
Minimum Congestion Routing for a

17 GHz Wireless Ad Hoc Network

by
Daniël Johannes Van Wyk Kotze

Thesis presented in partial fulfilment of the requirements for for the degree
Master of Science in Engineering at Stellenbosch University

Supervisor: Dr. R. Wolhuter

Department of Electrical and Electronic Engineering

March 2011

Declaration

By submitting this dissertation electronically, I declare that the entirety of the
work contained therein is my own, original work, that I am the sole author
thereof (save to the extent explicitly otherwise stated), that reproduction
and publication thereof by Stellenbosch University will not infringe any third
party rights and that I have not previously in its entirety or in part submitted
it for obtaining any qualification.

Date: March 2011

Copyright c©

2011 Stellenbosch University. All rights reserved.

Opsomming

Sleutel woorde: Ad hoc radio pakkie netwerk, millimeter golflengte, kluster roete

protokol, data verkeersopeenhoping beheer, simulasie, teoretiese modelleering.

Ondersoek word ingestel na ’n geskikte roete protokol vir ’n millimeter golflengte ad hoc radio

pakkie netwerk. Daar word gevind dat ’n hiërargiese kluster roete protokol ideaal is vir ’n

hoë digtheid van nodusse. As gevolg van die hoë bandwydte, wat moontlik beskikbaar is

met millimeter golflengte transmissie, word pakkies gebruik om kommunikasie skakels tussen

nodes in stand te hou en data pakkie verkeersopeenhoping te beheer. Kluster leiers word

verkies en gebruik teken-pakkies om nodes met ’n groter data pakkie las meer transmissie

kanse te gee. Sodoende word die verkeersopeenhoping van data pakkies verminder. Hallo

pakkies word gereeld gestuur om die roete inligting vars te hou en gebroke kommunikasie

skakels vinnig op te spoor. As ’n gebroke skakel gevind word, word ’n alternatiewe roete

vinnig opgestel, binne ’n sekonde. ’n Simulasie word opgestel om die protokol te toets.

Veranderinge aan die oorspronklike proaktiewe kluster protokol word aangebring om roete

lengte te verklein en oorhoofse roete inligting kommunikasie te verminder. ’n Teoretiese

model gebasseer op tou-staan teorie word ontwikkel om die wagtyd van ’n pakkie te bepaal.

Alhoewel, insig verkry is deur die protokol te analiseer deur middel van tou-staan teorie, word

daar voorgestel, as gevolg van die protokol se kompleksiteit, om eerder ander wiskundige

modelleeringstegnieke te gebruik soos ’n Markov toestands model of ’n Petri net.

i

Abstract

Keywords: Ad hoc radio packet network, millimeter wave, cluster based routing

protocol, congestion control, simulation, theoretical modelling.

An investigation is made to find a suitable routing protocol for a millimeter wave ad hoc

wireless network. It is discovered that a hierarchical routing protocol is ideal for a high

node density. Due to the high bandwidth that is possibly available, with millimeter wave

transmission, packets are used to keep links between nodes active and to control data packet

congestion. Cluster leaders are elected and use token packets to provide nodes with more

queued messages with more transmission chances, assisting the network in congestion control.

Hello messages are sent frequently to keep routing information at nodes fresh and to detect

broken links quickly. If a broken link is found a new route is readily available, within a

second. A simulation is created to test the protocol. Changes are made to the original

proactive cluster routing protocol to reduce the route length and lessen routing overhead.

A theoretical model is developed to estimate the mean waiting time for a packet. Although

insight is gained by modelling the latency with queueing theory it is suggested, due to the

protocol’s complexity, to use other mathematical modelling techniques such as a Markov

state model or a Petri net.

ii

Acknowledgements

I would like thank my supervisor Dr. Riaan Wolhuter for his patience, guidance and

wisdom.

My family also has been a source of immense support, thank you.

My parents for their curiousity and support.

Thank you Oswald Jumira for proof reading the thesis.

Konrad Blum for introducing me to Git revision control and various other tips.

Ryno thank you for being a friend, in the true sense of the word.

Microsoft Research for sponsoring a travelgrant to attend the 2008 IFIP Summer School at

Meraka.

Also I would like to thank Dr. Thinus Groenewald and Dr. Herman Spies.

I thank God for the breath of life.

iii

Contents

List of Abbreviations and Symbols xii

1 Introduction 1

1.1 MMW Ad hoc Networks . 1

1.2 HIPERLAN Standard . 2

1.3 Project Outline . 2

1.4 Objectives for Routing Protocol . 3

1.5 Contributions . 3

1.6 Work Done . 4

1.6.1 Literature Overview . 4

1.6.2 Design Overview . 4

1.6.3 Latency Model . 4

1.6.4 Protocol Testing . 5

1.6.5 Comparison with Previous Work . 5

1.7 Content . 6

2 Literature Study 8

2.1 Ad Hoc Wireless Networks . 8

2.2 Basic Networking . 9

2.2.1 Basic Concepts . 9

2.2.2 Seven Layer OSI Model . 9

2.2.3 Throughput and Latency . 10

2.2.4 Congestion Control . 10

2.3 Wireless Transmission Considerations . 11

2.4 MAC-Layer Protocols for Wireless Ad Hoc Networks 12

2.4.1 Hidden and Exposed Node Problem 12

2.4.2 Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) . 13

2.4.3 Multiple Access Collision Avoidance - By Invitation

(MACA-BI) . 14

2.4.4 Contention-Based Protocols with Reservation Mechanisms 14

2.4.5 Contention-Based Protocols with Scheduling Mechanisms 14

2.5 Routing Layer Protocols for Wireless Ad Hoc Networks 14

iv

CONTENTS v

2.5.1 Proactive Routing Protocols . 15

2.5.2 Destination Sequenced Distance Vector 15

2.5.3 Optimized Link State Routing . 16

2.5.4 Reactive Routing Protocols . 16

2.5.5 Dynamic Source Routing . 17

2.5.6 Ad hoc On-demand Distance Vector 17

2.5.7 Hierarchical Routing Protocols . 18

2.5.8 Cluster-head Gateway Switch Routing Protocol 18

2.5.9 Hierarchical State Routing . 20

2.6 Other Related Work . 21

2.6.1 AODV with Passive Clustering . 21

2.6.2 Genetic Algorithm Applied to Route Optimization 21

2.6.3 Cluster Based Routing Protocol . 21

2.6.4 Adaptive Routing using Clusters . 21

2.7 Summary . 22

3 Routing Protocol Design and Implementation 23

3.1 Initial Design Choices . 23

3.1.1 CGSR Disadvantages and Proposed Improvements 24

3.2 Implementation Environment . 25

3.2.1 Physical Layer Transmission Parameters 27

3.2.2 Scaling the GUI Distance . 28

3.3 Routing Layer Overview . 28

3.4 Cluster Generation . 29

3.5 Node States . 31

3.5.1 Distributed Gateway . 35

3.5.2 Satellite Node . 35

3.6 Routing Tables . 36

3.6.1 Neighbour Table . 36

3.6.2 Cluster-head Table . 38

3.6.3 Gateway Table . 38

3.6.4 Satellite Node Table . 40

3.6.5 Neighbour Cluster Table . 40

3.6.6 Cluster Table Set . 40

3.6.7 Network Node Table . 43

3.7 Routing Information Distribution . 43

3.8 Routing Function . 44

3.9 Token Scheduling . 46

3.9.1 Implicit Token Passing to Satellite Nodes 47

3.10 Weighted Fair Queueing with Message Buffers 47

3.10.1 Choosing Between Different Cluster Transmission Handlers 49

CONTENTS vi

3.11 Protocol Messages . 49

3.11.1 Hello Message . 49

3.11.2 Cluster Table Message . 49

3.11.3 Token Message . 49

3.11.4 Data Messages . 50

3.12 Performance Monitoring . 52

3.13 Summary . 54

4 Theoretical Analysis 55

4.1 Introduction to Queuing Theory . 55

4.2 Latency Model . 56

4.3 Application of Latency Model . 63

4.3.1 Network 1 Latency Analysis . 63

4.3.2 Network 2 Latency Analysis . 68

4.4 Reasons for Differences . 73

4.5 Other Investigated Approaches . 73

4.6 Summary . 73

5 Tests and Results 75

5.1 General Test Setup . 75

5.2 Cluster Formation . 76

5.3 Connectivity . 77

5.4 Routing Overhead Performance with

Increasing Node Density . 80

5.5 Effect of Token Prioritising on Latency . 83

5.6 Fast Rerouting . 87

5.7 Summary . 90

6 Conclusion 91

6.1 Summary of Research Findings and Contributions 92

6.1.1 General Findings . 92

6.1.2 Findings Related to Enhanced CGSR 93

6.2 Recommendations . 94

6.3 Shortcomings . 94

6.4 Interesting Remarks . 94

6.5 Future Research . 95

A Network Graphs 100

A.1 Network Setup Graphs . 100

A.1.1 20 Nodes . 100

A.1.2 50 Nodes . 106

A.1.3 100 Nodes . 111

CONTENTS vii

A.2 Increasing Node Density Networks . 116

A.3 Mean Packet Latency Networks . 120

B Programming Scripts 123

B.1 Run Simulation BASH Script . 123

B.2 Configuration Files . 131

B.2.1 General Configuration File . 131

B.2.2 Network Layer Configuration File . 132

B.2.3 Application (Transport) Layer Configuration File 133

C Published Article 135

D Multimedia Guide 141

List of Figures

1.1 Research critical path diagram. 2

2.1 Basic Network . 9

2.2 OSI network protocol stack (Reproduced from [3]) 11

2.3 Hidden and Exposed Node Problem . 13

2.4 CSMA/CA control packet exchange . 13

2.5 Multipoint Relay description of OLSR . 16

2.6 Route request packet propagation . 18

2.7 Nodes grouped together in cluster topology. 20

3.1 Two protocol improvements. 24

3.2 Graphical representation of a network in OMNeT++. 26

3.3 Simple modules in host implementing the various communication layers. . . . 26

3.4 Timeline representing the future events list. 27

3.5 Wireless 802.11b transceiver. 27

3.6 Routing layer development overview flow diagram. 29

3.7 Nodes constantly broadcasting hello messages. 29

3.8 Cluster formation. 31

3.9 Node state diagram. 33

3.10 Distributed gateway functions. 35

3.11 Satellite node information relayed to the cluster-head. 36

3.12 Update mechanism for routing tables. 37

3.13 Description of routing information in gateway table. 39

3.14 Intermediate nodes of satellite node. 41

3.15 Cluster table description. 42

3.16 Routing information distribution. 44

3.17 Determine next hop flow diagram. 45

3.18 Implicit token passing. 47

3.19 Message buffer set. 48

3.20 Adjacent cluster. 48

3.21 Hello Message Contents. 50

3.22 Cluster Table Message Contents. 51

3.23 Token Message Contents. 51

viii

LIST OF FIGURES ix

3.24 Graph output generated by the neato program. 53

4.1 Network 1 topology. 63

4.2 Average cluster cycle time for network 1 route 1. 64

4.3 Mean packet latency for network 1 route 1. 65

4.4 Average cluster cycle time for network 1 route 2. 66

4.5 Route latency for network 1 route 2. 67

4.6 Network 2 topology. 68

4.7 Average cluster cycle time for network 2 route 1. 69

4.8 Route latency for network 2 route 1. 70

4.9 Average cluster cycle time for network 2 route 2. 71

4.10 Route latency for network 2 route 2. 72

4.11 Markov state diagram of queueing system. 74

5.1 Aggregate connectivity against simulation time. 79

5.2 Routing overhead per second per node with increasing node density. 81

5.3 Control overhead per second per node with increasing node density. 82

5.4 Effect of prioritising traffic on the mean packet latency for a network size of

20 nodes. 84

5.5 Effect of prioritising traffic on the mean packet latency for a network size of

50 nodes. 85

5.6 Effect of prioritising traffic on the mean packet latency for a network size of

100 nodes. 86

5.7 Quick reroute (handover) of packets with broken link for a network size of 20

nodes. 88

5.8 Quick reroute (handover) of packets with broken link for a network size of 50

nodes. 89

A.1 Twenty nodes run 1. 100

A.2 Twenty nodes run 2. 101

A.3 Twenty nodes run 3. 101

A.4 Twenty nodes run 4. 102

A.5 Twenty nodes run 5. 102

A.6 Twenty nodes run 6. 103

A.7 Twenty nodes run 7. 103

A.8 Twenty nodes run 8. 104

A.9 Twenty nodes run 9. 104

A.10 Twenty nodes run 10. 105

A.11 Fifty nodes run 1. 106

A.12 Fifty nodes run 2. 106

A.13 Fifty nodes run 3. 107

A.14 Fifty nodes run 4. 107

LIST OF FIGURES x

A.15 Fifty nodes run 5. 108

A.16 Fifty nodes run 6. 108

A.17 Fifty nodes run 7. 109

A.18 Fifty nodes run 8. 109

A.19 Fifty nodes run 9. 110

A.20 Fifty nodes run 10. 110

A.21 Hundred nodes run 1. 111

A.22 Hundred nodes run 2. 111

A.23 Hundred nodes run 3. 112

A.24 Hundred nodes run 4. 112

A.25 Hundred nodes run 5. 113

A.26 Hundred nodes run 6. 113

A.27 Hundred nodes run 7. 114

A.28 Hundred nodes run 8. 114

A.29 Hundred nodes run 9. 115

A.30 Hundred nodes run 10. 115

A.31 Increasing node density run 1. 116

A.32 Increasing node density run 2. 116

A.33 Increasing node density run 3. 117

A.34 Increasing node density run 4. 117

A.35 Increasing node density run 5. 118

A.36 Increasing node density run 6. 118

A.37 Increasing node density run 7. 119

A.38 Latency network 20 nodes run 1. 120

A.39 Latency network 20 nodes run 2. 120

A.40 Latency network 50 nodes run 1. 121

A.41 Latency network 50 nodes run 2. 121

A.42 Latency network 100 nodes run 1. 122

A.43 Latency network 100 nodes run 2. 122

List of Tables

4.1 Table showing the composition of time parameters. 61

4.2 Table showing the composition of data parameters. 62

5.1 Playground sizes. 75

5.2 Cluster formation results with 20 nodes . 76

5.3 Cluster formation results with 50 nodes . 77

5.4 Cluster formation results with 100 nodes . 77

5.5 Full connectivity reached time for different network sizes. 78

xi

List of Abbreviations and Symbols

Abbreviations

MMW Millimeter-wave

UWB Ultra-wideband

HIPERLAN High Performance Radio Local Area Network

ETSI European Telecommunications Standards Institute

QoS Quality of Service

SOHO Small Office Home Office

VOIP Voice Over Internet Protocol

CGSR Cluster-head Gateway Switch Routing

DSDV Destination Sequenced Distance Vector

AODV Ad hoc On-demand Distance Vector

Wi-Fi Wireless Fidelity

MAC Media Access Control

CSMA Carrier Sense Multiple Access

CSMA/CD CSMA with Collision Detection

CSMA/CA CSMA with Collision Avoidance

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

UDP User Datagram Protocol

TCP/IP Transmission Control Protocol and Internet Protocol

ST Slot Time

DIFS Distributed Interframe Space

SIFS Short Interframe Space

EIFS Extended Interframe Space

Hz Hertz

s second(s)

m milli

k kilo

G giga

xii

LIST OF ABBREVIATIONS AND SYMBOLS xiii

Symbols

P Power

G Antenna gain

λW Wavelength

d Displacement

C Data rate

B Bandwidth

S/N Signal to noise ratio

t Time

α Path loss exponent

SF Scaling factor

X Random variable

λA Customer arrival rate

µ Customer service rate

ρ Traffic intensity

N Number of customers in queue

T Mean waiting time for a customer in a queue

p Probability

Chapter 1

Introduction

Ad hoc wireless networks provide an advantage in that no prior infrastructure have to be set

up. However, one inherent problem of these networks are their limited data transfer capacity.

On the other hand, the data transfer requirements of media applications are increasing by

the day. Consumers demand a faster data transfer speed and higher content quality. To

cope with the demand for greater bandwidth, we propose to investigate the feasibility of

using a millimeter-wave (MMW) ad hoc network with particular interest in suitable routing

protocols therefor. A MMW system will allow one to transmit data at higher throughput,

but with the cost of strong signal attenuation as predicted by Frii’s equation [27].

Ultra-wideband (UWB) [43] is another technology trying to address the bandwidth prob-

lem for short range communication. Obstacles for UWB include interference with other

systems (2,4GHz and 5GHz unlicensed bands) and the lack of international harmony with

regard to the operating spectrum [17]. These problems are absent for MMW networks and

the technology is currently receiving increasing attention.

1.1 MMW Ad hoc Networks

Due to the nature of MMW propagation, ad hoc networks using MMW technology are better

suited for indoor environments. The IEEE 802.15c is a working group focusing on MMW

Wireless Personal Area Networks (WPAN) [1]. Various studies have been conducted to

investigate MMW transmitters in the 57 − 64GHz band, as the Federal Communications

Commission (FCC) has allocated this band for unlicensed use [17].

A Japanese study [38] provides an overview of a MMW ad hoc wireless access system,

they have developed for indoor conference use.

Applications for wireless data transmission over small distances include:

• high definition video streaming,

• large file transfer and

• wireless ad hoc networks (connectivity between different electronic devices) [17, 39].

1

1.2 — HIPERLAN Standard 2

A wireless MMW signal can be blocked easily, because of the weak diffractive properties of

MMWs [39].

1.2 HIPERLAN Standard

HIPERLAN is an acronym for HIgh PErformance Radio Local Area Network [18]. This

standard aims to bring the high data rates of wired Local Area Networks into the wireless

realm. The 5GHz and 17GHz bands have been identified for potential use. The European

Telecommunications Standards Institute (ETSI) has developed the HIPERLAN/2 standard.

HIPERLAN focuses on Quality of Service (QoS) support within the Small Office Home Office

(SOHO) environment [14].

1.3 Project Outline

In this project we plan to use the 17GHz band for our application. Investigation of millimeter-

wave transmission for possible use in ad hoc networks, is composed of multiple sections.

These consist of developing the the physical transmitter hardware and a routing protocol

respectively. This thesis constitutes the development of only the routing protocol as a first

step. Hardware development will be addressed in another project. Figure 1.1 shows the

critical path diagram for the total research project.

Figure 1.1: Research critical path diagram.

1.4 — Objectives for Routing Protocol 3

1.4 Objectives for Routing Protocol

The routing protocol was designed to meet requirements that will make it more suitable for

the 17GHz frequency band, than for use in a lower frequency range.

• High densities of nodes must be handled effectively, by reducing redundant routing

overhead transmissions.

• In the 17GHz band, nodes have high bandwidth availability. We utilise this extra

bandwidth for Quality of Service support or link sensing.

• Congestion must be avoided or reduced. By improving packet latency, the protocol

will be more attractive for Quality of Service applications such as video streaming and

Voice Over Internet Protocol (VOIP).

• A new route to a destination node must be readily available should a link be broken.

This requirement was included, because electromagnetic waves at higher frequencies

can be easily blocked [28] and diffraction of the waves is weaker [39].

1.5 Contributions

• An adaptation of the Cluster-head Gateway Switch Routing (CGSR) protocol for use

in a MMW network is presented. This routing protocol combines a number of desirable

features:

– High densities of nodes are handled efficiently by reducing the number of nodes

producing full routing overhead.

– Nodes make use of high available transmission bandwidth for link sensing, by

frequently sending small hello packets.

– Congestion is decreased via a Quality of Service mechanism giving nodes with

more queued traffic more transmission chances.

– The protocol allows a new route to be found within 1 s, if a route link is broken.

• The protocol described was simulated within the OMNeT++ simulator. At the time no

known hardware specifications were available for devices transmitting data at a carrier

frequency of 17GHz. It was therefore decided to continue with the simulation analysis

at 2,4GHz as carrier frequency. Although the protocol was only simulated at 2,4GHz

it is anticipated that the protocol will have similar performance at 17GHz, except for

higher fading. Herewith a useful tool for simulation modelling of such topologies, was

developed.

• In addition to the simulation tool, a theoretical model was developed, based on queue-

ing theory.

1.6 — Work Done 4

1.6 Work Done

1.6.1 Literature Overview

Research on literature of basic data networks is presented, progressing to the subject of ad

hoc wireless network routing protocols. It was found that hierarchical protocols provides a

good solution at high node densities, because of decreased routing overhead and faster route

convergence.

1.6.2 Design Overview

The design choices of developing the routing protocol are documented. Changes were made

to the original Cluster-head Gateway Switch Routing (CGSR) Protocol. The first change

constituted decreasing the path length by including information on the next-hop-cluster. The

other change reduced the redundant nodes that will produce full routing overhead. Each

node is at least one hop away from a node producing full routing overhead. The comparison

of the new protocol and the original protocol with regard to routing overhead and path

length must still be done, but this is beyond the scope of the study.

It is shown how to scale the pixel distance of the OMNeT++ Graphical User Inter-

face, for physical distances not displaying conveniently. The implementation specifics of a

cluster based protocol are shown. Cluster generation, node states, routing tables, routing

information distribution and the routing function are documented. A new node state is

defined, namely, the satellite node. The satellite node state was not defined in previous

implementations of CGSR.

A channel control method is presented, making use of token passing with prioritisation.

Message buffers try to enforce fairness in the transmission queue by splitting messages gener-

ated by the node itself and messages requiring forwarding, into different buffers. The content

of protocol messages are presented in byte field form. A simulation performance module was

created to measure network characteristics in simulation time. Graphs representing the net-

work, indicating node states and forwarder nodes are generated by the performance module.

1.6.3 Latency Model

A latency model was created using queueing theory. The model determines the ratio of the

time a cluster is busy with transmission in a neighbouring cluster. It is argued that the

time a cluster is busy in a neighbouring cluster increases the cycle time of that cluster. The

cycle time is used to calculate the service rate of data packets at a node in the cluster. The

waiting time of data at a node is calculated using queueing theory and the waiting times are

summed to determine the latency of a route. The model is applied to various scenarios.

1.6 — Work Done 5

1.6.4 Protocol Testing

The protocol was tested extensively with regard to successful cluster setup, network con-

nectivity, routing overhead and route recovery. Cluster setup was tested by generating

networks where nodes are distributed randomly within an rectangular area to see how clus-

ters are generated. The time needed to set up the clusters is measured. The aggregate

network connectivity was determined and plotted at different points in time, to determine if

all nodes have complete routing information. The time required for the routing information

to propagate throughout the network is determined.

The routing overhead per node for different network sizes, was ascertained and plotted.

First, the routing overhead per node of a small fifteen node network is determined. With

each simulation run the number of nodes was increased with five, in the same area. Using this

method the routing overhead per node with increasing node density could be determined. It

was found that the routing overhead per node decreases with increasing node density. The

result can be compared with the Destination Sequenced Distance Vector (DSDV) routing

protocol which is expected to grow linearly, O(N), with increasing number of nodes. It can

be said that the developed protocol uses routing overhead more efficiently than DSDV at a

high node density.

The effect of token prioritising on mean packet latency was investigated by comparing

it to a setup where no priority is given to nodes with more queued traffic. The latency is

improved in most instances where token prioritising is used. The improvement is more visible

with higher hop counts and larger network sizes. Instances where there was no improvement

in latency, an increase in throughput was observed.

The way the protocol reacts when a single route link is broken was studied. The protocol

finds a new route, within 1 s after a link is broken, along which data packets can be sent. One

instance of routing ambiguity occurred, where two routes were used to reach a destination

node.

1.6.5 Comparison with Previous Work

CGSR [12, 16] defines a cluster based proactive routing protocol where every node produces

full routing overhead, i.e. routing information on clusters and node-cluster associations. In

our application we reduce nodes producing redundant routing overhead transmissions, by

letting every node be at least one hop away from a node producing full routing overhead.

The concept of reducing redundant routing overhead transmissions in cluster based protocols

has been researched in Ad hoc On-demand Distance Vector with Passive Clustering (AODV-

PC) [15], Cluster Based Routing Protocol (CBRP) [20] and Adaptive Routing using Clusters

(ARC) [10]. All these protocols build on the reactive protocol of AODV. Our protocol

builds on the original proactive CGSR protocol. CGSR extends the proactive Destination

Sequenced Distance Vector (DSDV) protocol.

CGSR and our protocol both use priority token scheduling. CGSR gives preference to

1.7 — Content 6

nodes transmitting more messages. We however, give preference to nodes in a cluster with

more queued messages.

Our protocol provides increased support for the fast detection of broken links by sending

small hello messages (only including addresses of critical nodes) frequently every 0,1 s. If 5

consecutive hello messages are missed, the link state is set to unstable. The handover of the

data stream to the new route occurs within 1 s. CBRP has a local repair mechanism using

full two hop topology information to repair the route. Hello messages of the CBRP protocol

are sent every 1,5 s or 2 s and contains the whole neighbour table and cluster adjacency table.

When a route error occurs with CBRP, a Route Error packet is sent from the broken link

and a Route Reply packet is sent from the packet’s destination node with the new route.

The proactive nature of our protocol negates the need for the Route Error packet and Route

Reply packet.

A theoretical latency model is developed to estimate mean packet latency of the cluster

based protocol. Queueing theory principles are used to develop the model. To the best of

author’s knowledge there has been no other attempt to create a latency model for a cluster

based protocol.

1.7 Content

The content of the thesis is organised as follows:

• Chapter 2 discusses basic literature on data networks and specifically ad hoc net-

works. Important concepts such as the layered OSI model; latency and throughput;

and congestion control are explained. Physical properties of the wireless channel is

stated and Frii’s equation is provided. The hidden node problem is explained. Subse-

quently, sender and receiver initiated MAC layer protocols are discussed. Next an in

depth investigation of routing layer protocols is given. Hierarchical protocols such as

Cluster-head Gateway Switch Routing (CGSR) and related cluster protocol research

are carefully scrutinised.

• Chapter 3 contains the design and implementation of the cluster based protocol. Design

choices are explained and changes to the existing protocol are stated. The implemen-

tation environment of the OMNeT++ simulator is presented. A Wireless Fidelity

(Wi-Fi) network transceiver’s transmission parameters are used. OMNeT++’s graph-

ical network display uses a pixel to represent 1m and a section was provided to show

how to scale the graphics. After a general overview of the routing protocol develop-

ment, the cluster generation mechanism is shown. Next, all the different node states

are discussed with regard to each state’s function. A section on the protocol’s routing

tables will follow, after which, the routing information distribution mechanism will be

explained. A flow diagram of the routing function is presented. The token scheduling

method and the message buffers are discussed. Content of the protocol messages are

1.7 — Content 7

displayed. A performance module is presented for aggregate simulation time measure-

ments.

• Chapter 4 develops a latency model for a cluster based network. Since the model is

based on queueing theory a short introduction on the subject is given. From there the

latency model is developed. The rest of the chapter shows how the model can be applied

to various topologies. The latency model is also compared to mean latency values

obtained through simulation. Reasons are provided why the theoretical model and the

measured simulation results disagree sometimes. Other investigated approaches based

on queueing theory are summarised. Future work on modelling the latency by means

of Petri nets is suggested.

• Chapter 5 describes tests to prove the functionality of our designed network protocol

and show how the objectives set out in the introductory chapter are achieved. The

general simulation setup is explained and the sizes of the different playgrounds are

shown in tabular form. Our clustering algorithm is tested by measuring the time it

needs to set up clusters and the number of clusters generated. The following test

determines if all nodes have full routing information on all the other nodes in the

network and the time each network needs to reach full connectivity. Further tests

determined how effective the protocol uses routing overhead at a high node density.

To show that the protocol provides Quality of Service support, we determined the

effect that prioritising nodes with more queued traffic has on the mean packet latency.

Lastly, to show the protocol can recover from single link breakages, a test was set up

to send data packets along a route and after a fixed amount of time a link in the route

is broken. The protocol recovers from the link break very quickly, within 1 s.

• Chapter 6 concludes the thesis and presents a summary of the research findings. The

advantages and disadvantages of using cluster based routing are stated. Recommen-

dations on improving the protocol are given. Some possible shortcomings in areas of

the study are indicated in an appropriate section. Interesting remarks relating to the

classification of the routing protocol type are given. Lastly directions of future research

endeavours are shared.

• Appendix A contains all the graphs of the networks simulated in chapter 5.

• Appendix B documents assorted scripts. The BASH script for invoking the multiple

simulation runs, is included.

• Appendix C presents an article on the research, published in the proceedings of the

Southern Africa Telecommunications and Network Applications Conference 2010.

• Appendix D describes the content of an accompanied multimedia disk.

Chapter 2

Literature Study

Data networks can be seen as a subfield of telecommunications, the science of communicating

across a distance [37]. The sharing of information in businesses, within society and globally,

has become important and Internet connectivity helps us to distribute critical data. Ad

hoc wireless networks present us with the opportunity to expand connectivity at a low cost,

because no prior communication infrastructure have to be set up. This chapter starts by

introducing wireless networks and the various aspects required to understand the method of

communication. Next wireless MAC-layer protocols are discussed. Wireless routing protocols

are investigated, focussing on hierarchical routing protocols. Lastly, a summary on articles

about cluster based protocols is given.

2.1 Ad Hoc Wireless Networks

In 1969 the Department of Defence understood the importance and possibilities of packet

switched radio to connect mobile nodes in the battlefield. Defence Advanced Research

Projects Agency (DARPA) Packet Radio project started the concept of ad hoc wireless

networking in the early 1970’s. Ad hoc networks are used to provide networking for areas

without wired or cellular infrastructure. These networks are usually set up for a limited

period of time and provide a base for specific media applications for example audio or video

streaming etc. [25]

A network adheres to the following basic principles:

• All nodes in a network are equal.

• If nodes are not within range of one another, data can be routed through an interme-

diate node (See Figure 2.1).

8

2.2 — Basic Networking 9

A B C

Figure 2.1: Node B can communicate with nodes A and C directly. If node A wants to

communicate with node C then node A can route data through node B.

2.2 Basic Networking

In this section networking concepts are discussed. First, very basic networking concepts are

introduced, followed by the seven layer OSI model. Crucial concepts of throughput and

latency, which are needed to analyse a network, are explained. Subsequently congestion

control is discussed, that can assist in making design choices.

2.2.1 Basic Concepts

Communications channel: All nodes in a network need a communications channel to

communicate with other nodes. This channel can either be a physical connection through a

wire or a wireless transmitter.

Packet switched network: In this type of network data is broken into smaller sets of

information called packets. These packets are transmitted across the channel.

2.2.2 Seven Layer OSI Model

The Open System Interconnection (OSI) reference model is a layered model that shows how

a set of protocols are used to communicate across a network. Each layer has a function and

each layer of one node in a network can communicate with its corresponding layer of another

node in the network. Not all of the layers in the model need to be used when designing a

new set of communication protocols. The important layers are the application, transport,

network, data-link and physical layers. Figure 2.2 on page 11 shows the OSI reference model.

Application Layer

The application layer is the topmost layer in the model. This layer is used by applications

on a host computer to communicate with applications on another host on the network. This

hides the complexity of communication between nodes from the applications.

2.2 — Basic Networking 10

Transport Layer

The transport layer is the layer responsible for setting up end-to-end connections. This

layer is responsible for the reliable transmission of packets from one node to another. If

Transmission Control Protocol (TCP) is used, the destination node sends an acknowledge-

ment if a packet is correctly received. User Datagram Protocol (UDP) does not send an

acknowledgement for the correct reception of a packet.

