“The contribution of inflammatory mediators to delayed secondary muscle damage”

by

Mari van de Vyver

Dissertation presented for the degree of
Doctor of Physiology at
Stellenbosch University

Promotor: Prof. Kathryn Helen Myburgh
Faculty of Natural Sciences

March 2013
Declaration

By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

March 2013
ABSTRACT:

Background: Understanding the contribution of divergent individual response patterns remains a key objective in identifying mechanisms of inflammation and potential factors limiting the resolution of inflammation. The purpose of this research project was to investigate downstream effects of inflammation following exercise-induced muscle damage in human subjects.

Methods: For three different studies, a total of 53 untrained healthy male participants were recruited and divided into a non-exercising control (n=13) and exercise-induced muscle damage groups (n=40). The study design for the three studies was the same (with few exceptions): Downhill running (DHR) (12 x 5min bouts, 10% decline, 15 km.h⁻¹) with blood samples taken pre, post, after 2 and 4 hours post-exercise (2h, 4h) and on days 1, 2, 3, 4 and 7 (d1-d7). Serum was analysed for creatine kinase activity (CK), myoglobin (Mb), cortisol, cytokine (TNFα, IL-1ra, IL-1β, IL-4, IL-6, IL-8, IL-10, sIL-6R), chemokine (G-CSF, MIP-1β) and adhesion factor (sICAM-1, sP-selectin) concentrations. Tissue degradation was assessed by serum matrix metalloprotease (MMP-9) and myeloperoxidase (MPO) content. White blood cell differential count was determined and the surface expression of various cluster of differentiation factors (CD11b, CD163, CD68, CD88, CD34) as well as intracellular MPO were assessed in whole blood using flow cytometry. Nuclear localization of the inflammatory mediator NFκB in isolated peripheral blood mononuclear cells (PBMCs) was determined using immunofluorescence microscopy. Muscle biopsies (vastus lateralis) taken at baseline, 4h, d1 and d2 were analysed for fibre type, inflammatory and stress-induced pathways (STAT3, IκBα, p38MAPK), myogenic factors (MyoD, myogenin), neutrophil activity (MPO) and satellite cell number (Pax7).

Results: Participants in the DHR group were subdivided into those with a normal recovery (DHR1) and those who developed secondary damage (DHR2). CK peaked on d1 in both subgroups (DHR1: 1512 ± 413 u.L⁻¹, DHR2: 1434 ± 202 u.L⁻¹) and again on d4 only in the DHR2 group (1110 ± 184 u.L⁻¹). A similar IL-6 and IL-10 response was evident immediately post DHR in all individuals. Additional IL-6 was released in the DHR2 subgroup peaking at 4h (10.3 ± 4.2 pg.mL⁻¹) whereas IL-10 had returned to baseline. IL-1ra (23.6 ± 8.8 pg.mL⁻¹), CD68⁺ (5%) and CD163⁺ (3%) monocytes were significantly higher in the DHR2 subgroup. Neutrophil count at 2h (DHR1: 8.6 ± 0.8 x10⁹ cells.L⁻¹, DHR2: 11.4 ± 1.8 x10⁹ cells.L⁻¹) was significantly (p<0.02) correlated to CK activity on d4. PBMC NFκB p65 nuclear localization

- 3 -
was slightly less at 2h in the DHR2 compared to the DHR1 and control groups. Intramuscular STAT3 signalling and MPO were significantly higher in the DHR2 compared to the DHR1 subgroup at 4h and d2 respectively. The progenitor cell response was similar for all DHR individuals with an increase in Pax7⁺ SC observed at 4h (0.06 ± 0.01 Pax⁺ SCs/fibre) and d1 (0.07 ± 0.02 Pax⁺ SCs/fibre).

Conclusion: Healthy young men can be divided into those with a adequate and those with a less efficient capacity to control the post damage inflammatory response. The early cytokine response, especially IL-6, seems to be a key role player in the cascade of events leading to late secondary skeletal muscle damage.
OPSOMMING:

Agtergrond: Die begrip van uiteenlopende individuele reaksie patrone, is belangrik in die identifisering van faktore asook meganismes betrokke in die ontwikkeling en resolusie van inflammasie. Die doel van hierdie navorsingsprojek was om die gevolge van oefening-geïnduseerde spierskade en inflammasie te ondersoek in menslike proefpersone.

Metodiek: 'n Totaal van 53 gesonde mans is tydens drie verskillende studies, gegroepeer in 'n kontrole (geen oefening) (n=13) en oefening geïnduseerde spier skade (DHR) groep (n=40). Die uitleg van die studies was eenders (met min uitsonderings): Afdraende hardloop (12 x 5min hardloop sessies, 10% afdraende, 15km.h⁻¹) met bloed monsters geneem voor, na, 2 ure, 4 ure (pre, post, 2h, 4h) en op dag 1, 2, 3, 4 en 7 (d1-7). Serum is ontleed vir die volgende: kreatien kinase aktiwiteit (CK), kortisol, sitokiene (TNFα, IL-1ra, IL-1β, IL-4, IL-6, IL-8, IL-10, sIL-6R), chemokien (G-CSF, MIP-1β) en adhesie molekuul (sICAM-1, sP-selectin) konsentrasies. Weefsel degradasie is vasgestel deur die teenwoordigheid van matriks metalo-protease-9 (MMP-9) en miëloperoksidase (MPO) in serum te meet. Differensiële witbloed sel (WBC) telling asook die teenwoordigheid van sekere differensiasie faktore (CD11b, CD163, CD68, CD88, CD34) op die sel oppervlak is bepaal deur gebruik te maak van vloeisitometrie. Die lokalisering van NFκB in die selkerne van geïsoleerde bloed mononukleêre selle (PBMC) is bepaal deur fluoriserende mikroskopie. Spierbiopsies (vastus lateralis) geneem tydens rus (basislyn), na 4h, en op d1 en d2 is ontleed vir veseltipe, inflammatoriese en stresverwante faktore (STAT3, IκBα, p38 MAPK), miogeniese faktore (myoD, myogenin), neutrofiel aktiwiteit (MPO) en aantal satelliet selle (Pax7).

Resultate: Deelnemers in die DHR-groep is onderverdeel in twee groepe. Persone wat normaalweg herstel het is saam gegroepeer (DHR1) en diegene wat sekondêre skade ontwikkel het is saam gegroepeer (DHR2). CK aktiwiteit in serum het hoogtepunte bereik op d1 in beide subgroepe (DHR1: 1512 ± 413 u.L⁻¹, DHR2: 1434 ± 202 u.L⁻¹) en weer op d4 in die DHR2 groep (1110 ± 184 u.L⁻¹). 'n Soortgelyke IL-6 en IL-10 reaksie is onmiddellik na oefening (in al die proefpersone) waargeneem. Additionele IL-6 is vrygestel in die DHR2 subgroep en het 'n hoogtepunt bereik na 4h (10.3 ± 4.2 pg.mL⁻¹), terwyl IL-10 reeds teruggekeer het na rustende waardes. IL-1ra (23.6 ± 8.8 pg.mL⁻¹), CD68⁺ (5%) en CD163⁺ (3%) monosiete was aansienlik hoër in die DHR2 subgroep. Neutrofieltelling na 2h (DHR1: 8.6 ± 0.8 x10⁹cells.L⁻¹, DHR2: 11.4 ± 1.8 x10⁹cells.L⁻¹) het verband (p <0.02) gehou met
CK-aktiwiteit op d4. In vergelyking met die DHR1 en kontrole groep was die lokalisering van NFκB p65 in PBMC selkerne na 2h effens minder in die DHR2 subgroep. STAT3- en MPO-vlakke in die spiere was aansienlik hoër in die DHR2 subgroep as in die DHR1 subgroep na 4h en op d2 onderskeidelik. Die spierherstel proses was eenders vir alle individue wat aan die oefening deelgeneem het; 'n toename in Pax7⁺ Satelietselle (SC) is waargeneem na 4h (0.06 ± 0.01 Pax⁺ SC/spieresel) en op d1 (0.07 ± 0.02 Pax⁺ SC/spieresel).

Gevolgtrekking: Gesonde jong mans kan verdeel word in diegene met 'n bevoegde en diegene met 'n minder doeltreffende vermoë om oefenings-geïnduseerde spierskade en die inflammatoriese reaksie te beheer. Die sitokien-reaksie, veral IL-6, blyk om 'n belangrike rolspeler in die ontwikkeling van sekondêre skeletspierskade te wees.
ACKNOWLEDGEMENTS

THIS RESEARCH PROJECT WAS SUPPORTED BY THE FOLLOWING GRANTS:

National Research Foundation :
RNA for Integrative Skeletal Muscle Biology
 (Project: Satellite cells)

Medical research council (MRC):
Interuniversity Cape Heart Group
 (Project: Inflammation)

I WOULD LIKE TO THANK THE FOLLOWING PERSONS

The entire Muscle research group at the
department of Physiological Sciences, Stellenbosch University,
 for their support and assistance.

 My supervisor, Prof K.H Myburgh for giving me the opportunity
 and teaching me to think independently.

 A special word of appreciation towards my husband, Willem
 for his never ending love and support.

 My children, Wian and Mia, for always putting a smile on my face and
 my parents for their continuous confidence in me.

 My heavenly Father, for providing me with knowledge, motivation and perseverance.
TABLE OF CONTENTS:

ABBREVIATIONS ...14

CHAPTER 1: GENERAL OUTLINE..20

CHAPTER 2: LITERATURE REVIEW..22

2.1 Acute phase inflammatory response ..23
 2.1.1 Exercise-induced leukocytosis
 2.1.2 Leukocyte activation to trans-endothelial migration
 2.1.3 Leukocyte infiltration
 2.1.4 Neutrophils versus Macrophages: contribution to secondary damage or essential for repair

2.2 Skeletal muscle regeneration ...42
 2.2.1 Exercise-induced muscle damage: a model to study regeneration
 2.2.2 Satellite cell response to exercise-induced muscle damage

2.3 Nuclear Factor Kappa-B (NFκB) signalling pathway ..54
 2.3.1 NFκB and IκB family members
 2.3.2 Effect of acute exercise on circulating leukocyte NFκB signalling
 2.3.3 Intramuscular NFκB signalling

2.4 Intramuscular Signal transducer and activator of transcription (STAT) Signalling ..60

CHAPTER 3: HYPOTHESES AND OBJECTIVES..64

CHAPTER 4: METHODOLOGY..67

4.1 Subject recruitment ..67

4.2 Study design ...68
 4.2.1 Exercise testing
 4.2.1.1 Incremental fitness test (VO₂max)
 4.2.1.2 Downhill run
 4.2.2 Fatigue and muscle soreness assessment
 4.2.3 Sample collection
 4.2.3.1 Blood sampling
 4.2.3.2 Needle Muscle biopsies

4.3 Laboratory analysis ..75
 4.3.1 Analysis of serum
 4.3.1.1 One step sandwich assays: indirect markers of muscle damage
 4.3.1.2 Bio-Plex Pro Human Cytokine assays (study 1 and study 2)
 4.3.1.3 Enzyme-linked immunosorbent assay: Cortisol (study 1)
4.3.1.4 Milliplex xMAP immunoassays (study 3)

4.3.2 Analysis of whole blood
4.3.2.1 Absolute cell counts
4.3.2.2 Multicolour flow cytometric analysis
4.3.2.2.1 Circulating haematopoietic progenitor cells (study2)
4.3.2.2.2 Activation status of circulating neutrophils and macrophages (study 3)

4.3.3 Analysis of Peripheral Blood Mononuclear Cell (PBMC)

4.3.4 SDS-PAGE and Western blotting
4.3.5 Bio-Plex Phospho-protein detection assays
4.3.6 Genotyping : IL-6 single nucleotide polymorphism
4.3.7 Immunohistochemistry (IHC)
4.3.8 Transmission Electron Microscopy (TEM)

4.4 Statistical analysis

CHAPTER 5: HIGH INTENSITY INTERMITTENT DOWNHILL RUNNING: A MODEL FOR TESTING SENSITIVITY TO INFLAMMATION AND REGENERATIVE CAPACITY OF SKELETAL MUSCLE

5.1 Introduction

5.2 Methodology

5.2.1 Subjects
5.2.2 Exercise testing
5.2.2.1 Incremental VO\textsubscript{2}max test
5.2.2.2 Downhill run
5.2.3 Blood sampling
5.2.4 Needle muscle biopsy sampling
5.2.5 Fatigue and muscle soreness
5.2.6 Statistical analysis

5.3 Results

5.3.1 Subject characteristics
5.3.2 Cortisol
5.3.3 Indirect markers of muscle damage
5.3.3.1 Creatine kinase activity (CK)
5.3.3.2 Myoglobin concentration (Mb)
5.3.3.3 Fatigue
5.3.3.4 Delayed onset muscle soreness (DOMS)
5.3.4 Fibre type composition – vastus lateralis muscle
5.3.5 Red blood cell (RBC) counts
5.3.6 White blood cell (WBC) differential count
5.3.7 Haematopoietic progenitor cells: CD34+
5.3.8 Inflammatory cytokines
5.3.8.1 Tumour necrosis factor α
5.3.8.2 Interleukin-1β
5.3.8.3 Interleukin-6
5.3.8.4 Interleukin-10
5.3.8.5 Granulocyte colony stimulating factor
5.3.9 Intramuscular myeloperoxidase (MPO)
5.3.10 Intramuscular NFκB Signalling
5.3.11 Intramuscular STAT3 Signalling
5.3.12 Satellite cells
5.3.12.1 Pax7+ satellite cells (Pax7+ SC)
5.3.12.2 Myogenic regulatory factors (MRF’s)

5.4 Discussion

5.5 Conclusion

CHAPTER 6: RELATIONSHIP BETWEEN SECONDARY SKELETAL MUSCLE DAMAGE, LEUKOCYTOSIS AND THE CYTOKINE RESPONSE TO HIGH INTENSITY INTERMITTENT DOWNHILL RUNNING

6.1 Introduction
6.2 Methodology
6.2.2 Exercise testing
6.2.2.1 Incremental VO2 max test
6.2.2.2 Downhill run
6.2.3 Blood sampling
6.2.4 Peripheral blood mononuclear cell isolation
6.2.5 Statistical analysis

6.3 Results
6.3.1 Subject characteristics
6.3.2 Creatine kinase
6.3.3 Fatigue
6.3.4 Delayed onset muscle soreness (DOMS)
6.3.5 White blood cell (WBC) differential count
6.3.6 Neutrophil activity
6.3.7 Monocyte/ macrophage activity
6.3.8 p65 subunit of NFκB
6.3.9 Cytokine response

6.4 Discussion
6.5 Conclusion

CHAPTER 7: CONCLUSION/ FUTURE RESEARCH

CHAPTER 8: LIMITATIONS

REFERENCES

APPENDIXES
A : SUBJECT RECRUITMENT FLYER..192

B : PARTICIPANT INFORMATION LEAFLETS...193
B.1 Informed consent form (ICF) – Study 1
B.2 Revised ICF 2011 – Study 2
B.3 Revised ICF 2012 – Study 3

C : PHYSICAL ACTIVITY DIARY...216

D : FATIGUE AND MUSCLE SORENESS QUESTIONNAIRE...217

E : LABORATORY PROTOCOLS...219
E.1 Bio-Plex Pro Human Cytokine assay
E.2 Enzyme-linked immunosorbent assay: Cortisol
E.3 Milliplex xMAP immunoassays
E.4 Multicolour flow cytometric analysis
E.5 Peripheral Blood Mononuclear Cell analysis
E.6 Western blotting and SDS-page
E.7 Phospho protein detection assay
E.8 Myosin ATPase Staining
E.9 Immunohistochemistry staining
LIST OF FIGURES:

2.1 NFκB signalling..56
4.1 Study design ..69
4.2 Timeline for skeletal muscle biopsy sampling ...73
4.3 Multicolour flow cytometric analysis ..80
4.4 Multicolour flow cytometric analysis ..82
4.5 NFκB signalling in PBMCs at 2h following DHR ...84
4.6 Myosin ATPase pH 4.3 ..89
4.7 Satellite cell count ...90
4.8 Transmission electron micrograph ..91
5.1 Serum cortisol ...99
5.2 Creatine kinase ..102
5.3 Myoglobin ..103
5.4 Fatigue ...105
5.5 Perceived pain in quadriceps muscle group ..106
5.6 Fibre type composition of the vastus lateralis muscle ...107
5.7 WBC subpopulations ..109
5.8 Differential white blood cell count ..110
5.9 Circulating haematopoietic progenitor cells ..111
5.10 Interleukin-6 ..113
5.11 Interleukin-10 ..113
5.12 Myeloperoxidase ...114
5.13 IκBα ...115
5.14 STAT3 signalling ...116
5.15 Pax 7+ satellite cells per fibre ..117
6.1 Creatine kinase activity ...133
6.2 Fatigue ...134
6.3. DOMS in quadriceps ...135
6.4. Fatigue in hamstrings (post) vs DOMS at rest (4h) ...136
6.5 Differential white blood cell counts ..137
6.6. Spearman’s correlation ..138
6.7 Neutrophil activity ..139
6.8 Monocyte/macrophage activity ...140
6.9 NFκB signalling in PBMC’s at 2h following DHR ...141
6.10 Serum cytokines ..143
7.1 Relative changes from baseline in the circulating response following high intensity downhill running in healthy young men..153
7.2 Relative changes from baseline in the intramuscular response following high intensity downhill running in healthy young men..154

LIST OF TABLES:

2.1 Circulating inflammatory cytokines observed following acute exercise in human subjects...27
2.2 Leukocyte (macrophage and neutrophil) activation markers..30
2.3 Intramuscular presence of leukocytes following acute muscle damaging exercise...........35
2.4 Possible functions of circulating inflammatory mediators following an acute bout of exercise..40
2.5 Satellite cell markers..49
2.6 Satellite cell response to acute muscle damaging exercise...51
2.7 STAT3 signalling in response to acute exercise..63
4.1 Subject characteristics..68
4.2 Normal physiological ranges of group I cytokines...76
4.3 Antibody panel for western blotting..86
5.1 Creatine kinase activity...100
5.2 Cell counts..108
5.3 Intramuscular content of myogenic regulatory factors...117
5.4 Cytokine response to exercise..125
ABBREVIATIONS:

ACE - angiotensin I converting enzyme
ANOVA – analysis of variance
ATP – adenosine triphosphate
bFGF - basic fibroblast growth factor
BMI – body mass index
Ca^{2+} - calcium
CCL2 - chemokine ligand 2
CCR2 - chemokine receptor 2
CD – cluster of differentiation
CK – creatine kinase
CLRs – C-leptin like receptors
COPD - chronic obstructive pulmonary disease
COX-2 - cyclooxygenase-2
CRP – C- reactive protein
CV- coefficient of variance
d – day
DAMPS – damage associated molecular patterns
DHR – downhill run
DLK – delta-like homologue
DNA – deoxyribonucleic acid
DOMS- delayed onset muscle soreness
E-C – excitation-contraction
ecc- eccentric
ECM – extracellular matrix
EDL – extensor digitorum longus
EIMD – exercise-induced muscle damage
ERK - extracellular signal-regulated kinase
ex - exercise
FA-1 – fetal antigen-1
FABP – fatty acid binding protein
FKN - fractalkine
GAGs - glycosaminoglycans
G-CSF – granulocyte colony stimulating factor
GM-CSF- granulocyte macrophage colony stimulating factor
GPCRs – G protein coupled receptors
GSH - glutathione
h – hour
HCT – haematocrit
HGB – haemoglobin
HGF – hepatocyte growth factor
HMGB1 – high-mobility group box 1
HPC – haematopoietic progenitor cells
HS – heparin sulphate
HSP- heat shock proteins
Hsp72 – heat shock protein 72
HSPG’s – heparin sulphate proteoglycans
ICAM-1 – intracellular adhesion molecule-1
IFNα – Interferon alpha
IFNγ – Interferon gamma
IGF - insulin-like growth factors
IL-1ra – interleukin-1 receptor antagonist
IL-1β – interleukin-1β
IL-4 – interleukin-4
IL-6 – interleukin-6
IL-8 – interleukin-8
IL-10 – interleukin-10
IL-13 – interleukin-13
IL-17 – interleukin-17
iNOS – inducible nitric oxide
JAK - Janus kinases
JNK - Janus kinases
kg – kilogram
kg.m2 – kilogram per square meter
km - kilometer
km.h$^{-1}$ – kilometre per hour
ml.min.kg$^{-1}$ – millilitre per minute per kilogram
LDH – lactate dehydrogenase
LDLs – low density lipoproteins
LIF - leukaemia inhibitory factor
LPS - lipopolysaccharide
m - meter
MAPK - mitogen activated protein kinase
Mb – myoglobin
MCH – mean corpuscular haemoglobin
MCHC – mean corpuscular haemoglobin concentration
MCP-1 – macrophage chemoattractant protein-1
M-CSF – macrophage colony stimulating factor
MCV – mean corpuscular volume
MDC – macrophage derived chemokines
MEF – mouse embryonic fibroblasts
MEF-2 - myogenic enhancer factor 2
MHC – myosin heavy chain
min – minutes
MIP-1α - macrophage inflammatory protein 1 alpha
MIP-1β - macrophage inflammatory protein 1 beta
ml.kg.min\(^{-1}\) – millilitre per kilogram per minute
mm – millimetre
MMP-9 – matrix metalloprotease-9
MPO – myeloperoxidase
MPV – mean platelet volume
MRF-4 – myogenic regulatory factor-4
MRF’s – myogenic regulatory factors
mRNA – messenger ribonucleic acid
N\(_2\) – liquid nitrogen
NADPH – nicotinamide adenine dinucleotide phosphate
NCAM – neural cell adhesion molecule
NFAT – nuclear factor of activated T-cells
NFκB – nuclear factor-kappa B
ng.mL\(^{-1}\) – nanogram per millilitre
NO – nitric oxide
NSAID- non-steroidal anti-inflammatory drug
OSM – oncostatin M
PBMC’s – peripheral blood mononuclear cells
PCNA – proliferating cell nuclear antigen
PCR – polymerase chain reaction
PDGF – platelet derived growth factor
PE – phycoerythrin
p- phosho
PI3K – phosphatidylinositol-3-kinase
pg.mL\(^{-1}\) – pegagrams per millilitre
PLT – platelets
PMN – polymorphonucleor neutrophils
Pref – preadipocyte factor
PSGL-1 - P-selectin glycoprotein ligand-1
PTS – peak treadmill speed
RBC – red blood cell
RDW - red cell distribution width
RER – respiratory exchange ratio
rh - recombinant human
RHD – Rel homology domain
RIP – receptor interacting proteins
RM – repetition maximum
ROS – reactive oxygen species
RT-PCR – real time polymerase chain reaction
SC – satellite cells
SE – standard error
sIL-6R – soluble interleukin-6 receptor
siRNA’s – silencing RNAs
SNP’s - single nucleotide polymorphisms
SOCS - suppressor of cytokine signalling
SOD – superoxide dismutase
SST – serum separating tube
STAT – signal transducer and activator of transcription
sTNFR – soluble tumour necrosis factor receptor
Th2 – T helper 2
TNFα – tumour necrosis factor α
TLRs – toll-like receptors
TLR-2 – toll-like receptor-2
TRADD – adaptor proteins
TRAF – receptor associated factors

u.L\(^{-1}\) – units per litre

uPAR - urokinase type plasminogen-activator receptor

VCAM-1 – vascular adhesion molecule -1

VEGF - vascular endothelial growth factor

WBC – white blood cell

yr - years

ᵒC – degrees centigrade

μm - micrometer
CHAPTER 1: GENERAL OUTLINE

The main focus of the research presented in this dissertation was to improve our understanding of the contribution of divergent individual response patterns to the acute phase inflammatory response following exercise-induced skeletal muscle damage. This project furthermore aimed to identify potential factors involved in delaying the resolution of inflammation that ultimately resulted in a second phase of skeletal muscle damage.

Despite numerous studies investigating the responsiveness of the human immune system following acute exercise, very few researchers focus on inter-individual responses. Chapter 2 will review the literature regarding the mechanisms behind the acute inflammatory response to exercise-induced muscle damage (EIMD), the regenerative phase of skeletal muscle and the involvement of cytokines and transcription factors in the interaction between exercising skeletal muscle and immune cell activity. Throughout the literature review specific attention will be paid to studies with human participants, highlighting individual variability previously observed. It is still largely unknown why certain otherwise healthy individuals are prone to developing sustained inflammation following an acute insult. Although it is well known that an exaggerated inflammatory response can cause additional damage to healthy tissue in animal models, a definitive mechanism for secondary damage in a human model is still lacking.

The research was undertaken as three acute downhill running intervention studies in human volunteers. By using intermittent high intensity downhill running as model to induce skeletal muscle micro-damage, we were able to identify three different response patterns. Participants (healthy young men) were thus divided into subgroups accordingly as discussed in chapter 5. Briefly, a small percentage of all participants showed evidence of exaggerated muscle damage (exaggerated and delayed peak in creatine kinase (CK) activity >3000 u.L\(^{-1}\)) as evident in the appearance of indirect markers of muscle damage in circulation with a delayed peak observed on day 4. Data from these participants were however excluded from analysis since this exaggerated response can be associated with some genetic factors or an underlying myopathy. An early peak in indirect markers of muscle damage was observed in all of the remaining participants, in about one third of these participants the damage associated markers gradually returned to normal during the recovery phase as expected (DHR1 subgroup). Whereas the remaining two thirds of the participants all experienced secondary muscle damage (DHR2 subgroup) during the late recovery phase. These divergent responses
were observed in response to the same intervention protocol in three separately recruited groups of healthy young men.

In addition to identifying individual response patterns, this research project furthermore aimed to investigate the subsequently triggered acute inflammatory response. One aim was to investigate in more detail the contribution of the inflammatory response to a second phase of muscle damage. As mentioned before, we were able to demonstrate that young healthy individuals, exposed to muscle micro-damage from unaccustomed eccentric exercise can be divided into those with a adequate and those with a less efficient capacity to control post-damage inflammatory processes. The observations leading to this conclusion are presented and discussed in chapter 5, together with evidence suggesting that the additional production of the cytokine, interleukin-6 (IL-6) might be involved in triggering a sustained inflammatory response in the subset of individuals who experienced secondary skeletal muscle damage. Downstream of IL-6, the intramuscular STAT3 signalling was significantly different between the two subgroups.

A second aim was to identify why certain individuals are predisposed to developing sustained inflammation. The final study therefore investigated the anti-inflammatory response to downhill running and the functional activity of mobilized immune cells (circulating neutrophils and peripheral blood mononuclear cells).

Chapter 6 demonstrates that despite a significant anti-inflammatory response occurring almost immediately following EIMD, the release of additional IL-6 into circulation occur after the resolution of the anti-inflammatory response. Furthermore, evidence are provided that implicate immune cell activity in the development of a second phase of skeletal muscle damage.

The main findings presented in this dissertation are summarized and discussed in *chapter 7.*
CHAPTER 2: LITERATURE REVIEW

The function of the immune system goes far beyond the host-defence responses. It is central to acute and chronic inflammatory conditions. The presence of low grade systemic inflammation may also dysregulate the normal acute inflammatory response. Either a low or an exaggerated inflammatory response would be undesired. The interaction between exercise and the immune system makes it an ideal model to study immune system responsiveness without the presence of any pathogens. In the case of tissue injury, the objective of inflammation is to prepare the injured tissue for regeneration so that function can be restored (Tidball JG 1995, 2005). Dysregulation however poses an immune-derived risk for secondary damage to intact tissue adjacent to the injury site (reviewed by Cooper et al. 2007).

Although chronic inflammation is easily assessed using routine chemistry, it is not clear how to determine a propensity to develop sustained inflammation in otherwise healthy individuals. Intra-individual variability in immune responses are evident in all human studies as illustrated by the large standard deviations observed in comparison to animal models and/or in vitro studies. This suggests that humans respond differently given the same environmental or endogenous stimulus.

Early studies investigating the interaction between the immune system and exercise have been scrutinized in detail before, with some reviewers concluding that evidence has been mostly circumstantial and that various methodological discrepancies are present in the literature (Malm et al. 2001, St Pierre Schneider et al. 2007). Despite researchers focussing their investigations on specific aspects of the immune response to exercise in recent years, there is still a lack of understanding. Chemical mediators (cytokines) have both metabolic and immune functions and even opposing functions at different stages during recovery from tissue damage. Understanding the contribution of divergent individual response patterns remains a key objective in identifying mechanisms of inflammation and potential factors limiting the resolution of inflammation.

This chapter will review the literature regarding the mechanisms behind the acute inflammatory response to exercise-induced muscle damage (EIMD), including the mobilization of leukocytes (refer to section 2.1.1, p. 23), their activation, adhesion to the vascular endothelium and transmigration to the injury site (refer to section 2.1.2, p. 29). Specific attention will be given to studies undertaken with human subjects.
The intramuscular presence and activity of leukocytes following an acute bout of muscle damaging exercise in humans remain controversial (refer to section 2.1.3, p. 33) and the potential influence of methodological variables on results and conclusions will also be discussed. The focus will then shift to the functional activity of leukocytes in response to muscle damaging exercise and their contribution to a second phase of damage or promotion of regeneration (refer to section 2.1.4, p. 36). This will be followed by an overview of skeletal muscle regeneration (refer to section 2.2, p. 42) within the context of EIMD as model.

Finally, despite the multiple signalling pathways activated in exercising skeletal muscle, the nuclear factor- kappaB (NFκB) signalling pathway is seen as the “master controller” of inflammation. Its activity in the in vivo context of exercise will therefore be discussed in detail (refer to section 2.3, p. 54). The downstream targets of NFκB signalling (such as Interleukin-6 (IL-6) up regulation) could have modulating effects on both the inflammatory and regenerative responses. The final section of this chapter will therefore focus on IL-6 induced signal transducer and activator of transcription (STAT) signalling (refer to section 2.4, p. 60).

2.1. Acute phase inflammatory response

2.1.1 Exercise-induced leukocytosis

Acute exercise (with or without the presence of skeletal muscle damage) is associated with the appearance of inflammatory mediators in circulation (Peake et al. 2008, Smith et al. 2000, 2007). The diverse functions of these inflammatory cytokines and chemokines are summarized in table 2.4 (p. 40). From the table it is clear that many of these mediators play a role in leukocyte demargination, mobilization, activation, adhesion and/or migration (reviewed by Sanz et al. 2012, Smith et al. 2008, Williams et al. 2011). It is thus not surprising that an increase in total white blood cell (WBC) count (leukocytosis) is evident in most cases following an acute bout of exercise, even without the presence of severe skeletal muscle damage. It is important to note though that a large portion of human EIMD studies observing changes in inflammatory mediators failed to also investigate changes in WBC count (refer to table 2.1, p. 27). The increase in total WBC count is mainly driven by increases in neutrophils and monocytes. In comparison only minor changes occur in

A large number of immature neutrophils (with bands) (Suzuki et al. 1996, Yamada et al. 2002), are recruited from bone marrow and contribute to exercise-induced leukocytosis. During the process of hematopoiesis, immature cells (undergoing granulopoiesis) are known as band neutrophils or staff cells, with “band” referring to the shape of the nucleus. The mobilization of these leukocytes from the bone marrow in response to a variety of exercise stimuli, is at least in part mediated by IL-6, granulocyte colony stimulating factor (G-CSF) and granulocyte macrophage colony stimulating factor (GM-CSF) (Paulsen et al. 2005, Subramaniyam et al. 2009, Suzuki et al. 2003, Yamada et al. 2002).

Elevated levels of circulating IL-6 in response to an acute exercise insult has been a consistent finding (refer to table 2.1 p. 27). Studies that fit the following criteria: acute exercise intervention protocol (not endurance type exercise); healthy young male subjects; measured at least 2 cytokines in circulation one of which had to be IL-6; subjects did not take any supplementation or received any form of treatment and the study did not investigate the effects of glucose metabolism, were included in Table 2.1 (p. 27). Only 3 out of the 34 studies summarized in table 2.1 (p. 27) indicated no change in IL-6 concentrations following EIMD (Nosaka et al. 1996, Hirose et al. 2004, Uchida et al. 2009). From these studies, Nosaka et al. (1996) were the only one to also assess leukocytosis and were not able to detect any change in WBC count. The only other study that didn’t observe any change in WBC count in response to EIMD (Hellsten et al. 1997) did however demonstrate a slight increase in circulating IL-6 concentrations.

In 2003, Natale et al. compared the effect of three different types of exercise on blood leukocyte count. A circuit of resistance exercise (3x10 repetitions at 70% 1RM) resulted in the largest changes in markers of muscle damage (creatine kinase (CK) and delayed onset muscle soreness (DOMS)), but prolonged aerobic exercise (cycling at 60% VO$_2$$_{max}$ for 2 hours) yielded the highest increases in total leukocytes and lymphocyte subsets (CD3+(total T-lymphocyte), CD8+(cytotoxic and regulatory/ suppressor T-lymphocytes), CD3-CD16+/56+(natural killer cells)).

In part, this may be related to the contribution of cellular stress and catecholamine release during prolonged aerobic exercise. In animals, catecholamines are known to play a role in the regulation of lipopolysaccharide (LPS)-induced neutrophilia through activation of alpha-
1-adrenoreceptors (Altenburg et al. 1997). Infusion of epinephrine (30 minutes (min)) into healthy men also resulted in the demargination of leukocytes from the epithelium (Dimitrov et al. 2010). These studies did not include exercise. Nonetheless, even with exercise, systemic stress has been demonstrated to have a greater influence on leukocyte functional responses than the degree of muscle damage induced (Saxton et al. 2003). Using comparable eccentric exercise models that induce either low (50 eccentric contractions with electrical stimulation superimposed) or high (40 min bench stepping) levels of systemic stress, the authors investigated leukocyte phagocytic activity, respiratory burst and activation antigen (CD11b, CD66b and CD64) expression in healthy young men. Significant elevations in CK were only evident following eccentric contractions, but both models induced a similar increase in WBC count at 4 hours. Only the bench stepping exercise did however increase neutrophil and monocyte respiratory burst and phagocytic activity at 24 hours. The presentation of individual data demonstrate large variability in specifically neutrophil phagocytic activity following the bench stepping exercise. Definitive conclusions on the influence of systemic stress on leukocyte functional activity can however not be made since the level of systemic stress experienced by the individuals were not assessed.

In order to negate as much as possible the hormonal stress response to exercise, an exercise model involving eccentric contractions (quadriceps) at a low metabolic cost (30% VO₂max) was selected by Paulsen et al. (2005) to investigate the relationship between EIMD and leukocytosis. Despite the low metabolic cost of the exercise protocol, serum cortisol concentrations were elevated immediately post exercise. These changes were however unrelated to any change in circulating leukocyte number. An association was observed between the loss of muscle force, plasma CK activity, circulating leukocyte counts and C-reactive protein (CRP) concentrations (Paulsen et al. 2005). The authors therefore concluded that local events in the damaged muscle regulate the non-specific immune response to exercise and that the degree of muscle damage is reflected in the magnitude of leukocytosis. It remains difficult to distinguish between the metabolic effect of exercise on leukocytosis and an influence of tissue damage, especially at high intensities.

Within 24 hours following acute exercise, circulating numbers of leukocytes return to pre exercise levels. This can be as result of various factors, including spontaneous apoptosis (Park et al. 2011, Syu et al. 2011) or accumulation of these cells in injured tissue (Paulsen et al. 2010, Tidball et al. 1995, 2005). Park et al. (2011) investigated the effect of EIMD on the induction of apoptosis in peripheral blood leukocytes in healthy young men. Apoptotic
WBC’s were evident up to 2 hours following level and downhill treadmill running (40 min @ 70% VO$_{2\text{max}}$). A greater increase in leukocyte Bax concentration (protein that promotes apoptosis) and the Bax/Bcl-2 ratio (Bcl-2 protects against oxidative stress and apoptosis) were however observed at 24 and 48 hours following downhill running compared to level or a second downhill run. Based on this differential response the authors suggested that EIMD may be involved in the prolonged induction of leukocyte apoptosis.

Exercise-induced oxidative stress may be the mechanism for apoptosis upstream of the signalling proteins mentioned earlier. Increased neutrophil cytosolic and mitochondrial reactive oxygen species (ROS) production and glutathione (antioxidant) oxidation coincided with ex vivo Annexin-V binding on the outer surface of neutrophils (indicative of apoptosis) in response to acute severe exercise (incremental cycling until exhaustion) (Syu et al. 2011). In agreement, in vitro experiments show that exogenously added oxidants accelerate neutrophil apoptosis (Rollet-Labelle et al. 1998) whereas antioxidants inhibit apoptosis (Oishi et al. 1997). Suzuki et al. (1996) demonstrated that enhanced ROS generation by neutrophils (measured by luminal-dependent chemiluminescence upon stimulation with opsonised zymosan) following endurance exercise was associated with a proportional increase in staff cells. Together these studies suggest that despite mobilization of neutrophils, immature neutrophils may possess higher responsiveness and are likely to undergo apoptosis unless recruited into the damaged areas.
Table 2.1 Circulating inflammatory cytokines observed following acute exercise in human subjects.

<table>
<thead>
<tr>
<th>First Author, date</th>
<th>Intervention protocol</th>
<th>Subject</th>
<th>time points</th>
<th>Inflammatory mediators measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentric exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruunsgaard 1997</td>
<td>Cycling 30min @65% VO₂max</td>
<td>healthy young male</td>
<td>20min, 30min, 2h, d2, d4, d7</td>
<td>Y IL-6 IL-1b, TNFa</td>
</tr>
<tr>
<td>Ostrowski 1998</td>
<td>2.5h treadmill @75% VO₂max</td>
<td>endurance athletes</td>
<td>pre, 30min, 60min, 90min, 2h, 3h, 4h, 5h, 6h, d2, d6</td>
<td>... IL-6, IL-1ra IL-8, IL-15, MIP-1a, MIP-1b</td>
</tr>
<tr>
<td>Suzuki 1999</td>
<td>90min cycling @ 90Watt for 3 days</td>
<td>untrained</td>
<td>pre, during, post, 1h, 3h, 12h</td>
<td>Y IL-6, IL-8 IL-1b, TNFa, IFNy</td>
</tr>
<tr>
<td>Yamada 2002</td>
<td>incremental treadmill ex to exhaustion</td>
<td>winter sports athletes</td>
<td>pre, post, 1h, 2h</td>
<td>Y IL-6, G-CSF</td>
</tr>
<tr>
<td>Vassilakopoulos 2003</td>
<td>45min cycling @70% VO₂max</td>
<td>untrained</td>
<td>pre, post, 30min, 2h</td>
<td>N IL-6, IL-1b, TNFa</td>
</tr>
<tr>
<td>Conolly 2004</td>
<td>30 min cycle ergometer @ 80% VO₂max</td>
<td>healthy young male</td>
<td>pre, post, 1h</td>
<td>Y IL-6, IL-1ra</td>
</tr>
<tr>
<td>Sorichter 2006</td>
<td>60 min level treadmill @85% VO₂max</td>
<td>endurance athletes</td>
<td>pre, 1h, 6h, d1, d3, d6</td>
<td>Y IL-6, CRP</td>
</tr>
<tr>
<td>Gokhale 2007</td>
<td>3 x 20 min running</td>
<td>athletes vs. non-athletes</td>
<td>pre, post, 1h</td>
<td>... IL-6, TNFa</td>
</tr>
<tr>
<td>Liang 2008</td>
<td>2h water emersion running @ 59% VO₂max</td>
<td>healthy young male</td>
<td>pre, post, 1h</td>
<td>Y IL-6, G-CSF</td>
</tr>
<tr>
<td>Peake 2008</td>
<td>90min cycling 65% VO₂max</td>
<td>trained cyclists</td>
<td>pre, post, 40min, 1.5h</td>
<td>Y IL-6, IL-8, IL-10, IL-1ra, TNFa</td>
</tr>
<tr>
<td>Eccentric exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nosaka 1996</td>
<td>24 max ecc rep elbow flexors</td>
<td>untrained</td>
<td>pre, post, d1, d2, d3, d4, d5</td>
<td>N IL-1a, IL-1b, IL-6, TNFa, CRP</td>
</tr>
<tr>
<td>Bruunsgaard 1997</td>
<td>Ecc cycling 20min @100% VO₂max, 10min @ 150% VO₂max</td>
<td>healthy young male</td>
<td>20min, 30min, 2h, d2, d4, d7</td>
<td>Y IL-6</td>
</tr>
<tr>
<td>Hellsten 1997</td>
<td>5 bouts of one-legged ecc ex</td>
<td>healthy young male</td>
<td>pre, 45min, d1, d2, d4</td>
<td>N IL-6 IL-1b</td>
</tr>
<tr>
<td>Brenner 1999</td>
<td>standard circuit training</td>
<td>healthy young male</td>
<td>for 5hours</td>
<td>Y IL-6, IL-10, TNFa</td>
</tr>
<tr>
<td>Croisier 1999</td>
<td>ecc isokinetic training</td>
<td>moderately active</td>
<td>pre, post</td>
<td>... IL-6</td>
</tr>
<tr>
<td>Smith 2000</td>
<td>ecc bench pres & leg curl 4 sets of 12 reps @ 100% RM</td>
<td>untrained</td>
<td>pre, 1.5h, 6h, 12h, d1, d2, d3, d4, d5, d6</td>
<td>... IL-6, IL-10, M-CSF TNFa, G-CSF, GM-CSF</td>
</tr>
<tr>
<td>Steensberg 2000</td>
<td>one legged knee extensions</td>
<td>untrained</td>
<td>pre, every h for 5hrs</td>
<td>... IL-6</td>
</tr>
<tr>
<td>Childs 2001</td>
<td>ecc contractions elbow</td>
<td>untrained</td>
<td>pre, post, d2, d3, d7</td>
<td>... IL-6</td>
</tr>
</tbody>
</table>

continued on next page...
<table>
<thead>
<tr>
<th>Study Year</th>
<th>Exercise Type</th>
<th>Subjects</th>
<th>Pre, Post, Times</th>
<th>Cytokines</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacIntyre 2001</td>
<td>Quadriceps eccentric exercise 300 reps</td>
<td>Recreationally fit</td>
<td>pre, post, 2h, 4h, 6h, d1, d2, d3, d6, d9</td>
<td>IL-6</td>
<td>-</td>
</tr>
<tr>
<td>Steensberg 2002</td>
<td>Knee-extension exercise 180 min</td>
<td>Healthy young male</td>
<td>pre, 30 min, 90 min, 180 min</td>
<td>IL-6, TNFα</td>
<td>-</td>
</tr>
<tr>
<td>Toft 2002</td>
<td>60 min lower limb eccentric exercise</td>
<td>Healthy young male</td>
<td>pre, post, 4h, d5</td>
<td>IL-6</td>
<td>-</td>
</tr>
<tr>
<td>Phillips 2003</td>
<td>ECC arm curl</td>
<td>Healthy young male</td>
<td>pre, d7, d10, d14</td>
<td>IL-6, CRP</td>
<td>-</td>
</tr>
<tr>
<td>Risoy 2003</td>
<td>60 min strength training in legs</td>
<td>Well trained athletes</td>
<td>pre, post, 5 min, 20 min, 35 min, 50 min, 65 min, 5h, 23h</td>
<td>IL-6, G-CSF, IL-8, MIP-1b</td>
<td>-</td>
</tr>
<tr>
<td>Willoughby 2003</td>
<td>7 sets of 10 reps knee-extension at 150% 1RM</td>
<td>Untrained</td>
<td>pre, post, 2h, 4h, 6h, d1, d2, d4</td>
<td>IL-6</td>
<td>-</td>
</tr>
<tr>
<td>Hirose 2004</td>
<td>Elbow flexors dumbbell 90% flexed 6 sets of 5 reps</td>
<td>Untrained</td>
<td>pre, post, 1h, 3h, 6h, d1, d2, d3, d4</td>
<td>G-CSF</td>
<td>IL-1β, IL-1α, IL-6, IL-10, IL12p40</td>
</tr>
<tr>
<td>Nieman 2004</td>
<td>Weight lifting (4 sets of 10 reps - 10 exercises)</td>
<td>Strength trained</td>
<td>pre, post</td>
<td>IL-6, IL-10, IL-1α, IL-8</td>
<td>-</td>
</tr>
<tr>
<td>Paulsen 2005</td>
<td>Quadriceps eccentric exercise 300 reps</td>
<td>Healthy young male</td>
<td>pre, post, 5h, 10h, 15h, 20h, 25h</td>
<td>G-CSF, IL-6, MCP-1, M-CSF</td>
<td>IL-8, MIP-1b</td>
</tr>
<tr>
<td>Peake 2006</td>
<td>10 sets of 6 eccentric contractions in elbows</td>
<td>Healthy young male</td>
<td>pre, post, 1h, 3h, d1, d2, d3</td>
<td>IL-6</td>
<td>IL-10, IL-1α, G-CSF, CRP</td>
</tr>
<tr>
<td>Miles 2008</td>
<td>Elbow flexors 3 sets of 15 reps @ 1RM</td>
<td>Untrained</td>
<td>pre, post, 4h, 8h, 12h, 16h, 20h, d1, d2</td>
<td>IL-6, sTNFR</td>
<td>-</td>
</tr>
<tr>
<td>Uchida 2009</td>
<td>Bench press different intensities</td>
<td>Army soldiers</td>
<td>pre, post</td>
<td>IL-1β, IL-6, TNFα</td>
<td>-</td>
</tr>
<tr>
<td>Robson-Ansley 2010</td>
<td>6 sets of 10 reps knee flexion</td>
<td>Recreationally fit</td>
<td>pre, d1, d2, d3</td>
<td>IL-6, sIL-6R</td>
<td>-</td>
</tr>
<tr>
<td>Ross 2010</td>
<td>5 sets of 10 unilateral leg press</td>
<td>Healthy young male</td>
<td>pre, post, 30 min, 1h, 1.5h, 2h, 2.5h</td>
<td>IL-8, MIP-1, TNFα</td>
<td>-</td>
</tr>
<tr>
<td>Toth 2011</td>
<td>300 eccentric contractions (quadriceps)</td>
<td>Healthy young male</td>
<td>pre, 1h, 3h, d1</td>
<td>IL-6</td>
<td>-</td>
</tr>
</tbody>
</table>

Downhill running

<table>
<thead>
<tr>
<th>Study Year</th>
<th>Exercise Type</th>
<th>Subjects</th>
<th>Pre, Post, Times</th>
<th>Cytokines</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyne 2000</td>
<td>DHR 40 min @ 52% VO2max</td>
<td>Well trained runners</td>
<td>pre, post, 1h, 6h, d1</td>
<td>Elastase</td>
<td>-</td>
</tr>
<tr>
<td>Petersen 2001</td>
<td>5% DHR 90 min @ 75% VO2max</td>
<td>Recreationally fit</td>
<td>Pre, post, d7, d14</td>
<td>IL-6, IL-1α</td>
<td>-</td>
</tr>
<tr>
<td>Thompson 2004</td>
<td>18% DHR 30 min</td>
<td>Healthy young male</td>
<td>up to 3d</td>
<td>IL-6</td>
<td>-</td>
</tr>
<tr>
<td>Peake 2005</td>
<td>10% DHR 45 min 65% VO2max</td>
<td>Well trained triathletes</td>
<td>pre, post, 1h, d1</td>
<td>IL-6, G-CSF</td>
<td>-</td>
</tr>
<tr>
<td>Peake 2005</td>
<td>10% DHR 45 min 65% VO2max</td>
<td>Well trained runners</td>
<td>pre, post, 1h, d1</td>
<td>IL-1α, IL-8, G-CSF</td>
<td>-</td>
</tr>
</tbody>
</table>

continued on next page...

