & Waibel, 2003; Nyanga et al., 2007).  These beverages 

are mostly fermented by a combination of yeasts and LAB, with a resulting alcoholic and 

lactic acid fermentation (Sanni, 1993). 

Most traditionally prepared fermented foods in Africa are a result of lactic acid 

fermentations by LAB, although other microbes can also be present (Oyewole, 1997).  

Examples of lactic acid fermented cereal based foods commonly prepared in Africa are 

ogi, kisra and mahewu (Lee, 1997; Blandino et al., 2003).  Ogi is an important 

fermented cereal from West Africa used as a traditional weaning food, as a nutritious 

meal for sick people and as breakfast porridge (Oyewole, 1997).  It is mostly prepared 

from maize, although millet and sorghum can also be used (Blandino et al., 2003).  The 

grains are steeped for one to three days in a container, wet-milled and then wet-sieved.  

The ogi slurry can be fermented further before it is cooked to make porridge (Iwuoha & 

Eke, 1996; Blandino et al., 2003).  Kisra is a type of fermented bread commonly 

prepared in Sudan by fermenting sorghum flour mixed with water into a thick dough.  

The dough is baked and consumed with stewed meat or vegetables (Blandino et al., 

2003).  Mahewu, a non-alcoholic maize based beverage is prepared by mixing maize 

porridge with water and adding either wheat, sorghum flour or millet malt before it is left 

to ferment spontaneously for approximately one day (Gadaga et al., 1999; Blandino et 

al., 2003).  This product is mostly consumed by adults, but it is also used as a weaning 

food for infants.  Mahewu is also produced commercially in Zimbabwe (Blandino et al., 

2003).  

The lactic acid fermentation of cassava (Manihot esculenta Crantz) roots result in 

a wide variety of nutritious products such as gari and agblima (Sanni, 1993; Mante et 
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al., 2003; Blagbrough et al., 2010).  Gari, a type of fermented cassava flour is 

traditionally prepared by peeling cassava roots and grating them into a pulp.  The 

cassava pulp is then placed in Hessian bags and compressed with rocks or wood to 

remove excess moisture.  The bags are hung outside from a tree or hut for 

approximately four days during which fermentation takes place.  Afterwards the dried 

pulp is sieved and roasted (Iwuoha & Eke, 1996; Mensah, 1997; Kostinek et al., 2005).  

Agblima is fermented cassava dumplings made from cassava flour similarly prepared to 

gari.  The difference is the addition of a traditional starter culture, prepared by leaving 

cassava shavings in water for five days to increase the fermentation rate of the cassava 

pulp.  The cassava flour is formed into dough and cooked in water to a stiff dumpling 

which is consumed with stews (Mensah, 1997; Mante et al., 2003).  Fermentation of the 

raw cassava roots is important to ensure that cassava products are fit for human 

consumption.  Cyanide, a toxic chemical compound potentially fatal to humans is found 

in raw cassava roots and, therefore, cassava must be processed before consumption to 

reduce the cyanide levels.  This is achieved during fermentation, as well as during 

boiling or frying (Edijala et al., 1999; Aloys & Angeline, 2009).  Fermentation of cassava 

is also important to increase the short shelf-life of the roots which is less than five days 

(Oyewole, 1997). 

In Asia and Europe lactic fermented vegetables are commonly consumed and are 

a good source of minerals, vitamins, antioxidants and dietary fibre (Lee, 1997; Jevšnik 

et al., 2009).  These products are commercially available, but also traditionally 

prepared.  Since a wide variety of microbes are present on raw vegetables and 

pasteurization adversely affects product quality, salt is added to enhance the growth of 

LAB (Jevšnik et al., 2009).  Well known fermented vegetable products in Asia and 

Europe include sauerkraut and kimchi, which are used as salads or side dishes (Lee, 

1997; Kim & Chun, 2005; Xiong et al., 2012).  Both these products are made from 

shredded cabbage and salt, but during kimchi preparation other ingredients such as 

radish, green onion, red pepper, garlic and ginger are added (ten Brink et al., 1990; Lee 

& Lee, 1993; Lee, 1997; Park et al., 2011).  The salt concentration of sauerkraut is 

between 0.7 and 3.0%, while that of kimchi is between 3.0 and 5.0% (Lee, 1997).  The 

lactic acid fermentation in both products is initiated by Lactobacillus spp., but in the 

preparation of kimchi the fermentation process is usually shorter (Lee, 1997). 

In Asia the lactic acid fermentation of meat products is often enhanced by adding 

salt and an additional carbohydrate source such as sugar, flour, rice or millet to ensure 

a low pH (Lee, 1997; Rivera-Espinoza & Gallardo-Navarro, 2010).  Examples of such 
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products include sai-krok-prieo prepared in Thailand and nem-chua prepared in 

Vietnam, which are both similar to salami commonly found in Europe (Lee, 1997).  

Fermented sausages are generally made from ground raw meat, often pork, fat, curing 

agents (nitrate/nitrite), sugar, spices and salt which are mixed and stuffed into a casing.  

The sausage is then fermented by LAB, mainly Lactobacillus and Pediococcus spp.  

Yeasts and mycelial fungi can also be present, especially in traditionally prepared 

sausages.  After fermentation, which can last for several days to several months, the 

sausage is dried before it is consumed (Lücke, 1994; Lee, 1997; Caplice & Fitzgerald, 

1999; Rivera-Espinoza & Gallardo-Navarro, 2010; Papavergou, 2011).  In Europe 

fermented sausages are made by adding starter cultures which shorten the 

fermentation process and ensure product safety and quality (Lücke, 1994).  If nitrate is 

used as a curing agent staphylococci and micrococci are also added to the LAB starter 

to guarantee nitrate reductase activity (Lücke, 1994; Hugas & Monfort, 1997; Hammes, 

2012). 

In the north-eastern coastal regions of Korea a variety of traditionally fermented 

fish products are still consumed today, generically referred to as sikhae.  Sikhae, 

different from stink fish, is a lactic acid fermented food where Lactobacillus and 

Leuconostoc spp. are mainly responsible for fermentation (Lee, 1997; Rhee et al., 

2011).  The dominance of LAB can be explained by the inclusion of garlic (3-4%) during 

sikhae preparation, which has an inhibitory effect on other bacteria including species of 

Bacillus, Pseudomonas and Micrococcus (Lee, 1997).  Garlic may also provide LAB 

with fermentable carbohydrates along with the millet usually added to sikhae (Paludan-

Müller et al., 1999).  The salt concentration of sikhae (8%) also creates favourable 

growth conditions for LAB (Lee, 1997). 

The lactic acid fermentation of milk is popular in many African countries (Mensah, 

1997; Abdelgadir et al., 1998).  Most milk fermentations in Africa are traditionally 

prepared by undefined starters at home from raw milk by backslopping, spontaneous 

fermentation from microbes in the environment, LAB inherent in the raw milk or by 

preparation in used fermentation containers (Oyewole, 1997; Kebede et al., 2007).  

Sheep, goat or mainly cow milk are used for the production of fermented milk in Africa 

(Narvhus & Gadaga, 2003).  Fermented milks have a characteristic semi-solid and 

curdled texture, because the casein proteins in the milk are dispersed in the liquid 

product where an increase in viscosity occurs due to physical and chemical changes 

that takes place during fermentation (Wood, 1994; Gonfa et al., 2001). 
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In Eastern and Southern Africa, excluding Zimbabwe and Kenya, about 80-90% of 

milk produced on rural farms is consumed by the tribal people themselves (Kebede et 

al., 2007).  Traditionally fermented dairy products consumed in rural African 

communities include products similar to cottage-cheese, butter and a wide variety of 

fermented milks (Iwuoha & Eke, 1996; Abdelgadir et al., 1998; Gadaga et al., 1999; 

Aloys & Angeline, 2009).  Examples of traditionally prepared products that all resemble 

cottage cheese are hodzeko from Zimbabwe, warankasi from Nigeria and jibna-beida 

from Sudan (Abdelgadir et al., 1998; Gadaga et al., 1999; Aloys & Angeline, 2009).  

Traditionally prepared butter products include maishanu from Nigeria, amavuta from 

Burundi and samin from Sudan (Abdelgadir et al., 1998; Gadaga et al., 1999; Aloys & 

Angeline, 2009).  Information on starter cultures used to produce these products in Sub-

Saharan Africa is limited (Holzapfel, 2002). 

In Asia, koumiss is an example of a traditionally fermented milk, while in Europe 

fermented milks such as kefir, yoghurt and viili are popular, as well as a wide variety of 

cheeses (Toba, 1990; Wood, 1994; Garrote et al., 1997; Kücükcetin et al., 2003; Liu, 

2003; Irigoyen et al., 2005; Bouamra-Mechemache et al., 2008; Xie et al., 2011).  Over 

the last century, fermentation of dairy products has been well researched in Europe 

where safe and nutritious products are commercially produced on a large scale through 

defined processes (Lee, 1997).  Small scale fermented food producers in developing 

countries have so far relied primarily on improvements regarding product safety and 

quality through years of experience, by changing production processes as problems are 

identified, rather than through scientific research (Valyasevi & Rolle, 2002). 

Antimicrobial activity of fermented foods 

Developed countries have the resources to preserve food through freezing and canning. 

However, the main preservation techniques in developing countries are dehydration, 

salting and fermentation.  This is because of the accessibility and low cost of these 

preservation methods (Steinkraus, 1994; Oyewole, 1997; Holzapfel, 2002; Motarjemi, 

2002).  As a result of inadequate sewage disposal facilities and contaminated water 

sources in developing countries, pathogens are frequently present in raw milk and on 

other raw foods.  The high ambient temperatures and lack of refrigeration facilities in 

these countries leads to multiplication of the pathogenic microbes and to higher risk of 

infection (Mensah, 1997; Motarjemi, 2002; Gran et al., 2003).  Pathogenic microbes that 

have been found in raw  milk and naturally fermented raw milk include Escherichia coli, 

Vibrio cholerae, Shigella spp., Staphylococcus aureus, Yersinia spp., Listeria 
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monocytogenes, Mycobacterium tuberculosis, Mycobacterium bovis, Salmonella spp., 

Brucella abortus, Campylobacter jejuni and Bacillus cereus (Gran et al., 2003; Herreros 

et al., 2005; Mufandaedza et al., 2006). 

During fermentation the growth of pathogens, as well as other spoilage organisms, 

are frequently inhibited through antimicrobial components produced by LAB (Varadaraj 

et al., 1993; Adams & Nicolaides, 1997; Herreros et al., 2005; Park et al., 2005).  By 

incorporating LAB which produces antimicrobial components in commercial starter 

cultures the use of chemical preservatives such as sodium benzoate and sodium 

metabisulphite can be reduced (Joseph & Akinyosoye, 1997; de Mendonça et al., 2001; 

Herreros et al., 2005).  These antimicrobial components produced include organic 

acids, hydrogen peroxide, carbon dioxide, acetaldehyde, diacetyl, ethanol and 

bacteriocins (Adams & Nicolaides, 1997; Caplice & Fitzgerald, 1999; Ross et al., 2002; 

Herreros et al., 2005; González et al., 2007). 

Organic acids 

During food fermentation LAB produce organic acids as a result of carbohydrates that 

are metabolised.  The predominant acid produced by LAB is lactic acid.  Other acids 

such as acetic acid and propionic acid can also be formed by bacteria present during 

fermentation (Caplice & Fitzgerald, 1999; Dalié et al., 2010).  The presence of organic 

acids in a food medium results in a reduction of the pH (Adams & Nicolaides, 1997; 

Mante et al., 2003; Mufandaedza et al., 2006; Charlier et al., 2009).  The reduced pH 

results in unfavourable growth conditions for a wide variety of pathogens and spoilage 

microbes whereas LAB are more tolerant to lower pH environments (Ross et al., 2002).  

For example, the approximate pH tolerance for Escherichia coli is between 4.4 and 9.0, 

where some Lactobacilli can tolerate pH environments of between 3.0 and 7.2 (Mensah, 

1997).  

The inhibitory effect of organic acids depends on the amount of acid in its 

undissociated form present in the food medium (Charlier et al., 2009).  The 

undissociated form of an acid can easily diffuse over the cytoplasmic membrane of the 

spoilage microbes.  The higher pH of the intracellular environment results in the 

dissociation of the acid and a proton is released.  This increase in protons leads to a 

decrease of the pH of the cytoplasm and causes inactivation of pH sensitive enzymes 

and structural changes in cellular membranes which have inhibiting or lethal effects 

(Schnürer & Magnusson, 2005; González et al., 2007; Dalié et al., 2010).  Organic acids 

differ in their ability to inhibit microbes depending on their individual pKa values (Adams, 
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1990).  Acids with a high pKa dissolve only partially in an aqueous food medium, which 

results in a higher amount of undissociated acid present (Schnürer & Magnusson, 

2005).  Acetic acid (pKa 4.8) and propionic acid (pKa 4.9) are, therefore, stronger 

antimicrobials than lactic acid (pKa 3.9) (Charlier et al., 2009). 

Hydrogen peroxide  

LAB possess flavoprotein which oxidises to produce hydrogen peroxide (H2O2) in the 

presence of oxygen (Adams, 1990).  The absence of the catalase enzyme in LAB which 

disintegrates H2O2 results in the accumulation of H2O2 in the fermented food medium 

(Caplice & Fitzgerald, 1999).  The oxidation of protein structures and membrane lipids 

of spoilage microbes present such as Staphylococcus aureus and Pseudomona spp. 

mediates the inhibitory effect of H2O2 (Adams, 1990; Adams & Nicolaides, 1997, 

Caplice & Fitzgerald, 1999).  Fortunately the fermenting LAB are more resistant to the 

inhibiting effects of H2O2 in comparison to other Gram-negative bacteria (Caplice & 

Fitzgerald, 1999).  The amount of H2O2 produced depends on the availability of oxygen 

in the food medium at the beginning of fermentation, keeping in mind that lactic acid 

fermentation essentially occurs under anaerobic conditions (Adams, 1990; Adams & 

Nicolaides, 1997).  Sufficient amounts of H2O2 must be produced to have inhibitory 

effects to meet the minimum inhibitory concentration (MIC) which differs between 

microbial species and strains (Dalié et al., 2010).  For example, the MIC for 

Staphylococcus aureus was found to be 5 - 6 mg.ml-1, far less than the MIC for 

Lactococcus lactis (125 mg.ml-1) (Adams & Nicolaides, 1997).  Hydrogen peroxide is 

also responsible for the activation of the antimicrobial lactoperoxidase system in milk, 

which involves the production of molecules inhibitory to Gram-negative bacteria such as 

hypothiocyanite during the catalysation of thiocyanate by a lactoperoxidase.  This 

system explains the inhibitory effect of H2O2 when it is present in non-lethal amounts in 

fermented milk (Adams, 1990; Dalié et al., 2010). 

Carbon dioxide 

Heterofermentative LAB produces carbon dioxide (CO2) as an end-product of hexose 

fermentation (Caplice & Fitzgerald, 1999).  The antimicrobial effect of CO2 is achieved 

in two ways.  Firstly, an anaerobic environment is created which favours the growth of 

anaerobic LAB and some yeasts, but inhibits obligated aerobic microbes such as 

mycelial fungi and Gram-negative bacteria (Eklund, 1984; Lindgren & Dobrogosz, 1990; 

Adams & Nicolaides, 1997).  Secondly, a rise in the CO2 pressure may result in 
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inefficient cell membrane transport mechanisms, which mediate pH changes of 

intracellular and extracellular environments and inhibit enzymatic reactions (Adams & 

Nicolaides, 1997; Caplice & Fitzgerald, 1999). 

Diacetyl 

Diacetyl produced by heterofermentative LAB during fermentation can have 

antimicrobial effects (Ross et al., 2002).  Diacetyl (2,3-butanedione), an end-product of 

citrate metabolism is important for flavour and aroma formation in dairy products, 

especially butter.  This compound also inhibits various microbes such as Escherichia 

coli, Salmonella spp., Staphylococcus aureus, Bacillus spp., Mycobacterium 

tuberculosis and Aeromonas hydrophila (Adams & Nicolaides, 1997; Caplice & 

Fitzgerald, 1999).  The antimicrobial mechanism of diacetyl is active at a low pH and 

believed to be the cause of the disruption of arginine utilisation (Caplice & Fitzgerald, 

1999; Schnürer & Magnusson, 2005).  Although diacetyl is a well known antimicrobial, 

the concentration produced is often too low to have a measurable lethal effect (Adams 

& Nicolaides, 1997; Caplice & Fitzgerald, 1999; Dalié et al., 2010).  An increase of this 

component during fermentation to ensure antimicrobial activity can compromise the 

organoleptic properties of the fermented food (Schnürer & Magnusson, 2005).  For 

example, for inhibition of Gram-negative bacteria 200 mg.kg-1 diacetyl is needed where 

acceptable levels of diacetyl in dairy products are between 2 - 7 mg.kg-1 (Adams & 

Nicolaides, 1997, Schnürer & Magnusson, 2005).  

Bacteriocins  

Bacteriocins are proteins or peptides that are ribosomally produced by bacterial species 

and strains (Garneau et al., 2002).  Numerous LAB synthesize bacteriocins which have 

varying spectrums of inhibition on closely related Gram-positive bacteria and certain 

yeast strains (Topisirovic et al., 2006; Charlier et al., 2009).  Inhibition of pathogenic 

foodborne bacteria such as Listeria monocytogenes and Staphylococcus aureus by 

bacteriocins lead to the realisation of their potential role as natural food preservatives 

(Adams & Nicolaides, 1997; Caplice & Fitzgerald, 1999; Van der Merwe et al., 2004; 

Charlier et al., 2009).   

Classification of bacteriocins produced by LAB can be done by dividing them into 

four groups according to their structure, chemical properties and function (Garneau et 

al., 2002; Topisirovic et al., 2006).  The four groups include Class I, Class II, Class III 

and Class IV (Garneau et al., 2002; Topisirovic et al., 2006).  Class I and Class II 
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bacteriocins are mostly associated with LAB commonly found in food (Caplice & 

Fitzgerald, 1999). 