Network (Routing) Layer

The network layer is responsible for the routing of data packets. This enables two nodes, not

directly connected, to communicate with one another by “hopping” to an intermediate node.

This layer also defines the addressing scheme the network uses. Nodes use the addressing

scheme to determine which node a packet must be forwarded to.

Data-Link Layer

The data-link layer defines the set of rules a group of two or more nodes use to communicate

with one another. This layer also consists out of two sub-layers the Logical Link Control

and the Media Access Control. The layer also groups the data to be sent into frames. These

frames are transmitted on the physical medium.

Physical Layer

The physical layer represents the method by which data is transmitted from one node to

another on the communications channel.

2.2.3 Throughput and Latency

The performance of a network is measured with respect to throughput and latency. The

throughput is the end-to-end data capacity of the network. Throughput measures the number

of bits that can be transmitted in a given amount of time, in bits per second (bps), from

source to destination. Latency is defined as the end-to-end travel time of a message from one

node to another. The Round Trip Time (RTT) is the time needed for a message to travel

from a source to destination and back to the source again. [33]

2.2.4 Congestion Control

Data networks only have a finite capacity which means if certain links are overused some

of the messages may have to be dropped. When a link is overused it is said the link is

congested. Congestion has a negative effect on the performance of a data network. There

are different approaches to prevent congestion from degrading network performance. One

method is to route data in such a way that it avoids congested links. Another method is

to prevent congestion from occurring by reserving bandwidth for transmission or controlling

2.3 — Wireless Transmission Considerations 11

Figure 2.2: The figure shows the function of the various layers in the OSI protocol stack.

(Reproduced from [3]).

the rate at which a node generates traffic. Routers in the network can allocate bandwidth

fairly among nodes. This is called a router-centric approach. Nodes in the network can

detect when packets are dropped. The dropped packets can signal that a link is congested

and the rate at which traffic generated is reduced. This is called a host-centric approach.

[33]

2.3 Wireless Transmission Considerations

The wireless transmission of data holds certain restrictions, namely path loss, fading and

interference. Due to loss of the electromagnetic signal strength, there is a limit on the range

of wireless transmissions. Frii’s equation can be used to calculate path loss.

Pr = PtGtGr

(

λW

4πd

)2

(2.1)

• Pr is the received signal strength.

• Pt is the transmission signal strength.

• Gr is the receiver antenna gain.

• Gr is the transmitter antenna gain.

• d is the displacement from the transmitter to the receiver.

2.4 — MAC-Layer Protocols for Wireless Ad Hoc Networks 12

• λW is the wavelength of the transmitted electromagnetic wave.

Fading is another feature causing variations in the signal strength at the receiver. Reflection,

diffraction and scattering of electromagnetic waves contribute to fading. Interference on

wireless channels can corrupt the data of a transmission if another signal also transmits in

the same frequency band.

Information transmission has a minimum time constraint. Shannon’s theorem defines

the maximum transmission data rate. [29]

C = B × log2(1 + S/N) (2.2)

• C is the maximum data rate.

• B is the bandwidth of the channel.

• S/N is the ratio of signal power to noise power.

2.4 MAC-Layer Protocols for Wireless Ad Hoc Net-

works

As mentioned earlier, the MAC-layer protocol is a set of rules nodes use to access the

physical layer in order for two or more nodes to communicate with one another. First, this

section will focus on problems that must be overcome to ensure collision free transmission.

Then the different types of MAC-layer protocols, namely, sender-initiated, receiver-initiated,

reservation based, and schedule based protocols will be explained.

2.4.1 Hidden and Exposed Node Problem

Sometimes nodes can be in range of a common receiver, but out of range for one another.

See figure 2.3 on the following page. Node A and node C are both in range of node B, but

node A is out of range for node C. Therefore if node A is busy transmitting, node C will

not detect that node B is receiving a message and can start transmitting simultaneously.

A collision at node B will occur and the transmission data will be lost. This is called the

hidden node problem, because node C is hidden for node A.

The exposed node problem occurs when node B is transmitting a message to node A

and node C wants to send a message to another node. Node C will now be prevented from

transmitting, because it senses the channel as busy. [29]

2.4 — MAC-Layer Protocols for Wireless Ad Hoc Networks 13

Tra
ns

m
iss

ion
 R

an
ge

CBA

Figure 2.3: Three nodes with their respective transmission ranges.

A B C D

t

RT
S RTS

CTSCT
S

DA
TA

ACK

B
a
c
k
-
o
f
f

B
a
c
k
-
o
f
f

Figure 2.4: CSMA/CA control packet exchange

2.4.2 Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA)

Wireless networks use collision avoidance to solve the hidden node problem. CSMA/CA is

a sender-initiated MAC-layer protocol and works as follows. First a sender node senses the

channel. If the channel is free for a certain time, Distributed Inter Frame Space (DIFS), it

transmits a Request To Send (RTS) packet to a destination receiver node. The receiver node

then responds by sending a Clear To Send (CTS) packet to the original sending node. The

sender node then sends a packet containing data to the receiver. The receiver node then

replies with a positive acknowledgement (ACK) packet if the data was correctly received.

The procedure is shown in figure 2.4. The RTS and CTS control packets both contain

information on how long the full transmission cycle will be. This time information is used

by neighbouring nodes to schedule a moment in the future, when the channel will be sensed

again to see if it is available. If collisions occur, time-outs for the CTS or ACK packets

2.5 — Routing Layer Protocols for Wireless Ad Hoc Networks 14

expire or after a successful transmission a node goes into a back-off mode. The back-off time

is calculated by a binary exponential back-off algorithm. [11]

2.4.3 Multiple Access Collision Avoidance - By Invitation

(MACA-BI)

MACA-BI is a receiver-initiated MAC-Layer protocol. The protocol aims to create less

control overhead by making the need for a RTS packet obsolete. Instead the MACA-BI

protocol uses a RTR (Ready To Receive) packet to indicate to a sender node that it can

send a data packet to a receiving node. Like the RTS and CTS control packets the RTR

packet also contains information on how long the transmission cycle will be. Neighbours use

this information to determine when it is safe to transmit again. One disadvantage of the

protocol is that the RTR packet can collide with the data packets in certain situations. [29]

2.4.4 Contention-Based Protocols with Reservation Mechanisms

Protocols with reservation mechanisms assist nodes by reserving bandwidth. These protocols

divide the time into a series slots. Each node contends for a slot during a resource allocation

phase which is a small time section at the start of each slot. During the rest of the slot time

the node winning the contention can send data. Protocols with reservation mechanisms is

effective for time sensitive data applications, for instance voice data. [29]

2.4.5 Contention-Based Protocols with Scheduling Mechanisms

Scheduling mechanisms aim to schedule packets at nodes for fair channel access. Scheduling

mechanisms can also link priorities to certain nodes, giving a greater priority to nodes with

more queued traffic. Battery life can be used to determine priority as well. The greater a

node’s priority the more channel access it is allowed. [29]

2.5 Routing Layer Protocols for Wireless Ad Hoc Net-

works

A normal ad hoc network is essentially different from wired networks with respect to band-

width, topology and resources. Ad hoc networks are limited in bandwidth and consists of

mobile nodes causing the topology to change dynamically. Ad hoc networks also rely on

batteries that can be depleted of energy [25]. It is reminded that in this study we focus on

stationary nodes, without a low bandwidth limitation. It is also assumed that the battery

life is not limited. Different examples of routing layer protocols for wireless ad hoc networks

will now be discussed.

2.5 — Routing Layer Protocols for Wireless Ad Hoc Networks 15

2.5.1 Proactive Routing Protocols

Nodes using proactive routing protocols set up and maintain routes to all other nodes in the

network. The routing information is stored in different tables. Information in the routing

tables are periodically transmitted throughout the network [5]. The advantage of a proactive

protocol is that accurate information of the network is maintained [29] and therefore present

route information is up to date.

2.5.2 Destination Sequenced Distance Vector

Destination Sequenced Distance Vector (DSDV) is based on the Routing Information Proto-

col (RIP) used in wired networks. DSDV is a proactive routing protocol, improving on the

distributed Bellman-Ford algorithm. Every node keeps a table of information that contains

for every destination node the:

• address,

• smallest number of hops to the destination,

• node address of the next hop on the shortest route and

• sequence number of the most recent route update.

Routing tables are periodically exchanged between neighbour nodes. The addition DSDV

makes to the distributed Bellman-Ford algorithm is an increasing sequence number field,

which is added to each route in the table update message. The addition of sequence numbers

helps to prevent the count-to-infinity problem [29]. There are mainly two types of updates

an “incremental”, containing changed routing information, or “full dump”, that consists of

all routing information. Full dumps are transmitted when there is significant changes in the

topology of the network.

When an update packet is received by a node it compares the route information of the

packet with its own. Routes of the node are updated if new routes:

• contain a more recent (greater) sequence number or

• have a sequence number equal to the current sequence number, but have a better

metric i.e. less hops.

A settling time table is also used by the protocol to prevent changes in the routing table

from being advertised too soon. Suppose a route is updated, because a update message is

received that has a more recent sequence number for the route. Now, after a little more time,

another update message is received, from another node, for the same route with the same

sequence number, but with a better metric. The route is updated again. The settling time

table effectively prevents the first update message’s route information from being advertised,

2.5 — Routing Layer Protocols for Wireless Ad Hoc Networks 16

Figure 2.5: The picture shows on the left the normal flooding mechanism. On the right it

is shown how the OLSR flooding mechanism reduces the number of nodes needed to forward

a flooding message. Reproduced from [2].

because a node has to wait the average settling time for a route before it can advertise the

route’s information.

It is proved in [32] that DSDV provides loop-free paths to all destinations. The routing

overhead of DSDV however grows by order of O(N2) therefore it does not scale well for large

networks [5].

2.5.3 Optimized Link State Routing

Optimized Link State Routing (OLSR) is another proactive routing protocol that uses an

effective flooding mechanism for its routing updates. OLSR is based on the link state al-

gorithm where each node maintains information on the topology of the network. Unlike

a normal flooding protocol where every node broadcasts the flooded message once, OLSR

uses only multipoint relay (MPR) nodes to broadcast the flooded update message. Nodes

broadcast hello messages that contain a list of all the one hop neighbours. The hello mes-

sages are used by a node to determine a subset of neighbour nodes covering its two hop

neighbourhood. This subset of nodes are selected as the MPRs. Using MPRs to broadcast a

flooded message, the message will reach every node in the network [5, 29]. Figure 2.5 shows

how messages are flooded.

2.5.4 Reactive Routing Protocols

Reactive routing protocols or on-demand protocols are designed to decrease the control

overhead. This decrease of control overhead is achieved by maintaining only routes of nodes

sending data. Routes to destination nodes are determined by flooding the network with

Route Request (RREQ) packets. When a node with a route to the destination or the des-

tination node itself is reached, a Route Reply (RREP) packet is sent back to the original

node. The RREP packet is sent back by link reversal through bi-directional links, or is

2.5 — Routing Layer Protocols for Wireless Ad Hoc Networks 17

flooded through the whole network with the route information included in the packet. Reac-

tive protocols can be grouped into two categories i.e. source routing and hop-by-hop routing.

[5]

2.5.5 Dynamic Source Routing

Dynamic Source Routing (DSR) is an on-demand routing protocol that uses source routing.

When a sender node wants to send a data packet through the network, it constructs a source

route. The source route is included in the packet header and includes every node address

of the route the packet must follow, to reach the destination node. Each node has a route

cache where learned source routes are stored.

A source route is constructed by route discovery, as follows. First, the network is flooded

with a RREQ packet by letting every node broadcast the packet once. Figure 2.6 on the

next page shows a RREQ packet propagating through the network. When the route RREQ

reaches the destination host or an intermediate host, with a valid route to the destination

host in its route cache, a RREP packet is sent back to the original node. The RREQ

packet has an id (identification) field generated by the original node to help intermediate

nodes determine if they already have broadcast the packet. A route record is also used in

the RREQ packet, that records the addresses of the nodes it has visited as it is forwarded

through the network. This route record is included in the RREP packet.

The RREP packet is sent back to the original node, if the destination node has a valid

route to the original node in its route cache. Otherwise the RREP packet may follow the

reverse route in the route record, but this is discouraged. A wireless link may work well in

one direction, but be worse in the opposite. Another way the destination node can send the

RREP back, is to piggy-back the message on a RREQ packet for the original node.

With DSR, no periodic update messages are sent, so the protocol has to have a mechanism

to detect broken routes. Route Error (RERR) messages are used to detect broken links on

routes. If the MAC layer reports an error while sending a data message, the routing layer is

informed. A RERR message is generated at the node where the error occurred and is sent

back to the original sending node. The RERR message contains the addresses of the nodes

sharing the broken link. The original node then discards all routes that use the broken link

and does another source route construction. [21]

2.5.6 Ad hoc On-demand Distance Vector

Ad hoc On-demand Distance Vector (AODV) is another on-demand protocol combining

ideas from DSR and DSDV. Like DSDV, AODV sends out periodic update messages and

AODV has the same route discovery mechanism as DSR. AODV does not include the routing

information in the packet header like DSR and routes the packets hop by hop. Also the

RREP messages in the AODV protocol only include a network address and a sequence

number. AODV is useful in networks where nodes are highly mobile. [5]

2.5 — Routing Layer Protocols for Wireless Ad Hoc Networks 18

1

2

3

4

5

6

7

Figure 2.6: A route request packet from node 1 for a route to node 7 is propagated through

the network.

2.5.7 Hierarchical Routing Protocols

Hierarchical routing protocols group sets of neighbouring nodes into a cell. In a cell, a

cluster-head is elected that coordinates nodes within a cluster. Hierarchical routing protocols

decreases the size of routing tables and allows for increased scalability. If the node density

is high, hierarchical protocols have a much better performance, because it uses less control

overhead, routes converge faster and routing paths are shorter on average. [6, 19, 29]

2.5.8 Cluster-head Gateway Switch Routing Protocol

Cluster-head Gateway Switch Routing (CGSR) is a hierarchical protocol, where nodes are

grouped into clusters and one node in the cluster is elected as the cluster-head. The cluster-

head maintains the cluster and all communications between clusters are routed through the

cluster-head. The advantage of the protocol is that nodes only have to maintain a route to

their cluster-head. Hence the routing overhead is much lower, because only cluster-heads

transmit routing information. A penalty is however paid in control overhead to maintain

the cluster, because each node needs to periodically transmit its cluster member table. The

cluster member table contains the node-cluster associations of nodes. The cluster based

protocol favours networks where nodes are quasi-static. [5, 12, 16]

Clustering Algorithms

Mario Gerla et al. presents two methods of how clusters are formed, namely the lowest-

id cluster algorithm and highest-connectivity cluster algorithm [16]. The lowest-id method

works as follows. Each node periodically broadcasts a list of all its neighbour nodes. A node is

a cluster-head if it only hears nodes with an id (address) higher than its own. Nodes hearing

the cluster-head become part of the cluster. A node hearing two or more cluster-heads is

called a gateway, otherwise the node is a normal node.

2.5 — Routing Layer Protocols for Wireless Ad Hoc Networks 19

The highest-connectivity cluster works as follows. Again each node broadcasts a list of

all its neighbour nodes. A node is elected as a cluster-head if it has the most connections of

all of its uncovered neighbours. Uncovered nodes are nodes without an elected cluster-head.

If two nodes have a tie for the most connections, the node with the smallest id (address) is

elected as cluster-head.

Clusters have two main properties:

• cluster-heads are not directly connected and

• nodes belonging to a cluster are at most two hops away from one another, because the

cluster-head is a neighbour of every node in the cluster.

This protocol operates in a mobile environment where nodes move around and cluster-

heads can occasionally move into each other’s range. In such a case the cluster-heads chal-

lenge each other with either the lowest-id or highest connectivity as criteria. The result is

that the loser gives up its cluster-head status. Figure 2.7 on the following page shows how

nodes are grouped together in a cluster.

MAC-Layer

The MAC-Layer of the protocol has gone through changes. First, Time Division Multiple

Access (TDMA) was used within the cluster [16] and this has changed to token scheduling

[12]. Among clusters Code Division Multiple Access (CDMA), with different spreading codes,

is used to ensure one cluster’s transmissions do not interfere with another. Token scheduling

is a polling scheme that allocates transmission time among nodes in a cluster.

The procedure for the token scheduling works as follows:

• First the cluster-head receives the permission token and transmits any messages in its

transmission queue.

• Then the token is passed on to the next scheduled node in the cluster and this node

now has a chance to transmit a message in its transmission queue.

• Lastly, the token is returned to the cluster-head node and the cycle is repeated again.

Gateways are nodes belonging to more than one cluster. These nodes have to switch their

spreading code to the code used in a specific cluster to receive messages from that cluster.

A situation may arise where a token is sent to a gateway node and the node is “tuned” to

the spreading code of the other cluster. This causes a token to be lost and impacts message

delivery adversely. If a token is lost, the token is regenerated by the cluster-head after a

time-out.

Token scheduling can be used to give greater priority to neighbour nodes from which a

packet was recently received. This enables traffic to be sent with less delay. The cluster-head

offers more transmission chances to nodes with a higher priority.

2.5 — Routing Layer Protocols for Wireless Ad Hoc Networks 20

Cluster−head transmission range

Distributed Gateway

Cluster−head

Gateway Node

Figure 2.7: Nodes grouped together in cluster topology.

Routing

DSDV routing is used as a basis, because it provides loop free routes and prevents nodes

from being updated with old routing information by using sequence numbers. DSDV is

modified by using the unique property of cluster-heads that nodes in a cluster are one hop

away from the cluster. The property can reduce the number of routes, because packets

can now be routed to a cluster rather than a node. Each node has a cluster member table

which is broadcast periodically. A node updates its cluster member table when new table

information is received from its neighbour. The cluster member table maps a node address to

an associated cluster-head address. Each node maintains a routing table, used to determine

the next node on route to the destination cluster. When a packet is routed from one cluster to

another the packet is routed through the common gateway of the clusters [12]. Sometimes

clusters will form not sharing a common gateway node. The problem can be solved by

creating a distributed gateway. The distributed gateway consists of a node in each of the

different clusters that are neighbours [16].

2.5.9 Hierarchical State Routing

As the name implies Hierarchical State Routing (HSR) is another hierarchical routing proto-

col. Like in CGSR, nodes are grouped into clusters, but elected cluster-head nodes become

part of new logical level. Members of the new logical level then elect cluster-heads for them-

selves and the cluster-heads again become part of the next logical level. This process repeats

itself recursively until a single top level cluster is created. The protocol improves scalability

by reducing the control overhead further. [31]

2.6 — Other Related Work 21

2.6 Other Related Work

This section will provide a short summary of related work on cluster based routing. Ben Lee

et al. provides an extensive summary on works relating to cluster based routing in [22].

2.6.1 AODV with Passive Clustering

In the PC (Passive Clustering) protocol, AODV is extended to reduce the number of nodes

flooding the network during the route acquisition phase. Only cluster-heads and selected

gateways flood the network. The advantage of PC is that no explicit cluster setup phase or

explicit cluster maintenance overhead is required, instead bits are added to MAC packets

to indicate node state. Hello messages are required to maintain up to date cluster and link

information, when no other messages was sent for some time. The First Declaration Wins

mechanism (FDW) for cluster-head election prevents chain reaction reclustering. In FDW

clustering the node that declares itself cluster-head first, becomes the cluster leader. [15]

2.6.2 Genetic Algorithm Applied to Route Optimization

This routing protocol optimises routes by using Genetic Algorithms (GAs). Clusters are set

up by electing cluster-heads by assigning weights to certain node traits such as its connec-

tivity, transmission range etc. Genetic algorithms are applied to route packets to improve

load distribution. Each route is assigned a chromosome and ranked by a fitness function.

After some time a new child chromosome is created with an improved route. [7]

2.6.3 Cluster Based Routing Protocol

Cluster Based Routing Protocol (CBRP) is an on-demand routing protocol using DSR’s

method of route discovery. Only cluster-heads and gateways forward RREQ and RREP

packets. The protocol uses hello messages containing the whole neighbour table and cluster

adjacency table and the node’s own node state. Clustering allows this protocol to do local

route repair between clusters and route shortening is enabled by examining the two hop node

neighbourhood. [20]

2.6.4 Adaptive Routing using Clusters

Adaptive Routing using Clusters (ARC) is a hierarchical routing protocol that is combined

with AODV. Special features of this protocol are a limited broadcast mechanism to reduce

the number of redundant nodes that broadcast a packet and a local route repair mechanism,

because more than one gateway links a cluster. Hello messages of the protocol contain the

node’s state, address and cluster leader table. To increase stability and reduce the ripple

effect of cluster-head re-election, a cluster-head gives up its status if comes in range of

2.7 — Summary 22

another cluster-head. The original cluster must be a subset of the cluster it merges with if

the cluster-head becomes an ordinary member node. [10]

2.7 Summary

The chapter provides literature relating to data networks. Background is given on wireless

MAC-layer protocols comparing sender-initiated, receiver-initiated, reservation mechanism

and schedule mechanism protocols.

The different routing disciplines of proactive routing and reactive routing are investigated

and examples of each are provided. An in depth summary is provided on DSDV routing

(proactive), which uses routing packets with a next hop and sequence number for each

route. OLSR only uses selected nodes, called multipoint relays, to transmit routing overhead.

Reactive routing protocols such as DSR and AODV use Route Request (RREQ), Route Reply

(RREP) and Route Error (RERR) packets for determining routes and detecting route errors.

Hierarchical routing reduces the number of routes in the network by grouping nodes

into clusters. Consequently, the nodes only need a route to the cluster. A summary of the

CGSR protocol is given, focussing on the cluster generation, the MAC layer operation and

the routing mechanism. The chapter ends with a summary on research relating to cluster

based routing. An Internet Draft and two articles [15, 20, 10] improve the AODV protocol

by using clusters and reducing the number of nodes broadcasting packets.

Chapter 3

Routing Protocol Design and

Implementation

The chapter documents the important design choices and implementation environment of

the routing protocol. First, the requirements used to make initial design choices are stated

and secondly, the implementation environment of the OMNeT++ simulator is discussed. An

overview of the development plan for the routing protocol is given. Implementation specifics

of the protocol, i.e. the cluster generation, node states, routing tables, routing information

distribution and the routing function are examined. The channel management method by

the use of tokens is shown. A mechanism to promote the fair queueing of forwarded data

messages, is presented. The chapter is concluded by a section on performance measurement.

3.1 Initial Design Choices

As stated in the introduction, the protocol should have the following outcomes:

• high densities of nodes must be handled effectively,

• nodes can make use of a high bandwidth,

• congestion must be avoided or reduced and

• quick rerouting must be possible if communication with a node is lost.

The Cluster-head Gateway Switch Routing (CGSR) protocol was chosen as a base for the

following reasons. Cluster based protocols prefer immobile environments, because mobility

creates extra overhead for these protocols [5]. The performance of cluster based (hierarchical)

routing protocols increases when the node density is high, because node overhead is decreased

[6]. CGSR is a proactive routing protocol, therefore routes are maintained and broken routes

are repaired automatically. A link-by-link congestion control mechanism is used in CGSR

[16].

23

3.1 — Initial Design Choices 24

3.1.1 CGSR Disadvantages and Proposed Improvements

CGSR, however has a few drawbacks. Firstly, routes are longer, because a node always

routes a message to its cluster-head first and then to the correct gateway, instead of routing

the message directly to the gateway (if the gateway is in range of the original node). A

precursor to the CGSR, Destination Sequenced Cluster Routing (DSCR), allowed nodes

to use the shorter route, but every node generates routing information [12]. The other

disadvantage of the protocol is that every node has to broadcast its cluster member table

periodically [5]. A cluster member table contains all the nodes in the network and their

associated cluster.

Two changes are needed to shorten routes by hopping directly to the correct gateway.

Gateways must share information on their local cluster-heads and the next-hop-cluster in-

formation of a destination must be available to nodes. The next-hop-cluster is the cluster

that must be traversed next to reach the destination cluster.

Control overhead can be reduced by letting only selected nodes transmit the routing

information and node-cluster associations. Other nodes only share information on critical

nodes within two hops. Figure 3.1 shows the planned changes to the protocol.

(a) The original route chosen by CGSR is

shown by the dashed line. The solid line route

is the proposed improvement.

(b) Only selected nodes (filled nodes) generate

full routing and node-cluster association in-

formation for reduced overhead. Other nodes

only share information on critical nodes.

Figure 3.1: Two improvements made to the protocol are shown.

3.2 — Implementation Environment 25

3.2 Implementation Environment

Complex systems’ internal mechanisms are often studied with the help of simulations [8].

The protocol was implemented in the OMNeT++ discrete event network simulator. The

OMNeT++ simulator was chosen for the following reasons:

• it is possible to separate code into discrete modules representing the logical structure

of the network model [41],

• a Mobility Framework extension is available for the simulation of wireless networks

[24],

• it is easy to extend previous modules due to the object-oriented nature of the simulator

[41] and

• previous Masters projects at the University of Stellenbosch have used the simulator

[26, 40].

The OMNeT++ simulator has three main components:

• modules implemented in the C++ programming language,

• the NED language specifying the logical module structure, gate connections between

modules and input parameters and

• the omnetpp.ini configuration file that specifies simulation options and the values of

the input parameters.

The simulator creates a visual representation of the wireless network. This makes testing

and debugging the network easier. Figure 3.2 on the following page shows the visual rep-

resentation of the network, generated by OMNeT++. Each node consists of various layer

modules: application, network and Network Interface Card (NIC). The modules of the layers

are shown in figure 3.3 on the next page. We focus on the network (routing) layer, the centre

module in the previously mentioned figure.

OMNeT++ is a discrete-event simulator. Therefore state variables only change at dis-

crete points in time. In the simulator events are scheduled and added to the Future Events

List (FEL). All events in the FEL are in chronological order. Suppose events are scheduled

at times t1, t2, t3, ..., tn and t1 ≤ t2 ≤ t3 ≤ ... ≤ tn. The event at t1 is to be executed next.

The simulation clock will advance to time t1 and remove it from the FEL and execute the

associated event. When a event is executed, new future events can be scheduled and must

be inserted into the FEL at the appropriate position. The simulation clock then proceeds to

the next scheduled event. This process is repeated until there are no more scheduled events.

Figure 3.4 on page 27 shows a time line with scheduled events. [8]

3.2 — Implementation Environment 26

Figure 3.2: Graphical representation of a network in OMNeT++.

Figure 3.3: Simple modules in host implementing the various communication layers.

3.2 — Implementation Environment 27

b b b b

t1 t2 t3 ... tn t

Scheduled Events

Figure 3.4: Timeline representing the future events list.

3.2.1 Physical Layer Transmission Parameters

OMNeT++ allows the transmission parameters to be altered. To make the simulation more

realistic the transmission parameters of a IEEE 802.11b Wireless Fidelity (Wi-Fi) transceiver

were chosen. Figure 3.5 shows the wireless device. The following values were used:

• Receiving sensitivity: −85 dBm,

• Output power: 15 dBm (31,6mW) and

• Antenna gain: 2 dBi.

Figure 3.5: Wireless 802.11 transceiver. Reproduced from [4].

3.3 — Routing Layer Overview 28

3.2.2 Scaling the GUI Distance

The parameters chosen in the previous subsection causes the transmission power, Pt, to be

insufficient, because 1 pixel in the graphics output (see figure 3.2 on page 26) represents 1

meter of distance. It was decided to scale the distance represented by a pixel, by making

it smaller and increase the transmission power accordingly. OMNeT++ uses a variation of

Frii’s transmission equation with path loss exponent of α = 4.

Pr = Pt

(

λ2
W

16π2dα1

)

(3.1)

Suppose the distance of a pixel is scaled with the following equation.

SF .d1 = d2 (3.2)

• SF is a scaling factor.

• d2 is the new pixel distance.

Now the equation must be rewritten in order for d2 to replace d1.

Pr = Pt

(

λ2
W

16π2(d2
SF

)α

)

(3.3)

Pr = (Pt.S
α
F)

(

λ2
W

16π2dα2

)

(3.4)

The real transmission power can now be replaced by Pt.S
α
F reducing the distance represented

by a pixel with a factor of SF .

3.3 Routing Layer Overview

To develop the routing protocol there are certain logical tasks to be completed in a specific

order. Figure 3.6 on the next page shows the development steps for the routing protocol.

The first objective of the routing protocol should be to form clusters. The nodes should elect

a cluster-head among themselves. After clusters have been established, the cluster-heads will

be known and routing information can be spread through the network. Concepts from the

DSDV routing protocol will be used, but only cluster-heads and other selected nodes will

forward the routing information. Routes will be determined by using the property of the

cluster-head : nodes in a cluster is one hop away from its cluster-head (see section 2.5.8).

When the routes to all the nodes are known, data traffic can be generated on the network.

Lastly the traffic can be analysed with respect to latency, throughput and control overhead.

3.4 — Cluster Generation 29

Figure 3.6: A flow diagram showing the steps for developing the routing protocol.

3.4 Cluster Generation

In section 2.5.8 two clustering algorithms are mentioned. Since the network being studied is

immobile and the chances of two cluster-heads being in transmission range of one another is

small, the highest connectivity clustering algorithm was chosen. The only time two cluster-

heads will be in transmission range of one another is when both are elected simultaneously.

When such a situation occurs the cluster-heads will challenge one another and the cluster-

head with the least connections will give up its cluster-head status [12]. If both cluster-heads’

number of connections are equal, the cluster-head with the highest id (address) will give up

its cluster-head status.

The cluster-head election process will now be discussed. When a network is started

every node has the status of unassigned. If the node is in the unassigned state it broadcasts

periodic hello messages. Figure 3.7 shows the nodes transmitting hello messages.

Figure 3.7: Nodes constantly broadcasting hello messages.

3.4 — Cluster Generation 30

These hello messages are constantly generated after a short time interval, tshort hello. The

short time interval is calculated by:

tshort hello = k × (1 + 0, 2×X) (3.5)

• X is a random variable with a uniform distribution in the range [0, 1).

• k is a constant value set to 0,04 s.

The hello message contains various data fields, but the following fields are important

with respect to the cluster generation algorithm:

• sequence number

• node state

• number of connections

• election address

The sequence number is a unique number and is incremented with each hello message

transmission. Sequence numbers help neighbouring nodes to keep track of how many hello

messages are lost. A node state field declares the status of the node. The number of con-

nections is the number of neighbours the node can hear (number of entries in the neighbour

table, section 3.6.1). The election address contains the id of the neighbouring node with the

most connections.

Now, each time a message is received by a node and the election address field is the same

as its own address, the electionCondition counter is incremented. If electionCondition later

exceeds a certain election threshold the node becomes a cluster-head. The election threshold

is calculated by:

election threshold = kthreshold × connections (3.6)

• kthreshold is set to 2 .

The threshold prevents nodes from being promoted to cluster-head too quickly and situations

where more than one cluster-head is elected simultaneously within transmission range of one

another.