<table>
<thead>
<tr>
<th>Study</th>
<th>DHR</th>
<th>Exercise duration</th>
<th>Group</th>
<th>Timepoints</th>
<th>Cytokines/chemokines measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingsley 2006</td>
<td>17.5% DHR 30min @ 70% HR</td>
<td>Untrained</td>
<td>pre, post, d1, d2</td>
<td>IL-6, IL-4, IL-2, IFN-γ, IL-5, IL-13, IL-17, IL-1b, TNFα, G-CSF, GM-CSF</td>
<td></td>
</tr>
<tr>
<td>Smith 2007</td>
<td>13.5% DHR 60 min</td>
<td>Untrained</td>
<td>pre, post, hourly for 12h, daily for 6d</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Buford 2009</td>
<td>17.5% DHR 45min @60% VO₂max</td>
<td>Active young men</td>
<td>pre, 3h, d1</td>
<td>IL-6, IL-8, IL-12, TNFα</td>
<td></td>
</tr>
<tr>
<td>Broadbent 2010</td>
<td>40 min DHR</td>
<td>Recreationally fit</td>
<td>pre,post,d1, d5</td>
<td>Y</td>
<td>IL-6</td>
</tr>
<tr>
<td>Zembron-Lacny 2010</td>
<td>90 min @65% VO₂max final 15min DHR</td>
<td>Recreationally fit</td>
<td>pre,20min ,d1,d2</td>
<td>–</td>
<td>IL-6, IL-10, IL-1b, TNFα</td>
</tr>
<tr>
<td>Pumpa 2011</td>
<td>10% DHR 5 bouts x 8min 80%HR</td>
<td>Well trained</td>
<td>pre,post, 4h,d1,d2,d3 ,d4</td>
<td>–</td>
<td>IL-6, IL-10, IL-1, TNFα</td>
</tr>
<tr>
<td>van de Vyver 2012</td>
<td>10% DHR 12x5min @ 75%VO₂max</td>
<td>Untrained</td>
<td>pre,post,d1,d2,d3,d4</td>
<td>–</td>
<td>IL-6, IL-10, TNFα</td>
</tr>
</tbody>
</table>

2.1.2 Leukocyte activation to trans-endothelial migration

Once mobilized, circulating leukocytes are activated and express heparin sulphate proteoglycans (HSPG’s) that interact with activated vascular endothelial cells (Djanani et al. 2006, Dunzendorfer et al. 2001, van der Voort et al. 2000) causing the leukocytes to adhere and crawl along the endothelial surface (reviewed by Sanz et al. 2012, Smith et al. 2008, Williams et al. 2011).

In addition to these HSPG’s, the surface expression of other receptors is commonly used as indication of leukocyte activation status (refer to table 2.2, p. 30). Many of these markers are however non-specific and expressed on more than one cell type, making it difficult to distinguish between the functional status of different leukocytes.
Table 2.2 Leukocyte (macrophage and neutrophil) activation markers

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Expressed on</th>
<th>Function</th>
<th>First Author, date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4</td>
<td>T-helper cells; monocytes</td>
<td>accessory molecule for TCR; antigen recognition; MHCI interaction</td>
<td>Litman 1987</td>
</tr>
<tr>
<td>CD11b (Mac1;CD18;αMβ integrin)</td>
<td>NK cells; T cells; MP; Neu</td>
<td>mediates adhesion to endothelium; receptor for c3b1</td>
<td>Tan 2012</td>
</tr>
<tr>
<td>CD14</td>
<td>monocytes</td>
<td>LPS binding protein; activation marker; induce oxidative burst</td>
<td>Stelter 2000</td>
</tr>
<tr>
<td>CD15</td>
<td>Granulocytes</td>
<td>mediates phagocytosis and chemotaxis</td>
<td>Nakayama 2001</td>
</tr>
<tr>
<td>CD16</td>
<td>NK cells; monocytes; Neu</td>
<td>low affinity Fc receptor for IgG</td>
<td>Vivier 1992</td>
</tr>
<tr>
<td>CD23</td>
<td>B-cells; monocytes</td>
<td>Trigger monokine release; IgE synthesis; pro-inflammatory</td>
<td>Bonnefoy 1997</td>
</tr>
<tr>
<td>CD45</td>
<td>All leukocytes</td>
<td>cytoplasmic phosphatase activity; signal transduction; apoptosis</td>
<td>Towbridge 1994</td>
</tr>
<tr>
<td>CD54</td>
<td>All leukocytes</td>
<td>ICAM-1, adhesion molecule</td>
<td>Ybarrondo 2001</td>
</tr>
<tr>
<td>CD62L (selectins)</td>
<td>B-cells; T-cells; NK cells; monocytes; Granulocytes</td>
<td>Homing receptor on leukocytes</td>
<td>Bevilacqua 1993</td>
</tr>
<tr>
<td>CD68</td>
<td>MP</td>
<td>receptor for oxidized LDLs</td>
<td>Rabinowitz 1991</td>
</tr>
<tr>
<td>CD163</td>
<td>MP, monocytes</td>
<td>scavenger receptor</td>
<td>Onofre 2009</td>
</tr>
<tr>
<td>CD206</td>
<td>MP</td>
<td>C-type lectin receptor expressed during phagocytosis</td>
<td>Wollenberg 2002</td>
</tr>
</tbody>
</table>

Presence of circulating pro-inflammatory cytokines and conditions such as acute muscle damage are associated with an increase in leukocyte chemotactic activity (Okutsu et al. 2008, Ortega et al. 1999, Paulsen et al. 2005, Risoy et al. 2003, Syu et al. 2012). Paulsen et al. (2005) reported large inter-individual differences in chemotactic responsiveness following 300 eccentric contractions of the quadriceps muscle group and support our hypothesis that different humans respond differently given the same stimulus. However, the different underlying biological responses have not yet been established.
In acute tissue injury models, necrosis and/or increased permeability of the plasma membrane lead to the release of damage associated molecules (which are usually confined intracellularly) (reviewed by Chen et al. 2010, Williams et al. 2011). Damage-associated molecules derived from necrotic cells include chromatin-associated protein high-mobility group box1 (HMGB1) (Scaffidi et al. 2002) and heat shock proteins (HSPs) (Quintana et al. 2005). EIMD is known to be associated with an increase in serum heat shock protein 72 (Hsp72) (Fehrenbach et al. 2005, Ogawa et al. 2011, Walsh et al. 2001). Upon extracellular matrix degradation, fragments such as hyaluronan (Jiang et al. 2005, Scheibner et al. 2006, Taylor et al. 2007) and heparin sulphate (Johnson et al. 2002) are released and can also be considered damage associated molecules. An increase in serum hyaluronan concentration have previously been demonstrated during exercise (quadiceps femoris, anterior tibial muscle groups) (Piehl-Aulin et al. 1991). Despite muscle-damaging exercise rarely being associated with necrosis, sarcolemmal integrity is compromised in most cases. However, since the sarcolemma is relatively easily patched, molecules associated with necrosis are not consistently seen in circulation.

Based on animal model experiments it is known that damage associated molecules enhance the endothelial expression of chemokines that in turn play a role in the recruitment of leukocytes to the damaged area (Woodfin et al. 2010, Wong et al. 2010). Griffin et al. (2012) recently demonstrated that the pro-inflammatory cytokines, tumour necrosis factor α (TNFα), interleukin-1β (IL-1β), interleukin-17 (IL-17) and interferon-γ (IFNγ) also have the ability to induce the endothelial expression of chemokines (CXCL1, CXCL2, CXCL5, CXCL9, CXCL10 and CCL5) in vitro. The interaction between these chemokines and specific G-protein coupled receptors (GPCRs) expressed on the leukocyte surface play a role in leukocyte recruitment. These include toll-like receptors (TLRs) (transmembrane proteins), C-type lectin receptors (CLRs) (transmembrane proteins with a carbohydrate binding domain, usually involved in microbial defense), CXC receptors and CCL receptors (Iwasaki et al. 2010, Takeuchi et al. 2010, Williams et al. 2011).

Although the endothelial expression of chemokines is less well defined in humans, interleukin-8 (IL-8) and hsp72 are thought to be potent polymorphonuclear (PMN) chemoattractants (Ludwig et al. 1997, Ortega et al. 2009, 2010, Schlorke et al. 2012). Ortega et al. (2009) demonstrated that physiological concentrations of Hsp72 observed following a single bout of exercise (1h cycle ergometer @ 70% VO2max) in sedentary women stimulated neutrophil chemotaxis in vitro through its interaction with toll-like receptor-2 (TLR-2). The
same authors later on confirmed the role of TLR-2 and Hsp72 in neutrophil phagocytic activity post exercise (Giraldo et al. 2010). By stimulating human peripheral neutrophils ex vivo with concentrations equivalent to post-exercise serum Hsp72, the authors furthermore demonstrated that an increase in phagocytic capacity of neutrophils is mediated through intracellular phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK) and NFκB signalling (Giraldo et al. 2010).

Activated leukocytes can thus produce additional pro-inflammatory cytokines in response to NFκB signalling and therefore enhance the acute phase response and participate in endothelial activation. Upon endothelial activation, endothelial storage granules fuse with the endothelial plasma membrane and contribute to the surface expression of P-selectin and/or E-selectin. These selectins then interact with their ligands expressed on leukocytes (eg. P-selectin on endothelial surface bind to P-selectin glycoprotein ligand-1 (PSGL-1) on neutrophil surface (Kansas et al. 1996)) thereby slowing down the movement of circulating leukocytes. The slow moving neutrophils detect chemokines more easily. The chemokines are not released into circulation but are immobilized on the luminal membrane of endothelial cells by damage associated molecules such as heparin sulphate (HS) or glycosaminoglycans (GAGs) (Middleton et al. 2002, Handel et al. 2005, Wang et al. 2005). The detection of these immobilized chemokines by leukocytes result in the activation of leukocyte integrins (Evans et al. 2009, Johnson et al. 2005, Luo et al. 2007). Monocytes, lymphocytes, eosinophils and basophils all express α4β1 integrins that bind to vascular cell adhesion molecule (VCAM-1) (Berlin et al. 1995, Elices et al. 1990), whereas neutrophils express β2 integrin that binds to intracellular adhesion molecule-1 (ICAM-1) on the endothelial surface (Arnaout et al. 1990). Binding results in leukocyte adhesion to the endothelium.

In addition, the activation of leukocyte integrins cause a conformation change in leukocytes (from inactive to fully extended with a high affinity for binding) (Evans et al. 2009, Luo et al. 2007). Neutrophils for example flatten and extend pseudopods that allow the cell to crawl along the endothelial surface (Ley et al. 2007). Massena et al. (2010) illustrated that αMβ2 integrins (also known as Mac-1, CD11b,CD18) mediate leukocyte crawling along the endothelium. It also guides the leukocytes towards tricellular junctional regions for migration across the vascular endothelial monolayer (Phillipson et al. 2006, Sumagin et al. 2010). The transmigrating leukocytes cross the vascular basement membrane into the extracellular matrix (ECM) at areas containing low matrix protein deposits (Voisin et al. 2010). Once inside the ECM neutrophils move along the chemical gradient to the chemokine
source and injured area. In the case of EIMD it is possible that damage to the ECM leading to areas with less matrix than usual facilitates transmigration. There is some controversy regarding the intramuscular presence and activity of leukocytes following an acute bout of muscle damaging exercise.

2.1.3 Leukocyte infiltration

Exercise-related human studies which have assessed intramuscular leukocyte infiltration are presented in table 2.3 (p. 35). In an attempt to clarify the relationship between neutrophil infiltration and exercise-induced muscle injury St Pierre Schneider et al. (2007) reviewed 38 human and animal studies published between 1950 and 2007 that focussed on mechanically induced muscle injury. The results from these studies were very diverse with 85% of the animal models and only 55% of the human studies showing signs of intramuscular neutrophil infiltration following EIMD.

In addition to the effect of the exercise protocol itself, concerns have been raised regarding the influence of the muscle biopsy procedure on neutrophil infiltration. These concerns are based on findings from a single study by Malm et al. (2000) that indicated significant neutrophil infiltration (CD11b, CD15) in both exercised and non-exercised muscles compared with baseline. However, the study by Malm et al. (2000) involved 7 biopsies (3 or 4 per leg) within a period of 7 days. To refute or confirm the conclusions studies should firstly have fewer biopsies per leg with a larger distance between biopsy sites. Secondly, a control group is essential to account for the effects that the muscle biopsy procedure might have. In addition to methodological variables, divergent individual responses could account for varying findings between studies, making it difficult to establish a true relationship between exercise-induced muscle damage and leukocyte activity.

In an innovative study, Paulsen et al. (2010) were able to determine the exact tissue localization and overall distribution of leukocytes in the human quadriceps muscle group in both an exercising and non-exercising control leg following 300 eccentric contractions. A combination of scintigraphic imaging of transfused autologous radiolabelled (99m Technetium) leukocytes and immunofluorescent microscopy (CD16 and CD68) of tissue samples were used to demonstrate early accumulation of leukocytes in muscle endomysium and perimysium following exercise. The authors further demonstrated that in a small number
of subjects (high CK responders), large increases in CK were associated with a larger accumulation of radio-labelled leukocytes.

Paulsen et al. (2010) also observed additional CK appearance in circulation during the recovery phase (day 4) in these particular subjects. Van de Vyver et al. (2012) recently observed a similar biphasic response of three different indirect markers of muscle damage (CK, myoglobin (Mb), lactate dehydrogenase (LDH)) following intermittent downhill running and ruled out the biopsy procedure as possible cause for the additional leakage of muscle proteins into circulation. The initial increase in markers of muscle damage coincided with elevated levels of pro-inflammatory IL-6 and TNFα, suggesting a link between inflammation and secondary muscle damage (van de Vyver et al. 2012).

Despite overwhelming evidence from animal studies suggesting that neutrophils in injured muscle can act as cytotoxic agents with the potential to cause additional damage (refer to section 2.1.4, p. 36), a definitive cause and effect relationship has not yet been established in humans. Paulsen et al. (2010) demonstrated that very few of the circulating neutrophils (99m Technetium labelled, CD16+) captured in the intramuscular microvessels shortly after exercise, crossed the endothelium within the time frame of sampling in their study (0.5h, 4h, 8h, 24h, 96h, 168h). An increased number of intramuscular macrophages during the later recovery phase (day2 to day7) following exercise-induced muscle damage has been a more consistent finding (refer to table 2.3, p. 35).

Interleukin-6, and specifically soluble interleukin-6 receptor (sIL-6R) dynamics have been implicated in controlling the pattern of leukocyte recruitment following acute EIMD (Hurst et al. 2001, Robson-Ansley et al. 2010). Hurst et al. (2001) demonstrated that infiltrating neutrophils shed sIL-6R from their cell surfaces and that this receptor regulated neutrophil activating chemokines which in turn suppressed neutrophil recruitment and enhanced the attraction of monocytes. Robson-Ansley et al. (2010) observed a biphasic pattern with sIL-6R significantly decreased at 48 and 72 hours following eccentric exercise (6 sets of 10 knee flexion) and hypothesised that an increase in sIL-6R is associated with suppressed neutrophil and enhanced monocyte infiltration into the damaged tissue soon after EIMD whereas the later decrease in sIL-6R could be associated with suppressed macrophage infiltration and the start of regeneration. Although not directly assessed, there was an association between sIL-6R, perceived pain and reduced peak muscle performance (Robson-Ansley et al. 2010).
The initial appearance of markers of muscle damage in circulation is as result of mechanical damage to skeletal muscle induced by exercise, whereas a secondary increase during the late recovery phase is indicative of secondary skeletal muscle damage (*unrelated to the mechanical insult*). This secondary increase in markers of muscle damage, occur one or two days following peak neutrophil activity and coincides with an increase in intramuscular macrophage activity.

Table 2.3 Intramuscular presence of leukocytes following acute muscle damaging exercise.

<table>
<thead>
<tr>
<th>First Author, date</th>
<th>Intervention protocol</th>
<th>Detection</th>
<th>Neutrophils (peak)</th>
<th>Macrophages (peak)</th>
<th>Leukocyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hikida 1983</td>
<td>Marathon</td>
<td>EM</td>
<td></td>
<td></td>
<td>day1</td>
</tr>
<tr>
<td>Jones 1986</td>
<td>eccentric contractions calves, forearm</td>
<td></td>
<td></td>
<td></td>
<td>day7</td>
</tr>
<tr>
<td>O'Reilly 1987</td>
<td>45min eccentric cycling</td>
<td>EM</td>
<td></td>
<td></td>
<td>day10</td>
</tr>
<tr>
<td>Round 1987</td>
<td>eccentric stretch injury</td>
<td>EM</td>
<td></td>
<td></td>
<td>days 9-14</td>
</tr>
<tr>
<td>Fielding 1993</td>
<td>45min 16% downhill @70%VO$_2$</td>
<td>Methylene blue</td>
<td>45min, day5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacIntyre 1996</td>
<td>300 maximal isokinetic eccentric contractions quadriceps</td>
<td>Tc99m-labelled</td>
<td>day1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hellsten 1997</td>
<td>maximal eccentric contractions quadriceps</td>
<td>CD11b</td>
<td>day2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bourgeois 1999</td>
<td>6 sets of 10 reps leg press @ 80%</td>
<td>H&E</td>
<td>No change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child 1999</td>
<td>70 maximal ecc knee extentions</td>
<td>H&E</td>
<td>No change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacIntyre 2000</td>
<td>300 maximal isokinetic eccentric contractions quadriceps</td>
<td>Tc99m-labelled</td>
<td>2h,4h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malm 2000</td>
<td>incremental cycling (100W 60rev.min-1; increase 50W /2min)</td>
<td>CD11b</td>
<td>No change</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD15 CD163</td>
<td>4h</td>
<td>days 2,4</td>
<td></td>
</tr>
<tr>
<td>O'Grady 2000</td>
<td>20 min stepping</td>
<td>H&E</td>
<td>No change</td>
<td>post</td>
<td></td>
</tr>
<tr>
<td>Stupka 2001</td>
<td>eccentric knee extentions</td>
<td>MPO</td>
<td>No change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacIntyre 2001</td>
<td>300 maximal isokinetic eccentric contractions quadriceps</td>
<td>Tc99m-labelled</td>
<td>6h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaton 2002</td>
<td>240 maximal isokinetic eccentric contractions quadriceps</td>
<td>MPO</td>
<td>No change</td>
<td>day1</td>
<td></td>
</tr>
<tr>
<td>Beaton 2002</td>
<td>300 maximal isokinetic eccentric contractions quadriceps</td>
<td>MPO</td>
<td>day1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elastase CD68</td>
<td></td>
<td></td>
<td>4h, day1</td>
<td></td>
</tr>
</tbody>
</table>

continued on next page...
<table>
<thead>
<tr>
<th>Study Year</th>
<th>Exercise Protocol</th>
<th>Stimulation</th>
<th>Time 1</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raastad 2003</td>
<td>Leg press (5 sets of 3 max reps)</td>
<td>CD15</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peterson 2003 eccentric knee extensions (14 sets of 10 reps, 120% 1RM)</td>
<td>CD68</td>
<td>day 1</td>
<td></td>
</tr>
<tr>
<td>Malm 2004</td>
<td>45 min treadmill (4% uphill, or 4 or 8% downhill)</td>
<td>CD11b</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Dennis 2004</td>
<td>Resistance exercise circuit</td>
<td>CD68</td>
<td>day 3</td>
<td></td>
</tr>
<tr>
<td>Crameri 2004</td>
<td>ECC knee extensions (3x8 sets of 10 reps)</td>
<td>CD68, CD163</td>
<td>days 2,4,8</td>
<td>No change</td>
</tr>
<tr>
<td>Przybyla 2006</td>
<td>Resistance exercise circuit</td>
<td>CD68, CD11b</td>
<td>day 3</td>
<td>day 3</td>
</tr>
<tr>
<td>Hubal 2008</td>
<td>300 eccentric quadriceps contractions</td>
<td>Mac387</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Lauritzen 2009</td>
<td>70 unilateral max eccentric contractions elbow</td>
<td>EM</td>
<td>days 4,7</td>
<td></td>
</tr>
<tr>
<td>Mikkelsen 2009</td>
<td>200 eccentric quadriceps</td>
<td>CD16, CD68</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>Paulsen 2010</td>
<td>14 sets of 5 reps unilateral eccentric quadriceps contractions elbow</td>
<td>Te99m-labelled</td>
<td>20h</td>
<td>days 2,4,7</td>
</tr>
<tr>
<td>Paulsen 2010</td>
<td>300 eccentric quadriceps contractions</td>
<td>CD16, CD68</td>
<td>day 4</td>
<td>day 4</td>
</tr>
<tr>
<td>MacNeil 2011</td>
<td>150 eccentric quadriceps contractions</td>
<td>MPO</td>
<td>day 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnote: Table includes all human studies that investigated intramuscular presence of leukocytes in healthy young men following acute exercise. **Abbr:** CD – cluster of differentiation, d – day, ecc – eccentric, EM – electron microscopy, ex – exercise, h – hour, H&E – hematoxilin and eosin, MPO – myeloperoxidase, reps – repetitions.

2.1.4 Neutrophils versus Macrophages: contribution to secondary damage or essential for repair

Neutrophil functional activities are usually accompanied by varying degrees of tissue destruction. *In vitro* stimulation of isolated polymorphonuclear cells with inflammatory mediators such as LPS, TNFα, IL-8 and G-CSF results in the release of large quantities of matrix metalloprotease-9 (MMP-9) (Pugin *et al.* 1999). MMP-9 is known to play a role in tissue destruction by degrading extracellular matrix components (Ohbayashi *et al.* 2002, Van den Steen *et al.* 2002). The binding of the chemokine IL-8 to its CXCR2 receptor is thought to be responsible for the release of MMP-9 from neutrophil granules (Chakrabarti *et al.* 2005).
Neutrophils also generate high quantities of superoxide (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase dependent reaction) and hypochlorous acid (myeloperoxidase (MPO) dependent reaction) (reviewed by Toumi et al. 2006). These oxidizing reactions associated with the respiratory burst activity of neutrophils may also be responsible for collateral damage to uninjured tissue. Brickson et al. 2003 demonstrated that blocking neutrophil activation (through M1/70 antibody against CD11b), thereby preventing the subsequent respiratory burst, minimizes myofibre damage 24 hours following stretch injury in white rabbits.

In agreement, Nguyen et al. (2005) investigated activation and cytotoxic capacity of neutrophils and identified neutrophil-mediated lysis of muscle cells through an MPO dependent pathway following mechanical loading. The study demonstrated that neither cyclic loading of muscle (C2C12) cells in vitro nor the presence of superoxide dismutase (SOD) (enzyme responsible for converting superoxide to hydrogen peroxide) in neutrophil-C2C12 co-cultures alone resulted in cell lysis. In contrast, the application of cyclic mechanical loading to co-cultures in the presence of SOD activated neutrophil cytotoxic activity. No cell lysis was however observed in MPO null mutant neutrophil (MPO-/-) and C2C12 co-cultures following mechanical loading. This phenomenon was confirmed in an animal model where a significant reduction (52%) in membrane lysis were observed in MPO-/- compared to wild type mice in response to reloading after a period of unloading (Nguyen et al. 2005).

Increases in both MPO and MMP-9 (indicative of neutrophil degranulation) were recently shown to be associated with an increase in serum IL-6 from pre to immediately post exercise (incremental cycling to exhaustion) in professional male athletes (Reihmane et al. 2012). This association suggests that the pro-inflammatory cytokine response (especially IL-6) is likely to play a role in modulating post exercise changes in immune function with the potential to compromise sarcolemmal integrity.

Furthermore, MPO and/or pro-inflammatory cytokines (IFNγ, TNFα) result in the classical activation of macrophages (pro-inflammatory phenotype, M1) (Mackaness et al. 1964). These macrophages express a receptor for oxidized low-density lipoproteins (LDLs), CD68 (also known as macrosialin, ED1 antigen) (Ottnad et al. 1995, Rabinowitz et al. 1991). Oxidative modification of LDLs by MPO promote their binding to CD68 and as consequence activate macrophages to increase their production of pro-inflammatory cytokines (reviewed by Tidball...
et al. 2010). In addition to amplifying inflammation, these pro-inflammatory macrophages have the ability to cause additional muscle damage through the production of cytotoxic nitric oxide (NO) (inducible nitric oxide synthase (iNOS) converts arginine to citrulline and NO) (Albina et al. 1990, Nguyen et al. 2003). Silveira et al. (2007) demonstrated in an animal model that one hour of swimming increased circulating monocyte/macrophage phagocytic activity and that the expression of iNOS was associated with the release of hydrogen peroxide in vitro. This cytolytic capacity of M1 macrophages is promoted in the presence of neutrophils and ultimately results in a positive feedback loop that promotes phagocytosis. Although phagocytosis can cause additional damage, it plays an important role in the scavenging process and removal of cellular debris in order to prepare the injured area for repair. Teixeira et al. (2003) demonstrated that mice depleted of neutrophils had large areas of necrotic tissue 7 days following snake venom injection whereas control animals showed successful regeneration at the same time point, suggesting that neutrophil-mediated phagocytosis plays a prominent role in skeletal muscle regeneration.

In addition to amplifying the inflammatory response (through NFκB signalling), the release of pro-inflammatory cytokines (TNFa, IL-6) have been shown to induce the proliferation of muscle specific progenitor cells (satellite cells) in vitro (Li et al. 2003). Chazaud et al. (2003) investigated the interaction between isolated human peripheral blood mononuclear and myogenic progenitor cells (myoblasts). The authors used DNA micro array analysis together with RT-PCR and identified in myoblasts that increased gene expression of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), macrophage –derived chemokine (MDC, also known as CCL22), fractalkine (FKN, also known as CX3CL1), vascular endothelial growth factor (VEGF) and urokinase type plasminogen-activator receptor (uPAR) promoted monocyte chemotaxis in vitro. In addition, they demonstrated that 35% of myoblasts (in vitro C2C12 or primary SC) die upon total growth factor deprivation, but in the presence of M1 macrophages these cells were protected against apoptosis.

Macrophages play another important role in regeneration. Macrophage phenotype switches from M1 to the anti-inflammatory M2 phenotype (Graff et al. 2012, Tidball et al. 2010, Villalta et al. 2009). Based on functional and molecular specialization (Mantovani et al. 2004) the M2 macrophages have been subdivided into M2a (CD68+CD206+) (anti-inflammatory and tissue remodelling roles) (Martinez et al. 2008), M2b (Th2 differentiation) (Anderson et al. 2002) and M2c (CD68+CD206+CD163+) (promoting repair) (Villalta et al. 2009) subcategories. To date, investigations into the intramuscular presence
and activity of macrophages following acute muscle-damaging exercise in humans, have failed to distinguish between the different subtypes (refer to table 2.3, p. 35). From table 2.3 it is clear that only Przbyla et al. (2006) investigated the presence of both pro- and anti-inflammatory macrophages in the human vastus lateralis muscle following EIMD (3 x 8 repetitions of a circuit of leg resistance exercises). The data are difficult to interpret since no change in the total number of intramuscular macrophages (CD68⁺) does not seem to be consistent with an increase in both CD11b⁺ pro-inflammatory (55% increase) and CD163⁺ anti-inflammatory macrophages (29% increase) at 72 hours post exercise. The authors concluded that a small percentage of resident macrophages contribute to inflammation whereas the rest have alternative functions. Macrophages in the process of undergoing phenotype switching may however co-express different activation markers.

In a comprehensive study using both C2C12/ macrophage co-culture and the mdx mouse model, Villalta et al. (2009) investigated the mechanism by which macrophages promote muscular dystrophy. The specific focus was on their phenotype during stages of peak muscle necrosis or regeneration. The authors confirmed that M1 macrophages (activated by INFγ, TNFa) contributed to muscle lysis in vitro through NO dependant mechanisms and that genetic ablation of iNOS significantly reduced membrane lysis in vivo. More importantly the authors were able to demonstrate that M2a macrophages (activated by interleukin-4 (IL-4), interleukin-13 (IL-13)) decreased the in vitro membrane lysis of M1 macrophages through the expression of arginase. Arginase (originating from M2a) competes with iNOS (originating from M1) for binding to their common enzymatic substrate, arginine. An increase in the expression of IL-4 and interleukin-10 (IL-10) by M2a macrophages furthermore resulted in the deactivation of M1 macrophages (reduced expression of iNOS, IL-6, MCP-1) and activation of M2c macrophages (expressing interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-10) during the regenerative phase (Villalta et al. 2009). The precise mechanism involved in phenotype switching is still unclear but it is hypothesized that it might involve the modulation of microRNA (Graff et al. 2012). The effect of microRNAs on target gene expression and translation may give macrophages the capacity to respond with different patterns of activation to various environmental stimuli.

Villalta et al. (2009) also demonstrated that in vitro IL-10 stimulated M2c macrophages mediated regeneration through promotion of satellite cell (C2C12) proliferation. IL-10 production and release is not the only anti-inflammatory mechanism. The inhibition of pro-inflammatory cytokine production also occurs through signal transducer and activator of

In summary, it seems that despite their capacity to cause additional damage to healthy tissue, the phagocytic activity of both neutrophils and pro-inflammatory macrophages is essential in preparing the injured area for regeneration. Both macrophage subtypes play a role in enhancing the myogenic regeneration response by influencing satellite cell function (refer to next section) Nevertheless, although the acute inflammatory response seems to be essential for skeletal muscle regeneration, an exaggerated response or dysregulation thereof can delay regeneration and even result in a second phase of damage.

Table 2.4 Possible functions of circulating inflammatory mediators following an acute bout of exercise.

<table>
<thead>
<tr>
<th>Cytokine/ Chemokine</th>
<th>Possible actions following acute exercise</th>
<th>First Author, date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM-CSF Granulocyte macrophage colony stimulating factor</td>
<td>Leukocyte mobilization, Progenitor cell mobilization</td>
<td>Subramaniyam 2009, Subramaniyam 2009</td>
</tr>
<tr>
<td>IFNα Interferon alpha</td>
<td>Role in immune mediated fatigue in animal model</td>
<td>Davis 1998</td>
</tr>
<tr>
<td>IFNγ Interferon gamma</td>
<td>Classical activation of macrophages; ↓ M2 macrophage activation</td>
<td>Villalta 2011</td>
</tr>
<tr>
<td></td>
<td>Activates ICAM-1; ↑ neutrophil migration from circulation to injured tissue</td>
<td>Gao 1996</td>
</tr>
<tr>
<td>IL-1ra Interleukin-1 receptor antagonist</td>
<td>Anti-inflammatory, block IL-1 receptors</td>
<td>Steensberg 2003</td>
</tr>
</tbody>
</table>

continued on next page...
<table>
<thead>
<tr>
<th>IL-1β</th>
<th>Interleukin-1 beta</th>
<th>↓ IGF-1 secretion; ↑ protein turnover</th>
<th>Fan 1996</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>↑ Endothelial secretion of G-CSF and M-CSF</td>
<td>Zsebo 1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ expression of ICAM-1 and VCAM-1</td>
<td>Cannon 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ expression of IL-6 and MCP-1</td>
<td>Galluci 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Satellite proliferation; inhibits differentiation</td>
<td>Allen 1989</td>
</tr>
<tr>
<td>IL-4</td>
<td>Interleukin-4</td>
<td>B cell and T cell proliferation</td>
<td>Paul 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ alternative M2 activation of macrophages</td>
<td>Lyamina 2012</td>
</tr>
<tr>
<td>IL-5</td>
<td>Interleukin-5</td>
<td>B cell growth and eosinophil activation</td>
<td>Lopez 1988</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
<td>Metabolic - ↑ hepatic glucose output; ↑ GLUT4 transporters to increase cortisol</td>
<td>Banzet 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ hypothalmo-pituitary-adrenal axis secretion of IL-1ra and IL-10</td>
<td>Steensberg 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGF suppression; myofibrillar protein loss</td>
<td>Caiozzo 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leukocyte mobilization</td>
<td>Paulsen 2005; Yamada 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ secretion of IL-1ra and IL-10</td>
<td>Steensberg 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Satellite cell proliferation</td>
<td>Hawke 2001</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin-8 (CXCL8)</td>
<td>↓ neutrophil infiltration via inhibition of adhesion to endothelial</td>
<td>Gimbrone 1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upregulates monocyte infiltration</td>
<td>Li 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angiogenesis</td>
<td>Frydelund-Larsen 2006</td>
</tr>
<tr>
<td>IL-10</td>
<td>Interleukin-10</td>
<td>Anti-inflammatory, macrophage phenotype switch</td>
<td>Allavena 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ Th2 response</td>
<td>De Waal 1991; Fiorentino 1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ pro-inflammatory cytokine production</td>
<td>Murray 2006; Schroder 2003</td>
</tr>
<tr>
<td>IL-13</td>
<td>Interleukin-13</td>
<td>Hypertrophy; MHC formation</td>
<td>Prokopchuck 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ Expression of IL-8 by neutrophils; modulate neutrophil activity</td>
<td>Prokopchuck 2007</td>
</tr>
<tr>
<td>IL-15</td>
<td>Interleukin-15</td>
<td>↑ myosin heavy chain synthesis in presence of IGF-1</td>
<td>Cannon 1998</td>
</tr>
<tr>
<td>IL-17</td>
<td>Interleukin-17</td>
<td>↑ pro-inflammatory cytokine production; T cell differentiation</td>
<td>Onishi 2010</td>
</tr>
</tbody>
</table>

continued on next page...
Footnote: This table includes possible actions of the cytokines previously observed to increase in serum of healthy young men following acute exercise (refer to table 2.1). Abbr: ↑ - upregulate, ↓ - downregulate/ inhibit, ICAM – intracellular adhesion molecule, VCAM – vascular cell adhesion molecule.

<table>
<thead>
<tr>
<th>MCP-1</th>
<th>Macrophage chemoattractant protein-1</th>
<th>Activation and recruitment of macrophages</th>
<th>Shireman 2007; Lu 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CSF</td>
<td>Macrophage colony stimulating factor</td>
<td>↑ monocyte production in bone marrow</td>
<td>Zsebo 1988</td>
</tr>
<tr>
<td>MIP-1alpha</td>
<td>Macrophage inflammatory protein-lalpha (CCL3)</td>
<td>monocyte recruitment into injured tissue</td>
<td>Low 2001</td>
</tr>
<tr>
<td>MIP-1beta</td>
<td>Macrophage inflammatory protein-lbeta (CCL4)</td>
<td>monocyte recruitment into injured tissue</td>
<td></td>
</tr>
<tr>
<td>TNFa</td>
<td>Tumour necrosis factor alpha</td>
<td>Activate proteolysis in presence of cortisol</td>
<td>Mealy 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ ICAM-1 and VCAM-1 expression</td>
<td>Cannon 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ IL-1β and IL-6 secretion</td>
<td>Galluci 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Satellite cell proliferation</td>
<td>Li 2003</td>
</tr>
</tbody>
</table>

2.2 Skeletal muscle regeneration

2.2.1 Exercise-induced muscle damage: a model to study regeneration

Characteristic signs observed following unaccustomed exercise are the immediate loss of force and muscle weakness followed by a more delayed onset of muscle soreness (DOMS). In 1939 Katz et al. noticed that when skeletal muscle is stretched beyond its optimum length it becomes weaker, explaining the loss of muscle force, whereas DOMS is directly associated with the forced lengthening of muscles while they are contracting (eccentric contractions) (Ammussen et al. 1952,1956). The magnitude of damage has been proposed to be related to the number of eccentric contractions (McCully et al. 1986, Warren et al. 1993), length of muscle stretch (Lieber et al. 1993, Brooks et al. 1995), tension generated (McCully et al. 1986) and the velocity of shortening (Chapman et al. 2006). It is thus not surprising that different exercise protocols vary substantially. In severe cases the destruction phase of skeletal muscle damage (for reviews see Jarvinen et al. 2005, Proske et al. 2001) is characterized by the rupture and necrosis of the myofibres and damage to the capillary bed leading to development of haematoma between the injured fibres and below the muscle sheath.
Clear evidence of the morphological changes in humans following eccentric exercise was first observed by Friden et al. (1981). The authors examined biopsies from subjects experiencing DOMS after running down many flights of stairs. Even though no signs of damage were evident using light microscopy, electron microscopy revealed disruption of the sarcomere structure specifically broadening and streaming of the z-lines (Friden et al. 1981).

Despite a lack of experimental evidence, researchers hypothesized that the non-uniform lengthening of sarcomeres (Huxley et al. 1961, Julian et al. 1979) might explain the mechanism behind eccentric exercise induced-muscle damage. In 1990 Morgan et al. proposed the “popping sarcomere hypothesis”. The authors used an A.V Hill type model that allows for some random variation in the properties of sarcomeres to study the lengthening of active muscle and established that the more a sarcomere is stretched out the less tension can be generated since fewer cross-bridges form at longer sarcomere length. They further demonstrated that in their model rapid uncontrolled elongation to such an extent that there is no overlap between the thick and thin filaments (“popped sarcomere”) would occur in the weakest sarcomeres first. As result these weak sarcomeres would become even weaker, while the stronger sarcomeres remain able to return to their normal length. This theory led to the prediction that in vivo non-uniform lengthening of muscle fibres would occur during eccentric contractions and as a result of “popped weak sarcomeres” more tension would be placed on the stronger sarcomeres during repeated eccentric contractions. A crucial point the authors made was that even though the shortest sarcomeres are concentrated at the ends of a muscle fibre, these are not necessarily the weakest sarcomeres. They further hypothesized that the weak sarcomeres are scattered throughout the length of the muscle and that would explain non-uniform lengthening during eccentric exercise. This hypothesis was, however, only proven 6 years later. In 1996, Talbot & Morgan et al. counted the number of overstretched sarcomeres in a toad muscle fixed during an eccentric contraction and demonstrated the presence of overstretched sarcomeres scattered throughout the muscle.

A complicating factor in extrapolating this evidence to humans is that human skeletal muscle consists of three fibre types that may not be equally activated or equally prone to damage during eccentric exercise (Takekura et al. 2001, Macaluso et al. 2012). The proportion in which different fibre types are present within a specific muscle determines the overall contractile property of that muscle (Saltin et al. 1977). The three types of skeletal muscle fibres that can be identified in humans include: Slow-twitch oxidative fibres (Type I) which have a low myosin ATPase activity and high oxidative capacity (Dubowitz et al. 1960,
Brooke et al. 1970, Ahmadi et al. 2008), fast-twitch oxidative fibres (Type IIa) with moderate myosin ATPase activity and high oxidative capacity, fast-twitch glycolytic fibres (Type IIx) with high myosin ATPase activity and high glycolytic capacity (Brooke et al. 1970). Animal studies have demonstrated that type II fibres are more susceptible to eccentric exercise induced injury than type I fibres (Takekura et al. 2001). The reason for this difference in susceptibility to eccentric exercise induced damage between fibre types is still largely unknown, but it is thought to involve both mechanical and metabolic characteristics.

Rate of force development depend on the myosin ATPase reaction and the velocity of shortening. Type II fibres have a higher rate of force development, sarcomeres are thus unlikely to be synchronised during contraction. Fiber types also differ in terms of some structural proteins such as the wider Z-bands in human slow fibres, the narrow Z-bands in fast fibres may be structurally weaker (for review see Bottinelli et al. 2000).

Morgan et al. (1999) furthermore clearly state in a review on stretch-induced muscle damage, that the damage will depend on the sarcomere length range over which each fibre is stretched and that it varies with fibre type in mixed muscles. Individual variations in fibre type composition of the same muscle exist due to factors such as genetic inheritance, exercise, environment, detraining and disuse (Botinelli et al. 2000). Determination of individual subject’s fibre type should be considered an important component in studies of eccentric muscle damage and this should be considered a possible confounding factor for interpretation of results of previous studies especially where results were unclear.