Nisin is the best characterized bacteriocin and is used as a food preservative in 

dairy products, brewing, packaged and canned meats and in sausages world-wide 

(Stiles & Holzapfel, 1997; Casalta & Montel, 2008; Sobrino-López & Martín-Belloso, 

2008).  Nisin is produced by Lactococcus lactis subsp. lactis and classified as a 

lantibiotic (Class I).  This antimicrobial peptide consisting of 34 amino acids has a broad 

spectrum of activity against Gram-positive bacteria, as well as Clostridium botulinum 

and its spores (Stiles & Holzapfel, 1997; Ross et al., 2002; Sobrino-López & Martín-

Belloso, 2008).  It is stable in foods with a low pH and levels used in food products are 

between 2.5 and 100 ppm (Caplice & Fitzgerald, 1999).  Nisin inhibits bacteria by 

creating pores in the outer cellular membranes, which causes depolarization of the 

membranes and results in leaking of intracellular materials (Cleveland et al., 2001; Ross 

et al., 2002).  Other bacteriocins may inhibit microbes by disrupting cell membrane 

synthesis (Cleveland et al., 2001). 

Health benefits 

Almost one third of the human diet consists of fermented foods, which emphasise the 

importance of these products to human health.  Fermented milk and fermented cereal 

products are of the most important, because they are produced and consumed in the 

largest amounts (Campbell-Platt, 1994).  In Africa fermented food may help to decrease 

foodborne diseases by improving product safety.  Fermented food may also contribute 

to reducing hunger by adding nutritional value to food and increasing the bioavailability 

of nutrients (Motarjemi, 2002; Nah & Chau, 2010). 

The consumption of milk, a highly nutritious beverage, is made more acceptable to 

lactose-intolerant individuals through milk fermentation due to the conversion of lactose 

to lactic acid.  For example, in yoghurt 25 - 50% of the lactose is converted to lactic acid 

and the end concentration of lactose is reduced to approximately 4% (Steijns, 2008; 

Brown-Esters et al., 2012).  Previous studies have concluded that adults from African 

and Asian decent are characteristically lactose-intolerant.  This may be a result of dairy 

herding not being practiced by their ancestors due to ecological and environmental 

factors which then resulted in the lactose-intolerant phenotype being transferred from 

one generation to the next (Bloom & Sherman, 2005). 

Fermented foods play an important role in the nutritional status of populations in 

Africa.  In many African countries infants often suffer from malnutrition due to food 
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shortages, poor bioavailability of nutrients and low nutritional value of the available 

foods (Oyewole, 1997).  Malnutrition usually leads to illnesses in young children such as 

kwashiorkor and marasmus.  Protein deficiencies in the diet cause kwashiorkor which 

leads to a weak immune system.  Protein and energy deficiencies cause marasmus 

resulting in poor growth and extensive muscle and fat loss (Steinkraus, 1997).  

Fermentation is a cost effective way to enrich food with essential amino acids and 

vitamins which can help prevent malnutrition (Holzapfel, 2002; Motarjemi, 2002). 

Fermented food often includes LAB strains with probiotic properties.  The 

FAO/WHO defines probiotics as “live micro-organisms which, when administered in 

adequate amounts, confer health benefits on the host”.  The health benefits of probiotics 

for humans include protection against inflammatory bowel diseases and gastrointestinal 

infections.  Probiotics can be used instead of antibiotics in the treatment of enteric 

infections and simultaneously reduces diarrhea caused by antibiotics.  Probiotic cultures 

regulate human intestinal bacteria and inhibit harmful bacteria that can be present in the 

intestines.  They also support the body‟s immune system, modulation of allergic 

diseases and treatment of infections formed during pregnancy (Bernardeau et al., 2008; 

Giraffa et al., 2010).  Examples of LAB in fermented milks that have probiotic properties 

are Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium bifidum (Adams, 

1990).  Consumption of dairy products is the best way to provide the human body with 

probiotic bacterial strains.  However, currently there are limited amounts of probiotic 

strains available which can be used for commercial applications (Bernardeau et al., 

2008; Giraffa et al., 2010). 

C. Fermented milks of Sub-Saharan Africa 

 

A diverse variety of traditionally fermented milk products are available in Sub-Saharan 

Africa, each with unique organoleptic properties (Steinkraus, 1994; Kebede et al., 

2007).  These products are made by local farmers in the communities (Gadaga et al. 

1999; 2000; Mathara et al., 2004; Bille et al., 2007).  Very little information is available 

on the properties of some of these products.  No information has been reported as yet 

on the microbial consortiums of the Sub-Sahara African fermented milks kwerionik, 

katanik, chekapmkaika, mass, omaere, chambiko, madila, urubu, makamo and 

macunda. 
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Chekapmkaika and kwerionik 

In Uganda, milk fermentation is mostly carried out by the pastoral tribes including the 

Bahima in Western Uganda, fermenting mostly Zebu cow milk, and the agro-pastoral 

tribes including the Itesot and the Sebei in Eastern Uganda, fermenting longhorn Ankole 

cow milk.  Goat milk is not often used for the production of fermented milk products 

since the dairy breeds have only been recently introduced to the country.  The gourds 

used for fermentation are mostly smoked by using plant materials such as grass or hard 

wood.  In Eastern Uganda smoking chips or charcoal are sometimes used along with 

plant materials.  Kwerionik is a fermented milk product traditionally prepared in Eastern 

Uganda from raw cow milk.  The raw milk is placed in smoked gourds and left to 

ferment at ambient temperatures for three to seven days.  Kwerionik is a curdled milk 

product consumed within seven days.  If kwerionik is kept for eight to 28 days it is 

known as katanik and chekapmkaika is kwerionik which has been kept for 29 days up to 

a year.  Whey is constantly removed from the chekapmkaika and fresh or boiled milk is 

added every second day or once a week depending on the ambient temperatures.  The 

storage quality is enhanced by removal of the top layer which is likely to contain 

mycelial fungi before the addition of milk.  This product is consumed during the dry 

seasons with blood or porridge (personal communication, Moses Matovu, Food 

Bioscience Research Centre, Uganda). 

Masse and homemade yoghurt 

Masse is a well known fermented milk beverage from Mozambique, made by leaving 

raw cow milk in a pot overnight at ambient temperatures or for a few days to ferment 

spontaneously.  Masse is an unsweetened curdled milk product with a strong acidic 

taste and a firm semi-fluid consistency which is consumed within seven days.  

Homemade yoghurt is prepared by adding one cup of yoghurt from the previous day to 

approximately 20 L of boiled milk in a pot.  The milk is then left to ferment for a day at 

ambient temperatures.  Homemade yoghurt is consumed as a beverage and 

occasionally sugar is added.  This is different from masse in that the fermented milk has 

a less acidic taste and a more creamy texture (personal communication, Custodia 

Macuamule, University of Stellenbosch, South Africa). 

Omashikwa 

Omashikwa is a traditionally prepared buttermilk product made by local farmers, 

especially the women of the Owambo and Herero tribes in the rural areas of Namibia 
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(Bille et al., 2002; 2007).  Omashikwa is sold directly from the farmers to the public or 

on the local markets to generate a source of income for their families. Due to the 

inconsistency in the quality of the fermented milk, omashikwa is often bought after 

sensory evaluation by the consumer.  It is consumed as a beverage or as a condiment 

along with sorghum, maize, millet flour gruel or porridge (Bille et al., 2007). 

Omashikwa is made by placing 20 L of raw milk and 12 - 15 pieces of root of the 

Omunkunzi tree (Boscia albitrunca) in rinsed plastic containers, calabashes or gourds 

and adding 400 ml of previously made omashikwa as a starter.  The mixture is then left 

to ferment at ambient temperatures (27º - 36 ºC) for two to three days.  When the milk is 

fermented the roots are removed before churning of the product for two to three hours.  

During this process the butter that forms on top of the fermented product is removed 

and the remaining buttermilk is referred to as omashikwa.  No whey removal is needed 

during the production of omashikwa since it is already a viscous product with a thick 

consistency.  This can be due to the presence of exopolysaccharide producing 

microbes or gum-like compounds secreted from the Omunkunzi roots.  Omashikwa has 

a slimy texture with an acidic (approximate pH of 3.3), bitter taste and a rooty flavour 

(Bille et al., 2002; 2007). 

Other fermented milks  

Amasi is a well known fermented milk consumed in South Africa, Zimbabwe and 

Lesotho and it is often consumed with maize porridge as a main meal or with ground 

sorghum between meals (McMaster et al., 2005; Gadaga et al., 1999; 2000; Todorov et 

al., 2007).  In all three countries it is traditionally prepared, but in South Africa it is also 

produced on a commercial scale.  Commercially produced amasi is a sweetened 

curdled milk product with a shelf life of 21 days at 4 ºC and traditionally produced amasi 

is an unsweetened thick curdled milk with a shelf-life of three days at room temperature 

and a pH between 3.6 and 4.2 (McMaster et al., 2005; Todorov et al., 2007).  Traditional 

amasi is prepared in the rural communities by keeping raw cow milk in a pot or gourd to 

ferment spontaneously at ambient temperatures for two to three days.  Sometimes a 

small amount of previously made amasi is added to the raw milk to accelerate the 

fermentation process.  The whey is drained through a hole in the pot or gourd after 

fermentation has occurred (Gadaga et al., 1999; 2000; 2001a; Todorov et al., 2007).  

Another fermented milk both traditionally prepared and commercially available is 

madila in Botswana (Ohiokpehai, 2003).  Traditional madila is prepared by straining raw 

cow or occasionally goat milk into an enamel bucket and then leaving the milk to 
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ferment for 24 h.  Thereafter, the fermented milk is added to previously fermented milk 

which has been placed in a woven polypropylene sack, where after the sack is hung 

from a beam for a few days to ensure drainage of extra whey.  After the concentrated 

madila in the woven sack is mixed with fresh milk in a four to one ratio, the madila is 

ready to be consumed or sold on the market (Ohiokpehai & Jagow, 1998; Ohiokpehai, 

2003; Parry-Hanson et al., 2009).  Madila is a liquid or semi-solid curdled product often 

flavoured with fruit juice or artificial colorants (Ohiokpehai, 2003). 

Other fermented milks commonly prepared in Sub-Saharan Africa include urubu 

from Burundi, nono/nunu from Nigeria or Northern Ghana, fermented milk from the 

Fulani community in Burkina Faso, kule noato from the East African Rift Valley, 

sussa/suusac from Somalia or Kenya and ergo from Ethiopia.  Cow milk is mostly used 

for the preparation of these milks, except for sussa which is made from camel milk and 

occasionally fermented milk from the Fulani community is made from goat milk.  These 

fermented milks are made according to similar methods to masse although kule noato, 

ergo and sometimes sussa are prepared in smoked containers (Isono et al., 1994; 

Gonfa et al., 2001; Mathara et al., 2004; Savadogo et al., 2004; Lore et al., 2005; 

Patrignani et al., 2006; Farah et al., 2007; Aloys & Angeline, 2009; Akabanda et al., 

2010; Okonkwo, 2011).  The smoked fermentation vessels contribute to the distinct 

flavour of the fermented milk and may also have an effect on the fermenting microbes 

present (Lore et al., 2005).  It has also been found that by using smoked vessels it 

slows down souring and reduces coliform numbers (Gonfa et al., 2001). 

In Sub-Saharan Africa fermented milk is often used as a basis to prepare other 

traditional fermented dairy products.  Makamo (known as kivuguto in Rwanda) is a 

traditionally fermented milk from Uganda used to make macunda and mashita.  

Makamo is prepared by adding makamo from the previous day to raw or boiled cow milk 

and then leaving the milk to ferment for two to three days at ambient temperatures in a 

smoked gourd.  Lemon juice is sometimes added to accelerate souring.  The 

consistency of makamo is thicker than milk and it is consumed as a beverage or a 

dessert.  Makamo can be kept for four days to a week.  To prepare macunda and 

mashita, makamo is churned for up to an hour to facilitate separation of fat globules 

from the fermented milk.  The churned makamo is then filtered through a sieve to 

separate the Mashita from the Macunda.  Macunda is a viscous white buttermilk with a 

short shelf-life of two days and consumed by women and children.  Mashita directly 

translated means oil and is the fat globules that form on the top of the macunda.  It is 

yellow in colour and has a unique smell.  Mashita is often boiled into ghee (personal 
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communication, Moses Matovu, Food Bioscience Research Centre, Uganda).  Other 

examples of traditionally fermented milks churned to obtain traditional buttermilk and 

butter are pendidam in Cameroon, rob in Sudan and ergo in Ethiopia (Abdelgadir et al., 

1998; 2001; Pamela et al., 1999; Gonfa et al., 2001). 

D. Microbes responsible for milk fermentation 

 

Lactic acid bacteria  

Bacteria that taxonomically belong to the heterogeneous group of LAB all have the 

following characteristics: Gram-positive; catalase-negative; acid tolerant; devoid of 

cytochromes; aerotolerant; non-sporulating; and they are strictly fermentative rods or 

cocci which produce lactic acid as the major product from the energy-yielding 

fermentation of sugars (Stiles & Holzapfel, 1997; Temmerman et al., 2004; Wessel et 

al., 2004).  The LAB genera generally associated with the fermentation of a variety of 

foods are Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, Enterococcus, 

Pediococcus, Oenococcus, Teragenococcus, Cronobacterium and Weissella (Table 2) 

(Adams & Martau, 1995; Stiles & Holzapfel, 1997; Temmerman et al., 2004; Wessel et 

al., 2004).  These bacteria are not only isolated from fermented foods but they are also 

found in a wide variety of environmental habitats including raw food products (Adams & 

Marteau, 1995; Wouters, et al., 2002; Furet et al., 2004).  LAB are also natural 

inhabitants of the oral cavity and the gastrointestinal track of mammals, living in a 

complex symbiosis with the host (Adams & Marteau, 1995; Furet et al., 2004). 

Among the LAB group there are two distinct carbohydrate fermentation pathways  

(Fig. 1).  Based on these two fermentation pathways, LAB can be sub-categorised into 

two distinct groups, homofermentative or heterofermentative (Zúñiga et al., 1993; 

Caplice & Fitzgerald, 1999).  The Embden-Meyerhof-Parnas pathway or Glycolysis 

where lactic acid is produced as the major or only end-product of homolactic 

metabolism and the 6-phosphogluconate/phosphocetolase pathway where in addition to 

lactic acid, other end-products including CO2 and ethanol are produced during 

heterolactic metabolism (Caplice & Fitzgerald, 1999).  Homofermentative LAB include 

Streptococcus, Lactococcus, Enterococcus, Pediococcus and heterofermentative LAB 

include Weissella and Leuconostoc (Zúñiga et al., 1993; Ross et al., 2002). 

Some LAB have the ability to catabolise lactic acid to acetic acid and CO2.  Lactic 

acid catabolism can occur under aerobic conditions where lactic acid is oxidised by 

NAD+-independent lactate dehydrogenase (LDH) by Lb. plantarum, Lb. carvatus, Lb.  
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Table 2  Prevalent lactic acid bacteria genera responsible for the fermentation of  

                  various types of food (Temmerman et al., 2004; Zamfir et al., 2006). 

Food type Fermenting LAB genera 

Milk Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, Enterococcus, 

Pediococcus 

Meat Lactobacillus, Leuconostoc, Pediococcus 

Vegetables Lactobacillus, Pediococcus 

Cereal Lactobacillus  

Wine Oenococcus 
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Figure 1  Glucose fermentation in homofermentative LAB through Glycolysis (A) and   

glucose fermentation in heterofermentative LAB through the Embden-

Meyerhof-Parnas pathway (B) (Axelsson, 1993). 
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casei and Lb. sake (Liu, 2003).  Certain LAB such as Lb. buchneri, Lb. brevis and Lb. 

plantarum also catabolises lactic acid by NAD+-independent LDH, but under anaerobic 

conditions (Liu, 2003). 

LAB present in dairy fermentations can generally be classified in terms of 

optimum growth temperatures, namely mesophilic and thermophilic LAB.  Mesophilic 

LAB grows optimally between 20º - 30 ºC and thermophilic LAB between 30º - 45 ºC.  

Therefore, mesophilic LAB is often isolated from traditional fermented dairy products 

from the colder Northern and Western European countries and thermophilic LAB from 

traditional fermented dairy products from hotter sub-tropical regions (Wouters et al., 

2002). 

Lactobacillus and Streptococcus 

Of all the LAB the genus Lactobacillus contains the most species (Giraffa et al., 2010).  

Currently the genus consists of 174 species and 27 subspecies (Deutche Sammlung 

von Mikroorganismen und Zellkulturen (DSMZ), 2012; List of Prokaryotic names with 

Standing in Nomenclature (LPSN), 2012).  This heterogeneous group is Gram-positive, 

rod-shaped, strictly fermentative, aciduric or acidophilic, non-endospore forming 

bacteria which grow well in anaerobic environments, although they are aerotolerant 

(Stiles & Holzapfel, 1997; Bernardeau et al., 2008; Giraffa et al., 2010).  Lactobacilli 

have been isolated from a variety of habitats including the intestinal tract of mammals, 

plant material, raw milk and sewerage (Stiles & Holzapfel, 1997; Giraffa et al., 2010).   

The genus Lactobacillus can be subdivided into three groups based on sugar 

fermentation, namely facultative heterofermentative (Group I), obligated 

heterofermentative (Group II) and obligated homofermentative (Group III) (Table 3) 

(Stiles & Holzapfel, 1997; Bernardeau et al., 2008).  Lactobacilli from Group I ferment 

hexoses to lactic acid and pentoses to lactic acid and acetic acid, and gas is not 

produced from glucose, but from gluconate.  Group II bacteria produce carbon dioxide, 

lactic acid, acetic acid and/or ethanol from hexoses, and produce gas from glucose. 

Lactobacilli from Group III do not ferment gluconate or pentoses, but ferment glucose to 

lactic acid.  Lactobacillus spp. from all three of these groups can take part in food 

fermentation.  However, lactobacilli from the obligated heterofermentative group are 

often responsible for food spoilage (Stiles & Holzapfel, 1997).    

LAB that belong to the genus Streptococcus is Gram-positive, catalase-negative, 

anaerobic, aerotolerant, coccus-shaped cells grouped in linear chains (Stiles  

& Holzapfel, 1997; Delorme, 2008).  In this genus only one species, Streptococcus 
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Table 3  Lactobacilli associated with dairy products divided into three major groups 

                 based on their sugar fermentation (Delfederico et al., 2006; Zamfir et al., 

                 2006; Bernardeau et al., 2008; El-Baradei et al., 2008; Schleifer, 2009; 

                 Gawad et al., 2010). 

Facultative heterofermentative 
(Group I) 

Obligated heterofermentative  
(Group II) 

Obligated homofermentative 
(Group III) 

Lb. delbrueckii subsp. delbrueckii Lb. animalis Lb. brevis 

Lb. delbrueckii subsp. bulgaricus Lb. casei Lb. buchneri 

Lb. delbrueckii subsp. lactis Lb. curvatus Lb. fermentum 

Lb. delbrueckii subsp. indicus Lb. cypricasei Lb. hilgardii 

Lb. acidophilus Lb. paracasei subsp. paracasei Lb. kefiri 

Lb. crispatus Lb. plantarum Lb. parakefiri 

Lb. gasseri Lb. rhamnosus Lb. reuteri 

Lb. helveticus   

Lb. johnsonii   

Lb. kefiranofaciens   

Lb. salivarius   
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thermophilus (synonym: Sc. salivarius subsp. thermophilus) is “generally recognised as 

safe” (GRAS) and found in dairy environments (Delorme, 2008; De Vuyst & Tsakalidou, 

2008; DSMZ, 2012).  Streptococcus thermophilus is the only Streptococcus spp. that is 

used as a starter along with one or more LAB strains from the genus Lactobacillus. 

These mixed strain starter cultures are used in various dairy fermentations, including 

the production of yoghurt, fermented milks and Italian and Swiss-type cheeses (Stiles & 

Holzapfel, 1997; Delorme, 2008). 

Lactobacillus delbrueckii subsp. bilgaricus and Sc. thermophilus have been 

isolated form commercially produced fermented milk such as laban from Lebanon and 

Columbian yoghurt (Chammas et al., 2006; Vélez et al., 2007; Giraffa et al., 2010).  

Some strains of Lb.delbrueckii subsp. bulgaricus and Sc. thermophilus can produce 

exopolysaccharides which enhance the product texture by stabilising the yoghurt gel 

and lowering syneresis (Wouters et al., 2002; Sodini et al., 2004).  The chemical 

structures of exopolysaccharides from yoghurt starter bacteria vary and the major 

monomers identified are glucose, rhamnose and galactose (Wouters et al., 2002).   

Flavour compounds present in milk fermented with Lb. delbrueckii subsp. 

bulgaricus strains includes 2-butanol, dimethyl disulfide and acetic acid.  In milk 

fermented with Sc. thermophilus 2,3-pentanedione, acetoin and diacetyl are present.  

The flavour profile of milk fermented with both Lb. delbrueckii subsp. bulgaricus and Sc. 

thermophilus includes hexanoic acid, acetone, butanoic acid and acetaldehyde.  The 

latter is the most important flavour compound in yoghurt, mainly produced by Lb. 

delbrueckii subsp. bulgaricus as an end-product of threonine metabolism during milk 

fermentation (Chammas et al., 2006). 

During growth in milk Sc. thermophilus produces folic acid.  The amount of folic 

acid produced is strain-dependent and the concentration of this acid in fermented milk 

products can decrease due to utilisation of folic acid by certain strains of Lb. delbrueckii 

subsp. bulgaricus (Wouters et al., 2002).  Folic acid has health benefits such as the 

prevention of birth defects and potential decrease of cardiovascular diseases (Cornel et 

al., 2005).  Therefore, it is important to construct a yoghurt starter culture of the optimal 

combination of strains to ensure a desirable end-product with a higher folic acid 

concentration (Wouters et al., 2002).   

Thermophilic LAB strains have good acidifying activity as 10 ml.L-1 of inoculum 

reduce the initial pH (6.6) of milk in 6 h at 42 ºC to a pH of 5.3 (Chammas et al., 2006).  

According to Chammas et al. (2006) the maximum acidification rate of Sc. thermophilus 

(0.0085 pH.min−1) is much lower than that of the Lb. delbrueckii subsp. bulgaricus 
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(0.0111 pH.min−1).  Using Sc. thermophiles, an acidified product can be produced if Sc. 

thermophilus is used in combination with Lb. delbrueckii subsp. bulgaricus (Stiles & 

Holzapfel, 1997). 

Various Lactobacillus spp. have been isolated from traditionally fermented milk 

products (Bernardeau et al., 2008).  Lactobacillus delbrueckii subsp. bilgaricus 

commonly present in fermented milks have been isolated from rayeb (10.5% total 

microbial isolates) and zabady (from 2 of 11 samples analysed), which are traditionally 

fermented milks from Egypt, as well as from traditionally prepared laban from Lebanon 

(Chammas et al., 2006; El-Baradei et al., 2008; Gawad et al., 2010).  From zabady low 

amounts of other lactobacilli have also been isolated, including Lb. johnsonii.  Some Lb. 

johnsonii strains have probiotic properties and have the potential to enhance the 

therapeutic value of a product (El-Baradei et al., 2008).  Lactobacillus acidophilus and 

Lb. helveticus were also found in rayeb where the largest percentage (30%) of the 

microbial consortium consisted of lactobacilli (Gawald et al., 2010).  In traditionally 

fermented milk products Lactobacillus spp. are frequently isolated in conjunction with 

members of the genus Streptococcus (Bernardeau et al., 2008).  In both zabady and 

rayeb Sc. thermophilus was also present.  Other Streptococcus species including Sc. 

durans and Sc. acidomonas were also isolated from rayeb, but these species are seen 

as contaminants in fermented milk and many cause foodborne diseases (Delorme, 

2008; El-Baradei et al., 2008; Gawad et al., 2010).   

Kefir is fermented milk traditionally prepared in the eastern parts of Europe by 

using kefir grains as a starter culture.  A diversity of lactobacilli have been isolated from 

kefir grains such as Lb. acidophilus, Lb. brevis, Lb. casei, Lb. fermentum, Lb. helveticus, 

Lb. kefiri, Lb. parakefiri, and Lb. kefiranofaciens along with Sc. thermophilus (Witthuhn 

et al., 2005; Mainville et al., 2006).  Lactobacillus kefiranofaciens generates the kefiran 

polymer which forms the unique matrix of the kefir grain (Mainville et al., 2006).   

Lactobacilli including Lb. plantarum and Lb. delbrueckii subsp. lactis have been 

isolated from traditionally prepared amasi from South Africa and Zimbabwe.  A wide 

variety of other lactobacilli were also isolated from Zimbabwean amasi including Lb. 

helveticus, Lb. casei subsp. casei and Lb. casei subsp. pseudoplantarum (Gadaga et 

al., 1999; 2000; McMastera et al., 2005; Todorov et al., 2007).  Nono/nunu traditionally 

prepared in Nigeria and Ghana is another example of traditionally fermented milk from 

which a wide variety of lactobacilli including Lb. brevis, Lb. delbrueckii, Lb. plantarum, 

Lb. casei and Lb. fermentum have been isolated (Okonkwo, 2011). 
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Lactococcus 

In 1985 the genus Lactococcus was suggested after reclassification of specific species 

from the genera Lactobacillus and Streptococcus through chemotaxonomic analysis 

and 16S rRNA sequencing (Casalta & Montel, 2008). Lactococci are coccus-shaped 

Gram-positive, non-motile LAB that are homofermentative and produce strictly L(+) 

lactic acid from glucose (Stiles & Holzapfel, 1997; Casalta & Montel, 2008).  Currently 

the genus Lactococcus consists of seven species, including Lc. lactis that is divided into 

four subspecies, namely Lc. lactic subsp. lactis, Lc. lactis subsp. cremoris, Lc. lactis 

subsp. hordniae and Lc. lactis subsp. tructae (DSMZ, 2012; LPSN, 2011).  Lactococci 

are generally isolated from plant surfaces and animal skin.  Mesophilic lactococci are 

often isolated from raw milk due to contamination from the environment and equipment 

used during milking (Casalta & Montel, 2008; Walther et al., 2008).  Lactococcus 

raffinolactis and Lc. garvieae have been isolated from the dairy environment, but Lc. 

lactis subsp. lactis and Lc. lactis subsp. cremoris are the two lactococci species most 

frequently isolated from raw milk along with other dairy products such as Camembert, 

Pecorino, Serra and Vanco cheeses (Stiles & Holzapfel, 1997; Casalta & Montel, 2008).  

Lactococcus lactis subsp. lactis and Lc. lactis subsp. cremoris are commonly used as a 

starter culture for the commercial production of fermented milks such as viili produced in 

Finland and amasi produced in South Africa (Toba et al., 1990; McMastera et al., 2005).  

These strains are also used as single or multiple strain starters often mixed with other 

LAB for commercial dairy fermentations such as butter, sour cream and cheeses 

(Casalta & Montel, 2008).  A mixed strain starter culture is used to produce Gouda 

cheese composed of Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris, Lc. lactis subsp. 

lactis biovar diacetylactis and Leuconostoc spp. (Wouters et al., 2002).  

The selection of the Lc. lactis strains in starter cultures are based mainly on their 

ability to acidify milk by producing L(+) lactic acid, but also their contribution to desirable 

product properties (Wouters et al., 2002).  Lactococcus lactis subsp. cremoris and Lc. 

lactis subsp. lactis synthesise exopolysaccharides which improve the texture, viscosity 

and consistency of fermented milks.  The exopolysaccharide polygalactan, is a 

homopolysaccharide synthesised by Lc. lactis subsp. lactis (Ruas-Madiedo et al., 

2002a; 2002b; Casalta & Montel, 2008).  Volatile aroma compounds produced by these 

LAB during growth such as alcohols, ketones and aldehydes, contribute to the flavour of 

the fermented product (Casalta & Montel, 2008; Ziadi et al., 2010).  For example the tart 

green-apple flavour associated with acetaldehyde and the buttery flavour associated 
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with diacetyl are popular flavours contributors in fermented dairy products (Holler & 

Steele, 1995; Kleerebezem et al., 2000).  

Lactococci have been isolated from a wide variety of dairy products.  Thirty five 

artisanal dairy products from Europe were analysed in a study where 38% of the 

bacterial strains isolated belonged to the genus Lactococcus and accounted for the 

largest LAB group present (Casalta & Montel, 2008).  A study on traditionally available 

dairy products from Romania showed that in more than 90% of the raw milk samples, 

69% of the fermented milk samples, 80% of the sour cream samples and 52% of the 

cheese samples Lc. lactis subsp. lactis where found (Zamfir et al., 2006).  Lactococcus 

lactis was the most prevalent microbe present in Tibetan kefir, comprising of 58-70% of 

the total microbial consortium analysed.  Although lactococci have been detected in 

kefir grains they are present in low numbers, the high numbers detected in the kefir 

beverage is due to the poor adherence of lactococci to the kefir grains and 

consequently they fall into the kepi beverage (Jianzhong et al., 2009).  Subspecies such 

as Lc. lactis subsp. lactis and Lc. lactis subsp. cremoris have been isolated from kefir 

(Witthuhn et al., 2005; Mainville et al., 2006; Jianzhong et al., 2009).  Lactococci have 

been isolated from traditionally prepared fermented milks from Sub-Saharan Africa 

including rob, ergo and the Fulani communities‟ traditional fermented milk (Abdelgadir et 

al., 2001; Gonfa et al., 2001; Savadogo et al., 2004). 

 

Leuconostoc  

Leuconostoc are Gram-positive, non-endospore forming, non-motile, facultatively 

anaerobic, catalase-negative cocci or oval shaped bacteria often present in short chains 

or in pairs (Hemme & Foucaud-Scheunemann, 2004; Ogier et al., 2008).  All the 

species in this genus are resistant to the antibiotic vancomycin, a useful characteristic 

for isolation of these bacteria (Hemme & Foucaud-Scheunemann, 2004; Ogier et al., 

2008).  Currently the genus Leuconostoc consists of 22 species and 3 sub-species 

(DSMZ, 2012; LPSN, 2011).  Most of the Leuconostoc strains favour growth between  

4º - 10 ºC and also grow at 30 ºC, but no growth occurs at 45 ºC (Hemme & Foucaud-

Scheunemann, 2004).  Although the members of the genus Leuconostoc are classified 

as opportunistic pathogens, they are GRAS for use in food fermentations.  Leuconostoc 

spp. are used in industrial dairy starters, but more often these bacteria disseminate to 

dairy environments and are often present in traditionally prepared fermented milks and 

as non starter lactic acid bacteria (NSLAB) in raw milk cheeses (Stiles & Holzapfel, 

1997; Hemme & Foucaud-Scheunemann, 2004; Ogier et al., 2008). 
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These bacteria are heterofermentative and predominantly metabolise the D(-) 

lactate isomer from glucose along with carbon dioxide and ethanol and/or acetate 

through the phosphoketolase pathway (Stiles & Holzapfel, 1997; Hemme & Foucaud-

Scheunemann, 2004).  Production of the D(-) lactic acid distinguishes Leuconostoc from 

similar heterofermentative lactobacilli which produces both D(-) and L(+) lactic acid and 

lactococci which produces L(+) lactic acid (Stiles & Holzapfel, 1997).  In milk the co-

metabolism of lactose and citrate by Leuconostoc leads to the production of diacety as 

well as acetone (Hemme & Foucaud-Scheunemann, 2004; Ogier et al., 2008).  Diacetyl 

can be further transformed by these bacteria to 2,3-butanol and acetoin.  This 

undesirable transformation can be prevented in fermented milks by cooling the milk 

after aroma formation (Hemme & Foucaud-Scheunemann, 2004). 

Species from this genus have been isolated from various traditionally fermented 

milks and kefir.  Leuconostoc citreum has been isolated from Egyptian zabady and Ln. 

mesenteriodes subsp. cremoris has been isolated from European kefir (Mainville et al., 

2006; El-Baradei et al., 2008).  Leuconostoc was the predominant LAB group present in 

traditionally prepared fermented milk samples collected from various households in 

South Africa and Namibia.  Species isolated included Ln. lactis, Ln. citreum and Ln. 

mesenteriodes subsp. dextranicum (Beukes et al., 2001).  The latter two species were 

also found in traditionally prepared South African amasi (Todorov et al., 2007).  

Leuconostoc have been isolated from a wide variety of traditionally prepared fermented 

milks from Sub-Saharan Africa, including sethemi, kule noato, sussa/suusac and ergo 

(Gonfa et al., 2001; Mathara et al., 2004; Farah et al., 2007; Kebede et al., 2007). 

Enterococcus   

Enterococci are coccus-shaped, Gram-positive, facultative anaerobic, oxidase-negative, 

non-endospore forming, catalase-negative bacteria that occurs in chains, pairs or singly 

(Giraffe, 2003; Foulquié Moreno et al., 2006).  They are homofermenters and produce 

L(+) lactic acid from glucose and are also able to metabolise amino acids and citrate 

(Stiles & Holzapfel, 1997).  The genus Enterococcus consists of 41 species of which Ec. 

faecium, Ec. faecalis, Ec. durans, Ec. hirae and Ec. casseliflavus are isolated from raw 

milk and dairy products (Franz et al., 1999; Cortés et al., 2006; Ogier & Serror, 2008; 

DSMZ, 2012; LPSN, 2011).  Enterococcus faecalis and Ec. faecium are commonly 

isolated from faeces as they are inhibitors of the gastrointestinal tract in humans and 

animals.  Enterococci enter the food and dairy environment from other primary habitats 

such as faeces, soil, plants and water (Batish et al., 1984; Franz et al., 1999; Giraffa, 
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2003; Foulquié Moreno et al., 2006; Ogier & Serror, 2008).  The reason for their 

adaptability to various environments is that these bacteria can grow in high salinity, 

extreme pH (4.0 - 9.6), temperatures between 10º - 45 ºC and survive 30 min of heating 

at 60 ºC.  Consequently they are present in dairy products made from raw, but also 

heat-treated milk (Giraffa, 2003; Foulquié Moreno et al., 2006; Ogier & Serror, 2008).   

Bacteria of the genus Enterococcus are, unlike most LAB, not GRAS.  This is due 

to their association with faecal contamination of primarily water and their role as 

opportunistic pathogens causing clinical human infections such as meningitis, 

bacteremia and endocarditis.  However, enterococci have a history of being safe to use 

in food fermentations (Gardiner et al., 1999; Cortés et al., 2006; Foulquié Moreno et al., 

2006; Ogier & Serror, 2008).  As a result of the controversy on their safety they are not 

reliable hygiene indicators in food products (Foulquié Moreno et al., 2006).  Each strain 

must be identified and characterised to assure the safety of the application of the strain 

in dairy products (Klein, 2003).  Enterococcus faecium K77D is an example of an 

enterococci strain that is approved to be used as commercial starter culture in Denmark 

(Gardiner et al., 1999). 

Enterococci usually occur as NSLAB in various types of Southern European 

artisanal cheeses made from raw and pasteurised milk such as Water-buffalo 

Mozzarella, Venaco, Cheddar, Hispanico Feta and Cebreiro, as well as in African 

fermented food (Franz et al., 1999; Giraffa, 2003; Ogier & Serror, 2008).  The positive 

contributions enterococci provide in dairy fermentations include the production of 

antimicrobial bacteriocins, known as enterocins and their role in cheese ripening, which 

include the improvement of the aroma, flavour and texture of cheese (Franz et al., 1999; 

Leroy et al., 2003; Foulquié Moreno et al., 2006). 

Enterococcus is often isolated from traditionally fermented milks made from raw 

milk.  Enterococcus faecium and Ec. faecalis have been isolated from Egyptian zabady 

made from raw cow milk and all the Enterococcus isolates from rayeb made from raw 

buffalo milk were identified as Ec. faecium (El-Baradei et al., 2008; Gawad et al., 2010).  

Enterococcus durans was isolated along with other Enterococcus spp. from traditionally 

prepared Romanian milks (Zamfir et al., 2006).  Enterococci have been isolated from 

traditionally prepared Sub-Sahara African fermented milks including ergo, kule noato 

and fermented milk from the Fulani communities (Gonfa et al., 2001; Mathara et al., 

2004; Savadogo et al., 2004). 
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Pediococcus 

The genus Pediococcus currently consists of 15 species which are spherical Gram-

positive LAB arranged in tetras or pairs (Stiles & Holzapfel, 1997; Pfannebecker & 

Fröhlich, 2008; DSMZ, 2012; LPSN, 2011).  These bacteria are facultatively aerobic, 

catalase-negative, non-motile and non-endospore forming (Pfannebecker & Fröhlich, 

2008; Schleifer, 2009).  Carbohydrate utilization patterns in this genus differ between 

species, but most pediococci produce D(-) and L(+) lactic acid from glucose (Stiles & 

Holzapfel, 1997).  Some species in this genus can withstand extreme environmental 

conditions, such as high temperatures, pH and NaCl concentrations.  These bacteria 

are often isolated from plants, a variety of fermented foods such as sauerkraut, 

fermented sausages and as spoilage microbes from beer (Stiles & Holzapfel, 1997; 

Gurira & Buys, 2005). 

