Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in South African coloureds and Afrikanners

M. J. Kotze, E. Langenhoven, L. Theart, O. Loubser, A. Micklem, C. J. J Oosthuizen

Three low-density lipoprotein receptor (LDLR) gene mutations were previously shown to cause familial hypercholesterolaemia (FH) in up to 90% of affected Afrikanners. Association of each mutation with a single chromosomal background provided molecular genetic evidence that the proposed ‘founder gene effect’ was responsible for the high prevalence of FH among white Afrikanners. In this study we report the identification of the FH Afrikaner-2 (FH2) mutation, Val500Met, in the so-called coloured population of South Africa, a people of mixed ancestry, with rapid non-radioactive methods for mutation detection. Haplotypic analysis with polymorphisms on both sides of the FH2 mutation indicated that the identical LDLR gene mutations found in two different South African population groups were caused by independent events at a potential CpG mutational ‘hot spot’. The allelic variation giving rise to the different chromosomal backgrounds of the FH2 mutation does not affect the properties of the abnormal LDLR protein product which causes FH in these subjects. This mutation is thus expected to cause the same severe form of FH in affected coloureds as was previously demonstrated in Afrikanners. Detection of mutant LDLR alleles in polymearyl chain reaction products, directly after gel electrophoresis, now allows accurate presymptomatic diagnosis of the FH2 mutation in FH patients from two different South African population groups.

References

Accepted 18 Apr 1994.

Department of Human Genetics, University of Stellenbosch, Tygerberg, W. Cape
M. J. Kotze, Ph.D.
E. Langenhoven, M.Sc.
L. Theart, M.Sc.
O. Loubser, M.Sc.
A. Micklem, B.Sc. Hons
C. J. J Oosthuizen, Ph.D.
Familial hypercholesterolaemia (FH) contributes significantly to the high mortality from coronary heart disease (CHD) in several South African populations. Since more than 150 different naturally occurring low-density lipoprotein receptor (LDLR) gene mutations have been described to date,\(^1\) direct molecular diagnosis of FH is currently limited to genetically homogeneous populations, where the majority of individuals carry only a few disease related mutations. In such populations, like the South African Afrikaners\(^2\) and Ashkenazi Jews,\(^3\) specific founder gene defects can be diagnosed accurately. In the Afrikaner population it has been shown that three LDLR gene mutations cause FH in approximately 90% of affected individuals.\(^6\,^7\) Although each founder-related mutation was found to be associated with a single chromosomal background in the Afrikaner patients analysed,\(^4\,^8\) subsequent screening of Dutch FH patients for these mutations revealed a second haplotype associated with the FH Afrikaner-2 (FH2) mutation, Val\(^{148}\) to Met.\(^2\) In this study we identified the FH2 mutation on a third haplotype in two unrelated individuals of mixed ancestry, using direct non-radioactive molecular methods that are more convenient than those previously described, which involve the use of radioactivity and/or expensive restriction enzymes.\(^6\,^7\)

Materials and methods

Analysis of the FH Afrikaner-2 mutation

DNA samples of individuals, previously typed by hybridisation with allele-specific oligonucleotides for the absence or presence of the FH2 mutation (Val\(^{148}\) to Met. G to A mutation at base 1285 in exon 9 of the LDLR gene)\(^6\) were used to standardise detection of the mutation with the amplification refractory mutation system (ARMS)\(^6\) and single-strand conformation polymorphism (SSCP) method.\(^6\) SSCP analysis was performed on polymerase chain reaction (PCR) products amplified with exon 9-specific oligonucleotides N2 (5'-GCTCCATCGCCTACCTTTC-3') and A2 (5'-GCTCACCCTGCAATCATTCTGTTG-3') as described previously.\(^1\) Aliquots of the 172 bp amplified products (5 µl) were denatured with alkali (0.5M NaOH, 10 mM EDTA) at 42°C for 5 minutes, electrophoresed at 80 V overnight at room temperature in a non-denaturing 10% polyacrylamide gel supplemented with 5% glycerol, and stained with ethidium bromide (0.5 µg ml\(^{-1}\)) for 10 minutes. Reactions for the ARMS analysis were performed in two separate tubes per sample, each containing one allele-specific oligonucleotide, 9.6 (5'-AGCCTATCCCCCAACCTAGAAG-3', normal allele) or 9.7 (5'-AGCCTATCCCCCAACCTAGAAGCA-3', mutant allele), in conjunction with a common primer pair 9.1 and 9.2 (5'-GGAAGATGAGACCCACAAAAC-3', 5'-TGCCTATGAGACCCACAAAAC-3'). Arising from the above, the underlined base was deliberately destabilised to ensure allele-specificity. Primers specific for exon 26 of the apolipoprotein (apo) B gene,\(^9\) AB-1 (5'-GGAGGAATGACCAAGCAAAAAAG-3') and AB-2 (5'-GAGGGTTGAGTTTGGATGATGCT-3'), were included in all reactions and served to provide an internal control PCR product of 345 bp. Approximately 0.5 µg genomic DNA were used in the amplification reaction, with 5 pmol of each primer and one unit Taq DNA polymerase in a volume of 50 µl. Taq DNA polymerase, exclusively from Boehringer Mannheim, was used in the ARMS assay, since unacceptable nonspecific bands were obtained when amplification was performed with Taq polymerase purchased from some other manufacturers. The four deoxynucleoside triphosphates were each added to 100 µM in 1 x Taq DNA polymerase buffer (Boehringer Mannheim). Reaction mixtures were overlaid with light mineral oil (Sigma, 50 µl), subjected to DNA denaturation at 94°C for 5 minutes and then to 30 cycles of amplification (93°C for 1 minute; 60°C for 1 minute; 72°C for 2 minutes). PCR products were analysed in 2% agarose gels.