When a node is promoted to cluster-head, the node state field advertised in the hello

message is updated accordingly. Neighbour nodes hearing a message from the cluster-head,

update their own status to assigned. Figure 3.8 on the next page shows how a cluster is

formed, when a cluster-head broadcasts a hello message. Nodes not assigned to the new

cluster (uncovered nodes), continue to generate hello messages periodically with a short

time interval in between. The nodes forming part of the new cluster, now generate hello

3.5 — Node States 31

messages periodically with a longer time interval of 0,1 s. Cluster members’ connection with

the cluster-head and the cluster-heads’ connection with its cluster members is maintained by

the hello messages. The cluster generation process is followed until every node is associated

with a cluster. The long setup time of a cluster can be criticised, but it is allowable since no

large topology changes are expected from stationary nodes. In the next section node states

will be described.

A

C U

UU

U

U

A

A

A

A

A

U

Figure 3.8: The diagram shows how clusters are formed. “C” is the cluster-head node,

“A’s” are the assigned nodes and “U’s” are the unassigned nodes.

3.5 Node States

As the clusters are formed, the status of the nodes change and so does their respective

functions. Figure 3.2 on page 26 shows the nodes displaying different colours. Each colour

represents a different node state. A node can have the following states:

• offline (red)

• unassigned (cyan)

• assigned (blue)

• cluster-head (yellow)

• gateway (purple)

• distributed gateway (green)

3.5 — Node States 32

• satellite node (black)

When a node goes online it starts with unassigned status. In the unassigned state the

node tries to elect a cluster-head by broadcasting hello messages, as described in the previous

section. A node goes to the assigned state if it can hear one cluster-head. Nodes can start

to send data messages as soon as they receive routing information from the cluster-head. A

node becomes a gateway if it can hear two cluster-heads. Data is routed from one cluster

to another through a common gateway node. Data can also be routed through a distributed

gateway node. A distributed gateway is a node with a neighbour in different cluster, but

the neighbour is not a member of the node’s own cluster. Satellite nodes are hosts without

cluster-head as a neighbour, but only hear nodes in transmission range of a cluster-head.

In this way satellite nodes also form part of a cluster, but satellite nodes are however still

uncovered and try to elect a cluster-head by broadcasting hello messages. An uncovered

node is defined as a node without a cluster-head as neighbour.

Figure 3.9 on the next page shows how node states can change. Each time a hello message

is received from another node, the determineNodeState function is executed by the receiving

node. The function uses information in the neighbour table of the node to determine its

state. Algorithm 1 on page 34 shows the pseudo code of the determineNodeState function.

3.5 — Node States 33

Node
Satelite Cluster−

head

Distributed
Gateway

Node wins cluster−head

challenge

Gateway

Assigned

Unassigned

Offline

Elected cluster−head

Lose cluster−head challenge

Hears node in another cluster

Hears cluster−head

Hears cluster−head

Goes online

Hears
another c

luste
r−

head

Hears node in another cluster

Figure 3.9: Node state diagram.

3.5 — Node States 34

Algorithm 1 Node state algorithm

function determineNodeState

numClusterHeads← determine number of cluster heads in range

if ownNodeState = cluster head then

if numClusterHeads > 0 then ⊲ Tests for cluster-heads in range

neighbour ← get cluster head neighbour information

if lose challenge to neighbour then

give up cluster head status

else return cluster head

end if

else if numClusterHeads = 0 then return cluster head

end if

end if

if numClusterHeads > 1 then

return gateway

else if numClusterHeads = 1 then

if test distributed gateway then return distributed gateway

else return assigned

end if

else if numClusterHeads = 0 then

if neighbours part of cluster then return satellite node

else return unassigned

end if

end if

end function

3.5 — Node States 35

Distributed Gateway Nodes

(a) Distributed gateway connecting two clusters [16].

Cluster 5

Cluster 4

Cluster 2Cluster 1

Cluster 3

Distributed Gateway

Gateway

Key:

(b) Distributed gateway reducing path length.

If only gateways were used, the messages routed

from cluster 1 to cluster 2, would have to be

routed via clusters 3, 5 and 4.

Figure 3.10: Distributed gateway functions.

3.5.1 Distributed Gateway

A distributed gateway enables communication between two neighbouring clusters with no

common gateway node. The path length for packets can even be reduced in some instances

by using a distributed gateway. Figure 3.10 shows how a distributed gateway can connect

clusters and how path length can be reduced by using a distributed gateway.

3.5.2 Satellite Node

The state of satellite node was defined to solve a unique problem. Instances rarely occur

where there is a single uncovered node at the edge of the network. The rest of the nodes

already form part of a cluster. Only uncovered nodes can take part in the election, therefore

the single uncovered node cannot elect itself as cluster-head. If the node detects other nodes

that are part of a cluster, it knows a cluster-head is two hops away. The node then sets

its status to satellite node. Information about the satellite node is then relayed, in a hello

message, by its neighbours to their cluster-head. Figure 3.11 on the next page shows a

satellite node joining a cluster by relaying its information to a cluster-head.

It can be argued that the role of the satellite node could be replaced by a cluster-head,

but this will create an extra entry in the routing table and may increase routing overhead.

3.6 — Routing Tables 36

Information relayed

Cluster−head transmission range

Cluster−head

Satelite node

Figure 3.11: Satellite node information relayed to the cluster-head.

3.6 Routing Tables

Routing tables enable nodes to determine the next hop to a destination. The main routing

tables are the neighbour table and the cluster table set. Information of the node’s immediate

environment is contained in the neighbour table. The cluster table set contains each node’s

associated cluster-head address and the routing information to the cluster.

Using various routing tables in the protocol may seem redundant, but the tables organise

the routing information by different criteria. This simplifies the search for relevant routing

information. For example, the gateway table records information on gateway nodes. Now

gateways to other clusters can be found simply by inspecting the gateway table, rather than

searching the whole neighbour table for nodes with a gateway status and then determining

which neighbour cluster they link.

Every time a hello message is received, the neighbour table is updated with the infor-

mation from the neighbour node. The cluster-head, gateway and satellite node tables are

updated from the neighbour table. Only cluster-head nodes use the neighbour cluster table.

The neighbour cluster table is updated by the gateway table.

Each time a cluster table message is received, the cluster table set is updated. The

network node table is updated from the cluster table set. Figure 3.12 on the following page

shows the routing table update mechanism.

3.6.1 Neighbour Table

As the name implies, the neighbour table contains information on the nodes within trans-

mission range of the node. For each neighbour the following variables are recorded:

• neighbour address;

3.6 — Routing Tables 37

Figure 3.12: Update mechanism for routing tables.

• connections, the number of neighbours the node has;

• node state, the current state of the node as described in section 3.5;

• link state, the stability of the link;

• Time To Live (TTL), the time a connection has left before becoming unstable;

• hello messages received;

• messages pending, the number of messages in the transmission queue;

• last hello message sequence number;

• time-outs, number of times the link has timed-out;

• number of cluster-heads, number of cluster-heads nodes within two hops;

• array of cluster-head addresses, addresses of cluster-heads within two hops;

• array of direct cluster-head, boolean field indicating if the cluster-head is a direct

neighbour or two hops away;

• number of satellite nodes, number of satellite nodes within two hops;

• array of satellite node addresses, addresses of satellite nodes within two hops; and

• array of direct satellite node, boolean field that indicates if the satellite node is a direct

neighbour or two hops away.

3.6 — Routing Tables 38

Link Stability

To ensure that a link is stable, a message must be received from a neighbour node within

a specified time. When a hello message is received from a host for the first time, its entry

is created in the neighbour table and the Time To Live (TTL) field is set to its maximum

value of 5 and the link state is set to stable1. Then periodically after a constant time,

tdecrease link TTL = 0,1 s, has passed, the TTL field is decremented. If the TTL field eventually

reaches 0 , the link state associated with the neighbour is set to unstable. To keep the link

of a neighbour stable, a message must be received from the neighbour to restore the TTL to

its maximum value. The long hello message generation time and the TTL decrement time

are equal.

3.6.2 Cluster-head Table

Information related to the cluster-heads within two hops of a node is recorded in the cluster-

head table. For each cluster-head the following data is maintained:

• cluster-head address; and

• direct cluster-head, boolean field indicating if the cluster-head is a direct neighbour or

two hops away.

As stated previously, the cluster-head table is updated from the neighbour table. The

cluster-head table update process will now be explained. First, all entries currently in the

table are validated, by checking the link with the neighbour providing the entry, is still stable.

Any entries without a confirmed stable link are removed from the table. Then the cluster-

head table is updated with information from neighbours that are cluster-heads. Lastly, if

neighbours have any direct cluster-heads, the table is updated with those addresses and the

boolean field is set to indicate the cluster-head is two hops away. Algorithm 2 on page 39

gives the method for updating generic tables, like the cluster-head table.

The content of the cluster-head table is included in the hello message of the node.

3.6.3 Gateway Table

Neighbouring gateways or distributed gateways are summarised in the gateway table. The

information in the table is relative to the perspective of the node owning the table. The

table helps nodes to determine which gateways link to which clusters. For a gateway node

entry the following data is stored:

• distributed gateway, boolean field indicating if the node is a gateway or distributed

gateway ;

1Only stable links are used in routing tables.

3.6 — Routing Tables 39

• number of links to clusters, number of different neighbour clusters the gateway node

links with the current cluster;

• links to clusters array, the array contains the cluster-head addresses of the neighbour

clusters;

• direct link to cluster array, the boolean array stating if the cluster-head of the neighbour

clusters is one hop or two hops away from the gateway node; and

• number of connections, the number of neighbours seen by the gateway.

The gateway table is updated from the neighbour table with algorithm 2. Figure 3.13 displays

the routing information represented by the gateway table.

Cluster 1 Cluster 2 Cluster 3

Gateway providing direct link to Cluster 3

Distributed Gateway providing indirect link to Cluster 1

filled node’s perspective

Routing information from

Figure 3.13: The diagram presents a visual description of information in the gateway table.

The perspective of the filled node is used.

Algorithm 2 Generic table update algorithm

procedure updateTable

for each node entry in table do

if node entry invalid then

remove node entry from table

end if

end for

for each node in neighbour table do

if neighbour node entry has certain a attribute then

add neighbour node to generic table

end if

end for

end procedure

3.6 — Routing Tables 40

3.6.4 Satellite Node Table

Satellite nodes are special in the sense that they belong to a cluster, but they are two

hops away from the cluster-head node. For this reason it was decided to create a satellite

node table for easy reference to satellite node routes. Each satellite node entry contains the

following fields:

• direct satellite node, boolean field indicating if the satellite is a direct neighbour or two

hops away;

• service node address, the address of the preferred intermediate node, that relays infor-

mation, if the satellite node is two hops away;

• number of intermediate nodes, number of intermediate nodes between current node

and satellite node; and

• intermediate node addresses array, array of maximum 4 intermediate node addresses.

The satellite node table is updated from the neighbour table with algorithm 2. Satellite

nodes included in the table, must have the attribute of being either one or two hops away

from the node owning the satellite node table. Figure 3.14 on the following page shows the

intermediate nodes of a satellite node.

Satellite service node

The satellite service node is the intermediate node between the cluster-head and satellite

node with the most neighbour connections. A satellite service node forwards the routing

information to the satellite node. Token passing (discussed in section 3.9) is done implicitly

via the satellite service node.

3.6.5 Neighbour Cluster Table

The neighbour cluster table helps to determine a designated gateway for each neighbouring

cluster. Only cluster-heads have a neighbour cluster table. A designated gateway is chosen

by the cluster-head and forwards routing information to its corresponding neighbour cluster.

The neighbour cluster table is updated from the gateway table. Gateways with the most

neighbours are selected as the designated gateway. If there is no direct link to a neighbour

cluster through a gateway, the distributed gateway with the most neighbours is selected as

the designated gateway.

3.6.6 Cluster Table Set

The cluster table set contains the main routing information of destination nodes. Each

cluster in the network has a corresponding cluster table in the set. From now on the cluster-

head ’s address of each cluster will be referred to as the cluster address. To damp routing

3.6 — Routing Tables 41

Intermediate Nodes
Satelite Service Node

Satelite Node

Cluster−head

Figure 3.14: Intermediate nodes of satellite node.

fluctuations the cluster table keeps pending routing information. The routing fluctuation

damping and the pending fields will be explained in section 3.6.6. Each cluster table records

the following for each cluster:

• cluster-head address, the cluster address ;

• reachable through node address, the address of the next hop to the cluster;

• next-hop-cluster, the next cluster that must be traversed to reach the destination

cluster;

• current cluster, the cluster address of the node owning the cluster table set;

• hops to destination cluster, the number of hops needed to travel to the destination’s

cluster-head ;

• node address array, the addresses of nodes belonging to the cluster;

• cluster table sequence number;

• reachable through node address (pending);

• next-hop-cluster (pending);

• current cluster (pending);

• hops to destination cluster (pending);

3.6 — Routing Tables 42

• cluster table sequence number (pending); and

• Time To Live (TTL), the time the cluster table is still valid.

Each node updates its own cluster table set with the information in a cluster table packet.

A cluster table entry, with sequence number sL, is updated if the sequence number sR of

the cluster table in the update packet, satisfies the following inequality: sR > sL. If the

sequence numbers are equal, sR = sL, a cluster table entry can also be updated, but the

update message’s cluster table must have a smaller hop count. This implementation of

sequence numbers agrees with the DSDV routing protocol [32] discussed in section 2.5.2.

Cluster-head nodes, however create their own entry in the cluster table set and updates

the entry with a new sequence number periodically. The entry created by the cluster-head

consists of all its neighbours and satellite nodes.

The TTL field in the cluster table works the same way as the link stability mechanism

explained in section 3.6.1. If a cluster table has not been renewed by an update message

and times out (when the TTL field reaches zero), the cluster table entry is removed from the

cluster table set. Figure 3.15 describes and displays the information of a cluster table entry.

S

D

A

B

C

Figure 3.15: Suppose a node “S” wants to route data to node “D”. Then from the perspective

of node “S”, cluster “A” is the current cluster, cluster “B” is the next-hop-cluster and

cluster “C” is the destination cluster.

Damping Routing Fluctuations

To prevent routes from suddenly changing, routing changes are damped. Now if a single

update packet is missed from an original node and a more recent update packet is received

from another node, the sudden change is avoided. The routing information of the other node

is stored in the pending fields. If five consecutive updates are missed from the original node,

the main routing fields are replaced by the pending routing fields.

3.7 — Routing Information Distribution 43

3.6.7 Network Node Table

The network node table contains a list of all the nodes in the network that are currently

routable. Searching for routable nodes is simplified by using the network node table, because

the table links each node’s address to its associated clusters’ addresses. Each network node

entry contains the following information:

• number of cluster-heads, the number of clusters to which the node belongs; and

• cluster-head addresses array, the addresses of clusters to which the node belongs.

3.7 Routing Information Distribution

Routing information is distributed in a way that reduces the number of nodes forwarding

routing information. In some sense the method is similar to the MPRs of OLSR, as explained

in section 2.5.3. Only selected nodes forward the routing information.

First, the cluster-head generates its own cluster table, listing its neighbours and satellite

nodes. All the valid cluster tables in the cluster table set of the cluster-head are broadcast.

The broadcast message is called the cluster table packet. In the header of the cluster table

packet there is a forwarder nodes list. The forwarder nodes are selected nodes that forward

the cluster tables to neighbouring clusters and local satellite nodes. Designated gateways

and satellite service nodes of a cluster are the selected forwarder nodes for a cluster. If

a node receives a cluster table packet and its address is in the forwarder nodes list, the

forwarding responsibility of the node is “switched on”. The forwarding responsibility of a

node is “switched off” if a node receives cluster table packet and its address is no longer in

the forwarder nodes list. Figure 3.16 on the following page shows the distribution of routing

information.

3.8 — Routing Function 44

Forwarder Nodes

Forwarder Nodes

Figure 3.16: The routing information is distributed to neighbouring clusters and satellite

nodes through the forwarding nodes.

3.8 Routing Function

The routing function determines the next hop to a destination node. Information in the

various routing tables are used to select the best next hop. The routing function can be

divided into two parts. One part determines if the destination is available locally, for example

if the destination is a neighbour or satellite node. The second part is utilised if the destination

node is part of a remote cluster. If the node is part of more than one remote cluster, the

nearest cluster is selected as the destination. Figure 3.17 on the next page displays a flow

chart indicating how the next hop address is determined.

3.8 — Routing Function 45

Figure 3.17: Determine next hop function flow diagram.

3.9 — Token Scheduling 46

3.9 Token Scheduling

Token scheduling [12] was implemented for a measure of congestion control. Since cluster-

heads transmit more routing information and can be chosen as a route, if no shorter route

can be found, cluster-heads are given more transmission chances. The focus of the token

scheduling was to give each node a fair chance to transmit its message in the cluster. A

token packet is always broadcast and it is noted that different clusters do not use different

spreading codes as per the original protocol discussed in section 2.5.8. Although a decrease

in performance can be expected with this implementation decision, the implementation is

greatly simplified.

Cluster-heads generate a token and pass the token to their neighbours. Before a cluster-

head transmits a token message it transmits a data message, if it has any. Each time a

neighbour receives a token, the node is given a chance to transmit one data message. A data

message is sent via the CSMA/CA mechanism to the next hop node. After the neighbour

has transmitted the data message, the token is sent back to the cluster-head and the process

is repeated. The cluster-head cycles through its neighbours. At the end of the cycle the

token is “passed” to the cluster-head, to give the cluster-head a fair chance.

In the process of passing tokens, a token can be lost. A lost token can be regenerated by

the cluster-head after a time-out. To determine the time-out, the total time passing from

when the cluster-head sends the token message, the neighbour sends a data message and the

token is returned to the cluster-head, is calculated. The following equation is used:

ttime−out = 2× ttoken transmission + tdata transmission (3.7)

ttime−out equates to 0, 00726s, but the final time-out value of ttime−out = 0, 0075s is chosen.

Note that an extra mean backoff time has been added to each packet transmission time, as

a time buffer. The details of the equation will be discussed in the next chapter.

If a neighbour has significantly increased traffic, the token can be passed to the neighbour

more than once in a cycle. The following equation is used to determine the number of

transmission chances.

transmission chances =
mi

max(1,min(m1, m2, ..., mn))
(3.8)

• mi is the number of messages in the transmission queue of the neighbour whose trans-

mission chances are considered.

• m1, m2, ..., mn are the number of messages in each cluster member’s transmission queue.

A cluster-head determines the number of messages in the transmission queue of a neighbour,

by inspecting the messages pending field in the token message returned by a neighbour. The

number of messages in a transmission queue are the messages in the personal and general

message buffer summed. Message buffers will be explained in section 3.10.

3.10 — Weighted Fair Queueing with Message Buffers 47

3.9.1 Implicit Token Passing to Satellite Nodes

Since satellite nodes are not directly in range of a cluster-head, a solution must be found

to include satellite nodes in token passing. It was decided to pass the token implicitly to

the satellite node when the satellite service node returns the token to the cluster-head. In

essence token passing continues as if there were no satelite node. A boolean field inside

the token message is set which indicates that the token is being passed implicitly. When a

satelite node receives such a token it only returns the message to its satelite service node.

Figure 3.18 shows how tokens are passed to neighbour nodes and includes a case where a

token is passed implicitly to a satellite node.

1

2

3

5

4

Implicit Token Pass To Satellite Node

Figure 3.18: Implicit token passing to satellite node. The dashed line shows the implicit

token pass.

3.10 Weighted Fair Queueing with Message Buffers

Message buffering was implemented with the idea to prevent congestion at nodes. Since

all nodes in an ad hoc network route one another’s messages, it is important that no node

abuses its position in the network to route its own messages. If a node generates a large

amount of traffic it can congest its own transmission queue with its own messages.

Weighted fair queuing was implemented to solve the problem [33]. Messages arriving at

the node and messages generated by the node, are separated into two buffers. Messages

generated by the node itself enter the personal message buffer of the node. Other messages

received from neighbours that need to be forwarded enter the general message buffer directly.

Figure 3.19 on the next page shows the personal and general message buffers. Every time a

3.10 — Weighted Fair Queueing with Message Buffers 48

token is received, a message is transmitted from the general message buffer or if the general

buffer is empty, a message is transmitted from the personal buffer.

Figure 3.19: The personal message buffer and the general message buffer.

Now let madjacent = (number of nodes in adjacent cluster). For every madjacent forwarded

messages in the general message buffer, one message of the personal message buffer proceeds

to the general one. Figure 3.20 shows a data flow from one cluster to another and which

cluster is considered the adjacent cluster.

For each cluster a node is part of, it has a set of a general and personal message buffers.

Gateway nodes therefore have more than one message buffer set. The different message

buffer sets of gateways separate the flow of messages to different clusters. Satellite nodes

with a cluster-head two hops away also have a message buffer set. The message buffer set is

called the cluster transmission handler.

Cluster 2Cluster 1

Adjacent ClusterActive Cluster Gateway Node

Data Flow

Figure 3.20: The diagram shows a data flow from cluster 2 to cluster 1. If the gateway

node functions in cluster 1, then cluster 2 is considered the adjacent cluster.

By queueing data messages in the buffer at the routing layer, the message queue of the

MAC-layer is kept empty most of time. This ensures that when a routing message (hello

message or cluster table message) is generated and passed to the MAC-Layer, it is sent as

soon as the channel is available. In other words, routing messages receive preference and do

not have to wait for data messages to be transmitted first.

3.11 — Protocol Messages 49

3.10.1 Choosing Between Different Cluster Transmission Handlers

Nodes part of more than one cluster, need to decide which cluster they are going to use to

transmit their message. To make the decision the next hop address of the message is taken

into account.

If the node and the next hop of the message are in the same cluster, the cluster they share

(with the least number of member nodes) is chosen to transmit the message. Otherwise, if the

node and the next hop of the message are in different clusters, the cluster of the transmitting

node that has the least number of member nodes, is chosen to transmit the message.

3.11 Protocol Messages

The protocol has a number of routing layer messages. This section will describe the different

messages, their content and their function.

3.11.1 Hello Message

Hello messages are used to determine a node’s connectivity. As mentioned previously, hello

messages are used when electing a cluster-head. Hello messages determine stable links with

neighbours. The messages are kept small by sharing only the addresses of critical nodes

within a two hop range. Cluster-heads and satellite nodes are critical nodes and a maximum

of four of each can be included in the message. The critical nodes are limited to four to limit

the size of the hello packet. The periodical generation time of hello messages is kept short

(0,1 s) to ensure broken links are detected faster. Figure 3.21 on the next page shows the

contents of a hello message.

3.11.2 Cluster Table Message

The cluster table message contains the routing information of all distant nodes (outside of

the one hop range of neighbour nodes and two hop range of critical nodes). Only selected

nodes generate cluster table messages periodically and every 0,5 s. The messages consist of

a header, containing the forwarder nodes, and multiple cluster table entries. Figure 3.22 on

page 51 shows the contents of a cluster table message.

3.11.3 Token Message

Small token messages are used as a measure of congestion control and to schedule nodes

within a cluster for transmission. The “IT” bit field is a switch indicating if the token

message is an implicit token. Figure 3.23 on page 51 shows the contents of the token

message.

3.11 — Protocol Messages 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Address

Destination Address

Packet Type

Sequence Number

Connections Node State Reserved

Election Address

Number of

Cluster-heads

Direct

Neighbour

Switch

Number of Satellite

Nodes

Direct

Neighbour

Switch

Cluster-head Address 1

Cluster-head Address 2
...

Cluster-head Address n (Maximum 4)

Satellite node Address 1

Satellite node Address 2
...

Satellite node Address n (Maximum 4)

Figure 3.21: Hello Message Contents.

3.11.4 Data Messages

Data messages contain any content a node wants to send to a destination in the network.

The size of the data packet payload is kept constant at 1 kB. Each data message has a

sequence number and a TTL field. The TTL field is set to 20 initially and decremented

with each hop. If the TTL field reaches zero the packet is removed from the network. Data

messages are sent through the network by the User Datagram Protocol (UDP) transport

layer protocol. Although the MAC layer provides hop by hop acknowledgements for data

packets, the UDP transport layer does not guarantee delivery at the destination node by an

acknowledgement packet.

3.11 — Protocol Messages 51

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Address

Destination Address

Packet Type Number of Forwarder

Nodes

Forwarder Node Address 1

Forwarder Node Address 2
...

Forwarder Node Address n



























































Packet Header

Cluster-head Address

Cluster Table Sequence Number

Reachable Through Node Address

Reachable Through Cluster Address

Current Cluster Address
Hops to Destination

Cluster

Number of Nodes in

Cluster

Node Address 1

Node Address 2
...

Node Address n































































































Cluster Table Entry

Figure 3.22: Cluster Table Message Contents.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Address

Destination Address

Packet Type

Sequence Number

Token Destination Address

Token Cluster Address

Messages

Pending
I

T

Satellite Node Address

Figure 3.23: Token Message Contents.

3.12 — Performance Monitoring 52

3.12 Performance Monitoring

The measurement of the performance of the routing protocol is an important feature. It

was decided to create an external module, to keep the implementation of the routing pro-

tocol itself and performance code separate for greater clarity. This approach also allows

characteristics of the network to be determined at different points of simulation time.

Nodes have write access to the performance module memory to record certain statistics

for example the total messages sent, received and lost. At the start of each simulation

each node registers with the performance module and gives access to the important data

structures of the node, such as the node’s routing tables etc.

The performance module records the latency of all packets and groups them according

to their hop count. In this way the mean latency for a specific hop count can be determined.

Statistics on node neighbours are determined: the mean number of neighbours of a node and

the minimum and the maximum number of neighbours. The composition of the network is

determined, in other words the percentage of nodes that are in specific state. The network

is tested to ensure no two cluster-heads are neighbours. Throughput of the network is also

measured. After each simulation run the data bitrate demanded and the bitrate achieved

are recorded.

A graphviz (drawing tools for graphs) source file is generated by the performance module.

This source file is then compiled with the neato program [30] for a visual display of node

relationships. The graph is shown in figure 3.24 on the following page, the different node’s

states are represented by different shapes.

Output files for debugging and analysis purposes are generated by the performance mod-

ule. Each node’s routing tables and the routes a packet followed to reach a destination node

is recorded in a folder for each simulation.

3.12 — Performance Monitoring 53

n 2 7

n 1 4 7

n 1 8 7

n 2 1 7

n 8 7

n 3 7

n 5 7

n 1 1 7

n 1 2 7

n 1 9 7

n 1 3 7

n 2 0 7

n 4 7

n 1 0 7

n 1 6 7

n 1 5 7

n 6 7

n 7 7

n 1 7 7

n 9 7

Figure 3.24: Graph output generated by the neato program. The double circles represent

cluster-heads, circles are gateways, octagons are distributed gateways, ellipses are assigned

nodes and rectangles are satellite nodes. Forwarder node’s shapes are filled with a grey colour.

The solid lines indicate a neighbour link between a cluster-head and a cluster member node

and the dashed line indicates a normal neighbour link. Links between two distributed gateways

are also indicated with a solid line.

3.13 — Summary 54

3.13 Summary

The routing protocol design and implementation environment are documented in this chap-

ter. In the beginning of the chapter the initial design choices are stated and the reasons for

choosing CGSR as a base for the protocol are shared. Changes to CGSR include the short-

ening of the path length and the reduction in the number of nodes producing full routing

overhead. The OMNeT++ simulator was chosen as the implementation environment and a

Wi-Fi tranceiver’s transmission parameters were used. It is shown how to scale the graphics

output of OMNeT++.

An overview of the routing protocol development is given. The cluster generation mech-

anism of using hello messages to elect the most highly connected neighbour, is explained.

All the different node states are defined and a determine node state algorithm is given.

The content of the different routing tables are shown and clarified. Distribution of routing

information is described. A flow chart of the routing function is presented.

The token scheduling mechanism is shown. An equation to determine the number of

transmission chances a node can receive in a cluster transmission cycle, based on the number

of queued messages at the node, is given. A message buffer mechanism is shown queueing

forwarded traffic and traffic generated by the node in different buffers. Content of the

different protocol messages are displayed in byte fields.

The chapter ends with a description of a performance module for measuring parameters

in simulation time. Graphs generated by the performance module show the different node

states and indicate forwarder nodes with a filled grey shape. The performance module

generates output files for debugging and analysis purposes.

Chapter 4

Theoretical Analysis

This chapter investigates theoretical aspects of the routing protocol. A theoretical model is

presented to predict the mean latency of data packets and attempt to validate our simulation

model. Since the latency model is based on queueing theory, a short introduction will be

given on the subject. The latency model is presented as a first attempt to model latencies

in a cluster based protocol. Subsequently, application of the latency model on different

topologies, will be shown. The results obtained is compared to the simulated latency results.

A discussion will follow on why the theoretical latencies are different from the simulated

latencies. Other queueing theory approaches were investigated and are summarised in the

before last section. Lastly, a summary will be given of the comparison between the theoretical

model and the simulation values and a potential direction for future work.

4.1 Introduction to Queuing Theory

A queueing model can be used to study data transfer latencies in networks. The Kendall

notation is used to characterize different single waiting line queues [13].

A/B/m/k/n (4.1)

• A is the arrival process probability distribution.

• B is the service process probability distribution.

• m is the number of servers.

• k is the maximum queue length.

• n is the customer population size.

The queueing discipline describes the way in which customers enter and leave the queue.

FIFO (first in first out) is an example of a queueing discipline. The M/M/1/∞/∞ queuing

system models a queue where the arrival process and service process are of an exponential

55

4.2 — Latency Model 56

probability distribution (Markovian). If the arrival pattern follow a Poisson distribution it

can be proved the inter-arrival times have an exponential distribution [44].

A(t) = λAe
−λAt obtained from [44]. (4.2)

• λA is the mean arrival rate.

Traffic intensity ρ is defined by:

ρ =
λA

µ
obtained from [44]. (4.3)

• µ is the mean service rate.

A queue becomes unstable when:

λA ≥ µ (4.4)

The number of customers N in the queue is given by:

N =
ρ

1− ρ
obtained from [44]. (4.5)

Little’s law is given by:

N = λT obtained from [23]. (4.6)

• T is the mean waiting time for a customer in the queue.

The waiting time can now be derived:

T =
1

µ− λA

obtained from [44]. (4.7)

A Jackson queuing network can be constructed to simplify queueing problems. Poisson

streams can be combined to give a new stream with the arrival rate equal to the sum of each

original stream. A stream can also be split and each split creates a new stream with a rate

proportional to its ratio of the original stream. The waiting times of queues in series can be

summed to give the total waiting time. [44]

4.2 Latency Model

An exact theoretical model is difficult to obtain, because the probability of a token packet

being lost is an intricate value to determine. The model presented here, only aims to give an

estimate of which latencies can be expected. An ideal mathematical model has the properties

of simplicity, logical consistency and accuracy. The investigated protocol unfortunately

has many dependencies and is difficult to model accurately. To develop the model certain

simplifications and assumptions are made. It is assumed that for the data network, we are

4.2 — Latency Model 57

investigating the arrival process and service process follow an exponential distribution. A

route in the network can be seen as a series of queues at each node. The total waiting time

for a route is given by:

Troute =

n
∑

i=1

1

µi − λi

(4.8)

• µi is the mean service rate at node Ni,

• λi is the mean arrival rate at node Ni and

• Nodes N1, N2, N3, ..., Nn are included in the summation where node Nn is the node

before the destination.

Now the mean arrival rate and mean service rate must be determined for each node. It will

be convenient to express the arrival rate as a bit rate and determine the packet arrival rate.

The following equation links the generated bit rate to the generated number of packets:

λ1 =
Ginput

Ddata packet size

(4.9)

• Ginput is the generated bit rate.

It is assumed that packets lost by the MAC-layer is minimal, therefore, the arrival rate at

each node remains the same: λ1 = λ2 = ... = λn.

The service rate of a cluster member node is dependent on the cluster cycle time. Al-

though some packets will not wait a full cluster cycle for the token if the queue is empty, we

assume all packets must wait at least a full cluster cycle to be serviced. The service rate for

node Ni is:

µi =
1

T service
i

(4.10)

• T service
i is the time node Ni waits to receive a token correctly.

If a node is a cluster-head the service rate is simply:

µi =
1

tdata transmission

(4.11)

Now, we will determine the time a node waits to receive a token correctly. If pmiss tokens are

missed by a node it needs to wait another cycle. The probability that two consecutive tokens

will be missed is (pmiss)
2 and the chance m consecutive tokens will be missed is (pmiss)

m.

For each missed token the node has to wait an extra cycle. Hence the mean waiting time

for a node is increased by

∞
∑

m=1

m.(pmiss)
m [36]. The node service time is determined by the

following equation:

T service
i = T cycle

j .(1 +
∞
∑

m=1

m.(pmiss)
m) (4.12)

4.2 — Latency Model 58

• T cycle
j is the cluster cycle time of cluster j and

• pmiss is the probability that a token will be missed by the node.

pmiss can be determined by the following equation:

pmiss = plost range + pbusy token + pbusy data (4.13)

• plost range is the probability that a token packet is lost due range.

• pbusy token is the probability that a token is lost due to a neighbouring cluster’s token

message interference.

• pbusy data is the probability that a token is lost due to the channel being busy with the

transmission of a data message.

We assume the lost token probability plost range is 0,01 if the distance of the node to the

cluster-head is near, 0,025 for a medium distance and 0,05 if the distance is far. These values

were determined from token loss factors from simulation.

The number of tokens lost is also influenced by the number of nodes shared by a neigh-

bouring cluster. If the node considered is not shared by two or more clusters pbusy token = 0.

The more nodes that are shared by a neighbouring cluster the more token misses will occur.

The nodes not part of the neighbouring cluster also have a influence on the shared nodes, be-

cause nodes that are not shared is less probable to time-out and token packets are broadcast

by the cluster-head. Therefore, shared nodes hear tokens that are not necessarily addressed

to them. pbusy token is calculated by:

pbusy token = (
bjk
aj

).(1−
bjk
ak

) (4.14)

• aj is the number of nodes in cluster j.

• ak is the number of nodes in neighbour cluster k.

• bjk is the number of nodes shared by the cluster and the neighbour cluster.

Transmission of data messages also prevent tokens from being received correctly. pbusy data is

a measure of how busy the channel is transmitting data messages and is determined by:

pbusy data = h.
DDATA.λi

GTR

(4.15)

• h is the number of nodes transmitting data messages in range of the considered node.

• DDATA is the data message size.

• GTR is the transmission bit rate.

The mean cluster cycle time can be determined by:

4.2 — Latency Model 59

• estimating the time it takes to pass the token to every node in the cluster and

• adding the time delay caused by token time-outs.

Note that to simplify the theoretical model each node is only given one transmission chance.

The total cycle time can be calculated by:

T cycle
j = T token

j + T time-outs
j (4.16)

• T token
j is the time needed to do the token exchange in the cluster.

• T time-outs
j is the time used to account for token time-outs.

The time needed to perform the token exchange cycle is calculated by:

T token
j = aj .ttsr (4.17)

• aj is the number of nodes in cluster j that is a direct neighbour of the cluster-head.

• ttsr is the time it takes to pass a token to a node and to pass the token back to the

cluster-head.

Note that satelite nodes are not considered to have an influence on the cycle time, because

they are not neighbours of cluster-heads. The following equation describes the composition

of ttsr:

ttsr = 2× ttoken transmission (4.18)

Table 4.1 on page 61 shows the different components of tdata transmission (tdt), ttoken transmission

(ttt) and various other parameters. Table 4.2 on page 62 shows the different components of

the data parameters.

The influence of the token time-outs can be calculated by:

T time-outs
j = ptime-outs.(ttime-outs − ttt).aj (4.19)

• ptime-outs is the probability that a sent token times out.

• ttime-outs is the time after which a token times out (ttt the token transmission time is

subtracted, because the transmission time of the token is taken into account already

in T token
j).

ptime-out is influenced by all the nodes the cluster-head sends a token. ptime-out is calculated

by:

ptime-out =
1

aj
.

aj
∑

n=1

(1− pnreceive node.p
n
return ch) (4.20)

• pnreceive node is the probability that the token packet will be correctly received by node

n.

4.2 — Latency Model 60

• pnreturn ch is the probability that the token will be successfully returned to the cluster-

head from node n.

pnreceive node is related to pmiss and can be determined by:

pnreceive node = (1− pmiss) (4.21)

pnreturn ch is only influenced by the node’s distance from the cluster-head and can be deter-

mined by:

pnreturn ch = (1− plost range) (4.22)

4.2 — Latency Model 61

Table 4.1: Table showing the composition of time parameters.

Parameter Composition

tST tST = 20µs

tSIFS tSIFS = 10µs

tDIFS tDIFS = 2× tST + tSIFS = 50µs

tBEB tBEB = E[X]× tST = 310µs

X (random number) X|X = {0, 1, 2, ..., 31}

tbt (before transmission) tbt = tDIFS

ttt ttt = tbt + ttd

tdt tdt = tbt + 3× tSIFS + tRTS + tCTS + tdd + tACK

GPHY (bit rate) GPHY = 1Mbps

GTR (bit rate) GTR = 2Mbps

tbit PHY tbit PHY = 1
GPHY

tbit TR tbit TR = 1
GTR

tRTS tRTS = DPHY HEAD.tbit PHY +DRTS.tbit TR

tCTS tCTS = DPHY HEAD.tbit PHY +DCTS.tbit TR

tACK tACK = DPHY HEAD.tbit PHY +DACK .tbit TR

tdd tdd = DPHY HEAD.tbit PHY + (DMAC HEAD +

DNET HEAD +DDATA).tbit TR

ttd ttd = DPHY HEAD.tbit PHY + (DMAC HEAD +

DNET HEAD +Dtoken).tbit TR

ttime-out ttime-out = 0,0075 s

thello thello = DPHY HEAD.tbit PHY + (DMAC HEAD +

DNET HEAD +Dhello).tbit TR

trouting trouting = DPHY HEAD.tbit PHY + (DMAC HEAD +

DNET HEAD +Drouting).tbit TR

T cycle
hello T cycle

hello = 0,1 s

T cycle
routing T cycle

hello = 0,5 s

4.2 — Latency Model 62

Table 4.2: Table showing the composition of data parameters (header and packet sizes

obtained from OMNeT++ source code).

Parameter Composition

DPHY HEAD DPHY HEAD = 192bits

DMAC HEAD DMAC HEAD = 272 bits

DNET HEAD DNET HEAD = 128 bits

DRTS DRTS = 160 bits

DCTS DCTS = 112 bits

DACK DACK = 112 bits

Dtoken Dtoken = 145 bits

DDATA DDATA = 8204 bits

Dhello Dhello = 240 bits (accounted for 4 critical nodes)

Dinteger Dinteger = 32bits

Dbyte Dbyte = 8bits

Drouting (cluster-head) Drouting =

(

6.(clusters) +
(

n
∑

i=1

Ci

)

+

(forwarder nodes)

)

.Dinteger + 2.Dbyte

Drouting (forwarder node) Drouting =

(

6.(clusters) +
(

n
∑

i=1

Ci

)

)

.Dinteger + 2.Dbyte

Ci Number of nodes in cluster i

4.3 — Application of Latency Model 63

4.3 Application of Latency Model

A Python [34] script was created to simplify the testing of the theoretical model. A function

is created that accepts a data rate as input parameter and calculates the total latency for the

whole route. Waiting times for various data rates can now be determined. The theoretical

model is compared to the simulated results in the following sections.

The simulation setup will now be described. OMNeT++ accepts XML input files for

compound configuration variables. A BASH [35] script was written to generate XML files

for different packet generation rates. The OMNeT++ simulation is also invoked multiple

times with the help of a BASH script. The simulation writes the latency and throughput

results to a file. Next the file is analysed by the previously mentioned Python script. Each

data rate is simulated once for 200 simulation seconds.

4.3.1 Network 1 Latency Analysis

The topology of the network and the analysed routes are shown in figure 4.1. Routes are

determined by the algorithm used by the routing function.

Figure 4.1: Network 1 topology.

4.3 — Application of Latency Model 64

Route 1 Latency Analysis

The different average cluster cycle times for each cluster, are shown in figure 4.2. Theo-

retical cluster cycle times are also compared with the measured simulation cycle times. It

is interesting to note the cluster cycle time increases with higher data rates, because more

tokens are lost due to a higher pbusy data. Although the theoretically predicted cycle time and

measured cycle times correspond well, there are some noticable differences. The differences

can be attributed to pnreceive node and pnreturn ch (lost token packets) which could not be accu-

rately determined. The theoretically predicted values were compared with debug output of

the measured simulated pnreceive node and pnreturn ch values.

0 20000 40000 60000 80000 100000 120000 140000 160000
Throughput in Bits/s

0.005

0.010

0.015

0.020

0.025

0.030

Av
er

ag
e

Cl
us

te
r C

yc
le

 T
im

e

Average Cluster Cycle Time for Different Clusters

Cluster 37
Cluster 77
Cluster 147
Theory Cluster 37
Theory Cluster 147
Theory Cluster 77

Figure 4.2: Average cluster cycle time for network 1 route 1.

4.3 — Application of Latency Model 65

Figure 4.3 shows the mean packet latency for route 1 of network 1. The latency predicted

is much higher than the measured simulation latency and the highest throughput is much

lower than the measured throughput. The reason for this is pnreceive node of node 57 which is

predicted too low by the theoretical model.

0 20000 40000 60000 80000 100000 120000 140000 160000
Throughput in Bits/s

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

Pa
ck

et
 L

at
en

cy
 in

 S
ec

on
ds

Mean Packet Latency graph for the route from Node 47 to Node 207

Theoretical
Simulation

Figure 4.3: Mean packet latency for network 1 route 1.

4.3 — Application of Latency Model 66

Route 2 Latency Analysis

The mean cluster cycle times of route 2 are shown in figure 4.4. As in route 1 the cycle times

correspond well, but is still inaccurate. This can also be attributed to inaccurate predicted

values for pnreceive node and pnreturn ch (lost token packets).

0 20000 40000 60000 80000 100000 120000 140000 160000
Throughput in Bits/s

0.005

0.010

0.015

0.020

0.025

0.030

Av
er

ag
e

Cl
us

te
r C

yc
le

 T
im

e

Average Cluster Cycle Time for Different Clusters

Cluster 37
Cluster 77
Cluster 147
Theory Cluster 37
Theory Cluster 147
Theory Cluster 77

Figure 4.4: Average cluster cycle time for network 1 route 2.

4.3 — Application of Latency Model 67

Figure 4.5 shows the mean packet latency of route 2. For higher data rates the theo-

retical model predicts a higher latency. Again this is caused by a too high pnreceive node value

determined by the model.

0 20000 40000 60000 80000 100000 120000 140000 160000
Throughput in Bits/s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
M

ea
n

Pa
ck

et
 L

at
en

cy
 in

 S
ec

on
ds

Mean Packet Latency graph for the route from Node 207 to Node 47

Theoretical
Simulation

Figure 4.5: Route latency for network 1 route 2.

4.3 — Application of Latency Model 68

4.3.2 Network 2 Latency Analysis

It was decided to analyse a second network topology to determine how our model compares

with simulation results. Figure 4.6 shows the topology of the second network.

Figure 4.6: Network 2 topology.

4.3 — Application of Latency Model 69

Route 1 Latency Analysis

Figure 4.7 shows the cluster cycle times for route 1 of the second network. For this network

topology the theoretical cluster cycle time is not predicted accurately. Again incorrect

values predicted by pnreceive node and pnreturn ch (token packets lost) is suspected to cause the

discrepancy.

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
Throughput in Bits/s

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Av
er

ag
e

Cl
us

te
r C

yc
le

 T
im

e

Average Cluster Cycle Time for Different Clusters

Cluster 57
Cluster 107
Cluster 147
Theory Cluster 57
Theory Cluster 147
Theory Cluster 107

Figure 4.7: Average cluster cycle time for network 2 route 1.

4.3 — Application of Latency Model 70

The mean packet latency of route 1 is shown in figure 4.8. For lower latencies the

theoretical model predicts the latency accurately, but again for higher latencies the model

predicts a higher latency. A high pnreceive node value (tokens lost by the cluster member node)

is believed to be the cause of the difference between the simulation measurements and the

theoretical model.

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
Throughput in Bits/s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
Pa

ck
et

 L
at

en
cy

 in
 S

ec
on

ds

Mean Packet Latency graph for the route from Node 97 to Node 87

Theoretical
Simulation

Figure 4.8: Route latency for network 2 route 1.

4.3 — Application of Latency Model 71

Route 2 Latency Analysis

Figure 4.9 shows the cluster cycle times for route 2 of the second network. It can be seen that

the theoretical cluster cycle time and the measured cycle time disagrees. It is assumed that

wrong values for pnreceive node and pnreturn ch (token packets lost) is the cause for the wrongly

predicted cycle times.

0 20000 40000 60000 80000 100000 120000
Throughput in Bits/s

0.010

0.015

0.020

0.025

0.030

0.035

Av
er

ag
e

Cl
us

te
r C

yc
le

 T
im

e

Average Cluster Cycle Time for Different Clusters

Cluster 57
Cluster 107
Cluster 147
Theory Cluster 57
Theory Cluster 147
Theory Cluster 107

Figure 4.9: Average cluster cycle time for network 2 route 2.

4.3 — Application of Latency Model 72

The mean packet latency of route 2 is shown in figure 4.10. For this route the measured

mean packet latency agrees well with the theoretical model. It is assumed that this is an

isolated fortunate incident, because the measured cluster cycle time and theoretical cluster

cycle time of the different clusters disagrees.

0 20000 40000 60000 80000 100000 120000
Throughput in Bits/s

0.0

0.5

1.0

1.5

2.0

2.5
M

ea
n

Pa
ck

et
 L

at
en

cy
 in

 S
ec

on
ds

Mean Packet Latency graph for the route from Node 87 to Node 97

Theoretical
Simulation

Figure 4.10: Route latency for network 2 route 2.

4.4 — Reasons for Differences 73

4.4 Reasons for Differences of the Theoretical Model

and Measured Simulation Values

First of all the backoff of the CSMA/CA MAC layer was not modelled accurately. Secondly,

since nodes share the same wireless channel it is difficult to anticipate all packet collisions.

Clusters overlap this makes it difficult to determine the time-out probabilities accurately.

Tokens are passed concurrently by each cluster-head in each cluster. The distance from a

node to its cluster-head, has a substantial influence on the probability if a token packet

is lost. The tokens lost due to range are presented by a simple loss probability, plost range.

Simplifications were also made which contribute to inaccurate modelling.

4.5 Other Investigated Approaches

Two other queueing theory approaches to the theoretical model were investigated. However,

the results obtained from the different methods were unsatisfactory. The first attempt to

model the cluster cycle time by estimating the influence neighbour clusters have on the

cluster cycle time. A ratio of the time the neighbour cluster is busy in another cluster to the

cycle time of the neighbour cluster. The ratio of neighbour cluster i on cluster j is given by

the equation:

rij =
T busy
ij

T cycle
i

(4.23)

The cycle time of cluster j is then increased by a factor 1 + rij. This model delivered

unsatisfactory results compared to the simulation results, because cluster token time-outs

and token misses were not considered.

An model using a Markov state matrix to model the service time of a node in a cluster

more accurately was implemented with considering the token time-outs and token misses.

The theoretical model results resembled the results of the simulation more closely, but for

higher throughput values the model and simulation did not correspond well. One reason the

model deviated from the simulation was: packets lost by the MAC-layer were not taken into

account. Figure 4.11 on the next page shows the Markov state diagram. Two service rates

are used by the model: µm = 1
Tmean cycle

(the normal RRP service rate) and µf = 1
Tfull cycle

. The

extra state introduced by the model accounts for the situation where no packets arrive after

a full cycle time and a single packet from the transmission queue is transmitted.

4.6 Summary

In this chapter a theoretical model based on queueing theory was considered. In some cases

the predicted theoretical cluster cycle time compared well with simulated cluster cycle times

with both routes considered in network 1 (section 4.3.1). In network 2 the cluster cycle

4.6 — Summary 74

gfed`abcP (0, 0)

λ

%%

gfed`abcP (0, 1)

µm

jj

λ

%%

gfed`abcP (0, 2)

µm

����
��

��
��

��
�

λ

%%

gfed`abc. . .

µm

����
��

��
��

��
�

λ

%%

gfed`abcP (0, n − 2)

µm

����
��

��
��

��
�

λ

%%

gfed`abcP (0, n − 1)

µm

����
��

��
��

��
�

λ

%%

gfed`abcP (0, n)

µm

����
��

��
��

��
�

gfed`abcP (1, 1)

µf

__???????????

λ

??����������� gfed`abcP (1, 2)

µf

ee

λ

??����������� gfed`abc. . .

µf

ee

λ

??����������� gfed`abcP (1, n − 2)

µf

ee

λ

??����������� gfed`abcP (1, n − 1)

µf

ee

λ

??�����������

Figure 4.11: Markov state diagram of queueing system.

times did not correspond well. Modelling the clusters with queueing theory proved difficult.

It is suggested that a different mathematical modelling technique should be used to model

the latency such as a Markov state model which defines a state for each node a cluster-head

passes a token to. Another mathematical modelling approach can be investigated, namely,

Petri nets. Petri nets was first used to model discrete manufacturing systems. Concurrent

systems can be modelled by using Petri nets [45]. It is suspected that our protocol can be

modelled more accurately using Petri nets.

Chapter 5

Tests and Results

Testing of the cluster based protocol and the results obtained will be presented in this

chapter. The tests aim to show that our design outcomes stated in section 3.1 have been

met.

First of all, the general test setup will be explained. Cluster setup tests will be focused on

next. The setup time of clusters will be determined and the number of nodes that transmit

full routing information. Aggregate connectivity will be tested on different sizes and random

topologies of networks. Simulation time graphs of the aggregate connectivity will be shown.

The control overhead per second per node versus the node density will be determined and

displayed to determine how effective the protocol operates at high node densities. Next,

tests are performed to show the effect prioritising nodes with more traffic has on the mean

packet latency. Lastly, tests are performed to show how the protocol repairs a route when a

link of an original route is broken.

5.1 General Test Setup

Tests were performed on several different random networks with sizes of 20, 50 and 100

nodes. The transmission range of the nodes are approximately 40m. Table 5.1 on page 75

shows the dimensions of the playground for the different network sizes. A BASH [35] script

Table 5.1: Playground sizes.

Network size

(number of nodes)

X dimension Y dimension

20 90m 90m

50 149m 149m

100 179m 179m

was setup to run several simulations consecutively. The graphs of the different test networks

can be found in appendix A.

75

5.2 — Cluster Formation 76

5.2 Cluster Formation

Cluster formation is tested with network setup tests. Different networks are tested with a

number of nodes randomly distributed throughout the playground. Table 5.2 on page 76

shows the results obtained of 10 different simulation runs, where 20 nodes are used.

Table 5.2 shows the number of clusters formed, average cluster size, the number of

forwarder nodes, the percentage of nodes producing full routing information and the last

cluster-head election time. In chapter 3 it was shown that the number of nodes producing

full routing information can be reduced. Only forwarder nodes produce full routing over-

head. In simulation 9 the number of nodes that produce full routing information are reduced

to 40%, which is the highest percentage of forwarder nodes of the different simulations. The

average number of clusters is 2,6 and the average last cluster-head election time is 0,453 s.

Table 5.2: Cluster formation results with 20 nodes

Simulation

number

Number of

clusters

Average num-

ber of nodes in

cluster

Number of for-

warder nodes

Percentage for-

warder nodes

Last cluster-

head election

time

1 2 12,5 4 0,2 0,365 s

2 2 11 4 0,2 0,450 s

3 3 10 6 0,3 0,534 s

4 3 8,333 5 0,25 0,485 s

5 4 7 6 0,3 0,451 s

6 2 12,5 4 0,2 0,455 s

7 2 12 6 0,3 0,490 s

8 3 8 6 0,3 0,480 s

9 3 7,333 8 0,4 0,369 s

10 2 11,5 3 0,15 0,454 s

On page 77, table 5.3 shows 10 network setup tests with 50 nodes used in each simulation

run. The number of nodes generating full routing overhead is reduced to at least 40%. The

average number of clusters is 6,8 and the average last cluster-head election time is 0,605 s.

Table 5.4 on page 77 shows the results of 10 different simulations with 100 nodes each.

The number of nodes that broadcast full routing information is reduced to at least 35%.

The average number of clusters is 11 and the average cluster-head election time is 0,736 s.

One interesting observation is that the average last cluster-head election time increases

with the increase in the number of nodes. The reason for the increase in cluster-head

election time is assumed to be more cluster-head challenges between neighbours, where one

node needs to give up its cluster-head status.

5.3 — Connectivity 77

Table 5.3: Cluster formation results with 50 nodes

Simulation

number

Number of

clusters

Average num-

ber of nodes in

cluster

Number of for-

warder nodes

Percentage for-

warder nodes

Last cluster-

head election

time

1 7 10,143 19 0,38 0,539 s

2 8 10,75 19 0,38 0,609 s

3 5 12,6 13 0,26 0,533 s

4 7 9,429 17 0,34 0,448 s

5 7 8,714 13 0,26 0,680 s

6 7 11,286 20 0,4 0,807 s

7 6 12 15 0,3 0,647 s

8 5 13 18 0,36 0,505 s

9 8 9,375 17 0,34 0,636 s

10 8 8,875 20 0,4 0,648 s

Table 5.4: Cluster formation results with 100 nodes

Simulation

number

Number of

clusters

Average num-

ber of nodes in

cluster

Number of for-

warder nodes

Percentage for-

warder nodes

Last cluster-

head election

time

1 13 12,615 32 0,32 0,646 s

2 12 13,167 35 0,35 1,077 s

3 10 15 28 0,28 0,501 s

4 11 13,091 32 0,32 0,705 s

5 10 14,6 34 0,34 0,645 s

6 9 15,667 30 0,3 0,651 s

7 11 13,364 33 0,33 0,656 s

8 13 13 35 0,35 1,080 s

9 12 12,833 33 0,33 0,774 s

10 9 17,111 27 0,27 0,619 s

5.3 Connectivity

One important question to ask is: if fewer nodes transmit full routing information, do all

nodes obtain the necessary routing information? Each node is at least one hop away from

a forwarder node, so every host should be able to obtain full connectivity. Connectivity is

defined as the percentage of nodes in a network, a node can communicate with. If a node

has an entry for another destination node in its routing table, the destination is reachable.

5.3 — Connectivity 78

The connectivity of a node can be determined with the following equation:

Connectivity =
Number of reachable nodes

Total number of nodes in network
(5.1)

The aggregate network connectivity is defined as the normalised sum of all of the individual

nodes’ connectivities and can be calculated by the next equation:

Aggregate Network Connectivity =

N
∑

i=1

Ci

N
(5.2)

• Ci is the connectivity of node i.

• N is the total number of nodes in the network.

Figure 5.1 on the following page shows the aggregate connectivity for the first 10 s for two

different random topologies for network sizes of 20, 50 and 100 nodes, respectively. All of the

networks reach an aggregate connectivity of 1 after a few seconds. Therefore, the reduction

in the number of nodes transmitting full routing information does not impair the routing

knowledge of nodes in the network. The performance module is used to take measurements

of the aggregate connectivity every 0,1 s of the simulation.

Table 5.5 indicates the time when full connectivity is reached for the different simulation

runs. With the increase in network size, the time the routing information needs to proliferate

throughout the network increases. The routing information needs to travel an increased

number of hops (distance), because the diameter of the network has increased.

Table 5.5: Full connectivity reached time for different network sizes.

Network size (number

of nodes)

Run 1 Full connectivity

reached time

Run 2 Full connectivity

reached time

20 2 s 2,1 s

50 3,7 s 3,2 s

100 3,9 s 3,4 s (Run 3)

5.3 — Connectivity 79

0 2 4 6 8 10
Simulation Time in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Co
nn

ec
tiv

ity

Aggregate Network Connectivity versus Time Graph

(a) Connectivity 20 Nodes Run 1.

0 2 4 6 8 10
Simulation Time in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Co
nn

ec
tiv

ity

Aggregate Network Connectivity versus Time Graph

(b) Connectivity 20 Nodes Run 2.

0 2 4 6 8 10
Simulation Time in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Co
nn

ec
tiv

ity

Aggregate Network Connectivity versus Time Graph

(c) Connectivity 50 Nodes Run 1.

0 2 4 6 8 10
Simulation Time in Seconds

0.0

0.2

0.4

0.6

0.8

1.0
Co

nn
ec

tiv
ity

Aggregate Network Connectivity versus Time Graph

(d) Connectivity 50 Nodes Run 2.

0 2 4 6 8 10
Simulation Time in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Co
nn

ec
tiv

ity

Aggregate Network Connectivity versus Time Graph

(e) Connectivity 100 Nodes Run 1.

0 2 4 6 8 10
Simulation Time in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Co
nn

ec
tiv

ity

Aggregate Network Connectivity versus Time Graph

(f) Connectivity 100 Nodes Run 3.

Figure 5.1: Aggregate connectivity against simulation time.

5.4 — Routing Overhead Performance with Increasing Node Density 80

5.4 Routing Overhead Performance with

Increasing Node Density

A test was performed to show the effectiveness of the protocol at a high node density. For the

test, different simulations were performed starting with a network size of 15 nodes and then

increasing the network size with 5 nodes in the same area, with each consecutive simulation

run. In essence the node density is increased. Each simulation ran for 100 s of simulation

time. All nodes are randomly placed.

Figure 5.2 and figure 5.3 on page 81 shows the results obtained from the various simula-

tions. Figure 5.2 shows the routing control overhead per second per node and figure 5.3 the

total control overhead per second per node.

The routing control overhead includes all the control overhead without the token passing

overhead. Routing control overhead is divided into two parts, namely, the hello message

overhead and the cluster table message overhead. As mentioned previously, hello messages

maintain the local connections with neighbouring nodes and cluster table messages spread

routing information throughout the network.

Hello messages are kept small by only including information on critical nodes within the

two hop range. Therefore, the packet size does not grow with the increasing the number of

nodes. Hello messages are generated periodically every 0,1 s. The high generation rate of

hello messages is costly, as can be seen in figure 5.2, amounting to 80Bps per node. The

high overhead cost is justifiable, because we are designing a protocol intended for a high

available bandwidth.

Cluster table messages, however, grow with increasing network size, because more node

addresses have to be added to the periodic update messages. Only forwarder nodes gener-

ate cluster table messages and all nodes are at least within one hop of a forwarder node.

By only letting forwarder nodes generate full routing overhead, redundant routing overhead

transmissions are reduced. The cluster table message routing overhead per node, decreases

with increasing node density, because the number of nodes not producing full routing in-

formation increases with respect to the number of forwarder nodes. In section 2.5.2, it was

mentioned that DSDV’s routing overhead grows by O(N2) (where N is the number of nodes

in the network). Therefore, the routing overhead per node of DSDV should grow by O(N),

in other words show a linear growth. The result shows the new improved cluster protocol is

more effective than DSDV at a higher node density, because the routing overhead per node

declines with increasing node density.

The total routing control overhead per second per node, in figure 5.2, decreases slightly

with increasing node density.

For sake of completeness, the token control overhead was plotted and shown in figure 5.3.

The total control overhead consists mostly of token control overhead, because the plot lines

in the graph representing the total control overhead and token control overhead, follow one

another closely. The token control overhead per node also decreases with increasing node

5.4 — Routing Overhead Performance with Increasing Node Density 81

density, but this only indicates that each node in the network receives less transmission

chances. There is an increase in control overhead per node when the number of nodes is

increased from 30 to 35. The increase can be attributed to the way clusters has formed.

More clusters has formed in the simulation run with 35 nodes and the clusters are smaller.

A token passing cycle can be completed in a shorter time and therefore more tokens are

passed. Thus more control overhead is produced.

15 20 25 30 35 40 45
Number of Nodes

0

20

40

60

80

100

120

140

Co
nt

ro
l O

ve
rh

ea
d

Pe
r S

ec
on

d
Pe

r N
od

e
in

 B
yt

es

Routing Control Overhead Per Second Per Node

Control Overhead (without Token)
Hello Message Control Overhead
Cluster Table Message Control Overhead

Figure 5.2: Routing overhead per second per node with increasing node density.

5.4 — Routing Overhead Performance with Increasing Node Density 82

15 20 25 30 35 40 45
Number of Nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Co
nt

ro
l O

ve
rh

ea
d

Pe
r S

ec
on

d
Pe

r N
od

e
in

 B
yt

es

Control Overhead Per Second Per Node

Total Control Overhead
Token Control Overhead

Figure 5.3: Control overhead per second per node with increasing node density.

5.5 — Effect of Token Prioritising on Latency 83

5.5 Effect of Token Prioritising on Latency

To prove that the protocol can handle congestion, a test was set up to determine how

the network performs in a highly congested situation. The latency of packets with token

prioritising (giving more transmission chances to nodes with more queued traffic) and without

prioritising was studied.

With normal CSMA/CA and token passing without prioritising, bandwidth is distributed

equally among neighbours. Token passing can increase latency, because nodes now have to

wait for a token instead of directly contending for the channel and extra token messages

have to be transmitted. With token scheduling it is possible to increase the bandwidth of

nodes with more queued traffic and decrease the chance of a node becoming a bottleneck.

A simple UDP transport layer was implemented, that sends a series of packets to a

random node in the network. The data rate of the UDP packet stream was set at 250 kbps.

Each simulation was run for 300 s of simulation time. From the beginning to the end of the

simulation, UDP streams are repeatedly created by every node after a certain offset time.

The offset time is calculated by the following equation:

toffset = X.tslot (5.3)

• X is a uniformly distributed integer random number X ∈ Z|2 ≤ X ≤ 4.

• tslot is a constant value defining the time of a waiting slot.

0,5 s, 0,7 s and 0,8 s were used as the tslot time for the 20, 50 and 100 node networks respec-

tively. The UDP stream length is a integer random number from 3 to 5 packets. The packet

size is kept constant at 1 kB.

Figures 5.4 to figure 5.6 presents the mean latency results of simulation runs with different

network sizes and different topologies, comparing token passing with and without prioritising

for the same network. The data points show the mean packet latency results for all packets

successfully received and then groups the packets together according to the number of hops

it needed to reach the destination. The number of samples are included to see how many

packets reached their destination successfully. Additional information is included to show

how many packets were lost due to a full transmission queue.

Figure 5.4 on the next page show the results for two different networks with 20 nodes

each. The difference in latencies between the simulations using token passing with priority

and without priority is small. In subfigure (a) the decrease in latency by using prioritising

can be clearly observed with the higher hop counts of 3, 4 and 5. A few odd samples can

be seen with higher hop counts, these observations are for packets that followed a different

route to a destination before the final route has converged.

Networks with 50 nodes each were tested and their results are given in figure 5.5 on

page 85. The improvement in latency by using token prioritising becomes conspicuous with

the larger network size. Over a thousand packets were lost due to a full transmission queue

in both of the cases, where no prioritising were used.

5.5 — Effect of Token Prioritising on Latency 84

All Packets
1 Hop(s)

2 Hop(s)

3 Hop(s)

4 Hop(s)

5 Hop(s)

6 Hop(s)

7 Hop(s)

8 Hop(s)
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Pa

ck
et

 L
at

en
cy

Sa
m

pl
es

 :
12

39
4

Sa
m

pl
es

 :
46

32

Sa
m

pl
es

 :
46

84

Sa
m

pl
es

 :
24

96

Sa
m

pl
es

 :
50

9

Sa
m

pl
es

 :
50

Sa
m

pl
es

 :
3

Sa
m

pl
es

 :
2

Sa
m

pl
es

 :
4

Sa
m

pl
es

 :
12

34
2

Sa
m

pl
es

 :
44

32

Sa
m

pl
es

 :
46

75

Sa
m

pl
es

 :
25

63

Sa
m

pl
es

 :
62

1

Sa
m

pl
es

 :
39

Sa
m

pl
es

 :
2

Sa
m

pl
es

 :
1

Sa
m

pl
es

 :
1

Priority Enabled Lost Packets : 0
Priority Disabled Lost Packets : 5

Mean Packet Latency versus Number of Hops

Priority Disabled
Priority Enabled

(a) Mean Latency Priority 20 Nodes Run 1.

All Packets
1 Hop(s)

2 Hop(s)

3 Hop(s)

4 Hop(s)

5 Hop(s)

7 Hop(s)

9 Hop(s)
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Pa

ck
et

 L
at

en
cy

Sa
m

pl
es

 :
12

15
0

Sa
m

pl
es

 :
52

00

Sa
m

pl
es

 :
53

34

Sa
m

pl
es

 :
15

92

Sa
m

pl
es

 :
19 Sa
m

pl
es

 :
4

Sa
m

pl
es

 :
12

10
1

Sa
m

pl
es

 :
50

23

Sa
m

pl
es

 :
52

52

Sa
m

pl
es

 :
17

91

Sa
m

pl
es

 :
22

Sa
m

pl
es

 :
1

Sa
m

pl
es

 :
3

Sa
m

pl
es

 :
2

Priority Enabled Lost Packets : 0
Priority Disabled Lost Packets : 0

Mean Packet Latency versus Number of Hops

Priority Disabled
Priority Enabled

(b) Mean Latency Priority 20 Nodes Run 2.

Figure 5.4: Effect of prioritising traffic on the mean packet latency for a network size of

20 nodes.

A hundred nodes were used in both simulation setups that produced the subfigures of

figure 5.6 on page 86. In subfigure (a), the latency is clearly improved by prioritisation, but

subfigure (b) does not show this improvement. Subfigure (b) does not show the improved

latency, because only packets are considered that successfully reach the destination and in

5.5 — Effect of Token Prioritising on Latency 85

All Packets
1 Hop(s)

2 Hop(s)

3 Hop(s)

4 Hop(s)

5 Hop(s)

6 Hop(s)

7 Hop(s)

8 Hop(s)

9 Hop(s)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ea

n
Pa

ck
et

 L
at

en
cy

Sa
m

pl
es

 :
18

88
4

Sa
m

pl
es

 :
34

62

Sa
m

pl
es

 :
43

82

Sa
m

pl
es

 :
38

14

Sa
m

pl
es

 :
31

38

Sa
m

pl
es

 :
24

12

Sa
m

pl
es

 :
11

19

Sa
m

pl
es

 :
42

2

Sa
m

pl
es

 :
80

Sa
m

pl
es

 :
12

Sa
m

pl
es

 :
18

15
6

Sa
m

pl
es

 :
36

34

Sa
m

pl
es

 :
44

48

Sa
m

pl
es

 :
38

03

Sa
m

pl
es

 :
30

10

Sa
m

pl
es

 :
18

57

Sa
m

pl
es

 :
95

5

Sa
m

pl
es

 :
31

5

Sa
m

pl
es

 :
42

Sa
m

pl
es

 :
39

Priority Enabled Lost Packets : 0
Priority Disabled Lost Packets : 1296

Mean Packet Latency versus Number of Hops

Priority Disabled
Priority Enabled

(a) Mean Latency Priority 50 Nodes Run 1.

All Packets
1 Hop(s)

2 Hop(s)

3 Hop(s)

4 Hop(s)

5 Hop(s)

6 Hop(s)

7 Hop(s)

8 Hop(s)

9 Hop(s)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ea

n
Pa

ck
et

 L
at

en
cy

Sa
m

pl
es

 :
20

25
8

Sa
m

pl
es

 :
31

31

Sa
m

pl
es

 :
51

25

Sa
m

pl
es

 :
44

24

Sa
m

pl
es

 :
37

57

Sa
m

pl
es

 :
24

75

Sa
m

pl
es

 :
93

2

Sa
m

pl
es

 :
27

1

Sa
m

pl
es

 :
33

Sa
m

pl
es

 :
25Sa

m
pl

es
 :

19
01

3

Sa
m

pl
es

 :
34

60

Sa
m

pl
es

 :
47

98

Sa
m

pl
es

 :
39

77

Sa
m

pl
es

 :
33

93

Sa
m

pl
es

 :
21

87

Sa
m

pl
es

 :
83

4

Sa
m

pl
es

 :
21

3

Sa
m

pl
es

 :
69 Sa

m
pl

es
 :

22
Priority Enabled Lost Packets : 0
Priority Disabled Lost Packets : 1731

Mean Packet Latency versus Number of Hops

Priority Disabled
Priority Enabled

(b) Mean Latency Priority 50 Nodes Run 2.

Figure 5.5: Effect of prioritising traffic on the mean packet latency for a network size of

50 nodes.

the case where no token prioritisation is used, more packets are discarded due to a full

buffer. These lost packets do not adversely affect the mean latency value. Another interest-

ing observation is that with token prioritisation, at least 1000 more packets were delivered

successfully in both cases.

5.5 — Effect of Token Prioritising on Latency 86

All Packets
1 Hop(s)

2 Hop(s)

3 Hop(s)

4 Hop(s)

5 Hop(s)

6 Hop(s)

7 Hop(s)

8 Hop(s)

9 Hop(s)
0

1

2

3

4

5

6

7

8

M
ea

n
Pa

ck
et

 L
at

en
cy

Sa
m

pl
es

 :
30

12
9

Sa
m

pl
es

 :
44

20

Sa
m

pl
es

 :
54

31

Sa
m

pl
es

 :
54

44

Sa
m

pl
es

 :
49

82

Sa
m

pl
es

 :
39

79

Sa
m

pl
es

 :
30

38

Sa
m

pl
es

 :
15

65

Sa
m

pl
es

 :
71

2

Sa
m

pl
es

 :
37

3

Sa
m

pl
es

 :
26

86
0

Sa
m

pl
es

 :
43

47

Sa
m

pl
es

 :
50

12

Sa
m

pl
es

 :
48

64

Sa
m

pl
es

 :
45

83

Sa
m

pl
es

 :
35

36

Sa
m

pl
es

 :
24

25

Sa
m

pl
es

 :
12

09

Sa
m

pl
es

 :
53

1

Sa
m

pl
es

 :
24

4

Priority Enabled Lost Packets : 2

Priority Disabled Lost Packets : 5034

Mean Packet Latency versus Number of Hops

Priority Disabled
Priority Enabled

(a) Mean Latency Priority 100 Nodes Run 1.

All Packets
1 Hop(s)

2 Hop(s)

3 Hop(s)

4 Hop(s)

5 Hop(s)

6 Hop(s)

7 Hop(s)

8 Hop(s)

9 Hop(s)
0

1

2

3

4

5

6

7

8

M
ea

n
Pa

ck
et

 L
at

en
cy

Sa
m

pl
es

 :
28

47
5

Sa
m

pl
es

 :
40

96

Sa
m

pl
es

 :
60

53

Sa
m

pl
es

 :
60

18

Sa
m

pl
es

 :
49

16

Sa
m

pl
es

 :
35

16

Sa
m

pl
es

 :
22

74

Sa
m

pl
es

 :
92

4

Sa
m

pl
es

 :
36

3

Sa
m

pl
es

 :
14

5

Sa
m

pl
es

 :
26

78
8

Sa
m

pl
es

 :
43

44

Sa
m

pl
es

 :
58

09

Sa
m

pl
es

 :
58

24

Sa
m

pl
es

 :
45

05

Sa
m

pl
es

 :
31

58

Sa
m

pl
es

 :
19

25

Sa
m

pl
es

 :
72

5

Sa
m

pl
es

 :
27

7

Sa
m

pl
es

 :
11

9
Priority Enabled Lost Packets : 2243

Priority Disabled Lost Packets : 4926

Mean Packet Latency versus Number of Hops

Priority Disabled
Priority Enabled

(b) Mean Latency Priority 100 Nodes Run 2.

Figure 5.6: Effect of prioritising traffic on the mean packet latency for a network size of

100 nodes.

Overall, the time it takes to deliver a packet is decreased when token prioritisation is used.

With a larger network and higher hop counts, the effect on latency is clearer. In one case

where the latency was not improved, the throughput was greater with token prioritisation.

5.6 — Fast Rerouting 87

5.6 Fast Rerouting

Since links between nodes can be easily be blocked at high carrier frequencies, an alternate

route needs to be found quickly. Tests were performed to see how the routing protocol reacts

when a single link in a route is broken.

In these tests, two nodes were selected in the network, that are multiple hops away

from each other. The simulation is started and the clusters were set up. After 3 s into the

simulation, the source node started to send messages to the destination node. A short time

passes before the destination node begins to receive packets and a route is created. The

transmission of packets along the route continued until 10 s into the simulation. At 10 s the

link between the nodes in the middle of the route was broken (the nodes cannot detect any

messages from one another). The maximum TTL field for a link with a neighbour node is

5 and the field is decremented every 0,1 s. Therefore, the link between neighbours should

time-out after 0,5 s. After the time-out, a new route to the destination is established. The

simulation ended at 20 s. Figure 5.7 and figure 5.8 shows the results of different simulation

setups. The throughput was measured every 0,3 s.

Two simulations with 20 nodes (figure 5.7) and two simulations with 50 nodes (figure 5.8)

were executed. In the subfigures (a) and (b) of figure 5.7 on the following page, it can be seen

that the throughput of the top route increases at 3 s and decreases at 10 s. At 10 s after a

short delay, the throughput along the alternate route (bottom graph) increases. In subfigure

(a), the last time packets were received via the original route is approximately 10,2 s. From

10,8 s onwards, packets are received along the reconstructed route. For subfigure (b), packets

stop using the original route at 10,2 s and the new route is utilised at 10,5 s.

Subfigures (a) and (b) of figure 5.8 on page 89 each use 50 nodes. In subfigure (a)

three different routes were used to reach the destination. An alternate route is used at

approximately 7 s in subfigure (a) before the link between the nodes are broken. The reason

for using the alternate route is assumed to be a time-out. After the link is broken at 10 s

there are no more packets being routed along the original route, but the packets now follow

two routes to the destination. The packets are following two routes, because firstly the metric

(hop count) is the same for both routes and secondly, the topological cluster structure of both

routes are the same (the destination node is a satellite node of both clusters). In subfigure

(b) only two routes were used. The original route is used until 10,2 s and the adapted route

is used from 10,8 s onwards.

Four cases of fast rerouting were investigated. In three of the cases the route was re-

constructed within 1 s. The other case used more than two routes to the destination due to

routing ambiguity, but also maintained communication throughout the 20 s of simulation.

5.6 — Fast Rerouting 88

0 5 10 15 20
Time in (s)

0

100

200

300

400

500

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 47 -> 187 -> 57 -> 167 -> 217 Throughput

0 5 10 15 20
Time in (s)

0
50

100
150
200
250
300
350
400

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 47 -> 207 -> 57 -> 167 -> 217 Throughput

Throughput in (kbps) versus Time in (s) (Broken Link between 187 and 57)

(a) Quick reroute 20 Nodes Run 1.

0 5 10 15 20
Time in (s)

0

50

100

150

200

250

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 87 -> 77 -> 167 -> 97 -> 37 Throughput

0 5 10 15 20
Time in (s)

0

50

100

150

200

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 87 -> 77 -> 47 -> 167 -> 97 -> 37 Throughput

Throughput in (kbps) versus Time in (s) (Broken Link between 77 and 167)

(b) Quick reroute 20 Nodes Run 2.

Figure 5.7: Quick reroute (handover) of packets with broken link for a network size of 20

nodes.

5.6 — Fast Rerouting 89

0 5 10 15 20
Time in (s)

0
50

100
150
200
250
300
350

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 237 -> 127 -> 247 -> 517 -> 277 -> 177 -> 497 Throughput

0 5 10 15 20
Time in (s)

0
50

100
150
200
250

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 237 -> 127 -> 247 -> 107 -> 477 -> 357 -> 207 -> 497 Throughput

0 5 10 15 20
Time in (s)

0
50

100
150
200
250

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 237 -> 127 -> 247 -> 107 -> 477 -> 447 -> 177 -> 497 Throughput

Throughput in (kbps) versus Time in (s) (Broken Link between 247 and 517)

(a) Quick reroute 50 Nodes Run 1.

0 5 10 15 20
Time in (s)

0
50

100
150
200
250
300
350
400

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 337 -> 167 -> 397 -> 117 -> 57 -> 447 Throughput

0 5 10 15 20
Time in (s)

0
50

100
150
200
250
300
350
400

Th
ro

ug
hp

ut
 in

 (k
bp

s)

Route : 337 -> 167 -> 397 -> 297 -> 57 -> 447 Throughput

Throughput in (kbps) versus Time in (s) (Broken Link between 397 and 117)

(b) Quick reroute 50 Nodes Run 2.

Figure 5.8: Quick reroute (handover) of packets with broken link for a network size of 50

nodes.

5.7 — Summary 90

5.7 Summary

In this chapter various tests were performed to show the workings of the routing protocol.

The general test setup was explained briefly.

The cluster setup phase of the protocol was tested by running simulations on nodes

configured in random topologies and different network sizes. The tables present various

results, but the important results were about the number of nodes that produce full routing

information and the last cluster-head election time. With the original CGSR protocol all

nodes produce node-cluster association and routing information overhead, but the tests show

the nodes that producing full routing information can be reduced to at least 40%. The tests

also showed the setup time for clusters (last cluster-head election time) increases with the

network size.

Next, it was shown that full aggregate connectivity can be achieved after a few seconds.

The time needed to reach full connectivity also increases with the increasing diameter of the

network.

A test was performed to show the effectiveness of the protocol at high node densities. The

routing overhead per second per node was shown to decrease with increasing node density.

This result can be compared with routing overhead per node of the DSDV protocol which

is expected to increase linearly with an increase in the number of nodes.

Another test was performed to compare the latency when token prioritisation is used

against the latency when token prioritisation is not used. When nodes are given more

transmission chances due to more queued traffic, latencies are reduced. The reduction in

time a packet needs to travel from source to destination becomes clearer at higher hop counts

and larger network sizes. Where the latency of packets were not reduced, greater throughput

was observed.

Lastly, a test was performed to show how a route is repaired when a link used by the

route is broken. In most setups the a new route was established within 1 s.

In conclusion, all of the design outcomes of section 3.1 have been met.

Chapter 6

Conclusion

This thesis presents a cluster based routing protocol adapted for use in a MMW application.

MMW ad hoc networks are relatively new and few applications exist. Although the routing

protocol was only tested at 2,4GHz in a simulated environment, changes were made for

operation at 17GHz.

At higher frequencies the diffraction of electromagnetic waves reduces [39] and the ability

of waves to travel through solid objects become impaired [28]. To compensate for the light-

like waves that can be easily blocked, the routing protocol was changed to recover with ease

from single link breakages.

The protocol utilises routing overhead efficiently at high node densities, which makes

it suitable for use in an indoor environment with a high number of devices. A conference

setup with many, but almost stationary people could be an ideal application. Congestion

is improved by giving nodes with more queued messages increased bandwidth. Nodes make

use of a large available bandwidth by sending hello messages frequently, thus keeping local

routing information fresh.

This chapter will summarise the findings of our research: stating the contributions to the

research area; the advantages and disadvantages of using a cluster based protocol; and possi-

ble improvements of the protocol. Some perceived shortcomings of the study and possibilities

for future work, will also be covered.

91

6.1 — Summary of Research Findings and Contributions 92

6.1 Summary of Research Findings and Contributions

6.1.1 General Findings

• Basic data communication network concepts were introduced and various routing pro-

tocols investigated. Cluster based protocols was found to provide a good routing

protocol solution at high node densities, as routes converge faster and the number

of routes can be reduced to the number of clusters. The reduction in the number of

routes is advantageous, but comes at a price: nodes now need to know the node-cluster

associations of the other nodes.

• Advantages of cluster based routing:

– Instead of having a route entry for every node, each node now only needs a route

entry for every cluster.

– A cluster-head creates a landmark which nodes can use to orientate themselves

and determine a forwarding direction by identifying neighbours of the cluster-

head.

• Disadvantages of cluster based routing:

– Cluster based routing creates increased logic complexity with regard to the node

states. Each node state has a different function and behaviour.

– Another drawback is that nodes become interdependent, because nodes need a

cluster-head to have a route.

6.1 — Summary of Research Findings and Contributions 93

6.1.2 Findings Related to Enhanced CGSR

• Upon careful study of the CGSR protocol it was found that certain improvements

can be made to the protocol. First of all, routes can be shortened by including the

knowledge of the next-hop-cluster. The number of nodes producing full routing infor-

mation can be reduced, by only letting selected nodes transmit full routing overhead

and node-cluster association information.

• A performance module was implemented that allowed for logical separation of perfor-

mance code from routing layer code. The performance module enabled measurement

of aggregate parameters at simulation time.

• It is difficult to find an accurate theoretical model using queuing theory. Although the

theoretical model’s predicted cluster cycle time corresponds to the measured cluster

cycle time in some cases, it differs greatly in other comparisons of the simulation

and theoretical model. Only one case predicts the route latency with accuracy. It

is suggested that different mathematical modelling techniques should be investigated

such as a Markov state model or Petri net. Petri nets can be used to model concurrent

systems [45].

• Results show that our cluster generation algorithm can form clusters successfully for

network sizes of 20, 50 and 100 nodes. The last cluster-head election time (cluster

setup time) increases with increasing network size. Although fewer nodes are used to

forward routing information, results prove that full connectivity can be achieved for

network sizes of 20, 50 and 100 nodes.

• Routing overhead was also tested with increasing node density to determine routing

overhead efficiency. It was found that the routing overhead per node decreases with

increasing node density (increasing the number of nodes within the same area). It

can be compared with DSDV’s routing overhead per node, which is expected to grow

linearly (O(N)) with increasing number of nodes. The cost in overhead, of sending

hello messages at a fast rate, is high, but the large available bandwidth makes this

allowable.

• The effect of token prioritising on mean packet latency was also studied to check if con-

gestion of the network can be improved with a high data load. The token prioritisation

mechanism gives nodes with more queued traffic more transmission chances. It was

found that the latency improved with prioritisation. At higher hop counts and larger

network sizes, the improvement on packet latency is accentuated. In situations where

the travel time of a packet was not decreased, higher aggregate data throughput was

noted and decreased packet loss due to a full transmission queue. Token prioritising

provides a platform for better Quality of Service support in the network.

6.2 — Recommendations 94

• Another test was performed to show the network protocol’s resilience to single link

breakages. It was found that by sending hello messages at a high rate and letting the

TTL of a link with a neighbour time-out quickly, the protocol is able to recover within

1 s. By using a proactive protocol rather than reactive protocol, the need for using a

route repair packet is negated. A route repair packet may impose a delay in repairing

the route.

6.2 Recommendations

The following section will state improvements that can be made to the protocol. If the infor-

mation of a cluster changes or is lost, the information of the specific cluster can be flooded

throughout the network by forwarder nodes. First Declaration Wins (FDW) clustering [15]

can be used for faster cluster setup. The MAC-layer can be altered for improved token

passing support.

Currently the protocol does not incorporate link quality as part of its routing metric, the

number of neighbours is used as the routing metric. It is suggested that a one-way version

of the Expected Transmission Count (ETX) metric [9] is used to provide a measure of link

quality sensing.

The periodic generation time of hello messages can be optimised. Too many hello mes-

sages can congest the channel and less hello messages can impair the protocol’s ability to

sense unstable links.

6.3 Shortcomings

Perceived shortcomings of the implemented protocol will be mentioned here. The protocol

was only simulated at 2,4GHz. It is expected that the channel will have increased fading at

a carrier frequency of 17GHz.

Unidirectional links are not well supported. Hello messages only include the addresses of

critical nodes and not all neighbours. Therefore, it is not possible to detect unidirectional

links between a node and a neighbour where neither is a critical node. It is suggested that

if the MAC-layer repeatedly detects an error sending a data packet to a node with a stable

link, the address of the node is recorded. The sending node should then refrain from sending

data to the recorded node for a certain backoff time.

6.4 Interesting Remarks

It was only necessary to include data of critical nodes in the hello message, for correct

protocol operation. In a sense, hello messages provide information on the link-state of the

critical nodes within the two hop range. Routing information on nodes further away than two

hops are distributed throughout the network, with a distance vector method. The protocol

6.5 — Future Research 95

can be classified as a proactive hybrid protocol using distance vector globally and link-state

locally.

6.5 Future Research

Our work developed a routing protocol for a MMW radio network and simulated it within

the OMNET++ network simulator, at a carrier frequency of 2,4GHz. A physical layer model

must be developed for simulating the protocol at higher frequencies. The model will enable

us to determine the effects of greater fading and a possibly worse error rate on the network.

The desired carrier frequency for the network is to be at 17GHz or 60GHz.

Hardware implementation of the network at 2,4GHz can be useful, as a first check on

possible practical implementation. The hardware for the 17GHz must then be developed

and tested. An attempt could also be made to design hardware for an application at 60GHz,

because of the unlicensed spectrum in the 57 − 64GHz band [17].

Cluster based protocols is another area of research that can be pursued, due to a lack

of a fixed standard implementation. There has been a attempt to promote an on-demand

Cluster Based Routing Protocol (CBRP) by a submitted Internet Draft [20], but this was

not approved as a Request For Comment yet. The following articles: [22, 7, 20, 10, 15],

provide interesting research information on the cluster based protocol.

With the token prioritisation a feedback mechanism was introduced into the system.

Future research can focus on modelling feedback systems in these types of data networks.

Network conditions could be used as input parameters with the system reacting accordingly.

Modelling routing protocols with graphing theory [42] may provide greater insight into

problems.

Bibliography

[1] “IEEE 802.15c Working Group Website.”

http://www.ieee802.org/15/pub/TG3c.html. February 2011.

[2] “Multipoint Relay Picture.”

http://wiki.uni.lu/secan-lab/graphics/olsr02.gif. February 2011.

[3] “Seven Layer OSI Picture.”

http://www.codeguru.com/cpp/sample chapter/article.php/c12219/. Febru-

ary 2011.

[4] “Wireless 802.11b Transceiver.”

http://goods.us.marketgid.com/goods/19387/. February 2011.

[5] ABOLHASAN, M., WYSOCKI, T., and DUTKIEWICZ, E., “A review of routing pro-

tocols for mobile ad hoc networks.” Ad Hoc Networks, June 2004, Vol. 1, No. 22.

[6] AKYILDIZ, I. F. and WANG, X., “A Survey on Wireless Mesh Networks.” IEEE Radio

Communications, September 2005.

[7] AL-GHAZAL, M., EL-SAYED, A., and KELASH, H., “Routing Optimization using

Genetic Algorithm in Ad Hoc Networks.” IEEE International Symposium on Signal

Processing and Information Technology, Cairo, Egypt, 2007.

[8] BANKS, J., John S. Carson, I., NELSON, B. L., and NICOL, D. M., Discrete-Event

System Simulation. Prentice Hall, 2001.

[9] BAUMANN, R., HEIMLICHER, S., STRASSER, M., and WEIBEL, A., “A Survey on

Routing Metrics.” TIK Report 262, February 2007.

[10] BELDING-ROYER, E. M., “Hierarchical Routing In Ad Hoc Mobile Networks.” Wire-

less Communications and Mobile Computing, 2002, pp. 515–532.

[11] BRENNER, P., A Technical Tutorial on the IEEE 802.11 Protocol . BreezeCOM, 1996.

[12] CHIANG, C.-C., WU, H.-K., LIU, W., and GERLA, M., “Routing in Clustered Multi-

hop, Mobile Wireless Networks with Fading Channel.” 1997.

[13] DATTATREYA, G. R., Performance Analysis of Queuing and Computer Networks .

Chapman & Hall / CRC Computer and Information Science Series. CRC Press, 2008.

96

BIBLIOGRAPHY 97

[14] DOUFEXI, A., ARMOUR, S., BUTLER, M., NIX, A., BULL, D., and MCGEEHAN, J.,

“A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless LAN Standards.”

IEEE Communications Magazine, May 2002.

[15] GERLA, M., KWON, T. J., and PEI, G., “On Demand Routing in Large Ad Hoc

Wireless Networks with Passive Clustering.” in Proceedings of IEEE WCNC 2000, Los

Angeles, 2000.

[16] GERLA, M. and TSAI, J. T.-C., “Multicluster, mobile, multimedia radio network.”

Wireless Networks, 1995, Vol. 1, pp. 255–265.

[17] GUO, N., QIU, R. C., MO, S. S., and TAKASHI, K., “60-GHz Millimeter-Wave Radio:

Principle, Technology and New Results.” EURASIP Journal on Wireless Communica-

tion and Networking, 2007.

[18] HALLS, G. A., “HIPERLAN: the high performance radio local area network standard.”

Electronics & Communication Engineering Journal, December 1994.

[19] IWATA, A., CHIANG, C.-C., PEI, G., GERLA, M., and CHEN, T.-W., “Scalable

Routing Strategies for Ad Hoc Wireless Networks.” IEEE Journal on Selected Areas in

Communications, August 1999, Vol. 17, No. 8, pp. 1369–1379.

[20] JIANG, M., LI, J., and TAY, Y. C., “Internet Draft: Cluster Based Routing Protocol

(Work In Progress).”

http://www.math.nus.edu.sg/ mattyc/cbrp.txt. August 1999.

[21] JOHNSON, D. B. and MALTZ, D. A., “Dynamic source routing in ad hoc wireless

networks.” in Mobile Computing, pp. 153–181, Kluwer Academic Publishers, 1996.

[22] LEE, B., YU, C., and MOH, S., “Issues in Scalable in Clustered Network Architecture

for Mobile Ad Hoc Networks.” Handbook of Mobile Computing, 2004.

[23] LITTLE, J. D. C., “A proof for the queueing formula.” Operations Research, Novem-

ber 1960, Vol. 9, No. 3.

[24] LÖBBERS, M. and WILLKOMM, D., A Mobility Framework for OMNeT++ User

Manual Version 1.0a4 . Omnet++ Community.

[25] MOHAPATRA, P. and KRISHNAMURTHY, S. V. (Eds), Ad Hoc Networks, Technolo-

gies and Protocols , Ch. 1, p. 2. Springer, 2004.

[26] MORRISON, D. W., “Using ad hoc wireless networks to enable intelligent transport

systems: The design and analysis of the TH(O)RP routing protocol.” Master’s thesis,

University of Stellenbosch, December 2006.

[27] MURTHY, C. S. R. and MANOJ, B. S., Ad Hoc Wireless Networks, Architectures and

Protocols , Ch. 1, p. 7. Prentice Hall, 2004.

BIBLIOGRAPHY 98

[28] MURTHY, C. S. R. and MANOJ, B. S., Ad Hoc Wireless Networks, Architectures and

Protocols , Ch. 1, p. 4. Prentice Hall, 2004.

[29] MURTHY, C. S. R. and MANOJ, B. S., Ad Hoc Wireless Networks, Architectures and

Protocols . 2004.

[30] NORTH, S. C., Neato Users Manual , April 2004.

[31] PEI, G., GERLA, M., HONG, X., and CHIANG, C.-C., “A Wireless Hierarchical Rout-

ing Protocol with Group Mobility.” IEEE, 1998.

[32] PERKINS, C. E. and BHAGWAT, P., “Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers.” SIGCOMM, 1994.

[33] PETERSON, L. L. and DAVIE, B. S., Computer Networks . 3 edition. Morgan Kauf-

mann, 2003.

[34] PYTHON SOFTWARE FOUNDATION. Python Documentation version 2.6.4 , Novem-

ber 2009.

[35] RAMEY, C. and FOX, B., Bash Reference Manual , February 2009.

[36] ROSSOUW, C. M., “The Design of a Low Cost Ad-hoc Network for Short Distance

Data Acquisition.” Master’s thesis, Stellenbosch University, December 2008.

[37] SHEPHARD, S., Telecom Crash Course, Ch. 1, p. 2. McGraw-Hill, 2005.

[38] SHOJI, Y. et al., “Millimeter-Wave Ad-hoc Wireless Access System - (1) System

Overview -.” IEEE Topical Conference on Wireless Communication Technology, 2003.

[39] SMULDERS, P., “Exploiting the 60 GHz Band for Local Wireless Multimedia Access:

Prospects and Future Directions.” 2002.

[40] VAN ELLEWEE, S., “Determining a Least-cost Routing and MAC Strategy for a Rural

Communications Ad hoc Network.” Master’s thesis, University of Stellenbosch, Decem-

ber 2006.

[41] VARGA, A., OMNeT++ User Manual Version 3.2 . Omnet++ Community.

[42] WILSON, R. J. and WATKINS, J. J., Graphs An Introductory Approach. John Wiley

& Sons, Inc., 1990.

[43] WIN, M. Z. and SCHOLTZ, R. A., “Impulse radio: how it works.” IEEE Communica-

tions Letters, 1998, Vol. 2, pp. 36–38.

[44] WOLHUTER, R. and VAN ROOYEN, G.-J., “Elements of telecommunications systems

design and teletraffic analysis.”

BIBLIOGRAPHY 99

[45] ZHOU, M. C. and VENKATESH, K., Modeling, Simulation and Control of Flexible

Manufacturing Systems, A Petri Net Approach, Ch. 1, p. 6. World Scientific, 1999.

Appendix A

Network Graphs

The appendix contains all the graphs of the different simulations. Networks used in the

network setup tests are shown in the first section (A.1). Note that the networks used in the

fast route reconstruction test is the same as the first two networks as the network setup tests

in subsection A.1.1 and subsection A.1.2. The second section (A.2) presents the networks

used in the test measuring the routing control overhead with increasing node density. Finally,

networks used in the token prioritising tests are displayed in the last section (A.3).

A.1 Network Setup Graphs

A.1.1 20 Nodes

n 2 7

n 1 5 7

n 6 7

n 1 8 7

n 7 7

n 5 7

n 3 7

n 1 7 7

n 1 0 7

n 1 4 7

n 1 6 7

n 2 0 7

n 1 3 7

n 4 7

n 1 9 7

n 8 7

n 1 1 7

n 9 7

n 1 2 7

n 2 1 7

Figure A.1: Twenty nodes run 1.

100

A.1 — Network Setup Graphs 101

n 2 7

n 5 7

n 1 9 7

n 1 2 7

n 4 7

n 1 7 7

n 1 8 7

n 6 7

n 7 7

n 1 4 7

n 1 6 7

n 2 1 7

n 1 5 7

n 3 7

n 2 0 7

n 8 7

n 9 7

n 1 0 7
n 1 1 7

n 1 3 7

Figure A.2: Twenty nodes run 2.

n 2 7

n 2 1 7

n 4 7

n 1 3 7

n 1 8 7

n 1 0 7

n 3 7

n 9 7

n 1 6 7

n 8 7

n 1 9 7

n 1 4 7

n 1 1 7

n 5 7

n 2 0 7

n 1 2 7

n 1 7 7

n 6 7

n 1 5 7

n 7 7

Figure A.3: Twenty nodes run 3.

A.1 — Network Setup Graphs 102

n 2 7

n 1 1 7

n 2 0 7

n 5 7

n 1 9 7

n 1 8 7

n 7 7

n 1 7 7

n 1 3 7

n 1 2 7

n 1 5 7

n 3 7

n 2 1 7

n 8 7

n 1 6 7

n 1 0 7

n 1 4 7

n 6 7

n 9 7

n 4 7

Figure A.4: Twenty nodes run 4.

n 2 7

n 1 6 7

n 1 2 7

n 5 7

n 4 7

n 1 8 7

n 8 7

n 2 0 7

n 1 0 7

n 1 9 7

n 6 7

n 3 7

n 1 7 7

n 7 7

n 1 1 7

n 9 7

n 1 4 7

n 2 1 7

n 1 3 7

n 1 5 7

Figure A.5: Twenty nodes run 5.

A.1 — Network Setup Graphs 103

n 2 7

n 1 9 7

n 1 5 7

n 9 7

n 3 7

n 5 7

n 1 2 7

n 1 8 7

n 7 7

n 2 1 7

n 1 1 7

n 2 0 7

n 1 7 7

n 1 3 7

n 6 7

n 8 7

n 1 0 7

n 1 6 7

n 1 4 7
n 4 7

Figure A.6: Twenty nodes run 6.

n 2 7

n 7 7

n 1 9 7

n 5 7

n 1 6 7

n 1 3 7

n 1 1 7

n 3 7

n 4 7

n 8 7

n 9 7

n 1 8 7

n 6 7

n 1 2 7

n 2 1 7

n 1 4 7n 1 0 7 n 2 0 7

n 1 5 7

n 1 7 7

Figure A.7: Twenty nodes run 7.

A.1 — Network Setup Graphs 104

n 2 7

n 8 7

n 6 7

n 1 1 7

n 1 8 7n 1 6 7

n 7 7

n 1 4 7

n 5 7 n 1 9 7

n 2 1 7 n 2 0 7

n 1 0 7

n 1 5 7

n 1 2 7

n 1 7 7 n 3 7

n 1 3 7

n 4 7

n 9 7

Figure A.8: Twenty nodes run 8.

n 2 7

n 2 1 7

n 1 8 7

n 1 3 7

n 3 7

n 1 5 7

n 9 7

n 1 4 7

n 1 9 7

n 8 7

n 1 1 7
n 4 7

n 5 7
n 2 0 7

n 7 7

n 1 2 7

n 1 6 7

n 1 0 7

n 6 7

n 1 7 7

Figure A.9: Twenty nodes run 9.

A.1 — Network Setup Graphs 105

n 2 7

n 2 0 7
n 6 7

n 1 0 7

n 7 7

n 4 7

n 1 5 7

n 1 6 7

n 2 1 7

n 5 7

n 1 1 7

n 1 8 7

n 1 3 7

n 1 7 7

n 3 7

n 1 4 7
n 1 9 7

n 1 2 7
n 8 7

n 9 7

Figure A.10: Twenty nodes run 10.

A.1 — Network Setup Graphs 106

A.1.2 50 Nodes

n 5 7

n 4 5 7

n 5 2 7

n 5 4 7

n 4 6 7

n 1 5 7

n 4 2 7

n 3 5 7

n 4 0 7

n 4 7 7

n 1 3 7

n 3 7 7

n 6 7

n 1 7 7

n 4 4 7

n 2 6 7

n 4 1 7

n 1 9 7n 8 7

n 4 9 7

n 3 8 7

n 1 1 7

n 2 7 7

n 5 3 7

n 4 3 7

n 3 9 7

n 2 0 7

n 3 6 7

n 7 7

n 4 8 7

n 1 6 7

n 2 8 7

n 2 4 7

n 3 0 7

n 5 1 7

n 9 7

n 3 3 7

n 5 0 7

n 1 0 7

n 2 9 7

n 1 2 7

n 2 1 7

n 2 5 7

n 1 8 7

n 3 4 7

n 3 2 7

n 1 4 7

n 3 1 7

n 2 3 7

n 2 2 7

Figure A.11: Fifty nodes run 1.

n 5 7

n 3 4 7

n 5 3 7

n 4 4 7

n 2 9 7

n 1 0 7

n 4 6 7
n 4 3 7

n 1 1 7

n 2 0 7

n 2 8 7

n 2 4 7

n 1 2 7

n 3 6 7

n 3 5 7 n 5 4 7

n 4 5 7

n 1 5 7

n 5 2 7

n 4 7 7

n 5 0 7

n 3 9 7

n 1 9 7

n 1 7 7

n 7 7

n 8 7

n 3 1 7

n 9 7

n 3 2 7

n 4 1 7

n 1 8 7

n 3 7 7

n 4 8 7

n 4 0 7

n 2 3 7

n 3 0 7

n 6 7

n 5 1 7

n 2 6 7

n 1 3 7

n 1 4 7

n 4 9 7

n 2 5 7

n 1 6 7

n 3 3 7

n 2 2 7

n 4 2 7

n 3 8 7

n 2 1 7

n 2 7 7

Figure A.12: Fifty nodes run 2.

A.1 — Network Setup Graphs 107

n 5 7

n 4 8 7

n 4 4 7

n 2 7 7

n 1 9 7

n 5 1 7

n 1 8 7

n 5 2 7

n 1 0 7

n 1 3 7

n 4 7 7

n 7 7

n 5 3 7

n 3 7 7

n 1 2 7

n 2 3 7

n 2 6 7n 5 0 7

n 4 9 7

n 3 0 7n 1 5 7

n 4 2 7

n 2 9 7
n 2 4 7

n 3 5 7

n 6 7

n 3 8 7

n 1 7 7

n 3 9 7

n 1 4 7

n 3 2 7

n 4 3 7

n 2 5 7n 2 8 7

n 3 4 7

n 2 1 7

n 4 0 7

n 1 1 7

n 4 6 7

n 5 4 7

n 3 1 7

n 4 5 7

n 3 3 7

n 3 6 7

n 4 1 7

n 8 7

n 9 7

n 2 0 7

n 2 2 7

n 1 6 7

Figure A.13: Fifty nodes run 3.

n 5 7

n 1 0 7

n 6 7

n 3 3 7

n 3 4 7

n 1 1 7

n 5 1 7

n 4 9 7

n 4 2 7

n 7 7

n 2 7 7

n 3 1 7

n 5 0 7

n 3 2 7

n 9 7

n 2 8 7

n 4 5 7

n 4 6 7n 2 3 7

n 4 3 7

n 4 8 7

n 8 7

n 4 4 7

n 3 6 7

n 3 8 7

n 5 4 7

n 1 9 7

n 4 7 7

n 5 3 7

n 2 9 7

n 2 6 7

n 5 2 7

n 2 2 7

n 4 0 7

n 3 5 7

n 1 2 7

n 1 4 7

n 1 7 7 n 3 0 7

n 2 5 7

n 2 4 7

n 2 0 7

n 1 8 7

n 3 9 7

n 1 6 7

n 1 5 7

n 1 3 7

n 3 7 7

n 2 1 7

n 4 1 7

Figure A.14: Fifty nodes run 4.

A.1 — Network Setup Graphs 108

n 5 7

n 9 7

n 3 0 7

n 4 8 7

n 2 0 7

n 3 5 7

n 1 5 7

n 2 3 7

n 3 4 7

n 4 6 7

n 4 0 7

n 1 1 7

n 2 6 7

n 3 3 7

n 4 5 7

n 2 2 7

n 2 8 7

n 1 3 7

n 6 7

n 3 1 7

n 5 2 7

n 1 4 7

n 1 0 7

n 4 1 7

n 2 7 7

n 4 3 7

n 1 7 7

n 1 6 7

n 5 0 7

n 3 9 7

n 7 7

n 1 9 7

n 8 7

n 5 3 7

n 5 4 7

n 4 9 7 n 3 8 7

n 2 1 7

n 5 1 7

n 4 2 7

n 1 2 7

n 2 5 7

n 4 7 7

n 2 4 7

n 3 7 7

n 4 4 7

n 1 8 7

n 3 2 7

n 2 9 7

n 3 6 7

Figure A.15: Fifty nodes run 5.

n 5 7

n 1 6 7

n 4 4 7

n 5 3 7

n 1 1 7

n 3 1 7

n 2 0 7

n 3 4 7

n 7 7

n 2 6 7

n 4 7 7

n 2 2 7

n 1 4 7

n 4 0 7

n 5 4 7

n 3 2 7

n 1 0 7

n 2 8 7

n 8 7

n 4 9 7

n 2 1 7

n 1 5 7

n 2 4 7

n 2 5 7

n 1 9 7

n 2 7 7

n 1 8 7

n 1 3 7

n 6 7

n 5 1 7

n 5 2 7

n 4 6 7

n 3 9 7

n 4 8 7

n 3 6 7

n 3 7 7

n 2 3 7

n 4 5 7

n 4 1 7

n 4 2 7

n 3 5 7

n 3 8 7

n 1 2 7

n 2 9 7

n 9 7

n 3 3 7

n 5 0 7

n 1 7 7

n 3 0 7 n 4 3 7

Figure A.16: Fifty nodes run 6.

A.1 — Network Setup Graphs 109

n 5 7

n 3 9 7

n 2 4 7

n 2 5 7

n 1 4 7

n 3 0 7

n 8 7

n 6 7

n 1 6 7

n 4 1 7n 5 2 7

n 4 3 7

n 1 5 7

n 1 3 7

n 5 1 7

n 2 2 7

n 1 1 7

n 5 0 7

n 2 7 7

n 1 2 7

n 1 8 7

n 2 6 7

n 1 9 7

n 1 7 7

n 9 7

n 2 3 7

n 3 4 7

n 3 1 7

n 5 3 7

n 3 6 7

n 4 0 7

n 7 7

n 2 1 7

n 3 7 7

n 4 5 7

n 2 0 7 n 4 7 7

n 4 9 7

n 4 2 7

n 3 3 7

n 3 8 7

n 5 4 7

n 4 6 7

n 1 0 7

n 4 8 7

n 4 4 7

n 3 5 7

n 2 8 7 n 3 2 7
n 2 9 7

Figure A.17: Fifty nodes run 7.

n 5 7

n 2 5 7

n 3 2 7

n 3 7 7

n 1 2 7

n 1 4 7
n 3 8 7

n 4 3 7

n 1 5 7

n 7 7n 1 3 7

n 5 0 7

n 4 6 7

n 2 2 7

n 9 7

n 2 1 7

n 4 5 7

n 5 3 7

n 4 9 7

n 1 6 7

n 2 3 7

n 5 4 7n 4 0 7

n 3 3 7
n 1 0 7

n 6 7

n 1 8 7

n 2 8 7

n 1 9 7

n 2 9 7

n 3 5 7

n 3 0 7

n 2 6 7

n 8 7

n 3 1 7

n 1 7 7

n 5 2 7

n 2 0 7

n 4 8 7

n 5 1 7

n 3 4 7

n 4 4 7 n 2 7 7

n 2 4 7

n 1 1 7

n 4 1 7

n 4 2 7

n 4 7 7

n 3 6 7

n 3 9 7

Figure A.18: Fifty nodes run 8.

A.1 — Network Setup Graphs 110

n 5 7

n 1 3 7

n 5 1 7

n 3 8 7

n 5 4 7

n 9 7

n 1 2 7

n 1 6 7

n 1 5 7

n 2 8 7

n 4 2 7

n 4 0 7n 4 6 7

n 2 9 7

n 1 9 7

n 3 1 7

n 4 8 7

n 5 0 7

n 8 7

n 1 7 7

n 3 5 7

n 6 7

n 5 3 7

n 3 7 7

n 2 5 7

n 3 2 7

n 2 7 7

n 4 4 7

n 3 6 7

n 2 6 7

n 4 3 7

n 3 0 7

n 4 9 7

n 5 2 7

n 1 4 7

n 3 4 7

n 2 4 7

n 7 7

n 2 3 7

n 4 1 7

n 3 9 7

n 1 1 7

n 2 2 7

n 4 7 7

n 3 3 7

n 2 0 7

n 1 0 7

n 1 8 7

n 4 5 7

n 2 1 7

Figure A.19: Fifty nodes run 9.

n 5 7

n 4 6 7

n 3 8 7

n 2 2 7

n 4 9 7

n 1 0 7

n 5 3 7

n 1 2 7

n 4 4 7 n 3 6 7

n 3 3 7

n 3 7 7

n 7 7

n 4 8 7

n 2 6 7

n 1 6 7

n 3 2 7

n 6 7

n 1 1 7

n 2 4 7

n 2 7 7

n 2 8 7 n 3 0 7

n 4 1 7

n 1 4 7

n 9 7

n 1 8 7

n 3 1 7

n 4 3 7

n 1 5 7

n 4 7 7

n 3 4 7

n 4 0 7n 1 9 7n 2 1 7

n 5 0 7

n 5 1 7

n 2 0 7

n 8 7

n 2 3 7

n 2 9 7

n 1 3 7

n 1 7 7

n 5 2 7

n 3 9 7

n 4 2 7

n 2 5 7

n 5 4 7

n 3 5 7

n 4 5 7

Figure A.20: Fifty nodes run 10.

A.1 — Network Setup Graphs 111

A.1.3 100 Nodes

n 1 0 7

n 9 7 7

n 7 6 7

n 9 5 7

n 6 2 7

n 5 6 7

n 7 9 7

n 1 2 7

n 4 3 7

n 2 4 7

n 1 1 7

n 8 2 7

n 5 4 7

n 7 3 7

n 2 2 7

n 1 0 6 7

n 1 0 0 7

n 6 4 7

n 9 8 7

n 6 6 7

n 8 3 7

n 8 0 7

n 3 9 7

n 1 0 3 7

n 3 6 7

n 8 7 7

n 1 6 7

n 1 0 7 7

n 7 8 7

n 4 5 7

n 1 5 7

n 8 1 7

n 1 3 7

n 5 2 7

n 6 0 7

n 3 8 7

n 9 6 7

n 9 9 7

n 6 8 7

n 5 0 7

n 8 4 7

n 7 0 7

n 1 7 7

n 2 6 7

n 9 2 7

n 5 7 7

n 6 5 7

n 7 1 7

n 2 1 7

n 9 1 7

n 5 8 7

n 7 5 7

n 7 4 7

n 6 3 7

n 9 0 7

n 2 8 7

n 1 9 7

n 4 7 7 n 2 0 7n 4 4 7

n 9 4 7

n 1 4 7

n 3 1 7

n 8 9 7

n 1 0 5 7

n 4 1 7

n 1 8 7

n 2 9 7

n 6 7 7

n 6 9 7

n 5 1 7n 2 7 7

n 1 0 2 7

n 8 8 7

n 1 0 1 7

n 3 0 7

n 3 2 7

n 3 3 7

n 3 4 7

n 4 6 7

n 4 8 7

n 6 1 7

n 2 5 7

n 8 5 7

n 2 3 7

n 3 5 7

n 1 0 8 7

n 8 6 7

n 5 3 7

n 9 3 7

n 1 0 4 7

n 5 5 7

n 4 0 7

n 4 2 7

n 3 7 7

n 1 0 9 7
n 4 9 7

n 5 9 7

n 7 7 7

n 7 2 7

Figure A.21: Hundred nodes run 1.

n 1 0 7

n 5 2 7

n 9 0 7

n 1 0 9 7

n 5 4 7

n 3 2 7

n 4 0 7 n 3 0 7

n 1 0 8 7

n 4 1 7

n 3 5 7

n 4 5 7

n 1 0 7 7

n 5 7 7

n 8 6 7

n 3 8 7

n 9 8 7

n 3 1 7

n 2 4 7

n 2 3 7

n 6 4 7

n 1 0 3 7

n 2 6 7

n 1 0 1 7

n 7 2 7

n 5 0 7

n 7 1 7

n 8 8 7

n 5 8 7

n 1 7 7

n 9 7 7

n 1 1 7

n 1 6 7

n 4 9 7

n 3 9 7

n 1 0 5 7

n 1 9 7

n 5 1 7

n 3 3 7

n 1 0 0 7

n 9 4 7

n 7 4 7

n 7 5 7
n 9 6 7

n 1 2 7

n 1 8 7

n 5 5 7

n 2 2 7

n 8 2 7

n 6 8 7

n 7 0 7

n 2 1 7

n 7 9 7

n 4 6 7

n 2 5 7

n 3 7 7

n 8 9 7

n 2 0 7

n 6 5 7

n 1 3 7

n 9 2 7

n 6 0 7

n 6 2 7

n 7 7 7

n 1 0 6 7

n 8 0 7

n 9 1 7

n 8 4 7

n 3 6 7

n 2 9 7

n 1 0 4 7

n 4 7 7

n 1 0 2 7

n 8 1 7

n 7 8 7

n 3 4 7

n 8 5 7

n 5 9 7

n 6 3 7

n 6 6 7

n 1 4 7

n 8 7 7

n 9 9 7

n 4 2 7

n 4 4 7

n 5 6 7

n 2 7 7

n 9 5 7

n 2 8 7

n 7 3 7

n 6 1 7

n 9 3 7

n 1 5 7

n 4 8 7

n 6 7 7

n 4 3 7

n 6 9 7

n 7 6 7

n 5 3 7

n 8 3 7

Figure A.22: Hundred nodes run 2.

A.1 — Network Setup Graphs 112

n 1 0 7

n 1 2 7

n 9 5 7

n 2 3 7

n 3 0 7

n 6 7 7

n 7 3 7

n 4 9 7

n 5 7 7

n 7 5 7

n 8 9 7

n 8 8 7

n 1 1 7

n 6 2 7

n 7 6 7

n 1 5 7

n 5 0 7

n 9 7 7

n 7 9 7

n 3 5 7

n 9 8 7

n 1 0 4 7

n 6 6 7

n 1 8 7
n 3 3 7

n 1 0 8 7

n 5 2 7

n 4 1 7

n 6 1 7

n 8 5 7

n 3 1 7

n 5 6 7

n 2 1 7
n 8 6 7

n 8 2 7

n 2 8 7

n 1 3 7

n 9 1 7

n 1 0 5 7

n 4 2 7

n 9 2 7

n 2 5 7

n 4 8 7

n 5 1 7

n 7 7 7

n 8 1 7

n 1 6 7

n 1 0 2 7

n 4 4 7n 2 6 7

n 2 0 7

n 9 3 7

n 1 4 7

n 3 4 7

n 6 9 7

n 9 6 7

n 7 2 7

n 4 7 7

n 5 4 7

n 3 8 7

n 1 0 7 7

n 1 0 3 7

n 1 9 7

n 3 7 7

n 8 0 7

n 9 9 7

n 1 7 7

n 3 6 7

n 1 0 9 7

n 3 9 7

n 4 3 7

n 1 0 6 7

n 5 9 7

n 4 6 7

n 6 4 7

n 1 0 0 7

n 5 5 7

n 2 2 7

n 3 2 7

n 9 0 7

n 8 3 7

n 9 4 7

n 6 5 7

n 4 0 7

n 6 8 7

n 7 8 7

n 7 0 7n 7 1 7

n 8 7 7

n 5 8 7n 5 3 7

n 6 0 7

n 8 4 7

n 2 7 7
n 2 9 7

n 2 4 7

n 4 5 7

n 7 4 7

n 6 3 7

n 1 0 1 7

Figure A.23: Hundred nodes run 3.

n 1 0 7

n 8 6 7

n 7 6 7

n 5 3 7

n 4 9 7

n 3 6 7

n 2 4 7

n 1 9 7

n 8 0 7

n 1 4 7

n 8 8 7

n 2 0 7

n 5 7 7

n 8 1 7

n 8 4 7

n 7 5 7

n 2 8 7

n 9 2 7

n 8 7 7

n 7 3 7

n 1 1 7

n 3 1 7

n 1 0 4 7

n 2 9 7

n 2 5 7

n 6 0 7

n 1 0 1 7

n 2 3 7

n 1 6 7

n 1 5 7 n 1 0 3 7

n 3 4 7

n 5 1 7

n 9 9 7

n 9 1 7

n 5 4 7

n 3 8 7

n 6 3 7

n 3 0 7

n 3 3 7

n 1 7 7 n 7 0 7

n 2 6 7
n 6 8 7

n 4 5 7

n 6 2 7

n 9 4 7

n 4 0 7

n 1 2 7
n 9 6 7

n 3 7 7

n 9 3 7

n 7 9 7

n 7 4 7

n 1 0 5 7

n 2 7 7

n 1 3 7

n 9 8 7

n 7 7 7

n 5 2 7

n 8 5 7

n 5 0 7

n 4 3 7

n 8 2 7

n 1 0 6 7

n 4 4 7

n 1 0 0 7

n 1 0 9 7

n 3 9 7

n 9 7 7

n 1 0 7 7

n 4 1 7

n 1 8 7

n 5 9 7

n 3 2 7

n 9 0 7

n 4 2 7

n 6 1 7

n 6 5 7

n 3 5 7

n 6 4 7

n 4 8 7

n 7 2 7

n 7 1 7

n 6 6 7

n 2 1 7

n 6 7 7

n 8 9 7

n 5 8 7

n 2 2 7

n 4 7 7

n 7 8 7

n 1 0 8 7

n 5 5 7

n 5 6 7

n 6 9 7
n 9 5 7

n 1 0 2 7

n 4 6 7

n 8 3 7

Figure A.24: Hundred nodes run 4.

A.1 — Network Setup Graphs 113

n 1 0 7

n 6 7 7

n 4 5 7

n 1 0 4 7

n 1 8 7

n 9 0 7 n 6 8 7

n 2 5 7

n 2 6 7
n 7 6 7

n 5 1 7

n 9 1 7

n 9 3 7

n 1 4 7

n 6 5 7

n 5 4 7

n 3 0 7

n 2 2 7

n 1 0 9 7

n 4 2 7n 4 1 7

n 1 3 7

n 7 4 7

n 2 8 7

n 8 4 7

n 8 6 7

n 1 6 7

n 3 4 7

n 3 3 7

n 4 7 7

n 3 9 7

n 8 7 7

n 8 3 7

n 1 0 2 7

n 8 5 7

n 1 1 7

n 9 8 7

n 7 7 7

n 2 3 7 n 6 3 7

n 9 6 7

n 3 7 7

n 1 2 7

n 6 9 7

n 6 1 7

n 9 7 7

n 5 0 7

n 2 1 7

n 3 5 7

n 3 6 7

n 8 8 7

n 3 2 7

n 5 9 7

n 1 0 6 7

n 1 0 7 7

n 4 8 7

n 8 1 7

n 8 2 7

n 1 0 8 7

n 6 4 7

n 1 0 1 7

n 4 6 7

n 1 5 7

n 2 7 7

n 1 7 7

n 5 5 7

n 8 0 7

n 2 4 7

n 5 2 7

n 8 9 7

n 9 4 7

n 7 3 7

n 6 6 7

n 2 0 7

n 4 3 7

n 9 2 7

n 9 9 7

n 3 8 7

n 6 2 7

n 4 0 7

n 6 0 7

n 7 8 7

n 1 0 5 7

n 1 0 0 7

n 1 9 7

n 7 0 7

n 2 9 7

n 1 0 3 7

n 7 9 7

n 4 9 7

n 7 2 7

n 5 7 7

n 7 5 7

n 5 6 7

n 3 1 7

n 4 4 7

n 7 1 7

n 5 8 7

n 9 5 7

n 5 3 7

Figure A.25: Hundred nodes run 5.

n 1 0 7

n 3 6 7

n 2 8 7

n 1 0 9 7

n 2 2 7

n 2 9 7

n 5 3 7

n 1 6 7

n 3 5 7

n 5 9 7

n 5 2 7

n 3 4 7

n 2 4 7

n 4 2 7

n 5 6 7

n 7 9 7

n 1 9 7

n 4 1 7

n 9 5 7

n 9 9 7

n 1 3 7

n 1 0 4 7

n 6 6 7

n 1 8 7

n 4 8 7

n 2 1 7

n 7 0 7

n 1 1 7 n 8 5 7

n 7 6 7

n 2 3 7

n 6 7 7

n 2 0 7

n 5 0 7

n 1 0 1 7

n 1 0 5 7

n 9 6 7

n 2 5 7

n 2 7 7

n 6 8 7

n 1 0 2 7

n 5 5 7

n 3 3 7

n 6 0 7

n 1 0 6 7

n 8 7 7

n 9 0 7

n 4 0 7

n 6 4 7

n 4 7 7

n 7 2 7

n 6 5 7

n 1 2 7

n 9 1 7 n 6 9 7

n 1 5 7

n 1 7 7

n 7 4 7

n 6 1 7

n 8 6 7n 4 4 7

n 7 5 7

n 1 0 0 7

n 4 6 7

n 9 4 7

n 9 7 7

n 1 0 8 7

n 7 3 7
n 7 1 7

n 3 1 7

n 5 1 7

n 9 3 7

n 3 0 7

n 8 0 7

n 7 7 7

n 7 8 7

n 8 9 7

n 9 2 7

n 3 7 7

n 6 2 7

n 3 8 7

n 8 8 7

n 8 1 7

n 1 4 7

n 5 4 7

n 1 0 3 7n 5 8 7

n 8 3 7

n 8 4 7

n 9 8 7

n 3 2 7

n 6 3 7

n 4 5 7

n 3 9 7

n 1 0 7 7 n 2 6 7

n 4 9 7

n 5 7 7

n 4 3 7

n 8 2 7

Figure A.26: Hundred nodes run 6.

A.1 — Network Setup Graphs 114

n 1 0 7

n 1 7 7

n 8 5 7

n 5 1 7

n 2 8 7

n 4 5 7

n 5 7 7

n 5 2 7

n 7 7 7

n 8 7 7

n 1 0 0 7

n 4 4 7

n 9 0 7

n 4 1 7

n 7 2 7

n 3 1 7

n 3 3 7

n 7 0 7

n 2 9 7

n 1 1 7
n 5 5 7

n 1 6 7

n 1 9 7

n 4 6 7

n 6 1 7

n 3 4 7

n 3 5 7

n 6 9 7

n 1 4 7

n 1 0 9 7

n 2 5 7

n 2 4 7

n 4 9 7

n 1 2 7

n 9 7 7

n 3 9 7

n 4 8 7

n 1 5 7

n 6 5 7n 9 9 7

n 9 4 7

n 6 6 7

n 9 1 7

n 7 9 7

n 9 6 7n 4 0 7

n 2 7 7

n 1 0 3 7
n 1 0 4 7

n 6 3 7

n 9 8 7

n 2 6 7

n 2 3 7

n 8 6 7

n 2 2 7

n 5 9 7

n 3 6 7

n 3 2 7

n 1 0 5 7

n 8 4 7

n 6 2 7

n 1 0 7 7

n 5 3 7

n 8 8 7

n 6 7 7

n 5 0 7

n 7 3 7

n 9 5 7

n 1 3 7

n 8 3 7
n 8 0 7

n 9 3 7

n 1 0 8 7

n 4 3 7

n 7 1 7

n 7 8 7

n 6 8 7

n 7 5 7

n 8 9 7

n 5 8 7

n 3 8 7

n 5 6 7

n 4 2 7

n 7 4 7

n 9 2 7

n 6 0 7

n 1 0 1 7

n 1 0 2 7

n 6 4 7

n 8 1 7

n 2 0 7

n 1 0 6 7

n 3 7 7

n 1 8 7

n 7 6 7

n 4 7 7

n 2 1 7

n 5 4 7

n 3 0 7

n 8 2 7

Figure A.27: Hundred nodes run 7.

n 1 0 7

n 4 3 7

n 2 1 7

n 5 1 7

n 6 6 7

n 9 2 7

n 2 3 7

n 7 6 7

n 5 4 7

n 5 0 7

n 9 1 7

n 8 6 7 n 7 7 7

n 1 0 8 7

n 3 3 7

n 8 9 7

n 5 7 7

n 8 0 7

n 8 4 7

n 5 9 7

n 3 1 7

n 6 0 7

n 7 3 7

n 2 9 7

n 1 0 0 7

n 9 5 7

n 5 6 7

n 1 0 7 7

n 5 2 7

n 4 2 7

n 1 1 7

n 4 0 7

n 1 6 7

n 1 7 7

n 8 8 7

n 9 7 7

n 9 3 7

n 6 4 7

n 6 3 7

n 6 8 7
n 6 1 7

n 1 0 6 7

n 1 0 2 7

n 2 8 7

n 7 0 7

n 1 9 7

n 3 8 7

n 2 0 7

n 6 7 7

n 1 2 7

n 2 2 7

n 7 8 7

n 1 3 7

n 8 7 7

n 8 5 7

n 9 6 7

n 2 6 7

n 1 0 9 7

n 7 5 7

n 8 3 7

n 1 0 1 7

n 5 8 7

n 4 6 7

n 7 4 7

n 2 5 7

n 3 6 7

n 9 9 7

n 6 2 7

n 4 7 7

n 4 5 7

n 4 4 7

n 6 5 7

n 1 4 7 n 8 2 7

n 5 5 7

n 4 1 7

n 7 9 7

n 3 4 7n 6 9 7

n 9 4 7

n 2 7 7

n 4 9 7

n 1 0 4 7

n 8 1 7

n 9 0 7

n 7 2 7 n 3 9 7

n 1 0 3 7

n 1 8 7

n 3 7 7

n 4 8 7

n 5 3 7 n 9 8 7

n 1 5 7

n 2 4 7

n 7 1 7

n 3 2 7

n 3 5 7
n 1 0 5 7

n 3 0 7

Figure A.28: Hundred nodes run 8.

A.1 — Network Setup Graphs 115

n 1 0 7

n 8 2 7

n 1 3 7

n 6 0 7

n 4 1 7

n 1 8 7

n 1 4 7

n 2 5 7

n 3 5 7

n 5 9 7

n 1 0 2 7

n 9 7 7

n 3 3 7

n 9 4 7

n 6 6 7

n 2 1 7

n 3 2 7

n 1 0 1 7

n 7 1 7

n 2 4 7

n 2 7 7

n 1 1 7

n 8 6 7

n 1 2 7

n 5 4 7

n 2 3 7

n 5 5 7

n 4 5 7

n 7 4 7

n 8 0 7

n 7 3 7

n 3 9 7

n 5 1 7

n 8 8 7

n 6 3 7

n 2 9 7

n 3 1 7

n 8 1 7

n 1 0 7 7

n 8 7 7

n 6 5 7

n 6 7 7
n 3 8 7

n 4 3 7

n 3 7 7

n 1 6 7

n 1 0 3 7

n 9 3 7

n 9 5 7

n 6 4 7

n 2 6 7

n 9 6 7

n 4 8 7

n 6 2 7

n 1 5 7

n 1 0 9 7

n 5 0 7n 4 7 7

n 5 7 7

n 2 0 7

n 9 1 7 n 7 6 7

n 7 7 7

n 4 0 7

n 7 0 7
n 8 9 7

n 2 2 7

n 8 5 7

n 7 5 7

n 9 2 7
n 9 9 7

n 4 6 7

n 7 9 7

n 1 0 0 7

n 1 7 7

n 5 6 7

n 8 4 7

n 4 2 7

n 5 2 7

n 4 9 7

n 7 2 7

n 5 8 7

n 6 9 7

n 3 0 7

n 9 8 7

n 1 0 6 7

n 1 0 5 7

n 1 9 7

n 9 0 7
n 6 1 7

n 1 0 8 7

n 6 8 7

n 1 0 4 7

n 7 8 7

n 3 4 7

n 2 8 7

n 8 3 7

n 4 4 7

n 3 6 7

n 5 3 7

Figure A.29: Hundred nodes run 9.

n 1 0 7

n 5 6 7

n 2 0 7

n 2 9 7

n 4 5 7

n 5 3 7

n 6 8 7

n 2 4 7

n 1 6 7

n 3 4 7

n 3 2 7

n 8 3 7 n 6 3 7

n 3 6 7

n 1 8 7

n 8 7 7

n 1 0 9 7

n 7 7 7

n 5 9 7
n 4 0 7

n 5 0 7

n 8 2 7

n 5 2 7

n 2 3 7

n 9 6 7

n 3 3 7

n 9 5 7

n 8 1 7

n 2 6 7

n 8 5 7

n 7 4 7

n 4 3 7

n 2 5 7

n 4 9 7

n 7 1 7

n 2 2 7

n 2 1 7

n 4 1 7

n 3 8 7
n 7 6 7

n 6 2 7

n 1 0 6 7

n 9 3 7

n 1 0 1 7

n 5 4 7

n 8 8 7

n 1 0 0 7

n 1 0 4 7

n 4 7 7

n 7 0 7

n 3 7 7

n 1 1 7

n 9 8 7

n 5 1 7

n 9 7 7

n 8 4 7

n 5 7 7

n 2 7 7

n 1 0 2 7

n 5 8 7

n 4 2 7

n 4 8 7

n 1 2 7

n 3 1 7

n 3 5 7

n 6 7 7

n 1 7 7

n 5 5 7

n 7 8 7

n 6 4 7

n 1 3 7

n 8 0 7

n 3 0 7

n 6 0 7

n 9 9 7

n 9 4 7

n 1 0 8 7

n 1 5 7

n 6 9 7

n 4 4 7

n 7 2 7

n 7 5 7

n 9 1 7
n 1 0 7 7

n 7 3 7

n 1 4 7

n 1 0 5 7

n 6 6 7

n 6 5 7

n 3 9 7

n 6 1 7

n 4 6 7

n 1 0 3 7

n 8 6 7

n 7 9 7

n 9 2 7

n 2 8 7

n 8 9 7

n 9 0 7

n 1 9 7

Figure A.30: Hundred nodes run 10.

A.2 — Increasing Node Density Networks 116

A.2 Increasing Node Density Networks

n 2 2

n 8 2

n 1 4 2

n 1 0 2

n 3 2

n 7 2

n 4 2n 1 2 2

n 5 2

n 1 3 2

n 1 1 2

n 9 2

n 1 6 2

n 1 5 2

n 6 2

Figure A.31: Increasing node density run 1.

n 2 7

n 5 7

n 1 9 7

n 1 2 7

n 4 7

n 1 7 7

n 1 8 7

n 6 7

n 7 7

n 1 4 7

n 1 6 7

n 2 1 7

n 1 5 7

n 3 7

n 2 0 7

n 8 7

n 9 7

n 1 0 7
n 1 1 7

n 1 3 7

Figure A.32: Increasing node density run 2.

A.2 — Increasing Node Density Networks 117

n 3 2

n 9 2

n 2 7 2

n 1 2 2

n 7 2

n 1 0 2

n 1 5 2

n 1 7 2

n 2 3 2

n 1 8 2 n 2 1 2

n 2 0 2

n 8 2

n 4 2

n 2 2 2

n 1 3 2

n 1 1 2

n 2 5 2

n 1 9 2

n 2 4 2

n 2 6 2

n 5 2

n 1 4 2

n 1 6 2

n 6 2

Figure A.33: Increasing node density run 3.

n 3 7

n 2 0 7

n 3 0 7

n 4 7

n 1 4 7

n 1 3 7

n 2 3 7

n 8 7

n 2 2 7

n 3 1 7

n 1 9 7
n 1 2 7

n 2 5 7

n 3 2 7

n 6 7

n 1 8 7

n 1 6 7

n 2 8 7

n 2 1 7

n 2 4 7
n 2 7 7

n 1 7 7

n 2 9 7

n 1 1 7

n 9 7

n 7 7n 1 5 7

n 5 7

n 1 0 7

n 2 6 7

Figure A.34: Increasing node density run 4.

A.2 — Increasing Node Density Networks 118

n 4 2n 2 5 2

n 1 0 2

n 1 4 2

n 3 1 2

n 3 3 2

n 2 0 2 n 3 5 2

n 5 2

n 2 1 2

n 2 2 2

n 1 7 2

n 6 2

n 8 2
n 3 6 2

n 1 8 2

n 3 2 2
n 1 3 2

n 2 6 2

n 1 9 2

n 3 0 2

n 2 4 2
n 3 8 2

n 1 1 2
n 2 3 2

n 1 2 2

n 9 2

n 3 4 2

n 1 5 2

n 3 7 2

n 2 7 2

n 7 2

n 2 8 2

n 2 9 2

n 1 6 2

Figure A.35: Increasing node density run 5.

n 4 7

n 1 0 7

n 9 7

n 2 8 7

n 2 3 7

n 1 2 7

n 2 2 7

n 1 6 7

n 5 7

n 3 3 7

n 7 7

n 3 1 7 n 1 1 7

n 2 6 7

n 2 9 7

n 2 0 7

n 2 7 7

n 3 0 7

n 3 4 7

n 3 9 7

n 3 7 7

n 2 5 7

n 4 1 7

n 8 7

n 6 7n 4 3 7

n 2 1 7

n 2 4 7
n 4 2 7

n 1 7 7

n 1 3 7

n 1 4 7

n 1 8 7

n 3 6 7

n 3 8 7

n 1 9 7

n 3 2 7

n 3 5 7

n 1 5 7

n 4 0 7

Figure A.36: Increasing node density run 6.

A.2 — Increasing Node Density Networks 119

n 5 2

n 9 2

n 4 7 2

n 1 0 2

n 1 5 2

n 4 9 2

n 3 5 2

n 3 9 2

n 7 2

n 4 0 2

n 1 2 2
n 1 7 2

n 4 2 2

n 2 2 2

n 2 6 2

n 2 3 2

n 3 6 2
n 3 2 2

n 2 4 2

n 1 3 2

n 4 5 2

n 4 4 2

n 1 6 2

n 1 1 2

n 1 4 2

n 2 8 2

n 2 9 2

n 2 5 2

n 4 1 2

n 2 0 2

n 8 2

n 1 8 2

n 4 8 2

n 4 6 2

n 3 3 2

n 2 7 2

n 4 3 2

n 3 8 2

n 3 7 2

n 1 9 2

n 6 2

n 2 1 2

n 3 0 2

n 3 4 2

n 3 1 2

Figure A.37: Increasing node density run 7.

A.3 — Mean Packet Latency Networks 120

A.3 Effect of Token Prioritisation on Mean Packet

Latency Networks

n 2 7

n 9 7

n 1 6 7 n 2 0 7

n 1 5 7

n 1 0 7

n 2 1 7

n 1 8 7

n 1 1 7

n 1 2 7

n 3 7

n 1 4 7

n 7 7

n 8 7

n 5 7

n 1 9 7

n 4 7

n 1 7 7

n 6 7

n 1 3 7

Figure A.38: Latency network 20 nodes run 1.

n 2 7n 1 6 7n 1 4 7

n 1 9 7

n 4 7

n 1 2 7

n 9 7

n 2 0 7

n 1 5 7

n 1 7 7

n 8 7

n 1 8 7

n 3 7

n 1 0 7

n 1 1 7

n 5 7

n 2 1 7

n 7 7

n 1 3 7

n 6 7

Figure A.39: Latency network 20 nodes run 2.

A.3 — Mean Packet Latency Networks 121

n 5 7

n 2 1 7

n 3 4 7

n 4 7 7

n 2 8 7

n 3 6 7

n 3 5 7

n 1 5 7

n 1 1 7

n 4 5 7

n 2 6 7

n 2 2 7

n 3 2 7

n 4 0 7

n 4 8 7

n 2 3 7

n 6 7

n 5 2 7

n 4 4 7

n 9 7

n 1 0 7

n 4 2 7

n 3 7 7

n 3 3 7

n 1 8 7

n 1 4 7

n 4 9 7

n 3 1 7

n 2 7 7 n 2 4 7

n 4 1 7

n 3 0 7

n 2 0 7

n 2 9 7

n 4 3 7

n 1 6 7

n 8 7

n 1 9 7

n 1 3 7

n 5 3 7

n 7 7

n 3 9 7

n 4 6 7

n 1 2 7

n 1 7 7

n 5 4 7

n 5 1 7

n 2 5 7

n 3 8 7

n 5 0 7

Figure A.40: Latency network 50 nodes run 1.

n 5 7

n 3 0 7

n 1 8 7

n 2 7 7

n 3 2 7

n 8 7

n 3 6 7

n 5 2 7

n 2 0 7

n 3 4 7

n 1 0 7

n 9 7

n 3 3 7

n 2 1 7

n 1 4 7

n 3 7 7

n 2 2 7

n 4 0 7

n 4 4 7

n 1 5 7

n 2 4 7

n 1 3 7

n 7 7

n 2 8 7

n 4 7 7

n 2 3 7

n 1 2 7

n 1 9 7

n 6 7

n 3 9 7

n 3 8 7

n 4 5 7

n 3 5 7

n 3 1 7

n 4 9 7

n 2 6 7

n 2 5 7

n 1 6 7

n 5 1 7

n 4 3 7

n 2 9 7

n 5 3 7

n 1 7 7

n 5 0 7

n 5 4 7

n 1 1 7

n 4 6 7

n 4 8 7

n 4 1 7

n 4 2 7

Figure A.41: Latency network 50 nodes run 2.

A.3 — Mean Packet Latency Networks 122

n 1 0 7

n 4 4 7

n 9 6 7

n 1 3 7

n 3 9 7

n 4 7 7

n 3 2 7

n 5 3 7

n 6 0 7

n 1 0 2 7
n 9 4 7

n 3 7 7

n 2 8 7
n 7 3 7

n 2 5 7

n 3 6 7

n 9 1 7

n 1 0 6 7
n 5 8 7

n 9 2 7

n 8 0 7

n 2 2 7

n 1 1 7

n 8 5 7

n 3 3 7

n 1 8 7

n 1 0 0 7

n 4 5 7

n 4 9 7

n 5 5 7

n 6 7 7

n 9 9 7
n 5 0 7n 7 0 7

n 5 7 7

n 1 7 7

n 5 4 7

n 7 4 7

n 4 3 7

n 2 7 7n 3 5 7

n 7 1 7

n 1 0 1 7

n 2 0 7

n 4 8 7

n 2 4 7

n 6 6 7

n 8 1 7

n 6 8 7
n 6 4 7

n 4 6 7
n 8 2 7

n 7 8 7

n 1 2 7

n 4 1 7

n 8 8 7

n 9 3 7

n 5 9 7

n 9 5 7

n 9 8 7

n 1 0 3 7

n 8 3 7

n 3 4 7

n 8 6 7

n 9 0 7

n 8 7 7

n 7 7 7

n 1 0 5 7

n 1 5 7

n 1 9 7

n 7 9 7

n 1 4 7

n 1 0 7 7

n 2 6 7

n 5 6 7

n 1 0 8 7
n 5 1 7

n 1 0 9 7

n 1 0 4 7

n 3 8 7

n 4 2 7

n 3 0 7

n 1 6 7

n 6 9 7

n 3 1 7

n 2 3 7

n 7 6 7

n 8 4 7

n 5 2 7

n 7 2 7

n 8 9 7

n 6 1 7

n 6 2 7

n 2 9 7

n 2 1 7

n 7 5 7
n 9 7 7

n 6 5 7

n 4 0 7

n 6 3 7

Figure A.42: Latency network 100 nodes run 1.

n 1 0 7

n 1 0 4 7

n 2 8 7

n 2 6 7

n 9 4 7

n 7 0 7

n 9 7 7

n 6 1 7

n 5 9 7

n 8 2 7

n 8 3 7

n 2 0 7

n 7 7 7

n 6 5 7

n 1 1 7

n 8 4 7

n 7 4 7

n 1 0 6 7

n 1 4 7

n 3 0 7

n 6 9 7

n 8 5 7

n 7 2 7

n 7 6 7

n 4 0 7

n 4 4 7

n 6 3 7

n 1 0 7 7

n 3 7 7

n 7 9 7

n 4 2 7

n 2 3 7

n 5 5 7

n 1 0 0 7

n 6 8 7

n 3 2 7

n 4 8 7

n 5 2 7

n 5 4 7n 3 6 7

n 5 8 7

n 7 8 7

n 1 3 7

n 2 9 7

n 1 7 7

n 1 0 9 7

n 9 5 7

n 1 2 7

n 9 1 7
n 5 0 7

n 4 5 7

n 4 6 7

n 5 6 7

n 1 0 1 7

n 9 0 7

n 1 0 5 7

n 1 8 7

n 3 3 7

n 5 7 7

n 1 5 7

n 8 1 7

n 4 1 7

n 7 3 7

n 2 5 7

n 7 1 7

n 9 3 7

n 8 0 7

n 1 6 7

n 3 4 7

n 1 0 8 7

n 6 6 7

n 3 1 7

n 8 7 7

n 8 9 7

n 2 1 7

n 3 9 7

n 2 7 7n 8 8 7

n 6 2 7

n 6 7 7

n 5 3 7

n 2 4 7

n 1 9 7

n 5 1 7

n 1 0 3 7

n 4 3 7

n 6 0 7

n 9 9 7

n 3 5 7

n 9 6 7

n 6 4 7

n 8 6 7

n 2 2 7

n 9 8 7

n 7 5 7

n 9 2 7

n 4 9 7

n 3 8 7

n 1 0 2 7

n 4 7 7

Figure A.43: Latency network 100 nodes run 2.

Appendix B

Programming Scripts

This appendix shows various scripts and configuration files, used by the simulator.

B.1 Run Simulation BASH Script

#!/bin/bash

date >> ./LogFiles/lastSimulationRun.log

runTokenSimulation()

{

rm ./tokenProgress.log

rm ./ConfigFiles/token_30_nodes_extra_buffer.sca

for alpha in 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000 2400000 2600000 2800000 3000000;

echo "description = \"Using token passing\"" > ./ConfigFiles/varParameters.ini

echo "chgrp.host[*].net.useTokenPassing = true" >> ./ConfigFiles/varParameters.ini

echo "chgrp.host[*].net.averageTotalNetworkBitRate = $alpha" >> ./ConfigFiles/varParameters.ini

echo "chgrp.host[*].nic.mac.useRtsCts = true" >> ./ConfigFiles/varParameters.ini

echo "output-scalar-file=\"./token_30_nodes_extra_buffer.sca\"" >> ./ConfigFiles/varParameters.ini

cat ./ConfigFiles/varParameters.ini

./CHGRP

echo $alpha >> tokenProgress.log

done

}

runNoTokenSimulation()

{

rm ./noTokenProgress.log

rm ./ConfigFiles/notoken_30_nodes_extra_buffer.sca

for alpha in 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000 2400000 2600000 2800000 3000000;

echo "description = \"Using the 802.11 without tokenpassing\"" > ./ConfigFiles/varParameters.ini

echo "chgrp.host[*].net.useTokenPassing = false" >> ./ConfigFiles/varParameters.ini

echo "chgrp.host[*].net.averageTotalNetworkBitRate = $alpha" >> ./ConfigFiles/varParameters.ini

echo "chgrp.host[*].nic.mac.useRtsCts = true" >> ./ConfigFiles/varParameters.ini

echo "output-scalar-file=\"./notoken_30_nodes_extra_buffer.sca\"" >> ./ConfigFiles/varParameters.ini

cat ./ConfigFiles/varParameters.ini

./CHGRP

echo $alpha >> noTokenProgress.log

done

}

cleanRouteStats()

{

if [-f ./routeStats.txt]

123

B.1 — Run Simulation BASH Script 124

then

echo "routeStats.txt file exists: Cleaning file"

rm ./routeStats.txt

fi

}

runXMLSimulation()

{

local simulationName=$1

echo "Creating Simulation Output Directory"

outputDirectory="$simulationBase/$output/$(createSimulationDirectory $simulationName)"

echo "Running Simulation Scenario : $simulationName"

cleanRouteStats

xmlDir="$simulationBase/ConfigFiles/Scenarios/${simulationName}"

echo "Simulation Input Data Directory : $xmlDir"

cat $xmlDir/index.list

index="$(cat $xmlDir/index.list)"

#xmlDir="./Scenarios/${simulationName}"

echo "Simulation Scenario $simulationName" >> $outputDirectory/simulationsCompleted.txt

for fileNumber in $index

do

echo "Running Simulation $fileNumber"

echo "description = \"Connection Oriented Simulation $fileNumber\"" > "$varParametersFile"

echo "chgrp.host[*].net.useTokenPassing = true" >> "$varParametersFile"

echo "chgrp.host[*].net.averageTotalNetworkBitRate = 0" >> "$varParametersFile"

echo "output-scalar-file=\"./scenario${simulationName}.sca\"" >> "$varParametersFile"

echo "chgrp.host[*].net.sendMessageRandomDestination = false" >> "$varParametersFile"

echo "chgrp.host[*].net.xmlParameters = xmldoc(\"${xmlDir}/file${fileNumber}XML.xml\")" >> "$varParametersFile"

echo "chgrp.performance.simulationOutputDirectory = \"$outputDirectory\"" >> "$varParametersFile"

#Create Output Directory for Run

mkdir "$outputDirectory/Run$fileNumber"

mkdir "$outputDirectory/Run$fileNumber/ModuleOutput"

echo "chgrp.performance.runOutputDirectory = \"$outputDirectory/Run$fileNumber/ModuleOutput\"" >> "$varParametersFile"

#Setup simulation specific parameters

echo "chgrp.host[*].appl.sendUdpStreams=false" >> "$varParametersFile"

echo "chgrp.host[*].appl.testLinkBreak=false" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbStartSendingDataMessagesTime=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbLinkBreakTime=10" >> "$varParametersFile"

echo "chgrp.host[*].appl.minimumStreamLength=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.maximumStreamLength=5" >> "$varParametersFile"

echo "chgrp.host[*].net.oneTransmissionChance=true" >> "$varParametersFile"

echo "chgrp.host[*].net.sendDataMessages = true" >> "$varParametersFile"

#Setup performance measurements

echo "chgrp.performance.simulationTimeConnectivity = false" >> "$varParametersFile"

#Setup node positions

if [$simulationName == "RandomOne" -o $simulationName == "RandomTwo"]

then

echo "include ./NodeSetups/nodeSetup_Random_1.ini" >> "$varParametersFile"

else

echo "include ./NodeSetups/nodeSetup6.ini" >> "$varParametersFile"

fi

B.1 — Run Simulation BASH Script 125

echo "chgrp.performance.runNumber = $fileNumber" >> "$varParametersFile"

./CHGRP

echo "Completed Simulation $fileNumber" >> $outputDirectory/simulationsCompleted.txt

done

}

writeNodeSetup()

{

local xSize=$1

local ySize=$2

local numberOfNodes=$3

local nodeSetupPath="$simulationBase/ConfigFiles/NodeSetups"

echo "chgrp.playgroundSizeX = $xSize" > $nodeSetupPath/nodeSetupVar.ini

echo "chgrp.playgroundSizeY = $ySize" >> $nodeSetupPath/nodeSetupVar.ini

echo "" >> $nodeSetupPath/nodeSetupVar.ini

echo "chgrp.numHosts = $numberOfNodes" >> $nodeSetupPath/nodeSetupVar.ini

echo "chgrp.host[*].numHosts = $numberOfNodes" >> $nodeSetupPath/nodeSetupVar.ini

echo "" >> $nodeSetupPath/nodeSetupVar.ini

echo "chgrp.host[*].mobility.x=-1" >> $nodeSetupPath/nodeSetupVar.ini

echo "chgrp.host[*].mobility.y=-1" >> $nodeSetupPath/nodeSetupVar.ini

}

generateCircleClusterNetwork()

{

local clusterHeadNeighbours=$1

local nodeSetupPath="$simulationBase/ConfigFiles/NodeSetups"

local nodeSetupFile="$nodeSetupPath/nodeSetupVar.ini"

local xSize=600

local ySize=600

echo "chgrp.playgroundSizeX = $xSize" > $nodeSetupFile

echo "chgrp.playgroundSizeY = $ySize" >> $nodeSetupFile

echo "" >> $nodeSetupFile

echo "chgrp.numHosts = $(($clusterHeadNeighbours+1))" >> $nodeSetupFile

echo "chgrp.host[*].numHosts = $(($clusterHeadNeighbours+1))" >> $nodeSetupFile

echo "" >> $nodeSetupFile

pi=$(echo "scale=15; 4*a(1)" | bc -l)

radius=150

xOffset=300

yOffset=300

echo "chgrp.host[0].mobility.x=$xOffset" >> $nodeSetupFile

echo "chgrp.host[0].mobility.y=$yOffset" >> $nodeSetupFile

for ((i=0; i<$clusterHeadNeighbours; i=$i+1)) do

xPos=$(echo "(s(($pi*2*$i)/$clusterHeadNeighbours)*$radius+$xOffset)" | bc -l | xargs printf "%1.0f")

yPos=$(echo "(c(($pi*2*$i)/$clusterHeadNeighbours)*$radius+$yOffset)" | bc -l | xargs printf "%1.0f")

echo "chgrp.host[$(($i+1))].mobility.x=$xPos" >> $nodeSetupFile

echo "chgrp.host[$(($i+1))].mobility.y=$yPos" >> $nodeSetupFile

done

}

singleRunSimulation()

{

local networkSize=$1

echo "Creating Simulation Output Directory"

B.1 — Run Simulation BASH Script 126

outputDirectory="$simulationBase/$output/$(createSimulationDirectory "SingleRun")"

echo "Starting Single Run Simulation"

xmlDir="$simulationBase/ConfigFiles/SingleRun"

echo "Simulation Input Data Directory : $xmlDir"

echo "description = \"Single Simulation Run\"" > "$varParametersFile"

echo "chgrp.host[*].net.useTokenPassing = true" >> "$varParametersFile"

echo "chgrp.host[*].net.averageTotalNetworkBitRate = 0" >> "$varParametersFile"

echo "output-scalar-file=\"$outputDirectory/scenarioSingleRun.sca\"" >> "$varParametersFile"

echo "chgrp.host[*].net.sendMessageRandomDestination = true" >> "$varParametersFile"

echo "chgrp.host[*].net.xmlParameters = xmldoc(\"${xmlDir}/SingleRun.xml\")" >> "$varParametersFile"

echo "chgrp.performance.simulationOutputDirectory = \"$outputDirectory\"" >> "$varParametersFile"

#Create Output Directory for Run

mkdir "$outputDirectory/RunSingle"

mkdir "$outputDirectory/RunSingle/ModuleOutput"

echo "chgrp.performance.runOutputDirectory = \"$outputDirectory/RunSingle/ModuleOutput\"" >> "$varParametersFile"

#Setup simulation type

#Setup performance measurements

echo "chgrp.performance.simulationTimeConnectivity = false" >> "$varParametersFile"

#Setup node positions

if [$networkSize == "Twenty"]

then

echo "include ./NodeSetups/nodeSetup3.ini" >> "$varParametersFile"

elif [$networkSize == "Fifty"]

then

echo "include ./NodeSetups/nodeSetup50nodes.ini" >> "$varParametersFile"

elif [$networkSize == "Hundred"]

then

echo "include ./NodeSetups/nodeSetup100nodes.ini" >> "$varParametersFile"

else

echo "include ./NodeSetups/nodeSetup3.ini" >> "$varParametersFile"

fi

echo "chgrp.performance.runNumber = 1" >> "$varParametersFile"

./CHGRP

echo "Completed Single Simulation" >> $outputDirectory/simulationsCompleted.txt

}

networkSetupSimulationRun()

{

local name

local networkSize="Twenty"

local runNumber=""

local testConnectivity="false"

local simulationName="networkSetupTest"

local priorityToken="false"

local currentRunSetup

local testLinkBreak="false"

OPTIND=1

while getopts s:r:cn:pb name $@

do

if [$name == "s"]

B.1 — Run Simulation BASH Script 127

then

networkSize=$OPTARG

elif [$name == "r"]

then

runNumber="$runNumber$OPTARG "

elif [$name == "c"]

then

testConnectivity="true"

elif [$name == "n"]

then

simulationName=$OPTARG

elif [$name == "p"]

then

priorityToken="true"

elif [$name == "b"]

then

testLinkBreak="true"

else

echo "Invalid option for script function networkSetupSimulationRun!!"

fi

done

#Determine which simulation runs should be executed

if [-z $runNumber]

then

if [$networkSize == "Increase"]

then

runNumber="1 2 3 4 5 6 7"

elif [$priorityToken == "true"]

then

runNumber="1 2 3 4"

elif [$testLinkBreak == "true"]

then

runNumber="1 2"

else

runNumber="1 2 3 4 5 6 7 8 9 10"

fi

fi

echo "Network size : $networkSize"

echo "Run number : $runNumber"

echo "Test connectivity : $testConnectivity"

echo "Priority Token Test : $priorityToken"

echo "Test Link Break : $testLinkBreak"

echo "Creating Simulation Output Directory"

outputDirectory="$simulationBase/$output/$(createSimulationDirectory "$simulationName")"

echo "Starting Network Setup Test Simulation"

#Setup xml configuration file path

xmlDir="$simulationBase/ConfigFiles/SingleRun"

echo "Simulation Input Data Directory : $xmlDir"

for simulationRun in $runNumber

do

echo "description = \"Network Setup Simulation Run $simulationRun\"" > "$varParametersFile"

echo "chgrp.host[*].net.useTokenPassing = true" >> "$varParametersFile"

echo "chgrp.host[*].net.averageTotalNetworkBitRate = 100" >> "$varParametersFile"

echo "output-scalar-file=\"$outputDirectory/scenarioSingleRun.sca\"" >> "$varParametersFile"

echo "chgrp.host[*].net.sendMessageRandomDestination = false" >> "$varParametersFile"

B.1 — Run Simulation BASH Script 128

echo "chgrp.host[*].net.xmlParameters = xmldoc(\"${xmlDir}/SingleRun.xml\")" >> "$varParametersFile"

echo "chgrp.performance.simulationOutputDirectory = \"$outputDirectory\"" >> "$varParametersFile"

#Create Output Directory for Run

mkdir "$outputDirectory/Run$simulationRun"

mkdir "$outputDirectory/Run$simulationRun/ModuleOutput"

echo "chgrp.performance.runOutputDirectory = \"$outputDirectory/Run$simulationRun/ModuleOutput\"" >> "$varParametersFile"

#Setup simulation type

#Setup performance measurements

echo "chgrp.performance.simulationTimeConnectivity = $testConnectivity" >> "$varParametersFile"

#Setup node positions

if [$networkSize == "Twenty"]

then

echo "include ./NodeSetups/nodeSetup3.ini" >> "$varParametersFile"

elif [$networkSize == "Fifty"]

then

echo "include ./NodeSetups/nodeSetup50nodes.ini" >> "$varParametersFile"

elif [$networkSize == "Hundred"]

then

echo "include ./NodeSetups/nodeSetup100nodes.ini" >> "$varParametersFile"

elif [$networkSize == "Test1"]

then

echo "include ./NodeSetups/nodeSetup1.ini" >> "$varParametersFile"

elif [$networkSize == "Circle"]

then

generateCircleClusterNetwork $simulationRun

echo "include ./NodeSetups/nodeSetupVar.ini" >> "$varParametersFile"

elif [$networkSize == "Increase"]

then

writeNodeSetup 600 600 $((10 + (5*$simulationRun)))

echo "include ./NodeSetups/nodeSetupVar.ini" >> "$varParametersFile"

else

echo "include ./NodeSetups/nodeSetup3.ini" >> "$varParametersFile"

fi

#Perform Simulation Specific Test Setup

if [$priorityToken == "true"]

then

#Setup token priority

currentRunSetup=$((($simulationRun+1)/2))

if [$(($simulationRun%2)) == 0]

then

echo "Using priority token : false"

oneTransmissionChance="true"

else

echo "Using priority token : true"

oneTransmissionChance="false"

fi

echo "chgrp.host[*].appl.sendUdpStreams=true" >> "$varParametersFile"

echo "chgrp.host[*].appl.testLinkBreak=false" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbStartSendingDataMessagesTime=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbLinkBreakTime=10" >> "$varParametersFile"

echo "chgrp.host[*].appl.minimumStreamLength=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.maximumStreamLength=5" >> "$varParametersFile"

echo "chgrp.host[*].net.oneTransmissionChance=$oneTransmissionChance" >> "$varParametersFile"

B.1 — Run Simulation BASH Script 129

echo "chgrp.host[*].net.sendDataMessages = false" >> "$varParametersFile"

elif [$testLinkBreak == "true"]

then

currentRunSetup=$simulationRun

echo "chgrp.host[*].appl.sendUdpStreams=true" >> "$varParametersFile"

echo "chgrp.host[*].appl.testLinkBreak=true" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbStartSendingDataMessagesTime=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbLinkBreakTime=5" >> "$varParametersFile"

echo "chgrp.host[*].appl.minimumStreamLength=600" >> "$varParametersFile"

echo "chgrp.host[*].appl.maximumStreamLength=700" >> "$varParametersFile"

echo "chgrp.host[*].net.oneTransmissionChance=false" >> "$varParametersFile"

echo "chgrp.host[*].net.sendDataMessages = false" >> "$varParametersFile"

elif [$networkSize == "Circle"]

then

currentRunSetup=$simulationRun

echo "chgrp.host[*].appl.sendUdpStreams=false" >> "$varParametersFile"

echo "chgrp.host[*].appl.testLinkBreak=false" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbStartSendingDataMessagesTime=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbLinkBreakTime=10" >> "$varParametersFile"

echo "chgrp.host[*].appl.minimumStreamLength=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.maximumStreamLength=5" >> "$varParametersFile"

echo "chgrp.host[*].net.oneTransmissionChance=true" >> "$varParametersFile"

echo "chgrp.host[*].net.sendDataMessages = false" >> "$varParametersFile"

else

currentRunSetup=$simulationRun

echo "chgrp.host[*].appl.sendUdpStreams=false" >> "$varParametersFile"

echo "chgrp.host[*].appl.testLinkBreak=false" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbStartSendingDataMessagesTime=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.lbLinkBreakTime=10" >> "$varParametersFile"

echo "chgrp.host[*].appl.minimumStreamLength=3" >> "$varParametersFile"

echo "chgrp.host[*].appl.maximumStreamLength=5" >> "$varParametersFile"

echo "chgrp.host[*].net.oneTransmissionChance=false" >> "$varParametersFile"

echo "chgrp.host[*].net.sendDataMessages = true" >> "$varParametersFile"

fi

echo "Run Command : ./CHGRP -r $currentRunSetup"

echo "chgrp.performance.runNumber = $simulationRun" >> "$varParametersFile"

./CHGRP -r "$currentRunSetup"

success=$?

if [$success -eq 0]

then

result="(FAILED)"

else

result="(SUCCESS)"

fi

echo "Completed Network Setup Test Simulation $simulationRun $result" >> $outputDirectory/simulationsCompleted.txt

done

}

createSimulationDirectory()

{

local simulationName=$1

local cOutputDirectory="Simulation.$simulationName.$(date +%d_%b_%y_%H%M_%S)"

mkdir "$simulationBase/$output/$cOutputDirectory"

B.1 — Run Simulation BASH Script 130

echo "$cOutputDirectory"

}

simulationBase="$WORKDIR/CHGRP"

output="SimulationOutput"

echo ""

varParametersFile="./ConfigFiles/varParameters.ini"

firstVarParametersFile="./ConfigFiles/firstVarParameters.ini"

simulationTimeLimit="200"

echo "[General]" > $firstVarParametersFile

echo "sim-time-limit = ${simulationTimeLimit}s" >> $firstVarParametersFile

#XML Simulations

runXMLSimulation "One" #Change networklayer values back to default values.

#runXMLSimulation "Two"

#runXMLSimulation "Three"

runXMLSimulation "Four"

#runXMLSimulation "Five"

runXMLSimulation "RandomOne"

runXMLSimulation "RandomTwo"

#Routing Overhead Simulation

#networkSetupSimulationRun -s Increase -n "ControlOverhead"

#Priority Token Simulations

#networkSetupSimulationRun -s Twenty -n "PriorityTokenTwenty" -p

#networkSetupSimulationRun -s Fifty -n "PriorityTokenFifty" -p

#networkSetupSimulationRun -s Hundred -n "PriorityTokenHundred" -p

#Quick Reroute Simulations

#networkSetupSimulationRun -s Twenty -n "QuickRerouteTwenty" -b

#networkSetupSimulationRun -s Fifty -n "QuickRerouteFifty" -b

#networkSetupSimulationRun -s Hundred -n "QuickRerouteHundred" -b

#Connectivity Simulations

#networkSetupSimulationRun -s Twenty -r 1 -r 2 -n "ConnectivityTwenty" -c

#networkSetupSimulationRun -s Fifty -r 1 -r 2 -n "ConnectivityFifty" -c

#networkSetupSimulationRun -s Hundred -r 1 -r 3 -n "ConnectivityHundred" -c

#Test Networks

#networkSetupSimulationRun -s Test1 -r 1 -n "Test1Network"

#singleRunSimulation Twenty

#networkSetupSimulationRun -s Circle -n "CircleNetworks"

#Run Simulation to Generate Random Network

#networkSetupSimulationRun -s Twenty -r 11 -n "ARandomNetwork"

echo ""

B.2 — Configuration Files 131

B.2 Configuration Files

B.2.1 General Configuration File

[General]

;ini-warnings = true

rng-class="cMersenneTwister"

network = chgrp

random-seed = 1

sim-time-limit = 20s

[Tkenv]

bitmap-path="/home/vier/omnetpp-3.4b2/mobility-fw2.0p3/bitmaps"

default-run=1

runs-to-execute = 1

use-mainwindow = yes

print-banners = yes

slowexec-delay = 300ms

update-freq-fast = 10

update-freq-express = 100

breakpoints-enabled = yes

[Cmdenv]

runs-to-execute = 1

event-banners = yes

module-messages = yes

express-mode = yes

[DisplayStrings]

[Parameters]

chgrp.modifiedNicPath = "./ModifiedNic/"

chgrp.useModifiedProtocolStack = false

##

Parameters for the entire simulation

##

#Using number in nodeSetup*.ini file

#chgrp.numHosts = 20

#chgrp.host[*].numHosts = 20

uncomment to enable debug messages for all modules

#**.debug = 1

**.coreDebug = 0

##

Parameters for the Mobility Module and PlaygroundSize

##

include ./ConfigFiles/mobilitySetup.ini

##

Parameters for the ChannelControl

##

chgrp.channelcontrol.carrierFrequency = 2.4e+9

B.2 — Configuration Files 132

max transmission power [mW]

chgrp.channelcontrol.coreDebug = 1

#Transmission Power Gt*Gr*Pt = 2dBi + 2dBi + 15dBm = 79,4 mWatt

#Scaling Factor = 6,69

chgrp.channelcontrol.pMax = 159208;3200000 ; Pt = Pto*Scaling factor; was 110.11

signal attenuation threshold [dBm]

SAT -85dBm for 802.11b

chgrp.channelcontrol.sat = -85;-72 ; was -120

path loss coefficient alpha

chgrp.channelcontrol.alpha = 4 ; was 4

chgrp.channelcontrol.sendDirect = 0

chgrp.channelcontrol.useTorus = 0

##

Parameters for the Host

##

chgrp.host[*].color = "white"

chgrp.host[*].appendDisplay = "b=20,20,oval;o=blue,black,2"

chgrp.host[*].applLayer="TestApplLayer"

##

Parameters for the Application Layer

##

include ./ConfigFiles/applParameters.ini

##

Parameters for the Network Layer

##

include ./ConfigFiles/netParameters.ini

##

Parameters for ARP

##

chgrp.host[*].arp.debug = 0

include ./ConfigFiles/macParameters.ini

##

Parameters for Performance Module

##

include ./ConfigFiles/performanceModuleParameters.ini

##

Parameters for Different Runs

##

include ./ConfigFiles/runParameters.ini

B.2.2 Network Layer Configuration File

##

Parameters for the Network Layer

##

[Parameters]

chgrp.host[*].net.headerLength=64 #in bits

chgrp.host[*].net.debug = 1

B.2 — Configuration Files 133

chgrp.host[*].net.Election_Threshold = 2

chgrp.host[*].net.goodConnectionThreshold = 0.75

#chgrp.host[*].net.useTokenPassing = false

#Link detection parameters

chgrp.host[*].net.generateNewHelloMessageShort_TIME = 0.04

chgrp.host[*].net.generateNewHelloMessageLong_TIME = 0.1

chgrp.host[*].net.decreaseTimeToLive_TIME = 0.1

#Routing update paramters

chgrp.host[*].net.clusterTableRoutingUpdateTime = 0.5

chgrp.host[*].net.decreaseClusterTimeToLive_TIME = 0.5

chgrp.host[*].net.clusterTableTimeToLiveMaximum = 10

#Insert Damping Fluctuations Parameters

#Token parameters

chgrp.host[*].net.tokenTimeOut_TIME = 0.0075

chgrp.host[*].net.generateNewTokenMessage_TIME = 0.0075

chgrp.host[*].net.generateNewTokenMessageAfterTimeOut_TIME = 0

chgrp.host[*].net.averagePacketInterarrival_TIME = 0.05

chgrp.host[*].net.displayNetworkStatsGraphicDebug = false

chgrp.host[*].net.bufferDebug = false

chgrp.host[*].net.showNetworkAddress = false

#Routing Layer Parameters

#One transmission chance added to variable configuration file

#chgrp.host[*].net.oneTransmissionChance = false

#Send data messages moved to variable configuration file

#chgrp.host[*].net.sendDataMessages = false

#Output File Switches

chgrp.host[*].net.printNeighbourTimeOutFile = false

chgrp.host[*].net.writeRoutingTableFile = true

chgrp.host[*].net.writeNetworkLayerInformationFile = true

chgrp.host[*].net.writeNodeDataFile = true

#Debug Parameters

chgrp.host[*].net.tokenDebug = false

B.2.3 Application (Transport) Layer Configuration File

##

Parameters for the Application Layer

##

[Parameters]

debug switch

chgrp.host[*].appl.debug = 1

chgrp.host[*].appl.headerLength=1024

chgrp.host[*].appl.burstSize=3

#Send Udp Streams added to variable configuration file

#chgrp.host[*].appl.sendUdpStreams=true

chgrp.host[*].appl.offsetLengthTime=0.8

chgrp.host[*].appl.minimumOffsetLength=2

B.2 — Configuration Files 134

chgrp.host[*].appl.maximumOffsetLength=4

chgrp.host[*].appl.sendingRate=250000 # in bits per second

#minimumStreamLength and maximumStreamLength moved to simulation setup script

#chgrp.host[*].appl.minimumStreamLength=600

#chgrp.host[*].appl.maximumStreamLength=700

#lbStartSendingDataMessagesTime and lbLinkBreakTime moved to simulation setup script

#chgrp.host[*].appl.lbStartSendingDataMessagesTime=3

#chgrp.host[*].appl.lbLinkBreakTime=5

#Test Parameters

#testLinkBreak moved to simulation setup script

#chgrp.host[*].appl.testLinkBreak = true

#XML Parameters file

chgrp.host[*].appl.xmlParameters = xmldoc("/home/daniel/Personal/Thesis/CHGRP/ConfigFiles/QuickReroute/quickReroute.xml")

Appendix C

Published Article

135

Design and Optimization of a Cluster Based

Ad Hoc Wireless Network Routing Protocol
Daniël Kotze and Riaan Wolhuter

Department of Electronic Engineering

University of Stellenbosch

7602 Matieland, South Africa

Email: 14380552@sun.ac.za, wolhuter@sun.ac.za

Abstract—Cluster based routing protocols has been shown
to reduce routing information overhead at high node densities.
This paper documents the design process of a cluster based
routing protocol. A simulation was created to implement the
protocol. It is shown how the cost to maintain the cluster
structure, can be reduced further by decreasing the number
of nodes that transmit routing information. The formation
of clusters is illustrated and the roles of different nodes are
described, due to their place in the network topology. A
mechanism for the fast detection of broken routes is presented.
Basic congestion control is implemented with token scheduling.
Performance is measured by a separate module for easier
aggregate simulation time measurements.

Index Terms—Ad hoc wireless network, cluster generation,

congestion control, fast link break detection, simulation.

I. INTRODUCTION

Ad hoc wireless networks are communication networks

without an inherent infrastructure. Nodes make use of

neighbours to route packets to remote destinations that are

multiple hops away. Using neighbours as routers extends

the coverage of the network at a low cost. Ad hoc networks

are ideal for deployment in rural areas, disaster recovery

operations, environmental sensing and military operations

[1]. This study focuses on ad hoc wireless networks where

nodes have a high available bandwidth and high density, such

as would be found operating in the Ka band. The Federal

Communications Commission (FCC) has assigned the 57-64

GHz band for unlicensed use [2].

Cluster based hierarchical routing protocols are effective

at high densities, because routing overhead can be reduced

[3]. However maintaining the cluster structure comes at a

cost. It will be shown how to reduce the cluster maintenance

cost by using less overhead than previous implementations of

the Cluster-head Gateway Switch Routing protocol (CGSR)

[4], [5].

When network traffic increases, links tend to become

saturated degrading the overall network performance. A

simple mechanism is used to control congestion. Another

drawback of current routing protocols is the slow detection

of link breakages, because hello packets are sent periodically

at the order of 2 seconds [6]. A link breakage can be detected

sooner by sending smaller hello packets at a faster rate.

Background on ad hoc network routing protocols will

be discussed first, in Section II. Next, the design steps

and implementation environment will be documented in

Section III. Section IV will present various tests and results.

II. BACKGROUND

Routing protocols for wireless networks have different

requirements, because nodes normally have limited band-

width and mobile nodes frequently change the topology

[1]. However, for this work, we studied an ad hoc network

with high bandwidth and immobile hosts. Routing protocols

follow two paradigms. Proactive routing protocols maintain

routes to all destinations, while reactive protocols only set

up a route when one is needed.

Destination Sequenced Distance Vector (DSDV) is a dis-

tance vector routing protocol based on the Bellman-Ford

algorithm. With the use of sequence numbers loop-free

paths to all destinations are provided [7]. Routing overhead

of the DSDV protocol grows by O(N2) where N is the

number of nodes [8]. Therefore, it becomes unsuitable for

large networks. Optimised Link State Routing (OLSR) is

a proactive link state protocol that provides an effective

flooding mechanism with the use of Multi-Point Relays

(MPRs) [8].

Dynamic Source Routing (DSR) and Ad hoc On-demand

Distance Vector (AODV) are on demand routing protocols.

Both rely on flooding Route Request packets for determining

a route in the network. A Route Reply packet is generated

by the node that provides a route to the destination [8], [9].

Hierarchical routing, groups sets of neighbouring nodes

into a cell. A cluster-head is elected that coordinates the

cluster. Hierarchical protocols allow for greater scalability.

With a high node density, less control overhead is used and

routes converge faster. [3], [10], [11]

Cluster-head Gateway Switch Routing (CGSR) is a hierar-

chical proactive routing protocol. Normal nodes only have to

maintain the route to their cluster-head and only the cluster-

head transmits routing information. One drawback of the

protocol however, is that every node needs to transmit its

cluster member table periodically, increasing the overhead.

The cluster based protocol favours environments where

nodes are not highly mobile. [4], [5], [8]

A. Clustering Algorithms

Mario Gerla et al. presented two methods of how clus-

ters can be formed, namely the lowest-id and highest-

connectivity clustering algorithms [5]. According to the

lowest-id algorithm, the node in the neighbourhood with the

lowest address becomes the cluster-head. With the highest

connectivity algorithm the node that is the most highly

connected in its neighbourhood, becomes the cluster-head.

organize themselves into a cluster by electing a cluster-head.

After the clusters have been formed, routing information

can start to be spread through the cluster. The DSDV

protocol will be used as a basis, but only cluster-heads

and other selected nodes will forward routing information.

Lastly, when the routing information is known, traffic can

be generated on the network and analysed.

D. Cluster Generation

The highest-connectivity clustering algorithm was chosen

for creating clusters. If the situation arises where two cluster-

heads are elected simultaneously within transmission range

of one another, the cluster-head with the least connections

will give up its cluster-head status. Otherwise, if the number

of connections are equal, the cluster-head with the highest

address will give up its cluster-head status. [4]

The cluster-head election process will now be described.

When the network is started every node has the status of

unassigned. In the unassigned state, the node continually

broadcasts hello messages at a high rate. The hello message

contains various data fields. Each hello message has a

sequence number incremented with each transmission. Lost

hello messages can be determined by inspecting the sequence

number. The number of neighbours a node has, is included

in the hello message. Each message contains an election

address field. Every time a node receives a message and the

election address is equal to its own address, it increments

a counter. If the counter value exceeds a certain threshold,

the node is elected as a cluster-head. The threshold can be

calculated with the following equation:

election threshold = kthreshold � connections (1)

The threshold prevents wrong nodes being elected as

cluster-heads too quickly.

The node state field in a node’s hello message is updated

accordingly, when a node becomes a cluster-head. All nodes

hearing the newly elected cluster-head change their state to

assigned, to indicate that they are part of the cluster. Figure 3

shows how a cluster is created.

A

C U

UU

U

U

A

A

A

A

A

U

Fig. 3. The diagram illustrates cluster formation. “C” is the cluster-head
node, “A’s” are the assigned nodes and “U’s” are the unassigned nodes.

Nodes that are part of a cluster now generate hello

messages at a slower rate to maintain connections with their

neighbours.

E. Node States

The protocol makes use of various states. In each state,

a node has a different function or behaviour. When a node

goes online it starts in the unassigned state. In the unassigned

state, nodes try to elect a cluster-head. When a node can hear

one cluster-head it goes into the assigned state. A node that

can hear two cluster-heads becomes a gateway. Gateways

provide a communication path from one cluster to another.

A distributed gateway is formed between nodes that are in

different clusters. Satellite nodes are nodes that do not have

a cluster-head as a neighbour, but is a neighbour of nodes

that can hear a cluster-head.

1) Motivation for Satellite Nodes: Rarely, instances occur

where after the election process, a single uncovered node

remains at the edge of the network. An uncovered node

is a node not associated with a cluster. Only uncovered

nodes can take part in cluster-head election and a single

uncovered node cannot elect itself. A satellite node joins a

cluster by relaying its information to the cluster-head through

a common neighbour.

F. Routing Tables

The routing tables enable nodes to determine the next hop

to a destination. The main routing tables are the neighbour

table and the cluster table set. The cluster table set contains

all nodes in the network’s cluster-node associations and

routing information to the specific cluster. Hello messages

update the neighbour table and cluster table messages update

the cluster table set.

Other tables assist the protocol by maintaining specialised

information. The cluster-head table maintains information on

cluster-heads within the two hop vicinity. The gateway table

summarizes information on neighbour gateway or distributed

gateway nodes and to which cluster they link. Routing

information on satellite nodes within two hops is recorded

in the satellite node table. Only cluster-heads maintain the

neighbour cluster table that selects a designated gateway for

each neighbouring cluster. The network node table contain

all routable nodes and to which clusters they belong.

1) Cluster Table Set Updates: The cluster table set con-

sists of cluster tables. Each cluster table represents a different

cluster in the network. Similar to DSDV [7], when a cluster

table message (routing update) is received, a cluster table

inspects its sequence number to determine if it must be

updated. A cluster table in the set with sequence number s	
will be updated if the sequence number in the cluster table

in the update message sR is greater. If however s	 = sR,

the cluster table in the set is only updated if the the cluster

table in the update message has a smaller hop count.

G. Link Stability

Entries in the neighbour table and the cluster table set both

have a TTL (Time-To-Live) field. When a node receives a

hello message from a neighbour, a TTL field associated with

the neighbour is set to its maximum 5. As long as the TTL

is more than 0 the link state is stable. After a time nearly

equal to the generation time of a hello message, the TTL field

of every neighbour is decremented. The generation time of

a hello message is 0
1 s. Therefore, if no hello message is

received from a neighbour, the TTL field will reach 0 after

0
5 s. The link state is set to unstable if the TTL becomes 0.

Note that the hello message is kept small by only including

information on critical nodes (maximum 4 of each type)

within a two hop range. Critical node types include cluster-

heads and satellite nodes.

H. Routing Information Distribution

Only selected nodes generate full routing information.

Cluster-heads and forwarder nodes transmit cluster table

messages. Forwarder nodes are selected by the cluster-head

and are included in the header of the cluster table message.

When a node is informed by a cluster table message that it

is a forwarder node, it acquires a forwarding responsibility.

Designated gateways indicated in the neighbour cluster table

and the satellite service node (node between a cluster-head

and satellite node) are selected as forwarder nodes. When

a forwarder node receives a cluster table message and the

header indicates that it is no longer a forwarder node, the

node is relieved of its forwarding responsibility. Figure 4

shows how routing information is distributed.

Forwarder Nodes

Forwarder Nodes

Fig. 4. The routing information is distributed to neighbouring clusters and
satellite nodes through the forwarding nodes.

I. Routing Function

The routing function has two main parts. One part deter-

mines if the destination is available locally. The other part

determines the next hop if the destination node is part of a

remote cluster.

The neighbour table and the satellite node table are

inspected first to find the destination’s routing information.

If the destination is found in the neighbour table, the

destination is set as the next hop address. If the satellite

node table contains the destination, an intermediate node is

set as the next hop.

Now, if the local search has failed to deliver a result,

the network node table is searched for the destination. If

the node is found in the network node table, the cluster

table set is utilised to determine the nearest cluster to which

the destination belongs. The cluster table containing the

destination node, contains a reachable through cluster field.

The gateway table is searched for a gateway that links to the

reachable through cluster. If such a gateway can be found, it

is selected as the next hop, otherwise the cluster-head of the

current cluster is selected as the next hop. Figure 5 explains

the terms reachable through cluster and current cluster.

If the current node is a satellite node, the satellite service

node is selected as the next hop.

S

D

A

B

C

Fig. 5. Suppose a node “S” wants to route data to node “D”. From the
perspective of node “S”, cluster “A” is the current cluster, cluster “B” is
the reachable through cluster and cluster “C” is the destination cluster.

J. Token Scheduling

Token scheduling [4] was implemented as a measure

of congestion control. Since cluster-heads transmit more

routing information and nodes choose the cluster-head as

a next hop if no shorter route can be found, cluster-heads

are given more transmission chances. Note that different

spreading codes for separate clusters were not used, as in the

original CGSR, to simplify implementation of the protocol.

The focus of token scheduling is to give a fair chance to each

node to transmit data in the cluster. The token is generated

by the cluster-head and passed back and forth between itself

and its neighbours. Every time a token is received, the node

can transmit one data message. The token can be regenerated

after a time-out. The time-out is calculated by the following

equation:

ttimeout = 2� ttoken transmission + tdata transmission (2)

If nodes have more queued traffic, they can be given more

transmission chances in a transmission cycle. The number of

transmission chances is equated with the following equation:

transmission chances =
mi

max(1� min(m�� m2� ...� mn))
(3)

Where mi is the number of messages queued at a node

and m�� m2� ...� mn are the messages queued at each cluster

member.

Tokens are passed implicitly to satellite nodes.

K. Weighted Fair Queueing with Message Buffers

Weighted fair queueing [15] was implemented to prevent

individual nodes from becoming congested. Two buffers are

used to queue messages, namely the personal message buffer

and general message buffer. The personal message buffer

stores all messages originating from the node itself. All for-

warded messages enter the general message buffer directly.

When a token message is received, one data message from

the general message buffer is sent. Messages proceed from

the personal message buffer to the general buffer to maintain

an acceptable ratio of forwarded messages to generated

messages in the general message buffer. For each cluster a

node which is part of the cluster has a personal and general

message buffer set. Different message buffer sets allows

flows to different clusters to be separated. Routing packets

receive preference (hello message and cluster table message)

and are passed directly to the MAC-Layer for transmission.

L. Performance Monitoring

It was decided to create a separate module in the simu-

lation for performance monitoring. This approach keeps the

performance monitoring and simulation code separate for

greater clarity. Simulation nodes have write access to the

performance module to record certain values. At the start

of the simulation, each node registers with the performance

module by giving access to important data structures, for

instance, the routing table. A graphviz (drawing tool for

graphs) source file is generated by the performance module

and compiled with the neato program [16] to generate

a graphic of the network. The configuration is shown in

Figure 6.

n27

n217

n87

n37

n197

n187

n57

n127

n147

n117n167

n107

n47

n157

n67

n137

n207

n77

n97

n177

Fig. 6. Big circles represent cluster-heads, gateways are circles, ellipses
indicate assigned nodes, distributed gateways are octagons and satellite
nodes are rectangles.

IV. TESTS AND RESULTS

Network setup tests were performed on various different

randomised networks. An aggregate connectivity test was

performed on the network shown in Figure 6. A test to show

the scalability of the protocol at high node densities was

conducted and the results are shown in Figures 8 and 9. Note

that the hello message generation time is 0�1 s and the cluster

table message generation time is 0�5 s. Each simulation used

20 nodes with a transmission range of approximately 40m

bounded by an area of 90m by 90m.

The network setup tests show that the cluster generation

algorithm is successful. The results of 9 simulated random

networks are given in Table I. For each network, the number

of clusters, the average cluster size, number of forwarder

nodes, the percentage of nodes that transmit full routing

information and the last cluster-head setup time were de-

termined. The number of clusters range from 2 to 4. By

only letting cluster-heads and forwarder nodes transmit full

routing information, the number of nodes generating full

control overhead can be reduced at least to 40�. Cluster-

heads are all elected within 1 s.

TABLE I
NETWORK SETUP TEST RESULTS.

Simulation

Number

Number

of

Clusters

Average

Cluster

Size

Forwarder

Nodes

Percentage

Full

Routing

Last

Cluster

Election

Time (s)

1 4 8 7 0,35 0,624

2 2 11 4 0,2 0,403

3 3 10 6 0,3 0,537

4 3 8,33 5 0,25 0,402

5 4 7 6 0,3 0,446

6 2 12,5 4 0,2 0,575

7 2 12 6 0,3 0,406

8 3 8 6 0,3 0,535

9 3 7,33 8 0,4 0,334

The aggregate network connectivity shows the percentage

of nodes that are routable for each node in the network. Thus

an aggregate network connectivity of 1 indicates that every

node knows how to reach every other node in the network.

Figure 7 provides the aggregate network connectivity at

specific points in time. At approximately 1�5 s the network

reaches an aggregate connectivity of 1.

� � � � � ��

���	
���
�������������
���

���

���

���

���

���

���

�
�
�
�
�
�
��
�
��
�

��������������	�
��	���
������������������������

Fig. 7. Aggregate network connectivity versus simulation time graph.

To test network scalability, a test was conducted by

increasing the node density in the 90m by 90m area. First

we started with a 15 node simulation and gradually increased

the number of nodes by 5 with each 30 s simulation run.

The routing overhead of the cluster table messages and

hello messages per node was measured in bytes and shown

in Figure 8. The total control overhead and token control

overhead is shown in Figure 9. The hello message control

overhead per node remains fairly constant over the increasing

node density, but it is noted that to send the hello messages

frequently, has a high cost. The high cost is allowable,

because of the high available bandwidth and it keeps the

local routing information up to date. However the cluster

table message overhead per node decreases slightly with

increasing density, as expected. The token control messages

make up the most of the control overhead and also decreases

with node density. The less token control overhead per

node simply means that every node in the network has less

transmission chances as the node density increases.

�� �� �� �� �� �� ��

���	
��
���
�
�

�

���

����

����

����

����

����

����

����

����

�
�
�
��
�
��
�
�
	
�

	
�
�
�

	
��
�
�
�
	
��
�
��
�
�	
�

������������	�
���
	�
����
	����

�
���
	����

��
����
�����	�
���
	�
��

�

���
����
�����	�
���
	�
��

����	�
���
	�
���������������
��

Fig. 8. Routing Control Overhead.

�� �� �� �� �� �� ��

���	
��
���
�
�

�����

�����

�����

�����

������

������

������

�
�
�
��
�
��
�
�
	
�

	
�
�
�

	
��
�
�
�
	
��
�
��
�
�	
�

����������	�
	���
	�����	

����������������	�
	��

���	������������	�
	��

Fig. 9. Total Control Overhead.

V. CONCLUSION

A routing protocol for high density wireless ad hoc

networks was investigated and background given on previous

work which proved that cluster based routing protocols pro-

vide less control overhead for nodes at high densities. From

this point of departure, the design process of an improved

cluster based protocol was demonstrated. Two improvements

to the CGSR protocol were stated and implemented in a

simulated environment. Cluster generation, node states and

routing tables of the protocol were discussed. A mechanism

for the fast detection of link breakages by sending frequent

small hello messages was introduced. The distribution of

routing messages by selected nodes was shown. A routing

function for the determination of a route to local and remote

nodes was discussed.

Simple congestion control based on a token scheduling

scheme was implemented, giving preference to nodes with

more traffic. Congestion at individual nodes is prevented

with weighted fair queueing by separating the forwarded

traffic and the traffic generated by the node itself.

A separate performance module was implemented that al-

lows aggregate simulation time measurements of parameters.

Lastly, tests and results were presented. The first test

proved that clusters can be successfully set up and the

possibility of reducing the number of nodes that transmit full

routing information, ie. node-cluster associations and route

information. A second test further importantly showed that

an aggregate connectivity of 1 can be achieved and therefore,

every node knows how to reach every other node.

Another test was conducted to show how the protocol

scales in a high density environment. It showed that the

cluster table message overhead per node, that contains the

most routing information, decreases slightly with a higher

density. The hello message overhead per node remains the

same for increasing node density. The results show that

the control overhead scales well with greater density and

does not grow out of bounds. The only disadvantage is

that each node gets less transmission chances with the

higher node density. This work demonstrated the feasibility

of the proposed improvements and desirability of further

development and practical implementation.

REFERENCES

[1] P. Mohapatra and S. V. Krishnamurthy, Eds., Ad Hoc Networks,

Technologies and Protocols. Springer, 2004, ch. 1, p. 2.
[2] N. Guo, R. C. Qiu, S. S. Mo, and K. Takashi, “60-ghz millimeter-

wave radio: Principle, technology and new results,” EURASIP Journal
on Wireless Communication and Networking, vol. 2007, no. 68253,
2007.

[3] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,”
IEEE Radio Communications, Sep. 2005.

[4] C.-C. Chiang, H.-K. Wu, W. Liu, and M. Gerla, “Routing in clustered
multihop, mobile wireless networks with fading channel,” 1997.

[5] M. Gerla and J. T.-C. Tsai, “Multicluster, mobile, multimedia radio
network,” Wireless Networks, vol. 1, pp. 255–265, 1995.

[6] T. Clausen and P. Jacquet, Optimized Link State Routing Protocol
(OLSR) RFC 3626, 2003.

[7] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers,” SIGCOMM,
vol. 8, no. 94, 1994.

[8] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A review of routing
protocols for mobile ad hoc networks,” Ad Hoc Networks, vol. 1,
no. 22, June 2004.

[9] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” 1996, will appear as chapter in the book Mobile
Computing.

[10] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen, “Scalable
routing strategies for ad hoc wireless networks,” IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS, vol. 17, no. 8, pp.
1369–1379, Aug. 1999.

[11] C. S. R. Murthy and B. S. Manoj, Ad Hoc Wireless Networks,

Architectures and Protocols, 2004.
[12] J. Banks, I. John S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-

Event System Simulation, W. J. Fabrycky and J. H. Mize, Eds.
Prentice Hall, 2001.

[13] M. Löbbers and D. Willkomm, A Mobility Framework for OMNeT++
User Manual Version 1.0a4.

[14] Wireless 802.11b transceiver. [Online]. Available:
http://goods.us.marketgid.com/goods/19387/

[15] L. L. Peterson and B. S. Davie, Computer Networks, 3rd ed.,
R. Adams, Ed. Morgan Kaufmann, 2003.

[16] S. C. North, Neato Users Manual, April 2004.

Daniël Kotze completed his Baccalaureate in Electronical and Electrical
Engineering in 2007 at the University of Stellenbosch. He is currently busy
with his Masters degree at the same institution. His thesis is about ad hoc
wireless networks with a high node density and high available bandwidth.
Research focus: Ad hoc wireless networks, signal processing (echo hiding
in sounds).

Riaan Wolhuter has a B.Sc. B.Eng, M.Eng and a Ph.D. from Stellenbosch
University, and a B.Sc(Eng)(Hons) from the University of Pretoria, in Elec-
tronic Engineering. He is a senior researcher at the Faculty of Engineering
at Stellenbosch University, South Africa.

Appendix D

Multimedia Guide

The multimedia disk is composed as follows:

• The CHGRP folder contains the simulation code (part of git repository).

• The Thesis Write folder contains the thesis document, SATNAC article and pictures.

• The Latency Calculations folder contains the latency analysis Python script.

• The Literature Study folder contains articles and theses.

• The Analysis folder contains Python scripts for the generation of graphs.

141