Even though pediococci grow inadequately in milk due to their irregular utilization 

of lactose, Pc. pentosaceus and Pc. acidilactici have been isolated from dairy products 

(Stiles & Holzapfel, 1997; Gurira & Buys, 2005).  Pediococci have been isolated from 

fermented milks such as traditionally prepared Ethiopian ergo (Gonfa et al., 2001). 

Acetic acid bacteria  

This heterogeneous group has undergone various taxonomy changes in the last three 

decades.  Currently the AAB is classified into twelve main genera which belong to the 

family Acetobacteraceae, containing the following genera Acetobacter, 

Gluconacetobacter, Gluconobater, Asaia, Acidomonas, Granulibacter, Ameyamaea, 

Neoasaia, Kozakia, Saccharibacter, Swaminathania and Tanticharoenia (Cleenwerck & 

De Vos, 2008; Yamada & Yukphan, 2008; Sengun & Karabiyikli, 2011).  AAB are 

obligated aerobic, non-endospore forming, catalase-positive and oxidase-negative, 

Gram-negative or Gram-variable, spherical to rod-shaped organisms present as single 

cells, pairs or chains (De Vuyst, et al., 2008; Sengun & Karabiyikli, 2011).  The cell size 

is between 0.8 - 4.5 µm long and 0.4 - 1 µm wide and grow optimally at a pH between 5 

and 6.5, but can also survive at a pH between 3 and 4 (De Vuyst, et al., 2008; Sengun 

& Karabiyikli, 2011).  AAB can be non-motile or motile with polar or peritrichous flagella 

(Cleenwerck & De Vos, 2008).  They are widespread in nature and isolated from 

flowers, fruits, herbs and cereals.  Industrially AAB are predominantly used for vinegar 

production, but can also cause spoilage if present in wine, ciders and beer (De Vuyst, et 

al., 2008; Sengun & Karabiyikli, 2011).  They are difficult to isolate due to habitat 

specificity and individual growth media requirements (Sengun & Karabiyikli, 2011). 
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Acetobacter have been isolated from dairy products, as A. syzygii, A. aceti and A. 

rasens have been isolated from kefir grains (Witthuhn et al., 2005; da Cruz Pedrozo 

Miguel et al., 2010).  From mashita, traditionally prepared butter fat prepared in Uganda, 

A. aceti, A. lovaniensis, A. orientalis and A. pasteurianus have been isolated (Ongol & 

Asano, 2009).  AAB are used as commercial starter bacteria, for example A. orientalis in 

combination with Lc. lactis subsp. cremoris is used as starter culture to produce 

fermented milk in Japan (Nakasaki et al., 2008).  

Yeasts and mycelial fungi  

Yeasts are aerobic, eukaryotic, unicellular organisms that can grow in various niches 

such as soil, seawater, fruits, plants, algae and are also found in the intestinal tract and 

on the skin of animals (Garotte at al., 1997; Jacques & Casaregola, 2008).  These 

heterotrophic organisms utilise organic carbon to produce alcohol and carbon dioxide 

and they are often present in processed food with a high amount of sugar content 

(Jakobsen & Narvhus, 1996; Gadaga et al., 2001b).  Their ability to grow at a low pH 

may be the reason why yeasts can occur in food already fermented by bacteria 

(Jacques & Casaregola, 2008). 

Yeasts are often present in dairy products, because they enter raw milk or cheese 

from the environment and processing equipment which leads to an end-product which 

differ in physico-chemical properties from those made with pure LAB starters (Viljoen, 

2001; Wouters et al., 2002; Narvhus & Gadaga, 2003).  Yeast species that grow well in 

milk, can utilise lactose or galactose and assimilate lactic, citric and succinic acid, grow 

well at low temperatures, can survive in high salt environments and metabolise proteins 

and fats (Viljoen, 2001; Álvarez-Martín et al., 2008; Jacques & Casaregola, 2008). 

European fermented milk, kefir and koumiss, are examples of milk fermented with 

starters consisting of both LAB and yeasts (Lopandic et al., 2006).  In the centre of kefir 

grains, yeasts are the dominant microbes, their presence results in the symbiotic 

relationships with LAB present and contributes to the characteristic aroma and texture 

of kefir due to carbon dioxide production (Wouters et al., 2002; Garotte at al., 1997).  

These yeasts include Kluyveromyces marxianus, Candida kefir, C. lambica, 

Saccharomyces cerevisiae, S. exiguous, S. delbrueckii and Torula kefir (Wouters et al., 

2002; Witthuhn et al., 2005; Mainville et al., 2006).  In koumiss thermophilic LAB and 

species of Saccharomyces are responsible for fermentation.  Saccharomyces 

unisporus, a lactose-non-fermenting yeast is also present and utilise galactose 

produced by most LAB to produce alcohol (Wouters et al., 2002).  The metabolism of 
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yeasts in fermented milk probably differs from their metabolism on the outside of 

cheese.  It is possible that yeasts can alter their metabolism to adapt to milk as a food 

substrate, where higher concentrations of carbohydrates are available, but a more 

anaerobic environment is maintained by the LAB co-cultures (Narvhus & Gadaga, 

2003). 

In fermented dairy products, yeasts can cause spoilage due to excessive growth 

and cause off-flavours, excessive gas production and discoloration (Jakobsen & 

Narvhus, 1996; Lopandic et al., 2006; Jacques & Casaregola, 2008).  The addition of 

fruit, sugar, honey or nuts to fermented milk such as yoghurt encourages spoilage 

because these products can be contaminated or provide more organic carbon for yeast 

growth (Jakobsen & Narvhus, 1996; Narvhus & Gadaga, 2003).   

Yeasts have been isolated from various traditionally fermented milks from Sub-

Saharan Africa.  From 30 samples of traditionally prepared Zimbabwean amasi, 20 

different yeast species were isolated, predominantly including Saccharomyces 

dairenensis, S. cerevisiae, Candida lusitaniae and C. colliculosa (Gadaga et al., 2000).  

The type of fermentation container used for the preparation of South African sethemi 

influenced the yeast consortium present.  Debaryomyces hansenii and S. cerevisiae 

were predominantly present in sethemi from the clay containers and Cryptococcus 

curvatus in sethemi from the nickel and plastic containers (Kebede et al., 2007).  

Geotrichum candidum is a filamentous fungus with a yeast-like to a mycelial-like 

form (Pottier et al., 2008).  This fungus can be present on the surface of raw milk which 

has been fermented for a few days, as a branched hyphae layer.  Geotrichum candidum 

has been isolated from kefir grains, Finnish fermented milk viili and soft, semi-hard and 

semi-fresh cheese (Garotte at al., 1997; Witthuhn et al., 2005; Pottier et al., 2008).  

Slow growth of G. candidum on top of the creamy viili due to a limited oxygen supply in 

the container helps to maintain a pH under 5 resulting in a mild tasting smooth product 

(Wouters et al., 2002).  This microbe is present on the outside of the kefir grains, but 

does not influence the grain performance or sensory attributes of the kefir beverage 

(Schoeman, 2001).  In cheese G. candidum is present as an adjunct starter culture 

which grows well during the early stages of cheese ripening in symbiosis with other 

starter bacteria and contribute to cheese texture, aroma, flavour and appearance 

(Pottier et al., 2008). 
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E. Conclusions 

 

A wide variety of traditionally fermented milks are prepared on small scale in various 

countries of Sub-Saharan Africa.  The microbial consortium of these products is mostly 

diverse and LAB, often together with yeasts, is present.  The isolation and identification 

of microbes responsible for fermentation of some of the traditionally fermented milks 

from Sub-Saharan Africa still needs to be performed.  On an industrial scale, these 

microbes (mainly LAB) can be used to develop new starter cultures to produce 

fermented milk products with similar aroma, flavour and texture characteristics.  To 

ensure successful incorporation of the microbial strains isolated from the traditional 

fermented milks into commercial starter cultures, the original starter composition must 

be acknowledged and the role of each strain must be investigated and understood. 
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CHAPTER 3 

ENUMERATION OF THE MICROBIAL CONSORTIUM PRESENT IN FERMENTED 

MILKS FROM SUB-SAHARAN AFRICA 

Abstract  

Different traditionally and commercially fermented milks are commonly consumed in 

various countries of Sub-Saharan Africa.  Commercially fermented milk is produced on 

an industrial scale according to well controlled standardised production processes.  

Traditionally fermented milks are domestically prepared and are a result of spontaneous 

fermentation at ambient temperatures.  The microbial consortium of a large variety of 

the traditionally fermented milk from Sub-Saharan Africa has not been investigated or 

little information is available.  In this study the microbial counts present in three 

traditionally fermented milks, omashikwa, masse and chekapmkaika and two 

commercially fermented milks, chambiko and omaere were determined by using six 

different selective growth media.  Based on the average enumeration values obtained 

on the media used for the isolation of lactic acid bacteria (LAB), the highest counts were 

observed on KCA + V medium for chambiko (1.8 x 105 cfu.ml-1), KCA + TTC medium for 

omaere (2.3 x 106 cfu.ml-1), KCA + TTC medium for omashikwa and MRS + C medium 

for masse and chekapmkaika (6.2 x 106 and 2.0 x 103 cfu.ml-1, respectively). 

No significant differences were found between the enumeration values obtained 

for the three chambiko samples, as well as for the two omaere samples on each of the 

six media.  Variances within the sample sets of these two products were, therefore, low.  

All the enumeration values obtained for the three omashikwa samples differed 

significantly from one another on all selective, indicating large variances within the 

sample set.  Sample variances were also observed between the three masse, as well 

as the two chekapmkaika samples.  Significant differences were found in microbial 

counts detected on each of the six media when comparing the average enumeration 

values of the omaere and chambiko, and masse and chekapmkaika, as well as between 

the commercial and traditional milks. 

Introduction 

Various tribal communities from different countries of Sub-Saharan Africa consume 

fermented milk traditionally prepared by leaving raw milk to ferment spontaneously 
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(Oyewole, 1997).  Examples of such traditionally fermented milks include omashikwa 

from Namibia, masse from Mozambique and chekapmkaika from Uganda.  The 

preparation of these fermented milks occurs at ambient temperatures in gourds, pots 

and smoked gourds, respectively (Oyewole, 1997; Bille et al., 2002; 2007).  In Africa, 

cow milk is mostly used for the preparation of traditionally fermented milk (Narvhus & 

Gadaga, 2003).  Microbes responsible for the spontaneous milk fermentation are 

present in the environment, used fermentation containers, on preparation utensils or 

inherent in the raw milk (Oyewole, 1997; Todorov et al., 2007).  Kebede et al. (2007) 

found that the type of fermentation vessel used during the production of sethemi 

increased the diversity of the yeast population present.  The microbial consortium of 

traditionally fermented milks is generally diverse and influenced by factors such as the 

regional climatic conditions and the duration of the fermentation process (Savadogo et 

al., 2004; Akabanda et al., 2010).  The microbial consortium influences the unique 

organoleptic properties of different traditionally fermented milk products (Steinkraus, 

1994; Mathara et al., 2004). 

Commercially fermented milks are also produced in Sub-Saharan Africa such as 

chambiko in Malawi and omaere in Namibia.  Commercially fermented milk is produced 

by inoculating pasteurised cow milk with specific starter cultures under controlled 

environmental conditions (Caplice & Fitzgerald, 1999).  The microbial diversity in 

commercially fermented milk is often low because commercial starter cultures mostly 

consist of only one or two bacterial strains (Stiles & Holzapfel, 1997; Chammas et al., 

2006). 

Studies to enumerate and isolate the microbial populations present in traditionally 

fermented milks from Sub-Saharan Africa by using selective growth media have been 

done on Zimbabwean amasi (Gadaga et al., 2000), traditionally fermented milks from 

South Africa (Beukes et al., 2001), Ghanaian nunu (Akabanda et al., 2010), fermented 

milk from the Fulani community in Burkina Faso (Savadogo et al., 2004), Kenyan 

suusac (Lore et al., 2005) and South African sethemi (Kebede et al., 2007).  Lactic acid 

bacteria (LAB) that have been isolated from Sub-Sahara African fermented milks 

include species from the genera Lactobacillus, Lactococcus, Leuconostoc, 

Streptococcus, Enterococcus and Pediococcus (Abdelgadir et al., 2001; Gonfa et al., 

2001; Mathara et al., 2004; Kebede et al., 2007; Okonkwo, 2011).  Although it has not 

been reported that acetic acid bacteria (AAB) have been isolated from fermented milks 

prepared in Sub-Saharan Africa, AAB including Acetobacter aceti, A. syzygii and A. 

rasens have been found in kefir grains which are used to ferment milk to produce kefir 
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(Witthuhn et al., 2005; da Cruz Pedrozo Miguel et al., 2010).  Therefore, it may be 

possible that AAB are also present in fermented milk from Sub-Saharan Africa. 

The increase in popularity of dairy products among consumers (Bureau for Food 

and Agricultural Policy, 2012) emphasises the need to extend the diversity of dairy 

products by developing new starter cultures.  LAB and AAB strains present in these 

traditionally fermented milks can be isolated and used to develop new commercial 

starter cultures.  As a result, new fermented dairy products with unique aromas, tastes 

and characteristics can be produced.  The aim of this study was to enumerate the 

microbial consortium present in the three traditionally fermented milks, namely 

omashikwa from Namibia, masse from Mozambique and chekapmkaika from Uganda 

and two commercially fermented milks, namely chambiko from Malawi and omaere from 

Namibia. 

Materials and methods 

Sample collection 

Five types of fermented milks were chosen from different Sub-Sahara African countries 

and these included two commercially fermented milks, chambiko from Malawi and 

omaere from Namibia, as well as three traditionally prepared fermented milks, namely 

omashikwa from Namibia, masse from Mozambique and chekapmkaika from Uganda.  

The commercial and traditional fermented milk products examined in this study were all 

prepared using cow milk.  The minimum sample size required of each of the fermented 

milks was 100 ml. 

Three 250 ml sachets of commercial chambiko and two 500 ml cartons of 

commercial omaere were purchased at a local retailer in Malawi and Namibia, 

respectively.  Three 200 ml samples of traditionally prepared omashikwa and two 100 

ml samples of traditionally prepared chekapmkaika were collected from a tribal 

community where these fermented milks are prepared and consumed.  Three 200 ml 

samples of the traditionally prepared masse were purchased from a local market in 

Mozambique. 

Each traditional fermented milk sample represented a different batch and was 

collected in 50 ml sterile Falcon tubes.  All samples were frozen after collection or 

purchase.  All the samples were received within three days from sampling, with the 

exception of chekapmkaika which was received after five days.  All the fermented milk 

samples were stored at 4 ºC for a maximum of three days before analysis.  The pH 
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value of each sample was measured using a calibrated pH-meter (H1221 Calibration 

Check Microprocessor, Spraytech).   

Isolation and enumeration of the microbial consortium 

Each fermented milk product was properly mixed to ensure homogenisation of the 

microbes present in the fermented milk.  For each of the fermented milks 1 ml of each 

sample was pipetted aseptically into 9 ml (1:10 dilution) of sterile saline solution (0.85% 

(w/v) NaCl) in a McCartney bottle.  The mixture was mixed with a vortex (Gemmy 

Industrial Corporation, Taiwan) for 5 min.  A dilution series of 10-1 to 10-6 was made in 

sterile saline solution and 1 ml of each of these serial dilutions was pipetted in duplicate 

into appropriately marked Petri dishes.  This was done for six different selective media 

(Table 1) which was pour plated into Petri dishes filled with the serial dilutions and 

properly mixed for 30 s.  Each fermented milk sample was analysed in duplicate.  The 

viable microbial counts of the bacteria, yeasts and mycelial fungi suspended in each 

serial dilution were determined and expressed in colony forming units per millilitre 

(cfu.ml-1) of fermented milk.  The media that were used for the isolation and 

enumeration of lactobacilli (MRS + C), lactococci (KCA + TTC) and leuconostocs (KCA 

+ V) were incubated anaerobically in 3 L glass bottles (Consol) in the presence of a 

gas-generating kit (Anaerocult A system, Merck) at 30 ºC for 5 to 10 days.  The 

selective media that was used for the isolation of mycelial fungi (MEA) and yeasts 

(YPD) were incubated aerobically at 25 ºC for 3 to 5 days.  The media used for the 

isolation of AAB (MRS + E) was incubated at 30 ºC for 3 to 5 days. 

Statistical analysis 

Statistical analysis was done using Stata/IC 10.0 from StataCrop LP.  All enumeration 

values analysed were transformed to log10 values due to the abnormal nature of the 

data.  A one way analysis of variance (ANOVA) was performed on enumeration values 

(duplicate means) obtained for each sample per medium for each fermented milk.  If the 

P (P1) value obtained for each sample set was significant (P1 value < 0.05) it indicated 

that at least one of the enumeration values differed from another.  On those sample sets 

where P1<0.05, a two way ANOVA was performed to determine which samples differed 

significantly (P2<0.05) from each other.  A two way ANOVA was also performed on the 

averaged enumeration values obtained on each medium for the chambiko, omaere, 

masse and chekapmkaika.  If the P (P3) value obtained was smaller than 0.05 the 

averaged enumeration values for each fermented milk per medium differed significantly. 
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Table 1  Selective media used for the isolation and enumeration of the microbes  

                 present in the five different fermented milks from Sub-Saharan Africa. 

Selective 

media
a
 

Composition Selected 

microbes 

MRS + C MRS-medium (Merck) with 3% (v/v) ethanol (Merck).  Prepared by 

adding 100 μg.ml
-1

 cycloheximide (Sigma) soluble in ethanol (Merck) 

(stock solution concentration of 50 mg.ml
-1

) after sterilisation of the 

MRS-medium (pH 6.2) (Pintado et al., 1996).    

Lactobacilli 

KCA + TTC KCA-medium (g.l
-1

): tri-sodium citrate.2H2O (Saarchem) 2.0; gelatine 

(Merck) 2.5; sodium chloride (Merck) 4.0; yeast extract (Merck) 5.0; 

lactose (Merck) 5.0; glucose (Merck) 5.0; calcium lactate.5H2O 

(Saarchem) 8.0; calcium citrate (Merck) 10.0; agar (Merck) 15.0; 

tryptone (Merck) 20.0 and carboxymethyl cellulose (Merck) (1.5% 

v/w) 100ml.  Add 1 g TTC (Merck) diluted in 1 ml dH2O after 

sterilisation of the KCA-medium (pH 6.6) (Nickels & Leesment, 1964; 

Beloti et al., 1999). 