Results

Fig. 1 shows the allelic differentiation obtained with the ARMS and SSCP methods respectively, directly after PCR amplification and gel electrophoresis of genomic DNA from normal individuals, heterozygotes and homozygotes for the FH2 mutation of the LDLR gene. When the ARMS method was used on the DNA of a normal individual, a product was derived only from the internal control primers and primers 9.6 and A2 (Fig. 1A, lane 1). No LDLR gene product (or very faint bands) was observed when primer 9.7, specific for the mutant allele, replaced primer 9.6 (lane 2). When DNA of a FH2 heterozygote was used in the two separate reactions, the expected 100 bp fragment was generated when either primer 9.6 or 8.7 was included in the reaction (Fig. 1A, lanes 3 and 4). Amplification occurred with DNA from a FH2 homozygote only when the mutant oligonucleotide was used (lane 6). Presence of the 345 bp apo B fragment (internal control) in all tubes indicated that amplification occurred in all the reactions. SSCP analysis was performed on the same
set of DNA samples, as well as on some additional samples, to test the mutation-detection efficiency of this method for the FH2 mutation. In Fig. 1B the G alleles in normal individuals could readily be distinguished from the A alleles in affected individuals.

Table I. LDLR gene haplotypes associated with the FH2 mutation in two different South African population groups

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Location</th>
<th>Afrikaner</th>
<th>Mixed race</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApaI</td>
<td>Intron 3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>TaqI</td>
<td>Intron 4</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>SphI</td>
<td>Intron 6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Smal</td>
<td>Intron 7</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Stul</td>
<td>Exon 8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>−</td>
<td>Exon 10</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>HincII</td>
<td>Exon 12</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BstEII</td>
<td>Intron 12</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Avall</td>
<td>Exon 13</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PvuII</td>
<td>Intron 15</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>NcoI</td>
<td>Exon 18</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>MspI</td>
<td>Exon 18</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>MspI</td>
<td>Exon 19</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>PatI</td>
<td>3' flanking</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

+ = presence of a restriction enzyme cutting site; − = absence of a restriction enzyme cutting site; A = adenine; G = guanine.

Discussion

Three founder-related LDLR gene mutations increased the prevalence of FH among Afrikaners to about 1 in 80, compared with 1 in 500 in most other population groups. One of these, the so-called FH2 mutation, causes a severe phenotype and accounts for FH in about 20% of Afrikaners. In this study we applied non-radioactive ARMS and/or SSCP methods to screen for the FH2 mutation in hypercholesterolaemics who were referred to us for a DNA diagnosis of FH. By utilising the exon 9-specific PCR amplification primers, described previously, for analysis of the FH2 mutation by differential oligonucleotide hybridisation, we obtained reproducible results by direct visualisation of different alleles after electrophoresis in SSCP gels and ethidium bromide staining. Direct analysis of the FH2 mutation, following allele-specific amplification by the ARMS method and gel electrophoresis, required synthesis of primers specific for the mutant and normal alleles for use in two separate PCR reactions. When screening FH heterozygotes we found a single PCR reaction, using only the mutant ARMS primers, to be adequate. The specificity of the ARMS primers was increased by the introduction of an additional mismatch near the 3' ends to avoid false-positive results. False-negative results were excluded by the co-amplification of a 345 bp PCR product of the apo B gene. The apo B gene products obtained in the reactions can be used simultaneously to screen hypercholesterolaemics for point mutations that cause familial defective apolipoprotein B-100, by heteroduplex analysis in low cross-linking polyacrylamide gels.

Haplotype analysis in the normolipidaemic and FH populations has previously shown the FH2 mutation to be associated with a single 10-RFLP arrangement in Afrikaners. Subsequent screening for the 3 Afrikaner founder LDLR gene mutations in patients of Dutch descent in the Netherlands, 7 shared a LDLR gene haplotype with Afrikaner patients. The remaining 9 patients had the same FH2
mutation-associated haplotype, which was partly identical to that in Afrikaners and could have arisen from a single recombination event. Genealogical and extended haplotype studies support the hypothesis that the FH2 mutation originated in the Netherlands and was introduced into South Africa by an early Dutch settler in the 17th century (J. C. Defesche — personal communication and unpublished results).