Primary skeletal muscle damage is not only due to mechanical disruption of structural proteins but also the sarcolemma. The loss of sarcolemmal integrity causes proteins (such as creatine kinase (CK), myoglobin (Mb), fatty acid binding protein (FABP), lactate dehydrogenase (LDH) and fragments of myosin heavy chain (MHC) (Friden et al. 1989, Mair et al. 1992, Melin et al. 1997, Newham et al. 1983, Sayers et al. 2003)) to leak out and appear in circulation. However, it isn’t clear to what extent the appearance of these proteins in circulation represent the extent of the initial insult, or whether they include an indication of secondary damage due to later destruction in response to the primary damage. Although frequently acknowledged, very few studies have been able to interpret the variability in elevation of these markers or their fluctuation over time since measurements are rarely taken at regular intervals especially from day 3 onwards.
Overstretching of sarcomeres may lead to damage to the t-tubules and/or sarcoplasmic reticulum causing alterations in excitation-contraction coupling (E-C coupling) leading to disruption of intracellular calcium (Ca^{2+}) homeostasis (Chen et al. 2007). The sustained Ca^{2+} influx into injured fibres can activate various proteolytic pathways with the ability to cause secondary muscle damage. Alderton & Steinhardt (2000) concluded, based on observations from studies using dystrophic muscle cells with abnormally active Ca^{2+} leak channels, that Ca^{2+} dependent proteolysis (activity of calpains) can cause degeneration by cleaving myofibrillar and cytoskeletal proteins. In addition, if Ca^{2+} homeostasis is not restored within a few days following severe EIMD, the damage to myofibers and cytoskeleton may become irreparable and it could lead to segments of the myofibre becoming necrotic (Allen et al. 2001, Friden et al. 2001, Gissel et al. 2001, Raastad et al. 2010). There is some controversy surrounding this as a mechanism for secondary muscle damage following exercise. Calcium homeostasis could be disrupted in fatigued muscles without the presence of any structural damage. Association between direct evidence of damage (such as z-line streaming) and indirect markers of damage (such as DOMS and the presence of muscle proteins in circulation) is substantial, but not quantitative and mechanisms are poorly understood. This could be due to the number of different protocols used to induce muscle damage.

Many studies of eccentric exercise induced skeletal muscle damage and the subsequent inflammatory response, carefully eliminate all concentric components from the exercise protocol. Skeletal muscle damage induced by purely eccentric contractions is thus an isolated event specific to the exercising muscle and usually occurs without the presence of metabolic or cardiovascular fatigue. Downhill running on the other hand is a much more functional activity combining concentric and eccentric exercise resulting in the release of pro-inflammatory cytokines associated with both damage associated molecular patterns (DAMPs) and metabolic stress.

When running against a negative slope the contracting quadriceps muscle group controls the rate of knee flexion against the force of gravity. The externally imposed tension requirement on the muscle exceeds the tension that would develop at a constant muscle length (Raven et al. 1991, Morgan et al. 1999) and the muscle lengthens while it is contracting. In the laboratory setting the downhill protocol can be manipulated to achieve the desired effect. The greater the negative slope the greater external tension imposed on the muscle while the speed of the treadmill causes additional stress imposed by the rate of strain development. The
duration of the downhill running adds a third dimension, metabolic fatigue, whereas intermittent downhill running may limit damage associated with metabolic stress.

Beaton et al. (2002) demonstrated that structural damage (Z-line streaming) and the presence of immune cells in biopsies from humans’ vastus lateralis muscles following eccentric contractions is highly variable with a coefficient of variance (CV) of 40 to 70%. The authors studied z-band disruption and the presence of immune cells in the vastus lateralis muscle of 5 healthy young men following maximal isokinetic eccentric contractions (240 repetitions at 30 degree angle). Two muscle biopsies were taken within the same muscle 24h post exercise and on a second occasion a single biopsy was taken from the contralateral leg, also 24h following the same damage protocol. The study demonstrated that the within-leg CV for Z-band disruption was 41 ± 30% and between legs 68 ± 36% and immune cell infiltration between biopsies varied with 48 ± 27%. Large individual variability in response to eccentric exercise has been reported on numerous occasions (Chapman et al. 2008, Chen et al. 2006, Clarkson et al. 1992, Gulbin et al. 2002, Hubal et al. 2007, Newham et al. 1983, Nosaka et al. 1996, Paulsen et al. 2010, Sayers et al. 2001, 2003, Sewright et al. 2008, van de Vyver et al. 2012). Therefore, subjects were classified into “low”, “medium” and ”high” responders based on changes in muscle function, CK activity and signs of necrosis. In several of the studies, these divergent response patterns to EIMD may represent an ideal model for identifying mechanisms of inflammation and a second phase of damage potentially induced by limited resolution of inflammation. Inflammation is, on the other hand involved in activation of regeneration. Particularly satellite cells are known to be influenced by pro-inflammatory cytokines.

2.2.2 Satellite cell response to exercise-induced muscle damage

Adult skeletal muscle consists of terminally differentiated tissue, but has remarkable regenerative capabilities. Since Mauro et al. (1961) discovered satellite cells (SC) (muscle progenitor cells located between the sarcolemma and basal lamina of muscle fibres (Moss & Leblond 1970)) it has been known that their activation is crucial for skeletal muscle growth and/or repair. Satellite cells are induced to fuse with muscle fibres adding myonuclei in order to maintain the nuclear domain during growth/ hypertrophy; or to repair damaged fibres following injury. Generation of daughter cells replenishes the SC pool (reviewed in Charge et

Other stem cells (including pericytes, mesoangioblasts, side population cells, haematopoietic progenitor cells and endothelial progenitor cells) also have the capability of contributing to muscle regeneration (reviewed in Macaluso et al. 2012). The ability of non-muscle derived stem cells to engraft into the SC niche (Blaveri et al. 1999, Fukada et al. 2002) has been confirmed in animal models where bone marrow derived stem cells contributed to skeletal muscle regeneration following severe injury (LaBarge et al. 2002, Palermo et al. 2005). This was demonstrated when transplanted GFP-labelled bone marrow derived stem cells entered the satellite cell niche and contributed to skeletal muscle regeneration following irradiation and subsequent muscle damaging exercise. The same authors (Palermo et al. 2005) later used parabiotically joined wild type mice with genetically labelled bone marrow and indicated that stem cells originating in the bone marrow were evident in myofibres after one month of forced exercise (extensor digitorum longus (EDL) overload). Lethal irradiation and bone marrow transplantation have formed a key role in the animal experimental models that therefore do not truly represent exercise-induced regeneration of skeletal muscle. The contribution of these non-muscle stem cells to skeletal muscle repair will therefore not be discussed further. After a short explanation of SC behaviour that leads to the ability to identify satellite cells in tissue, the literature review will proceed to the discussion of damage in humans.

When compared to myonuclei, quiescent SCs (located in the satellite cell niche) have a higher nuclear: cytoplasmic ratio with less organelles and a larger amount of heterochromatin (reviewed in Charge et al. 2004). The quiescent SCs are attached to the basal lamina (integrin α7β1 interact with laminin) and the adjacent myofibre (interaction with m-cadherin) (Boldrin et al. 2010, Gnocchi et al. 2009, Volonte et al. 2005). During SC transition from quiescent into activated cells, their nuclei enlarge and become euchromatic, the cytoplasm expands and the organelles (rough endoplasmic reticulum and mitochondria) start to enlarge (Schultz et al. 1985). The gene expression of these cells differs from that of myonuclei. Therefore proteins such as Ki67 and PCNA (proliferating cell nuclear antigen) are expressed.

Activated SC’s re-enter the cell cycle and start to proliferate. Proliferation occurs in many cell types, but proteins expressed by cells with regenerative potential are also expressed in at
least a portion of satellite cells (e.g. DLK-1 and FA-1) (refer to table 2.5, p. 49). Depending on factors influencing the niche, proliferating satellite cells proceed to myoblasts and further differentiate and may fuse. The progression of SC’s through these phases is coordinated by the up- and downregulation of specific myogenic regulatory factors (MRF’s).

The involvement of hepatocyte growth factor (HGF) in SC activation has previously been shown (Allen et al. 1995) and is thought to initiate the sphingolipid signalling cascade (reviewed in Macaluso et al. 2012). HGF binds to the extracellular matrix of SC’s or interacts directly with the c-met receptor located on the SC surface membrane (Cornelison et al. 1997). Tatsumi et al. 2002 therefore suggested that the co-localization of HGF and c-met receptors can be used as an early indicator of SC activation.

Based on early animal model experiments it is known that the mitotic activity of satellite cells occurs mainly near the site of injury, but SC along the whole fibre can migrate to the injured area. Schultz et al. (1985) monitored SC mitotic activity through autoradiography after 3H-thymidine injection following a crush injury to rodent extensor digitorum muscles. The authors established a gradient along the muscle length and demonstrated that activation of SCs is not restricted to the damaged area. These active SCs migrate to the site of injury under the basal lamina or along adjacent fibres depending on the integrity of the basement membrane (Schultz et al. 1986).
Table 2.5 Satellite cell markers

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Expression</th>
<th>Quiescent</th>
<th>Proliferating</th>
<th>Differentiating</th>
<th>Function</th>
<th>First Auth, date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD34</td>
<td>Stem cells; surface</td>
<td>+</td>
<td>±</td>
<td>-</td>
<td>Modulation of cell activity</td>
<td>Alfaro 2011; Beaufchamp 2000</td>
</tr>
<tr>
<td>c-met</td>
<td>SC surface; sarcolemma; interstitial cells</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Receptor for HGF</td>
<td>Lindstrom 2010; Cornelison 1997</td>
</tr>
<tr>
<td>DLK-1 (Pref-1/pG2)</td>
<td>portion of SC; interstitial cells</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Precursor for FA-1</td>
<td>Lee 1995; Lindstrom 2010</td>
</tr>
<tr>
<td>FA-1</td>
<td>All undifferentiated cells</td>
<td>±</td>
<td>+</td>
<td>-</td>
<td>Marker for cells with regenerative potential</td>
<td>Floridon 2000</td>
</tr>
<tr>
<td>Ki-67</td>
<td>All proliferating cells</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Indicative of proliferation</td>
<td>Bridger 1998; Mackey 2009</td>
</tr>
<tr>
<td>m-cadherin</td>
<td>Ca2+ dependant homophilic cell adhesion molecule</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>Alignment and fusion of myoblasts</td>
<td>Cornelison 1997; Donalies 1999</td>
</tr>
<tr>
<td>MRF4</td>
<td>SC nuclei; myoblasts</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>MRF - differentiation and fusion</td>
<td>Cornelison 1997</td>
</tr>
<tr>
<td>Myf-5</td>
<td>SC nuclei</td>
<td>±</td>
<td>+</td>
<td>-</td>
<td>MRF - migration and SC self-renewal</td>
<td>Beauchamp 2000; Cornelison 1997</td>
</tr>
<tr>
<td>MyoD</td>
<td>SC nuclei; myoblast nuclei</td>
<td>-</td>
<td>±</td>
<td>+</td>
<td>MRF - trigger for terminal differentiation</td>
<td>Cornelison 1997</td>
</tr>
<tr>
<td>Myogenin</td>
<td>SC nuclei; myoblast nuclei</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>MRF- differentiation and fusion</td>
<td>Lindstrom 2010</td>
</tr>
<tr>
<td>NCAM (CD56/Leu-19)</td>
<td>surface embryonic myotubes; SC surface</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Developmental molecule</td>
<td>Fidzianska 1995</td>
</tr>
<tr>
<td>Pax7</td>
<td>SC nuclei</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Indicative of proliferation</td>
<td>Zammit 2004</td>
</tr>
<tr>
<td>PCNA</td>
<td>All proliferating cells</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Indicative of proliferation</td>
<td>McKay 2009</td>
</tr>
</tbody>
</table>

Footnote: Table include markers used to identify satellite cell activity in humans following acute exercise. Abbr: CD- cluster of differentiation; DLK- delta-like homologue; FA- fetal antigen; HGF- hepatocyte growth factor; MRF- myogenic regulatory factor; NCAM - neural cell adhesion molecule; PCNA- proliferating cell nuclear antigen, Pref- preadipocyte factor, SC - satellite cell.

MRF’s bind to a consensus DNA sequence (called an E-box) and form heterodimers with ubiquitously expressed E-protein family members (including E12/47, E2-2, E2-5), and regulate the expression of several muscle-specific and cell cycle regulatory genes (Kataoka et al. 2003).
In vitro single-cell analysis of regulatory gene expression indicated that an increase in the level of MyoD is evident just before the onset of differentiation (Cornelison et al. 1997). MyoD induces the expression of cyclin-dependent kinase inhibitor (p21WAF1/Cip1) resulting in exit from the cell cycle. Exit from cell cycle is the first prerequisite for differentiation (Halevy et al. 1995, Martenelli et al. 1994). However, some SC return to quiescence. The MRF, myf-5 is thought to play a role in promoting SC self-renewal (Cornelison et al. 1997). Particularly when its expression dominates that of myoD. In contrast, when myoD expression dominates, it is associated with the upregulation of myogenin in vitro (Olguin et al. 2007). It is therefore concluded that myoD promotes the progression of proliferating SC’s to start terminal differentiation. Differentiating SC’s also express the myogenic regulatory factor-4 (MRF-4), thought to play an important role in fusion and the formation of new myofibres (Cronelison et al. 1997, Le Grand et al. 2007).

Despite in vivo experiments (mainly animal models using electron microscopy and/or nucleus labelling with BrdU) clearly demonstrating the incorporation of SC’s into damaged fibres, our understanding of the mechanism and specific factors involved in SC activity in humans are mainly based on evidence from in vitro models. Also, the satellite cell response to a single bout of unaccustomed exercise is highly variable (refer to table 2.6, p. 51) and does not seem to progress similarly to bigger injuries induced in small animal models.
Table 2.6 Satellite cell response to acute muscle damaging exercise.

<table>
<thead>
<tr>
<th>First Auth, date</th>
<th>Intervention protocol</th>
<th>Subjects</th>
<th>biopsy time points</th>
<th>Detection</th>
<th>Satellite cell response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malm 2000</td>
<td>eccentric cycling</td>
<td>healthy young men</td>
<td>baseline, post, 6h, d1,d2,d4,d7</td>
<td>NCAM</td>
<td>2.7%↑SC/fibre (48h) in ex leg; 2%↑SC/fibre (24h) control leg</td>
</tr>
<tr>
<td>Crameri 2004</td>
<td>eccentric contractions quadriceps (8 reps of 10 one-leg drop down jumps)</td>
<td>healthy young men</td>
<td>5h, d2,d4,d8</td>
<td>NCAM</td>
<td>± 192%↑SC/myonuclei (d4) FA1 myogenin ± 192%↑ FA-1+ mononuclear cells (d4)</td>
</tr>
<tr>
<td>Dreyer 2006</td>
<td>maximal knee extensor ex (6 sets of 16 reps)</td>
<td>young men vs old men</td>
<td>baseline, d1</td>
<td>NCAM</td>
<td>± 141%↑ SC/myonuclei (d1)</td>
</tr>
<tr>
<td>Crameri 2007</td>
<td>210 maximal ecc contractions quadriceps</td>
<td>untrained men</td>
<td>baseline, 5h,d1,d4,d8</td>
<td>NCAM</td>
<td>5%↑SC/myonuclei (d8) Pax7 myogenin 2%↑ SC/myonuclei (d4) No change</td>
</tr>
<tr>
<td>O'Reilly 2008</td>
<td>300 maximal ecc contractions quadriceps</td>
<td>recreationally active males</td>
<td>baseline, 4h, d1, d3,d5</td>
<td>NCAM</td>
<td>80%↑SC/myonuclei (d3)</td>
</tr>
<tr>
<td>McKay 2009</td>
<td>300 maximal ecc contractions quadriceps</td>
<td>healthy young men</td>
<td>baseline, 4h, d1, d3,d5</td>
<td>Pax7</td>
<td>6%↑SC/myonuclei (d1)</td>
</tr>
<tr>
<td>Mikkelsen 2009</td>
<td>200 maximal ecc contractions</td>
<td>healthy young men</td>
<td>baseline, d8</td>
<td>Pax7</td>
<td>96%↑SC/fibre (d8)</td>
</tr>
<tr>
<td>McKay 2010</td>
<td>300 maximal ecc contractions</td>
<td>healthy young men</td>
<td>baseline,d1</td>
<td>NCAM/ Pax7/ NCAM 36%↑flow cytometry analysis (d1) 28-36%↑IHC analysis (d1)</td>
<td></td>
</tr>
<tr>
<td>Paulesen 2010</td>
<td>70 maximal ecc contractions elbow flexors</td>
<td>healthy young men and women</td>
<td>baseline, 1h,d2,d4,d7</td>
<td>NCAM/Ki-67</td>
<td>combined (1h-d7)↑in ex group than control group</td>
</tr>
<tr>
<td>Snijders 2012</td>
<td>single bout combined endurance resistance ex</td>
<td>healthy young men</td>
<td>baseline, post, 9h</td>
<td>DLK1</td>
<td>19%↑in type I fibres (9h); 27%↑in type II fibres (9h) no change Ki-67</td>
</tr>
<tr>
<td>van de Vyver 2012</td>
<td>10% DHR (12 x 5min bouts) @ 75% VO2max</td>
<td>recreationally active males</td>
<td>baseline, d1,d2</td>
<td>Pax7</td>
<td>30%↑SC/fibre (d1)</td>
</tr>
</tbody>
</table>

Footnote: Table include all studies that measured changes in satellite cell activity following a single bout of muscle-damaging exercise in healthy young men. **Abbr**: ↑- increase, ↓- decrease, d- day, ex- exercise, h- hour, SC- satellite cell.
In addition to the effect of age (Dreyer et al. 2006), fibre type, cross-sectional area, history of muscle injuries and even regular physical activity might influence the number of SCs present within a specific muscle. Based on evidence from animal models showing that type II fibres are more susceptible to damage from eccentric contractions, it is possible that more SCs will be associated with type II than type I fibres. Human *vastus lateralis* muscle is most commonly biopsied. The number of quiescent SCs seem to be equally distributed between fibre types (Kadi et al. 2006). Macaluso et al. (2012) investigated the substantial variability in SC content among young individuals and hypothesized that an active lifestyle may be associated with greater baseline SC numbers. The authors demonstrated that SC number (Pax7+) is proportional to VO2max, suggesting that higher levels of physical activity (even without injury) activates SC proliferation but not fusion. This study indicated no correlation with fiber type or myogenin. Snijders et al. (2012) also demonstrated no difference in the percentage of SCs (DLK1+ and Ki-67+) between fibre types at baseline. The authors then demonstrated that despite increases in DLK1+ cells (19% increase in type I and 27% increase in type II fibres), following a single bout of combined endurance and resistance exercise, no significant changes were observed in SC content. This could imply that existing SCs were activated and began to express DLK1.

This is supported by findings from Mackey et al. (2007), demonstrating that SCs are triggered to become active in response to resistance training without the presence of damage. Taken together these studies suggest that SCs activated to proliferate in response to acute exercise will simply return to the quiescent state unless stimulated to a greater extent or over a longer period of time. In (2004) Zammit et al. proposed a model for renewal of the satellite cell pool involving the expression of the paired box transcription factor, Pax7. The authors used live cell imaging through fluorescent microscopy to observe the activity of isolated mouse primary myoblasts with different expression profiles (Pax7+/MyoD−, Pax7+/MyoD+, Pax7−/MyoD+). A small population of SCs that maintained the expression of Pax7 (Pax7+/MyoD−) returned to quiescence. In agreement, Olguin et al. (2007) later demonstrated that the overexpression of Pax7 downregulates MyoD and therefore represses myogenesis.

Various factors associated with muscle contraction or in the case of EIMD, factors associated with the subsequent inflammatory response are known to affect SC activity *in vitro*. The following paragraphs will discuss the evidence implicating an interaction between inflammatory mediators and SC activity in humans.
In human EIMD models, increases in serum pro-inflammatory cytokines (refer to table 2.1, p. 27) coincide with SC proliferation (refer to table 2.6, p. 51) during the early recovery phase. van de Vyver et al. (2012) demonstrated that a 30% increase in Pax7+ SCs one day following intermittent downhill running (12 x 5min bouts @ 75% VO2max), coinciding with increases in serum IL-6 and TNFα concentrations. Based on evidence implicating IL-6 in SC-mediated hypertrophy in animals (Serrano et al. 2008), McKay et al. (2009) investigated the role of IL-6 in the SC response to eccentric exercise in humans. The authors demonstrated an increased expression of STAT3 responsive genes (cyclin D1 and SOCS3) and the expression of IL-6 within SCs themselves that correlated with an increase in SC proliferation (Pax7+/PCNA+) following muscle lengthening contractions. Toth et al. (2011) confirmed this observation using immunohistochemistry to demonstrate that IL-6 induced STAT3 signalling occurs exclusively in the nuclei of SCs in healthy young men in response to muscle lengthening contractions (300 maximal eccentric contractions, quadriceps).

There is however a lack of evidence showing SC differentiation and fusion in the human exercise model. Various studies have failed to detect changes in intramuscular myoD and/or myogenin protein levels despite increased SC proliferation (Crameri et al. 2004, 2007, Dreyer et al. 2006, Kadi et al. 2004) in response to acute exercise. This supports the notion by Macaluso et al. (2012) that physical activity stimulates the SC pool size. However, in the study of van de Vyver et al. (2012) SC proliferation was not sustained 2 days after one acute bout of downhill running, indicating that regular activity would be required to maintain a greater pool size. It is thus possible that even though pro-inflammatory mediators promote SC proliferation, sustained inflammation (associated with the release of cytokines and growth factors by immune cells) might be delaying or even inhibiting myogenesis.

NFkB is often referred to as the “central mediator of the immune response”. Based on in vitro and animal model experiments it furthermore seems that SC proliferation is promoted and differentiation inhibited by classical intramuscular NFkB signalling (refer to section 2.3.3, p. 58). The next section of this review will therefore focus on a basic understanding of the NFkB signalling pathway and on the involvement of this signalling pathway in the in vivo context of exercise.
2.3 Nuclear Factor Kappa-B (NFκB) signalling pathway

Since muscle damaging exercise is associated with severe cellular stress and an acute inflammatory response, it is not surprising that exercise physiologists began to show interest in NFκB signalling. To date the majority of muscle related NFκB signalling studies have been done in cell culture using either mouse embryonic fibroblasts (MEF), murine C2C12 or rat L6 cell lines. These studies greatly contribute to our understanding of the various NFκB signalling pathways.

The NFκB signalling pathway is an intricate network of inhibitor proteins and transcription factors. In 1999 Pahl et al. reviewed the literature published between 1989 and 1999 and compiled a list consisting of over 150 known activating signals and NFκB target genes. Based on this comprehensive list, it became apparent that the NFκB transcription factor seems to be involved in various aspects of the immune system with upstream activating signals including inflammatory cytokines, oxidative stress, mitogens and bacterial products (Pahl et al. 1999, Bakkar et al. 2010). The authors further concluded that the vast majority of NFκB inducing agents represent a form of stress to cells and that in response many NFκB target genes function to alleviate cellular stress.

2.3.1 NFκB and IκB family members

There are five genes that encode the NFκB family of proteins. These include RelB, RelA (p65), cRel, p50 also known as NFκB1 (derived from precursor p105) and p52 also known as NFκB2 (derived from precursor p100)(Ghosh et al. 1998, Mourkioti et al. 2008, Bakkar et al. 2010).

Since the first discovery of NFκB, the structure and function of its family members (also referred to as subunits) have been extensively investigated, and reviewed in the literature on many occasions (Grilli et al. 1993, Kopp et al. 1995, Verma et al. 1995, Ghosh et al. 1998, Heyden et al. 2004, Mourkioti et al. 2008, Bakkar et al. 2010). The first NFκB molecule described was a heterodimer of p50 and p65 subunits (Kopp et al. 1995, Verma et al. 1995). This protein is still what is commonly referred to as NFκB despite the diversity of other hetero- and homodimers that are now known to also form part of the NFκB family.
Each one of the NFĸB subunits contain a 300 amino acid N-terminal domain, the Rel homology domain (RHD). The RHD is responsible for interaction between subunits and subsequent formation of hetero- and/or homodimers as well as mediating binding with promoter regions containing −ĸB sites (reviewed in Bakkar et al. 2010). Upon further investigation it became clear that NFĸB dimers seem to bind with different affinities to target genes. In 1991 Schmitz et al. indicated that the p65 subunit and therefore heterodimers such as p65/p50 and p65/p52 induce gene expression and are therefore transcriptionally active. Many years later, Tong et al. (2004) indicated that homodimers such as p50/p50 and p52/p52 do not have transactivation domains and are in fact transcriptionally repressive. It was further demonstrated that the heterodimers can be phosphorylated at different amino acids (serines) which will determine their interaction with transcriptional modulators as well as any post translational modification that may occur (Duran et al. 2003, Campbell et al. 2004, O’Shea et al. 2008). The upstream activating signal will therefore determine which serine is phosphorylated and thus ultimately how gene transcription will be affected by a specific NFĸB dimer.

In the absence of an activation stimulus, the NFĸB heterodimers are kept inactive in the cytosol via association with an NFĸB inhibitor protein, known as IkappaB (IĸB). When this inhibition is lifted, IĸB is phosphorylated and targeted for degradation. (Ghosh et al. 1998, Mourkoti et al. 2008, Bakkar et al. 2010). In the inactive state, the IĸBα/p65/p50 complex is however still able to shuttle between the cytoplasm and nucleus (Ghosh et al. 2002, Bakkar et al. 2010) to maintain a basal level of NFĸB induced transcription.

NFĸB signalling can be mediated by two very distinct pathways: the classical (canonical) activation pathway and the alternative (non-canonical) activation pathway. In the classical pathway the NFĸB heterodimer (p65/p50) translocates to the nucleus (Beg et al. 1993) and induces gene transcription while the alternative pathway ends with RelB/p52 complex assembly and translocation to the nucleus.
Fig 2.1 NFkB signalling. A: classical activation of NFkB. 1. Activating signal binds to its membrane receptor 2. Adaptor proteins (TRADD), receptor associated factors (TRAF) and receptor interacting proteins (RIP) are recruited to the membrane 3. RIP binds to NEMO and result in IKKβ phosphorylation 4. IκBα is phosphorylated by IKK complex and targeted for degradation 5. p65/p50 heterodimer translocate into the nucleus. B: alternative activation of NFkB 1. Activating signal binds to its membrane receptor and recruit receptor associated factors (TRAF) 2. Activated NIK phosphorylates IKKα homodimer 3. p100 is phosphorylated and p52 generated through partial proteolysis 4. RelB/p52 complex translocates to the nucleus.

2.3.2 Effect of acute exercise on circulating leukocyte NFkB signalling

It is clear from the previous sections of this literature review that muscle and the immune system are very responsive to one another. Skeletal muscle is not the only tissue in which NFkB signalling is activated during exercise. In 2001 Vider et al. were the first to demonstrate the effect of physical activity on in vivo human leukocyte NFkB signalling . The
authors demonstrated that an increase in the plasma concentrations of NFκB gene products (TNFα and IL-2 receptor) coincided with the presence of transcriptionally active p65 subunits inside peripheral blood lymphocytes. Suggesting that acute exercise (1 hour physical exercise @ 80% VO2max) triggered the classical activation of NFκB in healthy young men.

Acute muscle damaging exercise has also been shown to activate leukocyte NFκB signalling. Garcia-Lopez et al. (2007) indicated increased NFκB activation coinciding with increased p-IκBα and p-IKK protein levels inside peripheral blood mononuclear cells (PBMC’s) following an acute bout of eccentric exercise (12 sets of 10 barbell squatting). More importantly the authors were able to demonstrate that these changes in NFκB signalling were significantly attenuated by six weeks of eccentric training. Similarly, Jimenez-Jimenez et al. (2008) demonstrated that a significant increase in p65/p50 activity and the phosphorylation of IκB in PBMC’s following unaccustomed exercise were reduced with 8 weeks of eccentric training in the elderly. In addition the authors indicated a similar reduction in the mRNA expression of iNOS, IL-6 and cyclooxygenase-2 (COX-2) after training, indicating that the undesired inflammatory response was prevented. Those data provide evidence to suggest that PBMC NFκB signalling may be responsible, at least in part, for triggering the acute inflammatory response following muscle damaging exercise.

In contrast to the study of Garcia-Lopez et al. (2007), Rietjens et al. (2007) demonstrated that despite increases in overall antioxidant capacity, the activity of NFκB in PBMC’s remained unchanged and no inflammatory response was evident following a single session of resistance exercise (8 sets of 10 leg press and extensions). A possible explanation for this contradiction might be the association between NFκB signalling and exercise intensity as observed by Kim et al. (2009). The authors demonstrated a direct link between the intensity (% of reserved heart rate) of concentric treadmill exercise and NFκB nuclear binding activity in PBMCs. Maes et al. (2007) have furthermore demonstrated that PBMC NFκB signalling is responsible for the inflammatory response associated with chronic fatigue syndrome.

The involvement of NFκB signalling in the induction of pro-inflammatory gene expression in PBMCs after exercise is thus highly likely. Specific evidence of a direct link in human exercise models is still lacking.
2.3.3 Intramuscular NFkB signalling

Experiments focussing on NFkB signalling in muscle have taken two quite different approaches. Cell culture (mainly C2C12, myoblasts, MEF) experiments focussed on effects on proliferation and differentiation whereas in vivo (animal and human models) considered inflammation. Few studies in cells, animals or humans focussed on damage and regeneration.

Baeza-Raja et al. (2004) demonstrated a p38 mitogen activated protein kinase (MAPK) (promyogenic factor) dependant elevation of p65/p50 DNA binding activity and that this specific NFkB activation is required for IL-6 production. The authors further demonstrated that transfection of C2C12 cells with specific IL-6 silencing RNA’s (siRNA’s) result in decreased myogenin mRNA levels indicating that IL-6 expression is essential for efficient muscle differentiation. In agreement, decreased IkB ubiquitination, NFkB nuclear translocation and inhibition of differentiation were associated with one another following 3D clinorotation to simulate microgravity in L6 myoblasts (Hirasaka et al. 2005).

On the other hand, several activators of NFkB such as TNFα, TWEAK, RIP2 and IL-1β is known to strongly inhibit myogenesis (Dogra et al. 2006, Girgenrath et al. 2006, Guttridge et al. 2000, Langen et al. 2001, Munz et al. 2002). By stimulating C2C12 cells with different concentrations (0.1-10ng/mL) of TNFα and IL-1β Langen et al. (2001) demonstrated an increase in NFkB activity that ultimately inhibited differentiation. In support of this finding several other studies have also shown that sustained NFkB activation impair differentiation, and that there is an overall decline in NFkB DNA binding during differentiation (Bakkar et al. 2005, Dee et al. 2003,Guttridge et al. 1999, Lehtinen et al. 1996) under normal conditions.

The precise mechanisms by which classical NFkB signalling inhibit myogenesis is still unclear but several possibilities have been proposed. TNFα induced NFkB activation in vitro have been shown to decrease MyoD synthesis and simultaneously destabilize this myogenic regulatory factor (Dogra et al. 2006, Guttridge et al. 2000), thereby limiting differentiation. Wang et al. 2007 furthermore indicated that classical NFkB signalling activates YY1 (transcriptional repressor protein) that in turn represses the transcription of muscle structural proteins such as troponin, myosin heavy chain and α-actin . It is important to note though that the TNFα concentrations used to induce classical NFkB signalling in vitro is above the physiological ranges and that TNFα induced intramuscular NFkB signalling has not yet been confirmed in human exercise models.
Animal experimental models mainly supports the findings of cell culture experiments showing that classical NFκB signalling has a negative effect on myogenesis. Mourkioti et al. (2006) demonstrated that IKK2 depleted mice show enhanced regeneration and faster clearance of inflammation following denervation when compared with wild type mice. This has been supported by various *in vivo* animal studies indicating that NFκB signalling contributes to skeletal muscle damage and/or wasting (Judge et al. 2007, Bakkar et al. 2008, Evans et al. 2010). In 2009, Chiang et al. demonstrated that downregulation of NFκB signalling via honokoil exhibits protective effects against exercise-induced skeletal muscle damage in rats following repeated days of downhill running. The authors suggested that this protective effect was due to the modulation of inflammation-mediated damage to muscle cells.

Based on the evidence from animal models, Durham et al. (2004) hypothesized that skeletal muscle contraction leads to NFκB activation that ultimately promotes protein catabolism. In contrast to their hypothesis, 45 minutes of resistance exercise (*single repetitions of progressively greater weights*) in humans resulted in a significant decrease in NFκB activity immediately post exercise that returned to baseline values following one hour of bed rest. This finding was supported by an *in vitro* model, where the authors isolated the soleus and diaphragm muscles from animals and showed a 44% decrease in NFκB activity following 10 min of *in vitro* electrical stimulation (Durham et al. 2004). In a third model using male ICR mice, the authors indicated that an increase in NFκB activity due to 12 days of hindlimb unloading can be reversed by 10 min of contraction *in vitro*. Based on these findings the authors proposed that acute fatiguing exercise reduces NFκB activity to protect the exercising muscles against wasting.

Contradicting these findings, Vella et al. (2011) demonstrated an increase in NFκB p65 protein levels and nuclear localization in the vastus lateralis muscle of recreationally active males 2 hours following a single bout of high intensity resistance exercise. Vella et al. (2011) furthermore illustrated an increase in NFκB binding to MCP-1, IL-6 and IL-8 promotor regions coinciding with increases in the mRNA expression of these cytokines. Thereby implicating NFκB in the transcriptional control of cytokines known to be central to the post–exercise inflammatory response.

On the other hand various studies have shown no change in intramuscular NFκB activity following a variety of exercise protocols. In 2007 Nieman et al. demonstrated that regardless
of supplementation with an antioxidant (quercetin), 3 hours of moderate intensity cycling per day for 3 consecutive days did not increase muscle NFκB activity in elite cyclists. Focussing on intramuscular gene expression following downhill running, Buford et al. (2009) were also unable to detect any change in NFκB activity in the first 24 hours following exercise in sedentary males.

In summary, pro-inflammatory TNFα, IL-1 and NO activate NFκB activity in leukocytes and induce the expression of additional TNFα, IL-1 and IL-6. TNFα and IL-1 in turn also activate intramuscular NFκB signalling. TNFα and IL-1 also activate intramuscular p38 MAPK signalling known to increase myoD activity, the expression of myogenin and promote fusion. IL-6 on the other hand is known to promote myoblast proliferation through STAT3 signalling (refer to the next section 2.4).

2.4. Intramuscular Signal transducer and activator of transcription (STAT) signalling

There are seven STAT family members (STAT 1, 2, 3, 4, 5A, 5B and 6) that transduce the effects of various cytokines and hormones (Levy et al. 2002). The IL-6 family of cytokines (IL-6, leukaemia inhibitory factor (LIF), ciliary neurotrophic factor, oncostatin M (OSM), IL-11, cardiotrophin-1) and various growth factors (insulin like growth factor-I (IGF-I), HGF, epidermal growth factor, platelet derived growth factor (PDGF), basic fibroblast growth factor (bFGF)) activate STAT3 transcriptional activity and play a central role in the regulation of growth, differentiation and cell survival (Hirano et al. 2000).

The downstream effects of IL-6 is dependent on its interaction with either a membrane bound (gp130) or soluble receptor (sIL-6R) (Robson-Ansley et al. 2010). Binding of the IL-6 family of cytokines to their receptors leads to the homodimerization of gp130 or heterodimerization of gp130 with other gp130-related receptors (LIF receptor β, OSM receptor α, CT-1 receptor α) which results in the activation of the gp-130 associated Janus kinases (JAK1, JAK2, Tyk2). Subsequently gp130 is phosphorylated on tyrosine and the phosphorylated molecule recruits signal-transducing molecules (STATs). STATs are normally located in the cytoplasm until it is activated through phosphorylation of its tyrosine residue (Rane et al. 2000). The tyrosine phosphorylation of STAT3 induces either STAT3 proteins to form homodimers or a STAT3 and another isoform of STAT to form a heterodimer with their phosphotyrosine-SH2 domain.
interactions (Decker et al. 1999). The active STAT dimer then rapidly translocates to the nucleus by importin α/β localization pathway (Rane et al. 2000).

The functional role for STAT3 signalling in growth and differentiation is very diverse and seem to depend on the cell type and/or activating cytokine. In fibroblasts and hematopoietic cell lines, STAT3 promotes proliferation through the transcriptional regulation of cyclin D1 and c-myc respectively (Bromberg et al. 1999, Kiuchi et al. 1999, Shirogane et al. 1999). Following a comprehensive investigation into the role for STAT3 in the growth and differentiation of myoblasts, Kataoka et al. (2003) were able to demonstrate that STAT3 induce the expression of c-myc *(promoting proliferation)* in vitro and that it antagonizes MyoD through direct protein interaction. STAT3 has furthermore been shown to maintain embryonic stem cells in an undifferentiated state (Matsuda et al. 1999).

In agreement, IL-6 induction of STAT3 signalling have been shown to occur exclusively in the nuclei of intramuscular satellite cells (Toth et al. 2011) and correlates with increases in satellite cell proliferation in response to acute muscle lengthening contractions (McKay et al. 2009) in healthy young men. Taken together these results suggest that STAT3 signalling promote proliferation and simultaneously suppresses myogenic differentiation.

Contradicting these findings, Jang et al. (2012) recently indicated an elevation in STAT3 during differentiation that was further increased by JAK3 inhibition in the C2C12 myoblast cell line. The authors furthermore demonstrated that in addition to increased STAT3 signalling, JAK3 inhibition/ knock down *(WHIp54 inhibitor and siJAK3)* significantly increased the expression of myosin heavy chain (MHC), myogenin, myoD and myogenic enhancer factor 2 (MEF-2). Spangenburg et al. (2002) did however demonstrate that satellite cell proliferation *in vitro* induced by LIF *(member of IL-6 family of cytokines)* is mediated by the activation of the JAK2-STAT3 signalling pathway and does not involve JAK3.

On the other hand, IL-6 is known to be associated with muscle wasting in a variety of diseases and *in vivo* models *(reviewed in van Hall et al. 2012)*. Bonetto et al. (2011) proposed a mechanism by which STAT3 causally influence muscle wasting associated with cancer. The authors used both cultured C2C12’s and a C26 cachexia model in conjunction with micro array analysis to demonstrate an association between moderate and severe cachexia and an increase in the IL-6 induced STAT3 gene expression profile. STAT3 co-localization in myonuclei and an increase in phosphorylation status of STAT3 (Y705) were also evident *in vitro.*
It should be noted that most of the early information available on the downstream effects of IL-6 come from *in vitro* experiments where single recombinant cytokines and many different cell lines have been used. It is thus difficult to assess whether the observed *in vitro* effects reflect the *in vivo* situation. More recently, information regarding the *in vivo* action of IL-6 especially in the acute exercise and EIMD models have become available since the presence of IL-6 in circulation following acute exercise (*with or without skeletal muscle damage*) has been a consistent finding (*refer to table 2.1, page 27*).

There is however a lack of investigation into the intramuscular activity and function of STAT3 signalling in response to acute exercise-induced muscle damage. From table 2.7 (*p. 63*) it is clear that only McKay *et al.* (2009) and Toth *et al.* (2011) investigated the effect of IL-6 induced STAT3 signalling in response to EIMD and as mentioned before is in agreement with *in vitro* studies suggesting a role for STAT3 in proliferation.
<table>
<thead>
<tr>
<th>First Auth, date</th>
<th>Intervention protocol</th>
<th>Subjects</th>
<th>Muscle</th>
<th>Hypothesis</th>
<th>peak</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trennerry 2007</td>
<td>Resistance exercise (3sets of 12 reps max leg extension)</td>
<td>healthy men (n=7)</td>
<td>VL</td>
<td>Intramuscular STAT signalling in response to resistance exercise</td>
<td>2h</td>
<td>STAT3 important in skeletal muscle remodelling and adaptation</td>
</tr>
<tr>
<td>Boonsong 2007</td>
<td>90min one legged cycling</td>
<td>healthy men (n=8)</td>
<td>VL</td>
<td>effects of exercise on basal and insulin-mediated changes in the activation (phosphorylation) of the signalling molecules involved in the regulation of SREBP-1c keletal muscle</td>
<td>no change</td>
<td>exercise-induced changes in muscle SREBP-1c expression might be mediated by the activation of the ERK1/2 pathway</td>
</tr>
<tr>
<td>Trennerry 2008</td>
<td>Resistance exercise</td>
<td>healthy young (n=10) vs old (n=10) men</td>
<td>VL</td>
<td>effect of intense resistance exercise on STAT activity in aged muscle</td>
<td>2h</td>
<td>enhanced STAT3 signaling responsiveness to proinflammatory factors may impact on mechanisms of muscle repair and regeneration</td>
</tr>
<tr>
<td>McKay 2009</td>
<td>300 muscle lengthening contractions</td>
<td>healthy young male (n=12)</td>
<td>VL</td>
<td>Role of IL-6 in satellite cell response to exercise</td>
<td>4h</td>
<td>IL-6 induced STAT3 signalling occurs is associated with satellite cell proliferation</td>
</tr>
<tr>
<td>Olmedillas 2010</td>
<td>chronic muscle loading (tennis)</td>
<td>professional male tennis players (n=9)</td>
<td>MTB</td>
<td>effect of chronic muscle loading on leptin signalling in human skeletal muscle</td>
<td>n.a</td>
<td>p-STAT3 reduced in non-dominant arm; role for leptin signalling in hypertrophy</td>
</tr>
<tr>
<td>Trennerry 2011</td>
<td>12 weeks of resistance training</td>
<td>healthy young men</td>
<td>VL</td>
<td>responsiveness of IL-6 and PDGF-BB to intense exercise, along with STAT3 activation, before and after 12 weeks of resistance training</td>
<td>3h</td>
<td>Unaltered by 12 weeks of training</td>
</tr>
<tr>
<td>Toth 2011</td>
<td>300 muscle lengthening contractions</td>
<td>healthy young male (n=12)</td>
<td>VL</td>
<td>STAT3 mediated satellite cell response</td>
<td>24h</td>
<td>IL-6 induced STAT3 signalling occurred exclusively in the nuclei of SCs in response to MLC. SCs were induced to proliferate under the control of STAT3 signaling</td>
</tr>
<tr>
<td>Drummond 2011</td>
<td>Single bout resistance exercise</td>
<td>healthy young (n=13) vs old (n=13)</td>
<td>VL</td>
<td>Amino acid transporters and muscle protein anabolism in the elderly</td>
<td>3h</td>
<td>In older adults, the increased nuclear p-STAT3 may be indicative of a stress response to export amino acids from muscle cells.</td>
</tr>
<tr>
<td>Guerra 2011</td>
<td>30s Wingate</td>
<td>healthy young men (n=15)</td>
<td>VL</td>
<td>effect of glucose on sprint exercise signaling cascades linked to leptin actions</td>
<td>30min</td>
<td>sprint exercise performed under fasting conditions is a leptin signaling mimetic in human skeletal muscle</td>
</tr>
<tr>
<td>Caldow 2012</td>
<td>None</td>
<td>young vs old healthy men</td>
<td>VL</td>
<td>Intramuscular inflammatory gene expression increase with age</td>
<td>resting / fasting</td>
<td>No difference in muscle inflammatory gene expression between young and old men at rest</td>
</tr>
<tr>
<td>Fuentes 2012</td>
<td>30s Wingate</td>
<td>healthy male (n=10) vs female (n=17)</td>
<td>VL</td>
<td>Sex dimorphism in skeletal muscle signalling in response to sprint exercise</td>
<td>2h</td>
<td>No difference in skeletal muscle signalling response between men and women</td>
</tr>
</tbody>
</table>

Footnote: Table include all studies investigating intramuscular STAT3 signalling following exercise intervention in human subjects. Abbr: h- hour, IL- interleukin, JNK- janus kinase, MLC- muscle lengthening contractions, MTB- muscularis triceps
CHAPTER 3: HYPOTHESES AND OBJECTIVES

Studies 1 and 2: High intensity intermittent downhill running: a model for testing sensitivity to inflammation and regenerative capacity of skeletal muscle

We hypothesized that:

- Divergent individual responses to unaccustomed high intensity downhill running might explain the variability observed in circulating markers of muscle damage and that these response patterns are at least in part influenced by the systemic cytokine response.

- Certain individuals are prone to developing sustained inflammation following unaccustomed exercise leading to a second phase of muscle damage that is not directly related to the initial mechanical insult.

- An early anti-inflammatory response is associated with earlier resolution of indirect biomarkers of muscle damage and satellite cell activation.