Lactococci 

KCA + V KCA-medium with 30 µg.ml
-1

 vancomycin (Sigma) diluted in ddH20 

(stock solution concentration of 50 mg.ml
-1

) added to the KCA-

medium after sterilisation (pH 6.6) (Benkerroum et al., 1993). 

Leuconostocs 

MRS + E MRS-medium (Merck) with 2% (v/v) ethanol (Merck) (Bester, 2009). AAB 

MEA MEA-medium (Merck) (pH 5.5). Mycelial fungi 

YPD YPD-medium (g.l
-1

): Yeast extract (Merck) 10.0; Peptone (Merck) 

20.0; Glucose (Merck) 20.0 (pH 6.5) (DSMZ, 2012). 

Yeasts 

 

a 
The following abbreviations were used: MRS = deMan, Rogosa and Sharpe-medium, KCA = potassium        
carboxymethyl cellulose agar, TTC = triphenyltetrazolium chloride, MEA = malt extract agar, YPD =  
yeast peptone dextrose agar, C = cycloheximide, V = vancomycin, E = ethanol. 
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Results and discussion 

Enumeration values 

It has been shown that by using standard plating procedures to determine the diversity 

of microbes present in a food product, it is possible that only a portion of the true 

microbial population will be enumerated due to the partial recovery of microbes 

(Witthuhn et al., 2005).  To ensure that a wide spectrum of the microbes present is 

indeed counted after plating, six different selective media were used, each supporting 

the growth of a specific group of microbes. 

Enumeration values of commercial chambiko and omaere 

The enumeration values (cfu.ml-1) obtained from the three samples of chambiko on 

each of the six selective media are presented in Table 2.  For sample 1 the highest 

microbial counts was obtained on KCA + V medium (3.2 x 105 cfu.ml-1), used for the 

isolation of leuconostocs.  The highest enumeration values for sample 2 (2.2 x 105 

cfu.ml-1) and 3 (2.3 x 105 cfu.ml-1) of chambiko were obtained on YPD medium that is 

selective for yeasts.  In all three samples of chambiko the lowest enumeration values 

were observed on MEA medium selective for mycelial fungi.  With values of 1.4 x 104, 

1.1 x 104 and 1.3 x 104 cfu.ml-1, respectively. 

The enumeration values (cfu.ml-1) obtained from the two samples of omaere on 

each of the six selective media are summarised in Table 3.  For both samples 1 and 2 

of omaere the highest enumeration values were obtained on YPD medium (1.8 x 107 

and 1.6 x 107 cfu.ml-1) used for the isolation of yeasts.  For the omaere 2.0 x 106  

cfu.ml-1 for sample 1 and 2.0 x 106 cfu.ml-1 for sample 2 were the lowest enumeration 

values obtained on the medium used for the isolation of lactobacilli (MRS + C).  No 

microbial growth was detected on the medium used for the isolation of Leuconostoc 

spp. (KCA + V). 

None of the enumeration values obtained for samples 1, 2 and 3 of chambiko on 

each growth medium differed significantly from one another (P1 value > 0.05).  This was 

also true for omaere where no significant differences were found between the 

enumeration values obtained for samples 1 and 2 per growth medium.  Therefore, it 

indicates that there is low variance between the three chambiko samples, as well as 

between the two omaere samples collected from different batches.  Furthermore, 

similarities between the chambiko and omaere samples were also observed after 

measuring their pH values.  All three chambiko samples had the same pH value of 4.2 

Stellenbosch University http://scholar.sun.ac.za



56 
 

Table 2  Enumeration values (cfu.ml-1) obtained for commercial chambiko.  

 

a 
The following abbreviations were used: MRS = deMan, Rogosa and Sharpe-medium, KCA = potassium 
carboxymethyl cellulose agar, TTC = triphenyltetrazolium chloride, MEA = malt extract agar, YPD =  
yeast peptone dextrose agar, C = cycloheximide, V = vancomycin, E = ethanol. 

 

b
 Average enumeration value obtained from duplicate media plates. 

 

c
 P1 value < 0.05 indicates that at least one of the mean values differs significantly from another (using 

  one way ANOVA test). 

 

 

Table 3  Enumeration values (cfu.ml-1) obtained for commercial omaere. 

Selective mediuma Sample 1b Sample 2b P1 valuec 

MRS + C 2.0 x 106 2.0 x 106 0.8778 

KCA + TTC 2.4 x 106 2.1 x 106 0.1286 

KCA + V NC NC - 

MRS + E 1.6 x 107 1.2 x 107 0.1986 

MEA 3.0 x 106 2.9 x 106 0.3650 

YPD 1.8 x 107 1.6 x 107 0.2192 
 

a 
The following abbreviations were used: MRS = deMan, Rogosa and Sharpe-medium, KCA = potassium 
carboxymethyl cellulose agar, TTC = triphenyltetrazolium chloride, MEA = malt extract agar, YPD =  
yeast peptone dextrose agar, C = cycloheximide, V = vancomycin, E = ethanol, NC = no counts. 

 

b
 Average enumeration value obtained from duplicate media plates. 

 

c
 P1 value < 0.05 indicates that at least one of the mean values differs significantly from another (using 

  one way ANOVA test). 

 

 

 

 

 

 

 

 

 

 

 

 

Selective mediuma Sample 1b Sample 2b Sample 3b P1 valuec 

MRS + C 2.0 x 105 8.9 x 104 1.3 x 105 0.4811 

KCA + TTC 7.4 x 104 2.7 x 104 2.1 x 104 0.4105 

KCA + V 3.2 x 105 1.1 x 105 1.2 x 105 0.209 

MRS + E 2.6 x 104 2.2 x 104 2.1 x 104 0.0744 

MEA 1.4 x 104 1.1 x 104 1.3 x 104 0.6097 

YPD 2.5 x 105 2.2 x 105 2.3 x 105 0.8331 
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and both the omaere samples had a pH value of 4.3.  If the pH values and microbial 

counts per medium of the different samples of a specific fermented milk are the same it 

could indicate that each batch is exposed to starters with similar concentrations of the 

same microbes, similar fermentation periods and similar process conditions.  

Consistency of these parameters is emulated when producing a fermented product in a 

on a commercial scale (Dave & Shah, 1996; Mayssoun & Nadine, 2010).  Therefore, 

both the chambiko and omaere are produced by a standardised production process 

which results in a consistent product. 

The average enumeration values obtained for chambiko illustrated in Fig. 1 gives 

an indication on which media the highest and lowest microbial growth occurred.  The 

average enumeration values in decreasing order are as follows: 2.3 x 105 (YPD); 1.8 x 

105 (KCA + V); 1.4 x 105 (MRS + C); 4.1 x 104 (KCA + TTC); 2.3 x 104 (MRS + E); and 

1.3 x 104 cfu.ml-1 (MEA).  According to these values, the three main microbial groups 

present in chambiko in decreasing order are yeasts, leuconostocs and lactobacilli.  In 

chambiko, the highest enumeration value for all the media used for the isolation of LAB 

were obtained on KCA + V medium used for the isolation of leuconostocs.  Therefore, 

the predominant microbes present in the starter culture used for the chambiko could 

possibly be strains from the genus Leuconostoc. 

The average enumeration values obtained for omaere on the six selective media 

are illustrated in Fig. 2.  The highest level of microbial growth was detected on YPD (1.7 

x 107 cfu.ml-1) followed by MRS + E (1.4 x 107 cfu.ml-1), MEA (3.0 x 106 cfu.ml-1), KCA + 

TTC (2.3 x 106 cfu.ml-1) and MRS + C medium (2.0 x 106 cfu.ml-1).  Therefore, it may be 

that yeasts, AAB and mycelial fungi are the three largest microbial groups present in 

omaere.  The largest LAB group present may be lactococci due to a higher average 

enumeration value obtained on the KCA + TTC medium.  This can indicate that the 

predominant microbes present in the starter used for the omaere are strains from the 

genus Lactobacillus. 

By observing Fig 1 and 2 it is clear that there are differences in the overall 

microbial counts present in the chambiko and omaere.  The results after performing a 

two way ANOVA between the average enumeration values obtained for the omaere and 

the chambiko on each of the selective media confirmed that the average enumeration 

values obtained on five of the selective media, including MRS + C, KCA + TTC, MRS + 

E, MEA and MRS + E for the omaere were significantly larger (P3=0.0001<0.05) than 

the average enumeration values on these media obtained for the chambiko.  However,  

the average enumeration value obtained on the KCA + V medium for the omaere was 
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Figure 1  The microbial levels in three samples of commercial chambiko analysed in 

duplicate on six different selective media and deviation bars indicating the 

maximum and minimum enumeration value obtained per medium.   

 

 

Figure 2  The microbial levels in two samples of commercial omaere analysed in 

duplicate on six different selective media and deviation bars indicating the 

maximum and minimum enumeration value obtained per medium. 
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significantly smaller (P3=0.0135<0.05) than the average enumeration value obtain on 

this medium for the chambiko. The higher microbial counts present in the omaere 

relative to the chambiko can be due to a higher concentration of microbes present in the 

starter used for omaere production.  It may also be possible that the chambiko and 

omaere have been exposed to different storage periods and temperatures which can 

affect microbial growth (Mayssoun & Nadine, 2010). 

Enumeration values of traditional omashikwa, masse and chekapmkaika 

Information on the microbial consortium present in the fermented milk omashikwa is 

limited and no information is available on the microbes present in masse and 

chekapmkaika.  Little is also known about starter traditions used to prepare these milks. 

The enumeration values (cfu.ml-1) obtained for the three samples of omashikwa 

are presented in Table 4.  The highest enumeration values obtained from samples 2 

(1.0 x 106 cfu.ml-1) and 3 (1.4 x 106 cfu.ml-1) were on the KCA + TTC medium used for 

the isolation of lactococci.  From sample 1 the highest enumeration value was obtained 

on YPD (1.6 x 107 cfu.ml-1) selecting for yeasts, followed by enumeration values on 

MRS + C (1.0 x 107 cfu.ml-1) selecting for lactobacilli.  The lowest enumeration values 

for all three omashikwa samples were obtained on MEA used for the isolation of 

mycelial fungi.  These enumeration values are 1.3 x 106 cfu.ml-1 for sample 1, 2.4 x 104 

cfu.ml-1 for sample 2 and 2.9 x 104 cfu.ml-1 for sample 3. 

Since P1 was found to be smaller than 0.05 for all six selective media, the one 

way ANOVA was followed by a two way ANOVA for all the omashikwa samples to 

determine to what extent the means of the enumeration values obtained per medium 

differed.  The enumeration values obtained on all six selective media for samples 2 and 

3 are significantly smaller (P2 0.0084<0.05) compared to the enumeration values 

obtained for sample 1.  No significant differences (P2=0.8734>0.05) were found 

between the microbial counts on MRS + C between samples 2 and 3.  On all the other 

media significant differences (P2  0.0242<05) of the microbial counts occurred 

between samples 2 and 3, but these differences were smaller than found between each 

of the samples and sample 1.  Therefore, the microbial counts present in samples 2 and 

3 are more comparable to each other than they are to sample 1.  This variance 

between samples may be contributed to the inconsistency in preparation methods of 

traditionally fermented milks.  This may indicate the possibility of exposure of different 

batches to varying environmental conditions such as temperature changes and hygiene 

standards, influencing the composition and growth of the microbial population present. 
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Table 4  Enumeration values (cfu.ml-1) obtained for traditional omashikwa.  

Selective mediuma Sample 1b Sample 2b Sample 3b P1 valuec 

MRS + C 1.0 x 107
i 8.3 x 104

j 1.8 x 105
j 0.0003 

KCA + TTC 4.2 x 106
i 1.0 x 106

j 1.4 x 106
k 0.0001 

KCA + V 2.8 x 106
i 1.5 x 105

j 4.9 x 105
k 0.0001 

MRS + E 9.8 x 106
i 1.4 x 105

j 2.4 x 105
k 0.004 

MEA 1.3 x 106
i 2.4 x 104

j 2.9 x 104
k 0.0021 

YPD 1.6 x 107
i 2.9 x 105

j 2.5 x 105
k 0.0001 

 
a 

The following abbreviations were used: MRS = deMan, Rogosa and Sharpe-medium, KCA = potassium  
carboxymethyl cellulose agar, TTC = triphenyltetrazolium chloride, MEA = malt extract agar, YPD =   
yeast peptone dextrose agar, C = cycloheximide, V = vancomycin, E = ethanol. 

 

b
 Average enumeration value obtained from duplicate media plates. 

 

c
 P1 value < 0.05 indicates that at least one of the mean values differs significantly from another (using 

  one way ANOVA test). 
 

ijk 
Enumeration values (duplicate means) obtained for each sample on the same medium followed by a 

   different letter are significantly different (P2<0.05). 
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The pH values measured for samples 2 (3.4) and 3 (3.4) of omashikwa are the same 

compared to the pH value measured for sample 1 (4.2).  The higher pH value for 

sample 1 may be a reason for the higher microbial numbers in this sample.  Microbes 

sensitive to acidic environments may not be present in the samples with low pH values.  

Traditional omashikwa previously analysed by Bille et al. (2007) had an average pH 

value of 3.3, closer to the pH values of samples 2 and 3.  These two samples are 

probably better representatives of traditional omashikwa.  Due to the large variance 

between samples 1 and the other two samples, the average enumeration values were 

not determined.  Evaluating the enumeration values of each sample individually the 

main microbial group present in omashikwa may be lactococci due to high microbial 

counts on KCA + TTC for both samples 2 and 3. 

The enumeration values (cfu.ml-1) obtained for the three samples of traditional 

masse are given in Table 5.  For samples 1 and 3 the highest enumeration values were 

obtained on the MRS + C (7.1 x 106 and 7.9 x 106 cfu.ml-1, respectively) followed by 

enumeration values obtained on MRS + E, which was 6.3 x 106 cfu.ml-1 for sample 1 

and 7.0 x 106 cfu.ml-1 for sample 3.  The highest enumeration value for sample 2 was 

obtained on the MRS + E (5.3 x 106 cfu.ml-1).  The lowest enumeration values obtained 

for all three masse samples were obtained on KCA + TTC used for the isolation of 

lactococci.  These enumeration values ranged from 2.9 x 105 to 1.9 x 106 cfu.ml-1. 

No significant differences (P1>0.05) were found between enumeration values of 

masse samples obtained from the MEA and YPD media.  Since P1<0.05 for the media 

MRS + C, KCA + TTC, KCA + V and MRS + E the one way ANOVA performed on 

enumeration values for these media was followed by a two way ANOVA to determine 

the means in which these enumeration values obtained on each medium differed from 

one another.  Enumeration values for sample 2 were significantly smaller 

(P2 0.0314<0.05) than those for sample 1 on the MRS + C, KCA + TTC, KCA + V and 

MRS + E media.  Enumeration values for sample 3 was significantly larger 

(P2 0.0408<0.05) than those for sample 2 on MRS + C, KCA + V and MRS + E.  

However, the enumeration value for sample 3 on KCA + TTC was significantly smaller 

(P2=0.0005<0.05) than the enumeration value on sample 2.  No significant differences 

(P2=0.1020>0.05) were found between the enumeration values of samples 3 and 1 

obtained for MRS + C.  Enumeration values on KCA + TTC and KCA + V from sample 3 

were significantly smaller (P2 0.0383<0.05) than those for sample 1.  The enumeration 

value on MRS + E of sample 3 was significantly larger (P2 0.0260<0.05) than the 

enumeration value for sample 1.  The variances observed between the masse samples 
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Table 5  Enumeration values (cfu.ml-1) obtained for traditional masse.  

Selective mediuma Sample 1b Sample 2b Sample 3b P1 valuec 

MRS + C 7.1 x 106
i 3.7 x 106

j 7.9 x 106
i 0.017 

KCA + TTC 1.9 x 106
i 1.4 x 106

j 2.9 x 105
k 0.0002 

KCA + V 2.9 x 106
i 2.3 x 106

j 2.6 x 106
k 0.0213 

MRS + E 6.3 x 106
i 5.3 x 106

j 7.0 x 106
k 0.0104 

MEA 2.9 x 106 2.8 x 106 3.0 x 106 0.2069 

YPD 2.1 x 106 1.8 x 106 2.1 x 106 0.4456 
 
a 

The following abbreviations were used: MRS = deMan, Rogosa and Sharpe-medium, KCA = potassium 
carboxymethyl cellulose agar, TTC = triphenyltetrazolium chloride, MEA = malt extract agar, YPD =  
yeast peptone dextrose agar, C = cycloheximide, V = vancomycin, E = ethanol. 

 

b
 Average enumeration value obtained from duplicate media plates. 

 

c
 P1 value < 0.05 indicates that at least one of the mean values differs significantly from another (using 

  one way ANOVA test). 
 

ijk
 Enumeration values (duplicate means) obtained for each sample on the same medium followed by a 

    different letter are significantly different (P2<0.05). 
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may be ascribed to the variable temperature conditions and starters characteristic of 

traditional fermentations.  If the sample variance between the masse samples are 

compared with the sample variance of the omashikwa samples it is clear that masse 

samples were more similar.  The lower sample variance between the masse samples is 

reflected in the pH values of the samples, where the average pH of the three masse 

samples was 5.7 with pH values ranging from 5.6 to 5.8.  This small difference in the pH 

values of the masse samples indicate the likelihood of more similar fermentation periods 

and conditions present during preparation of the different masse batches than the 

different omashikwa batches.  This shows that traditional fermentations can be 

consistent. 

According to the average enumeration values obtained for masse, as illustrated in 

Fig. 3, the highest number of microbes were isolated on MRS + C (6.2 x 106 cfu.ml-1) 

and MRS + E (6.2 x 106 cfu.ml-1).  Therefore, it is possible that the two largest microbial 

groups present are lactobacilli and AAB.  Lower average enumeration values were 

obtained on MEA (2.9 x 106 cfu.ml-1), KCA + V (2.6 x 106 cfu.ml-1) and YPD (2.0 x 106 

cfu.ml-1).  The lowest average enumeration values were obtained on KCA + TTC (1.2 x 

106 cfu.ml-1).  It is expected that low concentrations of lactococci are present in masse 

due to low microbial growth on the KCA + TTC used for isolation of these LAB. 

The enumeration values (cfu.ml-1) obtained from each of the two samples of 

traditional chekapmkaika are summarised in Table 6.  The highest enumeration values 

for sample 1 and 2 were obtained on MRS + E (9.0 x 103 and 5.9 x 103 cfu.ml-1, 

respectively).  On YPD medium lower enumeration values were obtained for samples 1 

(6.8 x 103 cfu.ml-1) and 2 (5.1 x 103 cfu.ml-1).  No growth was detected on both KCA + 

TTC and KCA + V for both samples of chekapmkaika.  Therefore, it is unlikely that 

lactococci and leuconostocs will be present in either of these samples.  The 

enumeration values obtained for the MRS + C were 1.8 x 103 cfu.ml-1 for sample 1 and 

2.2 x 103 cfu.ml-1 for sample 2.   

No significant differences (P1>0.05) were found between enumeration values on 

the MEA and YPD media obtained from the chekapmkaika samples.  Since P1<0.05 for 

the media MRS + C and MRS + E, the one way ANOVA performed on enumeration 

values was followed by a two way ANOVA.  The enumeration value for sample 2 on 

MRS + C was significantly larger (P2 0.0115<0.05) than the enumeration value 

obtained for sample 1.  On MRS + E the enumeration value obtained for sample 2 was 

significantly smaller (P2 0.0086<0.05) than the enumeration value obtained for sample 

1.  In the two chekapmkaika samples a significant variance was only detected on two of 
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Figure 3  The microbial levels in three samples of traditional masse analysed in 

duplicate on six different selective media and deviation bars indicating the 

maximum and minimum enumeration value obtained per medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Masse

M
ic

ro
b

ia
l 
c

o
u

n
ts

 (
c
fu

.m
l-

1
) 

 

MRS + C

KCA + TTC

KCA + V

MRS + E

MEA

YPD

Stellenbosch University http://scholar.sun.ac.za



65 
 

Table 6  Enumeration values (cfu.ml-1) obtained for traditional chekapmkaika. 

Selective mediuma Sample 1b Sample 2b P1 valuec 

MRS + C 1.8 x 103
i 2.2 x 103

j 0.0229 

KCA + TTC NC NC - 

KCA + V NC NC - 

MRS + E 9.0 x 103
i 5.9 x 103

j 0.0172 

MEA 7.1 x 102 5.7 x 102 0.1316 

YPD 6.8 x 103 5.1 x 103 0.0698 
 
a 

The following abbreviations were used: MRS = deMan, Rogosa and Sharpe-medium, KCA = potassium 
carboxymethyl cellulose agar, TTC = triphenyltetrazolium chloride, MEA = malt extract agar, YPD =  
yeast peptone dextrose agar, C = cycloheximide, V = vancomycin, E = ethanol, NC = no counts. 

 

b
 Average enumeration value obtained from duplicate media plates. 

 

c
 P1 value < 0.05 indicates that at least one of the mean values differs significantly from another (using 

  one way ANOVA test). 
 

ij
 Enumeration values (duplicate means) obtained for each sample on the same medium followed by a 

   different letter are significantly different (P2<0.05). 
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the media (MRS + C and MRS + E).  The pH values for the two samples were also 

similar (3.6 and 3.7, respectively).  The similarities of the two samples can be due to a 

standardised traditional preparation process. 

The average enumeration values obtained for chekapmkaika on the six selective 

media (Fig. 4) are MRS + E (7.5 x 103 cfu.ml-1), YPD (5.9 x 103 cfu.ml-1), MRS + C (2.0 

x 103 cfu.ml-1) and MEA (6.4 x 102 cfu.ml-1).  It is possible that the predominant 

microbial group present in chekapmkaika is AAB.  Yeasts and mycelial fungi may also 

be present due to microbial counts obtained on the YPD and MEA media.  MRS + C 

was the only medium used for the isolation of LAB and it is, therefore, likely that 

lactobacilli are the only LAB group present in chekapmkaika. 

From Fig 3 and 4 it can be seen that there are differences in the overall microbial 

counts present in the masse and chekapmkaika.  Results obtained after performing a 

two way ANOVA between the average enumeration values obtained from the masse 

and the chekapmkaika on each of the selective media confirmed that the average 

enumeration values obtained on all six selective media for the masse were significantly 

larger (P3 0.0061<0.05) than the average enumeration values on these media 

obtained for the chambiko.  The lower average pH value of the chekapmkaika (3.7) 

compared to the average pH value of the masse samples (5.7) can be a reason for the 

lower microbial counts in the chekapmkaika because microbes sensitive to acidic 

environments cannot grow.  The low pH of the chekapmkaika can be a result of the age 

of the product (minimum of 29 days) during which fermentation continues in comparison 

with the masse where fermentation only took place for a few days before consumption. 

Significant differences also occurred between the average enumeration values 

obtained for the traditionally fermented products and the commercially fermented 

products.  The average enumeration values obtained on all six media for the traditional 

chekapmkaika were significantly lower than the average enumeration values obtained 

for both the commercial omaere (P3=0.0001<0.05) and chambiko (P3 0.0383<0.05).  

The average enumeration values obtained on KCA + TTC, MRS + E and YPD for the 

traditional masse were significantly smaller (P3 0.0126<0.05) than the average 

enumeration values obtained for the omaere.  No significant difference 

(P3=0.1695>0.05) was found between the average enumeration values obtained for the 

masse and omaere on MEA.  The average enumeration values obtained on MRS + C 

and KCA + V for the masse were significantly larger (P3 0.0383<0.05) than the 

average enumeration values obtained for the omaere.  This was also the case  

for the KCA + V, since there was no microbial growth on KCA + V for the omaere.  The 
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Figure 4  The microbial levels in two samples of traditional chekapmkaika analysed in 

duplicate on six different selective media and deviation bars indicating the 

maximum and minimum enumeration value obtained per medium. 
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average enumeration values obtained on all six media for the traditional masse were 

significantly larger (P3 0.0015<0.05) than the average enumeration values obtained for 

both the commercial omaere and the chambiko. 

Conclusions 

The results obtained in this study shows that samples of different fermented milks from 

Sub-Saharan Africa may differ significantly from each other in terms of microbial 

numbers or pH values.  Significant variations were found between microbial counts 

obtained for the omashikwa samples on all the media, the masse samples on four of the 

media and the chekapmkaika samples on two of the media, possibly due to the 

generally inconsistent preparation of traditionally fermented milk.  Large variation in pH 

values were found between some omashikwa samples.  Insignificant variations in the 

pH values and microbial counts occurred between the different samples of both the 

commercial chambiko and omaere, possibly a result of standardised production of 

commercially fermented milk.   

As expected, different fermented milks were found to have different microbial 

counts on each selective media, possibly indicating which microbial groups are present 

if these media are highly selective.  The microbial counts obtained for the five milks on 

the different media generally differed significantly from one another.  Selective growth 

media isolations are not always specific and more than one microbe may grow on each 

media.  Therefore, further identification of microbes obtained on each media is 

important before the microbial consortium of each traditionally and commercially 

fermented milk can be characterised. 
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CHAPTER 4 

SELECTION AND IDENTIFICATION OF THE BACTERIAL CONSORTIUM PRESENT 

IN FERMENTED MILKS FROM SUB-SAHARAN AFRICA 

Abstract 

A wide variety of traditionally and commercially fermented milks are commonly 

consumed in various countries of Sub-Saharan Africa.  However, the microbial 

consortium of a large variety of the traditionally fermented milks from Sub-Saharan 

Africa has not been identified.  Microbes present in three traditionally fermented milks, 

namely omashikwa, masse and chekapmkaika and two commercially fermented milks, 

namely chambiko and omaere were isolated.  The media used were specific for lactic 

acid bacteria (LAB), namely MRS + C (lactobacilli), KCA + TTC (lactococci) and KCA + 

V (leuconostocs), as well as MRS + E that was selective for acetic acid bacteria (AAB).  

In this study the number of bacterial colonies selected from specific media plates for 

further identification was determined by means of the Harrison Disk method.  The 

isolates obtained from the different fermented milks on the six media were identified 

using the polymerase chain reaction (PCR) and DNA sequencing.  A 1.5 kilobase (kb) 

part of the 16S ribosomal RNA (rRNA) gene was amplified, sequenced and identified 

using the BLAST search option to find the closest relative in the NCBI database.  The 

predominant LAB group present in chambiko and chekapmkaika was found to be 

Lactobacillus spp., in omaere it was Lactococcus spp., in omashikwa it was 

Enterococcus spp. and in the masse it was found to be Leuconostoc spp.  During the 

preparation of traditionally fermented milk hygienic practices are often neglected.  In 

traditionally fermented milks evaluated in this study microbial contaminants were 

identified and included Mesorhizobium loti, Escherichia coli, Kluyvera georgiana, 

Acinetobacter spp., Staphylococcus spp., Enterobacter spp., Klebsiella spp. and 

Bacillus spp.  LAB and AAB strains present in traditionally fermented milks can be used 

to develop novel commercial starter cultures which can be used to produce new 

fermented products with unique aromas, tastes and characteristics. 

Introduction 

A variety of microbes have been isolated from fermented milks, including lactic acid 

bacteria (LAB), acetic acid bacteria (AAB), yeasts and mycelial fungi (Gadaga et al., 
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2000, Witthuhn et al., 2005, Zamfir et al., 2006).  The LAB present in fermented milk is 

responsible for the fermentation by converting the carbohydrates to mainly lactic acid, 

but carbon dioxide, alcohol and other organic acids can also be produced (Caplice & 

Fitzgerald, 1999; Ross et al., 2002).  LAB also produce a wide variety of antimicrobial 

compounds such as organic acids, hydrogen peroxide, carbon dioxide, acetaldehyde, 

diacetyl, ethanol and bacteriocins.  During fermentation the growth of pathogens and 

other microbial contaminants are frequently inhibited by these antimicrobial components 

(Adams & Nicolaides, 1997; Caplice & Fitzgerald, 1999; Ross et al., 2002; Herreros et 

al., 2005; Park et al., 2005; González et al., 2007).  LAB species that have been 

isolated from fermented milks from Sub-Saharan Africa belonged to the genera 

Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, Enterococcus and 

Pediococcus (Abdelgadir et al., 2001; Gonfa et al., 2001; Mathara et al., 2004; Kebede 

et al., 2007; Okonkwo, 2011).  AAB that have been isolated from traditionally prepared 

kefir include Acetobacter aceti, A. syzygii and A. rasens (Witthuhn et al., 2005; da Cruz 

Pedrozo Miguel et al., 2010).  Acetobacter orientalis in combination with Lactococcus 

lactis subsp. cremoris is used as a starter for commercially fermented milk in Japan 

(Nakasaki et al., 2008).  Microbial contaminants are frequently isolated from traditionally 

fermented milk, as well as from raw milk and compromise product quality and safety 

(Huis in‟t Veld, 1996).  Some of these microbial contaminants are pathogenic and can 

cause food-borne diseases.  Pathogenic microbes that have been isolated from raw and 

fermented milk include Escherichia coli, Vibrio cholerae, Shigella spp., Staphylococcus 

aureus, Yersinia spp., Listeria monocytogenes, Mycobacterium tuberculosis, 

Mycobacterium bovis, Salmonella spp., Brucella abortus, Campylobacter jejuni and 

Bacillus cereus (Gran et al., 2003; Herreros et al., 2005; Mufandaedza et al., 2006).   

LAB strains present in traditionally fermented milk products has the potential to be 

used as new starters with unique antimicrobial properties ensuring the safety of 

fermented foods.  New starters can also be used to develop fermented food products 

with sensory characteristics similar to that of the traditional products.  Identification of 

microbes present in the fermented Sub-Sahara African milks chambiko, omaere, 

omashikwa, masse and chekapmkaika has never been reported to our knowledge.  

Therefore, the aim of this study was to identify the microbial consortium present in each 

of the three traditionally fermented milks, namely omashikwa from Namibia, masse from 

Mozambique and chekapmkaika from Uganda and two commercially fermented milks, 

namely chambiko from Malawi and omaere from Namibia by using polymerase chain 

reaction (PCR) and DNA sequencing of part of the 16S ribosomal RNA (rRNA) gene. 
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Material and methods 

Strain selection and cultivation 

The number of bacterial colonies selected from specific media plates for further 

identification was determined by means of the Harrison Disk method (Harrigan & 

McCance, 1976).  This method ensures that a significant representation of the 

predominant colonies present in each one of the fermented milks is selected for 

identification.  The Harrison Disk method allows selection of multiple colonies from a 

single media plate and by using this selection method a representation of the 

predominant microbial group or groups is obtained.   

Samples used for enumeration of the commercially fermented milks included three 

sachets of chambiko and two cartons of omaere purchased at a local retailer in Malawi 

and Namibia, respectively.  Samples used for enumeration of the traditionally fermented 

milks included three samples of omashikwa from Namibia, two samples of 

chekapmkaika from Uganda which were collected from a tribal community where these 

fermented milks are prepared and consumed and three samples of masse which were 

purchased from a local market in Mozambique.  The microbes present in each milk 

sample was isolated and enumerated.  Colonies were selected from media plates used 

for the isolation of LAB and AAB, including MRS + C, KCA + TTC, KCA + V and MRS + 

E (Table 1). 

After selection (Harrigan & McCance, 1976) of the bacterial colonies from the 

different media for each of the fermented milks, the selected colonies were streaked out 

on media plates used for cultivation in order to obtain pure cultures.  MRS media plates 

were used for the cultivation of LAB colonies selected from the MRS + C, KCA + TTC 

and KCA + V media.  AAB colonies selected from the MRS + E media were cultivated 

on MRS + E media plates.  All the media plates used for cultivation were incubated for 

three days at 30 ºC.  To ensure that the selected colonies were pure cultures they were 

Gram-stained and inspected microscopically. 

DNA extraction 

The DNA of the selected bacterial colonies was isolated according to the TZ-

method as described by Wang and Levin (2006).  Bacterial cells were collected from the 

media plates with an inoculation loop and placed in a boil proof eppendorf tube 

containing 250 µL ddH2O and mixed thoroughly with a vortex (Gemmy Industrial Corp., 

Taiwan) before the addition of 250 µL double strength TZ (2 x TZ).  Double strength TZ 
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Table 1  Selective media used for the isolation and selection of the microbes present in 

               the five different fermented milks from Sub-Saharan Africa. 

Selective 

media
a
 

Composition Selected 

microbes 

MRS + C MRS-medium (Merck) with 3% (v/v) ethanol (Merck).  Prepared by 

adding 100 μg.ml
-1

 cycloheximide (Sigma) soluble in ethanol (Merck) 

(stock solution concentration of 50 mg.ml
-1

) after sterilisation of the 

MRS-medium (pH 6.2) (Pintado et al., 1996).    

Lactobacilli 

KCA + TTC KCA-medium (g.l
-1

): tri-sodium citrate.2H2O (Saarchem) 2.0; gelatine 

(Merck) 2.5; sodium chloride (Merck) 4.0; yeast extract (Merck) 5.0; 

lactose (Merck) 5.0; glucose (Merck) 5.0; calcium lactate.5H2O 

(Saarchem) 8.0; calcium citrate (Merck) 10.0; agar (Merck) 15.0; 

tryptone (Merck) 20.0 and carboxymethyl cellulose (Merck) (1.5% 

v/w) 100ml.  Add 1 g TTC (Merck) diluted in 1 ml dH2O after 

sterilisation of the KCA-medium (pH 6.6) (Nickels & Leesment, 1964; 

Beloti et al., 1999).      

Lactococci 

KCA + V KCA-medium with 30 µg.ml
-1

 vancomycin (Sigma) diluted in ddH20 

(stock solution concentration of 50 mg.ml
-1

) added to the KCA-

medium after sterilisation (pH 6.6) (Benkerroum et al., 1993). 

Leuconostocs 

MRS + E MRS-medium (Merck) with 2% (v/v) ethanol (Merck) (Bester, 2009). AAB 

 

a 
The following abbreviations were used: MRS = deMan, Rogosa and Sharpe-medium, KCA = potassium        
carboxymethyl cellulose agar, TTC = triphenyltetrazolium chloride, C = cycloheximide, V = vancomycin, 
E = ethanol.    
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is a mixture consisting of 5 mg.ml-1 sodium azide (Merck) and 4% (v/v) Triton X-100 

(Merck) in 0.1 M Tris-HCL (Fluka) at pH 8.  The eppendorf tube was then placed in a 

boiling water bath for 10 min to ensure cell lyses.  In order to obtain the supernatant 

was used as DNA template the eppendorf tubes were centrifuged (

) at 10000 g for 5 min. 

PCR amplification 

The primers F8 (5‟- CAC GGA TCC AGA CTT TGA TYM TGG CTC AG -3‟) and R1512 

(5‟- GTG AAG CTT ACG GYT AGC TTG TTA CGA CTT -3‟) (Felske et al., 1997) were 

used to amplify a 1.5 kilobase (kb) fragment of part of the 16S rRNA gene of the 

selected bacterial colonies.  PCR amplifications were preformed in a PCR mixture with 

a total volume of 25 µL consisting of 1.5 μL (50 mM) MgCl2 (Bioline), 2.5 μL 10 X buffer 

(Bioline), 1 μL 99% (v/v) DMSO (Merck), 1 μL (400 nM) dNTPs (Promega), 1 μL (400 

nM) of both primer F8 and R1512, 0.5 μL (5 U) Taq DNA polymerase (Bioline), 2 μL 

DNA template and 14.5 μL ddH2O.  Amplification parameters of the PCR reaction 

included an initial denaturation at 92 ºC for 3 min followed by, 35 cycles of denaturation 

at 92 ºC for 30 s, annealing at 54 ºC for 30 s, and elongation at 68 ºC for 60 s and the 

final elongation step at 72 ºC for 7 min (Felske et al., 1997). 

DNA sequencing and identification 

The successful PCR amplification products were sequenced using an ABI 3130xl 

Genetic Analyser (Applied Biosystems, Foster City, USA).  Sequences obtained were 

compared to sequences listed in NCBI database using the BLAST algorithm and 

identified according to the closest relative ( et al ).  The DNA sequences 

that were used for the identification of the microbes using the BLAST search option 

were a minimum of 700 base pairs in length. 

Results and discussion 

Microbial species present in chambiko, omaere, omashikwa, masse and chekapmkaika 

identified after comparing their sequence data to sequences listed in the NCBI database 

are given in Tables 2 to 6. 

Identification of isolates from commercial chambiko and omaere 

Identification results of the microbial strains isolated from chambiko is listed in Table  

2.  From commercially produced chambiko the LAB identified all belonged to the genus  
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Table 2  Identification of the microbial strains isolated from the chambiko. 