In this study the FH2 mutation was identified in 30 South African patients who had not previously been analysed in respect of the haplotype on which the mutation occurred. To investigate the relationship between the FH2 mutations detected in both Afrikaner and coloured patients, we performed haplotype analysis using 14 polymorphic sites at the LDLR locus. As expected, the chromosomal background originally described for the FH2 mutation showed an association with the mutation in the Afrikaner patients, but a different disease-associated haplotype was identified in two unrelated coloured patients. These haplotypes differ on both sides of the mutation in exon 9: at the Pvull, Ncol and two MspI RFLPs on the 3' side and at the Smal RFLP on the 5' side.

The above results suggest that independent mutational events in exon 9 of the LDLR gene gave rise to the FH2 mutation in two different South African populations. The fact that the single-base substitution in exon 9 involves a methylated CpG dinucleotide, known to mutate frequently, further supports this theory. The FH2 mutation could, however, also have had a common origin if the chromosomal background were changed by a crossover between the FH2 mutation in exon 9 and the Pvull polymorphism in intron 15, and a base pair change occurred at the Smal site. This possible, but improbable, mechanism was excluded by haplotype analyses of normolipidaemic coloureds (data not shown). Since the heterozygosity of most RFLPs described earlier at the 5' end of the LDLR gene is very low, conclusive evidence against the second mechanism's giving rise to the different FH2 mutation-associated haplotypes came from an analysis of the recently-described Smal RFLP in intron 7. The frequency of this excellent LDLR gene haplotype marker is high in FH and normal individuals from both population groups (data not shown). These results provide evidence against the possibility that the base pair change that creates the Smal site in the coloured haplotype arose on an ancient FH2 mutation-associated haplotype that underwent a single recombination event.

The historic ethnic origin of the FH2 mutation found in coloureds was not investigated further. Whites, Asians and blacks have contributed to the gene pool of the present-day coloured population of South Africa. We do believe that, as more FH patients in more population groups both in and outside South Africa are genotyped at the disease locus, further light will be shed on the origins of this mutation. Although the properties of the abnormal LDLR are not affected by the polymorphic sites that allow differentiation of the chromosomal background for the FH2 mutation in the two South African patient groups, the presence of a Pvull site in coloures may result in a more favourable genetic background for the phenotypic expression of FH. This neutral Pvull RFLP in intron 15, that is probably in linkage disequilibrium with a functionally important sequence change in the LDLR gene, shows significant association with cholesterol level variation in healthy individuals. The effect associated with the Pvull rare allele is to lower total and LDL-cholesterol levels, and its relatively higher frequency in individuals over the age of 65 years suggests that the allele may be associated with increased fitness for survival. Variability in the clinical expression of FH, due to the influence of other genetic and non-genetic factors, has previously been illustrated in South African patients with identical mutant genes.

Our findings confirm the previous assessment of a single FH2 founder gene among Afrikaners, most probably introduced into South Africa by a single individual of Dutch origin. Screening for the FH2 mutation and its associated haplotypes in other South African population groups has shown that this mutation is also common in people of mixed racial ancestry as a result of an independent mutational event. To date, 4 coloured FH2 heterozygotes have been identified, and in all of them the newly-described haplotype was associated with the disease. Both non-radioactive methods described in this study facilitate rapid, inexpensive diagnosis of the FH2 gene mutation in hyperlipidaemic individuals. Previous observations that this specific mutation causes considerably elevated cholesterol levels and death at a young age underlie the potential importance of detecting FH2 patients pre symptomatically.

We thank Professors G. A. Coetzez and D. R. van der Westhuysen for helpful discussions, Drs D. Rubinsztein and J. C. Defesche for the kind gifts of exon 18- and intron 4-specific oligonucleotides, R. Titus for technical assistance and J. Brunsicky for critical reading of this manuscript. This work was supported by the South African Medical Research Council, the University of Stellenbosch and the Cape Provincial Administration.

REFERENCES

Supplemented low-protein diets — are they superior in chronic renal failure?

Twenty-two patients with chronic renal failure were randomly assigned to a conventional low-protein diet containing 0.6 g protein/kg/day or a very-low-protein diet containing 0.4 g protein/kg/day supplemented with essential amino acids; they were followed up for 9 months. There were no significant changes in body mass index, arm muscle area, percentage body fat, serum albumin and transferrin levels in any of the groups, neither was there any difference between the groups in respect of these parameters. Renal function, as measured by the reciprocal of serum creatinine over time, stabilised in both groups during intervention, with no significant difference between the groups. There was however no correlation between changes in renal function and changes in blood pressure, or dietary intake of protein, phosphorus, cholesterol, polyunsaturated and saturated fatty acids. There were also no significant changes and no significant differences between the groups in levels of parathyroid hormone and alkaline phosphatase, urine cyclic adenosine monophosphate, tubular reabsorption of phosphate, and the theoretical renal threshold for phosphate.

The results of this study suggest that the supplemented very-low-protein diet was not superior to the conventional low-protein diet in terms of its effect on protein-energy status, renal function and biochemical parameters of renal osteodystrophy.

Research has shown substantial support for the thesis that dietary intervention slows the progression of chronic renal failure.13-16 Although renal function in earlier studies was based on changes in serum creatinine (S_{cr}), the protective effect of a low-protein (LP) diet was confirmed by Ihle et al., who used

References:

