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ABSTRACT

In this paper Bayesian estimation for the steady state availability of a one-unit system with a
rest-period for the repair facility is studied. The assumption is that the repair facility takes rest
with probability p after each repair completion and the facility does not take the same with
probability (l - p). The prior information is assumed to be vague and the Jeffreys' prior is used
for the unknown parameters in the system. Gibbs sampling is used to derive the posterior
distribution of the availability and subsequently the highest posterior density (HPD) intervals.
A numerical example illustrates these results.

OPSOMMING

In.hierdie artikel word die Bayes-beraming van die ewewigstoestandsbeskikbaarheid van 'n
steise1 wat afwisselend gebruik word, voorgestel. Daar word veronderstel dat die
herstelfasiliteit na voltooiing van clke herstel Of 'n rustydperk binnegaan of nie. Die
rustydperk sal geneem word met waarskynlikheid p en die waarskynlikheid dat daar nie 'n
rustydperk genccm word nie, is (l - p). Jeffrey se a priori-verdeling word vir die onbekende
parameters in die stelsel aanvaar. Gibbs-steekproefneming word gcbruik om die a posteriori­
verdeling van die beskikbaarheid en daarna die hoogste a posteriori-digtheidsintervalle (HPD)
afte lei. 'n Numeriese voorbeeld illustreer hierdic resultate .
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1. INTRODUCTION

To evaluate the effectiveness of a system, several concepts have beerrintroduced :
maintainability, serviceability, repairability and availability etc. (Kapur & Lamberson,
1977) . Within availability itself, several measures have been proposed. In the past ,
nine different kinds of availability have been defined (Brender, 1968a, b). The survey
of different approaches of availability is avai lable in Lie. et al (1977) , and Kumar and
Agarwal (1980). Pointwise availability A(t) is, undoubtedly, the most important of
these since it gives the probability that the system is functioning at time t (Klassen &
Van Peppen, 1989) . Its limit value, when it exists , is called the steady-state or
asymptotic availability (pham-Gia & Turkkan, 1999). Aoo is defined as the expected
fraction of time that the system operates satisfactorily in the long run .

Most of the models studied in the literature have the assumption that the repair facility
is continuously available to attend the repair of the failed units. But it is reasonable to
expect that a ' rest-period' might be needed to get the repair facility ready for the next
repair could be taken up (Subramanian & Sarma, 1981). This rest-period usually starts
after each repair completion. In this paper it is assumed that the ' rest-period ' is taken
with probability p, and will continue with the repairs of the unit with probability
(1 - p), depending on the amount of time spent by the repair facility .

The Bayesian framework for statistics and decision theory (Bernardo & Smith, 2000)
offers great opportunities for applications in reliability problems (Martz & Waller,
1982), because of the possibility to take expert knowledge into account through the
prior distribution for an assumed parametric model. In this paper the steady state
availability of a one unit system as studied by Yadavalli et al (2001) is considered
from a Bayesian viewpoint with emphasis on the use of a Jeffreys' prior distribution
for the parameters.

Section 2 gives the necessary notation, a brief description of the model and maximum
likelihood estimators of the steady state availability as derived by Yadavalli et al
(2001). The Bayesian approach to this problem is introduced in section 3, followed by
a numerical example illustrating the posterior analysis using the Gibbs sampling
method.

2. ASSUMPTIONS AND SYSTEM DESCRIPTION

The following characteristics and assumptions describe the model:

(1) The system consists of a unit and a single repair facility .
(2) The lifetime and repair time of the unit are exponentially distr-ibuted with

parameters Aand ~ respectively.
(3) The unit is as good as new after each repair.
(4) Switch is perfect and switchover is instantaneous.
(5) The repair facility is not available for a random time, called rest-period, which

is distributed exponentially with parameter d. The rest-period (D) is a
Bernoulli random variable, which is defined as follows :
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D = {I with probability p

o with probability (I- p)

The states I and ° represent respectively the realisation or not of the 'rest­
period' .

Let the stochastic process {W(t}, f 2: o} with state space { 0,1,2,3} describe the

behaviour of the system at time t. The system transitions for the model are given
below.

Table 1: System transitions

State of the
State number Unit repair facility

° operable available
I under repair available
2 ! operable not available
3 waiting for repair not available

The steady state probabi Iities can be determined by using the principle of flow-balance
(Ravindran et ai, 1987). The steady state availability is obtained in Yadavalli et al
(2001), namely
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Let Xi. X2, ... , Xn and f /, f 2, ... , Yn be random samples of size 1"1, each drawn from
different exponential populations with failure and repair rates of the unit X and tl
respectively. Also, let 2 /, 22, ... , Z; be a random sample of size n, drawn from a
different exponential population with parameter d. The Maximum Likelihood
Estimator (MLE) of ACl') is given by (see Yadavalli et al, 2001).
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The steady state availability given in (3) reduces to

A = 6,(8, +eJ
co 8 18 ~ +8 ~ + 8~8 3 +8,8 3 + p8 ;

The (I - IX) % ~symptotic confidence limits for A"" are given by

(4)

(5)

h .1 . . • c. ' ( ) ~(aA )2, d k . btai d frwere 0 - IS a consistent estimator lor 0-\8 =~ - ""- 8j , an ' u IS 0 tame om
j ; } 08)

the standardised normal tables .