Isolate number Identification Isolation medium % Similarity
z
 

1MRS + C Lactobacillus paracasei subsp. paracasei MRS + C 98% 

4MRS + C Lactobacillus paracasei subsp. paracasei MRS + C 85% 

12MRS + C Lactobacillus paracasei subsp. paracasei MRS + C 98% 

3MRS + C Lactobacillus casei MRS + C 97% 

7MRS + C Lactobacillus casei MRS + C 97% 

8MRS + C Lactobacillus casei MRS + C 94% 

9MRS + C Lactobacillus casei MRS + C 97% 

10MRS + C Lactobacillus casei MRS + C 96% 

13MRS + C Lactobacillus casei MRS + C 94% 

11MRS + C Lactobacillus spp. MRS + C 99% 

6KCA + TTC Lactobacillus paracasei subsp. paracasei KCA + TTC 99% 

7KCA + TTC Lactobacillus paracasei subsp. paracasei KCA + TTC 98% 

3KCA + TTC Lactobacillus casei KCA + TTC 98% 

9KCA + TTC Lactobacillus casei KCA + TTC 97% 

8KCA + TTC Lactobacillus paracasei KCA + TTC 99% 

11KCA + TTC Lactobacillus paracasei KCA + TTC 97% 

12KCA + TTC Lactobacillus paracasei KCA + TTC 97% 

2KCA + TTC Mesorhizobium loti KCA + TTC 95% 

13KCA + TTC Mesorhizobium loti KCA + TTC 97% 

4KCA + TTC Acinetobacter radioresistens KCA + TTC 99% 

5KCA + TTC Acinetobacter radioresistens KCA + TTC 99% 

10KCA + TTC Acinetobacter radioresistens KCA + TTC 99% 

3KCA + V Lactobacillus paracasei subsp. paracasei KCA + V 98% 

9KCA + V Lactobacillus paracasei subsp. paracasei KCA + V 97% 

10KCA + V Lactobacillus paracasei subsp. paracasei KCA + V 97% 

12KCA + V Lactobacillus paracasei subsp. paracasei KCA + V 99% 

5KCA + V Lactobacillus casei  KCA + V 97% 

1KCA + V Lactobacillus paracasei KCA + V 98% 

4KCA + V Lactobacillus paracasei KCA + V 98% 

6KCA + V Lactobacillus paracasei KCA + V 99% 

7KCA + V Lactobacillus paracasei KCA + V 97% 

11KCA + V Lactobacillus paracasei KCA + V 99% 

13KCA + V Lactobacillus paracasei KCA + V 98% 

2KCA + V Lactobacillus spp. KCA + V 97% 

8KCA + V Lactobacillus spp. KCA + V 97% 

2AAB Lactobacillus paracasei subsp. paracasei MRS + E 98% 

3AAB Lactobacillus paracasei subsp. paracasei MRS + E 97% 

7AAB Lactobacillus paracasei subsp. paracasei MRS + E 87% 

1AAB Lactobacillus casei  MRS + E 99% 

5AAB Lactobacillus casei  MRS + E 90% 

8AAB Lactobacillus casei  MRS + E 85% 

10AAB Lactobacillus casei  MRS + E 97% 

4AAB Lactobacillus paracasei MRS + E 98% 

11AAB Lactobacillus paracasei MRS + E 97% 

9AAB Lactobacillus paracasei MRS + E 83% 
 

z
  Similarity below 95% is normally not sufficient to state a correct identification.  
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Lactobacillus, including Lactobacillus casei and Lactobacillus paracasei, as well as the 

sub-species Lactobacillus paracasei subsp. paracasei.  Three strains isolated from 

chambiko could only be identified to genus level as Lactobacillus spp.  All the strains 

isolated from the MRS + C, KCA + V and MRS + E media used for the isolation of 

lactobacilli, leuconostocs and AAB, respectively were identified as lactobacilli.  On the 

KCA + TTC media used for the isolation of lactococci seven of the twelve strains 

selected were identified as lactobacilli, along with two strains identified as 

Mesorhizobium loti and three strains as Acinetobacter radioresistens.  The latter two 

bacterial strains are most likely microbial contaminants which enter the chambiko from 

the environment during the production process.  Acinetobacter spp. have been isolated 

from human skin and could have entered the chambiko via unhygienic practices.  

Acinetobacter spp. are classified as opportunistic pathogens and species from this 

genera have been responsible for human infections in hospitals (Jawad et al., 1998; 

Krawczyk et al., 2002).  Mesorhizobium loti is mostly found in soil in a symbiotic 

relationship with plant legumes such as chickpeas (Laranjo et al., 2012).  This microbe 

may have entered the production facility through the raw milk that may have been 

contaminated with soil.   

Identification of the microbial strains isolated from the omaere is given in Table 3. 

LAB present in commercially produced omaere were Lactococcus lactis subsp. lactis 

and Lactococcus lactis subsp. cremoris.  One Lactococcus lactis strain that was isolated 

from the MRS + E medium could not be identified to sub-species level.  All the strains 

isolated from the MRS + C, KCA + TTC and MRS + E media used for the isolation of 

lactobacilli, lactococci and AAB, respectively were identified as lactococci.  No isolations 

were made from the KCA + V medium as no growth was detected on this media for 

omaere.  Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris are 

commonly used as a starter culture for the commercial production of fermented milks 

such as viili produced in Finland and amasi produced in South Africa (Toba et al., 1990; 

McMaster et al., 2005). 

Identification of isolates from traditional omashikwa, masse and chekapmkaika 

Identification of the microbial strains isolated from omashikwa is presented in Table 4.  

From traditionally prepared omashikwa LAB identified belonged to the genera 

Lactobacillus, Lactococcus, Leuconostoc and Enterococcus.  The Lactobacillus strains 

isolated were identified as Lactobacillus helveticus, Lactobacillus kefiri, Lactobacillus 

casei, Lactobacillus rhamnosus and Lactobacillus paracasei.  Two isolated lactobacilli  
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Table 3  Identification of the microbial strains isolated from the omaere. 

Isolate number Identification Isolation medium % Similarity 

1MRS + C Lactococcus lactis subsp. lactis  MRS + C 98% 

2MRS + C Lactococcus lactis subsp. lactis  MRS + C 98% 

3MRS + C Lactococcus lactis subsp. lactis  MRS + C 99% 

4MRS + C Lactococcus lactis subsp. lactis  MRS + C 99% 

5MRS + C Lactococcus lactis subsp. lactis  MRS + C 98% 

6MRS + C Lactococcus lactis subsp. cremoris  MRS + C 98% 

7MRS + C Lactococcus lactis subsp. lactis MRS + C 98% 

8MRS + C Lactococcus lactis subsp. lactis MRS + C 99% 

9MRS + C Lactococcus lactis subsp. lactis MRS + C 98% 

10MRS + C Lactococcus lactis subsp. lactis MRS + C 99% 

11MRS + C Lactococcus lactis subsp. lactis MRS + C 97% 

12MRS + C Lactococcus lactis subsp. lactis MRS + C 98% 

1KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 98% 

2KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 98% 

3KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 98% 

4KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 98% 

5KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 97% 

6KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 99% 

7KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 98% 

8KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 98% 

10KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 99% 

11KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 99% 

12KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 97% 

13KCA + TTC Lactococcus lactis subsp. lactis KCA + TTC 98% 

1AAB Lactococcus lactis subsp. lactis MRS + E 97% 

2AAB Lactococcus lactis subsp. lactis MRS + E 98% 

3AAB Lactococcus lactis subsp. lactis MRS + E 98% 

4AAB Lactococcus lactis subsp. lactis MRS + E 99% 

5AAB Lactococcus lactis subsp. lactis MRS + E 98% 

6AAB Lactococcus lactis subsp. lactis MRS + E 99% 

9AAB Lactococcus lactis subsp. lactis MRS + E 97% 

10AAB Lactococcus lactis subsp. lactis MRS + E 98% 

11AAB Lactococcus lactis subsp. lactis MRS + E 99% 

12AAB Lactococcus lactis subsp. lactis MRS + E 98% 

7AAB Lactococcus lactis  MRS + E 98% 
 

z
  Similarity below 95% is normally not sufficient to state a correct identification.  
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Table 4  Identification of the microbial strains isolated from the omashikwa.  

Isolate number Identification Isolation medium % Similarity 

1MRS + C Enterococcus spp.  MRS + C 98% 

11MRS + C Enterococcus spp.  MRS + C 99% 

2MRS + C Enterococcus faecium  MRS + C 97% 

5MRS + C Enterococcus faecium  MRS + C 97% 

6MRS + C Enterococcus faecium  MRS + C 99% 

9MRS + C Enterococcus faecium  MRS + C 98% 

3MRS + C Enterococcus durans MRS + C 99% 

4MRS + C Enterococcus durans MRS + C 98% 

7MRS + C Enterococcus durans MRS + C 98% 

10MRS + C Enterococcus durans MRS + C 98% 

8MRS + C Lactobacillus helveticus  MRS + C 98% 

1KCA + TTC Enterococcus faecium  KCA + TTC 98% 

8KCA + TTC Enterococcus faecium  KCA + TTC 98% 

9KCA + TTC Enterococcus faecium  KCA + TTC 99% 

12KCA + TTC Enterococcus faecium  KCA + TTC 97% 

3KCA + TTC Enterococcus durans KCA + TTC 98% 

7KCA + TTC Enterococcus durans KCA + TTC 97% 

10KCA + TTC Enterococcus durans KCA + TTC 99% 

2KCA + TTC Escherichia coli KCA + TTC 99% 

5KCA + TTC Staphylococcus spp.  KCA + TTC 98% 

6KCA + TTC Lactococcus lactis subsp. lactis  KCA + TTC 96% 

11KCA + TTC Lactococcus lactis subsp. lactis  KCA + TTC 98% 

1KCA + V Leuconostoc pseudomesenteroides  KCA + V 99% 

2KCA + V Lactobacillus kefiri  KCA + V 99% 

8KCA + V Lactobacillus kefiri  KCA + V 100% 

3KCA + V Lactobacillus spp. KCA + V 98% 

11KCA + V Lactobacillus spp. KCA + V 97% 

4KCA + V Lactobacillus casei  KCA + V 95% 

5KCA + V Lactobacillus rhamnosus  KCA + V 97% 

6KCA + V Lactobacillus rhamnosus  KCA + V 98% 

7KCA + V Lactococcus lactis  KCA + V 99% 

9KCA + V Lactobacillus paracasei KCA + V 97% 

12KCA + V Lactobacillus paracasei KCA + V 97% 

10KCA + V Acinetobacter johnsonii KCA+V 96% 

4AAB Enterococcus faecium MRS + E 99% 

6AAB Enterococcus faecium MRS + E 98% 

1AAB Lactococcus lactis MRS + E 98% 

2AAB Lactococcus lactis MRS + E 98% 

3AAB Lactococcus lactis MRS + E 99% 

5AAB Lactococcus lactis MRS + E 99% 

7AAB Leuconostoc pseudomesenteroides  MRS + E 95% 

8AAB Leuconostoc pseudomesenteroides  MRS + E 98% 

9AAB Leuconostoc pseudomesenteroides  MRS + E 96% 

11AAB Leuconostoc pseudomesenteroides  MRS + E 92% 
 

z
  Similarity below 95% is normally not sufficient to state a correct identification.  
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strains could only be identified to the genus level as Lactobacillus spp.  Most of the 

lactobacilli strains were isolated from KCA + V intended for the selection of 

leuconostocs.  Two of the seven Lactococcus lactis strains present were identified to 

sub-species level as Lactococcus lactis subsp. lactis isolated from KCA + TTC.  

Leuconostoc pseudomesenteroides was the only Leuconostoc spp. present in the 

omashikwa and the majority of these strains were isolated from MRS + E.   

Enterococcus strains present were identified as Enterococcus faecium and 

Enterococcus durans.  Enterococci were mostly isolated from MRS + C and KCA + 

TTC, although two strains were isolated from MRS + E.  No enterococci were isolated 

from the KCA + V medium and may, therefore, be sensitive to the vancomycin present 

(Ogier & Serror, 2008).  Species of the genus Enterococcus is not Generally 

Recognised as Safe (GRAS) due to their involvement in human infections as 

opportunistic pathogens.  However, enterococci often form part of the inherent food 

microbiota (Zamfir et al., 2006).  The presence of these bacteria in fermented milk is an 

indication of unhygienic conditions during preparation (Gardiner et al., 1999; Cortés et 

al., 2006; Foulquié Moreno et al., 2006; Zamfir et al., 2006; Ogier & Serror, 2008).  

Enterococci strains isolated must first be identified and characterised to ensure if the 

product is safe for consumption (Klein, 2003).  Other opportunistic pathogens that were 

identified included Escherichia coli, Acinetobacter johnsonii and Staphylococcus spp. 

Escherichia coli and Staphylococcus spp. can be responsible for food-borne diseases 

and are not desirable in food products (Krawczyk et al., 2002; Akabanda et al., 2010).  

Identification of the microbial strains isolated from masse is given in Table 5.  LAB 

strains identified from traditionally prepared masse belong to the genera Lactococcus, 

Leuconostoc and Enterococcus.  Lactococcus strains present were all identified as 

Lactococcus lactis subsp. lactis, except for one lactococci strain that could only be 

identified to genus level.  All the lactococci were isolated on KCA + TTC specific for 

their selection.  From masse Leuconostoc spp. were identified that included 

Leuconostoc pseudomesenteroides, Leuconostoc lactis and Leuconostoc garlicum.  All 

the isolates obtained from MRS + C and MRS + E were leuconostocs.  The majority of 

strains isolated on KCA + V medium specific for the selection of Leuconostoc spp. were 

identified as Leuconostoc lactis.  Two of the enterococci strains present in the masse 

were identified as Enterococcus durans.  

 Microbial contaminants identified from masse on KCA + TTC medium  

included Kluyvera georgiana and Klebsiella oxytoca, as well as two isolates  

identified as Enterobacter spp.  Microbial contaminants including Klebsiella pneumonia  
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Table 5  Identification of the microbial strains isolated from the masse. 

Isolate number Identification Isolation medium % Similarity 

1MRS + C Leuconostoc pseudomesenteroides MRS + C 98% 

2MRS + C Leuconostoc lactis MRS + C 99% 

3MRS + C Leuconostoc lactis MRS + C 99% 

4MRS + C Leuconostoc lactis MRS + C 99% 

5MRS + C Leuconostoc lactis MRS + C 99% 

6MRS + C Leuconostoc lactis MRS + C 99% 

7MRS + C Leuconostoc lactis MRS + C 98% 

8MRS + C Leuconostoc lactis MRS + C 98% 

9MRS + C Leuconostoc lactis MRS + C 98% 

10MRS + C Leuconostoc lactis MRS + C 99% 

11MRS + C Leuconostoc lactis MRS + C 99% 

12MRS + C Leuconostoc lactis MRS + C 99% 

13MRS + C Leuconostoc lactis MRS + C 99% 

1KCA + TTC Kluyvera georgiana  KCA + TTC 98% 

2KCA + TTC Enterobacter spp.  KCA + TTC 99% 

6KCA + TTC Enterobacter spp.  KCA + TTC 99% 

4KCA + TTC Lactococcus lactis  KCA + TTC 99% 

3KCA + TTC Lactococcus lactis subsp. lactis  KCA + TTC 97% 

5KCA + TTC Lactococcus lactis subsp. lactis  KCA + TTC 99% 

8KCA + TTC Lactococcus lactis subsp. lactis  KCA + TTC 99% 

10KCA + TTC Lactococcus lactis subsp. lactis  KCA + TTC 99% 

11KCA + TTC Lactococcus lactis subsp. lactis  KCA + TTC 99% 

13KCA + TTC Lactococcus lactis subsp. lactis  KCA + TTC 99% 

7KCA + TTC Enterococcus durans  KCA + TTC 99% 

9KCA + TTC Enterococcus spp. KCA + TTC 100% 

12KCA + TTC Klebsiella oxytoca  KCA + TTC 98% 

3KCA + V Leuconostoc lactis KCA + V 99% 

4KCA + V Leuconostoc lactis KCA + V 99% 

5KCA + V Leuconostoc lactis KCA + V 99% 

6KCA + V Leuconostoc lactis KCA + V 98% 

7KCA + V Leuconostoc lactis KCA + V 98% 

9KCA + V Leuconostoc lactis KCA + V 99% 

10KCA + V Leuconostoc lactis KCA + V 98% 

11KCA + V Leuconostoc lactis KCA + V 98% 

12KCA + V Leuconostoc lactis KCA + V 98% 

1KCA + V Klebsiella spp. KCA + V 98% 

2KCA + V Klebsiella pneumoniae  KCA + V 98% 

8KCA + V Klebsiella pneumoniae KCA + V 97% 

1AAB Leuconostoc lactis MRS + E 99% 

2AAB Leuconostoc lactis MRS + E 99% 

4AAB Leuconostoc lactis MRS + E 99% 

5AAB Leuconostoc lactis MRS + E 99% 

6AAB Leuconostoc lactis MRS + E 99% 

7AAB Leuconostoc lactis MRS + E 99% 

8AAB Leuconostoc lactis MRS + E 99% 

9AAB Leuconostoc lactis MRS + E 99% 

11AAB Leuconostoc lactis MRS + E 99% 

12AAB Leuconostoc lactis MRS + E 99% 

Stellenbosch University http://scholar.sun.ac.za



83 
 

Table 5  (continued) 

10AAB Leuconostoc garlicum  MRS + E 98% 

3AAB Leuconostoc garlicum MRS + E 99% 
 
z
  Similarity below 95% is normally not sufficient to state a correct identification. 
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and a Klebsiella spp. were isolated on KCA + V medium.  It may be possible that the 

Klebsiella spp. present in the masse is resistant to vancomycin, although further testing 

should be done to confirm this possibility (Donabedian & Andriole, 1977).  Klebsiella 

pneumonia, Klebsiella oxytoca and Kluyvera spp. are often isolated from hospital 

environments, although these bacteria are rarely responsible for human infections 

(Hartstein et al., 1993; Chen et al., 2006; Ohlasova et al., 2007).  Enterobacter spp. are 

classified as opportunistic pathogens and species such as Enterobacter sakazakii 

present in infant formula milk have been responsible for food-borne diseases (Shaker et 

al., 2007).  Food infections due to the presence of these bacteria in other food products 

are unknown (Friedemann, 2007). 

Identification of the microbial strains isolated from chekapmkaika is presented in 

Table 6.  Lactobacillus helveticus was the only LAB strain isolated from chekapmkaika.  

All the lactobacilli strains were isolated on MRS + C medium.  No isolates were 

obtained from KCA + V and KCA + TTC media, because no growth was detected on 

these media for the chekapmkaika.  Bacillus cereus and Bacillus thuringiensis were 

identified from the MRS + E medium along with ten isolates that were identified to 

genus level as Bacillus spp.  Bacillus spp. are microbial contaminants frequently found 

in dairy products (Slaghuis et al., 1997).  Bacillus cereus is a pathogenic bacterium and 

is often responsible for food poisoning (Røssland et al., 2003).  These bacteria can be 

sensitive to the antibiotic cycloheximide (Ha et al., 1995) and this may explain why 

Bacillus spp. was not detected on MRS + C.  Bacillus spp. are often isolated from raw, 

as well as pasteurised milk because they form spores which can survive milk 

pasteurisation (Salustiano et al., 2009).  Another microbial contaminant present in the 

chekapmkaika was identified as Staphylococcus warneri.  Staphylococcus warneri is a 

pathogenic bacterium that has been isolated from raw milk and is responsible for human 

and animal infections (Barigye et al., 2007). 

The media used for the isolation of the LAB (MRS + C, KCA + TTC and KCA + V 

media) and AAB (MRS + E medium) in this study were expected to be more selective.  

Specific microbial species were present on multiple selective media, for example 

Leuconostoc spp. were isolated on MRS + C, MRS + E and KCA + V, Lactobacillus 

spp., Enterococcus spp. and Lactococcus spp. were isolated on MRS + C, KCA + TTC, 

KCA + V and MRS + E.  Microbial contaminants were also detected on the four different 

selective media, including Mesorhizobium loti, Acinetobacter radioresistens, Kluyvera 

georgiana, Escherichia coli, Enterobacter spp., Staphylococcus spp. and Klebsiella 

oxytoca on KCA + TTC, Acinetobacter johnsonii and Klebsiella pneumonia on KCA + V, 
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Table 6  Identification of the microbial strains isolated from the chekapmkaika.  

Isolate number Identification Isolation medium % Similarity 

1MRS + C Lactobacillus helveticus MRS + C 98% 

2MRS + C Lactobacillus helveticus MRS + C 97% 

3MRS + C Lactobacillus helveticus MRS + C 97% 

4MRS + C Lactobacillus helveticus MRS + C 97% 

5MRS + C Lactobacillus helveticus MRS + C 98% 

6MRS + C Lactobacillus helveticus MRS + C 98% 

8MRS + C Lactobacillus helveticus MRS + C 97% 

9MRS + C Lactobacillus helveticus MRS + C 98% 

10MRS + C Lactobacillus helveticus MRS + C 99% 

11MRS + C Lactobacillus helveticus MRS + C 99% 

12MRS + C Lactobacillus helveticus MRS + C 97% 

13MRS + C Lactobacillus helveticus MRS + C 98% 

7MRS + C Staphylococcus warneri MRS + C 99% 

1AAB Bacillus spp. MRS + E 92% 

3AAB Bacillus spp. MRS + E 99% 

4AAB Bacillus spp. MRS + E 99% 

5AAB Bacillus spp. MRS + E 99% 

6AAB Bacillus spp. MRS + E 99% 

9AAB Bacillus spp. MRS + E 99% 

10AAB Bacillus spp. MRS + E 99% 

11AAB Bacillus spp. MRS + E 96% 

13AAB Bacillus spp. MRS + E 99% 

14AAB Bacillus spp. MRS + E 98% 

2AAB Bacillus cereus  MRS + E 99% 

7AAB Bacillus cereus  MRS + E 99% 

8AAB Bacillus thuringiensis  MRS + E 99% 

12AAB Bacillus thuringiensis  MRS + E 98% 
 

z
  Similarity below 95% is normally not sufficient to state a correct identification.  
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Staphylococcus warneri on MRS + C and Bacillus spp. on MRS + E.  The low selectivity 

of the media used may be because the isolated strains are resistant to the antibiotics 

used or that the concentration of the antibiotics present is too low to have a measurable 

lethal effect.  This clearly shows that it is vital to take medium selectivity into account 

when conclusions are made on the microbial groups present when only looking at the 

enumeration values obtained (Witthuhn et al. 2005). 

Distribution frequencies 

The distribution frequencies of the microbes present in the commercially fermented milk 

chambiko are shown in Fig. 1.  The largest group of lactobacilli present in the chambiko 

are Lactobacillus casei (30%), followed by Lactobacillus paracasei (26%) and 

Lactobacillus paracasei subsp. paracasei (26%).  Bacterial strains Acinetobacter 

radioresistens (7%) and Mesorhizobium loti (4%) are microbial contaminants and were 

present in lower concentrations.  

The distribution frequencies of the microbes present in the commercially fermented 

milk omaere are shown in Fig. 2.  The predominant microbial species present in the 

omaere was Lactococcus lactis subsp. lactis (94%), followed by Lactococcus lactis 

subsp. cremoris (3%).  Therefore, only one LAB genus was present in both the 

chambiko and omaere.  The standardised production process followed during the 

production of omaere is most likely better controlled than the production process 

followed for the chambiko, because no microbial contaminants were detected in the 

omaere. 

The distribution frequencies of the prevalent microbes isolated from the traditionally 

fermented milk omashikwa are shown in Fig. 3.  The largest microbial group present 

was enterococci (43%), where 23% was Enterococcus faecium, 16% Enterococcus 

durans and 2% Enterococcus spp.  The other LAB groups present included lactobacilli 

(24%), lactococci (16%) and Leuconostoc pseudomesenteroides (11%).  Except for the 

enterococci, a large diversity of microbial contaminants were also present in low 

numbers (2%).  Enterococci are possible microbial contaminants present in traditionally 

fermented milk.  The traditional starter methods used for the preparation of traditional 

omashikwa resulted in a product with a variety of microbes present.  It is clear that the 

traditional omashikwa was made under poor hygienic conditions due to the large variety 

of microbial contaminants identified. 

The distribution frequencies of the prevalent microbes isolated from the traditionally 

fermented milk masse are shown in Fig. 4.  The largest microbial group present was 
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Figure 1  Distribution frequency of the prevalent microbial species in commercial 

                   chambiko. 

 

 

Figure 2  Distribution frequency of the prevalent microbial species in commercial  

                   omaere. 
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Figure 3  Distribution frequency of the prevalent microbial species in traditional 

                    omashikwa. 

 

 

 

Figure 4  Distribution frequency of the prevalent microbial species in traditional masse. 
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leuconostocs (68%).  If one combines the percentages of all the microbial contaminants 

present, including the enterococci isolates these microbes form the second largest 

microbial group (18%).  The only other LAB group present except for the leuconostocs 

and enterococci were lactococci (14%).  A smaller LAB diversity is observed in the 

masse than in the omashikwa.  It is clear that the traditional masse was made under 

poor hygienic conditions due to the large variety and percentages of microbial 

contaminants identified.   

The distribution frequencies of the prevalent microbes isolated from the 

traditionally fermented milk chekapmkaika are shown in Fig. 5.  The most dominant 

microbial group present in the chekapmkaika consisted of three different Bacillus spp. 

(51%).  The only LAB group present was lactobacilli consisting of only one Lactobacillus 

helveticus (45%) strain.  Staphylococcus warneri (4%) was the only other microbial 

contaminant present. 

A smaller LAB diversity is observed in the chekapmkaika than in the omashikwa 

and masse.  Severe contamination of the product was observed due to the large 

number of Bacillus spp. identified.  This product was, therefore, probably made from raw 

milk that was contaminated with Bacillus spp. and possible further contamination of 

these microbes could have taken place during production.   

Conclusions 

The results obtained in this study clearly show that the LAB diversity and the number of 

each LAB group present in the traditionally fermented milks omashikwa, masse and 

chekapmkaika differed from one another.  The LAB diversity in the chekapmkaika was 

lower than in the omashikwa and masse, since only one LAB group was present in 

chekapmkaika and multiple LAB groups in the other traditional milks.  The LAB diversity 

in traditionally fermented milk was generally more diverse than observed in the 

commercially fermented milk.  Only one LAB group was present in each of the 

commercially fermented milks, chambiko and omaere and no more than three strains 

belonging to each group were identified.  Starters used for these commercial fermented 

milks, therefore, consist of one to three LAB strains. 

The data also clearly indicate that microbial contaminants were frequently present 

in the traditionally fermented milk.  The masse had a more diverse number of microbial 

contaminants than what was seen in the omashikwa.  Although, only one group  

of microbial contaminants was isolated from chekapmkaika it was the largest microbial  
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Figure 5  Distribution frequency of the prevalent microbial species in traditional 

                    chekapmkaika. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lactobacillus 
helveticus 

45% 

Bacillus spp. 
37% 

Bacillus cereus 
7% 

Bacillus thuringiensis 
7% 

Staphylococcus 
warneri 

4% 

Chekapmkaika 

Stellenbosch University http://scholar.sun.ac.za



91 
 

group present.  Poor hygienic standards during the preparation of traditionally 

fermented milk can explain the extensive amounts of microbial contaminants present.  

The hygienic standards followed during traditional preparations must be improved for 

the purpose of product safety and quality. 

The LAB strains isolated from the traditionally fermented milks can be used to 

develop new commercial starters.  As a result new and original fermented dairy 

products with unique tastes, aromas and characteristics can be produced on an 

industrial scale. 
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CHAPTER 5  

GENERAL DISCUSSION AND CONCLUSIONS  

Background 

The preparation and consumption of traditionally fermented milk is popular among 

various communities (Mathara et al., 2004; McMaster et al., 2005).  Traditionally 

fermented milk relies on spontaneous fermentation of raw milk or on backslopping of 

previously fermented milk (Oyewole, 1997).  The microbial consortium and product 

characteristics of traditionally fermented milk are influenced by the milk type, quality, the 

heat-treatment applied to the milk before fermentation, the ambient temperatures, 

cultural starter traditions, container vessels used and the duration of the fermentation 

process (Holzapfel, 2002, Wouters et al., 2002, Savadogo et al., 2004; Kebede et al., 

2007; Akabanda et al., 2010).  Poor hygienic practices often occur during the production 

of these milks and microbial contaminants are frequently isolated (Mensah, 1997; 

Motarjemi, 2002). 

The aim of this study was to enumerate and identify the microbial consortium 

present in each of three traditionally fermented milks from Sub-Saharan Africa, namely 

omashikwa from Namibia, masse from Mozambique and chekapmkaika from Uganda 

and two commercially fermented milks, namely chambiko from Malawi and omaere from 

Namibia.  After enumeration, colonies were selected by means of the Harrison Disk 

method from the media used for the selection of lactic acid bacteria (LAB) and acetic 

acid bacteria (AAB).  The selected microbes were identified using the polymerase chain 

reaction (PCR) and DNA sequencing of part of the 16S ribosomal RNA (rRNA) gene. 

Enumeration of the commercial and traditional Sub-Sahara African fermented 

milks 

In this study the microbial consortium present in three traditionally fermented milks and 

two commercially fermented milks were enumerated on six different selective media.  

No significant differences were found between the enumeration values obtained for the 

three chambiko samples, as well as for the two omaere samples on each of the six 

media.  Similarities between samples were also observed after measuring the pH 

values, since the same pH values were obtained between the samples.  The low 

variances between these two sample sets in terms of microbial counts and pH values 
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could be due to the production of commercially fermented milks according to 

standardised production processes under optimally controlled environmental conditions.  

The average enumeration values obtained on the media used for the isolation of 

LAB for the chambiko and omaere indicated that the highest microbial counts were 

observed on the KCA + V medium in the chambiko (1.8 x 105 cfu.ml-1) used for the 

isolation of leuconostocs and on the KCA + TTC medium in omaere (2.3 x 106 cfu.ml-1) 

used for the isolation of lactococci.  Therefore, it may be possible that the predominant 

microbes present in the starters used for the chambiko and omaere could be strains 

from the genus Leuconostoc and Lactococcus, respectively.  A comparison of the 

average enumeration values obtained for the chambiko and omaere on the MRS + C, 

KCA + TTC, KCA + V and MRS + E revealed that the average enumeration values 

obtained for the omaere were significantly larger.  The higher microbial counts present 

in the omaere could reflect a higher concentration of microbes present in the starter 

used for its production. 

All the enumeration values obtained for the three traditional omashikwa samples 

differed significantly from one another on all selective media except on the MRS +C,  

showing large variances within the sample set.  For omashikwa, samples 2 and 3 were 

more comparable to each other in terms of their microbial count and pH values.  Since 

no average enumeration values could be determined due to these large sample 

variances, the highest enumeration values for samples 2 and 3 obtained on KCA + TTC 

medium (1.0 x 106 and 1.4 x 106 cfu.ml-1, respectively) were taken as an indication of 

the media with the highest microbial growth.  Therefore the main dominant microbial 

group present in omashikwa may be lactococci.  

Significant differences between enumeration values of three traditional masse 

samples were found for the media MRS + C, KCA + TTC, KCA + V and MRS + E. 

Significant differences between enumeration values of the two traditional chekapmkaika 

samples were only found on two media (MRS + C and MRS + E). 

Variances between the samples may be a result of the inconsistent preparation 

methods of traditionally fermented milk and the exposure of different batches to varying 

environmental conditions.  However, little sample variance found between the masse 

and chekapmkaika may indicate that traditional fermentations can be of consistent 

quality. 

Based on the average enumeration values obtained on the media used for the 

isolation of LAB, the highest counts for both the masse and chekapmkaika were 

observed on MRS + C medium (6.2 x 106 and 2.0 x 103 cfu.ml-1, respectively).  It is, 
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therefore, possible that the predominant LAB group present in these two milks are 

lactobacilli.  The average enumeration values obtained on all six selective media for the 

masse were significantly larger than the average enumeration values on these media 

obtained for the chambiko.  Significant differences were also found in microbial counts 

detected on each of the six media when comparing the average enumeration values 

between the commercial and traditionally fermented milks. 

Selection and identification of the commercial and traditional Sub-Sahara African 

fermented milks 

In this study the microbial consortium present in each of the three traditionally 

fermented milks and two commercially fermented milks were identified. This was done 

by selecting bacterial isolates obtained on MRS + C (lactobacilli), KCA + TTC 

(lactococci), KCA + V (leuconostocs) and MRS + E (AAB) media by means of the 

Harrison Disk method.  The selected microbes were identified by using PCR and DNA 

sequencing. 

All the LAB strains isolated from commercial chambiko were identified as 

lactobacilli.  Lactobacillus casei (30%) was the largest lactobacilli group, followed by 

Lactobacillus paracasei and Lactobacillus paracasei subsp. paracasei.  Lactobacilli 

were isolated from MRS + C, KCA + V, KCA + TTC and MRS + E.  Microbial 

contaminants present in the chambiko selected from KCA + TTC were identified as 

Mesorhizobium loti and Acinetobacter radioresistens. 

All the LAB strains isolated from commercial omaere were identified as lactococci.  

The largest group present was Lactococcus lactis subsp. lactis (94%), followed by 

Lactococcus lactis subsp. cremoris.  Lactococci were isolated from MRS + C, KCA + 

TTC and MRS + E.  Only one LAB group was present in both the commercially 

fermented milks.  Starters used for these commercial fermented milks, therefore, consist 

of only a few LAB strains.  Since no microbial contaminants were found in the omaere, it 

may be possible to say that the standardised production process followed during the 

production of omaere is most likely better controlled.  

LAB strains identified from traditional omashikwa belonged to the genera 

Enterococcus (43%), Lactobacillus (24%), Lactococcus (16%) and Leuconostoc (11%). 

Leuconostocs, lactococci and lactobacilli strains were selected from KCA + TTC, KCA + 

V and MRS + E.  The two main enterococci strains representing the enterococci group 

were Enterococcus faecium and Enterococcus durans.  Due to the involvement of 
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enterococci in human infections the role of enterococci in foods are controversial.  Other 

opportunistic pathogens present were Escherichia coli, Acinetobacter johnsonii and 

Staphylococcus spp. 

LAB strains identified from traditionally prepared masse belong to the genera 

Leuconostoc (68%), Lactococcus (14%) and Enterococcus (4%).  Most of the lactococci 

strains were identified as Lactococcus lactic subsp. lactis and isolated from KCA + TTC.  

Leuconostocs present were Leuconostoc pseudomesenteroides, Leuconostoc lactis 

and Leuconostoc garlicum.  Leuconostoc spp. were selected from all the media, except 

KCA + TTC.  Other contaminating microbes that were isolated included Kluyvera 

georgiana, Klebsiella oxytoca, Enterobacter spp. and Klebsiella pneumonia.   

Lactobacillus helveticus (45%) was the only LAB strain isolated from 

chekapmkaika.  All the lactobacilli strains were isolated on MRS + C medium.  Bacillus 

spp., including Bacillus cereus and Bacillus thuringiensis were identified from MRS + E 

medium and was the largest group present (51%).  Bacillus spp. are bacteria that forms 

endospores and are frequently found in dairy products.  

In this study it was found that the media used for the isolation of the LAB (MRS + 

C, KCA + TTC and KCA + V media) and AAB (MRS + E medium) was not highly 

selective and microbial strains were present on more than one of the selective media. 

Therefore, it is vital to take medium selectivity into account when conclusions are made 

on the microbial groups present when only looking at the enumeration values obtained. 

Concluding remarks 

From the data obtained in this study it is clear that fermented milks from Sub-Saharan 

Africa vary significantly from each other in terms of microbial loads and dominant 

microbial groups present.  Identification of microbial isolates after enumeration was 

important before the microbial consortium present in each milk could be described as 

the selective media used were not highly selective for specific microbes. 

The microbes isolated and identified from traditionally fermented milks were more 

diverse than the microbes present in the commercially fermented milks.  The microbial 

diversity of the traditionally fermented milks also varied significantly from one another.  

A wide variety of contaminating microbes were detected in the traditionally fermented 

milks and this may indicate that hygienic practices were not followed during these 

preparations. 
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Little information is currently available on the microbial consortiums present in 

fermented milk from Sub-Saharan Africa.  Furthermore, the cultural starter traditions are 

poorly understood.  LAB strains isolated from these traditionally fermented milk products 

can be used to develop new commercial starter cultures and as a result new dairy 

products can be produced with unique organoleptic properties and characteristics.   
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