- The systemic cytokine response following downhill running might induce the mobilization of hematopoietic progenitor cells (HPC) in addition to leukocytosis.

We therefore evaluated:

- Changes in indirect markers of muscle damage following unaccustomed high intensity downhill running over a period of 7 days in healthy young men in an attempt to identify different individual response patterns.

 - *Parameters:* serum creatine kinase (CK) activity, serum myoglobin (Mb) concentration, fatigue and delayed onset muscle soreness (DOMS)

- Pro-inflammatory and regenerative responses following downhill running to determine whether or not an early anti-inflammatory response is associated with earlier resolution of muscle damage and regeneration.
o **Parameters:** differential white blood cell count (diff), serum tumour necrosis factor α (TNFα), serum interleukin-1β (IL-1β), serum interleukin-6 (IL-6), serum interleukin-10 (IL-10), serum granulocyte colony stimulating factor (G-CSF), intramuscular myeloperoxidase (MPO), intramuscular NFκB signalling, satellite cell activity (*Pax7, myoD, myogenin*), intramuscular (STAT3) signalling.

- Changes in the percentage of circulating hematopoietic progenitor cells in the granulocyte, monocyte and lymphocyte whole blood subpopulations.

 o **Parameters:** CD34 (*that do not express any lineage specific markers such as HLDA-DR, CD33 and CD38*).

Study 3: *Relationship between secondary skeletal muscle damage, leukocytosis and the cytokine response to high intensity intermittent downhill running.*

We hypothesized that:

- Activation status of circulating neutrophils might be related to changes in serum IL-6 concentrations in healthy young men following intermittent high intensity downhill running.

- Greater neutrophil functional activity during the early recovery phase might lead to the development of secondary skeletal muscle damage.

- Peripheral blood mononuclear cell (PBMC) NFκB signalling might be involved in the production of IL-6 following the cessation of exercise.

We therefore evaluated:

- Neutrophil and macrophage activation and their potential association with a second phase of skeletal muscle damage.

 o **Parameters:** neutrophil surface expression of CD11b, C5aR, macrophage surface expression of CD68, CD163 and serum soluble intercellular adhesion
molecule-1 (sICAM-1), sP-selectin, MPO, matrix metalloprotease-9 (MMP-9), CK.

- The pro- versus anti-inflammatory cytokine response in relation to individual changes in circulating indices of muscle damage and PBMC NFκB p65 nuclear localization.
 - Parameters: Serum IL-6, soluble interleukin-6 receptor (sIL-6R), interleukin-8 (IL-8), interleukin-1 receptor antagonist (IL-1ra), interleukin-4 (IL-4) and IL-10.
CHAPTER 4 : METHODOLOGY

This research project involved three human longitudinal non-cross over downhill running intervention studies entitled: “NFCB signalling pathway responses to eccentric exercise and
its involvement in a second phase of muscle damage”. The original research proposal as well as all subsequent amendments has been approved by the Health Research Ethics Committee (Ethical Reference no: N10/05/154) at Stellenbosch University.

The Health Research Ethics Committee complies with the South African National Health Act No. 61 2003 as it pertains to health research and the United States Code of Federal Regulation Title 45 Part 46. This research study were therefore conducted according to the ethical norms and principles for research, established by the Declaration of Helsinki, the South African Medical Research Council Guidelines as well as the guidelines for Ethical Research: Principles Structures and Processes 2004 (Department of Health, South Africa).

4.1. Subject recruitment

Inclusion criteria:
- Male between the ages of 18 – 25 years
- Moderate exercise between 2 and 6 hours per week
- Not participating in any hiking or downhill walking
- Informed consent was obtained.

Exclusion criteria:
- Treated for or have a medical history of a chronic inflammatory condition.
- Acute use of anti-inflammatory treatment within 3 weeks prior to study.
- Use of any prescribed or over the counter medication/ supplements.
- Any form of clinical infection
- Skeletal muscle or exercise related injury in the previous 3 months.
- Informed consent was not obtained.
Volunteers were recruited through flyers (Appendix A) from the student population at Stellenbosch University. A total of sixty seven healthy young men volunteered to participate in the research project. From these volunteers nine did not fit the inclusion criteria and were therefore excluded. Since participation was totally voluntary and subjects had the right to withdraw at any time, a further five volunteers withdrew for personal reasons. A total of fifty three healthy male volunteers were thus included in the research project and informed of the study procedure verbally and in writing before signing an informed consent form (Appendix B).

These 53 participants were randomly subdivided into a downhill run (DHR) (n=40) and control group (n=13). Preliminary research done by our group showed different individual creatine kinase (CK) response patterns following intermittent downhill running (60 min, 10% decline @ 85% VO\textsubscript{2max}) (van de Vyver et al. 2012). In the current research project, higher numbers are therefore necessary in the experimental group in order to maintain statistical power while investigating these individual differences in the time course and magnitude of CK appearance and resolution in circulation.

<table>
<thead>
<tr>
<th>Table 4.1 Subject characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
</tr>
<tr>
<td>(n=53)</td>
</tr>
</tbody>
</table>

Footnote: Values are presented as mean ± SE. BMI was calculated using the following formula: body weight (kg)/ height\(^2\) (m\(^2\)). VO\textsubscript{2max} was determined using an incremental test to fatigue (refer to section 4.2.1.1). Abbr: BMI – Body Mass Index; kg- kilograms; m- meter; ml – millilitre; yr – years.

4.2 Study design

This research project was conducted in the Exercise Physiology laboratory, Department of Physiological Sciences, Stellenbosch University.

Participants were instructed to refrain from using any anti-inflammatory drugs, painkillers, immune boosting supplements or alcohol for the duration of the study. Furthermore, participants were encouraged to limit their physical activity and to keep a diary of any
unaccustomed activities (*Appendix C*) starting one week before the baseline testing and continue throughout the duration of the study. At the end of the study, participants reported any unaccustomed physical activity for the previous 3 weeks. This was necessary to have some control over the daily variation in indirect markers of muscle damage and satellite cell activation status.

Figure 4.1 Study design A – Study 1 and Study 2 B - Study 3. Abbr: Bx – muscle biopsy (*vastus lateralis*), d – day, VO₂max – fitness test, DHR – downhill run, ▲ blood sample
4.2.1 Exercise testing

All participants were familiarized with the treadmill (*Runrace, Technogym, Italy*) and the exercise testing procedures explained to them verbally, upon their first arrival in the exercise laboratory.

In *study 1* and *study 2*, both groups performed a fitness (*VO₂*_{max}) test (*refer to section 4.2.1.1, below*) 2-4 days after the baseline muscle biopsy. This was necessary to deter any influence that exercise testing might have on satellite cell activity. Since the biopsy procedure is invasive, participants were given sufficient time to recover, before they participated in the incremental fitness test. In *study 3 (no muscle biopsies)*, both groups performed the fitness test approximately 10 days before the intervention protocol on day 0. In addition to the fitness test, the DHR group also participated in a downhill running intervention protocol (*refer to section 4.2.1.2, p. 71*), while the control group were subjected to bed rest for the same duration as the intervention protocol.

4.2.1.1 Incremental fitness test (*VO₂*_{max})

Following a 5 minute (min) warm up on the treadmill (*RUNRACE HC1200; Technogym*) the incremental fitness test started at a standard speed of 8 km.h⁻¹ at a level gradient. Thereafter, the speed was increased every 30 seconds by 0.5 km.h⁻¹ until voluntary exhaustion. Participants were encouraged verbally to continue for as long as possible although each participant could stop the test at any time due to fatigue or inability to continue. The peak treadmill speed (PTS) as well as the total time duration of the test were recorded together with breath-by-breath gas analysis data.

Breath-by-Breath gas analysis: Before every incremental exercise test the metabolic system (*Oxycon Pro, Jaeger, Germany*) was calibrated with atmospheric O₂ (20.93%) and a known concentration of CO₂ (4.97%). Following calibration the system was linked to the oxygen mask worn by the participants throughout the incremental test. Each participants VO₂_{max} was calculated using the highest average volume of oxygen consumed over a period of 30 seconds that coincided with an respiratory exchange ratio (RER) above 1.1.
4.2.1.2 Downhill run

Participants in the downhill run (DHR) group performed a 60-min intermittent downhill run protocol consisting of 12 x 5 min bouts against a 10% decline at a constant velocity of 15 km.h\(^{-1}\) on a motorized treadmill (RUNRACE HC1200; Technogym). In between each bout of downhill running, participants were allowed a 5 min standing rest and voluntary fluid (water) intake.

4.2.2 Fatigue and muscle soreness assessment

Participants were asked to self-asses the fatigue and muscle soreness they experience by answering a questionnaire based on a modified Borg scale (Appendix D). All of the participants completed the questionnaire before the downhill run as well as immediately, 2 hours (h) (study 3 only), 4h and on days 1, 2, 3, 4 (all of the studies) and 7 (study 1 and study 2) post intervention. The first section of the questionnaire focusses on fatigue in different muscle groups (quadriceps, hamstrings, calves) of the lower limb, whereas the second part of the questionnaire focusses on muscle soreness specifically in the quadriceps muscle group.

4.2.3 Sample collection

Throughout the research project, both the downhill run (DHR) and control groups were subjected to the exact same study design with regards to sample collection. In study 1 and study 2, eight venous blood samples and four skeletal muscle biopsies (vastus lateralis) were collected from both groups over a period of 21 days. In study 3, eight venous blood samples were collected from both groups over a period of 5 days without the collection of any skeletal muscle biopsies.

4.2.3.1 Blood sampling

A qualified phlebotomist collected blood samples from the forearm vein in the supine position using the venipuncture technique in combination with the BD vaccutainer system.
On the day of the intervention protocol (day 0) a sample was collected pre- (all of the studies), immediately post (all of the studies), 2h post-(all of the studies) the downhill run for the DHR group and pre (all of the studies), immediately post (all of the studies), 2h post (study 3 only) and 4h (all of the studies) post a 90 min bed rest for the control group. On days 1, 2, 3, 4 (all of the studies) and 7 (study 1 and 2 only) one sample was collected every day (between 12:00 and 14:00) from each participant (refer to Fig. 4.1, p. 69). At each time point a standard Serum Separating Tube (SST) as well as a EDTA tube (BD Vacutainer SST II Advance, Becton Dickinson and Company) was filled with blood and immediately processed for either storage or analysis.

- SST tubes were left to coagulate at room temperature for no longer than 10 minutes and then centrifuged at 3000 RPM for 10 min @ 4 °C. Serum was immediately frozen in aliquots and stored at - 80 °C. The serum samples were analysed (refer to section 4.3.1, p. 75) for indirect markers of muscle damage (creatine kinase, myoglobin), a metabolic stress marker (cortisol) and for various cytokines and adhesion molecules (tumour necrosis factor- alpha (TNFa), interleukin-1 receptor antagonist (IL-1ra), interleukin 1beta (IL-1β), interleukin-4 (IL-4) interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), granulocyte colony stimulating factor (G-CSF), macrophage inflammatory protein-1beta (MIP-1β), soluble intracellular adhesion molecule-1 (sICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), soluble P-Selectin (sP-Selectin) soluble IL-6 receptor (sIL-6R), metalloproteinase-9 (MMP-9), myeloperoxidase (MPO)).

The whole blood samples collected in the EDTA tubes were immediately processed and analyzed. Absolute and differential white blood cell count was determined using a universal cell counter (Cell-Dyn 3700, Diagnostech) (study 1 and study 3) (refer to section 4.3.2.1, p. 79). Whole blood was analysed using multicolour flow cytometry to determine the expression of markers indicative of neutrophil and macrophage activation status (CD11b, CD163, CD68, CD88, intracellular MPO, CD45) (study 3) and circulating haematopoietic progenitor cells (CD34, CD38, CD33, HLA-DR) (study 2) (refer to section 4.3.2.2, p. 79). Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and stained ex vivo using immunofluorescent antibodies to determine nuclear vs cytoplasmic localization of the NFκB p65 transcription factor (refer to section 4.3.3, p. 83).
4.2.3.2 Needle Muscle biopsies

A qualified medical doctor (Mb.ChB) who is well trained in the procedure performed the biopsies using a sterile 5mm Bergstrom muscle biopsy needle (Dixons Surgical Instruments Ltd. SS11 8YB-UK) with assisted manual suction (Bergstrom 1975, Hennessey et al. 1997). Local analgesia (Xylo tox L – 1.8ml Lignocaine HCl/ 2% m/v Noradrenaline 1:80000 and Xylo tox S.E Plain 1.8 ml Lignocaine HCl, Adcock Ingram Ltd.) was injected into the biopsy site (skin and fascia) and as is customary for the procedure, no sedatives were provided.

In study 1 and study 2, all of the participants in both the control (n=8) and DHR (n=22) groups were subjected to a baseline muscle biopsy from the vastus lateralis muscle of the left leg 14 days prior to the intervention protocol. In the early recovery phase, three biopsies were taken from four participants in the control and twelve participants in the DHR group at 4h, day (d) 1 and d2. In the late recovery phase on d3 and d4 biopsies were taken from the remaining four participants in the control group and ten participants in the DHR group (refer to Fig. 4.1 p. 69 and Fig. 4.2 p. 74). Subjects were randomly selected for the collection of biopsies during either the early (4h, d1, d2) or late recovery phase (d3, d4).

Fig 4.2 Timeline for skeletal muscle biopsy sampling. Panel A – DHR group Panel B - Control group. There was a distance of 3cm between biopsy sites on the same leg. **Abbr:** Bx – muscle biopsy, d – day, h - hour.
Approximately 50-100 mg muscle was collected at each time point and divided into three parts:

- One piece of each biopsy was snap frozen in liquid nitrogen and stored at -80 °C. This was used for Western blot analysis (refer to section 4.3.4, p. 84) to determine intramuscular signalling by assessing the ratio between total and phosphorylated protein levels of the following transcription factors: signal transducer and activator of transcription-3 (STAT3), Nuclear factor kappa-B inhibitor protein (IkBα) and P38 mitogen activated protein kinase (P38 MAPK). Western blot analysis was further used to assess myoD and myogenin protein levels as an indication of satellite cell activity. Intramuscular neutrophil and macrophage activity was assessed by detecting changes in myeloperoxidase (MPO) protein levels.

- A second piece of each biopsy was embedded in tissue freezing medium (Jung #020108926) and frozen in iso-pentane that had been pre-cooled in liquid nitrogen. The sample was stored at -80°C until cryosectioning between -20 °C and -18 °C using a microtome (CM1100, Leica). Each individual participant’s fibre type composition was determined using a myosin ATPase assay at a pH level of 4.3 in order to distinguish between Type I and Type II fibres (refer to section 4.3.7, p. 88). Cryosections were also stained with immunofluorescent antibodies against Pax7 (marker of quiescent and proliferating satellite cells) and laminin (basil lamina marker) (refer to section 4.3.8, p. 89).

- The third part of the biopsy was placed in a 3-4% paraformaldehyde solution containing 2.5% sucrose. These samples were embedded in LR-White Resin for electron microscopy to visualize any structural signs of muscle damage (z-line streaming/ sarcolemmal damage) (refer to section 4.3.9, p. 90).
4.3 Laboratory analysis

Laboratory analysis was performed in the following laboratories: molecular and histology laboratories of the department of Physiological Sciences (Stellenbosch University), the Central Analytical Facility at Stellenbosch University (live cell imaging and flowcytometry unit, DNA sequencing unit), BD BioSciences training centre (Tygerberg campus, Stellenbosch University), the national health laboratories (Electron microscopy unit, Tygerberg hospital), Pathcare commercial pathology laboratory (Stellenbosch, South Africa).

4.3.1 Analysis of serum

4.3.1.1 One step sandwich assays: indirect markers of muscle damage

For both groups the serum samples for all time points were analyzed by a commercial pathology laboratory (Pathcare) using one-step sandwich assays for creatine kinase (CK) activity (CARDIAC Calibrator # 386371) and myoglobin (Mb) concentration (CARDIAC Calibrator # 973243). The normal clinical reference range for CK was between 15 and 195 u.L\(^{-1}\) at 37 °C and for Mb between 17 and 106 ng.mL\(^{-1}\).

4.3.1.2 Bio-Plex Pro Human Cytokine assays (study 1 and study 2)

Serum samples were analysed for various cytokines (TNF\(\alpha\), IL-6, IL-1\(\beta\), IL-10 G-CSF), chemokines (MIP-1\(\beta\)) and adhesion molecules (ICAM-1, VCAM-1) using either the Bio-Plex Pro Human cytokine Group I assay (6-Plex, #M500002ALX, BioRad Laboratories) or the Bio-Plex Pro Human cytokine Group II assay (2-Plex, #MF000000AY, BioRad Laboratories) in combination with the Bio-Plex suspension array system (Luminex 100).

These assays are magnetic bead-based multiplex assays using an antibody directed against the desired targets that is covalently coupled to internally dyed beads. The coupled beads then react with the serum sample, while a series of washing steps remove all unbound protein. A biotinylated detection antibody specific to an epitope that is different from that of the capture antibody is then added resulting in the formation of a sandwich around the target molecules. Streptavidin-phycoerythrin (streptavidin-PE) is added and binds to the biotinylated detection antibodies on the beads. The data were acquired using a dual-laser, flow-based microplate
reader (Luminex 100) that detects the internal fluorescence of the individual dyed beads as well as the fluorescent reporter signal on the bead surface. The intensity of fluorescence detected on the beads indicated the relative quantity of target molecules in each sample. The data were presented as fluorescent intensity on the Bio-Plex Manager™ software. The observed concentration of each target molecule was calculated from its fluorescent intensity based on the 5PL regression standard curve generated for each target.

Table 4.2 Normal physiological ranges of group I cytokines

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Concentrations in Range</th>
<th>Observed Concentration</th>
<th>Median of Concentrations in Range (n=68)</th>
<th>Mean of Concentrations in Range (n=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-CSF</td>
<td><1.50</td>
<td><1.50</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>IL-1β</td>
<td><0.70</td>
<td>0.02-0.70</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.50-9.00</td>
<td>0.02-9.00</td>
<td>0.00</td>
<td>0.73</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.40-2.00</td>
<td>0.10-2.00</td>
<td>0.00</td>
<td>0.13</td>
</tr>
<tr>
<td>MMP-1β</td>
<td>0.00-47.00</td>
<td>1.70-47.00</td>
<td>14.24</td>
<td>14.75</td>
</tr>
<tr>
<td>TNF-α</td>
<td>6.00-588.00</td>
<td>0.10-588.00</td>
<td>0.00</td>
<td>6.92</td>
</tr>
</tbody>
</table>

Footnote: Information provided by BioRad Laboratories. *Bio-Plex suspension array system tech note 6029.*

Samples were prepared according to the manufacturer’s instructions. For the Bio-Plex Pro Human cytokine Group I assay (6-Plex, #M500002ALX, BioRad Laboratories), one volume of serum was diluted with 3 volumes of sample diluent (Item #10014641). For the Bio-Plex Pro Human cytokine Group II assay (2-Plex, #MF000000AY, BioRad Laboratories) serum was diluted 1:4 in sample diluents and then further diluted 1:25 using standard diluent (L9703888 Rev C). A series of 8 standards each with a specific known concentration of all the target molecules was prepared according to the manufacturer’s instructions using a lyophilized standard (10001475 Rev B) and standard diluent (L9703888 Rev C).

The standards and each serum sample was assigned to a specific well of the 96-well microplate. The total number of wells that were used including 25% excess were determined and the volume of the coupled beads, detection antibodies and Streptavidin-PE needed were calculated accordingly. All the solutions and buffers used during this assay was obtained
from the Bio-Plex Pro Human cytokine Group I and II assay kits respectively. All standards were run in duplicate with mean covalent of variance and detection limit for each target molecule: IL-1β (13.4% CV, 0.50 pg.mL$^{-1}$), IL-6 (10.86 % CV, 0.50 pg.mL$^{-1}$), IL-10 (10.3 % CV, 1.5 pg.mL$^{-1}$), G-CSF (10.3% CV, 0.8 pg.mL$^{-1}$), MIP-1β, (14.1% CV, 1.3 ng.mL$^{-1}$).

For step by step Bio-plex pro human cytokine assay procedure refer to Appendix E.1.

4.3.1.3 Enzyme-linked immunosorbent assay: Cortisol (study 1)

Serum cortisol concentrations were determined using a solid phase enzyme-linked immunosorbent assay (ELISA) (EIA 1887 DRG Cortisol ELISA, # 43K041). The assay is based on the principle of competitive binding, where the cortisol in the serum samples compete with a cortisol-horseradish peroxydise conjugate for binding with a monoclonal antibody directed against an antigenic site on the cortisol molecule. The amount of bound peroxydase conjugate is inversely proportional to the concentration of cortisol in each sample. All solutions and buffers used in this assay were part of the ELISA kit (EIA 1887 DRG Cortisol ELISA, # 43K041) and prepared as per manufacturer’s instructions. The cortisol concentration of each serum sample were read directly from the standard curve.

For step by step ELISA procedure refer to Appendix E.2.

4.3.1.4 Milliplex xMAP immunoassays (study 3)

All serum samples collected from the downhill running participants in study 3 were analysed for various cytokines (IL-1ra, IL-4, IL-6, IL-8, IL-10) (Milliplex human cytokine/chemokines panel I HCYTOMAG-60K-05), soluble IL-6 receptor (sIL-6R) (Milliplex human soluble cytokine receptor HSCR-32K-01), soluble ICAM-1, P-selectin, MPO (Milliplex Human CVD panel 2, HCVD2MAG-67K-03) and MMP-9 (Milliplex human MMP2 kit, HMMP2-55K-01) using Milliplex map immunoassay kits in combination with the Luminex 100 suspension array system.

These assays are based on the Luminex xMAP technology that used proprietary techniques to internally color code microspheres with fluorescent dyes. A distinctly colored bead coated with a specific capture antibody captures the analyte of interest in the serum sample. A biotinylated detection antibody is then introduced and incubated with Streptavidin PE conjugate. The beads are then passed
rapidly through a laser, which excites the internal dyes, a second laser excites the fluorescent dye (PE) on Streptavidin. Based on this fluorescent reporter signal the results of each individual bead is quantified.

Samples were prepared according to the manufacturer’s instructions. For the Milliplex human cytokine/chemokines magnetic bead panel (5-Plex, #HCYTOMAG-60K, Milliplex xMAP kit, #2058418) undiluted serum was used in the assay. For the Milliplex human MMP2 panel (#HMMP2-55K, Milliplex xMAP kit, #2058420), one volume of serum was diluted with 20 volumes of assay buffer (Item #2026205). For the Milliplex human soluble cytokine receptor panel serum was diluted with 5 volumes of serum matrix and for the Milliplex human cardiovascular panel 2 (#HCVD2MAG-67K, Milliplex xMAP kit, 32060448) serum was diluted with 100 volumes of serum matrix. A series of 7 standards each with a specific known concentration of all the target molecules was prepared according to the manufacturer’s instructions using a lyophilized standards and standard diluent provided in each kit respectively. In addition, two quality control samples (also provided in each kit respectively) were run in duplicate to ensure the accuracy of each assay.

All standards were run in duplicate with mean covalent of variance and detection limit for each target molecule: IL-1ra (2.1% CV, 8.3 pg.mL$^{-1}$), IL-4 (2.9% CV, 4.5 pg.mL$^{-1}$), IL-6 (2% CV, 0.9 pg.mL$^{-1}$), IL-8 (1.9% CV, 0.4 pg.mL$^{-1}$), IL-10 (1.6% CV, 1.1 pg.mL$^{-1}$), sIL-6R (5.6% CV, 3.6 pg.mL$^{-1}$), MMP-9 (7% CV, 1 pg.mL$^{-1}$), sP-Selectin (15% CV, 0.051 pg.mL$^{-1}$), sICAM-1 (15% CV, 0.019 pg.mL$^{-1}$), MPO (15% CV, 0.036 pg.mL$^{-1}$).

For the step by step immunoassay procedures refer to Appendix E.3

4.3.2 Analysis of whole blood
4.3.2.1 Absolute cell counts

Whole blood samples (EDTA tubes) for both groups were analysed using an automated hematology cell counter (Cell-Dyn 3700, Abbott Diagnostics). Absolute red blood cell (RBC) count as well as total (WBC) and differential white blood cell (diff) count were determined for all time points.
4.3.2.2 Multicolour flow cytometric analysis

4.3.2.2.1 Circulating haematopoietic progenitor cells (study2)

Whole blood collected in EDTA tubes immediately before and 4h post downhill running were analysed for the expression of the CD34 labelled fluorescein isothiocyanate (Mouse Anti-human, #560942), CD38 labelled phycoerythrin (Mouse Anti-human, # 560981), CD33 labelled allophycocyanin (Mouse Anti-human, #551378), and HLA-DR labelled peridin chlorophyll protein (Mouse Anti-human, #347402) antigens (Becton Dickinson) by using four colour staining. Since it is a multicolour cytometric analysis fluorescent compensation settings were established through an compensation experiment using BD anti-mouse compensation beads (refer to Appendix E.4.1).

Following the compensation experiment, whole blood samples were immunofluorescence labelled by multicolour staining (refer to Appendix E.4.2) and analyzed using flow cytometry (FACSCaliur system, Becton Dickinson). Analysis was performed by using separate gates on the lymphocyte, monocyte and granulocytes regions with a minimum of 50 000 events acquired (refer to Fig. 4.3 p. 80). The percentage of cells expressing each of the antigens were determined in all of the regions using FACSDiva software (Becton Dickinson).
Fig. 4.3 Multicolour flow cytometric analysis. A.1 Whole blood subpopulations. A.2 CD34⁺ B.1 CD33⁻. B.2 CD38⁻ B.3 HLA-DR⁻ haematopoietic progenitors detected in the monocyte region (R2).
4.3.2.2.2 Activation status of circulating neutrophils and macrophages (study 3)

Whole blood (EDTA tubes) collected during study 3 immediately before, immediately post, 2h post and 4h post downhill running were analysed using multicolour fluorescent staining in combination with flowcytometry (FACS Canto, BD Biosciences).

The expression of intracellular myeloperoxidase (MPO) (FITC Anti-human, #333138, BD Biosciences), CD11b/Mac1 (Horizon V450 Anti-human, # 560480, BD Biosciences), CD163 (APC Anti-human , #333610, Biolegend), CD88/C5aR (PE Anti-human #344304, Biolegend) and CD68 (PerCPCy5.5 Anti-human, #333814, Biolegend) antigens were determined within the granulocyte and monocyte region respectively by setting polygonal gates surrounding these specific populations of cells. CD45 (APCCy7 Anti-human, #557833, BD Biosciences) was used as a lymphocyte control marker to ensure that no lymphocytes were included in the monocyte gate.

A minimum of 10 000 events were recorded in the granulocyte region prior to data analysis. Since it is a multicolour cytometric analysis fluorescent compensation settings were established through an compensation experiment (refer to Appendix E.4.3) and regions of positive and negative staining were determined through a FMO (fluorochrome minus one) experiment (refer to Appendix E.4.4) using BD anti-mouse compensation beads (BD comp bead plus #51-9006274, BD comp bead negative #51-9006227). Whole blood samples were immunofluorescently labelled by multicolour staining (refer to Appendix E.4.5).

Data analysis was performed by using separate gates on the monocyte and granulocyte regions with a total of 10 000 events acquired in the granulocyte region. The percentage of cells expressing each of the antigens as well as the co-expression of antigens were determined in each of the regions using FACSDiva software (BD Biosciences).
Fig. 4.4 Multicolour flow cytometric analysis. A. APCCy7 (CD45) B. APC (CD163) C. Pacific blue/ V450 (CD11b) D. PE (CD88) E. PerCPCy5.5 (CD68) F. FITC (MPO) areas of positive staining.
4.3.3 Analysis of Peripheral Blood Mononuclear Cell (PBMC)

Peripheral mononuclear cells were isolated from whole blood collected in EDTA tubes on d0 (study 3). Following collection all samples reached room temperature before isolation to ensure optimum recovery of PBMCs. For step by step isolation procedure refer to Appendix E.5. Following isolation of PBMCs the samples collected at 2h following downhill running (study3) were immediately stained using fluorescent antibodies in order to determine nuclear vs cytoplasmic localization of the NFκB p65 subunit. For step by step immunofluorescent staining procedure refer to Appendix E.5.1.

Fluorescent microscopy was performed on the Olympus IX81 inverted fluorescent microscope and images taken at x40 magnification (Olympus LUCPlanFLN 40x/0.60 Ph2 α/0.2 FN22) using F-view-II cooled CCD camera (Soft Imaging systems). The percentage co-localization of nuclei (4′,6-diamidino-2-phenylindole, DAPI) (blue) and NFκB p65 (TexasRed) (red) were determined for each cell using ImageJ software (Image J 1.43, Wayne Rasband, National Institute of Health, USA, rsb.info.nih.gov/ij). Nuclear localization was determined in an average of 94.6 ±22.6 isolated cells for each participant.
Fig. 4.5 NFκB signalling in PBMCs at 2h following DHR. Panel A – Monocrome image of PBMC’s nuclei stained by Hoescht (DAPI). Panel B – Monocrome image of intracellular NFκB p65 (TxRed) expression. Panel C – RBG image indicating PBMC nuclei (blue) and NFκB p65 (Red) expression. Panel D – Co-localization frequency scatterplot. Statistical analysis: Co-localization was determined by ImageJ software and Mander’s coefficient reported.

4.3.4 SDS-PAGE and Western blotting

A small piece of snap frozen muscle was sonicated (VirSonic 300, Virtis Comp Inc. Gardiner N.Y 12525) together with 100µl RIPA buffer. The samples were kept on ice the entire time to prevent the proteins from denaturing. After sonication the lysates were centrifuged @ 8000 RPM for 10 minutes at 4°C. 5µl of each lysate was immediately used for the Bradford protein quantification method (refer to Appendix E.6.1).

For each biopsy, the specific volume of lysate containing a 50 µg protein (determined using the Bradford protein quantification method) was added to 8 µl of sample buffer and made up
to a final volume of 35µl using RIPA buffer. Samples were vortexed and proteins denatured at 95°C for 5 min in a heating block before being stored at -80°C. 1.0 mm Acrylamide gels containing 10 wells were used in combination with the BioRad western blotting system for separating the proteins in the extracted samples (refer to Appendix E.6.2). For each gel the first lane was loaded with a standard protein marker (peqGOLD, protein ladder IV, #37954) followed by one or two control samples (refer to table 4.3, p. 86) in lane 2 and 3, the remaining 7 lanes of each gel were loaded with experimental samples (different biopsy time points). To ensure accurate comparison, samples from a single subject was loaded onto the same gel.

The SDS-page and western blotting analysis were repeated twice for all samples to ensure accurate results. The same sample was loaded in the second lane of each gel that served as a control between different gels. And in addition an antibody against β-actin (Santa Cruz biotechnology, sc-81178) was also used to as a control for equal protein loading on each gel. Once developed on film the blots were scanned (2400dpi, HP psc 1100 series) and digitized using computer software (Image J 1.43, Wayne Rasband, National Institute of Health, USA, rsb.info.nih.gov/ij). The data was then normalized to a percentage value with the control sample on each gel (lane 2) set at 1.
Table 4.3 Antibody panel for western blotting

<table>
<thead>
<tr>
<th>Primary antibody panel</th>
<th>Clone Specificity</th>
<th>Mw</th>
<th>Dilution</th>
<th>Control Sample</th>
<th>ug protein</th>
<th>Exposure time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyoD (5.8A) Santa Cruz, sc-32758</td>
<td>mouse monoclonal mouse,human,rat</td>
<td>45kDa</td>
<td>1:500</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>70 ug</td>
<td>5min</td>
</tr>
<tr>
<td>Myogenin (FSD) Santa Cruz, sc-12731</td>
<td>mouse monoclonal mouse,human,rat</td>
<td>36kDa</td>
<td>1:500</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>70 ug</td>
<td>5min</td>
</tr>
<tr>
<td>MPO (AF3174) R&D systems, WTN01</td>
<td>goat polyclonal human</td>
<td>65kDa</td>
<td>1:500</td>
<td>Human isolated neutrophil</td>
<td>70 ug</td>
<td>1min</td>
</tr>
<tr>
<td>pSTAT3 (Y705) Cell Signalling, #91315</td>
<td>rabbit polyclonal mouse,human,rat</td>
<td>72kDa</td>
<td>1:500</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>50 ug</td>
<td>1min</td>
</tr>
<tr>
<td>STAT3 Cell Signalling, #9132</td>
<td>rabbit polyclonal mouse,human,rat</td>
<td>79-86kDa</td>
<td>1:500</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>50 ug</td>
<td>1min</td>
</tr>
<tr>
<td>B-Actin (ACTBC1187) Santa Cruz, sc-81178</td>
<td>mouse monoclonal mouse,human,rat</td>
<td>43kDa</td>
<td>1:1000</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>50 ug</td>
<td>1min</td>
</tr>
<tr>
<td>p-P38 MAPK Cell Signalling, #92115</td>
<td>rabbit polyclonal mouse,human,rat</td>
<td>43kDa</td>
<td>1:500</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>50 ug</td>
<td>5min</td>
</tr>
<tr>
<td>P38 MAPK Cell Signalling, #9212</td>
<td>rabbit polyclonal mouse,human,rat</td>
<td>43kDa</td>
<td>1:500</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>50 ug</td>
<td>5min</td>
</tr>
<tr>
<td>IkBalpha (H-4)Sc-1643 Santa Cruz, #C1011</td>
<td>mouse monoclonal human</td>
<td>35kDa</td>
<td>1:1000</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>50 ug</td>
<td>5min</td>
</tr>
<tr>
<td>p-IkBalpha (ser32) Sc-7977 Santa Cruz, #21911</td>
<td>goat polyclonal human</td>
<td>41kDa</td>
<td>1:1000</td>
<td>Uninjured human muscle vastus lateralis</td>
<td>50 ug</td>
<td>5min</td>
</tr>
</tbody>
</table>

Footnote: All antibodies were diluted using TBS-T. Abbr: kDa –kilodalton, min- minutes, Mw – molecular weight, ug –microgram.

4.3.5 Bio-Plex Phospho-protein detection assays

The principle behind the Bio-Plex phosphoprotein assays is that an antibody directed against the phosphorylated target proteins (IkBα and NFκβ p65) is covalently coupled to internally dyed beads. The coupled beads are then allowed to react with a lysate sample containing the target protein followed by addition of a biotinylated detection antibody resulting in the formation of a sandwich of antibodies around the target protein. Streptavidin-phycocerythrin (Streptavidin-PE) is then added and binds to the biotinylated detection antibody on the bead surface. Data from this reaction is then acquired using the Bio-Plex suspension array system (Luminex 100), a dual-laser, flow-based microplate reader system. The lasers and associated optics detect the internal fluorescence of the individual dyed beads as well as the fluorescent signal on the bead surface. The data are then presented as fluorescence intensity on the Bio-Plex Manager ™ Software. For this specific assay TNFα treated HeLa cell lysate (L9704215
Rev E) was used as a positive control and phosphatase treated HeLa cell lysate (L9704215 Rev E) was used as control for background fluorescence.

Lysates from the tissue samples were prepared using a Bio-Plex Phosphoprotein detection reagent kit (#171-304004, BioRad Laboratories) and cell lysis kit (#171-304011, BioRad Laboratories) according to the manufacturer’s instructions.

- Tissue sample was rinsed with cell wash buffer and cut into a piece of approximately 3x3 mm.

- 500µl of lysing solution (40µl factor 1, 20µl factor 2, 9.9ml cell lysis buffer, 40µl 500mM PMSF) was added to the piece of tissue and it was grinded using a tissue grinder (VirSonic 300, Virtis Comp Inc. Gardiner N.Y 12525) and immediately frozen at -80 °C.

- Samples were thawed, sonicated (VirSonic 300, Virtis Comp Inc. Gardiner N.Y 12525) briefly and centrifuged at 4 500 g’s for 20 minutes @ 4 °C. The supernatant was collected and transferred to a new eppendorf.

- The protein concentration of each lysate was determined using the Bradford protein quantification method as previously described (refer to Appendix E.6.1). All samples were diluted to ensure that the protein concentration were the same in each lysate (520 ug.mL⁻¹), and an equal volume of assay buffer were added to the lysate.

- Lysates were stored @ -20 °C.

The experiment (Bio-Plex Phospho-IkB-α (Ser32/Ser36) assay (#171-V20758) and Phospho-NF-κB p65 (Ser536) assay (#171-V24937)) was planned and each lysate was assigned to a specific well of the 96-well microplate. The total number of wells that were used including 25% excess were determined and the volume of the coupled beads, detection antibodies and Streptavidin-PE needed were calculated accordingly. All the solutions, buffers and controls used during this assay was obtained from the Bio-Plex Phosphoprotein detection reagent kit (#171-304004, BioRad Laboratories). For step by step phosphoprotein detection assay
procedure refer to Appendix E.7. Data was acquired using the Luminex 100 (version 4.1) system and presented as arbitrary units based on fluorescent intensity.

4.3.6. Genotyping : IL-6 single nucleotide polymorphism

The Interleukin-6 locus was amplified using the following primers: 5’-TTGTCAAGACATGCCAAAAGTG-3’ (IL-6 sense) and 5’TCAGACATCTCAGTCTATA-3’ (IL-6 antisense)(Yamin et al. 2008). Polymerase chain reactions (PCR) conditions were as follows: 1x KAPA ReadyMix (Kapa Biotech / Lasec), 4pmol of each primer and 20ng DNA template and a final volume of 20µl. The PCR was performed in a Verity (Applied Biosystems) with the following cycling conditions: 95°C for 5 minutes followed by 35 cycles of 95°C for 30 seconds, 50°C for 30 seconds and 72°C for 30 seconds and a final extension of 72°C for 10 minutes.

Post-PCR purification was done using the NucleoFast Purification System (Separations). Sequencing was performed with BigDye Terminator V1.3 (Applied Biosystems) followed by electrophoresis on the 3730xl DNA Analyser (Applied Biosystems). Sequences were analyzed and trimmed using Sequencing Analysis V5.3.1 (Applied Biosystems). Alignments were done using the ClustalW module of BioEdit version 7.0.4.1 (Hall, 1999) with the downloaded SNP-ID as reference.

4.3.7 Histology : Myosin ATPase assay

The myosin ATPase assay is based on the histochemical assessment of the ATPase enzyme present on the myosin heads. Because myosin ATPase activity is related to the velocity of muscle contraction, measures of the ATPase activity can be interpreted in terms of contraction speed and therefore distinguishes between fast and slow twitch fibres. This histochemical stain is based on the different sensitivities to pH between the different myosin ATPases.

The baseline muscle biopsy samples that had been frozen in isopentane (pre-cooled in liquid N2) were cut into 5µm transverse sections using a (Leica CM1100) cryostat at temperatures between -22°C and -18°C. These sections were stained at pH 4.3 to clearly distinguish
between type I and type II fibres (refer to Fig. 4.6, below). For the step by step staining protocol refer to Appendix E.9.

Slides were viewed under a light microscope (Eclipse E400, Nikon) and pictures were taken at x20 magnification with an integrated digital camera (Nikon, DMX1200) using Nikon ACT-1 software. The baseline biopsy of each participant underwent the myosin ATPase assay with an average of 494 ±286 (mean ±SD) fibres counted for each individual.

Fig 4.6 Myosin ATPase pH 4.3. Dark fibres represent type I fibres, light fibres represent type II fibres. Abbr: I – type I fibre, II – type II fibre.

4.3.8 Immunohistochemistry (IHC)

Cryostat sections were fixed in a 2% paraformaldehyde solution for 8 min followed by 15 minutes in 0.25% Triton X-100 (MERCK, #1014224) before it underwent Pax7 (mouse monoclonal, hybridoma bank IOWA) and Laminin (rabbit polyclonal, DAKO Z0097,#00037479) double staining. (refer to Appendix E.10).

Fluorescent microscopy was performed on the Olympus IX81 inverted fluorescent microscope and images taken at x40 magnification (Olympus LUCPlanFLN 40x/0.60 Ph2 α/0-2 FN22) using F-view-II cooled CCD camera (Soft Imaging systems). The following
criteria (Thornell et al. 2009) were used for identifying satellite cells: stained by anti-pax7 (green), contain a nucleus stained with Hoescht (blue) and must be located in a sublaminar position confirmed by laminin (red). Co-localization of nuclei (4’6-diamidino-2phenylindale, DAPI) (blue) and pax7 (FITC) (green) were determined using ImageJ software (Image J 1.43, Wayne Rasband, National Institute of Health, USA, rsb.info.nih.gov/ij). The number of pax7+ satellite cells per fiber were determined with an average of 89 ±42 fibres counted for each individual.

Fig. 4.7 Satellite cell count. Panel A – Indicating satellite cells stained by anti-Pax7 (FITC). Panel B – Indicating satellite cells stained by anti-Pax7 (FITC) and nuclei stained by hoescht (DAPI). Panel C – Indicating the basal lamina stained by anti-Laminin (TexasRed), satellite cells stained by anti-Pax7 (FITC) and nuclei stained by hoescht (DAPI). Arrow indicate Pax7+ satellite cells.

4.3.9 Transmission Electron Microscopy (TEM)

The muscle biopsy samples that were placed in a 3–4% paraformaldehyde solution containing 2.5% sucrose were processed and blocked for ultrastructural analysis. Transmission electron microscopy were performed in collaboration with the National Health Laboratory services (Tygerberg Hospital, Cape Town, Western Cape).
4.4 Statistical analysis

All other data and statistical analysis were performed in collaboration with the Centre for Statistical Consultation, Stellenbosch University using software (STATISTICA 10 and InStat, StatSoft). Values are presented as mean ± Standard Error (SE).

Box-and-Whisker plots established the presence of any outliers more than two standard deviations from the mean. These outliers were excluded from analysis and if a specific participant showed outlier values at baseline, all time points from that particular participant were excluded from analysis for that specific variable. To determine whether a group effect existed at baseline a Kruskal-Wallis non-parametric test with Dunn’s multiple comparison or Mann-Whitney nonparametric unpaired test with two tailed p-value was performed. Repeated measures ANOVA with Fisher’s LSD post hoc test was used to determine significant effects of time, group or group x time. To determine effect over time in one specific subgroup an one-Way ANOVA with Fisher’s post hoc test were performed. Relationships between variables were determined using Spearman’s non-parametric ranked correlation analysis. The level of significance was accepted at p<0.05.
CHAPTER 5: HIGH INTENSITY INTERMITTENT DOWNHILL RUNNING: A MODEL FOR TESTING SENSITIVITY TO INFLAMMATION AND REGENERATIVE CAPACITY OF SKELETAL MUSCLE.

5.1 Introduction

Acute high intensity exercise leads to leukocytosis (Connolly et al. 2004, Nielsen et al. 2003, Paulsen et al. 2005) and significant increases in circulating pro- and anti-inflammatory cytokines (Smith et al. 2000). The magnitude of the cytokine response to acute exercise associated with glycogen depletion and/or skeletal muscle micro-damage is reasonably well defined and plays a role in modulating post exercise changes in immune function. In human exercise studies, despite standardization, large individual variability is a major concern. This is especially the case when investigating the relationship between inflammatory cytokines, skeletal muscle damage and regeneration.

Paulsen et al. (2010) demonstrated that large increases in creatine kinase (CK) (high responders, >10 000 u.L\(^{-1}\)) are associated with greater intramuscular accumulation of radio-labelled (99m Technetium) leukocytes in comparison with low responders following 300 maximal eccentric contractions. The authors further observed additional CK appearance in circulation during the recovery phase (day 4) in the high responders. In accordance, van de Vyver et al. (2012) recently observed a similar biphasic response following intermittent downhill running and ruled out the biopsy procedure as possible cause for the additional leakage of muscle proteins (CK, myoglobin (Mb), lactate dehydrogenase (LDH)) into circulation. The authors further indicated that the initial increase in markers of muscle damage coincided with elevated levels of pro-inflammatory interleukin-6 (IL-6) and tumour necrosis factor α (TNFα) suggesting a link between inflammation and muscle damage (van de Vyver et al. 2012).

We therefore hypothesize that two or more divergent response patterns for CK release after unaccustomed high intensity exercise might explain the variability observed in circulating markers of muscle damage and that these response patterns, are at least in part, influenced by the systemic cytokine response. Ostrowski et al. (1998) identified high (>25 p.mL\(^{-1}\)) and low (< 25 p.mL\(^{-1}\)) IL-6 responders following 2.5 hours of treadmill running (75% \(VO_2\)max), but were unable to demonstrate an association between peak CK activity and plasma IL-6.
concentrations. This may have been because the running protocol did not include any gradients.

More recently, Reihmane et al. (2012) demonstrated an association between the increase in serum IL-6 from pre to immediately post exercise (*incremental cycling to exhaustion*) and increases in both myeloperoxidase (MPO) and matrix metalloprotease-9 (MMP-9) (*both indicative of neutrophil degranulation*). Excessive release of MPO and especially MMP-9 from neutrophils may be responsible for causing additional tissue damage, since MMP-9 is responsible for degradation of extracellular matrix components such as basement membrane collagen (Van den Steen et al. 2002). The pro-inflammatory cytokine response (*especially IL-6*) is thus likely to play a role in compromising sarcolemmal integrity. Although chronic inflammation is easily assessed using routine chemistry, it is not clear how to determine a propensity to develop sustained inflammation in otherwise healthy individuals. Nuclear factor kappa B (NFκB) plays a role in the transcriptional control of cytokines.

An increase in nuclear NFκB binding to IL-6 promotor regions has been shown to coincide with increases in the mRNA expression of this cytokine in the *vastus lateralis* muscle of recreationally active males 2 hours following high intensity resistance exercise (Vella et al. 2011). In 2009, Chiang et al. demonstrated that downregulation of NFκB signalling had a protective effect against exercise-induced skeletal muscle damage in rats following repeated days of downhill running. The authors suggested that this protective effect was due to the modulation of inflammation-mediated damage to muscle cells. In agreement, Lapointe et al. (2002) demonstrated that the accumulation of ED1⁺ macrophages in rat skeletal muscle following exercise-induced muscle damage (EIMD) is responsible for inducing secondary damage and that it was prevented with the suppression of inflammation. These studies used honokoil and diclofenac respectively as their anti-inflammatory treatment.

Even though the possibility exists that molecular signalling pathways involved in the inflammatory response might be responsible for delaying or inhibiting regeneration (Lapointe et al. 2002, Trennery et al. 2008), there is strong evidence to suggest that an acute inflammatory response is essential for muscle repair. Mackey et al. (2007) investigated the influence of non-steroidal anti-inflammatory drugs (NSAID’s) on satellite cell activity. The authors demonstrated that administration (*from 4 days before up until 8 days following exercise*) of an NSAID that limits fever, pain and inflammation by reducing the level of prostaglandins produced, has a negative effect on satellite cell numbers in humans following
exercise compared to a placebo group. This group later demonstrated that 7.5 hours of NSAID infusion into the vastus lateralis muscle before, during and following eccentric exercise was sufficient to suppress the exercise-induced increase in satellite cell number 8 days following exercise (Mikkelsen et al. 2009). The systemic cytokine response to exercise might play an essential role in initiating muscle repair. The IL-6 super-family is known to affect satellite cell proliferation (Hawke et al. 2001), but is unlikely to be the only mechanism. Interleukin-6 is also known to activate signal transducer and activator of transcription-3 (STAT3) signalling (McKay et al. 2009, Toth et al. 2011). We therefore aimed to evaluate inflammatory and regenerative responses following downhill running.

In addition to their role in leukocytosis, inflammatory mediators such as granulocyte colony stimulating factor (G-CSF) have also been implicated in the mobilization of bone marrow derived stem cell populations. The ability of these cells to engraft into the satellite cell niche (Blaveri et al. 1999, Fukada et al. 2002) has been confirmed in animal models where bone marrow derived stem cells contributed to skeletal muscle regeneration following severe injury (LaBarge et al. 2002, Palermo et al. 2005).

Although exercise protocols do not induce severe injury, LaBarge et al. (2002) demonstrated that following irradiation, transplanted GFP-labelled bone marrow derived stem cells enter the satellite cell niche and contribute to skeletal muscle regeneration after muscle damaging exercise. The same authors (Palermo et al. 2005) later used parabiotically joined wild type mice with genetically labelled bone marrow and indicated that stem cells originating in the bone marrow were evident in myofibres following one month of forced exercise (extensor digitorum longus (EDL) overload). It was therefore concluded that bone marrow derived stem cells have the ability to contribute to myofibres in response to physiological stressors even without the presence of severe injury (Palermo et al. 2005).

Lethal irradiation and bone marrow transplantation have however formed a key role in the animal experimental models and definitive conclusion cannot be made regarding the potential of bone marrow derived stem cells to contribute to skeletal muscle regeneration following acute exercise in human subjects. Regular exercise training has been shown to predispose mobilization and to enhance the functional activity of circulating progenitor cells in patients with recently acquired myocardial infarction (Brehm et al. 2009).
A secondary objective of this study was therefore to determine whether intermittent high intensity downhill running induce mobilization of haematopoietic progenitor cells (HPC) and whether or not HPC mobilization is associated with G-CSF release in response to muscle damaging exercise.

Given the above lines of evidence we hypothesize that an early anti-inflammatory response (interleukin-10 (IL-10)) is associated with earlier resolution of muscle damage and regeneration. Therefore the objectives of this study included the evaluation of pro-inflammatory (serum TNFα, interleukin-1β (IL-1β), IL-6, intramuscular MPO, NFκB signalling) and regenerative responses (satellite cell activity, STAT3 signalling) following downhill running.

5.2 Methodology

For in depth information on methodology and laboratory protocols refer to chapter 4 and Appendix E.

5.2.1 Subjects

Thirty healthy young men volunteered to participate in this study and were randomly subdivided into a control (n=8) and downhill run (DHR) group (n=22). All the participants were unaccustomed to any form of downhill activity and reported no exercise related injury within the previous three months. Participants were informed about the purpose and risks of the study before signing an informed consent form. The experimental protocol was approved by the Committee for Human Research at Stellenbosch University and the study was conducted according to the ethical guidelines and principles of the International Declaration of Helsinki.

5.2.2 Exercise testing

5.2.2.1 Incremental VO₂max test

Following a 5 minute (min) warm-up, all participants were asked to wear an oxygen mask linked to the metabolic system (Oxycon Pro, Jaeger, Germany) for breath-by-breath gas analysis. The incremental fitness test to exhaustion started at 8 km.h⁻¹ on a level treadmill
(Runrace, Technogym, Italy), where after the speed was increased by 0.5 km.h\(^{-1}\) every 30 seconds.

5.2.2.2 Downhill run

The participants in the DHR group performed a 60-min intermittent downhill run (12 x 5 min bouts @ 15 km.h\(^{-1}\), 10% decline) on a motorized treadmill (Runrace, Technogym, Italy). Participants were allowed a 5 min standing rest between bouts and all the participants were able to complete all twelve bouts.

5.2.3 Blood sampling

Venous blood samples was collected from the antecubital vein in the supine position before (pre), immediately post and 4h post DHR on day 0 and on days 1, 2, 3, 4 and 7 between 12:00 and 14:00 pm. Whole blood (EDTA tubes) samples were immediately analysed for total and differential white blood cell (WBC) count (Cell-Dyn 3700 Diagnostech) as well as for the expression of the CD34 fluorescein isothiocyanate (Mouse Anti-human, #560942), CD38 phycoerythrin (Mouse Anti-human, # 560981), CD33 allophycocyanin (Mouse Anti-human, #551378), and HLA-DR peridin chlorophyll protein (Mouse Anti-human, #347402) antigens (Becton Dickinson, USA) by means of flow cytometry (FacsCaliber BD BioSciences,SA). Serum was analyzed using one-step sandwich assays for creatine Kinase (CK) activity (CARDIAC Calibrator # 386371, Beckman Coulter) and Myoglobin (Mb) concentrations (CARDIAC Calibrator # 973243, Beckman Coulter). Serum cytokine concentrations (TNF-α, IL-1β, IL-6, IL-10, G-CSF) were determined using bead array (Bio-Plex Pro Human cytokine Group 1 assay 6-Plex, #M500002ALX, Bio-Rad Laboratories) in combination with the luminex 100 system (Bio-Rad Laboratories). Serum cortisol concentrations were determined using a solid phase enzyme-linked immunosorbent assay (EIA 1887 DRG Cortisol ELISA, # 43K041, DRG International).

5.2.4 Needle muscle biopsy sampling

Muscle biopsies were obtained from the vastus lateralis muscle using a 5 mm trephine needle with assisted suction. Baseline muscle biopsies were obtained from all the participants 14 days prior to the intervention protocol. Three biopsies were obtained from four participants in
the control (n=4) and twelve participants in the DHR (n=12) group in the early recovery phase at 4h, 1 day and 2 days. Biopsy samples were divided and either preserved for cryosectioning or snap frozen in liquid N\textsubscript{2} and stored at -80°C.

Baseline biopsies were cut into 5\textmu m transverse sections using a cryostat (Leica CM1100, Leica Biosystems) at temperatures between –22°C and -18°C. Fibre type composition were determined in these sections using myosin ATPase staining at pH 4.3 to distinguish between type I and type II fibres. Cryosections were further analysed using immunofluorescent staining with antibodies directed against laminin (polyclonal rabbit, DAKO Z0097, #00037479,USA [1:250]), Pax7 (mouse monoclonal, Hybridoma bank, Iowa, USA [1:50]) and Hoescht (bisBenzimide H33342 trihydrochloride, 099K400, #B2261-100MG,USA [1:200]).

Western blot analysis was used to determine the level of intramuscular MPO (AF3174, goat polyclonal, R&D systems, WTN01 [1:250]), myoD (5.8A, mouse monoclonal, Santa Cruz, sc-32758 [1:500]) and myogenin (F5D, mouse monoclonal, Santa Cruz, sc-12731 [1:500]), the ratio between the phosphorylated (Y705, rabbit polyclonal, Cell Signalling, #91315 [1:500]) and total (Rabbit polyclonal, Cell Signalling, #9132 [1:500]) STAT3, the ratio between the phosphorylated (sc-7977, goat polyclonal, Santa cruz, #11911 [1:1000]) and total (sc-1643, mouse monoclonal, Santa cruz, #C1011 [1:1000]) I\kappa B\alpha. Western blot data was normalized to a percentage value with the control sample on each gel set at 100.

5.2.5 Fatigue and muscle soreness

The fatigue and muscle soreness subjects experienced were assessed (using a report form with an annotated Borg scale (Appendix D)) before the downhill run as well as immediately, 4h and on days 1, 2, 3, 4 and 7 post intervention. The first part of the report focuses on fatigue in different muscle groups (quadriceps, hamstrings, calves) of the lower limb, whereas the second part of the report focuses on muscle soreness specifically in the quadriceps muscle group.
5.2.6 Statistical analysis

All values are presented as mean ± Standard Error (SE). Software (STATISTICA 10, StatSoft) software was used for all statistical analysis. Box-and Whisker plots were used to establish the presence of outliers defined as more than two standard deviations from the mean. These outlying data points were excluded from analysis and if a specific subject had an outlying value at baseline, all time points for that particular subject were excluded from analysis for that specific variable. To determine whether a group effect existed at baseline, a Kruskal-Wallis non-parametric test with Dunn’s multiple comparison was performed. Repeated measures ANOVA with Fisher’s LSD post hoc test was used to determine significant effects of time, group or group x time. For a few specific variables an effect of time in one specific subgroup was analysed using a one-way ANOVA with Fisher’s post hoc test. Relationships between variables were determined using Spearman’s non-parametric ranked correlation analysis. The level of significance was accepted at p<0.05. Note: For statistical analysis of cytokine data, control data was not used for group comparisons due to too many subjects registering non-detectable values. The abbreviations that will be used in the results section for text, tables and graphs are: *p<0.05, **p<0.01, ***p<0.001 indicate effect of time within each group, #p<0.05, ##p<0.01, ### p<0.001 indicate significant group effect at same time point.

5.3 Results

5.3.1 Subject characteristics

The subject characteristics (mean ±SE) (n=28) were as follow: age 20.4 ± 0.27 yr, height 1.8 ± 0.01 m, weight 76.7 ± 2.1 kg, body mass index (BMI) 23.8 ± 0.6 kg.m⁻² and maximum oxygen consumption (VO₂ max) 50.7 ± 1.1 ml.kg.min⁻¹. The participants were randomly divided into a control (n=7) and downhill run (DHR) (n=22) group.
5.3.2 Cortisol

Serum cortisol concentrations were determined for ten participants in the downhill run group. No increase in cortisol concentration was evident immediately following the downhill run compared to baseline (pre) in the participants (n=8) that did not experience an exaggerated CK response (CK>3000 u.L⁻¹, refer to section 5.3.3.1, p. 99). One-way ANOVA with LSD post hoc test indicated no effect of time with mean serum cortisol concentrations ranging from 83 to 172 ng.mL⁻¹ throughout the study. As expected post hoc analysis indicated a significant (p<0.05) decline in cortisol concentration from immediately post (09h30-10h00) to 4h post (13h30-14h00) downhill running coinciding with the normal diurnal variation.

![Figure 5.1 Serum cortisol (mean ± SE). Graph indicates serum cortisol concentrations for participants in the DHR group that did not experience rhabdomyolysis. Statistical analysis: One way ANOVA with Fisher’s LSD post hoc test. *p<0.05 indicate significant decline from post to 4h. Abbr: DHR - downhill run, h – hour.]

5.3.3 Indirect markers of muscle damage

5.3.3.1 Creatine kinase activity (CK)

Multivariate test of significance indicated no effect of time in CK activity for either the control group (n=7) or for the participants of the downhill run (n=22). This was mainly due to large individual variability (refer to table 5.1, p. 100) in the DHR group especially on d3 and d4. A significant group effect was however evident (p<0.01) with post hoc analysis.
indicating significant difference between the control and DHR group from 4h to d4 following downhill running.

Table 5.1 Creatine kinase activity

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
<th>4h</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d7</th>
</tr>
</thead>
<tbody>
<tr>
<td>control (n=7)</td>
<td>242 ± 75</td>
<td>236 ± 70</td>
<td>239 ± 72</td>
<td>247 ± 48</td>
<td>310 ± 62</td>
<td>341 ± 76</td>
<td>350 ± 62</td>
<td>242 ± 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHR (n=22)</td>
<td>252 ± 47</td>
<td>501 ± 56</td>
<td>1192 ± 108</td>
<td>1607 ± 185</td>
<td>1135 ± 217</td>
<td>1375 ± 348</td>
<td>1464 ± 333</td>
<td>923 ± 175</td>
</tr>
</tbody>
</table>

Footnote: Values are in units per litre (u.L-1) and presented as mean ±SE. Statistical analysis: Repeated measures ANOVA with Fisher’s LSD post hoc test. # p<0.05, ## p<0.01, ### p<0.001 indicate significant difference between groups at the same time point. Note: Large standard error in the DHR participants especially on d3 and d4. Abbr: d – day, DHR – downhill run, h - hour.

Upon further investigation of individual CK activity, it became clear that various response patterns were present following high intensity intermittent downhill running.

- Fourteen percent (14%) of the participants in the downhill run experienced an delayed and exaggerated peak in CK (CK>3000 u.L-1) and were grouped together as the DHR3 subgroup (n=3). A delayed and significant (p<0.001) peak CK activity (4850 ± 1055 u.L-1) was observed on d4 in these participants (*refer to Fig. 5.2 Panel C, p. 102*). A group effect was observed at all the time points (p<0.001) from 4h up to d7 between the control and DHR3 subgroup. The participants that experienced an exaggerated CK response (DHR3 subgroup) were excluded from all further analysis.

CK activity of the remaining eighty six percent (86%) of participants in the downhill run group peaked on d1.

- In 33% of these participants the initial peak (1512 ± 413 u.L-1) (p<0.001) was followed by a gradual decline returning to pre values on d7 (*refer to Fig. 5.2 Panel A, p. 102*). These participants were subsequently grouped together as the DHR1 subgroup (n=6). A significant group effect was observed at 4h (p<0.01) and on d1 (p<0.001) between the control and DHR1 subgroup.
In 67% of the participants in which an initial peak ($1434 \pm 202 \text{ u.L}^{-1}$) ($p<0.001$) was observed, a second significant elevation in CK activity ($1110 \pm 184 \text{ u.L}^{-1}$) ($p<0.001$) was evident on d4. These participants were grouped together as the DHR2 subgroup (n=12). A highly significant group effect ($p<0.001$) was observed at 4h and d1 as well as on days 3 ($p<0.05$), 4 ($p<0.01$) and 7 ($p<0.01$) between the control and DHR2 subgroup. Since the group effect was not present on d2 with both DHR2 and DHR3 groups declining significantly, this suggests that a second phase of muscle damage (refer to Fig. 5.2 Panel B, p. 102) occurred in the DHR2 participants.
Fig 5.2 Creatine kinase (mean ± SE). Panel A – DHR1 subgroup (n=6), Panel B – DHR2 subgroup (n=12), Panel C – DHR3 subgroup (n=3). Statistical analysis: Repeated measures ANOVA with LSD post hoc test. *p<0.05, **p<0.01, ***p<0.001 indicate significant difference from pre in each DHR subgroup. #p<0.05, ##p<0.01, ###p<0.001 indicate significant difference between the control and DHR subgroup at the same time point. Note: All four groups were simultaneously analysed and compared although results are presented in separate graphs. Abbr: CK – creatine kinase, d - day, DHR- downhill run, h – hour.
5.3.3.2 Myoglobin concentration (Mb)

Myoglobin concentrations confirmed the specific response patterns observed in CK activity. Multivariate test of significance indicated a significant effect of time, group and group x time (p<0.001) from pre to d1 post downhill running. Peak Mb concentrations of 357 ± 98 ng.mL⁻¹ and 551 ± 104 ng.mL⁻¹ observed in the DHR1 (n=5) and DHR2 (n=5) subgroups respectively, were followed by a sharp decline with both DHR1 and DHR2 subgroups returning to non-significant concentrations on d1. In the DHR2 subgroup there was however a second significant (p<0.05) elevation observed on d3 and d4, confirming that a second phase of muscle damage occurred in these participants (refer to Fig. 5.3 Panel B, below). Post hoc analysis indicated a significant difference between the DHR1 and DHR2 subgroups at 4h (p<0.05), d3 (p<0.001), d4 (p<0.001) and d7 (p<0.05). Note: Myoglobin concentrations were not analysed for all participants due to financial limitations.

![Fig 5.3 Myoglobin (mean ± SE). Panel A – DHR1 subgroup (n=5), Panel B – DHR2 subgroup (n=5) Panel C – DHR3 subgroup (n=1). Statistical analysis: Repeated measures ANOVA with Fisher’s LSD post hoc test. Comparing control, DHR1 and DHR2 together. Graphs are presented separately for convenience with *p<0.05, **p<0.01, ***p<0.001 indicate significant difference from pre in each DHR subgroup. #p<0.05, ##p<0.01, ###p<0.001 indicate significant difference between the control and DHR subgroup at the same time point. Note: All of the groups were simultaneously analysed and compared although results are presented in separate graphs. Control error bars are not easily distinguishable from the mean. Abbr: Mb – myoglobin, d- day, DHR – downhill run, h - hour.](image-url)
Spearman’s ranked correlation analysis indicated that myoglobin concentration at 4h was related to the second elevation in both Mb ($r=0.7333$, $p=0.0311$, $n=9$) on d3 and CK ($r=0.800$, $p=0.013$, $n=9$) on d4.

Kruskal-Wallis non-parametric with Dunn’s multiple comparison test confirmed that there was no difference in age ($Control: 19.9 \pm 1.6 \text{ yr}, DHR1: 20.3 \pm 0.8 \text{ yr}, DHR2: 20.9 \pm 1.8 \text{ yr}, DHR3: 20.0 \pm 0.0$) ($p=0.541$) , body mass index ($Control: 23.8 \pm 4.6 \text{ kg.m}^{-2}, DHR1: 23.3 \pm 2.4 \text{ kg.m}^{-2}, DHR2: 23.8 \pm 2.4 \text{ kg.m}^{-2}, DHR3: 26.4 \pm 5.5 \text{ kg.m}^{-2}$)($p=0.6340$) or fitness level ($Control: 48.7 \pm 5.9 \text{ ml.min.kg}^{-1}, DHR1: 50.8 \pm 7.6 \text{ ml.min.kg}^{-1}, DHR2: 52.6 \pm 5.3 \text{ ml.min.kg}^{-1}, DHR3: 50.1 \pm 4.6 \text{ ml.min.kg}^{-1}$) ($p=0.6307$) between the subgroups.

5.3.3.3 Fatigue

The control group ($n=7$) did not experience any fatigued whereas the DHR subgroups experienced significant fatigued ($p<0.01$) in the muscles of the lower limbs following downhill running. A significant effect of time ($p<0.01$) was observed in the DHR1 subgroup up to d1 following the downhill run with participants experiencing mild to moderate overall muscle fatigued. In comparison the DHR2 subgroup experienced significant overall fatigued ($\text{significant effect of time: } p<0.01$), fatigue in the hamstrings muscle group ($\text{significant effect of time: } p<0.01$), quadriceps muscle group ($\text{significant effect of time: } p<0.001$) and calf muscle group ($\text{significant effect of time: } p<0.05$) up to d3 following the downhill run (refer to Fig. 5.4, p. 105).

Statistical analysis: Repeated measures ANOVA with Fisher’s LSD post hoc test. *** p<0.001, **p < 0.01, *p<0.05 indicate significant difference from pre in each DHR subgroup. No significant change over time was observed within the control group. Fatigue rating: 1- none, 2- very slight, 3- slight, 4- mild, 5- moderate, 6- moderate to severe, 7- severe, 8- very severe, 9- very very severe, 10- totally exhausted.

5.3.3.4 Delayed onset muscle soreness (DOMS)

The control group (n=7) did not experience any muscle soreness for the duration of the study whereas all of the DHR participants (n=21) experienced mild to severe (p<0.001) soreness (refer to Fig. 5.5, p. 106) in the quadriceps muscle group following the downhill run. DHR2 subgroup experienced significant soreness when applying pressure to the quadriceps muscle group on days 2 and 3. This slightly different profile was also evident in DOMS at rest.
Figure 5.5 Perceived pain in quadriceps muscle group (mean ± SE). Panel A - DOMS at rest. Panel B - DOMS during daily activities. Panel C – DOMS during stretch. Panel D - DOMS when applying pressure. Statistical analysis: Repeated measures ANOVA with LSD post hoc test.*** p<0.001, **p < 0.01, *p<0.05 indicate significant difference from pre in each DHR subgroup. No significant change over time was observed within the control group. Rating of perceived pain: 1- no pain, 2- very slight, 3- slight, 4- mild, 5- moderate, 6- moderate to severe, 7- severe, 8- very severe, 9- very very severe, 10- unbearable pain.

5.3.4 Fibre type composition – vastus lateralis muscle

There was no significant difference (p=0.085) in the distribution of type I and type II fibres in the vastus lateralis muscle of the participants in the downhill run group. No group effect was evident between the DHR1 and DHR2 subgroups. The fibre type composition of the vastus lateralis muscle was however associated with evidence of the second phase of skeletal muscle damage observed on d4 indicated by the indirect serum markers of damage (refer to section 5.3.3.1, p. 99). CK activity on d4 were positively related to the percentage of type II fibres (refer to Fig. 5.6 Panel C, p. 107).
Fig 5.6 Fibre type composition of the vastus lateralis muscle. Panel A – Percentage of type I and type II fibres (mean ± SE) in the DHR group. Panel B – Myosin ATPase staining pH 4.3 viewed using light microscopy. Panel C – CK d4 vs type II fibres. Statistical analysis: Mann-Whitney nonparametric unpaired test with two tailed p value (panel A). Spearman’s non-parametric ranked correlation analysis (panel C). A total of 509 ± 63 (mean ± SE) fibres were counted for each participant. Abbr: CK – creatine kinase, Mb – myoglobin, I – type I fibres, II – type II fibres.

5.3.5 Red blood cell (RBC) counts

No effect of time, group or group x time was observed for the absolute cell counts immediately before and 4h following downhill running. The haematocrit (HCT %) remained stable and therefore no corrections for plasma volume shifts were necessary (refer to table 5.2, p. 108).
Table 5.2 Cell counts

<table>
<thead>
<tr>
<th></th>
<th>Control (n=4)</th>
<th>DHR1 (n=1)</th>
<th>DHR2 (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre 4h</td>
<td>Pre 4h</td>
<td>Pre 4h</td>
</tr>
<tr>
<td>RBC (x10^{12}.L^{-1})</td>
<td>4.8±0.3 4.6±0.5</td>
<td>4.8±n.a 4.9±n.a</td>
<td>4.9±0.2 4.8±0.3</td>
</tr>
<tr>
<td>HGB (g.dL^{-1})</td>
<td>13.7±0.7 13.4±1.4</td>
<td>13.8±n.a 13.8±n.a</td>
<td>14.0±1.0 14.3±1.7</td>
</tr>
<tr>
<td>HCT (%)</td>
<td>41.8±1.5 40.1±3.4</td>
<td>41.7±n.a 42.6±n.a</td>
<td>43.0±2.2 41.7±3.8</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>87.5±2.3 87.1±2.5</td>
<td>86.7±n.a 86.3±n.a</td>
<td>87.2±1.6 87.1±2.7</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>28.7±0.1 29.1±0.1</td>
<td>28.7±n.a 28.0±n.a</td>
<td>28.4±1.2 29.8±1.9</td>
</tr>
<tr>
<td>MCHC (g.dL^{-1})</td>
<td>32.8±1.1 33.4±0.9</td>
<td>33.0±n.a 32.4±n.a</td>
<td>32.6±1.4 34.2±2.4</td>
</tr>
<tr>
<td>RDW (%)</td>
<td>14.7±0.10 15.6±1.6</td>
<td>15.7±n.a 14.8±n.a</td>
<td>14.7±0.9 14.5±1.3</td>
</tr>
<tr>
<td>PLT (10^9.L^{-1})</td>
<td>261±120 250±92</td>
<td>190±n.a 217±n.a</td>
<td>320±81 325±85</td>
</tr>
<tr>
<td>MPV (fL)</td>
<td>8.4±0.9 8.8±1.2</td>
<td>8.5±n.a 7.8±n.a</td>
<td>7.7±0.6 7.9±0.8</td>
</tr>
</tbody>
</table>

Footnote: Values are presented as mean ± SE. Abbr: n.a - not applicable, RBC – red blood cell, HGB - haemoglobin, HCT - haematocrit, MCV - corpuscular volume, MHC - corpuscular haemoglobin, MCHC - mean corpuscular haemoglobin concentration, RDW - red cell distribution width, PLT - platelets, MPV - mean platelet volume, h - hour, DHR - downhill run.

5.3.6 White blood cell (WBC) differential count

The total WBC as well as differential WBC count (mean ± SE) in the control group (n=7) remained within the normal clinical reference ranges (total WBC 4.0-11.0 x10^9 cells.L^{-1}; neutrophil 1.0-4.0 x10^9 cells.L^{-1}; lymphocytes 1.0-4.0 x10^9 cells.L^{-1}; monocyte 0.0-0.8 x10^9 cells.L^{-1}; eosinophil 0.0-0.4 x10^9 cells.L^{-1}; basophil 0.0-0.1 x10^9 cells.L^{-1}) throughout the study. Immediately before downhill running a normal distribution of white blood cell subpopulations (lymphocytes, monocytes, granulocytes) was observed using flow cytometry in the DHR participants (refer to Fig 5.7 panel A, p. 109).

Surprisingly, similar response patterns were observed in the two DHR subgroups, with no significant difference between these subgroups at any time point. WBC (12.3 ± 1.9 and 12.6 ± 0.6 x10^9 cells.L^{-1}), neutrophil (9 ± 1.5 and 9.2 ± 0.6 x10^9 cells.L^{-1}) and monocyte (1 ± 0.1 and 1 ± 0.1 x10^9 cells.L^{-1}) count peaked at 4h post downhill running (DHR1 and DHR2 respectively). This peak observed at 4h was followed by a sharp decline with a return to baseline values on d1. All the parameters remained within normal reference ranges from d2 until d7 (refer to Fig. 5.8, p. 110). The increase observed in total WBC count was mainly due to the increase in neutrophil count at the same time point with a highly significant correlation.
(r=0.9472, p<0.001, n=17) between these two variables observed at 4h. Cell counting indicated neutrophil bands with a shift to the left. Two distinct populations of granulocytes (flow cytometry) were evident in 40% of the participants in the DHR2 subgroup at 4h post downhill running (refer to Fig. 5.7 panel B, p. 109), suggesting that a more granular population of granulocytes were present in circulation at that time point. A significant negative correlation was also observed between neutrophil count at 4h and the percentage of CD34\(^+\) cells in the granulocyte region (refer to Fig. 5.7 panel C, p. 109).

No effect of time, group or group x time was observed in lymphocyte, eosinophil or basophil count throughout the study (refer to Fig. 5.8 panel C, E and F, p. 110).

Fig 5.8 Differential white blood cell count (mean ± SE). Panel A – WBC count, Panel B – Neutrophil count, Panel C - Lymphocyte count, Panel D - Monocyte count, Panel E – Eosinophil count, Panel F – Basophil count. Statistical analysis: Repeated measures ANOVA with LSD post hoc test. *p<0.05, **p<0.01, ***p<0.001 indicate significant difference from pre in each DHR subgroup. #p<0.05, ##p<0.01, ###p<0.001 indicate significant difference between the control and DHR subgroup at the same time point. Abbr: WBC – white blood cell, h – hour, DHR- downhill run.
5.3.7 Haematopoietic progenitor cells: CD34⁺

In the DHR participants there was a significant decrease (p<0.01) in CD34⁺ cells evident in specifically the granulocyte region at the 4h time point. No significant effect of time was observed in either the lymphocyte or monocyte region, with only two participants showing an elevation in the percentage of CD34⁺ cells in the monocyte region (refer to Fig. 5.9 below). The DHR 1 and DHR2 subgroups behaved similarly with no clear group effect evident.

Fig. 5.9 Circulating haematopoietic progenitor cells (mean ± SE). Panel A – WBC subpopulations. Panel B – Percentage of CD34⁺ cells in each of the respective subpopulations in the DHR participants (n=8). Statistical analysis: One way ANOVA with Fisher’s LSD post hoc test. **p<0.01 indicate significant difference between pre and 4h. A minimum of 5000 events were recorded and analysed. Abbr: d – day, DHR- downhill run.**
5.3.8 Inflammatory cytokines

5.3.8.1 Tumour necrosis factor α

Serum TNFα concentrations remained below the detection limit of 4.72 pg.mL\(^{-1}\) at all the time points throughout the study.

5.3.8.2 Interleukin-1β

Prior to any intervention, baseline (n=24) serum IL-1β concentration (0.88 ± 0.63 pg.mL\(^{-1}\)) was within the normal reference range. No effect of time, group or group x time was observed, with no trends in any of the DHR subgroups throughout the study.

5.3.8.3 Interleukin-6

Prior to any intervention, individual baseline (n=20) serum IL-6 concentrations were within the normal reference range (0 - 8 pg.mL\(^{-1}\)), with no effect of time observed in the control group (n=4). In the DHR1 subgroup (n=6), IL-6 concentrations peaked at 9.3 ± 4.4 pg.mL\(^{-1}\) (p<0.05) followed by a sharp decline and returned to baseline at 4h post downhill running. A similar increase immediately post downhill running was observed in the DHR2 subgroup (n=12) but IL-6 concentrations remained elevated and peaked at 4h (10.3 ± 4.2 pg.mL\(^{-1}\), p=0.05) before a return to baseline on d1 (refer to Fig. 5.10, p. 113).
Fig 5.10 Interleukin-6 (mean ± SE) Statistical analysis: Repeated measures ANOVA with Fisher’s LSD post hoc test. *p<0.05 indicate a significant change over time in each DHR subgroup respectively. **Abbr:** d – day, DHR- downhill run.

5.3.8.4 Interleukin-10

Prior to any intervention, baseline (n=22) serum IL-10 concentration was within the normal reference range (0 - 4 pg.mL$^{-1}$), with no effect of time observed in the control group (n=7). A significant (p<0.05) elevation in IL-10 concentration immediately post downhill running was evident in both the DHR1 (n=6) and DHR2 (n=12) subgroups and both groups return to pre values at 4h *(refer to Fig. 5.11, below).* Peak serum IL-10 concentrations observed immediately post downhill running were significantly correlated (r=0.9714, p<0.001, n=14) to serum IL-6 concentrations at the same time point.

Fig 5.11 Interleukin-10 (mean ± SE). Panel A - serum IL-10. **Statistical analysis:** Repeated measures ANOVA with LSD post hoc test. *p<0.01 indicate a significant change over time in the respective DHR subgroups. **Abbr:** d – day, DHR- downhill run.
5.3.8.5 *Granulocyte colony stimulating factor*

Prior to any intervention, baseline (n=24) serum G-CSF concentration were within the normal reference range (0 - 3 pg.mL\(^{-1}\)). Despite the DHR1 subgroup showing a slight (p<0.05) elevation on d3 (6.2 ± 2.6 pg.mL\(^{-1}\)), no effect of group or group x time was observed in either the control or any of the DHR subgroups throughout the study.

5.3.9 *Intramuscular myeloperoxidase (MPO)*

A significant group effect was evident between the DHR1 and DHR2 subgroups on d2 (p<0.05) following downhill running (refer to Fig. 5.12 Panel A, below). Despite the significant group effect, no effect of time was observed in either of the DHR subgroups mainly due to large individual variability evident on d2. A highly significant relationship (r=0.9524, p=0.0011, n=8) was observed between intramuscular MPO levels on d1 and serum CK activity at the same time point (refer to Fig. 5.12 Panel C, below).

Fig 5.12 Myeloperoxidase. Panel A - Intramuscular MPO. **Panel B** - Western blot analysis. The first lane of each gel was loaded with a control sample (*uninjured muscle*), used for the normalization of data. **Statistical analysis:** Repeated measures ANOVA with LSD post hoc test. # p<0.05 indicate significant difference between subgroups at same time point. **Abbr:** d- day, h- hour
5.3.10 Intramuscular NFκB Signalling

Intramuscular NFκB signalling did not differ over time for either subgroup. No effect of time, group or group x time was observed in the ratio between phosphorylated and total IκBα for either the control or any of the DHR subgroups.

![Fig 5.13 IκBα (mean ± SE). Statistical analysis: Repeated measures ANOVA with LSD post hoc test. Abbr: d – day, h – hour, DHR- downhill run.](image)

5.3.11 Intramuscular STAT3 Signalling

A significant group effect (p<0.01) was evident 4h following the downhill run for the intramuscular phosphorylation status of STAT3. The DHR1 (n=5) subgroup showed no change over time whereas the ratio between phosphorylated and total STAT3 was significantly (p<0.05) higher at 4 hours compared to d1 post downhill running in the DHR2 (n=7) subgroup (refer to Fig. 5.14 Panel A, p. 116). Furthermore, the intramuscular phosphorylation status of STAT3 at 4h was significantly (r=0.850, p=0.003, n=9) related to serum IL-6 concentrations at the same time point (refer to Fig. 5.14 Panel C, p. 116).
Fig 5.14 STAT3 signalling. Panel A - Intramuscular ratio between phospho- and total STAT3. Panel B - Western blot analysis. Statistical analysis: Repeated measures ANOVA with LSD post hoc test. * p<0.05 indicate significant difference between 4hr and day1 in the DHR2 subgroup. # p<0.05 indicate significant difference between groups at the same time point. Panel C – Relationship between intramuscular phosphor-STAT3 and serum IL-6 at 4 hours. Statistical analysis: Spearman’s non-parametric correlation analysis with two tailed p value. Abbr: d- day, h- hour

5.3.12 Satellite cells

5.3.12.1 Pax7+ satellite cells (Pax7+ SC)

No change in satellite cell count was evident in the control group throughout the study. No statistical difference in the number of Pax7+ SC per fibre was observed between the DHR1 and DHR2 subgroups at any time point. Statistical analysis however indicated a significant increase in Pax7+ SC per fibre on d1 in the subjects who participated in the downhill run (n=10) compared to baseline. This increase observed on d1, was followed by a sharp decline of the number of Pax7+ SC which returned to baseline on d2 (refer to Fig. 5.15 Panel B, p. 117).
Fig 5.15 Pax 7+ satellite cells per fibre. Panel A – Immunohistochemistry. A.1 FITC – green indicating Pax 7+ nuclei. A.2 co-localization FITC and DAPI. Blue indicating all nuclei. A.3 FITC/DAPI and TxRed. Red indicating Laminin. Panel B – Number of Pax7+ cells per fibre (mean ±SE). Statistical analysis: Repeated measures ANOVA with Fisher’s LSD post hoc test. * p<0.05, indicate significant change from baseline to d1 and **p<0.01 indicate significant difference between d1 and d2 in the DHR group.

5.3.12.2 Myogenic regulatory factors (MRF’s)

Multivariate analysis of variance indicated that no group effect existed between the DHR1 and DHR2 subgroup at any time point for intramuscular myoD and/or myogenin protein levels. Furthermore, no change over time was observed in the content of these MRF’s in the participants who participated in the downhill run (refer to table 5.3, below).

Table 5.3 Intramuscular content of myogenic regulatory factors

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>4h</th>
<th>d1</th>
<th>d2</th>
</tr>
</thead>
<tbody>
<tr>
<td>myoD (DHR n=10)</td>
<td>0.85 ± 0.4</td>
<td>0.88 ± 0.71</td>
<td>1.2 ± 0.87</td>
<td>0.9 ± 0.61</td>
</tr>
<tr>
<td>myogenin (DHR n=10)</td>
<td>0.39 ± 0.27</td>
<td>0.43 ± 0.33</td>
<td>0.50 ± 0.36</td>
<td>0.40 ± 0.26</td>
</tr>
</tbody>
</table>

Footnote: Values (arbitrary units) are presented for all the subjects who participated in the downhill run. Statistical analysis: One way ANOVA with Fisher's LSD post hoc test. Abbr: d - day, h - hour
5.4 Discussion

An important aspect of this study which used an intermittent downhill run protocol was the ability to identify a subset of participants who experienced, at 3 to 4 days post downhill running, a second rise in circulating markers of muscle damage (DHR2 subgroup), while others returned to normal levels (DHR1 subgroup). By subdividing the participants based on their individual CK and Mb release over time, the large standard deviations usually observed following EIMD were significantly reduced.

A similar biphasic response was previously associated with significant intramuscular leukocyte accumulation in a small number of participants who also experienced an exaggerated initial increase in CK release (CK activity >10 000 u.L⁻¹) (Paulsen et al. 2010). Higher intramuscular MPO indicative of neutrophil accumulation in the DHR2 subgroup in comparison with the DHR1 subgroup together with the MPO correlation with CK activity, support the findings of Paulsen et al. (2010). One difference between the two studies is that this study excluded subjects with exaggerated CK release which was indicative of a response similar to rhabdomyolysis. This resulted in an early increase in CK and Mb (up to d1) that was similar for all participants in the present study and the divergent response patterns only became evident from d2 to d7 following downhill running. Myoglobin concentration at 4h was related to the second elevation in both Mb (d3) and CK activity (d4), suggesting that a higher initial response might be indicative of a subsequent, delayed secondary response. Further evidence that this was a secondary response and not merely a delay in disappearance from circulation was that two days post downhill running there was no difference between the DHR1 and DHR2 subgroups. Additional markers of damage (CK, Mb) were thus released into circulation in the late recovery phase. In accordance with our previous work (van de Vyver et al. 2012) the use of a non-exercising control group demonstrated that the biopsy procedures did not influence the appearance of CK or Mb in circulation. Compared to the previous study the subjects in this study also had a very narrow range for VO₂max indicating that this phenomenon is not related to differences in ability or fitness.

In the subset of participants (DHR2 subgroup) that experienced a second phase of muscle damage, it is relevant that additional IL-6 was produced following the cessation of exercise with a delayed peak observed at 4h. Interleukin-6 serves a metabolic function during exercise. Arterial femoral venous differences in IL-6 concentration during exercise (180 min,
two legged knee extension) (Steensberg et al. 2002) demonstrate that exercising limbs release IL-6 even without the presence of skeletal muscle damage (Croisier et al. 1999, Willoughby et al. 2003). Either a decrease in muscle glycogen (Gusba et al. 2008) content or changes in intracellular calcium levels (Keller et al. 2001) can signal the production of IL-6 through a number of transcription factors including p38 mitogen activated protein kinase (MAPK), Janus kinases (JNK), nuclear factor of activated T-cells (NFAT) and transcription factor AP-1 (AP1) (Febbraio et al. 2002, Pedersen et al. 2001). During prolonged exercise, glycogen depletion result in IL-6 production that in turn increases hepatic glucose output and the number of GLUT4 transporters (Banzet et al. 2009). This has been confirmed in studies showing that glucose ingestion during exercise decrease the exercise induced increase in IL-6 and inhibits IL-6 release form skeletal muscle (Febbraio et al. 2003). The immune response to exercise is also reduced with carbohydrate ingestion. Carbohydrate ingestion attenuated lymphocytosis following acute resistance exercise (Carlson et al. 2008) and neutrophil counts following acute cycling (90 min @ 60%VO2max, 1.6km time trail) in hot conditions (Peake et al. 2008). Nonetheless, this does not negate the pro-inflammatory function of this cytokine and it is still accepted that IL-6 has immune functions.

The production of IL-6 (DHR2 subgroup) after the termination of exercise occurred independently of muscle contraction. Although it coincided with a peak in circulating neutrophil and monocyte count there was a similar leukocytosis response between subgroups. At least two possible reasons can be put forward. The increased systemic cytokine response explained by a more activated status of the neutrophils or monocytes or both (Nieman et al. 2006). Secondly, the additional IL-6 may be muscle derived, either synthesized by myonuclei or released by resident immune cells (Croisier et al. 1999, Nieman et al. 2006, Willoughby et al. 2003).

Single nucleotide polymorphisms (SNP’s) can influence the susceptibility of healthy individuals to exercise induced muscle damage and lead to an exaggerated CK response. Certain genotype variants of the angiotensin I converting enzyme (ACE) has been shown to be an independent determinant of peak CK activity following eccentric exercise of the elbow flexors (Yamin et al. 2007). Also, the muscle specific creatine kinase (CK-MM) Ncol polymorphism is thought to be associated with an increased risk of exaggerated CK response to exercise (Heled et al. 2007). A strong association between homozygosity for the IL-6 174C allele and the systemic CK response (Yamin et al. 2008) has also been demonstrated.
However neither of these proteins would be expected to explain the secondary inflammatory response. Individual homozygosity for the IL-6 174C allele was unrelated to the divergent CK response patterns in the present study. Data from participants experiencing a delayed CK peak on d4 that was greater than 3000 u.L$^{-1}$, were excluded from analysis since an exaggerated CK response might have been associated with underlying myosis or certain genetic factors (Capacchione et al. 2010, Hubal et al. 2010, Kenney et al. 2012, Landau et al. 2012, Sambuughin et al. 2009).

Previously, individual variability evident in circulating markers of muscle damage during the early recovery phase has been ascribed to gender differences, age, intensity and duration of exercise, training history of participants and/or fibre type distribution (Arnett et al. 2000, Epstein et al. 2006, Fredsted et al. 2008, Magal et al. 2010, Miles et al. 1994, Roth et al. 2000). Type II fibres are more susceptible to eccentric exercise-induced muscle damage (Macaluso et al. 2012), but investigations into the relationship between increases in serum CK activity and muscle fibre composition have failed to confirm an association (Magal et al. 2010). Possibly because the intramuscular damage is difficult to quantify. Similarly, the present study failed to demonstrate an association between the initial increase in indirect markers of muscle damage and fibre type distribution of the vastus lateralis muscle. A higher percentage of type II fibres did however seem to predispose participants to a second phase of muscle damage (unrelated to the initial mechanical insult), since both CK activity and Mb concentrations on d4 were associated with a higher percentage of type II fibres. It is important to note though that the time course of the DHR1 and DHR2 response patterns may be specific to downhill running, since other forms of eccentric exercise could result in a delayed initial peak in CK sometimes observed as late as day 4 and day 6 (for review see Baird et al. 2012).

Consistently the literature indicates very low or even undetectable serum/plasma TNFα and IL-1β concentrations following acute exercise in healthy young men (refer to table 5.4, p. 125). Current data are in agreement, but also further indicates no change in intramuscular NFκB signalling in either of the DHR subgroups. A delayed peak in IL-6 concentrations (2-8h post) following muscle damaging exercise in comparison with increased levels of IL-6 peaking immediately post concentric exercise has also been a consistent finding (refer to table 5.4, p. 125). The current study is the first to show that a delayed peak is not a consistent inter-individual finding and that in those without this response, no secondary increase in CK
release is present. No change in the IL-6 response to acute exercise is evident following training despite significant reductions in muscle soreness and serum markers of muscle damage (Croisier et al. 1999, Willoughby et al. 2003) suggesting that no direct association between IL-6 and muscle damage exists. Steensberg et al. (2003) demonstrated that infusion of a low dose recombinant human (rh) IL-6 (corresponding to levels obtained during strenuous exercise) induced an anti-inflammatory environment by stimulating the synthesis of anti-inflammatory IL-10 and IL-1 receptor antagonist (IL-1ra). This might explain the absence of serum TNFα and IL-1β following acute exercise. In agreement, Ostrowski et al. (1998) demonstrated that in high responders peak IL-6 concentrations observed immediately post exhaustive treadmill running is followed by significant increases in plasma IL-1ra concentrations at 2 hours post exercise. In the present study increased serum IL-6 concentrations immediately post downhill running were closely associated and coincided with increases in anti-inflammatory IL-10. Interleukin-10 has a variety of anti-inflammatory mechanisms of action. In the context of tissue damage, IL-10 has been associated with inhibition of pro-inflammatory cytokine production through signal transducer and activator of transcription / suppressor of cytokine signalling (STAT3/SOCS) pathway (Murray et al. 2006, Schroder et al. 2003) and the induction of monocyte differentiation into anti-inflammatory macrophages that clear cellular debris without releasing additional pro-inflammatory mediators (Allavena et al. 1997, 1998). In both subgroups, anti-inflammatory IL-10 returned to pre values at 4h following downhill running despite the additional appearance of IL-6 in circulation in the DHR2 subgroup.

In the study by Steensberg et al. (2003), 2 hours of (rh)IL-6 infusion was furthermore associated with a significant increase in neutrophil count, suggesting that IL-6 might have an central role in exercise-induced leukocyte trafficking. This is supported by Yamada et al. (2002) demonstrating that plasma IL-6 (1 hour post maximal exercise test on level treadmill) significantly correlates with the number of circulating neutrophils (2 hours post exercise). Based on significant associations between markers of neutrophil degranulation (MPO and MMP-9) and IL-6 following maximal cycling to exhaustion, Reihmane et al. (2012) recently suggested that neutrophils could be the main source of inflammatory biomarkers during maximal exercise. However, following the cessation of exercise an increase in the number of monocytes that respond to ex vivo lipopolysaccharide (LPS) stimulation by producing IL-6 has also been demonstrated (Starkie et al. 2001).
Rhind et al. (2001) furthermore indicated that the proportion of CD14+ monocytes exhibiting spontaneous intracellular expression of IL-6 increased following seven days of exhaustive exercise. Individual transcriptional changes in circulating leukocytes following acute exercise may therefore translate into divergent systemic responses to exercise and warrants further investigation. Microarray analysis of the transcriptional output of peripheral blood mononuclear cells (PBMC’s) following acute exercise demonstrated that the greatest transcriptional changes occur in pathways related to the immune response and inflammation (Carlson et al. 2011, Connolly et al. 2004, Radom-Aizik et al. 2009). By studying the effect of eccentric exercise on NFκB signalling in PBMC’s, Garcia-Lopez et al. (2007) indicated increased NFκB activation coinciding with increased p-IκBα and p-IKK protein levels following an acute bout of eccentric exercise. Similarly, Jimenez-Jimenez et al. (2008) demonstrated a significant increase in p65/p50 activity and the phosphorylation of IκBα in PBMC’s following an acute unaccustomed bout of eccentric exercise. A similar increase in monocyte count was however observed in both the DHR subgroups, suggesting that if PBMC’s were responsible for the production of additional IL-6, their activation status might have differed between the two DHR subgroups.

Previously, using a similar downhill run protocol, we presented qualitative evidence of immune cell attraction and invasion, as well as phagocytosis including membrane disruption (van de Vyver et al. 2012). To assess the possible damaging effects of neutrophils and monocytes this study investigated changes in WBC count, inflammatory cytokines and intramuscular MPO and NFκB signalling in relation to indirect markers of muscle damage. No change in NFκB signalling raises the question on whether the more prolonged elevation of IL-6 evident in the early recovery phase, had any effect on events occurring during the late recovery phase.

The downstream effects of IL-6 are dependent on its interaction with either a membrane bound (gp130) or soluble receptor (sIL-6R) (Robson-Ansley et al. 2010). The binding of IL-6 to the membrane bound receptor ultimately results in the nuclear translocation of activated STAT proteins which affect gene transcription of proteins related to inflammation (Trennery et al. 2008), proliferation (McKay et al. 2009, Toth et al. 2011) and/or angiogenesis (Cheranov et al. 2008). These three processes were addressed briefly in the current study by assessment of STAT3, Pax7 and CD34 respectively. The interpretation of these data are not simple, but a few points of discussion will be put forward.
In the present study the DHR2 subgroup showed significant intramuscular STAT3 signalling at 4h with the phosphorylation status of STAT3 associated with serum IL-6 at the same time point. An increased STAT3 signalling responsiveness to pro-inflammatory factors has been hypothesized to impact on mechanisms of muscle repair (Trennery et al. 2008) especially in aged muscle. Instead some participants (DHR2 subgroup) seem to have a less efficient capacity to control the post damage inflammatory response. The lack of additional IL-10 production at 4h suggests that the pro-inflammatory properties of IL-6 lead to a systemic inflammatory response in the DHR2 subgroup that ultimately resulted in a second phase of muscle damage. Serum IL-6 concentrations in the DHR2 subgroup did however return to pre values on d1 post downhill running, most likely due to negative feedback regulation (Krebs et al. 2001, Murray et al. 2006, Trennery et al. 2008). In some studies IL-6 induction of STAT3 signalling has been shown to be exclusive to the nuclei of satellite cells (Toth et al. 2011) and to correlate with increases in satellite cell proliferation in response to acute muscle lengthening contractions (McKay et al. 2009). Despite a significant group effect at 4h with regards to the phosphorylation status of intramuscular STAT3, both the DHR subgroups showed evidence of satellite cell activation within 24 hours following downhill running. Satellite cell activation was however not sustained, with no evidence of regulation by MRFs. This suggests that there was no difference in the regenerative response between the two DHR subgroups.

A time-dependant release of progenitor cells during and following 4 hours of cycling (Mobius Winkler et al. 2009) have been demonstrated. To determine whether exercise intensity might modulate progenitor cell release, Bonsignore et al. (2010) measured both hematopoietic and angiogenic progenitors following a marathon and 1.5 km field test in healthy young men. Maximal exercise was associated with the release of both hematopoietic and endothelial progenitors whereas endurance exercise resulted in increased endothelial and reduced hematopoietic progenitors in circulation (Bonsignore et al. 2010). The same authors previously (Bonsignore et al. 2002) reported that amateur runners had up to 4 fold higher circulating hematopoietic progenitor cells compared to sedentary controls at rest. Based on this observation the authors suggested that bone marrow activity might be modulated by the inflammatory mediators and stressors during habitual running. Supporting this hypothesis, Spiropoulos et al. (2010) indicated that exercise-induced inflammation has the potential to modulate bone marrow homeostasis. However, Adams et al. (2008) indicated a significant
decrease in circulating progenitor cells accompanied by an acute inflammatory response in well-trained older men following a marathon race.

Similarly a decrease in CD34$^+$ cells specifically in the granulocyte region with no significant changes in G-CSF concentrations were evident 4h following downhill running in the present study. Although these studies appear to be contradictory, it is known the CD34$^+$ granulocytes can mature into neutrophils. A correlation was observed between peak circulating neutrophils and the decrease in CD34$^+$ cells in the granulocyte region at the same time point. This may explain the immature population of granulocytes evident following the downhill run. An hypothesis can be put forward to explain the current data. Despite only 4-5% CD34$^+$ granulocytes, the granulocytes quickly lost the expression of CD34 with the resultant neutrophils still not mature. It is possible that these neutrophils may remain in circulation, mature over time and contribute to the secondary phase of damage. The preliminary data ($d0-d2$) discussed here for the three different lines of investigation are sufficient to embark on further studies to investigate not only the functional activity of mobilized leukocytes but also inter-individual variability in anti-inflammatory cytokine responses.
Table 5.4 Cytokine response to exercise

<table>
<thead>
<tr>
<th>First Auth, date</th>
<th>Intervention protocol</th>
<th>TNFα peak time</th>
<th>IL-1β peak time</th>
<th>IL-6 peak time</th>
<th>IL-10 peak time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentric exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruunsgaard 1997</td>
<td>Cycling 30min @65% VO₂max</td>
<td>n.d</td>
<td>n.d</td>
<td>no change</td>
<td></td>
</tr>
<tr>
<td>Ostrowski 1998</td>
<td>2.5h treadmill @75% VO₂max</td>
<td>no change</td>
<td>no change</td>
<td>post</td>
<td></td>
</tr>
<tr>
<td>Peake 2005</td>
<td>level treadmill 85% VO₂max</td>
<td></td>
<td></td>
<td>post</td>
<td>1h</td>
</tr>
<tr>
<td>Sorichter 2006</td>
<td>60 min downhill treadmill @85% VO₂max</td>
<td></td>
<td></td>
<td>post</td>
<td></td>
</tr>
<tr>
<td>Gokhale 2007</td>
<td>3 x 20 min running</td>
<td>post</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang 2007</td>
<td>graded cycling until exhaustion</td>
<td>no change</td>
<td>reduced</td>
<td>no change</td>
<td>no change</td>
</tr>
<tr>
<td>Peake 2008</td>
<td>90 min cycling 65% VO₂max</td>
<td>no change</td>
<td></td>
<td>post</td>
<td>post</td>
</tr>
<tr>
<td>Eccentric exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nosaka 1996</td>
<td>24 max ecc rep elbow flexord</td>
<td></td>
<td></td>
<td>no change</td>
<td></td>
</tr>
<tr>
<td>Bruunsgaard 1997</td>
<td>Ecc cycling 20min @100% VO₂max</td>
<td>n.d</td>
<td>n.d</td>
<td>2h</td>
<td></td>
</tr>
<tr>
<td>Hellsten 1997</td>
<td>5 bouts of one-legged ecc ex</td>
<td></td>
<td></td>
<td>1.5h</td>
<td></td>
</tr>
<tr>
<td>Croisier 1999</td>
<td>ecc isokinetic ex</td>
<td></td>
<td></td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Smith 2000</td>
<td>ecc benc pres & leg curl 4 sets of 12 reps @ 100% RM</td>
<td>no change</td>
<td>reduced</td>
<td>24h</td>
<td>48h</td>
</tr>
<tr>
<td>MacIntyre 2001</td>
<td>quadriceps ecc ex 300 reps</td>
<td></td>
<td></td>
<td>6h</td>
<td></td>
</tr>
<tr>
<td>Steensberg 2002</td>
<td>knee-extensor ex 180min</td>
<td>no change</td>
<td></td>
<td>3h</td>
<td></td>
</tr>
<tr>
<td>Toft 2002</td>
<td>60 min lower limb ecc ex</td>
<td></td>
<td></td>
<td>4h</td>
<td></td>
</tr>
<tr>
<td>Willoughby 2003</td>
<td>7 sets of 10 reps knee-extensor @150% 1RM</td>
<td></td>
<td></td>
<td>6h</td>
<td></td>
</tr>
<tr>
<td>Hirose 2004</td>
<td>elbow flexors dumbbell 90% flexed 6 sets of 5 reps</td>
<td>no change</td>
<td>no change</td>
<td>3h</td>
<td>no change</td>
</tr>
<tr>
<td>Paulsen 2005</td>
<td>quadriceps ecc ex 300 reps</td>
<td></td>
<td></td>
<td>6h</td>
<td></td>
</tr>
<tr>
<td>Miles 2008</td>
<td>elbow flexors 3 sets of 15 reps@ 1RM</td>
<td></td>
<td></td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Afroundeh 2010</td>
<td>3 sets of 10 elbow flexion</td>
<td></td>
<td></td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>Robson-Ansley 2010</td>
<td>6 sets of 10 reps knee flexion</td>
<td></td>
<td></td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Downhill running</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyne 1997</td>
<td>8x5 min DHR @52% VO₂max</td>
<td></td>
<td>no change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peake 2005</td>
<td>10% DHR 45min 65% VO₂max</td>
<td></td>
<td></td>
<td>1h</td>
<td>1h</td>
</tr>
<tr>
<td>Simpson 2005</td>
<td>7km mountain hill race</td>
<td>no change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith 2007</td>
<td>13.5% DHR 60 min</td>
<td>no change</td>
<td>no change</td>
<td>6h</td>
<td>6h</td>
</tr>
<tr>
<td>Broadbent 2010</td>
<td>40 min DHR</td>
<td></td>
<td></td>
<td>24h</td>
<td></td>
</tr>
</tbody>
</table>

Footnote: The table include all studies that fit the following criteria: subjects are healthy young men, exercise intervention include concentric; eccentric; downhill running protocols NOT endurance exercise, no supplementation or other form of intervention, cytokines analyzed in serum or plasma. **Abbr:** DHR - downhill run, ecc - eccentric, ex - exercise, h - hours, IL - interleukin, min - minutes, n.d - not detectable, RM - repitition maximum, TNF - tumour necrosis factor.
5.5 Conclusion

This study clearly demonstrates that young healthy individuals, exposed to muscle micro-damage from unaccustomed eccentric exercise can be divided into those with a adequate and those with a less efficient capacity to control post-damage inflammatory processes. This finding is important because it allows for future experimentation on the integration between the nature of muscle damage and the inflammatory response without large inter-individual variability masking the true effects not reflected when interpreting the whole population. The use of a non-exercising control group demonstrated that the events observed during the recovery phase were as result of the downhill running intervention protocol and subsequent muscle micro-damage.

The present study demonstrates that the additional production of immune related interleukin-6 is associated with the downstream events involved in a more sustained inflammatory response. As consequence sarcolemmal integrity were further compromised during the late recovery phase. No direct association between IL-6 and muscle damage were however evident. The cytokine response to downhill running is complex and not easily explained. The exercise stimuli and subsequent skeletal muscle damage was sufficient to induce an immediate IL-6 and IL-10 response. The anti-inflammatory response was however not sustained. The cytokine response during the first few hours following the cessation of exercise should be investigated further, since the events occurring during the early recovery phase seem to be indicative of events to follow during the late recovery phase.
CHAPTER 6: RELATIONSHIP BETWEEN SECONDARY SKELETAL MUSCLE DAMAGE, LEUKOCYTOSIS AND THE CYTOKINE RESPONSE TO HIGH INTENSITY INTERMITTENT DOWNHILL RUNNING.

6.1 Introduction

Delayed secondary muscle damage after an initial mechanical insult from unaccustomed eccentric exercise is a consequence of oxidative stress but may also be associated with an exaggerated inflammatory response. (Cooper et al. 2007, Falone et al. 2010, Lapointe et al. 2002, Paulsen et al. 2010). Based on evidence from in vitro and animal model experiments it is known that activated immune cells that have infiltrated tissue are usually accompanied by varying degrees of tissue destruction (Brickson et al. 2003, Lapointe et al. 2002, Nguyen et al. 2003, 2005). Neutrophils generate high quantities of cytotoxic superoxide and hypochlorous acid (myeloperoxidase (MPO) dependent reaction), whereas the production of nitric oxide (NO) by pro-inflammatory macrophages is also cytotoxic (Albina et al. 1990, Nguyen et al. 2003, Toumi et al. 2006). However these factors causing damage are also required for regeneration to proceed. The dilemma is to determine if the secondary damage is excessive or not. In vitro studies in human subjects are unlikely to shed light on the mechanisms underlying these phenomena without more invasive investigation and an integrative interpretation of data obtained from in vitro and animal models.

Mechanical loading of skeletal muscle promotes the activation and cytotoxic capacity of neutrophils. Nguyen et al. (2005) demonstrated that cyclic mechanical loading of neutrophil-muscle (C2C12)-cell co-cultures in the presence of superoxide dismutase (SOD) (enzyme responsible for converting superoxide to hydrogen peroxide) activated neutrophil cytotoxic activity and resulted in muscle cell lysis. The confirmation that MPO is the main origin was confirmed in MPO null mutant neutrophil (MPO-/-) and C2C12 co-cultures where no cell lysis was observed. This phenomenon was confirmed in an animal model as well, where a significant reduction (52%) in membrane lysis was observed in MPO-/- compared to wild type mice in response to reloading after a period of unloading (Nguyen et al. 2005). The previous chapter presented the data of subjects who resolved their muscle damage sooner than a second cohort who actually presented with additional leakage of indirect biomarkers of muscle damage following unaccustomed high intensity exercise. Furthermore an association between intramuscular MPO content and circulating indices of muscle damage (creatine
kinase (CK)) was demonstrated in these healthy young men (refer to Fig. 5.12, chapter 5, p. 114).

In vitro cell lysis, in vivo membrane lysis and the association with leaking of CK suggest that the major role of excessive neutrophil activity targets the membrane. However in addition to the regained phagocytic activity, in vitro stimulation of isolated polymorphonuclear cells (PMN) with inflammatory mediators (such as interleukin-8 (IL-8)) has been shown to result in the release of large quantities of matrix metalloprotease-9 (MMP-9) from neutrophilic tertiary granules (Chakrabarti et al. 2005, Ludwig et al. 1997, Ortega et al. 2009, 2010, Pugin et al. 1999, Schlorke et al. 2012). MMP-9 plays a role in tissue destruction by degrading extracellular matrix components (Ohbayashi et al. 2002, Van den Steen et al. 2002). In professional male athletes, a statistically significant association was observed between increases in serum MPO, MMP-9 and interleukin-6 (IL-6) concentrations following incremental cycling to exhaustion (Reihmane et al. 2012). This study implied that the serum measures represented the localised response in the injured niche. However, the exercise did not contain an eccentric component. Therefore, despite the overwhelming evidence implicating neutrophils in causing damage to healthy tissue adjacent to the injury zone, a definitive cause-effect relationship in humans remains to be elucidated.

One of the important findings of the previous chapter was that the appearance of higher levels of IL-6 in circulation and a statistically significant elevation in intramuscular MPO was only evident in individuals who experienced secondary skeletal muscle damage (refer to chapter 5, p. 98). All of the individuals did however have a similar increase in circulating leukocytes following the unaccustomed exercise. In a recent review Tidball et al. (2010) emphasised that both neutrophils and classically activated macrophages amplify the inflammatory response by producing inflammatory cytokines.

Interleukin-6 high and low responders following 2.5 hours of treadmill running (75% VO$_2$max) were previously identified (Ostrowski et al. 1998). Although regular measurements of indirect markers of muscle damage were taken over a period of 5 days, the authors did not investigate the individual CK responses during the late recovery phase. In the subjects who were classified as IL-6 high responders, increases in serum IL-6 were accompanied by a rapid anti-inflammatory cytokine response. A similar anti-inflammatory (interleukin-10 (IL-10)) response was observed in all individuals during our previous investigation, but it was short-lived (refer to chapter 5, p. 98). It is therefore not clear what the role of IL-6 might be in an
excessive secondary damage response. Only further analysis of immune cell status and the intramuscular inflammatory response could possibly shed light on this issue.

Reductions in resting serum cytokine concentrations in sedentary young men following six weeks of intense airforce training were related to decreased peripheral blood mononuclear cell (PBMC) NFκB gene expression (Sousa e Silva et al. 2010). In agreement, Jimenez-Jimenez et al. (2008) demonstrated that a significant increase in p65/p50 activity and the phosphorylation of IκBα in PBMC’s following an acute bout of eccentric exercise was reduced with 8 weeks of eccentric training and a systemic inflammatory response prevented. Based on the evidence from these training studies involving exercise-induced muscle damage (EIMD) we hypothesized that PBMC NFκB signalling might be involved in the production of IL-6 following the cessation of exercise and that the extent may be indicative of a predisposition to secondary muscle damage.

The objectives of this study therefore included the evaluation of circulating neutrophil and macrophage functional responses and the association of related parameters with the second phase of skeletal muscle damage following high intensity intermittent downhill running. A secondary objective of this study was to evaluate the interaction between pro- (IL-6, IL-8) and anti- (interleukin-1 receptor antagonist (IL-1ra), interleukin-4 (IL-4), IL-10) inflammatory cytokine responses and their association with each category with PBMC NFκB signalling.

6.2 Methodology

For in depth information on methodology and laboratory protocols refer to chapter 4.

6.2.1 Subjects

Eighteen healthy young men volunteered to participate in this study and were randomly subdivided into a control (n=5) and downhill run (DHR) group (n=13). All of the participants were unaccustomed to any form of downhill activity and have never before volunteered to participate in any research study. This new group of participants was informed of the purpose and risks of the study before signing an informed consent form. The experimental protocol had been approved by the Committee for Human Research at Stellenbosch University and the
study was conducted according to the ethical guidelines and principles of the International Declaration of Helsinki.

6.2.2 Exercise testing
6.2.2.1 Incremental VO$_{2\text{max}}$ test

Following a 5 minute (min) warm-up, all participants were asked to wear an oxygen mask linked to a metabolic system (Oxycon Pro, Jaeger, Germany) for breath-by-breath gas analysis. The incremental fitness test to exhaustion started at 8 km.h$^{-1}$ on a level treadmill (Runrace, Technogym, Italy), whereafter the speed was increased by 0.5 km.h$^{-1}$ every 30 seconds.

6.2.2.2 Downhill run

The participants in the DHR group performed a 60-min intermittent downhill run (12 x 5 min bouts @ 15 km.h$^{-1}$, 10% decline) on a motorized treadmill (Runrace, Technogym, Italy). Participants were allowed a 5 min standing rest between bouts and all the participants were able to complete all twelve bouts.

6.2.3 Blood sampling

Venous blood was drawn from the antecubital vein in the supine position before (pre), immediately post, 2 hours (h) post and 4h post DHR on day 0 and on days 1, 2, 3 and 4. Whole blood (EDTA tubes) samples collected on day 0 were analysed using flowcytometry (FACS Canto, BD Biosciences) for multiple intracellular and surface markers after multicolour fluorescent staining. The expression of intracellular myeloperoxidase (MPO) (FITC Anti-human, #333138, BD Biosciences) and cell surface CD11b/Mac1 (Horizon V450 Anti-human, # 560480, BD Biosciences), CD163 (APC Anti-human , #333610, Biolegend), CD88/C5aR (PE Anti-human #344304, Biolegend), CD68 (PerCP-Cy5.5 Anti-human, #333814, Biolegend) and CD45 (APC-Cy7 Anti-human, #557833, BD Biosciences) were determined within the granulocyte and monocyte region of the flow cytometer scattergram. Total and differential white blood cell (WBC) counts were also determined using a universal cell counter (Cell-Dyn 3700 Diagnostech). Serum was analyzed using a one-step sandwich assay for creatine Kinase (CK) activity (CARDIAC Calibrator # 386371) and immunoassays
(Milliplex xMAP, Merck) in combination with the suspension array system (Luminex 100) was used to detect IL-1ra, IL-4, IL-6, IL-8, IL-10 (Milliplex human cytokine/chemokines panel I HCYTOMAG-60K-05), sIL-6R (Milliplex human soluble cytokine receptor HSCR-32K-01), sICAM-1, sP-Selectin, MPO (Milliplex Human CVD panel 2, HCVD2MAG-67K-03), MMP-9 (Milliplex human MMP2 kit, HMMP2-55K-01).

6.2.4 Peripheral blood mononuclear cell isolation

Peripheral mononuclear cells were isolated from whole blood collected in EDTA containing tubes on day 0 using density centrifugation and a cell separation medium (Histopaque-1077, Sigma-Aldrich,#RNBB9926).

Following isolation of PBMC’s the samples collected at 2h post downhill running were immediately stained using fluorescent antibodies (Rabbit polyclonal NFXB p65, abcam, #ab16502 ; Alexa Fluor 594, goat anti-rabbit, Invitrogen; bisBenzimide H33342 trihydrochloride, 099K400, #B2261-100MG). Fluorescent microscopy was performed on an inverted fluorescent microscope (Olympus IX81) and images taken at x40 magnification (Olympus LUCPlanFLN 40x/0.60 Ph2 ∞/0-2 FN22) using camera (F-view-II cooled CCD, Soft Imaging systems). The percentage of nuclei (4’6-diamidino-2phenylindale, DAPI) (blue) co-localized with NFXB p65 (TexasRed) (red) was determined for each cell using Manders coefficient (Image J 1.43, Wayne Rasband, National Institute of Health, USA, rsb.info.nih.gov/ij). Nuclear localization was determined for each participant and the average number of cells was 94.6 ±22.6.

6.2.5 Statistical analysis

All values are presented as mean ± Standard Error (SE). Software (STATISTICA 10, StatSoft) was used for all statistical analysis. Box-and Whisker plots were used to establish the presence of outliers defined as more than two standard deviations from the mean. These outlying data points were excluded from analysis and if a specific subject had an outlying value at baseline, all time points for that particular subject were excluded from analysis for that specific variable. To determine whether a group difference existed at baseline, a Kruskal-Wallis non-parametric test with Dunn’s multiple comparison was performed. Repeated measures ANOVA with Fisher’s LSD post hoc test was used to determine significant effects.
of time, group or group x time. For a few specific variables an effect of time in one specific subgroup was analysed using a one-way ANOVA with Fisher’s post hoc test (particularly when control group values were non-detectable or extremely low). Relationships between variables were determined using Spearman’s non-parametric ranked correlation analysis. The level of significance was accepted at p<0.05. The abbreviations that will be used in the results section for text, tables and graphs are: *p<0.05, **p<0.01, ***p<0.001 for effect of time within each group, #p<0.05, ##p<0.01, ### p<0.001 indicating significant group difference at same time point.

6.3 Results

6.3.1 Subject characteristics

The subject characteristics (mean ± SE) (n=18) were as follow: age 20.6 ± 0.3 yr, height 1.8 ± 0.1 m, weight 76.2 ± 2.1 kg, body mass index (BMI) 23.6 ± 0.4 kg.m\(^{-2}\) and fitness level (V\(O_2\)\(_{\text{max}}\)) 52.0 ± 1.3 ml.kg.min\(^{-1}\).

6.3.2 Creatine kinase

No change in CK activity was evident in the control group (n=5) for the duration of the study, a significant group effect (p<0.001) was evident between the control group and the downhill run participants (n=13) from 2h to d2 (refer to Fig. 6.1 panel A, p. 133).

The participants in the downhill run group (n=13) were subdivided based on their individual CK activity over time, using the same criteria as previously described (refer to chapter 5, section 5.3.3.1, p. 99). One participant experienced an exaggerated CK response (CK activity d4 6676 u.L\(^{-1}\)) and was excluded from all further analysis. CK activity of fifty four percent of the remaining participants peaked (1911 ± 398 u.L\(^{-1}\)) (mean ± SE) (p<0.001) on d1 followed by a gradual decline and returned to values not significantly different from baseline on d3 (499 ± 132 u.L\(^{-1}\)). These participants were grouped together as the DHR1 subgroup (n=7). The remaining forty percent of participants had an initial peak in CK activity on d1 (1711 ± 367 u.L\(^{-1}\)) (p<0.001), followed by evidence of a second elevation in CK on d3 (p<0.01) (1380 ± 682 u.L\(^{-1}\)) and d4 (1994 ± 885 u.L\(^{-1}\)) (p<0.05). These participants were grouped together as the DHR2 subgroup (n=6).
6.3.3 Fatigue

The control group (n=5) did not experience any fatigue in the muscle groups of the lower limbs throughout the study. Both the DHR subgroups experienced moderate to severe overall fatigue (p<0.001), fatigue in quadriceps (p<0.001) and fatigue in calf muscles (p<0.001) immediately post downhill running and it lasted up to two days. The DHR2 subgroup
experienced a delayed moderate fatigue in the hamstrings that peaked on d1 (refer to Fig. 6.2 Panel B, p. 134).

Statistical analysis: Repeated measures ANOVA with LSD post hoc test. *p<0.05, **p<0.01, ***p<0.001 indicate significant difference from pre in each DHR subgroup. #p<0.05 indicate significant difference between the DHR1 and DHR2 subgroup at the same time point. Fatigue rating:

1- none, 2- very slight, 3- slight, 4- mild, 5- moderate, 6- moderate to severe, 7- severe, 8- very severe, 9- very very severe, 10- totally exhausted. Abbr: d- day, h- hour.

6.3.4 Delayed onset muscle soreness (DOMS)

The control group (n=5) did not experience any muscle soreness in the quadriceps muscle group throughout the study. The DHR1 subgroup (n=7) experienced mild to moderately-severe muscle soreness in the quadriceps muscles immediately post downhill running that lasted for 2 days. In the DHR2 subgroup (n=5), muscle soreness in the quadriceps muscle
group at rest were delayed with moderate soreness experienced only after one day and lasted up to d3 following downhill running. A significant group effect was thus evident between the two DHR subgroups at 2h (p<0.01) and 4h (p<0.05). Similar to the DHR1 subgroup, the DHR2 subgroup experienced mild to moderately-severe muscle soreness immediately post downhill running when pressure were applied to the quadriceps muscles and when stretched. Muscle soreness during daily activities experienced on d2 (P<0.05) was rated higher in the DHR2 than DHR1 and remained above baseline on d3 only in the DHR2 subgroup (refer to Fig. 6.3, below).

Fig 6.3. DOMS in quadriceps (mean ± SE). Panel A – at rest, Panel B – during daily activities Panel C – during stretch Panel D – when applying pressure. Statistical analysis: Repeated measures ANOVA with LSD post hoc test. *p<0.05, **p<0.01, ***p<0.001 indicate significant difference from pre in each DHR subgroup. #p<0.05 and ##p<0.01 indicate significant difference between the DHR1 and DHR2 subgroup at the same time point. Rating of perceived pain: 1- no pain, 2- very slight, 3- slight, 4- mild, 5- moderate, 6- moderate to severe, 7- severe, 8- very severe, 9- very very severe, 10- unbearable pain Abbr: d- day, h- hour.
A highly significant \(r=0.9454, \ p=0.00003, \ n=12 \) correlation was observed between the fatigue participants experienced in their hamstrings immediately post downhill running and the DOMS they experienced at rest 4 hours later (refer to Fig. 6.4, below).

![Fig 6.4. Fatigue in hamstrings (post) vs DOMS at rest (4h). Statistical analysis: Spearman’s non-parametric correlation analysis, level of significance accepted at p<0.05. Abbr: DOMS – delayed onset muscle soreness, h- hour.]

6.3.5 White blood cell (WBC) differential count

The total white blood cell (WBC) as well as differential WBC counts \((mean \pm SE)\) in the control group \((n=5)\) remained within the normal clinical reference ranges \(\text{total WBC}\ 4.0-11.0 \times10^9 \text{cells}.L^{-1}; \text{neutrophil} \ 1.0-4.0 \times10^9 \text{cells}.L^{-1}; \text{lymphocytes} \ 1.0-4.0 \times10^9 \text{cells}.L^{-1}; \text{monocyte} \ 0.0-0.8 \times10^9 \text{cells}.L^{-1}; \text{eosinophil} \ 0.0-0.4 \times10^9 \text{cells}.L^{-1}; \text{basophil} \ 0.0-0.1 \times10^9 \text{cells}.L^{-1}\) throughout the study.

In the DHR1 subgroup \((n=7)\), total WBC and neutrophil counts were significantly elevated immediately post downhill running with a peak observed at 4h \(\text{WBC} \ 12.6 \pm 1.3 \times10^9 \text{cells}.L^{-1}; \text{neutrophil} \ 9.2 \pm 1.1 \times10^9 \text{cells}.L^{-1}\), while monocyte count \((1.03 \pm 0.07 \times10^9 \text{cells}.L^{-1}\) increase was delayed with a significant elevation seen at 4h, which was also the peak. The DHR2 subgroup \((n=5)\) also had significant increased WBC and neutrophil counts immediately post exercise, but had earlier peaks in total WBC \(\text{WBC} \ 14.5 \pm 1.6 \times10^9 \text{cells}.L^{-1}\), neutrophil \(11.4 \pm 1.8 \times10^9 \text{cells}.L^{-1}\) and monocyte \((1.03 \pm 0.02 \times10^9 \text{cells}.L^{-1}\) counts appeared at 2h following downhill running. Total WBC and neutrophil count were thus
significantly different between the two DHR subgroups at 2h (p<0.01) (refer to Fig. 6.5 Panel A and B, below).

Fig 6.5 Differential white blood cell counts *(mean ± SE)*. **Panel A** – total WBC count, **Panel B** – Neutrophil count, **Panel C** - Monocyte count, **Panel D** - Lymphocyte count, **Panel E** – Eosinophil count, **Panel F** – Basophil count. **Statistical analysis**: Repeated measures ANOVA with LSD post hoc test. **p<0.01, ***p<0.001 indicate significant difference from pre in each DHR subgroup. #p<0.05, ##p<0.01, ###p<0.001 indicate significant difference between the control and DHR subgroup at the same time point. +++p<0.01 indicate significant difference between the DHR1 and DHR2 subgroup at the same time point. **Abbr**: WBC – white blood cell, h – hour, DHR- downhill run.
Since the main difference was seen at 2h, cell counts at this time point were correlated with CK activity and significant associations were found for total WBC count ($r=0.7090$, $p<0.05$, $n=10$), neutrophil count ($r=0.6848$, $p<0.05$, $n=10$) and monocyte count ($r=0.9090$, $p<0.001$, $n=10$) when analysed individually. One source of the pro-inflammatory cytokines is considered to be immune cells and an association was found specifically between neutrophil count at 2h and IL-10 at the same time point ($r=0.9442$, $p=0.0004$, $n=10$) and between neutrophil count at 2h and IL-8 immediately post ($r=0.7698$, $p=0.015$, $n=9$) downhill running (refer to Fig. 6.6, below)

Fig 6.6. Spearman’s correlation. Panel A – CK activity (d4) vs Neutrophil count (2h) Panel B – CK activity (d4) vs Monocyte count (2h) Panel C – Neutrophil count (2h) vs IL-8 (post) Panel D – Neutrophil count (2h) vs IL-10 (2h). **Statistical analysis:** Spearman’s non-parametric correlation analysis, level of significance accepted at $p<0.05$. **Abbr:** CK- creatine kinase, d- day, h- hour.
6.3.6 Neutrophil activity

No change was observed in the surface protein CD11b or in the chemotaxic receptor C5aR on granulocytes in any of the subgroups in response to downhill running. Serum concentrations of soluble ICAM-1 (243 ± 182 ng.mL⁻¹, n=12) and soluble P-Selectin (96 ± 12 ng.mL⁻¹, n=12) remained unchanged throughout the study. Granulocyte intracellular MPO was unchanged in both the control and DHR1 subgroup whereas a decline (p<0.05) was observed at 4h in the DHR2 subgroup (n=5) (refer to Fig. 6.7 Panel A, below). A gradual increase in serum MMP-9 concentrations peaking at 4h (DHR1 9845 ± 2638 pg.mL⁻¹, DHR2 10360 ± 5475 pg.mL⁻¹) was evident in both DHR subgroups which had returned to baseline by d1 (DHR1 2966 ± 911 pg.mL⁻¹, DHR2 1872 ± 1267 pg.mL⁻¹). Despite a similar response pattern in serum MMP-9 concentrations, statistical significance was only evident in the DHR2 subgroup (refer to Fig. 6.7 Panel B, below), most likely due to a lower pre-exercise MMP-9, rather than a different exercise-induced response.

![Fig. 6.7 Neutrophil activity. Panel A - Intracellular MPO (granulocytes). Panel B – serum MMP-9. Statistical analysis: Repeated measures ANOVA with LSD post hoc test. *p<0.05, **p<0.01 indicate the effect of time within the DHR2 subgroup. Abbreviations: d- day, h, hour, MPO- myeloperoxidase.](image-url)
6.3.7 Monocyte/macrophage activity

No change was observed in the surface protein of CD11b on monocytes/macrophages or in the percentage of circulating monocytes/macrophages containing intracellular MPO. A greater percentage of circulating macrophages (CD68+) was evident in the DHR2 subgroup (n=5) immediately and 2h post (p<0.05) downhill running compared to the DHR1 subgroup (n=7) which did not change at all (refer to Fig. 6.8 panel A, below). At 2h following downhill running more circulating anti-inflammatory macrophages (CD163+) (p<0.01) were evident in the DHR2 compared to the DHR1 subgroup (refer to Fig. 6.8 panel B, below). In terms of the percentage of monocytes this change was small, but in comparison to the DHR1 group it was significant.

Fig. 6.8 Monocyte/macrophage activity. Panel A – CD68. Panel B –CD163. Statistical analysis: Repeated measures ANOVA with LSD post hoc test. #p<0.05, ##p<0.01 indicate significant difference between the DHR1 and DHR2 subgroup at the same time point. Abbr: h- hour.

6.3.8 p65 subunit of NFkB

The NFkB complex contains a p65 subunit and total NFkB was quantified by the intensity of a p65 bound fluorochrome (refer to Fig. 6.9 panel B, p. 141). A proportion of p65 appears in the nucleus when NFkB is activated and the intensity of the p65-bound fluorochrome that co-localized with DAPI was expressed as a percentage of the total (refer to Fig. 6.9 panel C, p. 141). This immunofluorescent microscopy was done only at the 2h time point. Nuclear localization is high regardless of exercise (control vs DHR1 subgroup). However a lower
percentage of nuclear localization was observed 2h following downhill running in the DHR2 subgroup. *refer to Fig 6.9 panel E, below.*

![Image of Fig 6.9](image)

Fig. 6.9 NFκB signalling in PBMC’s at 2h following DHR. **Panel A** – PBMC nuclei (Hoescht). **Panel B** – NFκB p65. **Panel C** - Merged image. **Panel D** – co-localization frequency. **Panel E** – Percentage of NFκB p65 nuclear localization (*mean ± SE*). **Statistical analysis:** Co-localization was determined using Mander’s coefficient in ImageJ software. Mann Whitney non-parametric with Dunns multiple comparison test. ### p<0.01 indicate significant difference between the DHR subgroups at the same time point. **Abbr:** h- hour
6.3.9 Cytokine response

No effect of time was observed in the serum cytokine concentrations (IL-1ra, IL-4, IL-6, IL-10, sIL-6R) in response to downhill running in the DHR1 subgroup. At 2h, serum IL-8 concentrations were slightly higher (p<0.05) compared to immediately post and d1 post downhill running in the DHR1 subgroup. These values did however not differ from baseline (pre) at any time (refer to Fig. 6.10 panel A, p. 143).

A significant increase in serum IL-1ra, IL-6 and IL-10 concentrations were however evident in the DHR2 subgroup. Interleukin-1ra peaked (23.6 ± 8.8 pg.mL$^{-1}$) (p<0.001) at 2h followed by a gradual return to baseline. Interleukin-6 peaked at 2h (3.6 ± 2.1 pg.mL$^{-1}$) (mean ± SE) (p<0.05) and returned to baseline on d1 (2.5 ± 1 pg.mL$^{-1}$) whereas IL-10 peaked immediately post (28.5 ± 10.2 pg.mL$^{-1}$) (p<0.001) downhill running and returned to baseline at 4h (2.8 ± 2.7 pg.mL$^{-1}$). This resulted in a significant difference between the DHR subgroups immediately post in serum IL-10 (p<0.01) concentrations and at 2h post downhill running in serum IL-10 (p<0.05), IL-6 (p<0.05) and IL-1ra (p<0.01) concentrations. A highly significant (p<0.001) group effect was also evident between the DHR subgroups in the ratio between serum IL-6 and IL-10 concentrations at 4h (refer to Fig. 6.10 panel B, p. 143).

Despite a slight increase in serum sIL-6R concentrations immediately post downhill running in the DHR2 subgroup, statistical analysis indicated no effect of time, group or group x time. Serum IL-4 concentrations remained unchanged throughout the study with no effect of time, group or group x time evident.
6.4 Discussion

This study confirms our previous findings, demonstrating that healthy young individuals respond differently to unaccustomed high intensity downhill running (refer to chapter 5, p. 92). The advantages of this second study were: a) that a new cohort of subjects was recruited, b) the addition of a blood draw at 2h, c) the assessment of more parameters (IL-1ra, IL-4, sIL-6R) relating to a potential damping of the pro-inflammatory response, d) basic phenotyping of the circulating monocytes, and e) intramuscular MPO and NFκB analysis in
the previous study was not repeated, instead assessed in serum and whole blood subpopulations respectively.

Numerous related exercise studies have previously reported an association between changes in neutrophil count and creatine kinase activity (Ostapiuk-Karolczuk et al. 2012, Peake et al. 2005, Suzuki et al. 1999, Umeda et al. 2008). Both concentric and eccentric exercise induce leukocytosis (refer to chapter 2, table 2.1, p. 27). Natale et al. (2003) compared the effect of three different types of exercise on blood leukocyte count. A circuit of resistance exercise (3x10 repetitions at 70% 1RM) resulted in the largest changes in markers of muscle damage (CK), but prolonged aerobic exercise (cycling at 60% VO2max for 2 hours) yielded the highest increase in total leukocytes. The main focus of most studies has been on events occurring during the early recovery phase and none investigated a late-onset secondary skeletal muscle damage. In addition to confirming the two different response patterns, the main finding was that the extent of leukocytosis at 2h post downhill running was significantly related to the additional appearance of indirect markers of muscle damage (CK) in circulation during the late recovery phase (d4).

Findings related to the repeated bout effect support the notion that the extent of leukocytosis is not determined by the extent of exercise-induced muscle damage. Smith et al. (1998) indicated that the circulating leukocyte response to repeated bouts of EIMD remain consistent, whereas the significant elevations in CK activity were reduced. The current observations indicate that despite a similar increase in CK activity during the early recovery phase (up to d1), individuals who experienced a second phase of muscle damage (DHR2 subgroup), mobilized significantly more neutrophils and monocytes soon after exercise. These data support an hypothesis that the immune response is not only a function of exercise and a result of EIMD, but that it also promotes a delayed second phase of damage.

Cytokines are major effectors and regulators of immune cells, as well as being part of the communication network between different tissues, immune cells and the endocrine system. The release of inflammatory cytokines into the circulation in response to exercise stimuli appear to be responsible for the mobilization of leukocytes. Yamada et al. (2002) investigated whether the increase in circulating neutrophils in response to acute exercise (maximal treadmill exercise) is affected by the interaction between the endocrine and immune systems. The authors demonstrated that plasma IL-6 concentration 1h post exercise was significantly correlated to the number of circulating neutrophils at 2h post exercise in professional winter
sports athletes. In contrast, Paulsen et al. (2005) were unable to demonstrate a correlation between the changes in the leukocyte number and the changes in the plasma concentration of IL-6 following high force eccentric exercise (quadriceps muscle group) in healthy men. The difference in exercise protocols between these studies might explain the controversy. The intervention protocol in the present study, combined high intensity treadmill running and eccentric muscle contraction. In agreement with Paulsen et al. (2005) a direct relationship between serum IL-6 concentration and leukocytosis was not demonstrated. However, this lack of association might be the result of undetectable values or small changes in IL-6 concentrations in many of the individuals, specifically in the DHR1 subgroup. A relationship was however observed between serum IL-8 concentration immediately post and neutrophil count 2 hours post downhill running. It is well known that IL-8 has chemo-attractant properties (Yue et al. 1994). To our knowledge this is the first study to demonstrate a direct association between IL-8 and the mobilization of neutrophils in response to acute high intensity exercise not involving exercise-induced asthma.

Furthermore, a greater percentage of circulating monocytes/macrophages with a pro-inflammatory profile (CD68+) was evident in the DHR2 subgroup immediately and 2h post downhill running. This coincided with a greater increase in serum IL-6 concentrations, suggesting that these immune cells may have been synthesising and releasing IL-6. Compared to the control and DHR1 subgroup, less NFkB p65 nuclear localization was evident in PBMC’s of individuals in the DHR2 subgroup at this particular time point. Circulating mononuclear cells are thus unlikely to be the source of IL-6 appearing in circulation following the cessation of exercise. An alternate possibility is that neutrophils are responsible for the release of IL-6 since an elevated neutrophil count is evident at the same time point.

In accordance, Reihmane et al. (2012) observed a strong association between serum IL-6, MPO and MMP-9 release in professional athletes in response to maximal exercise (cycling to exhaustion). Based on this significant relationship, the authors suggested that neutrophils might be the main source for these inflammatory markers. Investigating the effects of physical exercise (maximal cycling) on blood cell-derived microparticles (indicative of cellular activation or damage), Chaar et al. (2011) demonstrated an increase in the plasma concentration of microparticles derived from polymorphonuclear cells (PMNs). The authors demonstrated that PMN-derived microparticles remained elevated for up to two hours post exercise in healthy men, but more important was the observation of a similar pattern in
plasma IL-6 concentrations. Taken together, it can be argued that circulating neutrophils might have been responsible for releasing additional IL-6 into circulation (independent of muscle contraction) in a subset of individuals (DHR2 subgroup). A proposed explanation such as this, from two variables associated at a particular time point, cannot be conclusive. The association could equally be proposed to signify that IL-6 release from micro-damaged muscle may be stimulating mobilization from bone marrow or epithelial demargination.

Previously, soluble interleukin-6 receptor (sIL-6R) has been implicated in controlling the pattern of leukocyte recruitment following acute EIMD, since infiltrating neutrophils were demonstrated to shed sIL-6R from their cell surface (Hurst et al. 2001, Robson-Ansley et al. 2010). Robson-Ansley et al. 2010 reviewed the findings of studies that investigated the effect of various forms of acute exercise on plasma sIL-6R concentrations. Despite taking the type of exercise intervention into account, the outcome of the 18 studies reviewed were very diverse. Forty four percent of these studies demonstrated no change (Depner et al. 2008, Gray et al. 2006, 2009, Keller et al. 2001, Robson-Ansley et al. 2009, Sacheck et al. 2006, Walshe et al. 2009), 22% indicated a decrease (Adamopoulos et al. 2002, Robson-Ansley et al. 2010, Smith et al. 2000, Zohlnhofer et al. 1992) and 33% observed an increase (Geiger et al. 2007, Keller et al. 2001, 2005, Patterson et al. 2008, Robinson et al. 2009, Robson-Ansley et al. 2006, Zohlnhofer et al. 1992) in plasma sIL-6R concentration. Two out of three studies involving EIMD however, showed an increase in plasma sIL-6R (Depner et al. 2008, Sacheck et al. 2006). Despite a slight tendency towards an increase, the present study was unable to detect any significant changes in serum sIL-6R concentration in either of the subgroups.

Like soluble IL-6 receptor, serum concentrations of soluble ICAM-1 and P-selectin result from shedding of these proteins, although not by immune cells themselves. Both remained unchanged and neither did surface expression of CD11b nor C5aR on neutrophils change in either of the subgroups. Increased plasma sICAM-1 and sP-selectin concentrations have been demonstrated on numerous occasions following marathon running (Nielsen et al. 2004, Parker et al. 2012, Reihmane et al. 2012). In contrast, despite an increase in PMN-derived microparticles, soluble forms of P-selectin, E-selectin, ICAM-1 and VCAM-1 remained unchanged post maximal cycling exercise (Chaar et al. 2011). Although the study by Chaar et al. (2011) did not involve EIMD, the observations are in accordance with those from the present study. Aikimoto et al. (2002) investigated the effects of various exercise interventions on circulating levels of sICAM-1 in healthy male subjects. The authors demonstrated an
increase in plasma sICAM-1 concentrations 1 day after endurance exercise (42 km running), but not after concentric exercise (bicycle ergometer, 80% VO2max). It would seem that the duration of weight bearing exercise may be a factor. However, the authors also observed an increase in sICAM-1 after downhill running (30min @ ventilatory threshold) and suggested that changes in plasma sICAM-1 concentration may reflect the status of the immune system. Convincing evidence to support their findings are lacking. There are no other studies involving EIMD in healthy male subjects that have investigated changes in plasma sICAM-1 concentration.

There was however some evidence of neutrophil degranulation in the present study. Intracellular MPO content of neutrophils from the DHR2 subgroup decreased significantly, indicating that neutrophils released MPO into the circulation. Similarly, Peake et al. (2004) demonstrated that high intensity exercise (60 min treadmill running, 80% VO2max) stimulated neutrophil degranulation, evident from a decrease in intracellular MPO content that coincided with an increase in plasma MPO concentrations. The authors furthermore demonstrated that neutrophil degranulation was accompanied by a slight decrease in the surface expression of CD11b.

In the current study, MMP-9, another component of neutrophilic tertiary granules, gradually increased in circulation peaking at 4h in both subgroups and returned to non-significant values by d1. Since no group effect was evident it is unlikely that MMP-9 cleavage was responsible for compromising sarcolemmal integrity during the late recovery phase. Koskinen et al. (2001) investigated the release of proteins with the ability to degrade extracellular matrix compounds (including MMP-9), in healthy young men following downhill running. There was no association between MMP-9 release and CK activity. In the present study, the sharp decline in serum MMP-9 concentration from 4h to d1, coincided with the resolution of circulating leukocytosis. In addition to neutrophils, other leukocytes such as monocytes and lymphocytes can also synthesize and release MMP-9 (Chen et al. 2006). Our findings are therefore in agreement with the suggestion made by Koskinen et al. (2001), that the increase in serum MMP-9 concentrations reflect accelerated release of MMP-9 into circulation because of exercise-induced changes in leukocyte number rather than being associated with extracellular matrix breakdown that would be expected at later time points.

Chapter 5 demonstrated a close association between serum IL-6 concentrations immediately post downhill running and increases in serum IL-10 concentrations at the same time point.
The anti-inflammatory response \((serum \text{ IL-10})\) was however short lived and had returned to baseline by 4h in all individuals \((refer \ to \ chapter \ 5)\). In addition to its association with IL-10, IL-6 is known to further induce an anti-inflammatory environment by stimulating the synthesis of IL-1ra \((Ostrowski \ et \ al. \ 1998, \ Steensberg \ et \ al. \ 2003, \ Tilg \ et \ al. \ 1997)\). In the present study peak IL-6 concentrations were higher in the DHR2 subgroup and somewhat surprisingly, the anti-inflammatory responses were also higher \((IL-1ra \ and \ IL-10)\).

Recently, Ostapuik-Karolczuk \ et \ al. \ (2012) aimed to clarify the cytokine sequence in response to intense exercise \((90 \ min \ running \ at \ 65\% \ VO_2\max)\) in non-athletes. A prolonged \((up \ to \ 2 \ days)\) pro-inflammatory response \((TNF\alpha, \ IL-1\beta)\) was related to muscle damage (CK), possibly due to the long duration of exercise in untrained subjects. Despite this finding, the authors demonstrated that exercise induced an early anti-inflammatory response \((IL-10, \ IL-4)\).

The initial release of pro-inflammatory IL-6 is countered rapidly by the simultaneous release of IL-10 during exercise although the IL-1ra response occurs 2h after. Interleukin-10 concentrations peaked immediately post downhill running and remained elevated to a lesser extent up to 2h. At this particular time point, serum IL-10 concentration was significantly related to circulating neutrophil count. Studying the effect of exercise \((intensive \ cycling, \ 64\% \ Watts(max))\) on leukocyte cytokine mRNA expression, Nieman \ et \ al. \ (2006) found that circulating leukocytes substantially contribute to changes in plasma concentrations of IL-10 and IL-1ra. Nieman \ et \ al. \ (2006) did not distinguish between the leukocyte subsets in their analysis of anti-inflammatory mRNA since the RNA was isolated from the total leukocyte population.

It is thought that macrophages have either a pro- or anti-inflammatory phenotype. A significant increase in the number of circulating monocytes/macrophages with an anti-inflammatory profile \((CD163^+)\) was evident in the DHR2 subgroup, shortly after the peak in serum IL-10 concentration and coinciding with peak IL-1ra concentrations. The anti-inflammatory properties of IL-10 are most likely involved in this phenomenon, since IL-10 is known to induce the differentiation of monocytes into anti-inflammatory macrophages \((Allavena \ et \ al. \ 1997, \ 1998)\).

At 4h post downhill running, the anti-inflammatory response were no longer evident, whereas IL-6 remained elevated. The ratio between serum IL-6 and IL-10 at 4h, taken together with the significant correlation between CK activity \((d4)\) and neutrophil count \((2h)\), strongly suggest that individuals in the DHR2 subgroup were unable to counter act the pro-
inflammatory properties of IL-6. Future investigations should focus on the interaction between immune cell activity and cytokines in an attempt to identify the mechanisms involved.

6.5 Conclusion

This is the first study to provide direct evidence implicating immune cell activity in the development of a second phase of skeletal muscle damage in a subset of healthy young men following high intensity intermittent downhill running. The cytokine response, although complex and difficult to interpret seem to greatly influence not only the mobilization of leukocytes but also the degranulation of neutrophils.

A direct association between IL-8 immediately post and slightly delayed peak in neutrophil count, support a role for IL-8 in the mobilization of neutrophils. The extent of leukocytosis at 2h post high intensity downhill running together with elevated serum IL-6 concentrations following the cessation of exercise might be an early indication of the development of a second phase of skeletal muscle damage. Despite a significant anti-inflammatory response occurring almost immediately following EIMD, it was short-lived. The delayed release of IL-6 into circulation after the resolution of the anti-inflammatory response confirms our previous observations implicating IL-6 in the development of sustained inflammation.

Why certain individuals are predisposed to the development of sustained inflammation and subsequent secondary skeletal muscle damage remains unclear and warrants further investigation. Future studies should investigate the precise source of the inflammatory biomarkers and focus on the interaction between pro- and anti-inflammatory responses.
CHAPTER 7: CONCLUSION/ FUTURE RESEARCH

In a recent review discussing the effect of different exercise modalities on the appearance of CK in circulation, Baird et al. (2012) suggested: “Greater muscle cell disturbance delays the appearance of a CK serum peak compared to less disruption. This may be linked to the time course of inflammation; however, evidence in the literature supporting this theory remains unclear.”

There are at least three issues influencing our lack of understanding:

Firstly, although it is well known that eccentric muscle damaging exercise results in an inflammatory cytokine response, the mechanisms and consequences of the acute inflammatory response is mostly based on evidence from animal models with extensive damage. The influence of inflammatory mediators (cytokines) on immune cell activity has also been studied mainly ex vivo. Cell culture studies only partly mimic the in vivo situation and how applicable these findings are to exercise-induced injury in humans is still not understood. Secondly, many studies have investigated either markers of muscle damage or the inflammatory response. Even studies reporting both, have seldom attempted to resolve how the two processes are linked. The purpose and outcomes of the studies that investigated the circulating cytokine response to EIMD in humans (refer to chapter 2, table 2.1, p. 27), are very diverse. The variety of exercise protocols utilized and diverse subject populations in these studies might account for at least some of the discrepancies. Thirdly, large variability, in indirect markers of muscle damage, especially serum creatine kinase (CK) activity, has led to the questioning of the validity of this marker (Chapman et al. 2008, Clarkson et al. 1986, Kuipers et al. 1994, Manfredi et al. 1991). Subsequently, individuals have been classified into two groups: CK low responders and CK high responders (Larsen et al. 2007, Paulsen et al. 2005, 2010). These groundbreaking studies suggest that CK activity is not invalid.

Paulsen et al. (2005) demonstrated an association between a reduction in force-generating capacity and circulating leukocytosis following high force eccentric exercise. Based on these observations, taken together with correlations observed between serum cytokines (Granulocyte colony stimulating factor (G-CSF), interleukin-6 (IL-6)) and circulating leukocytosis, the authors concluded that local processes in the damaged muscle regulate the non specific immune response (Paulsen et al. 2005, 2010). In agreement, Suzuki et al. (2003)
and Yamada et al. (2002) have previously discussed muscle damage as a probable cause of the cytokine response and provided circumstantial evidence implicating a cause-effect relationship between cytokines and the mobilization of leukocytes after endurance type exercise.

However, the metabolic role of one of the main pro-inflammatory cytokines, IL-6, has started a new controversy i.e that post exercise IL-6 in circulation is not due to muscle damage. Supporting this argument, Hirose et al. (2004) indicated that despite a second bout of high-force eccentric exercise resulting in less muscle damage than the first bout, no significant reductions in the cytokine response or leukocytosis was evident. Adding to the “reasonable doubt” is the inter-individual variability. We hypothesised that a better understanding of differences between low or high responders to skeletal muscle damage (CK activity) may provide the key to a better understanding of the interactions between damage, inflammation and resolution. The two apparently opposing views may therefore be reconciled when studying low vs high responders.

In 2010, Paulsen et al. observed a biphasic increase in serum CK levels specifically in high responders following high intensity eccentric exercise. The authors concluded that the initial peak in CK may reflect increased permeability of the sarcolemma, caused by the exercise itself and/or accumulation of leukocytes whereas the second peak was due to myofiber necrosis. The authors furthermore proposed that a large increase in circulating CK levels (above 10 000 u.L\(^{-1}\)) precedes necrosis and results in long-lasting suppression of force-generating capacity. Significant intramuscular leukocyte accumulation was evident in these high responders.

Coinciding with the work done by Paulsen et al. (2010), we observed a similar biphasic increase in indirect markers of muscle damage (CK, myoglobin, lactate dehydrogenase (LDH)) in healthy young men following high intensity downhill running (data was unpublished at that stage). None of these individuals experienced an exaggerated CK response within the range of rhabdomyolysis (van de Vyver et al. 2012). Therefore, for the first time, this thesis presents convincing data that healthy young individuals experiencing the normal range of EIMD (with no differences in the initial peak of CK activity), can also be divided into two groups that reflect two different delayed responses after the same insult. The majority of the thesis attempted to find mechanisms for this observation.
In the current investigation we were able to provide direct evidence implicating immune cell activity in the development of a second phase of skeletal muscle damage in the subset of healthy young men following high intensity intermittent downhill running. In addition to identifying divergent individual CK response patterns, we clearly demonstrated that healthy young individuals, exposed to muscle micro-damage can be divided into those with an adequate and those with a less efficient capacity to control post-damage inflammatory processes. Compared to previous investigations the individuals who participated in the current research had a very narrow range for \(\text{VO}_{2}\text{max} \) indicating that the observed phenomena were not related to differences in ability or fitness.

Another advantage is that the research presented in this dissertation consisted of three longitudinal non-cross over studies, each with new volunteers (healthy young untrained men) recruited and tested using the same downhill run intervention protocol. The first two studies that formed part of the investigation were, to our knowledge, the first to show that a delayed peak in serum IL-6 at 4 hours (h) post EIMD is not a consistent finding and that individuals who did not exhibit this response had no secondary increase in CK release. As mentioned above, this phenomenon was confirmed by recruiting and testing new volunteers in study 3. The cytokine response, although complex and difficult to interpret still seems to be a key role player in the development of secondary skeletal muscle damage.

A schematic representation (based on data from the current investigations) of the circulating response following high intensity downhill running in these subsets of individuals is presented in figure 7.1 (p. 153). Comparing the circulating response following high intensity downhill running between individuals with a normal recovery (DHR1 subgroup) and those experiencing secondary damage (DHR2 subgroup) (refer to Fig. 7.1 panel A and B, p. 153) highlights the importance of taking multiple measurements at regular time points. With the addition of the 2h time point (study 3), we were able to provide evidence implicating neutrophil activity not only in compromising sarcolemmal integrity during the late recovery phase (d3-d4) but also as possible source of inflammatory cytokines. A very important and novel finding of the current investigation was that neutrophils peaked at 2h in the DHR2 subgroup, and despite a decrease remained elevated at 4h before a return to baseline by d1. In contrast, neutrophils in the DHR1 subgroup increased more slowly and peaked at 4h with the cell count similar to that of the DHR2 subgroup at this particular time point, but with overall less mobilization. Taken together with the higher levels of intramuscular MPO (indicative of neutrophil accumulation) observed two days post EIMD (refer to Fig. 7.2 panel A and B,
this finding suggests that neutrophil extravasation into the muscle occurred shortly after exercise in the DHR2 subgroup (between 2h and 4h) while mobilisation was still in progress in DHR1. A weakness of the current research is that biopsies were not taken immediately post and 2h post exercise to relate the circulating and intramuscular responses at these early time points. Intramuscular STAT3 signalling downstream of IL-6 was however higher at 4h in individuals who experienced a second phase of skeletal muscle damage (refer to Fig. 7.2 panel A and B, p.154) and this was significantly related to the circulating IL-6 response.

Fig. 7.1 Relative changes from baseline in the circulating response following high intensity downhill running in healthy young men. Panel A – DHR1 subgroup with normal recovery. Panel B – DHR2 subgroup experiencing secondary muscle damage. Abbr: CK – creatine kinase, d – day, h – hour, IL- interleukin, M1 – pro-inflammatory macrophages, M2 – anti-inflammatory macrophages, Mono – monocytes, Neu – neutrophils, ra – receptor antagonist.
Coinciding with the initial increase in serum IL-6, a significant anti-inflammatory response occurred almost immediately following EIMD. This early rise in levels of anti-inflammatory cytokines, IL-10 and the soluble receptor, IL-1ra (*DHR2 subgroup only*) seemed to effectively suppress the synthesis/release of the major pro-inflammatory mediators such as TNFα and IL-1β. The anti-inflammatory response was however short-lived and no longer
evident in circulation at 4h post EIMD. The lack of IL-10 and IL-1ra in circulation at 4h suggest that the pro-inflammatory properties of IL-6 were no longer counter-acted.

The downstream effects of the circulating cytokine response during the first few hours following the cessation of exercise should be investigated further, since the events occurring during the early recovery phase seem to be indicative of events to follow during the late recovery phase.

Despite the development of relatively longer lasting inflammation in DHR2, the regenerative response seemed to be unaffected. A similar increase in the number of satellite cells expressing Pax7 was evident in all of the downhill running participants (regardless of secondary damage). Myogenic regulatory factors involved in satellite cell cycle regulation and differentiation remained unchanged (refer to Fig. 7.2 panel A and B, p. 154). It is possible that even though the downhill running intervention protocol resulted in severe muscle soreness and leakage of muscle proteins into the circulation, structural damage was insufficient to induce differentiation.

Why certain individuals are predisposed to the development of sustained inflammation and subsequent secondary skeletal muscle damage remains unclear and warrants further investigation. A number of correlations have been included in the thesis not because a cause-effect relationship can be accepted, but to provide suggestions for future studies. With studies designed to focus on particular observations more samples around the appropriate time points can be taken, rather than the full time course presented here.
CHAPTER 8: LIMITATIONS

The focus of the research presented in this dissertation was on the possible link between the individual differences in the inflammatory response and the later occurring indices of secondary damage. The research was thus explorative and no mechanistic relationships established. Most of the limitations to the research were associated with limited funding and/or the availability of facilities and materials. The following paragraphs will focus on some of these specific limitations.

There are numerous practical and logistical difficulties as well as ethical considerations to take into account when working with human subjects. One of which is the number of skeletal muscle biopsies that can be safely collected from a single subject without compromising his health. Taken together with the financial implications involved in skeletal muscle biopsy procedures it was necessary to limit the amount of biopsies taken per subject. Therefore, biopsies were only taken from 12 randomly selected subjects during the early recovery phase (4h, d1, d2) and 10 subjects during the late recovery phase (d3, d4). Similarly, serum myoglobin concentrations for instance could only be analyzed in a number of randomly selected subjects. These limitations taken together with the reliability of subjects lead to the analysis of samples from an inconsistent number of subjects for the different variables analysed. Furthermore, to maintain the statistical power of analysis the data from subjects who experienced an exaggerated and delayed peak in creatine kinase activity (DHR3) had to be excluded from all further analysis despite its potential importance. This was mainly due to low subject numbers in this particular subgroup. Data from the current investigation should however be used for a statistical power analysis to determine the number of subjects that need to be recruited for future studies to ensure an adequate distribution between the various DHR subgroups.

Since dehydration can exacerbate skeletal muscle damage, it was important to ensure that all participants were hydrated to a similar amount before their participation in the downhill running intervention protocol. Unfortunately, the current study did not have access to facilities with the capacity of measuring urine specific gravity. Instead the researchers relied on the haematocrit (%) as relative indication of the dehydration status of participants on the day of the intervention protocol. Future studies aiming to confirm the findings of the current investigation should however aim to accurately monitor the hydration status of participants.
throughout the study. Despite all of the morphological and physiological responses that occur in response to exercise-induced muscle injury, one of the most important criteria is muscle function. Since the laboratories where the study was conducted did not have the capacity to measure the functional capacity of skeletal muscle, an arbitrary assessment of delayed onset muscle soreness and fatigue was used as an alternative. The repeatability of these measurements used in the current investigation can be questioned, especially since the outcome of the fatigue assessment were different between two studies (presented in Chapter 5 and Chapter 6) following the same intervention protocol. It is important to note though that the data obtained from the arbitrary assessment of fatigue and muscle soreness were merely used for descriptive purposes and did not form a key part in the outcome of the research project. Furthermore, serum sample analysis using either ELISA or bead array immune assays are also known to be variable. In order to provide credibility to results obtained from these specific assays samples should be analysed in duplicate. In the current investigation only the standard curve samples were however analysed in duplicate and not the experimental serum samples.

Key areas of interest identified in the current investigation should be confirmed in future studies with more in depth analysis focussing on a specific observation and the possible mechanisms involved.
REFERENCES:

Boldrin L, Muntoni F, morgan JE (2010) Are human and mouse satellite cells really the same? *J Histochem Cytochem* 58(11); 941-955

Brooks SV, Zerba E, Faulkner JA (1995) Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. *J Physiol (Lond)* 488; 459-469

Charge SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. *Physiol Rev* 84; 209-238

Chen Y, Fan Y, Poon KY et al. (2006) MMP-9 expression is associated with leukocytic but endothelial markers in brain arteriovenous malformations. *Front Biosci 11;3121-8*

Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10 (12); 826-837

Clarkson PM, Byrnes WC, McCormick KM, Turcotte LP, White JS (1986) Muscle soreness and serum creatine kinase activity following isometric eccentric and concentric exercise. Int J Sports Med 7(3);152-6

Cooper ES, Berry MP, McMurray RG, Hosick PA, Hackney AC (2010) **Core temperature influences on the relationship between exercise-induced leukocytosis and cortisol or TNF-alpha.** *Aviat Space Environ Med.* 81(5):460-6

Depner CM, Gordon LK, Kidd JR, Miles MP (2008) **IL-6 bio-availability varies with basal CRP concentration and is unaffected by eccentric exercise.** Med Sci Sports Exerc 40: S433

Dimitrov S, Lange T, Born J (2010) **Selective mobilization of cytotoxic leukocytes by epinephrine.** J Immunol 184; 503-511

Donalies M, Cramer M, Ringwald M, Starzinski-Powitz A (1991) **Expression of M-cadherin, a member of the cadherin multigene family correlates with differentiation of skeletal muscle cells.** Proc Natl Acad Sci USA 88; 8024-8028

Dubowitz V (1960) **A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle.** Histochemie 2; 105-117;1960

Dunzendorfer S, Kaneider N, Rabensteiner A et al. (2001) **Cellular surface heparin sulphate proteoglycan-mediated regulation of human neutrophil migration by the serpin antithrombinIII.** Blood 97(4): 1079-85

Duran A, Diaz-Meco MT, Moscat J (2003) **Essential role of RelA Ser 311 phosphorylation by zetaPKC in NFkappaB transcriptional activation.** EMBO J 22; 3910-2918

Elices MJ, Osborn L, Takada Y et al (1990) **VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site.** Cell 60 (4): 577-84

Gao JX, Issekutz AC (1996) Mac-1(CD11b/CD18) is the predominant beta 2 (CD18) integrin mediating human neutrophil migration through synovial and dermal fibroblast barriers. Immunology 88(3); 463-70

Geiger PC, Hancock C, Wright DC, Han DH, Holloszy JO (2007) IL-6 increases muscle insulin sensitivity only at superphysiological levels. Am J Physiol Endocrinol Metab 292; 1842-6

Grilli M, Chiu JJ-s, Lenardo M (1993) NFkB and Rel: participants in a multiform transcriptional regulatory system. *Int Rev Cytol* 143; 1-62

Harhaj EW, Sun SC (1999) Regulation of RelA subcellular localization by a putative nuclear export signal and p50. Mol Cell Biol 19; 7088-7095

Heyden MS, Ghosh S (2004) Signaling to NFkappaB. Genes Dev 18(18); 2195-2224

Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating cell growth, differentiation and cell survival signals relayed through the IL-6 family of cytokines. Oncogene 19, 2548-2556

Huang TT, Miyamoto S. Postrepression activation of NFkappaB requires the aminoterminal nuclear export signal specific to IkappaBalpa. Mol Cell Biol 21;4737-4747

Hubal MJ, Devaney JM, Hoffman EP, Zambraski EJ, Gordish-Dressman H, Kearns AK, Larkin JS, Adham K, Patel RR, Clarkson PM. (2010) CCL2 and CCR2 polymorphisms are

Huxley AF, Peachey DL (1961) **The maximum length for contraction in vertebrate striated muscle** *J Physiol (Lond)* 156;150-165

Ito CY, Kazantsev AG, Baldwin AS Jr (1994) **Three NFkB sites in the IkBa promoter are required for induction of gene expression by TNFa.** *Nucleic Acids Res* 22(18); 3787-92

Jang YN, Lee IJ, Park, MC, Baik EJ (2012) **Role of JAK3 in myogenic differentiation.** *Cell Signal* 24(3);742-9

Julian FJ, Morgan DL (1979) *The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres*. *J Physiol (Lond)* 293;379-392

Katz B (1939) *The relation between force and speed in muscular contraction*. *J Physiol (Lond)* 96;45-64

LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111;589-601

Larsen RG, Ringgaard S, Overgaard K (2007) Localization and quantification of muscle damage by magnetic resonance imaging following step exercise in young women. Scand J Med Sci Sports 17(1);76-83

Lin L, DeMartino GN, Greene WC (1998) Cotranslational biogenesis of NFkB p50 by the 26S proteasome. *Cell* 92(6); 819-28

Lopez AF, Sanderson CJ, Gable JR, Campbell HD, Young IG, Vadas MA (1988) Recombinant human interleukin-5 is a selective activator of human eosinophil function. *JEM* 167 (1); 219-224

Low QE, Druega IA, Duffner LA et al. (2001) Wound healing in MIP-1alpha (-/-) and MCP-1(-/-) mice. *Am J Pathol* 159(2); 457-63

Macaluso F, Isaacs AW, Myburgh KH (2012) Preferential type II muscle fiber damage from plyometric exercise. *J Athl Train* 47(4); 414-20

Macaluso F, Myburgh KH (2012) Current evidence that exercise can increase the number of adult stem cells. *J Muscle Res Cell motil* 33: 187-198

MacNeil AJ, Yang YJ, Lin TJ (2011) MAPK kinase 3 specifically regulates Fc epsilon RI mediated IL-4 production by mast cells *J Immunol* 187(6);3374-82

Madihally SV, toner M, Yarmush ML et al. (2002) Interferon gamma modulates trauma-induced muscle wasting and immune dysfunction. *Ann Surg* 236(5); 649-57

Malek TR (2003) The main function of IL-2 is to promote the development of T regulatory cells. J Leukocyte Biol 74(6); 961-965

Mealy K, van Lanschot JJ, Robinson BG et al. (1990) Are the catabolic effects of tumor necrosis factor mediated by glucocorticoids? *Arch Surg* 125 (1); 42-7

Melin B, Bourdon L, Jimenez C, Charpenet A, Bernard O (1997) Plasma myosin and creatine kinase time-course after a concentric – eccentric field exercise. *Arch Physiol Biochem* 105(1); 27-31

IL-10, IL-1ra, and IL-8 but not IL-6 increases after exercise. *J Interferon cytokine Res* 26(9):668-74

Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. *Immunology* 129(3); 311-21

Pahl HL (1999) Activators and target genes of Rel/NFkB transcription factors. Oncogene 18; 6853-6866

Paul WE (1987) Interleukin 4/B cell stimulatory facot 1: one lymphokine, many functions. FASEB 1(6); 456-461

Proske U and Morgan D.L (2001) **Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications.** *J of Physiol.,* 537(2); 33-345;2001

Quintana FJ, Cohen IR (2005) **Heat shock proteins as endogenous adjuvants in sterile and septic inflammation.** *J Immunol* 175; 2777-2782

Reihmane D, Jurka A, Tretjakovs P, Dela F (2012) **Increase in IL-6, TNFa and MMP-9 but not sICAM-1 concentrations depends on exercise duration.** *Eur J Appl Physiol Sep* 19

Schmitz ML, Baeuerle PA (1991) The p65 subunit is responsible for the strong transcription activating potential of NFkappaB. EMBO J 10(12):3805-3817

Shireman PK, Contreras-Shannon V, Ochoa O et al. (2007) MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration. J Leukoc Biol 81(3);775-85

St Pierre Schneider B, Tiidus PM (2007) **Neutrophil infiltration in exercise-injured skeletal muscle How do we resolve the controversy? Sports Med 37(10); 837-866**

Sumagin R, Sarelius IH (2010) **Intercellular adhesion molecule-1 enrichment near tricellular endothelial junctions is preferentially associated with leukocyte transmigration and signals for reorganization of these junctions to accommodate leukocyte passage. J Immunol 184:5242-5252**

Syu GD, Chen HI, Jen CJ.(2011) Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status. PLoS One. 6(9):e24385

Tidball JG (2005) **Inflammatory processes in muscle injury and repair.** *Am J Physiol Regul Integr Comp Physiol* 288(2); R345-53

Tilg H, Dinarello CA, Mier JW (1997) **IL-6 and APPs: anti-inflammatory and immunosuppressive mediators.** *Immunol Today* 18;428-32

Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G (2011) **IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage.** *PLoS ONE* 6(3): e17392

Van Hall G (2012) **Cytokines: muscle protein and amino acid metabolism.** *Curr Opin Clin Nutr Metab Care* 15(1);85-91

Walshe I, Ansky L, Robson-Ansley P (2009) Carbohydrate supplementation does not alter the plasma soluble gp130 concentration in response to prolonged running. 9th Symposium of the International Society of Exercise and Immunology 103

Ybarrondo B, Shih CC (2001) CD54 (ICAM-1) J Biol Regul Momeost Agents 15(2);185-7

Zandi E et al. (1997) The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta necessary for IkappaB phosphorylation and NFkappaB activation. *Cell* 91(2); 243-252

Zhijian J Chen (2005) Ubiquitin signalling in the NFkB pathway. *Nat Cell Biol* 7(8); 758-765

Zsebo KM, Yuschenkoff VN, Schiffer S et al. (1988) Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GMCSF. *Blood* 71(1); 99-103
APPENDIX A: SUBJECT RECRUITMENT FLYER

WANT TO TAKE PART IN A RESEARCH PROJECT?

We are looking for:

- Male athletes between the ages of 18 – 25
- Exercise between 2 and 6 hours per week
- Not participating in hiking or hill walking or downhill-running
- Not being treated for or have a medical history of an inflammatory condition
- Have had NO muscle or exercise related injury in the previous 3 months.
- Do not suffer from any form of an infection or use of any prescribed or over the counter medication/ supplements

What will be done?

- 2x treadmill running tests
- 4x muscle biopsies (x2 on each leg)

You may experience some pain and muscle soreness during the study...

Who will benefit???

This study is done to better our understanding of inflammation and muscle regeneration after unaccustomed exercise and to broaden the scientific based evidence available for future reference.

Feedback will also given to participants:

- Aerobic capacity (VO$_{2\text{max}}$)
- Fibre type composition

Participants will be compensated for any inconvenience and their time for taking part in this study

For more information:

Contact

Mari 079 505 9708 /
45254127@sun.ac.za

Stellenbosch University http://scholar.sun.ac.za
APPENDIX B: PARTICIPANT INFORMATION LEAFLETS

B.1 INFORMED CONSENT FORM (ICF) – STUDY 1

NFκB signalling pathway responses to eccentric exercise and its involvement in a second phase of muscle damage.

The activity of an important messenger protein (NFκB) in the inflammatory pathway following downhill running and its association with a second phase of muscle damage.

PRINCIPAL INVESTIGATOR: Prof. Kathy Myburgh / Mari van de Vyver

ADDRESS: Exercise Physiology Laboratory (R2036)
Department of Physiological Sciences
Stellenbosch University

CONTACT NUMBER: 021 808 3146 / 079 505 9708

INFORMATION, POSSIBLE RISKS AND YOUR CONSENT

You are being invited to take part in a research project. Please take some time to read the information presented here, which will explain the details and possible risks of this project. Please ask the study staff or doctor any questions about any part of this project that you do not fully understand. It is very important that you are fully satisfied and that you clearly understand what this research entails and how you could be involved. Also, your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. You are also free to withdraw from the study at any point, even if you do agree to take part.

This study has been approved by the Committee for Human Research at Stellenbosch University and will be conducted according to the ethical guidelines and principles of the international Declaration of Helsinki, South African Guidelines for Good Clinical Practice and the Medical Research Council (MRC) Ethical Guidelines for Research.
What is this research study all about?

- The aim of the study is to investigate the activity of important messenger proteins (NFκB) inside the muscle that are associated with inflammation and can possibly cause additional muscle damage following exercise. Inflammation is a necessary response but if it is too much it can delay muscle repair.

- The knowledge gained from this study, could be beneficial to athletes participating in a variety of sports. New knowledge regarding the molecules inside the muscle which signal the presence of an inflammatory response to the unaccustomed exercise, could shed some light on the time course of events. This study will give an indication of when is the most suitable time for an athlete to seek help for recovery (following exercise induced muscle soreness), which could decrease the secondary damaging effects that delay muscle regeneration.

- The study will be conducted in the Exercise physiology laboratory at the Mike de Vries building, (Department of Physiological sciences), Stellenbosch University. The total number of 20 subjects will be randomly (drawing names from a hat) subdivided into an experimental (n=16) and control group (n=4).

- Feedback will be given to you following the exercise tests and laboratory analysis regarding your individual fitness level and muscle fibre type composition, this information can then be used by your coach to optimise your regular training program.

- Regardless if you are subdivided into the experimental or control group, you will be asked to maintain more or less the same amount of physical activity throughout the 3 weeks of the study and to keep a diary of your physical activity starting one week before the exercise (VO\textsubscript{2max}) test and to continue up until the end of the study on day 7. It is necessary to record as accurately as you can because we need to know the daily variation of your training which can influence the messenger proteins in your muscle.

What will be done?

Subjects in the experimental group will participate in two exercise tests on a treadmill – first a baseline fitness (VO\textsubscript{2max}) test and then a downhill run 10 days later. Subjects in the control group will only participate in the baseline fitness (VO\textsubscript{2max}) test.

Blood samples (vein at your elbow) and muscle biopsies (from side of upper leg) will be collected at the same time points for everyone who participates in the study (both the experimental and control group). (refer to fig below where the diamonds and arrows are marked).
Study design indicating time course of experiment:

- **Exercise testing:**

VO₂max is the maximal oxygen that your body is capable of using per minute to produce energy. An incremental exercise test to fatigue will thus be used to determine your fitness level. The baseline biopsy (*see more info below*) will be taken before the incremental test so that it doesn’t influence your performance during the fitness test and to give you sufficient time to recover, before you participate in an exercise test. Your fitness level will therefore be determined 2-4 days following the baseline muscle biopsy procedure.

Upon arrival in the exercise laboratory you will be familiarized with the treadmill (Runrace, Technogym, Italy) and the incremental test explained to you verbally. Once you fully understand the exercise testing procedure and all your questions are answered satisfactory, you will participate in the incremental test to fatigue.

Incremental exercise test protocol (VO₂max):

Before the test, you will warm-up on the treadmill for approximately 5 minutes, running at any speed you feel comfortable with. After the warm-up, you will be asked to wear a light running heart rate monitor with chest band and an oxygen mask that is linked to the *Oxycon system* for analysing the amount of oxygen you are breathing in.

You will start running at a speed of 8 km/h (fast walking) on a level treadmill. The speed will then increase every 30 seconds by 0.5 km/h until you reach voluntary exhaustion. You will be encouraged verbally to continue for as long as possible, but you can stop the test at any time for any reason what so ever.
➢ **Downhill running intervention protocol** : (Experimental group only)

The subjects in the experimental group will participate in 12 bouts of 5 min each at a 10% downhill slope on a motorized treadmill (RUNRACE HC1200; Technogym, Italy). There will be a 2 min standing rest between each bout of exercise and the speed will be set at 15 km/h. The duration of the test will be 60 minutes.

During the week after the downhill run the subjects in the experimental group may experience generalised muscle tenderness and pain in the thigh and calf muscles associated with Delayed Onset Muscle Soreness as result of the exercise protocol.

- **Muscle biopsies** (Both groups will be subjected to identical days of biopsy sampling)

A qualified medical doctor (Dr J Brink) who is well trained in the procedure will perform the biopsies under sterile conditions. During the procedure you will be given local analgesia (injection) applied at the site to be biopsied in your upper leg. The injection of the analgesic may be accompanied by pain for a short period of time. Once the analgesia starts working the doctor will perform the biopsy using a sterile biopsy needle (sterilised at Stellenbosch hospital, Merriman Ave). The biopsy itself will be accompanied by a sensation of extreme pressure, but some pain will be experienced once the analgesia wears off. During the procedure a piece of approximately 50-100mg of muscle will be taken. This is a relatively small amount almost the size of the tip of a ballpoint pen. This procedure will not have a negative influence on your muscle function and your muscle will recover completely in a short period of time. Although pain may be present at the biopsy site during sports participation for a period of 1-2 days, it is not sufficient to limit sports participation in non-contact sport. You should refrain from sporting activity for 1 day after a biopsy, but are free to recommence participation on day 2 after a biopsy.

At the end of the study a total number of 4 muscle biopsies will have been collected from you. A baseline biopsy will be taken 2-4 days before the VO\textsubscript{2max} test. The biopsy 4 hours post-intervention will be taken on the opposite leg. The biopsy on day 1 will be taken on the first leg used for the baseline biopsy and will be taken 3 cm below the first biopsy. The biopsy on day 2 will be taken on the opposite leg, 3 cm below the biopsy taken at 4 hours.

- **Blood sampling** (Both groups will be subjected to identical days of blood sampling)

All blood samples will be drawn from the forearm by a qualified phlebotomist (trained and certified to draw blood) using a double sided needle and a standard serum separating tube (SST).
On the day of the downhill run a sample will be drawn pre-, immediately and 4 hours post-the downhill run for the experimental group and in the control group (do not participate in DHR) the pre- and immediately post sample will be separated by 1 hour. On day 1, 2, 3, 4 and 7 one sample will be drawn every morning from subjects in both groups (refer to study design).

The total amount of blood that will be drawn from you is thus 10 ml per sample time’s 8 equals 80 ml.

- **Muscle soreness assessment**

You will be asked to self-asses your muscle soreness by answering a questionnaire based on a modified borg scale which have a rating from 1 to 10 where 1 is no pain and 10 is associated with unbearable pain. You will be asked to fill out a questionnaire before the downhill run as well as immediately post, 4hrs post and on days 1, 2, 3, 4 and 7.

- NO MEDICATION WILL BE GIVEN TO YOU DURING THIS STUDY. You will also be asked to restrain from using any pain killers or anti-inflammatory drugs during the study.

Why have you been invited to participate?

For the study to show any scientific significant results the people who participate has to be randomly selected but must also be more or less matched concerning age, gender, health and physical activity. Therefore all healthy male athletes between the ages of 18 and 25 who are not used to any downhill activity are invited to participate in this study.

What will your responsibilities be?

You would have to be reliable and punctual every day during the course of the study and **arrive at the exercise physiology lab on time**. To control the daily variations you would have to control your amount of exercise per week pre- and during the study, not exercising more than twice a week. You will be asked to keep a diary of your physical activity during the duration of the study.
Are there any risks involved in your taking part in this research?

- The possible risks involved in this study include normal injuries that can occur during exercise, e.g. muscle cramps, muscle soreness and micro-damage to the exercising muscles. This will however not be permanent and exercising muscles will heal completely within a couple of days. Despite the possible exercise related injuries, there is also a slight chance of an infection at the site of the muscle biopsy (less than 0.02% or 1 in 500) or some bruising at the site of blood sampling. In the unlikely event of such an injury occurring, you should immediately contact the study investigators or doctor.

If you do not agree to take part, what alternatives do you have?

Your participation is **entirely voluntary** and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever.

Who will have access to your medical records?

- All information collected will be treated as strictly classified and only the study investigator and supervisor will have access to it. When the information is used in a publication or thesis the identity of all the participants will remain anonymous.

What will happen in the unlikely event of some form of injury occurring as a direct result of your taking part in this research study?

- In such an unlikely event of a serious injury as a direct result of the study protocol the department of physiological sciences, Stellenbosch University will offer compensation to the participant for any medical fees or other related costs involved for the participant.

Will you be paid to take part in this study and are there any costs involved?

You will be compensated pro rata for your time and any inconvenience for participating in the study but if you withdraw from the study at any point after you agreed to participate you will only be compensated for the part that you did participate in. There will be no additional costs involved for you, if you do take part.
Is there anything else that you should know or do?

- You can contact the department of physiological sciences at tel 021 8083149 if you have any further queries or encounter any problems.
- You can contact the Committee for Human Research at 021-938 9207 if you have any concerns or complaints that have not been adequately addressed by your study doctor/investigator.
- You will receive a copy of this information and consent form for your own records.

Declaration by participant

By signing below, I …………………………………..…………. agree to take part in a research study entitled: NFκB signalling pathway responses to eccentric exercise and its involvement in a second phase of muscle damage.

I declare that:

- I have read or had read to me this information and consent form and it is written in a language with which I am fluent and comfortable.
- I have had a chance to ask questions and all my questions have been adequately answered.
- I understand that taking part in this study is voluntary and I have not been pressurised to take part.
- I may choose to leave the study at any time and will not be penalised or prejudiced in any way.
- I may be asked to leave the study before it has finished, if the study doctor or researcher feels it is in my best interests, or if I do not follow the study plan, as agreed to.

Signed at (place) on (date) 2010.

... ..
Signature of participant Signature of witness
Declaration by investigator

I (name) ... declare that:

- I explained the information in this document to ..
- I encouraged him/her to ask questions and took adequate time to answer them.
- I am satisfied that he/she adequately understands all aspects of the research, as discussed above
- I did/did not use an interpreter. (If an interpreter is used then the interpreter must sign the declaration below.

Signed at (place) on (date) 2010.

..
Signature of investigator Signature of witness

Declaration by interpreter

I (name) ... declare that:

- I assisted the investigator (name) ... to explain
 the information in this document to (name of participant)
 ... using the language medium of
 Afrikaans/Xhosa.
- We encouraged him/her to ask questions and took adequate time to answer them.
- I conveyed a factually correct version of what was related to me.
- I am satisfied that the participant fully understands the content of this informed
 consent document and has had all his/her question satisfactorily answered.

Signed at (place) on (date) 2010.

..
Signature of interpreter Signature of witness
B.2 REVISED ICF 2011 – STUDY 2

NFκB signalling pathway responses to eccentric exercise and its involvement in a second phase of muscle damage.

The activity of an important messenger protein (NFκB) in the inflammatory pathway following downhill running and its association with a second phase of muscle.

PRINCIPAL INVESTIGATOR: Prof. Kathy Myburgh / Mari van de Vyver

ADDRESS: Exercise Physiology Laboratory (R2036)
Department of Physiological Sciences

Stellenbosch University

CONTACT NUMBER: 021 808 3146 / 079 505 9708

INFORMATION, POSSIBLE RISKS AND YOUR CONSENT

You are being invited to take part in a research project. Please take some time to read the information presented here, which will explain the details and possible risks of this project. Please ask the study staff or doctor any questions about any part of this project that you do not fully understand. It is very important that you are fully satisfied and that you clearly understand what this research entails and how you could be involved. Also, your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. You are also free to withdraw from the study at any point, even if you do agree to take part.

This study has been approved by the Committee for Human Research at Stellenbosch University and will be conducted according to the ethical guidelines and principles of the international Declaration of Helsinki, South African Guidelines for Good Clinical Practice and the Medical Research Council (MRC) Ethical Guidelines for Research.
What is this research study all about?

- The aim of the study is to investigate the activity of important messenger proteins (NFkB) inside the muscle that are associated with inflammation and can possibly cause additional muscle damage following exercise. Inflammation is a necessary response but if it is too much it can delay muscle repair.

- The knowledge gained from this study, could be beneficial to athletes participating in a variety of sports. New knowledge regarding the molecules inside the muscle which signal the presence of an inflammatory response to the unaccustomed exercise, could shed some light on the time course of events. This study will give an indication of when is the most suitable time for an athlete to seek help for recovery (following exercise induced muscle soreness), which could decrease the secondary damaging effects that delay muscle regeneration.

- The study will be conducted in the Exercise physiology laboratory at the Mike de Vries building, (Department of Physiological sciences), Stellenbosch University. The total number of 20 subjects will be randomly (drawing names from a hat) subdivided into an experimental (n=16) and control group (n=4).

- Feedback will be given to you following the exercise tests and laboratory analysis regarding your individual fitness level and muscle fibre type composition, this information can then be used by your coach to optimise your regular training program.

- Regardless if you are subdivided into the experimental or control group, you will be asked to maintain more or less the same amount of physical activity throughout the 3 weeks of the study and to keep a diary of your physical activity starting one week before the exercise (VO\textsubscript{2max}) test and to continue up until the end of the study on day 7. It is necessary to record as accurately as you can because we need to know the daily variation of your training which can influence the messenger proteins in your muscle.

What will be done?

Subjects in the experimental group will participate in two exercise tests on a treadmill – first a baseline fitness (VO\textsubscript{2max}) test and then a downhill run 10 days later. Subjects in the control group will only participate in the baseline fitness (VO\textsubscript{2max}) test.

Blood samples (vein at your elbow) and muscle biopsies (from side of upper leg) will be collected at the same time points for everyone who participates in the study (both the experimental and control group). (refer to fig below where the diamonds and arrows are marked).
- Study design indicating time course of experiment:

![Study design indicating time course of experiment](image)

- Exercise testing:

$\text{VO}_{2\text{max}}$ is the maximal oxygen that your body is capable of using per minute to produce energy. An incremental exercise test to fatigue will thus be used to determine your fitness level. The baseline biopsy (see more info below) will be taken before the incremental test so that it doesn’t influence your performance during the fitness test and to give you sufficient time to recover, before you participate in an exercise test. Your fitness level will therefore be determined 2-4 days following the baseline muscle biopsy procedure.

Upon arrival in the exercise laboratory you will be familiarized with the treadmill (Runrace, Technogym, Italy) and the incremental test explained to you verbally. Once you fully understand the exercise testing procedure and all your questions are answered satisfactory, you will participate in the incremental test to fatigue.

- Incremental exercise test protocol ($\text{VO}_{2\text{max}}$):

Before the test, you will warm-up on the treadmill for approximately 5 minutes, running at any speed you feel comfortable with. After the warm-up, you will be asked to wear a light running heart rate monitor with chest band and an oxygen mask that is linked to the Oxycon system for analysing the amount of oxygen you are breathing in.

You will start running at a speed of 8 km/h (fast walking) on a level treadmill. The speed will then increase every 30 seconds by 0.5 km/h until you reach voluntary exhaustion.
You will be encouraged verbally to continue for as long as possible, but you can stop the test at any time for any reason whatsoever.

- **Downhill running intervention protocol**: (Experimental group only)

The subjects in the experimental group will participate in 12 bouts of 5 min each at a 10% downhill slope on a motorized treadmill (RUNRACE HC1200; Technogym, Italy). There will be a 2 min standing rest between each bout of exercise and the speed will be set at 15 km/h. The duration of the test will be 60 minutes.

During the week after the downhill run the subjects in the experimental group may experience generalised muscle tenderness and pain in the thigh and calf muscles associated with Delayed Onset Muscle Soreness as result of the exercise protocol.

- **Muscle biopsies**: (Both groups will be subjected to identical days of biopsy sampling)

A qualified medical doctor (Dr J Brink) who is well trained in the procedure will perform the biopsies under sterile conditions. During the procedure you will be given local analgesia (injection) applied at the site to be biopsied in your upper leg. The injection of the analgesic may be accompanied by pain for a short period of time. Once the analgesia starts working the doctor will perform the biopsy using a sterile biopsy needle (sterilised at Stellenbosch hospital, Merriman Ave). The biopsy itself will be accompanied by a sensation of extreme pressure, but some pain will be experienced once the analgesia wears off. During the procedure a piece of approximately 50-100mg of muscle will be taken. This is a relatively small amount almost the size of the tip of a ballpoint pen. This procedure will not have a negative influence on your muscle function and your muscle will recover completely in a short period of time. Although pain may be present at the biopsy site during sports participation for a period of 1-2 days, it is not sufficient to limit sports participation in non-contact sport. You should refrain from sporting activity for 1 day after a biopsy, but are free to recommence participation on day 2 after a biopsy.

At the end of the study a total number of 3 muscle biopsies will have been collected from you. A baseline biopsy will be taken 2-4 days before the VO$_{2\text{max}}$ test. The biopsy on day 3 will be taken on the first leg used for the baseline biopsy and will be taken 3 cm below the first biopsy. The biopsy on day 4 will be taken on the opposite leg, 3 cm below the biopsy taken at baseline.
• **Blood sampling** (Both groups will be subjected to identical days of blood sampling)

All blood samples will be drawn from the forearm by a qualified phlebotomist (trained and certified to draw blood) using a double sided needle and a standard serum separating tube (SST).

On the day of the downhill run a sample will be drawn pre-, immediately and 4 hours post-the downhill run for the experimental group and in the control group (do not participate in DHR) the pre- and immediately post sample will be separated by 1 hour. On day 1, 2, 3, 4 and 7 one sample will be drawn every morning from subjects in both groups (*refer to study design*).

The total amount of blood that will be drawn from you is thus 10 ml per sample time’s 8 equals 80 ml.

• **Muscle soreness assessment**

You will be asked to self-asses your muscle soreness by answering a questionnaire based on a modified borg scale which have a rating from 1 to 10 where 1 is no pain and 10 is associated with unbearable pain. You will be asked to fill out a questionnaire before the downhill run as well as immediately post, 4hrs post and on days 1, 2, 3, 4 and 7.

➢ NO MEDICATION WILL BE GIVEN TO YOU DURING THIS STUDY. You will also be asked to restrain from using any pain killers or anti-inflammatory drugs during the study.

Why have you been invited to participate?

For the study to show any scientific significant results the people who participate has to be randomly selected but must also be more or less matched concerning age, gender, health and physical activity. Therefore all healthy male athletes between the ages of 18 and 25 who are not used to any downhill activity are invited to participate in this study.

What will your responsibilities be?

You would have to be reliable and punctual every day during the course of the study and **arrive at the exercise physiology lab on time**. To control the daily variations you would have to control your amount of exercise per week pre- and during the study, not exercising...
more than twice a week. You will be asked to keep a diary of your physical activity during the duration of the study.

Are there any risks involved in your taking part in this research?

- The possible risks involved in this study include normal injuries that can occur during exercise, e.g. muscle cramps, muscle soreness and micro-damage to the exercising muscles. This will however not be permanent and exercising muscles will heal completely within a couple of days. Despite the possible exercise related injuries, there is also a slight chance of an infection at the site of the muscle biopsy (less than 0.02% or 1 in 500) or some bruising at the site of blood sampling. In the unlikely event of such an injury occurring, you should immediately contact the study investigators or doctor.

If you do not agree to take part, what alternatives do you have?

Your participation is **entirely voluntary** and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever.

Who will have access to your medical records?

- All information collected will be treated as strictly classified and only the study investigator and supervisor will have access to it. When the information is used in a publication or thesis the identity of all the participants will remain anonymous.

What will happen in the unlikely event of some form of injury occurring as a direct result of your taking part in this research study?

- In such an unlikely event of a serious injury as a direct result of the study protocol the department of physiological sciences, Stellenbosch University will offer compensation to the participant for any medical fees or other related costs involved for the participant.

Will you be paid to take part in this study and are there any costs involved?

You will be compensated pro rata for your time and any inconvenience for participating in the study but if you withdraw from the study at any point after you agreed to participate you will only be compensated for the part that you did participate in. There will be no additional costs involved for you, if you do take part.
Is there anything else that you should know or do?

- You can contact the department of physiological sciences at tel 021 8083149 if you have any further queries or encounter any problems.
- You can contact the Committee for Human Research at 021-938 9207 if you have any concerns or complaints that have not been adequately addressed by your study doctor/investigator.
- You will receive a copy of this information and consent form for your own records.

Declaration by participant

By signing below, I ……………………………………………… agree to take part in a research study entitled: NFκB signalling pathway responses to eccentric exercise and its involvement in a second phase of muscle damage.

I declare that:

- I have read or had read to me this information and consent form and it is written in a language with which I am fluent and comfortable.
- I have had a chance to ask questions and all my questions have been adequately answered.
- I understand that taking part in this study is voluntary and I have not been pressurised to take part.
- I may choose to leave the study at any time and will not be penalised or prejudiced in any way.
- I may be asked to leave the study before it has finished, if the study doctor or researcher feels it is in my best interests, or if I do not follow the study plan, as agreed to.

Signed at (place) ………………………… on (date) …………………….. 2011.

... ..
Signature of participant Signature of witness

Declaration by investigator

I (name) ………………………………………………………………… declare that:
• I explained the information in this document to ………………………………………
• I encouraged him/her to ask questions and took adequate time to answer them.
• I am satisfied that he/she adequately understands all aspects of the research, as discussed above
• I did/did not use an interpreter. (If an interpreter is used then the interpreter must sign the declaration below.

Signed at (place) ………………………….. on (date) ……………………. 2011.

...

Signature of investigator ...

Signature of witness

Declaration by interpreter

I (name) ……………………………………………………… declare that:

• I assisted the investigator (name) ……………………………………… to explain
 the information in this document to (name of participant)
 …………………………………………… using the language medium of
 Afrikaans/Xhosa.

• We encouraged him/her to ask questions and took adequate time to answer them.
• I conveyed a factually correct version of what was related to me.
• I am satisfied that the participant fully understands the content of this informed
 consent document and has had all his/her question satisfactorily answered.

Signed at (place) ……………………………………… on (date) ……………………. 2011.

...

Signature of interpreter ...

Signature of witness

B.3 REVISED ICF 2012 – STUDY 3

NFκB signalling pathway responses to eccentric exercise and its involvement in a second phase of muscle damage.

The activity of an important messenger protein (NFκB) in the inflammatory pathway following downhill running and its association with a second phase of muscle.

PRINCIPAL INVESTIGATOR: Prof. Kathy Myburgh / Mari van de Vyver

ADDRESS: Exercise Physiology Laboratory (R2036)
 Department of Physiological Sciences
 Stellenbosch University

CONTACT NUMBER: 021 808 3146 / 079 505 9708

INFORMATION, POSSIBLE RISKS AND YOUR CONSENT

You are being invited to take part in a research project. Please take some time to read the information presented here, which will explain the details and possible risks of this project. Please ask the study staff or doctor any questions about any part of this project that you do not fully understand. It is very important that you are fully satisfied and that you clearly understand what this research entails and how you could be involved. Also, your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. You are also free to withdraw from the study at any point, even if you do agree to take part.

This study has been approved by the Committee for Human Research at Stellenbosch University and will be conducted according to the ethical guidelines and principles of the international Declaration of Helsinki, South African Guidelines for Good Clinical Practice and the Medical Research Council (MRC) Ethical Guidelines for Research.
What is this research study all about?

- The aim of the study is to investigate the activity of important messenger proteins (NFκB) inside the blood mononuclear cells that are associated with inflammation and can possibly cause additional muscle damage following exercise. Inflammation is a necessary response but if it is too much it can delay muscle repair.

- The knowledge gained from this study, could be beneficial to athletes participating in a variety of sports. New knowledge regarding the molecules inside whole which signal the presence of an inflammatory response to the unaccustomed exercise, could shed some light on the time course of events. This study will give an indication of when is the most suitable time for an athlete to seek help for recovery (following exercise induced muscle soreness), which could decrease the secondary damaging effects that delay muscle regeneration.

- The study will be conducted in the Exercise physiology laboratory at the Mike de Vries building, (Department of Physiological sciences), Stellenbosch University. The total number of 20 subjects will be randomly (drawing names from a hat) subdivided into an experimental (n=16) and control group (n=4).

- Feedback will be given to you following the exercise tests and laboratory analysis regarding your individual fitness level, this information can then be used by your coach to optimise your regular training program.

- Regardless if you are subdivided into the experimental or control group, you will be asked to maintain more or less the same amount of physical activity throughout the 3 weeks of the study and to keep a diary of your physical activity starting one week before the exercise (VO_{2max}) test and to continue up until the end of the study on day 7. It is necessary to record as accurately as you can because we need to know the daily variation of your training which can influence the messenger proteins in your muscle.

What will be done?

Subjects in the experimental group will participate in two exercise tests on a treadmill – first a baseline fitness (VO_{2max}) test and then a downhill run 10 days later. Subjects in the control group will only participate in the baseline fitness (VO_{2max}) test.

Blood samples (vein at your elbow) will be collected at the same time points for everyone who participates in the study (both the experimental and control group). (refer to fig below where the diamonds and arrows are marked).
- Study design indicating time course of experiment:

- Exercise testing:

\(\text{VO}_{2\text{max}} \) is the maximal oxygen that your body is capable of using per minute to produce energy. An incremental exercise test to fatigue will thus be used to determine your fitness level.

Upon arrival in the exercise laboratory you will be familiarized with the treadmill (Runrace, Technogym, Italy) and the incremental test explained to you verbally. Once you fully understand the exercise testing procedure and all your questions are answered satisfactory, you will participate in the incremental test to fatigue.

- Incremental exercise test protocol (\(\text{VO}_{2\text{max}} \)):

Before the test, you will warm-up on the treadmill for approximately 5 minutes, running at any speed you feel comfortable with. After the warm-up, you will be asked to wear a light running heart rate monitor with chest band and an oxygen mask that is linked to the \textit{Oxycon system} for analysing the amount of oxygen you are breathing in.

You will start running at a speed of 8 km/h (fast walking) on a level treadmill. The speed will then increase every 30 seconds by 0.5 km/h until you reach voluntary exhaustion. You will be encouraged verbally to continue for as long as possible, but you can stop the test at any time for any reason what so ever.

- Downhill running intervention protocol: (Experimental group only)

The subjects in the experimental group will participate in 12 bouts of 5 min each at a 10% downhill slope on a motorized treadmill (RUNRACE HC1200; Technogym, Italy).
There will be a 2 min standing rest between each bout of exercise and the speed will be set at 15 km/h. The duration of the test will be 60 minutes.

During the week after the downhill run the subjects in the experimental group may experience generalised muscle tenderness and pain in the thigh and calf muscles associated with Delayed Onset Muscle Soreness as result of the exercise protocol.

- **Blood sampling** (Both groups will be subjected to identical days of blood sampling)

All blood samples will be drawn from the forearm by a qualified phlebotomist (trained and certified to draw blood) using a double sided needle and a standard serum separating tube (SST).

On the day of the downhill run a sample will be drawn pre-, immediately and 4 hours post-the downhill run for the experimental group and in the control group (do not participate in DHR) the pre- and immediately post sample will be separated by 1 hour. On day 1, 2, 3, 4 one sample will be drawn every morning from subjects in both groups (refer to study design).

The total amount of blood that will be drawn from you is thus 10 ml per sample time’s 7 equals 70 ml.

- **Muscle soreness assessment**

You will be asked to self-asses your muscle soreness by answering a questionnaire based on a modified borg scale which have a rating from 1 to 10 where 1 is no pain and 10 is associated with unbearable pain. You will be asked to fill out a questionnaire before the downhill run as well as immediately post, 4hrs post and on days 1, 2, 3, 4 and 7.

- NO MEDICATION WILL BE GIVEN TO YOU DURING THIS STUDY. You will also be asked to restrain from using any pain killers or anti-inflammatory drugs during the study.

Why have you been invited to participate?

For the study to show any scientific significant results the people who participate has to be randomly selected but must also be more or less matched concerning age, gender, health and physical activity. Therefore all healthy male athletes between the ages of 18 and 25 who are not used to any downhill activity are invited to participate in this study.
What will your responsibilities be?

You would have to be reliable and punctual every day during the course of the study and arrive at the exercise physiology lab on time. To control the daily variations you would have to control your amount of exercise per week pre- and during the study, not exercising more than twice a week. You will be asked to keep a diary of your physical activity during the duration of the study.

Are there any risks involved in your taking part in this research?

- The possible risks involved in this study include normal injuries that can occur during exercise, e.g. muscle cramps, muscle soreness and micro-damage to the exercising muscles. This will however not be permanent and exercising muscles will heal completely within a couple of days. Despite the possible exercise related injuries, there is also a slight chance of some bruising at the site of blood sampling. In the unlikely event of such an injury occurring, you should immediately contact the study investigators or doctor.

If you do not agree to take part, what alternatives do you have?

Your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever.

Who will have access to your medical records?

- All information collected will be treated as strictly classified and only the study investigator and supervisor will have access to it. When the information is used in a publication or thesis the identity of all the participants will remain anonymous.

What will happen in the unlikely event of some form of injury occurring as a direct result of your taking part in this research study?

- In such an unlikely event of a serious injury as a direct result of the study protocol the department of physiological sciences, Stellenbosch University will offer compensation to the participant for any medical fees or other related costs involved for the participant.

Will you be paid to take part in this study and are there any costs involved?
You will be compensated pro rata for your time and any inconvenience for participating in the study but if you withdraw from the study at any point after you agreed to participate you will only be compensated for the part that you did participate in. There will be no additional costs involved for you, if you do take part.

Is there anything else that you should know or do?

- You can contact the department of physiological sciences at tel 021 8083149 if you have any further queries or encounter any problems.
- You can contact the Committee for Human Research at 021-938 9207 if you have any concerns or complaints that have not been adequately addressed by your study doctor/investigator.
- You will receive a copy of this information and consent form for your own records.

Declaration by participant

By signing below, I ………………………………………………. agree to take part in a research study entitled: NFκB signalling pathway responses to eccentric exercise and its involvement in a second phase of muscle damage.

I declare that:

- I have read or had read to me this information and consent form and it is written in a language with which I am fluent and comfortable.
- I have had a chance to ask questions and all my questions have been adequately answered.
- I understand that taking part in this study is voluntary and I have not been pressurised to take part.
- I may choose to leave the study at any time and will not be penalised or prejudiced in any way.
- I may be asked to leave the study before it has finished, if the study doctor or researcher feels it is in my best interests, or if I do not follow the study plan, as agreed to.

Signed at (place) …………………………… on (date) ………………….. 2012.

.. ..
Signature of participant Signature of witness
Declaration by investigator

I (name) .. declare that:

- I explained the information in this document to ..
- I encouraged him/her to ask questions and took adequate time to answer them.
- I am satisfied that he/she adequately understands all aspects of the research, as discussed above
- I did/did not use an interpreter. (If an interpreter is used then the interpreter must sign the declaration below.

Signed at (place) .. on (date) 2012.
..
Signature of investigator Signature of witness

Declaration by interpreter

I (name) ... declare that:

- I assisted the investigator (name) .. to explain
 the information in this document to (name of participant)
 ... using the language medium of
 Afrikaans/Xhosa.
- We encouraged him/her to ask questions and took adequate time to answer them.
- I conveyed a factually correct version of what was related to me.
- I am satisfied that the participant fully understands the content of this informed consent document and has had all his/her question satisfactorily answered.

Signed at (place) .. on (date) 2012.
...
Signature of interpreter Signature of witness
APPENDIX C: PHYSICAL ACTIVITY DIARY

For each diary entry that you make please keep the following in mind / Hou asb die volgende in gedagte vir elke inskrywing wat jy maak:

Did you ?/ Het jy?

- Any unusual amount of walking / running/ climbing of steps as part of daily activities / Enige buitengewone hoeveelheid loop / hardloop / trappe klim as deel van daaglikse aktiwiteit
- Participate in any unaccustomed activities ? (not usually do) / deelgeneem aan enige aktiwiteite wat jy nie gewoonlik doen nie?
- Have any form of injury or bruising on your body? / Enige beserings of bloukolle op u lyf?

YOU SHOULD REFRAIN FROM TAKING ANY SUPPLEMENTS (Vitamins/ immune boosters) AND ANY OTHER OVER THE COUNTER MEDICATION FOR THE DURATION OF THE STUDY – BUT IN THE UNLIKELY EVENT THAT YOU NEED TO USE MEDICATION PLEASE SPECIFY WHY AND WHAT TYPE. / U WORD VERSOEK OM GEEN OOR DIE TOONBANK MEDIKASIE OF AANVULLINGS (Vitamiene/ immune versterkers) TE GEBRUIK TYDENS DIE STUDIE NIE, MAAR IN DIE GEVAL DAT DIT NODIG IS VIR U OM SO IETS TE GEBRUIK NOEM ASB WATTER TIPE EN WAAROM.

Subject no. / Proefpersoon nr. ________ Starting date / Begin datum:__/__/____
APPENDIX D: FATIGUE AND MUSCLE SORENESS QUESTIONNAIRE

Subject no. / Proefpersoon nr. ________ Starting date / Begin datum: ___/___/____

Day of study / Studie dag: post/ 4hrs/ d1/ d2/ d3/ d4/ d7

Please answer the questions below by writing the appropriate number next to the question. / Antwoord asb die onderstaande vrae deur die toepaslike nommer langs die vraag te skryf.

Part 1 – fatigue/ Deel 1 – moegheid (Question 1-4 / Vrae 1-4)

1. None/ geen
2. Very slight/ baie effens
3. Slight / effens
4. Mild / geringe
5. Moderate / middelmatig
6. Moderate-Severe / middelmatig-erg
7. Severe/ erg
8. Very severe / baie erg
9. Very very severe / baie baie erg
10. Totally exhausted / total uitgeput

1. How do you rate the fatigue you feel in your legs / Watter graad van moegheid ervaar jy in jou bene? ____________

2. How do you rate the fatigue you feel in your hamstrings / Watter grad van moegheid ervaar jy in jou hamstrings? ____________

3. How do you rate the fatigue you feel in your quadriceps / Watter grad van moegheid ervaar jy in jou quadriceps? ____________

4. How do you rate the fatigue you feel in your calf muscles / Watter grad van moegheid ervaar jy in jou kuit spiere? ____________
Part 2 – muscle soreness / deel 2 – spier seerheid (Question 5-8 / Vrae 5-8)

1. No pain / Geen
2. Very slight / Baie effens
3. Slight / effens
4. Mild / geringe
5. Moderate / middelmatig
6. Moderate – severe / middelmatig- erg
7. Severe / erg
8. Very severe / baie erg
9. Very very severe / baie baie erg
10. Unbearable pain / onuithoubaar

5. How would you rate the pain in your Quadriceps at rest / Watter graad van spier seerheid ervaar jy tydens rus? _______

6. How would rate the pain in your quadriceps during daily activities (e.g. walking, climbing stairs, etc.)? / Watter graad van spier seerheid ervaar jy in jou quadriceps tydens daaglikse aktiwiteite (loop, trappe klim)? _______

7. How would you rate the pain in your quadriceps during a stretch (pulling your heel back towards your buttocks)? / Watter graad van spier seerheid ervaar jy in jou quadriceps tydens ’n strek (trek jou hak na agter in die rigting van jou boud)? _______

8. How would you rate the pain in your quadriceps when you apply pressure to them? / Watter graad van spier seerheid ervaar jy in jou quadriceps as jy druk daarop toepas? _______
APPENDIX E: LABORATORY PROTOCOLS

E.1 Bio-Plex Pro Human Cytokine assay procedure (Chapter 4 section 4.3.1.2)

- The 96-well microplate was prewet by adding 100µl of assay buffer to each well and removing it by vacuum filtration.

- 50µl of already prepared 1x coupled beads were added to each well followed by two washing steps (100µl of wash buffer followed by vacuum filtration).

- 50µl of standards and samples were added to the respective wells and incubated on a shaking platform for 30 minutes.

- Following incubation the microplate was washed three times and 25µl of detection antibody added to each well. The microplate was once again placed on the shaking platform and incubated for 30 minutes.

- In between another two washing steps, 50µl of Streptavidin-PE was added to each well and incubated for 10 minutes.

- 125µl of Assay buffer was finally added to each well before data acquisition using the Luminex 100 system.

E.2 Enzyme-linked immunosorbent assay: Cortisol (Chapter 4 section 4.3.1.3)

- 20µl of each standard (with a known concentration of cortisol 0, 20, 50, 100, 200, 400 and 800 ng.mL⁻¹) and serum sample were dispensed into the microtiter wells. All the standards were analysed in duplicate.

- 200µl of enzyme conjugate were dispensed into each well and mixed for 10 seconds before leaving it to incubate for 60 minutes at room temperature.

- Following incubation the contents of each well was shaked out on absorbant paper and rinsed 3 times with diluted wash solution.

- 100µl of substrate solution was added to each well and incubated for 15 minutes at room temperature before adding 100µl of stop solution.

- The absorbancies were immediately read on a universal plate reader (EL800, BioTek instruments) at 450nm. The average absorbance values for each set of standards were
calculated and a standard curve determined by plotting the mean absorbance obtained against its known concentration.

E.3 Milliplex xMAP immunoassay procedures (Chapter 4 section 4.3.1.4)

E.3.1 Human MMP2 panel (#HMMP2-55K, single plex MMP-9) and human cytokine/chemokine magnetic bead panel (#HCYTOMAG-60K, 5 plex) assay procedure:

- The 96-well filter plates were prewet with 200µl of wash buffer and left to shake on the plate shaker for 10 minutes at room temperature.
- Wash buffer was removed by vacuum filtration and 25µl of each standard and control was added to the appropriate wells.
- 25µl of assay buffer was added to all the background, standard, control and sample wells before loading 25µl of each sample (diluted as per manufacturer’s instructions) to the appropriate wells.
- 25µl of beads were added to all the wells and left to incubate for 2 hours at room temperature on the shaking platform.
- Following incubation, the plate was washed twice with 200µl wash buffer per well removed using vacuum filtration.
- 25µl of the specific detection antibodies were added to each well and incubated with agitation on the plate shaker for 1 hour.
- Following incubation 25µl of Streptavidin-Phycoerythrin was added to each well and incubated for 30 minutes with agitation on the plate shaker at room temperature.
- This was followed by another washing step, 200µl wash buffer per well removed using vacuum filtration.
- 100µl of sheath fluid was added to all the wells and the beads resuspended on a plate shaker for 5 minutes before running the plate on the Luminex 100.

E.4 Multicolour flow cytometric analysis (Chapter 4 section 4.3.2.2)

E.4.1 Circulating haematopoietic progenitor cells: Compensation experiment (Anti-mouse Ig, κ /Negative control (BSA) compensation Plus (7.5um) Particles set, BD BioSciences #560497):

- One drop of BD CompBead Plus anti-mouse Ig (#51-9006274) particles which bind to any mouse κ light chain-bearing immunoglobulin and one drop of BD CompBead Negative
control (BSA) (#51-9006227) particles which have no binding capacity was added to 100µl of phosphate buffer solution (PBS).

- This was repeated four times (once for each fluorochrome). The recommended volume of each fluorochrome-conjugated mouse antibody were added to the compensation beads and incubated for 30 minutes in the dark followed by a washing step with 500µl of PBS.

- When analysed by flowcytometry (FACSCalibur system, Becton Dickinson) the compensation beads provided distinct positive and negative (background fluorescence) populations which is used in the experiment to correct for spectral overlap for the combination of fluorochrome-labelled antibodies. This correction was performed using the instrument set-up software (BD CellQuest Pro, Becton Dickinson).

E.4.2 Staining procedure: Circulating haematopoietic progenitor cells

- 100µl of whole blood (EDTA tubes) were transferred to a FACX tube and washed with 500µl of sterile PBS. Following the addition of PBS, the blood was centrifuged at 400 g’s for 5 minutes and the supernatant discarded.

- The cells were resuspended and a cocktail of antibodies added (20µl FITC labelled CD34 #560942, 20µl PE labelled CD 38 #560981, 20µl APC labelled CD 3 #5513783, 20µl PerCP labelled HLA-DR #347402, BD BioSciences). The cells were left to incubate in the dark for 15 minutes.

- Following incubation the cells was washed with 500µl PBS (centrifuged for 5min @ 400 g’s) and the supernatant discarded. The samples were fixed by adding 500µl (1x) lysing solution (BD FACS Lysing solution, #349202) containing 4 % paraformaldehyde and analysed within 24 hours.

E.4.3 Activation status of circulating neutrophils and macrophages: Compensation experiment (Anti-mouse Ig, κ /Negative control (BSA) compensation Plus (7.5um) Particles set, BD BioSciences #560497):

- One drop of BD CompBead Plus anti-mouse Ig (#51-9006274) particles which bind to any mouse κ light chain-bearing immunoglobulin and one drop of BD CompBead Negative control (BSA) (#51-9006227) particles which have no binding capacity was added to 100µl of phosphate buffer solution (PBS).

- This was repeated six times (once for each fluorochrome). The recommended volume of each fluorochrome-conjugated mouse antibody were added to the compensation beads and incubated for 30 minutes in the dark followed by a washing step with 500µl of PBS.
When analysed by flowcytometry (FACSCanto, Becton Dickinson) the compensation beads provided distinct positive and negative (background fluorescence) populations which is used in the experiment to correct for spectral overlap for the combination of fluorochrome-labelled antibodies. This correction was performed using the instrument set-up software (BD CellQuest Pro, Becton Dickinson).

E.4.4 Fluorochrome minus one (FMO) experiment:

- One drop of BD CompBead Plus anti-mouse Ig (#51-9006274) particles which bind to any mouse κ light chain-bearing immunoglobulin and one drop of BD CompBead Negative control (BSA) (#51-9006227) particles which have no binding capacity was added to 100ul of phosphate buffer solution (PBS).

- A cocktail of antibodies containing the recommended volume of each fluorochrome-conjugated antibody were added to the compensation beads. This was repeated six more times with each time a different fluorochrome-conjugated antibody missing from the cocktail of antibodies (refer to table E.4.4). Following the addition of the antibody cocktail, the beads were incubated for 30 minutes in the dark followed by a washing step with 500ul of PBS.

Table E.4.4 Fluorochrome conjugated antibody cocktails

<table>
<thead>
<tr>
<th></th>
<th>Tube1</th>
<th>Tube2</th>
<th>Tube3</th>
<th>Tube4</th>
<th>Tube5</th>
<th>Tube6</th>
<th>Tube7</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPO (FITC)</td>
<td>20µl</td>
<td>"</td>
<td>20µl</td>
<td>20µl</td>
<td>20µl</td>
<td>20µl</td>
<td>20µl</td>
</tr>
<tr>
<td>CD88 (PE)</td>
<td>20µl</td>
<td>20µl</td>
<td>"</td>
<td>20µl</td>
<td>20µl</td>
<td>20µl</td>
<td>20µl</td>
</tr>
<tr>
<td>CD11b (V450)</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>"</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
</tr>
<tr>
<td>CD163 (APC)</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>"</td>
<td>5µl</td>
<td>5µl</td>
</tr>
<tr>
<td>CD68 (PerCPCy5.5)</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>"</td>
<td>5µl</td>
<td></td>
</tr>
<tr>
<td>CD45 (APCCy7)</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>5µl</td>
<td>"</td>
</tr>
</tbody>
</table>

Footnote: The recommended volume of each antibody were used per test as per manufacturer’s instructions.

- When analysed by flowcytometry (FACSCanto, Becton Dickinson) the compensation beads provided distinct positive and negative (background fluorescence) populations which is used to correct for spectral overlap for this specific combination of fluorochrome-labelled antibodies.
E.4.5 Staining procedure: Activation status of circulating neutrophils and macrophages

- 100µl of whole blood (EDTA tubes) were transferred to a FACX tube and 1mL (1x) lysing solution (*BD FACS Lysing solution, #349202*) added and incubated for 10 minutes at room temperature.
- This was followed by a centrifugation @ 400 g’s for 5 minutes. The supernatant was discarded and the cells resuspended.
- 0.5 mL Permeabilizing solution 2 (*BD FACS Permeabilizing solution 2, #340973*) was added and left to incubate for 10 minutes.
- Following incubation, the cells were washed with 500µl PBS followed by centrifugation @ 400g’s for 5 minute and the supernatant discarded.
- The cells were resuspended and a cocktail of antibodies added (*refer to table 4.3.2.2 tube 1*). The cells were left to incubate in the dark for 30 minutes.
- Following incubation the cells was washed with 500µl PBS (centrifuged for 5min @ 400 g’s) and the supernatant discarded.
- The samples were fixed by adding 500µl 1% paraformaldehyde solution and analysed within 24 hours.

E.5 Peripheral Blood Mononuclear Cell isolation procedure: (*Chapter 4 section 4.3.3*)

- 3mL Histopaque-1077 (*Sigma-Aldrich,#RNBB9926*) were added to a 15ml falcon tube with an equal volume (3mL) of whole blood carefully layered onto the histopaque-1077. This was followed by centrifugation at room temperature @ 400 g’s for 30 minutes.
- The upper layer of plasma was discarded and the opaque interface containing the PBMC’s were transferred to a clean 15mL falcon tube.
- 10mL sterile PBS were added and centrifuged at room temperature @ 250 g’s for 10 minutes.
- The supernatant was discarded and the cells resuspended with 5mL sterile PBS, followed by centrifugation at room temperature @ 250 g’s for 10 minutes.
- The supernatant was once again discarded and the cells resuspended and frozen @ -80 °C in a 20% human serum albumin (HSA) (*Low-endotoxin, Sigma-Aldrich,#A5843-5G*) and 20% dimethyl sulfoxide (DMSO) solution.
E.5.1 Nuclear vs cytoplasmic localization of Nuclear Factor kappa β p65: Immunofluorescent staining procedure.

- 100µl of PBMC’s resuspended in PBS were added per well of a 8-well staining chamber and left to adhere for approximately 15 minutes.

- 100 µl of fixative (methanol) were added per well and incubated for 10 minutes @ 4°C.

- Following incubation the cells were washed twice with 100 µl sterile PBS and 100 µl Triton X-100 (MERCK, #1014224) added per well and incubated for 10 minutes @ 4°C.

- Following another washing step (2x 100 µl PBS), 100 µl 5% goat serum was added to each well and incubated for 20 minutes at room temperature.

- The serum was drained and 100 µl of [1:100] primary antibody (Rabbit polyclonal NFκB p65, abcam, #ab16502) added to each well and left to incubate for 90 minutes at room temperature.

- Following incubation, the cells were washed twice with 100µl sterile PBS and 100 µl of [1:250] secondary antibody (Alexa Fluor 594, goat anti-rabbit, Invitrogen) were added and left to incubate for 30 minutes in the dark at room temperature.

- Following another washing step, 100 µl of [1:10 000] Hoescht (bisBenzimide H33342 trihydrochloride, 099K400, #B2261-100MG) were added per well and incubated for 10 minutes in the dark at room temperature.

- Following incubation cells were washed with 100 µl PBS and frozen @ -20°C until analysis at a later stage.

E.6 Western blotting and SDS-page (Chapter 4 section 4.3.4)

E.6.1 Bradford protein quantification

- For each biopsy 5µl of lysate, 95µl of distilled H₂O and 900µl Bradford working solution (Bradford stock: 500 mg Coomassie Brilliant blue G, 250 ml 95% ethanol, 500 ml phosphoric acid, up to 1 L with dH₂O. Bradford working solution: bradford stock diluted in 1 to 5 ratio with dH₂O and filtered twice) were prepared together with a standard curve containing known amounts of protein (0, 2, 4, 8, 12, 16, 20 µg) using 1mg.ml⁻¹ Albumin from bovine serum (BSA).
The absorbancies of the standard curve and each sample were read at 595 nm wavelength using a spectrophotometer (*Cary 50 Conc UV-visible*). This data was then used to determine the protein concentration in each lysate.

E.6.2 Western blotting procedure

1.0 mm Acrylamide gels containing 10 wells were used in combination with the BioRad western blotting system for separating the proteins in the extracted samples and were prepared as follow:

- 10% separating gel (7700 µl dH₂O, 5000 µl 1.5 M Tris-HCl pH 8.8, 200 µl 10% SDS, 40 µl 10% APS (0.1 g/ml), 5000 µl 40% Acrylamide, 10 µl Temed) were prepared and allowed to set for 1 hour.

- After the separating gel was set, the 4% stacking gel (6100 µl dH₂O, 2500 µl 1.5 M Tris-HCl pH 8.8, 100 µl 10% SDS, 100 µl 10% APS (0.1 g/ml), 1000 µl 40% Acrylamide, 10 µl Temed) was prepared and allowed to set for 30 minutes.

- Running buffer (60.6 g Trizma base, 288 g Glycine, 20 g SDS, up to 2 L with dH₂O, diluted 1:10 before use) was added to the outer chambers of the BioRad system and the electrodes attached. An initial 10 minute run was performed at 100 V (constant) and 400 mA, thereafter a longer run of about 50 minutes at 200 V (constant) were performed.

- After this an electro transfer from the gels onto PVDF membranes (*Immobilon Transfer membrane, Millipore, # IPVH 00010*) were performed on a semi-dry transfer cell (*Bio-Rad Transblot SD*) using thick BioRad blocking paper and ready to use Tris/Glycine buffer (*BioRad, #161-0771*). The transfer was performed at limit 1.5 A and 15 V for one hour. Before and after the transfer the PVDF membranes were placed in methanol for 15 seconds in order to activate the membranes and to keep the proteins bound.

- After the transfer was completed the membranes were washed in copious amounts of (TBS-T) 3 changes, 5 minutes each and then blocked in 5% non-fat milk (5g/100ml TBS-T) for 30 minutes on the shaking platform (*Stoval life science Inc., belly dancer # 4702610*). After blocking, the membranes were placed on the primary antibody (refer to table 4.3.4) in the wall freezer @ 1.5 °C overnight.

* The next day the membranes were washed with TBS-T before they were placed on the HRP-conjugated secondary antibody (refer to table 4.3.4) and incubated for one hour with agitation. Membranes were washed again in TBS-T and exposed on film in the dark room using an ECL detection kit (*GE healthcare, Amersham RPN2108*).
After developing, the membranes were completely stripped of all antibodies (in dH\textsubscript{2}O, 0.2M NaOH, dH\textsubscript{2}O). This was followed with blocking in 5% non-fat milk for 30 minutes before placing the membranes on a primary antibody against β-actin (Santa Cruz biotechnology, sc-81178) overnight. The next day the process (indicated by *) was repeated and membranes exposed on film.

E.7 Phospho protein detection assay procedure: (Chapter 4 section 4.3.5)

- The 96-well microplate was washed (100µl wash buffer per well followed by vacuum filtration).
- 50 µl of prepared (x1) coupled beads (85µl IkBa specific coupled beads and 85µl NFκB p65 (x50) specific coupled beads , 4080µl wash buffer) were added to each well followed by immediate vacuum filtration.
- The 96-well microplate was then washed (100µl wash buffer per well followed by vacuum filtration) twice.
- 50µl of the control lysates as well as the experimental lysates were added to the respective wells and incubated overnight on a shaking platform.
- The next day following incubation, the microplate was washed (100µl wash buffer per well followed by vacuum filtration) three times before adding 25µl of the specific detection antibodies (85µl IkBa antibody and 85µl NFκB p65 antibody, 1995µl detection antibody diluent) and leaving it to incubate for 30 minutes.
- This was followed by vacuum filtration and a single washing step washed (100µl wash buffer per well followed by vacuum filtration).
- 50µl Streptavidin-PE (42.5µl Streptavidin PE, 4207.5 l wash buffer) was then added to each well and incubated for 10 minutes.

The microplate was vacuum filtered and rinsed (100µl resuspension buffer per well followed by vacuum filtration) before adding 125µl of resuspension buffer to each well.
E.8 Myosin ATPase Staining protocol: (Chapter 4 section 4.3.7)

(modified from Gollnick et al. 1983)

- The slides with the cryostat sections were pre-incubated in 0.2M Acetate buffer pH 4.3 for 15 minutes. (0.2 M Acetate buffer pH 4.3 – 40ml 0.2 M acetic acid, 20ml 0.2 M sodium acetate. pH levels were adjusted using 0.1M HCl or 0.1M NaOH).

- Slides were rinsed in pH 9.4 buffer and then incubated for 5 minutes in the pH 9.4 buffer. (Veronal Buffer pH 9.4 – 50ml 0.1 M sodium barbitone, 50ml 0.18 M CaCl₂, 150ml distilled H₂O)

- This was followed with incubation in a pre-warmed substrate solution at 37°C in a shaking water bath for 24 minutes. (Substrate solution – 10 ml 0.1 M sodium barbitone, 5ml 0.18 M CaCl₂, 35ml distilled H₂O, 150mg ATP, solution was left to warm before adjusting pH to 9.4 with either 0.1M HCl or 0.1M NaOH).

- After incubation in substrate solution all sections were soaked in 0.09 M CaCl₂ for 3 minutes and placed in 2% cobalt chloride for a further 3 minutes.

- Sections were then washed in 0.01 M sodium barbitone and rinsed in distilled water before collecting them in a slide rack and developing colour in 1% ammonium sulphide for 30 seconds.

- After the colour was developed the slides were washed in distilled water, mounted and stored at room temperature.

E.9 Immunohistochemistry staining protocol: (Chapter 4 section 4.3.8)

- After washing slides in PBS (3 changes, 5 min each). (PBS – 2 g KCl, 80 g NaCl, 11.6 g Na₂HPO₄, 2 g KH₂PO₄, dH₂O up to 10 L, pH 7), the sections were dried and marked around with a wax pen.

- Thereafter sections were incubated with 20% goat blocking serum (5 ml PBS w/ 2% BSA (0.1 g), 0.2 % milk powder (0.01 g) * 500 ul solution with 100 ul goat blocking serum) for 30 min at room temperature.

- This was followed with overnight incubation at 4°C with the first primary antibody (mouse monoclonal).
The next day sections were washed with PBS (3 changes, 5 min each) before administering the secondary antibody (goat anti-mouse IgG) diluted to [1:200], in the dark for 60 min at room temperature.

This was followed by another washing step with PBS (3 changes, 5 min each).Slides were then incubated with Laminin (Polyclonal Rabbit) diluted to [1:250], in the dark for 4 hours.

Sections were washed again with PBS (3 changes, 5min each) and incubated with the next secondary antibody (goat anti-rabbit) diluted to [1:200] in the dark for 60 min @ room temperature.

Another washing step with PBS (3 changes, 5 min each) was followed by incubation with Hoechst diluted [1:200], for 15 min in the dark.

All sections were mounted using fluorescent mounting medium (DAKO, North America, USA #10030594) and stored @ –20°C.