3. BAYESIAN INFERENCE OF A«> .

Based on the attributed data, the likelihood function is given by

L(A, fJ., dIT" T~ , T3)=tI i «- lox! •nfJ.e-~Y j •Il de -d:
j

J ~ I J e l ) ; }

=(Afld)ne(AT1 -~T, . dT,)

where

(6)

is sufficient for (A, ~, d).

Representing (6) in terms of corresponding mean life time, mean repair time, mean
rest-period time, (6) results in (see (3»

(7)

The Jeffreys ' prior distribution for (81 , 8 ~ , 8 3) (see Box & Tiao, 1992) is given by

1
g(81,8z,83)o: -{--)' 8 j > 00 = 1,2,3) (8)

,8 18 2 8)

The joint posterior distribution, according to Bayes' theorem (using (7) and (8» is
defined by
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(9)

From (9) , the joint posterior of (e),A"" eJ is given by

(10)

withJ the Jacobian ofthe transformation from (e., e2 ,eJ to (0., A"" 03 ) ,

For the joint posterior distribution (10) the marginal posterior distribution for A", is
obtained by using the Gibbs sampl ing method (Gelman et aI, 1995) . The Gibbs
sampler allows the generation of a sample from the following full conditional
distributions

g(oll data,6Z,03)

g(Oz ldata,°1,0 3 )

g(031data,O) ,Oz)

(11)

These conditional distributions are used in the iterative scheme to generate samples for
each of the three marginal distributions and subsequently ofA"" using (4) .

4. NUMERICAL ILLUSTRATION

To illustrate the results in section 3, exponentially distributed samples were simulated
for the three variables in the system. Table 2 gives the sample information for sample
sizes of 40 and 200, respectively .

Table 2 Sample summary

n = 40 n = 200
X Y Z X y Z

Mean 636 .05 193.84 41.34 505.59 192.41 50.59
st. dev . 873 .26 177.64 44.48 481 .85 172.19 54.74

sum 25442.17 77.62 1653.69 101119 .00 38481.16 10117.97

The full conditionals (10) are simulated with WINBUGS software, using the Gibbs
sampling method . Init ial burn-in samples of a 1000 were first simula ted for the model ,
which was followed by 10 000 iterations of this procedure to simulate the marginal
distribution of A"". Table 3 and 4 show the posterior mean, median and the ( I - a)
100% HPD intervals for A"" for sample with sizes 40 and 200, respecti vely. In both
the tables the estimates were obtained for different values of the parameter p .
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Table 3 Posterior mean, median and HPD intervals for A w (n = 40)

P post. St. dev. median 95% HPD 90% HPD I 80%HPD
Mean

0.00 0.7641 0.0401 0.7661 (0.6787; 0.8368) (0.6938 ; 0.8268) (0.7105: 0.8148)
0.10 0.7639 '0.0407 0.7659 (0.6783; 0.8367) (0.6935 : 0.8266) (0.7103: 0.8145)
0.33 0.7633 0.0406 0.7653 (0.6777: 0.8362) (0.6931 ; 0.8260) (0.7096; 0.8138)
0.50 0.7629 0.0407 0.7650 (0.6773; 0.8359) (0.6927: 0.8257) (0.7092; 0.8135)
0.67 0.7625 0.0407 0.7646 (0.6766; 0.8356) (0.6921 ; 0.8252) (0.7087; 0.8132)
0.90 0.7619 0.0409 0.7639 (0.6759: 0.8352) (0.6931; 0.8248) (0.7081; 0.8128)
1.00 0.7616 0.0409 0.7637 (0.6757; 0.8351) (0.6910; 0.8247) (0.7078: 0.8126)

Table 4 Posterior mean, median and HPD intervals for A"" (n = 200)
.. .. '-"._.

P post. St. dev, median 95%1 HPD 90% HPD 80% HPD
Mean

0.00 0.7235 0.0200 0.7238 (0.6840; 0.7615) (0.6897: 0.7560) (0.6974; 0.7489)
0.10 0.7230 0.0200 0.7233 (0.6836;0.7611) (0.6892: 0.7555) (0.6969; 0.7485)
0.33 0.7219 0.0201 0.7222 (0.6823: 0.7602) (0.6880; 0.7545) (0.6956: 0.7474)
0 .50 0.7211 0.0201 0.7214 (0.6814; 0.7595) (0.6872 ; 0.7537) (0.6948; 0.7466)
0.67 0.7203 0.0202 0.7205 (0.6805; 0.7589) (0.6863; 0.7530) (0.6940: 0.7459)
0.90 0.7192 0.0202 0.7194 (0.6794: 0.7580) (0.6851; 0 .7520) (0.6927; 0.7448)
1.00 0.7187 0.0202 0.7189 (0.6789: 0.7576) (0.6846 ; 0.7516) (0.6922; 0.7444)

From these tables it is evident that when the parameter p decreases, the estimates of
A"" increases . It is also evident that the influence of the parameter p is minimal in this
illustration. The differences of the largest and the smallest estimates of A"" are all less
than 0.005. Figures 2 and 3 shows the posterior distribution for A ce, with p = 0.33, for
the samples of size 40 and 200, respectively.
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Figure 2 Posterior distribution for Aw (n = 40)
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Figure 3 Posterior distribution for A.., (n = 200)

The posterior distribution for Aa? will vary most when large rest times are observed in

a system (see term pO; in expression (4) for A"" ). It is clear in this case for large

probability p , that the estimates for Aoo will dramatically decrease, relative to smaller
failure and repair times .
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